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A mio padre e mia madre,
che mi hanno lasciato in eredità
la dolcezza di un mondo antico.



You’ll get mixed up
with many strange birds as you go.

So be sure when you step.
Step with care and great tact

and remember that
Life’s a Great Balancing Act.

Just never forget to be dexterous and deft,
and never mix up your right foot with your left.

Dr. Seuss, Oh, the places you’ll go! Random House, 1990



Preface

Before diving head to feet into the subject matter, a few words are in order to
provide the moral excuse for writing this book and to give me the opportunity to tell
a story that goes back to the year 2006.

When I arrived as a full professor in the Department of Physics of the University
of Lille, the Director of that time, Michel Foulon, wanted the newly hired professor
(it would be great if I could add “young” here, but I was already 45 at that time) to
break some walls and open some original routes in research and teaching. I will
always express my warmest thanks and deepest gratitude to Michel, for the wide
freedom he allowed me in the choice and organisation of the new enterprise.

A quick look around Lille, a medium-sized, very lively city in the upper north of
France, right next to the border with Belgium, gave me the obvious answer. With its
about seventy institutes and laboratories revolving around biology, genetics,
biotechnology, medical and clinical R&D, especially (but not exclusively) focussed
on cancer research and therapy, biophysics was the way to go. It would have been a
somewhat new field for me, but not far from my scientific interests at that time.

Thus, I started assembling an undergraduate school (‘master’, according to
European nomenclature) with some colleagues from the Institut Pasteur, the Institut
de Biologie and the Interdisciplinary Research Institute from CNRS, of course the
Department of Physics, and my own CNRS Institut de Microélectronique et
Nanotechnologie. The key idea was to shake up a cocktail of fundamental research
in biophysics and applications in medical physics. The latter had its stronghold in
the Oscar Lambret Cancer Therapy Center, just at the opposite end of the subway
from the university. It was there that I met the brilliant Thierry Sarrazin, soon to
become my best partner in crime, with whom I could put together a master pro-
gramme in medical physics to be coupled with the programme in biophysics. Since
its opening in 2010, this has been a successful story. Our new master in Biological
and Medical Physics has attained a stable number of students, improving both the
teaching throughput of the Department and the research potential of the laborato-
ries, which now have a privileged route to attract some of our best students to the
enormously exciting area of biophysical research.
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Then, what is the place of this book? Already before the formal creation of the
master course, I had started teaching biophysics units at various levels. As a the-
orist, I had chosen this way to learn about the basics, while increasingly redirecting
my own research interests towards two main subjects: molecular mechanics of cell
constituents, and microscopic radiation effects on the nucleic acids DNA and RNA.
However, since the very beginning I realised that it was the very youngest students,
second- or third-year undergraduate, who had to be exposed to introductory sub-
jects of biophysics as early as possible. Without such an early exposure, there
would be no ‘feeding’ for the students towards the more advanced subjects, and the
master courses of the 4th and 5th years would have fallen from the sky, onto the
shoulders of completely unprepared students. For that reason, I created from scratch
a course of Introduction to the Physics of Living Systems for the physics sopho-
more. The idea was not to introduce much new physics for these students, but rather
use their already acquired, albeit still elementary, knowledge about thermody-
namics, mechanics, fluid physics, and electricity, to start seeing the physics behind
the biology. Second-year students are still enough close to the high school to have
some basic biology in their backpack, and that’s all that was needed. The course
was original in its layout, trying not to follow the much abused path of ‘unveiling
hidden physical principles underlying biological facts’. Rather, in the footsteps of
D’Arcy Thompson, J.S.B. Haldane, Archibald Hill, and the more modern Knut
Schmidt-Nielsen, Steven Vogel, J.C. Pennycuick and few others, I wanted to start
from physics and show how living organisms must conform to the inevitable bounds
imposed by gravity, light, temperature, atmosphere, oceans of the Earth, and by the
more general constraints deriving from such life-setting variables as the water phase
diagram, oxygen diffusivity, molecular elasticity, to name just a few.

This book evidently stems from the lecture notes for that course. Clearly, this is
not a book for the research scientist in biophysics: the level is too elementary, the
maths goes little beyond high school basics (at least for the franco-français stu-
dents), and the subjects are well assessed and could not truly represent the last cry
in biophysics research. It is primarily intended as a biophysics primer for young
students, and, by just skipping a few pages too dense in formal math developments,
it should be a pleasurable reading also for educated professionals working in the
area of life sciences.

The physics inherent to living systems is immense and challenging. Where a
physicist seeks mathematical rigour and experimental repeatability under extremely
well-controlled conditions, the biologist rather seeks inductive proof, statistical
correlations and performs hugely complex experiments with a whole bunch of
competing (and often ill-known) free parameters. Biophysics is sometimes con-
sidered with a bit of a raised eyebrow by ‘purist’ colleagues: it may be felt that it
requires sometimes too simple experiments, and too little theory, to keep the pace
with ‘big-time’ physics such as superstring theory, tokamak magnetohydrody-
namics, or the quest for the Higgs boson. However, the more I delve into the
subject, the more interesting questions and puzzling connections I discover. To me,
the fact that a simple experiment assembled in the backyard of the laboratory, or a
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crystal clear piece of non-quantum, non-relativistic theory, or even a
back-of-the-envelope calculation of a dimensionless number, could reveal a crucial
information about the living, represents instead a great advantage and a fascinating
opportunity.

Experienced readers will notice that the subject matter treated in this book is
partly covered, and often with much deeper scope, in several other texts, such as (to
cite just a few prominent ones) Physics of life by Clas Blomberg, Biological physics
by Philip Nelson, How animals work by Knut Schmidt-Nielsen, Comparative
biomechanics, or Life’s physical world by Steven Vogel, Physical biology of the
cell by Phillips, Kondev & Theriot, Newton rules biology by C.J. Pennycuick.

However, both the breadth of subjects touched upon and the pedagogical
approach followed here should be unlike any of the above, highly commendable
and respected works. The keywords behind the present effort can be summarised in
the following three concepts:

1. use the least possible amount of mathematics and molecular chemistry, and
provide a minimum necessary knowledge of cell and structural biology;

2. propose a wide subject coverage, with a macro ! micro ! macro logical path:
start from the macroscopic world, namely the thermodynamics of the Universe
and the Solar system, and, via such subjects as the greenhouse effect and
energetics of metabolism, step down to the microscopic world (physics of
bacteria and unicellular life, cells and tissues, biomolecules); hence, move again
upwards in length- and timescales to the physics of organs and whole organ-
isms, and end up with subjects in zoology (e.g. simplified aerodynamics of
insect flight, energy budget for the survival and reproduction of a flock of
animals), and planetary ecology (species competition in the Biosphere, limits of
ecosystems);

3. exploit as much as possible the physics knowledge base of second-year
undergraduate students (elementary thermodynamics, classical mechanics and
electrokinetics, elementary fluid mechanics), without need to introduce more
complex notions, unless strictly necessary.

The book can be approached at least at two different levels, by different groups
of readers, namely: as an undergraduate textbook in introductory biophysics and as
a “case of curiosities” for professionals working in the vast life sciences and
biomedical domains. For the first approach, each chapter contains the necessary
background and tools, including exercises and Appendices, to form a progressive
course. In this case, the chapters can be used in the order proposed by the index,
eventually split over two semesters (Chaps. 5–9 covering somewhat more advanced
subjects, susceptible of further developments). For the second approach, the curious
but less physics-oriented reader might skip the first chapter (if school memories
of thermodynamics are still haunting his/her dreams), as well as all the grey boxes
containing the more formal developments, and create his/her own menu of chapters
á la carte (with the only author’s suggestions of reading Chap. 8 before Chap. 9,
and Chap. 10 before Chap. 11). Also, note that the bibliographical references at the
end of each chapter are not intended to provide a fully detailed support for all the
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subjects treated, as it would be the case for a scientific paper, but rather to merely
propose some possible directions of development.

No book will ever be complete and definitive, and this one can be no exception.
In particular this one, I should say. The material has been expanding over the years,
some subjects leaving the place to newer ones according to my own curiosity, or to
the discovery of interesting scientific papers amenable to an easily accessible level.
Had I kept going with including any new items that came to my attention as a
teacher, I would have never written this book. However, one has to stop some-
where, to give account of the state of the house at a given point. Hopefully, others
will continue this effort and provide it with more motivation, better writing, deeper
substance, nicer examples and smarter problems. Hopefully, among these there
could be one of my former students or one of the readers of this book. In any case, it
is my hope that in reading this book, be it for an introductory course as a student, or
for a curiosity refresher as a practicing life scientist, your interest and attention
towards biophysics could only increase.

Todi, Italy Fabrizio Cleri
April 2016

This work has been possible also thanks to the many colleagues and students
with whom I have been interacting, during all these years. Whereas discussing with
colleagues is (almost) always a pleasure and a good occasion for funny jokes, the
daily exchange with students is definitely the most refreshing and challenging
moment. I am grateful to all those people who had the patience of listening to me,
advising and correcting my mistakes, and helping me to find better and better ways
to transmit the message. And I know it is not over yet.

Special thanks are in order for those colleagues and friends who took the burden
of reading early versions of the various chapters and could bring their precious
comments, criticisms, enlightenments to my ongoing, often immature work. In
alphabetical order: Angela Bartolo, Bruno Bastide, Ralf Blossey and Jean Cosleou
(Lille), Enrico Carlon (Leuven), Dominique Collard (Tokyo), Luciano Colombo
(Cagliari), Antonio Di Carlo (Rome), Bahram Djafari-Rouhani, Alessandro
Faccinetto, Stefano Giordano and Frank Lafont (Lille), Rob Phillips (Pasadena),
Felix Ritort (Barcelona), Paola Salvetti (Dubai). However, for any error, impreci-
sion or misprint still lurking in the text, the responsibility must be fully charged to
the author.

I am grateful to the people at Springer who invested their energies and resources
to propose this book to the public, especially to Maria Bellantone, who constantly
encouraged and guided me in the pursuit of this project, and to the editorial
assistants Annelies Kersbergen and Mieke van der Fluit.
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List of Appendices

Since this book is intended as an introduction to biophysics for a public of
undergraduate students, as well as for the physics-curious professional in life and
health sciences, the continuity of the main text was privileged. Therefore, back-
ground notions are relegated in ample and illustrated Appendices, including the
minimum mathematical toolbox (Appendix A, and F–H), and some essential
notions in molecular and cell biology (Appendix B–E).
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Chapter 1
Introduction

To confront the study of living systems for a physicist or an engineer is, at the
same time, an exciting challenge, as well as a complex and sometimes frustrating
endeavour. The differences between the living systems as studied by the biologists,
and the inorganicmatter that is traditionally the domain of the so-called hard sciences,
are discouraging, already starting from the catalog of the basic materials. Inorganic
materials, such as rocks and soil, as well as artificial man-made objects, span at
large Mendeleev’s periodic table of the elements, from the lightest to the heaviest:
iron, nickel, chromium, aluminium, silicon, lead, and tens of less common elements
such as beryllium, germanium, gallium, arsenic, lanthanum, uranium... Biological
materials, on the other hand, are based on a handful of light elements, just carbon,
oxygen, nitrogen and hydrogen, plus an allowance in minor concentrations of a few
heavier elements, such as calcium, sodium, potassium, phosphorus, usually in the
form of salts and ions.

Also the ‘fabrication’ methods are vastly different. Materials of engineering, as
well as those taken from the Earth’s crust, are (at least, up to now) invariably pro-
duced in a top-down way by highly energetic processes: melting, casting, stamping,
high-pressure and high-temperature sintering, moulding, laser cutting and drilling,
chemical extraction and separation, and so on, all designed to produce substances,
objects and parts ofmachineswith predefined functions andwell-defined shapes. The
objects issued from an assembly line all have rigorously the same identical design
and character, all parts fit in exactly the same positions, and move in the only way
they were designed for. Once a part is broken it must be replaced by external actions,
or the whole object will stop functioning.

Biological organisms, on the other hand, are capable of growing from a small
amount of matter, by using ridiculously small amounts of energy per unit mass; they
can self-assemble in a bottom-up way, by placing atoms and molecules one next to
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2 1 Introduction

each other, to such a degree of precision that a single amino acid missing from a
protein may signify the death of the entire organism; they adjust and change their
size, shape and capabilities, during their development and all along their lifespan;
they can regenerate and self-heal broken parts, to a good extent. All this thanks to
an internally defined plan, the genetic code, which works more as a blueprint than
as a rigid design. All sunflowers in a field look the same, yet not two flowers are
identical.

The mobile phones that we carry in our pockets seem capable of wonders, e.g.
when placing our position on Google maps, yet they consume about 1W per cm3 of
computingmaterial (the silicon chip), to perform a rather simple trigonometric calcu-
lation (that’s easywhen you have available hundreds of satellite data). By comparison
a human brain, whose material is mostly water and salts, uses less than 1/100th of
that power to perform infinitely more complex ‘computations’, such as tracking and
hitting in less than 100 ms a tennis ball approaching at 100km/h, while keeping full
body balance and preparing to fool the opponent with another uncatchable shot.

The internal structures of engineering objects are based on a usually simple and
repeatedmicrostructure of the assembledmaterials, whose homogeneity and stability
over long times are necessary and demanded requisites. The engineering design aims
at predicting the conditions under which the object will be utilised, and tries to
select or concoct the most appropriate materials, for the object to sustain mechanical
stresses, temperatures, pressures, electromagnetic perturbations, during its lifetime.
The shape and size are decided according to the functions the object will fulfil,
with reassuring extra thickness, length, width, against premature ageing or failure.
By contrast, living organisms display a complex and interconnected hierarchical
structure, with substructures organised over all length scales, from the molecule, to
the cell, to the tissues, to the whole organs. Their cells can multiply and differentiate
into hundreds of different types, each appropriate to one or more specific functions,
starting from just a few basic types. They can respond dynamically to variations of
temperature and pressure, to reduction or increase in oxygen levels, they can remodel
and reshape parts of their body during development or accidental damage, and—most
importantly—they are capable of reproducing themselves endlessly.

Nevertheless, despite such vast differences, many of the important advances in
biological and medical sciences have been made possible by technologies devel-
oped from the different domains of physics. It is possible today to scan thou-
sands of genes in one single experiment, by squeezing an entire laboratory within a
microfluidic chip of a few cm2, designed on a silicon wafer with standard methods
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taken from semiconductor industry; the enormous increase in data flow after the
success of genome decoding has pushed biologists to take interest in the methods
of high-energy physicists and astronomers, well-used to treat immense amounts of
experimental data; sources of synchrotron radiation, confocal microscopy and spec-
troscopy, nuclear magnetic resonance, are more and more in demand by structural
biologists, to deduce the structure and function of proteins, enzymes, and entire cell
organelles.

Therefore, the contact between physics and life sciences should be restricted to
such “utilitaristic” activities, in which physics is offering her precious services in the
form of advanced technologies for diagnostic and imaging?

Enter Biophysics. Physicists and their methods have met biology a long time ago,
already in the early XIX century. Probably, the first biophysicist in the modern sense
could have been Luigi Galvani, from the University of Bologna, who around 1780
discovered animal electricity with his famous experiments on frogs (from which the
term ‘galvanic current’ for the electric currents generated by acid-salts solutions).
Many prominent physicists of the past had found interest in biological phenomena,
notably in what has become known as the Berlin School of the mid-XIX century,
including suchpeople asHermannvonHelmholtz, EmilDuBois-Reymond,Ernst von
Brücke, and Carl Ludwig. Their scientific approach to organic physics still sounds as
an ideal description of the scope and aims ofmodern biophysics: “a vital phenomenon
can only be regarded as explained, when it has been proven that it appears as a result
of the material components of living organisms, interacting according to the laws
which those same components would follow in their interaction outside of living
systems”.1

From a fundamental point of view, biophysics aims at explaining biological phe-
nomena exactlywith the same laws that apply to the rest of theUniverse. The progres-
sive discovery of similitudes between physical phenomena, notably in mechanics,
energetics, electricity, and corresponding phenomena occurring inside living cells,
has been the important motor of the recent, increasing interest in biophysics. As
physicists, we always try to explain the essential features underlying an ensemble
of observations by proposing synthetic, unifying theories. At the beginning of the
XX century, the chemical view of living organisms was that they looked rather like

1Adolf Fick, Gesammelte Schriften, vol.3, pp. 492 and 767, Würzburg, 1904.
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a bowl of soup, although capable of performing complex and sometimes amusing
tasks, usually forbidden to soup bowls. At that time, scientists had but a vague idea
of the way living organisms are capable of creating ordered structures starting from
food and energy. Around the mid-XX century, it started to become clear that the
answers to such questions should be found in giant molecules, found in the nucleus
of each cell, capable of self replicating and of producing other giant molecules for all
the cell functions; therefore, scientists invested themselves in the job of learning the
largest possible number of details on all such molecules and their functions. Today,
we find ourselves in a sort of opposite situation: we have way too much information
about such molecules, but we are lacking conceptual schemes and analytical tools to
organise all this messy information.

Some biologists still tend to reject us physicists as having a too reductionist
approach, with our naïve tendency to eliminate all the details that make the difference
between a bag of molecules and a frog. Unfortunately, this is a notorious attitude (or
shouldn’t I say adefect) that canmake a physicist a quite intolerable presence among a
group of friends discussing politics or football, and obnoxious to colleagues scientists
who spend years of research in their field just to be baffled by a presumptuous guy
with his simplistic ideas, as the cartoon by Randall Munroe nicely puts it. [Courtesy
of www.xkcd.com.]

Nevertheless, our overarching scope as physicists should be that of finding fun-
damental principles underlying the organisation of all those molecules into a frog,
since we physicists are seriously convinced that those molecules obey exactly the
same Schrödinger’s equation that atoms obey in a dead crystal. It would be easy at
this point to piggyback on the change of paradigm that the discovery of the molecular
structure of DNA brought about, and the undeniable success of molecular biology
that followed. However, the problem is not to reduce all biology to physics—a sci-
entific program which would fail even before starting, since not even all of physics
could be reduced into one single scheme. But at least, a good start could be to attach
more rigorous tests and quantitative measurements, to some cartoons that are pre-

www.xkcd.com
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sented in biology textbooks as explanation of molecular and cell phenomena, while
being at best qualitative descriptions of the known facts.

Since the second half of the XX century, physics has been increasingly reject-
ing a strictly reductionist approach, and the idea that phenomena may emerge at
each level of observation, instead of being bottom-up dictated by “laws”, has been
gaining ground. We started seeing stochastic processes operating everywhere in the
universe, at every level, from subatomic particles to weather systems, to ocean cur-
rents, to galaxies. Deterministic physical laws on the macroscopic scale leave the
room to random behaviour of molecules on the smaller scale. Diffusion of a dye in
water looks like an ordered process, when the colour get evenly distributed inside
the water jar, but it is indeed caused by a desperately randommovement of the mole-
cules. In this apparent destruction of order into disorder, the so-called Second Law
of Thermodynamics dictates the direction of evolution: once the process of diffusion
is scrutinised, we realise that the overall disorder of the dye-plus-water system has
increased, and in fact the system has spontaneously evolved into a state of higher
disorder. Living systems seem to evade this fundamental principle of physics, in
that order is truly created from disorder: cells synthesise and organise their proteins
into new structures, and split into two, four, eight new identical cells, and arrange
into bones and muscles and brains, up to creating the now-famous frog. This—only
apparent—contradiction of one of the most revered “laws” of physics by biological
entities has been at the origin of a long-standing controversy between the respective
scientific communities, which could be briskly summarised in the statement Boltz-
mann and Darwin cannot be right at the same time. In the course of this book I
hope to provide the reader a large body of evidence that this is not the case, even if
physical models of biological processes may seem at times exceedingly simplistic.

Since Boltzmann is more often than not called into cause, it seems to me that a
correct understanding of such concepts as free energy and entropy, exothermic and
endothermic, what ismeant by open systems, and so on, should lay a good foundation
to start themarriage between physics and biology. For this reason the openingChapter
of this book, somewhat unusually, starts with a synthetic but hopefully useful review
of the basic concepts of thermodynamics and of their application in the context of
living systems, ending with a discussion of the Earth’s biosphere as a thermal engine;
an appendix provides a small set of mathematical tools that will be used throughout
the book. Chapter3 elaborates on the concepts of entropy and probability, leading to
a discussion on the current theories trying to explain the origins of life on Earth. The
fourth Chapter starts again from the thermodynamics concepts of energy and heat of a
transformation, to introduce somebasic element of chemistry of themetabolism; even
without going into much details, the main cell cycles of glycolysis and respiration
are introduced, as key to the ATP-ADP cycling that represents the fuel of all active
processes in all cells, from unicellular organisms to plants and animals. This will
also give us the opportunity of discussing the problem of how heat is generated and
evacuated from the human body.

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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With Chap.5 we take a leap into the world of moving fluids, to understand how
water, ions, nutrients, proteins and foreign substances, are trafficked in and out of
the cells, by diffusion and transport across the many membranes that make a cell
to resemble a multi-compartment chemical reactor. At this point, the appendices B
to E should have already provided the reader with some elementary knowledge of
the cell components, biomolecules, cytoskeleton and membranes, nucleic acids and
the genetic code. In Chap.6, some of these biomolecules are seen to operate like
molecular motors since, by consuming ATP, they can develop at the molecular scale
all the functions of a mechanical engine: motor proteins can transport a cargo, apply
a force to deform a membrane, generate the powerful strokes that make unicellular
animals to swim in a sea ofwater that, at themicron-length scale, appears as viscous as
molasses. Chapter 7 introduces the theme of bioelectricity, by looking at specialised
cells capable of producing, transmitting and detecting electrical signals; while such
electric symphony occurs to a variable extent in almost all animal cells, the neurons
of the brain and the cardiac cells in the heart will be the tenors of the show, without
forgetting some interesting quirks that are starting to appear in the still little explored
domain of plant electricity.

Chapters8 and 9 give a broad view of the mechanics of cells and tissues. We start
from the peculiar elasticity of one-dimensional filaments and two-dimensional mem-
branes, which at the molecular length- and energy scales is profoundly influenced by
thermal fluctuations and therefore reveals its entropic origin; the mechanics of cell
division represents a key topic around which many of these concepts are put at work.
In Chap.9, the elasticity of biological materials that make up animal and plant tissues
is investigated, showing that the exceptional properties of such materials originate
from their tightly designed hierarchical structure, which couples the molecular scale
to the micron-scale to the macroscopic; in this way, it will be clear that no artificial
polymer could replace the fabulous response of cartilage as the best shock absorber
ever invented, or why trees fare much better against winds with their cellulose-based
structure, rather than with a metal-reinforced one.

Chapter 10 presents the mechanics and dynamics of muscles, with their hier-
archical molecular structure remarkably preserved and transmitted nearly identical
through the entire evolutionary tree of all animals, from insects to the elephants; mus-
cles actuate forces in the animal body, and we use the example of insect flight as a
playground.With the second part of Chap.9we leave themicroscopic to step up again
into the macroscopic. Scaling laws and dimensional analysis provide a theoretical
tool to deduce interesting features and correlations of animal and plant metabolism,
from the scale of the single organs to the whole body, and scaling up to the size of
flocks and populations, in Chaps. 11 and 12. The differences between walking, flying
and swimming animals are seen to arise from the physical bounds imposed to them
by their respective environments, the same environmental constraints that are shown
to drive the choice of the better shapes for living organism. The shape of the animal
and plant body, of course, but also the size of the flock, the areal density of a forest,
and the time-scale for the reproduction of the offspring, as a function of the avail-
ability of food, presence of predators, average temperature, precipitations, exposure
to the sunlight, and so on. Then, what else than a final touch at the mathematical

http://dx.doi.org/10.1007/978-3-319-30647-6_5
http://dx.doi.org/10.1007/978-3-319-30647-6_6
http://dx.doi.org/10.1007/978-3-319-30647-6_7
http://dx.doi.org/10.1007/978-3-319-30647-6_8
http://dx.doi.org/10.1007/978-3-319-30647-6_9
http://dx.doi.org/10.1007/978-3-319-30647-6_9
http://dx.doi.org/10.1007/978-3-319-30647-6_10
http://dx.doi.org/10.1007/978-3-319-30647-6_9
http://dx.doi.org/10.1007/978-3-319-30647-6_11
http://dx.doi.org/10.1007/978-3-319-30647-6_12
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modelling of ecosystems could provide the ideal wrap-up of the entire subject of the
physics of living systems?

Now you may just sit back, start reading and, hopefully, enjoy the show. But to
preemptively comfort the most skeptical reader, I will leave the stage to a quote from
one of our most acute colleagues, Freeman J. Dyson:

Since I amnot an expert in this subject, I can say things that the expertsmight find outrageous.
Don’t be surprised if some of the things I say will turn out to be wrong. In science it is better
to be wrong than to be vague. Often we find the right way only after we tried all the wrong
ways first. That is why it is fun to be a scientist: you don’t need to be afraid of being wrong.



Chapter 2
Thermodynamics for Living Systems

Abstract We start with an introductory chapter containing a concise and selected
summary of the formalism of thermodynamics. Some basic concepts and the “prin-
ciples” of macroscopic thermodynamics are firstly recalled, and put in an original
perspective against the microscopic definitions of the same physical quantities, such
as energy, temperature, pressure. The notions necessary for making the link between
physics and biology are then introduced, and the prominent role of the entropy in
describing the physics of living systems is highlighted. Should physics and biology
be considered as two profoundly distinct camps, or rather two faces of one and a
same reality? While such a hard question could hardly find an answer here, we show
that even some of the most abstract conceptualisations of physics, such as the ideal
gas, can be of great value in biology.

2.1 Macroscopic and Microscopic

Thermodynamics is not, strictly speaking, a physical theory on the same level as
electromagnetism, gravity, quantum mechanics and so on. Besides the capability
of giving a synthetic and formalised description of an ensemble of phenomena,
the distinctive character of a theory is that of being able to formulate predictions.
Moreover, a theory must include the possibility of confirming or refuting its own
predictions. In this respect, thermodynamics is rather a powerful formalism, capable
of describing diverse phenomena, allowing to unify under a rich conceptual structure
experimental data from widely different domains, as well as proposing analogies
between apparently disconnected phenomena.

Thermodynamics establishes relationships among physical quantities pertaining
to a system, allowing to describe its behaviour under different conditions, however
it needs to know nothing about the microscopic behaviour of the constituents of
the system. As Steven Weinberg put it, Thermodynamics is more like a mode of
reasoning than a body of physical laws [1]. The system of interest may be very often
a machine, such as a refrigerator, a heater, an engine, a windmill. This is indeed
how thermodynamics was invented, in the XIX century. However, a ‘system’ can be
also any kind of experimental device, from the simplest one like a box filled of soap

© Springer International Publishing Switzerland 2016
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10 2 Thermodynamics for Living Systems

bubbles, to the most complicated plasma chamber of a nuclear fusion reactor. And
it could as well be a completely theoretical, idealised situation, such an ensemble of
perfect mathematical points, each infinitely small but endowed with a finite mass, or
an assembly of hard spheres riding on a frictionless plane, bumping into each other
in straight trajectories.

Anyway, to give a thermodynamical description of our system of interest it is
supposed that the system is in some way isolated from the external world, so that its
behaviour can be studied in almost ideal conditions; or at least, it is arranged so as to
be in contact with a reservoir (of energy, heat, matter) so big that such almost ideal
conditions can be imposed from the exterior. An example of a well isolated system
could be the interior of a glass balloon filled with gas; an example of a system in
contact with a reservoir could be the interior of a refrigerator, kept at a constant
temperature considerably lower than the surroundings.

In comparison to such ideally, or nearly-ideally controllable systems, any living
organism looks like an extremely complex (and messy) system, inside which many
transformations of all kind occur all the time, with a continuous exchange of energy,
heat, materials, information with the surrounding environment. In this respect life
would be regarded, from the point of view of thermodynamics, as not belonging to
any of the above categories. Rather, almost going against the typical behaviour of
thermal machines. We will do our best to cancel such a wrong impression from the
mind of our reader.

Most people have (or think theyhave) an intuitive understandingof basic quantities
such as temperature, pressure, volume. On the other hand, there are some other
physical quantities in thermodynamics which require a bit more of reasoning to be
understood, for example the energy, or the work. Eventually there are yet some other
quantities, such as the entropy or the chemical potential, which seem rather obscure
from the point of view of our daily experience, and require a deeper analysis in
order to grasp their meaning and usefulness. In this Chapter we will follow a kind
of hierarchical approach, introducing these various quantities starting from the most
basic ones, and moving progressively up to the less intuitive ones. We will avoid as
much as possible mathematical formalism if not strictly necessary, but will try to be
as rigorous as possible whenever mathematics is needed.

Amacroscopic state of a system is specified by global thermodynamic variables,
or functions of state, which describe a property of the system as a whole.

The various functions of state are categorised into extensive and intensive. Exten-
sive variables are a function of the system volume V : in other words, if we double
V , the value of an extensive variable is also doubled; if we halve V , the value of an
extensive variable is also divided by two.Moreover, the value of an extensive variable
for a system is equal to the sum of that extensive variable for all of its subsystems:
for example, the number of objects in a drawer ranged into compartments is the sum
of the objects in all the compartments. Examples of extensive variables are:

• the volume itself, V
• the energy, E
• the entropy, S



2.1 Macroscopic and Microscopic 11

• the number, N
• the deformation ε = ΔL/L , of a length L

On the other hand, intensive variables are not a function of the systemvolume: they
do not change upon a variation of V . Moreover, the value of an intensive variable for
a system subdivided into subsystems is not the sum of the corresponding variables:
the overall temperature of a flat divided in two rooms is just the common value of
temperature, not the sumof the two temperatures in each room. Examples of intensive
variables are:

• the temperature, T
• the pressure, P
• the chemical potential, μ
• the stress tensor, σ

Although not necessary for the development of thermodynamic relationships
between the different macroscopic functions, the thermodynamic system can also
be thought of being made up of some microscopic components (e.g., cells, atoms,
molecules). In order to be given a propermathematical treatment, the basic properties
of such microscopic components are that they must be all identical and interchange-
able.

Any particular arrangement (i.e., the ensemble of values specifying the details)
of each and every microscopic components, corresponding to given values of the
macroscopic thermodynamics variables, N , P, V, T, ..., represents a microscopic
state of the system, or microstate. A microstate of the system is specified by a set of
variables describing the arrangement of its microscopic components: for example,
the exact positions and velocities of each molecule in a balloon filled with gas.

Despite such an overly detailed microscopic accounting may seem an impossible
task to carry out in a real experiment, the corresponding conceptual formulation
is at the basis of all the developments of statistical mechanics, a powerful physical
theory whose objective is to give an interpretation of macroscopic physical quantities
in terms of their microscopic constituents. Since a macroscopic piece of matter
contains a number of atoms or molecules of the order of the Avogadro’s number,
NAv = 6.02× 1023, and even one cubic centimetre of living tissue contains millions
of cells, this connection cannot bemade on a one-by-one basis, butmust rather exploit
some statistical properties of the ensemble. Hence the denomination of ‘statistical’
mechanics, as opposed to the deterministic character ofNewtonianmechanics.On the
other hand, themodern developments of computer simulations (see “Further reading”
at the end of the chapter) allow to verify the predictions of statistical mechanics, by
following the detailed dynamics of a simulated system of microscopic objects, and
to prove the correspondence between microscopic and macroscopic quantities to an
exceptional extent.

In classical thermodynamics there is no necessary relationship between themacro-
scopic state of a system and its microscopic states. In fact, thermodynamics does not
need microscopic variables in order to work. It will be immediately apparent that,
for any macroscopic state, there can be a large number of equivalent microscopic
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states. Think of a large ensemble of N molecules of a gas enclosed in a balloon of
volume V , for each of which you know exactly the positions and velocities at a given
instant t . This is a microstate. Then, think of exchanging the velocities between two
molecules, while leaving each of the two molecules at its place. This second config-
uration represents a different microstate, however the macroscopic condition of the
system has hardly changed. Such a fundamental difference between the microscopic
and macroscopic states will be the basis for introducing later on the physical variable
entropy.

Notably, the fact that a seemingly very large number ofmicrostates can correspond
to one same macrostate, suggests that there should be some kind of statistics, such as
a probability distribution, of these microstates. Think of the thermal agitation of the
molecules in our gas, at any instant of time. For any given macroscopic condition of
the gas (a set of values of temperature, pressure and volume) the many microstates
composing it could indeed have different probabilities of occurring.

2.1.1 Isolated System

In thermodynamics, an isolated system is any ensemble of N objects, enclosed in a
well defined volume of space V , which does not perform any exchanges of matter
or energy with the space external to the volume V . It should be stressed that, up to
this point, it is not at all necessary to specify the nature, nor the internal structure of
the objects making up the system, in order to use the formalism of thermodynamics
to describe it. The only basic requirements is that the objects are distinguishable,
and that may be grouped if necessary into subsets according to some criteria. Our
system can be composed by any number of independent subsystems (for example,
the moving parts of an engine), provided the appropriate thermodynamical quantities
can be defined for the different subsystems.

It is important to observe that, both in an experiment and in theory, we can never
measure the absolute value of either extensive or intensive variables, but only differ-
ences of suchvariables between a currentmacroscopic state and a reference condition.
This statement may appear apodictic, but it can be intuitively grasped by observing
that to know the absolute system’s energy we should be able to measure it in every
possible microstate corresponding to a macrostate, and it is practically impossible
to enumerate all the microscopic configurations available even for a system of a few
objects enclosed in a rather small volume. However, by measuring relative differ-
ences between such quantities a relative scale can be established, and variations of
quantities such as energy, temperature, pressure between different systems can be
measured and compared.

The Statistical Postulate of Equilibrium states that: any isolated system sponta-
neously evolves towards a state, defined as the thermodynamic equilibrium, charac-
terised by the fact that any differences of the functions of state between its subsystems
go to zero. In practice this means that, once arrived at the equilibrium condition, the
macroscopic functions of the system remain constant.
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2.1.2 Energy

In very general terms, the energy of a system E describes its ability to operate
transformations. For example, for a purely mechanical system the energy describes
its capability to realise a mechanical work, W , such as lifting a mass against the
gravity:

E = W = mgh (2.1)

mg being the weight of the mass m in the Earth’s gravitational field with constant
acceleration g = 9.807 ms−2, and h is the relative height with respect to the point of
start. As said above, we can only define differences of functions of state with respect
to a reference value. If we take as zero the energy of the mass when it is lying on
the floor, any position of the mass above the ground will correspond to a positive
energy difference, and thus to the possibility of performing a non-zero work. The
old pendulum clocks worked exactly with this principle. In the age when there was
no electricity available in the household, at any recharge of the mechanism one or
more weights were raised inside the clock; during the operation of the clock, the
weights, attached to the wheels of the clock by a thin metal chain, would slowly
descend toward the ground, setting in motion the spheres indicating the hours and
minutes; once the weights reached the bottom, the clock would have exhausted all
the available potential energy and would stop, until the next recharge. This was a fine
and precise mechanism, capable of converting gravitational energy into mechanical
energy of motion of the clock wheels.

If a system is composed of subsystems 1, 2, 3, ...k, the total energy of the system
is given by the sum of the energies of each subsystem:

Etot = E1 + E2 + E3 + ... + Ek (2.2)

Since the energy is additive, it must necessarily be an extensive thermodynamical
variable. To specify its difference with respect to other energy-like quantities, to be
introduced later on, this form of energy is usually called the internal energy.

2.1.3 Heat

Believed in ancient times to be some sort of fluid pervading the bodies, heat is just
another form of energy. On a microscopic level, it is associated with the thermal
agitation of the atoms and molecules: the faster the thermal agitation, the hotter will
appear the body.

While remaining conserved, energy can however change of form: for example the
mechanical energy of a system can be turned partly or totally into heat, Q. Every
change of the form of energy bringing the system to a different macrostate with
final energy E f in , must be reported to the initial energy, Ein , which is the reference
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state. Energy can be transformed into mechanical work, or any other kind of work
(electrical, magnetic...), always indicated by W , while the system can transfer part
of its energy to the surroundings as heat, Q, and end up in the final value E f in , such
that the initial energy Ein is conserved. Such an equivalence between different forms
of energy is primarily grounded in countless experimental observations on the most
various kind of systems, which are summarised by the classical equation:

ΔE = E f in − Ein = −ΔW + ΔQ (2.3)

This is the so-called First Principle of thermodynamics, nothing but another way
of expressing the universal conservation of energy, by stating that mechanical work
and heat are equivalent forms of the energy.1

It is customary to separate the energy turned into heat from the other forms of
energy, in the balance of energy transformations, for the reason that, differently from
other forms of energy, heat is a sort of “dead end” for the energy: once a part of energy
is turned into heat, that energy is lost forever and cannot be recovered to perform
any more work. This point will become more clear a bit later, once the concept of
temperature is introduced.

The very important experimental observation here, for which not a single viola-
tion has ever been observed yet in the history of physics and chemistry, is that any
transformation of energy is always accompanied by some loss in the form of heat.

A transformation of energywithout any heat losswould be an ideal transformation,
sometimes called adiabatic: this is defined as a transition between two states via a
virtually infinite sequence of infinitesimally small and slow transformations, to make
a system go from an initial to a final state without any heat loss.

2.2 Perfect Gas

A perfect gas is a very simple, idealised thermodynamical system, therefore very
practical to study as a bookkeeping example ofmore complex situations.We consider
a volume V , filled by a number N of microscopic particles, i.e. each with a negligible
size compared to the volume V . Each one of these point-like particles has a mass m.
We choose N and V such that the particle density:

ρ = N/V (2.4)

1It may be interesting to note that the first definite statement about this, eminently physical, principle
came in fact from medicine. Around 1840, Julius Robert Mayer, then a physician in Java, deduced
the energy equivalent of heat by observing differences in venous blood colour, which he attributed
to different oxygen concentrations, and hence to different amounts of heat produced by the body.
His empirical calculations led him to a value of 3.58 J/cal, not too far from the more accurate value
measured by James Joule just a few years later, 4.16 J/cal, by means of calorimetry experiments
[2, 3].
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is so low that collisions between particles are practically highly unlikely. Each par-
ticle of our perfect gas is characterised by a position and a velocity vi in the volume
V . Particles make perfectly elastic collisions with the walls of V , meaning that
their energy is the same before and after the collision, only their direction changes
because of momentum conservation. Additionally, we consider that there are no
interactions whatsoever between the particles (chemical, electrical, magnetic, gravi-
tational), therefore their position in space is not relevant to their energy. As a conse-
quence, the only pertinent form of energy to each particle i = 1, ..., N is the kinetic
energy:

Ei = 1

2
mv2i (2.5)

The total energy of the gas, E , is given by the sum of the kinetic energies of all
the N particles:

E =
N∑

i=1

Ei =
N∑

i=1

p2
i

2m
(2.6)

where we have introduced the particle momentum vector p = (px , py, pz) = mv.
Every microstate of the perfect gas corresponds to a set of values of positions and

momenta {ri ,pi }i∈N , different at every instant, provided that E remains constant
since the system is isolated. In principle, the number of microstates for a given
combination of {N V E} is infinite: we may change the momentum of a particle in
infinitesimal increments (taking care of changing two p vectors at a time by equal and
opposite amounts, so that the energy remains constant), and obtain infinitely many
different microstates of the system. Instead of the absolute number of microstates
for an energy E , which is clearly impossible to count, we can look at the function
expressing the density of microstates in an energy interval d E around E . This latter
can be rather easily estimated by considering the very special situation of the perfect
gas. (This function can be calculated just for a few other simple systems, but it
becomes a very complicate task for any realistic system, with arbitrary interactions
among the particles.)

2.2.1 Counting Microstates

The peculiarity of the perfect gas is that particles do not have any mutual interaction.
Therefore, their energy is given by a simple sum of squares of the particle momenta,
E = 1

2m Σi p2
i . We can also detail this expression according to the Cartesian compo-

nents of each particle’s momentum vector:

E = 1

2m

N∑

i=1

p2
i x + p2

iy + p2
i z (2.7)
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the sum containing 3N terms.
This formula for the total energy looks like a sort of Pythagoras’ theorem for an

ideal “triangle” with 3N sides. In fact, one could read the above formula as:
√
2m E

is the distance from the origin of the point p, with coordinates (p1,...pN ), in a space
with 3N dimensions.

This is a very interesting interpretation of the energy of a perfect gas. If we imagine
p as a vector with 3N components centred at the origin, and we imagine to change
arbitrarily any of its components in every possible way that give the same final value
of E , the vector p will describe a 3N -dimensional sphere centred at the origin with
radius R = √

2m E .
Then, it may be thought that the number of available microstates (i.e., different

combinations of the pi ) for a given energy, let us call it Ω(E), should be propor-
tional to the surface of this sphere: a larger valuer of the energy E corresponds to a
larger sphere surface, and therefore to a larger Ω . A system with assigned values of
{N V E} (the macrostate) must conserve its energy, so it will ideally “move” on this
constant-energy surface, exploring all the Ω microscopic configurations whose E is
compatible with the macrostate.

What is the surface of a sphere in 3N dimensions? We can reason by analogy:

• 2π R is the perimeter of a circle (sphere in 2 dimensions)
• 4π R2 is the surface of a sphere (3 dimensions)

The surface of dimension n appears to be proportional to the volume divided by
R, S(n) ≈ V (n)/R, therefore we may write:

S(3N ) = cR3N−1 (2.8)

for the surface of a hypersphere in 3N dimensions. With a little algebra, it can be
shown that the exact proportionality coefficient is c = (2π)3N/2/Γ (3N/2) (see the
Appendix A for the properties of the special Γ function). For very large values of N ,
one can approximate N − 1 � N . Therefore, replace 3N − 1 by 3N , and Ω ≈ R3N .
Since R = √

2m E , it is finally Ω(N , E) = (2π)3N/2(2m E)3N/2/Γ (3N/2).
Now, we note that each microstate is specified by assigning also the values of

positions ri for each particle, besides their momenta or velocities: two microstates
could have the same distribution of velocities, but differ in the positions of some
particles. Since each particle of the perfect gas can be found anywhere in the volume
V , independently of the others, the number Ω should be multiplied by a factor V
contributed from each particle. The complete expression of Ω is therefore:

Ω(N , V, E) = V N (2π)3N/2(2m E)3N/2

Γ (3N/2)
(2.9)
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2.3 Entropy and Disorder

Disorder in real life is conceived as opposed to order. A sequence, a pattern, a book-
shelf can be quickly seen to be ordered or disordered. Both order and disorder seem
easy to recognise, when looking at an array of objects, or at your children’s room.
However, the view of the contrast between order and disorder as just an attribute
of the spatial organisation is somewhat limited. A spatially well-ordered crystalline
lattice of magnetic atoms can turn out to be completely disordered, if we look at
the values of magnetisation in that same crystal above some critical temperature. In
physics, a macroscopic state of disorder of a system consists in the inability to formu-
late predictions about the behaviour of the system or, in other words, a very limited
knowledge about its actual state. For the microscopic states of this same system,
the condition of disorder would correspond to the microscopic variables (positions,
velocities of the particles) assuming a wide spectrum of completely random values.

Strange as it may seem, this very concept of disorder will allow us to establish a
conceptual link between the macroscopic system and its microscopic constituents.
Moreover, it should not be thought that the condition of equilibrium is synonymous
to some kind of order. Indeed, the macroscopic state of equilibrium of a system is not
represented by one particular microstate, for example one having a very peculiar dis-
tribution of velocities, or one with a very regular arrangement of the positions of the
particles. Microscopic equilibrium is associated to an equal probability distribution
of all the admissible micro states (i.e., those corresponding to a same macrostate),
provided the disorder of the system is maximised. Where such a quite surprising
observation comes from? How come that equilibrium should correspond to a maxi-
mum disorder, in parallel to the disappearing of any differences between all the state
variables of the system?

We are now ready to propose a definition of the order and disorder condition
for a system, by constructing a mathematical function explicitly dedicated to this
purpose. The characters of such a function should be at least: (1) that it be linked
to the constant energy of the system, and (2) that it be proportional to the number
Ω of microscopic realisations of the same value of macroscopic energy. The latter
condition implies that such a quantity must be extensive.

Since V and E appear as multiplicative factors in the expression for Ω , Eq. (2.9),
such a function must be necessarily be constructed from the logarithm of Ω , so
that if we break the system into subsystems with energies E1, ...Ek , the value of
such a quantity can be obtained as the sum of the corresponding quantities for each
subsystem k. For historical reasons, this new physical quantity is called the entropy
of the system, and is indicated by a letter S:

S = kB ln
Ω

N ! (2.10)

The factor kB is the Boltzmann constant, equal to 1.38×10−23 J/K, or 8.5×10−5

eV/K, allowing to express the entropy in energy-like units (we note that entropy may
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be also used in different contexts, such as information theory, in which no energy-
like units are necessary). The 1/N ! factor was introduced by J. W. Gibbs, one of the
‘founding fathers’ of statistical physics, to discount the fact that the particles in the
perfect gas are all identical. This implies that microstates with identical positions and
velocities of all particles, but in which the “label” of any two particles is exchanged,
are identical, therefore the numberΩ must be divided by the number N ! of equivalent
permutations of the N identical particles. On the other hand, this multiplicative factor
has no physical basis for classical particles, and was introduced by Gibbs merely on
empirical grounds (because without it the entropy would not be strictly additive
[4, 5]). The presence of the 1/N ! can be fully justified only in the framework of
quantum mechanics, which admits the non-distinguishability to be a fundamental
property of quantum particles.

Therefore, from the above semi-analytical derivation, the entropy of the perfect
gas is obtained as:

S(N , V, E) = kB ln

(
(2π)3N/2V N (2m E)3N/2

Γ (3N/2)N !
)

=

= kB[N ln V + N ln(2m E)3/2 − lnΓ (3N/2) − ln N ! + c] �

� NkB

{
ln

[(
V

N

) (
2m E

N

)3/2
]

+ c

}

(2.11)

This is the Sackur-Tetrode equation for the absolute entropy of the perfect gas,2

independently derived in 1912 by the physicists Otto Sackur in Germany, and Hugo
Tetrode in the Netherlands [6, 7]. Its utility lies in the fact that it is one of the rare
examples for which we can calculate explicitly the absolute value of the entropy,
which is otherwise a rather elusive quantity to grasp in real life.

It is an experimental fact that the entropy of an isolated system can only increase
with any spontaneous transformation. Thermodynamics was born in the early XIX
century, with the purpose of knowing better how thermal machines worked [8, 9].
In the old experiments designed to understand the relationships between energy and
heat, the French physicist Sadi Carnot defined around the year 1824 the concept of
a cyclic thermal engine, for which he established that it was necessary to have at
least two parts of the engine at different temperatures in order to extract useful work.
About twenty years later, the German physicist Rudolf Clausius realised that any
transformation in which only heat was exchanged, between a “hot” and a “warm”
body, would be irreversible. Please notice the “...” in the previous sentence. Indeed,
this is a bit of a circular definition, sincewedonot knowexactlywhat is a hot or awarm

2By using arguments from quantum mechanics, it is shown that the constant appearing in the
equation must be c = 5

2 + 3
2 ln

2π
3h2

, with h the Planck’s constant.
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body, unless we measure a difference between two bodies in contact.3 The definition
of a quantity to be used as temperature, in fact, is intimately linked to the definition
of the entropy (although the practical notion of temperature, and tools to measure
it, were already known since at least two centuries earlier). What the experiments
actually measured was the fact that the flow of heat is always unidirectional, and this
direction of the flow allows to establish which body is “hotter” than the other, thus
making for a temperature scale.

Sometime during the first half of the XIX century, all the experimental observa-
tions about the loss of energy into heat, expansion, and irreversible phase changes,
were summarised in the so-called Second Principle of thermodynamics:

ΔS ≥ 0 (2.12)

which states that in any spontaneous transformation the entropy of the system must
increase. The function entropy was introduced just to give this principle a formal
mathematical statement. Besides, we note that the second principle was in fact the
first to be established, in 1824 by Carnot. The ‘disorder’ interpretation of entropy
were to be laid out only about 60years later, by Ludwig Boltzmann. According
to our construction of the entropy function of state, in terms of the size Ω of the
available space of microstates, an increase in S corresponds to an ever larger number
of microstates, all becoming equally probable at equilibrium. Therefore, as far as
the entropy increases, the information about the microscopic state of the system
spreads out onto a larger and larger ensemble. We can interpret this as a net loss of
information, or an increase of the disorder of the system.

2.3.1 Irreversibility and Probability

Let us consider a perfect gas initially confined in a volume V . If we let the gas expand
so as to double its volume in such a way that the gas does not perform any work,
the only term that changes in the Eq. (2.11) above is V N . The corresponding entropy
change is:

ΔS = S f in − Sin = kB[ln(V )N − ln(V/2)N ] = NkB ln 2 (2.13)

always positive. One may ask why we implicitly assumed that the approach to equi-
librium implies the spontaneous expansion of the gas from V/2 to V . The idea of a
spontaneous transformation is linked to the concept of irreversibility. In a classical
definition, irreversible means that the system could never go back spontaneously to
its initial state. However, a more subtle interpretation can be posed in terms of the

3Already in the middle of XVIII century the English natural philosopher John Locke, in his Essay
on the human intellect, had defined the temperature as a relative concept, stating that a body could
be hot or warm only in relation to another body.
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probability of occurrence of the accessible system states. This is not just an aca-
demic disquisition, since the macroscopic irreversibility contrasts with the perfect
reversibility (called time invariance in physics) of the microscopic events.

It may be considered that the N microscopic particles, in their continuous ther-
mal agitation, should explore any possible microscopic configuration. As a result,
a microstate with N/2 particles in the half-volume V/2 and N/2 particles in the
other half-volume V/2, should have the same probability as another microstate in
which all the N particles are in the half-volume V/2, and zero in the other half. That
may be true, provided the entropy of the system is increased in the transformation,
according to the Second Principle. It is easy to see that the entropy of the gas in
a doubled volume increases. On the other hand, the probability that starting from a
volume V , onemole of gas (N ∼ 1023 particles) goes back spontaneously by random
fluctuations inside a volume V/2 is:

prob =
[
(V/2)

V

]1023

≈ 10−8,240,000,000,000,000,000,000 (2.14)

Evidently, for a system with a very small number of particles, at the limit of one
single atom or molecule, the theoretical reversibility (originating from the fact that
both the classical and quantum mechanics equations are unchanged if the time t
is exchanged with −t) should be possible also in practice. In the recent years, it
has indeed become feasible to perform experiments in which one single molecule
is tracked in time and, after accurate measurements, local violations of the Second
Principle have been found, when the number of degrees of freedom is reduced to a
minimum [10].

Such an observation is common to any systems with a reduced number of degrees
of freedom. If we flip ten coins, the probability of obtaining the same face on all
of them is small but non negligible: this probability is simply (1/2)10 = 0.001.
However, if we flip an Avogadro’s number of coins, the probability of having the
same face on all coins is (1/2)10

23
: in this sense, there are no strictly irreversible

transformations, only very much improbable ones!
Wewill come back on this relationship between entropy, reversibility and disorder

in Chap.3, when discussing the probability of assembling complex proteins and
nucleic acids starting from the simpler molecular building blocks.

2.4 Closed Systems

A system which can exchange energy but not matter with its environment, is called
a closed system. The ideal example of a closed system is given by considering a
box divided into two parts by a wall taken to be infinitely rigid, except for a small
ideally elastic portion of negligible size compared to the whole wall surface. When
two particles coming from the opposite parts of the box collide against this flexible
wall, which is said to be ideally elastic, they can exchange their respective kinetic

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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energies as if undergoing a perfectly elastic collision, however without the possibility
of jumping in the opposing part of the box. As required by the above definition, the
two parts of the box can exchange some energy but not matter.

Such a highly idealised system will now allow us to introduce the concept of
temperature. Let us imagine that in the two parts of the box, which we call A and
B, there are NA and NB particles, respectively, with energies E A and EB . The energy
of the combined system is:

Etot = E A + EB (2.15)

The total energy must be constant. However, the subdivision into E A and EB can
take any combinations resulting in the same value of Etot .

The total entropy of the combined system is:

Stot = SA(E A) + SB(EB) (2.16)

But once Etot is fixed, the two values E A and EB are no longer independent.
Therefore:

Stot = SA(E A) + SB(Etot − E A) = Stot (E A) (2.17)

a writing which underscores the dependence of S on a single energy variable. The
entropy equation gives for the two gases:

Stot (E A) = kB

[
NA

(
3

2
ln E A + ln VA

)
+ NB

(
3

2
ln(Etot − E A) + ln VB

)]
+ const

(2.18)

Now we ask: which is the most probable value for E A? The statistical postulate
seems to suggest that any value should be equally probable at equilibrium. On the
other hand, since the number of microstates increases with energy, we should have
the maximum possible energy on each side, in order to simultaneously maximise the
entropy. To find the maximum of entropy from the above equation, it is sufficient to
take its derivative with respect to the unique variable E A and set it equal to zero:

d Stot

d E A
= 3

2
kB

[
NA

E A
− NB

(Etot − E A)

]
= 0 (2.19)

This clearly shows that the above conditions can be satisfied only if the energy
is shared between A and B in a way proportional to the number of particles in
each subsystem (actually, proportionally to the number of degrees of freedom of
the particles in each subsystem, which is 3 × the number of particles, one for each
cartesian coordinate). In particular, if the number of particles in the two subsystems
is equal, the energy is also equally shared, E A = EB . If this is not the case, the
maximum of the entropy corresponds to:

E A

NA
= EB

NB
(2.20)



22 2 Thermodynamics for Living Systems

This result was experimentally known well before the introduction of the micro-
scopic ideas about the constitution of matter. It is the Equipartition law, which
was based on the experimental observations performed by the French chemists A.-T.
Dulong and P.-L. Petit (1819) on the constancy of the specific heat of solids at high
temperature.

2.4.1 Temperature

Indeed, it is just on the basis of this result that we can introduce the concept of
temperature, a quantity for which most of us have an intuitive perception, but which
is just a bit more complicate to put on formal grounds.

A formal definition, eventually valid for any system and not just for a perfect gas,
is the following. Starting from the entropy equation, we want to find the variation of
entropy as a function of an infinitesimal change of energy from E to E + d E , all the
other thermodynamic functions remaining unchanged. We have:

d S(E) = NkBd(
3

2
ln E + ln V ) = 3

2
NkB(ln(E + d E) − ln E) =

= 3

2
NkB ln(1 + d E/E) � 3

2
NkB

d E

E

(2.21)

The temperature T is identified as the numerical coefficient in the right-hand side
of the equation:

d S

d E
= 1

T
(2.22)

This is the fundamental definition of the temperature, which we postponed up to
this point (although the practical notion of temperature would come first, histori-
cally) in order to firstly have well clear in mind the concepts of energy, heat and
entropy. From this definition, we see that a small variation of the energy makes a
large variation of entropy when the system is at low temperature; on the other hand,
as the temperature is increased, the increase in entropy as a function of energy gets
smaller and smaller. (For the perfect gas, this should be already evident from the
relationship S ∝ ln E , hence T ∝ E .)

By the last definition, the law of equipartition reads:

E

N
= 3

2
kB T (2.23)

This equation says that the average energy per particle is equal to 3
2kB T . By

considering that each point particle is defined by three degrees of freedom (vx , vy, vz),
it also says that each degree of freedom in the system contributes 1

2kB T , which was
exactly the experimental deduction of Dulong and Petit in their study of solids.
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For a perfect gas the temperature coincides with its kinetic energy, apart from a
numerical coefficient with appropriate dimensions:

E

N
= 3

2
kB T = 1

N

N∑

i=1

1

2
mv2i (2.24)

This is an important consideration, in that the above equation puts into correspon-
dence the macroscopic vision of thermodynamics, represented by the temperature of
the perfect gas, with the statistical properties of its microscopic constituents, that is
the kinetic energy of an ensemble of particles.

Let us consider two systems A and B at two different temperatures, TA 	= TB ,
both at their respective equilibrium. By the moment we put them in contact, the
particles from the two systems will start colliding, and redistributing their energy
until no further exchanges are capable of changing the distribution of velocities.
The new equilibrium state is therefore characterised by the condition TA = TB .
This is sometimes called the Zeroth Principle of thermodynamics. In simple words:
temperature is the quantity that becomes equal when two macroscopic closed systems,
freely exchanging energy, attain a common equilibrium.

2.4.2 Caloric Definition of the Entropy

Up to now we have been constantly looking for microscopic definitions of known
macroscopic thermodynamic quantities. However, as we noticed above, thermody-
namics does not need suchmicroscopic definitions in order towork. Therefore, itmay
be surprising that at this point we have only a microscopic definition of the entropy.
Entropy has been defined in terms of the number Ω of microscopic realisations of a
given macroscopic state. Is there a macroscopic function which corresponds to such
a microscopic definition?

In fact, the most ancient definitions of entropy given by Clausius (1854) and
others (Maxwell 1867, Gibbs 1902, etc.), which largely preceded the microscopic
formulation above, were suggested by experiments of transformation of energy into
work. As already discussed, it was (and still is) experimentally observed that in
every transformation some part of the energy was irreversibly transformed into heat,
dispersed in the environment. For an energy transformation at constant temperature,
Clausius defined the quantity:

ΔS = ΔQ

T
(2.25)

as the fraction of initial energy lost into heat, and introduced the term entropy for
the quantity labelled S (with dimensions of [Energy]/[Temperature]). Therefore, by
going back to Eq. (2.3), we can write:

ΔE = E f in − Ein = −ΔW + ΔQ = −ΔW + T ΔS (2.26)
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Mechanical equilibrium of a perfect gas under pressure

A wall of the box of volume V is free to move against a fixed spring, with constant k, which holds it in place
at equilibrium (see Fig. 2.1a). The lateral section of the box is S, and the equilibrium length of the box is L , in
the direction parallel to the force F = −kL applied by the spring. Therefore, V = SL .

The total energy of the perfect gas is the sum of the kinetic energy of the molecules, plus the elastic potential
energy U = kL2/2 = F L stored in the elastic spring:

Etot = EG P
kin + F L (2.27)

If the wall is moved from L to L ′, with a change of volume from V = SL to V ′ = SL ′, the entropy of the
gas changes by a quantity:

ΔS = NkBΔ(ln(Ekin)3/2 + ln V ) = NkB

(
3

2

ΔEkin
Ekin

+ ΔV

V

)
=

= 1

T

(
ΔEkin + NkB T

L

)
(L − L ′)

(2.28)

since Δ(ln x) � Δx/x, and Ekin/N = 3/2(kB T ). Energy conservation implies:

EG P
kin + F L = E

′G P
kin + F L ′ (2.29)

or:
ΔEkin = E ′

kin − Ekin = −F(L ′ − L) (2.30)

Therefore:

ΔS = 1

T

(
−F + NkB T

L

)
ΔL (2.31)

At equilibrium the variation of entropy stops, ΔS = 0. The new equilibrium position of the wall is:

L ′ = NkB T

F
(2.32)

The force of the spring divided by the surface S is the pressure, P = F/S (a force per unit surface). If we
multiply Eq. (2.26) by S, with V = SL , we find:

V = S

F
NkB T (2.33)

or:
PV = NkB T (2.34)

This is just the equation of state of the perfect gas. It should be noted that, in a isolated system, every
volume variation implies a variation of the temperature (since the latter represents in a perfect gas a variation
of the kinetic energy, ΔEkin = −PΔV ).
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Fig. 2.1 Left Schematic of a gas-containing box of cross section S and variable length L . The total
volume is V = SL . The walls are assumed to be infinitely rigid so that the gas molecules perform
only perfectly elastic collisions. The left-side wall can move without friction, to adjust against the
force F = kx imposed by the mobile spring. The corresponding internal gas pressure is P = F/S.
Right The gas box in contact with a thermostat at temperature T . By definition, the volume of the
thermostat is so much bigger than the volume V of the gas, to be unperturbed by whatever happens
inside the volume V

This ‘caloric’ definition of the entropy was the one chemists and physicists had
been familiar with for the whole XIX-th century, and still is themost useful definition
for engineers and whoever works with macroscopic thermal machines. It should be
absolutely remarkable, then, that we can reobtain all the well known properties of
a perfect gas, such as the equipartition, or the equation of state (see next greybox
on p. 24), starting fromBoltzmann’s statistical formulation of the entropy. Boltzmann
had already used a similar equation in his early work on themechanical interpretation
of the Second Principle, yet without thinking of it as a probability. The identification
of the phase space densityΩ with amicroscopic probability came a few years later, in
his work of 1871 on the kinetic theory of gases [11]. Either way, the theoretical defi-
nition of entropy written as Eq. (2.10) was a purely conceptual endeavour, compared
to the fully experimentally-grounded caloric definition above. In his time, Boltzmann
had long disputes with his colleagues scientists, and even with journal editors, who
refused to take his assumptions about the microscopic behaviour of atoms as nothing
more than practical speculations. His pioneering views about the microscopic con-
nection with the macroscopic world would be confirmed only many years later, by
J. Perrin’s experiments on colloidal suspension that allowed to measure with high
precision the values of both the Avogadro’s number and of Boltzmann’s own kB

constant [12], and were finally vindicated by the revolution of quantum physics.

2.5 Free Energy

Now we move on, to considering our perfect gas enclosed in a volume V and in
contact with a surface at constant temperature T . It may be imagined that the volume
V is placed over a very large block of material, as in Fig. 2.1b, so large to not
be affected by the transformations eventually occurring inside the much smaller
volume V . The perfect gas can exchange kinetic energy across the contact surface
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with the block, however according to our definition the temperature of the latter will
remain unchanged. The sum of the subsystem represented by the volume V plus the
whole block is again an isolated system. The block is called a thermal reservoir, or
thermostat.

2.5.1 Exchanges of Energy at Constant Volume

The greybox on p. 24 shows that the temperature of the perfect gas is linked to the
changes of volume for an isolated system. SinceΔE = T ΔS−PΔV , we should have
T ΔS = PΔV for a transformation occurring at constant internal energy, ΔE = 0.
This is a well known result of thermodynamics: the spontaneous expansion of a gas
(ΔV > 0) implies an increase in the entropy (ΔS > 0), which also implies that it
should be impossible to observe a spontaneous contraction of the volume (ΔV < 0),
since this would violate the Second Principle. A compression of the gas must be
accompanied by a parallel variation in the energy, ΔE < 0, the negative sign of the
energy meaning that this is supplied to the system from an external source, in an
amount such that ΔS = (PΔV − ΔE)/T > 0.

Let us now imagine that the volume V is a closed (sub)system, exchanging energy
with the block at constant temperature T (a thermostat, Fig. 2.1b). In this way, we
can imagine a transformation, for example an expansion or a compression of the
volume, during which the temperature of the subsystem V also remains constant, the
difference in energy being compensated by the (positive or negative) exchange with
the block. It would seem that in this way the Second Principle could be violated: a
volume compression could lead to a diminution of the entropy. In fact, we must not
fool ourselves and look at the overall entropyvariation.During the transformation, the
block transferred a quantity of energy−ΔE to the volume V , to keep its temperature
equal to T . Therefore, the entropy of the block changed by ΔSblock = −ΔE/T , so
that the total entropy variation is:

T ΔStot = T ΔSV + T ΔSblock = T ΔSV − ΔE (2.35)

For a closed system, this is the quantity that has to be maximised during a trans-
formation. In the place of the internal energy, we can introduce a more complete
function of state, F , which is called (Helmoltz) free energy:

F = E − T S (2.36)

which is minimised during the approach to equilibrium at constant V and T .
The concept of a “free” energy is connected with the idea that in thermodynamics

we always think of the capability of our system to develop some work (mechanical,
or other). The difference between E and T S means that when equilibrium is reached
at constant temperature, E is not yet at its minimum, and therefore we could think
of using this residual energy to do some more work. Instead, in such conditions, the
quota of work actually available is the difference E − T S.
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2.5.2 Exchanges of Energy at Constant Pressure

Still in the same conditions of contact with the surface of the large block, we could
think that our perfect gas could use the energy supplied to perform an expansion
at constant pressure P . In this case we would let the volume V change so that the
pressure can remain at a constant value. The energy supplied by the block in this case
would be ΔE + ΔW = ΔE + PΔV , namely a part necessary to keep T = const
as before, plus a part to keep P = const . The corresponding change in entropy is:

T ΔStot = T ΔS − ΔE − PΔV (2.37)

This leads to the introduction of yet another function of state, which is also called
(Gibbs) free energy:

G = E + PV − T S (2.38)

to be minimised in the approach to equilibrium at constant P and T (actually, this is
just another way of saying that entropy has always to be maximised, no matter what
you do to your system).

The quantity H = E + PV is called the enthalpy of the system. It is a quantity
often measured in experiments, since it takes into account all of the energy traded in
the transformation of a sample (for example, the melting of an ice cube into water,
accompanied by a reduction of volume at constant pressure).

At equilibrium, when ΔG = 0, the system pressure can be formally defined as:

P = T

(
d S

dV

)

E

(2.39)

(the subscriptE indicating to calculate the derivative at constant total energy) in good
analogy with the formal definition of temperature above.

2.6 Open Systems

A thermodynamic system capable of exchanging both energy and matter with its
surroundings is called an open system. This is evidently the most general situation,
and it is the typical context of living systems, as opposed to either isolated or closed
systems, which are typical representations of a sealed laboratory experiment or a
well isolated thermal machine, such as an oven or a refrigerator. An open system
is characterised by the possibility of varying the number of constituents N (atoms,
molecules, cells...), or their concentration c = N/V , according to a given value of
chemical potential μ.
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The Gibbs-Duhem equation

The derivation of the equivalence between free energy and chemical potential offers a nice example about
how the thermodynamical relationships are derived. Sometimes this may seem a blind mathematical procedure
which must just be followed strictly. Even if the mathematical steps may have not much of a meaning in itself,
the final result may often show unsuspected correlations between different physical variables, or experimental
measurements.

Let us start with the equation expressing the First Principle for an open system in the most general way,
i.e. by including also the possible variation of the number of particles. For even more generality, let us also
include the possibility that there are k different families of microscopic particles in the system, each with its
own chemical potential μk and concentration ck = Nk/N :

E(S, V, N ) = T S − PV +
k∑

i=1

μi Ni (2.40)

The total differential of the energy with respect to all of its independent variables is formally written as:

d E(S, V, N ) = T dS − PdV +
k∑

i=1

μi d Ni (2.41)

The total differential of each term composed by two variables is, in fact, d(T S) = T dS + SdT , and
d(PV ) = PdV + V d P , so that the previous equation becomes:

d E(S, V, N ) = d(T S) − SdT − d(PV ) + V d P +
k∑

i=1

μi d Ni (2.42)

Now, let us regroup all the total differentials at the left-hand side:

d(E − T S + PV ) = −SdT + V d P +
k∑

i=1

μi d Ni (2.43)

However, by looking at the definition of Gibbs free energy, Eq. (2.38), it is also:

dG = −SdT + V d P +
k∑

i=1

μi d Ni (2.44)

This is the famous Gibbs-Duhem equation, which is at the basis of all the chemical thermodynamics. Of
particular interest for our purposes is the case of constant temperature and pressure, which is typically realised
in living systems: for that condition, the dT and d P terms are equal to zero, and the following relationship
holds:

(dG)T,P =
k∑

i=1

μi d Ni (2.45)

The above equation is also very useful to study equilibrium concentrations of multi-component systems.
For example, the relative concentration of a binary mixture of A and B at equilibrium (dG = 0) is: NA/NB =
−(μB/μA).
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The chemical potential can be thought of representing a sort of external field, like
a gravitational potential, but concerning concentration adjustments. In the case of
gravity, a mass would be attracted towards the center of gravity of another body. By
analogy, chemical entities like atoms or molecules are attracted from a region of high
concentration to a region of low concentration, until a condition of equal concentra-
tion is reached. At that point, the chemical potential has the same value everywhere,
and the attraction stops. In microscopic terms, the role of chemical potential in defin-
ing the particle flow direction will become very clear when describing the process
of diffusion across a membrane (Chap.5).

From the point of view of the formal theory of thermodynamics, it is worth noting
that, for constant pressure and temperature, the chemical potential at equilibrium
equals the partial molar Gibbs free energy (see the greybox on p. 28).4

2.6.1 Entropy of a Mixture

Let us consider a systemwith amixture of different elements, for example particles of
two different types, A and B. The volume V is divided in two parts, VA and VB , such
that VA + VB = V . The two groups of particles, NA and NB , are initially confined
in the two subsystems VA and VB . The total number of particles is N = NA + NB ,
correspondingly we can define the concentrations cA = NA/N and cB = NB/N , so
that cA+cB = 1.We imagine that the twovolumes can be connected, for example by a
mobilewall. Removing thewall corresponds to an expansion at constant temperature,
each of the two gases of particles now occupying simultaneously the entire volume
V . Once the equilibrium is reached, the change in free energy of the mixture is:

ΔG = ΔE + PΔV − T ΔS = 0 (2.46)

On the other hand, the two non interacting gases are described only by their kinetic
energy. At constant T the kinetic energy does not change (ΔE = 0), therefore:

ΔS =
(

P

T

)
ΔV = NkB

ΔV

V
= NkB ln

(
V + ΔV

V

)
(2.47)

Now we write the entropy for each component of the gas separately:

ΔSA = NAkB ln

(
VA + VB

VA

)

ΔSB = NBkB ln

(
VA + VB

VB

)

4Nearly all the concepts and mathematical functions for the study of systems at constant pressure or
temperature, including the enthalpy, free energy, chemical potential, were developed and formalised
in the monumental paper by J.W. Gibbs [13], which by common consensus marks the beginning of
the modern vision of thermodynamics and its connections with chemical and electrical phenomena.

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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and sum the two to obtain the total entropy:

ΔStot = ΔSA + ΔSB = NAkB ln

(
VA + VB

VA

)
+ NBkB ln

(
VA + VB

VB

)
=

= −kB

[
NA ln

(
VA

VA + VB

)
+ NB ln

(
VB

VA + VB

)]
= (2.48)

= −kB

[
NA ln

(
NA

NA + NB

)
+ NB ln

(
NB

NA + NB

)]

since for either component of the gas it is V = N (kB T/P). Remembering the
definition of concentration c:

ΔStot = −kB(NA ln cA + NB ln cB) = −NkB(cA ln cA + cB ln cB) =

−NkB [cA ln cA + (1 − cA) ln(1 − cA)]

(2.49)

In the limit of small concentrations, either cA or cB << 1, the limit of the previous
equation for the minority component is:

ΔS � −NkBc ln c (2.50)

This equation will be very useful to study the osmotic behaviour of ions and
molecules in small concentrations inside the cellular fluid.

2.7 The Biosphere as a Thermal Engine

The biosphere is defined as the ensemble of the Earth’s matter that is actively
employed in the fabrication of living organisms. A part of thismatter is found directly
in the organisms (animals, plants, bacteria...) and the remaining part is found in
the recycled material. Liquid and solid water from oceans, as well as the air of the
atmosphere, are part of the biosphere, in that they are necessary components of living
systems. The environment comprises all the remaining matter of the Earth (the solid
lithosphere), and the Universe, including the radiation. In thermodynamic terms, the
biosphere is an open system, receiving a constant flux of energy and entropy from
the outside environment (it also receives a small flux of matter, from the cosmic
radiation). If we exclude the incoming flux, the biosphere can be considered a closed
system. We will now delve a bit deeper in the thermodynamics of the energy and
entropy flowing from the environment into the Earth’s biosphere. To this purpose,
we must firstly introduce the concept of thermal engine.
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Transformation of free energy into mechanical work

Let us consider again a perfect gas inside a box, closed by a mobile upper surface on which some weights (for
example w1, w2) can exert their gravitational force. The lower wall of the box is in contact with a thermostat at
temperature T (see the schematic in Fig. 2.2a, b). The pressure is:

Pin = (w1 + w2)

S
(2.51)

To keep things simple, we take that there is no air surrounding and therefore absence of friction, and
moreover that the weight of the moving wall is negligible compared to the wi ’s. At the initial equilibrium, the
mobile wall is found at a position hin (Fig. 2.2a).

Now the weight w2, for example by sliding horizontally without friction. Under the reduced weight, the
internal pressure will raise the wall to the new position h f in (Fig. 2.2b), with the pressure decreasing to:

P f in = w1
S

(2.52)

At constant temperature, and with no change of internal energy (perfectly reversible transformation), the
free energy of the perfect gas equals the entropy. From the Sackur-Tetrode equation:

ΔG = S f in − Sin = −NkB T ln

(
V f in

Vin

)
= −NkB T ln

(
h f in

hin

)
(2.53)

On the other hand, the perfect gas equation of state gives for the final state pressure:

P f in Sh f in = w1h f in = NkB T (2.54)

By setting x = (h f in − hin )/h f in , 0 < x < 1, we can compare the mechanical work performed by the
perfect gas, to the corresponding free energy variation. The work is just:

P f inΔV =
( w1

S

)
S(h f in − h f in ) = w1(h f in − h f in ) (2.55)

Therefore we have:

w1(h f in − h f in ) = −NkB T ln(1 − x) (2.56)

for the work, and
ΔG = x NkB T (2.57)

for the free energy. Since for 0 < x < 1 it is always x < − ln(1 − x): as predicted, the quantity of work
performed by the perfect gas is always less than the available free energy.

The ratio between the two:
r = −x

ln(1 − x)
(2.58)

is bigger the smaller is x , i.e. for small variations (h f in − hin ) or, again, for small values of w2 compared to
w1. We can imagine to split w2 into many smaller weights wi << w2, to increase the efficiency (quantity of
work extracted for a given available energy). This is an interesting conclusion: the transformation of energy into
work is more effective if performed in many small steps, rather than in one big step. At the limit of a virtually
infinite number of infinitesimal steps, this approaches the definition of a quasi-static, or adiabatic process, in
which no heat is exchanged at all, and all the energy is turned into work.
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By pursuing the reasoning from the situation displayed in the greybox on p. 31,
consider the right half of Fig. 2.2. Let us imagine to slide the box V above another
thermostat at a temperature T ′ < T (always horizontally,without friction andwithout
doing work against the gravity). The perfect gas will cool down, and therefore its
volume will decrease until getting back to the height hin (Fig. 2.2c). At this point,
we put back the weight w2 into place (Fig. 2.2d), and slide back the box above the
first thermostat at T > T ′ (Fig. 2.2a). The cycle can start over in this weird machine,
which is in fact an idealised representation of a cyclic thermal engine. At every cycle,
a fraction of thermal energy is turned into mechanical work (lifting the weight).
Every cycle increases a fraction of the entropy of the surrounding environment (the
thermostats), with a transfer of heat from the reservoir at high temperature T , to the
reservoir at lower temperature T ′. In the real world, without an external intervention,
such a process cannot continue indefinitely: the entropy of the two thermostats will
at some point become identical, ΔS = 0, and so will their temperature.

Such a process is completely reversible, meaning that the energy is the same at
the beginning as at the end of the cycle, ΔE = 0. Let us restart from the ‘caloric’
definition of the entropy, Eq. (2.25), from which we can compute the net variation of
entropy between the two thermostats:

ΔStot = ΔQ

(
1

T ′ − 1

T

)
= ΔW

T
(2.59)

Here ΔW = P(SΔh) is the total mechanical work resulting from the displace-
ment of the mobile wall, and ±ΔQ is the quantity of heat taken from the reservoir at
temperature T and transferred to the reservoir at temperature T ′, with the appropriate
algebraic sign. Since the variation of entropymust always be positive,in order to have

Fig. 2.2 Schematic of an ideal cyclic thermal engine, constituted by perfect gas enclosed in a box
of cross section S and variable height h, with volume V = Sh. The top-side wall, of negligible
mass compared to the weights wi , can move without friction to adjust against the changing internal
pressure of the gas. The volume V can be cyclicallymoved atop thermostats at different temperatures
T > T ′, steps (a) through (d)
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a net work ΔW > 0 it must clearly be T ′ < T . In other words, it is the difference
of temperature which keeps the thermal engine working. This was just the principle
established by Carnot in his experiments.

An ideal engine could convert all the energy into work, by an ideal (adiabatic)
transformation with ΔQ = 0. In all practical cases, this is forbidden by the Second
Principle. However, the equation suggests that the efficiency of the engine can be
increased by increasing the temperature difference between the two thermostats.

We will see in the next Chapter that the most important molecules making up the
living systems often have a positive enthalpy of formation, i.e. the enthalpy of the
products is less negative than that of the precursors, as well as a negative entropy
of formation. As a result, also the ΔG of complex molecules such as proteins is
positive, compared to the simpler building blocks (the amino acids) from which they
are assembled. With a positive ΔG, such a chemical reaction would be forbidden.
Therefore, to not violate the Second Principle, the formation and maintenance of
living systems demands a continuous flux of free energy, as well as a supply of
‘negative entropy’, from the external environment, just like a refrigerator needs a
continuous supply of energy to keep the temperature lower than the outside. In other
words, the biosphere is not an isolated system, and is constantly maintained in a
condition of non-equilibrium.

As suggested by the Eq. (2.59) above, the large temperature difference between
the Earth surface (280–300 K) and the Sun (5,800 K) is at the basis of any process of
energy transformation on our planet (Fig. 2.3). The radiant energy is transported by
electromagnetic radiation, with its combined oscillating electric and magnetic fields.
The amount of energy contained in the electromagneticwave is directly proportional

Fig. 2.3 Exchanges of radiation energy. The Sun irradiates ‘hot’ radiation, at a temperature of 5,800
K and short wavelength (visible and ultraviolet). A very small fraction of this energy is captured
by the Earth, and reemitted at the temperature of 280–300 K and longer wavelength (infrared).
This heat of radiation is dispersed towards the dark sky, which is at the temperature of 3K. (The
temperature of the sky being a remnant of the Big Bang, and constantly cooling with the expansion
of the universe.)
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to its frequency, ν, or inversely proportional to its wavelength λ (another result
which, besides having a classical interpretation, must wait quantum mechanics for a
thorough explanation).

The energy of the solar radiation is not delivered just at one frequency, but extends
over a continuous distribution of intensity covering a wide range of frequencies. The
maximum of the solar energy distribution (see Fig. 2.7 in Problem 2.9 below) is cen-
tred approximately around the green band of the visible portion of the electromag-
netic spectrum (λ ∼ 550 nm), with also an important fraction of energy delivered
in the ultraviolet (UV) spectral region (λ’s of a few tens nm). On the other hand,
the distribution of the radiation energy emitted by the Earth, being associated to a
much lower temperature, is rather centred on the infrared (IR) band, at wavelengths
around a fewmicrometers (see again Fig. 2.7). From the point of view of a biological
system, this difference is extremely important. The visible and UV light is useful
for initiating the photochemical process of chemical synthesis (and it is moreover
dangerous for photo-labile proteins). On the other hand, the energy of IR waves is
not useful for biological processes, other than keeping the organisms at a reasonably
warm temperature. The reason is in the quantummechanical energy-wavelength cor-
respondence. The energy of a radiation corresponding to a temperature of 5,800 K
is kB T = 8.6 × 10−5 × 5,800 ∼ 0.5 eV, a figure comparable with the difference
between the discrete (stationary) energy levels of atoms and molecules, therefore
capable of inducing chemical reactions. On the other hand, the energy of the IR
waves at T = 280 K is about kB T = 8.6 × 10−5 × 280 ∼ 0.03 eV, rather compa-
rable with the vibrational energy levels of the molecules, thus capable of producing
just some waste heat.

Due to the substantial temperature difference, the Sun appears as a source of
negative entropy, in that the radiation arriving on the Earth allows to accommodate
the apparently negative difference in the entropy balance (“apparently” only if the
biosphere is considered as a closed system, remember the discussion on p. 20 about
the introduction of the concept of free energy). The foremost case is that of photo-
synthetic reactions, for which it can be ΔSph < 0 provided this is accompanied by
enough Sun-produced entropy, such that:

ΔS = ΔQ

(
1

300
− 1

5,800

)
> −ΔSph (2.60)

After the works of E. Schrödinger and others (see “Further reading” at the end
of the Chapter), it has become familiar the idea that in biology it would be common
to observe the transfer from a high-entropy source (the Sun) to a low-entropy drain
(the Earth and its biosphere), without any violation of the Second Principle [14].
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2.7.1 A Synthesis of Photosynthesis

Photosynthesis is an extremely complex mechanism, including very many chemical
reactions in chain, which can be conveniently subdivided into two phases: the light
phase, during which the photochemical reactions powered by the sunlight take place;
and the dark phase (also called Calvin’s cycle), whose main characteristic is the
fixation of carbon. A highly simplified, synthetic writing of this chain of reactions,
looking only at the start and endpoints, would be:

6CO2 + 6H2O + nhν → C6H12O6 + 6O2

carbon dioxyde + water + radiation → glucose + oxygen

Once the energy of the solar radiation, E = nhν, is captured by the plant leaves,
a fraction η is utilised in the photosynthetic cycles and will appear asΔG ph > 0. On
the other hand, the fraction (1 − η) is reemitted at room temperature, in the form of
heating of the glucose and oxygen molecules. According to Eq. (2.60), the entropy
balance must accommodate the negative quantity ΔSph , by a fraction η of the solar
entropy at least equal or larger:

η(n · 1.986 · 5,800)
(

1

300
− 1

5,800

)
+ (−ΔSph) > 0 (2.61)

with E = hν = RT , and R = NAvkB = 1.986 cal K−1mol−1, or 8.31 J K−1mol−1,
the universal gas constant. The factor n comes from the number of photons typically
needed for the light phase (in quantum physics, the energy of the electromagnetic
radiation is defined in terms of finite packets of energy, called photons, each carrying
an energy E = hν, with h = 6.62 × 10−34 J-s the Planck constant). This number is
found to be somewhere between n = 5 and 10. An estimate of ΔSph can be given by
calculating the difference between the free entropies of the (products) – (reactants),
all taken in the gaseous state but water, thus obtaining ΔSph = (209 + 6 · 205) −
(6 · 213.6 + 6 · 69.9) = −262 J K−1mol−1. Therefore, for the photosynthesis to be
compatible with the Second Principle, the yield of photochemical reactions must be:

η > 0.35 (2.62)

or even less if n > 5. In fact, in dedicated laboratory experiments it is found that
the photosynthesis has a global yield of about η = 0.50. On the other hand, natu-
rally occurring photosynthesis has amuch lower efficiency because of several factors,
such as themany different molecules participating in the ensemble of reactions (more
complex than the simple picture above), or the losses from light-harvesting mole-
cules, which may decay rapidly by electron-transfer reactions and other competing
mechanisms, in addition to fluorescence and stimulated emission. However, the core
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of our discussion is not changed: the total system entropy is globally increased, and
the inflow of entropy from the Sun is indeed compensating the apparent decrease in
entropy during the chemical synthesis process.

It is equally important to underscore that the simple availability of energy (and
entropy) is not enough to support the living systems, in the same way that it is not
enough to sit on a tank of gasoline to make a car run. It is necessary to have a con-
verter, which transforms the available energy in useful work (mechanical, chemical,
electromagnetic), the equivalent of a combustion engine for a car, which turns the
chemical energy of gasoline into rotating motion of the wheels of the car. For the
case of biological systems, the appropriate use of the “negative” entropy flux is done
through encoding and decoding the information in the genetic code, stored in the
DNA of every living being.

Terrestrial organisms have learned, during the evolution, to extract with a good
efficiency the energy and entropy from the solar blackbody radiation. From the point
of view of the thermodynamics balance, life on Earth is organised in the form of a
pyramid. At the bottom of the pyramid we find the species capable of synthesising
the base organic compounds, such as the carbohydrates, by directly using the solar
radiation via the photosynthesis.Without such organisms (plants), lifewould not exist
as we know it. Notably, the energy stored in the biomass by the photosynthesis is a
ridiculous 0.023% of the total energy received on the Earth’s surface. Nevertheless,
this small amount is enough to sustain the growth and development of all the living
organisms in the upper levels of the pyramid (including the energy consumption of
all the human-made machines, thanks to the energy stored in fossil fuels throughout
the ages).

Animals of the upper levels of the pyramid cannot directly use the solar energy and
entropy, as they depend on the photosynthesising species. During the assimilation
and digestion of food, energy and entropy stored by the plants in the base organic
compounds are extracted and used by the herbivores, and from these they pass on
to the other animal species (carnivores and omnivores). During the geological ages,
natural selection has beenoperating in such away to favour the specieswhich aremost
effective in the process of thermodynamic extraction of the pristine stored energy and
entropy. In the next Chap. 3 we will see how entropy can be stored in DNA, and used
to make the building blocks of cells and tissues. Notably, sexual recombination of the
genetic material has proven to be a very effective way of protecting the ‘information’
entropy stored in the DNA, against the unavoidable information degradation due to
the steady increase of entropy of the surrounding environment.

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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The energy stored in a tree

Let us take a tree of 20 years of age, which has been growing up to a mass of 500 kg, of which 400kg in wood
and the rest in leaves and circulating water. We know that burning dry wood gives about 4.05 kWh/kg, or 14,580
kJ/kg. Can we estimate from such a simple data the energy stored in the Earth’s biomass?

Starting from the value of the solar constant, CS = 1366 Wm−2, we can calculate that a surface of 1 m2

of leaves receives:
E = 1,366 · (20 · 365 · 12) = 119.7 × 106 Wh = 430.8 × 106 kJ (2.63)

of energy over the 20 years of its life (we multiplied the number of hours in a day only by 12, to consider that
on average half of the day is actually night).

Let us take that the photosynthesis yield is about 2%, therefore the energy store would be 8.616 × 106 kJ
per m2 of leaves over the 20 years. A typical tree should have rather 200–300 m2 of leaves (a gross estimate,
not taking into account the tree shape, living latitude, etc.), which gives a total available energy of:

E = 300 · 8.616 × 106 ≈ 2.585 × 109 kJ (2.64)

This energy is necessary for al the vital functions of the tree including its growth, therefore our calculation
will be an underestimate, when considering that all the energy is instead used only for growth. The energy
accumulated in the wood is Eacc = 14,580 · 400 = 5.83 × 106 kJ. This represents a fraction:

f = Eacc/E = (5.83 × 106)/2.585 × 109 = 0.0022 (2.65)

i.e., 0.22% of the total energy stored. By accounting that about 30% of the Earth’s surface is covered by forests,
we get about 0.066%, i.e., only 2–3 times bigger than the accepted value of 0.023%. This seems a rather decent
estimate, given our very rough approximations.

All this energy stored in the trees that lived on the early Earth would be found later deep in the geological
layers, under the form of coal. In fact, all hydrocarbons of coal are derived from the cellulose of the biomass,
fossilised during the millions of years of life on Earth, mostly during the Carboniferous age (about 300 millions
of years ago). Likely, the first stage of the conversion was initiated by bacteria, which digested the organic matter
by producing methane, CO2 and oxygen; this may have been followed by stages of anaerobic decomposition,
in which acids should be the waste, thus increasing the pH up to levels at which all bacteria would die. Once
this proto-carbon material got buried under hundreds of meters of soil, the temperature would rise to �100 ◦C
and the pressure to tens of atmospheres. In such conditions, carbonification could take place by turning into less
and less volatile compounds, firstly forming lignin, then coal, and finally anthracite. The composition of such
materials and the chemistry of their processes are still largely unknown (Fig. 2.4).

Fig. 2.4 Left From cellulose (left) to coal (right). Bonds between sugar molecules in cellulose long chains
are protected against chemical attack, because cellulose tangles itself into tight microfibrils. Harsh conditions
such as high temperatures and pressures are required to complete the carbonification
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Fig. 2.5 Schematic representation of the energy balance in the greenhouse effect. An amount of
solar radiation energy equal to 100 (on the left) is assumed to reach the Earth. In yellow arrows,
the ways this incoming energy is reflected or stored in the atmosphere. The 51% absorbed by the
Earth’s surface is re-irradiated at lower radiation temperature (indicated with red arrows, on the
right of the figure). Some of this outgoing radiation is again captured and stored in the atmosphere.
The sum of the yellow and red fractions stored is at the origin of the greenhouse effect

2.8 Energy from the Sun

As shown in the Fig. 2.5, the biosphere receives the solar energy in the form of a ‘gas
of photons’ with high energy and low entropy, and emits residual thermal energy
in the form of a similar gas of radiation, with lower energy and higher entropy.
The transformation from short- to long-wavelength photons increases the entropy of
the radiation (this could be calculated from the equations of the quantum radiation
theory), and this entropy compensates the decrease of entropy in building organic
molecules.

A theoretical calculation of the total energy arriving on the Earth is affected by
a considerable uncertainty, since it requires a number of approximations. This total
energy is termed solar constant. Such a quantity can be measured by a bolometer5

mounted on a satellite, and integrating all the radiation (IR, visible, UV,X, gamma,...)
which arrives on the Earth in the direction perpendicular to the external surface of the
atmosphere. Although such a quantity may have quite large fluctuations as a function

5A bolometer is a detector of electromagnetic radiation. Its principle is simple: it converts the
absorbed light radiation into heat. By choosing an absorbing material whose electrical resistance
changes with the temperature, the incident energy can be estimated by measuring the impedance
variation in the detector.
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of the latitude, of the time of the day, and of the period of the year, an average value for
the whole Earth surface has been assessed, CS = 1366 Wm−2 = 1.366 GWkm−2.
By taking the average Earth’s radius RT = 6366 km, the total fluence (energy flux
times the total surface, i.e., [E][T−1]) of solar energy captured by the Earth is:

PT = CSπ R2
T = 1.7 × 108GW (2.66)

It will be noted that, on average, the flux on the surface of our planet is only 1/4 of
this value, since the flux across the circle of surface π R2

T must be distributed over the
sphere of surface 4π R2

T . Overall, the Earth captures only a fraction equal to 2×10−9

of the total energy emitted from the Sun, and this is already not bad!
Moreover, we note that the energy balance is zero on average: as much energy is

received from the Sun, as it is sent back from the Earth in the form of low-frequency
radiation.6 Since the energy of emitted photons is lower, their density must be higher,
however the integral of flux times energy is constant.

2.8.1 The “Greenhouse” Effect

By looking at the schematic diagram in Fig. 2.5, which represents the balance of the
incoming and outgoing radiant energy, we see that the energy arriving on the Earth’s
surface from the Sun is reflected by about 30% by the molecules making up the air,
the water vapour of the clouds, and the white parts of the surface (snow, glaciers).
This fraction represents the albedo, A, of the Earth’s surface.

Of the remaining 70, 19% is absorbed by the molecules of the atmosphere and
clouds. Therefore, only 51% of the incident radiation energy is delivered to the
surface. This is the same quantity of energy which is reemitted, however with an
energy spectrum (density of energy as a function of radiation wavelength) very
different from that of the incident radiation.

Of the 51% reemitted, 21% is directly radiant energy. Of this, 6% goes directly
into the outer space, and 15% is again recaptured by themolecules in the atmosphere.
Another 7%of the reemitted energy is used to heat the lower layers of the atmosphere,
say the troposphere (500 m), by convection. The remaining 23% (21 + 7 + 23 =
51%) is used as latent heat in the phase transformations of the water cycle, namely
evaporation and condensation of clouds.

By summingup thevarious contributions,wefind thatmolecules in the atmosphere
and clouds capture 64% of the total energy (19% direct + 45%). This fraction is
reemitted in the form of infrared (IR) radiation. The energy captured is irradiated in
all directions, notably both towards the upper space and the lower Earth’s surface.

6A very small quantity of energy is contributed by the internal heat of the Earth itself, due to the
primordial heat, the decay of radioactive elements in the Earth’s interior, and the heat of crystalli-
sation of the core materials. This contribution is about 1/10,000 of the amount of external energy
received by the Sun.
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This descendent flux of energy adds to the incident solar energy, and allows the
surface temperature to attain an average value of about +15 ◦C, against the about
−18 ◦C predicted in the absence of a partially absorbing atmosphere. Moreover, it
should be considered that with such lower average temperature, the extent of ice
caps on the surface would be increased, with a corresponding increase in the albedo.
More reasonable calculations predict an average surface temperature in the absence
of the atmosphere around −100 ◦C.

This effect of heating of the Earth’s surface, originating form the reflection of
part of the energy by the atmosphere, is called greenhouse effect, since it makes
the Earth surface to resemble to a covered greenhouse. This is obviously a very
beneficial and desirable effect by all the living organisms. It is due to the “greenhouse
gases” contained in the terrestrial atmosphere: mainly water vapour (the principal
contributor to the heating and cooling of Earth’s surface), carbon dioxide CO2, and
methane CH4, plus a number of minor constituents.

The name of “greenhouse” comes from the analogy of the Earth’s atmospherewith
a real greenhouse. For such a kind of construction, once exposed to the sunlight, the
inside air temperature is higher than the outside even in the absence of internal heat
generation (which in a real greenhouse could be added). This is due to the different
transparency of the glass of the walls to the radiation, that is quite good for the
high-frequency light coming from the Sun, and pretty bad for the infrared radiation
emitted by the Earth’s surface at lower frequency. In practice, the glass behaves as
a sort of energy valve, letting easily the energy to get in while being less good at
letting energy out. In the analogy, the entire solid and liquid mass of the Earth’s crust
is the greenhouse, and the atmosphere is the equivalent of the glass. The possible
problems in the equilibrium originate from the fact that the infrared transparency is
even more decreased when the concentrations of greenhouse gases increase, thereby
increasing to higher values the surface temperature.

Natural or artificial perturbations of the atmospheric concentrations of the green-
house gases can alter the equilibrium of the radiation exchanges, with the effect
of changing the amount of energy stored in the atmosphere. Such a disequilibrium
could entail a long-term change in the atmospheric temperature, and therefore in
the surface temperature. While glacial periods and warmer periods have naturally
alternated on the Earth surface for millions of years, there has been in recent years a
concern about the possible long-term effects of man-made alterations of the green-
house gases concentrations, especially due to the atmospheric increase of CO2 and
CH4 levels following the burning of large quantities of fossil fuels. This effect has
been termed the global heating problem, since most of the indications point towards
an increase of the average surface temperature, although there are also predictions
based on computer models which would rather indicate a decreasing trend. This is
a very complicate problem, involving the contribution of widely ranging scientific
knowledge, from physics, mathematics, geography, oceanography, geology, and so
on. In the following we will develop a simple model to describe some of the basic
effects linked to the variation of greenhouse gases concentration.
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Before going into the details of the greenhouse effect, however, a more basic ques-
tion should be posed, on the basis of the thermodynamics. It was amply demonstrated
in the beginning of this chapter that two parts of a system at different temperatures
put in contact will evolve in the direction of attaining a common equilibrium temper-
ature, pushed by the maximisation of the total entropy. Why the system composed
by the Sun and Earth is not at the same temperature? How it is possible that the two
systems, which can exchange energy without limits, should have not yet attained the
equilibrium after about 1010 years of the age of the universe? The answer is “noway”.
The radiation continuously emitted from the Sun is an expanding gas, which changes
its energy density as it expands, somewhat like a perfect gas that cools down while
continuously expanding. As a consequence, the system is never at thermodynamic
equilibrium. However, it must be noted that the ‘cooling’ of the radiation cannot be
explained by the concepts of classical physics, but can be understood only bymaking
recourse to quantum mechanics.7

2.8.2 The Temperature of the Earth’s Surface

We consider the Sun as an ideal black body at a temperature TS = 5,800 K. This
is a good approximation, despite the fact that the Sun is not black at all! (That is a
joke, in fact by the term black body in physics it is meant an object ideally capable of
absorbing all the radiation it receives, therefore appearing black at low temperatures.
On the other hand, a black body also radiates energy at the same temperature, since
it is in equilibrium.)

For an ideal black body with spherical shape, the Stefan-Boltzmann law8 gives
the following expression for the power emitted, as a function of the temperature T
and the radius R of the emitting sphere:

P = 4π R2σ T 4 (2.67)

This equation states that the power emitted (energy/unit time) is the product
between the emitting surface (a sphere, in this case) and the fourth power of the
temperature, times the Stefan-Boltzmann constant, σ = 5.67 × 10−8 W m−2 K−4.

Now let us try to estimate the Earth’s surface temperature by considering also the
Earth as a black body, but at a lower temperature than the Sun.Consider that the Sun

7It is interesting to note that, even after a very complex mathematical treatment based on quantum
mechanics, the result for the difference in entropy in cooling from a temperature T1 to a temperature
T2 < T1 is very close to the classic result for the entropy variation of a perfect gas [15]. The important
difference between the two treatments is the concept of temperature, which is completely different
for a classical gas and a quantum “gas of radiation”.
8The Stefan-Boltzmann law is physically justified only in the quantum mechanical treatment of the
radiation; however, Boltzmann derived it by a fully classical argument, see Problem 2.6.
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Fig. 2.6 The Sun emits all of its radiant power across its surface, which measures (4π R2
S) m2.

This same energy, traveling across the empty space, is distributed over the concentric sphere with
radius RS−E . The Earth intercepts a fraction of this energy, equal to the ratio of the projected circle
with the same radius of the Earth, RE , to the surface irradiated at the Sun-Earth distance. Then, this
energy is distributed over the entire Earth’s surface, again a sphere with radius RE

distributes all of the power PS irradiated across its surface,with radius RS = 6.9×109

m, in all the radial directions:
PS = 4π R2

Sσ T 4
S (2.68)

The Earth is located at the Sun-Earth distance, RS−E = 1.5 × 1011 m. When the
radiation reaches such a distance, it is distributed over a sphere with this same radius,
concentric with the Sun (see the schematic in Fig. 2.6).

Moreover, consider that the Earth intercepts only a fraction of the Sun power, on
a circle of radius RE = 6.366× 106 m projected on this large sphere, and multiplied
by the fraction (1 − A) since the effect of the albedo is to reduce the amount of
radiation PE absorbed by the Earth:

Pabs
E = PS

(
π R2

E

4π R2
S−E

)
(1 − A)σ T 4 (2.69)

Finally, consider that Earth reemits the power absorbed, over all of its surface:

Pemit
E = 4π R2

Eσ T 4
E (2.70)

We impose that at equilibrium, Pabs
E = Pemit

E . Therefore, the Earth’s temperature
is easily found:

TE =
(
1

4

)1/4 (
RS

RS−E

)1/2

(1 − A)1/4 TS = 255K (2.71)
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This shows that, to a first approximation, the observed surface temperature of the
Earth is only determined by the distance and structure (temperature, size) of the Sun.
As anticipated, without any account for the presence of the atmosphere we end up
with an estimate of about 20◦ below the zero Celsius. By our standards, this would
be a very inhospitable planet!

To improve the predictions of this simple model, which gives a quite cold sur-
face temperature, we must add the effect of the atmospheric layers. For the sake of
simplicity, let us take just one layer of atmosphere, at the temperature TA, at approx-
imately the same distance from the Sun as the Earth, RS−E . This layer captures a
fraction f < 1 of the power Pemit

E emitted by the Earth surface. This fraction of
power sequestered by the atmosphere will be reemitted toward the space, one half
back in the direction of the Earth (thus contributing to the surface heating), and the
other half toward the upper sky. The balance of the power between the Earth and the
atmosphere is then:

f (σ T 4
E ) = 2 f (σ T 4

A) (2.72)

On the other hand, the balance equation between absorbed and emitted power
from the Earth, Pabs

E = Pemit
E , is modified as:

Pabs
E = PS

(
π R2

E

4π R2
S−E

)
(1− A) = (1− f )

(
4π R2

E

)
σ T 4

E + f
(
4π R2

E

)
σ T 4

A (2.73)

which can be simplified, by using the Eq. (2.72), as:

(
RS

RS−E

)2 1 − A

4
T 4

S = (1 − f )T 4
E + f T 4

A =
(
1 − f

2

)
T 4

E (2.74)

The corrected expression for the Earth’s surface temperature is:

TE =
{(

RS

RS−E

)2
(1 − A)

4(1 − f
2 )

}1/4

TS (2.75)

This equation contains f as an unknown parameter. We can use it in reverse, to
obtain the average temperature at the Earth surface, TE = 288K. For this, wemust set
f = 0.78 for the fraction of power absorbed by the atmosphere. As a quality check,
by imposing this condition we can derive from Eq. (2.72) the average temperature of
the atmosphere layer as TA = 242 K, which is actually a very good estimate for the
temperature of the troposphere at the height of about 7km above the surface.

Besides, the fitted value of f = 0.78 does not coincide with the fraction of solar
power sequestered and reemitted by the greenhouse gases, which is rather 0.38 (see
Fig. 2.5 above). However, apart from the more or lessaccurate numerical values, it is
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interesting to note that alreadywith such a very simplemodel, we can obtain a correct
qualitative correlation in the temperature response: by increasing the gas concentra-
tion of the atmospheric layer, for example in methane or CO2, we would increase the
absorption fraction f , which would entail a parallel increase of the temperature at the
Earth’s surface from Eq. (2.75). On the other hand, such simple correlations should
not be pushed too far. The modelling of Earth’s climate is a dauntingly more com-
plex task, comprising a wealth of physical-chemical, atmospheric, oceanographic,
and geophysical phenomena, which we have not even hinted at here, and commands
the use of the largest computers in the world.

In particular, our very simplified model takes the Earth as a sphere with a homo-
geneous surface and homogeneous atmosphere layers, which is far from truth. The
large-scale differences in the surface distributions of land and biomass, water, ice,
clouds, are the very motors of Earth’s climate, and cannot be neglected. The water
vapour, which represents the major barrier to cooling by radiation emission by the
T 4 law Eq. (2.67), generally is maximum at the surface near the tropics, and sharply
decreases with both altitude and latitude. Because of this layer mostly opaque to
infrared radiation, heat is firstly carried away from the surface by fluid convection,
starting from the cloud towers of the tropics, which then carry most of the heat
upward and to the poles, whence it is possible for thermal radiation emitted from
these levels to escape into space.

The qualitative variations of the Earth surface also have great implications for
the definition of the average surface temperature, a concept that has been recently
popularised also by the media. Climate cannot be associated to a single temperature,
rather the differences of temperatures drive the climate processes and create the
storms, winds, sea currents, and everything that makes up the climate. The Earth
surface has a large number of interacting components, which one cannot just add up
and average: it would be as meaningless as calculating the “average phone number”
in the phone book. If temperature decreases at one point and increases at another, the
“average temperature” would be unchanged, but the thermodynamic forces would be
totally different, and so would be the climate. If, for example, we measure 20 ◦C at
one point on the surface and 30 ◦C at another point 40km away, we would be tempted
to attribute an average temperature of 25 ◦C to that area; but if we measured 25 ◦C at
both places, the average would be still 25 ◦C. However, these two situations would
give rise to two entirely different climate reactions, because in the former case one
would have an air pressure difference and strong winds, while in the latter case there
would be a calm and pleasant day.
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Appendix A: Some Useful Mathematical Tools

The Gamma Function

The mathematical Gamma function Γ (x) is an extension of the factorial function,
valid for both real and complex numbers. Its analytical definition, due to the French
mathematician Adrien-Marie Legendre (1752–1833), is:

Γ (t) =
∫ ∞

0
xt−1e−x dx (2.76)

with t a real or complex number. This (only apparently) difficult integral can be
integrated by parts:

∫ ∞

0
xt−1e−x dx =

[
xt

t
e−x

]∞

0

+ 1

t

∫ ∞

0
xt e−x dx (2.77)

(the termwithin [...] being equal to 0), to obtain the recurrence formula of theGamma
function:

Γ (t + 1) = tΓ (t) (2.78)

From this result, it is immediately obtained Γ (n) = (n − 1)! when t is an integer n,
which justifies the definition of generalised factorial. From the same integral, it is
also easily seen that Γ (1) = 1.
In thermodynamics, it is often necessary to calculate the Gamma function for half-
integer argument, Γ (n/2). The recurrence formula (2.78) above can still be used,
but ending up with the task of calculating the last term, n = 1/2. In the next Section,
this will be shown to be:

Γ (1/2) = √
π (2.79)

Dirac’s Delta Function

The Dirac delta function, indicated as δ(x), is a real function that is zero everywhere
except at x = 0, and with an integral equal to 1:

∫ +∞

−∞
δ(x)dx = 1 (2.80)

It was introduced by the English physicist Paul A. Dirac, and it may be physically
interpreted as the density of an idealised point mass or point charge situated at the
origin. Although it makes little sense mathematically, the delta “function” becomes
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meaningful only when inside an integral, a the limit of a distribution becoming
infinitely narrow about x = 0 while preserving its unitary integral.

The delta function admits any n-th order derivatives δ(n)(x), a Fourier transform,
and several other analyticalmanipulations typical of a true function. Some interesting
properties of the delta are:

∫ +∞

−∞
δ(ax)dx =

∫ +∞

−∞
δ(u)

du

|a| = 1

|a| (2.81)

∫ +∞

−∞
δ′(x) f (x)dx = −

∫ +∞

−∞
δ(x) f ′(x)dx (2.82)

∫ +∞

−∞
f (x)δ(x − x0)dx = f (x0) (2.83)

∫ +∞

−∞
f (x)δ(n)(x − x0)dx = (−1)n f (n)(x0) (2.84)

The last two properties present the delta function as a kind of filter, by which a
particular value of another function f (x) can be extracted.

TheDirac deltamay be thought as a continuous-x analog of the discreteKronecker
delta, δi j = 1 for i = j and 0 if i 	= j , which selects a discrete value out of a series
{ai }, i = 1, ..., n:

∞∑

i=−∞
aiδik = ak (2.85)

Among the useful applications of the Dirac function, for a discrete distribu-
tion consisting of a set of points x = {x1, ..., xn}, with corresponding probabilities
{p1, ..., pn}, a continuous probability density function f (x) can be written as:

f (x) =
n∑

i=1

piδ(x − xi ) (2.86)

Gauss and Euler Integrals

Throughout this book, we will encounter several times integrals of the type:

I (n) =
∫ v

u
xne−αx2

dx (2.87)

with [u, v] = [−∞,+∞] or [0,+∞].
The simplest of these integrals, I (0), can be solved on the infinite real axis by
an ingenious trick, due to Siméon-Denis Poisson (1781–1840), if we start from its
square:



Appendix A: Some Useful Mathematical Tools 47

I 2(0) =
[∫ +∞

−∞
e−αx2

dx

]2

=
∫ +∞

−∞

∫ +∞

−∞
e−α(x2+y2)dxdy =

=
∫ 2π

0
dθ

∫ +∞

0
re−αr2dr

(2.88)

The last identity follows from the change of Cartesian to polar coordinates, x =
r cos θ , y = r sin θ , dxdy = rdrdθ . The integral is now easily calculated:

I 2(0) =
∫ 2π

0
dθ

∫ +∞

0
re−αr2dr =

∫ 2π

0
dθ

[
− 1

2α
e−αr2

]+∞

0

= 2π · 1

2α
= π

α
(2.89)

from which we get the basic result I (0) = √
π , for α = 1.

If we take the integral on the interval [0,+∞] and make the substitution x = √
t ,

we get the first Euler integral, E(0):

√
π = 2

∫ +∞

0
e−x2

dx = 2 · 1
2

∫ +∞

0
t− 1

2 e−t dt = Γ (1/2) (2.90)

which proves the Eq. (2.79) of the previous Section.
The integrals (2.87) for odd n are equal to 0 on the interval [−∞,+∞], since being
the product between an even and an odd function.
The integrals for even n are obtained by differentiation with respect to the parameter
α. By taking the first derivative of both sides of Eq. (2.87) we get:

∫ +∞

0
x2e−αx2

dx = π1/2

2α3/2
(2.91)

By sequentially taking higher order derivatives, the following general result is
obtained:

∫ +∞

0
xne−αx2

dx = 1 · 3 · 5 · · · (n + 1)π1/2

2n/2α(n+1)/2
= Γ [(n + 1)/2]

2α(n+1)/2
(2.92)

The Stirling Approximation

When deriving Eq. (2.11) above, and several other times, in Chap. 3 and in other
places in this book, we need to compute the factorial n! of very large values of n,
as well as its logarithm. Especially in the latter case, a very useful formula is the
Stirling’s approximation:

ln n! = n ln n − n + 1

2
ln(2πn) + O(1/n) (2.93)

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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This formula is very accurate already for small n. For example, the relative error for
n = 20 is less than 10−4.
Stirling’s formula can be applied also to the Gamma function, provided its argument
t is real:

lnΓ (t) � (t − 1
2 ) ln t − t + 1

2 ln 2π (2.94)

We also note the important property, with α a real constant:

ln(αn)! = ln(αnn!) = n ln α + ln n! (2.95)

Vector Calculus and Analysis

A scalar is a quantity a characterised only by its magnitude (a number). Specification
of a vector v, instead, requires stating its direction as well as its magnitude |v| = v.
Unit vectors are vectors of unit length, while the zero vector has zero length and
arbitrary direction. The unit vectors of the Cartesian coordinate system are written as
i, j and k, respectively along the axes {x, y, z}. Any other vector in the 3D space can
then be expressed by giving its scalar components, {vx , vy, vz}, as v = vx i+vyj+vzk.

The magnitude (or modulus) of the vector is: v =
√

v2x + v2y + v2z .

Vectors u and v can be added, as w = u + v, by adding their components: w =
(ux + vx )i+ (uy + vy)j+ (uz + vz)k. A vector can also be multiplied by a scalar s,
by multiplying its components: sv = svx i + svyj + svzk.

The scalar product (or dot product) of two vectors is defined as:

u · v = ux vx + uyvy + uzvz = uv cos θ (2.96)

with u, v themodulus of the vectors, and θ the angle comprised between the directions
of two vectors, joined at a common origin. The result of the scalar product of two
vectors is a scalar (a number).

The vector product (or cross product) of two vectors is defined as:

u × v = (uyvz − uzvy)i + (uzvx − ux vz)j + (ux vy − uyvx )k = w (2.97)

and its result is another vector w, perpendicular to the plane containing u and v.
Consider a scalar function of the coordinates,ψ(x, y, z), such as a temperature or

a pressure distributed in the volume of a body. The gradient of ψ is a vector defined
as:

grad ψ = ∇ψ = ∂ψ

∂x
i + ∂ψ

∂y
j + ∂ψ

∂z
k (2.98)
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It should be evident that the gradient of the scalar function (or field) is pointing
to the direction where ψ changes more rapidly.

The operation producing the gradient can be thought of coming from the appli-
cation of an operator ∇ on the scalar ψ :

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(2.99)

If we now apply the same operator ∇ but to a vector v, we obtain the divergence
of that vector:

div v = ∇ · v = ∂v
∂x

· i + ∂v
∂y

· j + ∂v
∂z

· k (2.100)

The physical meaning of the divergence is to calculate the net amount of the
vector v(x, y, z) (actually a vector field) flowing in or out a closed surface. Imagine
a vector field running parallel to the x-axis, such as water flowing at constant speed:
the divergence calculates the integral of the flux across a surface perpendicular to x .

Finally, the vector product of ∇ times a vector v, gives the rotor, or “curl” of the
vector:

curl v = ∇ × v = (
∂vy

∂z
− ∂vz

∂y
)i + (

∂vz

∂x
− ∂vx

∂z
)j + (

∂vx

∂y
− ∂vy

∂x
)k (2.101)

The rotor of a vector field is non-zero only if the field turns around some point,
like in a vortex. For a vector field forming a vortex spinning circularly around a
vertical line, the rotor calculates the value of v(x, y, z) along the perimeter of any
circle drawn about the central line.

The square of the operator∇2 is called the Laplacian. Applied to a scalar, it gives
another scalar:

∇2ψ = ∂2ψ

∂2x
+ ∂2ψ

∂2y
+ ∂2ψ

∂2z
(2.102)

The Laplacian of a vector is a vector:

∇2v = (
∂2

∂2x
+ ∂2

∂2y
+ ∂2

∂2z
)(vx i + vyj + vzk) =

= (
∂2vx

∂2x
+ ∂2vx

∂2y
+ ∂2vx

∂2z
)i + (

∂2vy

∂2y
+ ∂2vy

∂2y
+ ∂2vy

∂2z
)j + (

∂2vz

∂2x
+ ∂2vz

∂2y
+ ∂2vz

∂2z
)k

(2.103)

Some useful formulae of vector analysis are:

∇ · (u × v) = v · ∇ × u − u · ∇ × v (2.104)

∇(u · v) = u · ∇v + v · ∇u + u × (∇ × v) + v × (∇ × u) (2.105)

∇ × (∇ψ) = 0 = curl (grad ψ) (2.106)
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∇ · (∇ × u) = 0 = div (curl u) (2.107)

∇ · (∇ψ1 × ∇ψ2) = 0 (2.108)

∇ × (∇ × u) = curl (curl u) = grad (div u) − ∇2u (2.109)

Note that a vector field with zero divergence is said to be solenoidal (a field with
no point source, such as a magnetic field). A vector field with zero curl is said to be
irrotational (such as a tube of water flowing in laminar flux without any turbulence).
A scalar field with zero gradient is said to be constant (such as a temperature uniform
everywhere in a body).

Simple Tensor Algebra

If we multiply a vector by a scalar, u′ = au, the vector changes in magnitude (each
of the components are multiplied by a) but not in direction. On the other hand, as
shown in the previous Section, by multiplying two vectors we get either a scalar (dot
product) or another vector perpendicular to the first two (cross product). But how
do we get to change both the direction and magnitude of a vector into an arbitrary
direction and different magnitude? This is obtained by introducing a more complex
entity, the tensor, indicated by an underline:

u = M ⊗ v (2.110)

By writing the vector components explicitly, with u = ux i + uyj + uzk and
v = vx i+ vyj+ vzk, we see that the new mathematical objectM can be obtained by
multiplying two original vectors component by component:

M = (ux i + uyj + uzk) ⊗ (vx i + vyj + vzk) =
= ux vx ii + ux vy ij + ux vz ik + uyvx ji + ... (2.111)

The new symbol ⊗ represents this idea of distributing the product among all the
vector components. By rewriting the 3×3 scalar quantities as Mi j , with i, j = 1, 2, 3:

M = M11ii + M12ij + M13ik + M21ji + ... (2.112)

this new mathematical entity appears as a square matrix, also called a tensor of rank
2, which can be multiplied by a vector or by another tensor, by using the usual rules
of matrix algebra:
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M =
⎛

⎝
M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞

⎠ (2.113)

u = M ⊗ v =
⎛

⎝
M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞

⎠

⎛

⎝
vx

vy

vz

⎞

⎠ =
⎛

⎝
ux

uy

uz

⎞

⎠ (2.114)

M ⊗ N =
⎛

⎝
M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞

⎠

⎛

⎝
N11 N12 N13

N21 N22 N23

N31 N32 N33

⎞

⎠ =
3∑

k=1

Mik Nk j (2.115)

In the following (see e.g. Chaps. 8–10) we will meet with tensors of rank 2, such
as the stress and the strain of a deformed material element, and tensors of rank 4,
such as the matrices of the elastic constants and elastic compliances of a material.
However, in this book we will be exclusively concerned with quantities defined in
orthogonal reference frames (i.e., the angles between the x, y, z axes are always at
90 ◦), which simplifies much the tensor analysis, getting rid of (usually important)
details such as covariant and contravariant components.

By extension, it might be tempting to deduce that a vector is nothing else but a
tensor of rank 1, a mathematical entity with just one subscript index. However, care
must be exercised. Although a seemingly mathematical trickery, tensor calculus is
instead at the core of the concepts of invariance in physics. It turns out that all rank-1
tensors are also vectors, however not all vectors are rank-1 tensors: to be a tensor
of any rank, a mathematical entity must be invariant with respect to the coordinate
system. For example, if we consider the position vector

−→
O P joining a point P with the

origin O of a {x, y, z} reference frame, and the position vector
−−→
O ′ P joining the same

point with the origin O ′ of a different reference frame {x ′, y′, z′}, it is immediately
seen that this vector depends on the reference frame, therefore it is not a rank-1
tensor. However, the difference between two position vectors

−→
P Q = −→

O P − −−→
O Q

does not depend on the reference frame, therefore the vector of the distance between
two points is a rank-1 tensor.

Similarly, a tensor can always bewritten as amatrix, but amatrix is not necessarily
a tensor. Bymultiplying a column vector (u1, u2, u3) by amatrixM, a new column of
coefficients (q1, q2, q3) is obtained: if these numbers are the components of another
vector, then the matrix is a tensor,M = M. That the resulting (q1, q2, q3) is a vector
can be easily checked: just change the basis (reference frame) to trasform the first
vector (u1, u2, u3) into another vector (u′

1, u′
2, u′

3); then apply the same change of
basis to (q ′

1, q ′
2, q ′

3); if q
′ = Mu′, then q is a vector, and M is a tensor.

As it was already said, the tensor notation allows to expose underlying symmetries
and invariances of the corresponding physical quantities. The tensor invariants are
quantities derived from the tensor that do not changeupon changing or rotating the

http://dx.doi.org/10.1007/978-3-319-30647-6_8
http://dx.doi.org/10.1007/978-3-319-30647-6_10
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reference frame. They are defined as the coefficients of the characteristic polynomial
of the tensor M:

p(λ) = Det[M − λI] (2.116)

where I is the identity tensor (with 1 on the diagonal and 0 everywhere) and λ is an
indeterminate quantity. For a 3 × 3 rank-2 tensor, the most commonly encountered
in this book, there are only three invariants:

MI = Tr{M} = M11 + M22 + M33 (2.117)

MI I = 1

2

[
(Tr{M})2 − Tr{M2}] =

= M11M22 + M22M33 + M33M11 − M12M21 − M23M32 − M13M31

(2.118)

MI I I = Det{M} (2.119)

The first one is called also the trace of the tensor (sum of the diagonal components
of the corresponding matrix); the third one coincides with the determinant of the
matrix; the second one has no obvious interpretation. Note that, since a tensor is
written as a matrix, its eigenvalues can also be calculated; they would be M1, M2, M3

for the 3× 3 tensors. However, the number of invariants for a n × n tensor is just n,
therefore the three invariants previously defined must be expressed in terms of the
three eigenvectors, and vice versa:

MI = M1 + M2 + M3 (2.120)

MI I = M1M2 + M2M3 + M1M3 (2.121)

MI I I = M1M2M3 (2.122)

The importance of invariants becomes evident when considering objective func-
tions (i.e., not depending on the change of coordinates) of the tensor. Such objective
functions depend only on the n invariants of the tensor, instead of its components.
For example, when calculating the elastic potential energy as function of the strain
tensor (see Appendix H to Chap.9), this reduces to a function of three parameters
rather than six (the strain tensor ε has 3× 3 = 9 components, however by symmetry
εi j = ε j i , therefore its independent components are just six). Moreover, within the
framework of linear elasticity, the energy must be a quadratic function of the strain,
which eliminates an additional scalar. This is the reason why, for an isotropic mate-
rial, only two independent parameters are needed to describe the elastic properties,
known as Lamé coefficients.

http://dx.doi.org/10.1007/978-3-319-30647-6_9
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Simple Fourier Analysis

The Fourier transform decomposes a function of a variable x into the normal com-
ponents of a conjugate variable y. Physically useful pairs of conjugate variables are,
e.g., time and frequency, or position and momentum. For example, a time signal can
be decomposed into the frequencies that make it up; or, a movement in space can be
decomposed into the wavevectors that correspond to elementary oscillation modes.

The basic rule to obtain the Fourier transform of a function f (x) in the y-space
is:

g(y) = 1

(2π)1/2

∫ +∞

−∞
f (x)e−i xydx (2.123)

The function g(y) can be anti-transformed, to obtain back the f (y):

f (x) = 1

(2π)1/2

∫ +∞

−∞
g(y)e+iyx dy (2.124)

The Fourier transform is closely connected with the Fourier series, both named
after the French mathematician J. J. Fourier (1768-1830). Any function f (x) can be
expressed by a series of Fourier components, as:

f (x) = a0

(2π)1/2
+

∞∑

n=1

an cos(nx) +
∞∑

n=1

bn sin(nx) (2.125)

with the coefficients:

an = 1

L

∫ +L

−L
f (x) cos

(nπx

L

)
dx ; bn = 1

L

∫ +L

−L
f (x) sin

(nπx

L

)
dx

(2.126)
With a little algebra, it can be shown that upon substituting these coefficients in

the series development for f (x), one obtains exactly the definition (2.123) of the
Fourier transform.

Some useful FT of elementary functions and operators (pairs (x, y) = generic;
(t, ω) = time-frequency, or pulsation; (x,k) = position –momentum, orwavevector):

f (ω) = 1

(2π)1/2

∫ +∞

0
e−at e−iωt dt = 2a

(a2 + 4π2ω2)
(a > 0) (2.127)

f (ω) = 1

(2π)1/2

∫ +∞

0
e−at2e−iωt dt = e−aω2

(2.128)

f (ω) = 1

(2π)1/2

∫ +∞

0
e−at u(t)e−iωt dt = 1

(a + iω)
(a > 0) (2.129)

f (ω) = 1

(2π)1/2

∫ +∞

0
eiω0t e−iωt dt = 2πδ(ω − ω0) (2.130)
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f (y) = 1

(2π)1/2

∫ +∞

0
sin2(x)e−i xydx = 1

4 [2δ(y) − δ(y − 1
π
) − δ(y + 1

π
)]

(2.131)

f (y) = 1

(2π)1/2

∫ +∞

0
cos2(x)e−i xydx = 1

4 [2δ(y) + δ(y − 1
π
) + δ(y + 1

π
)]

(2.132)

f (k) = 1

(2π)1/2

∫ +∞

−∞
[∇g(x)]e−ik·xdx = ikg(k) (2.133)

f (k) = 1

(2π)1/2

∫ +∞

−∞
[∇2g(x)]e−ik·xdx = −k2g(k) (2.134)

Problems

2.1 Basic nomenclature
Identify which of the following systems are either isolated, closed or open systems.
(a) a car tyre; (b) the Milky Way; (c) a brain cell; (d) a refrigerator; (e) a hammer;
(f) a frog.

2.2 Formal identities
(a) Show that, for a perfect gas, the pressure is P = 2

3
E
V .

(b) Show that the Helmoltz free energy, F = U − T S, is also equal to F = −pV +
μN .
(c) If the Gibbs free energy is G = F + PV , state the thermodynamic independent
variables on which G depends explicitly.

2.3 Thermal engine
An air conditioner is made of a sealed piping circuit, in which a coolant fluid flows.
The piping goes through electrically-powered cooling stages: a condenser, which
turns the hot liquid into a cold gas by expansion, and a compressor, which takes
the room-temperature fluid and turns it to a high pressure, high temperature gas. A
simplified scheme is represented in the figure below.
(a) Is this system closed or open? Can part of the system be identified as a closed or
open subsystem?
(b) Describe the exchanges of energy, heat and entropy in the system, according to
the thermal engine model.
(c) Could the system work without the condenser, by just disposing of the air from
room temperature, to the exterior?
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2.4 Exchanges of entropy
You add 50L of hot water at 55 ◦C, with 25L of cold water at 10 ◦C. What is the
equilibrium temperature? How much entropy is produced by the time equilibrium
occurs? Can you attribute part of the entropy to the hot water and part to the cold
water?

2.5 Boiling, temperature and pressure
Boiling is the process by which a heated fluid turns into vapour. The boiling point is
the temperature at which the pressure exerted by the evaporating liquid is equal to that
of the surroundings. An open pot of water at the sea level, where the ambient pressure
is P0 = 101.32 kPa, boils by definition at the normal temperature of T0 = 100 ◦C.
The Clausius-Clapeyron equation:

TB =
⎛

⎝ 1

T0
−

R ln
(

P
P0

)

ΔHvap

⎞

⎠
−1

relates the boiling point at a different pressure P , withΔHvap the heat of vaporisation
of the liquid, equal to 40.65 kJ/mol for water (note that this is more than five times
the energy required to heat the same quantity of water from 0 to 100 ◦C). Let us take
a pressure cooker of volume V = 6 l, and fill it by half with water at T = 23 ◦C. At
what temperature will the water boil?

2.6 Stefan-Boltzmann T 4 law
After Josef Stefan presented in 1879 his experimental T 4 law for the radiative heat
transfer from a surface, Ludwig Boltzmann set out to give an explanation based on
classical thermodynamics.He considered radiation “particles” to behave as a classical
fluid, with energy density e. The idea that radiation could exert a pressure was quite
new at that time, but it was a logical outcome ofMaxwell’s equations. The pressure of
this radiation fluid inside the familiar piston-cylinder ideal experiment (see Fig. 2.1a)
would have been be p = e/3. By writing the internal energy as E = eV , use the
fundamental thermodynamic relation dU = T d S − pdV to reobtain the T 4 law, as
Boltzmann found out.

2.7 A negative temperature
Consider an ideal gas of N particles, each of which can exist in a “ground state” with
energy εi = 0, or in an “excited state” with energy εi = +e. By taking that there
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are no interaction in the ideal gas, can you show that in the thermodynamic limit
(N → ∞ and V → ∞, with N/V = const) this system has a region of negative
temperatures, as a function of the population of particles in the excited state? Does
such a result make sense?

2.8 Greenhouse gases 1
Assuming the atmosphere is at equilibrium, the chemical potential of each gas is
constant at any altitude h. This observation allows to predict the concentration of each
greenhouse gas as a function of the altitude. The chemical potential of a molecular
species is defined:

μ = −T

(
∂S

∂ N

)

E,V

that is the derivative of the entropy with respect to N , at constant E and V . You know
already the expression of entropy as a function of (N , V, E), it is the Eq. (2.11), or
Sackur-Tetrode formula. Use it to derive an expression for μ(h). Then by imposing
that μ is constant at any h, obtain the number of molecules N as a function of h and
of the mass of the molecule.

2.9 Greenhouse gases 2
The Earth’s atmosphere is made up by 78% of N2, 21% of O2 and 1% of Ar2, not
counting the fraction of water vapour which, according to the height and tempera-
ture, can vary from 1 to 4%. Diatomic homonuclear molecules, N2, O2 or Ar2, do not
contribute to the greenhouse effect since their radiation absorbing power is zero. The
“greenhouse effect” comes from the other gaseous species found in the atmosphere,
in smaller concentration. To a first approximation, the efficacy of each gas in the
greenhouse effect depends on: (1) its concentration, and (2) its capability of absorb-
ing the electromagnetic radiation. In turn, the global-warming potential (GWP) of
each gas depends on its efficacy and of its lifetime in the atmosphere. For the five
main greenhouse gases (CO2; methane; N2O; ozone; water vapour), the table below
gives typical concentration and lifetime; their radiation absorption capability can be
deduced from the following figure.
(a) Which of the five gases is mostly effective in absorption? Explain why.
(b) Rank in order of importance the five greenhouse gases, by taking into account
the combination of the three parameters (concentration, lifetime, absorption).
(c)Why the gas apparently themost important in this ranking seems to be, conversely,
the least important in global warming? (Fig. 2.7)

Gas Concentration (ppm) Lifetime (years)
CO2 (carbon dioxyde) 400 30–90
CH4 (methane) 2 12
N2O (nitrogen protoxyde) 0.3 115
O3 (ozone) 0.03 0.05
H2O (water vapour) (�) 0.02–0.06
(�) water vapour makes about 1–4% of the atmosphere
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Fig. 2.7 Top row spectra of the electromagnetic radiation emitted by the Sun (red) and by the
Earth (blue). Middle row: total absorption fraction by wavelength, for all the greenhouse gases.
Bottom row absorption fraction by wavelength for the five main greenhouse gases. [Image c©by
R. A. Rohde, Global Warming Art project, repr. under CC-BY-SA 3.0 licence, see (*) for terms.]

(*) The terms of the Creative Commons Attribution-ShareAlike 3.0 and 4.0 International License
(http://creativecommons.org/licenses/by-sa/3.0/, http://creativecommons.org/licenses/by-sa/4.0/)
permit use, duplication, adaptation, distribution, and reproduction in any medium or format, as
long as appropriate credit is given to the original author(s) and the source, providing a link to
the Creative Commons license and indicating if changes were made. If remixing, transforming, or
building upon this chapter or a part thereof, such contributions must be distributed under the same
license as the original.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/4.0/


58 2 Thermodynamics for Living Systems

References

1. S. Weinberg, Dreams of a final theory: the scientist’s search for the ultimate laws of nature
(Vintage, Random House, New York, 1992)

2. R. Newburgh, H.S. Leff, The Mayer-Joule principle: the foundation of the first law of thermo-
dynamics. Phys. Teach. 49, 484–487 (2011)

3. H.J. Steffens, James Prescott Joule and The Concept of Energy (Science History Publications,
New York, 1979)

4. R.H. Swendsen, Statistical mechanics of classical systems with distinguishable particles. J.
Stat. Phys. 107, 1143–1166 (2002)

5. J.F. Nagle, Regarding the entropy of distinguishable particles. J. Stat. Phys. 117, 1047–1062
(2004)

6. O. Sackur, Die Anwendung der kinetischen Theorie der Gase auf chemische Probleme. Ann.
Physik 36, 958–980 (1911)

7. H. Tetrode, Die chemische Konstante der Gase und das elementare Wirkungsquantum. Ann.
Physik 38, 434–442 (1912)

8. S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer
cette puissance (Bachelier, Paris, 1824)

9. R. Clausius, The Mechanical Theory of Heat (transl. by W.R. Browne of nine Clausius’ papers
from German) (MacMillan and Co., London, 1879)

10. C. Bustamante, Unfolding single RNA molecules: bridging the gap between equilibrium and
non-equilibrium statistical thermodynamics. Quart. Rev. Biophys. 38, 291–301 (2006)

11. L. Boltzmann, Über dasWärmegleichgewicht zwischen mehratomigen Gasmolekülen. Wiener
Berichte 63, 397–418 (1871)

12. J. Perrin, Le mouvement Brownien et la réalité moléculaire. Ann. Chimie Phys. 18 (8me ser.),
5–114 (1909)

13. J.W. Gibbs, On the equilibrium of heterogeneous substances. Trans. Connecticut Acad. Arts
Sci. III, 198-248 and 343–520 (1874-1878) [The voluminous (300 pages) Gibbs’ paper was
published in several parts in the Connecticut Academy bulletin, and remained largely unknown
until it was translated in German and French, between 1891 and 1899.]

14. A. Kleidon, A basic introduction to the thermodynamics of the Earth system far from equilib-
rium and maximum entropy production. Philos. Trans. Roy. Soc. (London) B: Biol. Sci. 365,
1303–1315 (2010)

15. S.G. Brittin, G.A. Gamow, Negative entropy and photosynthesis. Proc. Nat. Acad. Sci. USA
47, 724–728 (1961)

Further Reading

16. S.B. Braun, J.P. Ronzheimer, M. Schreiber, S.S. Hodgman, T. Rom, I. Bloch, U. Schneider,
Negative absolute temperature for motional degrees of freedom. Science 339, 52–55 (2013)

17. E. Schrodinger, What is life? (Cambridge University Press, Cambridge, 1944)
18. W. Yourgrau, A. Van der Merwe, Entropy balance in photosynthesis. Proc. Nat. Acad. Sci.

USA 59, 734–737 (1958)
19. E. Fermi, Thermodynamics (Dover Books on Physics, Reprint of the 1937 edn.) (Dover, New

York, 1965)
20. D. Kondepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative

Structures (John Wiley, New York, 1998)
21. D. Schroeder, An Introduction to Thermal Physics (Pearson, Boston, 1999)
22. D. Frenkel, B. Smit, Understanding Molecular Simulation. From Algorithms to Applications,

2nd edn. (Academic Press, New York, 2002)



References 59

23. S.E. Jorgensen, YuM Svirezhev, Towards a Thermodynamic Theory for Ecological Systems
(Pergamon Press, New York, 2004)

24. J.D. Neelin, Climate Change and Climate Modeling (Cambridge University Press, 2011)



Chapter 3
Energy, Information, and The Origins of Life

Abstract This chapter deals mainly with probability and statistics. How life with
all its complicated mechanisms could have emerged on Earth is a long standing
question, full of implications going beyond the strictly scientific attempts at provid-
ing an answer. Physics poses limits as to how things may happen, beginning with
the fundamental principles of thermodynamics. Some of these limits can be appre-
ciated by looking at the emergence of life as a sequence of probabilistic events,
trying to understand how an astonishingly improbable order could emerge from the
statistically overwhelming chaos. Modern theories about the origins of life are still
rather speculative. However many important bricks are falling into place as far as
our knowledge deepens, showing how biological things in the Universe can indeed
evolve from the simple to the complicated.

3.1 Thermodynamics, Statistics and the Microscopic

In the preceding Chapter we introduced the entropy, a thermodynamic function
related to the dissipated heat and the irreversibility of spontaneous transformations,
on one side; and a statistical quantity expressing the multiplicity of microscopic
states of a system with a fixed amount of energy, number of particles, and volume,
on the other. These two points of view, complementary to each other, allow to estab-
lish a conceptual link between irreversibility and probability. Namely, irreversible
macroscopic phenomena associated to a variety of microscopic phenomena, each
perfectly reversible until they are considered one by one, but with such an uneven
distribution of probability to become practically irreversible when considered as a
collective ensemble. Therefore, we turn over to the microscopic interpretation of the
entropy: a measure of the dispersion of the energy of the macroscopic state (speci-
fied by E, N, V, etc.) among all the available microstates. The lesser the number of
microstates available for a given energy content (at the lower limit just one, such
as in a perfectly ordered crystal at zero temperature), the smaller the entropy of the
system.

© Springer International Publishing Switzerland 2016
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Fig. 3.1 The gravestone of
Ludwig Boltzmann
(1844–1906) in the Vienna
main cemetery
(Zentralfriedhof)

The Boltzmann equation for the entropy (2.10), S = kB lnΩ , so famous that
it was even written on his grave (Fig. 3.1), expresses just this equivalence. It is,
strictly speaking, valid only when every microstate is equally accessible or, in other
words, each microstate has the same probability of being visited by the system,
during its thermal fluctuation about the average macroscopic values of the state
variables. Recall that this was exactly the definition of microscopic equilibrium (see
p. 17), parallel to the definition of macroscopic equilibrium, which states that all
the state variables attain a constant average value. Macroscopic equilibrium seems a
rather obvious condition, once we have appropriate devices to measure temperature,
pressure, quantity of matter. But, besides the above qualitative statement, is there a
way of quantifying the microscopic probabilities?

The biological systems that we are going to study, usually operate in conditions
of constant temperature, a constraint that is relatively easy to reproduce also in labo-
ratory experiments. In a system at constant temperature, the energy is a variable and
can fluctuate among any possible value. In this case, it is found that the equilibrium
probability of a microstate with energy E , is proportional to the so-called Boltzmann
factor, exp(−E/kBT ). Let us see how we can show this property by means of sim-
ple, intuitive arguments. We start from a closed system S in contact with a reservoir
(thermostat) R. While the energy E (s) of the closed system S can fluctuate, the sum
of S and R makes an isolated system, for which at any instant Etot = E (r) + E (s)

is constant, therefore at equilibrium all the microstates in it must have the same
probability of occurrence.

Consider now a microstate 1 of S, with energy E (s)
1 , reservoir energy E (r)

1 and a
number of allowed microstates in the reservoir Ω

(r)
1 ; and a different microstate 2,

with E (s)
2 , E (r)

2 and Ω
(r)
2 . The relative probability of finding the system S in the state

1 or 2 is, by definition, given by the ratio:

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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P (s)
1

P (s)
2

= Ω
(s)
1 Ω

(r)
1

Ω
(s)
2 Ω

(r)
2

= Ω
(r)
1

Ω
(r)
2

(3.1)

The second equality says that, since when we are looking at two particular micro-
scopic states of S, it is Ω

(s)
1 = Ω

(s)
2 = 1. Therefore, what happens to the system S

depends on the distribution of microstates in the reservoir R. In terms of the reservoir
entropy, S(r) = kB lnΩ(r):

P (s)
1

P (s)
2

= exp(S(r)
1 /kB)

exp(S(r)
2 /kB)

= exp[(S(r)
1 − S(r)

2 )/kB] (3.2)

By recalling the thermodynamic relation TdS = dE + PdV − μdN , in these
conditions for which dV = dN = 0, and by using the Etot = E (r) + E (s), we obtain:

S(r)
1 − S(r)

2 = 1

T
[E (r)

1 − E (r)
2 ] = − 1

T
[E (s)

1 − E (s)
2 ] (3.3)

which merely stipulates the obvious fact that the energy ΔE = E (r)
1 − E (r)

2 passed
from R to S, is the negative of the energy received in S from R. Eventually, the ratio
of probabilities in Eq. (3.2) is obtained as:

P (s)
1

P (s)
2

= e−ΔE/kBT (3.4)

The whole point of this derivation is to show that the relative probability of
occurrence of two microscopic configurations of the closed system S is a function of
only the S-energy difference between these two configurations: these probabilities
do not care about what is happening in the reservoir R.

Without losing any generality, we can always choose one particular state of the
system as the zero of our energy scale, for example let us set E2 = 0. Then, the above
reasoning can be repeated for any microstate i different from 2. By introducing the
normalisation factor:

Z =
∑

i

e−Ei /kBT (3.5)

representing the sum of the probabilities of all the microstates of the system, the
absolute probability of anymicrostate, correctly normalised0 < pi < 1, iswritten as:

pi = e−Ei /kBT

Z
(3.6)

The factor Z is called the partition function of the system. Note that we do not
know exactly how many states appear in the sum (except for some special cases, like
the perfect gas); we only assume that they can be counted someway, to give the correct
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normalisation. However, we are sure that the form of the function is that of Eq. (3.5).
In practice, the knowledge of the absolute value of Z is never required, since all we
want to know and use are ratios of microscopic probabilities, i.e. quantities related to
differences in energy or entropy. In the macroscopic description, this translates in the
fact that all measurable quantities are always represented by derivatives of functions
of state.

3.1.1 A Probability Interlude

Let us consider a system which can take any of a discrete set of N states (whose
number can be arbitrarily small or large, provided it remains finite). If each state
i has a probability 0 < pi < 1 of being visited by the system, by analogy with the
thermodynamicmeaning of the entropy, we can define an equivalent entropy function
for this system as:

S = −
N∑

i=1

pi ln pi (3.7)

to measure the spreading of the system among the N states (the constant kB served
only for giving the entropy the right energy-like units, but can be omitted here). Note
that since the probabilities are all pi < 1, we have to put a minus sign for the entropy
to be positive. If we ask what is the distribution of values pi for which the entropy S
is a maximum, it is found that this corresponds to the condition of equal probabilities,
pi = 1/N (see greybox on p. 65).

Furthermore, if the all-equal pi are taken to be the equilibrium probabilities of the
microstates of a thermodynamical system, pi = 1/Ω , it is seen that the definition
(3.7) is perfectly equivalent to the (2.10):

S = −
N∑

i=1

pi ln pi =
N∑

i=1

Ω−1 lnΩ (3.8)

and by considering a large density of microstates in the domain C , normalised so
that

∫
C dC = Ω , the sum can be turned into an integral:

S =
∫

C
dC Ω−1 lnΩ = lnΩ (3.9)

that is the (2.10), after multiplying by kB .

http://dx.doi.org/10.1007/978-3-319-30647-6_2
http://dx.doi.org/10.1007/978-3-319-30647-6_2
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The method of Lagrange multipliers

To determine the set of pi corresponding to the maximum of the entropy, amounts to finding the

pi ’s for which the total derivative of S with respect to all pi is zero, subject to the constraint of

unitary normalisation C = ∑N
i=1 pi = 1. In mathematics, the method of Lagrange multipliers

is an effective way of solving such problems. In this case, we would put together the entropy

definition, Eq. (3.7), with the normalisation condition, multiplied by a free parameter λ, like

S − λC . Taking the derivative of this with respect to all pi independently, requires solving the set

of equations: (
dS

dpi

)

c �=i
− λ

(
dC

dpi

)

c �=i
= (−1 − ln pi − λ) = 0 (3.10)

for each i . The writing “c �= i” means that we take each derivative with respect to one parameter

pi while all the others are kept constant. The coefficient λ is called a Lagrange multiplier. Now,

it is easy to see that the solution is pi = e−1−λ for every i . Putting this back in the normalisation

condition C = 1, one gets λ = ln N − 1, and pi = 1/N for all i , which proves that the maximum

of entropy is obtained when all the microstates are equiprobable.

We may want to slightly complicate our job, and ask what would be the distribution of values

pi , upon imposing that the average is equal to a number ξ . Well, average of what? Let us assume

that each state is associated with the value of an extensive quantity εi (for simplicity, you may

think of ε as the energy). According to the unknown probabilities pi , the average value of this

quantity ‘energy’ would be:

E =
N∑

i=1

pi εi (3.11)

We want to know the distribution of pi for which ‘energy’ has a given value E . We must then

add a second constraint, i.e. a second multiplier in the equation:

(
dS

dpi

)

c �=i
− λ

(
dC

dpi

)

c �=i
− ξ

(
dE

dpi

)

c �=i
= (−1 − ln pi − λ − ξεi ) = 0 (3.12)

with solution pi = e−1−λ−ξεi . At least the constant λ can be eliminated, by using the normali-

sation C = 1:

pi = pi∑N
i=1 pi

= e(−1−λ)e−ξεi

e(−1−λ)
∑N

i=1 e
−ξεi

= e−ξεi
∑N

i=1 e
−ξεi

(3.13)

But this is just the same expression we found above, Eq. (3.6), with the partition function Z

appearing as the normalisation factor, and ξ = 1/kBT . With such a solution, the average energy

would be:

E =
N∑

i=1

pi εi =
∑N

i=1 εi e
−ξεi

∑N
i=1 e

−ξεi
(3.14)

This shows that imposing a given value for the energy at constant V and T , necessarily results

in a Maxwell-Boltzmann distribution of the probabilities.
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Having a set of states for which we know the probabilities, allows us to estimate
quantities relative to these stateswhose outcome is known only in probabilistic terms.
If we imagine tossing a coin, we might think of calculating exactly the outcome
(head or cross), if only we could know with absolute precision the initial position
and velocities of all the atoms in the coin and in the surrounding air. This is of course
a meaningless task. We know for sure, however, that the outcome can be only either
head or cross, and if we assume that the coin is reasonably symmetric about its faces,
we know that the probability pi of either outcome is 0.5. Intuitively, if we think
of tossing the coin an enormous amount of times, we may predict with reasonable
accuracy that we will likely get head half of the times, and cross the other half. But,
based on the values of the pi ’s (in this case 0.5 and 0.5), could we estimate the
probability of getting so many head or so many cross, after just a few tosses of the
coin?

For a system undergoing a sequence of jumps between discrete states, each one
independent on the others, the probability of being found in one given state is given
by the binomial distribution:

P(n,m) =
(
n

m

)
pm(1 − p)n−m = n!

m!(n − m)! p
m(1 − p)n−m (3.15)

If we imagine taking random snapshots of our system, the coefficients P(n,m)

give the probability of observingm times a ‘success’ out of n ‘attempts’, like finding
the system for m times in the desired microstate, out of n snapshots. A wide variety
of situations can be described as a sequence of such ‘yes/no’ experiments, in which
each occurrence is independent on the others, and has a probability p. When some
of the probabilities of each occurrence are different, we speak of Poisson’s discrete
distribution; if all the p are the same, we speak instead of a binomial distribution.
The simplest example of binomial distribution is, again, the flipping of a coin for
n times, and asking what is the probability of getting, e.g., head m times and cross
n − m times. For example, if wemake n = 4 tosses, the probabilities from Eq. (3.15)
of getting head form = 0, 1, 2, 3 or 4 times, are: P(4, 0) = 0.0625, P(4, 1) = 0.25,
P(4, 2) = 0.375, P(4, 3) = 0.25, P(4, 4) = 0.0625.

The sum of the probabilities is 1 and the maximum of the probability, P = 0.375,
is obtained for an even split of occurrences, 2 heads and 2 crosses. No surprise. But
these numbers also tell uswhat is the probability, for instance, of getting head in all the
4 tosses, that is 0.0625, a not negligible value (symmetrically equal to the probability
of getting all crosses). It can be seen that if we increase the number of tosses n, the
probability of this event is quickly decreasing as (0.5)n , i.e. about 1 in 1,000 for
n = 10, and 1 in a million already for n = 20. This is an important message: for
an increasing number of attempts, the probability distribution becomes increasingly
narrow around the average value, and the tails of the distribution get rapidly smaller
and smaller. Our system is found most of the time around one state, the one of evenly
split occurrences, despite the fact that all the states are equivalent. In other words, this
tells us that the sheer number of states around the average is much larger, therefore
we see the ‘macroscopic’ probability of the average result to be much higher. This is



3.1 Thermodynamics, Statistics and the Microscopic 67

exactly the same situation we encountered in defining the microscopic equilibrium:
a condition in which all microstates have the same individual probability, however
their number is narrowly clustered about an exceedingly frequent average value.

Given the two probabilities p1 and p2, the binomial coefficients
(n
m

)
represent the

coefficients of the terms of the binomial (p1 + p2) raised to the power m:

(p1 + p2)
m = pm1 + mpm−1

1 p2 + m(m − 1)

2
pm−2
1 p22 + · · · + mp1 p

m−1
2 + pm2

(3.16)
If the two probabilities are equal, p1 = p2 = p, all the terms of the binomial

expansion take the same value pm , which is easily shown to coincide also with the
sum

∑
m

(n
m

)
, and becomes therefore the normalisation factor turning each of the

coefficients
(n
m

)
into the probabilities P(n,m).

The operation of raising to power n a polynomial (p1 + p2 + p3 + · · · + pm) is
given by a general algebraic expression:

(p1 + p2 + · · · + pm)n =
∑

k1+k2+···+km=n

(
n

k1, k2, . . . km

) m∏

i=1

pkii (3.17)

The object
( n
k1···km

)
appearing in the previous expression is a ‘multinomial’ coef-

ficient, whose explicit value is:

(
n

k1, k2, . . . km

)
= n!

k1!k2! . . . km ! (3.18)

Multinomial coefficients are another very useful tool of probability theory. For
example, they can be related to the number of ways of arranging a number n of
objects into m bins, with k1 objects in the first bin, k2 in the second, and so on, up to
k1 + · · · + km = n. In fact, when putting the first k1 objects we have n bins available,
so the number of combinations is just

( n
k1

)
; for putting the second group of k2 objects,

we now have only n − k1 places left, so the number of combinations is
(n−k1

k2

)
; for the

third group the places left are n − k1 − k2, and the number of combinations is then(n−k1−k2
k3

)
, and so on. The total number is the product of all the possible combinations,

that is:
(
n

k1

)(
n − k1
k2

)(
n − k1 − k2

k3

)
. . .

= n!
(n − k1)!k1!

(n − k1)!
(n − k1 − k2)!k2!

(n − k1 − k2)!
(n − k1 − k2 − k3 − k4)!k4! . . .

= n!
k1!k2! . . . km ! =

(
n

k1, k2, . . . km

)

(3.19)
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Note that we are not prescribing one specific arrangement of the n objects, but
just counting the number of all possible arrangements. This difference can be easily
understood when thinking in terms of words and letters. Assumewe have an alphabet
of 26 letters, and three bins. If we ask how many three-letter words we can write
with this alphabet, this is just the binomial coefficient

(26
3

) = 2600 (of which only a
small fraction will have a true meaning, when this writing is used as a language).

But, what if we ask the number of different sentences, e.g. of length 270 charac-
ters, that can be made with the same alphabet (plus 1 blank)? We need a frequency
distribution for each of the 26+1 letters, in other words we need the pi ’s. For simplic-
ity, let us assume that all letters including the blank have the same frequency, i.e. the
same probability of appearing in a word, pi = 1/27 (in real human languages this
would be highly unlikely). Therefore, we find k1 = 10 times the letter a, k2 = 10 the
b, k3 = 10 the c, and so on. Now, this number of different sentences obtained by just
throwing the 270 characters at random, is given by the multinomial

(
270

10, 10, . . . 10

)
= 270!

(10!)27 � 10386

a rather astronomical number. Note that very few among all these sentences will
actually carry a meaning, in the chosen language; very likely, just one will be the
‘right’ sentence. On the other hand, there will be very many sentences which differ
from the right one just by a small number of mistaken characters here and there.
The right sentence carries evidently the maximum of information, while the random
sentences do not carry information at all. The mistaken sentences, however, can
be often interpreted correctly if the number of misplaced letters is not too large:
they are the equivalent of the states fluctuating about the mean value, with a much
higher probability (of being understood) than the mass of states lying in the tails
of the distribution. Moreover, it can happen that a sentence could be ambiguous if
the context is not properly specified. For example, the Latin sentence I Vitelli Dei
Romani Sono Belli translates into English as “Go, Vitellius, to the Roman Gods at
the music of war”. However, the same sentence if read in Italian means something
like “The young roman cows are very beautiful”: the same combination of letters
carries an entirely different meaning in two different cultural contexts. Therefore,
partly wrong sentences are like a signal affected by some noise. Such considerations
will be quite useful in the following, when discussing the information contained in
DNA and proteins.

3.2 Life and the Second Principle

The second principle of thermodynamics describes the flow of energy, as it is every
day observed in natural, irreversible processes. The physical interpretation of the
second principle is that energy flows always in the direction of creating a uniform
energy distribution in the system. The physical quantity entropy S (from the ancient
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Greek words ™n + trop», for “transformation”) was introduced to describe this ubiq-
uitous trend in a more quantitative way. From the point of view of thermodynamics,
the Universe is a isolated system whose energy—as far as we know—is constant.
However, energy is being continuously redistributed and homogenised in every spon-
taneous transformation, thus increasing the entropy at constant energy. Taken to its
extreme consequences, this process will lead to the so-called “thermal death” of
the Universe: nothing could ever happen anymore spontaneously in the Universe,
once the temperature would be the same everywhere and the entropy would be at its
maximum.

On the other hand, calorimetric measurements performed on many living molec-
ular systems, such as DNA, proteins, even some macromolecular aggregates like a
virus,1 and elementary, however already very complex, microorganism like a bac-
terium, demonstrate that their energy contents is larger than that of their elementary
precursors, or “molecular building blocks”. We have already seen an example of this
in the Chap.2, when briefly discussing the ensemble of chemical reactions under-
lying the complex mechanisms of the photosynthesis. In other words, the ensemble
of chemical reactions by which simple, small molecules are spontaneously assem-
bled into the more complex molecular structures typical of the living systems, up to
arriving at the assembly of a whole living organisms, seem to be quite generally
endoergic, in that they require ΔG > 0 to be assembled: more free energy to make
the products than actually available from the reactants. From the thermodynamics
point of view such reactions should be forbidden, while from the point of view of
statistical mechanics they should be extremely unlikely, having a vanishingly small
probability. But then, how to explain the ubiquitous expansion and evolution of all
life forms without any apparent external intervention? It has even been said that
Clausius and Darwin cannot be right at the same time [1].

And an even stronger statement can be obtained by replacing Herr Clausius by Sir
Isaac Newton. Eventually, classical Newtonian mechanics is the rigorous outcome of
the existence of gravity in the universe. It predicts cyclic orbits and recurringmotions
for all celestial bodies, and its laws are perfectly time-reversible, i.e., if we were able
to invert someway the course of time we would see exactly the same universe. How
can an universe ruled by gravitational forces give rise to the astonishing complexity
of biological structures? In this respect, thermodynamics breaks the time invariance
by introducing the idea of irreversibility and evolution. A strict Darwinist, however,
cannot be happy with this kind of ‘evolution’ since, as we saw in Chap.2, entropy
only increases in spontaneous transformations, meaning that things in the universe
invariably evolve from complicated to simpler, from order to chaos, from thermal
non-equilibrium to thermal equilibrium (and ultimately, to the “thermal death” for
the universe as a whole). By looking at the living, instead, we have the net impression
that order is constantly generated out of chaos.

1The position of viruses in the scale of living systems is still under debate. They are considered at the
limit between living and non-living systems, since the carry a DNA, and thus genetic information,
but are unable to reproduce themselves without the transcription machinery, which they find in
infected cells.

http://dx.doi.org/10.1007/978-3-319-30647-6_2
http://dx.doi.org/10.1007/978-3-319-30647-6_2
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Our observation in Sect. 2.9, that the Earth is not a closed system but rather it con-
stantly receives a flux of energy and “negative” entropy (i.e., a flow of ΔG > 0) was
eminently qualitative. However, it allows to conceptually move across the complex-
ity of the organisation of the living matter. Formally, we can write the combination
of the first and second principle in one single equation as:

ΔS ≥ 1

T
(ΔE + pΔV ) (3.20)

or ΔG ≤ 0. This is the defining criterion for a transformation, such as a chemical
reaction or a phase transformation, to be spontaneous. If the transformation takes
place in a time Δt , it must also be:

ΔG

Δt
≤ 0 (3.21)

The notation with ‘Δ’ underscores that the differences between thermodynamic
quantities are taken between the initial and final states of the transformation, which
includes the possibility that during the transformation there could be intermediate
steps for which the variation is positive (if we were in the presence of a monotonic
variation we would use the normal derivative symbol). The approach to equilibrium
is signalled by the condition:

ΔG

Δt
→ 0 (3.22)

The more proper interpretation of the Eq. (3.21) is found by reversing the terms:

ΔS

Δt
− 1

T

(
ΔE

Δt
+ p

ΔV

Δt

)
≥ 0 (3.23)

or, by using the function enthalpy:

ΔS

Δt
− 1

T

ΔH

Δt
≥ 0 (3.24)

The first term in this equation represents the variation of entropy for processes
internal to the system (like a chemical reaction or a phase change), and the second
term the entropy variation due to mechanical or thermal exchanges with the external
world. For example, if we look at the transformation of water into ice, calorimetry
experiments measure a variation of enthalpyΔH = −80 cal/g (exothermal reaction,
with release of heat toward the exterior), while the entropy variation isΔS = −0.293
cal/g/K, over a large interval of temperature. At a temperature T ≤ 273 K the trans-
formation becomes spontaneous, that is the temperature at which ΔG goes negative:

− 0.293 − (−80)

T
> 0 (3.25)

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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What’s in a bacterium
Escherichia coli, also called colibacillus or simply E. coli, is a bacterium living in the
intestine of mammals, very common among the humans. Discovered in 1885 by the
French biologist Théodore Escherich, in the faeces of baby humans, it is a coliform
usually commensal (meaning that it lives out of the human dejection, without interfering
with the functions of our superior organs). However, some strains of E. coli can be
occasionally pathogenic.

E. coli is frequently used in biology studies as a model organism for procaryotes
(living cells without a nucleus). A biological model organism is a species which is fully
characterised and studied in the most complete way to understand specific biological
phenomena, in the hope that the results of such a study could be transferable, at least
in part, also to other living systems. Such a concept is founded on the observation that
many of the fundamental biological principles, such as metabolic pathways, regulatory
and developmental cycles, as well as the genes carrying the corresponding codes, are
largely conserved (i.e. transmitted between different species) across the evolution. From
the photo in Fig. 3.2, obtained from a scanning electron microscope, we can estimate a
typical diameter of D = 0.6μm and length L = 2μm, from which the volume of the
pseudo cylindrical bacterium is V = π(D/2)2L = 0.56μm3. From biological data, we
know that one of these bacteria contains mostly carbon, oxygen and hydrogen atoms. For
simplicity, we may take glucose, C6H12O6 as a typical chemical structure likely to be
found in the bacterium, thus finding an average atomicmass A = 7.5. By considering that
living matter has a density very close to that of water, ρ ≈ 1 g/cm3, or n = ρ(NAv/A) =
8 × 1022 atoms/cm3, we get that the number of atoms in the bacterium is about N =
(Vn)−1 = 2.23 × 1010.

The measured protein concentration in the cytoplasm of most cells is of about 180
g/l. Then, in a volume of 0.56μm3 or 0.56 × 10−12 ml, the mass taken up by proteins is
MP = 180 × 0.56 × 10−12 ≈ 10−10 mg. By taking the typical mass of a protein equal
to 60,000 Da (1 dalton is a mass unit equal to 1/NAv grams), we have room for about 1
million proteins in the bacterium body. Since there are typically 2,000 different proteins
in a prokaryotic cell (they would be about 10,000 in a eukaryotic cell), we estimate that
each different protein is present in about 500 copies. A 60 kDa protein could be made up
of 60,000/7.5 = 8,000 atoms. The total number of atoms involved in building proteins in
the bacterium would thus be NP = 8,000 · 2,000 · 500 = 8 × 109. The rest of the atoms,
2.23 × 1010 − 8 × 109 = 1.33 × 1010, is involved in fabricating the nucleic acids DNA
and RNA, and the cytoplasm, mostly water, sugar, nutrients and so on.

The genetic material of the bacterium is represented by a single loop of a long DNA
molecule, formed by 4.6 millions pairs of bases, each base plus phosphate chain (see
DNA structure on p. 100) made by about 30 atoms with a mass of about 335 Da. Then,
the number of atoms in the DNA is about 2.76 × 108, for a mass of 3.1 × 109 Da. In
a bacterium like E. coli, there is also an amount of mitochondrial RNA, which totals
1.31 × 109 atoms or 1.46 × 1010 Da. By summing up all the known components we have
about 9.6 × 109 atoms, supporting the general idea that most of the volume in the cell
(about 57% in this case) is occupied by water. However, in practical terms, the interior
of a cell, even a simple one like that of a E. coli, is a very crammed environment, with
thousands of bulky proteins swimming among long swirling branches of nucleic acids,
with an average distance of not more than 5–10 nm from each other.



72 3 Energy, Information, and The Origins of Life

Fig. 3.2 A
scanning-electron
microscope photo of a
colony of E. coli bacteria.
The marker in the lower left
indicates a scale size of 2μ.
[Public-domain image,
c©Rocky Mountain
Laboratories, NIAID, NIH]

This highlights the fact that by properly setting the external conditions, a transfor-
mation can become spontaneous, while it was forbidden under different constraints.
But then, could we set up a parallelism between the crystallisation of water into ice
upon lowering the temperature, and the aggregation of simple molecules into a living
organism? In other words, is there a “transition temperature”, below or above which
the appearance of life on Earth becomes spontaneous?

3.3 Impossibility of Spontaneous Aggregation

A very idealised example taken from biology is the attempt at calculating the prob-
ability of spontaneously forming a bacterium like Escherichia coli, starting from its
molecular building blocks. This also offers us an occasion for quantifying some of
the molecular components of a cell (see grey box on p. 71), for example we learn
there that our little bacterium is made up of something like 22 billion atoms.

Bymeasuring the heat of vaporisation of a knownmass of bacteria in a calorimeter,
an energy of +9.5 × 10−10 J/bact is obtained. Since 1 eV = 1.602 × 10−19 J, this
means a positive supply of energy of 5.93 × 109 eV, or +0.31 eV/atom on average.

Therefore, binding together the atoms into the molecular and protein structures
that make up a bacterial cell, requires a positive ΔH contribution. By looking at the
Eq. (3.24), this ensemble of reactions could not be spontaneous at whichever value of
temperature, sinceΔG > 0 for any T :while in the case ofwater, the chemical binding
may force water molecules into a more energetically favorable crystalline order,
below that temperature for which the term ΔH/T becomes sufficiently negative
to overcome the entropy term, a random bag of biomolecules seems to resist the
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organisation at any temperature. Therefore, the answer to the last question of the
previous Section is a round “no”.

But then, given the possibility of an equilibrium fluctuation of at least ΔG for
a very small time Δt , may we at least hope that the necessary biomolecules could
be formed by such instantaneous fluctuations? Even if the question does not make
much sense, since the Earth is a system constantly out of thermal equilibrium, we
can nevertheless calculate the probability of having such a spontaneous fluctuation
of the free energy, with the only scope of showing that such an idea cannot have
nothing to do with the appearing of life. On the basis of Eq. (2.14) of Chap. 2, this
probability would be of the order of:

prob ∝ [exp(ΔE/kBT )]Natoms

= [exp(0.31/0.025)]−2.23×1010 ≈ 10−120,000,000,000 (3.26)

at T = 300 K, an evidently meaningless value. Therefore, as it could have been
easily guessed without much calculating, life does not assemble itself spontaneously
by chance, at any temperature.

Since the free energy of living systems is so large and positive, the formation and
survival of such systems demands a constant supply of energy, accompanied by a
reduction of the entropy, from the outside world. On the other hand, maintaining
a living system would not be possible just by providing the necessary energy, in
the absence of a mechanism capable of converting this energy into useful work.
A car is an ensemble of an engine, transmission and driving chain, necessary to
convert the chemical energy of gasoline into the mechanical work of locomotion:
as we already noticed, just placing a tank of gasoline on the front seat of a car does
not turn into locomotion. In the same way, without a well organised structure to
transform food into work (mechanical, chemical, electrical, etc.), no living system
could ever realise any of its vital functions. In other words, the simple principle
of following the entropy reduction (which in the case of spontaneous water-to-ice
transformation is just enough to generate order) is unable to arrange the very complex
structures required by the living systems, randomly chosen among the practically
endless number of possibilities.

The comparison between the living and the non-living cannot be merely based on
order versus disorder. Statistical sampling is not enough: what is needed is informa-
tion. This is the function of the genetic code in any living system.

3.4 Complexity and Information

The acknowledgement that the distinctive character of living systems is their com-
plexity (in quite amathematical sense), rather than their degree of order, is a relatively
recent cultural acquisition. The distinction between the two concepts is based on
the observation that both the two necessary ingredients for self-replicating systems,

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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i.e. enzymes and nucleic acids (DNA and RNA), are molecules that carry encoded
information. On the other hand, a crystal or an inorganic polymer, such as nylon,
are systems displaying an exceptional degree of order, however with a minuscule
amount of information. It could be objected that self-replicating polymers have been
discovered, however this makes the simple self-replication ability a necessary, but
clearly not sufficient characteristic to speak of a living system. Nucleic acids are
aperiodic structures: at first sight they may appear quite disordered, but it is just their
lack of periodicity which makes them the ideal carriers of information. In this view,
a periodic structure carries order, an aperiodic structure carries complexity.

In terms of information, a crystal or an organic polymer resembles a book with
all pages filled with one single word: the sequence of the few letters composing
the word is highly ordered, and the position of every word in every page can be
predicted with perfect accuracy, however the little information contained in this
book is extremely redundant. On the other hand, an aperiodic structure can carry
information—not necessarily a useful or readable one: only some specific sequences
of letters make up useful phrases in such a book. Only some sequences of bases
in the DNA, or some sequences of amino acids in a protein, correspond to useful
messages (see Appendix B). Therefore, another fundamental characteristic of living
systems is their specificity: it is not enough to be complex, such a complexity must
be accurately specified.

If, in an ideal laboratory, we wish to build a crystal atom by atom all that is needed
would be a very short sequence of information. Namely, to specify the positions in
space of the basic unit of the crystal (three coordinates (x , y, z), multiplied by the
number of atoms in the basic unit, that is rarely more than five or six), followed by
the single instruction “to be repeated in the three directions of space, for an infinite
number of times”. To build a random polypeptide, all that is needed is a bunch
of letters to specify the proportion of the different amino acids, followed by the
instruction “to mix at random, in unlimited amounts”. But if we want to produce the
bacterium E. coli, it is necessary to specify with the highest accuracy, the type and
spatial position of each and every one of its 2.23 × 1010 atoms. As it is well known,
even one single missing atom in a protein may dramatically alter its function, and
potentially compromise the life of the organism.

Is there a way to measure such a complexity? Can we establish in non-ambiguous
terms a scale, on which it would be numerically clear that a disordered polymer
carries nearly zero information, a crystal a little information, and a piece of DNA a
lot? And can we measure the difference between the amount of information between
different parts of DNA, in terms of the ability to produce a working protein? It turns
out that such a measure can be someway established, by using a particular variation
of the concept of entropy.

Let us think of a random polymer formed by a long chain of amino acids linked
by peptide bonds (that is, a polypeptide), and imagine to turn it into a useful (active)
protein by just switching positions between different amino acids along the chain,
as shown in the scheme of Fig. 3.3. Each different combination of the sequence
can be counted as a microscopic state of the polypeptide, such that the number of
combinations in the randommacroscopic state isΩ R and the number of combinations
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Fig. 3.3 Schematic of a long polypeptide made by a sequence of amino acids arranged at random
(above), and turned into a functional protein by switching the order of the various components
(below)

of the same amino acids giving a working protein is Ω A. Then, we can calculate a
kind of configurational entropy, SC , and take the difference between the two states
(labelled as ‘A’ for active, and ‘R’ for random) as:

ΔSI = (
SA
C − SR

C

) = kBT
(
lnΩ A − lnΩ R

)
(3.27)

Such an entropy difference, indicated as ΔSI , is the information entropy, a con-
cept introduced in 1948 byClaudeShannon. The amount of information ismaximised
for the case of a unique useful configuration, Ω A = 1, which implies SA

C = 0. Then,
we obtain a negative sign for the information entropy, meaning that this is to be sup-
plied by the external environment, notably by the genetic code of the cell. Equation
(3.27) quantifies the notion that only macromolecules formed by non-periodic and
specific sequences (of nucleotides, or amino acids) can carry enough information, as
required for the living systems. In particular, this classical definition specifies that the
information content of the biopolymer is the amount of information required to spec-
ify a unique sequence or structure. Note that the constant kB , previously necessary in
the context of thermodynamics to get the right physical dimensions of the entropy,
could be omitted here since we are mostly interested in measuring bits of informa-
tion; in this case, the logarithm to use would be base-2, to measure the amount of
0/1 bits of information. However, it can as well be useful to maintain physical units
to SI , if we want to give a meaning to the information on a per-volume or per-mass
basis.

According to the rules of combinatorial algebra discussed in Sect. 3.1 above, the
number of different sequences that can be realised starting from an assembly of N
objects is:

Ω = N ! (3.28)

However, if some of the N objects belong to the same type (for example, the 4
DNA bases, or the 20 amino acids making up the proteins), this number is reduced
by the consideration that by exchanging two or more objects of the same type the
sequence is unchanged, just like in the word physics the two ‘s’ can be exchanged
always giving the same word. If the N objects are subdivided into k groups, each
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with n1, . . . nk members, the number of independent random sequences is:

Ω R = N !
n1!n2! . . . nk ! (3.29)

This is nothing else than themultinomial coefficient already described in Sect. 3.1.
Note that this number is different from the total number of sequences that can be
realised by assigning any of the k types to any of the N objects, which would instead
be equal to:

ΩT = kN (3.30)

In the former case we must know from the outset the numbers ni , while in the
latter the ni can take any value between 0 and N . Note also that, since in practical
cases it is N 
 k, it is as well Ω > ΩT > Ω R .

For a protein formed by amino acidswe have an alphabet of k = 20 “letters”,while
the size N of the “words” can range from a few 100s to many 1,000 s. Conversely,
for DNA and RNA it is k = 4 (the four A,C,T,G bases), while N is extremely large,
of the order of 5 × 106 pairs for a simple bacterium, and up to 6 × 109 for the human
genome. Let us take as an example a protein with N = 600 amino acids, and for the
sake of simplicity let us assume that the type of amino acids composing the protein
is evenly distributed among all the 20 possible species, i.e. all the nk are identical to
600/20 = 30. The number of independent random sequences is:

Ω R = 600!
(30!)20 (3.31)

The configurational entropy for the random sequence is therefore:

SR = kB lnΩ R = kB (ln 600! − 20 ln 30!) (3.32)

By using the Stirling approximation (see Appendix A), the logarithm of the fac-
torials can be easily calculated, giving:

SR � kB (600 ln 600 − 600 − 20(30 ln 30 − 30))

= 600kB(ln 600 − ln 30) = 1797kB

(3.33)

For the sake of comparison, let us take that this protein is to be synthesised by the
DNA of our old friend, the bacterium E. coli, with its 4,600,000 base pairs. Now we
calculate the information entropy of the entire DNA. Again supposing that all the
nucleotides are evenly distributed among the 4 possible base types, we have:

Ω R = 4.6 × 106!
(1.15 × 106!)4 (3.34)



3.4 Complexity and Information 77

and:

SR = kB
(
ln(4.6 × 106!) − 4 ln(1.15 × 106!))

� 4.6 × 106kB
(
ln(4.6 × 106) − ln(1.15 × 106)

) = 6.38 × 106kB

(3.35)

For both the protein and the DNA, we can take that the active state corresponds
to a unique conformation and sequence, such that for both cases the entropy of the
active state is SA = kB ln 1 = 0. Therefore, the information entropy at T = 300 K
is obtained as TΔSI = kBT (0 − SR) = (−1.38 × 10−23) · 300 · 1797 = −7.44 ×
10−18 J/molecule, and (−1.38 × 10−23) · 300 · (6.38 × 106) = −2.64 × 10−14

J/molecule, respectively for the protein and the coding DNA. As we see, the amount
of information available in the DNA is much bigger than needed for the protein. In
fact, if we take the size of this protein as average for the bacterium, we see that the
information contained in the DNA is more than enough to describe all of the about
2,000 different proteins, in fact more than twice the amount needed. Actually, if we
carry out a similar calculation for the human DNA, with its 6 × 109 base pairs, it
would be found that there is enough information to code for more than 4 million dif-
ferent proteins of average size. However, it has been established that the actual DNA
expressing genes is but a small fraction of the total, and only 2% is actually dedicated
to the coding of proteins, while the remaining of the genes is used for the genetic reg-
ulatory mechanisms. Even reduced to 2%, the human DNA seems enough to code
for the about 50,000 different proteins and variants. The largest amount of DNA,
however, is not currently identified. This is a mystery of modern genetics, seemingly
common to all living organisms. Indeed, next to the fragments of the genes (called
introns) that code all the necessary proteins of the cell, the DNA of any organism
contains also an overwhelmingly large fraction of non-coding sequences (exons),
whose genetic function is yet unknown. All this information is apparently wasted, to
the point that until recently it was common to define such portions as “junk DNA”.
More recent studies are starting to revise the definition of what actually is a gene, and
it could well be that the regulatory portions of a gene are indeed much bigger than
the coding portions themselves, with large regions of overlap between such different
“extended genes”. According to the experimental results of the ENCODE project
[2], at least 80% of the DNA should display signs of activity correlated with genetic
expression.

It is maybe worth noting that if, by following the convention of the chemists, we
turn the TΔS values from Joules permolecule into calories per gram,wewould find a
quite different, and somewhat deceptive answer. By taking an average mass A = 100
amu for the amino acids, the mass of the protein would be 60,000 amu. On the other
hand, the average mass of a nucleotide is 339 amu, giving A = 1.56 × 109 amu for
the mass of DNA. By multiplying by NAv/A, and dividing by 4.168 J/cal, we find
TΔSI = −17.6 cal/g, and−0.68 cal/g, for the protein and the DNA respectively: the
fact that the DNA is a much heavier molecule than the average protein completely
hinders the fact that its length allows much more information to be stored.
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Most importantly, however, the redundancy of the information should be taken
into account. Let us think back to our previous observation (see end of p. 69), that
next to the perfect sequence there could be many other sequences, which differ very
little from the right one, but whose “message” can be correctly guessed even if being
somewhat wrong. In the biological context, this corresponds to the fact that many
related protein sequences are structurally and functionally equivalent. The recently
developed genome sequencing capabilities are providing thousands of examples of
related but different sequences encoding essentially identical structures and func-
tions, as well as examples of both RNA and proteins with entirely different structures,
but similar biochemical functions (such as the many structurally distinct protease
enzymes). On the other hand, structurally similar sequences can arise because of
random errors in the copying process. For DNA transcription the error rate is esti-
mated about 1 in 109, while for RNA translation the error rate is somewhat larger,
about 1 in 104.

Let us calculate the amount of information in bits, by taking the base-2 logarithms.
The above defined classical information, Eq. (3.30), gives the maximum amount of
bits needed to specify a unique sequence of DNA of length n from a random dis-
tribution of the 4 nucleotides, as (ln2 4n) = 2n. By analogy, the number of bits of
the “message” information would be equal to − ln2 of the probability that one or
more of the random sequences, close to the exact one, will encode a protein with a
given function. In the very unlikely case that all the possible sequences correspond
to an active protein, this probability would be equal to 1, therefore the corresponding
“message” information content may vary between (− ln2 1) = 0 and 2n bits. As an
example, the probability that a random RNA sequence of 70 nucleotides will bind
ATP at micromolar affinity, has been experimentally determined to be about 10−11.
This corresponds to a message-information content of (−11 ln2 10) �37 bits, com-
pared with (70 ln2 4) = 140 bits to specify the unique 70-mer sequence. If there are
multiple sequences with a given activity, then the corresponding “message” informa-
tion will always be less than the amount of information required to specify strictly
one particular sequence.

Contrary to the famous statement by Marshall McLuhan, in the case of DNA the
medium is not the message.

3.4.1 Free energy for the Synthesis of Biomolecules

If wewant to estimate the free energy necessary for the synthesis of biomolecules, we
must look at the actual free energy, ΔG = ΔH − TΔS for polypeptide assembly.
Even if the chemistry of the peptide bond is well understood, not much experimental
data are available. By looking at compilations of experimental data (see for example
[3]), it is found that in order to form a dipeptide by starting from different pairs of
amino acids, one must supply an enthalpy of the order of ΔH = 5 − 8 kcal/mol,
or 0.2–0.35 eV/bond. This may be taken as a measure of the binding energy of an
average peptide bond. We can also estimate the enthalpy by unit mass, based on
an average mass A of the amino acids, such that the total formation enthalpy of a
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protein formed by q amino acids, once normalised by NAv/q A, becomes roughly
independent on the particular protein chosen. The entropy term is correspondingly
more difficult to assess. It is suggested that the polymerisation reaction, because
of the increase of mass, tends to progressively suppress the translational degrees
of freedom, while the increasing structural complexity should favour the increase
in the number of vibrational and rotational degrees of freedom. The overall result
should be a reduction in the number of ways the total energy of the molecule can be
redistributed, or a lowering of the entropy. Both a positive enthalpy and a negative
entropy variation indicate that the ΔG of formation of biomolecules starting from
simple amino acids is always positive. In other words, these chemical reactions are
endothermic, or thermodynamically unfavourable. Moreover, it has been estimated
[4] that the critical step requiring the largest amount of free energy is the assembly
of a pair of amino acids, ΔG = 3.6 kcal/mol, while the addition of a third, fourth
etc. costs progressively less, ΔG decreasing from 2.5 to ∼1.4 kcal/mol.

On the other hand, it is found that the enthalpy of formation of the amino
acids themselves, starting from even simpler molecules under reducing atmosphere
(methane, ammonia, water) is generally negative, with values ranging from ΔH =
−50 to −250 kcal/mol, indicating exothermic reactions. This is the reason why dif-
ferent amino acids are formed with relative ease in the experiments of “prebiotic
soups”, to be discussed in the next Section. However, this is clearly not enough to
speak of the spontaneous self-assembly of living systems, firstly because the sub-
sequent step, i.e. the super-assembly of amino acids into proteins, is endothermic;
and secondly because, when the same “prebiotic” experiments are carried out in a
less reducing atmosphere (for example CO2, nitrogen, water), the enthalpy becomes
positive also for the formation of single amino acids.

An estimate of the binding energy for our typical protein of 600 amino acidswould
give ΔG = 1200 kcal/mol. Even discounting that a large amount of stabilisation
energy is gained by the folding of the protein and the interaction with the solvent, let
us say the value is reduced by a factor of 10, the free energy remains exceedingly large
compared to the isolated amino acids in solution. An equivalent chemical constant
for the ideal reaction of self-assembly of the protein can be calculated (see greybox
on p. 128) as K = exp(−ΔG/RT ) = exp(−120 × 103/1.986 · 300) � 10−87; if the
amino acids are present in the solution at the concentration of 1M (a rather high value
by biological standards), this same figure would be the equilibrium concentration of
the protein, i.e. zero by any measure.

That the building blocks of living organisms cannot possibly assemble just by
chance appears obvious, just from such simple estimates. However, it is worth noting
that such a view was deemed plausible until about the 1950s, the vastly improbable
being considered achieved on this planet only because the immensity of geological
time, which could have converted the nearly impossible into the virtually certain.
The best evidence for this view was the outstanding lack of fossils representing the
whole first half of the history of Earth: this allowed for a time span of about 2 billion
years, to try all the huge number of variants before finding the “right one”, which
could have led to the start of everything from the assembly of a small chunk of
primal living matter. Such a myth was debunked when the paleontologists Tyler and
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Barghoorn in 1954 found cellular remains of bacteria in the (now famous) Gunflint
beds between Canada and Minnesota, allowing to push back the early origin of life
on Earth at least to 3.5–3.6 billion years ago. (Before that it seems impossible to go,
since these are the oldest surviving rock strata that could still have kept intact the
fossil records.)

3.5 Against All Odds

But then, if the self-assembly is clearly out of question, what other possible mech-
anisms could have done the unfeasible? Clearly, an external source of free energy
is needed, or some mechanism that lowers the free-energy barrier, or both. At this
stage, speculations and partial answers (which inevitably raise further questions)
abound. Multiple sources of energy were indeed available for chemical reactions on
the early Earth, heat from geothermal processes, sunlight, and atmospheric electrical
discharges, among others. Could such energy contribution have been enough to pro-
mote the self-assembly of primordial molecules? The Miller-Urey experiment and
its many variants, to be described in the next Section, is one step forward in this
direction, despite some important criticism.

On the other hand, lowering or reversing the free-energy barrier could result from
autocatalytic chemical reactions. A case in point is the selection and amplification, a
spontaneous mechanism by which a small fragment which is ‘successful’ according
to some criterion gets automatically sorted out of the chaotic mass and is replicated
in great many copies, until some ‘more successful’, bigger fragment comes up and
is in turn replicated, and so on.

There is a now classical experiment, performed for the first time in 1993 by Bar-
tel and Szostak (Fig. 3.4), whose goal was to see if a completely random system of
molecules could undergo selection in such a way that some defined species of mole-
cules would emerge, with specific properties. The experiment began by synthesising
some 1015 different RNA molecules, each about 300 nucleotides long, but all with
random nucleotide sequences. The hope was that buried in those trillions there could
be a few catalytic RNA sequences (called ribozymes) that happened to catalyse a
ligation reaction, in which one strand of RNA is linked to a second strand. This is a
key result, since it proves the ability of RNA to attach nucleotides (i.e., catalyse its
own self-polymerisation), whereas in the cell nucleus this reaction is operated by the
RNA-ligase enzyme. In the experiment, these longer RNA fragments are identified,
thenmanually amplified (by a technique called PCR, protease chain reaction) and put
back in the mixture. After repeating many times such a procedure a strong growth of
the RNA auto-catalytic activity was observed: after only 10 rounds of amplification,
the frequency of the ligation reaction went from 5 × 10−7 to 3.8 per h. What this
experiment tells us is that, once some small population of catalytic molecules has
grown in the mixture, it is capable of auto-selecting and reproducing itself going
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Fig. 3.4 Schematic of the RNA-ligation amplification experiment. Left A large pool of RNAmole-
cules is synthesised (blue-green), all have in common the stem-loop region (blue),while the 220-long
part (green) is randomly assembled. Such RNA are put in solution with a short tagged RNA, which
attach the complementary fragment to the long one (orange-blue). Middle Rarely, some of the
green sequences might be able to catalyse the 5′–3′ ligation reaction (red), liberating the diphos-
phate blocks (pale-blue spheres) that provide the necessary activation enthalpy. These ‘successful’
sequences are separated, amplified, and reinjected in the next step, for 10 subsequent cycles. Right
Selection and amplification of the successful sequences: after only 10 steps the concentration of
ligand-catalysing molecules increased by 7 orders of magnitude

enormously beyond the manual amplification.2 Moreover, it means that such a prop-
erty is passed down to the “progeny”, i.e., self-catalytic molecules have the ability
of transmitting information, pretty much like genes in DNA can do. The conclusion
is that transmissible information could emerge from a random population, provided
there is an initial, even tiny fraction of catalytic members.

Information in DNA is processed and replicated by mechanisms taking place at
the molecular level (see Appendix B at the end of the chapter), and it is important to
note that such mechanisms always operate in the presence of thermal fluctuations.
These fluctuations are due to the random motion of the atoms and molecules com-
posing the DNA, the proteins of transcription or replication machinery, and their
environment (water and ions). Biological information processing is thus subject to
the statistical laws of thermal motion. If such processes were to occur in thermody-
namic equilibrium, no information could be spontaneously processed or generated,
because each random move would be statistically balanced by the corresponding
reverse move (see also the greybox on Brownian motion, p. 224).

From the point of view of a physicist or a chemist, thermal fluctuations are a big
deal: they represent noise for the self-assembly of systems at the molecular scale.
A central problem with all theories on the origin of life has been the difficulty in

2Amplification was only meant to speed up the clock, with respect to the Earth’s geological scale.
It contributes negligibly to the efficiency increase, since it is a linear process—each amplification
adds roughly the same amount of new copies—whereas the auto-catalysis process is exponential.



82 3 Energy, Information, and The Origins of Life

demonstrating efficient reaction pathways, for producing high yields of the primary
molecules of life. High yields are important, since the half-lives of these molecules
are relatively short at high temperature: a few hours for the ribose, a few days to
years for the single DNA and RNA bases, with a maximum of 12years for the uracil
found only in RNA (the lifetimes of fully-formed DNA and RNA are longer). In the
late 1960s, Nobel-prize winner Ilya Prigogine proved that the yield of a product from
a chemical reaction can be increased enormously, if the reaction is coupled to other
entropy-producing irreversible processes. The typical example is the photosynthesis:
a reaction with ΔG > 0 that is made possible by coupling it with the absorption and
dissipation of high-energy photons.

Along these footsteps, the “fluctuation theorem” of statistical mechanics [5, 6],
elaborated in themid-late 1990s, states that the entropyproducedby a thermodynamic
process A → B in which the environment performs an external work ΔW on a
system, corresponds to a simple ratio:

P(A → B)

P(A ← B)
= e(ΔW−ΔF)/kBT (3.36)

that is, the probability that the atoms will undergo that process divided by their
probability of undergoing the reverse process. By remembering that the Helmholtz
free energy is F = U − T S, and that for a closed system it is ΔU = −ΔW +
ΔQ, the exponent in the previous equation is also equal to (ΔW − ΔF)/kBT =
−ΔQ/kBT + ΔS/T (note that to reverse the process, the sign of ΔW changes,
since the work is done by the system). Put in this form, the ratio of the probabilities
resembles the thermodynamic description of free-energy transduction by biochem-
ical reactions developed in the 1970s by Hill. [7] Such thermodynamic relations
state that as entropy production increases, so does the ratio of the probability for
the direct/reverse process, and the system behaviour becomes more and more irre-
versible.

Starting from these results, it can be shown that a system fluctuating in conditions
far from equilibrium may present a time asymmetry, in which the random path fol-
lowed the time evolution in one direction is more probable than the time-reversed
one. Remarkably, such a “temporal ordering” of non-equilibrium fluctuations is just
another consequence of the Second Law. This suggests that dynamical order could
be naturally generated in molecular motion under non-equilibrium conditions.

Recently, [8] the MIT physicist J. England proposed that for a system driven
by an external source of energy and in contact with a thermal bath, the more likely
evolutionary paths are those that absorb and dissipatemore energy from (i.e., produce
more entropy into) the environment. And self-replication is one such mechanism by
which a system can dissipate increasing amounts of energy: certainly, a good way of
dissipating more, is to make more copies of yourself.

For a simple chemical system that self-replicates at an exponential rate g, and
is destroyed (by thermal fluctuations) at a rate δ, England derived a simple entropy
equation from the fluctuation theorem, as:



3.5 Against All Odds 83

ΔStot = ΔQ

kBT
+ ΔSi ≥ ln

g

δ
(3.37)

whereΔSi is the internal entropy increase by each replication event, andΔQ is the
heat dissipated. By rearranging the terms of this equation, the maximum replication
rate for the chemical system at ΔStot = 0 can be expressed as:

gmax = δ e(ΔQ/kBT+ΔSi ) (3.38)

In other words, the maximum net growth rate of a self-replicating system is fixed
by its internal entropy, its durability (1/δ), and the heat thrown into the environment
during the process of replication.

As a quite convincing example, one can estimate the heat dissipation for a self-
catalysed replication experiment of RNA of the same type described in Fig. 3.4. The
RNA half-life measured in solution is on the order of 4years (δ = 1/4y−1), and the
doubling time is estimated at ∼1 h. Thus, the lower bound for the dissipated heat,
for the situation (realistic in this case) of a negligible entropy production, is:

ΔQ ≥ kBT ln
4y

1h
= 6.5 kcal mol−1 (3.39)

Since experimental data indicate an enthalpy for the ligation reaction of ∼10
kcalmol−1, RNA appears to be close to the limit of the thermodynamic efficiency.
For comparison, we may consider what the bound would be if this same reaction
were achieved using DNA, which is much more kinetically stable, with a half-life
estimated at 3 × 107 years. The same calculation would give 16 kcalmol−1, much
larger than the ligation enthalpy. This simple example illustrates a significant dif-
ference between DNA and RNA, regarding the respective ability to participate in
self-catalysed replication reactions, powered by external energy (triphosphate build-
ing blocks): the far greater durability of DNA demands a much higher cost per base,
for the growth rate to match that of RNA. As a relatively cheap and highly efficient
building material, once RNA could arise in the primordial Earth environment, its
quick takeover might not be too surprising.

3.6 Modern Theories About the Origins of Life on Earth

Firstly, whymodern? The antiquity abounds with ideas and myths about the origin of
the universe and life, and this is a subject which, even after the advent of the scientific
method by Galilei & Co. in the 17th century, has been open to the most interesting
(and wildest) speculations. In this—necessarily concise—Section, I will try to give
account of some theories and views developed in the past half-century or so, which
have some kind of experimental support, enough to attribute them the temporary
status of credibility. Which does not mean that they would be free of contradictions,
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or possible loopholes, or even flaws, and that could be proved wrong and replaced
by something better in the future, or even in a few weeks from now. But, helás, this
is how science works, while waiting for the mystery to be solved.

In fact, we have no ‘standard’ model to describe the origins of life, and every strict
definition of life meets with unexpected difficulties. Starting from what we believe
to know to qualify as living organisms, and going backwards, the huge ensemble of
collected data and most theoretical models seem to converge on the following, short
list of necessary occurrences:

1. All living organisms are composed by one or more cells, capable of duplicating.
Cells contain DNA as the support of the transmissible (genetic) information,
which is copied by RNA and transferred to ribosomes. Ribosomes, composed in
turn by a mix of RNA and proteins, are the machines which perform the protein
assembly.

2. Ribosomes originated from ribozymes, amore primitive formofmolecule capable
of enzymatic activity, made only from RNA. Such special RNA fragments should
have been produced by chance, under some peculiar environmental conditions,
but once appeared they could take over by self-catalytic action.

3. Such self-catalytic and reproductive ability should have occurred in isolated com-
partments, created by the spontaneous assembly of phospholipids into closed-
shape bilayers, which constitute the basic structure of all modern cell membranes.

4. Plausible prebiotic conditions should have initially created simple organic mole-
cules, which would subsequently constitute the basic building blocks of all life-
supporting molecules.

Each of these steps could have taken several hundreds of millions of years to
develop, and their sum should cover the time approximately between 4.2 and 3.4
billions years ago, although step 4 could have also started well before, in the extrater-
restrial space. We do not know where to exactly put the barrier of ‘living’ at any of
the steps below 1, which is the actual evidence for any organism that is both capable
of self-replication and transmission of its character to a progeny (even if viruses fall
somewhere across this category, and cannot be entirely considered as living things).
And we do not know if some other intermediate characters could have taken the
stage. For example between steps 3 and 4, some scientists proposed the appearance
of peptide nucleic acids, or PNA, as intermediates, with the nucleotide bases attached
to a backbone made of peptide bonds, instead of sugar and phosphate. Or, it could be
that even earlier precursors of RNA were molecules with no resemblance to nucleic
acids, for example some organic polymers for which self-replicating capability has
been demonstrated in laboratory experiments.

In parallel with the experimental studies on the Darwinian theory of evolution, the
second half of the XX century witnessed the birth of several models of the molecular
evolution of life. Such theories try to find evolutionary path leading to the observed
structure of life-supporting molecules (nucleic acids, proteins, enzymes), starting
from simpler and simpler molecules, up to arriving at the very elementary chemical
constituents, such as water, methane, ammonia.

In 1953, Stanley Miller and Harold Urey tried to reproduce the conditions of
the primordial Earth’s atmosphere in a famous experiment (Fig. 3.5). They sealed
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Fig. 3.5 The Urey and Miller experiment. A mixture of water, methane, ammonia and hydrogen is
sealed in a flow circuit. The bottle half-full of water represents the ocean. A larger bottle including
two electrodes represents the atmosphere. Water in the first bottle is heated to induce evaporation,
and sparkles are fired between the electrodes in the second bottle, to simulate lightning in the
primordial atmosphere. The atmospheric vapour is then cooled, water can condense and go back in
the first bottle to start over the cycle. Water contents can be sampled through the trap. [Image c©by
Y. Mrabet, repr. under CC-BY-SA-3.0, see (*) for terms.]

a mixture of methane, ammonia, gaseous hydrogen, and water in a closed flowing
circuit. Water was evaporated on one side, and the vapour containing a gaseous
mixture of all the four specieswas let to circulate in a volume, inwhich electric sparks
simulated the lightning in the primordial atmosphere. After which, the vapour was
cooled and condensed, to continue the cycle. After seven days of such treatment, the
water was found to contain some molecules, such as urea (CON2H4), formaldehyde
(H2CO), cyanhydric acid (HCN), together with some bases, and proto-amino acids.
Some of the compounds were present in more than 2% concentration.

Miller and Urey used a reducing atmosphere (CH4, NH3, H2, H2O) instead of
an oxidising atmosphere, which is the condition supposedly existing on Earth in the
times in which life should have started to appear, and this was one of themain sources
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of criticism. Their experiment was repeated a great number of times, by changing
the atmosphere composition and the energy source (for example using ultraviolet
radiation). Unfortunately, oxidising atmospheres typically composed by CO2, N2

and water, as it could originate from volcanism, always gave inconclusive or negative
results. Moreover, the reliability of the experiment was called into cause, since the
observed organic species could have come from an external contamination. However,
the reactions implicated in the sequence always require elevated concentrations and
very narrow pH intervals, which makes contamination less likely. Such conditions
could have been found, for example, in shallow sea basins.

Today, several experiments and chemical models have contributed further pieces
of answer to the problem of the origin of early organic molecules from basic gaseous
precursors, up to conditions reasonably close to what could have been a prebiotic
condition. However, the Urey-Miller line of experiments cannot give any hints about
the subsequent steps, such as the transition from a bunch of organic molecules to the
assembly of proto-cells having a simple metabolism.

3.6.1 Not just a Bag of Molecules

One accessory problem for the origin of life is represented by the first appearance of
the lipid cell membrane. It is extremely simple to produce in laboratory an aggregate
of long-chain fatty acids with a hydrophilic termination, which spontaneously form
flat or spherical layers.However, such fatty acids can only be synthesised by enzymes,
therefore we are facing a classic chicken-and-egg question: membranes are needed
to isolate enzymatic reactions from the surroundings, but enzymes are needed to
make the membranes. And, as usual, the answer to chicken-and-egg questions in
evolution is that there was neither chicken nor an egg to start with, but something
simpler than both. Moreover, an isolated compartment bound by a closed membrane
is not enough for a proto-cell. According to Szathmáry and Maynard-Smith [9],
two minimal conditions are required to form a proto-cell: (1) molecules capable of
replicatingmust be linked tighter in a kind of ‘chromosome’, thusmaking a structural
unit which will be conserved after the replication; (2) the membrane must possess
some mechanisms of exchanging with the external medium (much more primitive
than the complex ion channels of modern cells).

The permeability of phospholipid membranes to ionic nutrients such as amino
acids, nucleotides, and phosphate is in the range 10−11–10−12 cm/s, a value so low
that only a few solute ions can cross the lipid bilayer of a given vesicle per minute.
However, bacteria take up millions of nutrient solute molecules per second during
active growth, using specialised membrane proteins to facilitate nutrient transport
across the lipid bilayer barrier. In the absence of such highly evolved transport pro-
teins, how might an early form of cellular life gain access to nutrient solutes? One
possibility is that primitive membranes composed of simple amphiphiles were sig-
nificantly more permeable to ionic solutes. For example, if the chain lengths of
phospholipids composing a lipid bilayer are reduced from the 18 carbons of modern
cell membranes to just 14 carbons, thereby thinning the membrane, the permeability
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to ionic solutes increases by three orders of magnitude [10]. This would be sufficient
to allow molecules as large as ATP to cross the barrier at a useful rate, while still
maintaining macromolecules in the encapsulated environment.

Thus, it seems reasonable to suggest that the earliest membranes could have been
composed of amphiphiles with relatively short chain lengths. Suchmembranes could
capture and concentrate macromolecules, yet still provide access to ionic nutrient
solutes in the external aqueous phase. Later, at some point early in evolution, a
primitive transport system would have evolved, perhaps in the form of a polymeric
compound able to penetrate the bilayer structure and provide a channel. It is interest-
ing to note that selected RNA species have been demonstrated to interact with lipid
bilayers and produce structures resembling ion-conducting channels [11].

3.6.2 The RNA World

The concept of a living organism based only on ribonucleic acid stems from the
idea that RNA was the principal, most likely the only one form of life preceding
the first DNA-based cell. We owe to Walter Gilbert the first use of the expression
“RNA world”, in 1986. The hypothesis of an archaic world based on RNA today
meets a large favour in the scientific community, and it is grounded on various
supporting elements. Firstly, the fact that RNA is in theory capable of assuring
metabolic functions, as well as being a carrier of genetic information. In fact, RNA
has the capability of storing and transmitting information by a genetic code similar to
that of DNA. Secondly, as demonstrated by the Bartel-Szostak experiment (Fig. 3.4),
RNA can also work as a ribozyme (contraction of the words ribose and enzyme) to
catalyse chemical reactions, being in this case more similar to a protein. From the
point of view of genetics, therefore, this molecule holds together the two primordial
functions: the storage of information, and the catalysis necessary for self-replication.

DNA can also copy itself, but only with the help of some specific proteins. On
the other hand, proteins are very good at catalysing reactions, but they are incapable
of storing the information necessary to create themselves. RNA instead, is capable
of both catalysis and self-replication. The ribosome itself, the very protein-stamping
machine of the cell, in part composed of RNA, is a ribozyme. Ribozymes can fold
in space, being composed of a highly flexible single strand of nucleic acids, and can
in this way build up an active site for catalysis, pretty much with the same structural
mechanism found in proteins. DNA, with its much stiffer double helix, cannot fold
over lengths much shorter than about 50 nm, therefore precluding the possibility of
making up a catalytic site along its structure.

For the concept of the RNA-world to be viable, it must be hypothesised the early
appearance of ‘viroids’, structures similar to self-catalytic RNA, kept inside some
form of isolated compartment. This could have been a primitive membrane, or even
a inorganic crystalline pocket. From such structures, proto-cells capable of some
archaic form of metabolism should have evolved (in the Darwinian sense), until
a primitive, however functional RNA-cell was born, with its varied and complex
metabolic activity ready.
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Even though most indications go in support of the idea that RNA should have
originated DNA in the building process of cell metabolism, such a primordial trans-
formation from RNA to DNA is very difficult to occur. Indeed, it cannot happen in
most living organisms without the help of specialised proteins, the ribonucleotide-
reductase. Moreover, such an enzymatic reaction consumes a lot of energy to chemi-
cally reduce ribose, and releases highly reactive free radicals. Since RNA is by itself
a very fragile molecules, it seems unlikely that a transformation involving liberation
of lots of free radicals could be supported without other proteins coming to help.
Therefore, DNA could have evolved from RNA only after the appearance of some
proteins, necessary to the various steps of the synthesis from a RNA precursor.

Proteins are excellent catalysers, much better than ribozymes. Thinking that all
proteins are made from twenty amino acids, while RNA is made from only four
nucleotides, it should be obvious that proteins exhibit a vastly superior diversification
compared to RNA. From an evolutionary point of view, it is therefore unlikely that
a protein-enzyme should have been replaced by a RNA-enzyme. On the contrary,
if RNA appeared well before proteins, it is plausible that it would have been later
replaced by some proteins, more effective as far as the catalytic functions. Such
an argument is also supported by the observation that RNA plays indeed a role
in protein synthesis, via the ribosome. Someway, RNA should be as well at the
origin of proteins. Proteins should have appeared later in the panorama of molecular
evolution, initially with the function of ameliorating the operation of ribozymes,
before eventually replacing them.

Intermediate between a mere aggregate of proteins, and a properly functioning
cell, we find the virus. A virus is a self-replicating structure,minimally constituted by
a nucleic acid and some proteins, enclosed in a hard and highly symmetric protein
shell structure (the ‘capsid’). Some viruses are found to contain RNA instead of
DNA (‘ribovirus’), usually as single strand and more rarely in double-strand form.
Carriers of some of the most important and lethal human diseases, such as Ebola,
polio, hepatitis-C, and many others, such riboviruses have been supposed to be relics
of the ancient RNA-world. The RNA-to-DNA transformation could have occurred
in a virus, instead than inside a cell. On this basis, DNA-based viruses should be
preceding modern DNA cells: the first DNA cell could have ‘stolen’ the new form
of nucleic acid (the DNA, in fact), from one such viruses. The French geneticists
Didier Raoult and Jean-Michel Claverie discovered themimivirus: a giantDNA-virus
(its genome being more than twice longer than that of the smallest known bacterial
genome), whose peculiarity lies in the fact that it can produce directly some proteins
implicated in the DNA-RNA-protein translation process (for example, some enzyme
which loads amino-acids on the structure of a tRNA). This mimivirus could have
as an ancestor, a virus older that the first DNA-cell. The enzymes that replicate a
DNA virus are very much different from each other, as well as from the cell enzymes
playing their same role. Such indications allow to suppose that enzymes bound to
DNA could have first appeared during an ancient era of the modern DNA world, in
which there was simultaneous existence of RNA-cells with both RNA- and DNA-
viruses. According to this theory, only much later the full-fledged DNA cells, which
today make up all the superior organisms, could have appeared on the Earth.
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3.6.3 Abiotic Hypotheses

Some research evidence suggests that, even prior to the appearance of organic
enzymes (RNA, proteins), the lowering of the free energy barrier for the synthe-
sis of protomolecules could have occurred also with the intervention of inorganic
components [12]. Reaction sequences that resemble essential reaction cascades of
metabolism, such as the glycolysis (see Chap.4), could have occurred spontaneously
in the Earth’s ancient oceans. In particular the presence of ferrous iron, which was
abundant in the early oceans, accelerates many of the chemical reactions leading
to precursors of RNA and proteins. The thermodynamic conditions for such metal-
catalysed reactions to occur is the absence of free oxygen, and the presence of
relatively high temperatures, between 50 and 100 ◦C, such as existing in hydrother-
mal vents on the ocean floor. Moreover, a strongly alkaline environment could have
provided an ideal ecological niche [13], with micro-caverns concentrating the newly
synthesised molecules, steep temperature and concentration gradients, isolation of
the reacting species even in the absence of a cell proto-membrane.

In the 1980s, G.Wächtershäuser, had proposed the “iron-sulphur” theory, inwhich
the energy released from redox reactions of the surface of metallic sulphides (such
as pyrite) is available for the synthesis of organic molecules. Such systems could
therefore be able to evolve into self-replicating,metabolically active proto-molecules.
Although such hypothesis is too remote from the synthesis of life building blocks, the
emergence of a primitive metabolismwhich could provide a safe environment for the
later emergence of RNA is contemplated also in other models. The basic molecules
needed to initiate the CO2 reduction, key to the Krebs’ cycle (see Chap. 4) producing
energy in all known aerobic organisms, could have formed much earlier than the
enzymatic complex using them. In this way, the development of an independent
metabolism would precede the development of genetics.

Inorganic surfaces have been called into cause as suitable environments for the
early biosynthesis also by other models, notably the “clay hypothesis”, which postu-
lates that complex organic molecules arose gradually on a pre-existing, non-organic
replication surfaces of silicate crystals in solution. Some studies confirmed that clay
minerals of montmorillonite catalyse RNA synthesis in aqueous solution, by joining
nucleotides to form chains up to about 50 units. Inorganic surfaces are also relevant
to the problem of the chirality of biological matter (see Appendix B), namely the
fact that between specularly-symmetric amino acids and nucleic acids, only one of
the variants is always observed. In recent years many studies have addressed the
phenomenon of chiral molecular adsorption on mineral surfaces such as inorganic
silicates, a process that might have jumpstarted the homochirality of life molecules.

3.6.4 Between Quiet and Thunder

By all the present evidence, the first steps of the appearance of life on Earth took at
least 3 billions of years. All the hypotheses reported above focus on the crucial step

http://dx.doi.org/10.1007/978-3-319-30647-6_4
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of the earliest passage from the ‘non-living’ to the ‘living’. But even solving this
complicate puzzle will not represent the final word on the evolution of life. An even
bigger enigma is the evidence that, after such a long and slow incubation state, an
exceptional acceleration known as the Cambrian explosion, spread all the modern
life forms in the primitive oceans. It is known from fossil records that the process
leading from the microscopic single cells, to the multicellular organisms, to the first
plants and animals, up to the giant vertebrates, occurred with a singular rapidity.

Prior to the Cambrian explosion, about 543 millions years ago, organisms were
simple, composed of individual cells occasionally organised into colonies. Over the
following 70–80 million years, the rate of formation of new species accelerated by
an order of magnitude, and the diversity of life began to resemble that of today.

The appearance of the modern body plan is the story of a sudden divergence.
Earth’s first community of animals, which held nearly exclusive sway from the time
of their appearance up to the early Cambrian period, consisted of strange species with
no clear relation to modern forms. These organisms, whose fossils were first found in
theAustralian region of Ediacara, contained neither complex internal organs nor even
any recognisable body openings of mouth, anus, and so on. Ediacaran creatures were
flattened forms, in a variety of shapes and sizes, built of numerous tubelike sections
fitted together into a single structure. Such animals shared the relative simplicity of
all primitive life forms. However, the big difference is in their body design: these
animals were diploblastic, their bodies being made up of one outer layer and one
inner layer. Such a construction does not allow to develop internal cavities and organs,
just one single cavity which acts as stomach and performs all the basic functions. A
similar structure is observed in very few modern life forms, such as jellyfish, corals,
sea pens, sea anemones and the like. All modern animals are instead triploblastic,
meaning that their bodies aremade by three layers of tissues (exoderm,mesodermand
endoderm), the middle layer allowing the development of all the internal organs for
the various functions. Although it may be imagined that triploblastic body plans may
have evolved from diploblastic, it is nevertheless amazing to observe that Ediacaran
fauna had its own “explosion”, by rapidly invading the oceans about 35 million years
before the Cambrian (an event dubbed the Avalon explosion), to disappear quite
suddenly. It seems that the advent of entirely new life forms is made possible each
time by the sudden (on geological time scales) development of a new layer of tissues:
before the Ediacarans the only complex forms existing were sponges, amorphous
colonies of identical cells living together in a single multicellular structure, but yet
unable to turn into a whole organised individual. These had just one type of tissue,
that of the individual cells fused together. Like the differentiation of ectoderm and
endoderm, which lead to diploblasts, the differentiation of the mesoderm leading to
the triploblastic shapes was a rapid and selective event: it came up suddenly, and
took over all the new life forms, leaving behind but faint traces of the preceding,
30-million years long archaic age.3

3We will come back to the interesting issue of diplo- versus triploblastic body plans in Chap.11.

http://dx.doi.org/10.1007/978-3-319-30647-6_11
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Radiochemical dating of the ancient earth
Each chemical element consists of atoms with a specific number of protons in their nuclei, as
identified by the atomic number Z from Mendeleev’s periodic table, However, atoms of a same
element can have different atomic weights owing to variations in the number of neutrons that make
up the nucleus. Atoms of the same element with differing atomic weights are called isotopes.

For each chemical element, there may be several different isotopes occurring in nature, some
of which are stable and part of its natural composition. For example, carbon has Z = 6, so it has
6 protons in its nucleus, which can be accompanied by either 6 or 7 neutrons, thereby giving 12C
or 13C as stable isotopes (the number to the upper-left indicates the sum of protons and neutrons).
The two variants of natural carbon have masses, respectively, of 12 and 13.003355 atomic units
(identical to daltons, or Da, when the same unit is used to weigh molecules), and are present in the
Earth’s crust in the proportions of about 99 and 1%, hence the mass of atomic carbon of 12.0107
units reported in the periodic table. However, neutrons in the carbon atom can be present in various
numbers, from 2 to 16, giving 8C–22C: all these isotopes except the 12 and the 13 are unstable,
and disintegrate into some other nuclei and elements, by various processes of radioactive decay.
For example, the isotope 14C transforms into 14N , a stable isotope of nitrogen, by a nuclear decay
in which one of the neutrons of the carbon nucleus turns into one proton, plus one electron and
another subatomic particle, the anti-neutrino. This is the “beta-decay”, one of the most common
radioactive transformations. The total number of protons plus neutrons is conserved, however
since the new nucleus has one more proton, its atomic number has changed to Z = 7, i.e. the
carbon atom has turned into a nitrogen, in a truly alchemical transformation.

The rate at which each isotope of any element decays is expressed in terms of an isotope’s half-
life, T1/2, or the time it takes for one-half of a particular radioactive isotope sample to decay. Most
radioactive isotopes have rapid rates of decay (that is, short half-lives) and lose their radioactivity
within a few seconds; some take days or years. To continue our previous example, 9C gives off
9B with a high probability, with a half-life of 127 ms; 11C turns into 11B with a half-life of
20.33min; 14C is the longest-lived of carbon isotopes, performing its beta-decay with a half-life
of 5,730years.

The empirical equation governing the decay of an isotope at a time t starting from an initial
sample size N0 is an exponential:

N (t) = N0 exp(−λt) (3.40)

The parameter λ is the decay constant of the isotope, related to the half-life as λ = ln 2/T1/2.
Interestingly, some of the product isotopes during a radioactive decay can be unstable as well,
and will decay by some other mode, with their own half-life or λ. This gives rise to what is called
a “radioactive decay chain”, which stops only when the final isotope of some element down the
chain is stable. For example, starting from the 9C, a first decay is:

9C → 9B + e+ + ν (3.41)

(the e+ is an electron with positive charge, a positron, and ν is a neutrino). The daughter isotope
9B almost immediately decays by spewing off a proton:

9B → 8Be + p (3.42)

and, in turn, the 8Be decays into two stable Helium atoms:

8Be → 4He +4 He (3.43)

Some isotopes, however, decay very slowly with half-lives of millions, or billions of years,
and several of these can be used as true geologic clocks. For such isotopes, only the one in the
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chain with the longest half-life is taken as reference, while all the intermediate ones have much
faster decay rates. For the geologic clock to be measured, it is necessary to perform a chemical
separation of the elements in the rock, and identify the relative fractions of the long-lived parent,
and of the stable isotope. The underlying assumption is that, at the moment the rock was formed
by geological events, like a volcanic eruption, the stable daughter isotope was not yet present,
ND = 0, and the parent was at its maximum concentration, say NP = N0. Therefore, the number
of nuclei of the parent isotope still present in the sample after a time t is:

NP (t) = N0 exp(−λt) (3.44)

and, by conservation, the number of stable daughter isotopes is equal to the difference between
the number of initial parents and the current ones:

ND(t) = N0[1 − exp(−λt)] (3.45)

Then, by taking the ratio of the two expressions, the age t0 of the rock can be determined by
the following equation:

t0 = 1

λ
ln

(
1 + ND(t0)

NP (t0)

)
(3.46)

where the t0 values in the ratio are the concentrations of parent and daughter isotope currently
detected in the rock sample.

The parent isotopes and corresponding daughter products most commonly used to determine
the ages of ancient rocks are listed below:

Parent Isotope Stable Daughter Isotope T1/2 (×109 years)
238U 206Pb 4.5
235U 207Pb 0.704
232Th 208Pb 14
87Rb 87Sr 48.8
40K 40Ar 1.25

147Sm 143Nd 106

Dating rocks by these radioactive timekeepers is simple in theory, but the laboratory procedures
are complex. The numbers of parent and daughter isotopes in each specimen are determined by
various kinds of analytical methods. The principal difficulty lies in measuring precisely very
small amounts of isotopes. Moreover, not all rocks can be dated by radiometric methods. For a
radiometric date to be useful, all minerals in the rock must have formed at about the same time.
Sedimentary rocks can rarely be dated directly by radiometry, since they may contain particles
including radioactive isotopes, which may be not the same age as the rock in which they occur
(e.g., sediments cemented together into a sedimentary rock, but weathered from older rocks).
Radiometric dating of metamorphic rocks may also be difficult, because in this case the age of a
particular mineral does not necessarily represent the time when the rock first formed, but the time
when the rock was metamorphosed.

The Potassium-Argon method can be used on rocks as young as a few thousand years as well
as on the oldest rocks known. Potassium is found in most rock-forming minerals, the half-life of
its radioactive isotope 40K is such that measurable quantities of Ar (daughter) have accumulated
in K-bearing minerals of nearly all ages, and the amounts of K and Ar isotopes can be measured
accurately, even in very small quantities. Where feasible, two or more methods of analysis are
used on the same specimen of rock to confirm the results (Fig. 3.6).
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Fig. 3.6 Above How relative dating of events and radiometric dating are combined to produce a
calibrated geological chronology. In this idealised example, the ensemble of data demonstrate that
“fossil 1 time” was somewhere between 250 and 140 My ago, and that “fossil 1 time” is older than
250My ago. Actual radiometric dating would be carried out only on the volcanic ashes strata.Below
Example of geological dating in a region of the Grand Canyon National Park (USA). The age of
the volcanic ash bed and the igneous dike are determined directly by radiochemical methods. The
layers of sedimentary rocks below the ash bed are obviously older than the ash, and all the layers
above the ash are younger. The igneous dike is younger than the Mancos shale and Mesa Verde
formation, but older than the Wasatch formation because the dike does not intrude the Tertiary
rocks. From this kind of evidence, geologists estimate that the end of the Cretaceous period and the
beginning of the Tertiary period took place between 63 and 66 million years ago. Similarly, a part
of the Morrison formation of Jurassic age was deposited about 160 million years ago as indicated
by the age of the ash bed
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About 150 million years after the Cambrian explosion, life made another great
jump, when it moved from the ocean onto land. To survive on land, oxygen-breathing
lungs, andweight-carrying bones needed to be invented, and a skin that could prevent
loss of water and protect from the sunlight. The first animals that moved on land did
not have impermeable skin, they were amphibians that live only part of their life
outside water. It took another 50 million years for the descendants of the amphibians
to become reptiles fully adapted to living on land. In the poetic words of Freeman
Dyson: The liberation of life from the oceans made possible all the later inventions
that make the land beautiful, fur and feathers, and forests and flowers. The reptiles
with their impermeable skins spread all over the Earth and made it their home,
until a further 100 million years would bring about the largest reptiles ever seen.
Dinosaurs ruled the Earth for 150 millions years, before going suddenly extinct. In
themeantime,mammals, birds, flowering plants, bees had started to invade the planet.
The great apes appeared about 40 millions years after the last Tyrannosaurus roared
in the Cretaceous forests, and in the 23 millions years that followed one very special
branch of apes evolved into Homo sapiens. Between H. habilis, who lived about
2.8 My ago, and H. erectus, about 1 My later, a rapid process of encephalisation
took place, with the cranial capacity nearly doubled from 500–650 to 850–1100
cm3 (we modern Sapiens have 1100–1300 cm3, however the Neanderthal had an
even larger 1900 cm3). If taken as a progressive distribution of cerebral matter over
∼105 generations, such a rapid increase would correspond to each generation having
∼500,000 more neurons than their parents.

Many hypotheses and theories have been set forth, to try to explain such an
explosive development. Palaeontology was dominated for the three quarters of the
XX century by the picture of phyletic gradualism, according to which the evolution
fromone species to another (speciation) arise by slow transformative events involving
entire populations. This theory required an unbroken fossil record as a verification, to
prove that each formwas a minor variant of a preceding form. The existence of many
gaps in the fossil lineages was seen in this context simply as a missing evidence, to
be adjusted by the progress of the research (Fig. 3.7).

About 1954 the zoologist Ernst Mayr proposed a theory of ‘allopatric’ specia-
tion in the context of ecological competition. [14] The underlying idea was that at
some point in its history a population may be split because of various events, and
could separately evolve in distinct ecological niches, subject to different evolutionary
pressure. In this way, the species could differentiate and evolve in isolation, and an
entirely new species could result from the original one.

The most definitive leap in this direction came in 1972, with the Eldredge-Gould
theory of punctuated equilibria [15]. The two palaeontologists relied on the well
knownobservation that the fossil record of an evolutionary progression shows species
that suddenly appear, and ultimately disappear, even millions years later, without
any change in external appearance. During their existence, new competing species
appear at random intervals, also lasting very long before disappearing. Extending
the allopatric speciation theory into the domain of palaeontology could explain such
evidence, by the fact that mutations are diluted in a large population, thereby making
the transformation of an entire species a much rare event, and that only when smaller
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Fig. 3.7 A storyline of the evolution of life on Earth, indicating some key events relative to the
appearance or extinction of major life forms. The time line (approx. log-scale) runs left-right and
top-down (note that the upper bar is in billions of years, and the two lower ones in millions of years.
The orange cloud marks the time extent of the Cambrian explosion

populations remain isolated, the evolution can accelerate. Thepunctuated equilibrium
brings this idea to its extreme consequences, by proposing that a species show no
evolution for long periods (stasis), and the isolation of a subpopulation brings about
a rapid sequence of mutations under the changed evolutionary pressure. Once the
condition of isolation were removed, the new species mixes back and competes with
the old one, without possibility of inter breeding.

Whether the fossil records truly display a predominant pattern of stasis, the gaps
being thus a real feature and not just missing information, continues to be an active
area of research. Such evolutionary patterns have been indeed observed in the fossil
records of many organisms. For example, some fossil records of foraminiferans
(unicellular organisms with shells) are consistent with a punctuated pattern. On the
other hand, also examples of gradual, non-punctuated, evolution are found.

In conclusion, it may be noted that the history of life on Earth has more than once
gone through sharp turns, with sudden mass extinctions. Although the Cretaceous
event of 65million years ago is themost famous, because of the drastic disappearance
of dinosaurs, other mass extinction events, even more devastating, have become
evident from the sharp breaks in the fossil record: short bursts of time in which
abnormally large numbers of species die out simultaneously. The most severe event
known up to now occurred at the end of the Permian period, about 250 million years
ago, when 96% of all the living species perished; other dramatic events of this kind
have been identified, at about 443 (Ordovician-Silurian), 359 (late Devonian) and
200 million years ago (Triassic-Jurassic). Changes in sea level, asteroid impacts,
climate change, new kinds of plants altering the soil, asteroid impact, flood basalt
eruptions, catastrophic methane release, drop in oxygen levels, have all been blamed
for these extinctions.
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3.6.5 And Still Thinking

The last Sections gave a drastically succinct account of theories and experiments that
have been puzzling scientists and philosophers for centuries. Unsolved dilemmas
plague just about every proposed feature of life. Why is defining life so frustratingly
difficult? Why have scientists and philosophers failed for centuries to find a specific
physical property, or a set of properties that could clearly separate the living from
the inanimate?

The ancient Greek medical school of Hippocrates, Diocles, Praxagoras, defined
the pneuma (pneũma, “breath”) as thematerial that sustains consciousness andmain-
tains the functioning of all organs in the body, connecting the heart and the brain.
Then, Aristotle theorised that all living things have one or more of three kinds of
soul: vegetative, animal and rational. Humans are the only ones endowed with the
rational. A few centuries later another Greek, the physician and philosopher Galenus
merged the theories of pneuma and triple soul into a similar, organ-based system
of tripartite souls. Thanks to his knowledge of anatomy and medicine, he assigned
specific components of the soul to locations in the body, giving birth to the idea of
“localisation of functions”.

The idea of pneuma pervaded Middle-Age and Renaissance science in Europe,
where alchemists began to formulate the concepts of aether (aiϑ»r, “upper air”)
as the invisible and intangible medium that transmits forces in the empty space,
and phlogiston (flogistÒn, “burning”), to explain the phenomena of combustion.
The concept of an invisible medium supporting life processes was common and
independently born in many ancient cultures, such as India with the prana, also
interpreted as the vital, life-sustaining force of both the individual body and the
universe; or ancient China, Korea and Japan, where the qi or ki was believed to be
the active principle forming part of any living thing. In the Europe of XVII century,
Georg Ernst Stahl and other alchemists/physicians began to describe a doctrine that
would eventually become known as vitalism. Vitalists maintained that the living
and the inanimate are governed by different principles, and that organic matter (i.e.,
materials containing carbon and hydrogen, produced by living things) could not arise
from inorganic matter (materials lacking carbon, primarily resulting from geological
processes). The experiments of XIX century chemists proved that inorganic matter
can indeed be converted into organic, and discredited such a vision.

However, it is worth remembering that outstanding scientists sometimes persisted
in supporting such theories, because of the many counterexamples that could still
leave the door open to doubts. For example Lavoisier, despite being the one to prove
wrong the phlogiston theory, took the caloric theory seriously for long time, and he
certainly was not alone in this; the idea of aether resisted until the late XIX century, in
theworks ofMaxwell andKelvin; andLouis Pasteurmaintained (and believed to have
proved) that only living organisms could catalyse fermentation. Scientific theories
rarely are absolutely correct or absolutely wrong. The history of science plentifully
demonstrates how it is easy to be wrong, how brilliant minds could have set on
the wrong track. With the benefit of time passed by, we can see why some scientists
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thought these were reasonable ideas. Such ideas and theories did not become failures
overnight, they were legitimate proposals in their time and supported by intelligent
people, not the fantasy of some weird minds.

Maybe defining what is life is so difficult, because such a property does not exist.
“Life” might as well be a concept that we invented out of our brains. As physicists we
are led to believe that, at the most fundamental level, all matter is an arrangement of
atoms and their constituent particles, with increasing degrees of complexity. When
trying to define life, we must draw a line at some arbitrary level of this complexity.
Does such a division exist anywhere else besides our mind?

Goingback to the ideas proposed in thefirst half of this chapter, the great difference
between the various degrees of assembly of matter is complexity, rather than life. It
may seem an easy way out to say that a bacterium can reproduce itself while a
rock cannot. However, we have built chemical machines in the laboratory which
are capable of reproducing themselves, and yet we do not dare to call such stuff
“alive”. By reasoning with examples and counterexamples we would always get
stuck somewhere. It is my personal idea that we will probably never find this sharp
dividing line, because life is more a concept than a reality. It is something embedded
in our human way of perceiving the world around us. Maybe someplace out there,
other minds different from ours could perceive this ensemble of organised atoms and
molecules on entirely different scales of length and time, and come up with a very
different dividing line. Maybe it is a matter of human perspective, just like looking
at a pond. In that greenish pool of water, bursting with thousands of unseizable life
forms, many of which will be born or die by the time we walk away, we see only the
narcissistic reflection of our human image.

Appendix B: From DNA to Proteins (and Back)

Our current molecular-scale knowledge of biology comes from several disciplines:
genetics, cytology, chemistry, molecular physics, biochemistry. Molecular genetics
was born when Avery, McLeod and McCarthy suggested in 1943, and Hershey and
Chase proved definitively in 1952, that deoxyribonucleic acid (DNA) is themolecular
support of genetic information. At the time, Avery et al. discovery was regarded with
skepticism, becausemost scientists still believed that genetic information should have
a protein-based nature. Such experiments were brought to their logical completion
with the elucidation of the DNA structure, by James Watson and Francis Crick in
1953 (Fig. 3.8), based on the x-ray DNA diffraction patterns of crystallographers
Maurice Wilkins and Rosalind Franklin. This discovery earned the three men the
Nobel Prize for Medicine in 1962. (It is generally agreed that Rosalind Franklin
would have deserved the prize as well, but she had already died in 1958—the Nobel
prize cannot be awarded to a dead scientist—from an ovary cancer probably induced
by the x-rayswithwhich she hadworked for herwhole life.) The existence of a genetic
code for translating the information contained in DNA in a sequence of amino acids
was firstly described by Khorana and Nirenberg in 1961. With the advent of genetic
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Fig. 3.8 Assembly of the DNA structure. a Molecular structure of the four DNA bases: Adenine
(A), Thymine (T), Cytosine (C) and guanine (G). b Nucleotides (left) are formed when a base
(in this case A) binds to a ribose sugar (pentagon), linked to a phosphate group. Since the ribose
has lost one Oxygen in the binding, the nucleoside is called a deoxyribo-nucleoside, and becomes
a deoxyribo-nucleotide when the phosphate (PO4H) is attached. A polymer holding many bases
(example on the right) is formed when a nucleotide phosphate loses the OH group, and can bind to
the -OH hanging group of a ribose from another nucleotide; this ribose loses its H, which forms a
H2O molecule with the other OH, and the phosphate-sugar-phosphate-sugar- backbone of a single-
strand DNA is thus formed. c Since A and T can form each two hydrogen bonds, while G and C can
form three, two sequences of single-strand DNA can come together, if their respective sequences are
complementary, pairing at every site two bases A-T or G-C on either side of the double backbone
(left). Structural energy minimization, together with water and ion interactions in the nucleoplasm,
force the paired double-polymer to assume the characteristic twisted double-helix shape (right),
whichwon the Nobel prize toWilkins,Watson and Crick, with the crucial help of Rosalind Franklin.
Despite repeated attempts, we have been unable to obtain a response from the copyright holder. If
notified the publisher will be pleased to rectify any errors or omissions

engineering in the 1970s, the genes of the most complex organisms could be decoded
and directly analysed, until in 2003 the entire human genome was decoded.

TheDNAmacromolecule is a polymer formed by two oligonucleotide antiparallel
strands, helically wound around each other in the famous ‘double helix’, as shown in
Fig. 3.8. A strand of DNA consists of a sequence of four basic units, the nucleotides.
Each of these bears one of the four different nucleobases: adenine (A), guanine (G),
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cytosine (C) and thymine (T). Each base is attached to a 2-deoxyribose (pentagonal
sugar ring) by a N-glycoside bond, to form a nucleoside. When a nucleoside is
linked to at least one phosphate, it becomes a nucleotide. A and G are called purine
bases, while C and T pyrimidine bases. Subsequently, many phosphate-sugar groups
can attach to each other, by losing one OH and one H each, respectively, which is
liberated as a H2O molecule. In this way, a long polymer of many nucleotides can
be formed, a single-strand DNA (ssDNA). Since the OH terminus of the sugar is
indicated by the symbol 3′, and the CH2 terminus (where the PO4 sits) is indicated
as 5′, the order of bonding in the single-strand polymer is said to proceed in the
3′-to-5′ progression. However, when DNA is being read in the transcription stage,
the enzyme RNA-polymerase always proceeds in the 5′-to-3′ direction.

As shown in the Figure, two single strands of DNA can come together and form a
double-strand polymer (dsDNA). Because of their hydrogen-bond forming ability,
A can pair with T (two H-bonds each), but not with C or G; on the other hand, C
can pair with G (three H-bonds each), but not with A or T. If the two single polymer
strands have complementary sequences on either side, for example:

hydrogen bonds can be formed, and the antiparallel (i.e., with ends and heads
reversed) double strand becomes a real DNA:

Antiparallel here means that one strand is attached in the 3′-to-5′ sense and the
other in the 5′-to-3′ sense. The spacing between each nucleotide is 0.34 nm, and
the average twist at each base pair is about 35◦, so that a complete turn of the helix
requires about 10.5 base pairs, and a helix pitch of 3.6 nm; the bases also have a
slight tilt by about -1 deg towards the 3′ direction. A human DNA can contain about
3 billion base pairs, making for about 1m of length (2 m if considered each strand
separately), all packaged in the cell nucleus of about 1μm diameter. These are the
canonical Watson-Crick base pairings. In principle, other pairs may form (and are
indeed observed in DNA, and more often in RNA) with “non standard” couplings,
for example C≡C, since both cytosines can form three hydrogen bonds. However,
such non standard pairs are comparatively quite rare, since their formation energy is
higher than for standard pairs: they represent defects in the coding structure, and are
called mismatches.

The characteristic double-helical DNA shape comes about from the molecular
interactions besides the hydrogen bonding, notably: (1) a stacking interaction, of Van
der Waals type, between the nearly parallel, twisted bases lying on top of each other
along each side of the helix; (2) an electrostatic screening of the negative PO−

4 charges
(counterions) along the backbone, mostly from the Na+ ions in the physiological
solution; (3) interaction with water molecules, surrounding and stacking along and
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Fig. 3.9 The DNAmolecule carries a large negative charge, due to the phosphates in the backbone.
Histones are positively charged proteins that wrap up DNA. Double-stranded DNA loops around
packs of 8 histones twice, forming the nucleosome, the building block of chromatin packaging.
Further densification occurs by forming coils of nucleosomes, the chromatin fibre. These fibres are
even more condensed into chromosomes during mitosis, the process of cell division. For most of
the time in the cell cycle, however, DNA is loosely packaged into chromatin fibre

inside the helical grooves. (4) Elastic torsion and twisting energy of the backbone
bonds. The sum of all these interactions makes the helical structure to be preferred
with respect to the straight parallel strands. Upon forming the helix, it can also be
noted (see again Fig. 1.8 above) that the grooves are not equally spaced, but alternate
in a major and a minor groove, of width respectively 0.22 and 0.12 nm. Structural
water molecules (micro-hydration) tend to nest preferentially along the grooves,
while counterions may also bind close to the center of the helix. Divalent cations
(Ca2+, Mg2+) have a higher affinity for the DNA grooves than monovalent ones
(Na+, K+).

Whenever a cell is duplicated, its DNAmust be identically copied to the daughter
cell. Moreover, when some protein needs to be fabricated in the cell, some portion
of the DNA must be read. The so-called Central Dogma of molecular biology states
that the flow of information goes from DNA to RNA, and from RNA to proteins, and
never can go in the reverse direction.
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DNA Compaction, Chromatin and Chromosomes

For most of the time during the cell life, DNA is packed in a dense fibre of about
30nm thickness called chromatin, nearly filling the entire cell nucleus (nucleoplasm)
(Fig. 3.9). The 3-billion base pairs of the DNA double strand are regularly wrapped
around blocks of 8 similar proteins, the histones, by making nearly two turns (147
base pairs) around each block. The ensemble of the 8 histones plus the 1.75 turns
of DNA forms the nucleosome, the building block of chromatin. Nucleosomes are
separated by a free DNA stretch (linker) of up to about 80 base pairs (27 nm).
Nucleosomes can be densely or loosely packed, giving rise to different forms of
chromatin: the dense 30-nm fibre called heterochromatin, and a lighter fibre of
about 11-nm thickness, called euchromatin.

One big question is: since each cell has exactly the same DNA arranged into
exactly the same genes, how come that cells, e.g., of the liver are so different from
cells, e.g., in the brain? In more technical terms, how different portions of the DNA
(genome) are used (expressed) in each different cell?

When the cell nucleus of a multicellular organism is considered, its most striking
feature is probably the coexistence of denser chromatin regions next to less compact
regions (Fig. 3.10). Such density differences are persistent, not just the result of
random fluctuations in chromatin density. DNA density is strongly correlated with
the transcription activity. Actively copied portions of DNA (expressed genes) tend to
be found toward the center of the nucleus, in a region where chromatin is less dense
and more accessible (the euchromatin). Inactive genes are found instead in the more
compact regions of heterochromatin, most often situated at the nuclear periphery. In
agreement with this description, it is observed that the activation of a genome portion
results in an evident change of its topology. Gene transcription by RNA polymerase
enzyme has been shown to occur at well-defined sites, called transcription factories.
These factories are located within euchromatin, and each factory usually deals with
genes that are expressed together (coregulated) by the cell. Therefore, it can be
deduced that the differences (phenotypes) between the various cell types can be
related to the specific way the genome is folded, in the nucleus of each different cell
type.

The transcription machinery requires access to the genetic information through-
out the cell cycle, to pick up protein-building instructions. On the other hand, the
replication machinery needs to copy the DNA during the mitotic (cell duplication)
phase. At the start of the cell duplication phase, the already dense chromatin fibre
is further compacted into a double set of 23+23 chromosomes, which are subse-
quently distributed to the daughter cells. After the relatively rapid duplication phase,
the chromatin returns to its disordered state inside the cell nucleus. During the phase
of cell division, duplicated chromosomes form the well-known X shape, with each
DNA copy forming one of the two rods (the sister chromatids, bound together at the
centromere). The rest of the time (interphase) chromosomes are less condensed and
fill the whole nucleus, more or less homogeneously [17]. From a physical point of
view, chromosomes are more than just a sequence of DNA codes. They are giant
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Fig. 3.10 Distribution of chromatin inside the cell nuclei, visualised with the FISH technique
(Fluorescence In-Situ Hybridization), which attaches fluorescent probes to specific parts of the
chromosomes (actually, to histone modifications corresponding to active or repressed genes); here,
green is euchromatin, red and blue is two kinds of heterochromatin. a, b Retinal ganglion cell and c
fibroblast nuclei from mouse. d–f Retinal rod cell nuclei from chipmunk, pig and macaque. [From
Ref. [16], adapted w. permission.]

polymers formed by a long sequence of monomers, the nucleosomes. In analogy
with the multi-level structural description adopted for proteins (see Appendix D),
the structural conformation of the chromosome at different length scales can be
described in terms of: a primary structure, the mere string of nucleosomes; a sec-
ondary structure, that is the conformation adopted by an array of 50–100 successive
nucleosomes; and a tertiary structure, constituted by the 3-dimensional arrangement
of several secondary arrays of compact nucleosomes.

DNA Transcription and Translation

One special variant of RNA, called messenger-RNA or mRNA, which takes the
form of a long filament analogous to the copied DNA, is the molecule that is in
charge of making a copy (transcription) of the chosen DNA sequence, and to carry
it outside the cell nucleus, where the conversion of the original DNA sequence
(translation) into a useful protein will be performed, in the special cell units called
ribosomes. In the copying, RNA makes an exact duplicate of the DNA, with the
difference that each T base is replaced by a U (uracyl). Therefore, for the above
sequence, AGTCCAGCATG, the mRNA produces the sequence AGUCCAGCAUG
(and similarly for the complementary sequence, on the opposite half-helix). Other
variants of RNA are the transfer-RNA or tRNA, which is a small, trefoil-shaped
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Fig. 3.11 The structure of a eukaryotic protein-coding gene. The DNA sequence is schematised
by the (horizontal) chain of coloured blocks, and is divided into a ‘regulatory’ and a ‘reading’ part.
The regulatory sequence controls when and where expression occurs for the protein coding region
(red). Promoter and enhancer regions (yellow) regulate the transcription of the gene into a pre-
mRNA, which is subsequently modified by adding a 5′ cap and poly-A tail (grey), and by removing
introns. The mRNA-5′ and -3′ untranslated regions (blue) will regulate the translation into the final
protein product. [Courtesy of T. Shafee (http://en.wikipedia.org/wiki/Regulatory_sequence) under
CC-BY-SA 4.0 licence, see (*) for terms.]

fragment of about 80 bases, whose role is to transfer the necessary amino acids to
the ribosome; and the ribosomal-RNA or rRNA, which does not participate in the
duplication process but makes up the essential of the ribosome enzyme. The three
types of RNA are found in the cells of any organism, and the rRNA is by large the
most abundant.

The mechanism of copying DNA is extremely complex, both at the molecular
and at the genetic scale (Fig. 3.11). Within the chromosomes, the portions of DNA
coding for specific proteins are grouped into genes. About 25,000 genes have been
identified in the human DNA. For example, chromosome-22, one of the smallest
human chromosomes, contains about 50 million DNA base pairs; a subsection of
1% of the chromosome contains 4 genes on average, of variable length (typically,
30- to 60,000 base pairs), separated by large portions of unknown function. The gene
itself is made of small portionswith the useful coding sequences (exons), and of large
portions which do not participate in the coding (introns). The mechanism by which
a gene is activated/enhanced, or repressed/silenced, goes under the name of gene
expression, and is regulated by intricate chains of chemical signals. As shown in the
figure below, a large part of the gene is also dedicated to such regulatory functions.

http://en.wikipedia.org/wiki/Regulatory_sequence
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Fig. 3.12 Translation of the mRNA. The ribosome (middle) is made by a large and a smaller sub-
units, which assemble around the mRNA long sequence of three-letter codons. Each codon can bind
one specific copy of tRNA, carrying the right amino acid that fits in the sequence. Once in the active
site of the ribosome, the amino acid is fed into the nascent protein sequence, and the used tRNA is
expelled. The mRNA advances by one codon, and the whole process is repeated for the next tRNA
to bring up its amino acid. The already read sequence is shown in light grey, and the sequence to be
read in black; the blue codon is the one under current processing. The whole translation machinery
implicates a number of auxiliary proteins, to deliver the right tRNA into the ribosome. The protein
sequence coming out of the ribosome is eventually injected in the membrane of the endoplasmic
reticulum, where it can fold into the proper native structure

The mRNA actually transcribes only the exon portions of DNA necessary to
encode the given protein, and skips the non-coding (intron) portions, by cutting and
rejoining the non-contiguous fragments in the process called splicing. The nascent
mRNA is further processed by different chemical pathways, with the help of specific
enzymes, such that the final (mature) mRNA is made only of a precise copy of
the adjoining DNA portions expressing the protein sequence. The mRNA can thus
exit the nucleus through pores in the nuclear membrane, and reach out in the cell
cytoplasm for the ribosome, where its message will be translated from the 4-letter
alphabet of the nucleic acids, into the 20-letter alphabet of amino acids.

The ribosome is a multi-unit structure, made by a special ribosomal RNA (rRNA)
and proteins. It is the factory where amino acids are assembled into proteins, carried
into the ribosome by transport-RNA (tRNAs), small noncoding RNA chains (74–93
nucleotides) that transport the “right” amino acid to the ribosome. Once the mRNA
is outside the cell nucleus, the sub-units of the ribosome directly assemble around it,
identifying the starting point for translation. Then, the mRNA is “read” and the chain
of amino acids is linked together (Fig. 3.12). Translation and transcription rates vary
between organisms. In prokaryotes, the two processes occur in a tight sequence, so
the rates must be very close in order to avoid bottlenecks. In fact, in the bacterium E.
coli, transcription is carried out by about 10,000 polymerase molecules, at a rate of
40–80 nucleotides/s; translation is performed by as many as 50–100,000 ribosomes,
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at a rate of about 20 amino-acids/second. Since each amino acid corresponds to
three nucleotides (see below), the two rates are actually comparable. In eukaryotes
the two processes are disjointed, since transcription occurs inside the nucleus and
translation in the cytoplasm next to the endoplasmic reticulum; the corresponding
rates vary according to the organism and cell type, for human cells about 6–70
nucleotides/second.

The four nucleic acids (U, C, A, G) in mRNA can be ordered in triplets, termed
codons. These triplets make up the genetic code for transcription and translation into
amino acids. For example, in the above sequence AGUCCAGCAUG, the codons
would be AGU-CCA-GCA-UG. However, by starting at the next position, also A-
GUC-CAG-CAU-G is a valid translation; aswell as theAG-UCC-AGC-AUG.There-
fore, each sequence has 3 possible open reading frames, which become 6 when con-
sidering the complementary half of the double helix. Since the biochemical reading
process is statistical, it is not known a priori which sequence corresponds to a “good”
protein, therefore the ribosomes attempt at reading the fragments wherever they find
a starting point, and keep going until the stop signal is found. In principle, there are
43 = 64 possibilities of forming unique triplet sets of the RNA or DNA bases. In this
way, there are numerous redundancies in the correspondence such that more than
one codon corresponds to each of the 20 naturally occurring standard amino acids
(plus three combinations corresponding to a “stop” codon, and one combination cor-
responding to a “start” codon, which also codes for the amino acid methionine). In
total, these give rise to 22 elementary building blocks (distinct pieces of information)
for the construction of proteins.

The translation table of codons into amino acids is the equivalent of a sort of
“Rosetta stone” of life, shown in Fig. 3.13. The table must be read starting from the
left side, then on the top, and finally on the right: each pick of three bases identifies
one line/row in the table, and a corresponding amino acid. Notably, of the more than
500 natural amino acids discovered up to now, only 20 are found in the proteins
assembled by the machinery of the living cells, for any known living organism (three
more variants are observed in special cases, which however are not directly coded by
DNA). In the past 40years, however, some twenty variations about this general code
have been found, all special cases clearly derived from this original “frozen accident”
(according to Francis Crick [18]), the most common being the replacement of the
stop codon with tryptophan. (See “Further reading” at the end of the chapter.)

The chemical structure of the 20 amino acids is shown in Fig. 3.14. Each amino
acid has a -NH2 (amine) and a -COOH (acidic) terminal; what changes from one
to another is the side chain. Some side chains are hydrophilic while others are
hydrophobic. Since these side chains stick out from the backbone of the molecule,
they help determine the properties of the protein made from them. The side chains
exhibit a wide chemical variety and can be grouped into three categories: non-polar,
uncharged polar, and charged polar. The sequence of amino acids in each polypeptide
or protein is unique, giving each molecule its characteristic three-dimensional shape,
or native conformation.
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Fig. 3.13 Table of correspondence between DNA codons and amino acids. To be noted the
sequences AUG, or methionine, signaling the starting point of a new protein, and UAG/UAA/UGA,
signaling the point of stop of the sequence reading

A few Words on Epigenetics

Epigenetics is the reason why this Appendix was titled From DNA to proteins (and
back). In fact, such a statement seems to go against the so-called “central dogma”,
which states that information flows fromDNA toRNA to proteins, and never the other
way around. In the late 1990s, experiments on rats showed that the diet of pregnant
mothers could alter the behaviour of genes in the offspring, that these changes could
last the whole lifetime and—most importantly—be passed on to the children. Those
rats’ genes had been switched on or off by something that was happening in the
environment, and not by mechanisms inherent to the gene itself. Such modifications
were therefore called epigenetic (from the ancient Greek word epi\, “above”). In the
following years, similar findings in human cells started to create a true revolution in
genetic thinking.

Epigenetic changes modify the activation/inactivation of certain genes, but not the
DNA code sequence. The molecular structure of DNA, or the associated chromatin
proteins, can be modified, and induce gene activation or silencing. Some epigenetic
changes in the DNA script are implicit, a sort of “reprogramming” of the genetic
message. Other changes are external, such as by mechanical or radiation damage of
the DNA, or by some food components that alter the chemical reactivity at certain
sites. For example, the formation of double-strand breaks in nearby sites of the double
helix by UV radiation has been shown to leave epigenetic marks.
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Fig. 3.14 The twenty amino acids constituting the building blocks for all known proteins of the
living cells. The name is indicated next to the 3-letter or 1-letter shorthand for each molecule.
Amino acids can be grouped according to their chemical behaviour, such as nucleophilic, acidic,
hydrophobic etc. The acidic a.a. have a negative charge, while the basic a.a. have a positive charge,
the others are electrically neutral. However, amide, aromatic and nucleophilic have a non-zero dipole
moment. Both the charged and polar a.a. are hydrophilic, whereas all the aromatic a.a. (including
proline) are hydrophobic. Note that each amino acid has two terminations, the amine NH2 and the
carboxyl COOH, through which the peptide bond can be formed, by removing one H atom from
the amine and an OH from the carboxyl in the form of a water molecule. Since this binding process
is endothermic, it is also reversible, namely by supplying water molecules the bond can be broken
(hydrolysis of proteins)

Covalent modifications of DNA or of the histone proteins are among the most
important markers of epigenetic inheritance. At the molecular scale, methylation,
hydroximethylation, acetylation and phosphorylation occurring at particular sites
are known to produce epigenetic gene regulation. These highly reactive, negatively-
charged functional groups, -CH3, -CH3OH, -COCH3, -PO3 respectively, can react
with well defined sites of DNA and histones, assisted by enzymes that catalyse
the typically uphill reaction (Fig. 3.15). Similar epigenetic modifications in histones
occur along the “tails”, terminal amino acids sequences floating outside of the nucle-
osomemain body, which can also interact withDNAandwith the host of proteins that
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Fig. 3.15 Examples of epigenetics modifications of DNA (left, blue box) and histone (pink, right
box). On the left, methylation (Me) of the cytosine base is promoted by the enzymes methyltrans-
ferase (Dnmt1 and Dnmt3a); the reverse reaction is however still unclear. Hypermethylated DNA
promotes chromatin condensation (below left), and recruits chromatin remodelling factors with
histone deacetylases (HDACs). At the opposite, hypomethylated DNA unfolds into a “beads-on-
a-string” structure (below right), in which histones become accessible to chromatin remodelling
factors such as the CBP-HAT, which adds an acetyl group (Ac). In this open configuration, genes
are ready to be transcribed. [From Ref. [19], adapted w. permission.]

crowd around the chromatin fibre during transcription, replication, recombination,
and repair of DNA.

The consequences of such epigenetic modifications of the genome (or “post-
translational”, since they occur after mRNA has been translated into proteins) are
vast and largely unknown, potentially enormous, so as to produce a large debate
among the scientific community. The molecular mechanisms by which such chemi-
cal mutations can be inherited are not yet clear, most notably for histone modifica-
tions. For the particular case of DNA methylation, at least, a more complete picture
is just starting to emerge. The field is quickly growing, and with it the understand-
ing that both the environment and individual lifestyle could also directly interact
with the genome, to influence epigenetic change. These changes may be reflected at
various stages throughout an individual’s life, and even in later generations. Human
epidemiological studies have provided evidence that prenatal and early-postnatal
environmental factors may influence the adult risk of developing some chronic dis-
eases and behavioural disorders. In one often-cited example, studies have shown that
children born during the period of the Dutch famine from 1944–1945 had increased
rates of coronary heart disease and obesity after their mothers’ exposure to famine
during early pregnancy, compared to children of mothers not exposed to famine.



Problems 109

Problems

3.1 Thermodynamic and probabilistic entropy are the same
Prove that S = kB lnΩ is fully equivalent to S = −NkB

∑
i pi ln pi .

3.2 Information entropy
Explain why both a disordered polymer and a nicely ordered crystal have a small
value of information entropy, while a protein has a much larger value of either one.

3.3 Entropy of erasure
What is the value of entropy associated with destroying the entire information of
a human DNA sequence? How this compares with the thermal entropy from the
chemical breaking of bonds between the bases in the same sequence?

3.4 Genetic mistakes
The enzyme DNA-polymerase, responsible for the replication (transcription) of the
DNA, puts a wrong base about every 109 nucleotides synthesised. By contrast, the
RNA-polymerase, which translates DNA into RNA, makes a mistake about every
104 nucleotides. This may suggest that a translation error is less dangerous for the
cell than a replication error. Why?

3.5 Peptide bonds in proteins
Which arrows in the following figure indicate a peptide bond? Which kind of bonds
are the other ones? Which are the α-carbons?

3.6 The Solar system has a negative heat capacity
The heat capacity is defined as the temperature derivative of the energy of a thermo-
dynamic system, cp = (∂E/∂T ), and by its definition it is a positive quantity: the
amount of energy necessary to raise the temperature by 1◦. The Sun and the planets
in the Solar system are bound together by their own gravity. Since gravity force is
purely attractive, the only thing that prevents the planets from collapsing onto the
Sun is their motion, which can be related to their “temperature”: the faster the planets
move, the higher their temperature, and the more they can resist the pull of gravity.
Can you show that the heat capacity of the solar system is negative?



110 3 Energy, Information, and The Origins of Life
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Chapter 4
Energy Production and Storage for Life

Abstract This will definitely be the most “chemical” chapter of the entire book.
While we are interested in describing the physics of living organisms, one cannot
escape the fact that, at the most microscopic level, a variety of molecules and vastly
complex chemical reactions constitute the basis of all life processes. Understanding
some basic principles of how energy is obtained and stored by the cells in what
constitutes the vast book of metabolism is very helpful, to understand how this
energy is then transported and used, turned into work and heat, for all the functions
of the body. It is just amazing to realise how deeply rooted are all such chemical
mechanisms: the fact that we can observe the same chemical synthesis pathways
in such distant organisms as a bacterium, an oak tree, and a giraffe, tells that these
fundamentals were already well established in the early days of the evolutionary path
of life on Earth.

4.1 From Food to ATP

Differently from plants, which can directly convert solar light into energy, animals
need chemical intermediates to extract energy from food. Every living organism,
including plants, employs the adenosine triphosphate (or ATP) as the universal cur-
rency to transport and exchange the energy necessary for survival and reproduction.
Animals, however, cannot obtain energy directly in the form of ATP: they start from
the lipids (fats), carbohydrates and, to a lesser extent, the proteins contained in the
food, to extract the energy to be stored in the ATPmolecules. The food fuel reserve is
progressively decomposed by the living organism, to synthesise the ATP molecules
according to both its instantaneous and overall needs.

ATP is not a long-lived molecule: it is obtained from the phosphorylation (i.e.,
addition of one phosphate PO3−

4 group) to its sister molecule ADP (see Appendix
C), and it goes back to ADP when it is consumed in cell work. Therefore the sum
of ATP plus ADP molecules is about constant, ATP being produced from ADP by
an excess of available energy stored, and ADP being produced in turn by consuming
the energy stored in ATP. Nevertheless, only a quite small amount of ATP, around
250g in a whole human body, are available at steady state for the cells. Therefore,

© Springer International Publishing Switzerland 2016
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Fig. 4.1 Food enters the body as a mixture of lipids, carbohydrates and proteins. These compounds
are digested and assimilated (i.e., degraded and broken into simpler components), and stored in the
form of triacylglycerol and glycogen with the help of oxygen, mostly in the adipose tissue, the liver
and (especially proteins) in the muscles. More than 90% of the total energy stock is in the form of
triacylglycerol for the ordinary, long-termmetabolism.Theglycogen stock is employed chieflywhen
there is a local need for a quick production of ATP, or when there is not enough oxygen immediately
available to the cell (for example, during a very intense muscular effort). When the organism is not
eating, the energy contained in the triacylglycerol and glycogen is progressively stored in the form
of ATP molecules, by a reaction ATP �ADP + Pi. The energy contained in the ATP is extracted
by breaking one phosphate bond, liberating the inorganic phosphate group (symbolised by Pi), and
turning back the ATP into ADP. Examples of cellular work include: the contraction of muscles;
actioning of molecular motors to move cilia or flagella; pumping of ions across the neuron cell
membrane, to transmit the nerve information; synthesis of proteins in the ribosome; synthesis of
macromolecules to generate new tissues during the organism growth (morphogenesis), and so on

several metabolic pathways exist, specifically arranged to maintain the correct ATP
concentration wherever needed, with the aim of keeping such a limited resource at
values constantly adjusted to the required level (Fig. 4.1).

Compared to the about 250g present at equilibrium, a human body of 70kg
cycles between ATP + H2O � ADP + Pi + H+ the equivalent of its weight each
day: whenever it is necessary to do some work (mechanical, electrical, chemical)
somewhere in the cell, the energy necessary is rapidly obtained by breaking one of
the phosphate bonds in ATP, which goes then from tri- onto diphosphate (ADP),
thus liberating the equivalent of 30.5 kJ/mol. The spent diphosphate (ADP) plus one
inorganic phosphate ion (usually indicated as Pi1) are subsequently recycled into
ATP, at the level of mitochondria, thus storing in reverse the same equivalent of 30.5
kJ/mol, obtained from the degradation of the food.

How is it that the energy frommetabolic food is stored, transported, and eventually
used, to sustain all the living processes?

1At physiologic (neutral) pH � 7, Pi is a mixture of HPO2−
4 and H2PO

−
4 ions, and the nucleotides

are fully deprotonated. In such conditions, the hydrolysis reaction is properly written as ATP4− +
H2O �ADP3− + Pi + H+, see e.g. Ref. [1] for details.
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4.2 Storage of Energy in the Cell

Food enters the body intermittently, before being digested and assimilated. All the
energy not immediately needed is stored in the strategic reserves of the body, which
can be gradually exploited at later times, such as between feeding or during prolonged
fasting. For an animal in normal condition and feeding regularly, more than 90% of
its fuel reserve is stored in the body in the form of lipids, mainly as triacylglycerol
(or triglyceride, TAG) in the fat tissue, liver and muscles.

Lipids are favoured for the long-term synthesis of ATP, since they can be stored
without water, in anhydrous form. They represent the lightest and most concentrated
form of biochemical energy. Even if it is possible to store also carbohydrates and
proteins in anhydrous form, lipids provide nearly twice as much ATP per gram of
fuel (see next greybox on p. 120). Such an advantage is particularly exploited by
migrating birds and hibernating mammals, which build their lipid reserves in excess
of up to half their normalweight, to perform long distance flight, or tomake it through
the winter without eating.

Besides lipids, organisms maintain some less important energy reserves thanks
to carbohydrates, such as the glycogen, a polymer of glucose mainly stored in the
liver and muscles. Carbohydrates have the capability to support the highest rates
of ATP production (although by smaller specific amounts) compared to lipids or
proteins, and differently from other fuels they can also be employed in absence
of oxygen (anaerobic conditions). Such unique characteristics make carbohydrates
the essential compounds for short-term work and energy-demanding tasks, such as
escaping a predator, catching a prey, or running the olympic races. Moreover, some
important parts of the body, such as the nervous system or red blood cells, require
glucose as their exclusive fuel.

Cell proteins play several important roles in the structural integrity (for example,
the contractile proteins actin and myosin in the muscles, see Chap.6), and in the
regulatory mechanisms (such as enzymes and ion pumps, see Chap.7). They are
broken down into subunits, to be used in tissue regeneration and growth, and in
making up the amino acid reserve. Comparatively, they play a smaller role in energy
production and would not be employed to synthesise ATP under normal conditions.
However, particular circumstances such as extremes of prolonged starvation in dry
areas, or hugely energy-consuming functions such as the upstreamswimmingof some
salmon species, can exhaust any other energy sources and lead to the utilisation of
proteins, this being often the last resort of an organism before its death.

Figure4.2 provides a sketch of the main steps and protagonists in the conversion
of food into energy, starting from lipids, carbohydrates and proteins, down to the
final main product, that is ATP molecules. The following greybox on Beta oxidation
provides some information about the process of degradation of lipids, while the two
important metabolic phases called the Krebs’ cycle and the respiratory chain will be
discussed in more details in the next sections. A very basic description of some of
the most important molecules involved in these chemical reactions is given in the
Appendix C to this chapter.

http://dx.doi.org/10.1007/978-3-319-30647-6_6
http://dx.doi.org/10.1007/978-3-319-30647-6_7
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Fig. 4.2 The principal metabolic aerobic pathways implicated in the production of ATP from pri-
mary food sources. Cyclic chains of chemical reactions are indicated by circleswith arrows.Dashed
arrows represent minor pathways. Glucose (on the left) is firstly broken down into pyruvate mole-
cules (two per each glucose) in the glycolysis; pyruvate enters the mitochondria (light blue ellipse)
through its double membrane, and is turned into Acetyl-CoA. The same coenzyme can be formed in
large amounts by the decomposition of lipids (below), via the beta-oxidation cycle; this latter cycle
works themanymolecules ofAcyl-CoAobtained by the decomposition of fatty acids (long chains of
hydrocarbons, –(CH2)n–). Proteins (above) have a minor part in the production of such coenzymes,
however their decomposition (transamination) prepares, among many other compounds, a number
of intermediates (fumarate, oxalate, etc.) which will enter the crucial Krebs’ cycle. Acetyl-CoA is
the main actor of the Krebs’ cycle, whose main result is to produce a large amount of NADH and
FADH2. These will be completely oxidised in the subsequent cell respiratory cycle (or electron
transport chain), which consumes oxygen and produces a high number of ATP molecules, from
the available ADP+Pi. Note that some smaller amounts of ATP and NADH are also produced along
the various connected cycles. Moreover, entry of the pyruvate inside the mitochondria consumes
some ATP. At the end of the various cycles, CO2 and water are the waste products. To feed the
cycles, ATP and ADP molecules must be exported/imported in the mitochondria by specialised
transport proteins

All organisms must be able to mobilise their different energy reserves at the right
time, and with the appropriate rates, according to their life rhythms. The elementary
bricks of the reserves, triacylglycerol and glycogen, must be further broken, before
they can be used locally or transported to other tissues. The shuffling of fuels all
around the body is commanded by neural and hormonal mechanisms, which activate
the enzymes catalysing the hydrolysis2 of triacylglycerol and glycogen. Such specific
enzymes are the lipases, which decompose the triacylglycerol into simple glycerol
and fatty acids, and the glycogen phosphorilase, which cuts glucose subunits one by
one from a long glycogen molecule.

2Any chemical reaction in which bonds in a species are cleaved by adding water molecules.
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Glycogenmolecules and the long-chain fatty acids can therefore be further decom-
posed, either in the interior of the cells where they are produced, or be transported
elsewhere by the blood circulation. For example, mammals under intensive effort
supply energy to the muscles either by the local sources (TAG and glycogen reserves
in the muscle), as well as from distant sources (TAG from the adipose tissue, and
glycogen from the liver). Glucose can be easily transported in the blood plasma (the
liquid part of the blood) and by the cytoplasm (the liquid part of each cell), since
it is hydrosoluble in such aqueous fluids. On the other hand, fatty acids are only
liposolubles (i.e., they are soluble in lipids or organic solvents), therefore they must
be bound to hydrosoluble proteins, such as the plasma-albumin or other cytosolic
proteins, to be transported into the tissues and cells.

The ensemble of food degradation into its basic components, and their further
processing into smaller and smaller units until producing energy, building new tis-
sues, or storing the excess in the form of reserves (most notably, fat or adipose
tissue) is described in modern biology by a complex sequence of intertwined chem-
ical cycles, making up the metabolism. Such a vast ensemble of finely coordi-
nated chemical reactions can be read as being organised into metabolic pathways,
eventually supported by enzymes, since many of the chemical steps are endothermic
(see the greybox on p. 128).

4.3 Energy-Converting Membranes

The large majority of ATP in animal cells, and to a lesser extent in plant cells, is
produced by membrane-bound proteins (enzymes), which are limited to a very par-
ticular class of double-layer membranes. Such energy-converting membranes are:
(i) the plasma membrane of simple prokaryotes such as bacteria or blue-green algae;
(ii) the innermost of the two membranes enveloping the mitochondria of eukaryote
cells; (iii) the membrane of the thylakoids (small bags contained in the chloroplasts
of plant cells). All these double membranes share a common evolutionary origin: in
fact, both the chloroplasts and the mitochondria are generally considered as having
evolved from a symbiotic relationship between a primitive eukaryotic cell, which
was unable to breathe, and an invading prokaryote, an oxygen-breathing bacterium.
Normally, the eukaryote cell would have “eaten” the bacterium. But at least once
(likely more than once) it happened that the cell found it more useful to incorporate
the bacterium, and started exploiting its oxygen-breathing capability. In this way, a
proto-organism with a double layer of membrane was born, and was replicated in the
mitochondria and chloroplast. Therefore, all such membrane-bound mechanisms of
ATP synthesis, and the ion transport associated with these different membranes, are
connected despite the different nature of their primary energy sources.
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Beta-oxidation and the degradation of lipids

Beta-oxidation is the principal metabolic way leading to the degradation of fatty acids, to produce (i)
the enzyme acetyl-CoA, which is subsequently oxidised during the Krebs cycle, and (ii) molecules
of NADH and FADH2 (see Appendix C in this chapter), whose high-potential electrons stoke up
the respiratory chain. In eukaryote cells, beta-oxidation takes place in aerobic conditions, inside the
mitochondrial double membrane.

Saturated fatty acids—Inside the mitochondria, the degradation of saturated fatty acids by the
beta-oxidation cycle involves four chain reactions, which all take place within the mitochondria matrix.
The complete degradation of the fatty acid is pursued, until the carbon chain is completely cut into single
units of acetyl-CoA: this sequential process is called the Lynen’s helix. Each turn of the “helix” shortens
the fatty acid chain by two carbon atoms, and produces onemolecule of acetyl-CoA, while regenerating
one molecule of FADH2 from FAD2+ and one molecule of NADH from NAD+. Such a sequence of
reactions occurs by oxidising the beta carbons of the acid, hence the name of beta-oxidation.

For the case of saturated fatty acids with an even number of carbon atoms, the last turn of Lynen’s
helix makes two acetyl-CoA, besides the FADH2 and NADH. Each of the acetyl-CoA may be used as
the key enzyme in the Krebs cycle, or serve in some biosynthesis process. For the case of saturated
fatty acids with an odd number of carbons, the last turn also produces one molecule of the enzyme
propionyl-CoA.

Unsaturated fatty acids—The beta-oxidation in this case has a peculiar difficulty, in that the
presence of double carbon bonds along the beta-carbon chain hampers the proper functioning of the
Lynen’s helix enzymatic cycle. Other enzymatic substrates must intervene, to firstly convert the double
bonds into single bonds, which overall slows down the degradation cycle compared to the case of
saturated fatty acids.

Energy yield—The conversion of each fatty acid into acetyl-CoA by the enzyme acetyl-CoA-
synthetase (often called an “activation”) consumes the equivalent of two ATP molecules, since one
ATP is hydrolysed into AMP (mono-phosphate) instead of ADP (di-phosphate) via this chemical
reaction:

Fatty acid + ATP + CoA-SH → acetyl-CoA + AMP + 2Pi (4.1)

On the other hand, the NADH and FADH2 produced accordingly can yield a maximum of 3 and
2 ATP molecules, respectively, in the cycle called the “respiratory chain” (in practice, about 2.5 and
1.5). The acetyl-CoA produced in the beta-oxidation is principally decomposed by the Krebs cycle:

Acetyl-CoA + 3 NAD++ CoQ10 + GDP + Pi + 2 H2O →
CoA-SH + 3 (NADH + H+) + CoQ10H2+ GTP + 2 CO2 (4.2)

The CoQ10H2 produces two more ATPs, thanks to the respiratory chain, such that the complete
oxidation of the acetyl residue of the acetyl-CoA can make a maximum of 11 ATPs, which brings to
5 + 11 − 2 = 14 the number of ATP molecules produced by each turn of the Lynen’s helix.

Moreover, in the case of a fatty acid with an even number of carbons, also the last acetyl-CoA
fragment can be oxidised, thus liberating 9 more ATPs. So, the beta-oxidation followed by the Krebs’
cycle degradation of a saturated fatty acid with n = 2p carbon atoms makes, for example, 112 ATPs
for one molecule of palmitic acid, CH3(-CH2)14-COOH, which contains 16 carbon atoms (n = 16,
thus p = 8); or 42 ATPs for a molecule of caproic acid CH3(-CH2)4-COOH, which contains 6 carbon
atoms (n = 6, thus p = 3). When turned into energy contents (one mole of ATP giving off 30.5 kJ),
each gram of palmitic or caproic acid give 13.3 and 11 kJ, respectively. For comparison, the complete
oxidation of one glucose molecule, which contains 6 carbon atoms, corresponds to a maximum of
36 ATPs, that is 6.1 kJ per gram. Therefore, compared to glucose, caproic acid liberates 17% more
energy (on a per-molecule basis, that is more than 80% on a per-gram basis) for a same number of
carbon atoms in the pristine molecule. On a general basis, all fatty acids are much more energetic than
carbohydrates, although sensibly slower in their rate of energy release.
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Fig. 4.3 A simple electrical circuit lighting a bulb is equivalent to the proton circuit in across the
double membrane (e.g., in mitochondria, gram-negative bacteria, thylakoid membrane of chloro-
plasts) with its primary and secondary proton pumps. The primary pump is activated by electrons
issued from the respiratory cycle (in animal cells), or by light energy (in plant cells), and pushes sev-
eral protons into the intermembrane space. The electrical gradient so created, powers the secondary
pump (ATP-synthase) to push back H+ inside the matrix, while catalysing the ADP+Pi→ATP
reaction (phosphorylation)

Both animal and plant cells contain mitochondria, although these organelles are
much more numerous in animal cells. Animal cells get most of their ATP from
mitochondria, whereas plant cells get most of their ATP from chloroplasts, and ATP
generated from the mitochondria is only used when the plant cannot generate ATP
directly from the light-dependent reaction.

Compared to other cell membranes, these energy-converting double-membranes
share a number of distinctive characteristics. Each such membrane has two different
types of specialised proteins working as proton pumps (Fig. 4.3). The function of
a proton pump is to pull H+ ions from one side to the other of the membrane,
going against the chemical equilibrium, which would impose equal concentrations
on the two sides, and the electrostatic equilibrium, which would impose zero charge
difference. The result of the operation of such pumps is to create a gradient, both inH
concentration and electric charge, between the two sides. Of course, the total charge
must be conserved, and if positive charges go somewhere, there must be negative
charge that comes back. Therefore, the electrons issued by the respiratory cycle (see
below) provide the balance to the flow of protons.

The detailed nature of the proteins composing the primary proton pump depends
on the nature of the energy source (light in plants, food in animals). By contrast, all
the various energy-converting membranes share the same kind of secondary proton
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pump, formed by a highly conserved protein called ATP-synthase.3 This big enzy-
matic complex is composed by a fixed and a turning part (see Fig. 4.8 on p. 128). In its
normal way of functioning (observed when this protein works as an isolated system
inserted in a simple fragment of membrane), the ATP-synthase would hydrolyse the
ATP molecules into ADP+Pi, thereby pushing protons along the same direction as
the primary pump. However, according to the proposition by the English biochemist
Peter Mitchell and his chemiosmotic theory (for which he was attributed the Nobel
prize in chemistry in 1978), the primary proton pump creates a proton gradient suf-
ficient to force the secondary pump to work in reverse, and perform instead the ATP
synthesis starting from available ADP and Pi. This concept was controversial for
more than twenty years, because of a number of small details that did not fit into
place, but eventually Mitchell’s idea was proven right under all respects.

The mechanism of chemiosmosis is analogous to an electrical circuit, as depicted
on the right of Fig. 4.3. The equivalent of the DC voltage generator is the flux of
electrons from the cell respiratory cycle, which produces the electric potential that
pushes the protons to move in the intermembrane region. The equivalent load of
the circuit (the lightbulb) is represented by the secondary pump, the ATP-synthase,
which uses this potential energy to move back the protons in the matrix, and their
kinetic energy to activate the catalysis of new ATP molecules. Note that to avoid
short-circuits, the naked cellmembrane has a very high value of resistance (equivalent
of the Rm) towards the ions.

It may be interesting to note that, from an evolutionary point of view, the disparity
between primary and secondary proton pumps could imply that the first organisms to
evolve should have relied on external proton gradients. Likely, they just shared some
primitive versions of the ATPase, which was used to flow protons from some envi-
ronmental source, into the primitive cell membrane. Later, organisms differentiated
and evolved the double-membrane mechanism and the specialised primary proton
pumps, which enabled them to produce mitochondrial proton gradients of their own.

Figure4.4 shows the average structure of a mitochondrion from a eukaryote cell.
The shape of mitochondria is not fixed but changes continuously inside the cyto-
plasm, and the appearance of cristae (the repeated folds of the inner membrane) can
be very different, either for mitochondria isolated from different tissues, or when
the same mitochondria are suspended in different media. For example, cardiac cell
mitochondria, for which periods of high respiratory activity are necessary, tend to
have a more important density of folds compared, e.g., to liver cell mitochondria.

Mitochondria are often considered the cell’s power plants. Indeed they produce
almost all the ATP in animal cells, starting from elementary molecules obtained from
the decomposition of carbohydrates and lipids. To summarise the main steps, which
will be fully described later in this chapter:

(a) inside the mitochondrial matrix, pairs of carbon atoms are sequentially cut from
the long-chain fatty acids, in the cyclic beta-oxidation pathway, each pair pro-
ducing one molecule of acetyl-coenzyme A (acetyl-CoA);

3In the evolutionary sense, a conserved element (a protein, a gene) is maintained across different
species, even very distant from each other.
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Fig. 4.4 Schematic representation of a mitochondrion. The two membranes (inner and outer) are
shown. The ‘matrix’ is the region inside the inner membrane, and is considered negatively polarised
(N), while the space between the two membranes is positively polarised (P). The cristae are the
deep folds of the inner membrane, necessary to increase the surface/volume ratio

(b) in this same place, the pyruvate produced by the glycolysis of glucose is also
oxidised, producing as well acetyl-CoA molecules;

(c) all the acetyl-CoA produced from the various pathways are then metabolised,
by the ensemble of chemical reactions constituting the Krebs cycle, producing
some ATP directly, plus larger amounts of NADH and FADH2;

(d) during the subsequent cell respiratory chain, which takes place as well inside the
mitochondrial membrane, the NADH is converted into NAD+ and the FADH2

into FAD2+, upon the availability of oxygen, thus producing large amounts of
ATP molecules; in parallel, electrons made available in the process reduce O2

molecules (hence the name of “respiration”).

Eventually, a good part of the energy contents from the carbohydrates and lipids is,
through all these combined cycles, recovered and stored in the ATP. Taken together,
all these reactions allow to utilise the energy contained in the metabolic fuel by
reforming new phosphate bonds (ADP→ATP). This energy, transported anywhere
by the diffusion of ATP, will be released when the ATP molecule is hydrolysed, to
produce useful cellular work.

4.4 Krebs’ Cycle and the Production of ATP

In the energy production process, the choice of one particular metabolic path (a
substrate) depends: (i) on the availability of oxygen, (ii) on the rate at which ATP
is demanded, and (iii) on the availability of fuel (food). Whenever very high rates
of ATP synthesis are required, or under reduced oxygen availability, the anaerobic
pathways are the only ones possible. On the other hand, for the resting or normal
conditions, in which energy is consumed at regular and lower rates, andwhen oxygen
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is readily available, ATP is mostly produced by aerobic (oxidative) pathways, which
have a much better yield.

TheKrebs cycle, discovered in 1937 by the German-born biochemist Hans Adolf
Krebs,4 is a complex chain of chemical reactions starting from the products of the
aerobic glycolysis. However it must be noted that, despite the glycolysis is found in
all living organisms, the Krebs’ cycle is only typical of the aerobic organisms, those
which breath oxygen via the pulmonary respiration. Macroscopically, oxygen enters
from the lungs and via the blood circulation is transported to each and every cell in
the body; from there the CO2 returns to the lungs, to be expelled. Kreb’s cycle is
ultimately responsible for the molecular transformation of oxygen into CO2, for this
reason it is sometimes—but very improperly—called a “respiratory” cycle. Indeed,
the actual respiration step of the cells does not take place during the Krebs’ cycle, but
at the subsequent stage, appropriately dubbed the ‘cell respiratory chain’, in which
electrons and protons are transported across the inner mitochondrial membrane. The
other name of the Krebs’ cycle, ‘cycle of tricarboxylic acids’, originates from the
fact that two of the earliest substrates of the chemical reaction chain, the citrate and
the isocitrate, are in fact acids, carrying three –COOH groups each.

At the outset of Krebs’ cycle we find the pyruvate molecule, CH3-CO-COOH,
produced in the glycolysis pathway (two units for each molecule of glucose con-
sumed). The global formula of the cycle is:

CH3-CO-COOH + 3 H2O → 3 CO2 + 10 H+ + 10 e− (4.3)

The energy liberated by the processing of the various molecular species is stored
temporarily in the reduced species NADH and FADH2 (plus one ATP directly pro-
duced during the cycle). Subsequently, the cell respiratory chain will extract this
energy, to regenerate a much larger number of ATP molecules.

The Krebs’ cycle is coupled uphill to the glycolysis, and downhill to the electron
transport (or respiratory) chain (see again Fig. 4.2). The glycolysis cycle occurs in
the cytoplasm, and its main product is the pyruvate, through this reaction5:

4H.A. Krebs was born and educated in Germany, completing his studies of medicine in the univer-
sities of Göttingen, Hamburg, and Berlin where he studied chemistry. Coming from a jewish family,
he was forced to leave Germany in 1933 and emigrated to England, where he remained for the rest
of his life. Therefore he and his work are often considered British, including the Nobel prize in
medicine which was awarded to him in 1953 for his studies on metabolism. His manuscript on the
citric acid cycle, still known under the name of “Krebs’ cycle”, was refused by the journal Nature
in 1937, under the excuse of lack of space for publication. It is just one more example of big-name
journals missing fundamental works, due to poor judgement.
5The graphic symbols in the glucose molecule indicate that two groups (full thick bonds) lie above,
and three (dashed bonds) lie below the hexagonal ring; in the pyruvate, the dashes indicate that the
electron is delocalised between the two oxygens.
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The pyruvate can be consumed either in a fermentation (anaerobic) cycle, or be
transformed into lactic acid, or—most importantly—enter the mitochondria, where
the aerobic Krebs’ + respiratory cycles will take place.

The complex chain of chemical reactions in the glycolysis can be formally grouped
into two phases (each one occurring through several intermediate steps):

(1) the oxidation of glucose into pyruvate:

C6H12O6 + 2 NAD+ → 2(CH3-CO-COO
−) + 2 NADH + 4H+ (4.4)

(2) followed by the phosphorylation of the ADP into ATP:

(2×) ADP3− + Pi2− + H+ → ATP4− + H2O (4.5)

If we take the combined sum of the glycolysis and the subsequent Krebs cycle,
we get the synthetic formula:

C6H12O6 + 6 H2O → 6 CO2 + 24 H (4.6)

from which the coenzymes and the ADP/ATP have been excluded, since they are
recycled between the beginning and the end of the combined cycles. This can be
further simplified to:

C6H12O6 + 3 O2 → 6 CO2 + 12 H (4.7)

Now, if this cellular reaction is compared to the complete oxidation of glucose as
it can be done in the laboratory:

C6H12O6 + 6 O2 → 6 CO2 + 6 H2O (4.8)

it is seen that the oxidation carried out in the cell with the glycolysis plus the Krebs’
cycle is only partial: the 12 hydrogens are still in the reduced state. The last step will
take place in the subsequent phase, the respiratory chain, when the hydrogens will
be oxidised into water, and ATP will be produced.

On a side, it may be noted that the reaction (4.8) is exactly the complementary of
the photosynthesis (Eq.2.48 of Chap.2). However, one is not simply the inverse of
the other. In fact, the free energy balance is overall favourable for the glycolysis (its
ΔG < 0, in fact there is more energy contained in the glucose than it is effectively
extracted), whereas photosynthesis has ΔG > 0, therefore it requires a supplement
of energy from the exterior (sunlight photons), in order to occur.

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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4.4.1 The Role of the Enzymes

The Krebs’ cycle, or cycle of tricarboxylic acids, is a typical enzymatic cycle. Use
of the word cycle emphasises the fact that the first molecule (a “substrate”, in the
language of biologists) coincides with the last one. Moreover, all the components of
the cycle are recycled. This is the role of the enzymes, molecular species that are not
consumed in the reaction but have the ability to ease the development of a reaction,
by lowering its free-energy barrier (see the greybox on p. 128).

In prokaryotic organisms the whole cycle takes place in the cell cytoplasm. In
eukaryotes, instead, it takes place within the matrix of mitochondria (i.e., deep inside
the double membrane), which also implies that breathing would be impossible with-
out mitochondria. The pyruvate produced by the glycolysis outside the mitochondria
must pass the two membranes by a symporter, a membrane protein making a chan-
nel that allows the passage of two species at the same time: in this case, one pyruvate
can enter while letting out one OH−. Once the pyruvate is inside the matrix, Krebs’
cycle takes places in the same way as for the prokaryotes.

The first substrate of the Krebs cycle is not just the pyruvate, but its byproduct
the acetyl-coenzyme-A (or acetyl-CoA). This species is produced both from lipids
(via beta-oxidation) and from carbohydrates (via glycolysis). The first step therefore
consist in transforming the pyruvate into acetyl-CoA. This occurs by the interme-
diation of the enzyme pyruvate-dehydrogenase (all enzyme names end with “ase”),
a giant protein which can include up to about 60 subunits, in a microorganism like
E. coli.

During this first reaction, one CO2 is liberated and one NAD+ is reduced to
NADH:

CH3-CO-COO
− + NAD+ + CoA

PDH−−−→ Ac-CoA + NADH + CO2 (4.9)

The product is an acetyl group (CH3C=O) bonded to the coenzyme-A (see in the
Appendix C what it looks like) by means of a highly energetic thiol bond (a sulphur
atom bridging two carbons). It is this molecule that will actually start the Krebs cycle.

Even without paying too much attention to the complicated names and detailed
reactions of the chemical species that make up the sequence of transformations
along the cycle, we can just keep track of the number of carbon atoms in each
molecule to see what happens (Fig. 4.5). The Krebs cycle can be seen as a sequence
of decarboxylation reactions (i.e., loss of one C=O group, with release of a CO2).
Already the initial transformation of pyruvate into acetyl-CoA is the conversion of
a 3-carbon species into one with only 2 carbon atoms.

The acetyl-CoA with its 2 carbons can start its cycle, by forming a bond with
a 4-carbon molecule, the oxaloacetate: the CoA is liberated, and the new species
containing now 6 carbon atoms is the citrate. After one first decarboxylation, one
CO2 is released and one NAD+ is reduced to NADH, giving isocitrate with 5 carbon
atoms. This will undergo another decarboxylation giving alpha-ketoglutarate, which
now contains 4 carbon atoms, after releasing a second CO2 and production of a
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Fig. 4.5 Simplified scheme of Krebs cycle. Acetyl-CoA enters the cycle at step 0, it reacts with
the oxaloacetate and turns into citrate, which is the step 1 of the cycle. In each turn of the cycle, the
two “red” carbon atoms will be oxidised into two CO2 molecules. The two “green” carbon atoms
provided by the Acetyl-CoA will turn into “red” (oxidisable) carbons before the oxaloacetate is
reformed frommalate, in the last step of the cycle. Each reaction is catalysed by a different enzyme.
Participating water molecules are not indicated. All the eight reactions of the cycle occur in the
mitochondrial matrix. The overall yield of each cycle is 1 ATP molecule, plus 1 FADH2 and 3
NADH molecules that will be fed into the electron transport chain. Note that the cycle is repeated
twice for one initial glucose molecule, since glycolysis produces two pyruvates that give off two
acetyls

second NADH. No carbons are lost in the subsequent reaction, in which succinyl-
CoA binds back the CoA with its thiol bond. Subsequent release of the CoA leads to
oneADP→ATP regeneration, and gives succinate. These 4 carbon atomswill survive
until the end, however themolecule is going to be triply oxidised, subsequently going
into fumarate, then malate, and finally oxaloacetate. Its three protons H+ come back
during the reduction of a third NAD+ and one FAD, thus giving the third NADH plus
one FADH2. The end-product is still a 4-carbon molecule, an oxaloacetate identical
to the starting one, which can now recombine with another acetyl-CoA and start over
a new Krebs cycle.
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The thermodynamic function of enzymes and the ΔG of chemical reactions

Ageneric chemical reaction, A+B → C , among reactants A and B giving a productC , can practically
take place (even if the free energy difference between reactants and products is advantageous, i.e.
ΔG < 0) only as a function of the activation energy Ea necessary to break the bonds in the reactants,
and bring the chemical species in the reactive state. In terms of the reaction coordinate shown in the
figure below, this corresponds to taking the system free energy at the top of the barrier in theΔG+Ea

curve. The activation energy represents a barrier to be passed, translating into an effective energy
value the sum of all the kinetic constraints in the breaking and rebuilding of chemical bonds in the
molecules, in order to observe the chemical reaction. In the case of Ea = 0 the reaction has no barrier
and occurs spontaneously, at the corresponding values of temperature and pressure.

The ΔG of the reaction is intrinsically fixed by the difference between the free energies of the
products and the reactants:

ΔG = G(products) − G(reactants) (4.10)

therefore it cannot change, whereas the barrier Ea can actually be modified as a function of the
thermodynamic constraints (the values of chemical potential, or T , or P , or the local pH, and so on),
and/or the kinetic path taken by the reaction, just as to go from your home to the supermarket you can
take different paths, each with advantages and disadvantages and a different energetic cost.

A completely different way of lowering (to facilitate the chemical reaction), or in some cases
increasing Ea , is to add an enzyme or catalyser, namely a chemical species which will take part in
the reaction only as a ‘bystander’, and will be found intact at the end of the reaction:

A + B + (cata) → C + (cata)

The presence of the catalyser allows to take reaction paths that are more favourable from the
kinetics point of view, while the ΔG obviously remains unchanged. With the values of the free
energies of formation found in the literature (the following Table gives a sample, see e.g. [2] for
the ATP/ADP series) we can calculate the free energy difference for any desired chemical reaction.
However, such values do not tell us anything about the kinetic feasibility of that reaction, namely
about the value of the eventual Ea existing between the initial and final states. To obtain that we must
know the details of the reaction kinetics, and eventually the microscopic mechanism by which the
enzyme would operate.

One must pay attention to the fact that the values of the formation energies allow to establish the
ΔG under standard conditions, indicated by ΔG0, corresponding to T = 300 K, P = 1 bar, and 1M
concentrations of the reactants [2]. For example, for the oxidation of glucose, C6H12O6 + 6O2 →
6CO2 + 6H2O, we would calculate:

ΔG0 = [6(−394.9) + 6(−237.57)] − [−917.61 + 0.] = −2877.21kJ/mol (4.11)

However, for a generic stoichiometry of the reaction, aA+ bB + ... → cC + dD+ ..., we should
calculate:
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ΔG = ΔG0 + RT ln

( [C]c[D]d ...
[A]a [B]b...

)
(4.12)

with R = 0.00829 kJ/mol/K, and T = temperature in Kelvin degrees. The term within parenthesis
in the equation is defined as the equilibrium constant of the reaction, equal to the ratio of the
concentrations of the products and reactants:

Keq = [C]c[D]d ...
[A]a [B]b... (4.13)

It is thus seen that, even for a negative value of ΔG0, the actual value of ΔG can be smaller or
larger. The ΔG of the reaction approaches the value 0 at equilibrium, as soon as the concentrations
of products and reactants spontaneously adjust to their equilibrium values. On the other hand, as we
have already seen, for an endothermic reaction with its ΔG > 0, the only way to make it possible
would be to contribute free energy (enthalpy + entropy) from the exterior.

Table 4.1 Free energy of formationΔG0 (kJ/mol) for some biologically relevant substances

C-based Inorganics
CO -137.34 Mannitol -942.61 H2 0.
CO2 -394.4 Methanol -175.39 H+ pH7 0.
H2CO3 -623.16 Oxalate -674.04 O2 0.
HCO3 -586.85 Phenol -47.60 OH− pH7 -198.76
CO2−

3 -527.90 n-Propanol -175.81 H2O -237.17
Acetate -369.41 Propianate -361.08 H2O2 -134.1
Alanine -371.54 Pyruvate -474.63 PO3−

4 -1026.55
Aspartate -700.4 Ribose -757.30 Se 0.
Benzoic acid +245.60 Succinate -690.23 H2Se -77.09
Butyrate -352.63 Sucrose -370.90 SeO2−

4 -439.95
Caproate -335.96 Urea -203.76 S 0.
Citrate -1168.34 Valerate -344.34 SO2−

3 -486.6
Crotonate -277.40 SO2−

4 -744.6
Cysteine -339.80 Metals S2O

2−
3 -513.4

Ethanol -181.75 Cu+ +50.28 H2S -27.87
Formaldehyde -130.54 Cu2+ +64.94 HS− +12.05
Formate -351.04 Fe2+ -78.87 S2− +85.8
Fructose -915.38 Fe3+ -4.6
Fumarate -604.21 FeCO3 -673.23 N-based
Gluconate -1128.3 FeS2 +150.84 N2 0.
Glucose -917.22 FeSO4 -828.62 NO2 +51.95
Glutamate -699.6 PbS -92.59 NO−

2 -37.20
Glycerate -658.10 Mn2+ -227.93 NO−

3 -111.34
Glycerol -488.52 Mn3+ -82.12 NH3 -26.57
Glycine -314.96 MnO2−

4 -506.57 NH+
4 -79.37

Glycolate -530.95 MnO2 -456.71 N2O +104.18
Guanine +46.99 MnSO4 -955.32
Lactate -517.81 HgS -49.02
Lactose -151.24 MoS2 -225.42
Malate -845.08 ZnS -198.60
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Fig. 4.6 Accounting of the ATPmolecules produced during the coupled cycles of glycolysis, Krebs
and respiration. The input is glucose, the output is carbon dioxide and water molecules (not shown).
The intermediate redox couples NAD+/NADH and FAD/FADH2 are completely recycled, but in
the coupled cycling each mole of either produce respectively 3 and 2 moles of ATP

The global accounting of the cycle is shown in Fig. 4.6 Starting from the acetyl-
CoA initially obtained from the pyruvate (Eq.4.9):

Ac-CoA + 3 NAD+ + FAD + ADP + Pi + 2 H2O →
→ 2 CO2 + 3 NADH + FADH2 + 2 H+ + ATP (4.14)

For each initial glucose molecule two pyruvates were produced, so we must mul-
tiply by 2 the above values. Each (double) Krebs’ cycle produces therefore 2 ATPs,
which are summed to the 2 ATPs directly produced in the cytoplasm by the gly-
colysis (reaction (4.4)): at this stage, 4 ATPs, 2 FADH2 and 10 NADHs (including
the two from reaction (4.9), and the two from glycolysis) are already produced, the
waste being the 6 CO2 molecules to be expelled by the pulmonary respiration, plus
water molecules (which are not properly speaking a waste). Note that the two NADH
produced outside the mitochondria will be treated in a different way from the eight
produced inside.

4.5 Electrons and Protons Flowing

The outer mitochondrial membrane hosts a quantity of special proteins, the porins
(see again Fig. 4.4), which act as non-specific pores, allowing the passage of any
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Fig. 4.7 Three-dimensional
structure of cytochrome-c
(green), with the four
α-helices evidenced in the
cartoon representation. The
central heme molecule
(composed by the four
pentagonal rings joined
together, the blue vertex
indicating a nitrogen atom),
coordinates a Fe atom
(orange sphere in the middle)

solute with a molecular weight below 10 kDa. Therefore, this membrane is freely
permeable to ions and most metabolites.

As explained in the previous Sect. 4.4, the innermembrane is the true energy trans-
ducer. It hosts five different integral protein complexes: the NADH-dehydrogenase
(complex I); the succinate dehydrogenase (complex II); the cyto-chrome-c reduc-
tase (complex III); the cytochrome-c oxidase (complex IV); and the ATP-synthase
(complex V). Such different protein complexes with the function of proton pumps,
implanted in the inner membrane, allow the electron removal from (i.e., oxidation)
and transfer to (i.e., reduction) the different species involved in the respiratory cycle:

NADH → NAD+ Oxidation
FADH2 → FAD Oxidation

Cytochrome-c ox → cytochrome-c red Reduction
Cytochrome-c red → cytochrome-c ox Oxidation

ADP → ATP Oxidation

The critical step controlling the equilibrium of such redox reactions (see the
greybox on p. 133) is the cycle of the cytochrome-c, a small metalloprotein including
a heme group and a complexed Fe3+ ion (Fig. 4.7a):

1
2NADH + cyt-cox + ADP + Pi ↔ 1

2NAD
++ cyt-cred + ATP (4.15)

Indeed, it is the availability of cytochrome-c in the reduced state in the inner space
of the mitochondrial matrix, which forces the oxidation of the NADH and FADH2

species. Equation (4.15) can be rewritten as a function of the ratio of the relative
concentrations, thus giving:

[cyt-cred ]
[cyt-cox ]

=
( [NADH]

[NAD+]
)1/2 (

[ADP][Pi]

[ATP]

)
Keq (4.16)

Keq being the equilibrium constant of the above redox pair.
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This equilibrium condition should be interpreted in the following way: the avail-
ability of cytochrome-c in the reduced state may increase either in the presence of
a large concentration of NADH (as it would happen after many turns of the Krebs
cycle), or in case of a decrease of the ATP concentration (for example, during a
muscular effort). Therefore, either the excess of production of NADH, or the excess
of consumption of ATP, unbalance the systems towards the increase of reduction of
cytochrome-c, which in turn forces the electron transport chain to push in the sense
of increasing the oxidation. The result is that of transforming the excess of NADH
(and FADH2) back into NAD+ (and FAD2+) and, in parallel, synthesising new ATP
from the available ADP+Pi.

As it was shown in Chap.2 (see the greybox on p. 31), the transfer of energy
between different parts of a closed system can be made much more efficient when
the energy is broken down into small amounts, instead of transferring it in just one
big step. This is what happens for the transfer of energetic electrons fromNADH (and
FADH2) to the last product of the respiratory cycle, i.e. water. The species NADH
liberates electrons in the oxidative reaction:

NADH � NAD++H+ + 2e−

From Table4.2 in the greybox REDOX reactions, we see that this corresponds to
a ΔE0 = −0.32 V. By directly using the reaction products to couple to hydrogen
oxidation into water:

2H+ + 2e− + 1
2O2 � H2O

we see that the ΔE0 = +0.82 V. The direct transfer of electrons from NADH to
oxygen therefore corresponds to a free-energy difference of ΔG0 = −2F(0.82 −
(−0.32)) = 216 kJ/mol, or about 53 kcal/mol. A similar redox-pair reaction occurs
for FADH2 going into FAD, giving off 43 kcal/mol. These are indeed huge amounts
of energy (they correspond to 70–90 kBT ) that, if transferred directly, would be likely
wasted into heat. Instead, a more gentle “electron transport chain” is being set up
inside the mitochondria, by which this large energy jump is broken down into several
steps, with the result of increasing the yield, and of displacing more protons.

This is the function of the various protein complexes, schematically depicted
in Fig. 4.8a, which distribute the free energy step by step. The ensemble of such
proteins constitutes the primary proton pump of most eukaryotic cell mitochondria.
In the figure, the green arrows indicate the electron transfer: each of the complexes
involved receives the energetic electrons, and transfers one or twoH+ from thematrix
into the inter-membrane space. Electrons progressively lose their energy along the
path and, for each initial electron, several protons (up to 10 for one NADH, equal to
2 electrons) are eventually transferred. It must be noted the key role in this process of
the coenzyme-Q10, or ubiquinone (central red box): CoQ is the enzyme that transfers
electrons from complexes I-II to complex III, no other molecule (except Vitamin A,
in some conditions) is able to perform this function.

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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Electron transfer and REDOX equilibrium

A fundamental concept for chemical reactions occurring with transfer of electrons between the species
(called oxidation-reduction reactions, or REDOX) is the differenceΔE0 between the so-called reduction
potentials of the donor and acceptor species.Measured in volt units, the relationship between the reduction
potential and the free energy (in joules) is simply:

ΔG0 = −nFΔE0 (4.17)

for nmoles of electrons transferred, with F the Faraday constant, equal to 96.63 J/V-mol (or 23.06kcal/V-
mol).A redox reactionmust be equilibrated on the donor and acceptor side. Let us consider the ’reduction’
of oxygen into water:

O2 → H2O

Firstly, we must equilibrate the number of moles of the element to be oxidised (or reduced) by the
right amount of water molecules, to have the same amount of oxygen on either side of the reaction:

O2 → 2H2O

Secondly, we adjust the number of protons H+ on either side:

O2 + 4H+ → 2H2O

Finally, we have to adjust the electric charge on either side, by adding the right number of electrons:

O2 + 4H+ + 4e− → 2H2O

In chemical terms, we may think of the above as a “half-reaction”, in which the two oxygen atoms
in the O2 molecule are ready to accept 4 electrons to be reduced. In electrical terms, free electrons do
not exist, so any electron accepted must be donated by some other species. Where such electrons should
come from? This reducing half-reaction must be coupled to another oxidising half-reaction, in which
some other species will be oxidised, giving of the required 4 electrons. We speak of redox couples
exactly for such a reason.

Let us take then for example glucose oxidation, and repeat the same steps. Firstly, adjust oxygen
contents by means of water molecules:

C6H12O6 + 6H2O → 6CO2

Then the protons:
C6H12O6 + 6H2O → 6CO2 + 24H+

And finally the charge:

C6H12O6 + 6H2O → 6CO2 + 24H+ + 24e−

Now, we can combine (=sum) the two half-reactions (reduction of oxygen + oxidation of glucose),
under conditions of same number of transferred electrons from the donor to the acceptor species, therefore
by counting 6 times the oxygen half-reaction and eliminating the excess water on the left/right sides:
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C6H12O6 + 6O2 ↔ 6CO2 + 6H2O

It should be noted that the complete reaction could proceed in either direction, as a function of the
relative concentrations (see the greybox on p. 128).

As an exercise, we may calculate the relative probability of a redox reaction under different ‘breath-
ing’ conditions: aerobic (i.e., in oxygen, with water as a waste product), nitrous (with NO as a waste),
sulphuric (with SO2 as a waste), or methanogenic (with methane as a waste). The four acceptor species,
to be reduced, are therefore: O2, NO

−
3 , SO

2−
4 and CO2.

We will test three different donors, to be oxidised: hydrogen (H2), acetate (CH3COO−, or AcO−),
and methane (CH4).

The following Table 4.2 allows to obtain the ΔE0 = E0(acceptor) − E0(donor) (values in Volts).
Therefore, for hydrogen we find:
ΔE0(O2–H2) = 1.23, ΔE0(NO

−
3 –H2) = 0.84, ΔE0(SO

2−
4 –H2) = 0.19, ΔE0(CO2–H2) = 0.17.

For the acetate:
ΔE0(O2–Ac) = 1.11, ΔE0(NO

−
3 –Ac) = 0.72, ΔE0(SO

2−
4 –Ac) = 0.07, ΔE0(CO2–Ac) = 0.05

And for the methane:
ΔE0(O2–CH4) = 1.06, ΔE0(NO

−
3 –CH4) = 0.67, ΔE0(SO

2−
4 –CH4) = 0.02, ΔE0(CO2–CH4) = 0.

By multiplying by the Faraday constant, F = 96485.309 C/mol, such values translate into free-
energy differences, ΔG0, with n = 2 for hydrogen (since there are two electrons in the donor molecule,
H2 → 2H+ + 2 e−), and n = 8 for both the acetate and the methane, thus obtaining the following values
(in kJ/mol):

Acceptor

Donor O2 NO−
3 SO2−

4 CO2

Hydrogen −237.7 −162.3 −37.3 −32.8
Acetate −858.1 −556.6 −56.4 −38.7
Methane −819.4 −517.9 −17.8 0

The values show that the biological oxidation of one species (the substrate) is easier, from a thermo-
dynamical point of view, in the presence of strong acceptors (i.e., larger values of ΔE0), oxygen being
evidently the most effective in all cases. The available free energy ΔG0 decreases accordingly, from the
stronger to the weaker acceptors, which also shows that aerobic pathways are usually preferred, since
they permit to develop more energy.

Table 4.2 Reduction potential E0 for some biologically relevant couples, in Volts

Redox couple

SO2−
4 /HSO−

3 −0.52 Pyruvate−/lactate− −0.19 DMSO/DMS +0.16
CO2/formate −0.42 FMN/FMNH −0.19 Fe(OH)3+HCO

−
3 /FeCO3 +0.20

2H+/H2 −0.41 HSO−
3 /S3O

2−
6 −0.17 S3O

2−
6 / S2O

2−
3 +HSO−

3 +0.225
S2O

−
3 /HS− + HSO−

3 −0.40 HSO−
3 / HS− −0.116 cytochrome-c1 ox/red +0.23

Ferrodoxine ox/red −0.39 menaquinone ox/red −0.075 NO2−/ NO +0.36
Flavodoxine ox/red −0.37 APS/AMP+HSO−

3 −0.075 cytochrome a3 ox/red +0.385
NAD+/NADH −0.32 mubredoxine ox/red −0.057 NO−

3 / NO−
2 +0.43

Cytochrome-c3 ox/red −0.29 acyl-CoA/propionyl-CoA −0.015 SeO2−
4 / SeO2−

3 +0.16
CO2/acetate −0.29 glycine/acetate−+NH+

4 −0.010 Fe3+/Fe2+ +0.16

S0/HS− −0.27 S4O
2−
6 /S2O

2−
3 +0.024 Mn4+/Mn2+ +0.16

CO2/CH4 −0.24 fumarate2−/succinate2− +0.033 O2/H2O +0.16
FAD2+/FADH −0.22 cytochrome-b ox/red +0.035 ClO3−/ Cl− +0.16

SO2−
4 /HS− −0.217 ubiquinone ox/red +0.113 NO/N2O +0.16

Acetaldehyde/ethanol −0.197 AsO3−
4 / AsO3−

3 +0.139 N2O/N2 +0.16
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Fig. 4.8 a The electron transport chain taking place among the protein complexes integral to the
inner mitochondrial membrane, indicated by the light blue boxes. The red-lined boxes indicate the
coenzyme-Q10 and the cytochrome-c species, respectively. Green arrows indicate the progressive
transfer of the two electrons liberated in the oxidation of NADH or FADH2. Note that the three
steps shown in blue rectangles actually represent several multiple steps, one for each species oxi-
dised. Reduction-potential (left) and free-energy (right) scales approximately indicate the relative
values at each different reaction step. b Schematic of the oxidative phosphorylation across the inner
mitochondrial membrane. The primary proton pumps (on the left) increase the H+ concentration
in the intermembrane space, thus creating a large electrical and chemical gradient across the inner
membrane. Subsequently, the protons flow back into the matrix (innermost region of the mitochon-
dria) across the secondary pump ATP-synthase. The lower part (spheroid) of this protein rotates
very fast (up to 500Hz) providing the free energy to catalyse the ATP synthesis from ADP+Pi. The
rotating ATP-synthase can catalyse up to about 100 ATP per second

As described in this complex chain of biochemical steps (which would be even
more complex, if all the details were included), the flow of electrons from the matrix
into the inter-membrane space during the respiratory chain establishes the corre-
sponding gradient of protons across the inner mitochondrial membrane. At this stage
there are strong electrical and pH gradients set across the innermembrane, because of
the excess of protons accumulated in the inter-membrane space, while the interior of
the matrix is largely negative and high-pH.6 Therefore the protons, which exited the
matrix through the primary proton pump, are now forced to cross the membrane in
the opposite direction, going back into the matrix through the protein ATP-synthase
(see Figs. 4.3 and 4.8b), thus stimulating this enzymatic complex to synthesise the
new ATP molecules. As shown in the figure, this protein complex is a kind of heli-
coidal rotatory engine, which can turn under the positive charge flow. The name of
oxidative phosphorylation given to this process originates from the fact that upon
the turning of the ATP-synthase, a phosphate (Pi) group is attached to the ADP, to
make a new ATP molecule. The ATP-synthase is divided into 10 identical subunits,
each of which liberates one H+ in a partial turn, therefore to make a complete 360◦

6While this is a general statement, the situation can be different in particular cases. Due to the simul-
taneous influx of other charged species, as for example in the thylakoid membrane of chloroplasts,
the relative contribution of the electric gradient and pH gradient can be largely different. A large
pH gradient requires the membrane to be little permeable to anything but protons.
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turn each proton crossing the channel pushes the rotor by about 36◦. On average, 3
ATP are synthesised at each turn, with a ratio of 3.33 protons per ATP.

It will be noted that, at this stage, the new ATP molecules produced are found
deep inside the matrix of the mitochondrion, and someway they must be transported
outside the two membranes, to be used anywhere else in the cell. In fact, also the
opposite is necessary, namely the ADP and Pimust find their way from the cytoplasm
into the mitochondria and across the two membranes, to arrive in the matrix where
this whole “battery recharging” process can take place. For this scope, other trans-
membrane proteins are used: the adenine nucleotide translocase (ADP/ATP carrier),
an antiporter (a type of ion channel that allows passage in both directions) which can
transfer ADP from outside, and ATP from the inside; the Pi instead uses a different
ion channel, a symporter (capable of allowing the passage of two species simulta-
neously) which carries the Pi together with the H+ flow. All such mechanisms are
still under active research, and only for a few of them we have a rather complete
microscopic explanation.

4.6 Energy Yield in the Cycle

As shown in the preceding Fig. 4.2, the Krebs’ cycle is situated at the intersection of
several metabolic pathways. At any given time during the daily life of an organism,
the various reactants could be present in right amounts, or else be depleted towards
some other pathway or cycle, because of a number of physiological reasons. Under
normal conditions, the various substrates are maintained at the right concentrations
by the transamination of proteins occurring in the liver, some of the amino acids
being able to turn into fumarate, ketoglutarate, succinate, oxaloacetate, some other
being able to produce more pyruvate and acetyl-CoA.

The very crucial Krebs’ cycle can function only if some basic constraints are
respected. Firstly, the right amount of oxaloacetate, which is to react with the acetyl-
CoA at the start, must be correctly regenerated at the end. If for whatever reason
the oxaloacetate is diverted to other metabolic paths, it must be quickly produced
by complementary ways; for example, by breaking down phosphoenol-pyruvate, the
intermediate molecule which precedes the pyruvate during the glycolysis. As well
as the oxaloacetate produced from proteins, this externally-produced CoAmust then
cross the mitochondrial membrane, to restart the Krebs’ cycle.

Another important condition is that the right amount of NAD+ is available. Under
conditions of lack of oxygen, enough NAD+ must be regenerated from NADH upon
oxidation of pyruvate into lactate (subsequently resulting in the annoying excess of
lactic acid, giving spikes of pain in themuscles for example after a prolonged running
effort): in this case, the direct (oxygen-less) conversion of glucose into lactate is called
anaerobic glycolysis.Whenoxygen is scarce the electron transport chain is unusable.
Therefore energy is converted only in the first step of the glycolysis, which produces
2 NADHs and 2 ATPs in the cytoplasm, after which the two NADH molecules must
be recycled back to NAD+. The enzyme lactate-dehydrogenase (LDH) provides the
necessary help in this case, by the reaction:
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CH3-CO-COO
− + NADH + H+ LDH−−−→ CH3-CH-OH-COO

− + NAD+ (4.18)

inwhich pyruvate is transformed into lactic acid. This reaction belongs to the category
of fermentation, with the peculiarity of being one of the rare cases of fermentation
in which the waste product is not a gas.

It isworth noting thatKrebs’ cycle itself does not producemuchATPdirectly: only
1ATP per cycle is produced, after the reduction of coenzymeCoA.Most importantly,
the key role of this cycle is to reduce the various participating species, with NAD+
turning into NADH, and FAD turning into FADH2.

The 4 NADH produced during the cycle contain lots of energy, since each one
of them can give back 3 ATPs in the next step, the electron transport chain, i.e.
2 × 12 = 24 ATPs for one glucose molecule (which powers two cycles, with the
two pyruvate produced by the glycolysis). Similarly, FADH2 is capable of producing
2 ATPs, i.e. 4 total. The grand total is therefore a maximum of 24 + 4 = 28 ATP
molecules, produced inside the mitochondria during the cellular respiration.

We can now sum up the glycolysis, the Krebs cycle, and the respiratory cycle
(electron transport chain), to find the maximum theoretical amount of ATP produced
by one molecule of glucose: the two NADH produced in the cytosol in the anaerobic
glycolysis step (see reaction (4.4)), and which are not consumed here (contrary to
what happens in the anaerobic fermentation) can give 6 ATPs. The subsequent entry
of each of these NADH in the mitochondria consumes 1 ATP, for a total balance of
(2 + 6 − 2) ATPs in the glycolysis, 2 in the Krebs, and 28 in the respiration = 36
ATPs (see again Fig. 4.6). Each mole of ATP corresponds to a stored energy of 30.5
kJ/mol, to be compared to the pristine energetic contents of one mole of glucose
molecules (as measured for example in an experiment of calorimetry), equal to 2871
kJ/mol. Therefore, 36 × 30.5 kJ represents about 38% of stored energy for each
mole of glucose consumed, that is largely superior to the yield from the fermentation
(anaerobic) pathway, equal to only about 4%. Also, note that since each molecule of
glucose yields 10NADHand2FADH2, the energy initially stored in these coenzymes
is 10 × 52.6 + 2 × 43.4 = 612.8 kcal/mol, or 2565.2 kJ/mol, that is 89% of the
available glucose enthalpy. The greatest loss of efficiency of the energy conversion,
which brings the 89 down to 38%, is to be attributed to the complex series of reactions
inside the mitochondrial matrix, necessary to get ATP from the coenzymes.

In the simpler prokaryotes, all the reactions are carried out in the cytoplasm, the
entry fee across the mitochondrial membrane does not exists, and the maximum the-
oretical production would therefore be of 38 ATPs, with an even slightly better yield
of about 40%. Such values are close to the best yields of machines using chemical
energy, such as internal combustion engines. However, it should be underscored that
the utilisation of NADH and FADH2 to produce ATP does not depend on the Krebs’
cycle, but on the respiratory chain whose actuation enzymes (in the eukaryotes)
are situated within the intermembrane cleft of the double mitochondrial membrane.
Therefore, such theoretical estimates are never fully obeyed, for various reasons the
ATP yield is not optimal, and the total number of molecules is rather close to about
30 ATP/glucose.
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Each mole of NADH or FADH2 consumes half a mole of oxygen and makes one
mole of water (see Fig. 4.8a). In biochemistry experiments, it is a standard procedure
to correlate the measured consumption of oxygen to the measured production of
ATP (see also Problem 4.6). With the above calculations, this amounts to about 5–
6.3moles of ATP produced from onemole of glucose, per mole of oxygen consumed.
Notably, the fact that this number is not fixed but variable, points to the fact that the
whole conversion process is non-stoichiometric. Thiswas the originalmotivation that
pushed the biochemists to search for alternate mechanisms, until Mitchell proposed
the proton-gradient theory. The flow of H+ through the proton pumps powers the
synthesis of ATP, in much the same way that the flow of water through turbines
generates electricity. This explains why respiration is not stoichiometric: a gradient,
by its very nature, is a continuous variation of a quantity.

4.7 Temperature and Heat in the Animal Body

Thermoregulation is the complex mechanisms by which animals maintain a con-
stant body temperature under changing external conditions. Given the variety of
Earth’s ecosystems, ranging from the polar ice packs to the equatorial savannah,
each species has a preferred body temperature at which its metabolic functioning is
optimal. Cold-blooded animals regulate their body temperature via the body surface,
which exchanges heat with the external environment. On top of this, warm-blooded
animals also employ physiological mechanisms which can autonomously produce
and dissipate heat in the body (i.e., cells) volume. Under steady conditions, the power
balance requires that the sumof the body’s basalmetabolism (for the normal functions
like heartbeat, respiration, digestion etc.) plus the work done by muscles, M + W ,
equals the sum of all heat gains or losses, H (including convection, conduction and
radiation), plus the latent heat E from water evaporated through the body surface,
and the amount of energy S eventually stored in the body, by chemical conversion
into fat and other tissues:

M + W = H + E + S (Watts) (4.19)

Note that when the external temperature is higher than that of the body, Text >

TB , conduction, convection and radiation actually transfer heat from the outside
environment to the body, while the opposite occurs when the external temperature
falls below TB .

Conduction occurs via the contact of the skin to the air, according to the simple
balance equation for the power, i.e. amount of heat flux released in a unit time through
a surface A:

ΔQ

Δt
= κA(Text − TB)

d
(4.20)
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where κ = 2.4 × 10−2 W/(m K) is the air thermal conductivity, and d �5cm is a
typical distance over which the temperature of the body TB goes over the (higher
or lower) air temperature Text . A minor contribution of convection comes from the
fact that the surrounding air is moving, and it can be accounted by slightly adjusting
the distance d. Taken together, the two mechanisms account for about 10 W (input
or output) for a temperature difference of ±10◦. (So small only thanks to the low
conductivity of air. Heat conduction is a totally different story in water, since κ = 0.6
W/(mK) for water, and heat flow occurs much faster. This is why divers always must
wear a technical suit, even in relatively warm waters around 20◦.)

Radiation is a major source of heat flux, to and from the body surface. According
to the Stefan-Boltzmann equation (which we already saw in Chap.2):

ΔQ

Δt
= εσ A(T 4

ext − T 4
B) (4.21)

with ε the emissivity coefficient of the skin, and σ the Stefan-Boltzmann constant.
For infrared radiation, which is the largest component around temperatures of 300
K, the human skin behaves nearly as a perfect blackbody, i.e., with ε � 1 and equal
emission/absorption efficiency. Radiation may account for about 120W power, for
temperature differences of about ±10◦. However, due to the T 4 dependence (note
that temperature in Eq. (4.21) must be given in K, not in ◦C), this contribution is
rapidly varying as a function of temperature, from only 20W for 2◦–3◦ difference,
to more than 400W if emitted by a human body put at Text = 273 K (or 0 ◦C).

Evaporation of water from the skin pores is a very important means of heat loss,
through the equation:

ΔQ

Δt
= rwHλH (4.22)

with rwH the water evaporation rate (mass or volume per unit time). The latent heat
of evaporation of water at 37 ◦C at the skin surface is λH = 0.58 kcal/g, i.e. the
evaporation of 1g of water from the body surface removes 580 calories (2430 J) of
heat. Besides a smaller fraction emitted as vapour, breathed out or diffused through
the skin, water loss occurs mostly in liquid form through sweating or panting. This
liquid deposited at the skin surface then has to evaporate. The rate of evaporation
depends most importantly on the relative humidity (RH) of the air, and can only
occur when RH < 100%. The minimum rate of water loss from the human body
(the “insensitive” loss cited in physiology books, meaning that this is not directly
related to sensing of external temperature differences) is about rwH = 600 g/day,
or 0.025 l/h, to which water lost by sweat or panting must be eventually added.
Overall, this amounts to about 17W. However, note that under medium-rate exercise
the perspiration rate is about 1.5 L/h, and it can attain 3.5 L/h in a tropical climate,
corresponding to a heat loss rate of more than 2 kW. (At such rate of sweating, the
unfortunate human must drink water at about the same rate, to avoid dehydration.)

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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Fig. 4.9 An estimation of the variations which occur in the daily life of a human, obtained partly by
directmeasurements on several days and partly by estimation from calorimeter experiments on other
days. The subject runs for jogging at 7:00 a.m. daily; other peaks in the curve of heat production
occur when he travels from his home to the job in the morning, engages in the usual work activities,
and walks home in the evening. Heat loss highlighted in red. The variations in weight are caused
by meals, voiding, insensible perspiration. [Adapted from E. DuBois, 1938 Harvey Society lecture,
with kind permission of the New York Academy of Medicine.7]

Evidently, water evaporation is by far the most efficient way of dissipating excess
heat, either produced from inside the body or from the environment (Fig. 4.9).

4.7.1 Temperature Monitoring

But, how much heat is produced by an animal body?7 The Basal Metabolic Rate
(BMR) is defined as the heat production by a human at external temperature of
33 ◦C (thermoneutral environment), and is measured under conditions of steady
state (typically 12h after the last meal). The standard BMR for a 70kg man is
approximately 1.2 W/kg, or M = 84 W in Eq. (4.19). This value can be altered by
changes in active body mass, diet, endocrine levels but, contrary to intuition, it is
much less affected by environmental changes. Considering a body surface of about
2 m2, this corresponds to a lower limit of the heat flux of about 40 W/m2, which can
increase by up to a factor of 20 under intense effort. Despite substantial differences
in body shape, composition, functions, the BMR is outstandingly conserved through

7The study Heat loss from the human body by the American pathologists Eugene DuBois and
Graham Lusk, albeit somewhat dated in terms of modern physiology, still represents a magnificent
account of these phenomena. It was reported in DuBois’ lecture to the Harvey Society of Dec. 15,
1938, and published in the 1939 Bulletin of the New York Academy of Medicine [3].
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the evolution of superior animals, and has nearly the same value for all species, from
birds to mammals.

In warm-blooded animals, a variety of physiological systems provide automatic
feedback to maintain the reference temperature. Temperature sensors throughout the
body respond to the central nervous controller, situated in themedial preoptic/anterior
hypothalamic region of the brainstem, which then adjusts heat production and loss
accordingly. In humans, sweating startswhen the body temperature TB is above 37 ◦C,
and stops immediately when TB is lowered below this value. The human forehead
skin can detect temperature differences as small as +0.003 ◦C, with a response time
of about 3s, and just a slightly worse sensitivity for negative temperature changes.

Thermal receptors are distributed all over the skin, in the form of free nerve
terminations penetrating the skin from below, and ending just under the outer keratin
and lipid envelope (less than 100 µm thick). Notably, warm-sensing receptors (the
C-fibers) have a much slower response than cold-sensing ones (Aδ-fibers): C-fibers
lack the myelin sheath (see details in Chap.7), and the sensory stimulus travels at
2 m/s, compared to 20–30 m/s for the Aδ-fibers. Such sensors compose the normal
sensory system, but their exact reaction mechanisms are still unclear. On the other
hand, specialised receptors are devoted to signalling sudden changes of temperature
that are harmful to the body: TRPV1 hot receptors have a pain-signalling threshold at
42 ◦C, while TRPM8 cold receptors activate a progressive response at temperatures
of 20 ◦C and below. These sensors are actually special proteins (again ion channels)
located at the nerve cell membrane, which can quickly change shape in response to
temperature, and activate a sudden flux of ions (Na+ and Ca2+), thus firing a rapid
electrical pulse, propagating along the neuron to the peripheral nervous system.

Additional thermoregulatory mechanisms may include: changing the diameter of
blood vessels (vasomotor control) to increase/decrease the flow of heat to the skin;
shivering, to increase heat production in the muscles; secretion of molecules such as
norepinephrine, epinephrine, and thyroxine, to increase heat production; erection of
the hairs and fur, to increase insulation (indeed most effective in animals different
from humans).

Skin represents about 15% of the body mass in humans (the “largest organ” of the
body), while muscles take up about 40%. For external temperatures far from 37 ◦C,
the skin temperature is usually 2◦–4◦ below that of the body. Under conditions of
warming, asmuch as 30% of the blood flow can go to the skin, to increase the cooling
rate. A human has about 5L of blood, which take about 1min to completely circulate
in the body, therefore about 1.5 L/min flow to the skin under normal conditions. The
blood circulation rate is called the cardiac index: it originates from the heart pumping
rate, which in humans is about 65 mL/beat at 1.15Hz (i.e., about 70 beats/min),
resulting in a cardiac index of about 80 mL/(min kg). By reducing the size of the
animal, the amount of blood decreases, the heartbeat frequency increases and so does
the cardiac index. For example, in a hamster of mass 100 g the cardiac index is 200
mL/(min kg). By scaling blood volume with the human/hamster body mass ratio,
the pumping rate of hamster’s heart should be about 0.08mL per beat, from which a
heartbeat frequency of 4–5 Hz (>250 beats/min) can be guessed. This is not far from
the real values, which are about 300 beats/min.

http://dx.doi.org/10.1007/978-3-319-30647-6_7
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Tissue conductance refers to the combined effect of conduction through layers
of muscle and fat, and convective heat transfer by the blood. In a hot environment,
peripheral vessels are expanded (vasodilation) since the body temperature is higher
than the surroundings. The heat capacity of a material is the amount of energy
necessary to increase by 1◦ the temperature of one kg of material. With a heat
capacity of 3.6 kJ/(kg K) and density 1.05 g/cm3, each litre of blood at 37 ◦C that
flows to the skin and returns 1 ◦C cooler, releases about 3.4 kJ (0.8 kcal). If we
consider 30% flowing to the skin, that is 1.5 L/min, this corresponds to a heat power
of 3400 × 1.5/60 = 85 W removed per ◦C difference, or a heat flow through the
skin surface of about 50 W/m2 per ◦C. During vigorous exercise, or when running
away from an ominous predator, peripheral blood flow can increase up to 6–8 L/min,
coupled to increased heartbeat rate, to eliminate the metabolic heat produced by
stressed muscles. (This is why the skin on thighs and arms looks much more red
after gym.)

In cold environments, conversely, the surface lower temperature makes heat loss
evenmore important. To reduce radiation loss and blood cooling, the skin temperature
must be brought closer to outer temperature and blood flow must be reduced at the
surface. Both these effects are obtained by vasoconstriction: the shrinking of vases,
to limit heat loss from the body interior to the skin through peripheral vasculature,
such as in the hands and feet. This is commonly experienced in the fact that hands
and feet are the first to feel cold on a cold day. Residual heat flow from the skin
is reduced to 5–9 W/m2 per ◦C difference between the inner body and skin, in the
peripheral areas, which may lead to frosting under extreme conditions. Shivering of
the muscles is also a response to cold, in the attempt to generate additional heat.

4.8 Heat from the Cells

Despite the very small temperature fluctuation and the sub-micrometer spatial scale,
it has become possible in recent years to image the temperature inside living cells,
by a number of techniques. Because of the very small length scales and of very small
temperature variations involved, this is indeed a challenging problem. But we are not
sure whether it may be also a truly meaningful one.

Since the cell is a chemical engine that burns combustible, it may be interesting to
study the balance between energy accumulation and dissipation to the surrounding
medium. At the macroscopic scale, we just described how the plasmic component of
the blood circulates as a thermoregulating fluid in the body, and how water evapora-
tion is responsible for the most part of excess heat evacuation. But at the small scale
of the cell, blood red cells rather carry oxygen molecules to power the respiratory
chain, and it is the rate of oxygen availability that regulates the rate of burning fuel,
i.e., the rate of heat production from inside the cell.
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Heat equation for macroscopic bodies

Let us consider a volume V with arbitrary shape, bounded by the closed surface A. For an amount of heat S(t)
released in V , the temperature field inside V is described by a distribution T (r, t), with r any point in V . From
the definition of specific heat of the material:

S(t) =
∫

V
ρcvT (r, t)dr (4.23)

hence the time-variation of S (indicated by the superscripted dot) is:

Ṡ(t) =
∫

V
ρcv Ṫ (r, t)dr (4.24)

Fourier’s law (4.30) says that heat flows from hot regions to cold regions, at a rate proportional to the
temperature gradient. The only way heat can flow from V is by crossing the surface A. By integrating over the
surface, Fourier’s law is written:

Ṡ(t) =
∫

A
κ∇T (r, t) · nd A (4.25)

In this integral, the unit vector n describes the local normal to the surface element d A, necessary to project,
by means of the scalar (dot) product, the temperature gradient ∇T (another vector) along the direction of the
heat flow. Since the shape of the body is arbitrary, so is the direction of n at every d A, provided its orientation
is always pointing outside the body V . We can now equate the two expressions for the heat rate:

∫

V
ρcv Ṫ (r, t)dr =

∫

A
κ∇T (r, t) · nd A (4.26)

Now, consider the right-side integral: it is a scalar quantity (dot-product of two vectors) exiting a closed
surface A. Let us imagine this as a plastic balloon filled with gas. If we increase the gas by some amount, this
will expand the balloon flowing across A to a larger surface. If we look at the molecules in the gas, only those
with a velocity vector v pointing toward the surface contribute to the expansion. These can be identified by
calculating the divergence of the vector field in the whole volume V , written as ∇ · v (to distinguish this from
the gradient operation, we write a dot between the two symbols). In our case the vector field is κ∇T , and the
surface integral is equal to the volume integral of its divergence, as:

∫

V
∇ · (κ∇T (r, t)) dr =

∫

A
κ∇T (r, t) · nd A (4.27)

This is an example of the divergence theorem, by which many physical laws can be written either in
differential form (one quantity is the divergence of another) or in integral form (the flux of one quantity through
a closed surface is equal to some other quantity).

By comparing the two last equations, we see two integrals of some argument over the same volume V , both
equal to the same surface integral. Therefore, the two arguments of the volume integrals must be equal, giving
the partial differential equation:

ρcv Ṫ (r, t) = ∇ · (κ∇T (r, t)) (4.28)

If ρ, cv and κ are constants, the heat equation it thus obtained:

Ṫ (r, t) = κ

ρcv
∇2T (r, t) (4.29)

The Laplacian operator in Cartesian coordinates reads ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.
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Firstly, how much heat is generated in a cell? Most animal cells are happy with
glucose concentrations between 5 and 6mM. Given the molecular weight of glucose,
A = 180Da, and a typical cell volume of 4 pL (4×10−12 L, for a spheroidal diameter
of 20µm), this corresponds to about 23 fM of glucose in each cell, or about 14×109

glucosemolecules. Aswe saw in the previous Sect. 3.5, the ATP yield from glucose is
between 30 and 40% under aerobic conditions. The rest of glucose available energy
is wasted into heat at the level ofmitochondria. Somemore heat is releasedwhenATP
is turned back into ADP, in the muscle fibers (see Chap.7), with a thermodynamic
efficiency of about 60–70%. However, to give an upper bound let us imagine that
all the glucose energy goes into heat, so that the maximum available heat source
from the cell is about 50 nJ (50 × 10−9 J). The reported glucose consumption rate
for typical eukaryote cells is in the range of 0.2 pM/h, meaning that the 23 fM are
consumed in about 400 s. The power release is thus 50 nJ/400 s = 125 pW for a cell
of this size, a value broadly confirmed by several experimental measurements. Since
the human body is estimated to contain about 1013–1014 cells, the total body power
consumption of the order of 102–103 W is also retrieved.

The second issue would be, then, how efficiently this heat is transferred to the
surrounding medium to attain a steady temperature? Even down to the scale of a
cell, heat flows in a medium of given thermal conductivity κ according to the Fourier
equation:

J = κ∇T (4.30)

The equation stipulates that the heat flux J = Q/A, amount of heat flowing across
a surface A in a unit time, is equal to the spatial gradient of the temperature times
the conductivity. This is a sort of Ohm’s law for the heat, if we interpret the power
Q/t as the electrical current, the temperature difference as the voltage difference,
and the quantity κA/Δx as a “heat resistance”.

As shown in the greybox on p. 143, starting from the Fourier equation we can
derive a heat equation to describe how the temperature distribution T (r, t) evolves
inside a dense body:

∂T (r, t)
∂t

= α∇2T (r, t) (4.31)

with α the thermal diffusivity (in m2/s), defined as α = κ/(ρcV ), the ratio between
the thermal conductivity and the specific heat cv of the material, in J/(kg K). In other
words, α is a measure of the relative ability of the material to conduct heat compared
to its ability to store heat. This is a quite complicate equation to solve, especially
when there is an internal source of heat as it is the case for a cell.

A mathematically much simpler description of heat flow can however be given
by Newton’s law:

dQ(r, t)
dt

= −h(r)A [T (t) − Text ] (4.32)

inwhich the space r has disappeared from the temperature. This equation is applicable
for a body all kept at the same temperature, thereby quantifying just how quickly

http://dx.doi.org/10.1007/978-3-319-30647-6_3
http://dx.doi.org/10.1007/978-3-319-30647-6_7
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(or slowly) its overall temperature T (t) goes to the outside value Text , starting from
some initial value T0 at the instant t = 0. The parameter h is now the heat-transfer
coefficient, inW/(m2 K),which depends on a number of things: the thermal properties
of the body, the heat flow geometry, as well as the relative importance of convection
vs. conduction. Note also that this equation looks formally similar to Eq. (4.20),
which makes sense since Newton’s model is perfectly adapted to the case in which
conduction is the dominating process (although the parameters as well as their r-
dependence are different). By recalling that the definition of the specific heat of a
substance is the amount of heat to raise its temperature by a unit temperature, i.e.
ρVcv = dQ/dT (ρV being the total mass of substance), the left-side member of
Newton’s equation can be transformed as dQ/dt = (dQ/dT )(dT/dt), or dQ/dt =
ρVcv(dT/dt). The transformed equation has now the simple solution:

T (t) = (T0 − Text ) exp(−t/τ) (4.33)

that is, the temperature attains exponentially the external temperature Text , with a
characteristic relaxation time τ = ρVcv/hA.

Judging whether the simpler Newton law (4.32) can be used, in place of the
more complicated heat equation (4.31), can be in many cases decided by looking
at the nondimensional Biot number, Bi = hL/κ , with L a characteristic length
(typically the volume/surface ratio, V/A, already appearing in the solution above).
This parameter defines how important is the resistance to thermal transfer across the
body surface compared to heat flow inside the body. Values of Bi less than 1 mean
that heat flows easily inside the body, thus quickly making the inside temperature
uniform, while the limit to flow is represented by heat transfer across the surface. In
such cases, Newton’s law is readily applicable. Despite the difficulty in estimating
the heat-transfer coefficient h, it is known that its value in water is of the order of
103–104 W/(m2 K), therefore the Biot number for a cell should be largely below 1.

We can thus estimate that the heat Q0 = 50 nJ from inside the cell is transferred to
the outside extracellular fluid (and to neighbouring cells) over a typical time τ � 10−5

s (10 ms), for a cell of radius R = 10µm, and by taking the values ρ = 1 g/cm3,
cv = 4.186 J/(g K) for water.

The third and last question we must answer is, therefore, what is the value of T0,
or by how much the cell temperature is increased because of the internally generated
heat? In principle, to know this value one should solve the non-homogeneous heat
equation (4.31), by including a heat source term S(r, t). For example, we could fix a
spherical volume V for the cell, and indicate a series of coordinates (r1, ..., rq)where
mitochondria are located inside V , with an integrated heat rate equal to 125 pW, and
attempt a numerical solution of such a (very complicate) problem on a computer.

In the light of the previous discussion, we may in this case approximate the power
generation to occur homogeneously inV , and to be steady in time.Then, Fourier’s law
(4.30) above, allows us to writeΔT = (ΔQ/Δt)/(κL), with L as above. Therefore,
the expected temperature increase should be calculated as:
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ΔT = 125 (pW)

10−5 (m) × 0.6 (W/(m K))
� 2 × 10−5 K

This is indeed a very modest temperature increase. Together with the character-
istic τ � 10−5 s, which is much faster than the fuel burning rate, this tells us that
heat from the cell is transferred very efficiently from the interior to the surrounding
environment,8 i.e. cells maintain thermal equilibrium.

4.8.1 Fever and Hyperthermia

But, if cells cannot heat themselves very much, how can animal body temperature
increase above ambient, then?

Aswe hinted above, the central nervous system reacts to external stimuli by adjust-
ing the temperature setting, pretty much as a thermostat would do in our homes. The
hypothalamus does so by reacting to some hormones, cytokines or other chemi-
cals, generically named pyrogens, which are liberated for example after a bacterial
attack to the organism. In response, the nervous system can issue “orders” directed
to increase the body temperature, thus starting what we call a fever. Other situations
in which the body requires to increase the temperature are related to cold shock
(already a few degrees below 23◦ elicit hormonal response), or hyperthermia. This
latter is distinct from fever or cold-shock response, in that the hypothalamus in this
case does not react by changing the temperature set point. In other words, hyper-
thermia is caused by external sources, such as heat shock, or unpredicted reaction to
drugs (among which some anaesthetics). In all cases, the ways temperature can be
increased are generally: (i) by restricting, or by insufficient, blood flow to the outer
parts of the body, (ii) by increasing the rate of fuel burning, and (iii) by “wasting”
some fuel into heat.

Concerning the mechanism (i), it is worth noting that blood carries at the same
time glucose and oxygen to the cells, i.e. both the fuel and the oxidiser to burn it.
Therefore, reducing blood supply to certain regions of the body amounts to reducing
the microscopic fuel supply to cells, as well as to restricting the amount that can
be burned. At the more macroscopic level, reduced blood flow also reduces the
convective heat removal towards the surface, thus increasing even more the internal
temperature. This is also the case for insufficient heat dissipation, when normal and
even surface-dilated vessel blood flow is unable to cool the inner body. Under such
conditions, it may be considered that inner body cells become thermally insulated
from the external surface, shielded under layers of colder skin. As a consequence,
heat is poorly dissipated. We can make the extreme hypothesis that all the heat
produced inside the cells will remain there, and deduce an upper extreme value of
temperature increase from the specific heat:

8The cell membrane, made of a double layer of lipid molecules, cholesterol and some other proteins
(see Appendix D), represents a negligible interface resistance to thermal flow.
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ΔT = Q

ρVcv
(4.34)

i.e., a good few degrees C or K, for Q = 50 nJ, V ∼ 10−9 cm3, and ρ, cv as above.
This would be already enough to generate a fever.

4.8.2 Metabolic Rate and Thermogenesis

Further temperature increase can come from the two other mechanisms. Concerning
(ii), the fuel-burning rate, let us note again that a normal level of blood glucose
is about 5 mM. This is the available concentration that is being carried around for
every cell to pick up. Under normal conditions, a human body consumes 3–4moles of
glucose daily, of which about 60% goes to the brain. (Note that 3 moles correspond
to about 540g of glucose.) This makes for a raw estimate of 0.2 moles/h, which
should be compared to the previously quoted value of 0.2 pM/h for an average
cell. By accounting about 1013 cells in our body, not all of which are capable of
storing directly energy (such as brain cells, which have to be continuously supplied
with glucose and oxygen to avoid death within a few minutes), the two figures are
quite consistent. Glucose is captured in the cell by specialised proteins, glucose
transporters called GLUTn, with n = 1, 2, 3..., which are necessary to move the
glucose against the concentration gradient (see next Chap.5), i.e., from inside the
blood vessel, where its concentration is higher, to the cells where it is consumed.

There are different ways to measure the rate of energy consumption by an organ-
ism, or its metabolic rate. One important parameter is the volume of oxygen con-
sumed, usually given in mL/(min kg), which is a direct consequence of ADP-to-ATP
conversion, and therefore should be directly linked to ATP consumption. In Fig. 4.10,
left, the oxygen consumption measured in experiments on a group of laboratory mice
[4] is plotted as a function of the external temperature. The normal value is labelled
RMR for restingmetabolic rate. At normal to high temperatures theRMR is constant;
however, if the animal is put at a temperature below its lower critical temperature
(vertical dashed line), the metabolic rate increases linearly, with a slope that indi-
cates the degree of extra metabolic activity for self-protection (animals living in cold
climates would have a smaller slope). Note that the experimental data are plotted as
oxygen consumption divided by body mass to power 3/4. What this scaling law says
here,9 is that larger animals can better defend themselves from cold, compared to
smaller animals. In fact, for some still unclear reason, it is very generally observed
that the metabolic rate always grows with the body mass to power 3/4 (which means
that the ratio (metabolic rate)/M3/4 should be a sort of “universal value”, valid for
most animals). Since the body surface across which heat is dissipated increases as the
power 2/3 of the mass (actually it should be S ∝ V 2/3, since S ∝ L2 and V ∝ L3, but

9We will discuss in detail this “metabolic 3/4-scaling law” in Chap.12, when dealing with the
scaling of energy and power consumption, as a function of body mass.

http://dx.doi.org/10.1007/978-3-319-30647-6_5
http://dx.doi.org/10.1007/978-3-319-30647-6_12
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Fig. 4.10 Left Thermoregulatory metabolic response to environmental temperature. Points are
experimental mouse data from Ref. [4]. RMR is the resting metabolic rate. The slope of the ther-
moregulatory line below the lower critical T is a measure of the insulation (more insulation, smaller
slope). The grey area denotes the extra metabolism needed for body temperature defence; if this
amount of heat is not produced, the body temperature cannot be defended, the animal will get
hypothermic and eventually die. Right Sources of ATP in muscle cells during prolonged effort. In
the first few seconds of exercise, energy is provided by ATP and creatine phosphate. After those
initial sources of ATP are consumed, ATP must be regenerated from metabolic pathways, firstly the
anaerobic, then the “normal” aerobic ones

we can also write S ∝ M2/3, if the body density is taken as constant), it turns out that
the ratio between heat produced and dissipated decreases as M (3/4−2/3) = M−1/12,
quite a slow power but definitely decreasing, for increasing animal mass.

Shivering, i.e. fast muscular contraction is a normal way of increasing the rate
of ATP burning in muscle cells. The major fuels for muscle cells are glucose, fatty
acids, and ketone bodies. Muscle differs from the brain in having a large storage
of glycogen (about 1–2% of the muscle mass, providing about 1200 kcal, or 5000
kJ). In fact, about three-fourths of all the glycogen in the body is stored in muscles,
ready to be converted into glucose-6-phosphate (the first brick of glycolysis) for
use within muscle cells. In resting muscle, fatty acids are the major fuel, meeting
85% of the energy needs. Since the muscle cell produces in this state more ATP than
needed, this is temporarily stored as creatine phosphate (PCr). In actively contracting
skeletal muscle, the normally available ATP is consumed in a very few seconds
(Fig. 4.10, right); at subsequent times, PCr is converted back to ATP (by transferring
the phosphate to one ADP, thus giving back a simple creatine + 1 ATP). However,
also PCr is rapidly consumed, and if the effort continues for a few minutes or more,
the rate of glycolysis far exceeds that of the citric acid cycle, andmuch of the pyruvate
formed is more quickly reduced to lactate in the anaerobic pathway (see Eq. (4.18)
above). Only at later times, for a continued effort, the correct supply of oxygen,
triacylglycerol and glycogen are restored.

Fat, cholesterol and other similar molecules are contained in small capsules
bounded by a single-layer lipid membrane, called lipid droplets. For reasons which
will become clear in the following (see Appendix D in Chap.5), such a single-layer
lipid membrane can store and transport fat molecules inside an aqueous medium,

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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and make the molecules available when needed. Lipid droplets are present almost
in any cell type, and notably in muscle cells. However, body fat is mostly stored in
adipocytes, specialised cells in which one unique, giant lipid droplet occupies most
of the cell volume, which can attain 106 µm3. These cells make up the so-called
white fat, and the energy stored there can be made available to the other cells (e.g.,
the muscles) by progressively releasing the broken lipids into the bloodstream. This
is a rather slow process, not very effective unless the organism is subject to consistent
phases of reduced fuel (dieting?) and oxygen supply.

4.8.3 Of Brown Fat, Alternative Respiration, and
Thermogenic Plants

Finally, it is also possible that temperature in the cell is increased by redirecting
some of the fuel energy directly into waste heat, as (iii), instead of producing ATP
[5]. When sudden heat is needed, rapid burn-out of calories into heat is assured by
the brown fat. In the brown adipocytes, fat is stored in many small lipid droplets
(adiposomes) scattered in the whole cell volume. The brown color comes from the
high presence of mitochondria, which can burn locally the lipids. Stimulated by
the production of noradrenaline hormone from the central nervous system, lipids in
brown adipocytes are broken down into triglycerides and long-chain fatty acids, to
be turned into a large number of NADH and FADH2 molecules by the beta-oxidation
cycle (see greybox on p. 199). Under normal metabolism, these would be converted
to ATP, by the protons flowing across the ATP-synthase channels (remember, flow of
protons that is established by the opposite flow of electrons in the respiratory chain).
However, in brown adipocytes the protons can leak, and return into themitochondrial
matrix via specialised uncoupling proteins, such as UNCn, n = 1, 2, 3... These
proteins “uncouple” the ATP-producing reactions: the protons flowing across the
inner membrane can bypass the ATP-synthase and dissipate all their energy locally,
into heat. It may be noted that, when animals are exposed for long times to low
temperatures they tend to develop a larger mass of brown fat, therefore the shivering
is progressively replaced, or accompanied, by such endogenous thermogenesis.

Brown fat mitochondria demonstrate the use of normal respiratory chains but
with a high proton permeability of the membrane, thanks to the uncoupling proteins,
which leads to “efficient” energy dissipation. Note that in the normal operation of
the organism, the production of heat is a waste going under the chapter of efficiency
reduction, since the target is to extract as many ATP units as possible from a single
glucose or fatty acid molecule. In the case of endogenous heat production, or ther-
mogenesis, the efficiency is measured by how much heat can be extracted from the
conversion process, of which the Eq. (4.34) above represents the extreme hypothesis
of 100% efficiency. However, wemust always remember that the system free energy,
ΔG, and not its enthalpy, is the available supply, and on the other hand, the animal
body can never be considered as a truly isolated thermodynamic system.
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However, alternative respiration pathways also exist. We already saw the pos-
sibility of supplementing ATP via anaerobic pathways, which can nevertheless be
used for a quite short time by the animal, since it will need to breathe oxygen again,
sooner or later. A high respiratory rate in a cell without concomitant ATP synthesis
may also come from a normal proton conductance of the mitochondrial membrane,
but concomitant lack of coupling between electron flow and proton translocation.
The standard description given in Sect. 4.8, with complexes I-IV coupling electrons
liberated in NADH and FADH2 oxidation, to protons flowing in the intermembrane
space, thus creating the electrochemical gradient that in turn powers complex V
to flow protons back into the mitochondrial matrix, is indeed mostly adapted to
mammals. To break off this chain, they have selected (in evolutionary sense) the
brown fat proton-leaking proteins.

This description is however incomplete for the mitochondria of many species of
oysters, mussels, bivalves, marine worms, some algae, and most species of terrestrial
plants, aswell as for prokaryotic respiratory systems. All these organisms rely also on
additional electron transport components that addmore points of entry and/or exit for
electrons, thus creating a branched structure for the pathways of the electron-transfer
process. Such alternative respiration pathways are often resistant to cyanides, nitrides,
or sulphides, all of which are potent inhibitors of the functioning of cytochrome-c
oxidase (hydrogen cyanide, HCN, was employed as an asphyxiant gas by many
armies during WWI), therefore their presence in marine species could be linked to
adaptation to particular underwater environments rich in such harmful chemicals.

Notably, the same alternative respiration pathways may be also linked to ther-
mogenesis, especially is some plants. The most thoroughly investigated example of
a modified respiratory chain is the Arum maculatum (Fig. 4.11), which can increase

Fig. 4.11 Examples of thermogenic plants. Left Arum maculatum can increase the temperature
of its spadix by 15 ◦C above ambient, to distill an insect attractant as a pollination aid. Middle
Symplocarpus foetidus, found in Nova Scotia, Quebec and other cold regions of North America,
can raise the temperature of its inflorescence up to 35 ◦C above air temperature, to break its way
through snow and ice. Right Amorphophallus titanum, the largest known flower on Earth with its
3m of height, diffuses its carrion-like foul smell by increasing the temperature of the tip of the
central spadix to about 35 ◦C. [Photos © by a Sannse Carter Cushway, b Susan Sweeney, repr.
under CC-BY-SA 3.0 licence, see (*) for terms; c U.S. Botanic Garden archive (public domain)]
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the temperature of its spadix by 15◦ above ambient. The mitochondria of the spadix
possess a highly active cyanide-insensitive alternative respiratory chain, that does
not translocate protons. Ubiquitous in all plants, the alternative oxidase (or AOX) is
a mitochondrial inner membrane protein which functions as a component of electron
transport. It catalyses the reduction of O2 to H2O, thus representing a branching point
in the respiratory chain. Significantly, the alternative electron flow from ubiquinone
(Q10 in Fig. 4.8) to O2 via AOX is not coupled to proton translocation. Hence, AOX
represents a non-energy-conserving branch of electron transport, bypassing the last
two sites of proton translocation (complexes III and IV).

Although AOX as far as we know is present in all plants, it is not always linked
to heat generation. Several other examples of thermogenic plants exist (see Bib-
liography at the end of this chapter), such as the Symplocarpus foetidus, for which
the explanation of heat production is most likely the protection of the frost-sensitive
spathe and spadix from freezing in below−0 ◦C temperatures. During sustained cold
spells of −10 ◦C and colder, the inflorescence temperature may be kept just above
freezing for a number of days. Longer cold spells may cause the plants to sacrifice
inflorescences in order to conserve plant energy.

Other explanations for such endogenous heating phenomenon might include heat
aiding in the release of odours to attract insect pollinators, and heat aiding in the
growth of pollen tubes, or of the inflorescence itself. These scents, typically released
from the spadix, often mimic carrion or dung, such as in the giant inflorescence of
Amorphophallus titanum, or other essences such as garlic, apple, or turnip. These
odoursmay help attract insects, and the heat itself may prove enticing for invertebrate
pollinators. Whatever the purposes of self-heating are, these plants display surpris-
ingly high respiratory rates, equivalent to that of similarly sized small mammals.

Appendix C: The Molecules of Life

Water, ions, and a quantity small organic molecules, such as sugars, vitamins, fatty
acids, account for about 80% of living matter by weight. Of these small molecules,
water is by far the most abundant. The remaining 20% consists of macromolecules:
proteins, polysaccharides, and nucleic acids. In Chap.3 the attention was focused on
these latter. In Chap.4, ATP and ADP have taken the stage, together with a number
of important enzymes among which FADH2 and NADH. Notably, the nucleotides
making up the nucleic acids DNA and RNA (see Appendix B) share the same basic
chemical structure of ATP and ADP, and the coenzymes have chemical structures
strictly derived from these same ones. Phospholipids and the multi-layered mem-
branes they can form will be an important part of Chap.5. And Chaps. 6–10 will be
dominated by a quantity of highly specialised proteins.

http://dx.doi.org/10.1007/978-3-319-30647-6_3
http://dx.doi.org/10.1007/978-3-319-30647-6_4
http://dx.doi.org/10.1007/978-3-319-30647-6_5
http://dx.doi.org/10.1007/978-3-319-30647-6_6
http://dx.doi.org/10.1007/978-3-319-30647-6_10
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The chemical structure of the nucleoside is shown in yellow, in Fig. 4.12: it is
composed by a pentagonal sugar ring, the ribose, to which one of the five possible
nucleosidic bases (in blue: A, G, T, C for DNA, and U replacing T for RNA) are
attached by a glycosidic bond. The chemical difference between DNA and RNA is
visible in the carbon atom labelled 2′: DNAhas aH atom,while RNAhas an hydroxyl
(OH) group. The carbon 3′, where another OH is attached in both nucleic acids, is
the site where a link with an adjacent base along the chain can be formed. Both DNA
and RNA are composed by joining together nucleotides (a nucleoside plus its lateral
phosphate chain) in the monophosphate form, i.e. carrying only one PO−

3 side group
(red in the Figure). In the monophosphate, one of the oxygen atoms is doubly bound
to the phosphorus, as P = O, a second one is saturated by a hydrogen, as OH, and
the last one is unsaturated and therefore negatively charged. When the next base is
attached to either a DNA or RNA chain at the 5′ end, the OH from one base reacts
with the H at the 3′ position of the other, and the two form a H2O molecule while
the two bases are covalently bonded together. This is called a phosphodiester bond,
the newly formed PO3−

4 group being overall negatively charged. Such a bond can be
broken by adding back the water molecule, in a process of hydrolysis. Because of
the presence of the OH in the 2′ position, hydrolysis of the -O-P-O- phosphodiester
bond is much easier (energetically less costly) in RNA than in DNA. This is one
reason for the higher catalytic activity of RNA.

As shown in Fig. 4.12, nucleotides can also occur in the diphosphate and triphos-
phate form, with two or three PO3−

4 groups consecutively attached to the 5′ carbon
atom. This structure is the same found in the ATP and ADP. Figure4.13 (top row)
shows the structure of these molecules, which have one adenine base attached to
the ribose and, respectively, three or two phosphate groups (their names, adenosin-
tri-phosphate, and adenosin-di-phosphate, specify exactly this feature). It should be
noted that in their ’naked’ form ATP and ADP have a large negative charge of -4 and
-3 respectively. Despite the coordination with water molecules, such large charges
are difficult to stabilise, therefore in biologically-relevant conditions these species

Fig. 4.12 Chemical structure of nucleic acids. A nucleoside plus one, two or three phosphates
makes a nucleotide. DNA and RNA are distinguished by the different bases attached to the central
ribose by the glycosidic bond
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Fig. 4.13 The ATP (above, left) and ADP (right) nucleotides. Each contains adenine as the base,
and respectively three or two phosphate groups, which are charged in the former, and neutralised
by H in the latter. The coenzymes FAD (middle, left), NAD+ (right), and acetyl-CoA (below).
Note the similarity in the chemical structure, built from an adenine base and two phosphate groups
(like in ATP and ADP), and a second moiety (riboflavine in FAD, nicotinamide in NAD, mercapto-
ethylamine in the acetyl-CoA) linked by a phosphodiester bond to the phosphates

are always complexed, typically with Mg2+ ions, to [ATP-Mg]2− and [ADP-Mg]−.
Also the other bases (G, T, C) can form di- or tri-phosphates, however these species
will be rarely encountered in the subjects discussed here, with the possible exception
of GTP, guanosine triphosphate.

A subset of important players is represented by the coenzymes. Flavin adenine
dinucleotide, or FADH2, is a redox cofactor that is created during theKrebs cycle and
utilised during the last part of respiration, the electron transport chain. Nicotinamide
adenine dinucleotide, or NADH, is a similar compound actively used as well in the
electron transport chain. In Fig. 4.13 (middle row) the chemical structures of FAD
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Fig. 4.14 Stereochemical formula of a triglycerid. The central glycerol (in the green box) is attached
to three lipid chains, (CH2)n , indicated as R1,2,3. In the schematic on the left, each vertex �� or
�� implicitly indicates a CH2 group

and NAD+ are shown. In the former, the two N can be reduced to NH, thus giving
FADH2; in the latter, the 4′ CH can be reduced to CH2, thus giving NADH. As we
learned in this chapter, both species are oxidised back to their original state, in the
parallel reduction of cytochrome. Bothmolecules are based on an adenine nucleotide
(ATP), linked to anothermoiety by a phosphodiester bond between two PO3−

4 groups,
which are partly saturated in FADH2. The moiety in the latter is a riboflavin, while
it is a nicotinamide linked to a sugar ribose in NADH.

Acetyl-coenzyme-A or acetyl-CoA (Fig. 4.13, bottom row) is produced during the
breakdown of carbohydrates through glycolysis, as well as by the beta-oxidation of
fatty acids. This fundamental coenzyme feeds the two carbon atoms of its end-group
acetyl (-COOH), into the Krebs cycle, which will be oxidised to CO2 and water, to
produce energy stored in ATP. The terminal acetyl group is linked by a strong bond
to the S atom of mercapto-ethylamine; hydrolysis of this bond is exoergic (it releases
a ΔG = −31.5 kJ). It is this bond that makes acetyl-CoA one of the “high energy”
compounds. Overall, about 11 ATP and 1 GTP molecules are obtained per acetyl
group that enters the Krebs cycle.

Note that all these coenzymes have a similar structure shared with ATP and ADP,
in that one ADP moiety is common to all of them.

The triglycerides (also called triacylglycerols, TG, or triacylglycerides, TAG) are
compound molecules in which the three hydroxyls (OH) of a glycerol are linked to
three fatty acids. Suchmolecules are themain constituents of the vegetable oils and of
animal fat. In Fig. 4.14, the chemical structure and general formula of triglycerides
is given. Here R1, R2 and R3 are three, generally non-identical fatty acids, with
general formula (-CH2)n-COOH, and length ranging from n = 4 to 22 carbon atoms.
However, a length between 16 and 18 is themost commonly observed. Shorter carbon
chains are observed in the butyric acid, the principal component of home butter. The
glycerol is a polyol, familiarly know as glycerine, usually produced as side-product
in the glycolysis. Liver and adipose tissue can supply glycerol when glycolysis is
scarce, by using an alternate metabolic path involving amino acids.

Practically all naturally occurring fatty acids have an even number of carbon
atoms, because they are all bio-synthesised starting from acetic acid, the smallest
carboxylic acid with chemical formula CH3COOH. The carbon chains in triglyc-
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Fig. 4.15 Different representations of the five-carbon sugar ribose. a, b Fischer projection of D-
ribose and L-ribose. In this representation it is evident the enantiomerism, the two molecules being
mirror images of each other. c, d Furanose and e, f pyranose molecular structure of D-ribose and
2-deoxy-D-ribose. These two sugars link in the furanose form to phosphate groups (via C3 and C5)
to build up the backbone of the RNA or DNA chain, and provide the linkage (via C1) between the
backbone and the nucleobases

erides can be saturated or unsaturated, indexsaturated/unsaturated, fatty chain i.e.,
they can contain one or more double carbon bonds C=C, in each chain (see also
Appendix D, about the chemical nature of phospholipids).

Most natural fats, such as butter, lard, tallow, are made from a complex mixture
of triglycerides. Due to this, they melt progressively over a wide interval of temper-
atures. Cocoa butter is atypical, since it is made of only one type of triglyceride, in
which the three chains are a palmitic, an oleic and a stearic acid, and has therefore
a well-defined melting point. This is likely the reason why chocolate melts in the
mouth without giving off a too “fatty” feeling.

Carbohydrates are a widely diverse group of compounds that are ubiquitous
in nature. More than 75% of the dry weight of the plant world is carbohydrate in
nature, particularly cellulose, hemicellulose and lignin. Among carbohydrates, sug-
ars occupy a special position, due to their variety of structures and bonding, allowing
a chemical flexibility vastly superior even to proteins, with combinations ranging
from simple monosaccharides to polymers made of millions of units (Fig. 4.15).

Monosaccharides are linear or ring-shaped molecules with four to seven carbon
atoms. Because these molecules have multiple asymmetric carbons, they can exist
as isomers that are not mirror images of each other (enantiomers), indicated by
the symbols D and L. Among the most important sugars to be found in the cell
environment, we find the five-carbon D-ribose that is at the heart of RNA, and of
DNA in the deoxyribose form (one O is lost from the OH group in the 1′ carbon);
and the six-carbon D-glucose, produced in the photosynthesis and at the centre of
the glycolysis cycle (note that L-ribose does not exist in nature, and also L-glucose
is rarely found). Such sugars in solution are nearly always in the closed ring form,
with only ∼0.1–0.5% of the molecules in the open-chain structure. When the chain
closes into a ring, a pentagonal (furanose) or hexagonal (pyranose) structure can
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be formed, by excluding one of the carbons from the ring. The hexagonal structure
is more common in ribose, and almost exclusive in glucose. However, the ribose
making up the structure of DNA and RNA is always in the pentagonal form.

Polysaccharides or glycans are formed by joining together any combination of
monosaccharides, via a glycosidic bond (the same name is given also to the bond
between a sugar and any othermolecule). They range in structure from linear to highly
branched. Examples include storage polysaccharides such as starch and glycogen,
and structural polysaccharides such as cellulose and chitin. A dense layer of glycans
is found on the outer surface of many cells, the glycocalyx. Glycans can combine
with proteins in various forms, giving rise to peptidoglycans. The outer surface of
bacterial cells is covered by a cortex of peptidoglycans arranged in a nearly crystalline
form, providing a kind of exoskeleton that gives the bacterium structural strength
and resistance against osmotic pressure.

Proteins are the other majority component of cells. The assembly of proteins
from a sequence of amino acids translated by the mRNA was briefly described in
the Appendix B. Once linked by peptide bonds in the primary structure, the long
sequence of amino acids must however get folded into a three-dimensional structure,
for the protein to become fully functional.

Starting from the primary structure, a variety of local interactions (van der Waals
and electrostatic interactions between charges and dipoles, π -stacking, hydrogen
bonds, hydrophobic effect) make up contacts between different portions of the pep-
tide chain, and make it fold and bend into the secondary structure. The properties of
the amino acids are listed in Fig. 3.14 of Appendix B. According to their degree of
hydrophobicity, parts of the structure of the protein can adjust to minimise contact
with water. Although it is impossible to provide an exhaustive list of the thousands
different proteins necessary for the functioning of living organisms, there are some
structural motifs in the secondary structure, which are recurrently found in the archi-
tecture of diverse proteins. Such “universal” motifs allow to recognise and classify
common functional substructures, even in proteins performing completely different
functions. The most important such motifs are the alpha helix and the beta sheet,
shown in Fig. 4.16(a, b). The alpha helix gets its name from the central C atom of
each amino acid, called the “alpha” carbon. In some regions of the protein, neigh-
bouringN-H andC=Ogroups can form hydrogen bonds, whichmake for amore solid
bonding than provided by the longer-range Van der Waals and electrostatic forces.
A locally helical structure can arise from such bonds, every fourth α-C being found
on top of each other, with a typical helix period of 0.54 nm (compare to 0.34nm in
DNA). The β-sheet is also formed by the same type of hydrogen bonds between N-H
and C=O, but in this case the repeated structure is a multiply-folded flat pattern of
roughly aligned strips of amino acids. The alignment of the strips can be parallel or
antiparallel, according to the arrangement of the residues, either facing or opposing
each other on each side of the strip. Such easily recognisable structures as the α-helix
and the β-sheet are ubiquitous in all proteins, and are usually represented by a helical
ribbon, and by a flat arrow, respectively, in the ternary structure, the actual 3-D form
of the protein (Fig. 4.16c).

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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Fig. 4.16 Schematic of a α-helix and b β-sheet subunits of protein secondary structure. c Tertiary
3-D structure of the protein Src-kinase, drawn in the “cartoon” style, to highlight the presence of
α-helices (purple) and β-sheets (yellow). The strings drawn in grey correspond to subunits with
undefined (random) structure

Any protein can be composed by several different domains, or subunits that can
fold independently into the 3-D structure. Some proteins can be composed by several
repeats of one same domain. For example titin, the largest protein found in the human
body, whose sequence of about 27,000 amino acids is made for about 90% of two
modules, the Ig (immunoglobulin) and the FN3. Note that these same domains are
observed, with some variants, also in several other proteins.

When the protein functions as enzyme, its structure hosts one (rarely more than
one) active site. These may appear as “pockets” or “holes” in the tertiary structure,
in which a small organic molecule (the ligand) can fit and be temporarily bound (for
example, myosin binding ATP to perform the power stroke in muscle contraction,
see Chap.9). The portion of the active site where the ligand binds is the binding site.
The “lock-and-key” model of the ligand-enzyme interaction predicts that there is a
perfect geometrical fitting between the two, such that the binding does not induce
any further structural change in the couple. In the “induced-fit” model, the active site
is modified by the entry of the ligand, and returns to its unperturbed shape when the
ligand is released.

Problems

4.1 The ΔG of metabolic reactions
Consider a typical metabolic reaction in the form A→B. Its standard free energy
change is 7.5 k Jmol−1.

(a) Calculate the equilibrium constant for the reaction at 25 ◦C.
(b) Calculate the ΔG at 37 ◦C, when the concentration of A is 0.5 mM and the

concentration of B is 0.1 mM. Is the reaction spontaneous?
(c) Under which conditions might the reaction proceed in the cell?

4.2 Switching from ATP to ADP
Adenylate kinase (ADK) is a phosphotransferase enzyme that catalyses the inter-

http://dx.doi.org/10.1007/978-3-319-30647-6_9
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conversion of adenine nucleotides, and plays an important role in maintaining the
right concentrations of ATP and ADP in the cell (“cellular energy homeostasis”).
The reaction can be schematised as:

ATP + AMP � 2 ADP

Given the concentrations of [ATP] = 5mM, [ADP] = 0.5mM, calculate the [AMP]
concentration at pH = 7 and 25 ◦C, under the condition that the adenylate kinase
reaction is at equilibrium.

4.3 Energy harvesting
Calculate the absolute yield ofATP permole, when a substrate is completely oxidised
to CO2, in the case of:

(a) pyruvate (CH3-CO-COO−),
(b) lactate (CH3-CH-OH-CO

−
2 ),

(c) glucose (C6H12O6),
(d) fructose 1,6-diphosphate (C6H14O6(PO

2−
3 )2).

4.4 Human blood
The kidneys help control the amount of phosphate in the blood. Extra phosphate
is filtered by the kidneys and passes out of the body in the urine. A high level
of phosphate in the blood is usually caused by a kidney problem. Normal levels of
potassium in human blood should be in the range 3.5–5mM.However, the phosphate
ion can be found in any of its protonation states, H3PO4 (neutral), H2PO

−
4 , HPO

2−
3

and PO3−
4 (this is the mix called inorganic phosphate, indicated with Pi, see also

footnote to p. 114). Given the equilibrium constants for the three reactions:

H3PO4 + H2O ↔ H3O
+ + H2PO

−
4

H2PO
−
4 + H2O ↔ H3O

+ + HPO2−
4

HPO2−
4 + H2O ↔ H3O

+ + PO3−
4

respectively equal to K1 = 7.5 × 10−3, K2 = 6.2 × 10−8, K3 = 2.2 × 10−13,
calculate the relative concentrations of the different phosphate ions in human blood
at physiologic pH = 7.4.

4.5 Gym doesn’t slim
Fats are usually metabolised into acetyl-CoA and then further processed through
the citric acid (Krebs’) cycle. However, glucose also could be synthesised from
oxaloacetate, one of the intermediates during the citric acid cycle. Why, then, after
some hours of exercise depleted our carbohydrate reserve, do we need to replenish
those stores by eating again carbohydrates? Why do we not simply replace them, by
converting some stored fats into carbohydrates?
(Hint: look at the number of carbon atoms entering and exiting the Krebs’ cycle)
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4.6 Pigeon muscles love citrate
The activity of the citric acid cycle can be monitored by measuring the amount of O2

consumed. The greater the rate of O2 consumption, the faster the rate of the cycle, the
faster the rate of ATP production. Hans Krebs in 1937 used this type of experiments,
working with fragments of pigeon breast muscle, very rich in mitochondria. In one
set of experiments, he measured O2 consumption in the presence of carbohydrate
only, and in the presence of carbohydrate plus 3 µmol of citrate (C6H8O7). After
2h30 he measured a consumption of 49 µM with glucose only, and 85 µM when
citrate was added. Complete oxidation of citrate follows this chemical equation:

C6H8O7 + x O2 → y CO2 + z H2O

(a) What is x , y and z, and how many moles of oxygen are consumed in the exper-
iment after adding the citrate?

(b) Given the experimental result, what implications does this have for metabolism?

4.7 Antibiotics
Oligomycin-A is a natural antibiotic, isolated from the Streptomyces bacteria, which
works by inhibiting the action of the ATP-synthase pump. It is sometimes used in
laboratory research about ion channels, but it is never adopted in any pharmaceutical
prescription drugs, because it is highly toxic. What is the main reason for it being so
dangerous for animals?

4.8 Transmembrane proteins
Transmembrane proteins are quite bigmolecules that cross the cellmembrane, expos-
ing part of the structure both to the inside and the outside of the cell. By looking at
the amino acid sequence of one such proteins, it is seen that it includes four regions
characterised by strongly hydrophilic amino acids, separated by regions containing
mostly hydrophobic amino acids. Draw a sketch of the tertiary structure arrangement
across the membrane.

(*) The terms of the Creative Commons Attribution-ShareAlike 3.0 and 4.0 International License
(http://creativecommons.org/licenses/by-sa/3.0/, http://creativecommons.org/licenses/by-sa/4.0/)
permit use, duplication, adaptation, distribution, and reproduction in any medium or format, as
long as appropriate credit is given to the original author(s) and the source, providing a link to
the Creative Commons license and indicating if changes were made. If remixing, transforming, or
building upon this chapter or a part thereof, such contributions must be distributed under the same
license as the original.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/4.0/
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Chapter 5
Entropic Forces in the Cell

Abstract In physics we are accustomed to four fundamental forces governing every
phenomenon in the Universe. However, when dealing with heterogeneous, multi-
phase systems, showing aggregation and self-organisation at length scales between
nanometers and micrometers, other interactions seem to appear mysteriously, induc-
ing strange effects such as osmosis, diffusion, depletion, hydrophobicity, settling,
viscous drag, and so on. Certainly, also these effects must ultimately find their ori-
gins in the four fundamental forces. But in order to master them we need to intro-
duce statistical thermodynamics concepts, conveniently embodied in the notion of
“entropic” forces. The internal dynamics of a cell, a dense fluid crowded by hundreds
of different proteins, molecules, charged ions, multiple lipid membranes, appears as
an ideal laboratory to study such exotic physical phenomena.

5.1 Thermodynamic Forces

In the realm of classical mechanics, a force is expressed as the variation of a potential
energy function, with respect to a position variable:

f = −ΔU

Δs
(5.1)

The meaning of such a mathematical procedure is that, for a mechanical system
in a state of equilibrium, characterised by a potential energy profile U (s) (for the
sake of simplicity we take the system behaviour to depend on one single variable,
s, for example the gravitational field attracting Newton’s apple to the ground), any
displacement Δs requires the application of a force f working against the variation
of potential energy ΔU . Therefore, the operational method to define a force is to
perform a controlled displacement of the system from its equilibrium state, and to
measure the resulting variation in energy. The ratio between the energy variation and
the imposed displacement is a measure of the force exerted by the potential field or,
when taken with a minus sign, of the equal and opposite force needed to perform the
displacement. Note that the variation ΔU is necessarily positive, since we start from
a local equilibrium point, i.e. one whose value of potentialU is lower than any other
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point in the immediate neighbourhood. When in Eq. (5.1) theΔs is taken to the limit
of an infinitesimal displacement ds, the finite variation turns into the infinitesimal
derivative of U with respect to s, written as dU/ds.

It is worth noting that in classical mechanics there is no use for the concept of
temperature.Mechanical forces, being usuallymuch larger than thermal fluctuations,
work in an ideal condition of zero temperature. For example the kinetic energy of the
rotational movement of the Moon in the gravitational field of the Earth, Sun and all
the other bodies of the solar system, is given only by the square of its translational
plus rotational speed, while the thermal motions of the atomsmaking up these bodies
are entirely negligible. All the mechanical quantities are defined and conceived at
T = 0 K.

On the other hand, in our study of thermodynamics in Chap.2 we introduced a
whole host of additional potentials, such as T S, H, F,G, all with dimensions of
energy, [E]=[M][L2][T−2]. The important character of these additional quantities is
their typical dependence on the temperature. Therefore, we could ask what would be
the equivalent of a “force”, if we were to perform a constrained variation of any of
the above potentials. In that case, we would need to identify some control variable,
λ (the equivalent of the displacement s for the mechanical force), whose variation
would impose a change in the corresponding potential function Λ. This would be
the equivalent definition of a generalised force:

fλ = −ΔΛ

Δλ
(5.2)

Such a generalised force is often called an entropic force, since in themost interest-
ing cases it is the variation of the entropy (multiplied by T , to obtain the dimensions
of an energy) to be implicated. Indeed, in thermodynamics it is always interesting
to look at the change of the free energy, F or G, rather than the internal energy U
(the latter being nearly equal to the free energy at the very lowest temperatures). The
total variation would be written as:

fλ = −ΔF

Δλ
= −ΔU

Δλ
+ T

ΔS

Δλ
(5.3)

If the variable λ affects only, or mostly, the entropy S, and has a null, or negligible,
effect on the internal energyU , the variation of free energy translates into a variation
of the sole entropy, hence the denomination of entropic force for fλ.

For example, in the greybox on p. 24, the free energy of the system of volume V ,
held by the mobile wall at the position λ, is:

F = E − T S = const − NkBT ln V = const − NkBT ln(L2λ) (5.4)

Equilibrium in this case is the result of the balance between an internal pressure,
coming from the hits of the gas molecules against the wall, and an external pressure
coming from the spring holding the wall at the position λ, corresponding to a fixed

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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value of the total energy (and by consequence of the temperature T ). Since the only
variable here is λ, the corresponding generalised force can be defined as:

fλ = −ΔF

Δλ
= NkBT

λ
(5.5)

Because the free energy comprises both the kinetic energy and the entropy of the
gas, we can speak of entropic force, as the generalisation of the mechanical concept
of force as originated by the displacement of a test body. Note that the parameter λ
(in this case the position of the mobile wall) can be any control variable allowing
to change a thermodynamic potential, such as a chemical concentration, the pH of a
solution, the magnetization of a component, and so on.

5.2 The Strange Case of Osmosis

Let us consider a thermodynamic open system (i.e., one capable of exchanging both
energy and matter with the surroundings) divided into two parts like in Fig. 5.1a. A
large container A holds a cylinder B inside. Both A and B are filled with water. The
cylinder B is sealed at its bottom by a semi-permeable membrane, such that the level
of water inside is equal to that in the contained A. Here, by semi-permeable we mean
a porous membrane that lets water molecules to pass freely, while stopping other
molecules with a bigger size than that of H2O (about 1 nm). Such a membrane may
be thought of as a sort of sponge, with a network of connected pores of average size
about 1 nm.

Now, let us drop some glucose in the cylinder, with concentration cB . Since the
glucose molecule (C6H12O6) is about 10 times bigger than the water molecule, it
cannot pass through the membrane pores, therefore the concentration in the water

Fig. 5.1 Schematic of the osmotic pressure experiment. a The initial condition: the fluid filling the
cylinder and the container is pure water, the level of the fluid in the two parts of the systems is the
same. b The system after adding glucose (blue particles) in the cylinder: the membrane closing the
bottom of the cylinder is not permeable to sugar molecules, water sips in from the container, and
increases the level of the fluid inside the cylinder
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outside the cylinder remains cA = 0. Chemical equilibrium between the two parts of
the open system requires the concentration of any species to be equal (recall Eq. (2.19)
of Chap.2, stating that the entropy will be maximum when the concentration cA =
cB ; or, equivalently, the Gibbs-Duhem equation (2.44), stating that there will be a
ΔG �= 0 whenever concentrations are not at equilibrium). Since the passage of
glucose into the container A is not possible, the only other possibility is that water
diffuses through the membrane from A to B. The level of water in the cylinder is
raised by an amount h (see Fig. 5.1b), as if there were an artificial pressure that
pushed the water up inside B, working against the gravity. In fact, if the experiment
were to be performed in void, such as inside the orbiting Space Station, all the water
would flow from A into B. On the Earth surface, the hydrostatic (gravity) pressure
p = ρgh, with ρ the water density, is the only force that contrasts the apparent
pressure pushing the water up in the cylinder. Such an artificial pressure π is called
osmotic pressure, and it arises only from the chemical difference of concentration.
It is therefore a clear example of a generalised thermodynamical force (or entropic
force). Eventually, π = p is exactly the conventional value, e.g. in units of atm or
bar, attributed to the osmotic pressure.

In 1885, the Dutch chemist A. Van’t Hoff was the first to perform systematic
experiments on this quite surprising effect. The surprise originates from the fact that
the substance added inside the cylinder does not have any interaction with the water
molecules, it does not give rise to special new compounds, it does not carry any
additional type of force (e.g., electrical, magnetic...), therefore the fact that the water
in the sealed cylinder would rise was somewhat mysterious. By carefully looking at
his own experimental data, Van’t Hoff discovered that the osmotic pressure, when
expressed as a function of the concentration c and of the fluid temperature T , follows
a sort of ‘perfect-gas’ law:

π = Δc(kBT ) (5.6)

Here Δc = ΔN/V = (NB − NA)/V is the difference in concentration of the
solute, i.e. the molarity of the glucose solution with N molecules in the volume V ,
if cA = NA = 0 at the beginning of the experiment. Such a finding was even more
surprising, since a dense solution of water and glucose is anything but so far removed
from the idea of a perfect gas! In fact, Van’t Hoff equation is valid at relatively small
concentrations of solute, up to some 5–10%, whereas π increasingly deviates from
the above simple equation, as the concentration is increased. This suggests thatmaybe
the perfect-gas idea should be taken as the equivalent of glucose molecules being
enough distant from each other, at the smaller concentrations, such that the fluid
water exerts a sort of screening effect, and the glucose molecules do not ‘feel’ each
other, thus effectively behaving as a kind of perfect-gas molecules separated by a
vast empty space.

In the following, we provide two simple justifications of the osmotic effect, a first
one more bookkeeping and intuitive, and a second one that points at the entropic
origin of the osmotic pressure.

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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5.2.1 Microscopic Model

The water and sugar molecules in the A and B subsystems in Fig. 5.1 are at the
same temperature, therefore their average kinetic energy is the same. Just like in the
closed-system ideal situation (see Chap.2), they can exchange energy at equilibrium
by means of collisions with the membrane wall, under the condition that the total
energy in the sum system A+B is conserved, and that the energy of each molecule
follows at any instant the equipartition law.

For the sake of simplicity, we will suppose that the pores in the membrane are
simply straight channels of diameter 1nm. We also assume that collision of the
molecules with the membrane occur elastically. Let us consider water and glucose
molecules flowing in the perpendicular direction toward the membrane, from the two
sides, with average velocity v dictated by the law of equipartition, i.e. 12mv2 = 3

2kBT ,
m or M being the mass of a water, or a glucose molecule, respectively. When a water
molecule in A hits a pore of the membrane, it can cross the membrane and get into
B without changing its speed, and vice-versa if a molecule from B passes into A.
However, when a glucose molecule in B aimed in the −x direction hits a pore no
passage occurs, and the molecule rebounds by changing its velocity from −v to +v.
If, for the moment, we only consider molecules traveling perpendicularly along the
x direction, against the membrane lying in the yz plane, at every glucose hit the
membrane receives a mechanical impulse:

Δp = M(v f in − vin) = 2Mvx (5.7)

This is also the total impulse per glucose molecule, if we consider that on average
there will be a same number of water molecules hitting the membrane from either
side, and their contribution summing up therefore to zero. Since there are no glucose
molecules in A, such an impulseΔp results in an average pressure imbalance on one
side of the membrane equal to:

1

S

Δp

Δt
= 2Mvx

SΔt
(5.8)

with S the membrane surface, and Δt the time duration of a collision. What we
define as the osmotic pressure π results from the sum of all such collisions, averaged
in a time Δt , since the impulse variation divided by time has the dimension of a
force, [M][L][T−2], which divided again by a surface, [L2], gives the dimensions of
pressure.

The average collision time Δt can be taken proportional to the inverse of the
collision frequency, ν = (Δt)−1. By following a simple reasoning common to such
physical situations, the latter can be obtained as the number of molecules crossing
a given volume in a unitary time, i.e. ν = Svxc, if c is the concentration of glucose
molecules in the subsystem B. Hence:

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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π = 2Mvx
SΔt

= 2Mcv2x (5.9)

Up to nowwe considered only molecules impinging perpendicularly on the mem-
brane. In fact, the average quadratic speed appearing in the equipartition law can be
written more properly as:

v2 = v2x + v2y + v2z = 3v2x (5.10)

where the last equality comes from the consideration that the three directions are
all equivalent. Then, our osmotic pressure estimate should be reduced to 1/3 of the
previous Eq. (5.9). Moreover, we considered all molecules aiming at the membrane
along the perpendicular direction, when only half on average would travel along
the −x direction, the other half traveling away from the membrane along the +x
direction, which reduces our estimate by another factor 1/2. Therefore v2x = 1

6v
2 and,

by using the equipartition, we obtain Van’t Hoff’s ‘perfect gas’ law for the osmotic
pressure:

π = 2

3
c

(
1

2
Mv2

)
= ckBT (5.11)

5.2.2 Thermodynamic Model

Aswe have seen in Sect. 2.5, the mixture of a solute in a solvent with a molar fraction
x brings a change in entropy of:

ΔS � −NkB ln(1 − x) (5.12)

At equilibrium under conditions of constant internal energy, this entropy variation
multiplied by the temperature equals the mechanical work of the system in the form
of the product of a ‘pressure’ times the volume:

TΔS = −NkBT ln(1 − x) = πV (5.13)

Since for small concentrations, x << 1, we can replace ln(1 − x) � −x , it is:

πV = NkBT x (5.14)

from which we reobtain π = ckBT , since the molar fraction is x = n/N (number of
molecules of solventn, over the total N ), and the correspondingvolumeconcentration
is c = n/V .

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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This latter derivation shows that the osmotic pressure (a force per unit surface) is
in fact of entropic origin. It is related to the entropy difference of the solute mixing
with the solvent, and the control variable is the solute concentration. The osmotic
pressure can be obtained as the derivative of the free energy (in fact, the chemical
potential at constant pressure and temperature) with respect to the concentration:

π = −dG

dx
(5.15)

5.2.3 Osmolarity and the Healthy Cell

Again reasoning in terms of the idealised perfect-gas law for the diffusion of solute
molecules, we should consider that all the different species act independently on the
cell wall (as well as on any other semi-permeable membrane, such as the epithelial
tissue or the blood vases). The total osmotic pressure results from the algebraic sumof
the partial pressures relative to eachoneof the solutes (ions, sugars, proteins,etc.). The
cell reaches the isotonic equilibrium when the outside and inside concentrations of
all species result in a global mechanical equilibrium. A hypotonic cell has an internal
pressure lower than the outer pressure, and appears flabby; a hypertonic cell has an
internal pressure that exceed the outer pressure, and appears therefore inflated.

From the point of view of the cell, what counts is the net osmotic gradient across
the membrane. The state of tonicity is important to predict the result of a change of
concentrations of some species, since it takes into account the sum of all the inflows
and outflows of all species across the membrane. In general, all cells in the human
body are at osmotic equilibrium under normal conditions (with some exception,
for example the cells in the kidney medulla, which are always hypertonic). In fact,
the displacement of water molecules occurs quite rapidly on the typical cell-scale
times, and continues until intracellular and extracellular pressure, and concentrations,
are equal (see Fig. 5.2). A solution that maintains the isotonic equilibrium is called
osmolar (a solution that maintains a good osmosis).

If an hyper-osmolar solution is administered to a patient, the extra supply of
solutes would drive water to flow out of the cells. On the other hand, if the solute
responsible for the hyper-osmolarity can cross the cell membrane, such as urea, it
could enter the cell and arrest the water loss. Hyperglycemia in non-treated diabetic
patients accumulates an excess of glucose in the plasma, with the direct result of
forcing blood cells to expel water to bring intracellular glucose concentration at the
same level as the extracellular. The opposite behaviour would be observed with an
hypo-osmolar solution, leading to cell swelling and ultimately to the rupture, or lysis,
of the membrane.
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Osmotic pressure and surface tension in the cell

To get a more precise idea of the importance of the osmotic pressure in biology, let us consider a cell as
a spherical vesicle with radius R ∼ 10 µm, filled with water. Some proteins are diluted in this idealised
cell, in the form of spheroidal objects of radius r ∼ 10 nm, in the proportion of, e.g., 30% vol. (such an
example is not far from the case of an erythrocyte with dissolved haemoglobin molecules). The number
concentration is given as:

0.3 = c 4
3 (10 nm)3 → c � 7 × 1022 m−3 (5.16)

from which the corresponding osmotic pressure exerted by the molecules on the vesicle cell (from the
inside) is π = kBT c = 1.38 × 10−23 · 300 · 7 × 1022 = 290 Pa (or J/m3). This does not seem like a
very large value when compared to the atmospheric pressure (remember that 1 bar = 105 Pa). However,
could it be important for a cell?

A spherical vesicle filledwith liquid, subject to the pressure exerted from the interior, tends to expand.
As we will see in the following Chap. 9, any material can only resist the mechanical pressure up to the
point permitted by its elastic resistance, after which it will start to deform irreversibly and eventually
break. In Chap. 9 it will be made clear that, for a two-dimensional object like a cell membrane, such a
mechanical resistance is equivalent to the surface tension, Σ (in units of [Energy]/[surface]). To obtain
here a rough estimate of this quantity, let us imagine that the radial forces generated by the internal
pressure tend to increase the spherical surface of the vesicle. The mechanical work done by the pressure
force to expand the volume by an infinitesimal radius ΔR is (to first order in ΔR):

ΔW = pΔV = p 4
3π[(R + ΔR)3 − R3] � 4pπR2ΔR (5.17)

Such a mechanical work must be equilibrated by the internal work done by the surface tension, equal
toΣΔS, withΔS the increase in the surface element upon the infinitesimal expansion of the sphere radius
ΔR. If we integrate such an increase over all the spherical surface, it is ΔS = 4π(R + ΔR)2 − 4πR2,
and the internal work to first order is:

ΔW ′ = ΣΔS � 8πΣRΔR (5.18)

By equating the two expressions, ΔW = ΔW ′, we obtain an estimate for the surface tension:

Σ = pR

2
(5.19)

This is nothing else but the well-known Laplace’s law. For our idealised cell: Σ = pR/2 =
290 · 10−5/2 = 1.5 × 10−3 J/m2, or 1.5 mN/m. This value is the minimum of surface tension a cell
membrane should display, in order to support an inner pressure of about 300 Pa. It is known that the
value of surface tension for most cell membranes is smaller than this, being of the order of a few 10−4

J/m2. A pressure of the order of a few hundreds Pa is enough to break the cell membrane, thus leading
to cell death. Pressures of about 400Pa are measured at the event of mitosis, when a cell splits into two,
indicating that a value of surface tension of about 2mN/m is a limit for themembrane resistance. It should
be noted that the model of a cell as a spherical sack full of water does not hold, whenever substantial
rearrangements of the cell shape (by the cytoskeleton) are involved, such as duringmitosis. Note also that
the total osmotic pressure acting on the membrane is the sum of the concentration differences between
all the species, inside and outside the cell. These limiting values of Σ are realistic, however even larger
osmotic pressures can be generated by the smaller solutes, such as Na and Cl ions: experiments show that
erythrocytes in pure (i.e., unsalted) water may readily explode because of the excess internal pressure.

http://dx.doi.org/10.1007/978-3-319-30647-6_9
http://dx.doi.org/10.1007/978-3-319-30647-6_9
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Fig. 5.2 Tonicity of red blood cells (RBCs) shown by electron scanning microphotography. a In
a hypotonic medium such as distilled water, RBCs absorb water, swell, and may burst. b In an
isotonic medium such as 0.9% NaCl, RBCs gain and lose water at equal rates and maintain their
normal, concave disc shape. c In a hypertonic medium such as 2% NaCl, RBCs lose more water
than they gain and become shrunken and spiky (crenated). [Image c© RR Nursing School www.
rrnursingschool.biz, repr. under CC-BY 3.0 licence, see (*) for terms.]

A behaviour similar to that described in Fig. 5.2 would be observed also for plant
cells. The main difference with respect to animal cells would be that water in this
case is mostly contained in the vacuole, a large reservoir inside the cell, which must
be constantly filled to maintain the cells and plant’s condition of turgidity.

5.3 Hydrophobicity, Depletion and Other Entropic Forces

An often cited example of entropic force is the hydrophobic force. Despite the fact
that the hydrophobic effect includes also a substantial enthalpy contribution, the
largest part of the force in water at standard pressure and temperature comes from
the entropy of the rearrangement of the tridimensional network of hydrogen bonds
between water molecules.

A hydrogen bond between two molecules involves a donor species, whose charge
distribution is slightly unbalanced so as to appear slightly positive, and an accep-
tor species, whose charge distribution appears in turn slightly negative. However,
because of charge conservation, if some part of a molecule becomes negatively
charged, some other part must get positively charged (thus generating a dipole
moment in the polar molecule). This means that every molecule is at the same time a
donor and an acceptor, depending on the geometry of bonding. Water molecules are
quite unique in their capability of forming hydrogen bonds with similar molecules.
In fact, their chemical structure with two ‘lone’ electrons makes each water molecule
capable of accepting two such bonds from two neighbouring molecules (one lone

www.rrnursingschool.biz
www.rrnursingschool.biz
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electron from each molecule being attracted to one of its slightly positive H atoms),
while at the same time donating two more bonds to two other molecules (its two lone
electrons being attracted toward two H atoms from two different molecules). Other
H-bond-forming molecular species have a reduced capability in this respect: for
example hydrofluoric acid, HF, could accept three bonds but can donate only one;
ammonia, NH3, could donate three but accepts only one. Under such conditions,
species like HF and NH3 in a dense, liquid-like environment can only form chains
of molecules. On the other hand, water molecules can form a symmetric tetrahedral
structure, in which each molecule is at the center of a tetrahedron, with four other
molecules (the two donors and the two acceptors) situated at the four corners of the
tetrahedron. In such a tridimensional structure, water in the liquid phase maintains
a rather regular geometrical structure, with a constant O-O bond length of about 2.8
Å (2.8 × 10−10 m), and tetrahedral angles between each triplet of molecules equal
to about 109.5◦. Since water in these conditions is a liquid its molecules are highly
mobile, and constantly exchange their location at the tetrahedral sites, however keep-
ing the tetrahedral geometry with a remarkable regularity.1

Note that mixing two polar molecules, such as acetone and water, gives similar
results since, being both polar, the two types of molecules can mix and maintain a
more or less compact network of hydrogen bonds. We say in this case that acetone
is readily dissolved in water. On the other hand, if we mix an assembly of polar and
non-polar molecules, for example water and gasoline (which is a combination of
many different hydrocarbons), such molecules try to avoid each other. Droplets of
pure gasoline form in water (or vice versa, depending on which one is the majority
component) to minimise the contact surface. Ideally, all the minority molecules
would like to form a single spherical bubble, whose shape has the minimum surface
to volume ratio.

Introducing a non-polar (for example, a plastic) object in water (Fig. 5.3a) par-
tially destroys the ordered tetrahedral structure, since non-polar surfaces, with their
molecules being insensitive to charge displacement, do not allow the formation of
hydrogen bonds. As a consequence, the water molecules in direct contact with the
plastic surface loose part of their hydrogen bonds, and try to adjust their configuration
in order to minimise the number of broken H-bonds. The result is an interface struc-
ture in which some water molecules are constrained in a sort of cage, their mobility
is reduced and, consequently, their entropy is also decreased in comparison with the
free liquid. Seeking to maximise their entropy, such constrained water molecules
try to reduce their contact with the non-polar surface by escaping this region, thus
creating a layer of reduced density.

Now, let us think of two non-polar surfaces immersed in water (Fig. 5.3b). If these
surfaces are approached, the simultaneous density reduction in the space comprised
between the two surfaceswill result in an effective attraction between the two objects.

1Note that the number of hydrogen bonds inwater is a rapidly decreasing function of the temperature.
It is equal to 4 at T = 250 K, about 3.85 at T = 300 K, and 3 at T = 400 K. The fact that ice has
on average more hydrogen bonds than liquid water is also responsible for the increased density of
water upon freezing.
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Fig. 5.3 The hydrophobic effect between water molecules (green) and a non-polar (blue) material.
a A non-polar surface (for example, a plastic sheet) is introduced in water; as a result, the water
molecules tend to maximise their entropy by retreating from the plastic surface. b Two non-polar
surfaces in water have the effect of creating two such regions of reduced density: as soon as the
two surfaces are approached, water molecules tend to escape from the region between the two.
c The effect of introducing in water several non-polar surfaces, for example a bunch of plastic
microspheres, leads to a kind of voiding effect in the space comprised between the plastic surfaces,
thus promoting an effective hydrophobic attraction between the non-polar objects

By following this same pattern, if several non-polar particles are immersed in water
(Fig. 5.3c) they tend to aggregate because of this effect of reduced density: it is like
water “escapes” from the region comprised between the particles, which now seem
to attract each other as if in the presence of some force. In fact, there is no force at
all: the thermodynamic drive coming just from the requirement of maximising the
solvent entropy. This is the basis of the hydrophobic attraction (from the ancient
Greek words Údwr, water, and fÒboj, fear) between non-polar objects in water.

The hydrophobic effect is at the basis of the spontaneous formation of biological
membranes starting from amphiphilic molecules, as described in the Appendix D
at the end of the chapter.

5.3.1 The Depletion Force Between Large Objects in Solution

Like in a shopping bag, inside the cell membrane we find a great variety of different
objects with largely variable sizes and concentrations: from the ribosomes (300 Å),
necessary to ‘read’ the RNA and produce proteins, to various globular proteins (50–
100 Å), to the smaller glucose and other simple molecules (10 Å), to large amounts
of ions (∼1Å). Such a hierarchy of sizes results in another surprising entropic effect:
the depletion force.

The most definitive experimental observation of such a force dates from no longer
than sixty years ago, by the two Japanese physicists ShoAsakura and FumioOosawa,
of the University of Nagoya [1]. By looking at a colloidal mix2 of large and small

2A colloid is a mixture of at least two different kinds of particles, which are not as small as in a
solution, and not as large as in a suspension, but are intermediate in size. In a suspension, large
particles would settle at the bottom of the container after some time. In a solution, the dispersed
and host particles (at the scale of atoms or molecules) would form a single continuous phase. In
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Fig. 5.4 The depletion effect between large and small solutes. Left Non-polar, non interacting,
large colloidal particles with size R are put in a non-polar solvent. Under such conditions, no forces
can possibly act on the particles, which fluctuate freely in the fluid. Middle A concentration of
small particles with size d << R is introduced in the container. Such particles can approach the
large-particle surfaces, and their presence creates an ‘exclusion zone’ all around the large particles
(red ring) against the other approaching particles. Right The small solutes try to maximise their
available free volume (i.e., their entropy) by ‘pushing’ the large particles to share part of their
exclusion zones, thus inducing an effective attraction between the large particles

particles, with radius R and d, respectively, they found that the largest objects are
surrounded by a ‘inaccessible’ layer of thickness d. Just like in the case of the
hydrophobic effect, the presence of such a layermakes the larger objects to experience
a kind of effective attraction, as if the simple addition of small particles to themixture
would induce an extra force, pushing together the big colloids.

To get a qualitative explanation of this, again purely entropic effect, let us look at
the sketch in Fig. 5.4. When two large particles with radius R and volume v = 4

3πR
3

are introduced in a container of volume V , the available (free) volume for them to
diffuse, is given by the difference between the total available volume and their own
occupied volume:

V ′ = V − 2v (5.20)

If n small particles with radius d << R and volume w = 4
3πd

3 are now added to
the container, the available volume for both the large and small particles should be
V ′ = V−2v−nw. However, if the large particles are taken as rigid, the small particles
cannot approach the surface of the large ones to a distance smaller than R+d, thereby
creating a sort of exclusion zone around the volume of the large particles. In practice,
it works as if the large particles have now an effective volume v′ = 4

3π(R + d)3.
The available volume for free diffusion becomes V ′′ = V − 2v′ − nw, and evidently
V ′′ < V ′.

(Footnote 2 continued)
a colloid the dispersed particles and the solvent remain two distinct phases. In practice, colloidal
particles can have dimensions ranging from about 1 to 1,000nm.
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As we remember from Chap.2, the entropy of an ensemble of non interacting
particles enclosed in a box is proportional to the logarithm of the box volume, S ∝
kb ln V . Therefore, entropy can be increased if the volume V ′′ can be increased. One
solution possible is that the large particles tend to approach each other, as shown in
the right panel of Fig. 5.1. In this doing, a part of their respective exclusion zones
overlap, thereby liberating some amount of volume for the smaller particles, while
not affecting their own. In thisway the entropy of the solutes can increase. The overall
effect is that the simple adding of some concentration of small solutes induces an
attraction between the large solutes, which would not exist when the large solutes
are the only ones present in the solution. Again, this is a force of purely entropic
origin. Differently from the hydrophobic effect, however, which originates from the
entropy of the solvent molecules, the depletion force originates from the competition
between solutes of largely different sizes.

Clearly, inside a solution of various components all such effects (as well as the
others we are to describe in the foregoing) are present at the same time: the thermo-
dynamic goal being that of maximising the total system entropy, in some instances
it will be the solvent to lead, while in some other it could be the solutes, depending
on the relative constraints of pressure, volume, temperature, concentration, ionicity,
and so forth.

Amorequantitativemodel of the depletion effect by the sameAsakura andOosawa
shows that for small- to medium-diluted solutions (of the order of 40% vol. max.)
the average effective potential U (r) experienced at short distances r between the
large solutes should be given by the following expression:

U (r) = Π

(
πd3

6

)(
λ

1 − λ

)3
[
1 − 3r

2Rλ
+ 1

2

(
3

Rλ

)3
]

(5.21)

with λ = 1 + d/R, and Π a concentration-dependent constant of the order of kBT .
By integrating for d < r < ∞, the gain in free energy upon approaching the two
large particles can be approximated as:

ΔGdepl = Π

(
1 + 3R

2d

)
(5.22)

We used the symbol Π for the force constant to indicate that the depletion force
can also be interpreted as another form of osmotic force. In fact, the small particles
perceive the network of large particles as a kind of semi-permeable membrane,
allowing the passage of the solvent molecules while blocking their own flow across,
since the space between the large particles after approaching each other (see left
panel of Fig. 5.4) is smaller than their size d.

For ratios R/d of the order of 10, the above expression gives a free-energy gain of
several kBT s, to be compared with the energy associated to Van der Waals attraction

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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(∼0.1 kBT ), hydrogen bond (1–10 kBT ), or a covalent bond (50–100 kBT ). Clearly,
the depletion force can become important at the length- and energy-scale of cells.
For example, it is today well recognised that the capability of large DNA fragments
to fold, or the decrease of hemoglobin solubility in sickle-cell anemia, improve in
the presence of small solutes like the bovine serum albumin (BSA) or polyethylene
glycol (PEG). Such small solutes are sometimes called crowding agents, for their
capability of inducing the densification of large molecules. For example, the self-
assembly rate of actin filaments in cell motors can be increased by up to 2 orders of
magnitude, by adding a small concentration of PEG.

It might seem strange that entropic interactions, such as the hydrophobic and
depletion force, could promote the self-assembly of some molecules, and even of
the so-complex cell membrane: being entropic in origin, they should favour the
disordering rather than leading to increasingly ordered structures. In fact, already by
simple calculations it can be estimated that the disorder of the total system, solvent
+ small solutes + large solutes, will correctly increase overall, despite the superficial
impression of a local increase of order.

5.3.2 Steric Forces and Excluded Volume

Steric effects (from the ancient Greek sterÒj, solid) are connected with the finite
volume occupied by each molecule, inside or outside the cell. Although at the atomic
scale electric charges are highly mobile, with the result of a considerable flexibility
of the molecular shape, there is a limit below which the molecular volume becomes
impenetrable, giving the concrete appearance of solid matter to our daily objects. If
some of the atoms from two adjacent molecules approach each other at too short a
distance, the energetic cost of the superposition of the respective electronic orbitals
(Pauli repulsion between the electrons) becomes the leading energy term, thereby
implying a repulsion which goes beyond the pure electrostatic repulsion between
negative charges. Such a superposition would imply both a change of the shape of
the molecule, as well as of its reactivity. The Pauli repulsion, ultimately of quantum
origin because electrons obey Fermi-Dirac statistics, defines an exclusion volume
around the atoms, and therefore all around the molecule.

The steric volume, or steric resistance, is apparent when the size of some molec-
ular substructure does not allow some chemical reaction, which is readily observed
in another similar molecule. For example, if the substructure blocks an otherwise
accessible reaction site of the molecule. While the steric volume can be a source of
problems, however it is often exploited by the chemists, to modify the behaviour of
a given molecule in the course of a chemical reaction, for example to stop another
parasitic reaction, or to avoid aggregation (steric protection, Fig. 5.5a, b).
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Steric repulsion occurs whenever some electrically charged group at the surface
of a molecule is spatially protected by another group of lesser or opposite charge.
This also includes the screening coming from ions in the solution (Debye repulsion,
Fig. 5.5c, and greybox on p. 175). In some cases, for an atom to interact with another
atom that is sterically protected, it will have to follow a different kinetic path along a
less protected direction. By attaching the proper protecting functions, chemists can
use such effect to control both the timing and the direction of a molecular interaction.
The opposite effect is steric attraction, which occurs when two molecules have a
geometry respectively optimised for the mutual interaction, in what is called a lock-
and-key configuration, thus increasing the exclusive specificity of the interaction.

Steric interactions are to a large extent of entropic origin. For the case of polymer-
coated surfaces (Fig. 5.5b), it can be shown that the main force driving the repulsion
originates from the entropy restriction to the free fluctuation of the polymer chain,
when it approaches another surface covered by a similar polymer. Just like in the case
of the hydrophobic effect, polymermolecules try to increase their entropy by avoiding
each other, which leads to the steric repulsion effect. Biological realisations of such
an entropic stabilisation may include, e.g., the role of flexible proteins inserted in
the surface of interacting cell membranes, collagen polymers that reduce friction in
synovial joints, or DNA adsorbed on histone proteins in the chromatin structure. For
polymerically stabilised systems, the repulsive energy per unit area of the interacting
surfaces at a distance R has an approximately exponential decay:

Fig. 5.5 The steric repulsion effect can be exploited to avoid unwanted reactions. a colloidal
particles dispersed in a solvent can aggregate and precipitate from the solution, thus making the
suspension unstable. Particles can be sterically protected, for example b by coating their surface
by a layer of long-chain polymers, or c by adding ions to the solution, so as to form the (Debye)
electrical double layer of oppositely charged ions at the surface of the particles. d With such a
protection, the particles can avoid aggregation and form a stable suspension
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U (r) = 36kBT e
−R/Rg (5.23)

where Rg is the gyration radius of the free polymer.3

For the case of ion-coated surfaces, it might be thought that the repulsion effect
should be essentially electrostatic in origin, since it comes from the repulsion between
ions of the same charge attached to the surface of the molecule or colloidal particle.
However, it must be remembered that these ions come from a solution, and they
are not firmly stuck to the surface, but rather have a dynamical distribution both in
space and time. In other words, the surface of the colloidal particle, or of the protein
immersed in the solvent, is only on average charged by some amount of positive
and negative ions, organised in the double layer; however these ions are constantly
moving, and can be exchanged with other identical ions from the solution. The
equilibrium between association and dissociation of the ions to/from the surface is at
the origin of the entropic term in the electrostatically stabilised systems. Calculating
the relative entropic and enthalpic contributions in this case can be a very complicate
task, however various authors (see e.g., [2, 3]) reported for many systems a majority
contribution of the entropy to the overall free energy of the solution.

5.4 Diffusion Across a Membrane

Membranes are ubiquitous in cells, from the outer plasmic membrane enclosing the
entire cell volume, to the internal membranes separating the nucleus and the double
membrane of the mitochondria, to the endoplasmic reticulum found in eukaryote
cell, entirely composed by a labyrinth of multiply folded membranes, and so on.
The fundamental function of the membrane is to divide a volume into separate com-
partments, so that different concentrations of chemicals can be maintained on either
side. We have seen in the case of osmotic pressure how concentration gradients are a
powerful source of chemical force, which can drive the entire cell metabolism.More-
over, we will see later on concentration gradients permitting chemical messages to
be exchanged between neurons in the nervous systems, as well as driving the poly-
merisation and depolymerisation of cytoskeleton filamentary protein, to modify the
cell shape and to regulate cell motility. And the list could continue. Every cell func-
tion demands the displacement and transport of chemical species across one or more
membranes, to the point that (with bold exaggeration) one could define life as being
a sequence of chemical reactions separated by membranes!

3The gyration radius Rg is a measure of the average spatial extension of the polymer chain (see
p. 321). For a polymer made up of N monomers, each of length b, the contour length is L = Nb,
corresponding to the length of the fully extended, linear polymer. However, when the polymer
fluctuates (either in void or in a solvent), it occupies a much smaller volume, of variable shape and
extension, which can be described as being proportional to R3

g . To give a practical example, the
(contour) length of the DNA of the bacterium E. coli, with its about 4.6 millions of nucleotide pairs,
is L ∼1.5 mm, whereas its Rg ∼ 9µm.
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Electrostatics of colloidal particles in ionic solutions

A colloidal particle dispersed in a ionic fluid may attract point charges on its charged surface, providing an
effective screened Coulomb potential ψ(z). A first layer of counter-ions (Stern layer) is solidly bound on the
surface. A second, thicker layer (diffuse layer) contains more mobile counter-ions. The shear plane defines
the depth at which mobile counter-ions can be still exchanged with those in the solution. The red curve in the
Figure indicates the shape of the electrostatic potential ψ. The Zeta potential is the value of the ψ at the shear
plane. Basically, the higher the Z value, the larger is the repulsion between the screened colloidal particles, and
the more stable is the solution (little tendency to aggregation and precipitation, see e.g. acid milk curdling into
cheese).

The theory of the electrical double layer is the empirical approximation to the (much complex) problem of
describing the electrostatic interactions of charged molecules dispersed in ionic solutions. For a distribution of
counter-ions ni (z), with charges qi , the electrostatic potentialψ(z)must satisfy thePoisson-Boltzmann equation:

∂2ψ

∂z2
= ∂Θ[ψ]

∂ψ
(5.24)

in which Θ = kB T
ε

∑
i n

0
i exp(−Qiψ/kBT ), and n0i = n(z0) at ψ(z0) = 0.

The P-B equation can be used to model implicit solvation, an approximation of the effects of solvent on the
structures and interactions of proteins, DNA, RNA, and other molecules in solutions of different ionic strength.
In practical cases, it is difficult to solve the Poisson-Boltzmann equation for complex systems, but can be solved
numerically on a computer. For small potential values (ψ � 40−50 mV), the Debye-Huckel approximation of
the P-B equation gives an exponential solution, ψ(z) = ψ0 exp(−z/λD). The decay of ψ(z) with the distance z
from the surface, is measured by the Debye length:

λD =
(

εε0kBT∑
i ni q

2
i

)1/2

(5.25)

with ε the relative permittivity of the solution, in units of ε0 = 8.85 × 10−12 Farad/m. For example, 1 mM
NaCl has a λD = 9.6 nm, and 0.3 nm at 1M; pure water at pH 7 has λD = 960 nm (�1µm), a very slowly
decaying potential.

The Zeta-potential is an important quantity for technological applications of colloids, for example to predict
the aggregation of proteins, and can be easily measured. When an electric field E is applied to a charged particle
of size R, in a fluid with viscous drag F proportional to the viscosity (ex. F = 6πRη), the particle drifts with a
steady velocity v = µE , with μ the mobility (cm2/V/s). The mobility can be measured by tracking the change
in particle velocity as a function of E . The Smoluchowski equation establishes a relation between the mobility
and the Zeta potential:

μ = Zε

η
(5.26)

The above linear relation is applicable for Z �120 mV and for R/λD > 100.
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The key property of a membrane is not just that of being an impenetrable wall
separating two worlds. If that were the case, chemical species would maintain their
concentrations indefinitely, and no chemical reaction would ever occur.4 Therefore,
the important property of themembrane is that of being indeed permeable, i.e. having
the capability of letting some particles flow across its thickness.

Previously in this chapter, we considered themembrane as a completely determin-
istic gatekeeper: either it was entirely transparent to the passage of some molecules,
or entirely impenetrable to other species (like water and glucose, respectively, in the
discussion of the osmosis experiment). In reality, a membrane is a more complex
object, with a typically porous structure, a distribution of sizes for the pores centred
around some value, and more or less spread around that value. The pores of different
size create a maze of contorted channels inside the membrane, such that even for
the species that are smaller than the average pore, the passage is not automatic, and
the membrane represents a barrier that slows down the flux of particles between two
compartments.

The passage of a particle across a membrane is a diffusion process, controlled by
the jump probability of the particle into/out each pore. If we maintain a deterministic
description, we would assign only integer values of 0 or 1 to such probability. If, on
the other hand, we want to describe the physical process of diffusion by which the
particle jumps in and out the network of connected pores, possibly reaching the other
side of the membrane after a long series of bounces back and forth, we would better
adopt a stochastic description in which the probability of passage is a continuous
variable ranging between 0 and 1.

By looking at Fig. 5.6, let us imagine to have a membrane of thickness L , sep-
arating over a surface S two containers A and B filled with water, for simplicity
taken of equal volume VA = VB . Suppose that some particles are diluted in the
water with different concentrations, NA/V > NB/V , or cA > cB . In their stochastic

Fig. 5.6 Schematic of a membrane of thickness L and surface S, perpendicular to the x direc-
tion. A flow of particles across the membrane in the x direction is determined by a difference of
concentrations cA �= cB between the two volumes VA and VB

4Remember that a concentration is a number of particles divided by a volume, i.e. with dimensions
of [L−3]. Concentrations are usually expressed as “molarity”, indicating the number of moles of a
substance per liter of volume. In most cases of biological relevance, the volume is filled with water,
therefore the concentration is interpreted as the number of moles dissolved in one liter of water.
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movements, particles from the container A will try to enter the porous membrane,
and start jumping inside the pores; some will flip back into A, but some will make
it across the membrane, and enter into B. The same and opposite will happen for
some particles from the container B. However, due to the larger number of particles
in A, the probability of finding some particles from A in B, will be larger than the
probability of finding particles from B in A. In other words, despite the random,
uncorrelated movement of all the particles, we will see over a long enough time, a
net flow of particles from A to B.

Now, let us look more closely at what is happening inside the membrane. Since
we are interested in the unidirectional flow of particles, from A to B and vice versa,
we can for simplicity assume a strictly one-dimensional description of the process.
Let us take the direction of the flow perpendicular to the separating surface S, as our
x axis, and let us imagine to slice the membrane volume into thin layers of thickness
dx . The probability P(x) of jumping into/out of a layer is independent on the position
x , but is only proportional to the difference between the number of particles present
in the thin layer at x and those in the thin layer at x + dx . Therefore we can write:

P(x)dx = N (x + dx) − N (x) (5.27)

where the signs +/− are adjusted to reflect the larger concentration at the left of the
membrane (i.e., we conventionally assume more particles to be moving towards the
positive x , than to the opposite direction). If we normalise the probability to the unit
volume, by dividing P by the membrane volume V = SL , it is:

P(x)

V
= 1

V

dN

dx
= dc

dx
(5.28)

The particle flux, with dimensions of [L−2][T−1], is the number of particles
traveling across the surface S in a unit time, and is therefore proportional to the
probability of jumping:

j = −D
dc

dx
(5.29)

where we use the negative sign to indicate that conventionally j decreases when
particles flow to the positive end of the x axis. The proportionality constant D, with
dimensions of [L2][T−1], is the diffusion coefficient.

On the other hand, the introduction of the time-dependent concept of flux suggests
us the alternate possibility of considering rather the variation of concentration c at a
given point x , as a function of the time. Just from dimensional arguments, it is evident
that the ratio between concentration and time must give a quantity with dimensions
of [L3][T−1], which can then be equated to a spatial derivative of the flux itself:

dc

dt
= − d j

dx
(5.30)
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Random walks and the Brownian motion

When considering the diffusive motion of a heavy object among a dense medium made of smaller particles
(imagine for example a large protein moving among water molecules), a great many collisions between the
large and small particles take place, each with a very small exchange of energy and momentum, due to the large
size mismatch. The large particles would appear to move at random, as if pushed by an invisible troop. Such
a phenomenon was experimentally visualised by the Scottish botanist Robert Brown in 1896, while studying
the movement of the tiny particles suspended in the water around the roots of aquatic plants. (It is funny to
mention that the movements he actually observed were later attributed to the vibrations of the table, however
the ‘brownian’ naming of the phenomenon remained attached to his family name...)

For simplicity, we start by looking at particles jumping along only one direction in space, to show that the
distribution of the random steps taken by a tracer moving back and forth on a straight line (the problem also
know as ‘drunken walk’), gives a Gaussian distribution of the traveled distance. We imagine the particle to start
from x = 0 at t = 0, and to make, after a time t , NR steps to the right, plus NL steps of the same length to
the left, with N = NR + NL ; further, we take that each step has a probability r of going to the right, and a
probability l = 1 − r of going to the left. Then, the distribution of steps is a binomial:

P(NR ; r) =
(

N

NR

)
r NR lNL = N !

NR !(N − NR )! r
NR (1 − r)N−NR (5.31)

It is easily proved that the average of the binomial distribution is equal to μ = Nr , and its variance is
σ2 = Nrl. For large N , the Stirling approximation for the factorial (see Appendix A) is N ! � NN e−N√

2πN .
By substituting in the expression for P(NR ; r), it is:

P(NR ; r) � NN e−N√
2πN

N
NR
R e−NR

√
2πNR (N − NR )N−NR e−(N−NR )

√
2π(N − NR )

r NR (1 − r)N−NR =

=
(

r
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)NR
(

1 − r

N − NR

)N−NR
NN

√
N

2πNR (N − NR )

=
(
Nr

NR

)NR
(

Nl

NL

)NL
√

N

2πNRNL
(5.32)

If the distribution becomes increasingly narrow about the mean, i.e., NR � Nr + δ and NL � Nl − δ, with
δ � 1, the logarithm of the first two terms is approximated as:

(
NR ln

Nr

NR

)
+

(
NL ln

Nl

NL

)
� −NR ln

(
1 + δ

Nr

)
− NL ln

(
1 − δ

Nl

)

(5.33)

Then, by using ln(1 + x) � x − x2
2 , and neglecting terms higher than δ2, we have:

− NR ln

(
1 + δ

Nr

)
− NL ln

(
1 − δ

Nl

)
�

� −(Nr + δ)

(
δ

Nr
− δ2

2(Nr)2

)
− (Nl − δ)

(
− δ

Nr
− δ2

2(Nl)2

)
=

= −
(

δ2

2Nr
+ δ2

2Nl

)
= − δ2

2Nrl
(5.34)
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By the same approximations, the prefactor turns to:

√
N

2πNRNL
�

√
N

2π(Nr + δ)(Nl − δ)
�

√
1

2πNrl
(5.35)

Therefore, the original binomial distribution is eventually approximated by:

P(NR ; r) =
(

N

NR

)
r NR lNL �

√
1

2πσ2
e−δ2/2σ2 (5.36)

that is, a Gaussian with variance σ2 = Nrl. Moreover, for the case of equal probability of jumping in either
direction, r = l = 1/2, it is δ = NR − NL , that is the difference between the number of right and left steps.
Therefore δ = x , the position of the tracer at any time t , and δ2 = x2. This demonstrates the equivalence
between the Brownian motion and the diffusion process, which end up having the same distribution, Eq. (5.41),
the variance being identified with the product of the diffusion constant and the elapsed time, σ2 = Dt .

Two important properties of the Brownian motion are that the average displacement is zero, and that the first
interesting (non-zero) measure is the root mean squared displacement. This can be easily verified by calculating
the respective averages over the Gaussian distribution (see Appendix A):

〈x〉 = 1

N

∫ +∞
−∞

xe−x2/2σ2 = 0 (5.37)

〈x2〉 = 1

N

∫ +∞
−∞

x2e−x2/2σ2 = 2σ2 = 2Dt (5.38)

with the normalisation integral N = ∫
exp(−x2/2σ2) =

√
2πσ2. The second equation tells that the random

Brownian movement of the tracer will explore increasingly larger intervals over time, while constantly passing
back and forth through the zero, such that its average displacement remains equal to zero. In terms of the
variance of the gaussian, which grows linearly with t or, equivalently, with the number of jumps N , this same
concept can be seen as the distribution (whose integral must remain constant) progressively becoming broader,
while its maximum value at x = 0 decreases. Equation (5.38) had been established by Albert Einstein in
his work on the kinetic theory of gases, and can be easily extended to 2 and 3 dimensions, by the equivalence
〈r2〉 = 〈x2〉+〈y2〉+〈z2〉, giving 〈r2〉 = 6Dt , if the jumps (fluctuations) in the three directions are uncorrelated.

In that same article, which appeared in 1905 in the journal Annalen de Physik, Einstein obtained a second
equation, linking the diffusion coefficient of molecules/particles of size R fluctuating in a medium, to the
temperature T and viscosity η of the medium itself:

D = kBT

6πηR
(5.39)

One relevant question about the Brownian movement was asked by the Polish physicist Marian Smolu-
chowski. If the random motion derives from the great many collisions of small particles with the big particles,
hitting with equal probability from any direction and therefore providing zero net force on average, why the big
particle does move at all?

A special property of the binomial distribution contains the answer (known as the ballot theorem, proved in
1878 byW. A.Whitworth). For a tracer moving left or right with equal probability, the average position is zero at
very long times. However, over some short time there could be more collisions, e.g., from the left than from the
right, therefore it would be NR > NL . Over a finite time, this event has a binomial probability (NR − NL )/N ,
and its binomial average is of order N1/2. Take a particle of a few µm in water, each collision contributes a
velocity mv/M ∼ 10−8 cm/s. If the number of collisions in one second is of the order of 1023, a net velocity
of several m/s can result (although rapidly changing in direction), which keeps the particle in constant motion.
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This is the equation of continuity, well known in the physics of continuousmedia
to ensure that a quantity (here, the concentration) changes continuously without
jumps. The equations says that the variation over a time dt of the concentration at
a point x , is equal to (minus) the variation of flux between x and x+dx . By putting
together the previous two equations, we are led to write:

dc

dt
= D

d2c

dx2
(5.40)

This is the celebrated diffusion equation, or Second Fick’s Law (the first one
being Eq. (5.29)), from the name of the German physiologist Adolf Fick.5 This
equation allows to determine the concentration profile c(x, t) for any position x and
at any time t .

It can be shown after some algebra that a particular solution of the (5.40) is:

c(x, t) = N√
2dπDt

e−x2/2dDt (5.41)

the coefficient d being equal to 1, 2 or 3 for diffusion along 1 (a channel), 2 (a surface)
or 3 (a volume) spatial dimensions. This solution applies to the simple case of a point
source of N particles injected at the origin at time t = 0, in a 1-, 2- or 3-dimensional
space of (practically) infinite extent. A general analytic solution for a real membrane
is more complicated (see for example Ref. [4]).

If the membrane is permeable to the particles of the type considered, this is
equivalent to say that their diffusion coefficient is D > 0. For a fixed concentration
cA at time t = 0, a flux from A to B will establish; after some time (function of D),
the concentrations will became equal, cA = cB , and the flux will stop. Note that,
from a microscopic point of view, this does not mean that particles will stop jumping
fromA to B, and vice versa: they will indeed continue to move to/fromA/B, but their
average numbers in A and B will remain equal. In this sense, the diffusion process is
a typical phenomenon of Brownianmotion, originating from the randommolecular
motion of elementary particles (see the greybox on p. 178).

If, on the other hand, we can maintain by some means a constant concentration of
particles, e.g. in the volumeA, or if particles in the volume B are constantly removed,
thus maintaining cB = 0, the flux will become stationary, and the concentrations
across the membrane will become constant. In fact, at the stationary state it is by
definition dc/dt = 0, and the diffusion equation reduces to:

5A. E. Fick discovered the law of diffusion in 1855, by performing an experiment exactly alike the
one sketched in Fig. 5.6. He used tubes filled with water and salt, joined across a membrane. Around
the same years, other laws related to the diffusion of something other than particles in a fluid were
established, all with the same mathematical form of Eqs. (5.29) and (5.40), such as Ohm’s law of
charge transport (1827), Fourier’s law of heat transport (1822), and Darcy’s law of fluid flow (1856).
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d2c

dx2
= 0 (5.42)

whose simple, time-independent solution is: c(x) = a + bx .

5.4.1 Permeability and the Partition Coefficient

The flux can also be defined in terms of the permeability, PM , a quantity also relative
to diffusing particles, describing both the properties of the particles and those of the
membrane:

jm = −PMΔc (5.43)

This definition is only valid under stationary flow conditions, since it requires as
input the (constant) concentration difference Δc at the two sides of the membrane.
However, note that the flux jm is not exactly the flux as defined fromFick’s equations,
[L−2] [T−1], but rather a number of moles per unit surface and time. Therefore, to go
back to the ordinary flux we must divide by the Avogadro’s number, jm = j/NAv. If
we now identify the two definitions, it is:

PMΔc = D

NA

dc

dx
(5.44)

Let us now ask what happens to the diffusing particles, if the medium is made
of two immiscible fluids in contact, such as water and oil. For such fluids, phase
separation occurs. On the other hand, the diffusion coefficient and solubility of the
particles under consideration are generally different in the two fluids. Therefore, if
some quantity of these molecules is dissolved in the fluid mixture, it would be found
with different concentrations in each of the two separate phases. For example, when
adding table salt to a mixture of water and oil, the NaCl microcrystals will readily
dissolve into separate Na+ and Cl− ions in water (polar solvent); but the charges do
not interact with the (non-polar) oil, therefore NaCl does not mix with oil. If instead
we try the same home experiment with sugar, which has both -CH2 hydrophobic
terminations, and -OH hydrophilic terminations, it will dissolve partly in the water
and partly in the oil. A new quantity can then be introduced, the partition coefficient,
given by the ratio between the concentrations of the species [A] in the two solvents:

K = [A]oil
[A]water (5.45)

To provide a standard, octanol (CH3(CH2)7OH) is frequently used as the non-
polar solvent, and the base-10 logarithm of K is tabulated: values below 1 denote
more hydrophilic, and values above 1 more hydrophobic substances. The partition
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coefficient is a very useful quantity in pharmacokinetics, to characterise drugs that
concentrate in the lipid-based cell membrane (more hydrophobic), or in water-based
regions (hydrophilic), such as the cell cytoplasm or blood serum. A good correlation
exists between log PM and log K formany drugs. In fact, for amembrane of thickness
d it is found:

PM = K D

d
(5.46)

The greater the solubility of a substance, the higher its partition coefficient; the
higher the partition coefficient, the higher the permeability of the membrane to that
particular substance.

5.5 Forced Flow in a Channel

Nearly all living organisms (plants, insects, mammals,...) are endowed by one or
more networks of vessels, whose role is to transport blood, air, sap, lymph and so on,
to every part of the body. Such vessels form intricate paths, by successive branching
into thinner and thinner channels. For example, in the case of arteries, the aorta
starting from the heart has a diameter of some cm, then splits into smaller vessels,
such as the iliac artery of size a few mm, down to the smallest capillaries whose
diameter is even smaller than the size of the red and white blood cells, which are
supposed to pass through them.

In the previous Sections we studied the diffusive motion of particles diluted in a
fluidmedium,which remained itself immobile on average. In this Section, instead,we
will focus on the movement of the fluid itself when it is confined in a given volume,
such as a tube or a vessel, and set in motion by an external gradient of pressure
at the extremities of the tube. Clearly, inside such a moving fluid all the disordered
molecularmotions leading to diffusionwould continue to take place. Thesemolecular
movements manifest in the form of viscous resistance, more or less important as a
function of the internal structure and chemistry of the fluid. Nevertheless, at least
in the cases that we are going to consider, the flux is mostly dominated by the
imposed external force. Therefore, there will be a global, net movement of the fluid,
superimposed to the disordered molecular diffusion. The net movement is oriented
in the direction of the gradient of external force (or pressure), and will contrast the
disordered, fundamentally isotropic, Brownian movement of the molecules.

As a function of the density ρ (with dimensions [M][L−3]) and viscosity η
([M][L−1][T−1]) of the fluid, and of the velocity v of the flow, the fluid motion can
be steady, or be more or less perturbed by phenomena of turbulence. A convenient
way of characterising the flow in all such different conditions is the dimensionless
quantity:

Re = lvρ

η
(5.47)
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Fig. 5.7 Representation of a segment of a blood vessel, schematized as a rigid wall of a cylindrical
section with length L and radius R. The fluid fills the volumewith constant density. For the purposes
of studying laminar blood flow in the vessel, induced by a constant difference of pressure ΔP at its
extremities, the fluid cylinder can be thought of being composed by a dense series of concentric,
thin cylindrical layers of thickness dr , with the radial variable r spanning the length from the center,
r = 0, to the vessel wall, r = R

called the Reynolds number. The length l is a characteristic length of the fluid
motion (for example, the diameter of the tube), or that of a large body moving in the
fluid. When applied to a moving object, the Reynolds number allows to compare the
motion of different objects in different fluids. For example a beetle (l = 3 cm) flying
in air (η/ρ = 0.16 cm2/s at T = 300K) at a speedof v = 500 cm/s, has approximately
the same Re as a goldfish (l = 15 cm) swimming in water (η/ρ = 0.009 cm2/s)
at a speed of v = 5 cm/s. This means that the beetle and the goldfish feel the same
medium resistance while moving at their cruise velocity, despite the fact that air is
one thousand times less dense than water. When applied to the fluid itself, Re is,
instead, a measure of the relative importance of inertial force versus internal friction.
A large value Re > 104 indicates a flux strongly perturbed by the own inertia of the
fluid, and therefore displaying turbulence and disordered flow. Conversely, smaller
values Re < 103 indicate a dominance of internal friction, and therefore a smooth
and ‘laminar’ flow, in which each layer of the fluid moves alike any other.

Let us make the simplifying hypothesis that blood vases are rigid, cylindrical
structures of constant cross section πR2 = A (al least over some given length L), and
that theflowofblood remains in the laminarflow regime (a reasonable approximation,
since typical values for the aorta artery are about Re ∼ 103). In this case, we can
study the laminar flow by imagining that the blood in the cylinder moves within thin
concentric layers of thickness dr , with the radial distance 0 < r < R (see Fig. 5.7),
such that the velocity inside each discrete layer is constant, and there are no turbulence
perturbations at the interfaces between r and r +dr , where the fluid slightly changes
speed. To maintain a steady flux of blood, i.e., the same flow of blood, constant along
the whole length L , there must be a constant pressure difference (provided by the
heart) between the two extremes of the length of cylinder considered. Under such
conditions, since the vessel walls remain immobile, the thin layer of fluid at r = R
directly in contact with the vessel wall must have v(R) = 0 (a condition technically
called stick-slip). Since the velocity must be different from zero somewhere, and the
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flow is the same in each section along L , we then ask: what would be the velocity
profile v(r) in the radial direction?

The pressure difference p (indicated as ΔP in Fig. 5.7) creates a driving force on
each cylindrical element d A = 2πrdr , of the cross section:

d f p = pd A = 2π prdr (5.48)

Since the fluid speed in each concentric layer could be generally different, we
admit that each layer can slide with respect to its adjacent layers, with a shear resis-
tance measured by the fluid viscosity, η. For the concentric cylindrical layers, the
lateral contact surface between the thin sections of radius r and r +dr , is S = 2πr L .
The force originated by the sliding resistance on the unit lateral surface is, in fact,
a shear stress τ = d f/dS (see Appendix H). How the shear stress is related to the
fluid velocity is a very complicate question, and here the assumption of laminar flow
splits from the possibly turbulent flow. While writing a general equation for τ (v)
is impossible, without making several simplifying assumptions and mathematical
models, for a laminar flow the relation can be taken to be of simple proportionality
to the velocity gradient, as also suggested by a dimensional analysis:

d f S

dS
= −η

dv

dr
(5.49)

This is the very definition of aNewtonian fluid, which, together with the previous
equation, can be combined into Newton’s Second Law, to express the instantaneous
equilibrium of the sum of all the forces acting on the i-th layer of radius r and lateral
surface 2πr L:

d f Si +d f p
i+1+d f p

i−1 = 2π prdr−2πrηL

(
dv

dr

)
+2π(r+dr)ηL

(
dv′

dr ′

)
= 0 (5.50)

the prime indicating that the value of v must be derived at the radial coordinate
r ′ = r + dr . Note that the contributions from the two adjacent layers have opposite
signs, since they have different relative velocities and therefore the viscous force
changes sign.

As shown in the greybox on p. 185, the solution to the above force balance
equation gives a parabolic profile for the velocity, with the maximum at the center
of the cylindrical vessel, v(0) = pR2/4ηL . If we multiply and divide by a length
squared [L2] its natural dimension of [L][T−1], this fluid velocity can be interpreted
as a volumetric flux, jV = jV ( j being the ordinary flux), displacing a volume of
fluid V across a surface A in a time t . It is worth noting that this could be also taken
as the true interpretation of the fluid velocity.6

6The conventional definition of the velocity as the ratio dx/dt between the distance dx traveled
in an infinitesimal time dt is appropriate for a particle, whose trajectory can be traced according
to classical or relativistic (electro)dynamics, but it is hardly useful in the context of a continuum
medium.
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The forced viscous flow equation

Starting from Eq. (5.50), the derivative of the (unknown) velocity profile v(r) at a radius dr slightly different
from r can be expressed as a Taylor expansion:

dv′
dr ′ = dv

dr
+ dr

(
d2v

dr2

)
+ O(dr2) (5.51)

Hence (apart from the common 2πηL factor):

− r

(
dv

dr

)
+ (r + dr)

(
dv′
dr ′

)
� −r

(
dv

dr

)
+ (r + dr)

[
dv

dr
+ dr

(
d2v

dr2

)]
(5.52)

which, after neglecting terms of higher order in dr , becomes:

− r

(
dv

dr

)
+ (r + dr)

(
dv′
dr ′

)
�

(
dv

dr

)
dr +

(
d2v

dr2

)
rdr (5.53)

Inserted in the above force balance equation, this approximate expression gives finally:

prdr + ηL

(
dv

dr

)
dr + ηL

(
d2v

dr2

)
rdr =

= pr

ηL
+

(
dv

dr

)
+

(
d2v

dr2

)
r = 0 (5.54)

This is a second-order, non-homogeneous differential equation, which can be solved by finding firstly the
general solution of the corresponding homogeneous equation, and then summing one particular solution of the
non-homogeneous one.

For the homogeneous equation:

1

r

(
dv

dr

)
+

(
d2v

dr2

)
= 0 (5.55)

we can substitute y = dv/dr and obtain dy/dr = −y/r , or also dy/y = −dr/r , which is easily integrated to
obtain ln y = − ln r . Then, by taking the exponential of both members, it is dv/dr = 1/r , which finally gives:

v(r) = A + B ln r (5.56)

For the non homogeneous equation (5.54), it is easily seen that one possible solution is v(r) = −(p/4ηL)r2.
In fact, the first and second derivatives being simply v′(r) = −(p/2ηL)r , and v′′(r) = −(p/2ηL), we have:

1

r
v′ + v′′ + p

ηL
= − 1

r

p

2ηL
r − p

2ηL
+ p

ηL
= 0 (5.57)

Hence, the complete solution is given by:

v(r) = A + B ln r − pr2

4ηL
(5.58)

Note that, in order to have a finite velocity at any r , it must be B = 0. On the other hand, the ‘stick-slip’
condition, v(R) = 0, implies A = pR2/4ηL . Therefore, the radial velocity in a cylindrical tube under laminar
flow has a parabolic profile:

v(r) = p(R2 − r2)

4ηL
(5.59)



186 5 Entropic Forces in the Cell

The volumetric flux of fluid can then be integrated all over the surface A, to obtain
the volumetric flow-rate, with dimensions of [L3][T−1]:

Q =
∫ R

0
2πrv(r)dr = πR4

8ηL
p (5.60)

This expression is known as the Hagen-Poiseuille equation, from the world of
fluid dynamics, and tells us how much fluid is pushed by the pressure p, across a
given circular section, in a unit time. Note that it is strictly valid only for a Newtonian
fluid under laminar flow conditions, in practice at values of Re � 2,000. Such values
include almost all blood vessels in the human body, possibly with the exception of
the largest arteries next to the heart.

The ratio Rh between the pressure and the flow-rate:

Rh = p

Q
= 8ηL

πR4
(5.61)

is the hydraulic resistance, with dimensions of [Pressure][T][L−3], a more general
quantity than simply the resistance between two fluids moving at different velocities.
The resistance Rh varies very rapidly with the blood size, as the fourth power of R
(for a section different from circular, a geometric factor different from 8/π must be
included in Eq. (5.61)). This allows the easy adjustment to variable blood pressure
by a small change in the diameter.

At the branching points of the vascular network, where a vein or artery splits into
vases of smaller diameter, the above equations are no longer valid. However, until
the flow remains in the laminar regime, such junction regions can be neglected with
a minor error. If this is the case, the hydraulic resistances of the different sections of
the network, split into one, two, four, etc. vases, can be treated like ohmic resistances
in an electrical circuit, and can be summed in series or in parallel. For two sections
of different diameter joined together (Fig. 5.8a), the pressure drops at the extremes
of each section are summed, Δp = Δp1 + Δp2, and the hydraulic resistance is the
series of the two respective resistances, Δp = Q(R1 + R2). On the other hand, for
a section splitting into, e.g., two vases of smaller diameter (Fig. 5.8b), the flux is
constant in the two sections, Q = Q1 + Q2, and the pressure drop is given by the
parallel combination of the hydraulic resistances, Q = Δp(R−1

1 + R−1
2 ).

For a fluid traversing a membrane of cross section A, the following expression
can also be introduced:

Rh = 1

AK f
(5.62)

The constant K f is the filtration coefficient of the membrane, with dimensions
of [L][Pressure−1][T−1], i.e. a velocity divided by a pressure, or a volumetric flux per
unit pressure. Therefore, it is a measure of the fluid flow induced by a given pressure
across a given membrane. In terms of the volumetric flux, it is as well jV = pK f .
Note that the flux jV is the amount of fluid crossing the membrane, i.e. the flow of
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Fig. 5.8 Series and parallel sum of hydraulic resistance of blood vessels. a For two vessels of
different diameter joined, the pressure must be continuous, equal to the sum of the two pressure
drops. The two resistances R1 and R2 are summed as two electrical resistors in series. b For a vessel
of radius R splitting into two vessels of radius R1 and R2, the flux Q must be constant in each
section. The two resistances R1 and R2 are summed as two electrical resistors in parallel, and the
result is summed in series to the resistor R

solvent. If the solvent contains solute particles in suspension these may or may not
cross the barrier, depending instead on their permeability PM , Eq. (5.43), which is
related to the diffusivity of each particular species in the medium composing the
membrane. Particles can be carried by the physical flow of the solvent, or they can
diffuse following the chemical concentration gradient: in general, the movement of
solutes will be a combination of both driving forces.

It should be noted that the filtration coefficient is also function both of the type
of fluid and of the membrane. A typical value for water and the epithelial membrane
of the human capillaries is K f = 6.9 × 10−6 cm/(atm s), and for the membrane of
the red blood cells K f = 9.1× 10−6 cm/(atms). A relatively large value of filtration
coefficient means that water flows out of the capillary system, and accumulates
in the neighbouring tissues, likely causing an edema. This outgoing flux is partly
equilibrated by an opposing pressure, originating from the concentration gradient of
those large proteins that cannot easily cross the capillary membrane, i.e. the osmotic
pressure of the large solutes. In medical physiology, the particular osmotic pressure
associated with such large blood solutes, e.g. albumin, globulin, fibrinogen, is called
oncotic pressure. Such large solutes inside the capillary create a negative pressure,
tending to pumpwater into the capillary itself, thereby opposing the water loss due to
the internal pressure. The balance at the capillary membrane between these pressures
differences (of different origin) is summarised in physiology by the so-called Starling
equation:

jV = K (Δp − Δπ) (5.63)

If the overall flux is positive, the capillary is said to be in the filtration state,
if negative it is instead in the absorption phase. All along the circulatory system,
capillaries must adapt to largely different physiological conditions, and must adapt
their characteristic K and pM accordingly. The way K can be adjusted is more likely
a mechanical one, by varying the density of endothelial cells making up the capillary
tissue, and their liningmembranes. The permeability PM is instead adjusted by locally
changing the cell membrane composition, with the increase of concentration of some
particular proteins (cytokines, prostaglandins, histamine etc.).
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Capillary membranes in most tissues are permeable to the small molecular weight
solutes normally found in the blood, and are impermeable to bigger solutes. There-
fore, big proteins like albumin are the main responsible for setting the osmotic pres-
sure difference. On the other hand, the situation is quite different with the capillary in
the brain. Thanks to very tight cell junctions, these capillaries are impermeable also
to small solutes (the so-called brain-blood barrier, a defence against brain infec-
tions), such as the Na+ and Cl− ions, which are thus even more important than the
big proteins in establishing the osmotic equilibrium, since π is proportional to the
concentration and not to themass, and ion concentrations are 100–1,000 times higher
for ions than for proteins. Because of this, neuronal cells are extremely sensitive to
small variations of osmotic equilibrium and can easily get dehydrated. This would
lead potentially to hypertonicity of neurons in the brain and loss of intracranial fluid;
however, this effect is balanced by an increased water permeability of the neuron
membrane, which has a much lower filtration coefficient K , compared to other cell
membranes.

5.6 Moving Around in a Fluid World

The preceding two Sections introduced two diverse modes of moving particles
through amedium, the diffusive and the advective transport. The former is related to
the difference (gradient) in concentration, the latter to the existence of a driving force
(pressure) inducing a directed flow. (If the driving force is heat, the transport is called
convective.) Such processes are of great importance in many biological situations,
such as oxygen transport between air and tissues, the structure and function of cell
membranes, the nature of the intermediary metabolism, and so on.

The overall expression for the unidimensional flux of particles would be:

jx = −D
dc

dx
+ vxc (5.64)

combining the diffusive and advective contributions. The typically small values of the
diffusion coefficient, in the range of 10−10–10−12 m2/s, set limits to biological flows
to occur either over long times (slow velocities), or highly surface-convoluted struc-
tures, and generally over small sizes. Organisms relying exclusively on diffusion for
the transport of nutrients and oxygen are typically micron-sized and thin-walled. On
the other hand, maintaining a pressure gradient over relatively long lengths requires
a lot of energy (ATP) consumption and a substantial waste of body parts to make up
pipes and transport fluids.

The equilibrium between these two competing aspects of matter transport can be
judged by another dimensionless quantity, the Péclet number: :

Pe = vL

D
(5.65)
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Fig. 5.9 Species of volvocalean green algae spanning a large range in size. a Unicellular Chlamy-
domonas. b A colony of about 30 cells of Eudorina elegans. c Colony of Volvox aureus, about
2,000 cells (larger spots are daughter colonies). [Photos (a, b) public domain c© of U.S. Envi-
ronment Protection Agency; (c) courtesy of Aurora Nedelcu, University of New Brunswick
www2.unb.ca/]

Values of Pe of the order or less than 1 indicate a predominance of diffusion,
while larger values indicate a system dominated by advection [5]. A typical case is
provided by Volvocalean algae, which exist in a range of social structures (Fig. 5.9):
from the isolated unicellular Chlamydomonas, to the pluricellular Gonium, which
form small colonies of∼50 cells, to the multicellular Volvox, whose dense, spherical
societies can count up to many thousands of citizens. Correspondingly, the size of
individual cells declines from about 30 µm to less than 5 µm. As the size of the
colony grows, and that of each single cell shrinks, a constraint on diffusive transport
of oxygen from the environment appears, because of the decrease of the surface to
volume ratio.

The steady-state diffusion equation (5.42) can be solved for the radial coordinate
r , measured from the centre of the colony of radius R, with the boundary conditions
c(r = R) = 0 and c(r = ∞) = c0 (see Problems 5.3, 5.4). These specify, respec-
tively, that at the colony surface the oxygen concentration is zero, by assuming that
all the oxygen entering is immediately distributed to the cells and absorbed; and that
at a sufficient distance from the colony, the concentration tends to the constant value
c0. The solution is:

c(r ≥ R) = c0

(
1 − R

r

)
(5.66)

The diffusive flux, obtained from Eq. (5.29), is:

j (r) = −Dc0

(
R

r2

)
(5.67)

that is, a diffusive oxygen current (flux at R × surface) IR = −4πRDc0 at the
surface of the colony. On the other hand, the colony requires an apport of oxygen
to survive, expressed as a metabolic current crossing the surface of the cells. By
applying a requirement of constant volume to a colony of N cells each of size r0,

www2.unb.ca/
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the total surface is N ( 43πr
3
0 ) = 4

3πR
3. The metabolic current is therefore IM =

βN (4πr20 ) = βN 1/34πR2, with β a metabolic coefficient. By the two different
functional dependencies on R and R2, it is seen that the diffusive flux will no longer
be sufficient to feed oxygen into the colony, when it has grown beyond the radius
corresponding to IR = IM , that is:

Rc = Dc0
N 1/3β

(5.68)

Only advection can supply the required oxygen flowbeyond the critical size. In the
case of Volvox, the cells situated at the surface of the colony provide the forced fluid
flow by the agitation of their flagella, and the resulting flow velocity is proportional to
the size R of the colony [6]. As a consequence, the advection current can be written
as IA ∼ Dc0R2/Ra , and it will take over diffusion when the colony size reaches
about Ra > Rc. With such a R2 dependence, advection parallels the increase of IM ,
and can in principle supply enough metabolic oxygen for any colony size.

The competition between diffusion and advection is crucial to many biological
problems, and the Péclet number is a practical way to judge whether an organism
exploits one or the other, for a particular function. For example, consider the blood
flow in capillaries, with their typical diameter is of ∼2−3µm: the diffusion coeffi-
cient of oxygen across the endothelial vessel membrane is D = 18 × 10−10 m2/s,
and the typical flow velocity is 0.7 mm/s. This sums up to a Pe = 1.15, which
looks a value “evolutionarily chosen” just to properly equilibrate diffusion and flow.
According to the reasoning of the previous Section and the Hagen-Poiseuille equa-
tion (5.61), which impose conditions of continuity of the pressure dropΔp and of the
blood flux Q at the junctions and branchings of the vascular network, the diameter
of the final sections (the capillaries) should determine backwards the sizes of all the
veins and arteries in the network. Such sizes, in turn, determine the total volume of
blood circulating, and the average pressure the heart must provide to reach the far-
most blood vessels. It seems therefore that the condition of correct balance between
diffusion and advection (Pe ∼ 1) represents a strong constraint on the overall design
of the circulatory network.

Oxygen is crucial to respiration of animals both living on the surface and in the
water. Fishes and other sea creatures must extract the oxygen dissolved in water, by
using gills as specialised filtering apparatus. Some fishes use gills also for feeding,
by capturing small food particles that float in water. Because of their multilayered
structure offering a huge surface to volume ratio, gills seem ideal organs to exploit
diffusion in order to intake oxygen gas. However, for the purpose of capturing the
sparsemicroscopic food particles, a lot of water must be filtered, therefore a high-rate
flux seems rather necessary. The Péclet number in this case may help in indicating
which is the predominant function of the gills in each animal. Vogel [7] cites two
opposite situations, the gastropod Diodora aspera and the bivalve mollusk Mytilus
edulis (the common black mussel). The former has gills filaments spaced by 10
µm and an apparent flow rate of 0.3 mm/s, giving Pe � 1.5, adequate for oxygen
breathing by diffusion; the latter has gills spaced at 200µmand a flow rate of 2mm/s,
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resulting in Pe � 100. Such a value is clearly excessive for a purely respiratory
function, likely an indicator that the mussel uses its organ mostly for feeding.

5.6.1 Brownian Swimmers

Consider a solution of particles of mass m and size(radius) R, diluted in a container
of finite size L . As a function of the fluid density, particle mass and temperature,
the particles will progressively settle within the fluid, according to the Archimedes’
principle. This phenomenon is called sedimentation. The vertical profile of particle
density is an exponential, n(z) = n0 exp(−z/ lg), with lg a characteristic sedimenta-
tion length, given by the ratio between the thermal (Brownian motion) energy kBT
and the total forces acting on the particle. These are the gravitational pull −mg, and
the Archimedes buoyant force Fb = ρVg, with ρ the fluid density and V the particle
volume. If we define Δρ the difference of density between the fluid and the particle,
it is:

lg = kBT

ΔρVg
(5.69)

The dimensionless ratio R/ lg is a measure of the relative importance of Brownian
fluctuation versus sedimentation. For R/ lg � 1, density variations are apparent only
over lengths much larger than the size R of the particles. On the other hand, when
R/ lg � 1,gravity is stronger than thermal fluctuations, and local density fluctuations
can arise. In the first case, the diffusion time is much shorter than the settling time,
since the ordering action of gravity is a small perturbation compared to the disordered
thermal agitation. Because the diffusion time is tD ∼ R2/D, and the settling time is
rather ts ∼ R/vs , with vs the sedimentation velocity, the ratio of the two times is:

tD
ts

= vs R

D
(5.70)

that is the Péclet number, Pe. However, remember that the diffusion coefficient is
linked to the temperature by the particle mobility, as D = µkBT (in the linear flow
regime), and the mobility is the ratio of the drift velocity to the force, µ = v/F ,
or μ = vs/Fb in this case of particle sedimentation. Therefore, D = μkBT =
vskBT/Fb, or D = vslg , and consequently:

Pe = vs R

D
= R

lg
(5.71)

In other words, the above defined dimensionless number distinguishing Brownian
versus settling particles, is nothing else but another definition of the Péclet number
(which we used to characterise diffusive vs. advective flow).
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Fig. 5.10 True-color image of the dynamic growth of a springtime phytoplankton bloom in the
Bay of Biscay, off the coast of France. Image captured on April 2013, by the Moderate Resolution
Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite. The swirling colours indicate
the presence of vast amounts of phytoplankton, tiny plant-like microorganisms that live in both
fresh and salt water. [Public-domain image, c© of NASA GSFC Archive]

Plankton is a collective name for a variety of micro-organisms, crucial to the
oceanic food chain (see Chap.12), which spend their life by drifting in the water
column7 of vast sea areas, being incapable of swimming against the currents. A
large part of the plankton is represented by the phytoplankton, photosynthesising
microscopic plants often unicellular, which are thought to provide from 50 up to
80% of the total oxygen in the Earth’s biosphere (Fig. 5.10).

Most of the time such micro-organisms are negatively buoyant, i.e. they sink,
although at very low sedimentation velocities of about 4 µm/s, or 35 cm/day. It is
believed that sinking could improve access to CO2 (their “food” that is transformed
into oxygen by photosynthesis), since the slowly moving cell consumes all its neigh-
bouring source of carbon dioxide. However, sinking too much takes the cell down
to depths at which photosynthesis becomes less and less efficient. Therefore, some
evolutionary reason must have pushed these widespread micro-organisms to select
such a strategy. For a diatom sinking over a length of 100µm (about 10 times its own
size) at a rate of 4 µm/s, with the diffusion coefficient of CO2 equal to 14 × 10−10

m2/s, the Péclet number is Pe � 0.3. This means that carbon dioxide diffusion is the
main factor, while advection (by sinking to different depths) does not significantly
improve the capitation of CO2. In his already cited study [7], S. Vogel suggested that
phytoplankton could be sinking for a different reason, maybe to escape trapping at
the sea surface by surface tension. However, it appears that phytoplankton cells could

7A water column is a fictitious column of water defined over a given area, from the surface of a
sea, river or lake, to the bottom. It is an important concept in environmental studies, since many
aquatic phenomena are explained by the vertical stratification and mixing of chemical, physical or
biological parameters, measured at different depths.

http://dx.doi.org/10.1007/978-3-319-30647-6_12
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not have hydrophobic surfaces, therefore the reason for their sinking still remains
another one of Nature’s mysteries.

5.7 Squeezing Blood Cells in a Capillary

Blood is composed by a transport fluid, the plasma, which flows in the vascular net-
work transporting a variety of cells. Among these, the most important are undoubt-
edly the erythrocytes, or red blood cells (RBC), which transport oxygen to each and
every cell in the body, and the leucocytes, or white cells (WBC), which intervene
in many functions of immune response, open wounds, foreign infections, inflam-
mations. The former have a typically flat, biconcave shape, while the latter have a
roughly spherical shape, which can however be adapted and modified very easily
following the specific function required. In any case, both RBC and WBC must be
capable of considerable deformations, to be able to fit in the terminal capillaries of
the vascular network. The diameter of the thinner capillaries is of the order of, or
even smaller than, a single cell. The great deforming ability of the blood cells comes
form their cytoskeleton inner structure (see Appendix E to the next Chapter), which
is however very different in the two types of cell.

The deformation of WBC can be described in a simplistic model as the transfor-
mation of a spherical into an elongated, cigar-likemembrane structure. The condition
of constant volume must also be ensured, since the cytoplasm is a practically incom-
pressible fluid. Since the sphere is the solid with the smallest surface to volume ratio,
the amount of surface at given volume of a WBC must considerably increase, when
squeezing within smaller and smaller capillaries.

Mechanically, the cell membrane cannot tolerate a deformation larger than about
∼4%, before being broken (lysis, see greybox on p. 166). WBCs dispose of a sort
of “reserve” of membrane material, in the form of pockets and folds, which allow
expanding the surface up to 2.5 times the isotonic size (the size of a sphere in
osmotic equilibrium). The cell can maintain its spherical shape even with this excess
membrane thanks to the surface tension Σ , ensured by the layer of actin filaments
supporting the membrane from the inner side. This cortical actin layer forms part of
the cytoskeleton (see Appendix E), integrating a network of flexible actin and a main
frame of more rigid microtubules, emanating from a central structure placed next to
the cell nucleus, the centromere. The membrane cortical tension can be constantly
adjusted by remodelling the surface-bound actin layer.

Although these daysmore precise measurements can be carried out by the atomic-
force microscope, the membrane surface tension Σ has been classically studied
by means of a conceptually very simple experiment [8], schematically depicted in
Fig. 5.11. A micropipette aspires the membrane surface with a controlled value of
(negative) pressure, and the value of Σ is deduced from Laplace’s law:

p = 2Σ

R
(5.72)
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Fig. 5.11 The membrane of a spherical cell or lipid vesicle is deformed by a micropipette. Pp is
the pressure in the pipette, and Po is the pressure in the reservoir. Ro and Rp are the radii of the cell
or vesicle and the pipette. The resulting isotropic stress in the membrane is the surface tension T
and is determined by Eq. (5.75)

valid for the cell at isotonic equilibrium, with a roughly spherical shape with average
radius R.

Let us consider firstly the equilibrium of the forces acting on a diametral circum-
ference of the sphere. The equilibrium condition between the pressure acting on the
half-surface and the tension holding the perimeter, is written as:

Ftot = 0 = p(πR2) − Σ(2πR) (5.73)

In themicropipette experiment (Fig. 5.11), the cell of isotonic size R, and unknown
Σ , is attached by the end of a glass tube (the micropipette) with internal diameter
R0 � R. A negative (sucking) pressure p0 is applied from the other end of the tube.
As a consequence, a portion of the cell membrane is aspired, and forms a protrusion
of length L inside the tube. In practice, if a too large pressure is applied, the cell
is entirely squeezed within the pipette (in fact, it is shattered); if the pressure is too
small, the cell detaches from the glass surface. Only one value of p0 can keep the
system in equilibrium, by satisfying a modified Laplace equation. It can be shown
that this value corresponds to a length of membrane L = R0. The new equilibrium
condition is obtained by imposing that the forces acting on the border separating the
protrusion of size R0 from the cell, sum to zero:

Ftot = 0 = p(πR2
0) + p0(πR

2
0) − Σ(2πR0) (5.74)

the + and − sign corresponding to tensile or compressive forces, respectively. Com-
bining this latter with Laplace’s equation (5.73), the value of surface tension can be
extracted:

2Σ = p − p0(
1
R0

− 1
R

) (5.75)

Note that all the quantities at the right side are known, since p0 and R0 are
parameters set by the experiment, and R is directly measurable, for example by an
optical microscope. This equation is an equilibrium condition. In fact, if the pressure
p0 is increased, the term 1/R0 gets smaller, with L > R0. As a result no equilibrium
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can be attained, with the numerator increasing while the denominator decreases.
The opposite occurs if p0 is reduced. Therefore, by manipulating the pressure until
reaching the unique equilibrium condition ensured by Eq. (5.75), the experimenter
can determine the value of Σ . The precision of the estimate can be increased by
repeating the experiment with pipettes of different R0, giving different equilibrium
values of p0. However, compared to an ideally homogeneous lipid bilayer, the value
of Σ for the cell is not constant but depends on the adherent cytoskeletal structures,
and detailed distribution of proteins and cholesterol in the membrane. Therefore,
average values can be obtained for the same type of cell, which can be largely
scattered about the mean. Moreover, this kind of experiment is difficult to perform
on cell with highly irregular shapes, such as neurons.

Red cells do not have the reserve membrane as the WBC, therefore they adopt
a different strategy to fit inside the thin capillaries. Their biconcave shape suggests
that at isotonic equilibrium the integral of the forces over the entire surface of the
membrane (actually the stress, see Appendix H) is zero. This contrasts with the
situation of spheroidal cells and vesicles, which have a non-zero cortical tension,
ideally defined by Laplace’s equation. For the RBC to have a partly concave, and
partly convex surface, it must be under zero net pressure, fromwhich also the surface
tension must be zero. (This does not mean, however, that the membrane has zero
mechanical resistance, because Σ �= 0.) While for a sphere it is not possible to
find a compatible deformation that can reduce the pressure (compatible here means
“continuous, without breaking or tearing the membrane”), a biconcave shape has an
infinite variety of geometrical transformations allowed, at constant volume. This also
means that, even if both volume and surface area cannot change, such a membrane
can sustain very large deformations without breaking, and by this way a RBC can
squeeze into a capillary of width even half its normal diameter. The fact that the
RBC is stress free at isotonic equilibrium indicates that such a biconcave shape is
indeed the minimum of total membrane energy. Such peculiar mechanical properties
originate from the internal cytoskeleton (Appendix E) that, in the case of RBC, is
entirely made from a network of very thin and flexible filamentary proteins, the
spectrines, connected by very short actin fragments.

Appendix D: Membranes, Micelles and Liposomes

All the membranes that are found in the cell are constituted by phospholipids, for not
less than 50% in mass. Artificial membranes composed by only phospholipids are
also stable, and can occur in a variety of shapes. Themain characteristic of phospho-
lipid molecules, besides the large number of variants, is that they are amphiphilic,
being constituted by a polar head, therefore with hydrophilic character, and two
non-polar, thereby hydrophobic, tails. Each tail is composed by two long aliphatic
chains (each one a fatty acid), containing about 13–23 CH2 groups, plus one terminal
CH3 (Fig. 5.12a, b). If all bonds between the carbon atoms in the chain are simple
bonds (called trans), the fatty acid is said to be saturated; on the contrary, if one or
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more bonds are double (or cis, with the removal of one H from each group) the fatty
acid is unsaturated. Each double bond implies formation of a “knee”, or bend in
the chain, which affects the capacity of the phospholipid to assemble into a densely
packed structure. Often in a phospholipid, one of the lipids is saturated and the other
is unsaturated. Typical chain lengths of the lipids found in biological membranes
are 16–18. While the most energetically favoured state is a straight, all-trans carbon
chain, deviations of 120◦ (called gauche bonds) cost a bending energy of only about
0.8 kBT , and so can be be thermally excited. These thermally excited kinks of a
normal carbon chain are not to be confused with the permanent kinks provided by
the double (cis) bonds.

As shown in Fig. 5.12c, the phospholipid molecule is built by attaching the ter-
minal -OH oxygens from the two lipid chains (after liberating the H) to a central
phosphate, RPO4 (hence the prefix phospho), to which a side group R is attached.
The nature of the latter is variable, the two most commonly found in biological
membranes being ethanolamine, CH2CH2N+H3, and choline, CH2CH2N+(CH3)3.
The head groups, with the negatively charged oxygen and the positively charged
nitrogen, have a dipole which interacts with the dipoles of water, thereby making
the phospholipid head strongly polar. Also, the choline is significantly bigger than
the ethanolamine, as the H attached to the nitrogen is replaced by the much larger
methyl group, CH3.

When phospholipids are mixed with water, their hydrophobic tails try to min-
imise the contact with water molecules, leaving only the hydrophilic heads exposed.
Above some threshold concentration, cmc � 10−10 M, phospholipids start to assem-
ble spontaneously into a patch, which further gets curved into a globular aggregate,

Fig. 5.12 Atomistic model and formula of: a saturated, and b unsaturated palmitic acid. The
saturated molecule has all single C–C bonds, and has a linear shape. The unsaturated molecule has
(at least) one double C=C bond, which forms a kink in the carbon chain. c The structure of typical
phospholipids: a polar head (choline or ethanolamine) linked via a glycerol to two fatty acids of
variable length and saturation
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Fig. 5.13 Self-assembly of phospholipids. Left Above some critical micellar concentration, phos-
pholipids minimise the interaction energy with the solvent (water) by clustering into spherical
micelles. The non-polar tails point toward the interior of the sphere, to avoid contact with water,
while the polar heads make up the spherical surface. Right If the concentration is further increased,
the spheroidal micelles grow and the layer of phospholipids splits, forming a double-layer mem-
brane. Within the two layers the tails are facing each other, providing a water-exclusion zone; heads
form two outer surfaces, with which water can make contact on both sides of the membrane. The
membrane bends and folds into a closed shape, thus forming a closed vesicle that resembles the
structure of a cell

ormicelle, with the hydrophobic tails grouped together so as to exclude contact with
water (Fig. 5.13, left). Upon increasing the concentration, many spherical micelles
can come together and pack into a dense lattice. Further concentration increase leads
to elongatedmicelles,which eventually fusion together into adouble layer (Fig. 5.13,
right). This structure is the beginning of the cell membrane, a sandwiched structure
with all the hydrophobic tails facing each other, while the hydrophilic heads are
in contact with water on both sides. This is an outstanding result of the hydropho-
bic attraction effect, as described in Sect. 5.4, despite the fact that assembling the
molecules together reduces their entropy.

Amphiphilic species can be obtained by attaching a polar headgroup to one, two,
even three lipid tails. All suchmolecules have the capability of self-assembling, when
the respective critical concentration is attained. The value of cmc can be inferred,
at least qualitatively, from considerations about the free energy of assembly of one
individual molecule to an existing cluster: the singlemolecule gains binding enthalpy
in attaching to the cluster, but loses entropy of its free motion in the solvent. By
schematising a long-tail molecule as a cylinder of radius r and length nlC , with n
the number of CH2 groups and lC � 1.25 Å the length of a C-C carbon bond (it is
1.54 Å projected along the vertical direction), its lateral surface coming into contact
with the other molecules in the cluster can be estimated as S = 2πrnlC ; the gain
in binding enthalpy is Eb = Σ A, for a generic lipid-lipid interfacial tension Σ (see
p. 338, for the membrane surface tension). The entropy gain can be estimated by
considering the single amphiphile in the solvent as an “ideal gas” molecule. Then,
from Eq. (2.11) in Chap.2, by setting N = 1, c = N/V , and E = 3

2kBT , the free
molecule entropy is:

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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S f = kB

{
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)3/2
]
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2

}
(5.76)

The critical concentration cmc corresponds to the equilibrium,G = Eb−T S f = 0,
from which we obtain the condition:

Eb

kBT
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]

(5.77)

or else:

ccm =
(
2πmkBT

h2

)3/2

exp

(
5

2
− Eb

kBT

)
(5.78)

This shows that the critical concentration decreases rapidly with the binding
enthalpy from the surface tension. This latter depends on the lateral contact sur-
face of the amphiphile in the cluster, whose radius r to a first approximation can be
taken to vary as r = 0.2 nm,

√
2r,

√
3r , for 1, 2, or 3 lipid tails in the molecule,

respectively. With Σ � 30 mJ/m2 (see below), the binding enthalpy of amphiphilic
molecules with n = 15 is, respectively, Eb = 17, 24, 30 kBT , for 1, 2, or 3 tails. As
a result, the critical concentration of 2-chain phospholipids, from Eq. (5.78) above,
is about 10−3 smaller than for single-chain amphiphiles (and about 500 times larger
than for 3-chain ones). It takes a much higher molar concentration for single-chain
amphiphiles to assemble into a double-layer, compared to 2-chain phospholipids.
This is the main reason why cell membranes should be composed by 2-chain, and not
by single-chain amphiphilic molecules. The latter prefer to form spherical micelles,
unless the molar concentration becomes very high.

The bilayer is a highly stable configuration, in which the phospholipid molecules
maintain a considerable in-plane mobility thus giving the membrane a fluid-like
consistency. However, also in this configuration the free edges of the bilayer expose
some of the fatty acid tails to the contact with water molecules. This is the driving
force for folding the flat bilayer into a curved structure, which will eventually close
to form a vesicle, superficially similar to a closed cell wall. In this configuration, the
water confined inside the double layer is in contact with the hydrophilic heads, as
well as the water outside, while the hydrophobic tails are completely screened by
any contact with water.

The thickness of a bilayer is usually about 5 nm (50 Å). A number of factors can
affect the membrane free energy, by changing either Eb or S f . Notably, the total
membrane surface can change by cutting away or adding portions of surface. Since
no free patches can be found in solution because of the too high energy cost of the
free borders, the patch will suddenly fold into a spherical shape (see Chap.8). Such
double-layer lipid spheroids, called vesicles or liposomes, can be found at several
stages during the cell life, for example in the processes of exocytosis and endocytosis,
by which a protein or a neurotransmitter is expelled from, or incorporated in the cell
membrane. Also micelles can be observed in cells, when a hydrophobic species must
be transported within the cell plasma: the single-lipid layer of the micelle provides

http://dx.doi.org/10.1007/978-3-319-30647-6_8
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a hydrophobic inner cavity, which can host and transport hydrophobic species in
water. The membrane tension Σ is affected by the mechanics of the underlying
cytoskeleton, with the actin cortical layer exerting more or less pressure on the cell
membrane during various stages of cell life (see Chap. 6). Also, transmembrane and
cytoskeletal proteins can affect the contractility or elasticity of the membrane itself,
and of the cortical layer immediately in contact with it. Figure5.14 summarises some
such processes.

In a real cell, the membrane is composed not only by lipids of various types,
but contains in notable proportion cholesterol molecules, as well as a variety of
proteins, which perform numerous specialised functions at the interface of the cell
with the external world. Since the bilayer is in a fluid state, the diffusion of the
proteins is sufficiently rapid. At low temperature, a phase of pure lipids undergoes
a structural transition to a gel phase, in which the tails are more ordered, (i.e., have
fewer gauche bonds) as are the headgroups. Presumably the heads possess long-range
orientational order, but no long range positional order (this is called a hexatic phase,
and is usually indicated as So). The increased order of the tails permits the lipids to
packmore efficiently, with the consequence that the diffusion constant of the proteins
decreases. At higher temperatures, this phase starts forming surface undulations, or
“ripples”; the bilayer in this phase, indicated as Pβ , is still very ordered despite the
wavy appearance. Because the proteins cannot do their job in a timely fashion, these
gel-like phases are biologically useless. Notably, lipids with two fully saturated tails
of length about 16 are in this useless state already at body temperature. Replacement
of one of the saturated chains by an unsaturated one causes a permanent kink in that

Fig. 5.14 Interaction between the tension and area of the cell membrane, and various cellular
processes. When the term Σ A in the free energy is too high, the events on the right side occur;
when it is too low, the events on the left take place.a In exocytosis, a patch of themembrane under low
tension is detached and forms a closed liposome, or vesicle (blue), the remaining membrane (black)
increases its tension. b The actin cortical layer (red) can increase its pressure on the membrane
by fast polymerisation, leading to elongation of the actin filaments. c The expulsion of myosin
(purple) from the actin layer decreases the contractility, leading to an increased actin tension on the
membrane

http://dx.doi.org/10.1007/978-3-319-30647-6_6
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chain and makes the system difficult to pack. With a large enough fraction of such
“defects”, the transition temperature is lowered to well below 300K, likely providing
a reason for the widespread presence of unsaturated fatty acids in the cell membrane
of all living organisms.

At yet increasing temperatures, the bilayer goes into a state with the tails very
disordered. This is a “tail-melting”, and the corresponding phase, indicated as Ld ,
retains the properties of a fluid, with increased in-plane disorder.

Cholesterol, like any sterols, is a lipid with a very small polar head (just the
OH hydroxyl termination), next to a planar structure of 3 hexagonal + 1 pentago-
nal aromatic rings, and terminated by short a hydrophobic tail, (CH2)4CH3. Adding
cholesterol to a lipid bilayer in the fluid phase decreases the membrane permeability
towater, since cholesterol tends to occupy part of the free volumewithin the long lipid
chains, thus decreasing their flexibility. A partial phase diagram of a synthetic mem-
brane of DPMC phospholipids with increasingmolar concentrations of cholesterol is
shown in Fig. 5.15. The pure lipid phases are found by looking along the vertical line
at zero concentration. Adding cholesterol to the gel phase disrupts the local order,
increasing the in-plane diffusivity and reducing the membrane elastic modulus. A
liquid-ordered phase is formed, on the right side of the phase diagram. This would be
the “normal” phase also for a biologicalmembrane, however considering that in a cell
membrane islands of different lipids can exist, with locally variable concentrations of
cholesterol. The average cholesterol concentration in the cell membrane can be about
40–50% on a molar basis (about 15–20% when expressed in weight fraction, since
cholesterol is a smaller molecule compared to typical phospholipids). In the simple
phase diagram in the figure, liquid-disordered and liquid-ordered phases, as well as
liquid-ordered and solid-ordered phases are seen to coexist in the homogeneous lipid
bilayer, at the normal temperatures T ∼ 36−38 ◦C.

The elastic properties of the membrane chiefly derive from the competition
between attractive (Van der Waals + electrostatic) interactions between the side
chains, and their entropy. Since each phospholipid occupies about 0.4 nm2, and
the interaction energy is ∼3kBT , the energy required to stretch a patch of membrane
is of the order of 7.5 kBT /nm2, or 30 mJ/m2. The elastic moduli of membranes will
be better defined in Chap.8. Typical cell membranes have a low shear modulus,
4–10 × 10−3 N/m; a high elastic modulus, due to the small stretching allowed in
lipid bilayers, 103 N/m2; a variable viscosity, which depends on membrane compo-
sition, 0.36–2.1× 10−3 Pa-s for red blood cells; and a bending stiffness κb, strongly
influenced by the presence of membrane proteins and cytoskeleton elements, of the
order of 10−19 N-m, or ∼100 pN-nm.

Problems

5.1 Stationary flux
Show that the time-independent solution of the diffusion equation (5.42) corresponds
to a constant flux across the membrane.

http://dx.doi.org/10.1007/978-3-319-30647-6_8
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Fig. 5.15 Partial phase diagram of DPMC phospholipids with cholesterol, in excess water solvent
(experimental data taken from [9]). The curved lines indicate coexistence points (temperature,
concentration) between the various phases. Within each area of the diagram one phase is formed or,
between two coexistence lines, a mixture of two phases (A+B) appears. The So phase is not visible,
since it appears at lower temperatures

5.2 Artificial blood
In your laboratory, someone is trying to make artificial blood. Therefore, they start
preparing spherical vesicles from a phospholipid suspension, with average size R. A
concentration of about 30% vol. of haemoglobin is introduced in the vesicles. When
such artificial “red blood cells” are placed in pure water, the membrane is ripped
open, and the protein diffuses in the water. After some test, you discover that if the
vesicles containing haemoglobin are placed in a 1mM solution of NaCl, they do not
explode and remain quite spherical. Explain the result. Moreover, if 1mM is good,
do you think that 2 mM should be better?

5.3 A cell spewing glucose
Take a spherical cell of radius R = 10 µm, whose membrane has a permeability for
glucose of PM = 20µm/s. Calculate the time variation of the glucose concentration
inside the cell, after it is immersed in a large tank of pure water at time t = 0.

5.4 A breathing bacterium
Consider a bacterium as a sphere of radius R0. Our bacterium lives in a pond, from
where it takes the oxygen to breathe at a concentration c0. Take that as soon as the
oxygen molecules pass the outer bacterial membrane they are instantaneously turned
into CO2, and compute the oxygen concentration profile around the bacterium.

5.5 Haute cuisine
You are preparing a strawberry pie in the kitchen. So, you cut your berries in half and
sprinkle themwith powdered sugar. After just a fewminutes, your fruits are softened
and float in juice.What happened? Where the water comes from?
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5.6 Separation by sedimentation
The sedimentation coefficient of a species in solution, s = v/a, is the ratio between its
sedimentation velocity and the acceleration applied (causing the sedimentation); it is
measured in a special unit, the Svedberg, 1 S = 10−13 seconds. Consider a centrifuge
turning at 103 rpm (rounds per minute). At time t = 0 a beaker containing a solution
of two mixed proteins A and B is placed at a position r0 = 5 cm away from the
central axis of the centrifuge. The two proteins have sedimentation coefficients of
10 and 30 S, respectively. At what time the protein A is found at r = 10 cm? What
will be the position of the protein B at that time?

5.7 Membrane permeability
Consider a spherical cell of radius R = 10µm, with some initial concentration [cin]
of a species, immersed in pure water. By knowing the permeability of the membrane
to glycerol (10−8 m/s) and glucose (10−12 m/s), estimate the time necessary for all
the molecules of each type to void completely the cell.

5.8 Blood flow in the arteries
Compute the increase in cardiac pressure necessary to transport the same amount of
blood, from a single artery of radius R, into two branched arteries of equal radius
R/2.

5.9 The osmose on Mars
You and your friend who lives on the planet Mars are repeating the osmotic pressure
experiment of Van t’Hoff. You both build the water container, a glass cylinder sealed
by the same type of semi-permeable membrane, and do the experience of adding
variable concentrations of glucose inside the cylinder. However, after a Skype call
to Mars, you discover that the level variations of the water in the cylinder are very
different between the Earth and Mars. Can you explain to your martian friend why?

(*) The terms of the Creative Commons Attribution 3.0 and 4.0 International License (http://
creativecommons.org/licenses/by/3.0/, http://creativecommons.org/licenses/by/4.0/) permit use,
duplication, adaptation, distribution and reproduction in anymedium or format, as long as appropri-
ate credit is given to the original author(s) and the source, providing a link to the Creative Commons
license and indicating if changes were made.
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Chapter 6
Molecular Motors in the Cell

Abstract Many molecules found in living organisms can bind ATP, and use its
energy to perform mechanical actions such as bending, twisting, rotating. In some
special proteins such an action can be performed cyclically, as the same molecule
can use ATP units at regular intervals, to repeat continuously its mechanical action.
If this may not appear at all surprising from a purely chemical perspective, being
just one more case of enzymatic chain reaction, it becomes a fascinating subject
when seen under an engineering perspective. In fact, such molecules are nothing less
than true molecular-scale motors. Dozens of different motor proteins exist in every
eukaryotic cell to perform the most diverse functions, and prokaryotic cells also have
their share, by employing sophisticated rotating or flapping molecular structures, in
their swimming movements.

6.1 Molecular Motors

In the previous Chapter, we saw that how the Brownianmotion ofmolecules provides
a microscopic basis for diffusive phenomena. Seen under another point of view,
diffusion also connects with the concept of irreversibility, since any process that
spreads energy, heat, concentrations, over wider and wider distances increases the
entropy of the total system. If the process leading to diffusion were to be reversed,
free energy should be supplied to the system to invert each collision and reduce the
entropy. Therefore, free energy is being dissipated by the system during diffusive
spreading, in the formof entropy production released to the surroundings (the thermal
bath).

The important connection between random Brownian motion and diffusion was
based on the Einstein’s equation, 〈x2〉 = 2dDt , stating that the root-mean squared
displacement of a particle increases linearly with time, through the diffusion coef-
ficient D and a constant d = 1, 2, 3 for diffusion in 1 (channel), 2 (surface) or
3 (volume) dimensions. What this equation means is that the random motion of
the particle spreads over larger and larger regions of space with time, and the
corresponding probability of finding the particle at a given point, for example the
origin from where it started, becomes exponentially small as time goes by.

© Springer International Publishing Switzerland 2016
F. Cleri, The Physics of Living Systems, Undergraduate Lecture
Notes in Physics, DOI 10.1007/978-3-319-30647-6_6

205
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As discussed in the greybox on p. 178, a second fundamental equationwas derived
by Einstein, expressing the numerical value of the diffusion coefficient as a function
of the local temperature T , the viscosity of the medium η, and some geometrical
parameter of the diffusing object, which for a spherical particle coincides with its
radius R, D = kBT/6πηR. Note that in deriving this expression, use was made of
the Stokes’ relationship for the particle mobility μ, as the inverse of the linear drag
coefficient for a spherical particle, ζ = 1/µ = 6πηR.

The viscosity of water is η = 0.001 kg/(m s) at T = 300 K. For a big protein with
radius R = 10nm, the diffusion coefficient is D � 10−10 m2/s, a value that drops
to 10−12 m2/s for a lipid medium with viscosity about 100 times larger than water.
With such values of diffusivity, a protein in water can move over a distance of 1 µm
in about 1 s, a reasonable time for a protein to, e.g., move from the nucleus to some
organelle inside the cytoplasm; but it would take about 300years to cover a distance
of 1 m, making it impossible to move a neurotransmitter or ATP molecules along a
long nerve axon, from the brain to a limb.

Because the mechanism is dissipative, it is not enough to provide information
about the free energy difference between the initial and final states in order to estimate
theworkperformed in the diffusive spreadingprocess.Aswewill see later, dissipative
forces depend, among other parameters, also on the velocity: accelerating the rate of
diffusion by any mechanisms, such as the molecular-scale equivalent of a “motor”,
has the effect of increasing the dissipation of free energy, to a first approximation at
a rate proportional to the velocity.

Cells need several microscopic mechanisms capable of assisting and enhancing
their movements, in a number of different instances, such as: cell division, growth
and expansion of tissues, search for food and escaping predators (for unicellular
organisms), transport of materials, ions, proteins, inside and outside the cell. Cellu-
lar movement is also connected with the change of the cell shape, by reshaping the
membrane and the internal structure, via rearranging and remodelling the cytoskele-
ton (see Appendix E in this chapter). In either case, the evolution is accompanied by
a forced transport or displacement of matter inside and, to a variable extent, outside
the cell.

These additional mechanisms cannot be based on the simple Brownian motion,
which are at the basis of simple diffusive processes, since as we have already seen
the Brownian motion produces on average a zero net displacement. Such additional
mechanisms are just real motors but at the molecular scale, which function by trans-
forming the chemical energy stored inATP intomechanical energy formovement and
actuation functions, in every instance in which the cell needs to exploit a mechanical
force. On the other hand, suchmolecular motors are, as their very name says, nothing
more than highly specialized molecules; therefore at the smallest scale their elemen-
tary movements are subject to temperature fluctuations, and could not be anything
else than Brownian. The question is then: how is it possible that from a Brownian
movement, a net displacement and transport of matter could result?

In Chap.2 it was shown that the efficiency of transformation of free energy into
work is increased,whenever the process is broken into smaller and smaller elementary
steps. In that case the demonstrationwas done for a thermal engine, but it is obviously

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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valid also for a chemical engine. Such an observation is central to the idea that natural
mechanisms are invariably based onmulti-level hierarchical structures, ranging from
the molecular scale up to the macroscopic. Muscles, to be described in more detail
in Chap.10, represent a good example of this multi-step architecture:

• a muscle is constituted of a parallel bundle of long fibers, on the cm scale and
0.1mm thickness, each fiber being a multinuclear cell wrapped in its membrane;

• each fiber is assembled from parallel individual myofibrils, with the same length
of the fiber but about 2 µm thick;

• each myofibril is highly structured bundle of myosin and actin long molecules,
subdivided into elements extensible between 1.25 and 2.5 µm length (the sarcom-
eres);

• each myosin and actin unit results from the assembly of individual molecular
filaments, made from many molecular subunits, with sizes in the range of 1–2 µm
length and tens of nm in diameter.

At the very bottom of the mechanical actuation process, the origin of the force
exerted by the muscle lies in the microscopic displacement of the millions of indi-
vidual actin and myosin molecules. This is likely the best studied example of a
molecular motor, for which a simple mathematical model will also be discussed
in the next Section. The microscopic mechanism by which each individual myosin
molecules can actuate a force on the actin filament has been elucidated by J. Finer
and coworkers in 1994 [2], and since then their experiment, which goes under the
general name of motility assay, has been repeated a number of times by many other
laboratories (Fig. 6.1).

Myosin molecules are braided in bundles, so that the entire bundle can exert
and amplified force on the actin, pretty much like a gymnast pulling himself along
a hanging rope. On the other hand, there are several examples of molecular motor
proteins whichwork in isolation, instead of grouped. Important examples in this class
are the dyneins, and the kinesins. Such molecules are capable of translating along a
fixed support structure, such as a rigid microtubule in the interior of a cell (Fig. 6.2),
by alternating between two metastable conformations of the same molecule. During
their movement, they can transport some large cargo, such as a vesicle of 50–100
nm size, containing e.g. molecules of a neurotransmitter, along quite far distances,
in a very well directed walk that defies the idea of random, Brownian diffusion.
Examples of such processes can be seen in the micro-photographies shown in the
figure, showing the interior of neuronal cells from the mouse spinal chord (photo
taken with a cryo-electron microscope, a particular electron scanning microscope
capable of working at very low temperatures, on frozen biological samples).

6.2 The Mechanics of Cyclic Motor Proteins

Myosins and kinesins are two example of cyclic engines: they can repeat indefi-
nitely the same sequence of elementary steps, by changing between two metastable

http://dx.doi.org/10.1007/978-3-319-30647-6_10
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Fig. 6.1 Schematic of the myosin motility assay. a A glass or plastic bead is sparsely covered with
myosin molecules. A single F-actin filament is held with its extremities fixed at two suspended
microbeads. The experimental apparatus, not shown in the figure, is a double laser trap, which
maintains the beads, and can measure the recall force exerted by the actin filament. b The effect of
adding 2 mM concentration of ATP (fuel for the molecular motor): myosin generates a force that
displaces the actin filament. The time-trace above measures the displacement of one of the plastic
beads; the trace below this a zoom on a single event, with displacement steps highlighted in red.
[Adapted from Ref. [1], under CC-BY 3.0 licence, see (**) for terms.]

Fig. 6.2 Cryo-electron micrographs of membrane organelles (highlighted in blue, size of the vesi-
cles �100 nm), transported along microtubules (highlighted in green) in a nerve axon, obtained
by quick-freezing of a cell section and deep-etching. Short crossbridges, which are supposed to
correspond to different molecular motors (highlighted in red, and indicated by a yellow arrow), can
be noted between membrane organelles and microtubules. [Adapted from Ref. [3], w. permission.]
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conformations, and without altering their basic molecular structure, provided that
ATP energy is constantly available to power their sequential conformational trans-
formations.

Let us look a bit more closely at one molecule from these very large families:
myosin-II, exactly the one implicated powering the contractile stroke in muscle
fibrils. Graphical descriptions of the molecular structures and processes in which
this motor protein is implicated are shown in Fig. 6.3.

Myosin-II results from the braiding of two filaments, each one about 150nm long
and carrying a globular end, of about ∼20 nm size; the myosin head is capable
of binding to an active site of the actin monomer, carried by the actin filament
(Fig. 6.3a). It may be observed that kinesin has a very similar structure to myosin-
II, however its processes are shorter (∼60–70 nm) and with smaller globular heads
(∼10–15 nm). The globular head, a structure which is very much conserved across
the more than 17 different types of myosins, each with many variants, displays an
ATP-binding pocket, and an actin-binding site; the head is linked to the tail by a neck,
or ‘lever’ region, flexible and typically hosting various thinner filamentary proteins,
participating in the stroke regulation; the tails are quite variable among the different
myosins, those of myosin-II being among the longest. The basic functioning of the
myosin-II sliding and pulling the actin fiber has been reconstructed based on X-ray
diffraction and microscopy observations, although many important details are still
missing or unclear.

The model in five steps described in Fig. 6.3b is today the accepted version of the
chemo-mechanical actioning of the force stroke, as proposed by Lymn and Taylor in
1971. (1) Starting from the rigor position, (2) the head attaches one ATP molecule:
this ‘cocks’ the lever mechanisms, and releases the head from the starting actin
binding site. (3) The subsequent hydrolysis of ATP into ADP plus Pi lets loose the
lever arm. (4) Release of the phosphate allows the head to bind to a different actin
site, some 5nm distant from the previous one. (5) The final release of the ADPmakes
the lever to fold back into position (1), thus transferring the power stroke to the fixed
actin filament, and making the myosin to advance by the same length of about 5 nm.
The frequency of this cyclic movement is measured in ∼0.5–1 Hz.

The overall mechanism of actin-myosin combined power stroke is supposed to
involve more than 300 different molecular species, in which ATP plays a major
regulating role. The ATP attachment is a random process, ensured by the ATP con-
centration inside the myofibril. As it will be shown in Chap.10, the muscle fibre is
composed by a tight interconnection of sarcomeres, and sarcosomes (the equivalent
of mitochondria for muscle cells); therefore, ATP in sufficient amounts is normally
available for actin-myosin contraction.However, theway thismechanism is regulated
is still under active debate. The primary neural input comes in the form of Ca2+ ions
invading the sarcoplasmic reticulum (equivalent of endoplasmic reticulum in other
cells), a network that entirely wraps around the fibre (see Fig. 7.4 in Chap.7). One
possible regulatory mechanism has been identified in the protection/deprotection of

http://dx.doi.org/10.1007/978-3-319-30647-6_10
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Fig. 6.3 a Schematic structure of the myosin-I and myosin-II proteins. Both have a globular head
at one end, very similar in all types of myosins. The bending neck is the site of regulation, where
smaller filamentary proteins can loop. In myosin-II, the tails of the two monomers (light and dark
grey) are twisted about each other. b The five-steps power-stroke mechanisms that is suggested
as the basis of the movement of myosin-II (lower shape with black tail) along the actin filaments
(represented as two series of linked spheres). c Schematic of the protection/deprotectionmechanism,
by which tropomyosin filaments, actuated by a conformational change of troponin, can cover or
expose the active sites of actin (black spots), to which myosin-II can subsequently bind

the accessible binding sites on the actin filaments (Fig. 6.3c): the actin filaments are
not exposed naked to the myosin heads, but are wrapped themselves in a double
filament of a long molecule, the tropomyosin, which in resting condition ‘covers’
the actin active site; the calcium ions activate the change of shape of a secondary
protein, troponin; this, in turn, makes the tropomyosin filament to move with respect
to the actin filament, thus making actin binding sites accessible to the myosin heads.
However, the way troponin conformation switching and myosin attachment could be
synchronised is yet poorly known.
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6.2.1 Two-State Model of a Machine

Here the molecular motor is simply described as an object with two possible internal
states, a and b, as schematically represented in Fig. 6.4. Movement can occur in
finite steps of unit length along the discrete coordinate N , with all positions N
independently reachable, i.e. at each position themotor can step forward or backward,
with given probabilities identical for all positions. To fix ideas, a may be thought
of a bound state in which the motor is (non-covalently) attached to the rail, like a
myosin in the rigor position (Fig. 6.3b); and b could be the released state in the same
Fig. 6.3b, in which the motor is loosely bound. The two states are separated by an
energy difference ΔE = Eb − Ea , likely corresponding to a different molecular
conformation; and by a chemical potential difference Δμ = μb − μa , for example
corresponding to the binding of ATP in one state and ADP in the other.

Let us further assume, for the sake of simplicity, that the a and b states correspond
to different discrete positions N along the rail, so that the motor can be in only one
state a or b at each position. Once it is in a position N corresponding to the internal
state a, the motor can jump ‘forward’ from state a to b with a rate (probability per
unit time) r−→a , and ‘backward’ with a rate r←−a ; on the other hand, if it is at a position
corresponding to the internal state b, it can jump forward from b to the next a with
a rate r−→b , and backward to the previous a with a rate r←−b .

Transitions between the two states can therefore occur by two channels: either by
a chemical transformation, or by a thermal fluctuation. The corresponding rates can
be schematically written as:

r−→a = (
ueΔμ/kBT + w

)
e−ΔE/kBT

r←−b = (u + w)

r←−a = (
u′eΔμ/kBT + w′) e−ΔE/kBT

r−→
b

= (
u′ + w′) (6.1)

Fig. 6.4 Schematic representation of the discrete two-state model for a molecular motor. The two
internal states a and b have an energy difference ΔE , and a different chemical potential Δμ. The
locations N of the motor along the rail alternate between the two states, so that the motor can be in
only one of the two states at each location. Forward and backward transition rates between the two
internal states are indicated by a subscripted r
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with coefficients u, u′,w,w′ depending on the particular molecule and its chemical
reactivity. Note that the coefficients are in general different for the a → b transition
and the reverse b → a transition, to represent the fact that the two reaction paths may
not be symmetrical (for example, by looking at Fig. 6.3b, it is seen that the a → b
transition corresponds to the capture of ATP, while the a → b transition corresponds
to the release of ADP+Pi ).

Now, the probability of moving from one a position to another one in the forward
direction is equal to the product of the rates (r−→a · r−→b ):

WN→N+2 = (
u eΔμ/kBT + w

)
e−Δε/kBT

(
u′ + w′) (6.2)

and the probability of jumping backwards from the same a is:

WN→N−2 = (
u′eΔμ/kBT + w′) e−Δε/kBT (u + w) (6.3)

The difference in energy ΔE between the movement in the forward versus back-
ward direction is proportional to the ratio between these two probabilities (see
Eq. (3.4) in Sect. 2):

ΔE = kBT ln
WN→N−2

WN→N+2
= kBT ln

(
u′eΔμ/kBT + w′) (u + w)

(
u eΔμ/kBT + w

)
(u′ + w′)

(6.4)

Three things can immediately be noticed. Firstly, the dependence on the thermal
fluctuations has disappeared. Secondly, if there is no chemical affinity difference,
Δμ = 0, then also the energy difference is ΔE = 0, meaning that the system has no
preference for the movement in the forward or backward direction: it will make as
many jumps to the right as to the left, and there will be no net displacement from its
average position. Third, this same indifference holds if, whatever the value of Δμ,
the forward and backward coefficients are equal, u = u′ and w = w′.

For the molecular motor to produce a net displacement, thus expressing a sort
of ‘preferential diffusion’ in one direction, the conditions Δμ 	= 0, and at least
one of the u 	= u′, w 	= w′, are strictly necessary. If this is the case, the positions
at N , N + 2, N + 4, ... are all separated by an energy difference ΔE ; the energy
landscape for the molecular motor would be a straight line with slope ΔE/2, and
the motor could perform a net displacement in the direction of the negative slope.

For such a simple model, the drift velocity, v, and diffusion coefficient, D, can be
explicitly calculated:

v = 2

(
uw′ − u′w

) (
eΔμ/kBT − 1

)

u + u′ + w + w′ (6.5)

D =
(
2uu′ + uw′ + u′w

)
eΔμ/kBT + 2ww′ + uw′ + u′w

2(u + u′ + w + w′)
(6.6)

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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Coherently with the previous findings, the diffusion coefficient D is always dif-
ferent from zero, even if the conditions for biased diffusion are not met, while the
drift velocity is zero if Δμ = 0, or if both u = u′ and w = w′.

6.2.2 Continuous Energy Surfaces

Anymachine, macroscopic or microscopic, thermal, electrical or chemical, performs
itsworkon awell defined energy surface, or energy landscape. In the two-statemodel
it was assumed that the machine could switch periodically between two discrete
states. Now, by introducing the concept of energy surface we rather see the machine
evolution as operating a continuous transformation of its states, along one or more
coordinates (control parameters). Let us take as an example a very simple machine,
a bucket lifting a mass of water m from an underground pit, pulled by a long rope.
This machine has an energy surface governed by one single control parameter: the
height h of the bucket inside the pit, giving the gravitational energy U = mgh that
the tension on the rope must balance. Let us take that the pit has a depth −L , and we
fix a time T to pull the bucket up to the ground level at constant velocity. If we wish
to represent the energyU of our water-lifting machine in a time diagram, this would
be simply a zigzag line changing between −L and 0 in height, with a period T (as in
Fig. 6.4). In this case the energy surface is unidimensional, with the only dimension
being the height variable h.

The more general energy surface E(ξ1, ..., ξp) has a number of dimensions equal
to the number p of variables that can control its value and evolution, or control para-
meters ξi , i = 1, ..., p (we always speak of a “surface”, even if such a mathematical
entity has p = 3 or more dimensions). For the machine to be cyclic, at least one fixed
point E = E0 must exist on this surface, to which the machine returns at more or
less regular intervals of time. To move between the fixed point(s), the machine must
necessarily to go through points of higher energy, i.e. the energy surface has one
or more barriers to cross. Our simple water-lifting machine in the one-dimensional
parameter space, can be described by a diagram in which the energy appears in ordi-
nates, and h is on the abscissa: the energy barrier would have a triangular shape, with
base 2T (the time necessary to perform one up-and-down cycle) and height L . Some
examples of simple machines are depicted in Fig. 6.5.

Each of the mechanical machines of the types shown in the figure can be defined
by an input function and an output function. The output is a result of the input via a
mathematical relationship, the transfer function. If we think of the simple action of
kicking a ball with our foot, the output is a linear function of the input: the stronger
the kick, the farther the distance we send the ball, and no chance to see it coming
back. A cyclic machine, however, is characterised by a non-linear transfer function
between the input and output. It would be the case of a ball linked with a long rubber
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Fig. 6.5 Examples of cyclic machines; small green triangles indicate fixed elements, small red
circles indicated mobile elements. a Two-point lever, to raise the blue point from ground to a
maximum height; b constrained lever, to slide the blue object back and forth along the straight
guide; c cam, where the circular movement of the eccentric (egg-shaped part) translates into the
lifting of the blue element; d maltese gear, in which the circular movement of the moon-shaped
element on the left turns, by equal discrete steps (5 in this case), the central shaft on the right to
which the cross is attached; e: ratchet, to turn by discrete angular steps the central shaft without
possibility of stepping back. The last two machines are called “steppers”

rope to our foot: if the kick is not enough to send the ball to a distance longer than
the rope length, the ball does not come back; but if we kick the ball with enough
energy to cross the “barrier”, the rubber stretches and springs back, and we see the
ball coming back to our foot.

A machine with an energy surface characterised by one or more barriers, has
one or more minimum energy positions between the barriers. These lowest energy
positions coincide with the fixed point(s). The highest points on each barrier, instead,
are metastable states. The derivatives of the energy function taken with respect to all
the control parameters, ∂E/∂ξi , are zero at both the minima and maxima. Notably,
once the machine is at a metastable point, it can take any direction in the parameter
space ξ1, ..., ξp, since the energy has a negative slope in every direction ξi (because
any other point around a metastable point has a slightly lower energy). The amount
of energy necessary to set in motion the machine must be at least equal to the nearest
barrier height, and if themachine is returning to the same point, this amount of energy
must be supplied periodically, in order to maintain the cyclic movement.

The myosin-II moving along the actin filament in discrete steps, and consuming
one ATP molecule at each step, is just an example of such a cyclic machine going
between a periodic sequence of energyminima andmaxima. A simple representation
of its unidimensional energy surface could be written as:

E(x) = E0 sin

(
2πx

L

)
(6.7)



6.2 The Mechanics of Cyclic Motor Proteins 215

Fig. 6.6 Energy surface for the myosin-II climbing along the actin filament. The position of the
myosin is symbolically represented by theblue ball sliding above the unidimensional energy surface,
defined by Eq. (6.7). The 5-step model of Fig. 6.3b is reported under each period of motion, with
the first rigor position coinciding with the resting position of minimum energy, and the position at
the top of the hill being the metastable state

The only control parameter is the position x along the actin filament. The period L
is equal to about 5nm for this case, and the periodicity of the sine function ensures that
E(x+L) = E(x), as represented in Fig. 6.6. At each step, the myosin head returns to
its minimum (the rigor position in Fig. 6.3b). Each time anATPmolecule is captured,
the molecule climbs the energy barrier, up to the metastable point represented by the
“cocked” position in which the ATP is hydrolysed into ADP+Pi. From this point,
the myosin can attach to a novel position along the actin filament, thus falling into a
new minimum, a stable position.

Such an idealised description of the myosin-actin energy surface reveals two
important shortcomings. Firstly, the process of barrier climbing, powered by the
attachment of ATP, is perfectly symmetric here: the blue ball can climb indifferently
the barrier to its left or to its right with equal probability. On average, it will make
as many steps to the left as many to the right, therefore its average displacement will
be 〈x〉 = 0, as for any diffusion process. If we want to push the myosin toward a
definite direction, it is necessary either to “tilt” the energy landscape, by adding some
energy penalty −β for the movement in one direction, e.g. E(x) ∝ sin(2πx/L) −
βx ; or, alternatively, we must find a way to break the left-right symmetry of the
unidimensional Brownian motion, by some rectification mechanism which would
make the random jumps more probable in one direction. Secondly, as shown by the
Fig. 6.3b, the ‘cocked’ position does not coincide exactly with the maximum of the
energy surface. In fact, it is experimentally observed that the mechanical movement
of the lever-arm of the motor protein is much shorter than the ∼5nm covered by
each myosin step. Therefore, the mechanical stepping mechanism powered by the
ATP cannot be the only explanation of the longitudinal displacement.
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6.3 The Thermal Ratchet Model

If we look at the examples of cyclic machines in Fig. 6.5, it may be noted that all but
the (e) are reversible, i.e., they can run in a ‘forward’ and a ‘backwards’ direction
with the same effect. If we imagine to scale down the size of these machines to
the molecular level, where the height of their energy barriers is comparable to the
energy of thermal fluctuations, the probability of moving in either direction would be
identically given by a Boltzmann factor exp(−ΔG/kBT ), with ΔG the free-energy
height of a barrier in the forward or the backwards direction. The machine performs
a Brownian motion, with as many steps forward as many backwards.

The ratchet, instead is an example of irreversible machine: once the cogwheel has
turned by enough an angle, so that the pawl clicks on the next tooth, the backwards
movement becomes impossible. In energy terms, it is like the forward and backwards
barriers are no longer symmetrical, in fact the ΔE for the backwards motion has
become practically infinite. In this case, the Brownian motion is said to be rectified,
in that one direction of motion has a larger probability than any other. The currently
accepted models of molecular motors, such as a myosin-II traveling along the actin
filament, or a dynein moving along a microtubule, are all based on the rectified
Brownian motion.

Similar ‘ratcheting’mechanisms begun to be identified inmany types ofmolecular
motors, and they are all practical realisations of the same idea of thermal ratchet,
with ‘thermal’ having the same meaning above, of a machine whose energy scales
are comparable with the energy of thermal fluctuations (Fig. 6.7).

If we consider a particle with its diffusion coefficient D, diffusing in a medium
limited by boundaries [0, L], the Einstein formula allows to estimate the average
time required to traverse this domain as:

〈t〉 = L

2D
(6.8)

Fig. 6.7 Schematic of the
thermal ratchet model of
rectified diffusion. The
diffusion path is divided into
many boxes of equal length
δ, separated by a one-way
door, or ‘ratchet’. Once the
red particle diffuses in the
adjacent box, after an
average time τ , it cannot get
back to the previous one
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As already noted, in the absence of any perturbing action, the diffusion length at
times t ′ >> {t}, is 〈x〉 = 0. Now, let us imagine that the domain [0, L] is split into N
sub-intervals of length δ, such that L = Nδ, and that each barrier between any two
adjacent intervals is a ratchet, i.e. a device which allows the passage of the particle
in n to the interval n + 1, but not to the n − 1. After an average time:

τ = δ2

2D
(6.9)

the particle crosses the barrier, and changes it position from nδ to (n+1)δ irreversibly.
After a time Nτ , the particle has crossed the entire domain [0, L], therefore its

diffusion mechanism has been rectified to some arbitrary ‘forward’ direction. Its
average velocity along the path would be:

〈v〉 = L

Nτ
= L

2D

Nδ2
= 2D

δ
(6.10)

The average apparent speed of this rectified Brownian motion increases, for
smaller and smaller δ intervals into which the path length is split, because the fre-
quency of smaller and smaller random steps increases faster than the steps shrink.
Note that the width of δ is limited, for the myosin-actin case for example by the
minimum distance between two actin monomers, and in any instance by the thermal
mean free path length.

It should immediately come to the physicist’s mind that such a device violates the
venerable Second Principle of thermodynamics. If the disordered thermal motion of
the molecule can be converted into a directed flow, this would amount to a sponta-
neous reduction of the entropy. In the long history of failed physics miracles, this
goes under the name of “Perpetual motion of the second kind”, a motion that is in
fact physically impossible. (The ratchet device, however, does not violate the First
Principle of the conservation of energy, since it does not make up energy from noth-
ing; this would have been called a perpetual motion of first kind.) In fact, in the
macroscopic ratchet of Fig. 6.5e, the pawl is kept in place by a spring; if the spring
were not there, the pawl once disengaged could jump in the opposite direction for a
time sufficient for the cogwheel to turn backwards. The energy and entropy of the
Hookean spring, in that case, compound to ensure that the two fundamental principles
of thermodynamics are not violated. But what happens at the microscopic scale?

The answer was provided by Richard Feynman. Whatever the “pawl” mechanism
is intended to be, at the molecular scale (it could be, for example, another protein
acting; or a part of the same molecule changing shape; or an electric charge dis-
placement inducing a local dipole, etc.), it would be at the same temperature of the
“cogwheel”, or the motor molecule; therefore, the pawl would be subject to the same
thermal fluctuations as the wheel, and it could move in either direction, allowing the
wheel to do the same. In other words, no rectification of the Brownian motion would
be allowed, since all parts of the device are subject to the same destructive random
fluctuations.
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The rectified Brownian motion

The simplest potential that satisfies the first two requirements is again the sinusoidal: E(x) =
E0 sin(2πx/L). In the absence of other external forces than thermal fluctuations, the equation of motion
that gives the molecule position x as a function of time, is a dissipative equation:

η

(
dx

dt

)
t = ηvt = −E [x(t)] + ξ(t) (6.11)

The dissipative character comes from the presence of a term depending on the velocity v = dx/dt ,
multiplied by an effective viscosity coefficient η, which models the resistance to the motion from the
substrate. The term ξ(t) describes implicitly the particle position as a thermal noise, in the form of a
Gaussian probability distribution of random jumps of the position x in time, with average 〈x〉 = 0 and
variance σ2 ∼ kBT .

An equation of this kind is called a stochastic dynamics equation, and requires special tools to be
solved. However, even without solving explicitly this equation, we already know that its solution at
t → ∞, is zero average velocity, 〈v〉 = 0, since the average displacement is zero for a purely thermal
noise. Moreover, this remains true also if we make the potential asymmetric by adding a constant shift,
(−E[x(t)] + G). The amplitude of the potential remains symmetrical over an interval [−L/2,+L/2],
therefore the integral of the equation is zero, with a positive and a negative half equal and opposite.
We anticipated such results in our discussions on the Brownian motion in Chap.5, where the root-mean
squared displacement was identified as good the quantity, and not the absolute displacement.

To add amathematical description capable of ‘rectifying’ theBrownianmotion, a symmetry-breaking
element must be introduced in the potential. An idealized example can be the double-sine potential:

E ′(x) = E0

[
sin

(
2πx

L

)
+ 1

4 sin

(
4πx

L

)]
+ G (6.12)

with the constant G required to shift the integral to a non-zero value over the symmetric interval
[−L/2, +L/2].

The action of the simple-sine and double-sine potentials can be compared by a graphical represen-
tation, as given in the two following plots. The plots show the superposition of the Gaussian distribution
of particle probability density onto the shapes of the two potentials, centered in x = 3

2 L for the sake of
example.

For the sinusoidal potential on the left, the particle probability density is the same on the right and
on the left after a time t . The grey tails on the diagram in the figure represent the fraction of the initial
Gaussian distribution, which smeared beyond the two maxima x = L and x = 2L of the barriers
adjacent to the central minimum. By taking the difference between the two grey tails, the net probability
of motion is zero.

If, on the other hand, the potential E(x) is left-right asymmetrical, as shown on the right, the
superposition of the Gaussian distribution to this potential gives a probability density that spills over the
right direction, i.e. the probability of finding the particle is higher on the right than on the left.

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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Of special interest is the case of two-headed motors, such as the kinesin moving on a microtubule.
In general, the corresponding ratchet model will be characterised by two locations (on the microtubule)
with enzymatic activity. Each head of the motor is an enzymatic domain which can be activated only
at one of these locations, the situation is similar to that described in the two-state model. However, the
situation is more complex, because the motor can have more than just two internal states. For example,
in the model of Lymn and Taylor discussed in Sect. 6.2, five different internal states are enumerated,
each with a different molecular conformation and chemical state. Here we present another simplified
model with M = 3 internal states and transitions occurring at K = 2 adjacent sites, described in the
figure below.

The ground state of the model, m = 0, correspond to a resting state with both heads bound to the
microtubule; the first excited state, m = 1, has one of the heads, h1, detached, and the other h2 attached
to its location; and the second excited state, m = 2, has h1attached and h2 detached. Since both heads
are taken to be identical (as for dimeric kinesin), the two potentials E1(x) and E2(x) for the two excited
states have the same period l and are shifted along the microtubule as E2(x) = E1(x − l/2).

By using the same language of the “rate transition theory” already introduced for the two-statemodel,
four transition rates are defined (see green-shaded bands in the figure), from the ground state tom = 1, 2
(“unbinding”) and back (“rebinding”), which share the obvious relationsW0→2(x) = W0→1(x)(x−l/2),
and W2→0(x) = W1→0(x)(x − l/2). The binding reactions depend on the two rate constants w1,w2,
and the rebinding on the v1, v2, so that the transition rates can be formally written, by using appropriate
Dirac’s delta functions, as:

W0→1(x) = w1δ(x − l/2) + w2δ(x)

W1→0(x) = v1δ(x − l/2) + v2δ(x)

(6.13)

Therefore, a three-state model with two distinct binding sites has 8 independent transition rates, as
shown in the figure above. The unbinding rate constants w1,w2 depend on ATP concentration cA . A
reasonable hypothesis is that such constants follow a Michaelis-Menten (see greybox on p. 234), with
two constants α, β:

1

w
= 1

αcA
+ 1

β
(6.14)

Under the further hypothesis that w1 ∼ w2, it is possible to show that the drift velocity has a
ATP-concentration dependence, as:

v = v0 + (v∞ − v0)
cA

c∗
A + cA

(6.15)

where v0 and v∞ are the limits of the molecular velocity at zero or infinite ATP concentration, respec-
tively, and c∗

A is a fitting parameter to match experimental data.
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However, the device can function if the parts corresponding to the pawl and the
ratchet are kept at different temperatures. In that case, the difference in negative
entropy from the rectified motion would be compensated by the positive entropy
from the thermostat, needed to maintain the temperature difference. Of course, it is
very difficult in practice to hold a temperature difference of even a few degrees over
such a small distance as a few nm, which would correspond to a temperature gradient
of 109 K/m! At the molecular scale, however, some conditions have been identified
for such devices to work. The basic, minimal requirements for a thermal ratchet to
work are:

• the energy surface must be periodic;
• all forces must average to zero, in time, space and temperature;
• random (thermal) forces must be dominant compared to other forces;
• a symmetry breaking condition must be present.

The chemical details of the functioning of the actin-myosin motor based on the
rectified Brownian ratchet have been debated for a long time (Fig. 6.8). A widely
accepted description was the so-called lever-armmodel (Fig. 6.8a), which relied on
a tight coupling between a conformational change of the myosin head induced by the
ATP, such as the lever-arm tilting of the myosin head, and the detachment/attachment
between two adjacent actin binding sites. In this model, the displacement per ATP
cycle is expected to be proportional to the length of a domain, about 5 nm.

Although the basic concept was laid out already in the late 50’s [4], starting
from the beginning of the 2000’s the rectified Brownian motion model has been
gaining credibility, since it allows to better explain the dynamics and characteristic

Fig. 6.8 Twomodels of actin-myosinmotors. a The “lever-arm”model is based on a tight coupling:
a tilting of the lever-arm (conformational change) is coupled to each ATPase cycle in a one-to-
one fashion, and each step is equal to the minimum 5nm distance between two actin binding
sites. b The “loose coupling” model is based on the rectified Brownian ratchet model: the myosin
head, activated by the ATP, thermally diffuses along the actin filament by making random jumps
(sometimes backwards), summing several small steps. cMyosin-V operates similarly to myosin-II,
however its longer lever arms allow for a larger unit step
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time-energy scales of muscle contraction (loose-coupling model, Fig. 6.8b). Here,
the action of ATP is restricted to favouring the detachment of the myosin head and
promoting the ‘clicking’ of the lever mechanism. However, at the moment when the
head is in a weak binding configuration, the thermal fluctuations play a major role,
by allowing the molecule to jump by several units of 5nm forward (and sometimes
backwards), until a new actin binding site is found [5].

Experiments of the type described in Fig. 6.1 established that the relaxation time
is inversely proportional to the ATP concentration, and that the relaxation time of
force and displacement are different: this lends support to the model, in that the time
duration of force release is not correlated with the time of random jumping around
before finding the binding site. The average jump is around 35–38 nm, performed
at a rate (depending on the ATP concentration) between 100 and 200 s−1, which
turns into an average speed of myosin-II relative to actin of 350–750 nm/s. The force
exerted by a single myosin head is about 7 pN. Since the maximum force deduced
from macroscopic muscle contraction measurements is about 530 pN per myosin
filament (see Chap. 10), and the average number of cross bridges per filament is
∼100, this implies that about 40–60% of the heads work simultaneously in each
contraction step.

6.4 Symmetry-Breaking Transformations

From the point of view of our physical analysis, we look for modes of breaking the
translational symmetry of the energy landscape in Fig. 6.6. In more mathematical
terms, symmetry-preserving transformations of the energy landscape E[x(t)] leave
the equation of motion Eq. (6.11) unchanged, while reversing the sign of the velocity
v → −v. Trajectories with opposite velocity vectors are equivalent, with a net null
contribution to the motion, i.e. the directed current turns out to be zero. Symmetry-
breaking transformations, by contrast, transform E such that the trajectories with v
and −v are different, thus giving a net current.

The “deformation” potential, naively represented in Eq. (6.12) in the greybox on
p. 218 may originate from some irreversible modification of the molecular structure
upon energy transformation. It may happen that once theATPmolecule is hydrolized,
some modification of the motor molecule occurs, such that the stepping is forced in
one particular direction. In other words, there is not an explicit “pawl” in the ratchet,
but it is the moving part itself that is cyclically modified, so as to favour one direction
with respect to the other. In another version of the symmetry breaking, it can be the
pathway along which the molecule moves (e.g., the microtubule such as in Fig. 6.2),
which has a different molecular structure in the two opposite directions. We will see
some examples of both cases.

Likeothermolecularmotors,myosinworks directionally,with forward steps being
favoured over backward steps. The efficiency of such a forward-directed process can
be measured directly, by applying a force load that tends to oppose the molecule
motion. The myosin-V motor can step continuously on cytoskeletal actin filaments,

http://dx.doi.org/10.1007/978-3-319-30647-6_10
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Fig. 6.9 Above Kinesin moving along a microtubule. (1) A two-headed kinesin molecule, initially
with both heads in the ADP form, binds to a microtubule; (2) release of ADP and binding of ATP
results in a conformational change that locks the head to the microtubule and pulls the neck linker
(orange) to the head domain, throwing the second domain toward the plus end of the microtubule;
(3) ATP hydrolysis occurs while the second head interacts with the microtubule. (4) The exchange
of ATP for ADP in the second head pulls the first head off the microtubule, releasing Pi and moving
the first domain along the microtubule. The cycle can repeat, the kinesin moving farther down along
the microtubule

against a load of up to ∼2–3 pN, consistent with using one ATP molecule for each
∼36-nm step (see also Fig. 6.8c). Above a counter force of ∼3 pN, the molecular
motor “stalls” by pausing with both heads attached to the actin filament. In such
a configuration the myosin-V is unable to step forward because the work involved
exceeds the energy available from ATP hydrolysis. Importantly, experiments sug-
gest that in this stalled state ATP turnover is halted, so that the myosin motor only
consumes ATP when it is actively stepping. In recent experiments [6], it was found
that pulling backward on a walking myosin-V molecule causes the motor to reverse
its mechanical action, always in ∼36-nm steps, but without a requirement for ATP
binding. The maximum speed observed was in the range of 1000 nm/s.

The basic functioning of such families of motor proteins as myosins, kinesins,
dynein, observed in tens or hundreds of variants in eukaryote cells, are often very
similar to the one described for the myosin/actin motor complex. The displacement
of a kinesin along a microtubule follows a very similar qualitative path, although the
chemical details may differ substantially (Fig. 6.9). The kinesin heads take a different
conformation when they bind an ADP or an ATP molecule. The cyclic binding of
ATP, hydrolysis to ADP+Pi, release of ADP, and binding of a new ATP, performed
alternately by the two heads, permits the displacement of the motor protein along
the microtubule at a quite constant rate. Since kinesin hydrolyses ATP at a rate
of approximately 80 molecules per second, given the step size of 8 nm, kinesin
moves along a microtubule at a speed of 640 nm/s (considerably slower than the
maximum rate quoted above for the cooperative movement of myosin-V: clearly, a
steady velocity is the best quality of kinesin, while maximum velocity is the best
quality of myosin, on an evolutionary selective basis).

An outstanding example of how this mechanism is utilised in the cell, and of
its regulation, is provided by mitochondrial transport in neuron cells ([7], see also
next Chap.7), between the soma (the main part of the cell, including the nucleus)
and distal processes as the axon or neural synapses. The long neural axon consumes
a high amount of ATP molecules for transmitting the electrical impulse along its
length, which can be of many centimetres. Therefore, mitochondria have to be dis-
tributed along the whole length of the axon protruding from the central soma, to

http://dx.doi.org/10.1007/978-3-319-30647-6_7
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Fig. 6.10 Local variations in Ca2+ concentration (pink spheres) regulate the mitochondrial trans-
port, in possibly alternative ways. TheMiro-Milton (orMiro-Trak) adaptor complexmediate attach-
ment of the mitochondrion to KIF5 (blue, a motor protein of the kinesin family). Above Ca2+ binds
to the Miro promoting disconnection of the kinesin from the microtubule, followed by decoupling
of Miro-Milton, and detachment of the mitochondrion. Below increased Ca2+ recruits syntaphilin,
which provides a “stop” to the mitochondrial transport

make rapidly available the necessary ATP on site, which could never be realisable if
ATP were to diffuse from the centre of the cell to the distant periphery. Mitochon-
drial transport depends upon microtubule-based motors, which drive their cargos
via mechanisms requiring ATP hydrolysis. Microtubules are uniformly arranged in
axons. As we remember from this chapter, they have a definite +/– polarity originat-
ing from their basic heterodimer unit: their plus ends are oriented distally, and the
minus ends are directed toward the neuron body (soma). Such a uniform polarity has
made axons particularly useful for exploring mechanisms regulating bi-directional
transport: dynein molecular motors drive the retrograde movement, whereas kinesin
motors mediate anterograde transport. Of the 45 kinesin motor genes identified, the
kinesin-1 family (KIF5) is the key motor driving mitochondrial transport along the
neuron axon. KIF5 kinesin motors attach to mitochondria through adaptor proteins,
such as the Miro-Milton protein complex (also called a “trak” complex, from the
acronym of “trafficking-kinesin”), and the local Ca2+ concentration is thought to
regulate the transport in different ways (Fig. 6.10).

Note that when we say “attach”, be it the motor to the filament, or the cargo to the
motor protein, we are speaking of weak chemical forces: typically, a few hydrogen
bonds are formed, plus some electrostatic and Van der Waals forces. In any case,
no covalent bonds are formed because these would be too strong, and neither the
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motor protein could move nor the cargo could be delivered, with such bond energies.
The flip side of the coin is that such non-covalent bonds are of limited lifetime:
they must just be resistant enough for the process to be completed. However, in
the Boltzmann-statistical world of single molecules, surviving the thermal and fluid
Brownian fluctuations is always a matter of probability, for these molecular acrobats
on a rope. The typical distances that motor proteins can travel before dissociation are
of the order of 800–1200 nm for kinesin-I and dynein onmicrotubules, and 700–2100
nm for myosin-V on actin filaments.1 Such lengths are enough to cover a substantial
fraction of the cell size. Because of their longer steps, dynein and myosin-V process
about 30–60 steps during this lifetime, while kinesin-I with its smaller step can make
100–120 consecutive moves.

6.4.1 The Tubulin Code

As it was seen in the Appendix E to this chapter, microtubules are non-covalent
cylindrical polymers formed by α- and β-tubulin heterodimer building blocks, with
apparently contrasting properties: they are highly dynamic, exhibiting rapid growth
and shrinkage of their ends, but are also very rigid, with persistence length λp much
larger than the cell size. In their functioning as a kind of “highways”, along which
motor proteins can move at much faster rates than by pure diffusion, microtubules
may appear as passive structures. However, rather than changing cyclically the shape
and bonding of the moving motor protein, another way of breaking the symmetry of
the Brownian motion can be to modify the chemical structure of the tubulin blocks.
In a way, it would be like painting molecular-scale traffic signs over the intricate
road network of the cytoskeleton, and the traffic routing becomes directly inscribed
on the microtubules.

Such modifications of the tubulins are called post-translational, since they are not
expressed in the DNA coding for these specific proteins, but rather are the result of
the enzymatic processes completing the mRNA translation of the genetic code (see
also epigenetics, Appendix B to Chap.3). Tubulin post-translational modifications
are chemically diverse (phosphorylation, acetylation, polyamination, and so on), and
are generally reversible, evolutionarily conserved and abundantly represented in cel-
lular microtubules. Most importantly, their distribution is very much stereotyped in
cells. For example, microtubules observed during stable cell life (interphase) are
enriched in tyrosination, whereas the microtubules observed during the various steps
of the cell splitting (mitosis) are enriched in detyrosination and glutamylation;micro-
tubules in neural axon are enriched in detyrosination, acetylation, and glutamylation;

1Myosin-II moving along actin in muscle sarcomeres is less concerned by such problem, because
of the much larger number and high density, and their strictly fixed arrangement.

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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microtubules in cilia and flagella are especially heavily glutamylated; in some cases,
adjacent microtubules have completely different post-translational modifications,
such as in axonemes (see below, central pair in Fig. 6.17d), where the B-tubule is
highly glutamylated, whereas the adjoining A-tubule is enriched in tyrosination (for
a review, see [8]).

Such amicrotubule chemical diversity was proposed to form the basis of a tubulin
code that is read by cellular agents. Despite the widespread appreciation for the
ubiquity and functional importance of these modifications, and their stereotyped
distribution in organisms and cells, we do not currently understand how complex
microtubule modification patterns are written and interpreted by cells.

Single-molecule tracking experiments in cells revealed a special reactivity of some
kinesins for such modified microtubules, and the differential regulation of several
kinesin and dynein variants by modified tubulin isoforms. Decreased glutamylation
on axonal microtubules lowers the affinity of kinesin-3 and reduces synaptic vesicle
trafficking. Tubulin missing C-terminal tails was shown to self-assemble, in addition
to microtubules, other structures such as sheets, rings, and aggregates. These and
many other experiments indicate that tubulin tails and their modifications can tune
both the basic properties of the microtubule and its interaction with cellular motor
proteins. A striking example is provided by the experiment of Fig. 6.11, in which
the movement of kinesin-1 proteins is individually tracked inside a fibroblast cell,
by means of a special microscopy technique. The figure shows the path followed
by the kinesin over several seconds, a static image showing a portion of the cell
microtubules, and a graphic superposition of the two images. In this latter, it can
be clearly seen that the kinesin (red) follows quite closely the pattern of the acety-
lated microtubules (green), and mostly avoids other microtubules treated by different
enzymes.

Fig. 6.11 a TIRF-microscopy image of the path followed by fluorescently-labelled kinesin-1motor
proteins. b Microscopy image revealing the ensemble of the microtubules. c Microscopy image
highlighting the acetylated subset of microtubules. d Graphic reconstruction of the superposition
of the kinesin path in (a) (with green segments) and the acetylated microtubules in (c) (with red
segments). [Images from Ref. [9], repr. under CC-BY 3.0 licence, see (**) for terms.]
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6.5 Cell Shape and Cytoskeleton Polymerisation

Compared to the case of myosin or dynein, which are reusable motor proteins, other
cellular motors work on disposable mechanisms. In this case, the force is actuated by
the assembly and disassembly of the protein itself, at the site where the mechanical
action is needed. A characteristic example is provided by the regulated polymerisa-
tion of actin filaments in various instances of the cell life (Fig. 6.12). In this case,
that same molecule actin that we will see in Chap. 9 as being a fundamental static
component of the muscle sarcomere machinery, here works as a modifiable force
actuator, and can, e.g., push the cell membrane to extrude a pseudopod, or shrink and
split portions of the membrane during the process of cell separation. This mechanism
can be considered as disposable, or dynamic, since the actin polymers are continu-
ously elongated and shortened, clustered, bundled and disassembled, at various sites
around the cell and notably at the membrane. The source material is the pool of avail-
able actin monomers, present with variable concentrations in the cytoplasm solution.
Similar dynamic mechanisms operate also for other components of the cytoskeleton,
such as the microtubules.

Even if quite different from the more direct force action of myosin or kinesins,
this is yet another example of molecular motor, since also in this case a certain
quantity of chemical energy ΔQ (supplied as usual by ATP molecules) is converted
into mechanical work ΔW . As it will be shown in the following, both for the case
of actin and microtubules the symmetry breaking comes from the very structure of
the monomers, in that they have a peculiar orientation. For actin, with two opposite
“pointed” and “bearded” ends of the molecule; for the microtubules, with a het-
erodimer, i.e., a basic unit formed by two different monomers. In either case, the two
ends of each filament have different kinetic rates, therefore the direction of growth
of the microfilament has a natural orientation.

Fig. 6.12 Polymerisation of actin filaments is responsible for many cell membrane deformations.
In the sequence above, actin assembles at the border of the outer membrane of a Xenopus fibroblast
(XTC cells) pushing against cell membrane to follow cell movement. In the sequence below, purified
actin filaments placed in a solution of 2 µM actin monomers grow at a rapid rate of about 10−2

µm/s. [Adapted from Ref. [10], under CC-BY 3.0 licence, see (**) for terms.]

http://dx.doi.org/10.1007/978-3-319-30647-6_9
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6.5.1 Polymerisation Dynamics and the Treadmill Effect

To describe the length variation of an actin filament, let us represent it as a homopoly-
mer made of a chain on n monomers, placed in a solution in which a concentration
[M] of the same monomers is diluted. Such monomers are normally available in
the cytoplasm, to be recruited to modify the cytoskeleton structure. The monomer
capture rate by the filaments may be taken as proportional to the concentration, times
a rate constant k+, leading to a filament growth rate:

Δn+
Δt

= k+[M] (6.16)

At the same time, the filament may loose some monomers, with a constant rate
k−, independent on the concentration, thereby leading to a filament shortening at a
rate:

Δn−
Δt

= −k− (6.17)

The overall length change n = n+ + n− is:

Δn

Δt
= k+[M] − k− (6.18)

This simple linear equation expresses the fact that the filament will grow,
Δn/Δt > 0, when the monomer concentration exceeds a critical value [M]c:

[M]c = k+
k−

(6.19)

At steady state the polymerisation speed is given by:

vp = δ
Δn

Δt
(6.20)

with δ the size of one monomer.
Typical values of the rate constants k+ et k− can be measured in the laboratory,

e.g., for monomers of actin (G-actin) or microtubules (tubulin). For typical values
of [M] � 0.12 − 0.6µM, it is found k+ � 1−10µM−1 s−1, k− � 1−2 s−1.
The theoretical polymerisation speed of actin with such values is of the order of
0.7–1.3 µm/s.

The energetic aspects of such a simple model can be studied by the following
considerations. The ratio between the fraction of attached and detached monomers
at any time t is proportional to the respective probabilities (k+M) and (k−):

Δn+
Δn−

= (Δn+/Δt)

(Δn−/Δt)
= k+M

k−
(6.21)

which, by considering E+ and E− the enthalpies (∼ energies) of attachment and
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detachment of a monomer, can as well be expressed by the ratio of the respective
Boltzmann factors:

k+M
k−

= exp(−E+/kBT )

exp(−E−/kBT )
= exp(−ΔE/kBT ) (6.22)

The energy difference ΔE = E− − E+ is a chemical energy term, which gives
a mechanical work, equal to a mechanical force times the elementary displacement
δ, as ΔW = Fδ. Therefore, the effective force generated by an elongation of the
filament by an elementary unit is found as:

F = kBT

δ
ln

(
k+M
k−

)
� 2 to 7 pN (6.23)

Upon a more careful observation, molecular biologists noticed that the two ends
of the actin monomer are not identical: one extremity has a ‘pointed’ shape (P), while
the other rather looks like a ‘barbed’ shape (B). Mechanistically, monomers could
attach and detach to/from either the pointed end of the filament, or the barbed end.
The molecular details of the actin polymerisation are not yet completely elucidated,
it is known that both ATP and ADP participate in the process. Given the different
conformations, it can be also supposed that the attachment/detachment rates should
generally take on different values, kP+ , kB+, et kP− , kB−. It is found that the k+ and k−
values are always larger at the B than at the P extremity.

Two separate equations like the (6.18) above can be written for the B and P ends
of the filament, which can grow or shrink at the same time, with different rates:

ΔnP/B

Δt
= kP/B

+ MP/B − kP/B
− (6.24)

The different possibilities are shown in Fig. 6.13, as a function of the different
values of the four constants. If the respective values of critical concentrations are
nearly identical, [MB]c � [MP ]c, the situation shown on the left of the figure is
realized, with both ends growing or shrinking in parallel; this occurs rather typically
with tubulin proteins inmicrotubules. If on the other hand, as it happensmore usually
with actin filaments, the two critical values are sensibly different from each other,
the situation shown on the right of the figure is realized: for an intermediate interval
of concentrations, one end grows while the other shrinks. For a particular value of
the concentration [M], at which the shrinking rate of one end is equal to the growth
rate of the other, ΔnP/Δt ∼ ΔnB/Δt , a peculiar condition of “treadmilling” can be
realised:

M ′
c = kB− + kP−

kB+ + kP+
(6.25)

The filament is this case is in a steady state, as shown in the middle of Fig. 6.13:
its average length does not change, however there is a net displacement towards one
direction (in the case written above, towards the B end).
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Fig. 6.13 MiddleActin treadmilling effect when growth and shrinking rates are equal. Left Growth
rates of the pointed end (blue) and barbed end (red) of filament, when the critical concentrations
of the two types of monomers are nearly equivalent (e.g., tubulin in microtubules). Right Growth
rates of the two ends, for largely different critical concentrations of the two monomers, such as in
actin (ADP-bound or ATP-bound actin). The central region of the plot corresponds to treadmilling,
with one end growing while the opposite end is shrinking

In Chap.9 the cytoskeleton filaments polymerisation will be coupled to mem-
brane mechanics to build models of cell deformation, for example by looking at the
mechanics of the protrusion of pseudopods by unicellular organisms.

6.6 Variations on a Theme of Polymers

The mechanism by which a chain-like molecule grows by the addition of chemically
distinct units (monomers) described in the preceding Section was limited to the
kinetics of cytoskeletal filaments. However, the same conceptual framework applies
to the replication of nucleic acids, DNA and RNA, as well as to the building of
proteins (see Chap. 3 and the Appendix B). What all such process have in common is
the fact that the monomer units are added or removed from the growing filamentary
structure with a rate (probability) proportional to the monomer concentration in the
surrounding environment.

According to a definition introduced by the American chemist and Nobel laureate
Paul Flory in 1953, the kinetics can be alternatively described as stepwise or chain
polymerization. The two mechanisms are schematically described in Fig. 6.14.

In the stepwise polymerisation, any twomonomers present in the reaction mixture
can link together at any time, therefore the growth of the polymer is not limited
to chains that are already formed. Monomer addition typically proceeds through a
condensation reaction, in which a small molecule (e.g. water) is eliminated in each
step. The reaction kinetics between two monomers can be written as the decrease
in the monomer concentration [M] by an amount proportional to the probability of
random encounter:

d[M]
dt

= −k[M]2 (6.26)

that is, a constant k times the square of the concentration, [M] · [M] = [M]2. By
integrating the above equation, one gets:

http://dx.doi.org/10.1007/978-3-319-30647-6_9
http://dx.doi.org/10.1007/978-3-319-30647-6_3
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Fig. 6.14 The twomechanisms of polymerisation according to Flory (1953). Above In the stepwise
addition,monomers undergo randomcollisions and condense, usually by liberating a smallmolecule
byproduct. Chains of any length can grow at steady state. Below In the chain growth of the polymer,
freemonomers (grey)must be firstly activated (red). Polymerisation reaction can only occur between
the (blue) free ends of the growing chain, and activated monomers

[M] = [M]0
1 + kt[M]0 (6.27)

with [M]0 the initial concentration at time t = 0.
Hence, the fractional variation in concentration is proportional to the actual con-

centration at time t , as:

p = [M] − [M]0
[M]0 = kt[M]0

1 + kt[M]0 = kt[M] (6.28)

The degree of polymerisation, also know as theCarothers equation, is the average
number of monomers per chain at time t :

〈n〉 = [M]0
[M] = 1

1 − p
(6.29)

By reworking the previous equation, it is seen that 〈n〉 = 1+[M]0kt , i.e. the degree
of polymerisation grows linearly with t , apparently without limits (the obvious limit
is the maximum amount of monomers available). Because the condensation reaction
can occur between molecules containing any number of monomer units, chains of
many different lengths can grow in the reaction mixture. Moreover, the reaction
mechanisms is assumed to be constant and independent on the concentration of
monomers, leading to a steady-state growth.
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The probability of finding a chain of length n is the product of the probability
that 2,3,...n − 1 monomers have sequentially collided, pn−1, times the probability
(1 − p) to meet an n-th monomer still free:

Pn = (1 − p)pn−1 (6.30)

that is also equal to the fraction [M]n/[M] of the polymers of length n from the total.
If we want the weight distribution of the growing polymers, this is obtained as:

Wn

W0
= n[M]n · m0

[M]0 · m0
= n

[M]n
[M]0 (6.31)

where m0 is the mass of a monomer. By multiplying by the unit ratio [M]/[M],
Eqs. (6.29) and (6.30) can be combined, giving:

Wn

W0
= n

[M]n
[M]

[M]
[M]0 = n(1 − p)2 pn−1 (6.32)

It may be noted that such a distribution has always a maximum in correspondence
of a given chain size, for any value of p, despite the above observation that polymers
of ever increasing length can be found as time goes by.

In the case of chain polymerisation, activated monomers are linked to the growing
chain one after another, at one or both ends of the chain. Differently from the previous
case, however, in which the reaction is identical in all steps (allowing to describe the
growth as a random collision process), chain polymerisation requires different steps,
namely:

• chain nucleation, by means of an initiator which starts the chemical process;
• chain propagation, in which reactive end-groups of the chain react in each step
with a new monomer, transferring the reactive group to that last unit to regenerate
the active site;

• chain termination, which can stop the elongation, or transfer the reactive group to
a new chain, thus leading to a branched polymer.

Actin polymerisation can be schematically broken into the above steps, as shown
in Fig. 6.15 below.G-actin in solution bound toADPmust firstly be activated toATP-
actin; this occurs at least partly with the help of the protein cofilin. The actin nucleus
is a complex of three ATP-actin monomers, from which an actin filament may start
to elongate; since the trimer is highly unstable, actin nucleation requires additional
proteins, such as Arp2/3, to promote the formation of a stable nucleus. During the
propagation, or elongation,ATP-activatedG-actinmonomers are rapidly added to the
“+” end of the actin filament; this process is alsomediated by proteins that translocate
along the growing filament, and simultaneously catalyse the addition of monomers.
Once actin monomers are incorporated in the growing filament, the bound ATP is
slowly hydrolysed to ADP. Filament growth can be terminated and protected by a
specialised CP capping protein. Elongation proceeds until the rate of elongation is
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Fig. 6.15 Schematic of the three steps of actin polymerisation. Nucleation occurs with the help of
Arp2/3 protein, which also promotes branching. When G-actin is activated by ATP, it can attach at
the pointed end of the growing F-actin filament, which elongates with the help of profilin. Stable
ends are protected by the CP capping protein. Cofilin severes fragments of ADP-actin along the
filament, but it also contributes to recharging free ADP-actin monomers into ATP-actin

greater than the loss of ADP-actin from the pointed end. The protein profilin binds
to ATP-actin, inhibits nucleation and accelerates elongation. When the dissociation
rate of ADP-actin exceeds the rate of ATP-actin association, the filament shrinks,
aided by the protein cofilin, which can severe filaments into short fragments and
promote monomer loss from the pointed ends. Clearly, all such competing reactions
depend on the relative concentrations of the various actors, for nucleation, growth
and termination of the chains. For example, in the prokaryote Acanthamoeba for a
concentration of [F-actin] = 100 (all concentrations in µM), it is found [G-actin] =
100, [Cofilin] = 20, [Profilin] = 100, [Arp2/3] = 2–4, [CP] = 1.

In this case, we must introduce the nucleation step, with its own rate kn , concen-
tration of “initiator” nuclei [I]; the termination step, with rate kt , and the elongation,
by which an activated monomer [M ′] is added to an existing chain of length [M]n at
a rate kp. Model equations for these events can be written as:

nucleation:
d[M ′]
dt

= uki [I ]

elongation:
d[M]
dt

= −kp[M][M ′] (6.33)

termination:
d[M ′]
dt

= −kt [M ′]w
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where u is the number of monomer implicated in the nucleation (e.g., 3 for G-actin),
and w is the number of activated chain ends implicated in the termination (it can be
w = 1 for a capping protein, w = 2 for two chains colliding, etc.).

At the steady state, the speed of nucleation equals the rate of termination, vn = vt :

[M ′] =
(
u ki
kt

[I ]
)1/w

(6.34)

giving the well-known dependence of the free radical concentration on the square-
root of the nucleation centres, [M ′] ∝ [I ]1/2, as is the case ofmany artificial polymers
synthesised by radical addition, e.g. polystyrene. Therefore, the steady-state poly-
merisation rate (from the second of Eqs. (5.33)) is:

vp = kp[M]
(
u ki
kt

[I ]
)1/w

(6.35)

The average chain length and chain mass distribution are given by the same
expressions as Eqs. (6.30) and (6.32), respectively, by replacing p for the probability
of elongation, and (1− p) for the probability of termination. The kinetic chain length
is the ratio between the velocity of propagation divided by the velocity of nucleation,
i.e., a measure of how fast the polymer grows compared to the rate of creating new
chains:

lK = kp[M][M ′]
uki [I ] = k0

[M]
[I ]1/w (6.36)

with k0 = 1
2kp(uki kt )

−1/w.

6.6.1 Enzymatic Reactions and Kinetics

In Chap.4 a greybox (see p. 126) illustrated the role of enzymes in modifying the
free-energy landscape of chemical reactions. Enzymes in biological reactions act
as catalysts, meaning substances that can accelerate a reaction between a reagent
and a reactant (or “substrate”), but undergo no net chemical change between the
initial and final states. If a spontaneous reaction turning a substrate into a product is
S → P , a non-spontaneous reaction occurring with the help of the enzyme would be
S + E → P + E . Many of the molecular reactions occurring inside the cell can be
described as occurring with the help of enzymes. Although RNA variants are capable
of catalysing some reactions, most biological reactions are catalysed by proteins,
such as the DNA polymerase linking nucleotides to DNA during the replication.
Sometimes, further help for a reaction is required from smaller molecules, called
coenzymes, such as in the Krebs cycle described in Chap.4, with coenzymes NADH
and FADH2 among others.

http://dx.doi.org/10.1007/978-3-319-30647-6_5
http://dx.doi.org/10.1007/978-3-319-30647-6_4
http://dx.doi.org/10.1007/978-3-319-30647-6_4
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Michaelis-Menten kinetics
In 1913, the German chemist Leonor Michaelis and the Canadian physician Maud Menten, both
working on the mechanism of hydrolysis of sugars, proposed a mathematical model that is still
valuable to describe the basic behaviour of enzymatic catalysis, p. 235. The rate at which the
product is formed is:

d[P]
dt

= kP [ES] (6.37)

in which the concentration of the bound ES species is the unknown, obtained from the second
rate equation:

d[ES]
dt

= k f [E][S] − kr [ES] − kP [ES] (6.38)

At steady state, it is k f [E][S] − kr [ES] − kP [ES] = 0, hence:

[ES] = k f
kr + kP

[E][S] = 1

KM
[E][S] (6.39)

Now, observe that, for [E]0 the concentration of enzyme at t = 0, it is [E]0 = [E]+[ES] at any
t > 0. Moreover, it can be considered that the substrate is present always in large concentrations,
so that [S] � [S]0. Under such conditions, we get:

[ES] = [E]0
1 + KM[S]

(6.40)

By putting this result in the rate equation for [P], the Michaelis-Menten kinetics equation is
obtained:

d[P]
dt

= vP = kP [E]0
1 + KM[S]

(6.41)

demonstrating a saturation behaviour of vP to the value vmax = kP [E]0 for the product-formation

rate. The constant KM = kr+kP
k f

, also equal to [E][S]/[ES], is the Michaelis constant, and

represents a measure of the ‘affinity’ of the substrate toward the enzyme: a relatively small value
of KM indicating that vmax is attained more quickly. In particular, it is seen that for [S]  KM
the product-formation rate is proportional to [S]:

vP = kP
KM

[E]0[S] (6.42)

while if [S] � KM , vP goes rapidly to vmax and becomes independent of [S].
The ratio eP = kP/KM is called the catalytic efficiency of the enzyme. The M-M equation

can be rearranged as follows, to construct the Lineweaver-Burk plot of the catalytic efficiency:

1

vP
= 1

vmax
+

(
KM

vmax

)
1

[S] (6.43)
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Three principal features of enzyme-catalyzed reactions are the following:

(i) for a given initial concentration of substrate, [S]0, the initial rate of product
formation is proportional to the total concentration of enzyme, [E];

(ii) for a given [E] and low values of [S], the rate of product formation is proportional
to [S];

(iii) for a given [E] and high values of [S], the rate of product formation becomes
independent of [S], reaching amaximumvalue known as themaximumvelocity,
vmax .

The simplest enzymatic reaction above can be written in more detail as:

S + E
k f

�
kr

E S
kP→ P + E

to underscore the fact that the combination of enzyme with substrate S + E is a
reversible equilibrium reaction, governed by the respective concentrations, with two
generally different ‘forward’ k f , and ‘reverse’ kr rate constants; the final step of the
enzyme-catalysed reaction is irreversible, definitely downhill in free energy (single
arrow), to give the product P with a rate constant kP .

TheMichaelis-Mentenmodel, described in the greyboxonp. 234, has been applied
to studies of enzymatic kinetics for over a century. The two basic features of a reaction
according to this model are: (1) the reaction velocity vP increases with the substrate
concentration [S] up to a maximum saturation value, and (2) vP decreases if kr
(unbinding of the [ES] complex) increases. With the notation of the greybox, the
M-M equation can be simplified to:

vP = vmax [S]
KM + [S] (6.44)

very clearly showing both features, since KM is proportional to the [ES] unbinding
rate kr .

The overall time evolution of the concentrations [S], [E], [ES], [P] is qualita-
tively shown in Fig. 6.16a. For an initial value of [S]0 = 1 (in arbitrary units), the
product [P] starts from 0 at t = 0 and goes to 1 at long times, while [S] goes to 0; the
[ES] complex grows at the beginning, and then goes to 0 following the depletion of
[S]; the enzyme [E] starts (in this example) from a concentration of 0.5, and returns
to the same value when the reaction is completed.

The catalytic efficiency eP = kP/KM can be obtained as shown in Fig. 6.16b, by
constructing the Lineweaver-Burk plot. The values of 1/vP are plotted as a function
of 1/[S]0, for varying initial concentrations of the substrate, and a constant concen-
tration of the enzyme [E]0. The resulting linear plot, Eq. (6.43), has a slope equal to
KM/vmax and intercept equal to 1/vmax , from which eP can be obtained.

The M-M model has proven useful also at the single-molecule level, albeit with
a slight change in interpretation [11, 12]. Binding, unbinding, and catalysis are now
considered to be stochastic processes, whose rates are defined to be the reciprocals of
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Fig. 6.16 Left Time evolution of the concentrations of substrate [S], enzyme [E], complex [ES],
and product [P]. The value of the rate constants are k f = 1, kr = 0.2, kP = 0.1, in arbitrary units.
Initial concentrations [S]0 = 1 and [E]0 = 0.5. Right Example of Lineweaver-Burk plot for the
catalytic efficiency. With the same values of the constants, the intercept is v−1

P = 20 and the slope
KM/vmax = 6, resulting in a value of eP = 1/3

the respective mean molecular lifetime τ . If the molecular-scale probability follows
Poisson’s statistics, i.e., when the times between consecutive events are sampled
from an exponential distribution, a single-molecule analog of the Michaelis-Menten
equation can be written:

kturn = kP [S]
KM + [S] (6.45)

where kturn is the reciprocal of the “turnover” time, the average time it takes the
enzyme to make one molecule of product.

6.7 The Movement of Unicellular Organisms

Cell movement and migration of unicellular organisms occurs, evidently, in the
absence of proper muscles. Nevertheless, movements are possible at speeds which
obviously exceed simple diffusional translation, as shown in the following Table6.1.

Cellsmay use several differentmechanisms to generate an innermechanical force,
capable of imparting a global movement to the cell, and to overcome the viscous
resistance, of water or of the extracellular matrix.

The swimming movement of most unicellular organisms can be accomplished via
specialised structures placed across the cell membrane. These can be cilia, micro-
scopic whips that surround in large number the outer surface of the membrane; or
flagella, a thicker and longerwhip attached at one end of the cell singularly or in small
number, performing undulating and/or rotating movement. In eukaryotes, both cilia
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and flagella have a similar structure and composition, despite their different length,
and are used by cells for various functions, for example to expel mucus from lungs,
to propel spermatozoids, to transduce air waves into sound in the cochlear cells, and
so on. In the case of eukaryotic cilia, the inner microtubule structure is connected to
the transmembrane filament by specialised proteins, the dyneins, which transmit the
flexion of the microtubules to the cilium, and make it swing in the extracellular fluid
like a paddle. Cilia are much shorter than flagella (5–10 vs. 30–40 nm), and perform
a simpler power stroke.

Prokaryotes have a rapidly rotating flagellum, while that of eukaryotes undulates
by a slidingmechanism. Figure6.17 summarises the structure of prokaryote (a, b) and
eukaryote (c–e) flagella. In the case of the prokaryote flagellum, a complex structure
is found inserted within the cell membrane, the axoneme. This is a system made by
several proteins, fulfilling at the same time the role of supporting structure, and of
transducer of the rotatory movement. The axoneme is made by a static part, fixed
to the membrane, and a rotating (transmembrane part), the two acting somewhat
like the stator and rotor in an electric motor. The rotating part is powered by a
proton pump, in a way analogous to the mitochondrial ATPase proton pump (see
Fig. 4.8 on p. 133), and can turn at speeds of up to 105 rpm, although the flagellum
would rotate at slower rates, between 500 and 1000 rpm. During the bacterial cell
evolution, the fixed parts are assembled first, then the tubular structure is “extruded”
through the axoneme. The tubular structure of the flagellum is formed by special
proteins, the flagellines, arranged in a hollow cylinder of about 20nm in diameter.2

The eukaryote flagellum, which lacks the rotating axoneme and is directly inserted
in the cell membrane, has in turn a more complex structure. Figure6.17c shows the

Table 6.1 Velocity (µm/s) of some typical celllular movements.

Type of movement Velocity (µm/s) Example

Growing actin filament 0.01–1

Projection of pseudopodes 0.01–1 Fibroblast

Myosin-actin relative
displacement

0.1–1 Sarcomer

Growing microtubule ∼0.3

Retreating microtubule 0.4–0.6

Fast axon transport 1–4 Kinesin on MT

Slow axon transport 0.001–0.1

Flagellate bacterium
swimming

1–5

2It may be interesting to note that the base structure of the bacterial axoneme is strictly related to,
and might have evolved from, the so-called Type-III secretory system found in many bacteria, a
sort of proteic “syringe” by which a bacterium can inject a protein or enzyme across and into the
membrane of another cell (this is the way in which, e.g., Yersinia pestis infects human cells with
the bubonic plague).

http://dx.doi.org/10.1007/978-3-319-30647-6_4
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Fig. 6.17 a Schematic of the bacterial flagellum insertion in the membrane via the axoneme.
bMicrophotography ofHelicobacter pylori swimming, with its few flagella in motion. c Scanning-
electron microscope image of a vertical cross section of the flagellum in the eukaryote algaChlamy-
domonas, showing the membrane insertion and parallel bundle structure of the flagellum. d Trans-
verse cross section of two flagella next to each other (d) and schematic representation (e), showing
the arrangement of microtubules in pairs (9 peripheral plus one central pair) and of the network
of actuating dynein motor proteins. [Public-domain images © of: a M.R. Villareal, b Y. Tsutsumi,
c, d Dartmouth College Electron Microscope Facility; e unknown (Wikipedia). All repr. under
CC-BY-SA-3.0 licence, see (*) for terms.]

vertical cross-section arrangement of themicrotubule bundle in aflagellate eukaryotic
cell (Chlamydomonas r.). A horizontal cross-section (Fig. 6.17d, e) shows that the
microtubule bundle is organised into pairs, arranged in a circle about a central pair.
The mutual sliding of one tubule with respect to the other, in each pair, induces the
undulating flexion of the flagellum, which turns into cell movement.

6.7.1 Linear Translation with Drag

For a nearly-spherical object of radius R, moving at a low speed v, in a fluid of
macroscopic viscosity η, the Stokes’ law gives an estimate of the viscous resistance:

F = 6πRηv (6.46)

Since this force is also F = m(Δv/Δt), such an object starting with an initial
velocity v0 will be arrested over a distance:

x0 = mv0
6πRη

(6.47)
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The viscosity of fluids of biological relevance ranges over very different
values, from η = 10−3 kg m−1s−1 of water, to η = 1.34 for glycerine, up to η = 1013

kg m−1s−1 for glucose. Cytoplasm can be considered to have a viscosity some 100
times that of water, due to the fraction of proteins and othermolecular species diluted.
For example, a vesicle with R = 50 nm in the cytoplasm transport by a kinesin motor
protein along amicrotubule, at a velocity of 0.5µm/s, must overcome a viscous force
of:

F = 6π (5 × 10−8) · 0.1 · (0.5 × 10−7) = 5 × 10−14 N = 0.05 pN

indeed a value within the range of protein motors. As it was discussed in Chap.5,
the Reynolds number Re = Rρv/η gives a proportion of the relative importance of
inertial forces to viscous forces. By putting the values for water, our vesicle has a
Re ∼ 10−8, i.e. a very low Reynolds, meaning a null role of its inertia mg.

As another example, let us consider a unicellular organism swimming in water,
for simplicity taken again to be nearly spherical with R = 1 µm. By assuming the
cell interior to have the same density as water, the cell mass is M = ρ 4

3πR
3 =

4.2 × 10−12 g. Considering an average swimming speed of about 10 µm/s, the drag
force would be:

F = 6πRηv = 6π · 10−6 · 10−3 · 10−5 = 0.19 pN

and the distance of arrest:

x = Mv2

F
= (4.2 × 10−15) · (10−5)2

0.19 × 10−12
= 0.002 Å

This distance is zero compared to the size of the cell. The propulsion does not
result from free swimming, but it requires to be constantly powered at a high rate to
overcome the viscous resistance. For the bacterium with its Re ∼ 10−6, water looks
like molasses for a human swimmer. Again, the inertia does not play a role, meaning
its motion does not have memory of forces acting in the past, it only cares about the
force that is applied instantaneously to propel its swimming. Amazingly, this is a
world in which Aristotle could be right!3

In a famous 1976 lecture delivered at the American Institute of Physics, E.M.
Purcell pronounced the (unproven) “theorem of the scallop”. The theorem states
that a movement performed by one single degree of freedom cannot produce a net
translation. What the theorem means is that to swim any animal has to move in the
medium in some way that breaks the symmetry: if the animal makes one movement
and then makes the reverse movement, there will be no net motion. An animal with
only one degree of freedom has no other choice than to perform always the same

3The Aristotelic view of motion was based on the idea that the “natural” state of a body is rest,
therefore he built a whole theory around the concept that all that moves is moved by something else,
and that a body in movement slows down to stop if is not continuously pushed by some force. Only
many centuries later Galileo laid the basis for Newton’s Principle of Inertia, according to which a
body set in motion will continue to move indefinitely, until some other force stops it.

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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movement, back and forth, and as such it could not move. This is why the theorem
is linked to the scallop, since the bivalve animal can only open and close the valves
about one hinge, and as such it has only one degree of freedom (the angle between the
valves). In order to produce motion the scallop has learned to spit out water when the
valves are open, and this gives it the net movement. By analogy, a human swimmer
moving just one arm forward and then backwards cyclically would not go anywhere,
she has to alternate the movement of the limbs with a swinging stroke of the body,
to break the symmetry.

The movement of the cilia and flagella is probably the simplest way that animals
have devised to propel their bodies, however with one notable difference. The cilia,
like the arm of the human swimmer, has to return at its original position after each
stroke, so its forward and backwards paths must be different, otherwise there would
be no motion; the flagellum on the other hand may work just as one big cilium, or
rather as a propeller; in the latter case it would be turning always in the same sense
like a worm gear, the symmetry being broken by the asymmetric winding of the
screw.

The power expenditure by the linear motion with drag can be estimated as:

P = Fv (6.48)

resulting equal to about 2 × 10−18 W. Since a mole of ATP gives off 30.5 kJ of
energy, or 5.07× 10−20 J per molecule, the bacterium must use about 100–200 ATP
molecules per second, to maintain its swimming speed.

6.7.2 Rotatory Translation with Drag

Let us now consider the same unicellular organism propelled by a rotating flagellum.
The mechanical torque acting on an object that rotates at an angular velocity ω is:

T = F · r = f ω (6.49)

where r is the radial distance between the rotation axis and the point where the force
is applied, and the drag coefficient is in this case proportional to the third power of
the nearly-spherical object size R:

f = 8πR3η (6.50)

Some observed values of rotational velocity ofmonoflagellate bacteria give values
in the range of ω ∼ 10 s−1, or ω ∼ 20π rad/s. By using the same values of the
constants and taking r � R, the rotational drag force results F = 8π × 10−21 N; the
resulting torque is then: T = 160π2 × 10−21 Nm, and the power consumption:

P = Tω (6.51)
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Fig. 6.18 Left Schematic of the model for flagellar bacterium rotational motion, with definition of
the geometrical kinematical parameters. Right Experimental results for the translational swimming
speed versus rotation rate. [From Ref. [13], repr. w. permission.]

that is about 10−16 W, apparently 100 times larger than for the translational move-
ment. However, such a value does not tell us nothing about the translational velocity
that could be attained by converting the rotational motion into rectilinear. In fact, it
turns out that cells using rotatory actuation may typically reach much higher veloc-
ities, compared to cells adopting simple rectilinear swimming.

By using a slightly more detailed model, the characteristics of the rotatory motion
cam be better appreciated [13]. In this model, schematically illustrated in Fig. 6.18,
the difference between the rotational velocity of the flagellum, ω f and that of the
cell ωc is explicitly taken into account. Therefore, separate equations are written for
the force and torque on the cell:

Fc = αcv

Tc = βcωc (6.52)

and for the flagellum:

Ff = α f v + γω f

T f = β f ω f + γv (6.53)

The translational velocity v must be clearly the same for both the cell and the
flagellum; however, a cross-term coupling the rotational and translational velocity
appears in the equations for the force and torque of the flagellum, via the coefficient
γ. It may be worth noticing that the sign of the two independent rotational velocities
is arbitrary, and not necessarily correlated.

Two separate balance equations can be written at equilibrium, for the total force
and total torque:

Ff + Fc = 0

T f + Tc = 0 (6.54)
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The geometric and kinematic coefficients appearing in the above model equations
are defined for the bacterium cell as: αc = 6πRη, βc = 8πR3η (the same as in
Eq. (6.50)). The coefficients for the flagellum contain the length L , the screw thread
p and screw flight r of the element, taken as a cylindrical screw; by taking typical
values of L = 5µm, r = 0.15µm, and p = 1.5µm, the geometric-kinematic
parameters are: α f � 4

7πηL , β f � 2
5πηr2L , and γ � − 4

21 pηL .
From the solution of the force balance equation, it is easily obtained:

v = − γ

αc + α f
ω f (6.55)

Notably, the ratio v/ω f between translational velocity and flagellum rotational
velocity is independent on the medium viscosity. Moreover, because of the negative
sign of γ, a positive translation velocity is associated to the clockwise rotational
velocity of theflagellum.From the torquebalance equation is is furthermore obtained:

ω f

ωc
= βc(αc + α f )

γ2 − β f (αc + α f )
(6.56)

As it appears from the good correlation observed between v and ω f in the right
side of Fig. 6.18, this model gives a quite correct explanation of the kinematics of the
coupled rotational motion of the flagellum and the cell. It may be noticed that, in the
second balance Eq. (6.56), the denominator of the right side can take either positive or
negative values, according to the structure and size of the flagellum; therefore, it may
happen that for some cells the flagellum could rotate in one sense, while the whole
cell rotates in the opposite sense. At the higher temperatures the ratio v/ω f appears
to saturate to a constant value, a phenomenon whose elucidation would require to
take into account the detailed molecular structure of the mechanism.

6.7.3 Swimming Without Paddling

Euglenids are unicellular eukaryotes that situate somewhere between animals and
plants. They are believed to have originated fromaunicellular organism thatmayhave
endocytosed a green unicellular alga. Such cells seemingly lack a real cytoskeleton,
but rather have a homogeneously distributed network of diffuse peripheral elements
(called pellicula) capable of deforming the plasmamembrane. These organisms have
developed a unique low-Reynolds number swimming technique (Fig. 6.19a), some-
times called metaboly. Although it also may have a flagellum, the power stroke of an
euglenid consists of a large distortion of the membrane that propagates back along
its slender body (Fig. 6.19b). This large and nearly axisymmetric shape deforma-
tion moves opposite to the euglenid’s direction of motion. Once the large distortion
reaches the end, the body of the euglenid is rearranged, so that the next stroke is
initiated. During this recovery process in which the euglenoid retreats, symmetry is



6.7 The Movement of Unicellular Organisms 243

Fig. 6.19 aAn euglenid (Euglena proxima), real size is length L ∼ 40µm, diameter Dc ∼ 10µm.
b A computer simulation model of the deformation of the euglenid body, during its transnational
movement. c Scheme of the simplemodel described in the text: the euglenid body is represented as a
sphere sliding up and down along a cylinder. [Image a fromMicroscopicWorld www.youtube.com/
user/TheMicrobiology09/ repr. under Youtube Standard lic.; b from Ref. [14], repr. w. permission.]

broken, hence forward motion is ensured. The flagellum seems to be used as a sort
of tail, to keep a balance and oriented motion.

As shown in Fig. 6.19c, the motion of the euglenoid may be very schematically
represented like that of a sphere sliding along a coaxial cylindrical rod, which is
moving in the opposite direction, such as a spherical bead sliding on a necklace, as
the necklace is being pulled through a fluid. The sphere, whose diameter Ds is equal
to the amplitude of the distortion, travels backwards at a speed v − u; on the other
hand, the cylindrical body, which is moving forward at a speed u, has a diameter
Dc and its exposed length is L − Ds . In the limit Dc  Ds , the viscous drag force
exerted on the sphere and on the cylinder can be calculated by the same Stokes’ law:

Fs = 3πηDs(v − u)

Fc = 2πη(L − Ds)u

ln [0.6(L − Ds)/Dc]
(6.57)

Since the drag forces on the sphere and on the cylinder are acting in opposite
directions, we must have Fs = Fc. Therefore, the ratio of the velocities is:

u

v
=

(
1 + 2

3

L/Ds − 1

ln [0.6(L − Ds)/Dc]

)−1

(6.58)

The real dimensions of the euglenid like the one in Fig. 6.19a are L = 40µm,
Ds = 10.2µm, and Dc = 3.4µm. With such values, the previous equation gives
an estimate u/v = 0.46 for the forward stroke, to be compared to the experimen-
tal value of 0.43. The shift from I to II in Fig. 6.19b takes about 1.6 s, therefore
by taking that the difference between the two positions of the “sphere” is about
L/4 ∼ 10µm, the euglenid’s swimming velocity can be estimated from this simple
model at u = 5µm/s. The experimentally measured values vary quite a lot with the
degree of illumination (euglenids use mostly, while not only, photosynthesis to get

www.youtube.com/user/TheMicrobiology09/
www.youtube.com/user/TheMicrobiology09/
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their energy), however they were found to be around 2–3 µm/s in the work cited in
Fig. 6.19. Given such a naive model of this complex, still unexplained cell motion,
the agreement is not bad.

Appendix E: The Cytoskeleton

From a structural point of view, an eukaryote cell is substantially different from the
simple picture of a lipid bag filled with water and proteins (and other stuff), because
of the presence of a scaffolding structure, the cytoskeleton. The cell cytoskeleton is
the dynamically organised ensemble of biological polymers that impart the system
the essential component of its mechanical properties. (In Chap. 8, the mechanics of
filaments and membrane structures will be separately treated.) The different com-
ponents of the cytoskeleton are capable of actuating internal forces and responding
to the application of external forces, not just opposing a ‘passive’ resistance to the
cell deformation. Because of its name, it is tempting to attribute to the cytoskeleton
a similar role to that of the skeleton in superior animals; however, the cytoskeleton
provides the cell, at the same time, both its internal structure and its force actuating
system, thereby resembling at an organ that sums in one all the functions of the bones
and the muscles (Fig. 6.20).

Fig. 6.20 Scheme of actin filament structures. G-actin (globular actin) monomers with bound ATP
can polymerize, to form F-actin (filamentous actin). They are shown in different colors to highlight
the helical winding of the two strings. F-actin may hydrolyze its bound ATP to ADP + Pi and release
Pi. However, ADP release from the filament does not occur because the cleft opening is blocked.
With the help of many species of actin-binding proteins, F filaments can quickly assemble and
disassemble into superstructures, such as actin parallel bundles (above, by binding e.g. α-actinin,
villin, fimbrin), or actin networks (below, by binding filamin dimers)

http://dx.doi.org/10.1007/978-3-319-30647-6_8
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Fig. 6.21 Scheme of microtubule structure and growth. α- and β-tubulin monomers combine to
form heterodimers; many such heterodimers assemble to form a single microtubule. Thirteen linear
protofilaments, made of vertically-stacked tubulin heterodimers, are arranged side-by-side to form
a hollow, cylindrical microtubule. The plus end (top) is the faster growing end of the microtubule,
and heterodimers are arranged with the β-tubulin monomers facing the plus end. To the left, a cross-
section through the microtubule, with diameter of about 25 nm. At the plus end of the microtubule,
some tubulin heterodimers are shown while attaching to the microtubule (polymerisation). These,
and the dimers already present at the + end, are bound to guanosine tri-phosphate (GTP, red-green
spheres). Over time, GTP loses a phosphate and becomes G-diphosphate (GDP, orange-green
spheres)

The cytoskeleton structure and components are quite similar in all eukaryote cells
(from uni- to pluricellular organisms), although important differences exists between
animal and plant cells. It is constituted of different types of long-chain molecules, or
polymers, sometimes called fibres because of their sizeable length compared to the
cell scale. These are usually classified into three categories (Fig. 6.21):

• Actin filaments, or F-actin, is formed by monomers of the actin protein (G-actin,
of which several variants are known). The long F-actin polymers are twisted in
pairs, which then assemble in bundles of variable thickness. Actin is ubiquitous
in cells, and is mostly important in muscle cells (myocytes), where it couples with
myosin in the sarcomeres. F-actin have a diameter of 6.5–7 nm, a contour length
ranging from very small up to a fraction of the cell diameter, and a persistence
length (see Chap.7) λp ∼ 17µm: therefore they are semi-flexible, since their
average length is comparable to their persistence length. They have an orientation,
due to the asymmetry of the actin monomer (which moreover changes shapes
according to whether ATP or ADP is bound), and to their helical self-assembly in

http://dx.doi.org/10.1007/978-3-319-30647-6_7
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which monomers are attached head-to-tail. In particular, this leads to the fact that
one of the filament ends (termed +) can polymerise faster than the other end (–).
If the length of individual F-actin is generally between 2 and 3 µm, however they
are usually assembled in tight bundles, whose overall length is rather in the 10–20
µm range.

• Intermediate filaments. These are the less dynamic components of the cytoskele-
ton, little known yet but undergoing intense research. In the variant of lamin, they
are most important in the structure of the cell nucleus. Intermediate filaments are
assembled from a family of related proteins, which share many common features.
The definition of ‘intermediate’ comes from their average diameter of 8–10 nm,
which is in-between that of F-actin and microtubules. While most abundant in
epithelial and neuronal cells, they are however observed in almost all animal cell
types.

• Microtubules, the stiffest constituents of the cytoskeleton.Their persistence length
is of severalmm, largely beyond the cell size,which therefore limits their flexibility.
Their diameter is typically ∼25 nm, but in some cases can be smaller. The largest
contribution to their rigidity comes from the special arrangement of parallel proto-
filaments in a hollow tubular structure, since the bending modulus κb (see greybox
on p. 322) grows as the fourth power of the diameter. Compared to the densely
twisted F-actin, the gain in stiffness is by a factor of about 80–100. Microtubules
are polarised, like actin filaments, but their biochemistry is different. In particular,
it is known that a dynamic instability can lead to a very sudden shortening of
microtubules, thus originating a large impulsive force (Fig. 6.22).

Polymers (see again Chap. 7) can be organised into fibres, bundles or networks,
according to the function they are performing. Sometimes, such as for the case of

Fig. 6.22 Optical microscopy images of animal cells (left) and plant cells (right). Different cell
elements are stained with fluorescent labels, to visualise the cytoskeleton. In the left image, micro-
tubules are shown in green, actin filaments in red, and the nucleus in blue. Note that microtubules
constitute a main scaffold architecture, while actins are in this case concentrated in dense networks
just below the cell membrane. In the right image, actin networks are in green, and plastids in red.
[Image © leftM. Shipman, J. Blyth and L. Cramer, University College London; right E. Blancaflor,
The S.R. Noble Foundation, [15]. Repr. w. kind permission from the authors.]

http://dx.doi.org/10.1007/978-3-319-30647-6_7
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Fig. 6.23 Some possible organisation of actin filaments in the cell. a A migrating cell with a
lamellipodium extending in the direction of cell migration, terminal focal adhesions (yellow spots),
a meshwork of actin filaments (red stripes next to the lamellipodium membrane), and actin stress
fibres (thick, long red stripes). b Isolated, adherent cell with stable focal adhesions and thick stress
fibres. c Adherent cell from a dense tissue, with stable focal adhesions, a few thin stress fibres, and
a dense meshwork of cortical actin filaments. The grey mass indicates the cell nucleus

actin, the same polymer fibres can auto-organise into any of the different structures,
by dynamically rearranging their configuration, or by breaking and reforming their
bonds (Fig. 6.23). Such an outstanding level of organisation is also made possible
with the help of a large number of auxiliary proteins:

• Crosslinking proteins. The denomination comes from the physics of polymers
(see Chap. 7), where some molecular components can be added to induce cross
bridges between long fibres, thereby completely modifying the physical proper-
ties of the material (such as adding sulphur to rubber mixtures in the process of
vulcanization). This is what happens, in an even more spectacular way, in the
cytoskeleton. Most crosslinkers are controlled cyclically by a regulatory network
of other proteins, thus allowing a rapid reorganisation of the cytoskeleton.

• Branching proteins, sometimes considered as a special case of the crosslinking
proteins, as the name explains these permit the branching out of lateral chains from
a central one. They are important for actin filaments.

• Capping and severing proteins, necessary to regulate and eventually arrest the
polymerisation rate of the polymer filaments at their extremities.

• Anchor proteins, serve the purpose of transmitting the forces at the interface
between cytoskeleton filaments and cell membrane, and participate in cell adhe-
sion. They can attach to integral membrane proteins, or penetrate in the lipid
bilayer. Their attachment is reversible, i.e. they can be detached and reconnected
at a different place in the cell.

The operative keyword of the cytoskeleton structure (as well as for other cell
structures) is the concept of remodelling: all the components of the cytoskeleton
systems are active structures, which change and evolve during the biological activity
of the cell, with a continuous functional reorganisation of the elementary proteins,
available as raw material in the cytoplasm.

The cytoskeleton is linked to the cell membrane by specialised proteins, which
cluster into focal adhesions, to some extent analog to “feet” allowing the cell to

http://dx.doi.org/10.1007/978-3-319-30647-6_7
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Fig. 6.24 Microscopy imaging of the localisation of MreB (actin-like) and FtsZ (tubulin-like)
proteins in E. coli bacteria. a The left column is a bright-field electron microscopy image of E. coli
bacteria. In the right columns, fluorescencemicroscopy images.Green indicatesMreBfluorescence;
red indicates anti-FtsZ immunofluorescence; the rightmost image shows the superposition of the
two separate images (the scale bar on the left is 1 µm). The equipartition of the MreB cytoskeleton
into splitting cells is triggered by the membrane association of the FtsZ protein in the cell equatorial
plane, and is eventually accomplished by division and segregation of the MreB array. This process
ensures that each daughter cell, after splitting at the region indicated by the red FtsZ, inherits one
copy of the MreB cytoskeleton. b MreB (purple) has long been thought of as a spiral filament
twisting along the cell length, to control cell shape. Likewise, FtsZ proto-filaments (blue) were
once thought to wrap around the cell midpoint to organise the division. c Recent work using high-
resolution microscopy has revealed that long cytoskeletal filaments are more likely to be short
patches of polymers. [Image a from Ref. [16], b, c from Ref. [17], repr. w. permission.]

sense and measure the relative stiffness of the surrounding environment (other cell
walls, the extracellular matrix, a foreign surface). In response to the measured force,
the cytoskeleton can react and rearrange, to adapt the cell shape, to make the cell
adherent to (or detach from) the substrate, or follow the commands to activate cell
displacement. The cytoskeleton elements also actively participate to the complex
process of cell duplication (mitosis), by providing the necessary mechanical forces
for chromosome separation and membrane splitting (see Sect. 7.5).

Prokaryote cells seem to lack a properly organised cytoskeleton. This is one of
the major differences between nuclear and non-nuclear cells, aside of the different
organisation of their respective DNA, the general absence of internal membranes,
and the very different sequence of cell reproduction. However, analogues for all
major eukaryote cytoskeletal proteins have been found in prokaryotes, and scaffold-
ing structures with similar cytoskeletal function, despite a largely different shape
organisation, are being discovered (Fig. 6.24). The functional equivalent of actin
contractile rings is thought to be the protein FtsZ, participating in cell division, how-
ever from a structural point of view this protein resembles tubulin; by contrast, a
protein like ParM resembles actin in its structure, but performs functions resembling
those of tubulin in eukaryotes; the structural analog of actin, albeit with a completely

http://dx.doi.org/10.1007/978-3-319-30647-6_7
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different geometric distribution, should be the MreB protein, a polymerisable long
filament, running in a coil-like shape about the bacterial membrane; even some ana-
log of the intermediate filaments have been identified, such as the crescentin (CreS)
family, which share similarities with both the eukaryotic cytokeratin and lamin-A.
Moreover, ‘structural’ proteins with no known eukaryotic homologues have also
been discovered. Such polymerisable molecules play essential roles in prokaryote
cell division, protection, shape determination, and polarity determination.

Problems

6.1 Swimming bacterium
Consider a bacterium with spherical shape, and radius R = 15µm, swimming in
pure water (viscosity η = 10−3 kg/(m s)), with a speed v0 = 0.3 cm/s at time t = 0.
Calculate the stopping distance t > 0, by taking a mass m = ρV for the bacterium.

6.2 Actin polymerisation velocity
Calculate thevelocity of polymerisationof afilament ofF-actin, formedbymonomers
of G-actin of average size δ = 5 nm, with reaction constants k+ = 7.50 (µM s)−1,
k− = 1.25 s−1, in two different solutions of G-actin, with concentration 0.1 and 0.5
µM. Comment on the difference between the two cases.

6.3 Chain polymerisation
Let us examine a free-radical addition polymerisation with ki = 5.0 × 10−5 s−1,
u = 0.5, kt = 2 × 107 dm3 mol−1 s−1, and kp = 2640 dm3 mol−1 s−1, and
with initial concentrations [M] = 2.0 M and [I ] = 8 × 10−3 M. Assume the chain
termination occurs by combination. Calculate: (a) The steady-state concentration of
free radicals. (b) The average kinetic length of the chain. (c) The production rate of
the polymer.

6.4 Microtubules association/dissociation constants
In your lab you have only a centrifuge and an UV-absorption spectrometer, and
you can play with a solution of tubulin in physiologic medium (pure water with
0.15 M NaCl). With these two instruments, you should design an experiment to
measure the association constant of microtubules. (You can do an internet search
for additional parameters needed in this case, check for example the websites www.
rcsb.org/pdb/ andwww.web.expasy.org/protparam/, to obtain some quantity relevant
to your problem such as the sequence and the extinction coefficient of the protein
tubulin.)

6.5 DNA replication
Themechanisms ofDNA replication are very similar in both prokaryotes and eukary-
otes, proceeding at the rate of up to 1,000 nucleotides per second in the former, while
being slower (50–100nucl/s) in the latter. Consider the replication of DNA in the
E. coli bacterium, which occurs about every 30min. The replication fork is a struc-
ture created by enzyme helicase, which breaks the hydrogen bonds holding the two

www.rcsb.org/pdb/
www.rcsb.org/pdb/
www.web.expasy.org/protparam/
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DNA strands together. The two strands of the DNA open up, and are used as tem-
plates by the enzyme polymerase for making the two identical copies. In this action,
helicase makes the DNA to turn, with the help of other specialised proteins (the
topoisomerases). (a) How much time is needed to make two complete copies of the
bacterial DNA? What this tells us about the replication mechanism in prokaryotes?
And what about eukaryotes? (b) How fast does the template DNA spins? (c) What
is the velocity of a DNA-polymerase-III relative to the template?

6.6 Active and passive diffusion
A membrane with thickness L separates two volumes of fluid VA and VB , in each of
which a constant concentration cA and cB of some protein X is maintained. Describe
the profile of concentration c(x) inside the membrane. What this has to do with the
phenomenon of Brownian motion?

Subsequently, a pressure difference is applied betweenA andB, which establishes
a flux across the membrane at constant velocity. What is the physical coefficient
characterising the passage of the protein across the membrane in this condition?
What are its physical dimensions? Is Brownian motion playing the same role as
before?

6.7 Michaelis-Menten kinetics
The enzyme carbonic anhydrase catalyses the hydration of CO2 in red blood cells to
give bicarbonate ion:

CO2 + H2O → HCO−
3 + H+

CO2 is converted to bicarbonate ion, which is transported in the bloodstream and
converted back to CO2 in the lungs, a reaction that can be catalyzed by carbonic
anhydrase. In an experiment, the following data were obtained for the reaction at pH
= 7.1, T = 273.5 K, and anhydrase enzyme concentration of 2.3 nmol L−1:

[CO2]/(mmol L−1) 1.25 2.5 5.0 20.0

vP/(mol L−1s−1) 2.78 × 10−5 5.02 × 10−5 8.33 × 10−5 1.67 × 10−4

Determine the catalytic efficiency eP of the enzyme carbonic anhydrase at 273.5 K.

(*) The terms of the Creative Commons Attribution-ShareAlike 3.0 and 4.0 International License
(http://creativecommons.org/licenses/by-sa/3.0/, http://creativecommons.org/licenses/by-sa/4.0/)
permit use, duplication, adaptation, distribution, and reproduction in any medium or format, as
long as appropriate credit is given to the original author(s) and the source, providing a link to
the Creative Commons license and indicating if changes were made. If remixing, transforming, or
building upon this chapter or a part thereof, such contributions must be distributed under the same
license as the original.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/4.0/
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(**) The terms of the Creative Commons Attribution 3.0 and 4.0 International License (http://
creativecommons.org/licenses/by/3.0/, http://creativecommons.org/licenses/by/4.0/) permit use,
duplication, adaptation, distribution and reproduction in anymedium or format, as long as appropri-
ate credit is given to the original author(s) and the source, providing a link to the Creative Commons
license and indicating if changes were made.
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Chapter 7
Bioelectricity, Hearts and Brains

Abstract It may be surprising to think that animal bodies are just full of strong
electric fields and, to a lesser extent, magnetic fields, which surround every cell. Such
fields are created by electrochemical gradients, very localised, and—luckily for us—
theydon’t extendbeyond some fractions of amicrometer around each cell.Otherwise,
we would go around attracting or being pushed away from metallic objects. The yet
little known functioning of brain, and the much better known functioning of heart,
would each require an entire library to be described; of course, these modest pages
could not cover the physiology of such complex organs. Nevertheless, some of the
biggest advances in the understanding of brain physiology came from physics, with
electrical studies of single animal neurons, between the 1950s and the 1960s. Here
we will use simple electrical circuit models, to learn some of the most important
effects induced by the fast movement of electric charges inside cells.

7.1 Cells Processing Electromagnetic Information

The lack of appropriate sources of electrical current hampered for a long time the
development of electrophysiology, compared to other fields such as biomechanics,
more easily accessible to experimentation. The first known record of a bioelectric
phenomenon is an ancient Egyptian hieroglyph of 3000 B.C., the stone palette of
King Narmer (Fig. 7.1), depicting an electric catfish with “rays” emanating from its
head. In the year 46 A.D. Scribonius Largus, court physician to the Roman emperor
Claudius, in his Compositiones Medicae recommended the use of torpedo fish for
curing headaches and gouty arthritis. In practice the electric fishes, capable of peak
voltage spikes reaching more than 400 V, remained the only means of producing
electricity for bioelectric and therapeutic experiments until the 17th century. Still by
the end of the 18th century, the Italian scientist Luigi Galvani, already cited in the
Introduction as the “first biophysicist”, was forced to perform his studies on frogs by
using atmospheric electricity. He connected an electric conductor between the side
of the house and the nerve of the frog leg; then he grounded the frog muscle with
another conductor in an adjacent well. Contractions were obtained when, by chance,
a lightning flashed. In later experiments, the ingenious Luigi contacted nerve and
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Fig. 7.1 Detail from the palette of King Narmer, from Hierakonpolis, Egypt, Predynastic, c. 3000-
2920 B.C.E., slate, 2′ 1′′high (Egyptian Museum, Cairo). In the two yellow frames, the first known
representation of an electric catfish with rays emanating from the head

muscle with a conductor made of two different metals and observed electrical stim-
ulation, however without understanding the origin of the current. Galvani supposed,
in fact, the electricity to come from the frog tissues. It was Alessandro Volta, another
Italian professor of “Fisica particolare” (molecular physics, in modern terms) in the
University of Pavia, whomade clear that the frogwas not the generator, but the detec-
tor of electricity, generated instead by the contact between dissimilar metals. This
finding led Volta in 1799 to the discovery of the voltaic pile, made by stacking discs
of copper and zinc, which eventually gave rest to fishes for producing electricity,
until in the 1870s the electric generator was invented.

Since then, the field of bioelectricity and biomagnetism has known a rapid devel-
opment, and in the 20th century the medical applications have bloomed. Today it is
impossible to imagine a hospitalwithout electrocardiography and electroencephalog-
raphy, andmagnetic resonance is among themost widely used diagnostic techniques.
Implantable cardiac pacemakers have allowed millions of people to live a normal
life. The latest advances in the measurement of electric currents flowing through a
single ion channel of the cell membrane (the patch clamp technique) have opened
up completely new applications in molecular biology.

Bioelectromagnetism is a complex discipline, dealing with the electric, electro-
magnetic, and magnetic phenomena which arise in biological tissues. These include:
(i) the behaviour of excitable tissues, i.e. the electric and magnetic sources; (ii) the
electric currents and potentials induced in the conducting medium; (iii) the response
of excitable cells to electromagnetic fields; (iv) the intrinsic electric and magnetic
properties of cells and biological tissues.

The space limits of this (already too extensive!) book will not permit to deal in
details with biological sensing, that is theway bywhich external stimuli are conveyed
into the brain. Vision, hearing, olfaction, touch, taste, are the human senses to which
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we are accustomed, although a more complete list should include at least perception
of temperature, pain, equilibrium.But the physical distinction between these different
stimuli turns rather into a problem of the type and distribution of sensors, specialised
proteins usually located in the cell membrane. These proteins act as “channels” for
charged ions (see p. 263 below), whose flux in and out the membrane induces electric
currents, to be further amplified, and treated as sensorial information byneurons in the
brain. However, the differences between senses can be blurred for organisms living
in very different environments. The following two examples of unusual detectors for
light or magnetic fields are typical, but not unique cases.

7.1.1 The Eyes of a Plant

It us usually assumed that a visual systemmade of light-activated specialised sensors
should be peculiar to insects and other animals “higher” in the evolutionary scale.
However, many “lower” eukaryotes have a crucial need to use light. In fact, photo-
synthetic organisms are observed to migrate to regions of optimal light intensity, on
the basis of the input coming from some kind of light-sensing device. Surprising as
it may be, some plants do have eyes.

Unicellular monoflagellate algae such as Chlamydomonas, Euglena, Trache-
lomonas, Eutreptiella, the colony-forming Volvox, all have an identifiable “eyespot”.
These primitive organs constitute the simplest andmost common visual system found
in nature [2]. They contain optics, photoreceptors, and the elementary components of
a signal-transduction chain (Fig. 7.2). The above unicellular algae have two different

Fig. 7.2 a Differential contrast microscopy image of Chlamydomonas reinhardtii. The eyespot is
indicated by a white arrow, flagella by black arrows. b Thin-section scanning electron micrography
of the eyespot, zoomed by a factor ×40. White asterisks indicate the lipid globules. Long arrows
indicate the outer membrane, short arrows the thylakoid membrane. c Chemical structure of the
11-cis retinal, the light-activated chromophore, which turns into all-trans structure upon photon
capture (hv). [Photos (a, b) adapted from Ref. [1], w. permission]
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responses to light: at low light they exhibit positive phototaxis, i.e., they swim toward
the light source, with typical speeds of 120 µm/s; at higher light intensity, the cell
shifts to backward swimming, that is negative phototaxis, at a speed reduced to less
than 20 µm/s. Compared to the cell body, of about 20–100 µm size, the size of the
eyespot is very small, about 1 µm. It comprises a sort of “lens”, made of lipid glob-
ules rich in light-sensitive carotene proteins, usually arranged into highly ordered
parallel layers. The fact that cell mutants deprived of the eyespot still perceive light
but lose the correct orientation, seems to prove that the eyespot is an optical device
to sense and concentrate light, but is distinct from the photoreceptor. The highly
regular structure of the bent parallel layers (see figure) suggests that the eyespot may
act as a mirror, converging the light intensity to a focus where the photoreceptors
are hosted. These are clusters of retinal-binding proteins, as it has been verified by
alternately suppressing and restoring the synthesis of retinal molecules in genetically
mutated cells. Upon capturing a light photon, the retinal chromophore makes a cis
to trans isomerisation (Fig. 7.2, right), which starts a protein modification response
at the origin of the “vision”. The mechanotransduction mechanism, which translates
light detection into movement, is not completely clear. However, the eyespot is often
found close to the microtubules attachment of the cell flagella. It is supposed that the
eyespot may be part of an antenna, which scans the incident light intensity as soon
as the cell rotates while moving in water (see Chap. 6, on the rotational movement of
ciliates and flagellates). Someway, the higher light intensity produces a signal con-
trolling the flagellar beat, such that the cell progressively shifts its motion towards
the light source.

7.1.2 Birds and Flies Can See a Magnetic Field

Humans are not believed to have a magnetic sense. However, many animals use
the Earth’s magnetic field for orientation and navigation, although this was once
dismissed as a physical impossibility. Two types of magnetic information are poten-
tially available to the animal. The simplest is directional information, which enables
to maintain a consistent heading, for example towards the north or south. Animals
with this ability are said to have a magnetic compass. By contrast, at least a few
animals can also obtain a kind of positional information from the magnetic field,
for example to assess their approximate geographical location. Animals that derive
positional information from the field are said to have a magnetic map.

Up to now, there is not a single “magnetic sensor” identified, in any biological
organism. Magnetic fields are unlike other sensory stimuli, in that they can pass
freely through biological tissue. Whereas receptors for senses such as olfaction and
vision must make contact with the external environment, a “magnetoreceptor” could
be located almost anywhere inside an animal’s body. In addition, the large acces-
sory structures needed for focusing and manipulating the field (magnetic lenses)
are unlikely to exist, because few materials of biological origin can affect magnetic
fields. Tiny magnetoreceptors could be dispersed in a large volume of tissue, or the
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transduction process might occur as a set of chemical reactions, which means that no
obvious organ or structure devoted to this sensory system should necessarily exist.

Currently, three mechanisms are suggested to explain magnetic sensing by ani-
mals: one invokes electromagnetic induction, another involves magnetite, and the
third chemical magnetoreception. The first two require either the animal’s body to
be conductive, or the animal to have magnetic nanoparticles dispersed in the tissues,
the displacement of such particles due to the magnetic field possibly initiating a sig-
nalisation cascade. Nanoparticles of this kind (with size∼50 nm) have been actually
identified in some animals and bacteria, whereas the induction mechanism might
apply to some fishes like sharks or rays, whose skin is sensitive to electricity.

The thirdmechanism ismuchmore involved, butmight be indeed themost promis-
ing. The idea is that magnetoreception could occur through unusual biochemical
reactions that are influenced by a magnetic field: for example, reactions involving
the formation of free radicals, in which the lone-electron spin can interact with the
magnetic field, like in aMRI. Many free-radical reactions are initiated by the absorp-
tion of light, and this led to the suggestion that chemical magnetoreceptors, if they
exist, might also be photoreceptors. A special class of proteins, the cryptochromes,
have the required chemical properties (they contain an element that forms radical
pairs after photoexcitation by blue light), and are concentrated in the cells of the eye
retina of many different animals. For example, experiments on migratory birds show
that such retina cells increase their activity when the bird orientsmagnetically. Strong
evidence for cryptochrome involvement in magnetic sensing came from behavioural
experiments with the fruitfly Drosophila melanogaster [3].

Such a coupling of magnetic field sensing with vision-related receptors is indeed
fascinating. When magnetically-sensitive animals look out at the world, they should
see superimposed on the normal visual field an additional signal, consisting of a pat-
tern of lights, or colours, which changes depending on the direction the animal faces.
If so, the animal might learn to associate a particular visual signal with a particular
magnetic direction. Moreover, in some transgenic experiments, a cryptochrome pro-
tein commonly found in the human retina was reintroduced in the Drosophila [4],
demonstrating that this human protein can nicely function either as a light-sensitive
magnetosensor or as part of a magnetosensing pathway, in the insect. Although it is
not known whether such properties might translate into a similar biological response
also in the human retina, this finding could reopen an area of sensory biology for
further exploration also in humans.

7.1.3 The Neuron

And again the Egyptians! The “Edwin Smith” papyrus, from the XVI-XVII Dynasty
(about 1600 BC), contains the earliest descriptions of the cranial structures, the
meninges, the external surface of the brain, the cerebrospinal fluid, and the intracra-
nial pulsations. Here, the word brain appears for the first time in any language.
According to the historians of medicine, the procedures described in this papyrus
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demonstrate a level of knowledge surpassing that of the Greek Hippocrates, who
lived 1000years later. Galenus, in the 2nd century, proposed that the brain is the
centre of the mind, at a time when this role was generally attributed to the heart, and
proved experimentally that the brain commands themuscles. However for nearly two
millennia, while the anatomical studies slowly progressed, the functions of the brain
remained metaphysically obscure. When in 1838 Theodore Schwann and Matthias
Schleiden proposed that cells are the basic functional units of all living things, this
theory was not believed to apply to the nervous system, and it was not until towards
the end of the 19th century that it became generally accepted that the brain, too,
consisted of cells. The discovery of the neuron was a milestone in brain research,
and paved the way for modern neuroscience.

The Italian anatomist Camillo Golgi invented about 1870 a staining technique for
neurons (la reazione nera, or black reaction). It consisted in fixing silver chromate
particles to the neuron membrane, resulting in a stark black deposit on the soma as
well as on the axon and all dendrites. This provided an exceedingly clear and well
contrasted picture of single neurons against a yellow background (without such a
stain, brain tissue under a microscope appears as an impenetrable tangle of proto-
plasmic fibres, in which it is impossible to detect any structure). Golgi viewed the
nervous system as being a seamless, continuous network of interconnected cells,
with nerve signals firing along in all directions. The Spanish physiologist Santiago
Ramón y Cajal, on the other hand, proposed that the brain is composed of billions
of individual cells, or neurons (a term coined some years earlier by the German
anatomist Heinrich Wilhelm Gottfried von Waldeyer-Hart), receiving information
at one end, and transmitting it unidirectionally to the next cell. Cajal was almost
clairvoyant in proposing that the increase in the number of synapses could be one of
the mechanisms of learning and memory, a fact that was ascertained only much later.
Only recently, the discovery of gap junctions and a prevalence of electrically coupled
neurons in some regions of the brain (see below), seemed to revive the argument for
a “reticular” network, in parallel to this predominant “neuron doctrine”.

By looking at images showing the structure of typical neurons (Fig. 7.3), we see
something that looks quite distant from the characteristic cell we have been taking as
a model example until now. Instead of a roundish, compact mass enclosed by a rather
smooth membrane, containing a large nucleus plus a bunch of other organelles, the
typical neuron appears as a small central core from which many filaments emanate
in all directions, with a thicker one and a seemingly infinite branching into thinner
and thinner stems. Although our model-spheroidal cell is certainly a highly idealised
picture, and most real cells may have quite weird shapes, neurons look more like
microscopic plant roots, rather than what we thought as cells.

The neuron may be divided on the basis of its structure and function into three
main parts: (1) the cell body, also called the soma; (2) numerous short processes of
the soma, called the dendrites; and (3) the single long nerve fibre, the axon. The
body of a neuron is, in fact, similar to that of most other cells, including the nucleus,
mitochondria, endoplasmic reticulum, ribosomes, and other organelles. The cell size
is extremely variable, its volume ranging between 500 and 70,000 µm3. The short
processes of the cell, the dendrites, receive impulses from other cells and transfer
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Fig. 7.3 Left SMI32-stained pyramidal neurons in cerebral cortex (recoloured and enhanced).
Right Sketch of a typical neuron. The soma (left end) includes the nucleus and most of the usual
cell organelles, and branches out with dendrites, to receive input currents from other neurons. The
axon, extremely variable in length, is partly covered by the myelin sheath, carried by Schwann’s
cells and interrupted by the Ranvier nodes. At the right end, the axon splits into many terminals,
whichmake contact to other neurons’ dendrites, via individual synapses. [Images© left UCRegents
Davis campus, www.brainmaps.org, right Q. Jarosz. Adapted under CC-BY-SA 3.0 licence, see (*)
for terms.]

them to the cell body. The effect of these impulses may be excitatory or inhibitory.
A cortical neuron, located in the brain cortex, may receive impulses from tens, or
even hundreds of thousands of neurons. The long nerve fiber, the axon, transfers
the signal from the cell body to another neuron, or to a muscle cell. Mammalian
axons are usually a few micrometer in diameter, while their length in larger animals
may reach up to several meters. The axon may be covered with an insulating layer,
called the myelin sheath, which is formed by Schwann cells (named for the German
physiologist Theodor Schwann, who first observed themyelin sheath in 1838).When
present, the myelin sheath is not continuous but is split into sections separated at
regular intervals by the nodes of Ranvier (named for the French anatomist Louis
Antoine Ranvier, who observed them in 1878).

Similar to any cell, the neuron is enclosed by amembranewhose thickness is about
7.5–10 nm. However, the membrane of the neuron includes a large concentration of
proteins that regulate the inflow and outflow of charged ions, mainly Na+, K+, Cl−
and Ca2+, the already mentioned ion channels. These make the neuron membrane
an excitable medium, notably all along the axon, and constitute the most important
feature of the neuronal cell, being at the basis of the bioelectric phenomena such as
generation, amplification and transmission of electric potential pulses.

The junction between an axon and the next cell with which it communicates is
the synapse. In most synapses, information coded into electrical impulses proceeds
from the cell body unidirectionally, first along the axon and then across the synapse,
to the next nerve or muscle cell. The part of the synapse that is on the side of the
axon is called the pre-synaptic terminal; that part on the side of the adjacent cell is
called the post-synaptic terminal. Between these terminals, there exists a thin gap,
the synaptic cleft, with a thickness of 10–50 nm. The unidirectionality of impulse
transmission in chemical synapses is due to the release of a chemical transmitter

www.brainmaps.org
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by the pre-synaptic cell. This transmitter, when released, activates the post-synaptic
terminal.An exception to this rule, electrical synapses have amuch simpler activation
mechanism, and can transmit electric impulses in both directions.

7.1.4 The Neuromuscular Junction

The electric potential of the neuronal cell takes the formof a propagating voltage peak
of a few tens of mV, which carries the information from the brain down to the muscle
cells. At the microscopic scale, the mechanical action of the muscle contraction (i.e.,
the beginning of the sarcomere contraction, apparent in the relative displacements
of the actin and myosin filaments which make up each sarcomere, see Chap. 10) is
activated by a complex chain of events, taking place in the neuromuscular junction.
This is a special type of synapse densely connecting the axon of a motor neuron to a
muscle fibre, as shown in Fig. 7.4. For example, the flight muscles of the Drosophila
fruit fly are innervated by a giant axon, ∼5µm in diameter, carrying about one such
junction every 1–2µm.

Theneuromuscular junctionhas some important differences compared to synapses
formed between neurons. The contact region is here very large, with multiple
postjunctional folds, which increase the surface area of the membrane exposed
to the synaptic cleft. The neuron terminal (A in the right figure) contains a quantity
of synaptic vesicles. Each vesicle is a small spheroid made of lipids, with diameter in

Fig. 7.4 Left Electron micrograph showing a cross-section through the neuromuscular junction. T
is the axon terminal, M is the muscle fibre, the white arrow points at junctional folds. The scale bar
is 0.3µm. Right Schematic of the neuromuscular junction, a special type of synapse formed not
between two neurons, but between a neuron and a muscle cell (myofibre). The neural cell terminal
(A) contains a quantity of synaptic vesicles (B). Upon arrival of the action potential (1), Ca2+
flows in (2), and induces fusion of the vesicles to the multiply folded membrane. This liberates
acetylcholine (3) in the ∼10–20 nm narrow space (C), between T and M, which in turn opens ion
channels (4) on the M side. The flux of ions starts a new action potential (5) on the M side, which
spreads in the muscle cell (E). Finally, calcium ions diffusing (6) through the muscle cell initiate
the muscular contraction. [Public-domain photo left by National Institute of Mental Health; image
right repr. under CC BY-SA 4.0 lic., see (*) for terms.]

http://dx.doi.org/10.1007/978-3-319-30647-6_10
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Fig. 7.5 Schematic of the cyclic working mechanism of the Na-K pump in the cell membrane.
The cyclic sequence proceeds clockwise, 1–6, starting from the upper-left. Up to three Na+ ions
accumulate inside the inner opening of the protein, coming from the cytoplasm. One ATP molecule
can attach to a side of the pump, and be hydrolysed to ADP. The phosphate remains attached to
the rim of the protein, inducing a structural change that pushes the three sodium ions to get out in
the extracellular fluid. Once this process is completed, two K+ ions enter the pump from the rim
exposed to the extracellular space. The inorganic phosphate (P) is now detached from the inner side
of the pump, which changes again its structure back to the original shape, and lets the potassium
ions to enter the cytoplasm

the few nanometers, filled by a constant number of acetylcholine (ACh) molecules,
a neurotransmitter. When an electric impulse (or action potential, see below) arrives
through the nerve axon to the synapse, the membrane channels on the T side open up,
and let flow the Ca2+ ions from the extracellular fluid in the synaptic cleft (greenish
zone in the figure on the right), into the pre-synaptic T side. This flux of calcium ions
allows the vesicles to adhere to the membrane and break open (exocytosis); the ACh
neurotransmitter molecules are liberated in the synaptic cleft, and diffuse to reach the
receptors on the membrane of the post-synaptic terminal M. These receptors, with
a density of about 104 per µm2, are ligand-gated ion channels (see below, Fig. 7.5)
whose ligand is the ACh. Once the ACh is captured at the receptors, the ion chan-
nels open up, and let Na+ flow into the muscle cell membrane, while K+ ions flow
out. Since the amount of sodium entering is larger than the potassium exiting, the
membrane becomes more positively charged (in fact, less negative) and this further
induces the formation of a second electric pulse in the muscle.

When this electric potential spike reaches the muscle cell membrane (sar-
colemma), the adjacent sarcoplasmic reticulum releasesCa2+ ions. Now the calcium
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ions diffusing through the entire muscle cell volume (the sarcomeres) can initiate the
muscular contraction. As described in more details in Chap.6, Ca2+ is chemically
bound to some intermediate proteins standing between the actin and myosin (the
troponin-C), thus providing the initial ‘loading’ of the actin-myosin motor. Subse-
quently, by consuming ATP molecules, the activated molecular motor displaces the
myosin and actin relative to each other, and the muscle contraction takes place.

7.2 The Electric Potential of the Membrane

Although any analogy between brain and computer could be merely superficial,
neurons appear as the fundamental elements for the treatment of information in the
nervous system. Since each neuron is connected to thousands of other neurons, the
neuronal “computation” is strongly parallel, as opposed to the sequential treatment of
the information in our computer processors. Although the nervous system is capable
of many diverse functions, the repertory of elementary operations which encode all
such functions is rather limited, namely: (1) generation and propagation of an action
potential, (2) synaptic transmission, and (3) production of graded synaptic or sensory
potentials.

The electrical activity of nerve cells can be analysed in terms of several analogies
with conventional electric circuits. The important elements to be considered in this
respect include at least the following:

• a battery, which represents the source of electric power,
• a resistance, which represents the potential drop between two points, ensuring the
continuity of the flux of electric charge,

• a capacitor, which represents the potential drop but with spatial separation of the
positive and negative charge carriers.

The voltage dropΔVm between the two sides of the cell membrane (unfortunately,
this quantity is often called membrane or transmembrane “tension”, leading to a
confusion with the concept of mechanical tension), is defined as the difference of
electric potential between the internal surface, Φi , and the external surface of the
membrane, Φe:

ΔVm = Φi − Φe (7.1)

Such a definition is independent on which is the origin of the potential difference,
and whether its value is constant, periodic, or even non periodic at all.

7.2.1 Passive and Active Diffusion

In practical terms, the cell membrane separates two electricity-conducting fluids, the
cytoplasm and the extracellular fluid, in fact two electrolytic solutions with different
concentrations of various ions. As a consequence, both concentration and charge

http://dx.doi.org/10.1007/978-3-319-30647-6_6
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gradients are established between the inside and the outside of the cell. Because
of the thick inner layer formed by the lipid tails of the amphiphilic molecules, any
cell membrane is very little permeable to ions of any species. Values of intrinsic
permeability of typical cell membranes are 10−14–10−12 m/s for Na+, K+, or Cl−, to
be compared to 10−8–10−7 m/s for glycerol, urea, indole, and other biggermolecules,
while water may have a permeability of 10−6–10−4 m/s depending on the type of
cell. It may be noted that glucose is a polar molecule, with mass of 180 Da, but its
permeability is small and close to that of the tiny ions. Tryptophan, on the other hand,
has a mass of 204 Da, but being non-polar it has a permeability about 1,000 times
than that of glucose. Size is clearly a much less important feature than polarity and
charge, in the permeability game.

As we saw in Chap.5, the permeability Pk for an ion of type k is proportional to
the diffusion coefficient Dk , to the partition coefficient K , and inversely proportional
to the membrane thickness d :

Pk = K Dk

d
(7.2)

Due to their strongly hydrophilic character, all ions have very low values of K ,
therefore the cell membrane (actually, the inner double layer of lipid tails) is prac-
tically impermeable to ions. In the absence of other facilitating mechanisms, any
differences of ionic concentration on the two sides of the membrane would remain
constant, and as a consequence a diffusion potential is established. This potential acts
like a battery, with a drop equal to the voltage difference, and a resistance equal to the
permeability of the membrane for that particular ion. Interestingly, the application
of an equal and opposite voltage across the membrane allows to stop the ionic flux,
thereby providing a way to measure the equilibrium membrane potential.

The passive diffusion of a particle, charged or neutral, is described by the Fick’s
equation (see again Chap.5):

J = −D∇c (7.3)

with J (inmol cm−2 s−1) is the particle flux, D (in cm2 s−1) is the diffusion coefficient,
and∇c is the concentration gradient (in mol cm3) between two points. For k different
types of ions, it must be considered k different diffusion coefficients Dk , k gradients
∇ck , and k independent fluxes Jk .

In the case of nerve cells, there are threemain types of ions involved in determining
the electrochemical potential between the two sides of the membrane: Na+, K+, and
Cl−. Other ions can be implied in different processes in other types of cells, such
as hydrogen carbonate HCO−

3 , or divalent cations such as Mg2+, Ca2+. In all cases,
however, the diffusion coefficients of charged species in the (hydrophobic) lipid
membrane is exceedingly small.

Since the passive, or spontaneous, diffusion is so low for all ions, concentration
gradientsmust be created by specialised proteins in the cellmembrane, and especially
in neurons, to facilitate the diffusion. These proteins go under the generic name of
ion channels, and can operate according to different mechanisms, by opening and
closing the passage to ions (“gating”), by using different means:

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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• ligand, if the attachment of a small ligand molecule at a particular site of the ion
channel operates the switching, as it occurs for example when acetylcholine binds
at a neuromuscular synapse;

• mechanical, when the deformation of the protein structure opens and closes the
channel, for example by a sound wave as it occurs in the hair cells of the inner ear;

• voltage, when a protein channel is opened by the passage of an electric potential
pulse along the membrane, as is the case of sodium channels along the neuronal
axon that relay the electric pulse over long distances;

• light, occurring for example in photosynthetic bacteria, in which the light pulse
opens a special channel allowing the flow of protons, resulting in a movement of
the microorganism towards the light source (phototaxis).

A similar ‘facilitating’ mechanism allows the passage also of particular molecules
through the cell membrane, with the help of other specialised channels that go under
the generic name of porins. For example, maltoporin is a protein located on the
outer surface of the membrane of some bacteria; it is made by 18 loops of amino
acids shaped as a funnel, providing a sort of “sleigh” for maltodextrin to enter the
cell.

Another important example of facilitating channels, which earned the Nobel prize
in Chemistry in 2003 to the American physician Peter Agre, regards the diffusion of
water molecules. Despite the already high permeability of water to the plasma mem-
brane, almost all animal and plant cells also have a variety of aquaporin channels,
which accelerate the passageofwater in andout the cell.A single aquaporin-1 channel
can transfer up to 3×109 water molecules per second, in both directions. To compare
this value against passive diffusion, let us take a cell of radius R = 10µm, and con-
sider the gradient ofΔc = 3×109 across the membrane thicknessΔx = 10nm. The
diffusion coefficient for water through the plasma membrane ranges from 8× 10−10

to 2 × 10−8 cm2/s. Hence, from Eq. (7.3) the maximum flux is J = 6 × 107

molecules/(cm2s). If all the 3 billion molecules must diffuse through the cell surface,
S = 4πR2, we get a flow rate of J · S = 750 molecules per second, i.e., ordinary
passive diffusion is a factor of 4×106 less efficient than one single aquaporin channel
in transporting water.

A different class of proteins can perform the active transport of ions, sugars or
salts in and out from the cytoplasm, by imposing a flow against the concentration
gradient. Clearly, this cannot come without a corresponding expenditure of free
energy, typically obtained from the consumption of ATP. The most important of
these integral proteins is the so-called sodium-potassium pump, orNa+/K+-ATPase
(Fig. 7.5), which uses the energy of one ATP molecule to export 3 Na+ ions outside
the cell, for every 2 K+ ions that enter the cytoplasm. The process is clearly not
electrically neutral, and makes for a disequilibrium also of the negative charges, such
as the Cl− ions. Besides neurons, the sodium-potassium pump is found in almost any
other types of cells, where it serves to maintain a gradient of Na+, necessary for
various cellular functions.

Another similar ATP-powered pump is the H+/K+-ATPase, needed to increase
the pH of the gastric juice to about 1. This pump belongs to the larger group of
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proton pumps, it transports 1 or 2 protons outside the cell, for 1 or 2 K+ getting
inside (therefore it is electro-neutral). In this way, it increases the extracellular H+
concentration from the value of 4 × 10−8 M, found inside the epithelial cells of the
stomach, to a humongous concentration of about 0.15 M in the gastric juice. (To
this purpose millions of ATP units must be consumed, and the epithelial cells of the
stomach must contain an important proportion of mitochondria, compared to other
cells.)

A final category of ion channels which is of interest for neuronal functioning
is that of indirect active transporters. Such pumps exploit the flow of one active
ion (usually Na+, whose gradient is separately established by the working of Na/K-
ATPase) to transport some other molecule or ion against its own gradient. If the
indirectly transported species flows in the same direction of the active transporter,
the pump is called a symporter; if, conversely, the species flows in the opposite
direction as the active transporter, it is called an antiporter. An example of the
former is the Na+/glucose transporter, which transports excess glucose out of the
intestine or of the kidney tubules, back into the blood flow: the Na/K-ATPase pump
firstly establishes a Na+ gradient outside the cell, then the Na+ and glucose flow
back together into the cell through the Na+/glucose pump. An example of antiporter
is the Na+/Ca2+ exchanger, which pumps 2 Ca2+ outside the muscle cells for 3 Na+
entering; also in this case both the sodium and calcium ions flow in the direction of
their respective concentration gradients (the Na+ gradient being established again
by the Na/K-ATPase, while the Ca2+ excess would result, in the case of a muscle
cell, from the release of neurotransmitters at a neuro-muscular synapse).

7.2.2 The Nernst Equation

Given that the neuronal cell membrane is so specialized in creating and maintaining
ionic concentration gradients, let us see what are the implications for its electrochem-
ical properties. The entropy of an ion k in solution is proportional to the number of
available microstates Ω that, in turn, is proportional to the volume V :

Sk = kB lnΩ = kB ln V = −kB ln(const · [ck]) (7.4)

the last equivalence coming from the observation that the concentration is inversely
proportional to the volume, [ck] ∝ const/V .

If we consider the difference in concentrations of the ion k between the outside
and the inside of the membrane, the corresponding entropy difference is:

ΔSk = −kB ln
[ck]out

[ck]in
(7.5)

Now, charged ions separated by an impermeable membrane are analogous to the
electric charges in a battery, separated by a dielectric. In the battery, the difference
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of electric potential V (voltage) coincides with the product of the chemical potential
μ = ΔG = ΔH − T ΔS, times the difference of accumulated charges on the two
sides of the dielectric, −Ne, or:

ΔG = ΔH − T ΔS = −NeV =
= G0 + kB T ln

[ck]out

[ck]in
(7.6)

From this expression, we can write for the membrane potential Vm :

Vm = V0 − kB T

Ne
ln

[ck]out

[ck]in
(7.7)

This is theNerst equation, a typical tool of electrochemistry.Note that the prefactor
of the logarithm can also be written as (RT/zF), where R = kB NAv = 8.3145
J/(K mol) is the universal gas constant, and F = eNAv = 9.6485 × 104 C/mol is
the Faraday constant, or the total charge of one mole of electrons. In the routine
calculation of electrophysiology, the potential is expressed in mV (millivolts), the
logarithm is taken in base-10, the sign of the potential is taken with respect to inside
negative ions (i.e., z = +1 for monovalent positives and z = −1 for the negatives),
and all the constants are adjusted to the body temperature of T = 310 K (Fig. 7.6).
Therefore, the Nernst equation looks like:

Vm = 61.5

z
log10

[ck]out

[ck]in
(7.8)

Differently from most other types of cells, which mainly use a flow of Na+ for
their functions, neuronal cells need also to be (actively) permeable to K+ and Cl−,
thanks to the various types of passive and active pumps described above. For a neu-
ronal cell of squid, definitely the most studied animal in human electrophysiology,1

the concentrations of Na+ are : [Na+]in = 50mM, [Na+]out = 440mM, so that the
corresponding electric potential of the “sodium battery” is:

VNa = 61.5 log10
(
440
50

) = +58 mV (positive inside)

Similarly, for potassium ions [K+]in = 400mM, [K+]out = 20 mM, and for
chlorine ions [Cl−]in = 52mM, [Cl−]out = 560mM, with electric potentials:

1The squid giant synapse was first discovered by the English zoologist John Zachary Young in 1939,
as the main controller of the muscular contraction, at the basis of the jet propulsion of the animal in
water. It is linked to the giant axon, which was used by Hodgkin and Huxley in their Nobel-winning
experiments on the action potential (see p. 278 below). Because of its large size (up to 1 mm) the
squid axon was a relatively easy subject for early neurophysiology experiments.
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Fig. 7.6 Measurement of
the voltage inside a neuronal
cell. The pipette on the left
contains an electrode that
can penetrate the cell
membrane, while the
electrode on the right
immersed in the extracellular
fluid is at ground potential.
Under standard resting
conditions, a human neuron
is at about Vrest = −70 mV

VK = 61.5 log10
(
20
400

) = −80 mV (positive outside)

VCl = −61.5 log10
(
560
52

) = −63.5 mV (negative inside)

The three battery components can be arranged in a parallel setup, with voltages
imposed by the concentration differences, and with their right charge signs, as shown
in Fig. 7.7. Such concentration differences are not at equilibrium, but are constantly
maintained or adjusted by energy consumption in the form of ATP molecules. The
capacity Cm in the Figure takes into account the fact that any voltage, i.e. concentra-
tion, variations cannot be instantaneous, butwill set in a characteristic time depending
on a number of structural and physiological factors.

7.2.3 Polarisation of the Membrane

In a simple model, a neuronal membrane can be represented as a RC circuit (see
Appendix G), Typical values of the specific membrane resistivity and capacity, due
to the hydrophobic (i.e., dielectric) lipid layer, are ρm � 104 Ω cm2 and cm �1
µF/cm2. For a typical neuronal cell with diameter δ ∼ 50 µm (excluding the long
axon) the lipid membrane resistance can be estimated as Rm = ρm/(4πδ2) � 200
MΩ , and its capacitance Cm = (4πδ2)cm � 80 pF.



268 7 Bioelectricity, Hearts and Brains

Ohm’s law and the diffusion of ionic charges

Before establishing this connection, it will be practical to introduce two auxiliary quantities:
1. the current density, j = i/A, that is the current per unit surface of the conductor;
2. the electric field, E = V/L , that is the difference of electric potential per unit length of the

conductor.
With these new quantities, the familiar Ohm’s law that relates current and potential via the

resistance of the conductor, can be rewritten as:

j A = i = V/R = E L

R
(7.9)

or, equivalently:

j = L

AR
E (7.10)

It should be obvious that the specific conductivity, inverse of the resistance per unit length:

σ = L

AR
(7.11)

cannot change for any elementary volume of a given conductor material. Therefore, the “updated”
version of the Ohm’s law reads:

j = σE (7.12)

In the context of the diffusion theory, a material current of particles crossing a surface A in a
time t , is described by the flux:

J = N

At
(7.13)

If the particles are also charged, all with the same charge q, the corresponding charge current is:

J = Nq

At
(7.14)

Let us consider the distance L = vDt covered by the diffusing particles in the time t , and take t
such that the volume V = AL swept in this time be unitary, with ρ = N/V the particle density in
this’tube’ of volume V . Then:

J = Nq

At
= qV ρ

At
= q

ALρ

At
= qρvD (7.15)

This is a fundamental law of conductivity in the linear regime (i.e., when a linear relation between
current and electric field holds). If we compare this flow of charge with the current resulting from
Ohm’s law, it is:

J = qρvD = σE (7.16)

Since the ratio σ = (qρvD)/E is constant, and both the charge q and density ρ are constants as
well, it turns out that the ratio vD/E must be a constant. This defines a new important quantity:

μ = vD

E
(7.17)

that is the mobility of the charged particle in a given electric field, in units of m2V−1s−1.



7.2 The Electric Potential of the Membrane 269

Fig. 7.7 The arrangement of themembrane ion “batteries”, in the equivalent circuit of theHodgkin-
Huxley model. With the normal extracellular medium, VNa is positive while VK and VL have
negative values. During an action impulse, G Na and G K vary as a function of transmembrane
voltage and time. Red arrows indicate the current flow direction

However, the very high resistance of the membrane to ions makes little sense
here, because ions flow across the transmembrane channels. The equivalent electric
resistance Req of this circuit, or its inverse the conductance Geq = 1/Req , is ameasure
of the relative facility of ionic diffusion across the membrane (see the greybox on
p. 268), via the specific ion channels and ATP-powered pumps, which were briefly
described above. By analogy, the resistance of the membrane for each ion species
is inversely proportional to its permeability, Rk ∝ 1/Pk : the higher the permeability
for a ionic species, the lower the equivalent resistance.

The net electric potential drop across the membrane, or resting potential is deter-
mined by the celebrated Goldman-Hodgkin-Katz equation (the (7.70) derived in the
Appendix F), that is obtained from the current flux equation for each of the three
monovalent ion species:

Vrest = 65.1 log10

(
PNa[Na+]out + PK [K+]out + PCl [Cl−]in

PNa[Na+]in + PK [K+]in + PCl [Cl−]out

)
(7.18)

The G-H-K equation requires the values of ion permeability to be known, a rather
difficult quantity to obtain, since it requires to measure mass displacement in a fluid
environment. It may also be noted that for one single ion species, the G-H-K equation
turns into the Nernst equation (7.8).

After all transients have equilibrated, the membrane potential settles at its resting
value, which can be expressed by the equivalent conductance. By assuming that
each ion acts independently in the “parallel” scheme of Fig. (7.7), this is given by
the inverse of the equivalent resistance (see Appendix G) as:

1

Req
= 1

RNa+
+ 1

RK +
+ 1

RCl−
= G Na+ + G K + + GCl− (7.19)
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The total current is the sum of the three independent ion currents. Then, by using
I = V/R for both the total current and for the Na+, K+ and Cl− currents, we have
in terms of the respective conductances:

Vrest = G Na+ VNa+ + G K + VK + + GCl− VCl−

G Na+ + G K + + GCl−
(7.20)

In the resting state, when the cell is not excited by neuronal impulses, K+ channels
are open and the potassium permeability is elevated (and so is its conductance G K + ,
while Na+ and Cl− channels are closed, thus their resistance is high and both their
conductance and permeability is low). Therefore, the linearised equation above tells
us that, if both G Na+ , GCl− → 0, the membrane potential gets close to the potassium
value, Vrest = −75 mV � VK + .

The charge on the capacitor-membrane at this stage is equal to Q = V C =
(75 × 10−3) · (80 × 10−12) = 6 × 10−12 coulomb. By counting only the K+’s, this
amounts to about 3.7×107 ions. It can be noted that this amount of charge is negligible
compared to the ordinary cell concentration, which in the case of potassium is about
400 mM. For the typical cell with diameter δ = 50 µm, the volume is 2.6 × 10−12

l, the number of ions corresponding to this molarity is therefore (400 × 10−3) ·
(2.6 × 10−12) · NAv = 6.2 × 1011. Therefore, the normal ionic concentrations are
not significantly changed by the influx/outflux of ions corresponding to charging
and discharging of the membrane. In particular, this also reassures that the electrical
neutrality of the cell (and of our bodies!) is not significantly violated, except in a
very thin layer of cytoplasm immediately adjacent to the cell membrane.

Now, starting from a condition in which the membrane conductance is dominated
by only the K+ ions, let us consider the effect of opening a few Na+ channels: the
Na+ ions will start migrating inside the cell, under the combined effect of their own
concentration gradient ([Na+] being higher outside), and of the dominating potential
imposed by the potassium, which is positive at the outside.

At this stage, the membrane starts to depolarise, meaning that its voltage Vm

raises above Vrest (although the sodium potential, at VNa+ = +55 mV, remains still
far above). The fact that Vm > VK + has also the effect of arresting the influx of K+
ions, which instead start getting out of the cell, trying to compensate the extra charge
of the entering Na+ ions. In the transitory regime, the G-H-K equation tells us how
the voltage changes in time. At the final stationary state, the currents from the two
ionic species must equilibrate, INa+ = IK + , or:

G Na+(Vm − VNa+) + G K +(Vm − VK +) = 0 (7.21)

that is nothing but Ohm’s law again. However, in this case the equation tells us that
the ratio of the driving force for ionic transport inside/outside the cell is equal to the
inverse ratio of the conductances.Until the sodiumconductance remains substantially
lower than that of K+, the corresponding driving force for Na+ to enter the cell is
higher. The new value of the equilibrium potential is usually found at Vrest = −60
mV, meaning that in resting conditions there are just a few sodium channels opened.
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This is actually the meaning of the G-H-K equation: being derived from the sum
of the diffusive plus electromigration flow of all ionic species present, it states that
the equilibrium among all the combined processes is reached when the concentration
gradients of all species correspond to the respective Nernst potentials. In the absence
of external stimulations, ions will flow in and out the membrane until the equilib-
rium corresponding to the combined conductances is reached. As we will see in the
following, when a nerve stimulus reaches the membrane, a quantity of ion channels
are opened or closed, thereby changing the conductances, and transitorily setting the
concentration gradients to quite different values from those corresponding to Vrest .

7.3 The Membrane as a Cable

Already in 1905, Ludimar Hermann had shown that the propagation of a signal along
the long axon of the neuronal cell could be described in analogy with the propagation
of the current along an electric cable. The model of the equivalent circuit is a series
connection of a number of identical elements, each composed of a battery, a resistance
and a capacitor. These elements are connected by another resistance as described in
Fig. 7.8. There, the Ri and Ro are the resistance per unit length of the intracellular
fluid, or axoplasm, and of the extracellular fluid, respectively (kΩ/cm of the axon
length); Rm is the equivalent membrane resistance, and Cm is its capacity; the ik are
the different components of the current; Vm is the membrane potential (Volts) and
V ′ = Vm − Vrest is its deviation with respect to the resting state.

The schematic on the right panel of the same figure describes how a voltage pulse
(square signal) propagates at each discrete element of the membrane. If we imagine
to insert a measuring electrode at the position of the capacitor (note that in reality the
membrane is continuous, i.e. the “capacitor” and the “resistance” are spread all over
its length), we would measure a growing ramp of the voltage (see Eq. (7.81) in the
Appendix G), followed by the exponential decrease, as it is the case for an ordinary
RC circuit. The amplitude of the pulse is as well decreasing, as soon as the pulse
propagate over longer distances.

Fig. 7.8 Left Schematic of the equivalent circuit of the element of neuronal membrane, idealised
as an electric cable. Right Arrangement of several elements in series (a), receiving a depolarising
input in the form of, e.g., a square signal, which goes attenuated through successive RC membrane
elements (b). The recording with electrodes placed at regular positions along the axon (c) would
measure an exponential decay of the current (average red-dashed curve)
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The cable equation

We start with considering the neuronal axon as an infinite cable, which in practice means very long
compared to the region we are studying. We are looking for current-voltage equations that describe
the passive response of the membrane. Since the resting potential is constant, we can make the
substitution:

dV ′

dx
= dVm

dx
and

dV ′

dt
= dVm

dt

In the following, uppercase letters R, I, C indicate the integrated values of resistance (in ohms,
Ω), current (in amperes, A), and capacity (in farads, F); lowercase letters r, i, c indicate values per
unit length. Themembrane resistance is a special case, since it represents the resistance of a transverse
section of the cable per unit length, therefore rm has dimensions of [Ω][L2][L−1] = [Ω][L].

To derive the cable equation, let us begin by supposing that the membrane resistance is infinite,
Rm = ∞ and its capacity is Cm = 0. This means that the current flows inside the axon without any
loss, like water in a garden hose. Moreover, let us also consider Ro � 0.

The variation of potential along the direction x for an amount of charge injected a a point is:

dVm = −Ii ri dx (7.22)

that is:
1

ri

dVm

dx
= −Ii (7.23)

This expression describes the decreasing amplitude of the current along the cable, with the only
loss (difference of potential between x and x + dx) coming from the resistance ri . By pushing the
analogy with the garden hose, is like injecting a small amount of water at one end, and observing
how the friction on the hose walls slows down the flow. Now, if we remove the hypothesis that
rm = ∞ but consider that the resistance has a finite value, it is the analog of opening holes in the
hose, from which the water can be lost. The more holes, the less water will arrive at the other end.
In other words, the membrane resistance represent a dissipative contribution to the overall current,
which can be written as d Ii = −im dx , or:

d Ii

dx
= −im (7.24)

The membrane current can be decomposed into a resistive and a capacitive contribution, im =
ir + ic . The first component is just obtained from the Ohm’s law, ir = Vm/rm . The capacitive
component, also called displacement current, exists only until the “capacitor” is fully charged, and
is:

ic = cm
dVm

dt
(7.25)

Then we obtain the following expression for the axoplasmic current, including also the losses to
the membrane:

d Ii

dx
= −(ir + ic) = −

(
Vm

rm
+ cm

dVm

dt

)
(7.26)

Now we can use the (7.23) for Ii , and obtain:

d Ii

dx
= − 1

ri

d

dx

(
dVm

dx

)
(7.27)
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By equating the last two expressions (partial derivatives are in order, since we consider the
simultaneous variation of current with time and position) the complete cable equation reads:

1

ri

∂2Vm

∂x2
= Vm

rm
+ cm

dVm

dt
(7.28)

The steady-state version of the equation lends itself to a simple study, which gives additional
insight:

Vm = rm

ri

d2Vm

dx2
(7.29)

whose general solution is:
Vm(x) = A exp(−x/λ) + B exp(x/λ) (7.30)

with λ2 = ri /rm . Note that rm = Rm/πd and ri = (Ri /π(d/2)2), which makes λ proportional to
the diameter of the axon. For practical solutions, it is easier to introduce the scaled length X = x/λ,
and the electrotonic length of the cable L = l/λ.

For the infinite cable, the solution must be finite at X = ±∞, therefore the solution becomes
Vm(X) = V0 exp(−|X |). Alternatively, the current at X = 0 can be specified, −I0 = from which
Vm(X) = λri I0 exp(−|X |). Then, the axon input resistance Rn is the ratio of the input voltage to
the input current:

R∞ = λri =
√

d Rm

4Ri

4Ri

πd2 = 2
√

Ri Rm

πd3/2 (7.31)

and the input conductance is G∞ = 1/R∞ = (ri rm)−1/2 = (ri λ)−1.
For a semi-infinite cable, the potential must go to zero at X = ∞, therefore B = 0 and

Vm(X) = V0 exp(−X), with . With a little algebra, it can be also shown that the input resistance for
the semi-infinite cable is twice that of the infinite cable (that is intuitively obvious, since the same
amount of current is split in the two directions, therefore each half of the infinite cable sees half of
the current).

For a finite length cable X ∈ [0, L], additional boundary conditions must be imposed at the
L-end. In this case a special solution is:

Vm(x) = V0
cosh(L − X) + B sinh(L − X)

cosh(L) + B sinh(L)
(7.32)

Three cases must be distinguished:
(a) the sealed-end axon, e.g. terminating at a soma (cell body). In this case B = 0, V0 =

−ri I0 coth(L), and the input resistance is RL = R∞ coth(L).
(b) the open-ended axon (or “killed end”), terminating at a point of zero resistance (experimentally,

this means grounding the potential at L: Vm(L) = 0). In the equation, this corresponds to
B = ∞, V0 = −ri I0 tanh(L), and the input resistance becomes RL = R∞ tanh(L).

(c) the clamped-end axon, terminating at a point polarised at some finite voltage Vm(L) = VL . In
this case the solution contains both terms, and the behaviour of the voltage (e.g., if VL > V0)
can also be non-monotonic, despite the fact that the membrane/cable is supposed passive.

The normalised input resistance is always greater for the sealed condition than for the open-ended,
because in the former case the current is prevented from escaping the cable. Problems 7.3–7.5 provide
examples of solutions of the cable equation in special cases.
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The equation describing quantitatively this type of response is the cable equation,
derived in the greybox on p. 272. (It may be noticed that themathematical structure of
this equation is just the same as the heat equation, described at the end of Chap.4, or
the diffusion equation, described in Chap. 5.) The cable equation had been derived at
the end of 19th century by Lord Kelvin, in a study of submarine cables, and between
1905–1920 it was appliedwith success by physiologists like L. Hermann,M. Cremer,
K.S. Cole, A. Hodgkin and others, to study the propagation of ionic currents in the
nerve axon.

The meaning of the equation can be better appreciated by introducing two scales
or time and length, respectively. If we multiply both sides of Eq. (7.28) by rm , we
get:

λ2 ∂2Vm

∂x2
= Vm + τ

dVm

dt
(7.33)

The factor λ = (rm/ri )
1/2 is the length constant, and despite being the ratio

between two resistances it has dimensions of length, since rm is [Ω][L], and ri

is [Ω][L−1]. The meaning of λ is that a membrane resistance much larger than
the axoplasmic (internal fluid) resistance allows the impulse to travel to a longer
distance or, conversely, to a shorter one if the membrane resistance is decreased (a
leaky membrane). With the typical values of rm and ri , for a myelin-sheated axon of
diameter 50 µm, it is λ ∼ 2 − 3 mm, whereas for non-myelinated axon it is of the
order of 30–50µm. It is also important to note that, according to its special definition,
the value of rm is proportional to the area of the axon cross section (circular, for a
simple cylindrical shape approximation), therefore λ2 is proportional to the axon
diameter.

The factor τ = rmcm is just the time constant of the equivalent circuit element of
membrane, expressing the time during which the current charging is not negligible,
i.e. the duration of the transitory current regime. For times much longer than the
charging time τ , a steady state condition is reached and the time-independent cable
equation (7.29) can be used.

The cable equation is, in fact, too simple to be able to describe all the complex
transport phenomena in neuronal cells, because of a number of incorrect assumptions
(besides considering the membrane as purely passive):

i. The resistance Rm or rm is taken to be independent on the voltageVm , when exper-
iments instead show that many ion channels found along the axon membrane
are gated (opened/closed) by the variations of electric potential (voltage-gated
channels).

ii. The diameter of the axon is considered constant along the whole length, while
it tapers as far as it gets away from the soma, the central body of the neuron.

iii. The membrane currents are considered to be in the linear regime, while in reality
synaptic currents are not just algebraically summed to one another.

Nevertheless, this equation qualitatively gives a realistic impression of the phe-
nomena accompanying the passage of a voltage or current pulse along the axon.

http://dx.doi.org/10.1007/978-3-319-30647-6_4
http://dx.doi.org/10.1007/978-3-319-30647-6_5
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7.4 Excitation of the Neurons

Fluctuations in themembrane potential can be classified according to their charac-
ter. One scheme, proposed in 1959 by Th. H. Bullock and still in use today (Fig. 7.9),
distinguishes between the resting potential value, and the variations about this value
due to different types of neuronal activity. The most important are:

• pacemaker potential, induced by the intrinsic activity of the cell, they are voltage
fluctuations not generated by an external stimulation;

• transducer or receptor potential, a transmembrane voltage difference caused by
external factors, such as chemical neurotransmitters released in the neuron, or a
change of the synaptic potential, which can be either excitatory or inhibitory (see
below);

• action potential (the actual nerve impulse), which follows an “all-or-nothing”
response: following a sequence of receptor potential pulses the neuron response
level can increase, but until the summed potential remains below a threshold
the response does not propagate (local, or electrotonic potential); however, if the
threshold is exceeded, a voltage spike is launched.

Themost noticeable electrical response of the neuron is certainly the action poten-
tial,whose form results froma complex sequence ofmolecular-scale events. In a rapid
sequence, the membrane is depolarised (the potential Vm increases to values way
above Vrest ), and subsequently repolarised after the passage of the potential spike,
going back to Vrest and even exceeding it on the negative side (hyperpolarisation),
until it comes back to the resting condition. The time duration of the passage of an

Fig. 7.9 The Bullock’s classification of the different neuron potentials. [From Ref. [5], repr. w.
permission]
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action potential is in the order of a few milliseconds, and it propagates all along the
neuron with a constant amplitude.

It should also be noted that there exist some neurons which are instead activated
by a graded potential, i.e. a voltage ramp that gradually brings the membrane Vm to
a depolarised state; such neurons are usually capable of responding themselves with
a graded impulse to the graded stimulation.

As it was seen in the previous section, a voltage pulse launched at one extremity
of the neuron axon decays very shortly, over a distance of a few λ’s (at most a few
mm). How it is then possible that a nervous impulse can travel overmeters of distance
from the brain to the limbs?

The answer, which will be explained in more details in the following, is that the
propagation of the electric impulse is constantly relayed as it travels along the axon,
by the “battery” provided by the ion concentration gradients accumulated during the
resting state. This also implies that after the passage of the impulse, the gradientsmust
be restored, i.e. the battery has to be constantly recharged. The ionic pumps work
to reestablish the ionic equilibrium, after the re-permeabilisation of the membrane
(opening and closing of the different channels), by consuming the energy supplied
by ATP molecules. A cortical neuron in human brain utilises up to ∼4.7 billion
ATP molecules per second, to power also various other biological functions, such as
synapse assembly and synaptic transmission (for a review see [6]).

This observation raises the correlated problem of how efficiently ATP can be
transported along the neuronal axon, which can be up to many tenths of cm in
length. As it was shown in Chap.6, diffusion alone cannot be the way to overcome
long distances, and specialised molecular motors much improve the situation, by
efficiently transporting vesicles, liposomes etc., along the microtubule structure of
the cell. However, efficient as it can be, even the directed transport is not sufficient
to transmit the neuronal impulse at the speed required for animal reaction to internal
and external stimuli. Axonal conduction velocities are in the range of a few m/s,
and can reach even up to 150 m/s, to be compared to molecular motor speeds in the
range of 0.5–10 µm/s. Therefore, to ensure a fast recharging of the ionic gradients
by ATPase pumps, ATP must be readily available and cannot be supplied by either
passive diffusion or active transport. This is achieved by distributing mitochondria
all along the axon, as well as by concentrating them at some particular spots, such
as near synapses.

Due to their varied morphology, neurons require specialised mechanisms to effi-
ciently distribute mitochondria to far distal areas where energy is in high demand,
such as synaptic terminals, active growth cones, and axonal branches, undergoing
dynamic remodelling duringneuronal development, and in response to synaptic activ-
ity. Sincemost neuronal cells are not replenished but will survive for the whole life of
the organism, aged or damaged mitochondria need also to be removed. Upon direct
observation, about 30% of neuronal mitochondria are found to move bi-directionally
over long distances, pause briefly, move again, frequently change their direction, at
speeds of 0.3–0.9 µm/s. Their transport is actuated mainly by KIF5 motors, of the
kinesin-1 family, along the microtubule structure following the axon length (see
Sect. 6.3 for a discussion of the biophysics behind this process).

http://dx.doi.org/10.1007/978-3-319-30647-6_6
http://dx.doi.org/10.1007/978-3-319-30647-6_6
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Fig. 7.10 Types of
inhibitory (1) and excitatory
(2, 3, 4) stimuli: in the plot
above the idealized (step)
stimulus current, Is , is
reported; in the plot below,
the corresponding potential
(mV) elicited in the neuron.
The current stimulus 2 is
excitatory and subthreshold,
therefore only a passive
neuron response is produced.
For the excitatory stimulus 3,
threshold is barely reached:
the membrane is marginally
activated (potential 3b), or
just a local response is
produced (potential 3a). For
any above-threshold stimulus
4, a nerve impulse, or action
potential, is invariably
initiated. [Adapted from Ref.
[5], w. permission]

The neuronal potential can be excitatory or inhibitory (Fig. 7.10). The former
depolarises the membrane, since it is formed by a variation of Vm in the positive
directionwith respect to the outside, thereby increasing the potential towards positive
values (or less negative, starting from about −75 mV). The latter, by contrast, is
hyperpolarising the membrane, as it is characterised by an opposite variation of Vm

towards the (even more) negative values.
According to Bullock’s classification, if a transmembrane stimulus is insufficient

to bring Vm to the threshold, the response to this stimulus will be passive and remain
localised. If on the other hand the height of the pulse is sufficient to reach, or even
pass the threshold, the whole neuron launches the action potential in response. Once
activated, the pulse shape of this potential is constant, independently on the actual
intensity of the stimulus, be it just at, or largely above the threshold. This is called
a “all-or-nothing” response. Moreover, if an inhibitory stimulus arrives at about the
same time as an excitatory stimulus, the result is that the threshold to launch the
action potential is raised to a higher level.
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7.5 The Action Potential

In the passive-cable model, each local element of the neuron membrane is approx-
imated as a RC circuit element (see Appendix F). The current Is , represented in
Fig. 7.10 as a simple square step, meets the membrane resistance Rm andmust charge
the capacity Cm ; thereby the resulting membrane potential grows from its (negative)
resting value as:

Vm = Vrest + Is Rm
(
1 − e−t/τ

)
(7.34)

that is the exponential voltage ramps shown in the figure for the responses 2 or 3, if
the threshold value Vtr is not met. The corresponding amount of current needed to
get to Vm is:

Is = Vm − Vrest

Rm
(
1 − e−t/τ

) (7.35)

From this expression, the minimum current needed to get to the threshold Vtr and
generate an action potential, called the rheobasic current, is obtained by considering
that at this value the stimulus must last an amount of time t → ∞, therefore Irh =
(Vtr − Vrest )/Rm .

The time tc to get to threshold with a stimulus twice higher than the rheobasic is
called chronaxy. Since the time to Vm is:

t = −τ ln

(
1 − Vm − Vrest

2Is Rm

)
(7.36)

by substituting Itr for Is , and Vtr for Vm , the chronaxy time is tc = τ ln 2, a simple
function of the time constant of the equivalent RC circuit. It should be noted that
the RC-analogy is a reasonable approximation for sub-threshold response, but it
becomes quickly inappropriate when approaching and surpassing Vtr : in that region
the membrane response becomes strongly non-linear, and moreover the phenomena
of accommodation makes the threshold voltage to change with time. However, the
experimentally measured response curves allow to deduce values of the rheobase
and chronaxy, which characterise the tissue response quite precisely. Typical values
of chronaxy are in the range 0.1–0.7ms for most animal muscles, around 1–3 ms for
receptors located in the tongue or the retina, around 3–10 ms for involuntary muscles
such as heart or stomach.

7.5.1 The Hodgkin-Huxley Model of the Membrane

Let us now look at the microscopic mechanisms elicited by the transitory currents in
the neuronalmembrane.Once the action potential is fired, it travels along the axon.As
it was hinted above, at the passage of the voltage pulse a number of molecular-level
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actions follow, to relay the pulse in the forward direction, as well as to recharge the
battery immediately after the passage, to prepare for a subsequent pulse. Following
the arrival of the action potential at a given spot on the axonmembrane, some voltage-
gated sodiumchannels get open,while somepotassiumchannels close. This increases
the sodium conductance G Na+ above the potassium conductance G K + , thus changing
the effective resistance and capacity values of the local membrane element.

By considering the different types of ionic channels to act independently as current
generators (see the Fig. 7.7 on p. 269 for reference), the time-dependent current
equation for the local membrane element can be approximated as:

Im = cm
dVm

dt
+ G Na+(Vm − VNa+) + G K +(Vm − VK +) + Gl(Vm − Vl) (7.37)

with each of the ionic reference potentials given by the respective Nernst equation
(7.8). This equation was derived and used by Hodgkin and Huxley in their 1952
theoretical-experimental studies on the giant squid axon, which brought them the
Nobel prize for medicine in 1963. The last term, labelled with an ‘l’, represents
membrane leakage currents from ions other than Na+ and K+, in practice mostly
Cl− but generically any other charged species (we can take the Cl− potential for Vl ;
however, the cell concentration of chloride is usually very low, therefore small Cl−
flux are enough to ensure equilibrium, and its role is negligible in establishing the
membrane potential).

Whereas the cable equation (7.28) describes the ideal behaviour of an infinite or
semi-infinite axon, in which the membrane response changes both in time and in
space, this equation rather describes the local behaviour of a portion of membrane
swept by the passage of a voltage spike. Correspondingly, the different terms of
the time-but-not-space-dependent equation (7.37) can contribute to the membrane
current Im : the capacitive charging, the sodium or potassium current, or the leakage
term, as a function of the respective (and time-dependent) local values of capacitance
and conductances. The interest of this local description can be fully understood by
using a technique to study locally the time-dependent behaviour of the current at
constant voltage, like the voltage-clamp experiment.2 This method was used also
by Hodgkin and Huxley, in the footsteps of K. Cole, who had laid the foundations
of the technique.

When the transmembrane current is measured by the voltage-clamp method,
schematically shown in the left panel of Fig. 7.11, the typical response curves shown
on the right of the figure are obtained. At the very beginning, a small spike of capac-

2In 1947 George Marmont, at the Marine Biological Laboratory in Woods Hole, Massachusetts,
had invented a technique to inject current in the entire length of the squid axon at a constant (but
uncontrolled) potential, by inserting a long electrode along its axis; it seems that he did a vast number
of experiments with this apparatus but, being unable to sort out any theoretical explanations for his
results, he never published them and abandoned the field. Kenneth Cole shared Marmont’s lab, and
modified the technique to obtain control of the voltage instead of the current. He used a second wire
electrode to set the voltage to a chosen value, and used the current-injecting electrode as a feedback
to keep voltage constant. In this way, the amount of injected electron current gave a measure of the
opposite ionic currents produced by the neuron in response to the constant potential.
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Fig. 7.11 Left Schematic of the voltage-clamp apparatus. Vi is the potential measured in the squid
axon; Ve is the extracellular potential; the operational element A1 computes the transmembrane
potential Vm = Vi − Ve, and sends the input to A2; there, Vm is compared to the desired “clamping”
potential Vc and, if different, a current is sent to the wire electrode in the axon, to correct until
Vm = Vc. The required current correction I is detected (red), and gives a measure of the (opposite)
ionic current generated by the axon in response to Vc.Right K. Cole’s original voltage clamp records
in 1947, showing current density measurements in the squid axone after changing the membrane
potential above Vrest by +18 to +128 mV. Cole identified the way to obtain a continuous change
of potential, getting around the threshold Vtr (see footnote); however, he supposed potassium ions
to be the only responsible for the shape of the curves, showing a inward current at the beginning
(negative branch of the curves, disappearing at the highest potential values) and an outward current
at the end (positive branch). It was up to thework ofHodgkin andHuxley to discover the competition
between outflowing K + and inflowing Na+ ions, leading to the correct explanation of the action
potential. [Image right from Ref. [7], repr. w. permission]

itive current is generated by the initial voltage step from Vrest to Vrest + Vc, but it is
immediately eliminated since the capacitive current is given by the time derivative
dV /dt , which is zero when the potential is kept constant. Besides that, the current
plot shows a first branch descending to negative values, meaning that there is an
inflow of current inside the cell; then, the current starts to smoothly increase to more
positive values, signalling an outflow of current (since only positive ions, K+ and
Na+ are implicated), before starting to die off back to zero.

The correct interpretation of this behaviour, given by Hodgkin and Huxley, is that
at the beginning Na+ ions start flowing inside the cell, following the opening of a
number of voltage-gated sodiumchannels (i.e., the sodiumconductance is increased);
the subsequent outflow is instead due to the retarded response of the potassium
voltage-gated channels, whose opening at a slightly later time coupled to the closing
back of many sodium channels, brings up the current; when the potential Vc is
switched off, the ion concentrations regain their equilibrium values. The K+, ion
channels open with a slow time constant varying between about 2–1 ms, when Vc

spans 50–100 mV. For Na+, instead, two types of ion channels exist: voltage-gated,
with a much faster time constant of about 0.15 ms, nearly independent on the value
of applied voltage; and ligand-gated, with a time constant comparable to that of
potassium opening. These latter are found only in the neuromuscular junction, and
display some permeability also to K+.
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Maxwell’s equations and extracellular potentials

Recording the membrane potential and currents generated by cells in the brain and in the heart is very
difficult, especially in clinical and in vivo conditions. Therefore, in most situations it is an extracellular
potential that is recorded. Maxwell’s equations (summarised in the Appendix G) can be used to derive
a relationship between the extracellular potentials measured, and membrane currents circulating in the
neural or heart cells.

The mechanism by which an electric field may arise in biological tissue is that of a current source
embedded in a large conductive bath of fluid, called a volume conductor. If a small current I is assumed
to emanate from a point in a uniform conducting medium, of infinite extent and average conductivity
σ, the current will flow radially in all directions. The vector flux J through a small sphere of radius r
concentric with the source is:

J = I

4πr2
n (7.38)

with n the unit vector normal to the spherical surface.
The propagation velocity of electromagnetic signals in the biological tissue is very much slower

than the speed of light in vacuum, therefore it may be safely assumed that the currents are quasi-static,
i.e., what is measured at a distance even quite far from the source represents the actual current at that
instant. The electric field is therefore the gradient of the electric potential, E = −∇Φ(r), and the more
general form of Ohm’s law (7.12) becomes:

J = −σ∇Φ (7.39)

By equating the two previous expressions for J, and after observing that for a point source only the
radial components of the gradient are non-zero, it is:

I

4πr2
= −σ

dΦ

dr
(7.40)

The potential Φ(R) as seen by an electrode placed outside the cell, at a distance R from the source,
is obtained by integrating the last equation

Φ(R) = I

4πRσ
(7.41)

If more than one source is present around the electrode, the respective currents can be summed. It is
assumed that each current is generated within some small volume dw′, centred at the point R′, and has
an incremental effect dΦ on the total potential at R, as:

dΦ(R) = I ′dw′

4πRσ
(7.42)

where R = |R′−R| =
√

(R′
x − Rx )2 + (R′

y − Ry)2 + (R′
y − Ry)2 is the distance between the electrode

at R, and each source at R′.
Then the total potential recorded at R is obtained by integrating over the entire volume:

Φ(R) =
∫

w

I ′(R)

4πRσ
dw′ (7.43)

From the Eq. (7.30), we know that the amplitude of quasi-stationary currents decays exponentially
over the distance, I (R) = I0 exp(−|R′ − R|/λ), with λ ∼ 2–3 mm.
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7.6 Transmission of the Nerve Impulse

The German physiologist Ludimar Hermann had correctly identified, already at the
beginning of the 20th century [8], that the impulse should propagate in the nerve
fibre without attenuation. He even went on to propose that the difference of potential
between the excited and resting regions should generate small local currents, today
called local circuit currents, to propagate the excitation to nearby regions. Although
the excitatory input can be collected both in the dendrites and in the soma, the action
potential starts always from the latter, from where it then starts propagating along
the axon. Notably, if the excitatory impulse is artificially launched midway in the
axon, the propagation goes in both directions.

One important physical property of the neuronal membrane is the change of
sodium conductivity at the passage of the voltage pulse. The early beginning of the
action potential increases the local circuit currents, and increases sodium conduc-
tance. This makes for a higher sodium current, and a steeper potential rise. The
excitation is faster, and so is the propagation speed of the impulse.

The axon can bewrapped in amyelin sheath (constituted by the so-called Schwann
cells), which makes a dielectric lipid layer acting like the insulator around a coaxial
cable (Fig. 7.12). This insulating structure is interrupted at regular intervals, at the
Ranvier nodes. These are gaps in themyelin cover, of width about 1–2µmand spaced
by a shielded length much longer, up to a few mm. Being uninsulated, the Ranvier
nodes are the only places where the electric current can develop (also because of a
high concentration of ion channels), and pass directly from one node to the next in
the process called saltatory conduction. The effective capacitance per unit length
of the myelinated axon is much smaller than that of the naked axon, thereby largely
increasing the propagation speed of the action potential. Myelin, discovered in 1854
by theGerman physiologist Rudolf Virchow, is typical of the vertebrates, but is found
also in some invertebrates, albeit with different characteristics. Neurons in the brain
are generally not myelinated, since the impulse travels a short distance, whereas
both motor and sensory neurons in the central and peripheral nervous system are
myelinated (although some exceptions exist).

An empirical expression obtained by Muller and Markin [9] for the propagation
speed in the myelinated axon is the following:

v =
√

iNa+

ri c2m Vtr
(7.44)

The resistance per unit length of the axoplasm is inversely proportional to the
cross-section area, therefore to the squared diameter, ri ∝ δ−2; the membrane capac-
itance per unit length, in turn is proportional to the diameter, cm ∝ δ. At the threshold
the membrane current is practically due to the sodium only, plus the capacitive com-
ponent; therefore, the velocity is inversely proportional to rmcm , or v ∝ τ−1, which is
not unreasonable. This also implies that the velocity in themyelinated axon is propor-
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Fig. 7.12 Schematic of the unmyelinated (left), and myelinated axon (right), with its myelin sheat
(orange) interrupted at the Ranvier nodes. A current artificially injected by an electrode midway
along the axon will propagate in both directions. However, for the unmyelinated axon the active
region (red) propagates continuously along the length, whereas for the myelinated axon the current
jumps from one node to the next (“saltatory” conduction)

tional to the axon diameter, as actually observed experimentallywith the approximate
empirical law v � 7 × 106δ m/s.

The propagation speed depends primarily on the shape and size of the axon.
In principle, the membrane capacitance per unit length determines the amount of
charge needed to build up a given potential pulse, and therefore it affects the time
to threshold. Increasing the capacity increases the time constant, and reduces the
speed. Moreover, also the changing conductance of the electrolytic solution inside
and outside the membrane has a similar effect. Being also inversely proportional
to the time constant, the lower the resistance the shorter the τ , and therefore the
faster the propagation speed. Also temperature plays a secondary role, a lowered
temperature adjusting the propagation speed to proportionally lower values because
of a reduced sodium conductance.

7.6.1 Wave-Like Propagation of the Impulse

The original form of the cable equation (7.28) describes the coupled space and time
variation of the transmembrane current, at any given point along the axon:

λ2

rm

∂2Vm

∂x2
= Vm

rm
+ cm

∂V

∂t
= Im (7.45)

This is a complicated equation that can only be solved numerically on a computer,
by specifying the appropriate values of the parameters and boundary conditions. If
instead of the formal middle term of the equation, we take for the local membrane
current the Hodgkin-Huxley model, Eq. (7.37), and equate the two expressions for
Im , we get:

λ2

rm

∂2Vm

∂x2
= cm

∂Vm

∂t
+G Na+(Vm −VNa+)+G K +(Vm −VK +)+Gl(Vm −Vl) (7.46)
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Let us imagine that the action potential propagates along the axon in a wave-like
manner. Under steady-state condition, the amplitude and shape of the pulse wave are
constant, and so are its phase and group velocity. Therefore, a wave equation for the
potential should hold:

∂2Vm

∂x2
= 1

v2
∂2Vm

∂t2
(7.47)

If the isolated voltage pulse is considered as a wavepacket of width given by the
time duration of the pulse, v is its propagation velocity. Now, by substituting the
second-order spatial derivative with the second-order time derivative in the previous
equation, it is:

λ2

rmv2
∂2Vm

∂t2
= cm

∂Vm

∂t
+

+ G Na+(Vm − VNa+) + G K +(Vm − VK +) + Gl(Vm − Vl) (7.48)

This second-order equation in time is easier to solve, and can give some insight
in the features of the propagating voltage pulse. Firstly, we note that the equation is
not changed if the velocity changes, while keeping constant the coefficient of the left
member. Therefore, the propagation velocity can be expressed as:

v = λ√
rm

(7.49)

Since both λ and rm are proportional to the axon diameter δ, it turns out that
the propagation velocity is proportional to the square-root of the diameter, v ∝ √

δ.
This is in agreement with several experimental results for the unmyelinated axon, at
variance with the linear proportionality found for the myelinated axon.

Moreover, the Hodgkin-Huxleymodel describes correctly the shape of the voltage
pulse. The results of a numerical solution of Eq. (7.48) are displayed in Fig. 7.13, left.
At the very beginning, the current ismostly capacitive, since the conductances of both
K+ and Na+ are very low. Then, G Na+ starts increasing, faster than G K + ; note that
the threshold voltage coincides with the two conductances being equal (white arrow).
The sodium conductance increases in correspondence of the rise of the voltage, and
starts declining when Vm + Vrest ∼ VNa+ , about t ∼ 0.5 ms. In the meantime, the
potassium conductance has attained a higher value: potassium channels are opening,
and K+ ions are flowing out of the cell membrane, to balance the high fraction of
Na+ that entered. The maximum of the action potential coincides with the moment
at which the declining sodium conductance and the growing potassium one are again
equal (black arrow); at this moment, the capacitive current is zero, and the current is
totally ionic. The potassium conductance has its maximum around the time sodium
conductance is back to its resting state value, t ∼ 1 ms, then it starts to decrease;
right after, the action potential goes down to zero, and the stimulus of that portion of
membrane is completed.



7.6 Transmission of the Nerve Impulse 285

7.6.2 The Refractory Period and Orthodromic Conduction

The initial peak phase, covering the first∼1ms of the V (t) plot, is called the absolute
refractory period of the neuron, since during this time the cell does not accept
any further propagating stimulation, no matter how strong. However, it appears that
after the stimulus has passed, the local voltage goes further negative, before going
slowly back to a true zero. The Hodgkin-Huxley model explains also this peculiar
feature. Due to the slower time constant of potassium channels, the excess of K+
ions accumulated outside the membrane renders the cell interior even more negative,
with Vm approaching now themore negative VK+, i.e. hyperpolarising themembrane.
After the potassium channels (slowly) close, G K + goes back to its resting state; the
Na/K-ATPase, and other pumps, can now restore the normal ionic gradients, by
pushing out the Na+ and taking back in the K+ ions (see Fig. 7.5 on p. 261).

During the absolute refractory period, the value of Vtr is so high it appears virtually
infinite. On the other hand, in the second part of the activation (from ∼1 up to 3–4
ms) the cell could be activated, but with a stimulus much higher than threshold.
In this phase, called relative refractory period and occurring after the maximum
of conductance of K+, the membrane sees an additional barrier to the current. The
action potential thus generated will be shallower than the ordinary one.

Whether an excitable cell is activated or not largely depends on the intensity
and duration of the stimulus. The membrane potential can attain the threshold Vtr

by either a short and intense stimulus, or by a long but weaker one. The diagram
illustrating such a phenomenon is the “force-duration” plot, for which we already
defined the smallest current, the rheobase, and its characteristic time, the chronaxy.
Moreover, such near- or sub-threshold stimulation can also be very long, or quickly
repeated; the cell reacts to such peculiar stimulation by raising the value of Vtr , in
what is called accommodation. In other conditions, the threshold can be lowered,
if a hyperpolarising current is applied, the potential drops quickly and the threshold
follows; once the hyperpolarisation terminates, there is a time during which the
potential is back to resting value, but the threshold is still lower, therefore a new
action potential can be fired, in a process called anode-break excitation.

The mechanism that allows the action potential to proceed in a well defined direc-
tion, towards the end of the axon and not to go back to the central soma of the cell, is
the unidirectional, or orthodromic conduction. This is derived from the alternance
on each patch of axonmembrane of the polarisation-hyperpolarisation-depolarisation
cycle. The normal depolarisation is sufficient to keep a patch of membrane at its rest-
ing value and accept an incoming stimulus, whereas the hyperpolarisation holds the
membrane quite below the Vrest , and makes the membrane refractory to any incom-
ing stimulus. This asymmetry permits the unidirectional propagation. By looking at
the explicatory diagram in Fig. 7.13, right, it is seen that a moving action potential
encounters on its track patches of membrane at Vrest , and leaves behind patches at
Vhyp < Vrest ; therefore, even if in principle the membrane is conducting in both
directions, the equivalent resistance on the back of the propagation direction is quite
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Fig. 7.13 Left The shape of the action-potential voltage pulse (a, above), and the time evolution of
the Na+ and K+ membrane conductance (b, below) in voltage clamp. The green curve, calculated
from the Hodgkin-Huxley model, follows very closely the experimentally measured shape of the
action potential propagating along the squid axon. In the bottom plot, the red and blue curves are the
result of the calculation, however no direct experimental counterpart is available for comparison;
the white and black arrows indicate the two times at which sodium and potassium conductances are
estimated to be identical. Right The mechanism of unidirectional, or ’orthodromic’ propagation.
The action potential, prepared by the slight rise of the local circuit currents, moves to the regions
of resting potential (Vm ∼ Vrest , green), always leaving behind a region of hyperpolarisation
(Vm ∼ VK + , red) that is unfavourable to propagation. Note that the temporal shape of the pulse in
the propagating direction is specular to the shape of the steady-state voltage-clamp. [Adapted from
Ref. [5], w. permission]

higher than in the facing direction, for a time long enough for the impulse to advance
always in the same direction.

The intensity of the current becomes lower as far as the end of the axon is reached,
since the propagation speed is seen to decrease with the axon diameter, linearly with
δ for the myelinated axon, and as δ1/2 for the non-myelinated one. To be noted that
the thinner portions of the axon, below about 1µm, are deprived of the myelin sheath
(Fig. 7.14).
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Fig. 7.14 Human brain
anatomy from different
sections (from above: axial,
sagittal and coronal),
detected by magnetic
resonance imaging (MRI).
[Image courtesy of www.
MRImaster.com, London.
Repr. w. permission.]

www.MRImaster.com
www.MRImaster.com
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7.7 Brain, Synapses, Information

The human brain contains around 100 billion neurons and, by most estimates, some-
where between 10 and 50 times as many glial cells. Neurons receive, transform,
transmit, and exchange information, to and from the brain, in the form of electro-
chemical impulses. Brain regions consisting of neuron bodies together with their
associated dendrites and axon terminals, are termed grey matter.3 The part of grey
matter located on the surface of the brain is the cerebral cortex, while grey matter
located deeper in the brain constitutes the so-called nuclei. Grey matter contains
both the beginnings and endings of axons. On the other hand, regions consisting of
the main body of neuronal axons gathered into bundles constitute the brain’s white
matter.4 White matter is constituted by axons going relatively long distances, which
make up the nervous pathways of the central and peripheral system. If white matter is
cut, the cell body at one end of each axon is disconnected from its distal axon termi-
nals at the other end. In some white matter regions, axons travel in parallel bundles,
therefore all action potentials propagate in the same direction. For example, most
axons in the dorsal columns are ascending, while those in the cortico-spinal tract
are descending. However, in other white matter regions adjacent axons may carry
signals in opposite directions, or be interwoven. For example, axons in the corpus
callosum crisscross back and forth, interconnecting the frontal, parietal, temporal
and occipital lobes of the two cerebral hemispheres.

If you ask a neurophysiologist howmany different types of neurons there are in the
brain, the answer will probably be hundreds, or thousands. While it is certainly true
that neurons show vastly different morphological as well as functional differences,
from the reductionist point of view of information processing they all should fall
in just three major classes: neurons that collect and bring information to the brain,
neurons that export information (“orders”) from the brain to the organs, and neurons
that just connect to other neurons (interneurons). The first ones are sensory neurons,
like those found in the eye retina, ear, skin, etc.; the secondones are themotor neurons,
transmitting actions to the muscles; however, the third class simply represents the
vast majority of all the brain’s neurons. In some sense they constitute the “computing
network” and “memory storage” of the brain.

Collecting the information is the first step in this chain of events. Since interneu-
rons are majority, it can be said that most neurons receive their input from other
neurons. In general, the flow of information goes from the dendrites of one neuron,
to the soma of the other, where it is processed, and the result of the information (the
action potential) goes through the axon of this second to its dendrites, and so forth.
Besides this general scheme, there are neurons which receive their input directly at
the soma, and some even close to the axon terminal. No matter what is the site of

3In fact, ‘grey’ matter is such coloured only in dead tissue sections, normally grey matter is pale
pink because of the numerous blood capillaries.
4The term ‘white’ comes from the fact that most axons, except the thinnest, are covered in myelin,
and myelin (from Schwann’s cells) is essentially fat, which appears white-coloured both in living
and dead samples.
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connection, however, all the relay of neuron-neuron information goes through the
synapse, the real point of exchange of transmitted and received information.

Although the synapse is just a physiological entity (in fact, it is the terminal part
of any of the dendrites, branching out of the main axon body), it is often treated as
a separate cell component, with its own proper morphological, and electrochemical
characteristics. Note that it is common to speak of ‘synaptic current’, while the action
of the synapse (see below) is essentially to produce a variation in the membrane
conductance. Up to date, we know two types of synapses: electrical, and chemical,
these latter being the majority in superior animals.

In a simplifiedway, the arrival of the action potential from the axon in the chemical
synapse region triggers the following series of events (Fig. 7.15):

i. the action potential opens voltage-gated calcium channels in the terminal part
of the axon membrane (the pre-synaptic terminal), where small vesicles (about
35nm in diameter) containing a fixed amount of neurotransmitter molecules are
found, bind to the terminal membrane via calcium-sensitive proteins;

ii. upon opening of the ion channels, Ca2+ ions, present in substantial amount in
the extracellular liquid, can flow inside the pre-synaptic terminal;

iii. Ca2+ ions bind to a protein present on the surface of the vesicles, the synaptot-
gmin, triggering a proteic interaction chain that ultimately (time delay of about
100–200 µs) leads the vesicle membrane to merge with the cell membrane;

iv. the vesicles are opened towards the extracellular space (the synaptic cleft), and
there liberate by exocytosis their content of neurotransmitter molecules;

v. some of the neurotransmitter molecules can traverse the narrow synaptic cleft
(about 20 nm, in ∼0.6 µs), and reach the membrane of the adjacent neuron (the
post-synaptic terminal), where they can bind to specialised receptors;

vi. the receptors modify their conformation, thus inducing a direct, or indirect open-
ing of nearby ion channels, from which other ions (Na+, K+, Cl−) can enter the
post-synaptic terminal, by following their respective concentration gradient.

Fig. 7.15 Each neuron transmits and receives informations to/from other neurons via one or more
synapses. The action potential from the pre-synaptic neuron allows a neurotransmitter to be released
from the synapse, into the synaptic cleft. The neurotransmitter is captured by the receptors on the
post-synaptic neuron, which may fire a second action potential in response
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At this point, the synapse action can be considered completed. The new ionic
concentrations, also coming from other synapses, will sum up, and determine an
electrochemical response, possibly ending with the post-synaptic neuron firing an
excitatory, or inhibitory action potential. The lifetime of the ligand-receptor bound
complex is rather short, but lasts enough to allow the opening of the ion channels,
within a time of 1–2 ms, the membrane impedance adding another 2–3 ms of delay.

The fact that the neurotransmitter vesicles are found only in the pre-synaptic
terminal (at the end of the dendrite), and the receptors are found only at the post-
synaptic terminal,makes the information flow in the chemical synapse unidirectional.
Moreover, the intensity of the synaptic response is highly variable, and depends only
in part on the amount of neurotransmitter released across the synaptic cleft. It was
proved already in 1954 [10] that each vesicle contains a constant, fixed amount of
neurotransmitter molecules, therefore the amount of neurotransmitter is proportional
to the number of vesicles.

Among the typical neurotransmitters, we find the biogenic amines (dopamine,
histamine, acetylcholine or ACh, mostly affecting Na+ and K+ channels [11]),
some amino acids (dynorphin, glutamate, gamma-aminobutyric acid or GABA),
nucleotides like the adenosine, neuropeptides like somatostatin, and even somegases,
like NO or CO. It should be noted that ACh and GABA are synthesized on site,
directly in the terminal part of the axon, but the enzymes necessary to their synthesis
are produced in the cell soma, and are transported down to the axon terminals.

Compared to chemical synapses, electrical synapses conduct nerve impulses
faster, with a typical delay time of the order of 0.2 ms compared to about 2 ms
in chemical synapses. But, unlike chemical synapses, they do not amplify the signal:
the signal in the post-synaptic neuron is the same or smaller than that of the orig-
inating neuron. Electrical synapses are often found in neural systems that require
the fastest possible response, such as defensive reflexes. An important characteristic
of electrical synapses is that they are bidirectional, allowing impulse transmission
in either direction. The relative speed of electrical synapses also allows for many
neurons to fire synchronously, although with less plastic and more simple behaviour.
This can be seen as a revival of the “reticular” model of Golgi, which proposed that
the nervous systems is organised as a network of interconnected cells, as opposed to
the (today widely accepted) model of individual neuron-to-neuron communication.

7.7.1 Electrical Model of the Synapse

What happenswhen the post-synapticmembrane becomes permeable to ions, such as
sodium and potassium? The change in the relative concentrations is going to modify
themembrane potential of the relaxed neuron, from its Vrest value, close to the Nernst
potential of potassium, to some new value. The influx of ions makes a potential burst,
positive if excitatory, negative if inhibitory, called the synaptic potential (see again
Fig. 7.15). This potential pulse approaches someweighted average of the equilibrium
potentials, andmaybe sufficient to fire an action potential in the post-synaptic neuron.
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By applying an equal and opposite polarisation to the membrane, by means of an
external electrode, it is possible to measure the value of such threshold synaptic
potential, the inversion potential, and to a good approximation it is found that:

Vinv = VNa+ + VK +

2
(7.50)

For example, in the neuromuscular junction of skeletal muscles, Vinv � −15 mV,
that is quite close to the average of sodium and potassium. Several synaptic potentials
coming from different synapses to a same neuron can be summed (see below), and
in this case their summed potential may reach the threshold Vtr to fire an action
potential in the post-synaptic neuron.

The electrical behaviour of a synapse, considered as a circuit element put in series
between two neurons, can be described as a modified membrane equivalent circuit,
in which ACh, GABA, or some other neurotransmitter acts as a switch, increas-
ing by some amount ΔG the conductance of some ionic species, as schematized
in Fig. 7.16.5 Of course, this model must be considered only as a highly simplified
representation with discrete, localised elements, while in the neuronal and synapse
membrane these variations are instead continuously distributed. In more specific
terms, if the neurotransmitter acts mostly or only on Na+ and/or K + ion chan-
nels, the response of the post-synaptic neuron potential will follow a positive, i.e.
excitatory action potential; this is the case, for example, of ACh in neuromuscular
junctions. If on the other hand the neurotransmitter acts on negative ion channels, typ-
ically Cl−, the response will be a hyperpolarising, i.e. an inhibitory action potential.
Correspondingly, excitatory or inhibitory synapses can be defined.

By looking for example at a neuromuscular synapse, after the shutting of the
switch in the Figure, corresponding to the binding of the neurotransmitter at the
post-synaptic terminal membrane, the currents are changed to:

ΔINa+ = ΔG Na+(Vm − VNa+) (7.51)

ΔIK + = ΔG K +(Vm − VK +) (7.52)

When Vm attains to the inversion voltage, Vinv, the two currents are equal in
modulus and opposite in sign, ΔINa+ = −ΔIK + , since they are both from positively
charged ions entering (Na+) and exiting (K+) the membrane. By equating the two
expressions with Vm = Vinv, and rearranging the terms, the value of Vinv is obtained:

Vinv = VK + + qVNa+

1 + q
(7.53)

with q = ΔG Na+/ΔG K + . If we assume that the binding of a given amount of ACh to
the membrane receptors may lead to about the same amount of conductance increase

5Be careful not to confuse the electrical model of a synapse with an electrical synapse; the former
is a mathematical model, the latter is a special type of neuron-to-neuron connection.
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Fig. 7.16 Equivalent circuit element representing a synapse as an individual electrical component.
Neurotransmitter molecules (red spheres) issued from the pre-synaptic terminal reach by passive
diffusion the receptors (purple), on the post-synaptic terminal. The electric result of the ligand-
receptor binding, is the opening of some ion channels (left side) on the post-synaptic terminal
membrane. This can be represented as an additional membrane conductance for the type of ion X
(right side), switched on/off by the arrival or the transmitter

for the two ions, it is q = 1, and Vinv is exactly given by the average of the respective
Nernst potentials, Eq. (7.50).

The interplay between excitatory and inhibitory transmission has a critical role
in the life-long process of creating, changing, and removing synaptic connec-
tions between neurons, called brain plasticity. Generally, each neuron ends with
excitatory-only, or inhibitory-only synapses. Therefore, the combination of excita-
tory and inhibitory stimulation originates from the arrival at a same neuron of many
different signals from different types of neurons. Excitatory synapses on excita-
tory neurons are localised to small protrusions, called dendritic spines (discovered
by Cajal). Earlier studies have used dendritic spine dynamics to monitor excitatory
synapses; however, until recently the lack of a morphological surrogate for inhibitory
synapses had precluded their observation. Recent studies have found that inhibitory
synapses are rather uniformly distributed, while excitatory synapses are more com-
monly found at the end of the dendrites. Moreover, inhibitory synapses are more
dynamic, in that they are formed or removed in about half the time needed to form or
remove excitatory synapses. However, once formed, both excitatory and inhibitory
synapses may last very long. The way the brain combines the various inputs to form
a stored information, or memory, is summarised in the experience-dependent plastic-
ity: a highly orchestrated process, integrating the changes in excitatory connectivity,
and the active elimination and formation of inhibitory synapses.



7.7 Brain, Synapses, Information 293

7.7.2 Treatment of the Neuronal Information

The action potential in the post-synaptic neuron is the result of a non-linear sum-
mation of all the synaptic potentials arriving at each single neuron, which can get
up to tens of thousands of synaptic contacts. The conductance variation ΔG X of
the X -th ionic species makes ions to enter the cell soma; this active current must
induce a passive current to ‘close the circuit’ along the neuron membrane, including
the trigger zone at the beginning of the axon, from where the action potential could
be eventually fired. Excitatory synapses increase Na+ concentration, thus displacing
Vm closer to Vtr . Inhibitory synapses, on the other hand, change the concentrations
of other ions, chiefly Cl−, with the net result of a positive ionic current exiting the
membrane to keep charge equilibrium; if the neuron membrane potential is already
at Vm ∼ Vrest , this current produces a hyperpolarisation of the membrane, in fact
a low-resistance path (called a “shunt” in electronics) where current escapes before
reaching the trigger zone.

The current summation can be spatial or temporal (Fig. 7.17). In the first case,
synaptic currents are summed in an almost linear way on the conductance, before
the action potential can be fired; in the second case, the synaptic potentials arrive in
a time shorter than their typical duration, i.e. with a high frequency, therefore their
crowded signals get summed on the membrane capacity. If the shape of the curves
Vm(t) in the Figure is simply written as:

Vm = at exp(−bt) (7.54)

the spatial summation amounts to adding potentials which have roughly the same b
and different a values, i.e. they simply add different contributions to the conductance;
on the other hand, the temporal summation amounts to adding potentials having the
same a but different b, i.e. they add non-linearly on the RC constant of the membrane
capacity.

Fig. 7.17 Representation of the spatial summation and temporal summation of the synaptic poten-
tials in the post-synaptic neuron membrane
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After the arrival of the right amount of synaptic stimulation to code a given infor-
mation (visual, auditive, neuromuscular, memory), the action potential is fired, with
an amplitude comprised in the dynamic range of the neuron (see below). As a func-
tion of the signal amplitude, the response can increase either the signal frequency,
or the number of synapses implicated in the downstream transmission, performing
a more ‘time-like’ or ‘space-like’ encoding. On the next post-synaptic neuron, this
signal would then be integrated time-wise or space-wise, respectively. By this cas-
cade, neural signals are encored toward the central nervous system, up to the brain.
There, deeper neurons receive the ensemble of excitatory and inhibitory signal from
the various sources, for example producing a cerebral, or a neuromotor response, the
detection of an image, or a sound coming from a remote source.

Information in the central nervous system is treated byposition-dependent codes.
For example, in the case of a sensorial stimulation, the code represents the position
of the stimulus on a layer of sensory receptors: nerve axons under the skin are
branched,with the branches froma sameaxon terminating on agroupof neighbouring
receptors; in the retina, position and other physical qualities of a light stimulus are
recorded atwell-definedpositions of the network of receptors; in the auditive systems,
receptors are distributed along a membrane sensitive to frequency, whose positional
information translates into a sound information. In all cases, the positional code
representing the position of the stimulus is conserved along the path to the brain, via
a network of selective paths. Connexions coming from different axons are encoded
with a spatial hierarchy in each deep nucleus.6

As a result of this hierarchical architecture, the spatial arrangement of the cells
in a nucleus resembles the spatial arrangement of the receptors in the corresponding
organ. In simple terms, each cerebral nucleus can be considered as sort of ‘topo-
graphic map’ of the organ. In the example shown in Fig. 7.18, right, the image of
a disk expanding and rotating is mapped in the cerebral cortex, with a geometrical
correspondence between the detection of the visual stimulus and the excitation of
different areas in the cortex. Moreover, a ‘shadow’ effect is often observed: if an
artificial stimulation is applied to a nucleus, by an electrode placed at a given site in
the somato-sensory brain cortex, it can elicit exactly the same ‘real’ sensation of the
organ corresponding to that nucleus, such as a touch on the skin.

The frequency of the response encodes the amplitude of the recorded stimulus,
even if the relationship between amplitude and frequency is not linear (i.e., not
simply directly proportional). In fact, during the pathway to the brain, at least two
transformations must be accounted, a first one from the sensory stimulus to the
amplitude of the receptor potential, and secondly from the receptor potential to the
discharge frequency of the action potential.

6Nuclei are substructures of the central nervous system composed by grey matter (neuron cell
soma, glial cells, short dendritic processes, capillaries), acting as a transit gate for the electric
signals coming from a given neural subsystem. For example, the lateral geniculate nucleus is the
mediator of the visual signals in vertebrates; the vestibular nucleus records the movements of the
head and rives themovements of the eyes; the so-called Raphe nuclei are implicated in the command
of the sleep/wake cycle; the suprachiasmatic nucleus controls the circadian rhythms; and so on.
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Fig. 7.18 Spatial topographic representation of a visual stimulus in the visual cortex, or retinotopy.
Left Location of the visual cortex in the occipital lobe of both human and primate brain. V1 is the
primary area, receiving the collected input signal from the thalamus; V2 to V5 are different parts
of the visual cortex, connected in sequence, whose extent and detailed functions in signal encoding
are still under active investigation. Right Median cross section of the visual cortex, split open in a
functional-MRI image. A visual signal (a marked disk expanding in radius and rotating in angle)
is shown to a subject, and the MRI images allow to reconstruct the cortical map of the different
locations of the recorded information. The colour code helps in retrieving the topographic placement
of the different signals. It can be seen that there is a meaningful correspondence between the spatial
radial and angular variation of the visual stimulus, and its spatial recording in the different areas of
the visual cortex. [Image courtesy of: left “The Brain”, at McGill University, www.thebrain.mcgill.
ca; right K.E. Mathewson, at Beckman Institute, Univ. of Illinois Urbana-Champaign. Repr. w.
permission.]

Receptor potentials have as well a threshold, which however can be extremely
low: in the case of human retina, even one single light photon (i.e., an amount of
energy of the order of 3–5 × 10−19 Joules, or 2–3 eV) can start a visual stimulus.
The threshold of the receptor combines with the threshold of the action potential in
the immediately adjacent nerve axon (for example, of the optic nerve from the retina
receptors). Evidently, a stimulus cannot be perceived unless it is higher than the most
sensitive axon in the neuro-transmission chain. Another limit to the sensory stimula-
tion comes from the upper value of the frequency of the impulse, whose exceedingly
high frequency can lead to the saturation of the receptors. The frequency/amplitude
interval comprised between the threshold and the saturation is the dynamic range
of the sensory system. Each subsystem in the central nervous system has its own
dynamic range, defined by the combination of the respective thresholds and satu-
ration levels of all the sensors and axons recruited for the detection and response
to a given stimulus. For example, the human ear has a frequency range comprised
roughly between 20 and 20,000Hz, outside which no frequency produces an audible
stimulus; the retina has a wavelength range comprised between roughly 390 and 700
nm, outside which no wavelength can produce a visible signal.

www.thebrain.mcgill.ca
www.thebrain.mcgill.ca
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7.8 Cells in the Heart

The life of all animals, from early embryogenesis and throughout adulthood, depends
on the uninterrupted functioning of the heart. The heart of a normal functioning
human beats at nearly constant rhythm for more than 150 × 109 times, during the
whole life. The human heart cycle consists of a contraction phase (systole), during
which blood is pushed to the body, and a relaxation phase (diastole), during which
the blood is returned to the heart. From a structural point of view, birds and mammals
have their heart subdivided into four chambers, two atriums above and two ventricles
below, which ensure at each heartbeat two parallel blood flows: the systemic, and
the pulmonary circulation. The two left chambers of the mammalian heart drive the
oxygen-rich blood into the entire circulatory system, via the arteries; the oxygen-
poor blood comes back to the right chambers of the heart, to be pushed through the
lungs, where CO2 is released from the blood and fresh oxygen is loaded, and then
shipped back to the left heart. Because of the much higher pressure necessary for the
general circulation, tissues on the left side of the heart are much thicker than those
on the right side, despite they have to manage the same amount of blood.

By contrast, the heart of amphibians and reptiles has three chambers, and that of
fishes only two. The big difference between fishes and other superior animals is due
to the fact that they have their oxygen-exchange organs, the gills (corresponding to
the lungs in all other vertebrates), placed in series between the heart and the blood
circulatory system. In reptiles and amphibians, the membrane separating the two
ventricles is either incomplete or absent. Their pulmonary artery is equipped with a
sphincter muscle, a sort of valve that allows a second possible route of blood flow.
Instead of blood flowing to the lungs directly from the heart, the artery sphincter may
be contracted to alternately divert the blood flow to the lungs. This process is useful
to ectothermic (cold-blooded) animals for the regulation of their body temperature.

The heart is essentially amuscle, an involuntary one bothwhen normally function-
ing and when we fall in love. Its materials consist of different cell types (Fig. 7.19),
which contribute to structural, biochemical, mechanical and electrical properties of
the functional heart. Themuscularwalls of the heart, called myocardium, are formed
by cardiomyocytes, elastic cells with a structure similar to muscle fibres, organised
into bands that permit an easy contraction of the whole heart body (Fig. 7.19a). More
than half of the cells of the heart are cardiac fibroblasts. Endothelial cells form the
endocardium, the interior lining of blood vessels, and cardiac valves; slightly differ-
ent “smooth” muscle cells contribute to the coronary arteries and inflow and outflow
vasculature; the epicardium makes up the precursors of the coronary vases and car-
diac fibroblasts. The most important cells in the heart, from an electromagnetic point
of view, are thepacemaker cells andPurkinje fibres: these are specialised cardiomy-
ocytes that generate and conduct electric impulses. These “electro-mechanical” cells
(see Fig. 7.19b) make up the sinoatrial node (SAN), generating impulses to initiate
heart contraction in the atria, and the atrioventricular node (AVN), which conducts
the electric impulse to the ventricles.
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Fig. 7.19 a The pattern of muscular fibres (myocites) of the heart’s walls (myocardium) has a
swirling structure, which facilitates the contraction of the entire organ. b The different types of
cells making up the heart. The electromechanical pacemaker cells are located in the AVN, above
the right atrium, and initiate the electric stimulation; the Purkinje fibres surround the ventricles and
transmit the impulse to the myocites. [Image (a) from: Anatomy & Physiology Connexions http://
cnx.org/, repr. under CC-BY-3.0 licence, see (**) for terms; b repr. from Ref. [12] w. permission]

In contractile heart cells the electric activation takes place by means of the same
mechanism already seen in the neurons, that is the inflow of Na+ ions across the cell
membrane. The amplitude of the action potential is also similar, being about 100 mV
base-to-peak. However, the duration of the cardiac muscle impulse is ∼300 ms, two
orders of magnitude longer than in neurons and skeletal muscles. A plateau phase
follows depolarisation, and thereafter repolarisation takes place. As in the neuron,
repolarisation is a consequence of the outflowofK+ ions. Themechanical contraction
of the muscle cell, activated by the action potential, occurs with a little time delay.
Figure7.20 compares the electrical activity (transmembrane voltage) andmechanical
contraction of a frog’s skeletal muscle (the Sartorius) and cardiac muscle; note the
very different time scales of the two figures (a few milliseconds vs. seconds), the
long plateau in (b) as opposed to the sharp peak in (a), and the substantial delay
between electrical stimulus (blue) and mechanical response (red) in (b).

Differently from skeletal muscles, in the cardiac muscle the electric activation
can propagate from one cell to another in any direction. The only exception is the
boundary between the atria and ventricles, where the activation wave is arrested by
a non-conducting barrier of fibrous tissue. As a result of this lack of directionality,
the activation wavefronts in the heart have more complex shapes, compared to the
relatively simpler orthodromic conduction along the nerve axon.

Normal pacemaking in the heart depends on the coordinated discharge frequency
of the of pacemaker cells of the SAN. Indeed, coordinated behaviour is essential
to generate rhythmic activity and produce a single impulse with each cardiac cycle,

http://cnx.org/
http://cnx.org/
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Fig. 7.20 Electric andmechanical activity in a frog Sartoriusmuscle cell, and b frog cardiacmuscle
cell. In each panel, the blue curve shows the time evolution of the transmembrane voltage, whereas
the red curve describes the mechanical contraction associated with it. [Adapted from Ref. [5], repr.
w. permission]

but the mechanisms leading to this behaviour are poorly understood. Two modes
of synchronisation have been proposed. Under one scheme, a cell, or small group
of cells, would serve as the “dominant” pacemaker, and it would drive all other
pacemakers in the SAN to fire at its own intrinsic frequency. A second hypothesis,
more credited in the recent years, suggests that the synchronisation may be a more
“democratic” process whereby the individual cells, each beating at slightly different
intrinsic frequencies, mutually interact via some form of coupling, to achieve a
consensus frequency as to when to fire [13].

The spontaneous synchronisation of a large ensemble of oscillators to a common
frequency is awidespreadphenomenon, in both natural and artificial systems.Besides
heart cells, it can be observed in the brain, with the generation of alpha-rhythm, or
synchronised hormone release from hypothalamic neurons; in yeast cell suspensions
achieving metabolic synchronism, in congregations of synchronously flashing fire-
flies, of crickets that chirp in unison, or even the rhythmic clapping of hands by a
theatre audience; in physics, in the coupling of arrays of lasers,microwave oscillators,
and superconducting Josephson junctions, not to mention the popular experiments
with arrays of musical metronomes on a table [14].

In the Kuramoto model, described synthetically in the greybox on p. 299, an
array of idealised oscillators running at arbitrary intrinsic frequencies, are coupled
through their phase differences. This model is simple enough to be mathematically
tractable, yet sufficiently complex to be non-trivial. It is rich enough to display a
large variety of synchronisation patterns, including a well-defined transition from
disordered oscillations, to a partially or fully synchronised population. The beating
of heart cells could be mathematically described by such a model of frequency
synchronisation, despite the fact that the precise origin of the coupling (mechanical,
electrical, chemical) is still debated.
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Synchronisation of random oscillators

The synchronisation of two pendulum clocks hanging from a wall was first observed by
Huygens during the 17th century. The behaviour of a large ensemble of coupled oscillators
can display striking phenomena of synchronisation, even starting from random and noisy
conditions. The most successful explanation is due to Yoshiki Kuramoto in 1975, who
analysed a model of N phase oscillators at arbitrary intrinsic frequencies ωi , and coupled
through the sine of their phase differences θi . The basic equation of the model reads:

dθi

dt
= ωi +

N∑

j=1

Ki j sin(θ j − θi ) (7.55)

for each i = 1, ..., N . Oscillators tend to run independently, each at its own ωi , until
the mutual coupling Ki j is small; however, when the coupling increases beyond a certain
threshold, synchronisation spontaneously emerges. This can be seen by transforming the
equation via the “order parameter” 0 < r(t) < 1, which measures the time-dependent
amount of coherence in the population, and the average phase ψ(t), defined as:

reiψ = N−1
N∑

j=1

eiθ j (7.56)

This last equation can be multiplied by e−iθi , then retain the imaginary part of it (since
eiβ = sin β + i cosβ), and take its time derivative, thus obtaining:

r sin(ψ − θi ) = N−1
N∑

j=1

sin(θ j − θi ) (7.57)

which, substituted in the (7.55), and by assuming for the sake of simplicity that all Ki j = K ,
gives:

dθi

dt
= ωi + Kr sin(ψ − θi ) (7.58)

Now each oscillator is independent, and coupled to the common average phase ψ with
coupling strength Kr . In the limit of a very large N , the frequencies can be thought of being
distributed according to some g(ω), and the oscillators take up values of ω and θ at each
time t with probability ρ(θ,ω, t). Sums are now replaced by integrals over dω and dθ, as:

reiψ =
∫ π

−π
eiθ

∫ ∞

−∞
ρ(θ,ω, t)g(ω)dωdθ (7.59)

The meaning of the order parameter r becomes evident when considering a vanishing
coupling, K → 0, in Eq. (7.58). In this case θi = ωi t , and by substituting θ = ωt in
the previous equation, it is r = 0. On the other hand, in the limit of very strong coupling,
K → ∞, it is θ → ψ and r → 1, meaning that all the oscillators have the same phase and
are therefore synchronised. For intermediate values of K , r is between 0 and 1, meaning that
on average some oscillators are synchronised in phase, dθi /dt = 0, while some are rotating
out of sync.
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7.8.1 The Rhythm and the Beat

The heart beat is initiated at the sinoatrial node (SAN). The SAN receives several
different inputs that regulate the instantaneous heart rate and its variation. Respiration
gives rise towaves in heart rate,mediated by the sympathetic and the parasympathetic
nervous system; other factors affecting the input nervous signal are the baroreflex
(automatic regulation of the blood pressure), thermoregulation, hormones, sleep-
wake cycle, meals, physical activity, stress.

The SAN in human heart is a small mass of cells in the shape of a crescent, about
15mm long and 5mm wide, receiving a high density of nerve terminations. The
SAN pacemaker cells generate an action potential at the intrinsic rate of about 70
pulses/min. As in the neuron, this is actually a depolarising potential, since it starts
from a negative resting level of about −70 mV. From the SAN the impulse propa-
gates throughout the upper half of the heart, but cannot propagate directly across the
boundary between atria and ventricles, as noted above. The impulse is then relayed
by the atrioventricular node (AVN), a sort of button located at the boundary between
the atria and ventricles. The AVN has an intrinsic frequency of about 50 pulses/min,
however it can adjust to higher frequency if required. Propagation from the AVN to
the lower half of the heart (the ventricles) is provided by a specialised conduction
system. The bundle of His (named after the German physician Wilhelm His) starts
from the AVN, and then splits into two branches of fibres running around the two
ventricles. These further ramify into Purkinje fibres (named after the Czech physi-
cian Jan Evangelista Purkinje7). From the Purkinje fibres the impulse can diffuse to
all myocytes, via cell-to-cell multi-directional activation. Contrary to this complex
(de)polarisation phase, the following repolarisation, which brings each cell’s poten-
tial back to its resting value, does not require propagation since each cell does it
independently, after the impulse wave has passed. The time-shift plots in Fig. 7.21
summarise the electric events taking place during a single heartbeat and their electric
waveforms, together with a table providing the correspondence between events, tim-
ings, and propagation velocities in the tissue. It may beworth to note that propagation
along the conduction system takes place at a relatively high speed, once the impulse
has reached the lower ventricular region, whereas it was much slower before. Also,
in case of failure of the transmission at some place, the region cut off will beat at
its intrinsic rhythm, which may be considerably lower (about 20–40 per min, in the
lower heart).

The heart beat above described occurs at the level of single cells. The rhythm of
the heart, instead, results from the sum of all these electric waves, rebounding from
the different tissues. The lower diagram in Fig. 7.21 represents schematically this
sum. The electrocardiogram (ECG) is a recording of the overall electric potential
generated by the electric activity of the heart, taken on the surface of the thorax. The
ECG thus represents the integrated electric behaviour of the cardiac muscle tissue,
in which some of the single-cell events can be identified (see uppercase letters in the
figure).

7When Purkinje died in 1869, Wilhelm His was just 5years old.
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Fig. 7.21 Electrophysiology of the humanheart. The differentwaveforms for each of the specialised
cells found in the heart are shown on the left, and the corresponding events are listed in the table
on the right. The time delays between the different impulses (latency) are similar to those normally
found in the healthy heart. The lower diagram regroups the sum of the different impulses as could
be registered in a ECG trace. The letters correspond to the labelling given in the adjacent table.
[Adapted from Ref. [5], repr. w. permission]

The genesis of the ECG signal can be represented with a highly idealised single
dipole model [15]. The electric source of the ECG, as measured at the surface of the
torso, is the intracellular current that is generated as the action potential propagates
through the heart tissues; charge conservation, on the other hand, imposes that there
is also an equal and opposite extracellular current, flowing against the direction of
propagation. All the current loops in the conductive tissues close upon themselves
forming a dipole field, whose amplitude and direction changes in time following
the moving boundary between depolarised and polarised tissue. The net equivalent
dipole moment is the time-dependent heart vector M(t), with its origin at the centre
of the chest. As a further, reasonable approximation, the dipole model ignores the
anisotropy and inhomogeneity, and treats the chest as an ideal spherical conductor
of radius R and conductivity σ. The Laplace’s problem for the potential, ∇2Φ = 0,
may then be solved in this simple geometry, to give the potential distribution at the
surface of the body as:

Φ(t) = 3 cos θ(t)

4πσR2
|M(t)| (7.60)

where θ(t) is the angle between the direction of the heart vector M(t), and the fixed
vector from the centre of the sphere to the point R of observation (where each one
of the ECG electrodes is placed).

A typical pulse of amplitude ∼100 mV, traveling at average speed 0.5 m/s,
crosses a cell of size δ = 50µm in about 0.1 ms. Therefore, by assuming
a linear resistivity of the 5-nm thick membrane of 2 × 1010Ω-cm, or R =
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Fig. 7.22 The positioning of the six standard chest leads in ECG, which report the heart’s electrical
activity in the horizontal plane. Each blue vector is a component of time-varying heart dipole vector
M. Each electrode defines a fixed (red) vector, at an angle θ with M. The light-red arrows indicate
the four electrodes to the left/right arm, and left/right leg. [Adapted from: N. Patchett, Boston
Medical Center, repr. under CC BY-SA 4.0 lic., see (*) for terms.]

2 × 1010/((πδ2) = 2.5 × 1014Ω/cm, the typical current at the cellular level is
I = (0.1/10−4)(1/2.5 × 1014)(1/0.005) ∼ 0.8 nA (10−9 amperes). If such a tran-
sient current is distributed over a moving dipole length d = 0.5 (m/s) × 0.1 ms =
5cm, the typical dipole moment is of the order of |M| � 4 − 5 × 10−9 A-cm.

The recording is made by placing a series of six electrodes around the chest
(Fig. 7.22), which record the activity in the horizontal plane (cross section through
the chest), and fourmore electrodes at each limb, which record the activity in a frontal
plane (cross section between front and back of the body). The measured voltage
VI J gives the difference of electric potential (7.60) between pairs of electrodes I
and J . Take O I and O J as the two vectors from the origin O to each electrode’s
position (two different “red” vectors in Fig. 7.22); each vector has a modulus equal
to 3/(4πσL2), if L is the distance of the electrode from the centre. The Eq. (7.60)
can also be written as a scalar productΦK = M · O K for any electrode K . Therefore
the voltage is given by the scalar product of the two vectors:

VI J (t) = ΦI − ΦJ = M(t) · LI J (7.61)

with LI J the difference vector between electrodes I and J , called the lead vector. A
variety of lead vectors may be formed by attaching electrodes to the body in various
positions. The standard clinical practice is based on 6+6 lead vectors, defined by
cutting the circle around the heart into angular sectors of 30◦ (Fig. 7.22). In this way,
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impulses traveling along different directions can be monitored, if the electrodes are
correctly placed, and give spatial information about the heart’s electrical activity in
the (approximately) orthogonal directions: right to left, superior to inferior, anterior
to posterior.

Impulses traveling toward a lead give a negative contribution to V (t), while
impulses traveling in the opposite direction give a positive contribution to V (t).
The V (t) traces from the blue arrows in the figure indicate: I, difference between
left arm and right arm; II, difference between the left leg and the right arm; III, dif-
ference between the left leg and the left arm; the aVF, aVL, aVR are respectively
perpendicular to these. The typical V (t) pulse shape obtained in Fig. 7.21 (bottom
left) can thus be interpreted. For example, the P wave describes the sequential acti-
vation of the right and left atria; the QRS portion is the right and left ventricular
depolarisation (normally the ventricles are activated simultaneously); the ST-T wave
is the ventricular repolarisation, and so on.

An order of magnitude estimate of the amplitude of V (t) can be obtained, by
taking all the heart cells in a patch of ∼1 cm2 to have the same size δ, with a density
is about 5×104 cells/cm2. The total dipole is of the order of (0.8×10−9)(5×104) ∼
4−5×10−4 A/cm. For an average distance L = 20 cm, and σ = 3×10−3Ω−1 cm−1,
the typical voltage between a couple of electrodes, estimated with the simple dipole
model, comes down to V = 3(5×10−4)/(4π(3×10−3)202) ∼ 0.1 mV. Such values,
of the order of fractions of millivolts, correspond well to experimentally measured
values early in the sequence of ventricular depolarisation.

7.9 Electricity in Plants?

As far as we know, plants and trees do not have organs with structure and functions
resembling hearts or brains, therefore this Chapter has been concerned mainly with
animal cells. However, electric forces and fields exists and pervade plants as well.
Already in 1873, E. Burdon-Sanderson described to the British Royal Society how
the rapid clenching response of the leaves of Dionea muscipula to an insect touching
its surface is induced by an electric action potential propagating through the two
lobes of the leaf, causing them to snap close to trap the insect. (Fig. 7.23; such plants
often live in nitrogen and mineral-depleted areas and may get their required nitrogen
and minerals by capturing and digesting insects.)

The cells of most, perhaps all, plants are excitable. Stimuli such as chilling, heat-
ing, cutting, touching, electric stimulus or changes in external osmolarity, result
in action potentials, a transient depolarisation of cell membrane which is electro-
tonically transmitted at rates of 10–40 mm/s (much slower than axonal currents),
and which resemble primitive nerve action potentials. Until recently, plant biolo-
gists were quite reluctant to view action potentials as of primary significance in plant
responses. The principal reason for this was the discovery of the ubiquitous chemical
signal auxin, which seemed to rule out of relevance any other electrically transmitted
signals. However, since at least the late 1980s, some prominent plant electrophysiol-
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Fig. 7.23 The carnivorous plant Dionea muscipula uses its attractive wide-lobed leaves to attract
insects, worms, even small frogs. Once the presence of the extraneous body is detected, an electric
action potential spreads over the lobe surface, and causes the two halves to snap close in fractions
of a second. The inside compartment at the junction of the lobes then forms a closed cavity, a sort
of stomach filled with digestive enzymes, which turns the prey into a meal for the Dionea

ogists have argued that multifunctional electric signals (action potentials) could be
primarily responsible for coordinating plant responses to the environment. Barbara
Pickard [16] and E. Davies [17] proposed that a ‘protease inhibitor inducing factor’,
a wound signal, could be electrical rather than chemical. This view has been con-
firmed by further research, [18] which showed that initiation of some inhibitor genes
in response to wounding in tomato leaves is not brought about by a chemical signal,
but electrically, by transmitted action potentials.

Today, the same intracellular microelectrode experiments performed on neuronal
cells, allow to measure the electric potentials across the membrane of plant cells
(Fig. 7.24, [20]). In the early studies giant characaean algae cells were particularly

Fig. 7.24 Left Recording of action potentials in Mimosa pudica and Dionea muscipula. Note the
vertical voltage scale, quite larger than for animal stimulation, and the horizontal time scale, quite
slower. Right Mechanical stimulation of a single Dionea leaf’s hair. Three levels of stimulation
are shown to elicit an action potential (first), a near-threshold local response (second), and a sim-
ple electrical replica of the sub-threshold mechanical stimulus (third). [From Ref. [19], repr. w.
permission]
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suitable, but subsequently this kind of measurement was extended to many plant
species. In the experiment described in the Figure, the action potential recorded in the
Mimosa pudica, whose delicate branches retract and fold at the slightest pressure, and
in the already citedDionea, are seen to be quite higher (ΔV ∼ 250mV) and on a quite
longer time-scale (a few seconds) compared to animal cells. Also, the experiment
carried out on a single leaf’s hair of Dionea (right in the Figure) demonstrates a
graded reaction to the foreign stimulation, which is able to elicit an action potential,
local currents, or simple replica of the stimulus according to its relative intensity.
(Note that in the original paper, the force was strangely measured in kg and not
newtons.)

Compared to animal cells, in which we saw the close interplay of Na+ and K+,
in plants the most important ions in the process of generating the action poten-
tial are Ca2+ and Cl− [21]. After the arrival of the initial stimulus, free Ca2+ con-
centration in the cytoplasm increases. This Ca2+ originates from extracellular and
intracellular spaces, through voltage-dependent ion channels and from vacuoles via
secondary transduction pathways. Depolarisation occurs due to Ca2+ activation of
Ca2+-dependent anion channels, and massive efflux of Cl−. Depolarisation leads to
opening of K+-channels, and the K+ efflux repolarises the plasma membrane. The
characteristics of action potential can be modified by changing of Cl− or K+ concen-
tration. In plants, most cells have cell-to-cell conduction through the plasmodesmata
(microscopic channels which traverse the cell walls) and this connection has high
solute permeability and electric conductivity. Plasmodesmata are nearly identical to
gap junctions of animal tissues, and could be considered as a kind of “plant synapses”,
in which auxin might be taken as the mediator (equivalent of the neurotransmitter in
brain synapses).

It is today clear that electrophysiological properties of plants can change season-
ally and with cell age. For example, in the giant alga Chara, the cell membrane is
significantly less hyperpolarised (less negative) in winter, when plants are vegetative,
and hyperpolarises again immediately before fructification in the spring, a phenom-
enon associated with changes in patterns of cell-to-cell communication. Sucrose
concentration and ion content, particularly of K+, varies seasonally in Chara vul-
garis, again with a precise timing associated with the reproductive cycle. Also the
cells of Dionea show a more negative membrane resting potential over winter. The
action potential shows a definite temperature dependency in the alga Nitella; in
another alga, the unicellular Eremosphaera, darkening after illumination causes a
transient hyperpolarisation of the cell membrane due to divalent cation, and anion
currents. The turgor pressure of plant cells and their electrophysiology are indeed
linked. Hypotonic shock in the cells of Lamprothamnium, a salt-tolerant charophyte,
results in membrane depolarisation, opening of Ca2+ channels, efflux of Cl− ions
followed by K+, resulting in turgor pressure regulation, this process differing in
plants of different age and from different environments.
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Appendix F: The G-H-K equations

The ionic flow across the membrane can originate from a purely diffusive (passive)
mechanism, given by Eq. (7.3) above:

J = −D∇[c] (7.62)

or by an active diffusion pushed by the electric field across the membrane, E =
V/d, V being the total voltage drop across a membrane of thickness d. This second
contribution is J = [c]v, (the square parenthesis [...] indicates molar concentration),
and by using the definition of ionic mobility (see greybox Ohm’s law and diffusion),
it is J = μE[c] = (μV/d)[c].

By recalling the Stokes-Einstein equation (see Chap. 5, Eq. (5.39), and p. 179)
that, in the linear response regime, relates the mobility to the diffusion coefficient
as D = μkB T , the flow under the electric field (or electrophoretic current) is also
written as:

J = D

kB T

V

d
[c] (7.63)

The sum of the two components, passive and active diffusion, is therefore for each
ion species k (for simplicity, we consider only monovalent ions with z = ±1):

J = −Dk

(
∇[ck] − zF

RT

V

d
[ck]

)
(7.64)

By taking unidimensional diffusion, e.g. along the x thickness of the membrane,
this differential equation of the type A+ Bc = dc/dx can be integrated by separation
of the variables, from x = 0 (inside themembrane) to x = d (outside themembrane).
This yields the solution:

J = wPk
([ck]out − ezw[ck]in)

1 − ezw
(7.65)

with the constant w = FV /RT , and Pk = Dk /d the permeability of the k-th ion
species. This first equation is known as the Goldman equation for the ionic flux,
and is an expression of the balance between the diffusional and electromigration flow
of the ions of each given species k, for a given permeability (i.e., a given fraction of
membrane ion channels opened/closed).

On the other hand, the overall electric potential is established by the combined
ionic “batteries” of the three principal ionic species (plus any other eventual ions).
The total is obtained by considering the parallel superposition of the three elements,
at a reference voltage Vm for which the charge is in equilibrium, i.e. the net flow of
positive plus negative charges across the membrane is zero. By summing all the k
positive and the n negative (monovalent) ions, and equating their respective flux, we

http://dx.doi.org/10.1007/978-3-319-30647-6_5
http://dx.doi.org/10.1007/978-3-319-30647-6_5
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obtain: ∑
k Pk([ck]out − ew[ck]in)

1 − ew
=

∑
n Pn([cn]out − e−w[cn]in)

1 − e−w
(7.66)

The terms on the right side, corresponding to negatively charged ions, can be
multiplied and divided by ew. In this way the denominators cancel out, and:

∑

k

Pk([ck]out − ew[ck]in) = −
∑

n

Pn([cn]in − ew[cn]out ) (7.67)

(note the switch between the in and out for the negative species) or:

∑

k

Pk[ck]out +
∑

n

Pn[cn]in = ew

(
∑

k

Pk[ck]in +
∑

n

Pn[cn]out

)
(7.68)

from which it is obtained:

w = ln

∑
k Pk[ck]out + ∑

n Pn[cn]in∑
k Pk[ck]in + ∑

n Pn[cn]out
(7.69)

This is the Goldman-Hodgkin-Katz equation for the membrane potential,
which in a more usual form reads:

V = RT

F
ln

∑
k Pk[ck]out + ∑

n Pn[cn]in∑
k Pk[ck]in + ∑

n Pn[cn]out
(7.70)

Appendix G: Electric Currents for Dummies

Current and Resistance

When a difference of electric potential V (or voltage, in units of volts) is applied at
the ends of a material with resistance R, an electron current I develops in the closed
circuit, from the negative to the positive pole:
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The relationship between current and potential in the linear regime is the Ohm’s
law:

V = RI (7.71)

The current is measured in units of amperes, 1A being equal to 1 coulomb (6.24×
1018e) per second. The difference of potential V must be maintained by a continuous
supply of energy, which turns the potential energy stored in the battery into kinetic
energy of electrons and heat. The power, delivered by the battery and dissipated by
the resistance, is the work done by the electromotive force in a unit time:

P = I V (7.72)

measured in (volts × coulomb/second).
The resistance is the tendency to slow or arrest the flow of the current. Each

material has a specific value of the electric resistance defined by its microscopic
electric conductivity σ, as R = L/σS, for a length L and a cross section area S of the
conductor (here assumed cylindrical, as in a wire or a cable). Often R is expressed
as resistance per unit length, and is indicated with lowercase r . A conductor is a
medium (material, solution) with a quite small resistance, an insulator conversely is
a medium with a high resistance to current flow. The conductance is defined as the
inverse of the resistance, G = 1/R.

Several parts of a system of conductors may exhibit different resistance. The
overall response of the system (a “circuit”, if the ends are connected) to an applied
voltage drop can be described by connecting the resistances “in series”:

the total resistance being R = R1 + ...Rn; or “in parallel”:

the total resistance being instead 1/R = 1/R1 + ...1/Rn .
A direct current (DC) is the unidirectional flow of electric charges. It can pro-

duced, e.g., by a battery, a thermocouple, a solar cell. A DC current may flow in
a conductor such as a wire, but also through semiconductors, insulators, or even
through a vacuum as in electron or ion beams.

In an alternating current (AC), the direction of charge flow alternates forward
and backward over the time, between the twopoints at different potential (for example
a wire). An AC current is necessarily generated by an alternating voltage, in most
applications taken as a sinusoidal wave, V (t) = V0 sinωt , with period τ = 2π/ω.
Therefore, by Ohm’s law, the current oscillation is in phase with the voltage wave:
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I (t) = V0

R
sinωt (7.73)

Despite the constantly changing direction of the charge flow, an AC current deliv-
ers power, because of the electromotive power definition (7.72):

P(t) = I (t)V (t) = V 2
0

R
sin2 ωt (7.74)

Capacitor

A capacitor, or condenser, is obtained when two elements of a conductor, e.g. two
parallel plates, or two concentric cylinders, are separated by an insulator, called the
dielectric. When the positive and negative of a battery are connected to the two ends
of the capacitor, the positive charges accumulate on one side and the negative charges
accumulate on the other, thus producing a spatial charge separation. The capacity of
a condenser is defined by the amount of charge Q accumulated under a given voltage
V :

C = Q/V (7.75)

Capacity is measured in units of farad, 1 F being equal to a charge of 1 coulomb
under a voltage drop of 1 volt. (Because capacity is charge/voltage, 1 F is dimen-
sionally [Charge2]/[Energy], or (As)2/(kgm2s−2)). Note that a capacitor, differently
from a resistance, does not dissipate energy but rather stores it (of course, in a real
capacitor there will be some non-ideal losses, so that some energy is necessarily lost
according to the Second Principle of thermodynamics). Thework done to accumulate
this charge, that is the energy stored, is:

W =
∫ Q

0
V (q)dq =

∫ Q

0
(q/C)dq = 1

2

Q2

C
= 1

2
CV 2 (7.76)

If the voltage V is applied to a capacitor charged with any value Q′ smaller than
Q, a transitory current will develop between the two ends. The relationship between
this time-dependent current and the voltage is:

I (t) = d Q

dt
= C

dV

dt
(7.77)

Clearly, the current exists until Q′ = Q, the maximum capacity of the condenser
for the voltage V . In chemical terms, the separation between positive and negative
charges is maintained until the dielectric separating the two ends is polarised by the
electric field −eE = V . If the battery is disconnected, the capacitor will discharge
from Q to 0, with the same time constant τ , therefore a transitory current will again
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be observed for a time τ . In fact, a battery could be considered as a capacitor with
an extremely long time constant.

Since a conductor will necessarily display at least some finite resistance to the
passage of the current, the minimum circuit that can be realised with a capacitor is in
fact the sum of the resistance of the conductor plus the capacitance of the condenser,
schematised as:

The voltage VC measured between the two ends of the capacitor varies between
V0 and zero, as a function of the charge accumulated and, correspondingly, of the
charge flow. By looking at the preceding equation, the total voltage can be written as
the sum of the drop across R plus the drop across C . Assume that at time t = 0 the
capacitor is uncharged, and the switch is closed. The voltage drop at any time t > 0
changes both in R and C , but its sum must be always equal to V0:

V0 = I (t)R + 1

C

∫ t

0
I (t ′)dt ′ (7.78)

which says that also the current will be distributed between R and C . By taking the
derivative with respect to time of this equation:

0 = d I (t)

dt
R + I (t)

C
(7.79)

The solution of this equation is found by separating the variables:

d I (t)

I (t)
= − dt

RC
(7.80)

and is an exponential I (t) = I0 exp(−t/τ ). The time τ = RC , is the time needed
to fully charge or discharge the capacitor by the amount of charge Q, and is called
the time constant of the capacitor. Its value depends on the geometry and materials
making up the element.

The constant I0 is found by considering that at the time t = 0 the charge on the
capacitor is zero; therefore the voltage across C is also zero, and the voltage across
R is V0. Then, I0 = V0/R, and the same exponential solution for the current gives
an exponential variation of the voltage drop:

V (t) = V0(1 − e−t/τ ) (7.81)
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Kirchhoff’s Laws

Although useful to reduce series and parallel resistors in a circuit whenever they
occur, circuits in general are not composed exclusively of such combinations. For
the more general cases there are a powerful set of relations called Kirchhoff’s laws,
which enable to analyse arbitrarily complex circuits.

The German physicist Gustav Kirchhoff in 1854 established the following two
laws:

• “junction rule”: for a given junction or node in a circuit, the sum of the currents
entering equals the sum of the currents leaving;

• “loop rule”: around any closed loop in a circuit, the sum of the potential differences
across all elements is zero.

The first law is a statement of charge conservation, while the second is a statement
of energy conservation, in that any charge that starts and ends up at the same point
with the same velocity, must have gained as much energy as it did lose. Both laws
can be derived from the Maxwell equations (see below), and are strictly valid for
DC electric currents, or AC currents in the low-frequency limit. The two laws can
be schematically described according to the two following diagrams:

Kirchhoff’s laws are typically used by removing blocks of a circuit and replacing
them with a simpler element, whose I and V correspond to the block removed. The
resulting circuit is made simpler and simpler, by repeatedly applying the two laws,
until it cannot be simplified anymore.

Maxwell’s Equations

The celebrated equations describing the behaviour of electric and magnetic fields,
which the genius of the American physicist James Clerk Maxwell donated to the
humanity between 1861 and 1862 when he was barely aged 30, are the subject
of entire books and ponderous treatises on electromagnetism. Here we recall them
only for the reader’s convenience, in the form most useful for the applications to
the propagation of electric and magnetic fields in dielectric media (i.e., biological
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tissues). Detailed treatment can be found, e.g., in J.D. Jackson’s book, listed under
“Further reading” at the end of this chapter.

The ingredients of electromagnetic field equations are the electric field vector E,
the magnetic field vector H, the electric flux density D = εE, and the magnetic flux
density B = µH.

The two field vectors E and H are generated by the force fields existing around,
respectively, charges and currents.

The two flux density vectors D and B are related to their respective fields by
the two coefficients ε, the relative electric permittivity of the medium, and μ the
relative magnetic permeability. These quantities are experimentally determined
for each medium, and can be expressed relative to their counterparts for the vacuum:
ε0 = 8.854 × 10−12 F/m (the Farad unit is equal to [Ampere]2[T]2/[Energy]), and
μ0 = 4π × 10−7 Henry/m (the Henry unit is equal to [Energy]/[Ampere]2).

Each of the fourMaxwell’s equations can be interpreted in terms of the elementary
laws and facts of electromagnetism, established by experiments often performed
well before his theoretical treatment. However, before Maxwell, the very concept of
electromagnetism did not exist: electric and magnetic phenomena were considered
as manifestations of entirely distinct properties of the nature of matter.

(1) Gauss’ law (circa 1835). Dictates how the electric flux density D behaves at any
point in space, in the presence of a distribution of charge density ρ(r):

∇ · D(r) = ρ(r) (7.82)

(2) Sometimes called “Gauss’ law for magnetism”, was originally written down by
Maxwell. It summarises the evidence that magnetic monopoles do not exist (or at
least, we haven’t found them yet):

∇ · B(r) = 0 (7.83)

(3) Faraday’s law (1837). States that a time-varying magnetic field creates an electric
current of intensity equal to the rotor (or “curl”) of the vector E. (Remember the
geometric meaning of the rotor, from Appendix A: it is the integral of the vector
about a circle drawn around the central line, in this case the line of flow of J. If B
varies around a circle the resulting current goes perpendicular to the circle, while
if B varies along a line the resulting current will move in closed loops about the
magnetic field lines.)

∇ × E(r) = −∂B
∂t

(7.84)

(4) Ampere’s law (1826). States that a current J creates a magnetic field of intensity
equal to the rotor (or “curl”) of the vector H. (Remember the geometric meaning
of the rotor, from Appendix A: it is the integral of the vector about a circle drawn
around the central line, in this case the line of flow of J. Clearly, since J is locally
constant, the intensity of H is inversely proportional to the radius of the circle.)
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∇ × H(r) = J + ∂D
∂t

(7.85)

The second term on the right is the “displacement current”, added by Maxwell to
include the magnetic intensity generated by a time-varying electric field.

For biological tissues, μ � μ0. However, ε varies widely with the frequency of
the electromagnetic field. Most soft tissues have ε ∼ 103−104ε0 at low frequency
(<100 Hz); bones, heart and liver tissue have ε ∼ 107−108ε0 and above. At higher
frequencies (kHz to GHz) the value of ε decreases down to 100–10ε0. Overall, this
makes the propagation velocity of currents in the tissue of the order of 10−4c ∼ 104

m/s at low frequencies, typical of signals from the brain or the heart. (Note that this is
different from the propagation velocity of the electric stimulation in the cells, which
depends chiefly on the opening and closing of ion channels.)

Problems

7.1 Absolute and relative refractory period
In a typical vertebrate axon, the absolute refractory period is 1.0 ms and the relative
refractory period is 4.0 ms. Thus, the neuron is insensitive to stimulation for a total
of 5.0 ms. If the cell is continuously stimulated with a train of impulses of amplitude
V � Vrest , what is the highest frequency of action potentials that can be generated?
And what would be the maximum frequency in the case V > Vrest?

7.2 The GHK equation
Consider a cell with only Na+ and K+ ions, at rest with concentrations: [cK ]out =
4 mM, [cK ]in = 140 mM, [cNa]out = 142 mM, [cNa]in = 14 mM, at ambient
temperature T = 23◦C.
(a) Given the relative permeabilities PK = 1 and PNa = 0.002%, calculate the
membrane resting potential. Compare it with the values of VK and VNa .
(b) Note that the ions may still be able to cross the membrane as long as the total
current sums to zero. Which direction would Na+ and K+ go?

7.3 The cable equation
Show that the functions Vm(x) = A exp(X) + B exp(−X), Vm(x) = A cosh(X) +
B sinh(X), Vm(x) = A cosh(L − X) + B sinh(L − X), are all solutions of the
steady-state cable equation Vm = ∂2Vm

∂x2 .

7.4 Axon resistance
Consider three axons: (1) infinite (=very long), (2) semi-infinite (=starting from a
neuron and proceeding far away), (3) finite, 3 cm long (=a small section between
two neurons). In each case, take the diameter as constant and equal to d = 40µm;
Rm = 5000Ω cm2; Ri = 100Ωcm. (a) Calculate the input resistance at x = 0 in
each case. (b) If a potential of 200 mV is imposed at x = 0, calculate the voltage at
x = 1.5cm.
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7.5 Triple junction
One of the most evident properties of neurons is that they are extensively branched.
Consider the simple branching depicted in the following figure: an axon starting at
X = 0, with a branching at X = L into two segments, extending to La and Lb. In
principle, each branch could have a different λ and resistances Ri or Rm , however
for simplicity they are taken to be equal here. Find the expression for the potentials
and currents at L , L A, L B , for a condition of “open ends”.

7.6 Electric frog
Consider the propagation of an action potential along a muscle fibre bundle, in a
frog’s leg. The action potential travels at a velocity v = 10 m/s. Model the current
entering the muscle from the extracellular medium, at the onset of action potential,
as a current pulse of amplitude −I0 = 10 nA, traveling at velocity v; and a second
current exiting the muscle at repolarisation, as a current pulse +I0 = 10 nA, trailing
at a distance d = 1cm from the first pulse. An electrode placed on the leg surface at a
distance D = 3 cm from the muscle, measures the electromyographic (EMG) signal
relative to ground. Assume an average tissue conductivity σ = 1.9Ω−1m−1, and fix
t = 0 when the midpoint of the two traveling sources (represented by the green and
yellow spot) face the electrode. Derive and plot this EMG signal as a function of
time, as the action potential passes by the detector.

7.7 A mouse’s ear
The gross size of a human ear is of the order of 70mm in major dimension, while that
of the mouse is of the order of 7 mm. The figure below represents the sensitivity and
frequency range of three condenser microphones of different sizes. We can model
the ear receptor (tympanus) pretty much as a microphone.
(a) Assuming that the physical dimensions of the ear of the mouse are scaled relative
to those of humans in the same proportion,what does that suggest about the frequency
range of hearing of the mouse?
(b) As the basic transductionmechanism is likely the same in bothmouse and human,
what this implies about the sound sensitivity of the mouse?
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(c) Contrary to the conclusion of (b), the mouse ear is as sensitive in its frequency
range as that of a human. What this implies?

7.8 A bird’s ear
In birds, a special type of neuron is responsible for computing the time difference
between sounds arriving to the two ears. These neurons respond only if the inputs
arriving from both ears coincide within well-defined time intervals, typically 10–100
µs, while avoid a response when the double input comes from only one ear. (a) Draw
a scheme of the synapses fetching input to a dendrite of these auditory neurons.
(b) What type of summation could be employed, to distinguish inputs from one, or
both ears? Draw a scheme of the algorithm. (c) Draw a schematic plot of the output
potential in the two cases.

(*) The terms of the Creative Commons Attribution-ShareAlike 3.0 and 4.0 International License
(http://creativecommons.org/licenses/by-sa/3.0/, http://creativecommons.org/licenses/by-sa/4.0/)
permit use, duplication, adaptation, distribution, and reproduction in any medium or format, as
long as appropriate credit is given to the original author(s) and the source, providing a link to
the Creative Commons license and indicating if changes were made. If remixing, transforming, or
building upon this chapter or a part thereof, such contributions must be distributed under the same
license as the original.

(**) The terms of the Creative Commons Attribution 3.0 and 4.0 International License (http://
creativecommons.org/licenses/by/3.0/, http://creativecommons.org/licenses/by/4.0/) permit use,
duplication, adaptation, distribution and reproduction in anymedium or format, as long as appropri-
ate credit is given to the original author(s) and the source, providing a link to the Creative Commons
license and indicating if changes were made.
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Chapter 8
Molecular Mechanics of the Cell

Abstract The mathematical models of polymers and membranes are introduced,
to describe the microscopic deformation of biological materials. The mechanical
properties at the molecular scale are inherently statistical, and remain hidden below
macroscopic averages. But we can now see and manipulate a single molecule, and
follow its movements in real time. This is made possible thanks to the advent of
revolutionary tools, such as the atomic-force microscope and the optical or magnetic
tweezers, which allow to test the mechanics of biological materials with unprece-
dented quality and accuracy, down to the molecular scale. Today it is possible to
measure the elasticity of a single molecule, of a piece of DNA, of a fragment of
cell membrane, and from such strictly physical comparisons, a totally new wealth of
information has started to invade the already flooded desk of the biologist.

8.1 Elastic Models of Polymers

As it was described in the previous Chap.6 and Appendix E, a large fraction of the
components of a cell are in the form of long filaments: DNA, RNA, F-actin, spectrin,
microtubules, long sugar chains such as proteoglycans, are all constituted by a large
number of distinguishable units connected one after another, often linear but in some
important cases branching out from a main chain: they are polymers.

A polymer is generically defined as a long and repeated supramolecular structure,
made up of many identical copies of one or more elementary molecular fragments,
the monomers. Such monomers are individual entities, jointed to one another by a
strong covalent bond, aboutwhich twomonomers can turn and bend. Polymers can be
shaped according to different structures, by means of chemical design, as well as by
different processing routes, e.g. by changing temperature, pressure, density, during
the natural or artificial assembly process. Amain classification, shown in the Fig. 8.1,
is between single-chain, branched-chain, cross-linked, or networked polymers. In a
cell, several of such structures can be found: actin filaments can form cross-linked
structures, as in the stress fibres, as well as interconnected networks; proteins are
single-chain polymers, which can however get cross linked at several sites; DNA

© Springer International Publishing Switzerland 2016
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Fig. 8.1 a Schematic representations of polyethylene showing the monomer unit, an ethylene
molecule CH2 (in red box). b The zigzag backbone structure of a polyethylene macromolecule
with 12 monomers, as obtained from a molecular dynamics computer simulation: carbon atoms
in grey, hydrogens in white, sticks represent covalent bonds. c Linear polymer: a sequence of
monomers linked to each other by covalent bonds (e.g., polyethylene, nylon, fluorocarbons). d
Branched polymer: side-branch chains connect to the main one. e Crosslinked polymer. Adjacent
linear chains are covalently connected by a foreign species’ monomer (blue spheres); many of the
rubber materials consist of e.g. polybutadiene chains crosslinked with Sulphur atoms, in the process
called vulcanisation of rubber. f Polymer network: several monomer units with more than one active
covalent bonds form a three-dimensional networks, such as in epoxies

and RNA are linear polymers, however RNA can form knots and superstructures that
make it behave as a branched superstructure.

Monomers in a homopolymer are all identical, such as in carbohydrates and
sugars, or varied from a class of similar elements, thus forming a heteropolymer. In
the Appendix B to Chap.3, we saw that all the proteins are in fact long, filamentary
heteropolymers constituted by immensely varied combinations of the 20 basic amino
acids. A globular protein like haemoglobin is made up of four nested amino acid
chains, with 2 × 141 and 2 × 146 amino acids: if elongated into a single chain, it
would measure about 0.5 µm in length; however, when folded it measures just about
2.5nm in average diameter. In the same way, all nucleic acids like DNA and RNA
are very long heteropolymers constituted by a combination of the four bases A, C,
G, T (or U for RNA). All the components of the cytoskeleton are filamentary, or
fibrous proteins, constituted by smaller monomers, G-actin for the actin, tubulin for
the microtubules, and so on.

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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Fig. 8.2 a A chain polymer can be seen as a flexible, continuous wire, with thickness negligible
compared to its length. In the worm-like chain model, a continuous variable x spans the length of
the filament. The tangent vector t(x) can be defined at each point, and the angle θ between the
tangent at two different points x and x ′ defines the local curvature radius R and curvature γ (see
text). b Representation of the polymer as a freely-jointed chain. The black monomers are connected
by rigid, non-extensible bonds; bonds can rotate in any direction at the joints; the red and yellow
monomers indicate the start (R0) and end (RN ) of the polymer. The red dashed line connecting R0
and RN is the geometrical definition of the “end-to-end” distance, Ree

A polymer by its definition is a very flexible entity, in which for example the cur-
vature may change continuously all along its structure (Fig. 8.2a).Many biopolymers
found inside a cell can be described as filamentary, non-branched chains, which can
give rise to extremely elongated supramolecular structures, by assembling either into
nearly parallel bundles, as cytoskeletal proteins do; or into very compact structures,
by folding onto itself, as most globular proteins will do.

For the happiness of the physicist, some of the fundamental properties of these
macromolecular objects can already be captured and compared to experimental
results, by constructing very simple mathematical models of their structure, and
largely forgetting about their complex chemistry. As shown in Fig. 8.2b, sometimes
even describing the polymer as a sequence of linked balls and sticks may be enough
to infer some of its general physical features.

8.1.1 The Freely-Jointed Chain

This is possibly the simplest model of a molecule ever invented (Fig. 8.2b). In this
case, the polymer is described as a sequence of N +1 monomers located at positions
Ri , i = 0, ..., N , and connected in adjacent pairs by a rigid rod of length b =
|Ri −Ri−1|. The rod length is the modulus of the difference vector ri = Ri −Ri−1,
and the total polymer length when extended, or contour length, is L = Nb.
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To give a measure of the average size of the polymer, the end-to-end distance
vector Ree is defined as:

Ree =
N∑

i=1

ri =
N∑

i=1

Ri − Ri−1 = RN − R0 (8.1)

The essence of the freely-jointed model is that at every joint, the adjacent
monomers are free to rotate in any direction, even by 2π with one monomer fold-
ing over onto the next. Such shape excitations may happen when the temperature is
T > 0 K, and the monomers acquire an average kinetic energy proportional to kBT .
However, it is assumed that monomers cannot bend or stretch their bond lengths
b = |r|. Such a model therefore has always zero potential energy, and its whole ther-
modynamic behaviour is only described by its entropy contents, pretty much like a
perfect gas of monomers with only the constraint of remaining at fixed relative pair
distances. (In fact, by looking just at black dots in the Fig. 8.2b we get the impression
of a gas.) Because of this choice, the thermally averaged value of the end-to-end
distance is also zero, 〈Ree〉. Just like in a random diffusion problem, the first nonzero
moment of the probability distribution of Ree is its square:

〈R2
ee〉 =

N∑

i, j=1

〈ri · r j 〉 =
N∑

i, j=1

〈ri 〉〈r j 〉 =
N∑

i=1

〈r2i 〉 = Nb2 (8.2)

This is an interesting result. Since the average RMS end-to-end distance, Ree =
〈R2

ee〉1/2, can be considered as ameasure of the folded size of the fluctuating polymer,
it says that this size is proportional to the square root of the length, N 1/2, and the
volume occupied is proportional to N 3/2.

By means of simple arguments, it can be proved that the freely-jointed chain
is indeed akin to a diffusion problem in which monomers perform a random walk
in space, and the distribution function P(R) of the monomers within the average
volume is, as usual, a Gaussian: P(R) ∝ exp(−3R2/2Nb2). Moreover, the above
findings remain unchanged even if the model is modified, by adding the restriction
that two monomers cannot occupy the same space (which is in principle possible for
the totally free chain).

In order to find an improvement to this simple model, one must add the further
restriction that distant branches cannot cross any other branches of the polymer.
Look for example at the two white monomers in Fig. 8.2b: these are non adjacent,
but could come in close contact, since the freely-jointed model puts conditions only
on adjacent monomers. A further condition must be added, that segments around Rk

must avoid segments around Rl , with k �= l ± 1. This is called a self-avoiding chain,
and can be practically constructed by dividing the entire volume disponible for the
system, V = R3, into small subvolumes of size ν such that only one monomer b
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could fit in; therefore, the probability for each fluctuating monomer, of finding a free
space in V is proportional to (1 − ν/R3), and the Gaussian distribution function is
modified as:

P(R) ∝ exp

(
− 3R2

2Nb2
− N 2ν

2R3

)
(8.3)

With a little additional effort, it can be shown that the average size of the polymer
in this case grows as the power N 3/5 of the length, and the occupied volume is
therefore proportional to N 9/5, i.e. slightly below N 2. This is a result in reasonable
agreement with the experimental results, in which exponents of about 0.588 are
typically measured by x-ray scattering, indeed not far from 3/5.

The end-to-end distance is practically impossible to measure experimentally,
unless the two ends of each polymer are marked, for example by some fluores-
cent label (and even in that case, it would require a very fine spatial resolution of
the measurement). Fortunately, Ree is not the only parameter providing a measure of
the average size of the polymer. Other quantities have been introduced, such as the
gyration radius:

Rg = 1

2N 2

∑

n,m

〈(Rn − Rm)2〉 = 1

N

∑

n

〈(Rn − RCM)2〉 (8.4)

requiring the definition of the polymer center-of-massRCM = N−1 ∑
n Rn . Interest-

ingly, the gyration radius can be directly measured by x-ray diffraction, being related
to the small-angle contribution of the distribution of x-rays scattered by the polymer
in a solution.

Another quantity that is directly related to an experimentally measurable quantity
is the hydrodynamic radius:

RH = kBT

6πηD
(8.5)

While being a useful and easilymeasurable quantity, routinely used to estimate the
size of globular proteins over a large range of sizes by the technique ofDynamic Light
Scattering (DLS), the determination of RH however relies on measuring the mobility
of the molecule in solution, rather than its physical size; moreover, knowledge of the
molecular diffusion coefficient D is required. To correlate RH to the actual size, as
measured by Rg and to a lesser extent by Ree, further information about the structure
of the polymer, its branching, local chemistry, is needed.
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Bending of rods and membranes1

The bending deformation, as well as the torsion (or twisting), is an example of a
non-homogeneous deformation, in which every point in the volume undergoes a
different displacement. For the study of bending of a long thin rod, let us consider
the sketch in the following figure. The rod is aligned with its length L along the
x axis and held fixed at the extremes, and we assume that its cross section has a
constant area A; let us consider the two points m and n along the middle axis, and
a perpendicular force f tending to bend the rod at the midpoint.

The effect of the force, in the regime of small deformation, is to impose a
nearly circular curvature to the rod by an angle Δθ , with curvature radius R. We
can calculate the resulting deformation by looking at what happens to any other
pair of points i and j , originally parallel to m and n in the undeformed rod:

mn = RΔθ i j = (R − h)Δθ

where h is the radial distance between the middle axis, and the (originally parallel)
axis joining i and j . The angular deformation, or strain, is:

εθ = (R − h)Δθ − RΔθ

RΔθ
= − h

R
= −γ h (8.6)

where we indicate as γ = 1/R the local curvature.
It should be noted that with respect to the “neutral” mn axis (whose length

does not change after bending), the lines having h > 0 (i.e., closer to the center
of curvature O) are contracted in length, while lines with h < 0 (more distant
from the center O) are stretched. Evidently, the strain εθ varies with h(x) all along
the length of the rod, being zero at the fixed points, and maximum at the middle
of the rod; the stress σ (roughly the force per unit area; see Appendix H for the
precise definition of stress) must follow the same profile. The bending moment M
is defined as the integral of the bending force f = σd A, taken over the values of
r spanning the cross section, from r = 0 at the middle axis to r = (A/π)1/2 at the
surface:

M(x) =
∫

A
σ(x)rd A (8.7)
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In themost general case,M(x) varies aswell along thewhole length 0 < x < L .
Note that the previous definition contains σ as the unknown, therefore it is not
particularly useful, unless some solution for the stress field inside the rod is known
(or can be guessed).

The Euler-Bernoulli equation provides the general relationship between the
applied force and the bending displacement h(x):

d2

dx2

(
EI

d2h

dx2

)
= σ (8.8)

with E the Young’s modulus of the material. By double integration along x , the
equation linking the variation of h(x) and M(x) is obtained as:

M(x) = −EI
d2h

dx2
(8.9)

The quantityI in the previous equations is the area moment of inertia of the
cross section perpendicular to x (not to be confused with the moment of inertia of
the rod), defined as:

I =
∫

dydz(y2 + z2) (8.10)

and contains the dependence of the bending moduli on the geometry of the rod. It
varies very rapidly, with the fourth power of the transverse size, e.g., it is equal to
I = πD4/32 for a thick cylinder of diameter D, or I = π(D4 − d4)/32 for a
hollow cylinder with internal cavity of diameter d; again,I = ab(a2+b2)/12 for
a rectangular section with sides a and b, which becomes I = a4/6 if the section
is square. The rapidly varying value ofI explains, for example, why an H-shaped
beam is more resistant to bending than a square or cylindrical beam (for the same
mass of material).

From the geometrical definition of the problem, we obtain the following
identities:

θ(x) = dh

dx
; γ (x) = 1

R(x)
= dθ

dx
= d2h

dx2
(8.11)

from which it is also R(x) = EI /M(x). In the classical “three-point-bending”
experiment, described in the figure, the radius of curvature changes at every point
along L; the solution of theEuler-Bernoulli equation gives a third-order polynomial
for h(x), therefore both R and M are linear functions of x , with their maximum at
the centre of the rod.

The elastic bending energy (stored in the rod by the applied force) is the integral
of the bending moment over the half-length of the rod, from zero to the maximum,
since the moment of the force acts in a symmetrical manner with respect to 0 <

x < L/2 and L/2 < x < L:
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Eel =
∫ θ/2

0
Mdθ =

∫ L/2

0
M(x)

dx

R(x)
(8.12)

For small deformations, it can be considered that in each small segment of
length the curvature radius is constant, and locally only axial stretching is acting,
so that σ � Eε. With such approximations, is is obtained:

Eel = 1

2
(EI )

L

R2 = 1

2
κbLγ 2 (8.13)

The constant κb = EI is the bending modulus of the rod, with dimensions
of [energy] × [length] (differently from all the other elastic moduli, which are a
volumetric energy density). Notably, κb includes both the information about the
material property, embedded in the Young’s modulus, and about the geometry of
the rod, embedded in the moment of inertia.

The bending of a flat membrane with finite thickness w, shown in the next
figure (left) can be treated by similar arguments by making reference to the def-
initions of local curvatures γ1, γ2 at a point P on the surface, and the {t1, t2, t3}
local reference frame at that point (see Fig. 11.6 on p. 487).

The drawings on the right of the previous figure describe the local rotation of
the plate with thickness w by effect of the bending force, applied perpendicular to
P (i.e., parallel to t3). The equivalent of the angle θ for the rod are now two distinct
angles φ1 and φ2 about the t2 and t1, respectively, and the bending amplitude h
is now function of the two directions h(x, y). Every point P ′(x, y) of the surface
about P(0, 0) is lifted with respect to the initial quota z = 0 by an amount h(x, y),
with the resulting strain tensor components:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε11 = h
∂φ2

∂x

ε22 = −h
∂φ1

∂y

ε33 = h

(8.14)

The two curvatures along the directions t1 and t2 are defined as:

http://dx.doi.org/10.1007/978-3-319-30647-6_11
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γ11 = −∂φ2

∂x
= ∂2h

∂x2
; γ22 = ∂φ2

∂y
= ∂2h

∂y2
(8.15)

The bendingmomentsM11 andM22 act symmetrically along the x and y borders
of the membrane, while M12 = M21 acts to twist the borders; by analogy with the
rod, the moments are defined as:

Mi jdy =
∫ w/2

−w/2
(σi j )zdz (8.16)

As we already did for the long thin rod, we can simplify the problem by assum-
ing local biaxial stretching/compression, by using the corresponding linear stress-
strain relations (see Appendix H in the next Chapter):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ11 = E

1 − ν2
(ε11 + νε22) = − E

1 − ν2
(γ11 + νγ22)h(x, y)

σ22 = E

1 − ν2
(ε22 + νε11) = − E

1 − ν2
(γ22 + νγ11)h(x, y)

σ12 = E

1 + ν
ε12 =

(8.17)

from which the explicit formulae for the (linearized) bending moments are:

M11 = Kb(γ11 + νγ22) ; M22 = Kb(γ22 + νγ11) ; M12 = Kb(1 − ν)γ12
(8.18)

or in compact form Mi j = Kb[(1 − ν)γiγ j + νγ 2
k δi j ], with δi j the Kronecker

symbol.
The elastic bending energy of the plate membrane is then:

Eel = 1

2

∑

i j

Mi jγi j = Kb

2
[(1 − ν)γi j + νγkkδi j ]γi j =

= Kb

2

{
(γ11 + γ22)

2 − 2(1 − ν)
[
γ11γ22 − (γ12)

2]} (8.19)

The constant Kb = Eh3/12(1 − ν2) is the bending modulus of the mem-
brane, with dimensions of [energy]. Note that for a locally spherical or cylindrical
curvature γ12 and M12 are both zero. The average curvature is often indicated as
H = 1

2 (γ11 + γ22), while the product G = γ11γ22 is called Gaussian curvature.

1For the definitions of the stress/strain tensors (σ, ε) and elasticmoduli (E, ν), seeAppendix
H on p. 422.
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8.1.2 The Worm-Like Chain

If the freely-jointed chain model is successful in describing easily bendable polymer,
such asRNAor single-strandDNA,proteins like titin, or long sugars like polyglycans,
it starts to fail when the monomer chain becomes increasingly rigid, and its bending
occurs over lengths several times longer than the typical monomer size b. Such
kind of polymers require a model in which the chain can be described as a smooth
arrangement, with a curvature distributed and correlated over many segments. In the
extreme limit, the monomer size becomes so small compared to the typical bending
length that the chain can be described as a continuous filament (such as that in
Fig. 8.2a), abandoning the individual tracking of each monomer. By analogy with
the snaking movement that it evokes, this description of the polymer is called the
worm-like chain model.

In this model, firstly introduced in 1949 by the Austrian physicists Otto Kratky
and Günther Porod in the context of quantum spin chains, the chain is described
by a continuous variable x spanning the polymer length L . A point on the chain
is identified by its continuous position vector r(x), and at each point two unitary
tangent and normal vectors can be defined, as:

t(x) = dr
dx

; n(x) = dt
dx

(8.20)

The end-to-end distance is given in this model by the integral:

Ree =
∫ L

0
t(x)dx (8.21)

Also a binormal vector perpendicular to the plane identified by t and n can be
defined, as the vector product of the two, b(x) = r(x) × t(x). The normal vector
measures the local curvature of the polymer in the plane containing t and n, as the
variation of the tangent orientation θ between any to close points x and x ′ (see again
Fig. 8.2a).

The change of the tangent vector along the curved path also gives a measure of
the amount of elastic energy needed to bend the filament, with respect to the straight
configuration representing the zero of the energy, as:

Eel = κb

∫ L

0

(
dt
dx

)2

dx (8.22)

Here κb is a constant characterising the resistance to bending of the material
composing the filament, called the bending modulus (see greybox on p. 322). If we
imagine to discretise back the continuous polymer into M small segments of length
u (not necessarily coinciding with b) within which the curvature is nearly constant,
the elastic energy can be also written as:
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Eel = κb

u

M−1∑

i=0

(ti · ti+1) = κb

u

M−1∑

i=0

cos θi (8.23)

of which the Eq. (8.22) represents the continuous limit for u → dx .
By statistical mechanics arguments, it can be shown that the average value of the

correlation of the tangent vector at distant points along the chain decays exponen-
tially:

〈t(x) · t(x ′)〉 = 〈cos θ〉 ∝ e−|x−x ′ |/λp (8.24)

The dot product between the two tangent vectors, averaged over all points and all
distances x − x ′, is a measure of the probability of observing a given orientation of
the tangent along the length L: if the curvature is slowly varying, the dot product is
∼1 for long portions of the length, while if the curvature changes wildly over short
distances, the dot product fluctuates randomly between 1 and −1, averaging to ∼0
over short lengths. The typical length, λp in the previous equation, over which the
tangent retains a good correlation is called for this reason the persistence length.

A further meaning of this new quantity λp can be found, by looking at its rela-
tionship with Ree:

〈R2
ee〉 = 〈(r(L) − r(0))2〉 =

∫ L

0
dx

∫ L

0
dx ′〈 dr

dx
· dr
dx ′ 〉 =

=
∫ L

0
dx

∫ L

0
dx ′〈t(x) · t(x ′)〉 =

∫ L

0
dx

∫ L

0
dx ′e−|x−x ′ |/λp =

=
∫ L

0
dx

[∫ x

0
dx ′e−(x−x ′)/λp +

∫ L

x
dx ′e−(x ′−x)/λp

]
(8.25)

Note that the modulus |x − x ′| was split over two integrals to keep it positive valued.
The result of the double integration is:

〈R2
ee〉 = λp

∫ L

0
dx

[
2 − e−x/λp − e−(L−x)/λp

] =

= 2λpL

[
1 − λp

L

(
1 − e−L/λp

)]
(8.26)

In the limit of a highly flexible polymer, λp << L , it is 〈R2
ee〉 ∼ 2λpL . By

comparing this expression with the corresponding one for the freely-jointed chain,
〈R2

ee〉 = Lb, we can identify a sort of “equivalent” monomer length, b̄ = 2λp, over
which the curvature remains constant, and which allows to describe the worm-like
chain as an equivalent freely-jointed chain but with different monomer size b̄, the
so-called Kuhn length of the polymer.

Notably, semi-flexible biopolymers such as collagen, double-stranded DNA,
F-actin, are well described by the worm-like chain model. However, it can also be
seen that the freely-fluctuating polymer as described by either the freely-jointed chain
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or the worm-like chain models, occupy much larger volumes than their “containers”,
as it is easily verified by using the above Eq. (8.26) to estimate the average size
of some biopolymers: for example, the T2 bacteriophage virus DNA has a contour
length L = 50µm and Kuhn length b̄ ∼ 110 nm, therefore its average size should
be about

√
Lb̄ ∼ 2.3 µm, however the T2 viral capsid measures just 100 nm; again,

the E. coli DNA with its 4.6 million base pairs is L = 15 mm long, for an average
polymer size of 40 µm, but the whole bacterium cell is a much smaller cylinder of
about 2 × 1 µm (length × width). Clearly, some smart packaging mechanisms are
required to fit such lengths within those restricted volumes.

8.2 Biological Polymers

The polymers that are found in the cell have a bending elasticity modulus (with units
of [Energy][L]) that can vary over more than six orders of magnitude: from the very
flexible alkyl chains (CH2)n with κb ∼ 10−2 eV nm, to semi-flexible proteins like the
F-actin (κb ∼ 200−400 eV nm), to very rigid objects like themicrotubules (κb ∼ 105

eV nm). On the micrometer scale, such polymers chan change shape as a function
of several external parameters, such as pH or temperature, passing from bundles
of parallel strings (like uncooked spaghetti) to tightly folded globules (like boiled
spaghetti). As we are going to see, the elastic properties and the great conformational
freedom of such objects are mostly of entropic origin.

8.2.1 Bending Fluctuations and the Persistence Length

If we consider an elastic string at T = 0 K, it has zero kinetic energy; moreover,
if we take it to have no interactions with the surroundings, also its potential energy
is zero. Such a thing should adopt the shape that allows it to minimise the internal
elastic energy: the deformation tensor (see Appendix H) should be identically zero,
εi j = 0, therefore the shape should be a straight line. However, at any temperature
T > 0 K, on the other hand, the filament can start exchanging some elastic free
energy against the energy of thermal fluctuations from the environment. With the
above quoted values of typical linear bending modulus of a biopolymer, a fragment
of a few nm length can bemore or less severely perturbed already by thermal energies
of a few 10−2 eV (corresponding to T ∼ 300 K). As a result, thermal fluctuations
will make the polymer explore many deformed configurations, by trading internal
energy and entropy.

At constant temperature, the equilibrium is ΔF = ΔE − TΔS = 0. The proba-
bility of finding the polymer in a given deformed state, which costs an elastic energy
ΔEel , is proportional to its entropy, or to the number of equivalent microscopic states
Ω by which this same deformed configuration can be obtained:
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Fig. 8.3 A polymer can explore a number of configurations corresponding to the same value of
energy at constant temperature. a At low temperature, the polymer has little excitation energy to
spend, therefore it remains nearly straight; correspondingly, the number of equivalent conformations
Ω is small, and so is its entropy.bAs the temperature is increased, the polymer explores an increasing
number of equivalent conformations: its elastic energy is higher, and compensated by an increased
entropy because of the increasedΩ . cAt the highest temperatures, the polymer can assume a highly
folded structure, allowing it to store a high elastic energy, and to explore a very large number of
equivalent conformations, with a correspondingly high entropy. The dynamical transformation of
the polymer from a to c is called the coil-to-globule transition: the Ree and Rg parameters change
drastically from large to small

P(ΔEel) ∝ Ω(ΔEel) ∝ exp(−ΔEel/kBT ) (8.27)

The larger the number of equivalent conformations the polymer can adopt, the
higher its entropy. But also, since the more variable conformations are also the more
deformed ones, the higher its elastic energy (Fig. 8.3). The function exp(−ΔE/kBT )

is as usual the Maxwell-Boltzmann distribution at the temperature T . Such a func-
tional form of the probability distribution also tells that the higher the difference
in elastic energy for a given conformation, the smaller its probability. Therefore,
our polymer will tend to adopt less curved conformations at lower temperature, and
increasingly more bent and twisted conformations as the temperature is increased.

By using the above defined variable 0 < x < L spanning the length L of the
polymer, the elastic bending energy for a filament locally bent by some angle θ(x)
(or, with a local radius of curvature R(x)) is found by integrating the expression:

Eel =
∫

L
κbθ(x)dx = κb

L

∫ θ(L)

θ(0)
θdθ = 1

2

κb

L
〈θ〉2 = κB L

2〈R〉2 (8.28)

This latter equation is just the Eq. (8.22) above, in which we introduced formally
the average curvature radius 〈R〉, or the average angle 〈θ〉. Such (unknown) values
can provide an approximate characterisation of the extent of folding of the polymer,
which will ultimately correspond to an average elastic energy. (Of course, such a
characterisation is very rough, if we hope to capture the complex fluctuating behavior
of the polymer with just one simple number.)

It may be noted that the elastic energy in this small-deformation limit is always
associated to a quadratic form, either in the curvature (Eqs. 8.13 and 8.19), or the
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normal vector (Eq. 8.22), or the curvature radius or angle (Eq. 8.28). This is always the
case, whenever a linear approximation for a force, or a generalized force is adopted:
if the force depends linearly on a parameter y, f = − dU

dy ∝ y, the corresponding
potential energy, that is the integral of f dy, is necessarily quadratic in the parameter
y, U ∝ y2. This is called a harmonic approximation of the potential energy, since
its prototype is the harmonic oscillator (see greybox on p. 446).

As it is usualwith thermally-driven excitations, the firstmoment of the distribution
of the fluctuating variable, in this case the average angle, is zero 〈θ〉 = 0. Therefore,
to characterise the thermal fluctuation we must calculate the average root-mean-
square fluctuation, 〈θ2〉 = 0. This can be estimated by probability averaging of the
fluctuating θ -squared values:

〈θ2〉 =
∑

i θ
2
i P(θ2

i )∑
i P(θ2

i )
(8.29)

But as Eq. (8.28) tells us, the values θ2 are proportional to the elastic energy, and
so must be their probability distribution. Then, P(θ) can be replaced by P(ΔE), and
by replacing the sums with integrals, for finely spaced energy values:

〈θ2〉 =
∫

θ2
i P(ΔE)dθ∫
P(ΔE)dθ

=
∫

θ2
i e

−ΔE/kBT dθ∫
e−ΔE/kBT dθ

=
∫

θ2
i e

−κbθ
2/2LkBT dθ∫

e−κbθ2/2LkBT dθ
(8.30)

The result of the Gaussian integrals in the numerator and denominator is known
(see Appendix A to Chap.2), and gives:

〈θ2〉 = 2LkBT

κb
(8.31)

Interestingly, since the bending modulus has dimensions of [Energy][L], a new
quantity with dimensions of [L] can be identified:

λp = κb

kBT
(8.32)

This λp is a characteristic length of the filament at any temperature, and is just the
same persistence length that was previously defined. Because of its relationship with
the average bending angle 〈θ〉, such a quantity gave us a measure of the length over
which the curvature is constant; here, by taking the non-dimensional ratio L/λp it is
also a kind of “bending number” of the polymer segment at a given temperature. In
other words, it gives a quick measure of the average number of bends that one can
expect in a fragment of length L , thus being a kind of natural wavelength.

As a third, very interesting interpretation, it will be noted that λp also gives, for a
polymer of given rigidity κb, the typical length over which the fragment appears stiff
or flexible: a fragment with length L smaller or ∼λp appears rigid, since it allows no
bends; a fragment with L >> λp has many bends, and looks flexible. What this tells

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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us, is that there is no such thing as an absolute stiffness or absolute flexibility when
we discuss the elasticity of long filaments: it all depends on their length. It is common
experience that if we take a 1cm of chicken wire this will be quite rigid, while 1m
of the same wire will be very flexible. Furthermore, by looking at Eq. (8.32) for a
given polymer type and fragment length, it can be seen that the persistence length
decreases with increasing temperature, a measure of the effect of larger temperature
fluctuations.

The persistence length of the more flexible biological polymers in the cell varies
between the λp = 0.5 nm of titin (the biggest known protein in the human body),
to 10–15 nm of spectrin or proto-collagen, to about 54nm of DNA. Note that such a
value of λp justifies the good applicability of the worm-like chain model to describe
ds-DNA, since the b of its monomers (the nucleobases) is about 3.4 nm, 30 times
smaller than the equivalent Kuhn length. For a typical cell diameter D ∼ 10–20
µm, intermediate values of λp ∼ D are quite typical of many cytoskeletal polymers;
however the extreme case of microtubules is worth mentioning: with a λp of several
millimetres, microtubules inside the cell appear as rigid as a steel reinforcement in
a concrete structure, despite their Young’s modulus being less than 1/200th that of
steel.

8.2.2 Elasticity From Entropy

It must be observed that the number of conformations Ω for a folded polymer is
very large, compared to the corresponding number for a nearly straight polymer (see
again Fig. 8.3 on p. 329). Strictly speaking, a perfectly straight filament has a value
Ω = 1, since it is allowed only one configuration (we neglect axial rotations about
the length, which leave the conformation identical).

Therefore, we expect also the entropy, S ∝ lnΩ of a folded conformation to be
higher than that of an elongated conformation. When a force f is applied to the two
ends of a folded polymer to unfold and elongate it (such as the red and yellow ends of
the polymer in Fig. 8.3c), this force works against the entropy of the system, which
would naturally keep the folded structure with a larger S.

For the simpler freely-jointed chainmodel, the unfolding occurs without chemical
changes of the internal molecular structure, and without stretching or bending of the
individual monomers. It can be considered that the system enthalpy is not changing
during the forced unfolding (in fact it is identically zero), therefore the entropy change
practically coincides with the system free-energy variation, ΔF = TΔS.

The resistance to the unfolding in this entropic deformation regime is therefore
due to the natural trend of the system to search for states with the highest value of
entropy.An amount ofmechanicalworkΔW has to be spent by the external unfolding
force, pulling through an elongation Δx to reduce the entropy of the folded polymer
to that of an elongated filament:

f =
(

ΔW

Δx

)
f̂ = −T

(
ΔS

Δx

)
f̂ (8.33)
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so that f · Δx = ΔW = TΔS. Note that the elongation Δx is taken along the
direction projected on the unit vector parallel to the applied force f̂ = f/|f|; the force
applied at the two ends acts on the whole length L , to increase the polymer from Ree

to Ree + Δx as:

f · Δx =
∫ R+Δx

R
(f · t(x)) dx = f

∫

L
cosα(x)dx (8.34)

where α is the angle formed by the applied force f and the local tangent t(x), and
f = |f|.
The probability distribution of the freely-jointed monomers in the folded config-

uration was previously described to be akin to that of a gas, with a Gaussian function
of average Ree and variance σ = Nb̄2:

P(R) ∝ exp(−R2
ee/2Nb̄2) (8.35)

Let us try to push further our analogy of the entropic elasticity, by taking that
the free energy of the folded chain polymer elongating by a small amount x can
be characterised by a kind of average “entropic spring”, KS , ideally working just
like a hookean spring, ΔF = 1

2KSx2. If we compare the distribution of the folding
energies with that of the equivalent harmonic spring, we get:

P(ΔF) ∝ exp(−KSx
2/2kBT ) (8.36)

The mean root squared displacement being 〈x2〉 = 1
3 〈R2

ee〉 (each direction x, y, z
contributes 1/3 of the average displacement R), the arguments of the two exponentials
can be equated, eventually finding the following result for the effective entropic
“spring constant”:

KS = 3kBT

Nb̄2
= 3kBT

2Lλp
(8.37)

To obtain the second identity, we used λp = b̄/2 as an estimate of the persistence
length, for the case of a semi-flexible polymer with Kuhn length b̄. Such an elasticity
is of a purely entropic origin. It comes from the resistance of the polymer to adopt
any conformation that would decrease its entropy. The force-extension relationship
would be of the Hooke’s type:

x = f

KS
= Nb̄2

3kBT
f (8.38)

however valid only for small extension x of the polymer. This is because we assumed
that only small variations around one single value of the free energy could take
place during the deformation. The more general case, in which all the free energy
contributions are weighted according to their probability of occurrence, is discussed
in the greybox on p. 333.
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The force-extension curve of a free polymer

An expression valid for a more general deformation state can be obtained by using the probability
distribution P(ΔF) as a weight for all the deformed configurations corresponding to any value
of entropy during the polymer chain extension. Let us call Z a normalization factor equal to the
integral of all statistical weights:

Z =
∫

e−βFdF (8.39)

with β = (kBT )−1. In physics, a function like Z is called a partition function.
Then, the average value of ΔF = F − F0 for each given deformation state with respect to the

undeformed free energy F0, should be:

〈F〉 =
∫
Fe−βF

Z
dF + c = − 1

Z

∂Z

∂β
= − ∂ ln Z

∂β
(8.40)

or:
〈F〉 = −kBT ln Z (8.41)

By looking at the Eq. (8.34), we note that each Kuhn segment b̄ contributes the same length
in the integral.

f Δx = f
∫

cosαdx = f b̄ cosα (8.42)

Therefore, the overall partition function for the freely-jointed chain is Z = (Z1)
N , with:

Z1 =
∫

e−β f b̄ cosαdΩ = 2π
∫ π

0
sin αe−β f b̄ cosαdα =

= −2π
∫ −1

1
ue−β f b̄udu = 4π

β f b̄
sinh(β f b̄) (8.43)

for each Kuhn segment, and the average free energy during the polymer extension is:

〈F〉 = −kBT ln(Z1)
N = −NkBT ln

[
4π

β f b̄
sinh(β f b̄)

]
(8.44)

The elongation Δx is the derivative of the free energy with respect to the applied force, thus:

Δx = −dF

d f
= Nβ−1 d

d f

[
ln

(
sinh(β f b̄)

) − ln f
] = Nb̄

[
coth

(
f b̄

kBT

)
− kBT

f b̄

]

(8.45)

For small values of f � kBT/b̄, coth u−1/u � u and the same small-elongation expression
as Eq. (8.38) is retrieved; however, for large forces coth u → 1 and the force is seen to diverge:

f = kBT

b̄

1

1 − z/L
(8.46)

as Δx → L , when the elongation approaches the contour length, i.e. at a strain ε ∼ 1.
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It may be interesting to note that the entropic stiffness of the polymer increases
with the temperature (in parallel to its persistence length decreasing, Eq. (8.32)).
In fact, a very simple experience that can be done at home is to suspend a small
weight with an elastic string, and heat the string with a hair-dryer: contrary to the
intuition (the rubber becoming softer?) the weight will raise, since the stiffness of the
equivalent spring has increased. In the deformation of polymeric chains, and notably
for the polymerised filamentary proteins constituting the cell cytoskeleton, which we
described in Chap.6, the most important contribution to the elastic response comes
from entropy. Only for the more rigid structural elements, such as the microtubules,
the enthalpic (ordinary) elasticity of the chemical bonds plays a more relevant role.

An equivalent force-extension relationship can also be obtained for the worm-like
chain model. In this case, the free energy contains both an elastic energy term and
the already known entropy of the folded polymer:

ΔEel − TΔS = κb

2

∫ L

0

(
dt
dx

)2

dx − f
∫ L

0
cosα(x)dx (8.47)

No analytic solution exists for this equation, however a numerical solution accu-
rate to better than 0.1% has been obtained in the literature:

f = kBT

λp

[
1

4

(
1 − x

L

)−1/2 − 1

4
+ x

L

]
(8.48)

Note that this force-extension relationship qualitatively resembles that of the
freely-jointed chain (derived in the greybox), with different numerical coefficients:
at small values of force it gives a linear-spring-like response, with an effective spring
constant kBT/Lλp; while at large forces, it diverges as the extension approaches the
contour length, x → L . However, the divergence is (x/L)−1 for the freely-jointed
chain, while it goes with the power −2 for the worm-like chain model, therefore the
former force curve would be more shallow than the latter.

8.2.3 Pulling Nanometers with Piconewtons

The characteristic features of the force-extension (or stress-strain) equations for sin-
gle molecules, derived in the previous Section, can be appreciated in the Figs. 8.4
and 8.5. In the first one, the results of experiments of stretching a DNA molecule by
the optical tweezers technique are shown. This experimental technique, introduced
in 1986 by the Nobel laureate Steven Chu at Berkeley, [2] is based on the use of
optical traps, by which small dielectric microparticles can be positioned and moved
with great precision. An optical trap is formed by tightly focusing a laser beam with
an objective lens of high numerical aperture. Dielectric microparticles in the vicinity
of the focus experience a three-dimensional restoring force from the ‘radiation pres-
sure" of the laser light, directed toward the focus. Typically, for small displacements

http://dx.doi.org/10.1007/978-3-319-30647-6_6
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(<150 nm) of the microparticle from its equilibrium position, the force gradient is
linearly proportional to the displacement and the optical trap is well approximated
as a linear spring. If a molecule or another object is attached to the microspheres
(see Fig. 8.4a) it can be pulled by the movement of the trapped bead. By knowing the
laser parameters, the corresponding force is deduced from the measurement. Since
the typical Young’s modulus of biomolecules is in the range of E ∼ 10–100s MPa,
with sizes in the 1–10 nm, nanometer-scale displacements and pN forces can be
detected.

In Fig. 8.4b it may be observed that the worm-like chain model provides an excel-
lent fit of the entire first part of the curve, covering both the entropic regime, in which
the tangledpolymer is unfolded, and the “enthalpic” regime, inwhich theDNAshould
be already fully elongated and the force starts pulling on the single nucleotide bonds.
The fit with the freely-jointed chain model, compared to the worm-like chain in
Fig. 8.4c, as expected, predicts a more shallow force-extension curve.

From the panel (a) in Fig. 8.4, for the case of DNA, it can also be observed that at
about f ∼ 65 pN the force-extension curve is abruptly interrupted by what has been
called an “overstretching transition”.What happens toDNA in this part of the curve is
not entirely clear, however it should probably constitute a structural transformation,
either associated to the separation of the two helical strands, or possibly to a collective
switching of the nucleotide bonds to a different form. In any case, it is seen that when
the strain reaches ε ∼ 1.75 this transformation is completed, and the curve resumes
its rapid increase.

Fig. 8.4 Experiments of stretching of DNA fragments by means of the “optical tweezers” instru-
ment. a The DNA molecule is fixed by its two ends on the surface of two plastic microspheres of
a few µm size. One of the microspheres is held fixed by a pipette, while the other is dragged by
the electric field gradient produced a tightly focused, moving laser beam. This movement can pull
the DNA molecule to almost twice its original length. In this way, piconewton-scale forces can be
measured, over displacements of a few nm. b Force-extension curve; the force is in pN, the extension
is relative to the contour length ΔL/L . The WLC red curve represents the fit of the first part by the
“worm-like-chain” model, Eq. (8.48). The “overstretching” plateau connects the region in which
DNA responds as a whole double-stranded molecule, to the region in which it appears to respond
as the sum of two independent single strands. In fact, the second red curve (corresponding to the
force release, and the DNA folding back to its non deformed state) is better fitted by a freely-jointed
chain model (FJC) for single-strand DNA. [Image from Ref. [1], repr. w. permission]
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The following Fig. 8.5 shows the results of stretching experiments performed
on a multidomain protein, by a different experimental technique, the atomic-force
microscope probe. The giant molecule titin, longer than 1µm, is composed bymore
than 34,000 amino acids, organised into 244 subdomains belonging to two types, the
immunoglobulin (Ig) and the fibronectin. In Chap.10 we will meet again titin, the
template molecule relying the extremities (Z-disk) of the muscle sarcomeres, with
the fundamental role of relaxing back the muscle fibres after an effort. Titin does
this exactly by stretching its many domains under stress, and by folding them back
after the stress is released. In the experiments by the group of Gaub, Rief and their
coworkers inMunich, [3] fragments of titin containing only eight (nearly) identical Ig
domainswere subject tomechanical stretchingby the techniqueof atomicmicroscope
force-probe (AFM), to test this molecular mechanism of folding and unfolding under
stress.

In this type of experiments (Fig. 8.5a) an atomic-force microscope is used as a
mechanical tester, by attaching one end of the molecule on a fixed substrate (glass,
plastic), and the other end to the tip of a micron-sized mobile cantilever. The force on
the cantilever can be controlled to the precision of a few pN, and its displacement is
recorded by the interference pattern of a laser beam reflecting on its back surface. The
main difference with respect to the optical tweezer technique, besides the obviously
different technical set up, is that such an instrument provides a much higher effective

Fig. 8.5 Singlemolecule stretching experiment performedon amulti-domain protein by the atomic-
force microscope (AFM). a The mobile cantilever of the AFM ends with an atomically-sharp tip, to
which one end of a molecule can be attached, while the other end is fixed on a piezoelectric scanner.
The displacement of the cantilever is monitored by the laser beam, reflected on a position-sensitive
detector (PSD). b Above the multi-domain protein is represented as a sequence of equal domains,
each folded into a globule; the applied force F pulls on one end. Below Each of the force peaks in
the stress-strain curve corresponds to the individual unfolding of one subsequent domain, and for
each domain the worm-like chain model (dashed lines) provides a good fit of the force-extension
curve. [Image adapted from Ref. [4], repr. w. permission]
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stiffness, thus allowing to perform mechanical testing of “stronger” molecules (with
a larger KS): where the optical tweezer allows a force range from fractions up to a
few pN, the atomic-force microscope can apply forces in the 10–100 pN range, for
similar displacements in the range of ∼10–1000 nm. On the other hand, the force
resolution of the AFM is not so good to test “softer” molecules.

What the Fig. 8.5b shows is the typical force-extension curve for such a system:
a number of peaks can be seen, after each one of which the force falls down to near
zero, and then restarts with a similar pattern; each of the force rising branches arewell
fitted by a shifted worm-like chain force curve; note the force in the range of∼2–300
pN, and the elongation of∼25–28 nm, for each individual branch. The interpretation
of such results is that under the applied stress, the individual subdomains of the
protein unfold one after another, following a similar unfolding pattern. For each
of the subdomains, the globule-to-coil unfolding scheme from Fig. 8.3 applies, and
each one of them can be seen as an independent polymer, unfolding like a worm-like
chain.

Experiments of the same typehavebeenperformedonvariousmacromolecules, on
fragments of chromatin (in which the DNA unfolding from the histone is observed),
as well as to detect andmeasure the strength of receptor-ligand binding, such as in the
biotin-streptavidin complex. As it will be seen in the next Section, optical tweezers
and atomic-force microscope have found application also in the measurement of
mechanical properties of much larger objects, such as cell organelles and even whole
cells.

8.3 Mechanics of the Cell Membrane

All cells are bounded by the plasma membrane, a closed, two-dimensional sheet of
7–10 nm thickness and extending for many 1000s µm2, which itself has a complex
architecture as it was concisely illustrated in the Appendix D to Chap.5. Its main
component is a double layer of various types of amphiphilic molecules, each with
a polar head and lipid tails, within which proteins such as ion channels and pumps
are embedded; a loose network of sugar polymers form the outer glycocalix, a sort
of protective layer of ∼0.5 to a few µm thickness, which is anchored to the double-
lipid membrane; the cytoskeleton, on the other hand, with its tangled network of
filamentary proteins such as actin, spectrin, microtubules, is attached to the same
membrane from the inside surface.

On the other hand, the outer cell membrane is far from being the only example of
two-dimensional material structures found in the live cell. The nucleus, mitochon-
dria, the Golgi organ, various kinds of vesicles and endosomes, are all made of, or
wrapped by a double-layer membrane; the endoplasmic reticulum is itself a huge
membrane surface, 10–25 times larger than the whole plasma membrane, multiply
folded and dramatically curved. Membrane-enclosed organelles may take up to half
of the cell volume, with themitochondria occupying about 20% and the endoplasmic
reticulum about 15% of the total. Overall, various types of cells host between 104 to

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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Fig. 8.6 The surprising variety of shapes observed in simple experiments of lipid bilayer self-
assembly in water, as a function of temperature and osmotic pressure. a Discocyte-stomatocyte
transition. With increasing temperature, the up/down symmetric discocyte (left shape) turns into a
symmetry-broken stomatocyte. b Starfish vesicles. c Prolate and pear-like shapes. [Photos (a) and
(c) from Ref. [5]; (b) from Ref. [6]. c©American Physical Society, repr. w. permission.]

more than 105 µm2 of membrane-like material. All such membranes have a similar
composition, in which phosphatidyl-choline makes up 25–55% of the total lipids,
phosphatidyl-ethanolamine covers another 15–20%, and other lipid variants occur in
smaller concentrations. From the physical point of view, such chemical differences
may be interesting to the extent that they can impart the membranes more or less
different properties, such as density, rigidity, in-plane diffusivity.

However, as physicists we believe it to be our mission to try to find regularities
and similarities amongwidely different systems, and possibly to identify the simplest
model systems that can provide fundamental information about the luxuriant forest
of such complex and rich structures. Cell membranes represent another challenging
area in which biophysics has been working, by applying exactly the ‘model-first’
state of mind and the corresponding practical attitudes. In this respect, water-filled
artificial vesicles formed by just a closed lipid bilayer, without all the complexity
and variability of the membranes observed in the cell, have represented in the recent
past an ideal playground to study the flexibility, mechanical resistance, elasticity and
deformability, topological properties of membranes.

Bilayers form spontaneously in a process of self-aggregation when lipids are
dissolved in aqueous solution, due to their amphiphilic nature (see the phase diagram
in Fig. 5.15, Appendix D). Closed-shape vesicles with sizes in the micron range can
be obtained, and can be studied by conventional video microscopy and its variants
(Fig. 8.6). Such observations revealed an amazing variety of shapes, some of which
may be reminiscent on the shapes of real living cells, despite the fact that such simple
lipid vesicles are missing all the internal structures and chemical out-of-equilibrium
conditions of a real cell.

What is the physics behind vesicle and micelle folding? From a theoretical point
of view, wemust search for the appropriate free energy function, whoseminimisation
as a function of temperature, pressure, chemical composition, yields the observed
shapes.

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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The maths of curvature

The local curvature at any point O of a surface in 3 dimensions can be described geometrically
by two parameters: the mean curvature, H ; and the Gaussian curvature, G.

Their formal definition rests on the notion of a geometrical frame of reference local to the
generic point of the surface, identified by the triplet of vectors {t1, t2, t3}, as shown in the figure.

By taking the flat undeformed surface as reference (grey-shaded), the deformation at a generic
point P in the neighborhood of O is defined by the height h(x, y) measured from the reference
flat plane. The equation for h in terms of the unit vectors ti is:

h = 1
2

∑

i, j=1,2

γi j titj (8.49)

The 2 × 2 matrix of coefficients Γ = {γi j } would be identically zero for a flat plane (zero
curvature). The formal definition of the two global curvatures H and G is:

H = 1
2Tr[Γ ] = 1

2 (γ11 + γ22)

(8.50)

G = Det[Γ ] = γ11γ22 − γ12γ21

Values of coefficients for simple geometrical shapes are:

Γ =
(
1/R 0
0 1/R

)
sphere Γ =

(
1/R1 0
0 1/R2

)
ellipsoid

Γ =
(
1/R 0
0 0

)
cylinder Γ =

(
1/R 0
0 −1/R

)
saddle point

The two principal curvatures at any point O on the surface define the corresponding values of
the local curvature radii:

γ11 = 1

R1
γ22 = 1

R2
(8.51)

For a surface that can locally be approximated as spherical there is only one R, and one
curvature matrix element γ = γ11 = γ22; the corresponding definitions of the curvatures are
H = γ , and G = γ 2.

An alternative description of the local state of curvature of the surface at any point can be
given by the triplet of vectors {τ , b, n}, respectively called tangent, binormal, normal. They are
typically chosen with τ ||t1 and b|| − t2, such that n|| − t3. With this choice, it can be shown that:

H = 1
2∇ · n (8.52)
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8.3.1 The Minimal Free Energy Model

For a symmetric membrane, the chemical composition and environment of both
monolayers is identical. Therefore, the flat conformation is locally the state of
lowest energy. For a closed configuration, which is necessarily non-flat, the selec-
tion of the correct energy has to be guided by the essential physical properties of
closed bilayer membranes. Further, it is considered that the thickness of the mem-
brane is negligible compared to its surface, therefore the mathematical theory of
two-dimensional membranes could be used (see greybox on p. 322). The membrane
is much closer to a fluid than a solid, therefore it may be assumed that it cannot sup-
port shear parallel to the surface. Moreover, the water solubility of the phospholipids
is very low, therefore no material is exchanged between membrane and solution.
Finally, the small compressibility of the membrane implies that for a closed surface
the total area A must be constant.

The free energy of a bilayer of surface A, composed of 2N amphiphilic molecules
in water, can be symbolically written as a function of the specific area/molecule,
a = A/N (note that each surface element a is occupied by two molecules arranged
tail-to-tail with their heads facing the water), equal to the sum of the hydrophobic
and hydrophilic potentials per unit area (solvent-molecule interactions), and of the
molecule-molecule interaction potential:

F = 2Nφ(a) = 2N [φphob(a) + φphil(a) + φint (a)] (8.53)

If the membrane floats in the solvent without exchanging molecules with the
reservoir (N = constant), and it is free of adjusting its specific area, the equilibrium
state corresponds to the configuration for which:

(
∂F

∂a

)
= 0 (8.54)

In 1973 [7], Wolfgang Helfrich introduced the theoretical tool that should later
became known as the Helfrich’s hamiltonian.2 The equilibrium configuration of a
membrane is found in this approximate model by the free-energy balance between
bending energy, Eel , the local curvature (induced by the pressure imbalance, P ,
between the inside and outside of the membrane), and the intrinsic mechanical resis-
tance of the membrane, as expressed by its surface tension Σ :

F = Eel + Σ A + PV = 0 (8.55)

where the elastic energy of bending is given by the integral over the entire, deformable
membrane surface A, of the membrane bending energy from Eq. (8.19):

2As a curiosity, it may be noted that Helfrich was at that time working with Hoffmann-LaRoche
Laboratories in Switzerland, on the fabrication of the first liquid-crystals displays, a subject he had
started years before when working at RCA in Princeton and for which he is a credited inventor.
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Eel =
∫

A

(
1
2KbH

2 + KGG
)
d A (8.56)

with the two curvatures H and G being defined in the greybox on p. 339.
The coefficient KG = 2Kb(1 − ν), the Gaussian bending modulus Kb, and the

curvatures are taken to be locally spherical, in the small deformation regime. Both
Σ and the pressure P are parameters (in fact, they are Lagrange multipliers, see
greybox on p. 65) to be fixed in order to impose a value of surface/volume ratio. The
pressure includes the osmotic pressure difference across the membrane and, in the
case of a real cell, any mechanical actions by the cytoskeleton.

Any open edge of a membrane patch exposed to water costs a large energy. This
is why free membrane patches usually do not exist. Likewise, the topology of a
vesicle will hardly change, since this would imply to form transient edges with high
energy. A result known as the Gauss-Bonnet theorem proves that the surface integral
of the second term KGG in Eq. (8.56) depends only on the topology of a vesicle but
not on its shape, therefore if the topology does not change, it gives just a constant
contribution to the free energy, independently on how and how much the membrane
is deformed. Thanks to this result, the Gaussian curvature term is discarded when
considering vesicles of fixed topology, i.e. continuous deformations not leading to
cutting and/or rebinding the membrane surface.

The bending rigidity Kb is of the order of 2–4 × 10−20 J, i.e. ∼10 kBT meaning
that thermal fluctuations may not be very important in membrane physics, at such
length and energy scales (see below the persistence length µp of the membrane). On
the other hand, we will see later that entropic effects can give rise to peculiar thermal
effects.

For this minimal model, the solutions are found by numerically minimising the
free energy equation δF = 0 with Lagrange multipliers. The resulting stationary
shapes of free-standing vesicles at fixed A depend only on the reduced volume
v = V/A3/2, and the membrane bending stiffness Kb is the only energy scale in
the problem. (In the experiments, the volume V would be fixed by the osmotic
pressure: since the membrane is permeable to water, the volume grows until the
osmotic pressure is zero). Figure8.7, shows the free energy curves obtained for each
of the shapes corresponding to a given v; The way such a free-energy diagram must
be read is that, for each value of v, the vesicle would assume the shape corresponding
to the curve with the smallest free energy. By looking at the plot, three types of local
minima can be identified, corresponding to three different shapes: (1) the prolate
ellipsoid, or dumbbell, (2) the oblate ellipsoid, or discocyte, and (3) cup-shaped
forms, or stomatocyte (from the ancient Greek ‘stoma’, mouth).

While it allows to understand some of the characteristic features leading to dif-
ferent shapes, this minimal model is clearly too simple to cover all the deformation
states available to the lipid vesicles.
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Fig. 8.7 Free-energy diagram of the minimal model of the lipid vesicle shape. The free energy
on the y-axis is normalised to the value of the sphere, F0 = 8πKb; the x-axis is the reduced
volume v = V/A3/2. The schematic above provides a qualitative representation of the minimum
free-energy shapes observed for each stability region of the F(v) plot, notably stomatocyte shapes
for v < 0.591, prolate ellipsoids for v > 0.651, and oblate ellipsoids for intermediate values of v.
[From Ref. [8], repr. w. permission]

8.3.2 A More Refined Curvature Model

An important missing ingredient in the simple model of the membrane is the
neglect of its molecular architecture. Regions of the membrane with different
lipids can induce a “spontaneous” curvature, which in a real cell is also given by
membrane-bound proteins and cytoskeleton actions. In some refined versions of the
model, such effects are incorporated by a phenomenological parameter C0, repre-
senting the effect of the spontaneous curvature, to be summed to the mean curvature,
dE = 1

2Kb(H − C0)
2d A.

An effect which is even more important, and which arises in artificial vesicles as
well as in real membranes, is the role of lateral tension, different on the outer and
inner surface of the double-lipid membrane. When bending, the lipids in the inner
surface are compressed, while those on the outer surface are stretched; for both, the
specific density a is not the optimal a0 corresponding to the free energy minimum.
The numbers N+ and N− of molecules in the outer and inner monolayer are con-
served, since the exchange of lipid molecules between layers is slow compared to
the experimental time-scale of these observations. The (constant) number difference
(N+ − N−) leads to a preferred area-difference: ΔA0 = (N+ − N−)a0 between the
two layers, which appears in the expression of the total energy.
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Fig. 8.8 Phase diagramof the coupled-bilayermodel of the lipid vesicle shape. The plot represents a
cut in the (m0, v) plane for a particular value of α = 1.4. Only combinations ofm0 and v comprised
between the two limiting lines Lsto and L pear lead to finite solutions of the model. First-order
(continuous) transformation from one shape into another are indicated by dashed lines, second-
order (discontinuous) transformations by continuous lines. The existence lines do not extend for
values of v below the “critical” points T1, T2 and E . [From Ref. [9], repr. w. permission]

In a more complete free-energy model, we could therefore replace the simple
surface tension term, Σ A, by a contribution of area-difference elasticity (ADE):

EADE = απκ

2AK 2
b

(ΔA − ΔA0)
2 (8.57)

where α is a model-dependent parameter of order ∼1. The above expression,
quadratic in the preferred area difference, is the result of several attempts to include
the contribution of the lipid concentration difference.

Now, we need to minimize the new free energy:

F = Eel + EADE + PV (8.58)

In this coupled-bilayermodel, theminimal shapes depend not just on the reduced
volume v, but also on a second parameter, m0 = A0/2dR which is basically a con-
stant difference of lipid molecules between the two layers, scaled by the membrane
size dR. As one changes temperature or the osmotic conditions, both the parameters
v and m0 change, due to thermal expansion of the monolayer area, thus allowing to
explore the (m0, v) phase space. Since examining the three-dimensional surface of
F is complicated, Fig. 8.8 gives a representation of the (m0, v) for a particular value
of α = 1.4; similar diagrams can be traced for different values. As shown in the new
phase diagram, a trajectory in the (m0, v) plane cuts across the different regions of
stability of different vesicle shapes. The new free energy function now leads to pears,
shapes and a multitude of starfish shaped vesicles, comprised between the existence
lines Lsto and L pear (for values (m0, v) outside such lines, no solution exists for the
model). For example, for v = 0.8, values of 0.35 < m0/4π < 0.7 correspond to
stomatocytes; for 0.7 < m0/4π < 1. to oblates; for 1. < m0/4π < 1.5 to prolates;
for 1.5 < m0/4π < 1.75 to pear-shaped vesicles. Transitions from one shape to
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Fig. 8.9 Experimentally induced and theoretically predicted sequences of red blood cells morphol-
ogy. a 3D confocal microscopy images of RBCs in solutions of increasing concentrations of NaCl
(concentrations in mM shown on the images). b Theoretically predicted shapes that minimize the
shape energy of the free-energy function including the intrinsic stretch-shear energy ESS , under
constraints of total surface area 140µm2, and volume 100µm3; the sequence is obtained by chang-
ing the value of the effective reduced area difference Δa0. [From Ref. [10], repr. under CC-BY 3.0
licence, see (*) for terms.]

another, e.g., from prolate to pear, can be abrupt and discontinuous (transition of
“first order”, in the language of statistical physics), or smooth and continuous
(“second order”).

The role of the internal cytoskeleton in the shape of a real cell cannot be forgotten.
This internal structure imparts very different properties to themembrane compared to
the case of a free-standing vesicle, in which the membrane tension is only governed
by the osmotic pressure. One (relatively) simple way to include some such effect, is
to add yet another term in the free energy to account for intrinsic stretch and shear
of the membrane material (implicitly produced by the internal forces), ESS , as:

ESS = E||
2

∫

A0

f (εI )d A0 + μ

∫

A0

g(εI I )d A0 (8.59)

with f and g two non-linear functions of the in-plane strain invariant components,
εI = εxxεyy − 1 and εI I = (εxx − εyy)

2/2εxxεyy , respectively, E|| the (anisotropic)
membrane Young’s modulus in the plane, andµ the shear modulus. The two integrals
are calculated at the value of reference of the surface, A0.

Once this new free-energy function, F = Eel + EADE + PV + ESS , is min-
imised at fixed v and m0, an even wider variety of shapes can be obtained (Fig. 8.9),
notably the “urchin”-like shapes that red blood cells may assume by changing the
salt concentration in the physiological solution.
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8.3.3 Temperature and Entropy Fluctuations

The free-energy models developed until now are all taken at zero temperature. They
predict the equilibrium shape of vesicles and of simple cells, in the absence of any
thermally-induced fluctuations. On the other hand, video-microscopy experiments
show that such membranes are never stationary at finite temperature, but exhibit
visible fluctuations, likely induced by the temperature. How do we include such
fluctuations?

Suppose that the membrane is confined by a harmonic potential V (d) ∼ 1
2εd

2 at
a distance h, for example describing the presence of another cell membrane, or some
rigid obstacle [11]:

F = 1
2

∫

A

[
KbH

2 + 2Σ(a − a0) + εh2
]
d A �

�
∫

A

[
Kb(∇2h)2 + Σ(∇h)2 + ε′h2

]
d A (8.60)

To obtain the approximate expression on the second line we used the definition
H = 2〈γ 〉2 = 2(∇2h)2 for the mean curvature, and the approximation A − A′ �
A(1 − 1/ cos θ) � 1

2 Aθ2 = A(∇h)2 for a small portion of surface bent at a small
angle θ .

Let us now introduce temperature fluctuations of the membrane shape. Following
awidely diffused procedure in statistical physics,we assume that a generic shapefluc-
tuation can be expressed as the linear combination of elementary harmonic oscillation
modes. Each such “normal” mode is expressed as a combination of trigonometric
functions (sine/cosine) of the wavevector q = 2πn/L , with n = nxqx +nyqy +nzqz ,
and qx,y,z unit vectors in the momentum space. The amplitude hnx ,ny ,nz of each mode
is the coefficient of the linear combination, expressing the “weight” of each mode
in a particular deformed shape of the membrane. The first few normal modes in the
plane (i.e., with nz = 0), for a square patch of membrane, with unit length and fixed
borders (i.e., h = 0 everywhere on the perimeter), are shown in Fig. 8.10.

By considering that all fluctuation modes of the membrane, each carrying some
energyΔE , are simultaneously excited with a probability proportional to the respec-
tive Boltzmann factor exp(−ΔE/kBT ), it is convenient to study the power spectrum
of the fluctuations, by taking the Fourier transform (FT) of the energy in the q-space:

ΔE = 4π

L2

∑

q

(
Kbq

4 + Σq2 + ε′) |hq |2 (8.61)

the curvature term proportional to (d2/dr2)2 giving the q4 term, and the surface
tension term proportional to (d/dr)2 giving the q2 term, after FT (see Appendix A
for the FT).
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Fig. 8.10 The first 9 vibrational eigenmodes of a square membrane held fixed at the perimeter

Since we are interested in a planar system (the membrane), we can restrict the
q-space to the two x and y dimensions. The Fourier components of the membrane
vertical displacement h(x, y) are:

hq = 1

L2

∫ L

0
h(x, y)e−i(qx x+qy y)dxdy (8.62)

for an excitation wavevector q = (qx , qy), with modulus q =
√
q2
x + q2

y , in the plane

of the membrane; the hq describe the amount each fluctuation mode contributes to
the overall fluctuating shape of the membrane.

A simplified view of the role of temperature can be obtained by statistical aver-
aging over the modes, so we replace the summing over q, by Nq× some (unknown)
average amplitude h. Each of the Nq wavevectors (a normal mode) can be assigned
to carry on average 1

2kBT of energy, according to the equipartition principle:

ΔE � 4πNq

L2

(
Kbq

4 + Σq2 + ε′) 〈h2〉 = Nq

2
kBT (8.63)

giving the following estimate for the average vibrational amplitude:

〈h2〉 � L2

8π
(
Kbq4 + Σq2 + ε′)kBT (8.64)
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It may be noticed that for q → 0 (i.e., in the long-wavelength excitation limit)
the amplitude of the fluctuation grows as L2:

〈h2〉 � kBT

8πε′ L
2 (8.65)

and is a function of only the confining potential ε′. For an order of magnitude con-
sider ε′ = 10−20 J (that is, 2–3 kBT ), then the RMS amplitude of the constrained
fluctuations is about 10% of the membrane size L at T = 300 K. The average free
energy per unit area associated to such fluctuations is:

ΔE

L2
� kBT

L2
� (kBT )2

8πε′〈h2〉
(8.66)

Actually, this is an entropic contribution to the free energy per unit area, of the
order of (kBT )/µm2, arising from the constrained fluctuation of the membrane [11].
Thermally-excited undulations give rise to a long-range repulsion force between
membrane surfaces. Just like the elastic force in long-chain polymers, such a repul-
sion is entropic in nature: two membranes approaching at a distance d see their
“fluctuation space” restricted, therefore they tend to separate to increase the total
entropy. Such a repulsive force scales as d−2, with the same power law as the Van
der Waals force between two parallel plates.

In analogy with the entropic fluctuation of a polymer, a persistence length of the
free membrane can be defined, although its calculation is quite more complicate.
The standard result is µp = b exp(4πKb/3kBT ), with b a characteristic length, for
example a few nm. The exponential dependence on Kb (as opposed to the linear
dependence of λp on κb) makes this parameter very large in absolute terms. With
Kb ∼ 10kBT it is µp ∼ 105 km, meaning that for the free membrane fluctuations
are unimportant.

8.4 Deformation Energy

In the previous Section we only considered spontaneous bending of the vesicle
(cell) membrane seeking to optimise its shape, in order to reach the minimum free
energy at T = 0 K. Subsequently, it was shown that thermal fluctuations can disrupt
such perfect shapes, notably by inducing extra repulsive forces between approaching
membranes.

However, a large body of evidence in cell mechanics focus on the rearrangement
of cell shape according to internal forces, as well as the mechanical interaction with
its surroundings, be it other cells, extracellular matrix (collagen, fibronectins etc.), or
competing species, in the case of unicellular organisms. In this Section, we will then
ask what is the energy required to bend a membrane, made of a material with given
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bending modulus Kb, into an arbitrary shape defined by its local curvature radii R1

and R2?
The answer to this question is, in principle, a simple expression,dE = 1

2KbH 2d A,
to be integrated over the whole area A of the cell membrane, to get the total defor-
mation energy:

ED = 1

2

∫

A
KbH

2d A = 1

2

∫

A
Kb

(
1

R1
+ 1

R2

)2

d A (8.67)

where the relationship γkk = R−1
kk (k = 1, 2) between principal curvatures and

curvature radius was used.
As it can be easily imagined, during the deformation of a real cell under the

applied force the curvature can change, from one point to another of the surface, thus
making the calculation of the previous integral a daunting task. However, for simple
solid figures such as the sphere or the cylinder, the Ri ’s are constant on the whole
surface. Therefore, it may be tempting to decompose the calculation into a sum of
simpler contributions, where the deformed membrane is decomposed into a sum of
pieces of sphere, cylinder etc.

For a sphere of radius R, it is R1 = R2 = R over the whole surface of area
A = 4πR2. Therefore:

ED = (4πR2)

(
2Kb

R2

)
= 8πKb (8.68)

Strangely, this result is independent on the size of the sphere: the energy required
to fold into a sphere a sheet of 1 or 10 m2 of the same material, is the same! Such
a bizarre property originates from the fact that the surface bending modulus Kb is
already in units of energy: it already includes the length in its determination.

On the other hand, for a cylinder of diameter 2R and length L , we have R1 = R
and R2 = ∞ over the whole surface of area A = 2πRL . Therefore:

ED = (2πRL)

(
Kb

2R2

)
= πKb

(
L

R

)
(8.69)

Also in this case, the energy is a function only of the aspect ratio of the cylinder,
equal to L/R, but not of its absolute dimensions.

8.4.1 Membrane Protrusions and Cell Crawling

The stable shape of a deformable lipid bilayer results from the equilibrium between
the elastic tension of the material composing the membrane, mostly short-chain fatty
acids of the type -(CH2)n- with n = 14–18, and the sumof pressure differences acting
on the two sides. For a synthetic vesicle the pressure difference is simply given by the
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sum of partial osmotic pressures, which are equilibrated by the surface tension with
the Laplace equation (5.72) or (11.13). For the case of the cell membrane, besides
the presence of cholesterol and transmembrane proteins in various proportions, the
pressure difference must include also the mechanical stress exerted by the different
elements of the cytoskeleton.

We saw in Chap.6 that one very interesting mode of exerting mechanical pressure
by the cytoskeleton is done via the elongation or shortening of some of its filamentary
proteins, notably the F-actins, which transmit forces by pushing or pulling against
the cell wall. Such mechanisms were classified under the name of polymerisation, to
indicate the growth or shortening of a polymer by adding or subtracting monomers.
We may now ask whether such a mechanism of polymerisation of actin fibres is
actually capable of mechanically deforming the cell membrane, by forming the so-
called “protrusions”, and ultimately inducing the displacement of the entire cell?

By looking at the Fig. 8.11a, one of the protrusions (called pseudopodia, ancient
Greek for “false feet”) can be modelled as a long cylinder of length L , terminated by
a hemispherical cap of radius R. Typical values of the surface bending modulus for,
e.g., the membrane of a pseudopodium are in the range Kb = 2 × 10−12dyne cm =

Fig. 8.11 a Microphotography of a unicellular Amoeba proteus protruding several pseudopodia.
b Fragment of epithelial tissue with several cells; the leading cell (extreme right) protrudes a large
lamellipodium (green), leading the others (blue cell nuclei, green actin, red myosin). c Schematic
representation of the crawling motion of a cell. The green actin network is under active contractile
stress.; the lamellipodium (orange) protrudes forward, and a new adhesion is formed; the actin
network fixed at the focal adhesions contracts and pulls forward the cell body; the same contractile
force serves to detach the old focal adhesions at the trailing edge. [Photo (a) courtesy of F.J.
Siemensma, Microworld: world of amoeboid organisms. Kortenhoef, the Netherlands http://www.
arcella.nl; b courtesy of O. Cochet-Escartin, Institut Curie, Paris; repr. w. permission]

http://dx.doi.org/10.1007/978-3-319-30647-6_5
http://dx.doi.org/10.1007/978-3-319-30647-6_11
http://dx.doi.org/10.1007/978-3-319-30647-6_6
http://www.arcella.nl
http://www.arcella.nl
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2 × 10−19J = 1.25eV = 50 kBT at T = 300 K (please note the units: a force
multiplied by a length, giving an energy).

We may think of the corresponding deformation, as starting from an initially flat
portion of the cell membrane, which is pushed by the inner cytoskeleton struts into
the cylinder+hemisphere shape. By taking the energy of the flat membrane as zero,
the elastic work of the bending forces stored as deformation energy in the membrane
material, is:

W = ED(cylinder) + 1
2 ED(sphere) = πKbL

R
+ 1

28πKb (8.70)

For the membrane to resist to such a deformation, it is necessary that this amount
of work be less, or at best equal to the energy of the elastic tension of the material
composing the membrane:

W ≤ Σ A = Σ
(
2πRL + 1

24πR2
)

(8.71)

by taking that all the work is transformed into elastic energy (an ideal transformation,
with efficiency η = 1), and that the area of the deformed surface A is conserved.

For the above typical values of Kb = 50 kBT , and with R = 0.05 µm and
L = 1 µm (such a long and thin protrusion would be called afilopodium), we find
W = 3770 kBT , and Σ ≥ W/A = 11430 kBT /µm2, or 4.7 × 10−5 N/m, or again
0.047 dyne/cm at T = 300 K, a value fully compatible with the isotonic tension
at rest of typical biological membranes. As we had already found in Chap.5, the
typical values of Σ are at least one order of magnitude larger than the above values,
therefore it can be concluded that the cell membrane can withstand without problems
such a deformation imposed by the growing cytoskeleton. From the data of Chap. 6,
a single actin filament is capable of producing a “push” of about 5 pN for each step
of about 5 nm; by assuming a steady state, and a homogeneous density of filaments,
the elongation of the protrusion by 1 µm corresponds to a work of about 1000 pN
nm, or 250 kBT per filament, therefore a number of F-actin filaments between 10
and 20 could be enough to provide the right amount of push.

Cells initiate the migration cycle by extending protrusions of the cell membrane
towards the direction of a chemical gradient or mechanical perturbation. These pro-
trusions comprise large, broad lamellipodia, spike-like filopodia, or both, and are all
driven by the polymerisation of actin filaments. Protrusions are then stabilised by
focal adhesions, cluster of transmembrane proteins that link the actin cytoskeleton to
the underlying extra-cellular matrix. Once the link is stable, actin-myosin contraction
can generate traction forces on the substrate, and the entire cell canmove (Fig. 8.11c).
By a reverse mechanism of contractility, the cell also promotes the disassembly of
adhesions at the rear end, to allow the cell to move forward. Cell adhesion is closely
coupled with the formation of protrusions at the leading edge of the cell, called
filopodia, when these take a narrow shape, and lamellipodia, when they develop into
wider, plate-like structure (see Fig. 6.23). Nascent adhesions initially assemble in the
lamellipodium, and their rate of formation correlates with the rate of protrusion.

http://dx.doi.org/10.1007/978-3-319-30647-6_5
http://dx.doi.org/10.1007/978-3-319-30647-6_6
http://dx.doi.org/10.1007/978-3-319-30647-6_6
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It has been recently shown that such amechanism is not only capable of producing
cell displacement, but also of driving and organising the groupmigration of cells [12].
Itwas observed that at the edge of a group of 30–80 epithelial cells, a sort of finger-like
structure enables the pack of cells to migrate on a substrate, in a global process: cells
develop a collective mechanical behaviour that overrides individual cell behaviour.
One of cells takes the head of the group forward, to lead themigration (see Fig. 8.11b).
This “leader” cell swells, stops dividing and leads theway, by exerting a drag force on
the follower cells. These teaming cells also create a contractile pluricellular structure
along the migration finger, whose role is to prevent other cells from taking the leader
role within the finger, or straying away in another direction.

8.4.2 The Shape of a Bacterium

The interplay between deforming cell wall, polymerisation and depolymerisation
of cytoskeletal filaments, and mechanical constraints, can be put at work to study
of the growth and shape of a bacterium, a situation quite different and in many
respects much simplified compared to that of an eukaryotic cell, with its rich internal
structures. Already a relatively simple mathematical model can demonstrate how
a pure membrane under tension could not grow to a stable state, which is instead
possible to attain if the membrane deformation is equilibrated by dynamic bundles
of cytoskeleton fibres [13].

As it was briefly described in the Appendix D (p. 195), one main difference
between the external structure of a bacterium and an eukaryote animal cell is the
presence in the former of an outer cell wall, with the functions of protecting the soft
lipid membrane of the cell, and of imparting to the organism mechanical resistance,
rigidity, and overall shape. The bacterial cell wall is made up by a relatively rigid
network of peptidoglycan strands (a polymer consisting of sugars and amino acids),
cross-linked by short peptide bonds, and constantly modified and entertained by a
number of enzymes. A bacterium lacks a proper cytoskeleton, however some proteins
such as FtsZ, MreB and crescentin, have been shown to be important for shaping
the bacterial cell. In particular, MreB appears to play a role similar to that of actin
filaments in eukaryotes, in that it grows and shrinks by analogous polymerisation
mechanisms and, being attached to the cell wall, it provides about half of the overall
rigidity of the bacterial cell. As it is shown in Fig. 8.12, referring to a model of the
well-known E. coli bacterium, MreB filaments are arranged in a sort of helicoidal
spring about the inner cell wall.

In the simple model schematically represented in this figure, it may be assumed
that fragments d A of cell wall (proteoglycan) are added or removed randomly, while
the cell is growing in size, pushed by an internal “osmotic” force P . Since each free
fragment entering the cell wall must be deformed to fit the growing cell shape, the
corresponding free energy is the sum of three terms, dG = dED + Σd A − w0d A,
with w0 a chemical energy gain per unit area. Clearly, dED depends on the shape,
size and growth direction; therefore, there could be a size and shape for which the
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Fig. 8.12 Schematic representation of the E. coli cell wall. In a reversible reaction, the cell wall
area increases from A to A + d A, by adding peptidoglycan (green, PG) linked by peptide bonds
(red). A cytoskeleton substructure such as MreB is schematised as a helical bundle with preferred
radius R0 and pitch p, slightly smaller than the current cell radius R. [Adapted from Ref. [13],
w. permission]

increase in elastic bending exactly balances the gain in chemical energy, while the
cell grows in a particular direction. Also, it must be noted that for a “rigid” surface,
Σ can no longer be considered a scalar, isotropic value, but it must be a tensor-like
quantity, depending on both the direction of stretching and on the direction of the
applied force (i.e., a stress tensor, see Appendix H to the next chapter). Moreover,
this dG = 0 equilibrium is dynamical, in that the bacterial cell may start growing in
one direction, but then change to another. This could explain why rod-like bacteria
tend to grow up to a well-defined diameter, but keep growing to variable lengths in
the axial direction. If we further assume that, from some time on, the shape does not
change anymore, the surface can be described by a small set of parameters ai (for
example, the growing diameter and length). The driving force for surface growth can
thus be formally written as:

Fi = −∂G

∂ai
(8.72)

with dG = −∑
i Fidai , and the growth velocity of each parameter ai :

∂ai
∂t

= Mi Fi (8.73)

By using the above equations, one can firstly ask whether some simple shapes
are unconditionally stable during growth. For example, the cylindrical cell of radius
R(t) and length L(t), can be parametrised as:

R(x, t) = Rs(t) + B(t) cos(qx) (8.74)
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where Rs(t) is the steadily growing radius, and B(t) is some external perturbation,
periodic with wavelength ξ = 2π/q (this is a typical way of representing small
perturbations to a state of equilibrium). If the radius RB does not diverge to infinity,
nor it shrinks to zero, over long times, for any value of q and for B << R, then we
can say that our system is dynamically stable, i.e. it can resist generic perturbations.

The average free energy for a particular perturbation q is obtained by integrating
the following expression, over the lengthλ, and the azimuthal angle about the cylinder
axis φ:

G = q

2π

∫ 2π/q

0
dx

∫ 2π

0
dφ (ED + Σ − w0) (8.75)

As in the previous treatment of the membrane bending, the deformation energy
is just ED = πKb(L/R), where both L and R are now time-varying quantities. On
the other hand, deriving an expression for the “stress tensor” Σ requires a rather
complex treatment, which however can be eventually reduced to:

Σ = π P2

(
LR3

16h

)
(λ + 10µ)

µ(λ + µ)
(8.76)

Starting from the above expressions, the growth velocity of the perturbation ampli-
tude, dB/dt = −MB(∂G/∂B), can be obtained explicitly. The detailed calculations
for a bacterium such as E. coli demonstrate that for any wavelengths up to about
10 µm the growth of a cylindrical shape is unstable, and should be disrupted by
arbitrarily small random forces, e.g. temperature fluctuations.3 However, real E. coli
bacteria do not display such an instability, and can grow nicely cylindrical cells up to
lengths of several µm. Something important is missing from the model.

The important role played by the peculiar cytoskeleton, provided by the helicoidal
MreB scaffold (see again Fig. 8.12), contains at least part of the answer. The coil-like
structure of MreB can be added to the ensemble by including its contribution in the
free energy Eq. (8.75). To put it simply, this is made up of a chemical contribution,
−wm , and of aHooke-like elastic contribution,Um = 1

2km(R−R0), giving the energy
of a coil spring of radius R variable about the equilibrium value R0. The effective
stiffness of MreB is:

km = EmI

pR4
0

(8.77)

where p and R0 are the pitch and radius of the coil, as described in Fig. 8.12. By
taking theMreB filament as a thin, dense cylinder of diameter d = 3.9 nm, for which
I = πd4/64, and structurally homologous to F-actin, whose persistence length is
λp ∼ 15µm, an estimate for the effective Young’s modulus can be guessed from Eq.
(8.32), as Em ∼ 15kBT/I ∼ 5 GPa. Finally, by extracting a value of R0 ∼ 0.5µm

3It may be worth pointing out that the perturbation amplitude is described by a parameter α =
MB(c1q4 + c2q2 + c3), closely resembling the analysis of temperature fluctuations of the lipid
membrane in Eqs. (8.61) through (8.65).
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from fluorescence microscopy images of E. coli, the effective Hookean stiffness of
the MreB scaffold can be estimated at km ∼ 1.5 MPa/µm.

If now the stability against the perturbation B is carried out for the total free
energy (ED + Σ + Um − w0 − wm) in Eq. (8.75), it is found that the growth of
the cylindric cell wall is stable up to very long L , and for realistic values of R0 ∼
0.5 − 1µm. The force applied by MreB is opposite to P , therefore the internal
pressure can be balanced while the cell grows in size. The bacterial cell wall can be
regarded as an elastic curved sheet with perimetral MreB reinforcement, like a sort
of fibre-reinforced composite material. Of course, many other proteins can affect
the observed morphology of the bacteria, some of them being even necessary to
ensure a proper localisation and polymerisation of the MreB filament. Also, other
types of bacteria such as Bacillus subtilis, may have a non-isotropic cell wall, or a
less regular shape such as Caulobacter crescentus. Nevertheless, the simple model
presented here gives a first interesting insight into the coupling of the respective
stiffness of cell membranes and cytoskeletal filaments.

8.5 How a Cell Splits in Two

Cell division is the central mechanism operating in biology to grow and maintain all
pluricellular organisms, and to grant reproduction to unicellular organisms. It can be
estimated that a human produces many millions of new cells at every second, just
to maintain the organism at steady state. The life of a cell between two successive
divisions is regulated by passing through different phases, in what is called a cell
cycle.4 The details of the cell cycle can vary from one organism to the other, and
between cells of a same organisms, however there are some characteristics that must
remain constant. First and foremost, to produce a new cell identical to the original
one, it is necessary that theDNA is duplicated and correctly split between the two new
nuclei, by segregating the chromosomic material in two perfectly identical halves.
Secondly, most cells need to double their mass, molecule by molecule, protein by
protein, and duplicate all the cell organelles and subsystems. How all the necessary
steps are regulated and coordinated is still poorly understood, although in the past
decades scientists have been making enormous progress.

It is beyond the scope of this book to cover the biological details of the cell
cycle and the biochemical cascade of complex reactions. However, as a well traveled
biologist as Eric Karsenti puts it:

When you need to understand how molecules self-organise in a living system,
evolution theory is not sufficient. This is a problem of physics, or chemical physics.
If you pose such questions, you must look in the good direction, and ask physics for
answers. [...] Cell division is an example of a process of self-organisation in which a

4For themanydetails of this extraordinary process, the reader can consult any goodbiology textbook,
such as the classical Molecular Biology of the Cell, by Alberts, Bray, Lewis, Raff, Roberts and
Watson (Garland Science Pub., New York, 4th ed. 2002).
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bunch of molecules perform a precise function, the distribution of chromosomes. The
general organising principles were already described before, such as the reaction-
diffusion equations by Turing, or the collective behaviour of molecules by statistical
physics. But we needed to apply these principles to cell biology. (Interview at CNRS,
2015, see: http://videotheque.cnrs.fr/doc=4672.)

That important mechanical actions must be at play in the process of cell splitting
should be somewhat self-evident: how can you break apart something without apply-
ing a force?As a typical example, it has beenmeasured that HeLa cells (anmodel-cell
type often used in biology experiments) increase their internal hydrostatic pressure
excess and surface tension during cell separation, from the average values of about
40Pa and 0.2 mN m−1, to 400Pa and 1.6 mN m−1 during the mitosis. If we look at
the most basic features of mitosis, the so-called “M-phase” of the eukaryote cell life
cycle, schematically represented in six steps in Fig. 8.13, three fundamental biolog-
ical events are found, all of which critically involve the action of physical forces:

Fig. 8.13 Schematic in six steps of the division phase of the cell cycle (or “M-phase”). The cell
membrane is represented by the green layer, the nuclear membrane is orange. a Chromosomes have
been duplicated in the nucleus (red), and condensed into homologue pairs joined at the centromere
(yellow dot). b The centrosome, from which microtubules are normally sprouting, is duplicated;
the two copies take their position at the opposite sides of the nucleus. c The nuclear membrane
is broken, the nuclear material is dispersed in the cytoplasm; microtubules from the two opposed
centrosomes polymerise and reach the regionwhere they canmeet the chromosomes.dMicrotubules
from opposite directions merge about the centre of the splitting cell; chromosomes are relocated
about the mid-section of the cell volume (equatorial plane), and put under tension from opposed
microtubules. e Chromosomes pairs are split in two, and the dispersed nuclear material starts
rebuilding two new cell nuclei at the two extremes of the mother cell. f Microtubules break apart
and start depolymerising; the nuclear membrane begins to be reconstituted; the physical splitting
of the membrane can be initiated, by the self-assembly of actin fibres into a contracting ring, which
squeezes the mother cell about its equatorial plane. The final result will be two cells identical to the
one in a, with the chromatin dispersed in the nucleus, and ready to recondense into chromosomes
for the next cell division

http://videotheque.cnrs.fr/doc=4672
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1. chromosome condensation [step (a) in the figure],
2. formation of the mitotic spindle [step (d)], and
3. formation of the contractile ring [step (f)].

Each of these three essential steps can be described in physical terms, by giving just
the minimum biological and chemical details necessary to understand the issues.

8.5.1 Chromosome Condensation

The earliest observable manifestation of the start of the M-phase, is the progressive
condensation of the chromatin into well-organised chromosomes. As we learned
in Chap.3 (see Appendix B), over a time covering most of the cell life the DNA is
loosely arranged in a non-specificmass, wrapped around globular proteins (histones).
When condensation starts the entire genetic material has already been duplicated,
and the chromosomes (46 in human DNA) are arranged in pairs (chromatids), joined
at the centromere into the characteristic ‘X’ shape. In this process, chromatin density
increases by a factor of 3–400. To arrive at such an estimate, let us consider that each
nucleosomewraps about 170 bp ofDNA, the entire chromatin fibre should bemade of
about 18 million nucleosomes; if we consider such a material to be homogeneously
dispersed in a cell nucleus of about 6 µm diameter, the loose chromatin density
is ∼1.8 × 105 nucleosomes/µm3; however, when the same material is condensed
into chromosomes, each being about 35nm in diameter and ∼10 µm in length, the
chromatin density becomes more than 60 × 106 nucleosomes/µm3.

Compressing all that material by such a large factor requires strong attractive
forces.Where do such forces come from? Firstly, histone post-translationalmodifica-
tions can contribute, by mediating fibre-fibre interactions that involve their N- and C-
terminal tails. Histone phosphorylation, for example, in which up to six PO2−

3 groups
are added at specific sites, leads to the expulsion of some proteins normally bound
to the chromatin, thereby increasing the attraction between distant DNA strands and
nucleosomes. Most importantly, however, a sort of ‘scaffold’ has been identified in
each chromosome, made up by a number of different proteins appropriately called
condensins and cohesins, and by other enzymes such as the topo-isomerase IIα.
These proteins exert true mechanical actions on the DNA in the chromatin: Topo-
IIα is thought to initiate chromosome condensation by clamping chromatin fibres
together to form denser aggregates; condensin interacts with naked DNA and intro-
duces coils, which (as observed at least in vitro) can be further transformed into DNA
knots by Topo-IIα; cohesin forms a kind of molecular rings, which are thought to
tether the two chromatids by either embracing them within a single ring, or by the
interaction of two rings [14].

Several authors have suggested that such processing of the chromatin struc-
ture, including densification, bending, twisting, should be activated, i.e. consume
an amount of free energy ΔG, to cross a barrier from the loose structure in the inter-
phase, to the packed structure of the M-phase. A tentative estimate attributed a value

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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of about +30 kcal/mol, to be spent in order to deform the nucleosome and pack it into
the chromosome. Condensin, cohesin, and all the other motor proteins could directly
consume equivalent amounts of ATP. However, an important electrostatic contribu-
tion to the packing also comes from ions, which help the stacking and densification
of the chromatin fibre: a large influx of divalent Ca2+ and Mg2+ is observed in the
early stages of mitosis, and likely also an energy contribution from the opening of
ion channels should be included in the free energy estimate.

8.5.2 Assemby of the Mitotic Spindle

The second crucial step of cell division involving mechanical actuators, is the for-
mation of themitotic spindle, a bundle of microtubules protruding from each of the
two centrosomes at the opposite ends of the nucleus (Fig. 8.14). Normally, a cell has
a unique centrosome, a globule from which all the microtubules of the cytoskeleton
appear to originate; however, at the start of cell division the centrosome is dupli-
cated (Fig. 8.13a, b), so that the microtubule bundle appears to form a large spindle,
attached at the two opposite centrosomes. Such a structure eventually relocates all
the chromosomes at about the mid-plane of the dividing cell (see Fig. 8.13d), and
tubules from opposite sides attach and start pulling on the chromosomes. The final
result of this step will be the splitting of each chromosome pair into its two identical
chromatids, which will relocate at the opposite ends of the cell (Fig. 8.13e), waiting
for the two nuclei to recompose and the cell to split.

Fig. 8.14 Imaging of the spindle apparatus in the first cell division of the nematode C. elegans.
The image shows the mother cell at the moment in which the two sets of chromosomes have been
spatially separated, ready to start the actual process of splitting (see Fig. 8.13e). Microtubules are
shown in green, chromosomes in blue, and the cell background (notably, actin structures) in red.
[Image courtesy of B. Bowerman, Institute of Molecular Biology, Kansas State University]
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In a simplemechanistic view, themitotic spindle has been thought to self-assemble
as a result of microtubules randomly searching for chromosomes, after which the
spindle length would be maintained by a balance of outward tension, exerted by
molecular motors on the tubules connecting each centrosome to the chromosomes,
and compression, generated by other motors on the remaining “free” tubules, which
directly connect the opposite spindle poles. However, this picture has been chal-
lenged recently, by mounting evidence indicating that spindle assembly and mainte-
nance rely on much more complex interconnected networks of microtubules, protein
motors, chromosomes and regulatory proteins. From an engineering point of view,
three design principles of this molecular machine are especially important: (1) the
spindle assembles quickly, (2) it assembles accurately, and (3) it is mechanically
robust yet flexible. How can this design be achieved, with randomly interacting and
impermanent molecular components?

The “search-and-capture” model can be already discredited on the basis of prin-
ciple (1). Average velocities of microtubule polymerisation are in the range of 0.2
µm/s, in both directions. Since the typical distance between each centrosome and
the cell midplane is D ∼ 10µm, a cycle of growth and shrinking with 100% prob-
ability of getting a chromatid should take τ0 = 2D/0.2 ∼ 100 s. However, most
of the cycles are not successful: the probability of encountering a centromere (the
middle cross of the chromosome) by a randomly thrown microtubule can be roughly
estimated as πd2/4πD2 ∼ 0.0025, where d ∼ 1µm is the centromere radius; if
we assume that each centrosome throws a few hundred microtubules, the probability
is somewhat less than 100%, and the whole process may take even twice times the
estimated 100 s. Moreover, since the search is for ∼100 targets in parallel, it will
be over only when the last target chromatid is captured. If the process is completely
stochastic, it may be akin to a Poisson-statistics process, the time to complete the
search is logarithmic in the number of targets, and the 200s should be multiplied
by another factor of ln(100) ∼ 4.5, i.e. the total search and capture time should
be in the order of 2τ0 ln(100) ∼1000 s, and even more if we account also for the
random positioning of the chromosomes at the beginning of the process. In the real
conditions, however, chromatids are captured into the nascent new cell nuclei in the
matter of minutes, in a clear disagreement with this picture.

One alternative view could be that microtubules start already from the chromo-
somes, with a local nucleation process. Already in 1985, some studies noted that a
mixed origin of microtubules, both from search from the centrosome and local nucle-
ation, was possible. Recent data [15] indeed suggest that microtubule bundles could
start to be organised at the chromosomes, and then grow outward. A cooperative,
hybrid pathway has been proposed for the spindle assembly, inwhich the centrosome-
nucleated microtubules search for long chromosomal bundles that provide a larger
target than centromere alone; upon capturing them, these are integrated into contin-
uous bundles (called “K-fibers”) that connect the centrosomes and centromeres. The
molecular details of such a cooperative capture are still vague, but one possibility is
that molecular motors such as kinesin-14 and dynein may help to crosslink, align and
properly arrange the microtubules. From a mathematical point of view, a cooperative
mechanism could make the spindle formation less stochastic, with a random search
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in the early stages and a deterministic “shooting” in the remainder of the process.
The average time to capture n targets out of N is τ ∼ τ0 ln(N/N − n); if we take
as a guess that the first 25% targets are stochastic, and 75% deterministic, the time
reduces to τ ∼ τ0 ln 4/3, a factor of 15–20 shorter, compatible with the observed
experimental time.

Forces of the order of tens of piconewtons per chromosome have been measured
by AFM in the mitotic spindle, summing up to a characteristic total internal force
of ∼1 nN for all the ∼100 chromatids. Clearly, the spindle has to be firm enough to
withstand internal forces of this magnitude. In other studies, the equivalent spring
constant of the whole spindle was estimated at 1 nN/µm; this indicated that, if
the actuating force is 1 nN, the spindle should deform by about Δx ∼ 1µm, i.e.
5–10%of its size 2D. However, spindlemechanics appearmore complex than simply
an elastic cage made of microtubule bundles. In the same experiments, it was also
observed a hysteresis response (see Appendix H): the spindle resistance force is
greater while compressed by the AFM cantilevers, and smaller when the cantilevers
were released. Mathematically, this type of response can be modelled by dashpot
elements (mechanical dampers that resist motion by way of viscous friction; see
Sect. 9.2 on p. 376), arranged in parallel with the elastic elements (Fig. 8.15): both
the elastic spring and the dashpot elements resist compression, but after compression
is released, the spring force leads to expansion of the system while partially damped
out by the dashpot element. While the elastic contribution to the stiffness should

Fig. 8.15 Idealised view of spindle mechanics, showing a mitotic spindle built from many springs
and dashpots in parallel, arranged both longitudinally and laterally. Microtubules (green) connect
the centrosomes of the splitting nucleus, and the (still near-centered) sister chromatids (purple).
Elastic and viscous contributions originate from the viscoelastic nature of molecular motors, which
actively apply forces and feel the rectifiedBrownian forces from the environment, aswell as from the
intrinsic viscolelasticity of microtubules. Multiple motor proteins cooperate andmakemicrotubules
to slide, as well as locking parallel microtubules together

http://dx.doi.org/10.1007/978-3-319-30647-6_9
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come from the microtubules, the viscous resistance could be a manifestation of the
action of the molecular motor proteins acting on the structure.

This mixed response is called viscoelastic (see again Sect. 9.2), and it may be
approximated as linearly depending on the deformation rate, rather than on the
deformation itself. If the elastic contribution to the response to the applied force
is characterised by Hooke-like springs k, as F = kΔx , an effective dashpot drag
coefficient can also be introduced for the dashpot, relating the applied force to the
deformation rate, as F = ζ(Δx/Δt). Just like the linear spring constant k has phys-
ical dimensions of [Force][L−1], the linear drag coefficient ζ will have dimensions
of [Force][T L−1], and should be naturally related to a measure of the viscosity of
the material. The experimentally observed values for the spindle are ζ ∼ 1 nN s/µm,
which is an order of magnitude greater than the drag coefficient estimated from
simply squeezing the cytoplasm.

Interestingly, the spindle exhibits a viscoelastic response both when deformed
parallel or perpendicular to its axis. This suggests theremight be viscoelastic elements
(spring+dashpot) perpendicular to the main axis, also shown in Fig. 8.15, probably
composed of microtubules laterally branching from the spindle, and the molecular
motors cross-linking them. Such a network of transverse and perpendicular links
resembles an architecture of crossed trusses and struts, making the spindle not just a
parallel bundle, but rather like a matrix, behaving like a dense gel of interconnected
elements. This gel is both anisotropic, being slightly weaker along the short axis than
along the main axis, and plastic: if the external force exceeds a certain threshold, the
spindle deforms irreversibly.

Why the mitotic spindle should have evolved towards such a complicate mechani-
cal structure? Is the viscoelastic response actually necessary for its basic function, that
is capturing and separating chromatids? One possibility is that its stiffness protects
the spindle from collapse under external deformations, whereas the large viscous
drag ensures that the spindle responds to perturbations very slowly, thus filtering
out noise from thermal fluctuations and random “wrongly oriented” forces. On the
other hand, spindle orientation also defines the mid-plane for subsequent cell split-
ting. During the early M-phase, the spindle moves and rotates to adjust to the “best”
orientation, with the help of various protein motors; spindle movements appear to
be subject to spatially distinct molecular mechanisms, which firstly mediate spindle
rotation toward the long-axis of the elongating cell, and subsequently facilitate orien-
tation maintenance along the long-axis. In this respect, the viscous response could be
of great help in “steering” to maintain the correct orientation, by suppressing large-
scale fluctuations. For the interconnected gel structure to be robust, the microtubule
network must be homogeneous enough. It has been shown [16] that this can only be
achieved if, in addition to random nucleation and dispersion within the spindle, other
microtubules sprout from the sides of existing ones, with an autocatalytic nucleation
mechanism; a chemical reaction is said to be autocatalytic if among its products there
are some of the reactants, thus allowing the reaction to self-sustain).

http://dx.doi.org/10.1007/978-3-319-30647-6_9
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8.5.3 Assembly of the Contractile Ring

The first visible sign of the splitting of the animal eukaryote cell (cytokinesis) is
the formation of a furrow in the cell membrane, always lying in the equatorial plane
perpendicular to the mitotic spindle. Experiments proved that if the spindle is moved,
e.g. by inserting a microsphere in the cell, the furrow disappears and forms at the
new plane identified by the new position of the spindle. In some, yet unknown way,
the cytoskeleton can send the cell a clear signal as to where to start the breaking. It is
also known that actin filaments, normally distributed homogeneously about the inner
surface of the membrane, have some part in the formation of the spindle and interact
with the microtubules. These latter could orchestrate the cleavage of the membrane,
by properly redistributing actin filaments in the assembly of the contractile ring, a
roughly circular bundle of actin filaments and myosin-II motor proteins, arranged to
lie in the mid-plane of the splitting cell (see the white structure in Fig. 8.16a). This is
the final step of cell division, capable of generating important mechanical forces, by

Fig. 8.16 Morphological changes in a computer simulation model of cell division (cytokinesis).
The upper row represents a sequence of simulations for a non-adherent cell, the middle row a
sequence for a cell adherent on a rigid surface, both starting from an initial spherical shape. Colours
refer to the distribution of the stress, according to the scale on the right (in nN/µm2). The bottom row
displays experimental data for Dictyostelium amoeba cells (mutated to remove myosin-II) dividing
on a surface. Scale bar denotes 10 µm. [Image adapted from Ref. [17], under CC-BY 3.0 licence,
see (*) for terms.]
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shrinking the ring and forming a deep cleavage neck in the membrane, which leads
to the final physical splitting of the mother cell.5

The earliest experimental evidences of such a mechanical structure came already
a half century ago, by observing the bending of a micro-needle inserted into the
cleavage furrow of a dividing echinoderm egg. The combined contraction of myosin
and actin is not new, since it had been already found to be at the origin of mechan-
ical force in the sarcomeres, the basic units of muscle cells (see Chap.10). Myosin
motors pull the actin filament like climbers on a rope, in steps of ∼5–7 nm per 5 ms
time, thus inducing the contraction of the filament bundle (see Fig. 6.3 on p. 210).
Despite the similarity between the two contraction mechanisms, however, evidence
of important differences has also accumulated over the years. First and foremost, in
the formation of the contractile ring there is an inflow/outflow of molecules that is
not observed in muscle cells: as the ring constricts, the thickness of the contractile
ring remains constant, suggesting that F-actin disassembly must balance ongoing
F-actin polymerisation. Secondly, the actin arrangement in the ring is quite disor-
dered, compared to the highly ordered, periodically-repeated microstructure of the
hundreds of sarcomeres composing a muscle cell.

Moreover, experiments in which the myosin-II is removed (Fig. 8.16) demon-
strate that the contractile-ring mechanism works anyway, therefore indicating that
alternative force-generating mechanisms must also be available. In this case, adher-
ent junctions formed on the contact of the cell (with a surface, or with other cells)
provide the necessary gradient of stress. Another major mechanical component is
derived from the cell membrane tension and surface curvature, which leads to inter-
nal fluid pressure gradients that induce hydrodynamic flow of cytoplasm away from
regions of high surface curvature, to regions of lower curvature. How such chemical,
mechanical, and hydrodynamic forces couple together is a complex and fascinat-
ing biophysical problem in itself, besides the evident implications in understanding
cytokinesis.

The central role of the contractile ring has been at the focus of recent research
in cytokinesis. However, especially the second point of difference listed above may
raise questions: how is it possible to generate a well-directed contractile force, start-
ing from a random assembly of filaments and proteins? A recent review cited not
less than ten different physical models suitable for force generation in the actin-
myosin annular bundle, each partly meaningful but none entirely successful. As it
was seen in Chap.5, a free cell (i.e., non-adherent) far away from the stage of mitosis
experiences only passive forces, coming from the Laplace pressure normal to the
membrane (proportional to the effective surface tension × the surface curvature).
Any perturbation leading to a non-spherical shape fluctuation would produce great-
est forces at the regions of higher curvature, causing a relaxation back towards a

5Notably, plant cells operate the membrane division by an entirely different mechanism. After
chromosome splitting, a portion of the rigid cell wall that surroundsmost vegetable cells is nucleated
in a new plaque, around the residual microtubules from the spindle that form a temporary structure
called phragmoplast. This plaque starts with a roughly discoidal shape in the cell mid-plane, and
grows in size with the help of microtubules, which dynamically reorganise around its perimeter.
The process continues until the plaque entirely forms a new wall, dividing in two the old cell.

http://dx.doi.org/10.1007/978-3-319-30647-6_10
http://dx.doi.org/10.1007/978-3-319-30647-6_6
http://dx.doi.org/10.1007/978-3-319-30647-6_5
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spherical morphology. Therefore, a symmetry-breaking force is required, in order to
stabilise and grow the central furrow, up to membrane cleavage.

Such a force, or stress (force per unit area, see Appendix H) can indeed have
different sources, given the complex cell environment. In a recently published model
(see again Fig. 8.16), the splitting cell was described as a shape evolving with time
from spherical, to ellipsoidal, to a dumbbell. The cell surface is described by the
two coordinates z, spanning the axial length, and r , following the parallel circles in
the normal planes. Stresses are directed parallel or perpendicular to the local surface
element, and integrated over the entire cell surface S. The total stress is made up of
several components:

σ = σad D(r)D(z) +
∫

S
Σ(r)γ (r)dr + σpw(z, t)D(z) + σcc(z, r) (8.78)

The “ad” term is an adhesion force applied to the membrane by the adhesion
patches, covering fractions D(z), D(r) of the total surface, and would be absent for
a non-adherent cell. The Σγ integral is the Laplace pressure, for variable values of
surface tension and curvature distributed all around the cell surface. The “p” term is
associated with the protrusions of the cell membrane, originating from actin poly-
merisation; it is proportional to the z-component of the surface contact D(z), and
decays with time according to some empirical function w(z, t). Finally, the “c” term
describes the contraction directly induced by the myosin-II in the contractile ring,
where the protein is present with a position-dependent concentration c(z, r). The
various terms of the model and their numerical parameters were empirically estab-
lished, by fitting on a large body of experimental data for the amoeba Dictyostelium
discoideum.

The results, partly shown in the figure, allow to establish the relative importance
of the different forces in shaping the cell furrow and splitting, over realistic time and
length scales. Themodel shows that cytokinesismay proceed through distinct phases.
Actin-myosin contraction is seen to play a primary role, by providing the stress that
initiates furrow ingression; such an early-stage contraction could be related to the
initial densification of the ring, and therefore could work even without attaining a
highly ordered microstructure. In its absence, however, this force can be supplied by
a combination of adhesion and protrusion-mediated stresses. Thereafter, Laplace-
like pressure takes over and, once integrated over the cell surface (several µm2)
provides large enough forces (several nN) that enable the cell to divide. In Fig. 8.16,
by comparing the upper and central row, it can be seen that the role of the “ad” term
is key to induce the furrowing, when the “c” term is suppressed. The Dyctostelium
amoebawas shown to be unable to split if geneticallymodified to remove themyosin-
II; however, its splitting ability is restored if the amoeba is contacted to a rigid surface.
Both features are correctly described by the model, in the case of non-adherent
(upper row) versus adherent cell (middle row). Such conclusions, although not yet
definitively corroborated by supporting experiments, give support to the observations
that point at cytokinesis mechanisms even more complex than the contractile ring
itself.



364 8 Molecular Mechanics of the Cell

Problems

8.1 Hollow versus filled
Calculate the persistence length and the flexural rigidity, for a hollow microtubule
with inner and outer radii 10nm and 12 nm, and Young’s modulus E = 150 MPa.
Compare the results with a solid microtubule, with the same amount of mass per unit
length.

8.2 Bacterial DNA
The DNA of some bacterium contains 3.45 million base pairs. (a) Calculate the con-
tour length. (b) Given the average DNA Young’s modulus E = 350 MPa, calculate
its persistence length. How does it compare with the contour length? (c) Given the
DNA diameter of 2 nm, what is the smallest volume into which the double strand can
be packed? (d) Calculate the end-to-end distance and gyration radius of this DNA.
How these compare with the size of a typical bacterium?

8.3 Exocitosis
Find an explicit expression for the surface tension energy, ES = Σ A, during the
three steps of the formation of a spherical liposome, illustrated in the figure below.
Starting from themembrane at rest (1), a pseudopod is extruded (2), which eventually
forms a spherical vesicle of radius R, fully detached from the cell membrane.

8.4 Membranes with an edge
Acellmembrane is composed by twodifferent types of phospholipids, theAwith tails
of length nA = 14 and the Bwith nB = 18. By assuming that bilayers form only with
lipids of the same kind, and for a lipid-water interfacial tension Σ = 30 mJ/m2, (a)
what would be the energy per unit length of an A/B interface? (b) what would be the
lowest-energy state for 10 domains, each with average surface 100 nm2, dispersed in
a large membrane patch? how distant in energy are the two configurations? (c) could
a transition between the two configurations occur because of thermal fluctuations?

8.5 Membranes with a dimple
Consider a thermal fluctuation making a dimple of height h in a patch S = πL2 of
membrane. (a) What is the deformation energy of such a dimple? (b) For a bend-
ing constant Kb = 15kBT , at what h/L ratio the dimple could appear by thermal
fluctuation of the membrane surface?
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8.6 Pulling chromosomes
An average chromosome can be modelled as an elongated ellipsoid, with major
diameter b ∼ 15µm, and minor diameter a ∼ 1µm. Observe that during mitosis,
each chromosome is pulled by the microtubules by some 15µm in about 10min
(such values can vary quite a lot according to the cell type). (a) What is an upper
bound to the pulling force? (b) How much work is spent, and how many molecules
of ATP are used?

8.7 Pushing cells with a laser
Consider a bacterial cell as a sphere of 2 µm diameter, and an eukaryote cell ten
times larger. A typical laser beam of power P used in optical traps can produce a
force of the order of a few pN, as approximated by the expression f = nPQ/c, with
n the refractive index of the medium, Q ∼ 1% the quality factor of the laser, and c
the speed of light. Estimate the power necessary to move the two cells. What does
such a calculation suggest?

(*) The terms of the Creative Commons Attribution 3.0 and 4.0 International License (http://
creativecommons.org/licenses/by/3.0/, http://creativecommons.org/licenses/by/4.0/) permit use,
duplication, adaptation, distribution and reproduction in anymedium or format, as long as appropri-
ate credit is given to the original author(s) and the source, providing a link to the Creative Commons
license and indicating if changes were made.
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Chapter 9
The Materials of the Living

Abstract This chapter delves into the mathematical toolbox of continuum mechan-
ics, necessary to describe the mechanical deformation of biological materials. After
being relegated for a long time to little more than the (useful, but quite uninspir-
ing) role of providing healing and implants for broken body parts, the domain of
biomechanics has been recently promoted to the highest level of attention. The mod-
ern view of biomaterials relies on connecting structures over multiple length-scales.
Functional organisation is found at all levels, from the molecules, to fibrils and
coils, to the carefully networked microstructures, up to the macroscopic scale. At
odds with the variety of materials available in nature, just a small set of recurring
molecule types, arranged in ever different structures, can give rise to such diverse
tissues as skin, cartilage and bone, green stems, rose buds or wood. The secret is the
hierarchical multi-level structure of biomaterials.

9.1 Stress and Deformation

The way the world is approached depends very much from the mental attitude of
everyone: in some sense, it is the difference between brain and mind. A chemist sees
molecules in every object, and reactions and transformations occurring all the time; a
physicist looks for elementary constituents, universal laws and statistical principles;
a philosopher would probably question the essence of reality and sometimes doubt
of it; engineers consider that atoms andmolecules are practically irrelevant, and have
invented continuum mechanics to describe the world.

While the idea of continuum was around at least since the works of Leonardo
da Vinci, in the late XV century, the formalism of the continuum model of matter
was actually laid down by an outstanding legion of XVIII century mathematicians,
chiefly Augustin-Louis Cauchy, both anticipated and followed by the like of Euler,
Lagrange, Laplace, Bernoulli. The continuum theory remained a major instrument
of physical analysis until the late XIX century, when physicists started to be more
interested in the intimate constitution of matter, space and time at the smallest and
largest scales, and left the continuum theory entirely in the hands of the engineers.

© Springer International Publishing Switzerland 2016
F. Cleri, The Physics of Living Systems, Undergraduate Lecture
Notes in Physics, DOI 10.1007/978-3-319-30647-6_9
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In the continuum theory of material mechanics, one usually starts with rigid
objects whose form and structure are not modified by the application of a force. The
only admitted changes in the shape are very small deformations in the so-called elastic
regime, such that the object retains its form and structure once the force is removed.
On the other hand, it is common experience that matter can indeed be deformed to
large extents, and even broken apart by an applied force. Forces can be applied on
the surface of the object, like a pressure, or in the volume, like the gravity. At a
microscopic level, deformation corresponds to atoms and molecules stretching and
breaking their bonds, changing their positions, and possibly coming apart. Therefore
the formalism of continuum mechanics must at some point include tools capable of
describing large deformations, even though molecules and atoms are never explicitly
described. This is even more true for biological materials, which constitute mostly
deformable and flexible objects when compared to non-living matter, like rocks or
steel.Moreover, biological materials have a characteristic behavior that is completely
absent from engineering materials: the remodelling, which indicates the biological
capability of “creating” entirely new material structures in response to a force that
deforms or deteriorates the existing material.

Forgetting about atoms and molecules when looking at large scale deformation
can be indeed a useful point of view, since the length and time scales involved
are well beyond the atomic scale. A chunk of steel contains a number of atoms
of the order of the Avogadro’s number, NAv = 6.02 × 1023, and even a single cell
contains order of 1014 molecules, all which move at typical frequencies of 1012

Hz. Therefore attempting at a solution in terms of atoms is clearly a daunting task,
which can be restricted only to special situations. However, continuum modelling
comes at the price of replacing the real constituents by some mathematical objects,
“continuous fields” defined everywhere in the space occupied by the object, which
must try to imitate as closely as possible the behavior of the real material. If the
continuum idea may seem a simpler and logical description, more adherent to our
everyday experience of a world without discontinuities, it hurts against inevitable
difficulties when stepping down in length scales. In fact, already at the beginning
of the XIX century a rival party of French mathematicians (among which Fresnel,
Navier and Poisson) had built a “molecular” theory of mechanics, which however
failed to correctly predict even the simplest properties of material elasticity, thus
leaving the advantage to the very successful theory of continuum fields by Cauchy,
Green and the others. It would have been necessary to wait until about 1866, when
the crystallography studies of Bravais opened to the idea that “molecules” are not
just dimensionless points, but some kind of polyhedra that fill the space according to
different shapes (symmetries) and orientations. Starting from such results,Woldemar
Voigt formulated a theory capable of reconciling the continuum andmolecular views,
producing results in agreement with the experimental evidence.

To describe a material deformation at the continuum level it is necessary to have:
(1) a formalism capable of describing the way a force applied on the surface or in
the volume of a body, is distributed all over: this leads to the definition of the stress
field; (2) a formal description of the local and global deformation of the object,
after the application of the force: this leads to the definition of the strain field. Such
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quantities and theirmost relevantmathematical properties are synthetically described
in the Appendix H to this chapter.

In general terms, a force can be applied at a point. However, in continuummechan-
ics a point is a mathematical singularity. The singularity must be cured by associating
to it an infinitesimal volume, or an infinitesimal surface. This leads to introducing
such quantities as, e.g., themechanical pressure, actually a force divided by a surface.
The latter is just the infinitesimal surface associated to the point of application, but
even at the atomic scale the minimum for a “point” would be the volume or surface
of one atom, a definitely small but finite quantity, observable e.g. with an atomic
force microscope.

We may start by defining a very general quantity, which we call stress, with
units of a force divided by a surface. If we think of a gas enclosed in a volume,
as in the greybox on page 24, in that case the quantity with units of force/surface
could be identified with the pressure of the gas itself. Pressure is one example of
stress, but a very special one, in that it is perfectly isotropic in space: pressure is
the same at every point of a fluid, and the same in all directions. On the other hand,
we may take a solid body with an arbitrary shape, and apply a force oriented along
some direction at any point P of its surface. As shown in the Appendix H, the
stress is a tensor σ = σi j , with {i, j} = {x, y, z}, a 3 × 3 square matrix of numbers
meant to describe all the combinations of the components of the applied force vector,
f = { fx , fy, fz}, with respect to the components of the surface normal vector n =
{nx , ny, nz} passing through P (some basic properties of tensors are discussed in the
mathematical Appendix A).

On the other hand, strain characterises the continuous shape deformations of a
body in response to an applied mechanical stress. Deformation is a dimensionless
quantity, since it is defined by the ratio of the variation of a quantity with respect to
its original value. The relative variation of the length, ΔL/L , or of the volume of
an object, ΔV/V , are examples of strain. As shown in more detail in the Appendix
H, strain is also mathematically defined as a 3 × 3 tensor, εi j , with indices related to
the components of the deformation vector, u = r′ − r = {ux , uy, uz}, with respect to
those of the position vector r = {rx , ry, rz}, indicating any point in the body volume.

If we want to know what is the amount and distribution of the deformation for
a given applied stress or, conversely, what was the stress that produced a given
deformation, we need a stress-strain relationship. A very early example of such
force-deformation relation is the Hooke’s law, relating the uniaxial elastic stretching
u = (l ′ − l) of a spring of length l to the parallel applied force, as f = ku. In terms
of stress and strain, if we take the force vector directed parallel to the x axis, Hooke’s
law would be written as σxx = k̄εxx , with k̄ a different constant from k, since their
dimensions are different ([Energy]/[L3] vs. [Energy]/[L]).

The deformation results from the resistance opposed by the internal forces of the
body, to the external forces applied on its surface, or within its volume. ‘Internal’
forces are indeed the atomic and molecular forces, which keep together the material
and impart its peculiar physical and chemical properties. In general, these forces
are anisotropic, and depend on many conditions defining the material, such as the
number and distribution of electric charges and dipoles, or its microscopic structure,
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from disordered to crystalline. The presence of anisotropy makes the stress-strain
relation more complicated than the simple expression above, and can induce non
zero off-diagonal components in the matrices of the two tensors, compared to the
simple situation described by Hooke’s law.

Stress-strain relations can be experimentally obtained by measuring the response
of a material to the applied force along different directions. In this way, plots of the
type shown in Fig. 9.24 of the Appendix H are obtained. It is worth noting that all the
elastic theory developed in the Appendix strictly refers to the initial, linear part of
the stress-strain curve, unless explicitly stated. In this regime, characterised by small
deformations, the relationship between force and displacement, or stress and strain,
is one of simple proportionality, just like in Hooke’s law. However, experimental
stress-strain plots can extendwell beyond the linear-elastic limit (point 1 in Fig. 9.24),
although the theory in this part of the diagram becomes much more complex: the
region beyond the elastic limit is called the plastic part of the stress-strain curve.
In this domain, the deformation begins to be irreversible, meaning that part of the
mechanical work is used to induce permanent deformations, defects, broken bonds
in the material, which will remain also after the stress is released. The material is
still compact and can sustain some stress, but with a profoundly different behaviour,
as shown in the final part of the curve in Fig. 9.24.

Even if continuum mechanics avoids the notion of an internal structure of the
matter, it can however supplement a set of response coefficients depending on the
material composition and phase: the linear elastic constants Ci jkl , and the elastic
compliances Si jkl (see Appendix H). These sets of material parameters allow to
establish the constitutive relation for the material of interest, i.e. its stress-strain
relationship of the most general linear form:

σi j =
∑

kl

Ci jklεkl (9.1)

all indices {i, j, k, l} running on the Cartesian components {x, y, z}, for a total of
34 = 81 independent parameters. Because of the intrinsic symmetry of the matrices,
σi j = σ j i and so on, these are in fact only 21.1 Moreover, because of additional
material symmetries, many of these parameters are either zero, or equal to each
other, thus further reducing to a quite smaller set in most materials.

In practical cases, however, we are not so much interested in knowing the indi-
vidual values of each of the constants Ci jkl , but rather some combinations of their
values. This is because the experimental set up needed to measure such constants
makes some special combinations of C’s to be more easily accessible, rather than
their separate values. (However, these can be retrieved once the appropriate combina-
tions have been measured.) These combinations of the fundamental elastic constants
are called the elastic moduli of the material, the most important ones being: the bulk

1Eventually, by using Voigt’s notation the C matrix becomes a 6 × 6 with 36 components; because
of symmetry, the matrix is diagonal symmetric, therefore with 6 (diagonal) plus 30/2 = 15 (off-
diagonal) independent components, summing to 21.
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modulus, B; the shear modulus, μ or G; the Young’s modulus, E , and the associ-
ated Poisson’s ratio ν. All these elastic moduli are described in some detail in the
Appendix H. The special cases of deformation by bending or flexion of a long rod,
or a plate membrane, were already anticipated in the previous Chapter (see greybox
on p. 322).

One interesting finding from the simple theory of linear elasticity, is that many
materials can be described at the macroscopic scale as being essentially isotropic,
meaning that the response to the deformation does not appear to depend on the par-
ticular direction the force is applied in the material. This is certainly the case for most
fluid and amorphous substances, but even for many solid, everyday materials, such
as glass, rubber, plastics. Also many metallic materials, in principle crystalline and
anisotropic, display practically isotropic properties at the macroscopic scale, deriv-
ing from the fact that their intrinsically anisotropic crystalline structure is broken into
many micron-sized tiny crystals, whose random assembly makes the macroscopic
material to display direction-averaged, isotropic mechanical properties.

From the point of view of the defining equations, in order to describe isotropic
materials we require just two elastic constants, the so-called Lamé parameters, which
(as shown in the Appendix) are simple combinations of the fundamental elastic
constants Ci j of the solid, namely λ = C12 and μ = C44. Only the matrix elements
C11 = C22 = C33,C44 = C55 = C66 andC12 = C13 = C13 are non-zero for isotropic
materials, satisfying the condition Cii = Ci j + 2Ckk , with i, j = 1, 2, 3 and k =
4, 5, 6. Alternatively, the Young’s modulus E and Poisson’s ratio ν of the material
can be used as the two independent parameters, whose relationship with the Lamé
parameters is given in the Appendix. The corresponding stress-strain relationship is
therefore particularly simple, and is given by the Eqs. (9.31–9.34) of the Appendix.

9.1.1 The Biologist and the Engineer

Compared to the isotropic materials with only two parameters, anisotropic materials
could appear far more complex. In practice, however, their mathematical treatment
is exactly the same; only the detailed calculations are more involved, because of the
larger number of independent elastic coefficients. Pure crystalline materials, such as
metals, semiconductors, rocks, are all anisotropic to a smaller or larger extent, yet
their mathematical treatment can be carried out quite properly, to the utter delight of
the engineer.

Biological materials are not only anisotropic, but they combine andmix properties
in a way that goes far beyond the imagination of any engineer working with modern
composite materials. They are much more complex under any respect, and it should
be just amazing to think that we can make some sense at all of their mechanical
behaviour, by using the simple equations of classical mechanics (also summarised
in the Appendix H). Nevertheless, traditional material science, which was born to
describe the behaviour of common building materials like metals and concrete, can
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offer some points of comparison to at least get a feeling of the staggering mechanical
properties of biological materials.

By looking at inorganic materials from a mechanical perspective, the school-
book classification of gas-liquid-solid translates in the observation that gases resist
only compression, liquids resist tension as well as compression, while solids resist
compression, tension and shear stresses. Despite being largely composed of water,
nearly all biological materials appear as solids. However, they include materials
ranging from the very soft (but still elastic) mucuses, to the very hard (but still
deformable) dental enamels and corals: clearly, their degree of “solidity” in the com-
monly employed sense, seems rather irrelevant here. Also the usual engineering
distinction between material, structure and system (steel is a material, a beam is a
structure, and a bridge is a system) looses much of its meaning when applied to
biological materials: the tightly connected levels of hierarchical organisation of the
biological matter (see Figs. 9.12 and 9.13 for an example) make it quite hard, and
likely pointless, to distinguish where thematerial starts to be a structure, and at which
point exactly structures turn into systems.

A possibly interesting classification of engineering materials is based on their
chemical nature. Materials are usually known as metals, semiconductors, insulators,
and more precisely ceramics, silicates, polymers, and so on, based on the nature
of the chemical bonds between atoms. Because of the way electrons are arranged
around the constituent atoms, metals are generally ductile, while insulators tend to
be more fragile; semiconductors and insulators generally conduct poorly both heat
and electricity, while metals are very good in this respect. In the realm of biology,
we could split materials into proteins, sugars, lipids, and nucleic acids, each with
peculiar chemical bonding and reactivity characters. However, it is hard to put such a
distinction into amore or less strict correspondence with their mechanical properties:
silk and collagen are both proteins, but largely differ in their elasticity; silk frommoths
has a very different chemical composition from the silk of spiders; and even in a single
spiderweb, silks of different elasticity and strength are used for the different parts.

Following Vogel ([1], Chap. 15), we could introduce another, maybe more mean-
ingful classification, among tensile, pliant and rigid materials.

• Tensilematerials resist to traction: basically they function like ropes in a biological
context. Collagen and chitin are probably the two most common proteins found in
animal bodies; collagen is the main material of tendons, which connect muscles
to bones, and similarly chitin is the material connecting insect and crustacean
muscles to their exoskeleton; collagenmakes up also skin, cartilage, and about half
of the weight of bones. Silk is another example of natural rope with exceptional
properties; it is produced by all arthropods, such as spiders and silkmoths. Plants
have developed their own version of molecular rope with cellulose, a sugar-based
polymeric material typically used as a part of plant cell walls and composite
structures, e.g. making up cotton, linen and other vegetal fibres.

• Pliantmaterials can deform to large extent, in ways also depending on their defor-
mation rates and history (viscoelasticity, see below). Such proteins as resilin,
elastin, abductin, make up powerful rubber springs that can accomodate large
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deformations, thereby regulating many mechanical movements requiring large
amplitudes such as the opening of shell valves or the flapping of insect wings.

• Rigid materials have elevated resistance to bending and torsion, and can support
relatively large loads in tension, or compression, or both; compared to inorganic
rigid materials (steel, concrete, ceramics) they are however strongly anisotropic,
and have complex composite structures. If bone, a composite of collagen and min-
eral particles, is a well known example of rigid biomaterial, keratin is a widespread
composite of two proteins that makes up animal hair, horns, feathers; and wood,
probably the most economically viable of all natural materials, is a composite of
cellulose and lignin, arranged in a carefully organised, rigid superstructure in plant
cell walls.

It may be observed that in materials science it is a common practice to express the
work done by mechanical forces, and the corresponding mechanical quantities of the
material (elastic constants, elastic moduli), as [Energy]/[Volume]. When comparing
the properties of biological materials, we deal with materials that are much lighter,
less dense than most engineering solids, therefore a comparison of the energy or
work spent per unit mass seems more appropriate. For example, if we compare
the Young’s modulus of steel to that of collagen in MPa units, we find an obvious
difference of a factor of about 10 in favour of steel; however, if we divide the values
by the respective mass density, it is found that collagen is almost as stiff as steel.
Biological materials, albeit less strong on an absolute basis, can withstand very large
values of deformation up to their ultimate fracture strain (the point 3 in Fig. 9.24
in the Appendix), therefore they have an amount of “area under the curve” (i.e.,
work stored as mechanical energy) that can equal, or largely surpass that of most
engineering materials. Again by looking at collagen versus steel, we would measure
values of work of ∼2–3 J/cm3 versus about 1 J/cm3 of steel, meaning that collagen
is already tougher than steel on a per-volume basis; however once translated into
work per unit mass, collagen outdoes steel by a factor of ∼15. Whereas steel can
be stretched to a few per cent strain, pure collagen can take up to 30%, and spider
silk can go up to 500% and more, thanks to their peculiar molecular hierarchical
structure.

9.1.2 Brittle and Ductile

Not all the mechanical properties of a material, however, can be directly deduced
from a stress-strain plot, especially concerning the properties of the material near
the breaking point. The stress and strain at the point of fracture, σ f and ε f , can be
directly read on the plot by looking at the point where the (σ, ε) curve ends, and the
corresponding toughness τ0 can be obtained by integrating the area under the curve.
But the breakage itself takes an extra amount of work, distributed among the material
elements: upon fracturing, the material breaks open portions of new free surface in
a more or less random way, and this costs energy that is not accounted directly in
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Cauchy’s continuum theory of stretching a compact, homogeneous material. It is at
this point that a fracture appears in the medium, and starts propagating. Generally,
we define as brittle a material in which one single crack takes over and breaks the
material in a very fast, catastrophic manner, such as the breaking of a window glass;
as opposed to ductile, a material in which tearing and thinning starts at many points
concurrently during some span of time, and the breaking is slower and progressive,
such as the breaking of a piece of soft plastic.

If we look at a microscopic fracture propagating in a material put under an exter-
nally applied load, or stress σ0, experiments show that the projected stress around
the tip of the crack σt is generally much larger than σ0 (“stress concentration”), and
decreases proportionally to the square-root of the (growing) crack length a, in such
way that the product σt

√
a remains practically constant. Around 1920, the British

engineer A.A. Griffith, while studying the brittle fracture of metals in large structures
such as ships and airplanes, deduced that the work spent in opening the fracture must
be linked to the formation of new free surface, and arrived at the conclusion that the
stress at the crack tip decreases upon increasing a according to the universal law:

σt =
√
2EΣ

πa
(9.2)

whereΣ is a surface energywith units of [Energy][L−2] characteristic of thematerial
surface (it could be the surface tension, for a fluid). For materials displaying ductile
fracture, the value ofΣ must be replaced by a different energy per unit area, actually
called work of fracture, G; this has the same units as Σ , but takes into account the
energy irreversibly dissipated in the plastic deformation of the material (see above)
actually accompanying the breaking of the free surfaces. In simple conditions, the
work of fracture can be obtained from the ratio:

G = K 2
I

E
(9.3)

in which the stress-intensity factor, KI (sometimes called fracture toughness, but
different from the toughness τ0 defined in the Appendix) appears. The value of KI

for a material can be obtained by performing an experiment similar to that required
to measure the Young’s modulus, but by inserting a small micro-crack of known
length in a mid-plane perpendicular to the applied force (see the diagram sketched
in Fig. 9.1). The value of G in engineering materials can range (values in kJ/m2)
from the ∼0.005–0.040 of concrete, brick or stone, to the 102–103 of various types
of steel. Typical values of G for biomaterials show as well large variations, also
according to the anisotropy of the microstructure. For example, wood has G = 0.15
in the direction of grain, but G = 12 transverse to grain; mollusk shell ranges from
G = 0.15 to 1.6, if fractured parallel or perpendicular to the surface; teeth are a
singular structure, in that the outer enamel has G = 0.2 while the inner dentin has a
higher G = 0.55; a stiff cow bone has a G = 1.7, and the very stretchable and tough
skin of a rabbit measures a surprising G = 20 kJ/m2.
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Fig. 9.1 An idealised fracture test, with a stress ±σzz applied on a material sample containing a
microcrack of length a. Schematic plot of the total fracture energy release, ET (blue curve). The
sum of the (quadratic) elastic energy stored in the material, Eel , and of the surface creation energy,
ES , goes through zero at a critical value of the crack length ac. Until the total energy is negative,
the crack does not grow, since it costs more energy to make it advance than to make it close back.
However, for a crack of length bigger than ac, the energy is sufficient to make it grow

The dependence of the fracture progression on the actual crack length a is what
makes materials resistance a complex problem. This can be appreciated by thinking
of fracture growth as a competition between the different energies involved during
the loading of a material by external forces: on the one hand, the external stress σ0

continues to input energy in the system, and by increasing the strain ε this elastic
energy is, as we know, proportional to the square of the deformation: Eel = 1

2 Eε2

(note that the stress and strain can be described by linear elasticity only in the region
far away from the crack tip surroundings, where instead the stress rapidly varies from
σ0 to σt >> σ0); on the other hand, the energy needed to advance the crack surfaces
is at each increment of ε proportional to the amount of surface energy times the
elementary deformation, ES = 2Σε (the factor 2 comes from the fact that the crack
creates two opposed facets of free surface over the length ε). By putting the total
energy ET = Eel − ES in a plot like the one shown in Fig. 9.1 (the + and − signs
describe energy going into, or coming from the material, respectively), the crack
length ac, corresponding to the inversion of the sign of ET , is identified as a critical
value: if a crack of length a > ac were already present in the material, the applied
stress can make it grow, and the crack will keep growing very fast, even if the stress
is released, in the region of the diagram where the blue energy curve ET becomes
positive. Conversely, if all the microcracks in the material have lengths a < ac they
can be stable and the material will not break, even if displaying localized ruptures,
until a critical value of stress is reached, such that the elastic energy transferred to
the longest of the crack tips wins over the surface energy.
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Notably, the above reasoning allows to give an estimate of the critical crack length,
which will (or will not) propagate for a given applied stress. By assuming for the
sake of simplicity a linear stress-strain relation ε = σ/E , from Eq. (9.2) the critical
length is of the order of:

ac ∼ G E

πσ 2
= G

πσε
(9.4)

For example, by taking a collagen network (see below, animal skin) at a stress of
σ = 1MPa and strain ε = 30%, and a work of fracture in the range of G ∼10 kJ/m2,
the critical length of a microfracture in the collagen fibres is ac ∼ 1cm. This shows
that skin does not easily tear apart even with a quite large cut, unless exceedingly
large deformation and stress are applied.

The above reasonings show that it is not enough to know the Young’s modulus
and the surface energy of a material, in order to decide if the material will break,
in which way, and at which stress (unless we start from a perfectly intact and pure
material, without any flaws or defects). It must be noted that the criteria for decid-
ing whether a material is “stronger”, or it is more resistant than another, are quite
different, depending on the fact that the materials to be compared are brittle or duc-
tile according to the above definitions. For example, the values of KI for a plastic
polymer are in the range of 0.5–2 MPa m1/2, of 3–5 for silicon carbide, and between
10–100 for most metals. However, silicon carbide has a bulk modulus B (i.e., resis-
tance to compression) more than twice bigger than steel. Steel is certainly a much
stronger material than plastic, however their G values are quite close. Such striking
comparisons (and the list could be very long) are due to the fact that the mode of
failure is very different among the various materials. This is mostly ascribed to their
internal structure, and to the presence of defects and heterogeneities of various kind.

Biological materials can tolerate large amounts of stretching and compression,
thanks to their complex, heterogeneous and multi-phase internal structure, com-
pared to the homogeneous nature of a crystalline, or even a polycrystalline bulk
material. Someway, it can be said that Nature has replaced the high absolute strength,
toughness, tenacity of homogeneous inorganic materials, by a carefully organised
architecture at all length scales, from the molecular to the macroscopic, so as to
obtain materials structures with performances equal or exceeding those of inorganic
materials, but starting from much lighter and more easily available materials.

9.2 The Viscoelastic Nature of Biological Materials

Biological materials, being soft and elastic (with the exception of the likes of bone,
keratin, or wood) might appear, from a macroscopic point of view, sufficiently
isotropic. By touching on our skin at different places of the body we do not notice
much difference in pushing, twisting or squeezing. However, nothing could be more
misleading. The richness of structural organisation of biomaterials at all scales, from
themolecular to the cell to the tissue,makes the problemof determining their response
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Fig. 9.2 Elastic (Young’s) moduli of human biological tissues. Each type of cell finds the proper
elastic environment more appropriate to its growth and functions. [Image from Ref. [2], adapted w.
permission.]

even more complicated that for the most anisotropic, arbitrarily intricate crystalline
material. If we look at the complex hierarchy of the molecular architecture making
up, e.g., tendons, or muscle fibres, or at the multiple structures of bone material, it
should be apparent that it is not possible to reduce that complexity to just two or three
numerical parameters. The inside of a cell has a nucleus as one dense, tangled mass
of nucleic acids and proteins plunged in some water and ions, wrapped by a tight
membrane, the whole immersed in a water-based fluid containing corpuscles of size
anywhere from 1 to 1000nm, some of them with a double membrane, some with a
spongy structure, entangled in a network of long filaments of the most diverse rigid-
ity running in all directions, and the everything wrapped in another multi-layered,
heterogeneous membrane. The effective modulus of elasticity of different cells spans
more than four orders of magnitude (Fig. 9.2). Now, think of squeezing and squash-
ing this tissue, and ask what is the bulk modulus, or the Young’s modulus of such a
thing? What quantity should be actually measured? And how?

Most importantly, however, the mechanical response of biological tissues is found
to be strongly non-linear, and to depend on the past history of deformation, as well
as to change with time for a given deformation state. These are the characteristics
of viscoelastic materials. When such a material is stretched and held at a fixed
deformation the stress declines over time, a phenomenon known as stress relaxation.
Moreover, stress relaxation is sensitive to the velocity at which the deformation is
applied, or strain-rate sensitivity. The complementary type of response is the phe-
nomenon of creep, occurring when a material kept under a constant force continues
to deform indefinitely (think of chewing gum). Additionally, the stress-strain profile
obtained from a deformation experiment can be different in the loading phase, and
in the unloading phase when the force is reversed. When this happens, we have a
hysteresis phenomenon, which signifies that some of the stored elastic energy is not
recovered, but has been lost in internal friction and in permanent deformation of the
material.
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Fig. 9.3 Stress-strain plots for different materials. a The simple linear elastic material: the slope
of the straight line gives the Young’s modulus E . b A linear-plastic material. The response is linear
up to some point, then starts to decline; the dashed red line indicates removal of the load, the
material goes back linearly to zero stress, but some residual deformation survives (intercept of x
axis at non-zero strain); the area between the blue and red curve is the hysteresis. c A viscoplastic
material: the stress response is dependent on the strain, ε, as in (b), but also on the strain rate,
ε̇ = dε/dt . d A stress-relaxation material: stress is applied at time t0 and held constant; the strain
goes initially to the prescribed value, but declines in time (to a constant for a solid, or to zero for a
fluid). e A creep-recovery material: a strain is applied at time t0 and is released at time t1; the stress
increases from zero until to t1, then decreases after t1 and recovers a zero strain for a fluid (or non
zero for a solid)

To understand the mechanical response of such a complex type of material, and to
compare the response of different materials, we must use a plot of the stress and the
corresponding strain, for a given experiment. In the case of an elastic material pulled
along an axis (Fig. 9.3a) such a plot is quite simple and does not teach us very much:
it is just a straight line in the stress-strain plane, with a slope equal to the Young’s
modulus E , Eq. (9.42). A plastic material (Fig. 9.3b) responds to the same stress
by a first linear part, and then starts declining; when the load is released (dashed
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Fig. 9.4 Schematic models to describe complex materials behaviour. Left definition of the basic
elements, the spring, a, describing a linear elastic material; and the dashpot, b, describing a linear
viscous material, also called Newtonian. (Right) by combining the basic elements, different types of
materials behaviour can be represented. c The Kelvin-Voigt model, describing a viscoelastic solid.
d The Maxwell model, describing a viscoelastic fluid. e The “standard” solid model, appropriate to
describe some complex biological materials combining solid-like and fluid-like features

red line) it goes back to a state of zero stress, but the strain is not zero anymore:
some permanent deformation has occurred inside the material, which leaves behind
a permanent deformation.

The response of viscoelastic materials, on the other hand, is quite more com-
plicated. Where an elastic material has a unique stress-strain relation, the strain-
rate dependence makes this a non-unique relation. Figure9.3c shows what is meant
by strain-rate sensitivity: a material can sustain increasing values of stress, if the
deformation is applied at different rates ε̇ (as usual, the dot indicates deriva-
tive with respect to time). The stress-strain relationship is symbolically written as
σ = σ(ε, t) = σ(ε, ε̇).

An elastic material in the linear response regime is described as a spring (see
Eq. (9.43) above), eventually anisotropic, i.e. with different spring constants along
different directions. By analogy, a material whose response depends on the strain
rate can be approximated in a similar way, by restricting to the linear regime of
proportionality between stress and strain rate:

σ = ηε̇ (9.5)

This is a linear-viscousmaterial, also called aNewtonian fluid since the coefficient
η is the viscosity of the material. The analog of the spring in this case is a dashpot,
as schematically shown in Fig. 9.4b, a kind of piston moving in a dense fluid whose
velocity is proportional to the applied force (in the spring, the displacement is pro-
portional to the force). By extension, a viscoelastic material, that is one displaying
at the same time elastic and viscous behaviour, can described as a combination of
springs and dashpots.
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Two basic combinations can however be distinguished: the spring and the dashpot
being connected in parallel or in series, like in an electric circuit. In the first case,
depicted in Fig. 9.4c, the total stress is the sum of the stress acting on the spring and
on the dashpot separately, σ = σs + σd , where σs and σd are given by Eqs. (9.42) and
(9.5), respectively. The strain, on the other hand, must be the same for both elements.
Therefore we have:

σ = Eε + ηε̇ = Eε + η
dε

dt
(9.6)

This is called the Kelvin-Voigt model of a viscoelastic material, and it is more
appropriate to describe a solid, since the overall deformation is constrained by the
strain in the spring. In this case the dashpot will asymptotically attain its level of
stress (see also Fig. 9.3e at times t1 < t < t2).

In the second case, with spring and dashpot connected in series, the stress acting
on the two elements must be the same, σ = Eε = ηε̇, whereas their strains can
be different, for a total strain ε = εs + εd . Let us firstly take the time derivative of
the strain in the spring, that is ε̇s = σ̇ /E . On the other hand, it is also ε̇d = σ/η.
Therefore, the total strain time-derivative is:

ε̇ = dεs

dt
+ dεd

dt
= σ̇

E
+ σ

η

or, by rearranging terms:
ηE ε̇ = ησ̇ + Eσ (9.7)

This equation is slightly more complicated than the previous one, since it contains
the time variation of both the stress and the strain. However, note that by applying a
stress at one end, with the other end clamped (Fig. 9.4d), the spring will attain a fixed
deformation, while the dashpot will continue to deform until the stress is maintained.
This is called theMaxwellmodel of a viscoelasticmaterial, and its behaviour ismore
appropriate to describe a fluid.

In reality, no materials behave exactly as in the Kelvin-Voigt, or in the Maxwell
model. However, the two can be used as building blocks to construct more compli-
cated andmore realisticmodels ofmaterials. In particular, many biological materials,
such as cartilage, or cell membranes, display liquid-like and solid-like viscoelastic
properties in different proportions. In such cases, the so-called standard solidmodel
may be more appropriate.

This is described as the combination in series of one purely-elastic plus one
Kelvin-Voigt block, as shown in Fig. 9.4e. Now there are three different materials
parameters to play with, E1, E2, η. Firstly, note that the total stress must be equal
in the two blocks, σ = σ1 = σ2. Then, the total strain is ε = ε1 + ε2, with the two
contributions being respectively:

ε1 = σ

E1
ε2 = σ

E2 + η d
dt
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(we treated the ‘d/dt’ in Eq. (9.6) as an operator), hence:

ε = σ

E1
+ σ

E2 + η d
dt

or, by rearranging terms:

E1E2ε + ηE1ε̇ = (E1 + E2)σ + ησ̇ (9.8)

By fitting the three parameters to experimental data, the standardmodel canmatch
the stress-strain relaxation curve at three points, but its ability to fit the data over the
full range is usually poor. Typically, the use of a single relaxation time (see Problem
9.3) makes the transition too fast.More refined descriptions, such asWiechert model,
include many spring-dashpot elements that allow to better reproduce the competing
internal relaxation mechanisms of complex materials.

9.3 Soft Tissues

With the notable exception of bone,most tissues in the animal body fall in the category
of soft viscoelastic material. Four kinds of such tissues are usually acknowledged: (1)
epithelial tissues, characterised by a dense pattern of cells tightly bound to each other,
typically found on the free surface of the organs (external and internal); (2) muscle
tissues, characterised by a high degree of contractility and to a good approximation
displaying a mechanical response largely in the linear regime; (3) nervous tissues,
composed of cells with special chemical and electrical characteristics; (4) connective
tissues, in which a small volume fraction of cells are separated by a large amount of
extracellular materials produced by the cells themselves. These latter will be treated
more specifically in the next Section.

Vital organs in a animal body are usually composed by more than one tissue type,
allowing to combine different functionalities. Generally speaking, it is the amount
and quality of the connective tissue between cells that gives the body its mechanical
strength to resist external stresses, and provides a recognisable shape that persists
even in the presence of applied forces. Among all these tissues, skin stands out as a
highly peculiar natural material. It supports all internal organs and protects the body
from abrasions, blunt impact, cutting and penetration, it is moderately impermeable,
and can resist the attack of various chemicals.

In humans, skin is the largest single organ taking up about 16% of the total body
mass, andmakes up between 1.5–2.3m2 of surface, in constant contact with the exter-
nal environment. In transverse section it has a total thickness going from 1.5 to 4mm,
distributed on three layers with different functions and characteristics. Mechanically,
skin is heterogeneous, anisotropic and non-linear viscoelastic (Fig. 9.5).

The outer layer, or epidermis, is composed by several types of cells with different
functions, among which the keratinocytes form the main mechanical barrier to the
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Fig. 9.5 Examples of human soft tissues from histological sections, stained to reveal cell compo-
nents and nuclei. a Epithelial tissue from the cardiovascular system; such kind of cells cover the
heart, veins and capillaries with a protective function. b Skeletal muscle, with extremely long fibres.
Each muscle fibre has many nuclei, the majority of which are located at the periphery of the cell;
transverse striations appear as a regular, cross-banding pattern. c Loose connective tissue, making
up the mechanical structure of the elements in the cardiovascular system. [Photos courtesy of J.
Oros-Montón, Universidad de Las Palmas, www.webs.ulpgc.es/vethistology/.]

exterior, mostly preventing water loss. The intermediate layer, or dermis, contains
a substantial fraction of proteoglycans (long branched polymers made by a central
protein, and numerous lateral branches of polysaccharides), collagen, and elastin
protein (being similar to cartilage or tendons, but with different composition and
mechanics). The inner layer, or hypodermis, ensures contact with the inner organs,
and contains fat cells (adipocytes) and fibroblasts, aside of collagen matrix.

Themechanical properties of skinmainly depend on the nature and organisation of
the dermal collagen and elastin fibres networks; secondarily on the relative fractions
of water, proteins and macromolecules embedded in the extracellular matrix; and
to a variable, lesser extent on the mechanical properties of the epidermis and outer
keratin wall. However, in some cases these external layers can be so thick and strong,
to become the true supporting structure, as it will be seen in the next Section.

Collagen is one of the most widespread proteins in the animal body. It is used
in bone, cartilage, tendons, skin, and most types of soft tissues, making up between
20 and 30% of an animal’s protein contents. Its elementary molecules are about
300nm long and 1.5nm thick, consisting of three braided helices of tropocollagen (a
protein dominated by glycine), stabilised by a network of hydrogen bonds (Fig. 9.6).
Although asmany as 29 different types of collagen have been identified, the types I to
V are the most common in the human body, with a Young’s modulus E � 1 GPa, and
ultimate tensile strength of about 100 MPa; types I to III tend to form long bundles,
while type V rather forms large scale networks. Together with collagen, elastin is
a specialised protein providing skin its elasticity, most importantly the capacity to
retract back to the original shape after a deformation, with a much lower Young’s
modulus E = 600 kPa.

Because of their fibrillar structure, collagens are known to have little resistance in
compression, since fibrils are easy to buckle under compression. Collagen networks
alone ensure most of the skin resistance under tensile stresses. However, when cou-
pled to other components, such as elastin and proteoglycans, as well as to the fluid
phase, the ensemble can withstand also compressive loads.

www.webs.ulpgc.es/vethistology/
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Fig. 9.6 Hierarchical structure of the collagen fibre. Three polypeptide strands, each conformed
in a left-handed helix, are twisted together into a right-handed triple helix stabilised by hydrogen
bonds; the repeated peptide sequences are very often Gly-X-Pro or Gly-X-Hyp, i.e. Glycine makes
up about 30% of the total. These tropocollagen units have constant size, 300 nm long by 1.5nm in
diameter. In fibrillar collagens, such as type I-III, tropocollagen units associate into a right-handed
superstructure, the fibril, with a constant longitudinal spacing of 40 nm, and a shift of 67 nm; when
collagen ismineralised to formbone, the interstitial space is filled by polycrystals ofHydroxyapatite,
Ca10(OH)2(PO4)6. Fibrils can organise into many different structures, such as long fibres, more or
less dense networks, also including combinations of various collagen types and cross-linking agents

While being all made from collagen (plus other stuff), the mechanical behaviour
of skin is very different from that of denser collagenous materials, like tendons, or
more hydrated collagenous materials, such as cartilage. This is due to differences
in self-assembly of the microstructure, such as the tilt angle (relative orientation) of
collagen fibres, as well as the average length, thickness and volume fraction of the
fibres. For example, the average length of collagen fibres is about 500 µm in a human
tendon, while it is 10 times smaller in the skin. The differences in Young’s modulus
among collagenous materials may also come from molecular-scale variations, for
example the spacing shift between tropocollagen units (see again Fig. 9.6) is slightly
larger in the tendon (67 nm) than in the skin (64 nm).

The mechanical properties of human skin have been measured by various scien-
tists. Typical values derived from stress-strain curves taken at different strain rates,
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Fig. 9.7 a Stress-strain plots for human skin. Total stress was obtained from the initial stress
observed at a strain rate of 10%/min while elastic stress was obtained from the equilibrium value
of the stress at a fixed strain. Viscous stress was defined as the difference between the total and
elastic stresses. By taking the linear parts of each component, values for E and η can be estimated.
b Schematic of the biaxial extension of a skin sample, showing the progressive straightening of
collagen fibres as far as the stress is increased. [From Ref. [3], adapted w. permission]

coupled to analysis of histological sections of skin samples (see Fig. 9.7a), give aver-
age collagen fibril length of ∼55 µm, Young’s modulus E ∼ 18 MPa, viscosity
η ∼ 5 kg m−1s−1. Stress-strain measurement such as those shown in Fig. 9.7 are
carried out by measuring the stress corresponding to each strain increment, for vari-
ous strain application rates. After the skin sample is stretched to a strain increment,
the stress is allowed to relax and decay to equilibrium, before an additional strain
increment is added. The elastic component of the stress is defined as the stress at
equilibrium, while the viscous component is calculated from the difference between
the total stress and the elastic stress component. In this way, the elastic and viscous
components can be plotted separately, and from the slopes of the respective linear
portions, E and η can be deduced according to Eqs. (9.5) and (9.6).

It is generally found that human skin (but also that ofmany furry animals) has non-
linear viscoelastic properties, schematically depicted in Fig. 9.7b. Under moderate
stretching, collagenfibres start to straighten and realign parallel to one another (A toB
in the figure); once fibres are almost parallel, the linear part C of the curve begins, and
here themoduli E and η can bemeasured. Beyond this region C of large deformation,
a critical stress load is reached, and skin exhibits a sizeable hysteresis loop (see
Appendix H). Here an amount of stored elastic energy is dissipated into reversible
molecular rearrangement upon (large) deformations; collagen molecule stretching
and slippage occurs; the tighter spacing of tropocollagen coupled to the quite short
fibril length results in increased fibrillar slippage and energy dissipation, effectively
lowering the elastic constant of collagen. The typical failure mode leading to skin
tearing (indeed, a form of ductile fracture) is creep, i.e. stress accumulation under a
constant level of applied strain close to the fracture strain ε f ; fromamicroscopic point
of view, this creep phenomenon can be ascribed to the progressive dislodgement of
watermolecules from between the collagen fibres, leading to irreversible dehydration
and distributed failure of individual collagen fibres.
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9.3.1 Where Soft Turns Hard

The animals called amniotes (because they lay eggs on the ground or inside a mother,
as opposed to the anamniotes, who usewater as a egg-nurturingmedium) exhibit skin
appendages, such as hairs in mammals and feathers in birds, that play major roles
in thermoregulation, photoprotection, camouflage, behavioral display, and defense
against predators. Reptiles instead, similar to the fish anamniotes, developed various
types of scales on the outer skin surface. In Chap.12 we will see in some more
detail what physics and mathematics have to say about the formation of patterns in
such external material layers. However, these seem to have a common origin in the
embryonal stage, by some epithelial cells that start a genetically-controlled process
of differentiation into units, whose spatial organization is precisely patterned by
chemical and diffusion mechanisms.

Inmany cases, however, the outer layer of the skin does not need to producedistinct
protective appendages, but rather develops further, and thickens to an extent that
makes it resemble to a sort of exoskeleton, with functions and properties similar to the
tight pattern of scales covering a crocodile’s body, butwith an entirely different origin.
The skin of a rhinoceros (see Fig. 9.8a) is popularly described as the paradigm of an
impenetrable wall, endowed with exceptional hardness and resistance. In fact, the
outer dermis layer in rhinoceros (as well as in elephants, and the like) is much thicker
than in most animals: it is still skin, “just” water, collagen, elastin and something
else, but what a fantastic material! Under the microscope (Fig. 9.8d, e) it appears as a
dense and highly ordered three dimensional array of straight and highly cross-linked
collagen fibres. The stress-strain curve is steep (Fig. 9.8b, c), with E = 240 MPa,

Fig. 9.8 The rhinoceros skin. b Stress-strain plots for different samples from the dorsolateral,
belly, and flank skin. c Comparison of stress-strain plots for human tendon, rhinoceros skin, and cat
skin; the schematic arrangement of collagen fibres is shown in the inset. (Data redrawn from [4]).
d, e Histological cross sections of rhinoceros skin samples from the flank and belly, respectively,
showing the cross-crossed arrangement of collagen fibres. [Image a courtesy of Gentside, www.
maxisciences.com/; electron micrography (d, e) Ref. [4]. Repr. w. permission]

http://dx.doi.org/10.1007/978-3-319-30647-6_12
www.maxisciences.com/
www.maxisciences.com/
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ultimate tensile strength of 30 MPa (1/3 of that of pure collagen), and an outstanding
resistance to fracture (toughness) compared to other animal tissues: it takes G ∼ 80
kJ/m2 to break apart a piece of rhinoceros skin, compare e.g. to about 10–12 kJ/m2

of wood, and 150–500 kJ/m2 of hard to mild steel. The stress-strain plots in Fig. 9.8b
show that rhinoceros skin is quite diversified. While being everywhere rather tough,
the flank skin is however capable of stretching to twice its size under a large stress of
10–20 MPa (such a value of stress would easily bend a plate of aluminium of 3cm
thickness).

As it can be seen from Fig. 9.8c, the material properties of this thick skin layer are
somewhere between those of the stiff human tendon, and those of very flexible cat
skin. The diagrams in Fig. 9.8c also suggest that themain difference in themechanical
response of the different regions comes from the variation of the arrangement and
size of collagen fibres. In the histological section of flank region skin (Fig. 9.8d)
highly cross-linked networks of long collagen fibres are seen, averaging around 90
µm in diameter, with a good degree of long-range order. The microphotography
of the harder and less deformable belly region skin, by contrast, shows thicker and
shorter fibres, arranged in a more disordered, more compact network. This latter
material is in fact stronger (the slope of the linear part of the σ − ε curve indicates a
bigger Young’s modulus, by a factor of ∼6), while having a similar toughness (peak
stress of∼15MPa); the dorso-lateral skin, on the other hand, has a Young’s modulus
similar to the belly skin, but it is much tougher, with an almost doubled peak stress
and a slightly shorter fracture strain, ε f ∼ 30%.

9.4 Tissues That Are Neither Solid nor Liquid

Skeletal soft tissues are specialized connective materials that provide the connection
between the harder material of the bones and the soft material of the muscles, at
various levels. These materials are essentially cartilage, covering the ends of the
bones in the joints with a thickness of 1–6 mm in humans; ligaments and tendons,
which connect bones to bones, or bones to muscles, respectively.

At a cellular level, such tissues are generated in large amount by sparse populations
of cells: the chondrocytes for the cartilage, tenocytes and some particular stem cells
for tendons and ligaments respectively. Such cells can produce a large amount of
collagen-rich extracellular matrix, proteoglycan and elastin fibres; typically, only
∼2% of the cartilage is composed by cells, the rest being the extracellular material.
The arrangement and patterning of the collagen fibres is one of the main origins of
the observed mechanical properties of such materials (Fig. 9.9).

At a mechanical level, the main functions of articular cartilage is to dissipate and
distribute contact stresses during joint loading, and to provide almost frictionless
articulation in joints.The primary functions of ligaments and tendons are to stabilise
joints and transmit the loads, to hold the joints together, to guide the trajectory
of bones, and control the joint motion. In order to accomplish these demanding
tasks, articular cartilage, as well as ligament and tendons, are structured as biphasic
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Fig. 9.9 Examples of human connective tissues from histological sections. a Tendon. The fibres
in this dense connective tissue are more abundant than cells, with collagen fibres oriented in a
regular pattern arranged in the same plane and direction. b Dermis, the intermediate layer of the
skin between the outer and the inner layers. Here collagen fibres predominate in dense irregular
connective tissue, and are generally arranged in bundles that cross each other at varying angles.
c Cartilage (from trachea). The chondrocytes vary in size, and are dispersed in a small fraction
among a much larger fraction of collagen, with a substantial fraction of fluid phase (water); deeper
within the cartilage, cells tend to be larger and more polyhedral in shape. [Photos courtesy of J.
Oros-Montón, Universidad de Las Palmas, http://www.webs.ulpgc.es/vethistology/.]

materials, with an anisotropic, viscoelastic and nonlinear mechanical behaviour that
imparts these materials some absolutely unique mechanical properties.

The two distinct phases that make up such materials are a fluid phase, consisting
of interstitial water andmobile ions, and a solid phase, consistingmainly of collagen
fibrils and negatively charged proteoglycans. Themain differences between these tis-
sues are the type of molecules involved in the matrix (collagen of different kinds) and
the relative proportions of the constituents. Typically, cartilage contains up to 10% of
proteoglycans and 10–20% of collagen in wet weight, with a water contents that can
reach 80%; ligaments contain about 5% proteoglycans and up to 30% collagen; ten-
dons contain somewhat more collagen and less proteoglycans than ligaments. Both
the tendons and the ligaments contain less water, typically about 60%.Moreover, the
collagen molecules of cartilage are of the so-called type-II, while those of tendons
and ligaments are of type-I; both types of collagens are made up of a twisted triple
helix of amino acids, of which glycine, proline and alanine representing more than
half, both form fibrils and are very similar in structure and functions, with differences
in their respective chemical compositions. Correspondingly, the mechanical proper-
ties of these materials vary largely: the Young’s modulus of cartilage is about 0.5
MPa in compression, while a ligament has a E > 100 MPa in tension, and a tendon
can approach the GPa range.

9.4.1 Cartilage

A typical stress-strain plot for a skeletal biphasic material under uniaxial tension is
shown in Fig. 9.10. It is similar in shape to those observed for skin (Figs. 9.7 and
9.8), however the scales of stress and strain are different. The first part of the curve

http://www.webs.ulpgc.es/vethistology/
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is called the “toe”, displaying a non-linear stress-strain response upon increasing
load; this behaviour is due to the progressive straightening of the wavy-like collagen
fibrils. After the collagen fibrils are completely straightened the elastic region begins,
displaying a typical Young’s modulus of the composite tissue. Strain in these first
two regions is reversible, and the overall curve resembles quite closely the worm-
like chain model of the previous Chapter (also in this case, the interpretation can be
ascribed to the entropic elasticity of individual collagen polymers). Upon increasing
further the load, the slope of the curve changes (yield point, σy) and the plastic region
begins. In this region the tissue begins to experience irreversible, destructive changes,
e.g. microfractures in the collagen fibril network. At the extreme deformation the
tissue fails completely, and the stress drops rapidly to zero, i.e. the structure cannot
support any further applied force.

One of the important characteristics of these complex materials is that their
mechanical response is generally different in tension and compression. For the com-
pression of cartilage some disagreement exists, in that most scientists agree that the
origin the viscoelastic response should be found in the flowing of the fluid phase,
whereas some believe the viscoelasticity being rather a property of the matrix struc-
ture. Part of the difficulties are due to the heterogeneity of the cartilage, whose
properties change a lot across its thickness. For example, the bulk modulus in com-
pression for bovine cartilage has been measured to vary by a factor of 20 over a
few cm of depth. Compression resistance is mostly ascribed to the higher content
in proteoglycans, compared to either the harder tendons, or the softer skin tissues,
and in fact a good correlation exists between the increase in B and the increase in
concentration of proteoglycans with depth.

Fig. 9.10 Typical stress-strain curve for destructive tensile testing of skeletal soft tissues. In blue the
reversible part, in red the irreversible part of the deformation. On the top of the figure, collagen fibril
straightening and failure, related to different regions of the stress-strain curve, are schematically
shown. The stress and strain ranges vary for each tissue, however the shape of the curve is the same.
[Redrawn from Ref. [5], under CC-BY 3.0 licence, see (**) for terms.]
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The biphasic model of soft tissues

The biphasic model chiefly applies to cartilaginous soft tissues. In this model, both the solid
matrix and the fluid are assumed to be incompressible and non-dissipative materials; the only
dissipation of energy is ascribed to viscous drag acting on the fluid flow in the tissue. The
stress-strain relations for the whole tissue are written as:

σ S = −φS pI + σ E

σ F = −φF pI (9.9)
σ T = σ S + σ F = −pI + σ E

where the subscripts S, F, T stand for ‘solid’, ‘fluid’ and ‘total’, φ are volume fractions with
φF = 1 − φS , p is the fluid pressure, σ E is the effective stress tensor of the solid material, and
I is the diagonal unit tensor (a 3 × 3 matrix with 1 on the diagonal, and 0 off the diagonal).

The fluid phase flow is embodied in a mass-balance equation for the fluid and solid moving
with relative velocity vector fields vF and vS , whose total divergence must be equal to zero:

∇ · (φSvS + φFvF ) = 0 (9.10)

and two momentum equations for the fluid and solid phases:

∇ · σ S = −pS (9.11)
∇ · σ F = −pF

with the momentum conservation condition pS = −pF , which also implies ∇ · σ T = 0.
Thematrix is a porousmedium, and the fluid flowacross thematrix is akin to the permeation

of a membrane. By defining the cartilage permeability k, the fluid viscosity η, and the effective
filtration velocity as w = φF (vF − vS), the equivalent of the Darcy’s law (see Sect. 5.6) can
be written:

w = − k

η
∇ p (9.12)

i.e., the filtration velocity is proportional to the gradient of the fluid pressure.
In the original, simple linear-elastic model (V. C. Mow et al., J. Biomech. Eng. 102 (1980)

73), together with a constant value of permeability k (leading to the linear relation between w
and ∇ p), also the effective stress tensor is taken to be linear and isotropic (see Eq. (9.34) of
the Appendix):

(σi j )E = λεkkδi j + 2μεi j (9.13)

In more refined models, the material is considered anisotropic, with a third elastic coeffi-
cient besides Lame’s λ and μ, and the permeability is no longer constant, but depends on the
fluid fraction e = φF/φS :

k = k0

(
1 + e

1 + e0

)M

(9.14)

the ‘0’ indicating the reference values atzero stress, and M a constant to fit on experimental

data.

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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The viscous properties of cartilage are associated with the fluid component. The
proteoglycan matrix gives cartilage a spongelike character, since it tends to hinder
water movement, and the matrix can thus retain water molecules. However, water
can be set in motion by the mechanical pressure applied on the joints. Since the fluid
flow is proportional to the pressure difference caused by the applied stress, we can
invoke an old acquaintance from Chap.5, the matrix permeability, to describe this
property. Permeability is inversely proportional to the force required for the fluid to
flow at a given speed. Since the permeability of cartilage is quite low, this means that
the fluid will flow at slow speed even under quite large joint pressure. With typical
loading times in the few tenths of seconds, therefore, the fluid remains confined in
the matrix and the cartilage can retain its stiffness up to very large loads.

In order to describe the mechanical response of such a complex material, the
biphasic model has been developed (see the greybox on p. 389), to take also the
interstitial fluid movement into account [6]. In this model, the frictional drag of
the moving fluid explains the viscoelastic response of cartilage under compressive
load. The solid and fluid phases are assumed to be immiscible and incompressible, the
overall compositematerial having a Poisson’s ratio ν = 0.5 at equilibrium (i.e., when
all fluid flow has stopped). A typical stress versus time plot for a cartilage sample
subject to step loading at increasing values of stress is shown in Fig. 9.11 (actually
showing the perpendicular force in N vs. time). A compressive strain is applied and
held constant; the force jumps to a peak value, 1.5 N, and then relaxes exponentially
to a much lower value. A second compression is applied; the force jumps again to
a larger peak of 2.5 N, and relaxes to a higher value around 0.5 N. And so on, with
successive compression steps. It may be noticed that the relaxation time necessary to
attain the equilibrium stress (force) increases with each increasing compression step:
this is one signature of the fact that the permeability (i.e. the viscoelastic coefficient)

Fig. 9.11 Left A typical stress-relaxation measurement of articular cartilage and the corresponding
theoretical fit, using a fibril reinforced poroviscoelasticmodel. (Compare to Fig. 9.3c).Right Vertical
section of human articular cartilage (3D digital volumetric fluorescence microscopy). The articular
surface is above, the subchondral bone is below. Note the changes in size and spatial distribution
of cells (chondrocytes) through the thickness. [Image left from Ref. [5], repr. under CC-BY 3.0
licence, see (**) for terms; right from Ref. [7] p. 84, © 2008 Elsevier, repr. w. permission.]

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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varies upon increasing load, and the fluid velocity is progressively reduced as the
composite material stiffens.

The elastic isotropic model is useful to obtain simple material parameters for the
tissue. However, a more detailed description of the complex mechanical properties
of skeletal soft tissues can only be obtained by using more sophisticated models.

9.4.2 Tendons

The fluid flow-dependent viscoelasticity is less important in ligaments and tendons
compared to cartilage, because these elements experiencemainly tensile forces under
physiological loading. Moreover, it is generally understood that the fluid has but a
minor role in contributing to soft tissue response in tension. Rather, themain attention
is focused in this case on the molecular structure.

Tendons appear in a variety of sizes and shapes, depending on the morphological,
physiological and mechanical characteristics of both the muscle and the bone to
which it is attached. In every tendon, the two parts that attach respectively to the
bone and to the muscle have somewhat different character from the tendon proper;
this latter is constituted by 70–80% of collagen.

The outstanding mechanical properties of tendons are due to the optimisation of
their structure (Fig. 9.12) over many levels of hierarchical structures, whose respec-
tive interrelations are not yet fully elucidated. When a tensile load is applied to
a tendon, the deformation is redistributed among the various components in non-
obvious ways. The organisation of the molecular fibrils in the cross section plane
of the tendon displays an ordered arrangement over short distances, with the fibrils
approximately disposed in a hexagonal pattern, and a more loose order over longer
distances, with a sort of ’polycrystalline’ structure of the fibres. One of the challenges
is to work out the respective influence of these different levels. Experiments done by
stretching a tendon andmeasuring simultaneously the deformation at the level of sin-
gle fibres, by synchrotron X-ray diffraction, show that the strain distribution is very
inhomogeneous. In particular, the total stress is not simply retrieved by summing the
stresses in the fibres and in the molecules that make up the fibres: a substantial com-
ponent of the deformation is lost in the relative shearing of the fibrils with respect to
each other, distributing part of the stress in the embedding proteoglycan matrix. Such
molecular-level interactions are not entirely clear, but lead to a strongly non-linear
and viscoelastic response of the ensemble.

Themyotendinous junction is the region where themuscle joins with the tendon,
and it is mechanically very important since it is the key to transmitting the muscle
force downstream, to the tendon and the bone. Themorphology of this region presents
multiple folds, that largely increase the interface area, by a factor of 10–20 compared
to the adjoining muscle cross section. This is one way of reducing the stress, by
distributing the force over a larger surface. As a second consequence, the load transfer
occurs mostly through shear, rather than by tension.
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Fig. 9.12 Simplified tendon structure. a The tendon is made of a number of parallel fascicles
containing collagen fibrils (F), which are assemblies of parallel triple-helical collagen molecules
(M). b The tendon fascicle can be viewed as a composite of collagen fibrils (with thickness of
several hundred nm and a length of ∼10 µm) in a proteoglycan-rich matrix, subjected to a strain
εT . c Part of the total strain εT is accommodated by deformation of the proteoglycan matrix (pg);
the remaining part, εF , is shared among the fibrils (F). d Collagen molecules are packed within the
fibrils in a staggered way, with an axial spacing D = 67 nm, when there is no load on the tendon.
Since the length of themolecules (300 nm) is not an integermultiple of the staggering period, there is
a succession of gap (G) and overlap (O) zones. The lateral spacing of themolecules is approximately
1.5 nm. The full three-dimensional arrangement is not yet fully clarified, but contains both elements
of crystalline order and of disorder. The strain in the molecules, εM , may be different from the strain
in the fibril, εF . [From Ref. [8], repr. w. permission]

The stress-strain curve of the tendon is similar to that of other collagenous mate-
rials (see Fig. 9.10), with a “toe” region of elongation at very low stress, followed by
a linear region of steep increase of stress with increasing strain, and a plastic region
of permanent deformation (yield) at nearly constant stress, which terminates at the
failure point. The difference is that the tendon is much stiffer and stronger than other
similar materials: the toe region extends up to only about 2% strain; the slope of the
linear region is much higher, with an apparent Young’s modulus in the 1–2 GPa; and
the plastic yield starts quite early, around 5–6% strain.

Tendons loaded cyclically display a hysteresis loop, indicating that part of the
stored elastic energy in tension is lost when the load is removed. However, the area
of the hysteresis loop is quite small, therefore the tendon has a high resilience (see
Appendix H). Because of this property, tendons are capable of storing and releasing
large amounts of elastic energy. This also seems to have important, albeit indirect,
consequences on the evolutionary development of muscles in long-legged running
animals, such as horses, deers, kangaroos, or camels. The legmuscles in these animals
are relatively short, and can develop very large forces when stretched; however,
because of their relatively short fibre length, the overall length variation is limited:
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the mechanical work, that is the product force × elongation, or stress × strain, is
reduced. Therefore, to increase the energy output part of the elongation should occur
within the tendons, which are correspondingly longer for such muscles. In a number
of animal studies, it was suggested that locomotor muscles keep tendons constantly
taut during running; upon impact with the ground, these tendons are stretched and
the energy to decelerate the mass of the animal is stored as elastic strain energy;
during the subsequent propulsive phase, tendons recoil and release a large portion of
the stored energy. This energy contributes to the locomotion, and may help saving
metabolic power. As it will be discussed at length in the next Chap. 10, for a given
cross section area, short muscles can generate the same amount of force than longer
ones; however, they are also less massive and allow a slender leg shape, with a overall
reduced cost of transport (see the last Chap. 12). Therefore such a structure, coupling
shorter muscles and proportionally longer tendons, could be more economical for
high speed running.

Tendons may be also subject to prolonged static loads, such as those imposed
by postural muscles, aside of the cyclic, repetitive loads of locomotion. Application
of prolonged constant forces, even below the maximum strength level, may cause
failure by creep. By studying the constant-stress loading of wallaby tail tendons [9],
it was found that tendons can break already at a stress of 20 MPa if the load is
applied for several hours continuously, whereas the peak stress to break the same
animal’s tendon in a sudden effort would be above 150 MPa. The time to failure of
the stressed tendon decreases nearly exponentially upon increasing the applied load,
T = A exp(−σ/B), with typical values of A = 6 × 104–8 × 105 s, and B = 12–16
MPa for the wallabies tested in the experiments; at a stress of 80 MPa, that is about
half the peak fracture stress σ f , the time to failure decreases to a few hundreds of
seconds. The failure by creep signals the accumulation of damage in the molecular
structure, with a consequent progressive degradation of the elastic moduli of the
material beginning well below the final rupture point.

9.5 Rigid as Bone

By considering bone, we move from soft to hard tissues. However, note once more
that “hard” in the context of a biological material is far from our daily notion of a hard
material such as concrete or steel. A bone is an organ that contains aside of the proper
bone tissue also other tissues, such as bone marrow, nerves and blood vessels. Bone
tissue comes primarily in two forms, trabecular and cortical, similar in constitution
but different in their microscopic architecture (Fig. 9.13a). As any other tissue in
the animal body, also bone is continuously remodelled, replaced and repaired, by a
variety of specialised cells: osteoblasts that form new bone, they come from the bone
marrow and work in teams to make new bone (“osteoid”) by building up collagen,
proteins, calcium and mineral deposition; osteocytes, originated from osteoblasts,
which get surrounded by new bone tissue, and send out long branches that connect
to other osteocytes; osteoclasts, coming from the bone marrow and related to white

http://dx.doi.org/10.1007/978-3-319-30647-6_10
http://dx.doi.org/10.1007/978-3-319-30647-6_12
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Fig. 9.13 Multiscale organisation of bone, from the macroscopic to the molecular scale. a Section
of a tibia, showing cortical and trabecular bone tissue. b Zoom on a cortical bone microregion,
with osteocytes and osteoblasts; one full osteon around the Haversian canal is shown in the upper
right. c Scanning-electron micrograph of collagen fibres, from one layer (lamella) on the surface
of human trabecular bone. d Zoom on a mineralised collagen fibril: above, transmission-electron
micrograph, showing dark-field contrast of alternating collagen and mineral regions; below, elec-
tron energy-loss map (calcium, red; oxygen, green; carbon, blue). [Images adapted from: (b)
en.wikipedia.org/wiki/Osteon/, (c) S. Bertazzo, repr. under CC-BY-SA 3.0 licence, see (*) for
terms; d Ref. [10]; repr. w. permission.]

blood cells, which are directed by osteocytes to the places where high stress and
breaking develops, to dissolve the damaged bone tissue.

As different as it appears from skin or cartilage, bone is made just from the same
basic materials, i.e. collagen fibres, proteins and water, but with one fundamental
additive: mineral crystals of hydroxyapatite, Ca10(OH)2(PO4)6, which go to fill up
the interstices of collagen-I staggered fibrils (see Fig. 9.6). During bone growth,
mineralization begins in the fibril gap zones and extends into other intermolecular
spaces, resulting in a fully mineralised fibril. The three-dimensional arrangement of
collagen molecules within a fibril is not well understood; however, collagen fibrils in
bone range from 20 to 40nm in diameter, suggesting that there are 200–800 collagen
molecules in the cross section of a fibril. On a weight basis, bone is approximately
60% inorganic, 30% organic, and 10% water; on a volume basis, these proportions
are about 40-, 35-, and 25%, respectively. Bone grows by accretion (Fig. 9.13b),
with successive concentric layers being marked by cement lines. The basic unit is the
osteon, which contains both nascent and mature material, and is vertically traversed
by an empty channel, theHaversian canal, throughwhich run nerves and blood vases
(Fig. 9.14a). It is estimated that a human skeleton is made up by about 20 millions
osteons. Within the osteon, collagen fibres are tightly organised into a dense matrix
(Fig. 9.13c), with successive layers (called lamellae) that get progressively twisted
with respect to the inner ones, to increase the resistance to torsion and bending
stresses. A growing osteon is called osteoid. Within the osteoid, osteoblasts secrete
the collagen and various proteins, among which osteocalcin that binds calcium at the
right concentration to promote mineralization of the collagen fibrils (Fig. 9.13d).



9.5 Rigid as Bone 395

Thedifference between trabecular and cortical bone ismostly basedon the density:
while trabecular bone has a spongy appearance, with a porosity (void fraction over
the total volume) between 70 and 90%, cortical bone is dense and compact, with a
porosity as low as 5% (which however increases with age). Overall, cortical bone
has a density of 1.85 g/cm3, trabecular bone varies between as low as 0.3 to about
1 g/cm3. Both types of bone have a lamellar structure, which is the most common
in adult mammals (in fast developing bone, a different mm-scale structure is found,
with a 3D-woven geometry). Primary lamellar bone is new tissue, consisting of large
concentric rings of lamellae, winding about each osteon canal similar to growth rings
in a tree, as shown in Fig. 9.13b. Lamellae are layers of collagen fibres (Fig. 9.13c),
with the typical twisted structure between adjacent layers.

As far as its mechanical properties, bone is extremely anisotropic, thus reflecting
its complex hierarchical structure. Human cortical bone has Young’s modulus E =
18–20 GPa in the longitudinal direction and E = 10 GPa in the transverse direction;
shear modulus μ = 3.3 GPa; and Poisson’s ratio ν = 0.40 (longitudinal) and 0.62
(transverse). The spongy trabecular bone has E between 1 and 5 GPa, depending on
the porosity and age.

Figure9.14b–d displays sample plots of the mechanical response of human cor-
tical bone under compressive or tensile, instantaneous or steady loads. In the panel
9.14b a typical stress-strain plot under steady loading is shown, demonstrating that
cortical bone is stronger in compression than in tension; this difference is indica-
tive of its elastic anisotropy. The panel 9.14c shows bone response under a steady
stress, at three increasing levels: when a low stress is applied to the bone, the strain
remains constant over time and there is no permanent deformation after unloading;
for stresses just below yield, σy , the strain starts increasing with time (creep) at a
constant rate, and a small permanent deformation exists after unloading; at the high-
est level of stress, the rate of creep increases, and a larger permanent deformation
would be observed after unloading.

Finally, in Fig. 9.14d the strain-rate sensitivity of bone under uniaxial loading in
the longitudinal direction is demonstrated (compare with Fig. 9.3d). This property
shows that the apparent strength is higher when the load is applied faster. Although
bone is viscoelastic, like all collagen-based materials, the effect of loading rate is
however quite moderate, e.g. if compared to skin. In typical experiments, both the
modulus E and the yield stress σy (i.e., the stress at which nonlinear response sets
in) increase by only a factor of about 2–3, for loading rates increasing by 6 orders of
magnitude. The majority of physiological activity takes places at deformation rates
up to about 0.1 s−1: slow walking corresponds to a strain rate of 10−3, brisk walking
10−2, slow running ∼3 × 10−2 s−1. As shown by the receding maxima in the plots,
at very high strain rates (>1000 s−1) the ultimate strain decreases, and the strength
increases. Cortical bone exhibits a “ductile-to-brittle” transition at such high rates,
as could occur, e.g., in a car accident, or as a result of a gunshot.

Fracture properties of bone are also very anisotropic, with a fracture stress σ f =
135 MPa (longitudinal) and 53 MPa (transverse) for tensile load, as opposed to
σ f = 210 MPa (longitudinal) and 135 MPa (transverse) for compressive load. The
compressive and tensile fracture stress are therefore 1.14% or 0.75% of the Young’s
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Fig. 9.14 Structure and mechanical properties of human cortical bone. a A schematic of lamellar
micro-architecture, showing lamellae with collagen fibril bundles at different orientations. b Stress-
strain plot in compression and tension. c Creep response at three different stress levels. d Strain-rate
sensitivity for longitudinal tensile loading. [Images from: a Ref. [11]; b Ref. [12]; c Ref. [13]; d
Ref. [14]. Repr. w. permissions from the publishers.]

modulus, respectively, to be compared for example to values between 0.4 and 0.7%
for high-performance aluminum or titanium alloys, thus making bone a very high-
performance material as far as strength.

As we already know from the previous Chapter, bending and torsional moduli
depend not only on the material characteristics, but also on the shape and size of
the structure made from such materials. In particular, long bones (e.g. femur, tibia)
satisfy the geometry of a practically empty cylinder, with inner and outer diameters
d and D (taking as zero the mechanical resistance of the soft bone marrow filling the
central cavity). Then, the moment of inertia of the transverse cross section may be
approximated by the expression I = π(D − d)4/32. Typical values of sizes at the
midshaft of human femur are D = 2.2–3. cm and d = 0.8 − 2. cm (with a variation
between male and female) giving aI � 3 − 9 cm4. Coupled to the above values of
transverse E , the bending rigidity of the femur midshaft results κb = EI = 300–
900 Nm2. Such values should be taken just as an order of magnitude, since the
bone cross section is never truly cylindrical, but it takes rather an elliptical irregular
section, with the top and bottom edges thickened and the wide sides thinner.
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In a similar way to the bending modulus, a twisting modulus can be defined
as κt = GJ , with G the shear modulus and J the “polar” moment of inertia of
the transverse cross section. The latter is analogous to I , both conceptually and
practically, and for the hollow cylinder it is numerically equal to J = 2I . The
twisting modulus of femur bone is therefore κt ∼ 2

3κb. Such a value of κb/κt ∼ 1.67
would bemore typical of a hollow cylinder made of a stiff, rigidmaterial such as steel
(for an ideally isotropicmaterial, E/G = 2(1 + ν) and κb/κt = (1 + ν);mostmetals
have values of ν ∼ 0.4–0.7). This indicates a material that withstands bending and
torsion with about equal ability, differently from e.g. a long plant stem. However, in
most of an animal’s life, bones withstand essentially compressive and bending loads,
while tension and torsion are relatively rare thanks to the various joints connecting
them.

9.6 Strong as Wood

The cell walls of plants are made up of four basic building blocks: cellulose, hemi-
cellulose, lignin and pectin. Depending on the arrangement and density of their
hierarchical microstructure, plants give rise to a remarkably wide range of mechani-
cal properties, with Young’smoduli spanning from the fewMPa of potato and apples,
to tens of GPa in oak and bamboo; tensile strengths vary roughly proportionally to
E , from below 1 to more than 100 MPa.

Cellulose is the main structural fibre in the plant kingdom and has remarkable
mechanical properties for a polymer: its Young’s modulus is about 120 GPa, and its
tensile strength is∼1 GPa. Cellulose fibres in wood are arranged in a peculiarly hier-
archical superstructure. Figure9.15 displays the hierarchical assembly of a slice of
spruce wood, showing microfibrils with different inclination angle μ, each microfib-
ril being the outer wall of one plant cell, called tracheid. The cell wall contains a
large fraction of cellulose molecules (40–50%) and lignin (25–30%), in an orderly
arrangement, plus a disordered filling of hemicellulose (10–20%) and pectin long
filaments.

At the molecular scale, cellulose is made of chains of sugar units, the basic repeat
being formed by two twisted glucose rings (Fig. 9.15f). The native form of cellulose
in plant cell walls are thin microfibrils containing nanometric crystals of cellulose-
I. Typically very ordered (up to 90% in crystalline form), the hexagonal axis of
cellulose crystal structure follows the fibril axis. The size of the cellulose nanocrystals
is species-dependent, ranging from ∼2.5 nm to several tens of nm. As shown in
Fig. 9.15c, cellulose fibrils are wound helically with a microfibril angle μ in the
dominant cell-wall layer as sketched.

In awaymuch similar to the role played by long collagenmolecules in soft tissues,
the geometric arrangement of cellulose molecules in the microfibrils and their super-
structure largely dictates the mechanical properties of the resulting system (wood).
Cellulose fibrils give plant cell walls most of their enormous strength, much as glass
fibres embedded in an epoxy resin give strength to a fibreglass composite. At the
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Fig. 9.15 Hierarchical structure of a wood sample. a Cross section parallel to the grain direction;
EW is the early grown wood, LW is the late wood growth. b Scanning-electron microscopy images
of fracture surfaces of spruce wood with two different microfibril angles. c A wood cell (tracheid)
schematically drawn, to show the definition of the microfibril angle between the spiralling cellulose
fibrils and the tracheid axis. (d) The flat, ribbon-like arrangement of cellulose chains into fibrils.
(e) Crystalline structure of the cellulose chains, with a tetragonal unit cell of 0.79 × 0.84 × 1.03
nm3; red spheres oxygen, grey carbon, white hydrogen. Hydrogen bonds are indicated by dashed
lines. (f) The –O– linked structure of the sugar rings of a single cellulose chain. [Scanning-electron
micrographs (a, b) from Ref. [8], repr. w. permission.]

sub-micron scale (Fig. 9.15d) the flat, ribbon-like structure allows the chains to fit
closely together, one on top of the other, over their entire lengths. At the molecular
scale (Fig. 9.15e), cellulose chains are structured in a crystal lattice with a unit cell of
about 0.7 nm3. Interchain associations are stabilised by hydrogen bonds with oxygen
atoms linking glucose rings (Fig. 9.15f), and aggregate to form stiff crystalline rods
of very considerable length and mechanical strength. The sub-nanometric molecu-
lar structure of linked glucose rings thus neatly determines the overall structure of
cellulose chains, and establishes the interchain associations of the microfibrils. The
stiff, crystalline rods of cellulose are clearly well suited to their biological function
in the plant cell wall.

Lignin is the main biopolymer that fills the spaces in the cell wall between cellu-
lose, togetherwith hemicellulose, and pectin. It contributes to themechanical strength
of the cell wall, although its Young’s modulus is much smaller than that of cellulose
fibrils. Hemicellulose and lignin are similar to typical engineering polymers: lignin
has E � 3 GPa and σt = 50MPa. This reinforcement effect comes from the fact that
lignin is covalently linked (cross-linked) to hemicellulose, therefore it functions as a
strain-accommodating filler, next to the load-carrying cellulose. Such a double-phase
design is common in engineering composite materials, which have strong, stiff fibres
embedded in a matrix that is weaker and less stiff; the objective is usually to make a
component which is both strong and stiff, possibly with the lowest density. This very
effect is obtained with the differential microstructure of the wood composite, where
lignin tends to be particularly abundant in compression wood (sapwood), which
make up the outer layers of the trunk under the bark, and scarce in tension wood
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Fig. 9.16 Proposed models for the structure of lignin. The three monolignols in the upper left
box are the most abundant in lignin. The older, random-growth models of Harkin, Freudenberg,
Adler an others (1967–77) consider polymerisation by stepwise addition and merging of random
branches (right, orange box). The more recent “protein directed” model by Davin (1998) introduces
the formation of dimers as the first step in polymerisation, trying to explain the higher frequency of
certain types of bonds observed in natural lignin (notably, the 8-O-4); however, assembly of dimers
into a growing structure appears statistically unfavourable

(heartwood) found in the inner core of the trunk. The softer but covalently-linked
lignin-hemicellulose matrix imparts the wood composite a high tenacity, i.e. the
resistance to tearing and crushing forces. Because of the directional microstructural
arrangement of load-carrying cellulose fibrils, the tenacity of wood is much greater
in the direction of the length of its fibres than in the transverse direction.

At the molecular scale, lignin is made essentially of cross-linked phenol polymers
(Fig. 9.16), formed by successive addition of alcohol monomers (monolignols). The
chemical composition of lignin varies from species to species, with typical val-
ues of ∼60%-weight carbon, 30% oxygen, 6% hydrogen, 0.7% ash, correspond-
ing approximately to the formula (C31H34O11)n . As a biopolymer, lignin is unusual
because of its heterogeneity and lack of a defined primary structure. Although the
enzymes and the biosynthetic ways at the origin of lignification are very well known,
very little explanation exists of how lignin is built in the vegetable wall, and which
its true structure is. Older structural models of lignin presented an irregular poly-
mer, probably three-dimensional and produced by random aggregation of monomers
in a stepwise polymerisation (see Chap.6), to the disconcert of biologists and bio-
chemists. If the proposed structures are true, lignin would be a unique case of a
completely random process of biosynthesis leading to an irregular polymer. More
recently, a “protein directed” model has been proposed, based on the formation of
dimers to explain the preference of in vivo lignin for certain molecular bonds com-
pared to what observed in artificially synthesised lignin, notably the high frequency
of the 8-O-4 bond (see Fig. 9.16, red box). However, the statistics of aggregation
from dimers are very unfavourable compared to the random growth. Moreover, to
date there seem to be no experimental observations in favour of an absolute structural

http://dx.doi.org/10.1007/978-3-319-30647-6_6
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control over lignin formation. On the contrary, the structural plasticity and the ability
to form lignin through random coupling could actually be an advantage in the defence
against pathogens: for example, lack of regularity poses problems to reactions with
enzymes from fungi or insects, thereby protecting the plant from invasion.

Notably, lignin plays a crucial part in conductingwater in plant stems.Thepolysac-
charide components of plant cell walls are highly hydrophilic and thus permeable to
water, whereas lignin is more hydrophobic. The cross-linking of polysaccharides by
lignin is an obstacle for water absorption to the cell wall, thereby makes it possible
for the plant’s vascular tissue to conduct water efficiently. It is also worth noting
that the cell wall of woods is made up of four layers of varying composition, the
inner one being richer in lignin, and the second one being the richest in cellulose and
accounting for most of the wall thickness (up to 80% in some softwoods).

9.6.1 Tension and Compression

The macroscopic structure of a tree trunk is extremely anisotropic because 90–95%
of all its cells are elongated and vertical, i.e. aligned parallel to the tree trunk; the
remaining cells can be arranged in the radial direction, but no cells at all are aligned
tangentially.

In the trunk there are three main sections: the inner heartwood, which is physi-
ologically inactive; the intermediate sapwood, where all conduction and storage of
nutrients (sap, water) occurs; and the outermost bark, which protects the interior
of the trunk. Trees are usually classified as softwoods and hardwoods, because of
their distinct internal structures. Coniferous trees are softwoods, with vertical cells
(tracheids) 2–4 mm long, and roughly 30 µmwide. These cells (Fig. 9.17a) are used
for support and conduction, with an open channel in the middle and a thin cell wall;
storage cells are found in the radial direction. Broad-leaved trees, such as oak, are
hardwoods. The vertical cells in hardwoods are mainly fibres, 1–2 mm long and 15
µm wide. These are thick-walled, with a narrow central channel (Fig. 9.17b) and
are for support only; therefore other vessels are dedicated to conduction. Vessels are
either xylem, dead cells that carry water and minerals, or phloem, live cells that trans-
port energy sources made by the plant. Vessels are 0.2–1.2 mm long, open-ended
and vertically stacked to form tubules <0.5 mm in diameter.

Fruits, such as apples, and root vegetables, such as potato tubers and carrots, are
mostly made up of parenchyma tissue, to efficiently store sugars and starch. The
cells of parenchyma (Fig. 9.17c) are polyhedral with thin cell walls, densely packed
together like the closed cells of a foam enclosing a pressurised liquid. Their size
varies anywhere between a few tens of microns to 2–300 µm, with a cell wall of ∼1
µm thickness. This latter is mostly composed of pectin and hemicellulose, does not
contain lignin and just a little cellulose, therefore it is much softer than the cell wall
of woods. Together with the lack of the multi-layered structure of twisted fibrils, the
parenchyma tissue appears as a substantially isotropic medium, from the point of
view of its mechanical properties.
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Fig. 9.17 Scanning electron micrographs of: a cedar (cross section), a typical softwood; b oak
(cross section), a typical hardwood, with the large vessels for fluid conduction; c carrot, showing
the thin foam-like cell walls of the parenchyma tissue. Note that the scale bar is 200 µm for all the
three. [From Ref. [15], © 2010 Cambridge Univ. Press, repr. w. permission.]

The definition of softwood and hardwood has little relation with the material
properties of wood: the softwood Scots pine has a Young’s modulus 2–3 times larger
than the hardwood balsa, mostly because of the much lower density of the latter.
Because wood is a composite material, when stretching a wood sample it is the
cellulose microfibrils that carry most of the load. The Young’s modulus of cellulose
fibrils is 100–120 GPa, while that of lignin and hemicellulose averages to 6 GPa.
Under axial loading, an effective Young’s modulus of the wood cell wall can be
calculated as:

Ecell−wall = (1 − f )Ecellulose + f Elignin−hemi (9.15)

For a 50/50 composition, Ecw � 53−66 GPa is a realistic estimate (the highest
measured values reach 70 GPa). Since typical Young’s moduli of various woods
range between E = 2–3 and 20–25 GPa, it turns out that the cell wall is stiffer than
the wood composite. This difference is due to the water fraction and the residual
empty space, inside and between the cells. Most woods are moderately viscoelastic,
their loading and unloading curves showing a relatively small hysteresis.

Data for the Young’s modulus E and compressive strength σy of various wood
samples, plotted against the relative density, are shown in Fig. 9.18a, b. The literature
reference values used as scale on the abscissa and ordinates are those of the cell
wall, respectively taken as Es = 35 GPa, σs = 350 MPa, and ρs = 1.5 g cm−3. As
shown by the straight-line fit (labeled with numbers ‘1’, ‘2’, ‘3’, the slope a of
a ln Y = a ln X plot indicating a power-law relationship Y ∝ Xa), the E∗ and σ ∗
parallel to the grain direction are approximately linear in the relative density, while
those across the grain, in the radial or tangential direction, vary roughly with the
square of relative density:

E∗
‖ = Es

(
ρ∗

ρs

)
E∗

⊥ = Es

(
ρ∗

ρs

)2.5

(9.16)

σ ∗
‖ = σs

(
ρ∗

ρs

)
σ ∗

⊥ = σs

(
ρ∗

ρs

)2

(9.17)
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Fig. 9.18 a Young’s modulus and b compressive strength of various wood samples plotted against
the relative density (experimental points from Ref. [16]). Data labeled “across” the wood grain are
for loading in the radial or tangential directions; the direction of loading is not specified. Numbers
next to each straight line indicate the slope

The exponents of the last two equations correlate quite well with the predictions
of the mechanical theory of cellular materials with honeycomb structure. While the
exponents for the parallel quantities are both predicted to be 1 and that of σ⊥ is
exactly 2, the predicted exponent for E⊥ should be in fact 3; however, it can be
seen that the data in Fig. 9.18 fall somewhere in-between the fit with slope 2 and 3,
somewhat closer to the former. This indicates a partial agreement with the theory,
however demonstrating overall that the great ranges in the elastic moduli of woods
(a factor of over 1000) and the strengths (a factor of over 100) arise primarily from
the honeycomb-like structure of wood cells.

A similar theoretical description can be obtained for the foam-like structure of
parenchyma. At normal or high turgor pressures the cell are tightly packed, and
deformation is dominated by stretching of the cell walls. The solid mechanics model
in this case predicts equations of the same type as above, but with exponents 1 for
both E∗ and σ ∗ (parenchyma being isotropic, there is no need to distinguish between
the parallel and transverse directions). In this case, the model predicts values in good
agreement with the measured E∗ = 3.5–5.5 MPa and σ ∗ = 0.27–1.3 MPa.

9.6.2 Bending and Twisting

The composition, cell-wall structure, and cellular structure of plants and vegetables
give rise to remarkable mechanical performances, when expressed on a per-mass
basis. The trunks and branches of trees are loaded primarily in bending (from the
wind, or their self-weight). Solid mechanics tells us that for a beam of given stiffness,
span and cross-section diameter, the material that minimises the weight of a beam is
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Fig. 9.19 The effect of pre-stress on the wood trunk. Left If the initial stress (orange) is zero, when
the tree gets a stress from the wind (coming from the left) its two sides are under equal tension and
compression (blue straight line). Right If at rest condition (orange curve) the inner hardwood is
under compressive stress and the outer sapwood is under tensile stress, when the trunk is subject to
the wind force (blue curve) the compressive stress on the right is much reduced compared to the
tension on the left side

that with the maximum value of the ratio (E1/2/ρ). By using the previous equation
for E∗, this “performance ratio” can be expressed in terms of the reference value for
the average cell walls material as:

(E∗)1/2

ρ∗ = 1

ρ∗

[
Es

(
ρ∗

ρs

)]1/2

= E1/2
s

ρs

(
ρs

ρ∗

)1/2

(9.18)

Therefore, the performance ratio for any wood should be equal to that of the
composite cell wall, (E1/2

s /ρs) = 3.94 kPa1/2 m3 kg−1, times the square root of the
ratio of the densities, (ρs/ρ

∗)1/2. For example, Scots pine, with ρ∗ = 0.51 g cm−3,
has a ratio of 6.8, comparable or superior to the best carbon fibre composites, like
kevlar with 4, or the high-modulus, ultra-dense carbon fibre (HMCF-UD)with a ratio
of 8.3 (metallic materials have too high density to be useful in this respect).

At the level of themacroscopic tree structure, there is a further point of interest: the
trunk is pre-stressed. The centre of the trunk is in compression, and the outer layers
are in tension. This condition of pre-stressing is achieved because the inner parts
of the sapwood shrink as they dry and become heartwood. Since the heartwood has
lower moisture content it is better able to resist compression. As shown in Fig. 9.19,
such a state of pre-stress largely reduces the compressive stress on the outer layers
downwind, compared to the tensile stress on the opposite side.

However, as we learned in Chap.8, the bending stiffness of a beam is the product
of the Young’s modulus and the transverse moment of inertia, κb = EI . We already
noted how the mathematical expression for I suggests that a hollow beam resists

http://dx.doi.org/10.1007/978-3-319-30647-6_8
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much better to a bending load than a thick beam, for a same mass of material used.
Therefore one could ask the question: why trees have not evolved a hollow-tube
shape for their trunk and branches?

The Euler’s theory of bending beams, which can be found in any good engineering
textbook, provides a basic result for the flexion d of a beam of length L:

d = α
F L3

κb
(9.19)

where α is a geometrical coefficient depending on the mode of loading. For example,
α = 1/48 if a point force is applied at themidpoint and the beam is fixed at both ends,
or α = 5/384 if the load is uniformly distributed all along the length (this is also the
case of the self weight, F = mg with m the mass of the beam). If one of the ends is
free (a cantilever) and the force is concentrated at the free end, one gets α = 1/3,
while α = 1/8 if the load is uniformly distributed. Overall, the Euler theory tells that
by increasing the beam length a large price is paid in bending, proportional to L3;
but even more is gained by thickening the cross section, which appears to power 4 in
the denominator from the calculation of I .

The latter case could be interesting for the bending of trees and branches, since
these can be considered as cantilevers fixed at one end and free at the other. For
example, what is the longest possible branch of a pine? By taking E = 10 GPa, the
wood density ρ � 500 kg m−3, and a diameter D = 10 cm for whichI = π D4/64,
we get κb = 49.1 kN m−2. If we accept a maximum flexion at the free end of d =
L/10, plug in the numbers, and we obtain a length of 10 m! By accounting the fact
that the diameter of a real branch is not constant along the length, but it tapers to a
very thin diameter at the free end, this branch –already unrealistically long—would
almost double. And even longer branches could be predicted, if the cross sectionwere
elliptic instead of circular. In fact, for an ellipse with its longest diameter b parallel
to the direction of the force (vertical, if the force is gravity), it is I = πab3/64,
and by imposing equal area of the cross section as ab = D2, a factor equal to b/a
is gained at the denominator of Eq. (9.19) (by the way, this is why timber beams
have rectangular cross section, and are laid vertically and not flat, when building a
roof). Many plant stems and branches do have elliptical sections, and the radially
asymmetrical growth of wood represents a common response of trees to long-term
unidirectional forces from the environment.

Another interesting result of Euler’s theory concerns the bending under a vertical
load: it predicts that a cylindrical stick will bend if the perpendicular force on its top
end is larger than the critical value:

Fcrit = π2

β

κb

L2
(9.20)

with β equal to 4 if the upper end is free, or to 0.5 if it is held. This is called the
buckling instability, and can be important for a stiffmaterial that can resist fracturing
under compression, at such value of force, “preferring” to bend instead of crushing.
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Fig. 9.20 A light-microscopy cross section of Aristolochia stem at ×240 magnification. This is
a typical angiosperm stem with scattered vascular bundles. Scale bar on the lower left indicates 1
mm. [Image courtesy of Josef Reischig, repr. under CC-BY-SA 3.0 licence, see (**) for terms.]

You can try this with any thin stick, by pushing it vertically against a hard ground: it
will certainly bend sideways, under a moderate force (but enough to surpass Fcrit ).
If you keep pushing, the stick will continue to bend until the maximum stress at the
curved side goes beyond the fracture stress σ f , around which value it will break.
Doing the same experiment on a thicker stick will not give the same result. It will
resist bending and, provided enough vertical force is applied, it will rather crush
under the compression (because of the rapidly increasingI ∝ D4 at the numerator
of (9.20)). For a perfect cylinder, without any defects or pre existing bends (a tree
branch does not fit easily such criteria), the critical force is usually quite a high value,
compared to the compressive strength, unless the diameter is very thin compared to
the length.

What this brief analysis tells us, is that the self-loading received by branches
and stems is not critical for bending, therefore the tree seems less interested in
optimising the design of their cross section. Indeed, the resistance to bending and
twisting originates mostly from the highly heterogeneous microstructure of the cell
distribution in the cross section of the stem. We already saw a first example: the
lignified sapwood of the outer tree structure resists tension better than compression,
a good reason to use the pre-stress trick to reduce compressive loads. Similarly, if
we look at the cross sections of many plant stems, such as the Aristolochia shown in
Fig. 9.20, it can be seen that the cell size distribution is very much uneven: large and
tense, liquid-filled cells are seen at the centre of the stem, providing more resistance
against compression, while much smaller cells with a larger surface-to-volume ratio,
and therefore a higher rigidity, are found at the outer perimeter, better suited to resist
tearing and crushing.

If self-loading is not critical, however, branches and leaf stems are subject to both
torsion and bending external forces, for example applied by gusts of wind coming
from all directions, or by animals sitting on them. The twistingmodulus κt , analogous
to the bendingmodulus, and its correspondingmoment of inertiaJ were introduced
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Fig. 9.21 a An oblong shape has a larger value of I than a square. Crossing several rectangular
sectionsmay increase propensity to twisting, by inserting sharpgrooves along the length.bExamples
of plant stems with non-circular cross section

above, p. 397. However, material heterogeneity is important as well to resist torsion.
We already know that for a circular cross section J is about twice as large as
I , this increase being compensated by a smaller shear modulus G = E/(1 + ν),
compared to E . Therefore, twisting and bending resistance are generally comparable
in this case, κb/κt = EI /GJ = 1.5 for a Poisson’s ratio of 0.5. Values of such a
“bend-to-twist” ratio much larger than this ideal 1.5, should be an indication that the
material tends to yield by twisting more easily than bending.

Non-circular cross sectionsmake an interesting case in plant stems. The κb/κt ratio
jumps to larger values, of∼3.5 and∼5.77 respectively for a square or triangular cross
section. This is because of the much reduced twist resistance offered by a section
with sharp angles, compared to bending resistance that, instead, is increased (for
example, by about 2 for a square vs. circular cross section of equal area). Since an
elliptical, or rectangular, cross section with one side much wider than the other (i.e.,
a large b/a) largely improves the resistance, it seems that many rectangular sections
crossed together could do even better (Fig. 9.21a), with the crossed grooves adding
flexibility to twisting loads. The stress-strain curve in the case of mixed load has a
very unpredictable shape. It is extremely difficult to decide when and how a structure
will fail under a complex load that mixes compression, traction, bending and torsion,
in different parts of the body. Note that, whereas torsion is carefully avoided in
engineering structures, the typically large values of the κb/κt observed for flexible
plant structures seem to indicate that plant stems and tree sprouts favour torsion over
bending, as their preferred mode of resisting to the random distribution of forces
they may encounter. Eventually, combining one or more grooves with the hollow
tube shape could be the ultimate, optimal structure to resist mixed loads. In fact,
many plant stems have far from circular cross sections, often have a hollow interior,
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and have ridges and grooves that increase their propensity for twisting instead of
bending (Fig. 9.21b). Cactus plants, which have little or none lignified trunk, often
display lots of thick ridges all along the plant body. Twisting could be, indeed, the
best way to spend elastic deformation energy, when one of your ends is stuck to the
ground and wind comes from a given direction.

The basic lesson to be learned is that stiffer is not as good as stronger, also in
the case of plants. Opposing a stiff stick may not be as convenient as gently yielding
in the wind, and easy twisting is a great help when growing very slowly from fixed
ends. But of course,mechanics is not the only constraint dictating plant requirements.
Optimising sun exposure, water capture and retention, repelling harmful insects and
undesired herbivores, dispersing spores and smell in the environment, are just a few
key factors that come into play when thinking of the life of a plant, and the simple
analysis restricted to the mechanical requirements may be quite far off the truth,
despite providing some sound motivations.

Appendix H: Materials Elasticity Theory for Dummies

Stress

Consider a body with a generic shape, and apply a force oriented along a generic
direction, at a point of its surface. Ifwe define the perpendicular to the surface through
that point by some unit vector n = (nx , ny, nz), and the force as another vector
f = ( fx , fy, fz), the stress can be defined by combining the dependence on both
vectors, as shown inFig. 9.22(left). This is amathematical quantitywith two subscript
indices, σ = σab, with a, b = (x, y, z), describing the possible combinations of the
Cartesian components of the two vectors, called a tensor:

σab = 1

A

∂ fa

∂nb
(9.21)

The 3 × 3 components of the tensor can be written in the form of a matrix. If the
force is acting only along one or more of the three directions, and there is no coupling
between the forces in different directions, the stress tensor matrix will have non zero
components only on its diagonal. If moreover the three components of the force are
identical, we have σxx = σxx = σxx = σ0, and it can be proved that the pressure p is
the trace of the stress tensor:

p = 1

3
Tr[σ ] = σxx + σyy + σzz

3
= σ0 (9.22)

If the stress tensor is given, the force across a surface element of the body can be
defined as a mechanical tension:
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ta = 1

A

∑

b

∫

A
(σ ⊗ n)d A = 1

A

∑

j

∫

A
(σi j · n j )d A (9.23)

where the symbol ‘⊗’ indicates that the product between a tensor and a vector follows
the special rules of matrix multiplication.

Strain

Similar to stress, the strain is mathematically defined as well as a tensor, ε with
indices describing the deformation u = r − r′ of a vector r′ to any point along each
Cartesian direction, with respect to the original position vector r, in that same, or
another Cartesian direction, as shown in Fig. 9.22(right). The general definition of
the strain tensor, symmetric in the Cartesian components, is:

εi j = 1

2

(
∂ui

∂r j
+ ∂u j

∂ri

)
(9.24)

The rigorous definition of the displacement vector u should also include local
material rotation, u = r − r′ + ω; however, the rotational component of deforma-
tions will not be considered in this book, except in special cases.

Fig. 9.22 Schematic representation of the geometrical interpretation of the stress (left) and strain
(right) tensors. Left A force f is applied at a point on the surface of a body with arbitrary shape.
The vector n indicates the perpendicular direction to the element of surface d A (little grey circle).
The stress components σ = (σxx , σxy, ..., σzz) represent the variation of each of the components
fx , fy , fz of the force vector, according to the components nx , ny or nz of the perpendicular vector.
Right A point located at the vector position r in the undeformed orange body, is displaced at r′ in
the deformed body. The strain components ε = (εxx , εxy, ..., εzz) represent the variation of each of
the components ux , uy , uz of the displacement vector u = r − r′, with respect to the components
of the undeformed position vector rx , ry , rz
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It can be noted that the symmetry of the Euclidean space implies that the off-
diagonal components of the stress and strain tensors are symmetrical, i.e. ai j = a ji

for i �= j . Therefore the nine components of each tensor are reduced to six.
Any tensor a admits a unique and additive decomposition into a diagonal (or trace)

component, akk , and a deviatoric (or traceless) component ai j :

ai j = 1
3akkδi j + ai j (9.25)

(the Kronecker symbol δi j is always zero except for i = j).
To make a bit less cumbersome the notation in the following Sections, the so-

called Voigt convention for numbering the tensor components can be followed,
namely: xx = 1, yy = 2, zz = 3, xy = yx = 4, yz = zy = 5, xz = zx = 6. In this
way, tensors have only one index running from 1 to 6.

Elastic Constants and Compliances

In the regime of small deformations for which the linear approximation can be
applied, stress and strain are proportional to each other via the matrix of elastic
constants, C , and elastic compliances, S:

σi =
∑

j

Ci jε j i, j = 1, ..., 6 (9.26)

εi =
∑

j

Si jσ j i, j = 1, ..., 6 (9.27)

where the Voigt notation of the indices was used. Note that the C have dimension of
an energy density (energy/volume), and the S are just their inverse (also in the more
mathematical sense of inverse matrix).

In principle, the matrices C or S have 6 × 6 independent components, relating
each of the stress components to a different strain component, and vice versa. The
same symmetry concept applies, however, and the 36 components are reduced to the
diagonal plus one full triangle of the matrix, 6(6 + 1)/2 = 21 components:
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C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ε1
ε2
ε3
ε4
ε5
ε6

⎞

⎟⎟⎟⎟⎟⎟⎠
(9.28)

Moreover, further symmetry considerations relative to the particular internal
arrangement of the atoms and molecules of the material can further reduce the
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number of independent “Hooke-like” relations between the different components
of stress and strain.

For a material with perfectly isotropic response to the applied forces, the three
Cartesian directions are equivalent and only two coefficients are independent: C11

(also equal to C22 and C33), and C12 (also equal to all the combinations Cab with
a, b = 1, 2, 3); the coefficients Caa for a = 4, 5, 6 are all equal to (C11 − C12)/2,
and all other coefficients are zero. Examples of isotropic materials are any liquid, or
amorphous solid, like a glass; most mixtures of polymers and plastic materials are
practically isotropic.

Elastic Moduli for Solid Materials

For an isotropic material only two elastic constants are needed to specify its response
to an applied stress, in the linear regime of deformation. As we saw above, these are
C11 and C12. Just by looking at their indices ‘11’ and ‘12’, it is not immediate to
understand what kind of deformation these coefficients relate to. On the other hand,
their value is not directly accessible to a simple experiment, and a more convenient
way is to deduce them from experiments in which some combination of their values
occurs. It turns out that in this way, also the interpretation of their physical meaning
becomes more transparent. The combinations of elastic constants are called elastic
moduli, and each one of them corresponds to an experimentally realizable mode of
deformation.

Elastic moduli for isotropic materials were identified already in the first half of
the XIX century, and called Lamé coefficients. In terms of the elastic constants, they
would be written as λ = C12 and μ = (C11 − C12)/2. The two coefficients are still
derived mathematically, by looking at the symmetries of deformation.

Experimental quantities related to the Ci j are the bulk modulus, B, the shear
modulus,G (equal toμ), theYoung’smodulus, E , or thePoisson’s ratio, ν.Obviously,
the same isotropic material will be fully described by any pair of these, but some
may be more convenient than others.

By decomposing the stress tensor according to the strain components (the overbar
denoting the deviatoric components), we can write:

σi i = 3Bεi i (9.29)

σ i j = 2Gεi j (9.30)

as well as:
σi j − 1

3σkkδi j = σi j − Bεkkδi j = 2G
[
εi j − 1

3εkkδi j
]

(9.31)

From the last two identities, it also follows that:

σi j = 2μεi j + λεkkδi j (9.32)
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with λ = B − 2G/3.
Alternatively, one can write the strain tensor according to the stress components,

as:

εi j − 1
3εkkδi j = εi j − 1

9B
σkkδi j = 1

2G

[
σi j − 1

3σkkδi j
]

(9.33)

from which it follows the expression:

εi j = 1

2G
σi j −

(
1

6G
− 1

9B

)
σkkδi j = 1 + ν

E
σi j − ν

E
σkkδi j (9.34)

Accordingly, the elastic constants and compliances matrices are written in terms
of E and ν as:

Ci j = E

(1 + ν)(1 − 2ν)

⎛

⎜⎜⎜⎜⎜⎜⎝

1 − ν ν ν 0 0 0
1 − ν ν 0 0 0

1 − ν 0 0 0
1 − 2ν 0 0

1 − 2ν 0
1 − 2ν

⎞

⎟⎟⎟⎟⎟⎟⎠
(9.35)

Si j = 1

E

⎛

⎜⎜⎜⎜⎜⎜⎝

1 −ν −ν 0 0 0
1 −ν 0 0 0

1 0 0 0
4(1 + ν) 0 0

4(1 + ν) 0
4(1 + ν)

⎞

⎟⎟⎟⎟⎟⎟⎠
(9.36)

Bulk modulus

This parameter defines the relative variation of the volume induced by an isotropic
compression/dilation of the solid, typically a variation of hydrostatic pressure corre-
sponding to a stress tensor (σ0, σ0, σ0, 0, 0, 0), under the assumption that thematerial
is homogeneous at the scale of the applied deformation (see Fig. 9.23, top):

ΔP = B

(
ΔV

V

)
(9.37)

In terms of theLaméparameters it is B = λ + (2/3)μ, and in terms of the indepen-
dent elastic constants, B = (C11 + 2C12)/3.We already encountered this expression,
in Eq. (9.48) above, to define the elastic energy of hydrostatic compression/dilation
under a strain (ε0, ε0, ε0, 0, 0, 0). In fact, we can also write:
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Eel = 1

2
Bε2 (9.38)

which suggests a harmonic character of the deformation (energy proportional to a
squared variation). Also, the ε2-dependence makes the energy symmetric for com-
pression (ε < 0) and dilation (ε > 0). In fact, this is characteristic of any perturbation
in the linear regime, in which the force is proportional to the perturbation, and the
energy is correspondingly proportional to its square. We will find other similar rela-
tionships also later on.

Since the strain is dimensionless, B has the same units of energy/density, or
force/surface. Some typical values of B for various materials are given in Fig. 9.23.

Shear Modulus

In this type of deformation, also homogeneous within the test body, the stress is
applied parallel to the surface (Fig. 9.23, middle); if we take the xy axis in the plane
of the figure, the applied stress tensor would be (0, 0, 0, σ0, 0, 0). If we imagine the
body cut in slices parallel to the direction of the force, the corresponding deformation
tends to slide all slices with respect to each other. The overall deformation is d/D,
occurring symmetrically with xy and yx components. This mode of deformation is
called shearing, and the corresponding parameter is the shear modulus. The relation
between the applied stress and the resulting deformation is:

σ0 = G

(
d

D

)
(9.39)

In terms of the Lamé parameters it is G = μ, and in terms of the independent
elastic constants, G = (C11 − C12)/2. For many solids, the shear modulus is of the
same order of magnitude of the bulk modulus. On the other hand, it is zero by
definition for any fluid, in fact the very definition of a fluid is that of a material that
does not support shear stress. It may be worth noting, however, that in the context of
fluid mechanics, the Lamé parameterμ is often identified with the dynamic viscosity
of the medium.

Young’s Modulus

Named after the sameEnglish physician ThomasYoung thatwementioned inChap.2
for introducing the term ‘energy’, this elastic modulus is the most appropriate to
describe an experiment of traction or compression of a body along an axis, e.g. with
a stress tensor (σ0, 0, 0, 0, 0, 0) if deforming along x . In this case, the deformation
is again homogeneous, but in a more subtle way. It is quite common to observe

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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Fig. 9.23 The simplest homogeneous deformation modes (left column), corresponding to: hydro-
static compression/dilation (top); shear (middle); uniaxial tension/compression (bottom). On the
right column, some values (in units of 109 J/m3, or GPa) of the corresponding elastic moduli for
typical materials and biological tissues: bulk modulus (top), shear modulus (middle), and Young’s
modulus (bottom)
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that a material undergoing axial compression will contract along the compression
direction, while it will dilate in the perpendicular plane, and vice-versa in extension.
With the stress specified above, this results in a strain tensor (ε, εtr , εtr , 0, 0, 0), with
εtr the relative deformation in the perpendicular directions y and z. The negative
of the ratio between the two resulting values of deformation is called the Poisson’s
coefficient of the material:

ν = −εtr

ε
(9.40)

It is easily seen that only for ν = 0.5 the volume of the body is conserved during
the deformation, for example for a traction along x of a body with lengths Lx , L y, Lz

and volume V = Lx L y Lz:

ΔV = Lx (1 + ε)L y(1 − εtr )Lz(1 − εtr ) − Lx L y Lz =
= V (ε − 2εtr ) + O(ε2) � V ε(1 − 2ν) (9.41)

(the terms in ε2 and ε3 going to zero for small deformation). On the other hand, for
most materials the Poisson’s ratio is different from 0.5, and the deformation changes
also the volume of the object (as it is done also by the hydrostatic compression and
dilation). In terms of the elastic constants or Lamé coefficients, it is ν = C12/(C11 +
C12), or ν = λ/2(λ + μ).

As shown in the Fig. 9.23, bottom, we imagine to apply a force F at the extremities
of a rod with cross section A and initial length L . The stress-strain relation is:

σ = Eε → F

A
= E

ΔL

L
(9.42)

with the cross section A being taken at its reference, undeformed value. During the
uniaxial deformation, the cross section changes as A/(1 ± ε)2ν , the ‘+’ and ‘–’ sign
being for traction or compression, respectively.

In terms of the Lamé parameters it is E = 2μ + λ, and in terms of the independent
elastic constants we have the more complicate expression E = C11−C12

C11+C12
(C11 + 2C12).

It will be noticed that the traction/compression experiment is geometrically similar
to Robert Hooke’s experiments on his springs. Indeed, starting from the stress-strain
relation (9.42) we can determine an effective “spring” constant for the material,
which will depend on its geometrical shape. By multiplying both sides of Eq. (9.42)
by A, we get:

F =
(

E A

L

)
ΔL (9.43)

from which an effective ’spring constant’ of the body can be defined as k = E A/L .
A related elastic modulus that is of utility in biological materials is the aggregate

modulus, H , obtained in an experiment in which only the uniaxial deformation is
allowed, while no transverse strain occurs. In terms of E , this modulus is formally
defined:



Appendix H: Materials Elasticity Theory for Dummies 415

H = E(1 − ν)

(1 + ν)(1 − 2ν)
(9.44)

but when looking at its expression in terms of the independent elastic constants, it is
just H = C11. To have a zero component of the transverse deformation it is necessary
to apply a stress in the plane that would contrast the natural tendency of the material
to contract or dilate, according to the sign of its Poisson’s ratio, therefore the stress
tensor in this case looks like (σ,±σtr ,±σtr , 0, 0, 0).

For the deformation in a plane upon a force applied along two directions, an
equivalent expression to that of uniaxial deformation can be obtained, by using Eq.
(9.35) or (9.36). For example, we may have {σ1, σ2, σ4} �= 0, if two forces fx and fy

are applied in the xy plane without allowing to deform along z. The matrix product
εi = ∑

j Si jσ j gives:
⎧
⎪⎨

⎪⎩

Eε1 = σ1 − νσ2

Eε2 = σ2 − νσ1

με4 = 2σ4

(9.45)

Elastic Deformation Energy

In solid mechanics, it is common practice to follow the response of a material to
an applied load (in the form of an imposed stress, or deformation) by tracing its
stress-strain diagram. Such a representation contains much information about the
mechanical behaviour of our material. A typical example of such a diagram is given
in Fig. 9.24, for a uniaxial force f pulling a material sample along one direction; the
initial area of the cross section transverse to the direction of f is S0, and it evolves

Fig. 9.24 Example of a
stress-strain curve for a
material exhibiting a mixed
mechanical response to a
uniaxial pulling force f . The
red curve describes the
“apparent” stress, σ = f/S0,
the black curve the “real”
stress, σ = f/S, where S0
and S are, respectively, the
initial and instantaneous
cross section area



416 9 The Materials of the Living

into S( f ) as far as the force stretches the material. The point 1 is the elastic limit:
up to this point, the relation between stress and strain is linear, such as in a Hookean
spring; beyond this point, the material could break if it is fragile (such as glass), or
continue to deform if it is ductile (such as steel); the corresponding value of stress
is called the yield stress σy of the material. The point 1′ is a generic value of strain
beyond the elastic limit: if the force is released at this point, the material will go back
to zero stress but retaining a residual deformation εr . Upon increasing the stress, the
material can continue to deform, up to the point 3 where final rupture occurs; the
corresponding values of σ f and ε f are called fracture stress and fracture strain.
The maximum value of stress supported during all the long deformation, marked as
2, is the ultimate strength of the material. The region 4 under the curve is called
the “strain hardening” region, since the material responds in a complex way however
the stress keeps increasing (the red and black curve run approximately parallel to
each other). The region 5 is the “necking” region, in which the cross section rapidly
decreases (note the widening difference in this region, between the red and black
curve): this is also the region of maximum plastic deformation. The integral of the
area under the stress-strain plot from zero to ε f , τ0 = ∫ ε f

0 σdε, is the toughness.
When a material body is deformed by an external force, this force performs a

work equal to dW = σdε, to be integrated over the entire volume V of the deformed
body. The work done by the external force is stored in the material in the form of
a deformation energy, which is given back to the environment when the force is
removed.

Always remaining in the limit of small deformations, so that the continuum linear
elasticity theory can be applied, the elastic deformation energy in the volume V is
written:

Eel =
∫

V
dW =

∫

V
σ ⊗ dε =

∑

i j

∫

V
(εT

i Ci j )dε j (9.46)

by using the formal stress-strain relation Eq. (9.26), and the explicit matrix compo-
nents of stress and strain with the matrix multiplication rules (note that the writing
“εT

i Ci j” indicates the product between the line-vector εT , transposed of the column-
vector ε, and the matrix C).

Carrying out the formal integration, in a homogeneous volume (in which the
elastic constants are constant) and homogeneously deformed (i.e., every point of the
volume is deformed in the same way), the elastic energy density is:

Eel = 1

2

∑

i j

εi Ci jε j (9.47)

For example, the compression by equal amounts ε0 along x, y, z (or “hydrostatic”
deformation) of an isotropic material (with only C11 and C12 non-zero, and C44 =
C55 = C66 = (C11 − C12)/2), would result in a strain tensor ε = (ε0, ε0, ε0, 0, 0, 0)
(in Voigt notation). By using thematrix-vector multiplication rules, the elastic energy
for this case is:
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Fig. 9.25 Example of a
stress-strain curve for a
resilient material exhibiting a
hysteresis loop. The grey
area comprised between the
loading and unloading ramps
represents the amount of
work (stored elastic energy)
lost during the cyclic loading

Eel = 1

2

(
C11 + 2C12

3

)
ε20 (9.48)

Note that this is an energy density, i.e. it must bemultiplied by the volume element
V , to obtain a proper energy value. Furthermore, if a body can be decomposed into
pieces of elements, each with different elastic constants and with different local
deformations, the overall elastic energy is the sum E = ∑

i Eel,i Vi , calculated for
each elementary volume Vi .

If a non-linear material is loaded cyclically between two values of strain, it
may display hysteresis (Fig. 9.25), i.e. the two ramps of the cyclic curve (load-
ing/unloading) are not equal. This means that a fraction of the work expended to per-
form the tensile deformation is not recovered when the deforming force is removed.
The lost energy (likely in the form of heat) is given by the area (grey shaded in the
figure) comprised within the hysteresis loop, and its inverse is called the resilience
of the material. A material that loses a large fraction of the elastic energy stored
in the cyclic loading is said to have a low resilience, and the opposite is true if the
hysteresis loop is more narrow. A resilient material is one that can efficiently cycle
back and forth in a repeated and sustained deformation, such as a tendon stretched
during the walk or run.

Problems

9.1 Average elastic modulus
Using the known volume fractions from the text, (a) calculate the volume fractions
of mineral and collagen in dry cortical bone. (b) For values of Young’s modulus
E = 54 GPa for mineral, and 1.25 GPa for collagen, calculate the resulting Young’s
modulus of wet and dry bone.
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9.2 Skin stretching
The plot below reproduces the stress-strain curve of abdominal skin, stretched along
the direction perpendicular and parallel to the body height. (a) What stress is devel-
oped for a stretching of 35%? (b) What strain is developed for stretching to 5 MPa?
(c) What is the elastic modulus E in the two principal directions? (d) What is the
toughness?

9.3 Arterial stress relaxation
In a mechanical test, a stress of 1 MPa is applied to a 2-cm aorta strip, which as a
result is stretched to 2.3 cm. The strain is held constant for an hour, and the stress
in the strip drops to 0.75 MPa. Assume that the mechanical properties of the tissue
do not change during the experiment. (a) Use the Maxwell model of a viscoelastic
material, to obtain the relaxation time of the biomaterial. (b) Calculate the stress in
the tissue, if the experiment is continued up to a time of 3 h. (c) The same experiment
is performed in a different way, by holding the stress constant at 1 MPa for the same
time of 1 h, after which the stress is released. Use the Kelvin-Vogt model to obtain
the strain relaxation time, if 1 h 25 min after the release, the strip length is back to
2.2 cm.

9.4 Stretch the leg
Compare the charge on the tendon and the bone in the calf of a man walking in the
street. Take E(bone) = 20 GPa, E(tendon) = 1.5 GPa, diameter × length equal to
1.5 × 8 cm for the tendon, and 4 × 35 cm for the tibia.

9.5 Jumping cat
Acat ofmass M = 4.5 kg jumps on the ground from a height h = 3m. For simplicity,
assume that the leg has two equalmuscles in each of the upper and lower half, attached
to the leg bones as shown in the figure. Each muscle is simulated by a cylinder of
average diameter 4cm and length 12 cm, and their attachment point (enthesis) is
a = 1 cm off-axis; take the Young’s modulus of striated muscle E = 20 kPa. Leg
bones are represented as two thinner, straight cylinders of infinite rigidity, hinged
at the knee. Calculate the bending angle of the legs. What does this calculation
demonstrates? Compare with your answer to the previous question.
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9.6 Muscles and temperature
Wemeasure the relative elongationof an insect’smusclewith the help of adynamome-
ter (a simple instrument that allows to impose a constant load to a structure and
measure the elongation). The muscle can be represented as a homogeneous cylin-
der of length L and radius R. From a measurement performed at the temperature
T = 10 ◦C, we obtain a relative elongation ΔL/L = +2.% and a contraction in
the radial direction ΔR/R = −0.25%; a second measurement at the same load,
performed at T = 15 ◦C, gives an elongation ΔL/L = +4.% and a contraction
ΔR/R = −0.5%. Again, by measuring at T = 20 ◦C we find a ΔL/L = +6.%
and a ΔR/R = −0.75%.
(a) Which elastic moduli are of interest in this kind of experiment?
(b) Find how the ratio ΔV/V varies as a function of the temperature.
(c) Predict the values of the relevant elasticmoduli and the elongation at T = 23.5 ◦C.

9.7 Implant materials
Some biocompatible materials for implants are made by a relatively soft matrix, in
which a fraction h of harder fibres are dispersed for reinforcement. The overall elastic
modulus is calculated on the basis of a “shear-lag” model, which considers that the
fibres are too short to be in contact, and cannot share the stress on the material:

E = hE f

(
1 − tanh ns

ns

)
+ (1 − h)Em ; ns �

√
2Em

E f ln(1/h)

(the� sign inns comes from the assumption of aPoisson’s ratio ν ∼ 0 for the artificial
polymer matrix). Discuss the behaviour of the resulting modulus as a function of h.
How does h relate to the ratio E f /Em?
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9.8 Bend, break or twist
Compare the elastic and strength moduli of the materials in the following table, from
each of which a hypothetical stick in form of a full cylinder of diameter 1cm and
length 50cm is fabricated. Which sticks will bend, break, or twist, under the loads
shown in the accompanying drawing?

(*) The terms of the Creative Commons Attribution-ShareAlike 3.0 and 4.0 International License
(http://creativecommons.org/licenses/by-sa/3.0/, http://creativecommons.org/licenses/by-sa/4.0/)
permit use, duplication, adaptation, distribution, and reproduction in any medium or format, as
long as appropriate credit is given to the original author(s) and the source, providing a link to
the Creative Commons license and indicating if changes were made. If remixing, transforming, or
building upon this chapter or a part thereof, such contributions must be distributed under the same
license as the original.

(**) The terms of the Creative Commons Attribution 3.0 and 4.0 International License (http://
creativecommons.org/licenses/by/3.0/, http://creativecommons.org/licenses/by/4.0/) permit use,
duplication, adaptation, distribution and reproduction in anymedium or format, as long as appropri-
ate credit is given to the original author(s) and the source, providing a link to the Creative Commons
license and indicating if changes were made.
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Chapter 10
Of Limbs, Wings and Fins

Abstract Muscles are the engines of life, necessary for all needs of mechanical
actuation of limbs, wings, fins, and any animal body parts. All animals, from inverte-
brates to the highest vertebrates, have developed for this function a highly specialised
fibrousmaterial, characterised by a complexmolecular structure, capable of perform-
ing contraction and relaxation movements with high rapidity, under an electrical and
chemical stimulation. The structure of muscle cells is remarkably conserved across
the evolution, to the point that the elementary bricks of any muscle are identical,
ranging from an beetle to an elephant. Insects are taken as example of extreme spe-
cialisation of muscular functions, and some secrets of their complex flight dynamics
are discussed. In the second half of this chapter, dimensional analysis is introduced
as a tool of paramount importance. This method allows to check the consistency of
a set of variables, and to formulate interesting deductions about animal behaviour,
even prior to performing any quantitative measurement.

10.1 Force and Movement Produced by a Muscle

All animals, except the very small unicellular organisms, count on their muscles for
their movements, to find and manipulate food, to push blood and breathe fresh air
and many other functions, essential to their survival. At the very last, animal muscles
are biological engines that burn chemical energy and turn it into mechanical work.

Inmost books about animal physiology, the function ofmuscles is classified under
the general chapter of metabolism, next to other processes such as the thermoreg-
ulation. What unifies such processes, to the eyes of a physiologist, is the fact that
they consume oxygen and produce heat. As a consequence, the power supplied by a
muscle is often described in terms of the limits imposed by the enzymatic chemical
reactions, and their capability of making energy available for muscular work. In fact,
that is a flagrant example of exchange between cause and effect.

In reality, the rate at which a muscle can deliver mechanical work is limited by
threemain variables, entirelymechanical in their nature: the force per unit surface the
muscle can exert (or stress); the amount bywhich it can shorten (or deformation); and
its typical contraction frequency. The extremal values (max or min) of such variables

© Springer International Publishing Switzerland 2016
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Notes in Physics, DOI 10.1007/978-3-319-30647-6_10
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are constrained by purely mechanical limits, inherent to the muscle structure and
geometry. Conversely, the enzymatic systems must comply and adapt to such limits:
for example, it is the rate at which enzymes supply chemical energy that must adjust
to the rate at which the mechanical engine can absorb and utilise it, and not the
contrary.

On the one hand, it is true that any muscle can produce a force. However, some
muscles aremore specialised than others in this being their primary function. It should
be noted that the only kind of force a muscle can develop is a traction: muscles can
only pull. Differently from the engines built by engineers, muscles cannot push nor
turn. Muscles contract actively and extend passively. What this means is that the
phase of shortening of a muscle is active, being produced by the muscle itself by a
sequence of molecular-scale mechanisms which will be outlined in the following; by
contrast, the phase of elongation is passive, in that themuscle needs to be extended by
either another muscle (which in this case is called the antagonist), or by an adjacent
elastic tissue structure.

Figure10.1 shows a schematic of the multi-level, hierarchical organisation of the
striated muscle. While a human skeletal muscle is represented in the figure, this
very same organisation is found in the muscles of all animals, including insects.
At the cellular level, muscle cells (myocytes) appear as multi-nuclear units, much
elongated and tubular in shape. They can be of various types: cardiomyocytes, found
in the heart muscle; skeletal, found in the ordinary muscles; or smooth, found in
blood vases and in most organs, like the intestine, stomach, oesophagus etc. While
heart and skeletal muscle cells share several similarities, smooth muscle is a type of
non-striated muscle, whose contraction is not under conscious control. In general,
myocytes are constituted by an ensemble of fibrils with a variable number of nuclei,
originating from the fusion (syncysis) of the membranes of adjoining pristine cells
(myoblasts).1

At the subcellular level, each muscle fibril (myofibril) is organised into a linear
assembly of many adjacent sarcomeres, attached head-to-tail. Sarcomeres are the
essential mechanical actuators of the force generated by the muscle cell. This linear
structure of sarcomeres is surrounded by sarcosomes, the equivalent of mitochondria
for the muscle cell. The whole ensemble is integrated by the sarcoplasmic reticulum,
which also ensures the connection between the muscles and the nervous system.

At the molecular scale, each sarcomere is built by a parallel structure of very
long, filamentary proteins, combining hundreds of myosin and F-actin molecules
(plus other companion proteins) in a tight geometry. The latter are solidly attached to
a membrane (the Z-line, itself a complex aggregate of other large proteins) running
perpendicular to the elongated sarcomere structure, while myosin can slide between
F-actins. The sarcomere has a length spanning 1.5–2.5 µm (slightly different in the
cardiac muscle), and a diameter of about 2 µm, that is the same as the myofibril. The
maximum contraction is obtained when the mobile myosins, parallel sliding relative
to the fixed actins, reach the Z-membrane on both sides, and the facing blocks of

1It may be interesting to note that that cell doubling (mitosis) in multinucleate cells can occur either
in a synchronous manner, i.e. all nuclei divide simultaneously, or asynchronously, when individual
nuclei divide independently, both in time and space.
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Fig. 10.1 Hierarchical structure of the skeletal muscle. a The bulk of the muscle is arranged in
fascicles, wrapped in connective tissue. Each fascicle contains tens or hundreds of fibres. b Each
fibre is amyocite, indeed a large polynuclear cell, formed bymany individualmyofibrils (primordial
cells that were fused into one), and bymitochondria (sarcosomes), all wrapped by the sarcoplasmic
reticulum, a meshed membrane. The T-tubules bring the neuromotor signal from the nerves into
the muscle fibres. c Each myofibril, in turn, is constituted by a large number of elementary units,
the sarcomeres. Each sarcomere (below an electron microscopy image) has a fixed size of 2–3
µm, between pairs of Z-lines (above), so that each myofibrils is formed by a sequence of tens of
thousands such units. d At the molecular level, the sarcomere is formed by a parallel structure of
tightly interdigitated myosin and actin filamentary proteins, carried by titin filaments held between
Z-lines (actually protein membranes). [Image adapted from: a Seer, National Cancer Institute,
Bethesda; b www.Blausen.com staff, “Blausen gallery 2014”, Wikiversity Journal of Medicine; c
Path BioResource, Perelman School of Medicine, University of Pennsylvania; (d) David Richfield,
“Medical gallery of David Richfield 2014”, Wikiversity Journal of Medicine. With permission,
sources public domain, or licensed under CC-BY-SA 3.0/4.0, see (*) for terms.]

F-actin happen to almost touch each other. The sarcomere is maximally shortened
in this condition. While sliding, myosins make labile chemical bonds (by means
of Van der Waals forces and hydrogen bonding) with the actins, the cross bridges.
Although smooth muscles do not form regular arrays of thick and thin filaments, like
the sarcomeres of striatedmuscles, contraction is still due to the same sliding filament
mechanism controlled by myosin cross bridges interacting with actin filaments.

For a linear chain made of N sarcomeres, each of length l, the total fibril length
L = Nl is shortened by a quantity:

ΔL =
N∑

i=1

Δli = NΔl (10.1)

www.Blausen.com
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summed over all the sarcomeres, supposed to undergo an identical contraction (see
Fig. 10.2, right). However, the relative shortening ΔL/L = Δl/ l (or strain, see
Appendix H) is the same for each sarcomere and for the overall fibril, up to the scale
of the whole muscle.

The amount of force expressed by a muscle is due to the amount of deformation,
from zero to the maximum above defined, and to the density (number/unit length)
of active cross-bridges (Fig. 10.2). According to Huxley (1985), all the myosin fila-
ments have the same length, l ≈ 1.5µm, and cross-section density, 5.7× 1014 m−2,
for any muscle of any vertebrate, and even insects. It appears that this one quantity
is remarkably conserved across the evolution, thus demonstrating the optimum effi-
ciency of the fully developed sarcomere structure as a sort of “universal” building
block for the muscle machine.

The two physical variables defined above, the total force and length variation of
a muscle, are indeed simple to define, and offer meaning easy to grasp. However,
they have the big inconvenience of being dependent on the size and the shape of the
muscle. A bigger muscle will exert a bigger total force, and it will shorten by a larger
amount, compared to a smaller muscle. This, for example, will render difficult the
comparison between the performances of animals of widely different size belonging

Fig. 10.2 Left microphotography of a cross-section of myocytes, showing their polynuclear struc-
ture. Biologically, a multinuclear cell of this kind is called a syncytium, the result of the fusion of
thousands of primitive mononuclear cells (myoblasts). [Photo © of J. Oros-Montón, Universidad de
Las Palmas, http://www.webs.ulpgc.es/vethistology/.] Right Contractile structure of a sarcomere.
b Orange-red strings represents myosin filaments, blue lines is actin, and orange grains are the
“cross bridges”, each of them supporting a force of about 5.3 pN. c Each sarcomere can shorten
up to the point when myosins touch the vertical Z-lines, and actins are nearly touching each other;
d The total myofibril contraction is the sum of individual sarcomere contractions Δl; however, the
relative deformation Δl/ l is the same in each sarcomere, and in the whole myofibril

http://www.webs.ulpgc.es/vethistology/
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to the same species. In order to study the common properties of the tissue (ormaterial)
of the muscle, rather than the specific properties of any given muscle, it is therefore
necessary to identify more appropriate variables.

Then, rather than the absolute force, it ismore useful to use the concept ofmechan-
ical stress, σ, defined by the total force exerted by a muscle with (average) cross
section S, and the vector n perpendicular to the surface (see definitions in Appendix
H, and tensor notation in Appendix A) as:

F =
∫

S
(σ ⊗ n)dS (10.2)

namely, a force per unit area of the transverse surface of the muscle (remember that
the product of a rank-2 tensor times a vector gives another vector, i.e. the force).

Since eachmyosinfilament is found to exert a force of about 530pN (or 5.3×10−10

N, such a value being measured under isometric effort2), and the density of myosin
filaments (see above) is typically of 5.7 × 1014 m−2, the maximum isometric stress
exerted by any muscle is of the order of 3 × 105 N/m2, or 300 kPa. Because each
sarcomere exerts the same stress, the stress itself is remarkably constant throughout
the muscle fibre.

We already mentioned above the strain, or relative elongation, ε, as being the
most appropriate variable to measure the length variation of a muscle in a way that
is independent on the actual muscle size. Alike to the stress, the strain is another
property of the tissue material which does not depend on the size and shape of
the muscle. The strain is a 3 × 3 tensor as well, εαβ = ΔLα/Lβ , its components
indicating the amount of deformation obtained along some direction α = x, y, z for
an elongation/contraction imposed along some direction β = x, y, z. In practice, the
locomotory muscles of most vertebrates can deform by a maximum of ε ≈ 25%,
this limit being mainly set by the constraints of the supporting bone skeleton.

If we multiply stress and strain, the resulting dimensions are:

σ × ε = [FL−2][LL−1] = [F][L−2] (10.3)

a force per unit surface, or else energy per unit volume.
Therefore, the mechanical work produced by a muscle can be obtained by inte-

grating over the whole volume of the tissue, the product of stress exerted by the fibres
times the strain accordingly produced (Fig. 10.3):

W =
∫

V

(
σ ⊗ ε

)
dV =

∑

αβ

∫

V

(
σαγεδβ

)
dV (10.4)

2An effort is isometric when the muscle contracts without changing length or joint angle, as for
example if holding steady to a weight on the floor.
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Fig. 10.3 The microscopic structure of flight muscles in the Drosophila fruit fly. a Schematic
arrangement of the dorso-lateral (DLM) and dorso-ventral (DVM) muscles, in the cross-section
of the thorax (above), and in the frontal full cross-section (below). b Longitudinal section of a
wing muscle by scanning-electron microscopy, showing part of two large myofibrils (muscle cell),
appearing as an ensemble of mononuclear cells merged with the neighbouring ones (syncytium).
The size of sarcomeres is given by the average distance between two Z-membranes (straight seg-
ments), and is (∼1.5µm. Myofibrils (labelled “fi”) have an average diameter of 2–2.5µm. The
“ss” are sarcosomes, muscle-cell equivalents of mitochondria; it is here that the pyruvate oxdation
(respiration, see Chap.3) takes place. It can be noticed that mitochondria occupy about half the
volume of the myocyte. c Transverse section of the muscle fibre, allowing to observe the nearly
cylindrical cross section of the myofibrils, as well as the structure of sarcosomes that surround the
myofibrils. d Higher magnification of the transversal section of a sarcomere, allowing to appreciate
the internal structure of myofibrils: each myofibril appears to be made up by hundreds of parallel
filaments, which in turn are made of long filamentary proteins (actin and myosin) densely nested
in a regular triangular lattice. Scale bars: 2 µm in b and c, and 0.25 µm in d. [Images (a) adapted
from Ref. [1] under CC-BY-4.0 licence (see (*) for terms); photos (b–c) from Ref. [2], repr. w.
permission]

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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(the tensor product implying the sum over the mute indices γ and δ). This quantity
can also be expressed as work per unit mass, simply by dividing the result by the
average muscle density, ρ = 1060 kg/m3.

10.2 Dynamics of Muscle Contraction

Let us imagine to perform a simple experiment on an isolated muscle, by fixing one
extremity and holding the other extremity by a dynamometer. If we load the muscle
with a force F , we can measure the velocity v by which it will contract in response
to the applied force. We will find that this velocity depends, among other variables,
on the muscle length, L . For each muscle, we could find an empirical relationship
between force and velocity, summarised in the following equation:

v = b(F0 − F)

a + F
(10.5)

F0 being themaximum forcemeasure in (isometric) tension, and a, b two parameters
with dimensions respectively of [F] and [L T−1], to be determined for each different
muscle by numerically fitting the above equation to the measured data. This equation
is known as the Hill’s law, having been established by the English physiologist
Archibald V. Hill in 1938.

However, we would soon get tired of measuring the same quantity over and over
for asmanymuscles as needed, andwewould try instead to obtain amore general law
expressing the behaviour of a typical muscle under an applied load. The velocity can
be divided by the length, to obtain the strain rate ε̇ = v/L = (dL/L)/dt = dε/dt ,
another quantity which will not be dependent by any specific muscle type or animal,
since it is defined in terms of the strain ε (its first time-derivative). It is worth noticing
that the strain rate has dimensions of [T−1], just like a frequency.

Now the Hill’s law can be recast in the form of a “universal” relationship between
strain rate and stress, still having the same structure of the previous Eq. (10.5):

ε̇ = β(σ0 − σ)

α + σ
(10.6)

where σ0 is the maximum isometric stress the muscle fibre can sustain up to the
yielding point (300 kPa, see above), and the two “universal” constants α,β have
now dimensions of [F L−2] and [T−1], respectively.

Hill’s law is just an empirical description of the muscle dynamics, under highly
idealised (and even artificial) conditions. It imagines the muscle as a homogeneous
mechanical device, which shortens against a rigid external structure maintaining a
constant force. Over the years, several criticisms have been raised about the univer-
sal validity of this equation, which however gives a quite good description, albeit
admittedly approximate, of the fast muscle dynamics during animal locomotion.
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Going to the limit at which the muscle contracts under a vanishing resistance (set
σ = 0 in Eq. (10.7)), the deformation rate attains its maximum:

ε̇0 = βσ0

α
(10.7)

This number is an important characteristic value for any muscle. It was called
intrinsic rapidity by Hill, even if its dimensions are not those of a velocity, but
those of a frequency, [T−1]. This property has a molecular-scale origin, since it is
related to the microscopic rate at which the cross bridges of myosin can attach and
detach from/to the actin filaments. On the basis of the relative values of ε̇0, a muscle
can be classified as being ‘rapid’ or ‘slow’.

10.3 Mechanical Efficiency and Cyclic Contraction

A muscle is an energy converter: it takes a given quantity of free energy (chemical
energy plus entropy) at the microscopic scale, and turns it into mechanical energy
(plus some heat) at the macroscopic scale. The efficiency, 0 < η < 1, of this
transformation is given by the ratio between the resulting work done by the muscle
and the apport of free energy.

To give a proper estimate of the efficiency, it must be noted that the energy con-
version in the muscle takes place at least in the two following steps:

1. Initially, a combustible from the substrate (fat, glycogen, protein) is oxidised,
with the result of turning some molecules of ADP into ATP by the addition of
a phosphate group (we saw in Chap.4 that this conversion already has its own
intrinsic efficiency below 1, the amount of energy being extracted as ATP being
about 1/3 of the total formation enthalpy of the combustibles);

2. Secondly, the myosin/actin complexes use this ATP and retransform it into ADP,
by using a fraction η of the energy available (the remaining fraction (1−η) being
lost as heat).

When we speak of muscle efficiency we refer to the η of this second step, the
losses of the first step being already accounted in the (aerobic) metabolic phase of
energy conversion from the primary sources.3

Huxley described the microscopic aspects of the second step in terms of the rates
of attachment and detachment of the myosin and actin filaments [3], and produced a
diagram of the efficiency as a function of the deformation rate ε̇ for various muscles.
That study showed that themuscle efficiency is always optimal for a value ε̇ ≈ 0.13ε̇0.
There is no current explanation for this result, which must be therefore taken as a
purely empirical result. We will come back to this point later, when discussing the
optimisation of the muscle rapidity for different muscle functions.

3We limit this description to the aerobic metabolism since, as anticipated in Chap.4, the chemical
thermodynamics of the anaerobic cycles is quite more involved.

http://dx.doi.org/10.1007/978-3-319-30647-6_4
http://dx.doi.org/10.1007/978-3-319-30647-6_4
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Some muscles, called tonic, are rather designed to maintain a constant tension,
without contracting (and thus, without changing their length,ΔL = 0). Amuscle like
this could seem a paradox, since thework,W , is the product of the force developed by
the muscle times the displacement ΔL , and such a muscle would actually consume
energy without doing any work. What this apparent paradox indicates, instead, is
just that the efficiency η may not always be the best parameter to characterise muscle
activity. As any othermuscle, a tonicmuscle develops a force by consuming chemical
energy at a certain rate. The input power has dimensions of [M][L2][T−3], the force
is [M][L][T−2], therefore their ratio is [L][T−1]: a velocity. This ratio of power
consumed versus force developed can be taken as an alternative measure of the
energy cost, χ, necessary to maintain the constant level of force expressed by such
a muscle. If, as it is now usual, we wish to express this energy cost in terms which
do not depend on a particular muscle length or shape, we should better take the
ratio of the specific power (or power per unit volume), which has dimensions of
[M][L−1][T−3], to the stress, [M][L−1][T−2]:

χ = P/V

F/S
= p

σ
(10.8)

This ratio is now a rate, or a frequency, [T−1], just like the intrinsic rapidity ε̇.
In physiology it is empirically well known that slow muscles can maintain a given
level of force with an energy cost lower than rapid muscles. Since the variable which
determines the rapidity of a muscle has the same dimensions of the energy cost just
defined, it could be tempting to identify the two variables, to describe skeletal and
tonic muscles on the same level. By correlating experimental data sets, it is found
that there exists a simple relationship between the two parameters:

χ = ε̇0

16
(10.9)

Albeit empirical, such a relationship is very useful since it allows to obtain the
amount energy necessary to maintain a given level of stress, by means of simple
mechanical measurements, in a way which is independent on the actual size and
type of muscle. For example, to find the amount of energy necessary to maintain the
tension of a biceps at a given level, we have just to obtain a value for the maximum
contraction speed (in m/s), divide this number by the macroscopic length of the
biceps (in m), which would give us the ε̇0 of the biceps, and finally divide it by 16,
to get the rate of energy consumption per m3 of muscle per Pa of stress to hold. The
result would be in units of W Pa−1 m−3 (in fact, again s−1).
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10.3.1 Cyclic Contraction

Locomotory muscles are typically arranged in antagonist pairs: while one muscle
of the pair contracts, it also relaxes the other, and vice versa. Therefore, when we
want to estimate the rate at which a muscle consumes energy we must average
between such active and passive phases of the couple. If we draw a diagram of
the total deformation (elongation + retraction) of the muscle as a function of the
variation of the stress, we would obtain a kind of ellipsoid, which represents a cycle
of contraction and relaxation. Such a kind of closed-loop diagram is actually observed
during experiments realised on living animals. In an interesting series of experiments
by Boettiger [4], one extremity of the muscle of the wing of an insect was attached
to a force transducer (like a minuscule spring of calibrated strength); by forcing
the other extremity to contract under a load, he measured the length variations. By
choosing appropriate values of load, it was possible to voce the muscle in a sequence
of cyclic contractions. By sending the signals of the force-position transducers onto
the X-Y entries of an oscilloscope, the ellipsoidal figure was exactly observed.

It can be simply shown that the mechanical work in one cycle is given by the
integral of the area A of the ellipsoid (note thatwhen the elongation becomes negative,
i.e. contraction, also the force changes sign, therefore the contributions to the integral
have always the same sign):

W =
∮

Fdl =
∫

A

(
dF

dl

)
d A (10.10)

The power exploited by the muscle (energy per unit time) is the product of the
work W times the contraction frequency, ν. If we go to size-independent variables,
strain (ε = ΔL/L) and stress σ, we get again an integral for the specific work, w,
but now independent on the size and shape of the muscle:

w =
∫

A
σdε (10.11)

During the cycle of contraction/relaxation the length of the muscle oscillates
between L(1 − ε/2) and L(1 + ε/2), while the stress varies between ±σ/2. Since
the work is a thermodynamic function of state, i.e. it only depends on the endpoints of
a cycle and not on the way the system goes between such endpoints, we can replace
the ellipsoid by a rectangle of equivalent area, comprised between ε = (+ε/2,−ε/2)
on the x-axis, and σ = (+σ/2,−σ/2) on the y-axis. Therefore, we can now write
the power as P = (σε)ν, and the specific power (power per unit mass) as:

p = σεν

ρ
(10.12)
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10.4 Optimised Muscles

TheHill’s equation (10.7) can be inverted to express the strain rate as the independent
variable:

σ = βσ0 − αε̇

β + ε̇
(10.13)

Such a writing means that the external load σ imposes a given strain rate ε̇, as a
function of which the Hill’s equation allows to determine, in turn, the stress exerted
by the muscle. If we take for the sake of simplicity that both the strain and stress
are homogeneous during a contraction cycle, εν = ε/τ = dε/dt , the power per unit
volume of the muscle contraction is equal to the work per unit time, Eq. (10.12), or:

P = σε̇ (10.14)

Since each muscle of an antagonist pair works only for one half of each cycle,
only P/2 of the total power is due to each muscle. Therefore, by using the above Eq.
(10.13) for σ, we can write:

P = σε̇

2
= βσ0 − αε̇

2(β + ε̇)
ε̇ (10.15)

The strain rate varies in the interval 0 < ε̇ < ε̇0. If we divide the previous equation
by ε̇0, we can introduce the new variable q = ε̇/ε̇0, a relative rate which now varies
between 0 and 1. The power is rewritten as:

P = (q − q2)

2(Kq + 1)
σ0ε̇0 (10.16)

with K = σ0/α ≈ 5, valid for a majority of all the vertebrate muscles.
Now we can trace a family of curves of P versus q, for an ideal set of muscles

all having the same value of σ0 (therefore, muscles capable of supporting the same
imposed charge), but having different values of ε̇0 (i.e., ranging from slow to rapid
muscles). A plot like the one represented in Fig. 10.4a is obtained. The maximum
strain rate, or intrinsic rapidity ε̇0, corresponds to q = 1. For values of 0 < q < 1,
the absolute values of ε̇ for different curves are always in the same ratio as the
corresponding ε̇0, and so are the corresponding values of P , since the stress σ0 is
the same for all the muscles represented in the plot. The four dots in the plot show
what the result would be, if we imagine to be capable of building a bionic animal by
choosing muscles of different rapidity for the same function, namely to withstand a
given stress σ0.

It may appear at first sight that the available power is simply proportional to the
intrinsic rapidity ε̇0: if this were the case, a more powerful muscle would just be a
faster one. However, if we look more attentively at this figure, we see that things are
somewhat different. The four dots correspond to the same absolute value of ε̇. For
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Fig. 10.4 a Plot of the theoretical power output (Eq. 10.16) for four muscles of increasing rapidity
ε̇0 (small for the black, medium for the red and blue, maximum for the green curve), working on
a given load σ0. b Plot of the theoretical power output for a same muscle of given ε̇0, working on
four loads of increasing σ0 (from black to green). In both plots, the four coloured dots correspond
to a same value of ε̇

the slowest muscle, the black dot corresponds to q ≈ 0.6, i.e. 60% of its maximum
rapidity; whereas, the red dot corresponds only to 25% of the maximum rapidity of
that muscle, and even smaller values for the other two muscles, marked by the blue
and green dots. One can see that going from a muscle of rapidity ‘blue’ to a muscle
‘green’, the gain in power (intercept of the point at the y-axis) is much smaller than
in going from ‘black’ to ‘red’. This means that getting a too fast muscle becomes
quickly less effective, since its absolute strain becomes so small that it would do a
nearly isometric effort. A slower muscle, on the other hand, can output nearly the
same level of power, but with a higher efficiency.

The plot in Fig. 10.4b represents again four different curves, this time for a muscle
of given rapidity ε̇0 but working at four different levels of stress. The four dots mark
a given value of strain rate ε̇ = 0.3 (the same for all four curves, since the muscle is
the same). It can be seen that the optimum efficiency (maximum in the power output,
red curve) corresponds to a well defined combination of ε̇0 and σ0: that same muscle
operated at a given contraction on different loads σ0 (black, blue, green curves)
becomes less and less efficient.

Therefore, from this very simplified, yet not too unrealistic analysis, we can con-
clude that the rapidity of each muscle would be adapted to its specific function: a
muscle which is too rapid for a given load σ0 would operate in a nearly-isometric
condition (imagine to try lifting a 20kg weight with one finger), and would dissipate
most of the power output into heat; on the other hand, a too slow muscle for a given
load would contract in a time too long compared to the necessary frequency (imag-
ine playing a piano keyboard with your elbows), and would not give much useful
work. In practice, there may be cases in which the evolution has very finely tuned
the muscle efficiency, allowing the animal to adopt a quite wide range of behaviours.
For example, some monkeys can use their fingers to remain suspended to the branch
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of a tree, therefore the ε̇0 of their finger flexor muscles is definitely smaller than for
humans; however, not so small to hamper their hands to perform quite accurate and
fast operations.

It is important to note that the value of ε̇ increases with the environment temper-
ature. Such a consideration might inspire the deduction that this would be one good
reason to explain the fact that homeothermic animals try to keep their bodily tem-
perature quite above the ambient value, in order to maximise the efficiency of their
muscles. On the other hand, there are other evidences that appear to contradict this
deduction: for example, a large bird like an eagle will use generally slower muscles
compared to a colibri, but their body temperature is nearly the same; furthermore,
fishes adjust their muscles for a constant water temperature, which is the main rea-
son why cold-water fishes cannot easily adapt to tropical seas. In fact, the reason
why homeothermic animals prefer a higher bodily temperature is different, and will
become clear in the next Section.

The value of ε̇0 must be optimised also for the tonic muscles, even if these do
not actuate a direct displacement. A complication in this case arises, since there is
no optimal value for the intrinsic rapidity, due to the fact that a tonic muscle exists
to maintain a given value of constant stress over some time, rather than during a
cyclic effort. In most situations, an animal would use only the minimum necessary
power consumption, therefore a slower muscle seems able to maintain a constant
stress better than a rapid one. At the very limit, a tendon would be equivalent to an
infinitely slow muscle, while its length can be (elastically) adjusted by only a very
small amount. The optimal value of ε̇0 for tonic muscles should be adapted in order
for the animal body to follow the adjustment between two different stable positions,
but not faster than necessary.

10.4.1 Aerobic and Anaerobic Muscles

As it was already discussed in Chap.4, aerobic muscles produce work by performing
the oxidation of the combustible (fat, sugar) in the mitochondria, or sarcosomes,
which occupy a large part of the muscle fibre. To complete such a task, an obvious
limit resides in the physical ability for the oxygen to be transported into the fibre
body. The volume taken up by sarcosomes in the fibre is a function of the rate at
which energy is supplied: therefore, albeit indirectly, the volume fraction of the
sarcosomes is a function of the specific power (per unit mass) of the muscle. In
the muscles capables of an elevated specific power output, such as the wings of
colibri and insects, which beat at very high frequency, the sarcosomes can occupy
up to about half of the total cell volume. As a consequence, the volume available for
the motor proteins (actin, myosin) is smaller, and the maximum stress attainable is
reduced. Therefore, in aerobic muscles the power is not a simple linear function of
the frequency, as Eq. (10.12) above seems to suggest.

http://dx.doi.org/10.1007/978-3-319-30647-6_4
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A simple analysis rather shows that the power output of an aerobic muscle is
asymptotically limited by the rate of energy supply from the mitochondria, instead of
the contraction frequency. In 1984, Pennycuick and Rezende proposed the following
equation for the specific power output as a function of the contraction frequency [5],
for a given value of stress and strain (in other words, the power output for a given
amount of work performed at a given frequency):

P = σεν

ρ(1 + kσεν)
(10.17)

where ρ is the muscle density, appearing at the denominator in order to express
the power per unit mass instead than per unit volume. The interesting factor in this
equation is the coefficient k, expressing the ratio between the volume fraction of the
muscle cell occupied by the mitochondria, and the volume fraction of myofibrils; a
value k = 1 means a 50/50 share of the volume.

On the other hand, anaerobic muscles perform only a very partial oxidation of
the combustible, and they do not require at all oxygen transport. In this case the
sarcosome volume is not a relevant variable, and the Eq. (10.12) is applicable. For
a given contraction frequency, anaerobic muscles produce a power output higher
than aerobic ones. Moreover, this advantage increases as the contraction frequency
increases, since the aerobic power output tends to grow slower than ν, until becom-
ing constant and independent of frequency. Anaerobic muscles are in this respect
very useful, since they can produce a very quick contraction starting from a resting
position, albeit with a decreased efficiency: such muscles would be useful for brisk
and steep accelerations and sudden jumps, while aerobic muscles would be more
useful for steady energy consumption, as required in long-range locomotion, flight
or swimming. For example, a small bird can use preferably anaerobic muscle for the
take-off phase, and switch to aerobic muscles for the cruise phase.

Itmay be interesting to note that the largestmitochondria are found in the (aerobic)
cardiac muscle fibres: they are 3–9 times the size of those found in the skeletal
muscle fibres. Cardiac mitochondria have the added capability of oxidising lactic
acid back into pyruvic acid and pyruvate back into glucose. (The only other organ
which contains such very large mitochondria is the liver.) These mitochondria are
purplish in colour, and the presence of large numbers of these mitochondria gives the
heart and liver tissues their dark purple-brownish colour. Aerobic muscles may be
more or less rapid (called fast-twitch or slow-twitch). The aerobic fast-twitch fibre is
not found in primates, and is really no longer a muscle, but is instead a bag full of tiny
mitochondria with just a few contractile fibres remaining. The little mitochondria in
this fibre are 1/3rd the size of those in the aerobic slow-twitch fibre, and are not able
to oxidise fatty acids or ketones as can the larger mitochondria, but can oxidise only
the components of glucose. These smallest mitochondria appear bright red in colour
like the myoglobin which accompanies them. On the other hand, the anaerobic fast-
twitch muscle fibre contains larger mitochondria that produce the enzymes needed
to reduce glucose to pyruvate, and pyruvate to lactate.
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In practice, many muscles contain a combination of aerobic and anaerobic fibres
running next to each other, easily distinguishable by their colour. Aerobic fibres range
from pink to dark red, depending on the fraction of mitochondria (whose red colour
comes from the cytochrome, and from some myoglobin they contain, necessary to
maintain the required partial pressure of oxygen); anaerobic fibres, on the other hand,
have very small mitochondria and contain nomyoglobin, their colour being thus very
clear and often white.

An interesting quantity in the description of muscle operation is the respiratory
quotient (RQ), defined as the ratio between eliminated CO2 and consumedO2 during
respiration, which can be measured by a special apparatus called the respirometer.
For the complete oxidation of a compound with formula CxHyOz (e.g., glucose with
x = 2y = z = 6, fatty acids with z = 2 and y = 2x , etc.), the chemical equation is:

CxHyOz + (x + y/4 − z/2)O2 → xCO2 + (y/2)H2O (10.18)

Hence, the complete metabolism of this compound has a respiratory quotient of:

RC = x

x + y/4 − z/2
(10.19)

which gives RQ = 1 for pure carbohydrate metabolism, and RQ = 0.67 for pure
fat metabolism (taking x, y >> z). Experimentally, when a runner attains a speed
of about 14km per h, RQ ≈ 1, which indicates no fat metabolism is happening.
Higher speeds in a primate (including the human runner) can be produced only by
the anaerobic fast-twitchfibres,which can contract three times faster than slow-twitch
fibres (25 vs. 75 ms). The fast-twitch fibres can produce a speed in excess of 25 miles
per h, such as it is attained in the 100- or 200-m dashes. For the same reasoning,
non-primate animals that do not dispose of a 50/50 mix of aerobic slow-twitch and
anaerobic fast-twitch fibres, require aerobic fast-twitch fibres (essentially bags of
mitochondria) capable of oxidizinglarge amounts of pyruvate from the anaerobic
fibres.

The flight muscles of a bird are of necessity mostly all fast-twitch fibres. Pho-
tomicrographs show that out of a sample of 30 fibres, 18 are anaerobic fast-twitch,
with the anaerobic fibres being five to nine times larger than the aerobic fibres. The
reverse situation exists, e.g., in the calf muscles of the cat. The soleusmuscle, smaller
and closer to the bone, is made up entirely of aerobic slow-twitch fibres. This allows
the cat to move with incredibly smooth slow motion when in stealth mode. To pro-
vide the quick leap in bounce mode, the other calf muscle, the larger gastrocnemius
covering the soleus, is mostly made of fast-twitch fibres. A sample of 30 cat gas-
trocnemius fibres revealed seven aerobic slow-twitch fibres, 17 anaerobic fast-twitch
fibres, and six aerobic fast-twitch fibres. A memory of this evolutionary step is also
present in humans, whose soleus is slightly richer in slow-twitch fibres, while the
gastrocnemius is slightly richer in fast-twitch ones, however remaining close to a
50/50 mix.
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The rate at which energy is supplied by the mitochondria is a remarkable function
of the temperature, to the point that the higher is the body temperature, the smaller
becomes the volume fraction of a muscle cell dedicated to the mitochondria. This
fact provides an evolutionary advantage for animals which tend to maintain a bod-
ily temperature quite higher than the environment. Birds and mammals have body
temperatures comprised between 32 and 43 ◦C, generally in anti-correlation with
body mass (smaller animals tending to have higher temperature) [6], apart from a
strange exception represented by marsupials, in which body temperature increases
with body mass (and this is just another strange thing about marsupials). It is easy
to observe that cold-blooded insects must firstly “warm-up” their muscles before
taking off, while in flight their body temperature attains the same 37 ◦C as the human
body’s. For fishes it is more complicate to maintain a high temperature of the body,
since their contact surface with water is quite extended, and the thermal conduc-
tivity of water is much larger than that of air. Therefore, they rather tend to warm
up only those local parts of the body where aerobic metabolism takes place. In this
way fishes can reduce the volume of mitochondria, and thereby the volume of the
muscles, in their attempt to constantly optimise their overall body shape to preserve
nicely hydrodynamic contours.

10.5 The Flight of an Insect

Insects are extremely fascinating animals in many respects, and most notably for
their special flight abilities. In fact, insects are at the low end of the scale in terms
of Reynolds number, Re, expressing the (nondimensional) ratio of inertial forces to
viscous forces for an object of given shape and size L moving at a speed v in a fluid:

Re = ρvL

η
(10.20)

with ρ and η the density and dynamic viscosity of the fluid, respectively (ρ = 1.2
kgm−3 and η = 1 × 10−3 kgm−1 s−1 for air at T = 293 K). A small fruit fly
with L = 0.3 cm and v ≈ 1.5 m/s has Re = 5; a green beetle with L = 3 cm
and v ≈ 0.4 m/s has Re = 140; a larger and fast dragonfly with L = 7 cm and a
peak horizontal speed v ≈ 12 m/s has Re =1,000. For comparison, medium-sized
birds have Re ≈ 105, and an Airbus-380 has Re ≈ 107. Under such conditions, air
flow around the insect body is too viscous for true turbulence (Re should be larger
than 10,000), but it is sufficiently inertial to sustain local vortices. Skin friction is a
major component of the drag of a body, so that streamlining is of questionable value,
in fact insects did not seem to have taken particular care in evolving particularly
aerodynamic shapes. Moreover, velocity gradients during insect flight are gentle
(again, with exception for dragonflies, which are capable of very abrupt changes both
in speed and direction), a factor which further reduces the influence of the shape,
orientation, and surface details of the flying object on its aerodynamic characteristics.
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Fig. 10.5 Mechanics of direct and indirect wing muscles. Above In direct muscles, wings pivot up
and down around a hinge, being raised by the contraction of muscles attached to the base of the
wing inside the pivot point. The downstroke results by a contraction of muscles that attach to the
wing outside of the pivot point. Below indirect flight muscles are connected to the upper and lower
surfaces of the thorax. A second set of muscles attach to the front and back of the thorax. The wings
are raised and lowered by the muscles attached to the top and bottom surface of the thorax. The top
surface of the thorax moves up and down and, along with it, the base of the wings.

The wings of the insects usually cover a large surface compared to the size of
their body, up to tens of times larger in the case of butterflies.4 With the exception of
dyptera (flies, mosquitoes) which have only one pair, most insects and beetles have
two pairs of wings, sometimes identical as in damselflies, but often of different size
and shape.Wingmovement is actioned by either directmuscles, attaching directly to
the wing base, or by indirect muscles, which deform the insect thorax and transmit
the up- and downstroke to the wings (Fig. 10.5). Wings are attached to the thorax by
a complex hinge joint that gives the wing freedom to move up and down through
an arc of more than 120◦. With indirect muscles, a pair running vertically provides
the thorax contraction for the wings upstroke, while a pair running approximately
parallel to the insect body provides thorax relaxation for the downstroke. The hinge
is a bistable oscillator, like a pendulum having two stable positions instead of just
one, which stops moving only when the wing is completely up or completely down.
During flight, the wing literally “snaps” from one position to the other.

All insects can use direct muscles to control their wings during flight, however
most of them use indirect muscles to perform the power stroke. Only Palaeoptera
(dragonflies and damselflies, plus some species of Ephemeroptera, or mayflies),are

4The honeybee is a notable exception, its wings being quite shorter than the whole insect length.
In 1934, the French entomologist August Magnan and his assistant André Sainte-Lague calculated
that bee flight was aerodynamically impossible, since the too short wings could not provide enough
lift according to conventional aerodynamics calculations. According to recent studies, the bee’s
flight ability is the result of an unconventional combination of short, choppy wing strokes, a rapid
rotation of the wing as it flops over and reverses direction, and a very fast wing-beat frequency,
up to 240Hz for hovering.
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Fig. 10.6 Left Aeshna grandis (Brown hawker dragonfly) in fast cruise flight. Right Aeshna juncea
(Moorland hawker) in hovering flight, with ample use of wing rotation compared to the fast flight.
[Photo © a Roy & Marie Battell, http://www.moorhen.me.uk/; b Jens Buurgaard Nielsen, under
CC-BY-SA-3.0 licence, see (*) for terms.]

known to use direct muscles also for the power stroke. Such a choice is apparently
less efficient for the neurophysiology, since each wing has to be controlled and acted
separately, with attending problems of synchronisation, while the thorax deforma-
tion by indirect muscles induces a coordinated wing movement with less neurons
circuitry. However, this solution is extremely advantageous for the dragonflies, the
most powerful predators in the insect world, in that they can hover, manoeuvre at
low speed, and abruptly change direction and speed of flight (Fig. 10.6), by using a
complex pattern of anti-phase wing flaps between the fore and hind pair, including
rotation and bending [7]. Direct muscles attach to the membrane at the base of wings
by resilin, an elastomeric protein known to be themost efficient energy-storagemole-
cule: the elastic efficiency of the resilin isolated from locust tendon has been reported
to be 97%, with only 3% of the stored elastic energy being lost as heat.

10.5.1 Synchronous and Asynchronous Muscles

During the evolution, all animals (and most notably the insects) have developed a
variety of different strategies to accomplish the need of having muscles capable of
working at very high contraction frequencies. We can distinguish basically between:

• quantitative solutions, consisting in the acceleration of each phase of the cycle of
muscular work in a mostly coherent manner;

• qualitative solutions, in which some steps in the cycle (typically, the most time
consuming) are either suppressed or grouped together with others.

The quantitative solutions are accomplished by the development of synchronous
muscles, characterised by the fact that each excitatory nerve pulse gives rise to one
contraction cycle of the muscle cells; in other words, the nerve excitation frequency
is the same of the muscle contraction frequency, ν.

http://www.moorhen.me.uk/
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The quantitative solutions are, instead, implemented by asynchronous muscles,
inwhich a single nerve excitatory pulse can give rise to several (from4 to 5 up to about
10) sequential muscular contractions. It is worth noting that the qualitative solution is
increasingly adopted when very high contraction frequencies are required: typically,
vertebrates use synchronous muscles, while almost all the insects have developed
asynchronous muscles.

As it was explained in the Fig. 7.4 of Chap.7, the electrical nerve impulse which
commands the voluntary contraction of a muscle, is transmitted from the nerve to the
muscle by a network of junctions, the neuromuscular synapses. The electric potential
of the neural cell carries the information from the brain down to the muscle cells. At
the microscopic scale, the mechanical action of the contraction is activated by the
influx of Ca2+ ions, which actually provide the initial ‘loading’ of the actin-myosin
motor and allow the formation of actin-myosin cross-bridges (see also the previous
Fig. 10.2b).

The double flux of Ca2+ ions, to the nerve terminal and, after liberation of acetyl-
choline, to the muscle terminal, is a diffusion-driven process: the ions proceed by
a random walk through the cytoplasm, and must cover by stochastic motion the
few nanometers from one end to the other, with moreover all the intermediate steps
described. As it turns out, this diffusion process is the slowest step (rate-limiting) in
the whole chain of transmission.

Now, we could consider that a diffusion coefficient, D, has dimensions of
[L2][T−1], that is a product between a surface and a frequency. We can identify
the surface with the area to be traversed by the ions, in the direction of the junction
from the nerve to the muscle; and the frequency with that of the nerve impulse. Then,
for a given nerve pulse frequency, the way to increase the diffusion, and therefore
to speed up the process, would be to increase the contact surface available to the
ions. In other words, one should let increase the amount of contacts at the level of
neuromuscular junctions. This would imply that the muscle fibre is more and more
invaded by the sarcoplasmic reticulum, which forms the junctions, thus leaving less
and less space for the myofibrils. Such a process indeed occurs at the neuromuscular
junction (see the membrane folds in Fig. 7.4), but it could not continue indefinitely.
The equilibrium between the amount of contact surface, and volume available for
the mechanical action, would impose an upper limit to the maximum attainable
frequency, or instead a reduction in the available power. Such a hypertrophy of the
contact regions, together with a reduction in size of the myofibrils, is in fact observed
in some high-frequency synchronous muscles, such as the sound-producing muscles
of rattlesnakes, fishes, and some insects. However, for attaining very high frequencies
this would not be the best evolutionary strategy.

The solution nature has devised with the development of asynchronous muscles,
is that of decoupling the frequency of arrival of the nerve pulses (and therefore
the diffusion cycle of Ca2+) from the frequency (often much higher) of muscular
contraction: each nerve pulse can induce many more muscular contractions, rather
than just one as it is the case in synchronous muscles. This kind of adaptation is
found only in insects, to the point that about 80% of the flying insects (beetles, flies,
bees) do so with asynchronous muscle. Asynchronous muscles are likely to be more

http://dx.doi.org/10.1007/978-3-319-30647-6_7
http://dx.doi.org/10.1007/978-3-319-30647-6_7
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powerful, on a per-volume basis, than synchronous ones, because they do not have
to invest heavily in sarcoplasmic reticulum to achieve high operating frequencies.
The reduction in the volume of sarcoplasmic reticulum increases the space in a given
mass of muscle for myofibrils. Moreover, asynchronous muscles are likely to be
more efficient than synchronous ones because they do not have to cycle Ca2+ on
each contraction.

10.5.2 The Power Output of an Insect’s Muscle

A striking evidence of the electromechanical functioning of asynchronous muscles
was provided in a series of studies by Josephson and coworkers [8, 9]. The force,
mechanical work, and power output produced by the wing muscles of living insects
weremeasured underwell-controlled conditions.Measurementswere realised ondis-
sected muscles of dead animals, placed in a system of micro dynamometers allowing
to impose a constant load, and to measure the force feedback (therefore, the force
exerted by the muscle fibre) as a function of the mechanical stimulation (cyclic vari-
ation of ε), of the temperature (to be interpreted as the animal body temperature),
and other variables. The electrical stimulus from the nerve was simulated by the
introduction of thin silver electrodes, 100 µm in diameter, connected to a sinusoidal
voltage pulse generator. The same studies reported also measurements realised on
living insects, flapping their wings while immobilised.

Likely, the most direct proof of the decoupling between nerve impulse frequency
and muscle cycling frequency is provided by the data reported in the Fig. 10.7, from
Ref. [9]. Here the recordings for the beetle are compared to those for a locust,
permitting to clearly appreciate the difference between the synchronous actuation in
the locust, versus the asynchronous actuation in the smaller beetle. In each pair of
time traces, the trace below is the electromyography (EMG) recording of a train of
nerve impulses, with average height of 3–5 mV and frequency of 8Hz in the beetle
and about 16Hz in the locust (see the scale bar in the figure indicating a period of
100 ms). The time trace above in each pair is the lift generated by the wing muscle,

Fig. 10.7 Lift Generated by
wing strokes (upper trace in
each pair) and muscle action
potentials recorded from a
muscle (EMG; lower trace)
during tethered flight. The
upper pair is from a locust
(Schistocerca americana),
the lower from a beetle
(Cotinus mutabilis);
respective wing beat
frequencies are 16 and
77Hz. [From Ref. [9], repr.
w. permission]
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measured by the dynamometer. In the locust the wing frequency is the same as that
of the nerve in the EMG; in the beetle, the wing is seen to oscillate with a much
higher frequency, about 10 cycles being produced for each neural pulse. The data
published in Ref. [8], in a similar set of experiments, reported a wingbeat of about
5–6 cycles in the same type of beetle. It was also measured the absolute value of lift
force (from the maximum amplitude of the wingbeat trace), equal to about ±4 times
the insect body weight.

The following Fig. 10.8 reports a summary of the experiments. In (a) the force
output is compared with the applied strain. During this time, the muscle is stimulated
by the electrodes, at a very high frequency (100 Hz), to induce tetanic contraction.
When the strain is applied, in two successive steps of ±2%, the muscle develops a

Fig. 10.8 Stretch (activation), shortening (deactivation), and work output from a beetle flight mus-
cle. aThemusclewas stimulatedwith shocks at 100Hz and, during the tetanic contraction, subjected
to two cycles of stretch-hold-release.Upper curve Time-trace of the force developed by the muscle.
Lower trace Imposed elongation of the muscle. The thick line beneath the force trace indicates the
duration of the stimulation burst. b The portion of (a) within the box is shown on an expanded time
base. The values of force are translated into stress, and the values of deformation into strain. Note
that the force rises during stretch (a), and continues to rise (stretch activation) during the interval
at constant length (b) following the stretch. Similarly force declines during shortening (c), and
continues to decline (shortening deactivation) for several ms following the shortening (d). c The
work loop formed by plotting stress against strain for the cycle defined by c-f. The area of the loop
is the work output over the cycle. The loop is traversed counterclockwise, indicating that there is
net work output. [From Ref. [9], repr. w. permission]
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force response. In (b) the force profile is translated into stress (in kN/m2), by dividing
the measured force by the muscle cross section of about 7 mm2, and the absolute
elongation is converted into strain (in %)m by dividing by the muscle length. The
two plots can be divided into six portions. In (1) the deformation is applied and the
force rises; in (2) the deformation is held constant, but the force keeps increasing;
the same happens in reverse after in (3) the strain is released, but the force keeps
decreasing also in (4) when the strain is held at zero. By repeating the cycle of
deformation, a closed loop in the stress versus strain plot (c) is obtained. This kind of
closed loop is just equivalent to the work loop described before in Eqs. (10.10) and
(10.11). Then, the area within the loop represents the available power output from
the muscle, according to Eq. (10.10).

In Ref. [8], this same experiment was repeated for values of total strain ranging
between 2 and 8%, applied during a fixed time (therefore, a strain rate). It was
found that the work produced by the muscle follows a curve just like our Fig. 10.8,
displaying a maximum for a given value of deformation (or, equivalently, for a given
value of load). Such a finding is a nice confirmation of the qualitative statement
which was then made, about each muscle being best adapted for a typical load.

Overall, the maximum power expressed by the asynchronous muscle was in the
range 125–140Wkg−1, considered by the authors as an underestimation of the actual
working power output, because of the experimental conditions. Since typical power
outputs from synchronous muscles of insects range between 70 and 90 W kg−1,
these results suggest the hypothesis that asynchronous muscle evolved in a number
of insect lines, also because it permits a greater mass-specific power output, given
the high operating frequencies of small insect flight.

10.5.3 Simplified Aerodynamics of Flapping Wings

The evolutionary solution of developing asynchronous muscles rest on the central
finding of adapting the muscle contraction frequency to the natural frequency of the
mechanical load (the wing), rather than to the frequency of the nerve pulses, as it
would be the case of synchronous muscles. Therefore, we are talking of an automatic
adjustment to a resonance phenomenon.

The proper frequency of the load is, in fact, linked to the kinematics of wing
oscillation, a mechanical structure which can be assimilated to a flat vibrating plate,
or cantilever, clamped at one end and free at the other end. Clearly, this is a great
simplification of the complex movements a real insect wing can perform, including
most notably rotation and bending [10]. We will consider here only the oscillation,
in order to get some ideas about the different forces acting on the wing. Still, the
movements of an insectwing are quite simpler compared to those of a bird’swing.The
insectwing is proportionally larger, yetmuch lighter than a bird’s.Most importantly, a
bird can break the flapping between the inner part of the wing (the “arm”), which acts
more like an airplane wing providing lift with relatively small up- and downstroke,
and the outer part of the wing (the “hand”), which can bend over ample spans to
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Fig. 10.9 a Schematic of a cantilever beam of length, width and thickness L ,w, t , clamped at one
end, and free to oscillate by an amplitude δ at the other end, representing a rigid insect wing doing
up- and downstroke movements of the same amplitude. b Profile of an ideal wing seen along the
cross-section, showing the four forces (lift, weight, thrust, drag) applied to the centre of gravity.
The angle α formed by the line of airflow (horizontal, full line) and the chord (dashed) is the angle
of attack. The difference between the upper and lower profile (roughly measured by the average
distance perpendicular to the chord) is the camber

produce, aside of some lift, the necessary forward thrust. At variance with such more
complex mechanics, the insect wing is very thin and rigid, and combines lift and
thrust by using flapping and rotatory motion of its more flat surface.

The material composing the insect wing is a highly specialised protein cuticle
with reinforcing veins, which can be characterised by an effective Young’s modulus
E ranging anywhere between 0.3 and 20 GPa. Figure10.9a provides the analogy
between a clamped cantilever beam and the wing profile. Figure10.9b outlines the
aerodynamic forces acting on the wing surface.

The basic equations to describe the mechanics of an oscillating cantilever, which
represents the up- and downstroke movement of an insect wing, are: (i) the Stoney
equation, giving the amplitude δ in the approximation of small displacements:

δ = 3σ(1 − ν)

E

(
L2

t

)
(10.21)

and (ii) the Hooke equation, giving the effective spring constant of the oscillating
beam:

kef f = F

δ
= Ewt3

4L3
(10.22)

In these equations, L ,w, t are respectively the length, width and thickness of the
beam-wing, resulting in a volume V = Lwt , E and ν are the Young and Poisson
elasticmoduli of thematerial composing thewing,σ and F the stress or force applied.
Note that, in the beam scheme, the “wing” is clamped at the body end, and the force
is applied somewhere between the two ends, while in the insect the force is applied at
the same point of clamping (i.e., from inside the body), and the opposite end swings
free. Saint-Venant’s theorem on the equivalence of mechanical loads allows us to use
this similarity, by exploiting the symmetry of the loading geometry.

In practice, the constant kef f is linked to the natural frequency of the beam, ω0,
by the ordinary equation of the harmonic oscillator (see next greybox):
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Natural, forced, damped harmonic oscillator

The harmonic oscillator is a well-knownmodel in theoretical physics, describing the periodic, oscillatory
behaviour of a wide variety of systems, e.g. from crystals, to thermomechanics, acoustics, electrical
circuits, etc. In practice, any system performing small displacements about an equilibrium state can be
treated as a kind of harmonic oscillator, eventually with the extra variables of including damping and
forcing terms.

The isochronous pendulum, firstly studied by Galileo Galilei in 1602, is likely the best example of
harmonic dynamical system, and has traditionally enjoyed a great importance as a model system inmany
areas of physics. It remained the best timekeeper device until the 1930s, and can be used also to give a
proof of the equivalence of inertial and gravitational mass, although much more refined experiments are
today available to prove such a fundamental property.

Figure9.10a shows the scheme of a simple pendulum. The mass m performs a uniform movement
around the circle of radius L , while the angle θ is spanned with constant angular velocity ω = θ̇ = 2πν,
ν being the frequency of oscillation. The pendulum spans only part of the circle, s = Lθ, with velocity
ṡ = Lω (maximum at θ = 0, and zero at each turning point, where it changes sign). Then, the angular
acceleration is θ̈ = ω̇. The inertial force induces an acceleration inversely proportional to the inertial
mass mi , directed to the fixed centre:

fi = mi s̈ = mi L
2θ̈ (10.23)

where mi L2 = I is the moment of inertia of the mass about the length L .
The gravitational force, proportional to the gravitational mass mg , is produced by the Earth’s

attraction g, and is directed toward the centre of the Earth (practically, along the vertical direction),
giving a force component parallel and opposite to fi :

fg = mgg(L sin θ) (10.24)

All along the trajectory it is fi = fg . For small-amplitude oscillations, the value of sinθ can be
replaced by θ, thus obtaining the harmonic equation of motion:

θ̈ = mg

mi

g

L
θ = −ω2θ (10.25)

whose solution is:
θ(t) = A sin(ωt + φ) (10.26)

a periodic motion (with A and φ fixed by the initial conditions). The experimental observation that the
oscillation frequency ω is independent on the mass proves that mi = mg , i.e. the equivalence of inertial
and gravitational mass.

For a generic harmonic system, moving along a generalised coordinate x , the equivalent oscillator
equation is obtained by equating the actuating force to the recall force which tends to bring back the
system to its equilibrium position (conventionally, x = 0):

ẍ = −ω2
0x (10.27)

with ω0 = √
k/m the natural angular frequency of the system. The recall force can be a real mechanical

spring, or any other kind of force describing the attraction basin about the potential minimum, e.g. an
electric or magnetic potential, a chemical gradient, gravity from a planet, etc. (Fig. 10.10).

Similar to the treatment above, the solution to the previous equation is:

x(t) = Asin(ω0t + φ) (10.28)

http://dx.doi.org/10.1007/978-3-319-30647-6_9
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(a) (b)

(c)

(a) (b)

(c)

Fig. 10.10 a Ideal isochronous pendulum, and examples of natural oscillators. bNatural sustained oscillations
in the oxidation of NADH by O2, induced by the supply of vanillin; the oscillations are monitored by the
characteristic peroxidase light-absorption at 418 nm (from Ref. [11], © 1998 American Chemical Society). c
Synchronised electrical spiking from two nearby hypothalamic neurons from a rat cerebral cortex. Neurons are
excited by voltage-clamp subthreshold potential (see Chap.7; from Ref. [12], repr. w. permission)

Let us now consider the case when an external force F0 is acting on the oscillating system, with a
frequency ω �= ω0, the above Eq. (10.27) is modified in the forced harmonic oscillator as:

ẍ + ω2
0x = F0

m
sinωt (10.29)

with solution:

x(t) = F0
m(ω2 − ω2

0)
sin(ωt + φ) (10.30)

It can be seen that for ω approaching ω0, the above solution becomes infinite: this is the phenomenon
of resonance, occurring when a system is forced at its natural frequency. Even for a very small force,
the amplitude accumulates and can explode the system.

In practice, in any real physical system there will be some dissipative mechanism which avoids a
pure resonance amplification by introducing a damping term, typically proportional to the velocity ẋ .
The above equation is again modified in the damped harmonic oscillator:

ẍ + 2Zω0 ẋ + ω2
0x = F0

m
sinωt (10.31)

whose general solution is:

x(t) = F0

m
√

(2Zωω0)2 + (ω2 − ω2
0)

2
sin(ωt + φ) (10.32)

The damping coefficient Z contains the effect of any drag force dissipating energy in the system,
and removes the infinite divergent behaviour of the solution (for Z = 0 the resonant forced oscillator is
recovered).

http://dx.doi.org/10.1007/978-3-319-30647-6_7
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ω0 =
√
kef f
m

=
√

Et2

4ρL4
(10.33)

with ρm = m/V the wing material density, which can be taken to be ρm ≈ 1000
kg m−3. For example, for a wing with typical size L = 2 cm, width w = 0.5 cm
and thickness t = 50µm, we obtain a natural frequency ν0 = ω0/2π ≈ 40−45 Hz,
comparable to the observed values of flapping frequency.

For a given wing geometry (size Lwt , mass m = ρmLwt , natural frequency ω0

from Eq. (10.33)), we can use the approximation of the wing as a forced, damped
harmonic oscillator, to obtain the damping coefficient Z as:

Z = F

2muω0
(10.34)

where the force F is identified with the lift, and the displacement derivative ẋ with
the horizontal flight speed u.

If we look again at Fig. 10.7, it can be seen that the upper profile varies between
±4 times the insect mass Mg, thus suggesting a RMS (root-mean square) value
of

√〈 f 2〉 = 4Mg/
√
2. If we consider a flight speed u = 3 m/s, L = 0.02 m,

M = 2 × 10−3 kg, and m = ρm(Lwt) = 2 × 10−5 kg the wing mass, we obtain an
estimate of Z = 1.8 for the nondimensional damping coefficient.

Again, by looking at the data from the previous study, we can take that the asyn-
chronous stimulation frequency to be about 1/5 of the contraction frequency (i.e.,
every nerve pulse induces about five muscle contractions), ω = ω0/5. Therefore,
we can estimate the maximum amplitude of the up- and downstroke wing flapping
oscillation, as:

δmax = F0

m
√

(2Zωω0)2 + (ω2 − ω2
0)

2
= F0

mω2
0

√
( 25 Z)2 + ( 2425 )

2
(10.35)

Taking from Fig. 10.8a,b an average value of F0/S = 2 × 104 kN m2 for the
external force (from the asynchronous muscle), or F0 = 2 N, we get δmax ≈ 0.5 cm,
or a maximum flapping angle of±14◦, which is indeed a reasonable value for a wing
of L = 2 cm.

10.6 How to Choose Right Variables and Units

Physics is an attempt at solving the mysteries of Nature on a quantitative basis. Our
science has long been described as the most exact of all sciences, since it is based
on relentless experimenting and painstakingly measuring quantities by all possible
means. Although nobody believes anymore than one science may be more exact than
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another, it remains true that precise and accurate measurements remain at the heart
of physics, and a theory not leading to a comparison with at least one experimen-
tally measurable quantity is quickly rejected as “metaphysical”. If measurement is
the heart of physics, observables are its blood. Observable quantities must be prop-
erly defined and translated into physical observables, in order to be unambiguously
measured and quantified. Furthermore, a theory could deal with the same variables,
formulate mathematical equations, and build models trying to explain and predict the
results of measurements. The interplay between theory and experiment in physics
is as crucial as the flow of blood through the heart. This exchange is a continued
cross-checking of theoretical predictions and experimental measurements, adjust-
ments of the theory to follow the experiment, accompanied by new predictions, then
new measurements which can verify or confute the theory, thus asking for a new
interpretation of the conflicting result, and so on.

In any given problem, it is necessary to identify the physical character of all the
important variables. This could appear a trivial and obvious statement, but its neglect
is often the possible source of the most common errors. We could cite Aristotle and
his theory of motion, which deduced that to move a body at constant velocity one
should apply a constant force: in this case, it was the wrong identification of the
velocity instead of the acceleration, as the main variable opposing the inertia of the
body, to lead him and others on the wrong track.5

One of the best ways to try to avoid common errors is to first take a look at the
physical dimensions of variables and observables. The notion of physical dimension
of a variablemust be distinguishedby that of the variable itself. For exampleNewton’s
Second Law stipulates that the force on a body is the product between its mass and
its acceleration:

F = ma (10.36)

Italic symbols F , m and a are numbers issued from some measurement process:
attributing a numerical value to m corresponds to performing a measurement of the
mass of the body, and replacing the symbol m by a certain number of grams or
pounds. This is not a neutral statement, in that it implies that we have defined what
a mass is, and we know how to provide a physical measure of this observable. In
his experiments, Newton was thinking of the mass as measuredvia the acceleration

5It would be too easy today to look at Aristotle’s vision as erroneous, but in the Athens of IV century
BC it was very difficult to conceive the space as void, and this logical impossibility was at the basis
of the Aristotelian vision of motion. In contrast with the early intuition of “atomists” as Democritus
and Epicurus, who proposed the space to be occupied only by atoms of finite size, with empty
space between them, the most common view at the time was that the space could not sustain any
empty site (horror vacui, or “fear of the emptiness”). According to this vision, the local motion of
a body in space after the application of a force was due to the space-filling medium (the air) being
displaced from the front and filling the back of the body, thus pushing it in the space. Since the
motion was identified (correctly!) as being limited by a resistance of the medium proportional to the
body velocity, a medium of null resistance (like the void) would have implied an infinite velocity:
hence the Aristotelian refusal of void.
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provided by the gravity force, which is in turn related to the Earth’s mass. Therefore,
the definition seems circular: to measure a mass we must know another mass. But
what if we don’t know the exact mass of the Earth? (We actually don’t, we only have
a quite good estimate of its value).

In fact, when looking at the famous newtonic apple falling, we are comparing
two different masses, by measuring the reciprocal force of attraction they exert on
each other. What is actually done in our everyday life is to take different masses and
compare their weight, that is the force of attraction felt by each mass while attracted
by the Earth. Even if we don’t know exactly the mass of our beautiful planet, we can
safely assume that it will attract the two objects in the same way, provided the two
are put in the same place. We will then be able to say that one object weighs X times
the other object, i.e. we will have realized a weighting scale. It all boils down to
properly choosing the reference mass, which, according to the convention followed
by a large part of the Earth’s population, is a cylindrical block of platinum-iridium
alloy, defined to be the International Prototype Kilogram, or IPK. All the commercial
scales of our bakeries or groceries are calibrated against this IPK standard, to allow
us to weigh some pieces of bread or salami in the Earth’s gravitational field, and
establish to what fraction X of the IPK their gravitational attraction corresponds. In
other words, what is their weight, relative to that of the IPK. Since we calibrated the
scale to measure the weight at a given point on the Earth’s surface, we can safely
assume by proportionality that also the mass of our salami or bread corresponds to
X times the mass of the IPK.

On the other hand, the physical dimension of the mass m, which we will write as
[M], is not a number and does not need to be replaced by a number. [M] has nothing
to do with the value of m, nor with its units (such as kilograms or tons). Rather, it is
the defining character of the physical variable ‘mass’. In the same way, acceleration
is the variation in time of the velocity, which in turn is the variation in time of the
position. In other words, a must have dimensions of a double time-derivative of the
length, or [L][T−2]. The force f , which is the product of mass and acceleration, must
therefore have dimensions of [M][L][T−2]:

ma = [M] · [L]
[T2] = f (10.37)

a result which is valid for no matter what type of force (gravitational, electromag-
netic, nuclear…). Note that we are here using a sort of “algebra of dimensions”, by
manipulating symbolic equations that closely resemble the corresponding equations
for the numerical values, however these are void of any numerical meaning.

Once the physical dimensions of an observable are defined, choosing one unit of
measure is only amatter of convenience. For example,we rarely say that a force is 1 kg
m per s2, but rather we say 1 newton (abbreviated as 1 N), which is exactly the same
unit (the force that accelerates a mass of 1kg to 1 ms−2). However, constructing
a coherent and non-ambiguous system of units is not a trivial task.It took many
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years after Newton’s death, before the difference between mass and weight would
be clearly stated in a system of units, and still today it is normal to hear people
saying that some object “weighs” X grams (while they obviously intend that its
mass is X grams, since the weight would depend on the place on Earth where it is
measured). The construction of rational systems of units keeps busy the engineers
since two centuries, but still some confusion exists. For example, a builder may want
to actually know the weight, and not simply the mass, of a bridge to be built at a
particular place, since 1 ton of iron feels a gravity force of 978N in Congo, and of
982N in Turkey, because of various factors affecting the gravity constant g (latitude,
density, tides, altitude being the principal ones); building engineers use commonly
the kilogram as unit of mass, but have introduced the “kilogram-force” (equal to
about 9.807 N) to measure gravitational force, by choosing a reference value for g.
Something that may appear both useless and wrong to a physicist, but very worth to
them.

10.6.1 Observables, Their Dimensions,
and Their Measurement

By pushing a little bit further the above ideas, we can state that the definition of the
physical dimension of an observable defines the operations necessary to measure it.
Force appears as a mix of concepts of mass, [M], length, [L], and time [T−2], and
this is a very good example of physical observable for us, since it includes all the
three fundamental quantities of any physical variable. But, what makes a quantity
‘fundamental’? Indeed, the three quantities mass, length and time define any other
quantity in physics, which are hence called derived quantities. For those fundamental
three we are unable to give definitions in terms of yet some other variable, but they
are instead defined by the way they are measured. We already defined the standard
of mass measurement. Similar standards are defined for the length and the time.

Length is based on the operation of translation of the object to bemeasured against
a standard ruler, which is established to be equal to 1m in the system of units called
the International System, or SI. Time, on the other hand, is based on the operation
of counting the periods of some reference oscillator, whose frequency has to be
absolutely constant. It could be thought at this point that time is a quantity derived
from frequency: in fact, from the point of view of experimental measurement, time
and frequency are just one the inverse of the other, and therefore are physically
one same thing. In this sense, stating that some variable has dimensions of some
power of the mass, some power of the length, and some power of the time, has direct
implication on the way it is measured.

For example, let us look again at the concept of force, which is mass to power 1,
length to power 1, and time to power−2. The idealway tomeasure gravitational force
should be to take an ideal test body, such as a very small mass, move it in the field
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of a (large) reference mass, and measure the resulting acceleration.6 But measuring
an acceleration implies to look at how the velocity changes: so, we should take our
test body moving at a given velocity, and measure how its velocity changes because
of the force. To have the body moving at a given velocity we have to fix a length,
and a time in which this length is traveled. Then, we would place this fixed length at
different positions in the field of the referencemass, andmeasure the time differences
for the traveled path length. In the end, we would have made one measurement of
mass, one measurement of length, and (at least) two measurements of time, just as
dictated by the physical dimensions of the quantity ‘force’.

In many experimental situations it may be more practical to work with different,
“less fundamental” quantities, which will however be always related to the funda-
mental mass, length and time. For example, in problems involving fluids, one may be
tempted to include the pressure in the definition of the observables. Since the pressure
is a force divided by a surface, force would be in this case the product [Pressure][L2].
This may be convenient for practical purposes, since it gives us a hint about how to
measure a pressure:measure the variation of the force on a given surface, with respect
to a reference value. If the force is given by the gravity, build a device in which the
pressure produces a movement of a mass (for example, a barometer with a column
of fluid); if the force is mechanical, build a device in which the pressure produces a
deformation of a material of known elasticity (for example, a curved membrane or
a straightened pipe, as in a strain gauge manometer); if the force is electromagnetic,
build a device in which the pressure induces a variation of electric or magnetic field
(for example, a condenser with moving walls, or a magnet with moving poles, as in
an aneroid barometer). However, since pressure is a derived quantity, in all cases its
measurement ultimately relies on a force measurement.

In problems involving heat exchanges it would be necessary to include the temper-
ature in the definition of the observables, since temperature (usually not considered
in the realm of pure mechanics) is another quantity which can only be defined by its
measurement (see the definition of absolute temperature and thermometer inChap. 2).
For example, the specific heat is defined as the amount of energy needed to increase
the temperature of a given mass by one degree, so its dimensions could be conve-
niently defined as [Energy][M−1][Θ−1], or more fundamentally as [L2][T−2][Θ−1],
since the energy is [M][L2][T−2] (for a mnemonic, always think of the definition
of kinetic energy). Electric current is another such fundamental quantity, having its
own dimension (indicated by [A], from the symbol of the ampere unit). Any other
electrical quantity is related to the current, combined with proper mass, For exam-
ple, the electric charge is [A][T], and is measured in coulomb units (1 C = 1 As)7;

6The term ‘ideal’ is necessary here, since the test mass must be so small compared to the large
source of gravitational field, to not perturb it, since both masses are reciprocally exerting attraction
force.
7It may appear that, since 1 coulomb is 1 A/s, charge and not current is the fundamental quantity.
However, the unit charge (the charge carried by one electron) is much more difficult to measure,
without knowing some other quantity. Therefore the current, which relies on a simple measurement
of force between two conducting wires, is taken as fundamental.

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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the electric potential is an energy per unit charge, that is power per unit current,
[M][L2][T−3][A−1], and is measured in volts (1 V = 1 J/C = 1 W/A).

At this point, it should be clear that we can manipulate algebraically the physical
dimensions of observables, just as we would for their numerical values. In fact, to
obtain the dimensions of the force, we simply multiplied the respective dimensions
of acceleration and mass. In this way, dimensions can be obtained for any physical
observable, and even for unknown observables. Wemay ask for example what would
be the most appropriate observable to describe a phenomenon, by looking at what
combinations of dimensions can be formed starting from the more fundamental
observables implied in that phenomenon.

The process of deducing the dimensions from the combination of different observ-
ables is called dimensional analysis, and it is a very powerful technique in all the
branches of science that rely on quantitative measurement.

10.7 Dimensional Analysis: Animals that Walk and Run

For a physicist, the difference between mass and weight is clear. If you let fall a
mass of 1kg near the Earth’s surface, its acceleration is 9.807 ms−2, and the mass
is subject to a force of 9.807 N. Gravity may be represented in various ways, from
very sophisticated (‘the curvature of the space-time’), to the physiological feeling
of a ‘down’ that we constantly perceive without much thinking about it. Likely,
its most practical definition is that gravity is the ratio between the weight and the
mass of an object.8 Most people, with the exception of astronauts, will experience a
very narrow variation of this ratio for their whole life. This explains why for many
biologists, the idea that gravity is in fact a variable is often not relevant, since in their
experiments they hardly have access to variations of g. As a conclusion, gravity is not
considered a useful variable in biology. Nevertheless, the actual value of g represents
a strong constraint on the shape and growth of most organisms (at least those who
experience gravitational forces from the range of a few mN and up). Furthermore, it
is acknowledged that the value of g may have suffered quite large variations during
the 4.5 × 109 years of the Earth’s history, with possibly interesting implications on
the evolution of living organisms.

Frequency is a physical concept to which engineers, rather than biologists, seem
to be mostly accustomed. Since the advent of radio waves, our world has been
progressively filled up by frequencies of all kinds, from the periodic scanning of old
cathode ray tubes in TV sets, to the warming frequency of our microwave ovens, to
the clock frequency that keeps electronic chips alive in our computers and portable

8There is actually a subtlety in this concept, calling on the equivalence between inertial and gravi-
tational mass. Inertial mass is the resistance to any applied force accelerating the body, for example
the recall force of pendulum (see Fig. 9.10 on p. 388), proportional to mi . Gravitational mass is a
measure of the attractive force exerted on the Earth by the same body, for the same pendulum pro-
portional to mg . Experimentally, it is found that the oscillation frequency of the pendulum depends
only on its length, and not on its mass, which is a direct proof of the identity of mi and mg .

http://dx.doi.org/10.1007/978-3-319-30647-6_9
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phones.However,many frequencies in nature influence livingbeings since the earliest
ages, the most obvious being the alternation of day and night, as well as the apparent
motion of the Sun, the Moon phases and the eclipses, which were measured by
Babylonian priests already four thousands years ago. At the individual scale, any
animal has an instinctive appreciation of the variable frequency of its heartbeat and
respiration, and knows well its upper and lower bounds. A whole branch of modern
biology, called chronobiology, is devoted to the study of the natural rhythms, their
possible origins, and their developmental and environmental consequences.

As we noted above, frequency has physical dimensions of the inverse of time,
[T−1], and it can in all respect be considered equivalent of the concept of time, as
far as measurement is concerned. Albert Einstein’s definition of time (“anything that
can be measured by a clock”) marks a question not often challenged in basic physics
courses, let alone biology ones: what is a clock? If reduced to the essential, any clock
is composed by some oscillating device (a ‘pendulum’), and a counting device that
allows to take note of the number of cycles of oscillation. And what is an oscillator,
then? It is any device that performs a cyclic process, with an intrinsic frequency that
is hopefully the most constant. The pendulum, again, has been considered for long
time as the epitome of frequency marker. However, cyclic processes may have the
most diverse origin (see the Figure in the preceding greybox), such as an enzymatic
reaction, in which one compound is transformed into another and back; protein
expression in a bacterium, in which proteins self-organise in fast periodic oscillations
to identify the membrane splitting region; or the synchronised firing patterns of brain
cells.

Despite a certain disaffection for the concept of frequency by the biologists, cyclic
phenomena abound in nature. Animal locomotion, birds in flight, fishes swimming,
give us plenty of examples of periodic motion, with many interesting lessons to take
home.9

As a start, let us examine the pendulum described in the greybox from the point of
view of dimensional analysis. By taking the most candid approach, let us imagine to
have just some basic scientific notions, without knowing anything about mathemat-
ical physics. By looking at the pendulum bound to the string and being constantly
attracted downwards, we might suspect that gravity must implied someway in its
behaviour. However, we could think it obvious that also the mass m of the ball, and
the length L of the string, could play a role. Therefore, we could invent a simple
equation for the frequency of the pendulum, aimed at identifying which ones among
these candidates are responsible for its actual value. In the ventures of dimensional
analysis, we would write something like:

ν ∝ mαgβLγ (10.38)

9The following parts of this Section are largely inspired by the outstanding works of McMahon &
Bonner, Pennycuick, and Vogel – see “Further reading” at the end of this chapter.
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Themethod of dimensional analysis allows us to determine the exponentsα,β, γ,
under certain conditions. The symbolic dimensional equation corresponding to Eq.
(10.38), obtained by replacing each physical quantity by its physical dimensions,
would be:

[T−1] = [M]α[LT−2]β[L]γ (10.39)

(note that, since the equation does not refer to numerical relationships, we dropped
the reference to a numerical proportionality and wrote directly ‘=’), or more strictly:

[M0][L0][T−1] = [M]α[LT−2]β[L]γ (10.40)

Now, by grouping the exponents of the similar variables on the left and on the
right, we get the following three relations:

Exponent of [M] : 0 = α

Exponent of [L] : 0 = β + γ

Exponent of [T] : −1 = −2β

The first relation shows that, contrarily to the candid expectation, mass is not at all
implicated in determining the frequency since its exponent of zero removes it from
Eq. (10.38). From the other two, we can deduce that β = 1/2, and that γ = −β.
Therefore, Eq. (10.38) becomes:

ν ∝
( g

L

)1/2
(10.41)

This is exactly the same result already found in the greybox, i.e., the frequency
is proportional to the square root of the ratio g/L . Or, in other words, the ratio
ν2L/g = const . Note that this last ratio is nondimensional, which means it does not
depend on the units we use for measuring length or time.

The kinematics of a simple pendulum (greybox on p. 466) has some impact on the
behaviour of walking animals. Indeed, we can imagine that the moving leg attached
to a body of mass M is akin to an inverted pendulum, as it swings about a fixed
point identified by the point of impact of the foot (see Fig. 10.11). As the animal
walks, the fixed point moves. However, if the walking frequency and the stride
length are both constant, we can simplify the problem by assuming that the fixed
point is simply translated, and the alternate oscillations over one or the other leg are
identical. Therefore, by taking all the mass concentrated in a point at the end of the
leg length L , the same relationship as for the ideal pendulum can be applied. With a
bit of a leap of faith, the same relationship could be applied also to quadrupeds, by
assuming that animals with four legs may be the sum of two animals with two legs,
and a doubled mass. This should not be entirely true in several respects, since there
exist detailed phase relations between the movement of each pair of legs (extremely
evident when observing the coordinated shifting motion of the many pairs of legs in
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Fig. 10.11 Schematic of the
walking animal as an
inverted pendulum of length
L , with all the animal body
mass M (including the legs’
mass) concentrated in the
blue oscillating sphere. The
fixed point, in fact, changes
at every step, but it can be
considered as stationary
(only translated) if the stride
length and walking
frequency are both constant

a millipede). However, as far as the walking frequency is concerned, this turns out
to be a good approximation.

By following the observations of C. J. Pennycuick, it is interesting to note that
the traditional approach followed by zoologists in a similar case would appear quite
cumbersome. Alexander and Jaynes, in a study of 1983 [13], collected hundreds of
field data for many species of animals, ranging from the size of a rat to that of a
horse. By plotting their data in several different ways and looking for correlations,
they consistently found, among other interesting results, that animals of largely dif-
ferent sized exhibit a striking similarity, in that their walking frequency is inversely
proportional to the square root of the leg size. A result that does not come as a surprise
to us, after the much simpler analysis above.

10.7.1 More Variables and The Buckingham π-Theorem

It should be noted that, being only an expression of dimensional relations among
quantities, themethod of dimensional analysis does not allow to determine the numer-
ical values of the coefficients linking one variable to others. These must be obtained
by experimental observations, or at least by informed theoretical models.

The attentive reader could further object that, quite arbitrarily, we chose a power-
law form for the dependence of one variable (walking frequency) on the fundamental
quantities (mass, length, time). Why we did not take, e.g., a logarithm, or a trigono-
metric function? There is a deep reason to this choice, with a related theorem and
detailed proofs [14, 15]. The simplest way to understand it, is that a physical variable
must not depend on the units in which it is measured. If we take the ratio between
the values of the same physical variable for two samples, for example the masses of
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a horse and a mouse, this number must not change if we use kilograms or pounds.
The relative theorem proves that such independence is possible, only if the defining
equation in terms of the fundamental quantities has the power-law form. Any other
function leads to a dependence on the particular measuring unit.

However, the chief objection to themethod as we described it, is that it allows only
three symbolic equations to be written down, one for each of the three fundamental
quantities. This means that, at most, we can get exponents for three independent
variables. But what if our problem depends on more variables than just three?

The previous harmonic development of the pendulumworks only if the amplitude
of oscillation is small compared to L . But for an animal walking, the inverted pendu-
lum cannot be simply harmonic. The stride length Ls is comparable to L , therefore
it must enter in the determination of the frequency. If we write ν ∝ mαgβLγLδ

s , we
now have four variables to determine with just three equations.

In this case, by performing the experiment, we will note that for each given ratio
Ls/L , the ratio ν2L/g is again constant. This means that we could drop one of
the variables, by replacing it with some (unknown) function of the nondimensional
parameter Π = Ls/L , as:

ν ∝ mαgβLγ f (Π) (10.42)

What this writing implies is that a log-log plot of the ratio ν2L/g versusΠ should
give a straight line, as it is found experimentally.

To make things yet more complicated, we may want to compare animals walking
or running at different speeds. What if in our problem of walking frequency, also the
velocity couldu be involved?Thiswould result in an equation likeν ∝ mαgβLγuδLε

s .
The corresponding dimensional equation would be:

[T−1] = [M]α[LT−2]β[L]γ[LT−1]δ[L]ε (10.43)

nowwith five exponents to be determined, from only three equations for mass, length
and time. The two missing equations must be constructed on purpose. We should
identify two equations that define two nondimensional variables, constructed by
combining some of the five variables involved.

We already know that the ratio Π1 = Ls/L between stride length and leg size
must be relevant. By looking again at Fig. 10.14, this ratio gives the angle θ of each
oscillation, and it seems reasonable that two animals walking at different speed could
be compared on the basis of equal swinging angles.

A second nondimensional variable may be more complicated to construct. How-
ever, let us think of the energies involved in this idealisation of a walk: there is the
kinetic energy of the body translating horizontally with velocity u, and the potential
energy of the gravitational field to keep the body at a height L above the ground.
Their ratio is obviously dimensionless, and may be another measure of compari-
son between animals of different weight and correspondingly different velocities.
Therefore, we may write Π2 = 1

2mu2/mgL , or Π2 = u2/gL , by forgetting about
numerical constants (which result in a relative shift of the values). This parameter is
called the Froude number, from the English engineer J. A. Froude (1818–1894):
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Fr = u2

gL
(10.44)

This way of reducing variables by grouping them into nondimensional num-
bers, goes under the name of “Buckingham’s π-theorem”, from the name of Edgar
Buckingham, and the Greek symbol π that he firstly used to define dimension-
less quantities. The theorem basically states that a physical problem described by
n independent variables q1, . . . qn , as f (q1, . . . qn) = 0, can be restated in terms
of a subset of k < n variables, plus n − k nondimensional parameters Πi , con-
structed from the qn as Πi = qa1

1 qa2
2 . . . qan

n , with the exponents ai being rational
numbers. The new problem has the same solution as the old one, and is restated
as F(q1, . . . qk;Π1, . . . Πn−k) = 0, the notation ‘;’ indicating that the following
symbols are fixed parameters, and no longer variables.

In the case at hand, Eq. (10.43) thus becomes:

[T−1] = [M]α[LT−2]β[L]γ · Π1 · Π2 (10.45)

and ν ∝ mαgβLγ f (Π1,Π2), with f a homogeneous dimensionless function of
the two parameters. This can be solved in the same way as above, giving the same
ν ∝ (g/L)1/2 result: the ratio ν2L/g is still a constant, but may change for any given
combination of Π1 and Π2. Well, it seems that we have added a lot of complication,
not to gain much in this game. But we now have the two dimensionless variables
that must mean something: the unknown function f (Π1,Π2) = Π

a1
1 Π

a2
2 means that

the behaviour of frequency is unchanged if we look at animals having a similar ratio
Π1/Π2. This is where we can learn something more than just the inverse square-
root dependence of frequency versus length. Again, the same fine scientist Robert
McNeill Alexander that we already quoted, was the first man to ask the momentous
question: what would have been the walking (or running) speed of dinosaurs?

He observed that we actually dispose of fossil bones to determine L , and tracks of
fossilised footprints to determine Ls . Firstly, he plotted a diagram ofΠ1 versusΠ2 for

Fig. 10.12 Plot of Π1 versus
(Π2)

1/2 for humans and
various animals, recorded at
different speeds. The square
root of Froude number is
plotted, to avoid clumping of
points at the lower speeds.
[From Ref. [16], repr. w.
permission of The
Mathematical Association.]
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a large variety of living animals of different sizes and habits, as shown in Fig. 10.12.
The fact that all the points for different animals, walking or running at different
speeds, are nicely clustered along one same straight line, allows to deduce that the
ratio of the two dimensionless parameters must indeed provide a representation of
the similarity of their walking characteristics. Moreover, it also allows to formulate
predictions for animals not beingmeasured, by using the same straight line as a guide.
For the case of dinosaurs, knowing Ls and L , Alexander deduced velocities ranging
from 1m/s for the Brontosaurus (m � 30 tons), to about 2m/s for the Tyrannosaurus
(m � 5 tons), up to 12m/s for the light, two legged dinosaurs. If we try to estimate
the speed of the scary Velociraptor from the movie “Jurassic Park”, by looking at
their footprints and bones found in Arizona that give Ls = 2.5 m and L = 0.75
m, we have Π1 = 3.3; once situated on the straight line in Fig. 10.12, this suggest
a Froude number Π2 � 5.8, from which a velocity of ∼7 m/s is obtained. This is
about 25 km/h, a running speed faster than a mile-runner olympic champion, and
definitely fast enough to catch the movie’s actors.

The dependence of the Froude number on the inverse of g also tells that changing
the conditions of gravity, the same animal may experience singular effects. When
looking at astronauts walking on the Moon, we see them moving in cumbersome,
‘floating’ steps, to the point that after some time they start making long jumps at
a funnily low speed. In fact, since the gravity acceleration on the Moon is equal to
1.62 m/s2, the Π2 corresponding to a same walking speed increases by a factor of
5.6: to stay on the straight line of Fig. 10.12, the Π1 must be about 3.4, i.e. for an
astronaut with a leg 1m long, the walking stride is 3.4 m. Clearly, they need to make
long jumps! The alternative to conserve a rather normal walking rhythm, would be
to reduce the speed to less than 1 m/s: that would look like a slow-motion film.

10.8 Flying Animals and Wingbeat Frequency

A difficulty when approaching biological problems from a physical point of view is
that a system may have apparent and deceivingly simple behaviour, however with an
underlying complex ensemble of variables, and an even more complex network of
mutual interrelations. For example, by looking at the wingbeat frequency of a bird,
we could try to solve the problem by analogy with the previous treatment of walking
animals, by taking into account just a few more variables which seem relevant in this
case, such as air density and bird flight aerodynamics, among others.

As we have seen already, the method of dimensional analysis is not going to
provide us a simple and unique answer, if we add too many variables to the problem.
We may however hope to find correlations and a partial solution by identifying also
in this case some combination of variables into dimensionless parameters. Such an
approach, as a first guess, seems preferable to the empirical method of measuring
speed and wingbeat frequencies for as many birds as possible, under many different
conditions, and searching for statistical correlations for example by multivariate
regression analysis.
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The wingbeat frequency, as the walking frequency, is eventually an important
information to determine the power supply from the muscles. Differently from the
walk, the weight of the flying animal should now be implied, since the bird must
support itself in the air during flight. The fact that air is much less dense than the
body has important implications, therefore the air density ρ should enter as well.
Other variables which could be considered are the wingspan, W , the wing surface,
S, and wing mass m, possibly combined into the moment of inertia I of the wing
about the shoulder joint. And maybe more.

The equation for the frequency in terms of these defining variables is therefore:

ν ∝ (mg)αW βSγI δρε (10.46)

and the equivalent symbolic equation for the dimensions:

[T−1] = [MLT−2]α[L]β[L2]γ[ML2]δ[ML−3]ε (10.47)

Let us again decompose this equation into the exponents for [M], [L] and [T] :

Exponent of [M] : 0 = α + δ + ε

Exponent of [L] : 0 = α + β + 2γ + 2δ − 3ε

Exponent of [T] : −1 = −2α

As above, the method gives us three equations, but for five unknown exponents.
The value α = 1/2 follows immediately from the fact that gravitational acceleration
is the only variable containing time, and its role in the frequency is unambiguous.
The other four are to satisfy the two equations:

−1/2 = δ + ε (10.48)

−1/2 = β + 2γ + 2δ − 3ε (10.49)

There is clearly a (doubly-)infinite number of combinations of exponents satisfy-
ing the two equations.

The search for dimensionless variables has to be based on some empirical evi-
dence. We follow here the work of C. J. Pennycuick, who carried out an extensive
series of measurements of marine birds’ flight characteristics, by recording for many
species their weight, wingspan, wing area, wingbeat frequency and flight speed [17].
By representing the recorded wingbeat frequencies as a function of grouped vari-
ables in linear plots, one each for frequency versus mass, frequency versus wingspan,
and frequency versus wing surface, best fits are obtained, respectively, for (α + δ),
(β+2δ) andγ (this is because inEq. (10.47)mass,wingspan andwing surface, appear
with those respective exponents). The approximate expression finally obtained by
Pennycuick was:

ν ∝ m1/3g1/2W−1S−1/4ρ−1/3 (10.50)
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Fig. 10.13 Left Double-logarithmic plot of observed wingbeat frequency versus the expression
on the right-hand side of Eq. (10.50) (experimental data from Ref. [17]). The slope of the straight
line is 1.04, with a correlation coefficient of 0.947. Right The same data plotted according to the
approximated analysis of Eq. (10.51). The slope is 0.95, with a worser correlation coefficient of
0.65

in which the moment of inertia is replaced by the simple approximation I =
mW 2. By plotting in a double-logarithmic graph the frequency versus the prod-
uct m1/3g1/2W−1S−1/4ρ−1/3, a nice clustering of the data for all birds studies was
obtained, shown in Fig. 10.13 (left), the values of air density and gravity being taken
as constants. The coefficient of linear regression is 0.947 for 32 experimental points
(bird species), which is a very good value, also given the uncertainties inherent to
the kind of measurements, done by cinematographic recording of the birds’ flight in
their natural environment.

But what now of all our nice arguments above, about reducing the number of vari-
ables by searching formeaningful nondimensional quantities?What do the exponents
in Eq. (10.50) mean? We could push a bit further the analysis of Pennycuick, trying
to simplify the Eq. (10.50) by some nondimensional auxiliary quantity. As in the
case of walking frequency, we may hope that this could teach us something more, if
not improve the already good numerical agreement of the solution.

The density appearing in the equation is the air density, which may experience
some little variation with the altitude in the range explored by those birds. To keep
itself flying (Archimede’s principle) the bird should at least displace a mass of air
equal to its own, therefore the ratio (m/ρ) gives this equivalent volume, Veq , to the
power 1/3 in the equation. This is a characteristic length, V 1/3

eq ∝ Leq , which (by
analogy with the stride length of the walking) could tentatively be identified as being
proportional to the ‘wavelength’ of the flight, i.e. the distance covered between two
consecutive flapping of the wings. This length can be written as Leq = u/ν for a
flying velocity u. In the equation (10.50) we have now the ratio Leq/W , which is the
equivalent ofΠ1 for a flying animal. On the other hand, the wing surface S appearing
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Fig. 10.14 A few of the beautiful marine birds studied by Pennycuick in his experiments. Above,
left Little egret (Egretta garzetta), average mass 300 g, wingspan 1m. Right aWilson’s storm petrel
(Oceanites oceanicus), average mass 40 g, wingspan 40 cm. Below, left Great blue heron (Ardea
herodias), average mass 1.9 kg, wingspan 1.75 m. Right Wandering albatross (Diomedea exulans),
mass up to 10 kg, its wingspan comprised between 2.5 and 3.5m is the largest of any living bird.
[Photos respectively © by Karthik Easvur, Nanda Ramesh, Kozar Luha, J. J. Harrison; all reprinted
under CC-BY-SA-3.0 licence, see (*) for terms.]

with power -1/4 is to a very good approximation linked to the square of the wing span
(the log-log plot ofWα vs. S gives α = 2 with 95% confidence). By rearranging the
equation, we find:

ν ∝ Leq

W

( g

W

)1/2
(10.51)

showing that the wingbeat frequency is again proportional to the square root of
gravity dividedby a characteristic animal size, howevermultiplied by a dimensionless
coefficient Π1.

If we now make a plot of the experimental frequencies versus the quantity on
the right of Eq. (10.51), the data displayed in Fig. 10.13 (right panel) are obtained.
Their alignment on the straight line is not bad, but clearly shows a worse correlation
(coefficient 0.65) compared to the more complete representation on the left of the
same Figure. This is likely due to our interpretation of the “characteristic length” Leq

as coinciding with the wavelength. This amounts to assuming that a flying bird (or
any flying object, for that matter) relies on Archimedean buoyancy to move in the air
(Fig. 10.14). In fact, the hydrostatic buoyancy force is only a minimal contribution to
the force required tomaintain a bodyfloating andmoving, in amediumwhich is about
1000 times less dense than water. As it was discussed in the previous Section, first
and foremost flight requires hydrodynamic lift, produced by the horizontal speed and
by a well-fitted shape of the wings. Evidently, the quantity with dimensions of length
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(m/ρ) in Eq. (10.50) cannot be simply identified with the wavelength. Because of the
large density difference between the body and the air, Leq should be quite larger, also
implying that, for a given size of the animal, wingbeat frequencies are proportionally
faster than walking frequencies.

A final consideration can be made by looking at another nondimensional parame-
ter, the Strouhal number:

St = νL

u
(10.52)

This is the ratio between length× frequency of the periodic motion, and the body
translational velocity, and is the appropriate coefficient characterising motion in a
fluid associated to an oscillatory actuator. With the few exceptions of the lightest
birds (mass below ∼100 g), and some of those having a very large wing loading (the
ratio of body mass over wing area), we find that the velocity of 85% of the birds
studied by Pennycuick varies roughly linearly with the wingbeat frequency, u ∝ ν,
albeit with a large dispersion. Since we already found above that ν ∝ L−1/2, it turns
out that the value of the Strouhal number should vary as St ∝ ν−2. This may be a
difficult prediction to test experimentally, since the values of wingbeat frequency are
spread over a small interval (between 2 and 5 Hz, see Fig. 10.13, with only a few
exceptions), however the data seem to broadly confirm this deduction.

10.8.1 From Birds to Insects

Scaling down sizes and masses from birds to insects, we enter in an entirely different
world. Measuring insect flying speed is more difficult than for birds, since their
typical values range about 0.5–3m/s and are comparable to normalwind speed,which
therefore affects the measurement of velocity much more than for birds. However,
we can begin by noting that the typical Reynolds number for insects and birds differ
by about three orders of magnitude (the product velocity × length for an insect
being in the range of 0.01 m2/s and Re � 1000, while being about 5 m2/s and
Re � 4 × 105 for a medium-sized bird). Secondly, the drag force expressed as
FD = 1

2ρu
2cD A, for a drag coefficient cD varying between 0.5 and 1, is many

thousands times smaller for insects than for birds. The Strouhal number for typical
insects frequencies (ν = 50−100 Hz) versus birds (ν = 5−10 Hz) is St � 0.5
versus 0.15, respectively, which, in turn, is not a major difference. Eventually, all
these indications are coherent with the observation of insects flappingwings at higher
frequency, and with a large inclination with respect to the body (the angle of attack is
about 30–40◦), and getting a considerably larger lift force from theirwings, compared
to birds. It is everyday’s experience that insects can take off and get to cruise speed
muchmore rapidly than birds, the latter being especially slower when having a larger
wingspan, adapted to long-distance and overseas flight.
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Anyway, even with ideal conditions of perfect scaling between bodymass, length,
wing size, area, flight speed, wingbeat frequency, the flight of insect and birds differs
chiefly in the way their wings aremoved in space.10 Insects typically beat air in a kind
of ‘∞’ shape, mostly working in a plane horizontal to the direction of flight; birds
move their wings in a more or less rounded–elliptical figure, working essentially in
the direction perpendicular to the motion. Moreover, the keratin material of insects’
wings is impenetrable to air, while the feathered bird wings are partly open to air
flow. Despite being much thinner, insects’ wings are considerably more rigid in
proportion to their weight, being not provided with inner joints and bones. Because
of the substantial rigidity of the “snapping” insect wings, we could include only the
surface S as an independent variable, and leave out the wingspan and moment of
inertia:

ν ∝ mαgβSγρδ (10.53)

Again we have four exponents to determine with three equations, therefore we
need one nondimensional parameters Π . By thinking again to a kind of “buoyancy”
ratio, we can construct a nondimensional parameter Π = ρS3/2/m. By subsituting
in the above equation, we get the analogous of (10.42) as:

ν ∝ mα+1gβSγ− 3
2 f

(
ρS3/2

m

)
(10.54)

and correspondingly:

[T−1] = [M]α+1[LT−2]β[L2]γ− 3
2 · Π (10.55)

By solving for the three exponents, it is easily found α = −1, β = 1/2 and
γ = 5/4, from which the frequency equation now looks like:

ν ∝ g1/2S−1/4 f

(
ρS3/2

m

)
= g1/2S−1/4Πa (10.56)

The last equivalence is dictated by the requirement of dimensional invariance,
which forces the choice of the function f (Π) to a power-law. Considering that g and
ρ are constants, the frequency equation reduces to ν ∝ maS−b, with b = 3a

2 + 1
4 .

However, this leaves us with still the problem of determining the exponent a. Like
in the previous case of bird’s flight, this is as far as dimensional analysis can take us:
to go beyond we need experimental information.

In a thorough study by Byrne, Buchmann and Spangler in 1988 [19], the body
mass, wingbeat frequency andwingspan data formore than 150 different insectswere
collected. If we report the observed frequency versus the product (maS−b) on a log-
log plot, as in Fig. 10.15, the best fit is obtained for a = 1/2, which corresponds to:

10A feature already identified about 150years ago by the elegant chrono-photographic experiments
of the French polymath Etienne-Jules Marey [18].
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ν ∝
√
m

S

(
g

ρ

)1/2

(10.57)

The body mass of the insects studies by Byrne et al. varies over several orders of
magnitude, from the 10−5−10−4 g of whiteflies and aphids, to the few g of sphingid
moths, some of the latter attaining 10–20 cm2 of wing surface. Actually, by looking
at the log-log plot where such data are grouped by body-mass intervals (left plot,
symbols of different colours), a consistent scatter canbeobservedbetween the various
groups, the very smallest and largest exhibiting big variation with respect to the
central slope.

Some further observation could bemade, by looking at the common (intraspecific)
characters of the species studies. By grouping the insects by their family (Fig. 10.15,
right), it is seen that more than 80% of the Apidae and all Saturnidae lie on or above
the average slope, while most Syrphidae, Libellulidae and Pieridae lie consistently
below. The latter are generally characterised by relatively gracile bodies (very much
elongated in the case of libellules and dragonflies) and quite larger wings, compared
to Apidae (honey bee, bumble bee, etc.), which have much smaller wings for a com-
pact body mass. This (quite roughly) means that our equation tends to overestimate
the wingbeat frequency for lighter, large-winged insects, and to underestimate it
for (relatively) heavier and smaller-winged insects. The case of Saturnidae is also
somewhat special, since these very big moths have some of the highest wing loading
(m/S) among all butterflies.

The relationship between wingbeat frequency and wing loading is of special sig-
nificance. According to Byrne et al., the finding that whiteflies had a higher wingbeat
frequency and a lower wing loading than aphids was unexpected, since is generally

Fig. 10.15 Left Double-logarithmic plot of observed wingbeat frequency versus the expression on
the right-hand side of Eq. (10.57). Coloured symbols correspond to different body-mass groups as
indicated (in grams). The slope of the straight line is 1.0, with a correlation coefficient of 0.65 for
160 points, and of 0.78 if the data relative to the lighter and heavier groups are excluded from the
fit. Right A subset of the same data, grouped according to some of the insect families
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argued that, for a same body mass, insects with smaller wings should beat more
rapidly than insects with larger wings. While the data collected generally confirm
such empirical hypothesis, failure of this relationship for very small insects could
be explained by the fact that some minute species solve the problem of staying aloft
in their own unique ways. For example, whiteflies [20] and fruit flies [21], employ
a “clap-and-fling” mechanism to generate extra lift: they clap their wings together
at the end of each upstroke, and fling them apart at the beginning of each down-
stroke. This mechanism is thought to increase the lift, and should reduce the need for
exceptionally high wingbeat frequencies. Such evolutionary mechanisms cannot be
simply explained on the basis of purely geometrical or dimensional arguments. By
flying at extremely small Reynolds numbers, such tiny insects demonstrate an empir-
ical knowledge of lift and drag that escapes our most advanced computer models of
aerodynamical structures.

10.9 Dimensional Analysis: Animals Who Live in Water

The number and type of variables to be included in a dimensional analysis is chiefly
guided by intuition, based on an adequate understanding of the underlying physical
processes, and it represents the most controversial point of the method. For animals
whose weight is supported by the Earth surface it was obvious to include gravity
among the most important variables. However, already when discussing the flying
animals there could be doubt, since the main force involved in keeping the animal
above the ground is lift, which as we ascertained is mostly generated by forward
thrust and not by buoyancy, therefore gravity could be but a secondary contribution.
Then, which the relevant variables should be, if we now focus on animals whose
weight is supported by water?

Animalswho swim inwater are immersed in amediumwith density comparable to
that of their own body, and viscosity about 100 times bigger, which immediately turn
their Reynolds number a factor of 10 bigger than for similar movements in air. This
makes for more turbulent fluid conditions around their bodies. On the other hand,
they all have the advantage that their weight is entirely supported by the medium,
thanks to Archimede’s buoyancy force (in this case of central importance). In these
conditions, the animal can move as if it had zero weight (and zero mass), and we can
suppose that the mg term should not play a role in determining the movement. On
the other hand, we saw in all examples above that the dimensions of g were always
crucial to determine the [T−1] dimension of the frequency. So, which variable could
determine in this case the frequency at which a fish beats its tail?

Water is much denser, more viscous, and has a higher thermal conductivity com-
pared to air. Therefore, a large variability in the muscle force required for swim-
ming should be expected. Differently from birds, most fishes are cold-blooded, or
ectotherm, animals, and environment temperature is one of the most important fac-
tors determining muscle performance in ectotherms. The sustained swimming speed
can be reduced by a factor of 2, and the single-fibre contraction velocity by up to



10.9 Dimensional Analysis: Animals Who Live in Water 467

a factor of 6, for a change in water temperature from 25 to 10 ◦C [22]. Different
types of muscles are involved, according to the different activity of the fish. Slow
swimming involves low-rapidity muscles, running on aerobic metabolism. Recall
that slow muscle fibres, with their high concentrations of myoglobin and mitochon-
dria, and well developed capillary supply, are the main fibre type in red muscle. As
swimming speed increases, faster contracting muscle fibres are needed. Maximum
performance is achieved during fast-start, e.g. for escaping or predating, and involves
the entire white muscle mass. White fibres are thicker, and contain a much density
of myofibrils with little mitochondria, and a more extensive sarcoplasmic reticulum
for fast Ca2+ processing. In general fast muscle is dependent on fewer physiological
factors, since it is largely independent on the circulation of blood and oxygen.

Slow fibres run typically parallel to the longitudinal axis of the body, while white
fibres are more intricate. This makes the contraction mechanics interesting. If we
think of a fish beating his tail at varying frequency, in water of variable density
(salinity) and temperature, the stress on its muscles is going to play an important
role as well. The stress tensor σ (see Appendix H) has dimensions of a force per
unit area, and its normal component σn is defined by the traction force exerted on
the transverse cross section of the muscle. Therefore, it must be a useful variable to
include in the dimensional analysis, and with dimensions of [M L−1T−2] it brings
a dependence on time, needed to establish the frequency. Other important variables
could be the water density ρ, and at least one characteristic length, for example the
fish size L . (Let’s keep for the moment temperature and viscosity out of the game.)
The equivalent of the Eq. (10.38) is now:

ν ∝ σαρβLγ (10.58)

and the equivalent of Eq. (10.39) becomes :

[T−1] = [ML−1T−2]α[ML−3]β[L]γ (10.59)

The unknown exponents are, in this case:

Exponent of [M] : 0 = α + β

Exponent of [L] : 0 = −α − 3β + γ

Exponent of [T] : − 1 = −2α

from which we obtain:

ν ∝ 1

L

(
σ

ρ

)1/2

(10.60)

Among the three variables on the right of Eq. (10.60), the only one readily acces-
sible to measurement is the fish characteristic length. If we take the water density as a
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Fig. 10.16 Measuring the tail beat frequency from the lateral acceleration. aDuring swimming, the
red and blue side of the bodymuscles alternate between compression and relaxation, i.e., contractile
and tensile stress, and the acceleration oscillates between a positive and a negative value. The
oscillation period is defined by the time intervals between two successive passages through zero
acceleration. The amplitude A is proportional to the size L , so that a scaling relation between
frequency and amplitude, or body size can be extracted. b Log-log plot of the normalised tail-beat
frequency versus normalised body length, for saithe (solid circles) and sturgeon (open triangles).
The best fit (solid line) is bracketed by theweighted or unweighted 95% confidence interval (dashed
or dotted lines). [Image (b) adapted from Ref. [24], repr. under CC-BY 3.0 licence, see (**) for
terms.]

constant, and make the additional hypothesis that fishes of similar size/mass roughly
experience the same values of muscular stress, since the microscopic structure of the
muscle fibres is the same, it should be verified that ν ∝ 1/L (note that both for walk-
ing and flying animals, the length dependence was instead L−1/2). Once more, this is
a very difficult prediction to check, since a fish can largely and suddenly change its
tail beat frequency for various reasons (e.g., the presence of a predator, or the sight of
moving food). Moreover, submarine observation in natural conditions is quite more
complicate than terrestrial or airborne observation.

Recent developments inminiaturised instrumentation are starting to offer unprece-
dented ways to study marine life in the wild. Force-measuring devices (miniature
accelerometers) can be attached to the body or tail of a fish of convenient size, so
as to disturb as little as possible its natural movements, and thus follow the force
developed at any instant, depth, temperature and so on [24]. As the famous French
oceanographer Jacques-Yves Cousteau once put it, The best way to observe a fish is
to become a fish. Once the instrument has recorded tail acceleration for a sufficient
time, the accelerometer is recovered, the data are extracted and analysed (Fig. 10.16).
By assuming that the muscles on each side of the body alternate between contrac-
tion and relaxation during each tail beat, the times at which the acceleration (stress)
changes sign, by passing through zero, define the stride period. For a time-sequence
of steady variation (approximately sinusoidal) of the acceleration, an average tail
beat frequency can be calculated.
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Which length should be taken for L can be also debated, however it has been
established that the amplitude A of the tail swing is generally proportional to body
length [23], so either one could be used in the dimensional analysis, with the same
meaning. Broel and Taggart [24] performed a series of such measurements on two
groups of fishes: pollocks (or saithe), with length ranging between 25 and 55cm
and mass 0.2–1.6 kg, swimming in an artificial pool of about 15m diameter; and
shortnose sturgeons, with length ranging between 0.56 and 1.2 m, swimming in a
wild environment. The results, plotted in a log-log diagram in Fig. 10.16b, show that
the tail beat frequency of both species, once scaled each by their average values,
follows the law ν = 0.94/L , the length exponent being equal to −1 in agreement
with the prediction (10.60), with a correlation coefficient of 0.73 on the ensemble of
the data.

The normalisation coefficient is different for each species, which says that the
stress-dependent prefactor in Eq. (10.60) is also different. Therefore, the hypothesis
that fishes of different species but of comparable same size exert the same stress
must be relaxed. The non-normalised results predict that the dominant frequency
for sturgeon is about twice that of saithe, when scaled at the same size, also, the
estimated swimming speed for saithe, is correspondingly lower in sturgeon of the
same size.

What if we wish to include the viscosity of water in the picture? Any object
moving in water experiences a viscous drag, therefore the role of viscosity should
be more relevant if we want to guess the swimming speed, u, rather than the stride
frequency. To see this, let us firstly imagine that the velocity depends only on the drag
force, D, water density, ρ, and fish size L . Since D has dimensions [M][L][T−2], the
simplest way to combine these four variables into a nondimensional relation is:

D ∝ ρu2L2 (10.61)

and since the expended power is just force × velocity, it is also P ∝ ρu3L2. But, as
it was found at the beginning of this chapter, muscle strength is proportional to the
muscle cross section, therefore the power itself is proportional to the body surface,
or P ∝ L2. Hence it would follow that u = const for any fish of any size, which is
obviously wrong.

Viscosity must be necessarily included in the description of swimming speed, for
example as:

u ∝ ραηβσγLδ (10.62)

We have four exponents for three equations, so we need to identify one nondimen-
sional parameter Π . In this case, the obvious choice is to build a Reynolds number
from our variables, Π = Re, since this parameter just represents the ratio between
viscous and inertial forces.

By proceeding in the same way as above, we write:

u2 ∝ ηβ+1σγLδ−1 f

(
ρuL

η

)
(10.63)
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and the equivalent of Eq. (10.55) becomes:

[LT−1]2 = [ML−1T−1]β+1[ML−1T−2]γ[L]δ−1 · Π (10.64)

Solving for the exponents, it is β = −3, γ = 2, δ = 3, from which:

u ∝
(

σL

η

)
Πa (10.65)

So, we eventually found that the swimming speed is: (i) proportional to themuscle
stress, i.e. to the applied force, which is an expected result in the presence of a linear
drag; (ii) inversely proportional to the viscosity, which is just a restatement of Stokes’
law (see Chap.5); (iii) proportional to the fish characteristic size L , coherently with
the observations [23]; and finally, (iv) it must vary as a function of some power a of
the Reynolds number.

As in the case of insect flight, we have no way of deducing the exponent a without
making recourse to experimental data, which as said before are much more difficult
to gather for animals living underwater. In principle, we should expect a complicate
dependence, because of the many factors affecting the fish hydrodynamics, such
as aspect ratio, shape and position of fins, rugosity of the skin surface, body mass
distribution, and so on. Moreover, Re between different fishes varies over more than
5 orders of magnitude, for a variation of speed by just a factor of 10 [25]. Therefore,
we can stop here and live happily with this result, which taught us even more than
we could expect.

Including also thewater temperature, and the heat exchange betweenwater and the
fish skin in the picture, is an even more daunting task. However, if you are interested
in temperature problems and dimensional analysis, go have a look at Problem 10.5
at the end of this chapter. And good luck!

Problems

10.1 Sarcomere stretching
The graph below [adapted from the work of D. E. Rassier, B. R. MacIntosh, W.
Herzog, Length dependence of active force production in skeletal muscle, J. Appl.
Physiol. 86, 1445–1457 (1999)] shows the stress developed by a muscle sarcomere
as a function of increasing relaxation and stretching, starting from a compression

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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condition. By considering the sarcomere structure in Fig. 10.1, could you explain

what happens at the points marked 1 to 5?

10.2 Summer training
An athlete overworks during a too hot summer day, and finds himself suddenly
blocked from painful muscle cramps.Which of the following is a reasonable hypoth-
esis to explain such cramps? 1. Muscle cells do not have enough ATP for normal
muscle relaxation. 2. Excessive sweating has affected the salt balance within the
muscles. 3. Prolonged contractions have temporarily interrupted blood flow to parts
of the muscle.

10.3 Weightlifters
Muscle contraction involves the relative displacement of many thousands actin and
myosin-II proteins. In lifting a weight of 5kg over 25 cm, how many myosin heads
have to work together? (Check out the difference between the “tight-coupling” and
“loose-coupling” model.)

10.4 Cyclic muscle work
The cyclic power delivered by an insect muscle, with length L = 1.5 cm and cross
section S = 0.18 cm2, is measured with the help of a thermostatted dynamometer. It
is found that the power varies periodically as a function of the stimulating frequency
with the empirical law P = −270+ 10ν − 0.07ν2 (W/kg), in the frequency interval
ν = 50− 100 Hz. Find: (a) the law of variation of the work delivered by the muscle
as a function of the frequency; (b) the frequencies corresponding to the maxima of P
and W respectively; (c) the law for the force developed by the muscle at an average
elongation ΔL = 10−3 m.

10.5 Dimensional analysis of sunday’s oven roast
To cook a pork roast, the chunk of meat with all its condiments is put in a preheated
oven at 180 ◦C. According to the best cooking recipes, the roast is well done when
the temperature at the centre is about 70 ◦C. Instead of taking a meat thermometer
to check every now and then the temperature, you propose a dimensional analysis of
the problem, which will give you the exact time when to open the oven.

10.6 Dimensional analysis of blood pressure
By way of dimensional analysis, obtain an equation for the pressure drop, Δp/ΔL ,
for blood flowing in a segment of artery of length ΔL . Consider as variables the
blood viscosity η, a parameter ε (in m) measuring the rugosity of the inner arterial
surface (ε = 0 for a flat surface), the diameter of the vase D, and the average blood
velocity v.
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Chapter 11
Shapes of the Living

Abstract The relationship between form and function in living systems is treated,
starting from the difference between volume and surface forces, and their different
scaling with size. Surface tension appears as the main player in this context, con-
trasting the bulk effects of gravity. Chemical gradients and synchronised oscillators
are the two other protagonists. The apparent regularities of many natural patterns
and forms provide the excuse to describe a range of naturally occurring shapes, also
allowing to make interesting links with palaeontology and fossile remains of ancient
life on Earth. This chapter owes a lot to the original works of D’Arcy Wentworth
Thompson, the celebrated pioneer of mathematical biology, especially in the parts
dealing with the mathematics of geometrical transformations, and their relationship
with the evolution of species.

11.1 Surface Forces and Volume Forces

When observing Nature, we are often surprised by the recurrence of seemingly very
regular shapes and patterns: spirals, spheres, icosahedra, hexagons... It is just obvious
to ask which are the forces at play to obtain such shapes, or why, for example, an
hexagonal pattern appears in such distant domains as the structure of the wings of
an insect, a snowflake, or the carapace of a turtle.

Animals, trees, tissues, cells, every element of Nature has both a shape and a
specific function. What is the relationship between these two terms? Is the shape
depending on the function, being only determined by the external forces? For exam-
ple, the shape of the muscles of animals living in the depth of the ocean or on the
Earth’s surface, is determined by Archimede’s pull or, respectively, gravity, with-
out any reference to the function of that muscle? Or, rather, is the function which
wins over the forces, and choses an elongated or a flat shape for some muscles, irre-
spectively of the gravity and weight of the animal? Could a muscle take whatever
shape, e.g. cylindrical or flat, once the appropriate size, fibre density, rapidity etc.
are assured, without impacting on its performances?

© Springer International Publishing Switzerland 2016
F. Cleri, The Physics of Living Systems, Undergraduate Lecture
Notes in Physics, DOI 10.1007/978-3-319-30647-6_11
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In many flowers, the number of petals is one of the numbers that occur in the
famous Fibonacci sequence, 3, 5, 8, 13, 21, 34, 55, 89... For instance, lilies have three
petals, buttercups have five, many delphiniums have eight, marigolds have thirteen,
asters have twenty-one, and most daisies have thirty-four, fifty-five, or eighty-nine.
(Many flowers have indeed six petals, but this would fit under a different, possible
explanation!) The view of the biologist would be that the genes in the flower cells
specify all such information. However, it does not follow automatically that genes
determine everything, directly or indirectly. For example, genes tell plants they have
to make some light-harvesting compound, which we call chlorophyll, but they do
not specify what colour the chlorophyll has to be. Chlorophyll is green, most likely
because the solar light spectrum maximum intensity is about the green light wave-
length, and rejecting the green component is a form of “defence” from too intense
light; so, it is more likely that the plant genes adapted to the green colour and not
vice versa, also when noting that none of the many forms of chlorophyll (including
those who give off more red or orange colours) do not absorb much in the green
region. Therefore, it can be said that some features of living systems are genetic in
origin, and some are a consequence of the boundaries set by physics and chemistry,
and mechanical, electrical, chemical forces. Genetic driving forces have enormous
flexibility, but physics, chemistry, and dynamics produce apparent mathematical reg-
ularities. After all, this is why we look for mathematical models of natural shapes
and patterns.

The celebrated book by W. D’Arcy Thompson, On Growth and Form, already
cited several times in these pages, was the first to expose with depth and clarity
the idea that the shapes of natural objects, and notably the living ones, appear to be
mainly decided by criteria of equilibriumbetween volume forces and surface forces.
Volume forces act on the whole body of the object, for example gravity. On the other
hand, surface forces are limited to the free surfaces of the object, for example water
pressure on the skin. In this chapter, however, two other major actors of the shaping
and patterning of natural objects will also be introduced: the non-homogeneous
distribution of chemical species and forces, or gradients; and the need for spatial
and temporal synchronisation, by which different agents (‘oscillators’) can operate
in a coordinated fashion, either at the molecular, cellular or whole-organism level.

The origin of surface forces is entirely molecular. If we consider a liquid body,
for simplicity made of only one species of molecules, the requirement of forming
a homogeneous phase makes the molecules to attract each other via non-specific
forces. In the liquid bulk (Fig. 11.1), a molecule is attracted on every side by its
neighbours: the resulting force on each molecule at equilibrium is zero. On the other
hand, in empty space a molecule does not feel any attraction. Therefore, molecules
at the liquid/void border feel an attractive force on the liquid side, but nothing on the
void side (considering air instead of voidwould not change the qualitative picture, see
below). For these molecules at the surface, the resulting force is non-zero, directed
towards the bulk of the liquid. This force tends to curve the free surface, to minimise
the amount of surface exposed to the void.

For the case of a liquid/void interface, it is entirely the effect of internal forces
inside the liquid which brings the surface to deform like an elastic membrane (purple
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Fig. 11.1 Molecular origin of the surface forces. Those molecules (purple layer) which have
unsaturated interactions with the bulk (blue) experience a reduced attraction, therefore a ‘missing’
binding energy. The tendency of the body is to reduce the number of such molecules at the smallest,
therefore any surface will assume the shape that corresponds to the smallest area, compatibly with
the boundary conditions

shaded area in Fig. 11.1). If there is another gas bounding the free surface (air, for
example) the phenomenon is completely similar. The liquid will be submitted to the
additional pressure from the gas, and the resulting force on the surface molecules
will be the sum of the attraction from the bulk liquid, plus the interaction (attractive
or, more likely, repulsive) with the gas molecules, plus the gravity. Since the gas is
much less dense than the liquid (typically by a factor 1/1000), the interaction with
the gas can be practically neglected.1 The final shape of the surface will thus result
from the equilibrium among gas pressure, bulk liquid attraction, and gravity.

At the point of contact between the three different media (solid container, liquid,
surrounding gas), the interfacial energies between each couple (ΣSL for solid/liquid,
ΣSG for solid/gas, ΣLG for liquid/gas, with units of [Energy] [L−2]) must satisfy a
relationship, which ultimately determines the value of the contact angle θ :

0 = ΣSG − ΣSL − ΣLG cos θ (11.1)

This is the Young-Dupré equation, whose practical meaning is sketched in
Fig. 11.2. It was first established by T. Young (right guess, he was the same guy
of the Young’s modulus!), and extended by the French physicists Athanase and Paul
Dupré in 1866, to take into account thermodynamic effects. Values of the contact
angle smaller than 90◦ correspond to a good “wettability” of the surface, which is
therefore termed hydrophylic (since in practical cases regarding living systems the
liquid is always water, this term is retained even for contact with different types
of liquids). For larger angles, and up to the limiting value of θ = 120◦, the liquid
tries to lose contact with the surface, in order to maximise the overall energy. The

1A notable exception in this respect is liquid Helium, whose intermolecular interaction is weaker
than any other molecule-molecule force. Because of this peculiarity He, which is a liquid at temper-
atures T � 2 K, gives rise to the famous “fountain effect”: since the interaction of the He molecules
with the wall is stronger than that between the molecules themselves, the fluid can climb the walls
of any open container, and spill out following the direction of gravity.
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Fig. 11.2 Left Schematic of the interface energies acting on the triple-phase contact point, and the
resulting contact angle. Right A droplet of water on the surface of a lotus leaf, showing the case of
superhydrophobicity with a contact angle θ � 150◦

free surface takes therefore a more and more spheroidal shape, being now termed
hydrophobic. For even larger values of θ the surface is defined “super-hydrophobic”,
a phenomenon which is observed sometimes in nature (see again Fig. 11.2), and is
today exploited in some technological applications.

The contrast between volume and surface forces is exemplified by their depen-
dence on size. For an object of size L , the former is proportional to L3 while the
latter to L2. As the English physiologist J.S.B. Haldane puts it, in his celebrated essay
On being of the right size (1926, published in [1])), gravity is detrimental to larger
animals as much as surface tension is for smaller animals. If we compare animals of
different sizes, let us say L , 10L or 100L (for example, a spider, a mice and a dog) all
three falling from some height, gravity will increase as L3 while the air resistance,
proportional to the surface, will increase as L2. As a result, the spider will gently
float in the air; the mice will fall straight on the ground and, after a little shock, will
run away; while the dog will crash deadly. On the other hand, the same dog getting
out of a river would carry a film of water, tightly adhering to its skin by surface
tension, of thickness about 0.5mm and a unconspicuous weight of about 1 kg; the
mice getting out of water would instead have to carry a weight comparable with that
of its own body; and the insect (if wetted) would be completely lost and never get
out of water.

11.2 Capillarity, Growing Trees and Water-Walkers

The same equilibrium condition above among three different media (solid, liquid,
gas) is at the basis of the phenomena of capillarity. This is defined as the capability
of a liquid to flow within a narrow channel without any help from, and often against,
external forces.

It is our common experience that, in order to make a fluid flow, it is always
necessary an external force: gravity sets in motion rivers, torrents, and snow from
the mountain sides; a pressure is necessary to push water through a garden sprinkler;
heart pushes blood into our arteries. However, there are situations in which a fluid
enclosed in a narrow space can spontaneously climb up against gravity. Think ofwhat
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happens if you gently touch the surface of water with a piece of paper held vertically:
the water invades the paper up to some height, well above its surface level, thanks to
the capillary flow within the microscopic channels of the paper (which is a porous
network of channels formed by the mixture of glue and cellulose).

A fluid in a narrow channel may take a positive or negative curvature at its free
surface, called meniscus (from the ancient Greek m»niscoj, the name indicating
the rising Moon). To calculate the height h reached by the meniscus, let us take the
example of a narrow channel of radius R (usually called a capillary, the same name
given to the terminal section of blood vases). We must compare the gravity acting
on the mass of the fluid:

Fg = ρgV = ρg(π R2h) (11.2)

and the adhesion forces at the triple interface, projected along the vertical:

Fc = 2πΣLG R sin θ (11.3)

(the SL and SG tensions have zero vertical component). By equating the two forces,
the equilibrium height is:

h = 2ΣLG sin θ

ρgR
� 1.48 × 10−5/R (11.4)

(the last approximate equality corresponding to the numerical values of the air-water
interface, with R expressed inmeters), giving for example h = 0.7mm for a diameter
2R = 8cm, and h = 70 mm for a diameter 2R = 0.8 mm. The attentive reader will
have already noticed that Eq. (11.4) is yet another form of the Laplace’s equation of
Chap.5, ΔP = ρgh = 2Σ/R, for the ideal case of a perfectly spherical meniscus
whose tangent is perpendicular to the surface, and sin θ = 1.

This effect allows some insects to walk on the water without sinking, since for
them the repulsion between solid (the insect’s legs) and liquid is stronger than the
gravity acting on the (very small) mass of the insect. Capillarity also explains how
trees can feed themselves by pushing sap up to the highest leaves, the formation of
soap bubbles, and a variety of other physical phenomena (see “Further reading” at
the end of this chapter).

11.2.1 Insects Who Can Walk on the Water

Many different insects have the ability towalk on the surface of still water. By looking
at the typical shape of the insect (see Fig. 11.3), it appears obvious that the very
elongated and thin legs must be the key for this spectacular property, together with
an overall lightweight of the body.The rigid keratin structure of the legsmakes a triple
interface with the water surface and the surrounding air. If we look carefully at the
surface of the water around the legs, it will be apparent that it is sharply curved, under

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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Fig. 11.3 a Awater strider standing on water without sinking. b Schematic of a cylindrical section
of the insect’s leg pushing on the water surface, making a contact angle θ ; the approximate extent
of the capillarity length is indicated by lc. c Diagram of the function η(x) describing the curved
water surface (upside down with respect to the middle figure) as a function of the distance x from
the leg. [Photo a from www.en.wikipedia.org/wiki/Gerridae, repr. under CC-BY-SA 3.0 license,
see (*) for terms.]

the light weight of the insect body. Compared to the previously described situations,
this is a static problem in which no fluid is flowing. However, the equilibrium of
the forces at the triple interface can be studied with the very same equations of the
capillarity.

The shape of the meniscus formed under the weight of the insect at the air/water
interface, can be found by writing the Laplace equation in geometric form:

P = ρgz = Σ

(
2

R

)
= Σ(∇ · n) (11.5)

Here the local curvature is defined by the gradient of the unit vector n̂, perpen-
dicular to the local tangent plane to the curved surface (see the greybox on p. 351).

By looking at the graph in Fig. 11.3c, the z-coordinatemeasures the depth of curva-
ture with respect to the flat water surface, and the x-coordinate measures the parallel
distance on the water surface from the insect leg. Let us introduce an (unknown)
function defining the height profile of the water/air separation surface, as z = η(x),
and from this we can build a function f (x, z) = z − η(x) which is always equal to
0 at the surface. The unit vector normal to the surface can therefore be calculated as:

n̂ = ∇ f

|∇ f | = −ηx x̂ + ẑ

(1 + η2
x )

1/2
(11.6)

and its gradient:

∇ · n̂ = ηxx

(1 + η2
x )

3/2
� ηxx (11.7)

www.en.wikipedia.org/wiki/Gerridae
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the subscripts x and xx indicating the first and second derivative with respect to x
(note that in this geometry the y component is null). The approximation in the last
equation holds for a weak meniscus, ηx � 1.

The equation for the pressure then becomes P = ρgη = Σηxx , to be solved with
the boundary conditions ηxx (∞) = 0 (meaning null curvature at infinite distance),
and ηx (0) = cot θ (condition of contact at the triple interface). The solution for the
unknown shape of the profile is:

η(x) = lc cot θe−x/ lc (11.8)

The characteristic length lc = (Σ/ρg)1/2 is called the capillarity length: it rep-
resents the distance over which the water meniscus decreases to zero, with an expo-
nential decay.

A long and thin object like the insect leg (Fig. 11.3b) resting on the water surface,
will suffer the buoyant force Fb, proportional to the displacedwater volume according
to Archimede’s law; this will add up to the curvature force Fc produced by the curved
meniscus. The ratio between the two forces is simply proportional to the ratio of the
two volumes, whose characteristic lengths are respectively Vb ∝ R (for a cylindrical
object of radius R) and Vc ∝ lc. As a consequence, the ratio of forces must be
Fb/Fc ∝ R/ lc. A very small object, with R/ lc � 1, will be principally supported
by the curvature force of the water surface, rather than by its floating: the insect will
not sink, but rather will stay on the surface. The practical criterion is embodied in
the dimensionless number:

Fb

Fc
� Mg

2Σ L sin θ
< 1 (11.9)

(M is the total mass of the insect, while L is the total length of its legs contacting
water), which has to be less than 1 in order for the object to float. This is a practical
variant of the Bond number, Bo = (ρo − ρm)L2g/Σ , which more correctly under-
scores the mass as being in fact the difference between the actual mass of the object
“o”, and that of the volume of fluid medium “m” displaced.

11.2.2 The Branching of Trees

Equation (11.4), which gives the practical height of a meniscus, is also at the basis
of the phenomenon of upwards capillary flow of water (in fact, a mixture of water an
nutrients called sap) in theminuscule channels of the plant stems, or the trunk of trees,
called xylems. Xylem vessels consist of dead cells; they have a thick, strengthened
cellulose cell wall with a hollow lumen. The typical diameters of such capillaries
is of the order of 20–30 µm for any plants, or R = 10–15 µm. If we calculate the
maximum height reachable with the capillary pressure from such sizes, we obtain
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Fig. 11.4 aMaximum-density hexagonal packing in two dimensions, for circles of radius r inside
a hexagon of side 2r ; the diagonals of the hexagon are equal to 4r . a Sketches 9 and 10 from Table
XIX of Leonardo Da Vinci’s Trattato Della Pittura [2], describing his intuition about trees growing
by conserving the cross section at each successive branching. [Image b public domain from http://
archive.org/.]

h � 10−15 m. This value can be enough for a plant, but it does not explain how we
can have trees growing up to tens of meters high.

A possible solution is branching. We can give an extremely simplified theoretical
description of a tree, made of single channels of diameter 2R and height h1, parallel
to each other. We want to calculate what is the effect of branching the tree at its
extremity, each single channel branching into N smaller channels of diameter 2r for
a height h2, so that the maximum height could be H = h1 + h2.

To be a bit more precise, we can also consider the best packing density η, of
a parallel bundle of cylindrical channels of diameter 2r : it is easily shown (left of
Fig. 11.4) that the densest packing in plane corresponds to an hexagonal tiling, with
side equal to just 2r . Since each hexagon encloses three channels, the ratio of the
useful surface to the total is η = π/(2

√
3) = 0.907. This is the maximum packing

density in two dimensions.
To conserve the same quantity of fluid transported by capillarity in the two sections

of our “tree”, it is enough to impose the conservation of the transverse cross section,
Nπr2 = ηπ R2, an idea that was first exposed by Leonardo (right of Fig. 11.4).2

Hence, the capillarity force acting in the lower trunk plus the N branches of the
thinner xylems can be calculated as:

Fc,N = 2πΣ(R + Nr) cos θ � 2πΣ(R + Nr) =

= 2π RΣ
[
1 + (ηN )1/2

] = Fc,1
[
1 + (ηN )1/2

]
(11.10)

Note that this force does not depend on the height, and it increases with the square
root of N . On the other hand, the total gravity force on the fluid is:

2In his Treatise on Painting [2], collected and published posthumously, Part VI, 813: Ogni bifor-
cazione di rami insieme giunta ricompone la grossezza del ramo che con essa si congiunge [...]
e questo nasce perché l’umore del più grosso si divide secondo i rami. [Each bifurcation joined
together gives the same thickness of the branch from which it stems (...) and this because the fluid
of the thicker branch is divided according to the thinner ones.]

http://archive.org/
http://archive.org/
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Fg,N = ρg(h1π R2 + Nh2πr2) = Fg,1

[
1 + η

(
h2
h1

)]
(11.11)

which evidently does not depend on N , but on h2. It so turns out that, in order to
maximise the height, such a weird shaped tree should have N → ∞, but to minimise
the gravity, h2 → 0. The practical considerations that we can derive from such an
overly simplified model of capillary feeding, is that a tree should typically develop a
large number of branches N in its upper part, and no branches in its lower part; and
that the branched part should be much less important in size than the trunk, h2 � h1.
In fact, this is just what it is observed in nature for a large variety of plants and trees. A
tree structure is the outcome of a combination of hydraulics and structural constraints.
This hydrological explanation seems to suggests that trees have their characteristic
shape because of efficiently transporting sap, while structural explanations rather
focus on the trees’ ability to withstand stresses (see the discussion about stresses
acting in bending of trees in the wind, in Chap.9).

It should, however, be noted that the capillarity mechanism could operate only
until mechanical equilibrium is attained, after which the transport of sap towards the
top of the tree would stop. It is the evaporation of water from the leaves surface,
combined with the difference in saline concentrations in the soil at the level of the
roots,which provide an effective pressure (depression fromevaporation, plus osmotic
pressure from salt concentrations). This pressure constantly keeps the system out of
equilibrium, thereby permitting the continuous flux of sap and nutrients from the
bottom to the top.3

It is instructive to calculate the pressure difference that a tree must overcome,
to push the fluid up to a certain height by such a capillarity mechanism. Just by
hydraulic arguments, Stevin’s law gives P = ρgh. Therefore, the pressure to a height
of 30m is already∼ 3 × 105 Pa (or about 3 atm). This pressure, in fact exerted by the
surface tension of the capillary, is negative, as it pushes the water upwards against the
gravity.4 We encountered already in Chap.5 the relationship among pressure drop
per unit length, pipe radius, and flow speed, i.e. the Hagen-Poiseuille equation:

ΔP

L
= 4ηvmax

r2
(11.12)

From such equation, it would seem that even higher values of pressure drop could
be overcome, just by making the capillary thinner and thinner. However, another
physiological limit comes from the fluid flow speed. As we remember from Chap.4,
the velocity profile of a fluid pushed through a channel is such that v = 0 at the

3The first detailed study of the movement of water within plants was provided by Stephen Hales in
his Vegetable Staticks (London, 1727). Not only he described with great accuracy the transpiration
stream of plants, by performing quite accurate experiments of collection of evaporated water from
leaves, but also he sought to interpret his observations in light of the fluid mechanics knowledge of
his time: The sap vessels are so curiously adapted by their exceeding fineness, to raise the sap to
great heights, in a reciprocal proportion to their very minute diameters.
4A negative pressure must not be a surprising concept, since the fluid has a cohesive force, both
internally and in contact with the walls, to spend in supporting the stress.

http://dx.doi.org/10.1007/978-3-319-30647-6_9
http://dx.doi.org/10.1007/978-3-319-30647-6_5
http://dx.doi.org/10.1007/978-3-319-30647-6_4
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wall boundary, and v = vmax ∝ r2 at the centre of the stream. Evidently, making the
capillary too thin implies a quickly decreasing flow speed. For a gravity pressure
drop of ρg = 9 810 Pa/m, a capillary of 100 µm permits a flow speed vmax � 2.5
cm/s; reducing the size to 30 µm drops the flow speed to a drastic 2 mm/s, and 5
µm to a mere 0.06 mm/s. Therefore, it can be concluded that a tree must always
balance the requirement of pushing its nutrients to the required height, however in a
reasonable time.

11.3 Curved Surfaces and Minimal Surfaces

Under conditions of mechanical equilibrium among all the forces acting on the vol-
ume and surface of an object, this will take a shape of its free boundary allowing
to minimise the forces acting on the surface. This is because the volume forces,
being related to the amount of mass, are independent on the shape of the object.
On the contrary, the surface can largely change for a fixed volume, and so can the
surface forces. If we take that surface forces depend only on the microscopic para-
meters (physical and chemical) of the material constituting the body, the equilibrium
requirement therefore corresponds to minimising the extent of free surface. In other
words, the object will adopt the shape which permits it to settle to the smallest free
surface for a given volume. This will be called the minimal surface.

In void, any isolated fluid tends to a spherical shape since the sphere has the
smallest possible surface for a given volume. The surface/volume ratio for some
tridimensional solids is:

S

V
= 4π R2

4
3π R3

= 3

R
for the sphere of radius R

S

V
= 6L2

L3 = 6

L
cube of side L

S

V
= 2(π R2) + 2π RH

π R2H
= 2

(
1

R
+ 1

H

)
cylinder of radius R and length H = R/c

From such simple expressions, it is seen that for the same volume V , the sphere
has a surface (36π)1/3/6 � 0.81 of that of the cube of side L (L3 = 4π R3/3); for
the cylinder, the surface is always larger that that of the sphere for any aspect ratio
c, by a factor (4c/3)2/3(1 + 1

c ). Therefore, until the material elasticity properties
allows continued deformation, the free floating object will choose the sphere as the
minimal-surface solid shape.
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Deviations from the spherical shape can occur when the system is not isolated
in void: for example a water drop in contact with a glass surface becomes hemi-
spherical, because the intermolecular forces between water and glass come into play
(equilibrium among the interfaces glass-water, water-air, air-glass). In such cases,
we realise that the boundary conditions give rise to supplementary constraints, going
beyond the basic requirement of minimising the free surface.

If we take for example a free thin film of a mix of water and soap, this too will
tend to make a spherical shape enclosing an air volume at ambient pressure, the
familiar soap bubble. The way soap bubbles are generated, by a tool in the shape
of a solid ring, made the subject of a series of outstanding, yet simple experiments
by the Belgian physicist Jean-François Plateau, around 1870 (see Figs. (11.10) and
(11.11)). If we consider the thin film suspended at the rim of a metal ring of radius
R, as in the following Fig. 11.5, this takes initially the shape of a flat plane delimited
by the ring perimeter; subsequently, the blowing of air on one side sets up a pressure
difference, which starts curving the surface of the film; when the pressure difference
goes beyond some limiting value (determined by the relative values of the surface
tensions Σi and R), the film is detached from the ring, and folds back into a sphere.

With the case of the soap bubbles wemoved from the simple, homogeneous fluids,
studied inside an ideal container (such as the perfect gas), to a realm ofmore complex
systems. Here, a fluid is contained by a wall, which is endowed with some material
characteristic different from the material of the surrounding medium (in the example
above, the metal ring, and the air). More specifically, the soap bubble gives us the
example of a physical membrane that is supposed to contain a fluid medium. In order
to perform this job, the membrane must have a higher mechanical strength than the
fluid, which exerts a pressure from the inside. The membrane can be deformable
up to a maximum failures stress, σ f (see Appendix H), determined by the materials
constituting themembrane, be it themetal body of a car, or a plastic balloon, or a soap
bubble, or the membrane of a cell composed by a double layer of lipid molecules.

Fig. 11.5 Action of pressure on a thin film of soap-water held by a ring of radius R. Left No extra
pressure applied, the film is in equilibrium. Center A slight pressure on one side, contrasted by the
surface tension ΣSL at the film-ring contact, bows the surface into a part of a spheroid. Right if the
pressure is beyond the force exerted by the surface tension, the film can detach completely from
the ring and fold back into its minimal surface shape, a sphere



486 11 Shapes of the Living

In fact, the analogy between the soap bubble and the cell membrane is especially
appropriate, since the soap bubble is itself a double layer of lipid molecules, however
enclosing a thin film of water. (This is the reason for the phenomena of iridescence
observed when light crosses a soap bubble: the water contained between the double
thin layer of soapmolecules behaves as aNewtonian prism, the solar light rebounding
several times between the walls before exiting decomposed into its wavelengths.)

The surface tension Σ is a material property of the separation surface. The same
symbol of the interfacial energy is adopted, to underscore that the surface tension is
nothing else but the interfacial energy between two fluids.5 The relationship between
Σ , the pressure difference ΔPi on the two sides, and the curvatures of the surface,
identified by the principal curvature radii Ri , is given by the following expression,
again the Laplace equation in a more general form:

ΔP = P1 − P2 = Σ

(
1

R1
+ 1

R2

)
(11.13)

We already saw a simplified form of this equation in Chap.5, Σ = P R/2, where
it was established a relationship between surface tension and osmotic pressure. In
all these equations, the pressure has an algebraic sign as a function of the orientation
of the force vector with respect to the vector n. (The principal curvatures defined by
the min and max curvature radii in Fig. 11.6 carry a ± sign as well, according to the
convention adopted for the pressure, determined by the fact that the radius vector R
can be parallel or antiparallel to n.)

Equation (11.13) is at the basis of an extraordinary variety of natural shapes
and patterns, ranging from the wings of some insects, to the curve of birds’ eggs,
networks of soap froths, bees’ honeycombs, and so on (Fig. 11.7). It is the expression
of an equilibrium condition: the ratio between the left-hand side, the resistance to the
compression of the fluid mass enclosed (ΔP), and the right-hand side, the product of
surface tension times the curvature, (Σ/R1 + Σ/R2), must be constant. The implied
condition is that the surface of separation can be identified as a homogeneous pseudo-
material, for which Σ is a constant parameter of the fluid, on the same level as its
density or thermal capacity. This equilibrium condition leads to the result:

1

R1
+ 1

R2
= const (11.14)

on the whole surface. This result is equivalent to saying that a minimal surface is
characterised by a constant average curvature.

5The interfacial energy is amore general concept, applicable towhatever kind ofmaterial composing
the two sides of the interface. It can be anisotropic, if the materials on either side have different
values of elastic moduli along different directions. Therefore, the interface energy is a tensor, with
indices exposing the eventual anisotropy of the adjoining surfaces. A fluid is by definition isotropic,
therefore its elastic moduli are independent on the direction, and the surface tension is just a scalar
quantity.

http://dx.doi.org/10.1007/978-3-319-30647-6_5
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Fig. 11.6 Schematic
defining the principal
curvature radii about any
point O of a generic surface
(pink). The vector n is the
oriented unit vector normal
to the plane (grey) locally
tangent to the point O . The
curvatures are the inverse of
these radii, γ11 = 1/R1,
γ22 = 1/R2. The two radii
R1 and R2 can each be on
either side of the surface

11.3.1 How the Space Can Be Filled

If we look at the examples of Fig. 11.7, and to countless many other situations of
natural patterns, one important character that should get our attention is that space
is very seldom left empty, in two as well as three dimensions. Of course, there
are cases in which there is the need for some “holes” in a natural system, but the
previous statement is very close to a general rule (even the inner body cavities of
animals and plants are always filled with some fluid). The problem of space filling
has kept mathematicians busy for centuries, often with misplaced conjectures which
could not be proven, but which couldn’t be easily disproved either.

In two dimensions, a flat plane can be filled only by identical triangles or by
identical rectangles. Combinations of six adjacent triangles give a hexagon, and this
is one good reason why space-filling problems with 2-dimensional symmetry are
often solved by nearly regular hexagonal patterns, such as the honeycomb structures
shown in Fig. 11.7. The constraint of using strictly regular geometrical shapes, i.e.
having the same length of sides, perimeter, and area, is of course very often relaxed
in natural objects. However, the underlying principle is that whenever the source
material and environment are sufficiently homogeneous, nearly regular shapes are
easily obtained. If we think again of diffusion-based mechanisms as the drivers of
the growth, and assume the initial growth seeds are randomly distributed, it is very
likely that the resulting subdivisions will end up having similar lengths and areas.
If, instead, the environment presents irregularities, such as material heterogeneity
or a gradient of some parameter, then also the filling can be graded. This could be
the case of the curved (non-planar) surface of the turtle shell, in which the central
hexagons are typically larger than the surrounding ones, progressively smaller as the
surface curvature decreases away from the centre.
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Fig. 11.7 In two dimensions, the plane can be divided regularly into equal-area regions by a network
of segments connecting an hexagonal pattern of vertices, at each of which three segments join by
forming angles of 120◦. Approximately hexagonal patterns are found in a surprising variety of
natural, living or non-living, systems: a a bees’ honeycomb; b a green turtle from Hawaii islands;
c columnar basalts at the Cape Stolbchatiy, Kuril islands, Russia; d ice crystals under scanning
electron microscope (colours added). [Photos c©by: aWangsberg, bMak Thorpe, c Igor Shpilenok,
d unknown at US Dept. Agriculture. All repr. under CC-BY-SA 3.0 licence, see (*) for terms.]

If some degree of deformation of the base polygon is admitted, it turns out that
also irregular pentagons can be used to fill the two-dimensional space. Up to now,
fifteen space-filling pentagonal patterns have been found (Fig. 11.8). The first five
were discovered by the German mathematician K. Reinhardt in 1918, and it was
necessary to wait fifty years before R. Kershner discovered three more. A few years
later R. James, a Californian computer scientist, discovered a ninth pattern, but in the
same year 1975 a San Diego housewife passionate about mathematics had already
discovered another four. Ten years after, the German mathematician Rolf Stein (a
graduate student at the time) found a fourteenth one, and a merely thirty years later,
in 2015, a fifteenth pattern was discovered. There is noway to establish whether there
could be more patterns; it is however rigorously proved that no identical polygons
with seven or more sides can produce a space-filling pattern, no matter how irregular
they may be.

Mixed-polygon fillings are called Archimedean tilings in honour of the revered
Greek scientist, but were actually firstly listed by Johannes Kepler in 1619: he dis-
covered that triangles, squares, hexagons, octagons and decagons can be combined
into at least eight patterns, all infinitely periodic. However, natural objects are always
necessarily finite in size. Therefore, the constraint of periodicity in space filling need
not be satisfied over the entire length of the object. This opens the way to much richer
ways of building regular patterns and shapes, by using symmetric but non-periodic
motifs, such as spirals (see below, Sect. 11.7), and tile-sets, or prototiles, made up by
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Fig. 11.8 Repeated patterns of irregular pentagons, having sides of different length and non-equal
internal angles, can be used to densely fill the two-dimensional plane. The fifteen patterns discovered
between 1918 and 2015 are shown. Note that vertices can be formed only by joining either three,
four or six sides, and never five

more than one regular polygon. The chief example of the latter category is the Pen-
rose tiling, named after the English mathematician and physicist Roger Penrose who
initiated this field of study in the early 1970s. He initially found a set of six tiles that
force aperiodicity, which later he was able to reduce to only two. The characteristic
feature of the Penrose tiling scheme is that it allows a local pentagonal symme-
try, while no infinitely-repeated pattern could be constructed with such a symmetry.
Examples of both Archimedean and Penrose tiling abound in crystallography, with
pentagonal quasi-crystals discovered in 1982 by Dan Shechtman, who obtained for
this the Nobel prize in chemistry. However, such exotic regularities are not easily
identified in the shapes and patterns of living systems.

Filling the space in three dimensions gives rise to an obviously more complicated
affair. Plato, the Greek philosopher who lived between the V and IV century B.C.,
identified only five three-dimensional shapes as being the only regular polyhedra.
The ‘regularity’ is defined by the characteristics of: (i) being made up by a certain
number of faces, all from one type of polygon, and (ii) having a number of identical
vertices at each ofwhich the samenumber of facesmeet. The onlyfive shapesmeeting
such criteria are (Fig. 11.9): the tetrahedron (four triangular faces, meeting in triplets
at four vertices), the cube (six square faces, meeting in triplets at eight vertices),
the octahedron (eight triangular faces, meeting in quadruplets at six vertices), the
dodecahedron (twelve pentagonal faces, meeting in triplets at twenty vertices), and
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Fig. 11.9 Above the five “platonic” solids. These three-dimensional figures are defined by having
each face from only one type of polygon (triangles for the tetrahedron, squares for the cube, and
so on), and by having the same number of faces meeting at each vertex. Below While five identical
tetrahedra cannot fill the space (left), a combined motif made of octahedra and tetrahedra (right)
can indeed fill the whole 3D space

the icosahedron (twenty triangular faces, meeting in quintuplets at twelve vertices).6

It is interesting to note that cube and octahedron are related by the fact that one can
be obtained from the other by taking the centres of the faces of one as the vertices of
the other; the same duality holds for the dodecahedron and the icosahedron; finally,
the tetrahedron is dual of itself.

Of the five Platonic solids, only the cube, with its angles of 90◦ between perpen-
dicular faces, can be used to completely fill the 3D space. The regular tetrahedron
has an angle between any two faces equal to θ = arctan(−1/3) = 109◦47. For more
that 1800years, it was believed (on the basis of an ancient conjecture by Aristotle)
that also the tetrahedron could fill the three-dimensional space. In fact, this proves
to be impossible (see again Fig. 11.9): if we join five identical tetrahedra, a small
empty space is left as a thin wedge with an angle of about 7◦; on the other hand, a
combination of tetrahedra and octahedra can completely fill the space.

6The original Plato’s description reads: From the [equilateral] triangle [...] the three first regular
solids are formed: first, the equilateral pyramid or tetrahedron; secondly, the octahedron; thirdly,
the icosahedron; and from the isosceles triangle is formed the cube. And there is a fifth figure,
the dodecahedron, which God used as a model for the twelvefold division of the Zodiac. [English
version by B. Jowett, The Dialogues of Plato, vol. 3, Oxford University Press, 1892].
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Fig. 11.10 Joseph Plateau started experiments about equilibrium shapes with oil in a water-alcohol
mixture. Later he changed to soap films, easier to manipulate, with similar or better results. When
a figure made of thin wire is dipped in the liquid, elegant shapes of thin soap films form between
the wires, “so light that they are not subjected to gravity” (as Plateau wrote), similar to those of oil
films. Plateau used a solution he called “liquide glycérique”: 3 parts of a watery, filtered solution of
Marseille soap and 2 parts of pure glycerine. He mentions that it was not always simple to obtain
the products in the necessary purity and concentration. [Images courtesy of the Ghent University
Museum, Belgium, Collection ‘History of Sciences’.]

11.3.2 Limiting Shapes, Stability and Instability

A minimal surface is a volume-bounding shape configuration, whose total area
could be only increased by a small perturbation. In fact, a minimal surface is a two-
dimensional analog of the geodesic curve (whose length also can only increase, under
a small, localised perturbation).

The properties of minimal surfaces have been largely studied in the past (see
“Further reading” at the end of this chapter) since being one of the most complex
domains of mathematical physics. For example, one of the most important empirical
discoveries in this field (again due to J. Plateau in the second half of the XIX century),
namely the fact that the angles among soap bubbles can have only two possible values,
of 120◦ in two dimensions, and 109◦5 in three dimensions, could be rigorously proved
only in 1976, by the Americanmathematician Jean Taylor [3]. Empirically, these two
special values correspond well to the angles delimiting equal-area surfaces in 2D,
or equal-volume regions in 3D. Therefore, they are connected with the practical
realisation of minimal surfaces.
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In the experiments by Plateau, the water-soap thin filmwas trapped within the rim
of an adjustable metal ring (Fig. 11.10). The ring could be subsequently deformed,
and the thin film followed its modification, by passing through a sequence of shapes
and possible curvatures, always satisfying the constraint of minimising the surface
for any boundary condition. Physically, such a constraint is automatically imposed
by the surface tension of the water-soap solution. The stable surfaces pass from one
into another via limiting shapes, corresponding to discontinuities imposed by the
physical-chemical constraints (density, viscosity, surface tension). In fact, if the ring
is deformed too quickly the soap bubble will explode, because the passage from one
limiting shape to another is (topologically) discontinuous.

The properties of the limiting shapes are connected with the mathematical behav-
iour of the surface curvatures. There are only two cases for which the Eq. (11.13) is
indefinitely stable (meaning, for any value of ΔP or T ), and this is when the sum
of the curvatures is zero. The first interesting case is that of the catenoid, a limiting
shape having equally and opposite curvatures, so that the pressure (trace of the stress
tensor) is zero:

− 1

R
+ 1

R
= 0 (11.15)

The catenoid shares this unique property with the plane, for which both curvatures
are null, 1/R1 = 1/R2 = 0. No other limiting shape is characterised by having a zero
average curvature.

Although not being unconditionally stable, a surface can however be locally stable
up to amaximumvalue of an external perturbation. Plateau demonstrated empirically
that only six geometrical figures could lead to shapes satisfying the conditions of
local stability: (1) the sphere, (2) the plane, (3) the cylinder, (4) the catenoid, (5) the
unduloid, and (6) the nodoid. In fact, the purely empirical studies by Plateau ignored
that also other limiting surfaces could satisfy the mathematical conditions of local
stability, such as the helicoid whose analytical shape was known already since 1776.
Many other, very exotic shapes with minimal surfaces have been discovered after the
1960s, with the help of computer analysis. On the other hand, the shapes identified by
Plateau remain the only ones practically observed in natural systems. For any other
shape, further dimensional constraints must be added to ensure the local stability
that, evidently, have no obvious physical analog to manifest themselves in naturally
observed shapes.

Also in a dense fluid perturbed by effect of an external force, such as the grav-
ity, the local stability could be lost and instabilities may start to develop. Plateau
observed the development of instabilities in his experiments on oil and water mix-
tures (Fig. 11.11), in which case the external perturbing force was the centrifugal
acceleration. Analogously, if we observe a column of water dripping from a faucet,
and progressively reduce the speed of flow, gravity will at some point take over: the
water cylinder would form thin constrictions, rather irregularly spaced, which would
become thinner and thinner, up to the point when the elongated cylindrical shape
will be fragmented into spherical droplets of different sizes. Similar instabilities can
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Fig. 11.11 The famous oil bubble experiment of Plateau. Oil is deposited along a vertical axis in a
tank filled with a mixture of water and alcohol. The oil takes on a spherical form. If the oil and the
water-alcohol mixture have the same density, the oil sphere freely floats. Then the oil sphere is “not
subjected to gravity”, as Plateau puts it. If one revolves the axis slowly (about one turn every 5s)
the oil sphere begins to flatten at the “poles”. A maximum of this flattening occurs at 3–4 turns per
second. If the angular velocity is still larger, the oil takes the form of a torus, loose from the axis. At
even higher velocities, the torus breaks up into small spheres which rotate around their own axis.
[Images courtesy of the Ghent University Museum, Belgium, Collection ‘History of Sciences’.]

be observed in the stroboscope photos of fluids splashing on a hard surface, or in
situations in which two fluid with widely different viscosity come into contact, for
example dew wetting a spiderweb. Also in this case, the instabilities induced by the
disequilibrium between gravity, surface tension, adhesive forces, and small random
perturbations of the environment (variations in temperature, or atmospheric pressure,
mechanical actions from the wind) can lead to mixed surface shapes, instead of a
continuous surface.

11.4 Surfaces of Revolution, Seashells and Gastropods

The common feature shared by all the stable Plateau surfaces (sphere, cylinder,
catenoid, unduloid, and nodoid; the plane being the degenerate case for which R1 =
R2 = ∞), is that they are all surfaces of revolution.

A surface of revolution is a parametric surface in a n-dimensional space (we are
here interested in the ordinary 3-D space, or R3), namely the surface generated by
rotating a plane curve about an arbitrary axis. The general equation of the parametric
surface X (t, θ), obtained by rotating about the conventional z-axis the parametric
curve c(t) = {x(t), y(t), z(t)}, is given by the product of the rotation matrix about z
times the curve itself:
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X (t, θ) =
⎛

⎝
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞

⎠

⎛

⎝
x(t)
y(t)
z(t)

⎞

⎠ =
⎛

⎝
x(t) cos θ − y(t) sin θ

x(t) sin θ + y(t) cos θ

z(t)

⎞

⎠ (11.16)

The parameter t determines the span of the surface, typically ranging in the inter-
vals [−∞,+∞] or [0,∞]. Some geometrical characteristics of these objects:

• A surface of revolution is globally invariant for any rotation about an axis, called
the axis of revolution.

• The rotation of a curve (called generatrix) about the axis of revolution originates
the surface of revolution.

• The sections of a surface of revolution by semi-infinite half-planes delimited by the
axis of revolution, are called meridians; each one of them represents one instance
of the generatrix.

• The sections of a surface of revolution by infinite planes perpendicular to the axis
of revolution are circles of varying diameter, called parallels.

• A surface is identified as a surface of revolution if the normal through any of its
points meets, or is parallel to, a fixed axis (in fact, the axis of revolution itself).

The following greybox contains several examples of surfaces of revolution,
obtained from the rotation of trigonometric functions as the generating curve.

It may be often necessary to calculate the area of a surface of revolution, for
example if we want to establish which shape gives the minimal or maximal area for
a given object. For the simple surfaces shown in Fig. 11.12a, b the area is obtained
by direct geometrical calculation. For the cylinder (obtained by rotating a straight
segment of length h parallel to an axis), the area is just A = 2πdh, if d is the distance
from the rotation axis. For a circular cone of slant height l, the area is A = πrl, if r
is the radius of the limiting circle.

A surface of revolution can also be created by rotating a closed figure about an axis
with which the figure has no points of contact. In this case, the axis of revolution does
not intersect the surface, and the resulting volume is called a toroid. For example
when a rectangle is rotated about an axis parallel to one of its edges, then a hollow,
square-section ring is produced (Fig. 11.12c). If the revolved figure is a circle, the
object is called a torus, with a surface equal to A = 4π2rc, where r is the radius of
the revolving circle and c is the distance of its centre from the axis of revolution.

In general, a complex surface of revolution could be approximated by describing
its generatrix as a sequence of small straight segments (Fig. 11.12d, e), each of which
would give a contribution to the area as a portion of cylinder or cone (the former
being a degenerate case of the latter). Each segment along the generatrix would be
delimited by a pair of adjacent points, (Pi−1, Pi ). For a segment of circular cone
of slant height l = |Pi − Pi−1|, and upper and lower radii r1 and r2, the area of the
surface segment is easily shown to be Ai = 2πrl, with r = 1

2 (r1 + r2), and the total
area is A = ∑

i Ai .
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Fig. 11.12 Simple surfaces of revolution obtained by rotating a segment (a) about an axis, giving
a cylinder, or about a point (b), giving a cone. If a closed figure is rotated about an axis with which
it has no points of contact, c a toroidal ring is obtained. d Geometric description of a surface of
revolution obtained by the rotation of a generatrix y = f (x) about the x axis. e Break up of the
surface area into elementary contributions, obtained by approximating the generatrix curve by a
discrete sequence of segments [Pi−1, Pi ]

Now, note that the points Pi are identified as Pi = P(xi , yi ) = P(xi , f (xi )). In
other words, the radii ri are identified with the coordinates yi , or ri = f (xi ). There-
fore, it is also Ai = 2π f (xi−1)+ f (xi )

2 |Pi − Pi−1|. By taking the limit of the segment
size |Pi − Pi−1| → 0, it is:

lim
l→0

|Pi − Pi−1| =
√
1 + [ f ′(xi )]2dx (11.17)

where f ′ indicates derivative with respect to x , and the total surface area is:

A =
∫ b

a
2π f (x)

√
1 + [ f ′(x)]2dx (11.18)

The importance of revolution surfaces to explain many natural forms becomes
evident in all those cases in which an accretion mechanism is important. Accretion
phenomena are those phenomena of growth in which new matter is continuously
added on top of existing material, during the development of the animal or vegetal
organism, such as mollusks, gastropods, foraminifera, and so on.

The following, transcendental (since the variable θ appears as an exponent), para-
metric equation:
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Fig. 11.13 a Fossilised cones ofOrthoceras;b fossil ofTrilacinoceras; c Shells ofmodern nautilus,
from above: N. pompilius, N. scrobiculatus, N. macromphalus. [Photos c©a by D. Lloyd, b D. W.
Wade, c M. Gigante, repr. under CC-BY-SA 4.0 licence, see (*) for terms.]

for example with R = 2.5 and k = 1.4, describes the shape of a shell lying in a
plane enveloped as a spiral onto itself, as shown in the adjoining figure. Such a shape
is typical of the Nautilus, the only surviving modern species of a cephalopod with
a shell. The evolution of the shell shape for such an animal is extremely interest-
ing (Fig. 11.13). The fossil record shows how the species evolved from a straight
shell with conical tip (the Orthoceras), to a progressively spiral-folded shell (the
Trilacinoceras), until attaining the completely folded shell that is today visible in
the nautilus. This evolution is quite difficult to trace over time, since in the fossil
beds all such different species appear within a unique, large time window of about
400million years, togetherwith themorphologically similar, but distinct ammonoids.
Ammonites had their tightly coiled shell also flat, like the nautiloids fromwhich they
are thought to descend. Straight-shelled nautiloids become extremely rare in layers
after Devonian, and all nautiloid fossils seem to leave the room to the ammonoids
by the end of Permian (250 millions years ago). However, a few nautiloids would



498 11 Shapes of the Living

Fig. 11.14 From the left Quimper snail, with its almost perfectly flat, spiral shell; Calliostoma
trotini, from the South California coast, a well-developed conical envelope corresponding to a
large value of a in Eq. (11.20); Natica vitelli, from the Sea of Japan, a more gentle conical shape
corresponding to a small helix pitch a. [Photos c©by a Francisco W. Schultes, b Poppe, Tagaro &
Dekker, c H. Zell, repr. under CC-BY-SA-3.0 licence, see (*) for terms.]

escape the Cretaceous catastrophe, about 67 million years ago, and continue up to
the six modern species of Nautilus, while the apparently more successful ammonites
disappeared.

The evolutionary advantage of such a spiral folding would be in the fact that the
center of gravity lies closer to the body of the animal. This allows an optimal control
of the swimming propulsion, which in all the cephalopods is typically obtained by
a water-jet mechanism. For an animal carrying a heavy protective shell, it is clearly
muchmore difficult to pilot a much elongated body compared to a compact structure.
These cephalopods were among the most popular marine species at the beginning of
the Paleozoic era (about 500 millions of years ago), during which they were the most
effective predators. Notably, modern cephalopods such as the squid, the octopus, the
cuttlefish, continued their evolution by getting rid of the external shell. The memory
of the shell remains in the more or less rigid chitin gladius (vulgarly called “bone”)
that is now found inside the animal. Only the Nautilus is a kind of ‘living fossil’,
with its beautiful spiral shell still winding around the soft animal body.

However, it must be observed that a spiral shell strictly lying within one plane is
very rare, after hard-shelled cephalopods disappeared.Only rare species on land, such
as the Quimper snail (Elona quimperiana), have a very flat spiral shell (Fig. 11.14).
Instead nearly all gastropods spend their life resting on one side by a sort of foot,
either on land or on the sea-shore, and consequently have their shell always folded
with a climbing about the rotation axis, which yields an helicoidal spiral with a more
or less conical envelope. The equation:
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derived from the previous Eq. (11.19) by simply adding the term −akθ to the coor-
dinate z(t, θ), describes a shell spirally growing about an axis, with a helix pitch
different from zero. It would seem that for the less aggressive and less mobile gas-
tropods, fast hydrodynamics did no longer represent a selective pressure. Shells with
more or less pronounced conical shapes serve essentially a protective function, with
a very large chamber for hosting the animal body, and a narrow tight spiral which
covers a minor part of the shell volume. Depending on the helix pitch a, the conical
expansion may be longer (originating from a slow growth) or almost disappear like
in the abalone shell (corresponding to a fast growth). Even if withmany exceptions, it
is observed that high-energy sea-wave environments, such as rocky intertidal zones,
are usually inhabited by mollusks whose shells have a wide aperture, a relatively
low surface area, and a high growth rate per revolution, giving inconspicuous cones.
Tightly-spired and highly sculptured forms are more commonly observed in quiet
water environments.

11.5 Conformal Mapping and the Evolution of Species

When observing the occurrence and recurrence of natural species, one is often struck
by the fact that even quite distant families of plants or animals may have very sim-
ilar shapes. This, to a first approximation, may be indicative that the environmental
constraints must have played a substantial role in pushing the morphology of such
species into that particular direction. From a geometrical point of view, these animals
or plants could appear to roughly follow common shapes, evolving with continuity
across close families of curves and surfaces. Observations of such kind stimulated
the reflexion about the applicability of mathematical transformations, notably geo-
metrical mappings, to the regularity of naturally occurring shapes.

A geometrical transformation for objects lying in a plane (x, y) can be repre-
sented by a mathematical function F(x, y) = [p(x, y), q(x, y)], which transports
each point of the original plane into another point of the deformed plane. As a simple
example, the equation of a circle, f (x, y) = x2 + y2 − r2 = 0, turns into an ellipse
under the general transformation F(x, y) = (x, y/2) (Fig. 11.15, above).

The transformation F is a map, whose components p and q transform all the
coordinates x and y of the plane according to a prescribed law. All the functions
defined in this plane, among which our f (x, y) for the circle of radius r , will be
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Fig. 11.15 Examples of geometrical transformations. Above A stretching transformation along an
axis, the y axis is squeezed by a factor of 2 and the circle is transformed into an ellipse. Neither
the area nor the angles are preserved in such a transformation. Below The Mercator projection on
the right is a conformal transformation of the sphere surface into a cylinder, preserving the angles
among the mesh segments (for representation purpose, the cylinder is cut open into a rectangle).
[Maps c©of the ICSM of Australia, repr. under CC-BY-SA-3.0 licence, see (*) for terms.]

consequently deformed in the same way. This is why F is called a conformal map. It
will be noted, in particular that the conformalmapping preserves the angular relations
among the lines defining a regularmesh on the plane (see Fig. 11.15 below: the angles
of the mesh are always at π/2). In a conformal map of the Earth each parallel must
cross every meridian at right angles. Also, at any point the scale distortion, either
compression or dilatation,must be the same in all directions. TheMercator projection
shown in the figure suffers from a huge distortion: note howGreenland appears much
bigger than Australia, when in reality the surface of the latter is about 3 times bigger.
Conformality is a strictly local property: angles, and consequently shapes, are not
expected to be preserved much beyond the intersection point; in fact, straight lines
on the sphere are usually curved along the plane, and vice versa.

D’Arcy Thompson, in his 1917 book On Growth and Form, applied the concept
of conformal mapping to propose an explanation about how different animal species
could be “obtained” from one another, by a more or less complicate distortion of
their shapes. In the example shown in Fig. 11.16a he applied (entirely by means of
hand-drawn geometrical sketches) the transformation F(x, y) = (x + y/2, 3y/2)
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(namely, p(x, y) = x + y/2 and q(x, y) = 3y/2), to the bodies of two oceanic
fishes, belonging to the same family (Sternoptychidae), to highlight their geometrical
similarity7.

It should be obvious that the concept of “transformation” between organisms
or tissues must not be taken literally. A true geometric transformation in a real
organism, be it an animal or a plant, implies that somematter is displaced. Therefore,
a force must act for some time and length, in order for the deformation to take place.
Clearly, the idea of D’Arcy Thompson was not that of opposing an ensemble of
mathematical transformations to the laws of evolution. Although not a fully devout
endorser of Darwin’s theory, he was not such a fool to pretend to explain the origin of
different species by somemysterious force thatwould literallymould one species into
another. He rather aimed at establishing a general method to compare the evolution
of superficially similar species, possibly going beyond the purely morphological
aspects.

For example, by using the method of conformal transformations, Richards and
Riley in 1937 proposed an interesting theory on the development of amphibians
under changing environmental conditions. On the basis of the comparison permitted
by the different transformations of the Amblystoma amphibian larva (Fig. 11.16b),
they could establish that during the first few days, the development mostly occurs
on the anterior part of the animal, while it increasingly involves the caudal part in
the next coming days. By looking at the transformed profiles of the animal, by using
conformal maps such that the body surface was constant (Fig. 11.16b, lower panel),
they found that changes at the level of the larval head remain relatively modest in the
following days, this being shown by the fact that the mesh lines are little modified
and rather regularly spaced, with constant proportions between length and width;
the same is found to hold for the size of the head compared to the total length of
the developing animal. The tail becomes progressively longer in the second phase of
the growth (day > 15), and the body becomes smaller compared to the length of the
tail, while the larva approaches the moment of the metamorphosis. In parallel with
shortening, the body also becomes wider, and the reduction of the size of the gills is
observed. Such considerations would have been very difficult to expose, by looking
just at the comparison of the full-scale animal shapes during the different stages of
growth (Fig. 11.16, upper panel), at would be usually done.

Everywhere Nature works true to scale, and everything has a proper size accord-
ingly—wrote Thompson.—Cell and tissue, shell and bone, leaf and flower are so
many portions of matter, and it is in obedience to the laws of physics that their
particles have been moved, moulded and conformed.

7It will be observed that the “shearing” transformation in Fig. 11.16a seems to not preserve the
angles. In planar maps, the Euclidean angle is not the only one to be considered: the share and
hyperbolic angles can also be calculated, and one of the three is always conserved by the map.
(In more precise mathematical terms, one should look at the Jacobian of F[p, q], formed by the
four partial derivatives of p(x, y) and q(x, y) with respect to x and y: when the determinant of the
Jacobian is non-zero, angles other than the Euclidean are preserved by the map.)
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Fig. 11.16 aArtistic drawings ofArgyropelecus Olfersii and Sternoptyx diaphana, two deep-ocean
fishes belonging to the family of Sternoptychidae. In the lower row, the original drawings byD’Arcy
Thompson describing the conformal mapping applied to the left fish, to turn it into the right side one.
b The amphibian larva of Amblyostoma, represented at different stages of growth during the first
45days before the metamorphosis. In the lower panel, the animal shape was drawn by empirically
applying near-conformal maps, which preserve the total area projected in the plane. [Public domain
images (a), from Ref. [4, 5]. Images (b) from Ref. [6], repr. w. permission]
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In fact, and most importantly, the intuitions of D’Arcy Thompson, often of aes-
thetic as well as of mathematical nature, stimulated in the following years the devel-
opment of the allometric analysis methods (notably by J. S. Huxley in the 1930s, and
others to follow, see Chap.12), by which one can compare different structures on
logarithmic scales, for example to discover the growth rates of different species. In
recent years, such allometric methods have found wide applications in embryology,
animal and vegetal taxonomy, palaeontology and ecology.

A transformation F = [p(x, y), q(x, y)] much used in various applications of
geometry and architecture, is the quadratic map, or biquadratic application, for
which both p and q are written as second-order homogeneous polynomials:

F(x, y) = ax2 + by2 + cxy + dx + ey + f (11.21)

with coefficients a... f different for p and q. In practice, the constant term f can be
dropped as inessential, therefore a quadratic map has 10 free parameters, compared
to just 2 in a linear transformation. This gives the quadratic map enough latitude for
adapting to complex deformation patterns. A quadratic application can be sufficient
to describe a large variety of transformations, and in factmost of themaps empirically
proposed by D’Arcy Thompson are often close to a quadratic.

Even if not strictly rigorous from the analytic standpoint (he used to draw his
transformations by hand, and subsequently he deduced a possible mathematical form
by adjusted fitting), the deformations imagined by D’Arcy Thompson to turn the
Scarus (Parrot fish) into a Pomachantus (Angel fish), or to transform the skull of
a hominid into that of a chimpanzee, or into that of a baboon, are often close to
quadratic maps (see illustrations on pp. 1053–1083 of Ref. [5]).

11.6 The Emergence of a Body Plan

The traditional classification of animals has rested for a long time mainly on the
examination of morphological differences, and is complemented today by the large
bulk of data from molecular and genetic analysis. From a biophysical point of view,
however, one of themost interesting features is the astounding variety of body shapes
that ended up to the current differentiation, when thinking that “everything” started
from a bunch of amorphous cells in the oceans of the pre-Paleozoic Earth.

Figure11.17 reports a scheme of the phylogenetic tree of eukaryotes, starting with
the ancestral organisms evolved from the unicellular protists. These should have been
colonies of multicellular eukaryotes, heterotrophic (i.e., feeding on outside matter)
and therefore capable of ingesting food.These primitive beings hadno rigid cellwalls,
and a unique tissue, both nervous and muscular, allowing for minimal movements
and responses to foreign stimuli. Their development led from an amorphous mass of
cells, to a hollow cellular structure (the blastula), and eventually to the formation of
an internal cavity by invagination of someouter parts of the surface (the gastrula). Sea
sponges are modern representatives of this kind of organisms. Already at this stage, a

http://dx.doi.org/10.1007/978-3-319-30647-6_12
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Fig. 11.17 The phylogenetic tree of eukaryotes. From the left to the right, evolution starts from
ancient unicellular protists, growing into multicellular organisms. The successive addition of struc-
tural elements brings about increasingly complex body plans, from the radial to the bilateral, from
the diploblastic to the triploblastic, to the development of internal cavities, segmentation, appear-
ance of skeleton and dorso-ventral symmetry, dorsal spine and so on. On the extreme right, the
phylogenetic classification as based on molecular sequencing

Fig. 11.18 Symmetry is a criterion to classify body plans. Starting from themore elementary organ-
isms, lacking any symmetry, and moving to radially symmetric body, ending up with the bilateral
symmetry, inwhich an anterior-posterior axis, and a dorsal-ventral axis can be distinguished. [Image
adapted from http://cnx.org/, c©Rice University, repr. under CC-BY-4.0 licence, see (**) for terms.]

http://cnx.org/
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first split between species should have occurred: the Parazoa remained with such an
undifferentiated cell structure, while some of them became Eumetazoa and started
transforming the nature of the internal layer of cells, thus forming the first germ
of a true tissue. These early organisms are labelled as diploblastic, to underscore
their two types of tissues: an external layer called ectoderm, and an internal one,
the endoderm, which allowed to develop a closed body cavity and some kind of
glands. Jellyfish or sea anemones are modern representatives of animals of this kind
(Fig. 11.18).

From the point of view of getting to an increasingly complex body plan, an even
bigger further split is the appearance of a third type of tissue, intermediate between
the ectoderm and the endoderm, namely the mesoderm. Nearly all modern animals
have such a tripartite tissue structure, and are therefore called triploblastic. Such a
differentiation will allow to develop all the internal structures, skeleton and muscles,
needed to support the cavities and organs to be developed by the endoderm layer,
beginning with the earliest digestive cavity (the coelom).

Another important split occurred then, between animals who choose an “easier”
radial symmetry, and those who go for a bilateral symmetry. The fact of having a
body with a left and a right side will have a tremendous impact on the development
of the future muscular, skeletal and nervous system. Despite their morphological
diversity, most bilaterians are united by a handful of fundamental body plan features
including bilateral symmetry, triploblasty, a coelom, a through-gut, and a central
nervous system. The bilateral symmetry is a complex trait achieved by the intersec-
tion of two axes of polarity: a primary body axis (the anterior-posterior axis) and a
secondary, orthogonal axis (the dorsal-ventral axis). Recognition of a front and back,
and a left from a right, in a mass of embryonal cells originates from the difference
in the expression of some genes, which are activated in some parts of the body and
repressed in other parts (see below, p. 523). The proteins made from these genes
all contain a similar 60-amino acid motif termed the homeodomain. Homeodomain
proteins exert their function through combined mechanisms of activation and repres-
sion of multiple target genes. With many variants, such a basic mechanism is found
across animals that developed over a span of more than 500 millions years, making
this one of the most strictly conserved evolutionary features. It may be interesting
to note that Echinodermata (sea urchin, starfishes), which are far high in the classi-
fication of Fig. 11.17 because they belong to the Deuterostomata superphylum, have
a secondary radial symmetry: they actually start with a bilateral symmetry in the
embryo, but develop a radial body plan only in the adult.

A further specialisation of the body plan comes with the segmentation, by which
a part of the body is repeated into identical units, typically along the major (antero-
posterior) axis. This characteristic is found in most animal species, from the lower
anellides and arthropods, to the upper vertebrate and cephalochordate. A segmented
body allows a larger flexibility in the movements, and functional structuring of the
embryo. For example, in the fruit fly the segments composing the head, thorax and
abdomen develop separately into the final structures of the adult. During embryonal
growth, somites form by budding off from the anterior end of mesoderm at regular
intervals, for example about 2h in mouse embryos, 90 min in chicken, and 30min
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in zebrafish. The mesoderm undergoing segmented growth loses cells in the ante-
rior portion of the growing somite, and is replenished both by cell proliferation and
ingression posteriorly. This is a dynamic structure that can for many purposes be
considered to be at a steady state. Overall there is limited cell migration in segmen-
tation, but cells do undergo a relative movement within the mesoderm, as its anterior
and posterior borders move posteriorly. Segments need not to persist in the adult
body, but can be joined into functional structures, or can be hidden inside the body,
such as the vertebrae.

An even more profound innovation, is the development of jointed appendages
(legs, wings, antennae, tails). Animals that developed such structures are the most
successful in evolution, when success is measured by their adaptation to different
environments. In this respect, insects are certainly very successful, being widespread
on nearly all possible habitats, with the possible exclusion of polar environments
(actually, only one single species of insect has been up to now found in theAntarctica,
the Belgica antarctica, a flightless midge).

The upper evolutionary end of the scale (actually put at the lowest in the scheme
of Fig. 11.17) is reached with the differentiation of chordates. Although being (for
the moment) at the top of the evolution, on a purely numerical basis chordates are not
numerous. The assessed number of different species is about 65,000, half ofwhich are
fishes. By comparison with non-chordates, just the single phylum of mollusks counts
more than 100,000 different species, and arthropods count more than 1,000,000.
However, chordates represent by far the largest part of the animal biomass on Earth.
Not only they are the largest animals in existence today, but ecologically they are
among the most successful. They have been able to occupy all kinds of habitats,
and have adapted to more modes of existence than any other group, including the
arthropods. Especially birds and mammals have been able to penetrate cold climates,
because of their ability to maintain a constant body temperature, something that no
other animals can do.

Four principal features characterise the chordate body plan (see Fig. 11.19): the
notochord, the hollow dorsal nerve chord, the presence of pharyngeal slits along

Fig. 11.19 The characteristic body plan of chordates, with the notochord, the dorsal nerve chord,
the gut connecting mouth and anus, and post-anal tail. [Image c©by Piotr Michal Jaworski, adapted
under CC-BY-SA-3.0 licence, see (*) for terms.]
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the duct connecting mouth and anus, and a musculate, post-anal tail. The notochord
is a flexible element that forms between the primitive gut and the nerve chord, to be
replaced after the embryonal development by the vertebral column. The dorsal nerve
chord in vertebrates is the element that will differentiate into the brain and spinal
chord. The pharyngeal slits, most often just pouches, are present in the embryo of
all vertebrates, but are lost later in the development of the terrestrial ones; however,
their presence provides a clue to our aquatic ancestry. Similarly, the tail is present
in all embryos, but is lost for some adults like humans. Chordates have a segmented
body plan, with distinct blocks of muscles (myotomes) already visible in the embryo.
Most of them have an internal skeleton, against which the muscles make mechanical
work, and which is at the basis of the extremely successful locomotion abilities of
the members of this phylum.

All chordates are tetrapods: they have four limbs, which in some case may have
turned into wings, or fins, and in some case may have entirely disappeared, such as
in snakes. And all of them are pentadactyl: their limbs have five digits, which also
signals the likely origin from a common ancestor. Even animals that today display
only one or two fingers, such as horses, maintain structural vestiges of all the five
fingers in their limbs. Such a structure is homologous in the various animals of the
phylum:meaning that a same basic plan has adapted to different functions, like flying,
swimming, running or walking.

11.6.1 Reaction-Diffusion and Pattern Formation

The generation of the variety of body structures fromone (more or less homogeneous)
single egg has long been considered to be so miraculous, that long arguments arose
as to whether the laws of physics would ever be sufficient for an explanation of
development. However, by looking at nature, it is clear that formation of patterns is
not peculiar to living objects: galaxies, clouds, lightning, rivers, mountains, crystals,
all demonstrate the ubiquitous generation of ordered structures and recurrent patterns.

Autocatalysis, a player that has already been invoked often in this book, is the
mechanism bywhich a small perturbation in a homogeneous distribution can become
amplified by a positive feedback (see also the greybox “Stability and chaos” on p.
523). However, to induce a stable pattern in a structure a second mechanism must
be invoked, to stop the autocatalytic mechanism from spreading everywhere. This
is inhibition, a negative feedback that must operate at a longer distance than the
short-ranged autocatalysis and, differently from the autocatalysis, requires energy
to be activated. By taking a quite radical stance, it can be said that development
must be ultimately a biochemical process, consisting of interactions and movement
of molecules in and across cells. In a famous paper [7], Alan Turing combined
the concepts of autocatalysis and inhibition, making the very important discovery
that spatial concentration patterns can be formed if two substances with different
diffusion rates produced at nearby regions react with each other. This is very contrary
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to physical intuition, since we know that diffusion should work to smooth out any
local accumulation of molecules, not to create concentration maxima.

To see these principles at work, let us assume a substance a which stimulates its
own production (autocatalysis), and an antagonist h that plays the role of inhibitor.
To work at longer range, the inhibitor must have a larger value of diffusion constant
than the autocatalytic substance. In a population of cells, such two chemicals could
not have homogeneous concentrations, since any small increase of a, e.g. from a
random fluctuation, would be amplified by autocatalysis; and the inhibitor would
respond to the increase in a by increasing its own concentration, and limiting the
increase of a. Let us write the following two equations for the coupled evolution of
a and h:

∂a

∂t
= Da

∂2a

∂x2
+ α

a2

h
− βa (11.22)

∂h

∂t
= Dh

∂2h

∂x2
+ γ a2 − δh (11.23)

These are just ordinary diffusion equations for each substance, plus the two last
terms in each line to describe their ‘reaction’ behaviour. The constants α and γ link
the time increase of a and h to the square of concentration of a itself, and the constants
β and δ represent the consumption of both species. Note that the autocatalytic growth
of a is divided (i.e., limited) by the concentration of h.

To study the behaviour of such a model system, let us first assume a constant
h = 1, and a uniform distribution of a, so that its spatial derivative is zero. Then:

∂a

∂t
= a2 − a = a(a − 1) (11.24)

(to further simplify things, all the constants are set equal to 1), which gives a = 1
at steady state when ∂a/∂t = 0. The autocatalytic property of a is manifested in
the fact that for a small positive perturbation, ∂a/∂t = ε � 1, the right side of the
equation a − 1 will start increasing. This is the reason to choose (at least) a quadratic
exponent in the a-production term (first on the right side).

Now let us unlock the h factor, and assume a very fast equilibration of h for any
given concentration of a. At the steady state, the inhibitor concentration becomes
h = a2. Then, by putting this value back into the (11.22), we get:

∂a

∂t
= a2

a2
− a = 1 − a (11.25)

Again the steady state corresponds to a = 1, however in this case the equilibrium
is stable since for a positive perturbation, the right side of the equation stays positive
only by lowering a < 1.

Let us consider for the sake of example an array of 100 cells, and attempt at a
numerical solution of the above equations. The constants are all set to 1, and the
evolution starts with all cells having the same concentration a = 3 and h = 1 (in
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Fig. 11.20 Numerical solution of the reaction-diffusion equations for a species a and the inhibitor
h, starting from homogeneous concentrations over a unidimensional array of 100 cells with periodic
boundary conditions. At time t = 0 a perturbation in a is localised at the cell n.35. a Solution of the
model with the two diffusion coefficients equal, Da = Dh = 1, curves showing the concentration
of a at successive time frames increasing from t = 75–500 (from bottom to top). b Solution of the
model with the diffusion coefficients Da = 1 and Dh = 10. The even spacing of the pattern is due
to the “closed loop” boundary conditions, by which cell 1 interacts with cell 100 and vice versa

arbitrary units). Then, at time t = 0 the concentration of a is doubled at a single cell,
for example the 35. Figure11.20a shows the evolution of the concentration of a at
subsequent times, t = 75, 150, 250, 500, for the diffusion coefficients of a and h
equal to Da = Dh = 1. It is seen that in this case the initial perturbation is reabsorbed
over some time, and the concentration of a goes back to homogeneous at long times.
By contrast, Fig. 11.20b shows the effect of changing the diffusion coefficient of h to
a factor of 10 larger than that of a: the small perturbation over about the same time
frame grows into a stable pattern, by distributing a periodic concentration profile of
the autocatalytic species a over the array of cells.

What the simple Turing-like model above shows is that the combination of an
“activator” and an “inhibitor” species with largely different diffusion constants is
indeed capable of producing chemical patterns. The pattern originates by the local
growth of the activator species, which induces the concomitant production of the
inhibitor; this latter however works over a longer distance, due to its faster diffusion,
and creates an “exclusion” zone, which depletes the concentration of the activator.
The combination of the two diffusing species determines the actual spacing of the
maxima,which canbevery regular (thinkof the spacingof leaves on abranch) ormore
random (such as hairs and bristles on the skin), according to the boundary conditions
imposed by the borders of the growing embryo. In the example of Fig. 11.20, cells
are arranged in a closed loop, the 1 interacting with the 100 and vice versa, therefore
all cells are strictly identical and a very regular spacing arises.

The combination of Eqs. (11.22 and 11.23) is just one example of possible inter-
action. In a different model, the action of the inhibitor could be changed, e.g., to
α(a2/h2) in the first equation, and to γ a in the second one. Such a model could
describe a situation in which the activator molecule is converted into a different
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conformation which acts as inhibitor (γ a turns into h), running in competition with
the pristine activator molecules. Other molecular realisations of the principle of
autocatalysis-plus-inhibition are of course possible. For instance, the inhibitory effect
could be realised by a depletion of a substrate, or of a precursor, consumed in the
autocatalysis. Or, the autocatalysis could be realised by the mutual inhibition of two
substances, or by a reaction chain consisting of many elements, or by the release of
bound substances rather than by a direct production, and so on.

11.6.2 Pattern Formation and Gene Expression

In the same 1952 paper, Turing coined the term morphogen, to mean a substance
governing the pattern of development, thus providing a mechanism by which the
emission of a signal from one part of an embryo can determine the location, differ-
entiation and fate of many surrounding cells. At the molecular level, a morphogen
is a chemical whose concentration varies according to a gradient, which is set up
by the diffusion. Typically, a morphogen will spread from a localised source and
form a concentration gradient across a developing tissue, driving the specialisation
of stem cells into the different cell types. The gradients of transcription factors
have been extensively studied, especially in the Drosophila melanogaster (the com-
mon fruit fly), showing that these indeed act as morphogens. Transcription factors
are proteins that bind to a specific DNA sequence, promoting or blocking the recruit-
ment of RNA-polymerase, thereby favouring or repressing the transcription of that
DNA sequence. It is a general observation that morphogen gradients are linked to
the localised expression and repression of specific genes, such as in the definition of
the bilateralisation. The anterior-posterior axis of all bilaterians (including humans)
is known to be patterned by alternating expression domains of a family of genes
called Hox, while the dorsal-ventral axis is patterned partially by the asymmetrical
expression of a different set of genes, the dpp/BMP4.

Understanding morphogen gradients from a biological standpoint requires to
know how cells interpret a variable morphogen concentration, and how they trans-
duce this information to the nucleus to produce the appropriate gene or cell fate
response. On the other hand, as biophysicists we might be more interested in a dif-
ferent type of question, that is: how a given concentration gradient is formed among
the cells of a tissue?

Known morphogens seem to be effective at extremely low concentrations, 10−9–
10−11 M, and are probably not evenly distributed across their field of action. More-
over, the geometry of a morphogenetic field must be quite restricted, if the speciali-
sation mechanisms of the cells depend critically on diffusion: since the time required
for diffusion increases quadratically with the length, the spatial organisation must
take place within small assemblies of cells. Embryonic fields are indeed small, of the
order of 1mm or∼100 cells across, a size in which communication via diffusion can
take place in a few hours. The formation of somites (somitogenesis) happens quite
early in embryogenesis, and proceeds from the tip of the embryo (anterior) towards
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Fig. 11.21 Schematic of the clock-and-wavefront model. The concentration gradient (wave) of
growth factor moves from anterior to posterior ends (A→P, shown above). The local oscillation of
actuator genes switching between activated and repressed states is shown on the right. Cells with a
low concentration of growth factor pinch off to form a somite (S) when the clock is in the correct
phase (darker colour of the mesoderm). The wavefront is shown by the vertical blue line, moving
from left to right at successive half-periods T of the clock. Activation occurs at 1

2 T , 3
2 T , 5

2 T , and
so on

the tail (posterior). Each new somite forms when a block of cells splits off from a
large mass of tissue called the “presomitic mesoderm”. While new somites pinch off
from the anterior end, the mesoderm elongates towards the posterior end.

In their 1976 study of the embryo evolution in the amphibian Xenopus laevis,
Jonathan Cooke and Erik Christopher Zeeman proposed the clock-and-wavefront
model of morphogenesis [8], summarised in Fig. 11.21. This is the prototype of
several other models of development, relying upon the conversion of a temporal
oscillation into a dynamic spatial periodic pattern.

The basic idea of the c–w model is the interaction between a wavefront which
moves through the growing embryo and a ticking clock in each cell which determines
its ability to respond to the signal given by the moving wavefront. The wavefront is
a gradient of a chemical growth factor (morphogen) produced at the posterior end,
therefore oriented with the maximum at the back and the minimum at the front. Since
the source is moving to the back, there is a wave of low concentration moving in
the front-to-back direction. However, such a front should move at a steady velocity;
instead, somites are seen to break off at nearly regular intervals. This means that
another component besides the morphogen gradient must exist.
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The additionalmechanismgoverning the spatio-temporal propagation of thiswave
of differentiation is a “segmentation clock” existing in each cell. When oscillating
components of the internal cell clock are examined, by special genetic techniques
such as in situ hybridisation, alternating stripes of gene expression and repression are
observed. These stripes are not static, but move along the main A → P axis as the
oscillation frequency changes. Numerous genes and proteins that oscillate at the rate
at which somitogenesis proceeds have been identified across a number of species. For
example, in the well-studied zebrafish (Danio rerio), all known oscillatingmolecules
are regulators of the so-called Notch-Delta group of genes. The cyclic activation and
repression of the oscillating genes is represented in Fig. 11.21 by the alternating light
and dark colours, changing at each semi-period T .

The reaction-diffusion model above can be reformulated to display spatio-
temporal oscillations. The concentrations of a and h are replaced by two variables,
u = a − a0 and v = h − h0, representing deviation fromgiven concentration profiles
a0(x) and h0(x). Moreover, nonlinear coupling terms, mixing u and v, are added:

∂u

∂t
= Du∇2u + αu + βv − c1uv2 − c2uv (11.26)

∂v

∂t
= Dv∇2v − αu + βv + c1uv2 + c2uv (11.27)

Bynumerically solving the above equations, it canbe seen thatwhen the ratio c22/c1
exceeds a critical value, stable time-oscillating patterns are formed [9]. Figure11.22
displays four different solutions, again for the ensemble of 100 cells aligned on the
x-axis with periodic boundary conditions, corresponding to different choices of the
model parameters and c22/c1 above critical. The diagrams represent the course of time
on the vertical axis, and the changing colour is the variation of u between −1 and
+1 (in arbitrary units; the concentration profile of v, not shown, follows that of u).

Fig. 11.22 Concentration profiles of the factor u from the modified Turing model in a space
(horizontal)-time (vertical) plot, for a system of 100 cells with periodic boundary conditions, and
different sets of model parameters. Four different kinds of spatial patterns are observed when the
quadratic term is strong enough:a in-phase oscillatory patterns;bout-of-phase oscillatory patterns; c
mixture of in-phase and out-of-phase oscillatory patterns; d combination of constant and oscillatory
patterns. [From Ref. [9], repr. w. permission]
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Among the different patterns, out-of-phase oscillations resembling what is expected
in the c–w model are also observed (Fig. 11.22c).

However, the reaction-diffusion is a very simplifiedmodel of the complex network
of interrelated chains of gene activation and repression that are taking place in the
cell, in response to the chemical gradients. In particular, it is now established that the
local oscillation frequency of each cell’s clock is different, and depends on the relative
position of the cell along the antero-posterior axis. Oscillations in the posterior end of
the embryo occur at an approximately constant rate, corresponding to the frequency
at which somites form, one after another. But, as the wave of differentiation moves
along, the oscillation frequency of each cell decreases: somite formation is seen to
occur just at the spatial position where the oscillations cease.

A possible origin for such a slowing down of the oscillation has been shown to
arise from the coupling of the different oscillators [10]. We have already examined
the coupling of oscillators in the context of heart- and brain-cell synchronisation,
the Kuramoto model (p. 308). In the present case, the same Kuramoto’s model is
generalised by replacing the phase-coupling term of the originalmodel, with a double
(A, B) coupling:

dθi

dt
= ωi +

N∑

j=1

{
A sin(θ j − θi ) − B[cos(θ j − θi ) − 1]} (11.28)

The attractive sinusoidal term forces synchronisation, it could e.g. represent the
role of Notch-Delta genes; at the opposite, the cosine term pushes neighbouring
oscillators out-of-phase, and could thus represent a type of coupling similar to the
process of inhibition. By making the approximation that neighbouring cells, k and
k ± 1, have small phase differences, |θk − θk±1| � 1, the sine and cosine terms can
be expanded in series about each θk as:

dθk

dt
= ωi + A sin(θk+1 + θk−1 − 2θk)+

+ B

[
1 − (θk−1 − θk)

2

2
+ 1 + (θk+1 − θk)

2

2

]
− 2B + O(Δθ3) � (11.29)

� ωi + A sin(θk+1 + θk−1 − 2θk) − B

2

[
(θk−1 − θk)

2 + (θk+1 − θk)
2
]

If onemakes the further hypothesis that the coefficients scalewith the (discretised)
distance Δk as A = Â/Δk2, B = B̂/Δk2, the above approximate expansion gives a
second-order differential equation in the continuum limit Δk → dk:

∂θ

∂t
= ω + Â

∂2θ

∂k2
− B̂

(
∂θ

∂k

)2

(11.30)
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The great advantage of such a revisited c–w model is that a travelling wave natu-
rally emerges from the solutions, without having to make additional hypotheses on
the precise nature of the syncing and dephasing terms, A and B.

It may be shown that such a travelling wave has exactly the effect of slowing
down the cell clocks’ oscillations along the direction of propagation. In fact, the
last differential equation can be further transformed, by making the substitution
W (x, t) = ∇θ(x, t) and taking the derivative with respect to x , thus obtaining the
new equation:

∂W

∂t
+ 2B̂(W∇W ) = Â∇2W (11.31)

This is called the advection-diffusion equation, which has a number of applica-
tions in physics and engineering. Notably, it has a traveling-wave solution with wave
velocity v = √

ωB, which implies that in this model the clock and wavefront are not
two separate entities but, rather, the wavefront represents itself a gradient in clock
phase. Ahead of the wave (i.e., toward the posterior end) the solution is θ(t) = ωt : all
cells oscillate in phase at the same frequency. Behind the wave, the solution is space-
dependent and time-independent, θ(x) = x

√
ω/B; by observing that the phase must

be defined modulo 2π , the solution in this region displays periodic maxima (to be
identified with the embryo somites) spaced by 2π

√
B/ω (Fig. 11.23, right). More-

over, the local oscillator’s frequency varies in space, from zero at the anterior end to
the maximum ω at the posterior end (Fig. 11.23, left). With such a model, the authors
were able to reproduce the variation in the number and spacing of somites across
different species, from the zebrafish, to the mouse, chicken and snake. (However,
the model also predicts that the somite size should be proportional to the square-
root of the period T , and this seems to be in contradiction with some of the known
experimental data.)

Clearly,muchwork remains yet to be done, for example in exploring the role of the
mechanical stresses induced by the process of somite growth and separation, some-
thing that is totally neglected by purely “biochemical” models like the ones exposed
in this Section. A relevant contribution to the emerging periodicity of segmented
substructures should also result from some kind of mechanical self-organisation, as

Fig. 11.23 Numerical solutions of the revisited c–w model. Left Variation of the oscillation fre-
quencyΩ and period T across the passing wavefront (y = 0 is the center of the wave). Right Spatial
variation of the phase field at times t = 0 and t = 40 min, with parameters adjusted for the zebrafish
embryo. [From Ref. [10], adapted w. permission]
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observed in the examples of strain localisation instability. This latter phenomenon
has been shown to be at the origin of periodic patterns in a variety of situations,
from fracture fronts in materials, to slip and shear bands in solids, to the periodic
fluctuations in the flow of granular materials, to name just a few.

Mechanical forces are chiefly present in the embryo development, beginning with
the invagination of the gastrula. If the quantification of the forces involved in such
delicate processes is very difficult, new experimental techniques have recently been
developed to infer mechanical forces indirectly. For example, oil droplets with flu-
orescent coatings can be injected in the growing tissues, and the deformation that
occurs to the droplets as a result of tensile or compressive forces in the surrounding
can bemonitored byfluorescencemicroscopy. Such techniques, for example, allowed
to demonstrate key differences in the way gastrulation occurs, by comparing higher
vertebrates and less evolved animals [11–13].

11.7 Phyllotaxis, The Spacing of Leaves

Unlike animals, which generally have to contend with a body plan which is fixed
at birth, plants can continue to develop new organs and elaborate their body plan
throughout their life. A beautiful example of a nearly regular and periodic patterns
is the spacing of leaves, called phyllotaxis. Such observations had been fascinating
philosophers and scientists as far back as Theophrastus, with his Historia plantarum
in the III century BC,8 and Plinius, with his Naturalis historia in the I century.
LeonardoDaVinci in themid-XVI century described the spiral patterns of plants, and
JohannesKepler in the beginning of theXVII centurywas likely the first to conjecture
that Fibonacci numberswere somehow involved in the structure and growth of plants.
About 1836, the Franco-German botanist Wilhelm Philippe Schimper observed that
after some number of complete turns around the stem of a plant, another leaf would
lie almost directly above the first. He gave the name of divergence angle to the
number of turns divided by the number of leaves in a cycle. The brothers Auguste
and Louis Bravais (the first was the famous crystallographer, the second a physician
passionate of botany) observed that this angle is in most plants close to 2π/τ radians,
or 137.5◦, where τ = (1 + √

5)/2, is the Sectio aurea, or “golden mean”.
Such regularities, or near-regularities, are indeed commonplace in the plants’

world. For example, the stalks or florets of a plant lie along intersecting spirals running
clockwise and counter-clockwise. In a famous 1953 paper, the British-Canadian
geometer and musician Harold Coxeter described the arrangement of scales on the
surface of the pineapple fruit in terms of families of intersecting spirals [14]. Actually,
what we call pineapple fruit is the result of the progressive fusion of many flowers,
germinating from a common stem and growing on top of each other, over a long

8The ancient greek title is�er… futw̃n istor…a, the latin title is that of the first translation published
in 1483 by T. Gaza, a Greek refugee in Italy, who worked on an original manuscript that has since
been lost.



516 11 Shapes of the Living

Fig. 11.24 The surface of a pineapple opened up into a periodic cylinder. The red, blue and yellow
arrows indicate the three families of spirals. [From Ref. [15], adapted w. permission]

time ranging from several months to about 3years. Figure11.24 shows the original
drawing of Coxeter, with the scales of the fruit surface numbered according to their
position along the vertical axis, therefore relative to the time of successive appearance
of each flower making up the final fruit. Starting from the position 0, three families of
spirals can be identified: the red one starts with position 5, and five such spirals wind
counter-clockwise around the fruit (they can be seen between the two red arrows);
the yellow one starts with position 13, and thirteen such counter-clockwise spirals
can be counted between the two yellow arrows; and the blue family, starting with
position 8 and running clockwise in eight repeats. The 5, 8 and 13 positions are
all tangent to the 0. Coxeter noticed that the three numbers belong to the famous
Fibonacci series:

1, 2, 3, 5, 8, 13, 21, ...

in which each number is the sum of the preceding two. Such a series, which the
medieval Italian mathematician Leonardo Fibonacci described in his Liber abaci of
1202, but which was already known to Indian mathematicians from centuries before,
is also intimately related to the goldenmean, since the ratio between any two adjacent
numbers in the series represent increasingly good approximations to τ .

Similar spiral arrangements are widespread in fruits and flowers, such as the
arrangement of scales in pine cones, the surface of douglas fir branches, thistle
inflorescences, sunflower heads, cactus ridges, and so on. The parallel sequences of
equivalent spirals are called parastychies, and their number is often one from the
Fibonacci series. Many other such regularities, and more often pseudo-regularities,
can be discovered among plants, probably owing to the more static structures of the
almost immobile vegetables, when compared to the dynamical structures of moving
animals. For example, by looking at the stalks of a celery in cross section, some have
observed that the (approximate) projection of the (approximate) centre of mass of
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each successive stalk n is placed at a position that (approximately) corresponds to the
spacing of the points 2πn/τ on the unit circle. Such elegant calculation about a very
vaguely defined stalk’s centre of mass, leads such curious observers to claims that
“stalks are optimally spaced”, and “the golden-mean angles ensure that successive
stalks are inserted where they have most room”.

Both mathematicians and laymen are fascinated by these recurrent numerical
patterns, which in practice are often only approximate, and quite less stringent than
one would love to see. This could be dubbed as a very typical case of Platonism in
science, in that the beauty of an idea takes over its scientific basis, in some extreme
cases up to the point of forcing will against evidence. However, even if willing to
accept the “regularity” and “beauty” of such patterns as an observational evidence,
the really big, and even more interesting question, is: what are the physical, chemical
and biological origins of such patterns?

There are currently two major approaches for the explanation of phyllotaxis,
both put forward at the beginning of the XX century, and still being more or less
actively pursued. A first approach supposes that leaf primordia are formed at the “first
available space” [17, 18]. Such model, complemented by I. Adler’s idea of a contact
pressure providing a physical basis to the observation of space-filling patterns, was
formalised in a “fundamental theorem of phyllotaxis” that should enable to recognise
and classify patterns into mathematical objects.

However, many experiments involving surgical intervention, or treatment with
plant hormones, appear to support instead a second approach, which assumes a field
of inhibition around each existing primordium, such that new primordia should form
where the total inhibitory influence is least [19]. This idea, outlined half a century
before Turing’s seminal work on morphogens, exactly summarises the behaviour of
the activator-inhibitor model that was discussed in the preceding Section. Actually,
in the actuator-inhibitor (a–h) model new concentration peaks can appear between
existing peaks at sites where the inhibitor concentration is lowest, and several cells
can start the production of the chemical activator. The emerging new peak gets
sharper, since also the inhibitor starts being produced right after by all these cells,
the reaction-diffusion competition starts, and only the best-located group (a or h)
will win. Eventually, the resulting new maximum will have the same size and shape
as the others, and will be surrounded by its own inhibitory field, as shown in the
numerical example of Fig. 11.20b.

The a–h model has been used by H. Meinhardt in computer simulations of a
growing shoot, approximated as a cylinder (Fig. 11.25). In the simulation, cells are
doubled at fixed time intervals at the upper end of the cylinder, with a random
fluctuation determining the location of the first maximum. This gives the position
of a first leaf, and produces an inhibitor field that blocks the formation of other
leaves in the immediate neighbourhood. After further growth, the next maximum
appears, in this case on the opposite side of the cylinder, and so on, originating the
alternate pattern. Depending on the detailed values of the model parameters, various
other leaf patterns can emerge. The spiral (or decussate) pattern can be formed if the
diameter of the stem is larger than the diffusion range of the inhibitor, especially if an
inhibitory influence from the apex prevents new centres from arising near the apex.



518 11 Shapes of the Living

Fig. 11.25 The regular spacing of the concentration peaks of the “activator” provides a model
for phyllotaxis. Above In the steps (1–4) a growing shoot is computer simulated, as a cylinder at
whose end cells can double at a given rate. Maxima are nucleated by random fluctuations, and start
producing competing activator and inhibitor signals. Depending on the values of the parameters,
(4) alternate, (5) spiral, or (6) opposite arrangements of activator peaks are formed, which originate
different leaf distributions along the growing stem. [Public-domain [16], w. permission.] Below
Examples of alternate, spiral, opposite, whorled leaf arrangements

On the other hand, an opposite arrangement of activator maxima can be formed,
if the growth is fast enough so that cells have some memory that their ancestors
were originally activated, or if the diffusion of the activator is facilitated in the axial
direction.

11.7.1 Getting Away from Fractions

The spiral arrangement of leaves and inflorescences, and the Fibonacci series that
invariably appears in such cases, can as well be explained on the basis of models of
lateral inhibition with the proper geometrical constraints.

Going into a spiral pattern becomes somewhat obvious, when you are a leaf and
must be born out of a central stem. To avoid crowding, leaves and flowers must
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Fig. 11.26 Spirals produced by putting seeds about a central stalk, with the divergence angles
indicated below each figure. Circles of increasing radius are drawn about the central axis to render
visible the successive positions of the seeds. In the row above, a rational angle and two irrational
values are shown. In the row below, the central panel shows the result of using the golden ratio τ

as the divergence angle, while the left and right panels show the effect of using values just slightly
below or above τ . [A Java applet to generate these figures can be freely downloaded at www.
mathsisfun.com, maintained by Rod Pierce.]

necessarily sprout at some angle from the preceding ones. If this angle is nearly
constant, which roughly amounts to say that the time between the birth of each leaf
or flower is constant, a few spirals will result when looking from above along the
stem axis. This is just the previously introduced ‘divergence’ angle, whose value
may be obtained from the requirement of optimally filling the space, while leaving
as little voids as possible. If the angle is some fraction of 2π , e.g. 3/4 or 11/20, after
some turns a leaf will fall exactly on top of a preceding one: for 3/4 just the fifth leaf
will lie exactly on top of the first one, and for 11/20 one has to wait 20 leaves before
repeating the first one, but this will invariably happen. Therefore, some empty space
will start forming between the spiralling pattern for any rational fraction of 2π , as
shown by the first drawing in Fig. 11.26 for 11/20, in which case 20 spirals can be
counted, and the 20 columns clearly indicate the 20-fold repetitive value of the angle.
An irrational number may then seem a better choice, then. However, many irrational

www.mathsisfun.com
www.mathsisfun.com
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numbers are very close to a fraction, for example
√
2 is very close to 17/12, and

√
3

to 26/15. As a result, nests with 12 and 15 spirals, respectively, will result (see the
two other drawings in the top row of the Figure), which will start displaying slightly
distorted columns at increasingly larger values of the radius (the seeds in Fig. 11.26
are plotted on circles of increasing radius, to make visible the stacking of successive
leaves or seeds). The irrational spiral nests are definitely denser than the first rational
value, but lots of free space are nevertheless visible between the spiral pattern.

The lower row of the figure shows that if a value of the divergence angle equal
to τ = 1+√

5
2 = 1.6180339... is used, the spirals are indeed the densest possible (the

slight residual separation in the drawing comes from the fact that a finite approxima-
tion to τ must be practically used in the computer program). For values just a little
below or above τ , shown in the left and right drawings, the spirals are again rather
widely spaced. This property of the number τ is connected to its quality of being
the “worst” irrational number possible, namely the one that is farther away than any
other from whatever rational fraction. What this tells us is that a structure growing
about a central stalk would “choose” with high probability a divergence angle of τ ,
to maximise the space-filling density. However, spirals would occur also for values
different from τ , although less dense and in numbers different from the Fibonacci
series.

But then, can’t we give a more physically-grounded reason for the appearance of
Fibonacci numbers, besides the purely geometrical constraint of space filling?

In a simplified representation, let us imagine a stalk with a first leaf born at angle
0◦. If we assume some inhibitor field spreading around the just born leaf, the most
probable position of the next leaf should be at 180◦. Now, if the inhibitory field from
the first leaf is exhausted before that from second leaf takes on, the third leaf will
just position as much as possible away from the second, therefore it will fit on top
of the first. By following the same argument, the fourth will fit on top on the second,
and so on, and a alternate (also called dystichous) pattern emerges.

However, if the inhibitor field from previously formed leaves has a somewhat
longer lifetime, when leaf 3 starts, leaf 1 also repels it, although less strongly than
leaf 2, as shown in Fig. 11.27a. If only one leaf at a time can be formed, the symmetry
must be broken. We may take that leaf 3 will sprout at a somewhat random position,
however closer to leaf 1 than to 2. Then, let us consider leaf 4: leaf 3 provides
the strongest repulsive field, followed by 2 and then by 1. If a kind of exponential
attenuation of the inhibitor intensity can be assumed, and the time lag between each
new leaf birth is approximately constant, a stationary state will be attained after some
number of leaves (Fig. 11.27b), such that the effective inhibition felt by the n-th leaf
results only from a few of the preceding leaves, for example n − 1, n − 2, n − 3. In
a linear approximation, the relative intensities φi, j of the inhibitory fields from leaf
j to leaf i should follow the proportionality law:

φn,n−1 : φn,n−2 = φn,n−2 : φn,n−3 (11.32)
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Fig. 11.27 Patterns of successive “leaves” growing about a central stalk, in a diffusion-inhibitor
model. a The initial phase of growth: leaf 2 grows opposite to 1, then leaf 3 grows away from 2 and
1, with the inhibition from 2 being stronger than 1; leaf 4 grows away from 3 and 2, the inhibition
from 1 becoming negligible. b The stationary phase of growth: the angles (arcs of circle) between
any leaves n, n + 1 are constant

By looking at Fig. 11.27b, the stationary state means that the angular difference
between subsequent position n, n − 1 is constant modulo 2π . Two relationships
between pairs of successive angles can be written as φn,n−2 = 2π − 2φn,n−1, and
φn,n−3 = −(2π − 3φn,n−1). By substituting such expressions in the above propor-
tionality law, we get:

φ2
n,n−1 − 3φn,n−1(2π) + (2π)2 = 0 (11.33)

The solution of the above equation is φ2
n,n−1 = (3 − √

5)π , that is 137◦5, the
“golden” angle. Clearly this is a ready-to-work analysis, in which the conditions
are adjusted so as to show that within “reasonable” constraints, the golden-ratio
spacing should naturally arise because of the physicallymotivated diffusion-inhibitor
underlying dynamics. But even if the conditions are relaxed, the presence of the
inhibitor field, coupled to the geometrical constraint of the growth about a central axis
typical ofmany plant structures, would force the space filling into values approaching
the golden-ratio maximal density.

This was proved in a series of experiments of beautiful simplicity carried out
in 1992 by Stéphane Douady and Yves Couder, then both at the Ecole Normale in
Paris [20]. In the experiment, magnetic droplets are dipped at the center of an oil-
covered surface. The circular border of the surface is magnetised, such that droplets
separated by a distance d repel each other, with a force proportional to d−4, and
stream toward the outer border at a steady velocity v limited by the viscosity of the
oil. The physics of the process is governed by the single nondimensional parameter
G = vT/r , product of the velocity times the dripping period T , and divided by the
radius r of the circle. Figure11.28 shows the results of the experiment for values
of G ranging from 1 down to 0.15.A large value of G means that the system is
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Fig. 11.28 Photographs of experimental patterns of magnetic droplets falling on a oil-covered sur-
face. The outer border is magnetised and slowly attracts the droplets falling at the center, numbered
according to the progressive order of deposition. The three photos, from left to right, correspond to
values of the nondimensional parameter G = 1., 0.7, 0.15. Correspondingly, the “divergence angle”
between successive pairs is �180◦, 150◦, 139◦. [From Ref. [20], repr. w. permission]

dominated by the radial velocity: droplets move quickly away from each other along
opposite directions, simulating the case of a very short-lived inhibitor repulsive field.
For smaller values of G the mutual repulsion is increasingly long-lived; at G � 0.7,
droplets break the 180◦ symmetry and start to take a spiral pattern; at even smaller
values G � 0.15, more spirals are formed and the divergence angle increasingly
approaches the “golden” value of 137◦5. In the same experiments, it was shown
that the convergence to Fibonacci-like patterns is independent of the value of the
repulsive force, in that also forces different from the d−4 law will end up in the same
qualitative results.

Such a kind of findings provide a clear demonstration that the growth process from
a central stem, typical of the plant world, may approach the Fibonacci-like patterns
because of spontaneous self-organisation into structures that satisfy the best space-
filling constraints. It is left to the reader’s imagination to consider whether this is still
a magical or mysterious coincidence, or rather one of the many emergent phenomena
that arise everywhere in nature, because of the cooperative action of many agents.
However, the space filling is one but not the only requirement that plants try to satisfy
during their growth. Other concurrent factors could be the availability of sunlight,
the proximity of other plants, the presence of obstacles that direct the water flow
asymmetrically about the stalk, and many others. As a result, such regularities are
observed only on average. The next time you go for a walk in the garden, it will be a
pleasant challenge trying to find howmany flowers respect the Fibonacci numbers of
their petals... but take into account that many petals and leafs could have been lost,
maybe because of wind, rain, insects, or of other walkers less attentive than you!
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Problems

11.1 Water walkers
Consider an aquatic hexapod insect, with a spherical body of mass M and diameter
D, and six legs of negligible mass and length L . What is the criterion to keep the
insect afloat on the water surface?

11.2 Climbing the tree
Knowing that the latent heat of evaporation of water is 44 kJ/mol, (a) show that
water molecules climbing the interior of a tree by capillarity do not violate the
second principle of thermodynamics; (b) what capillary size would be needed to this
end?

11.3 Revolving parabola
Draw the section of the parabola y = 1 + 1

2 (x − 2)2 in the interval x ∈ [1, 4], and
the surface of revolution obtained by rotating the section about the x axis. Calculate
the area of the surface.

11.4 Morphing snails
You want to compare the growth rates of two species of snails. By graphic analy-
sis, you determine that the two snail shells are described by the parametric equations:

snail A : (x = 7t sin t, y = 7t cos t), for t ∈ [0, 3π + 2];
snail B : (x = t2

2 sin t, y = t2

2 cos t), for t ∈ [0, 4π + 1].

By assuming that they grew at the same rate, which one is older?

11.5 Packing problems
(a) In this chapter it was shown that for an infinite arrangement of circles in the plane,
the hexagonal packing gives the highest density, with the area of the circles covering
about 91% of the total. Calculate the coverage ratio for the packing of 1, 2, 3, 4 or 5
circles in a square of finite size. (b) Show that the best packing for spheres in infinite
3D space is by stacking 2D packed layers on top of each other, such that the spheres
in each top layer coincide with the centre of three spheres in each lower layer (the
so-called face-centered close-packing) and calculate the volume filling ratio in this
case. How does it compare with the regular packing of one sphere in each unit cube?

11.6 Cell migration and gradients
Tissues are normally cultivated in a homogeneous blood-plasma gel. A small sample
of spleen of a chicken embryo is placed in the position (x = 0, y = 3) of a Petri
dish (centre of the grey area in the figure), and left to incubation at 39 ◦C for 10h,
after which the culture is fixed in acetone, and the cells can be observed under a
microscope. The image below shows that cells from the spleen have migrated, but
not in symmetric radial directions as it could be expected. By graphical analysis,
find a transformation map (x → x ′, y → y′) that can bring the image to a circular
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symmetry. What can you deduce from such transformation, about the effects of the
driving forces operating in cell migration?

11.7 Human growth
The figure below (from Ref. [21], public domain) represents the shape of human
body, from about the 5th month of foetal stage to maturity, scaled in the vertical
direction so as to get unit height at any age (scale below is in years). Try to deduce
growth laws for the different parts of the body as a function of age. (For this problem,
you may want to take an enlarged photocopy of this page.)

(*) The terms of the Creative Commons Attribution-ShareAlike 3.0 and 4.0 International License

(http://creativecommons.org/licenses/by-sa/3.0/, http://creativecommons.org/licenses/by-sa/4.0/)
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Chapter 12
The Hidden Mathematics of Living Systems

Abstract Albert Einstein once wondered: How can it be that mathematics, being
after all a product of human thought and independent of experience, is so admirably
appropriate to the objects of reality? Mathematics is a humanised way of describing
patterns and regularities we see in the universe. We formulate such regularities with
equations, scaling laws, invariance principles that, as long as they remain sufficiently
robust on the scale of human perception, bring a sense of order to our understanding.
This chapter deals with the mathematical modelling of biological species in their
environment, or ecosystems. It may be surprising that the same scaling laws and
similar organising principles could apply to groups of cells, single animals, and
entire populations. However, this also points out the crudeness and approximation
of such treatments. Nature seems to make an habit of surprising us: it always proves
to be a lot stranger than we give it credit for.

12.1 Changing Size Without Changing Shape

By looking around the natural environment, it is evident that both plants and animals
of similar species vary quite a lot more than us humans in their sizes, notably as a
function of certain genetic characters. A Chihuahua is much a smaller dog than a
Saint-Bernard, which however is as well a dog: the couple could have a baby-dog,
although the result might be quite weird. Moreover, sizes can vary as a function of
environmental characters, for example, the amount and quality of food during the
early development phases. However, in a taxonomic context size is never considered
as an important factor, since it is deemed not useful to determine the ancestry and
relationships among species. What this also implies, is that the size can be adjusted
according to natural selection, if some extreme conditions would favour a race of
giant, or of dwarfs. In nature it is frequent to observe a same body shape with quite
extreme variations in size, which is often an indication of a common ancestry. For
example, whales and dolphins appear as two representatives of a same evolutionary
design, although varying by factors of about 60 in size and ∼2,000 in mass.

Nevertheless, extreme variations in size can have interesting consequences, as
Gulliver discovered in his Travels into the Several Remote Nations of the World. A
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surgeon and captain, but definitely not a physicist, besides marvelling at the unusual
size variation of the inhabitants of those fabulous countries, he could have attempted a
definitelymore systematic study of functional variations as a function of the variation
in animal body size, by using the method of scaling analysis.

To illustrate the basic principles of scaling analysis, we can compare two cubes,
the one with side of 2 units and the other with side of 4 units. The surface of each
face is 22 = 4 for the first cube, and 42 = 16 for the second one; their volumes
are 23 = 8 and 43 = 64, respectively. However, the ratio of their surfaces is 4, in
any unit of length we wish to measure it, and the ratio of their volumes is 8, in any
unit. Scaling analysis is not concerned with units, it looks for relationships that hold
besides the particular numerical values. Moreover, we may note that the size of the
surfaces of the cubes is proportional to the square of their side lengths, and the size
of their volumes is proportional to the cube of their sides. In the notation of scaling
analysis, we would write:

S ∝ L2

V ∝ L3 (12.1)

We could actually look at these expressions as dimensional relationships, as we
did in Chap.11, meaning that the dimensions of a surface are the square of a length,
and the dimensions of the volume are the third power of a length. However, the
implications of the two equations are more far-reaching. They also express relations
between the numerical values associated with the quantities ‘surface’ and ‘volume’.
Moreover, the relations work independently on the shape of the object. If we consider
the same quantities for two spheres, with radius 2 and 4 in whatever units, we would
find the same expressions.

What the relations (12.1) above tell us, is that by modifying the size of an object
by a common scaling factor, we could deduce the length, surface and volume of
all its parts. Consider for example a complex body formed by joining together n
cubes of different sizes into some shape; each cube has 12 equal sides of length ai ,
i = 1, . . . , n, 6 equal faces of area a2i , and volume a3i . Suppose to scale one of the
lengths a j by a factor λ, such that a′

j = λa j , and that the same scaling is applied to
the entire body. Then, the faces of any of the n cubes have the new surface λ2a2i , and
each cube has the new volume λ3a3i .

The example may look somewhat banal. However, if the animals were to follow
such a perfect scaling we could get, for example, the length of the intestines, or the
amount of blood circulating in the veins of any dog, by scaling. To get such figures,
we should firstly measure the length L of the intestines and the volume of blood V
in one dog of a given size; then, by taking the ratio λ between, e.g., their nose-to-tail
length, the size of the intestines of any other dog could be obtained by multiplying
L by λ, or the blood volume by multiplying V by λ3. As weird as it may seem, such
a method works more often than one could think.

http://dx.doi.org/10.1007/978-3-319-30647-6_11
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12.1.1 Allometry and Scaling

The hypothetical notion underlying the application of a scaling law to a group of
plants or animals, geometrically similar in shape but largely varying in their sizes,
may share the same similarity in their basic vital functions, their metabolic rates, their
relationship with a similar environment, goes under the name of allometry (from
the Greek words –alloj and metršin, “to measure others”). We used already similar
scaling arguments, for example in Chap.11 when discussing the difference between
surface and volume forces. Already in 1883, the German physiologist Max Rubner
had used this concept, when studying animal metabolism and the heat dissipated by
animals with bodies of different sizes, and D’Arcy Thompson introduced the idea
in his 1905 book On growth and form, which was also amply cited in the preceding
Chapter. The general relationship of allometry for a quantity y supposed to change
as a function of the size scaling of another quantity x , is y = αxβ , where α is called
the scaling coefficient and β the scaling exponent. (Note that for β = 1 the scaling
relation is linear, and the allometry becomes a simple isometry.)

We could take as an example a family of animals all living in very similar envi-
ronment, which should have been subject to a similar kind of evolutionary pressure
to adapt to such an environment. By taking again inspiration from a scientific work
due to Pennicuick [1], we will look at a small fleet of oceanic birds from the order of
Procellariiformes, defined as “pelagic” birds since they feed in the open sea instead
of coming back to shore. These birds are represented by four families and more
than 130 species distributed all over the Earth, with a special diversity concentrated
around New Zealand. One may search for a relationship between the size of their
wings, or wingspan, and the sizes or volumes of their bodies. Indeed, if measuring
the volume of an animal may be quite difficult, measuring its mass is in turn a much
simpler task. Then, by assuming that the average density ρ of the bodymaterials does
not change significantly upon changing the body size, we can rely on a mass-length
scaling law as:

M = ρV ∝ L3 (12.2)

In practice, it is more useful to invert this scaling relation as:

L ∝ M1/3 (12.3)

The data of mass and wingspan for 11 birds of this order, covering a wide range
of mass ratios, between 1 and 400, and linear dimensions varying by more than a
factor 10, show that a good linearity exists between the wingspan ratio W (measure
of the end-to-end distance of their fully spread wings), and their mass ratio. It is
appropriate to express these numbers as ratios with respect to the length and mass
of a reference animal, since they will be plotted in a log-log scale, and it is always
good to remember that a logarithm must have a non-dimensional, pure number as an
argument. If the relation between wingspan and mass were of the type W = αM1/3,
the linear fit on the log-log diagram should give a slope of exactly 1/3:

http://dx.doi.org/10.1007/978-3-319-30647-6_11
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lnW = lnα + 1
3 lnM (12.4)

Any deviation from the 1/3 exponent represent a deviation from the assumed
scaling law. The wingspan plot in Fig. 12.1 has a slope of 0.370, somewhat larger
than the 0.333 expected. The standard deviation of the straight line fit is 0.0142, with
a confidence interval of 5%. Is this a significant deviation? If yes, this would mean
that the larger birds in the order have the tendency to develop wings proportionally
larger than the smaller ones. As a check, we could look at a similar relationship
between the wing surface ratio and the mass ratio, S = α′M2/3 or:

ln S = lnα′ + 2
3 lnM (12.5)

From the plot in Fig. 12.1 a slope of 0.627 is found, slightly smaller than the 0.667
expected; the standard deviation is 0.0180. If we take the statistics by their face value,
the necessary conclusion is that the geometric scaling law applies quite well in the
case of these oceanic birds, with only a slight tendency for the larger birds to increase
their wing size compared to the smaller members of the order.

However, as our guide Pennicuick suggests, if we look at the shape of the wings
it can be easily seen that they do not look too much similar by spanning across the
range of birds of increasing size (see Fig. 12.1c). By rescaling the silhouettes of the
birds with their wings spread open, such that they have all the same unit width, it can
be seen that the shape of the wings becomes thinner as the mass of the bird increases
(from the 40g of the Wilson’s petrel, to the 9kg of the wandering albatross).

Therefore, the two scaling laws hold quite well for the wingspan and wing surface
separately, but do not seem to tell the whole story. To have a further check of this
discrepancy, we could combine the two quantities into a third variable, the aspect
ratio Q (inwhich thewingspan appears squared, to form a non-dimensional number):

Fig. 12.1 a Log-log scaling plot of the wingspan and wing area versus body mass for 11 birds of
the order of Procellariiformes; the slope of the straight line fit for the wingspan is 0.370, with a
standard deviation of 0.0142; and for the wing area 0.627, with a standard deviation of 0.018. b
Silhouettes from the same group of birds, rescaled so that they have all the same unit width, to show
the importance of the aspect ratio. [Image (b) from Ref. [1], adapted w. permission.]
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Q = W 2

S
(12.6)

This quantity is in fact the ratio between two ratios. It quantifies the “amount of
perimeter” necessary to delimit a given surface, with an increased role of the numer-
ator, in whichW appears squared. A very elongated surface with a given area would
have a quite large value of Q, while another more rounded surface with the same area
would have a smaller value of Q; the minimum of Q is for a circular surface, which
has the smallest perimeter for a given area. Given that W ∝ L1/3 and S ∝ L2/3, if
the geometric scaling hypothesis is valid the aspect ratio Q should be independent
on the mass. Instead, the log-log plot of Q versus M gives a slightly inclined straight
line, with a slope of 0.116 and a standard deviation of 0.011, that is a significant
deviation from the slope zero. This is a strong indication that the geometric scaling
alone in this case fails to give a meaningful representation of the data from various
birds. Wings aerodynamics must have its word.

12.2 Scaling Laws for Animal Locomotion

The English physiologist Archibald V. Hill, who had been awarded the Nobel prize
in 1922 for his understanding of how heat and work are generated in animal mus-
cles, used in the 1950s the concepts of scaling analysis in a study on the animal
locomotion, which should later become a classic. He started from the observation
that the mechanical work produced by a muscle while shortening, should be equal to
the force developed multiplied by the muscle shortening, ΔL . As it was noticed in
Chap.10, the stress exerted by a muscle is an intrinsic property of the muscle tissue,
therefore the force is anyway proportional to the muscle cross section; on the other
hand, the shortening for a given deformation rate ε̇ is proportional to the muscle
length, therefore the mechanical work scales with the length as:

W = FΔL ∝ L3 (12.7)

in other words, it is W ∝ M .
Already on the basis of such a modest result, Hill could consider the following

problem. Let us imagine that a series of geometrically similar animalsmake a vertical
jump, each one using themaximumofmechanicalwork it can extract from itsmuscles
during an individual contraction. What scaling law should the jump height follow?
By supposing that all the mechanical work turns into gravitational potential energy,
each animal with mass M should attain a height h such that:

W = Mgh (12.8)

http://dx.doi.org/10.1007/978-3-319-30647-6_10
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However, since W ∝ M , Hill came to a rather surprising result: for animals
geometrically similar, the jump height is independent on the mass of the animal.
This is sometimes called the “First Hill’s law of animal locomotion”. According to
this ‘law’, a dog and a horse should jump to the same height, since their body shapes
are enough similar: the smaller animal has a smaller muscular mass, which in turn
has to lift a smaller body mass, and vice versa. This observation apparently justifies
the independence on themass. However, upon direct measurement, jump heights turn
out to be quite different from one animal to another. For example, a 200kg antelope
jumps to about 2.5m height (that is about 1.4 times its size), while a 2.5kg cat jumps
to a maximum of about 1.5 m (∼4 times its size), and the small mammal galago to
a surprising 2.25 m, more than 10 times its size.

In fact, it is a consequence of Newton’s laws that in order to reach a same height,
the animals should take off ground with the same initial speed, since the gravity
acceleration is always the same (and we are neglecting the air resistance). Because
the take-off speed is obtained by quickly relaxing the leg’s (and other body’s) mus-
cles from their maximally compressed configuration, not just quickly but how much
quickly is the key. A smaller animal has proportionally shorter limbs, therefore to
attain the same initial velocity of a larger animal it must adopt a proportionally faster
deformation rate, since the muscle frequency v ∝ ε̇.

To what extent such relationships are verified in practice is not easily assessed,
and conflicting data have often generated sharp controversies between scientists.
If we use a typical deformation of ε ∼ 0.25, which is proper to the sarcomere
structure, and therefore a quite well conserved value across the evolution of largely
different animal species, knowledge of the take-off time should give the take-off
speed. Remaining with the previous example, such time values have been recorded
to be about 250 ms for the cat, about 100 ms for the galago, and about 430 ms
for the antelope. By comparing the antelope and the cat, the ratio of their jump
heights looks indeed proportional to the ratio of the respective take-off velocities,
indeed growing with the mass, however quite far from a M−1 scaling law. But if
we compare the galago and the antelope, jumping to nearly the same height, their
velocity ratio is quite far from ∼1. The main reason behind such incoherencies is
the assumption that all muscles participating to the jump contract at the same rate,
which may instead change very substantially depending on the type of animal and
its metabolic requirements. Moreover, the geometric similarity may be a too vague
and superficial concept: while it is true that a cat and an antelope both have four
legs around an oblong body, many important details are different, such as the neck
length, the distribution of mass between fore and hindlimbs, the relative proportion
of internal organs (antelope, as a ruminant, has three more stomachs than a cat);
frogs and toads may appear as geometrically very similar animals, however frogs
can jump to longer distances than toads of similar mass, because their hind legs are
much longer.
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12.2.1 Scaling Law for the Characteristic Frequencies

Hill seems to have been the first to understand that the contraction frequency of
muscles is slower in large sized animals than in smaller ones, and that this difference
is fundamental in determining the power their muscles can supply, this latter being
in turn correlated to the rate at which fuel and oxygen are consumed in the animal
body (see Chap. 4).

We already demonstrated in the preceding Chap.10 by simple analogy with an
ideal pendulum, that the walking frequency is inversely proportional to the square
root of the length of the walking leg. By following a different reasoning, Hill tried
to find a law for the maximum oscillation frequency of a limb, by calculating the
angular acceleration produced by a tendon actuating an angular momentum about
the leg joint [2]. Take the strength of the collagen molecules of the tendon as the
upper limit of the applicable stress σy , beyond which the tendon with cross section
s would start yielding, the angular momentum M is written as the product of the
force Fy = σys by the tendon length b (the lever arm):

M = Fy × b ∝ L3 (12.9)

Newton’s law, F = ma, is also applicable to the equation ofmotion for the angular
movement θ = θ(t), by replacing the force by the angular momentum, the mass by
the moment of inertia J , and the linear acceleration by the angular acceleration ω̇
(with ω = θ̇ the angular velocity):

M = J ω̇ (12.10)

The moment of inertia has dimensions of [M][L2], therefore its scaling with the
length isJ ∝ L5. If we invert Eq. (12.10) for the angular acceleration, it is:

ω̇ = M

J
∝ L−2 (12.11)

After this observation,Hillmovedon to consider the timenecessary for the running
animal leg to cover an angle θ0, starting from θ = 0 with zero angular velocity. The
equation of motion is simply θ(t) = 1

2 ω̇t
2, from which it is found the time as:

t ∝ ω̇−1/2 ∝ [L−2]−1/2, i.e. the acceleration time is proportional to the length,
t ∝ L . In the end, the frequency ν (inverse of the time necessary to sweep the angle
from zero to θ0 at each step) should vary as the inverse of L:

ν ∝ L−1 ∝ M−1/3 (12.12)

This result leads to a second interesting generalisation. Consider that the length
of the step, or stride length L p, is the distance between two subsequent steps. The
animal speed u can be defined bymultiplying this characteristic length by thewalking

http://dx.doi.org/10.1007/978-3-319-30647-6_4
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frequency, which according toHill varies as the inverse of the length. Therefore, from
a scaling point of view, it is:

u ∝ L pν ∝ L0 (12.13)

In other words, the maximum speed should be independent on the stride length.
This second, again surprising result is sometimes dubbed as the “Second Hill’s law
of locomotion”. Alexander, in a study published in 1977, measured the maximum
running speeds of ten species of african ungulates, from the gazelle to the giraffe,
with mass ratios ranging from 1 to 50; since bigger animals appear to make longer
strides, but with a slower frequency, it was found that—at least for the maximum
velocity—the so-called second law is verified to a good approximation.

Hill’s discussion of frequency scaling postulates that while running at the maxi-
mum speed, the tendon is loaded to a constant level of stress, in principle the maxi-
mum it can sustain before breaking. This is a purely theoretical statement, since we
know that an overtrained athlete can strain his tendons (beyond σy , with permanent
damage), if themuscular power developed surpasses themechanical strength of other
parts of the body, not equally reinforced. Nevertheless, Hill’s argument is necessary
to identify this concept of “maximum animal speed”, whereas the animal may use a
range of different displacement velocities in its daily life, notably its typical cruising
speed being much below the as-defined maximum speed.

12.2.2 Walkin’ the Dog

In terms of frequency, cruise walking identifies a natural frequency corresponding
to aerobic walking with the minimum effort (and minimum energy consumption),
just enough to maintain the ‘body-pendulum’ oscillation. High-speed running, on
the other hand, defines another natural frequency, in which the animal is forcing its
body parts to extreme movements, often coupled to anaerobic energy consumption.
As it was described in the forced and damped harmonic oscillator (see greybox on
p. 460), an oscillator can be forced to a different frequency from its natural one, but
in that case the force (and mechanical work) necessary grows rapidly. As we saw in
Chap.10.2, Alexander and Jayes showed that for an animal in ‘gravitational’ walk
(when the animal is rather well described as an inverted pendulum, see the discussion
of this work on p. 471), the walking frequency varies as length of the leg to the power
−1/2, in fact the same scaling law that was found for the pendulum. Animals at trot
or fair-slow gallop increase the step frequency and stride length by walking in jumps
on the terminal (distal) segment of the leg, and also in this case the frequency is
found to vary as the length to power −1/2, with a different scaling coefficient.

The exponent −1/2 is definitely different from the exponent −1 of Hill’s law,
which therefore should hold only for the animal running at its maximum speed.
However, from a kinematic point of view, it should be also noted that the leg and
bodymovements involved in the various gaits of the animal are indeed very different.
The gaits of dogs have been traditionally the best studied [3], since the advent of

http://dx.doi.org/10.1007/978-3-319-30647-6_10
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Fig. 12.2 An original photographic plate sequence by Eadweard Muybridge (born Edward James
Muggeridge), showing a typical dog run cycle. Note the very long period of suspension, where all
legs are off the ground, and the harmonic compression and expansion of the back spine. After 1880,
Muybridge, then at the University of Pennsylvania, produced more than 100,000 images of animals
and humans walking and running, thus providing a precious data base of stop-motion pictures of
animal motion. [Public-domain image: E. Muybridge plate 710, Boston Public Library.]

photography in the XIX century, when Muybridge in 1888 was able to show the
stride of a racing greyhound, by using stroboscopic photography (Fig. 12.2).

During thewalk, the dog never has fewer than two feet on the ground (usually three
feet), and occasionally all four feet may be on the ground. The trot is a symmetric
gait produced when the diagonal pairs of legs move almost simultaneously, the dog
usually places two feet on the ground at all times; it is noted that dogs with short body
length and long legs have difficulty trotting, since their hind legs interfere with their
front legs. In the pace the dog moves by swinging the forelimb and hindlimb on one
side while bearing weight on the other side. Finally, the gallop is an asymmetric gait
used for high-speed locomotion. Dogs can use two patterns of gallop: the transverse
gallop, similar to the pattern used by the horse; and the rotary gallop, which seems to
be preferred by the dog and which in the horse is referred to as a crossed-lead gallop.
Notably, a dog can sustain the gallop at two different regimes of speed: a slower
gallop (also known as canter), aerobic and easily sustained over a long period of
time; and a fast, anaerobic gallop.

When the animal begins to gallop, the frequency of the stride remains almost
constant while the animal increases its speed by increasing the stride length. While
the gaits of thewalk and trot seem for themost part to use onlymuscles associatedwith
the legs, the gallop uses muscles of the trunk also, hence the arching and extension
of the back. It has been postulated that, as far as the animal changes gait as its
speed increases, additional elements of the body can be recruited for storage of
elastic energy [4]. Very little energy is stored in elastic elements (see Chap.9) during
walking,while during trotting energy is stored in elastic elements of the limb (tendons
most likely); however, the entire trunk of the body is involved in the elastic storage
of energy during galloping. Large animals seem to have a maximum “whole animal”
efficiency that is nearly three times greater than the maximum efficiency of their
muscles.

http://dx.doi.org/10.1007/978-3-319-30647-6_9
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When the animal has accelerated to its constant peak speed, the mechanics of its
locomotion are similar to those of a bouncing ball: the only energy necessary to keep
the animal “bouncing” is the elastic energynot recovered at each step. Therefore small
amounts of energy are put into the system, thereby giving an overall efficiency that is
higher than what would be obtainable by accounting for the full muscle contraction
and extension at each step. As we described at some length in Chap.9, for a muscle
to use elastic energy, it must first lengthen to develop tension, then quickly shorten
to release the stored elastic energy. Observations suggest that many more muscles
are used as the gait speed increases, and their contraction/extension becomes more
and more partial. On this basis, it can be understood that the scaling laws for cruise
walking and fast running may indeed exhibit quite different scaling exponents.

12.3 Paleontology, Or When Animals Were Huge

For animals capable of different types of locomotion, the maximum frequency must
be obviously higher than their natural cruise frequency. Since the former is found
to scale as L−1 while the latter scales as L−1/2, in a log-log plot of the frequency
versus bodymass (that is in turn proportional to L3), we should find two straight lines
with different slopes, respectively of−1/3 and−1/6, and decreasing upon increasing
mass. In the bi-logarithmic scaling plot shown in Fig. 12.3, the two straight linesmust
cross at some value of the animal mass, Mmax . This is a sort of upper limit for that
animal species for which the ideal plot is being drawn: its members can grow in
size, while their maximum speed decreases faster than the cruise speed, until the two
practically coincide. Since it is not possible for the former to be larger than the latter,
no animal in that species, or in that geometric similarity class, could grow a mass
beyond Mmax .

Fig. 12.3 Bi-logarithmic scaling plot of the walking/running frequency as a function of the body
mass. The natural walking frequency varies as M−1/6, the maximum running frequency as M−1/3.
However, while the first one depends explicitly on the gravity, via g1/2, the second does not. An
increase of the gravity constant, for example, should displace the natural frequency to higher values
(dashed red line), and the upper limit animal mass Mmax should consequently move to smaller
values M ′

http://dx.doi.org/10.1007/978-3-319-30647-6_9
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When an animal species is subject to an evolutionary pressure that pushes them to
increase their bodymass, the onlyway to escape such a limitwould be to substantially
change their body shape, therefore escaping the geometric similarity constraint. For
example, by increasing in a non-proportional way the size of their bone compared to
the fat bodymass; by enlarging the surface of muscle insertion on the bone spines; by
increasing the bone joint size more than the bone thickness; by changing the aspect
ratio of their wings with increasing surface; and so on. However, it should be also
noticed that a substantial transformation of the body shape does not come without a
price in terms of maintaining a good mechanical efficiency, compared to the original
design, as it was noted already by Galileo in his writing about scaling of animal
bones (Fig. 12.4).

An entirely different way to escape the evolutionary pressure would be that of
changing the living environment, or ecological niche. The best example is probably
given by the great marine mammals, or cetaceans, like whales, dolphins and orcas.
These have evolved from terrestrial ancestors, and were forced to go back to the
marine environment in order to support their growth to a larger and larger body
mass, thanks to the Archimedes’ buoyancy force. Many fossils demonstrate this
evolutionary path, from the primitive artiodactyls, which had teeth with triangular
shape, and ankle bones identical to those of fossil proto-whales (Fig. 12.5a, c andRef.
[5]). This transition can be considered quite rapid, on the geological time scale, since
it should have occurred in the space of just about 10 millions years. The terrestrial
origins of cetaceans are evident from several traits: modern whales must come to
the sea surface to inhale fresh air; the bones of their pectoral fins are perfectly
homologous to the upper limbs of terrestrial mammals; and their dorsal movements
undulate in the vertical direction (Fig. 12.5b), more appropriate to animals adapted
to walking on the rigid surface, rather than horizontally as all fishes do.

It was already noted in Chap.10 that the tail beat frequency of fishes should
follow a scaling law of the type ν ∝ L−1, similar to Hill’s law for the maximum
running frequency. If our deduction has some truth to it, this should imply that the
crossing point between the cruise speed and maximum speed in Fig. 12.3 should not
hold for sea-bound animals, and that there should be no upper body mass limit for
fishes of similar body shape. In fact, it may be observed that there seems to be no
mechanical reason for limiting the size of fishes in the sea, and that if any, such a
limit should rather come from physiological factors. For example, the time necessary
for the blood to run from the heart down to the extremities of such a long animal,
thus limiting the oxygen flow; or the time necessary for a nerve pulse to propagate to
such a length.When a whale beaches accidentally, it quickly suffocates under its own
weight because its supporting structure is inadequate, in the absence of buoyancy.1

1It is odd that Galileo, in the Discorsi page immediately following the one shown in Fig. 12.4,
has Simplicius objecting to Salviati that whales seem indeed to have no limits to their size. The
answer provided by Salviati-Galileo, although vaguely making recourse to Archimede’s principle,
is curiously wrong: by looking at the way fishes may float in equilibrium at any desired depth in
water, he assumes that the fish body should have the same density as the water’s, and since its bones
are denser, its flesh should be made of a material lighter than water.

http://dx.doi.org/10.1007/978-3-319-30647-6_10
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In good agreement with the scaling laws established in Chap.10, the natural
walking frequency varies as the square root of the gravity, ν ∝ g1/2. On the other
hand, the maximum Hill’s frequency seems not affected by gravity. Therefore, life
on a planet with a larger value of g should see the natural frequency line to be
shifted towards higher values. As a consequence, the crossing with the maximum
frequency line would occur for lower and lower maximum body mass: a higher
gravity would make smaller the upper mass limit of any species. At the opposite, a
planet with reduced gravity than the Earth’s, could host larger animals. It is nothing
more than a curious coincidence that during two periods of the past Earth’s history,
the Cretaceous (145–66 millions years ago) and the Miocene (23–5.3 millions years
ago), the terrestrial animals were considerably larger in size than in any other era.
The flying animals of those times were even larger than any other recorded form
of life on Earth, the Pterosaurus in the Cretaceous having a wingspan of up to 12
m, and the Argentavis in the Miocene with up to 7 m. The latter bird, in particular,

Fig. 12.4 A page from the Discorsi e dimostrazioni matematiche intorno a due nuove scienze
(Discourses and mathematical demonstrations on two new sciences, Leiden, 1638), by Galileo
Galilei. The text concerns the dialog between the two fictional characters, Simplicius and Salviati,
respectively advocates of the ‘ancient’ and of the ‘new’ scientific construction of mechanics. In the
brief excerpt, Salviati says to Simplicius: “I have just drawn here a bone increased by three times in
length, and so much thicker as to allow this bone to perform a similar function in the larger animal,
as it does in the smaller, and as you can see the bone is disproportionate. From this example, it is
evident that if you were to make a giant from the proportions of a man, you should either choose a
material much more resistant than human bone, or make his body lighter, […] otherwise you should
see him shattered under its own body weight”

http://dx.doi.org/10.1007/978-3-319-30647-6_10
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Fig. 12.5 a The discovery of a fossil of a proto-whale (Dorudon Atrox) in the wadi El-Hitan,
Egyptian desert. b Reconstruction of a skeleton of proto-whale, showing how the dorsal vertical
movement results from the adaptation to swimming of the four members (subsequently only the two
fore members) originally developed for walking. c Genealogical tree of the whales, starting from
terrestrial artiodactyl ancestors, and going through the amphibian Ambulocetus, to the proto-whale
Rhodocetus. [Images © (a) by Christoph Rohner, and (b) from Ref. [6], repr. under CC BY-SA 3.0
licence; (c) from Ref. [5], repr. w. permission, see (*) for terms.]

was very similar to a modern condor, however its humerus was almost twice as
long as the condor’s. If we were to apply the scaling law L ∝ M1/3, its mass
should have been 8 times that of condor, which would have posed this bird enormous
mechanical problems. In fact, already the condor with its huge size is barely capable
of performing a flapping flight, it slowly flaps its wings only for take off, and spends
almost all of its flight time gliding along the wind currents. To support such a mass
with that wingspan, much larger muscles should be necessary, attached to a much
bigger sternum that is has not (yet) been found in the fossil remains.

Do such indications point at a substantial reduction of the gravity constant g on the
Earth, during those geological period? This subject had been advanced in the past,
unfortunately with little scientific support andmuch nonsense. On the other hand, the
idea according to which a large variation of the gravity in the opposite (increasing)
direction could have caused the much debated extinction of dinosaurs at the end of
the Cretaceous, is entirely implausible, since the variation of g should have been of
at least 30% of the current value. The origins of the large animals proliferation, and
some reasons for their extinction, must be searched in other directions, for example
(and not only) by observing that both the late Cretaceous and the Miocene appear to
have been periods of considerably warmer climate.
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12.4 Scaling Laws for Energy Consumption

In Chap.9, the power developed by a muscle was calculated by multiplying the force
exerted times the speed of contraction or, equivalently, the work produced in a cycle
times the contraction frequency, P = Wν. On the other hand, we just saw that scaling
arguments can be attached to both variables, asW ∝ M and ν ∝ M−1/3, from which
it may be deduced that the power should scale with mass as:

P = Wν ∝ M2/3 (12.14)

Interestingly, this leads to deduce that the power expenditure is linked to the body
surface, rather than to the body volume (because of the power 2/3, see Eq. (12.1)),
as one would intuitively suppose. In fact, the already cited Max Rubner formulated a
“surface law ofmetabolism”, bymeasuring oxygen consumption and heat production
in various animals. Hill followed in the footsteps, and in 1950 (see Ref. [7]) proposed
a number of different body surfaces which could be connected with the 2/3 exponent
above, such as: lung surface, controlling the exchanges of oxygen; heart pumping
rate and diameter of the principal veins; skin surface, controlling the dissipation of
heat.

On the other hand, if Hill’s treatment of the maximum running frequency is
followed, the frequency should scale as ν ∝ M−1/6, therefore the power should
scale as:

P = Wν ∝ M · M−1/6 = M5/6 (12.15)

The practical way to measure the energy consumption in animals is to place
them on a treadmill at constant velocity, and measure their consumption of oxygen
while running at different forced speeds. Such measurements, taken on animals of
widely different sizes [8], demonstrate that the preferred velocity scales as M0.2 (to
be compared to the value 1/6), and the stepping frequency scales as M−0.15 (to be
compared to −1/6); moreover, it is concluded that energy consumption is directly
proportional to the muscle mass, just the result that Hill had used as starting point
for his analysis.

Several results are reported in the literature concerning the oxygen consumption
for the basal metabolism, measured on animals at rest (and since these are often
taken in their zoo cages, there could be also an influence from a bad psychological
condition…). The allometric scaling diagram of the energy consumed versus body
mass generally converge to a straight line with slope 3/4. It may be noted that this
value is exactly midway between the 5/6 proposed by Hill, and the 2/3 observed
for the case of cruising locomotion. However, the basal metabolism is difficult to
relate to the power demand during locomotion, let alone during an extreme effort.
Basal consumption is related to all the mechanisms that maintain the organic func-
tions, such as respiration, blood circulation, peripheral nervous system activity, in
the absence of the voluntary muscle movements. This empirical law with exponent
3/4 is ubiquitously found in such metabolism studies, independently on the type of

http://dx.doi.org/10.1007/978-3-319-30647-6_9
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animals studies, however its origins remain obscure (see [9], as well as McMahon
and Schmidt-Nielsen in “Further reading” to Chap.11).

12.4.1 Choosing a Mode of Transport

Among the most common actions of an animal’s life, there is the displacement from
one place to another, usually to look for food sources. The prominent Norwegian-
born physiologist Knut Schmidt Nielsen, defined the quantity cost of transport, Cm ,
as the amount of fuel necessary to displace a unit weight over a unit distance [10].
Since all the measurements made at that time were indirect, based on the oxygen
consumption rate, this new quantity was introduced by defining ametabolic rate, Rm ,
the physiological measure of the total animal energy consumption, which includes
the mechanical energy delivered by the muscles, as well as any other consumption
of chemical energy necessary for the animal survival:

Cm = Rm

uw
(12.16)

In this definition, u is the displacement velocity of the animal, and w is its
weight. The units given by Schmidt-Nielsen for this quantity were calories per gram-
kilometer, as if derived by a ratio of work per unit time, divided by a mass and by a
velocity. As later noted, this quantity could be more properly written as:

Cm = Pm
Mgu

(12.17)

with Pm the total metabolic power. In this way, the numerator and the denominator
have both the same dimensions of [M][L2][T−3], and Cm is therefore a nondimen-
sional number.

In practical terms, the muscle power P could be obtained from physiological
measurements of the total Pm , after subtracting the basal metabolic power, and mul-
tiplying by some ‘conversion efficiency factor’, usually 0.20–0.25. This gives a net
cost of transport, that is the ratio between purely mechanical quantities. The power at
the numerator can be further phrased as the product between an average translational
force T , and the translation velocity, giving:

Cm = Tu

Mgu
= T

Mg
(12.18)

The cost of transport appears therefore as the ratio between the horizontal force
pushing the animal at a given speed, and the vertical force represented by its weight
and, notably, it includes explicitly the gravity constant. It may be also noted that
the reciprocal of this quantity, N = 1/C , is a coefficient well know in aeronautics,
namely the ratio between lift and drag. For both flying machines and animals it is:

http://dx.doi.org/10.1007/978-3-319-30647-6_11
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N = 1

C
= Lift

Drag
(12.19)

For terrestrial and sea animals, N is rather a “performance” index, but it may be
useful to compare the relative efficiency of different methods of transport.

By collecting data of Cm for many animal species, either flying, swimming or
running at widely different speeds, Schmidt-Nielsen deduced a series of interesting
conclusions. Firstly, the ratio between power and speed is not fixed for a given mode
of locomotion, but it can vary as a function of the speed. For flying animals (and
machines) in particular, there exists an optimum flight speed um , for which N has a
maximum, which is themaximum lift that can be obtained for a given drag. The value
of um is independent of the flyer’s weight, area of the wing, or wing loading, but it
mainly depends on the wingspan and the total area of the body surface. A sparrow
has a maximum N around 4, while an albatross nears the value 20. For comparison,
the supersonic liner Concorde at high speed had N = 7.5, and a Boeing 747 is close
to 18.A migratory bird must always fly at this maximum-efficiency speed, in order
to cover the long distance by optimising its energy reserves. Swimming animals, by
contrast, can always run a bit further by saving energy, since their weight is supported
by water at any speed. Surface walking and running are most difficult to deal with,
because of their variability, however the vast amount of experimental information
accumulated allows to deduce that N could be nearly constant, except maybe at the
fastest running speed.

The experimental log-log plot of Cm versus M shows that the cost of transport is
decreasing linearly with the mass, for any mode of locomotion (Fig. 12.6). For the
flying animals, insects are found at the extreme right of the plot, with proportionally
very high cost of transport. With such a poor efficiency in using the available energy,
they must often opt for different modes of transport. In fact, most insects can choose
between flight and walking as a function of their environment.

Fig. 12.6 Energy cost of locomotion for swimming (squares), running (circles), and flying
animals (triangles up for birds, down for insects), as a function of body mass (experimental data
from Ref. [10])
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12.5 Energy Stocks for the Offspring

In ecology, it is often matter of discussing the relations between different organisms
sharing a same environment, in terms of energy budget. We may consider as an
example an herbivore feeding on grass for some time, and extracting free energy
at a given rate. This would be its energy accumulation rate, i.e. a power, with
dimensions of [M][L2][T−3]; at the same time, this animal consumes energy at a
different rate, again a power, which is the sum of all its basal metabolism, plus some
muscle power expenditure. The difference between the two rates represents its power
surplus. Being negative or positive, the power surplus is reflected also in a material
surplus, by taking the balance between the materials entering the body as food, the
amount converted to energy, the amount consumed, and the materials expelled as
waste. An animal living in constant power surplus is also under material surplus,
therefore it will get fat. Once summed over all the organisms of an ecosystem, the
mass balance is an important quantity in ecology (see the next Sect. 12.6).

A positive surplus is not necessarily a negative concept, since it may be instead
useful for the reproduction, during the phases of pregnancy, and of the growth of the
progeny. To ensure the survival of any species, a constant positive surplus is in fact
necessary across the generations. The very same concepts of energy budget, input
and output power, and surplus, can be applied to a single individual as well as to an
entire herd, or to a whole animal species. A positive surplus at the level of a whole
population may be due to the increase in number of individuals in the group, or to
an increase in individual mass, or to a combination of both factors.

As it was seen in Hill’s scaling analyses, the power expenditure is not proportional
to the body mass, or volume, but rather to mass raised to a power comprised between
2/3 and 5/6. From the studies on animal metabolism, it is found that most power
expenditures follow the law M3/4, which is somewhat in-between the two extremes
indicated. If also the surplus is surmised to scale following the same 3/4-exponent
empirical law, a similar scaling law should be obtained for the energy and material
available for reproduction. For a herd of animals of size N , the power surplus can
be written as:

Ps,pop = N Ps ∝ NM3/4 (12.20)

where Ps is the average surplus for each individual in the herd.
If we neglect mass fluctuations among individuals of the herd, notably the fact that

offspring have a smaller mass for some time, the population rate of change, averaged
over many generations, should be proportional to the power surplus, normalised to
the average mass of the individual:

dN

dt
∝ Ps,pop

M
∝ NM−1/4 (12.21)
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The solution of this equation, N (t) ∝ exp(t/τ ), is a well-know law in ecology,
the so-called Malthusian exponential growth law for a population free of any
constraints (which will be discussed at some length in the next Section). In particular,
no constraints are imposed on the fertility nor on the mortality, or to the presence
of other species competing for food in the same environment, or representing a vital
menace for the herd. Because of the time constant τ ∝ M1/4, such a law gives a
reproduction rate that is higher for animals of small size and slower for animals of
larger size.

A study by David Western [11] reported an allometric scaling diagram of the
reproduction rates of some african mammals, ranging from the shrew (mass of 70
g) to the elephant (2600 kg), aligned on a straight line with slope −0.325. This
is somewhat larger than the −0.25 of Malthusian growth, and seemingly closer
to a power variation with the exponent 2/3, which would give a mass growth rate
τ ∝ M1/3. It should however be observed that the pretension to describe such a range
of animal species, possibly from a single cell to an elephant and even to an entire
ecosystem, with such a reduced set of physical variables, cannot provide but very
crude estimates. The actual worth of such considerations is to allow to appreciate
some global trends, and to suggest possible indices to aggregate data. Nevertheless,
the surprising validity of the empirical exponent −3/4 law allows to translate at
least some basic concepts across widely varying scales, from the individual, to the
population, to the entire ecosystem. In the following Sections of this chapter, we
will deal with the dynamics of populations growing and declining in interaction with
their environment.

12.6 Analytical Models of Population Growth

The subject of population dynamics is the study of the laws governing the growth
and decline in size of any group of living species, and more interestingly that of
sexually-reproducing species. The mass distribution, the age-group composition of
the population, the environment, all natural and artificial processes influencing such
evolution are as well part of this field of study. Besides predictions concerning the
population size, these works aim at predicting and understanding the environmental
effects on the population size. As such, these studies may reveal crucial in, e.g., the
control of fishing areas, the management of protected natural zones, the control of
animal species considered as harmful or invasive. By including the interaction of
a population with other populations of different species, and with the constraints
and resources made available by the surrounding natural and artificial environment,
population dynamicsmerges into thewider field of ecology, an interdisciplinary field
of research encompassing physics, chemistry, biology, climate and Earth sciences.

The population model proposed in 1798 by the British economist RobertMalthus,
was simply based on the introduction of an average birth rate n, and of a mortality
rate m, whose difference gives the rate of variation of a population N as a function
of time:
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dN

dt
= n − m (12.22)

The solution is the exponential function, N (t) = N0 exp(t/τ ), with a coefficient
τ = 1/(n − m). If n > m, the population increases without limits, leading to what
has been dubbed as the “Malthusian catastrophe”, namely the population size out-
growing the available resources, ultimately leading to starvation and regression. By
referring to the original Malthus’ hypotheses [12], n should be taken as indepen-
dent on the environmental conditions, being mainly dictated by the basic animal
physiology, while m could be changed to lower or higher, by improved or impover-
ished environmental conditions, food availability, climatic changes, and so on. On
the other hand, a negative τ implies the disappearance of the population, therefore
the malthusian model has no equilibrium, or steady-state condition.

Somewhat in response to such a ‘catastrophic’ vision of population evolution, the
French mathematician Pierre François Verhulst around 1840, proposed a more rich
and slightly more realistic model. In this case, it is imagined that both the natality
and mortality rates do depend on the current size of the population at any instant t ,
respectively in an inversely proportional, and in a directly proportional manner. In
other words, themore the population grows in size, the more its natality rate declines,
while the mortality rate increases. According to the Verhulst model, the population
size at an instant t is governed by the differential equation:

dN

dt
= n(N ) − m(N ) (12.23)

Ifm and n are taken, as said, as functions of N respectively increasing and decreas-
ing, their difference n − m is as well a decreasing function of N . If moreover we
impose that for N → 0 the growth rate must remain positive (the species does not
become extinct), the Verhulst equation can be rewritten as:

dN

dt
= N (r − kN ) (12.24)

with r and k two positive coefficients. Further, by putting K = r/k, we obtain:

dN

dt
= r N

(
1 − N

K

)
(12.25)

The general solution of Verhulst equation, with the initial condition that at time
t = 0 the population starts from a finite size N0, is the so-called logistic function:

N (t) = K

1 +
(

K
N0

− 1
)
e−r t

(12.26)
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It can be seen right away that for t → ∞, and independently on the initial value
of the population size, N approaches the value K , which for this reason is called
the carrying capacity of a given ecosystem. Figure12.7 displays some solutions of
the Verhulst equation, all normalised to K = 1, demonstrating that starting from
whatever large or small initial value of the population size, the carrying capacity is
invariably the long-time limit of N .

In ecology, a species can be described as following a “r -strategy” or a “K -
strategy”, according to the selection process that is at the basis of its evolution.
A population that relies more heavily on the r factor, tends to exploit a smaller
ecological niche, with a relatively high reproduction rate accompanied by a lower
individual survival probability. By contrast, species selected on the basis of their K
factor are powerful competitors in a crowded environment, their offspring is reduced
in number but with a higher survival probability. Such populations may also be
called, respectively, “opportunists” or “equilibrists”; the former could be dominant
in a rather unstable environmental setting, whereas the latter may become dominant
in a more stable situation; also, their prevalence may alternate in a given ecosystem,
as the external conditions change.

Fig. 12.7 Plot of the logistic function, solution of the Verhulst differential equation N = N (t),
for different values of the initial population size, and r = K = 1 Both N and time are plotted in
arbitrary units
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Stability and chaos

It may be interesting to study the mathematical stability of the solutions of the population evolution
equations, in the presence of an external or internal perturbation, of the form u(t). The equilibrium
condition is represented by any value N∗ for which dN/dt = 0. For example, it was seen that N∗ = K
for the logistic function.

Let us take that N (t) = N∗ + u(t), with u > 0 a small perturbation, representing some arbitrary
variations of the environmental conditions about the equilibrium value, such as an occasional availability
of some more food, or a temporary shift in the environment temperature, and so on. The new perturbed
equation would be:

du

dt
= f

[
N∗ + u(t)

] � f ′(N∗)u(t) + O(u2) (12.27)

where the second approximate equality represents the first order of the development in series of powers
of u around the stable solution (the zeroth-order term being u = 0).

The time derivative f ′ of the logistic function is:

d f

dt
= KWr exp(−rt)

(1 + W exp(−rt))2
(12.28)

with W = N/N0 − 1 positive or negative according to N0 < K , ou N0 > K , respectively.
We immediately see that in this case the outcome depends also on the initial value of the population

size, N0. In the case N0 < K , du/dt is going to increase, therefore the perturbation u is amplified, and
makes the system unstable towards an exploding population. Instead, in the N0 > K case du/dt will
decrease together with d f/dt , therefore the system can resist the action of the perturbation, which dies
off in time, and brings back the system to its stable solution N∗.

The logistic equation can be reformulated also as an iterative problem, by considering finite time
intervals. For example, we may look at the evolution of the population from a time n to a time n + 1
(such as from one year to the next), and rewrite the equation as:

Nn+1 = r Nn(1 − Nn) (12.29)

with a K normalised to 1. Starting from n = 0 with N = N0, the equation is iteratively solved, and
would give the same result as the original differential formulation. However, once written in this form
(called a map in mathematical language), it can be easily shown that the population growth model can
have pathological states, leading sometimes to chaotic behaviour. In fact, by varying the parameter r
between 0 and 1, the population will decline to zero at long times, independently on the initial value
N0; for r between 1 and 3, the population will attain the asymptotic limit N → 1 − 1/r ; for r > 3
the stable solution is preceded by large positive and negative fluctuations; such oscillations become
permanent, up to r = 1 + √

6. From this value of r and on, the solution starts oscillating between four,
then 8, 16, 32,…different values, until at r � 3.56995 . . . a completely chaotic behaviour sets in, with
the population size fluctuating among random values. The “bifurcation” behaviour of the asymptotic,
long-time solution for N is shown in the following plot, limited to values of r > 2.4.

The idea of deterministic chaos is associated with complex and unpredictable behaviour of some
classes of phenomena over time, arising in deterministic dynamical systems. Like in the logistic map,
many examples are based onmathematical models for (discrete) time series in which, starting from some
initial condition, the value of the series at any time is a nonlinear function of the previous value. These
processes are very intriguing, in that the solutions corresponding to different, although extremely close,
initial conditions will exponentially diverge. The practical implications are that, despite the underlying
determinism, one cannot predict with any reasonable precision the solutions at long times: even the
slightest error in specifying the initial conditions, eventually ruins the solution.
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It must be noted that perfectly integrable systems (those for which the behaviour can be predicted
at any time) are rare. The fact that such systems are almost exclusively treated in textbooks on classical
dynamics, such as the a forced or parametric harmonic oscillator, a point mass in a three-dimensional
spherically symmetric potential, N-dimensional coupled harmonic oscillators, etc., gives the impression
that the well-organised behaviour of integrable cases is the rule, at least for systems with few degrees of
freedom. In fact, it is rather the exception, and most natural systems are both non-integrable and chaotic.
The sensitivity to the initial conditions is known as the butterfly effect: the state of the system at a given
time can be entirely different if the initial conditions are only slightly changed, such as by a butterfly
flapping its wings.

A quantitative measure of this exponential growth of the separation between initially close solutions
is given by the Lyapunov exponent. For a map xn+1 = f (xn), x ∈ [0, 1], and two solutions starting at
x0 and x0 + ε, ε � 1, their separation after the n-th iteration is:

Δxn = | f n(x0 + ε) − f n(x0)| (12.30)

The Russian mathematician Aleksandr Lyapunov showed that the two solutions diverge exponentially
as:

Δxn � εnλL (12.31)

The Lyapunov exponent λL can be estimated (in practical cases only by numerical approximations) as:

λL = lim
n→∞

1

n

(
ln

Δxn
ε

)
(12.32)

Negative values of the Lyapunov exponent indicate stability, and positive values chaotic evolution; at
critical bifurcation points λL approaches zero. It is also instructive to note its relationship to the loss of
information during the process of iteration. When the interval [0,1] is partitioned into N equal boxes,
one needs ln2 N bits of information to define in which box to find a point x , i.e., one has to ask on
average ln2 N ‘yes/no’ questions. After each iteration the box is stretched by a factor proportional to
Δx , corresponding to a “loss of information” by an amount proportional to ln2 Δx , about the newposition
of the point x .

TheLyapunov time is the length of trajectory after which a system start showing chaotic divergence.
It can be as short as a few picoseconds for the atoms of a gas, seconds to minutes for hydrodynamic or
chemical mixing, up to millions of years for gravitational systems. For the entire Solar system it is of
the order of 50 million years: although integrating the Newton’s equation of motion for spans beyond
such time would not make sense, we can still safely predict the trajectories of our planets for quite a bit
longer than our lifetime!
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Actually, if we want to consider that the environmental conditions may also
change, a variable (but always positive) carrying capacity could be introduced as
K (t) > 0. An important instance is that of a periodically variable K , for exam-
ple linked to the coupled increasing or decreasing availability of food, and more
or less favourable climatic conditions alternating during summer and winter, as
K (t + T ) = K (t), with T = 6 months. It can be shown in this case that also
the solution N (t) is periodic, with the same period of the carrying capacity, and
again independent on the initial conditions at time t = 0.

12.6.1 Preys and Predators

The Malthus’ and Verhulst’s models consider the isolated evolution of a population
of individuals of the same species in a given ecosystem, this latter being represented
in the most simplistic way by just one or two numerical parameters, which regulate
the growth and decline of the population size. However, any species cannot survive
alone in an ecosystem, and the interaction with other species, as well exploitation of
the finite resources of the environment, are key factors in determining its evolutionary
success or decline. Let us see what would happen if a first, external element is added
to the intrinsic mortality rate of a species, such as the presence of a natural predator.

As a simple hypothesis, we can assume that the rate of killing by the predators p(t)
is proportional to the actual size of the population N (t), except when the population
is so large that the predators are saturated:

p(t) = bN

a + N
(12.33)

with a, b arbitrary constants, such that for N → ∞, it is p → b. The new equation
for the population is:

dN

dt
= r N

(
1 − N

K

)
− bN

a + N
(12.34)

Now we ask, for which values of the prey population the equilibrium dN/dt = 0
is reached? Excluding the banal condition N ∗ = 0, we can look for a value N ∗ such
that:

r N ∗
(
1 − N ∗

K

)
− bN ∗

a + N ∗ = 0 (12.35)

This is a second order algebraic equation, which has two (or none) possible real
solutions, according to the values of a, b, K , r . In particular, since b, K and r are
by definition positive quantities, a positive value of a ensures the existence of real
solutions.

However, it should be also taken into account the fact that predators have their
own life cycle, with their own natality and mortality rates, and that their population
dynamics is influenced in turn by the availability of a sufficient number of preys.
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The competition between species was firstly formalised in the equations of Lotka-
Volterra, which are also designed as the “prey-predator model”. These are a set
of two coupled non-linear differential equations of first order, describing two pop-
ulations in competition. They are currently employed to describe the dynamics of
ecological systems in which a species depends on the other for its food supply. How-
ever, the model provided by these equation has found use in many other domains, in
which there is a competition between two entities whose size-dependence is interre-
lated. These equations were independently proposed by theAmericanmathematician
Alfred James Lotka in 1925 and by the ItalianVitoVolterra in 1926.A classical appli-
cation describes the population dynamics of the Canadian lynx and of its favoured
prey, the snowshoe-hare. For these two animals, constituting a sort of closed ecosys-
tem, a vast accumulation of experimental data were made available, by counting the
number of respective animal skins collected by the Hudson Bay hunting company in
late-XIX to early-XX century (Fig. 12.8), [13]).

By indicating as N (t) and P(t) the populations of preys and predators, respec-
tively, the Volterra-Lotka equations are often written in the form:

dN

dt
= N (α − βP)

dP

dt
= −P(γ − δN ) (12.36)

Here, dN/dt and dP/dt represent the (positive or negative) growth rates of
the two populations, and are mutually dependent upon, via the cross terms in each
equation. The four parameters characterise the interaction between the two species,
as:

• α, prey reproduction rate in the absence of predators
• β, prey mortality rate, controlled by the number of alive predators
• δ, predator reproduction rate, controlled by the available number of preys
• γ, predator mortality rate in the absence of preys

In themodel, preys are supposed to have access to practically unlimited sources of
food, and reproduce exponentially with the rate α (according to Malthusian growth)
if no predators are present. The prey killing rate by predators is represented by the
cross term−βPN , a sort of prey-predator encounter probability: if either population

Fig. 12.8 Fluctuations of
the populations of linx and
snowshoe-hare species in
Northern Canada between
1845 and 1935, as deduced
by the number of hunted
pelts (data redrawn from
Ref. [13])
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Fig. 12.9 Left Representation of the time evolution of the predator population P(t) (red curve) and
of the prey population N (t) (black curve), from a linearised numerical solution of the Lotka-Volterra
equations with the values α = 1., β = 0.01, γ = 0.5, δ = 5 × 10−4, of the free parameters. Right
Cross-plot of the two periodically-fluctuating populations from the left graph, showing the cyclic
and coupled alternance between growth and decline of the population sizes

is zero, no predation occurs.With the above terms in the coupled equations, themodel
can be interpreted as: the variation of the number of preys is given by its growth rate,
diminished by the probability of getting killed by a predator. It is supposed that no
prey could survive until a natural death.

The term +δN P represents the prey-dependent growth rate of the predator popu-
lation, formally similar to the predation rate but governed by a different rate constant,
since the rate at which the predator population grows does not coincide with the rate
at which it feeds (although the two can be quantitatively linked). The predator natural
death rate is again Malthusian, with a negative coefficient −γ.

In agreement with the classic experimental data from the Hudson Bay Company
reported in Fig. 12.8, the coupled Volterra-Lotka equations admit periodic solutions,
however not easily formalised in terms of simple trigonometric functions. A numer-
ical solution of the linear approximation of the equations is given in Fig. 12.9 (left),
demonstrating a simple periodic recurrence between the coupled variations of the
two populations N (t) and P(t), the size growth and decline of the predators being
somewhat delayed with respect to the corresponding growth and decline of preys.
For a perfectly cyclic solution as the one shown, with the predators and preys num-
bers varying between two given maximum and minimum values, the cross-plot of P
versus N is a cyclic trajectory (Fig. 12.9, right), periodically spanned by the coupled
pair of values {P(t), N (t)}.

Equations of the Lotka-Volterra type have been employed with success also in
other domains presenting “populations” in competition. For example, in physiology,
to describe the periodic activation dynamics of families of cholinergic and aminergic
neurons (the study of the “paradoxical sleep” by Hobson [14]), or in economy,
to describe the dynamics of industrial competition in various sectors of economic
activity (see the “growth cycle” theories by Goodwin [15]).
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12.6.2 Competition and Cooperation Between Species

In the equations (12.37) the carrying capacity of the environment is supposed to be
unlimited: in the absence of predators, the preys’ population could grow to indefinite
size. The finite carrying capacity of the ecosystem can be included in a modified
version of the Lotka-Volterra model, by considering a logistic model of growth for
both preys and predators, instead of the simpler Malthusian scheme. In particular, it
can be written that preys follow the carrying capacity of the environment K , while
predators follow a different carrying capacity K ′ = hN , linearly dependent on the
size of the prey population, on which they feed:

dN

dt
= rN N

(
1 − N

K

)
− bN

a + N

dP

dt
= rP P

(
1 − P

hN

)
(12.37)

with rN and rP the birth rates of N and P , respectively. Such model equations,
strongly non-linear, show the typical behaviour of chaotic systems (see the greybox
on p. 561), alsowith unstable fixed points, attractors and limiting cycles for particular
combinations of the values of the free parameters.

When two species are competing for the same set of resources, available in a
finite amount, it can be show that there is only one stable state, while in all other
combinations of parameters the two species cannot coexist: this is the principle of
exclusive competition. Two separate carrying capacity values can be introduced, KN

and KP . Note that this model does not describe one species preying on the other, but
two species competing for finite resources in the same ecological niche, such as two
families of herbivores eating the same kind of grass. The two species are mutually
harmful, in that the species P subtracts an amount b of the resources from N , and
the Ns’ subtract an amount b′ from the Ps’. Putting this model into equations:

dN

dt
= rN N

(
1 − N − bP

KN

)

dP

dt
= rP P

(
1 − P − b′N

KP

)
(12.38)

The equilibrium conditions are found by setting the time derivatives of P and N
to zero:

N − bp = KN

P − b′N = KP (12.39)
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These equations describe two straight lines in the plane (N , P). According to the
values of KN , KP , b, b′, the two lines can cross in four different ways, shown in
Fig. 12.10(1–4), the blue line corresponding to the condition dP/dt = 0, and the red
line to the dN/dt = 0. In all cases, the practical condition that will be realised is the
one giving the highest value for N , or P , or both. In the possibility (1), Ps are always
winning and get to their maximum by pushing the Ns to zero (extinction). The (2) is
the opposite case, with Ns winning and Ps becoming extinct. For the possibility (3)
there is just one unstable-equilibrium point, where the two red and blue conditions
cross: for values slightly on the left of this crossing, P wins and N disappears, while
for values slightly to the right, the opposite happens. Only for the possibility (4) the
coexistence of the two competing species can always be obtained: P strives always
toward the left of the diagram, thus letting N to grow, while N does the opposite
to the right, therefore the two populations are always pushed towards the crossing
point, the stable equilibrium.

On the other hand, the two species could cooperate, and help each other, for
example if one is in symbiosis with the other. Such a situation would be described
in the previous set of equations by changing the algebraic sign of the two parameters
b, b′, meaning that the carrying capacity of each species is increased thanks to the
presence of the other. In this case, the slopes of the straight lines in Eq. (12.39)
would be both positive, and their graphical representation would be that given in
Fig. 12.10(5–6). In the possibility (5), the two species can grow together for any

Fig. 12.10 Representation of the possible equilibrium and non-equilibrium solutions of the double-
logistic model (Eq. (12.38)). The blue lines correspond to the condition dP/dt = 0, and the red
lines to the condition dN/dt = 0
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combination of the respective birth and death rates; for the possibility (6), instead,
the two populations converge again to a unique stable state, represented by the sizes
of N and P for which the two lines are crossing each other.

12.7 Dynamical Models in Ecology

The analytical models of the preceding Section are part of a long-standing tradition
in ecology and sociological sciences, grounded on the construction of differential
equations to obtain relationships between the size of a population of individuals and
the many intrinsic and extrinsic perturbing factors, chiefly including reproduction
and mortality rates. Such an endeavour has been undertaken by many scientists, in
order to formulate predictions on the evolution of a population. For example, by
dividing the individuals into age groups, and studying their evolution as a function
of variables representing the physical and chemical environment, the existence of
other competing populations such as preys or predators, and so on. Contrary to the
hopes of the pioneers of such methods, however, deducing the complex evolutionary
patterns of a population by purely analytical methods revealed an impossible task.
Suffering from pretty much the same kind of difficulties as the meteorological and
climate models, as well as other distant but “mathematically” similar fields, such as
the somersaults of world’s economy and financial markets, these are all examples of
chaotic systems. As discussed in the greybox on p. 561, these systems are very often
non-integrable, being characterised by coupled non-linear systems of equations in
which small perturbations, or variations of the initial conditions, can lead to entirely
different and unpredictable results.

If we focus on the questions of population dynamics this difficulty says, on the
one hand, that it is practically impossible to start from the description of one single
individual and deduce the behaviour of the entire population, by using this individual
as the average John Doe. On the other hand, it remains still highly desirable to
find strategies to formulate a reduced framework, from which at least some general
principles could be deduced, for example to track the circulation and exchanges of
matter and energy within a given ecosystem. The aim of such an effort would be
not much that of discovering entirely new phenomena, but rather that of simplifying
what is already contained in the data.2 This could highlight relationships between
the different agents of the system, which could otherwise remain hidden and get
lost in the overwhelming complexity. For example, the notion of biodiversity can
be schematically defined and measured in an ecosystem, by making recourse to
aggregate variables of the number of species, and the evolving populations of each
species, according to different environmental constraints.

An ecosystem is an ensemble of living organisms belonging to various species,
which store, exchange and use energy and materials from the limited environment.

2However, it would be philosophically inappropriate to say “already known”, since the simple
availability of an enormous quantity of data cannot be sufficient to gain also the knowledge.
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Organisms can be: producers, if they convert the energy flow into chemical energy,
typically stored into carbon bonds (e.g., glucose); or consumers, if their main func-
tion is to break carbon bonds and retrieve the stored energy to function. Based on
their way of input of carbon, consumers can be further identified as: herbivores, car-
nivores, omnivores, and detritivores (or decomposers). Such distinctions lead to the
introduction of the concept of food chain, organised into trophic (=feeding) levels:
producers are at the bottom, by transforming the Sun energy into chemical species;
herbivores are immediately above, followed by different levels of carnivores; species
feeding partly on plants and partly on meat can occupy intermediate levels; omni-
vores can appear at any levels above herbivores; at the top of the food chain we
find the apex predators (which need not be hyper-carnivores); decomposers feed on
detritus, and extract the last bits of energy from the food chain. Primary producers
(typically, plants) thrive on the pool of nutrients provided by the environment, to
work out new carbon-based chemical species with the help of energy from sunlight
(see Chap.2). It is worth underscoring that, while all the materials (carbon, oxy-
gen, minerals, metals…) are recycled to a variable extent, at worst remaining non
used in the pool, energy is never recycled but is ultimately lost as heat, and must be
continuously supplied from outside the Biosphere.

A simplified view of an ecosystem is given in the flow diagram of Fig. 12.11. Each
level of the system represents a trophic level, but it is also more general, by including
also non-living components, such as dead matter or inorganic nutrients. We should
recall here the concept of biomass, from Chap.2, as the sum of all the materials
circulating under different forms. It may be useful to subdivide the biomass on a
elemental basis, i.e. accounting separately for all the carbon, nitrogen, phosphorus,
etc., in the different molecular species in which they may be transformed, while
passing from one level to another of the food chain. The biomass is the sum of all
the masses of all the elements. (Note that accounting for volatile elements, such as
the fraction of oxygen or carbon going into O2 and CO2, can complicate things.) In
general, the further high is a trophic level compared to the lower ones (producers or
decomposers), the less biomass it contains. This holds true both if we account for the
total biomass by the mass of all the individuals, and if we account on elemental basis.
The reasons for such an effect are that: (i) not all the materials in the lower levels are
completely eaten at the upper level; (ii) not everything that is eaten is digested and
assimilated; (iii) a fraction of energy is always lost as heat in each transformation.3

Each level l in the flow diagram (pool, producers, consumers, deadmatter, decom-
posers) contains some amount of each chemical element k, let us say Mk

l . The total
amount of that element is the circulating reserve:

Rk =
∑

l

Mk
l (12.40)

3An exception is represented by the sea algae: they are both outnumbered and outweighed by the
organisms that feed on them. Algae can support the greater biomass of the upper trophic level thanks
to their velocity of reproduction, and also because they are much more efficiently useable compared
to the typical, ligneous surface plants.

http://dx.doi.org/10.1007/978-3-319-30647-6_2
http://dx.doi.org/10.1007/978-3-319-30647-6_2
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Fig. 12.11 Left Scheme of an ecosystem with one level of producers (plants), and two levels of
consumers (herbivores, carnivores). In general, there can be more than one levels of each, with the
only condition that producers do not generally feed onto other producers (except maybe parasitic
plants). The level of dead matter is therefore the (n − 1)-th, and the single level of decomposers
the n-th. However, also decomposers may represent more than just one level. Right Circulation of a
chemical element k between the different levels. Each level l captures a fraction Mk

l /R; exchanges
between levels are indicated by xki j

Exchanges between two levels i and j are indicated as xki j , with:

Mk
l =

∑

i

xkil −
∑

j

xkl j (12.41)

sum of all the incoming flux minus all the outgoing flux to/from level l. The rate of
variation of a chemical element k in a trophic level l is defined as:

rkl = ΔMk
l

Δt
(12.42)

The circulating reserve may be treated as a conserved quantity only if the ecosys-
tem is closed, i.e. physically limited, for example a small lake. However, it would
be very difficult to consider it constant for a large environment such as the ocean.
This identification is difficult at the surface as well, with the possible exception of
enclosed regions such as a valley or a basin, which can be considered to a good
approximation as closed ecosystems. A special case is that of mobile ecosystems,
such as the Serengeti in the East Africa, dominated by the great herbivores such
as the wildebeest (or gnu). They migrate throughout the year, constantly seeking
fresh grazing and better quality water, accompanied by large numbers of zebra, and
smaller numbers of antelopes of different species. Their movement in an annual pat-
tern is fairly predictable, with a precise timing entirely dependent upon the rainfall
distribution of each year. Since the largest component of the biomass is that of those
animals, it has been considered that such migrating hordes constitute a kind of closed
but mobile ecosystem. On the other hand, an ecosystem can be considered as closed
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only for certain elements, such as calcium or phosphorus: for the volatile oxygen,
no system can be truly considered as closed.

Liebig’s law or the law of the minimum, is a principle developed in agricultural
science by Carl Sprengel (1828) and later popularised by the German chemist Justus
von Liebig, often considered the founding father of organic chemistry. It states that
population growth is controlled not by the total amount of resources available, but by
the single, most scarce resource. This acts as a limiting factor for growth, and could
be either a whole resource (bread, gasoline, a particular kind of algae,…), or just one
chemical element. The typical example of the latter is phosphorus, an element for
which no known natural or synthetic input can stand in.4

A plant like the Alfalfa could thrive in a typical soil containing ∼0.12% phos-
phorus, while the plant’s structure contains about 0.7% phosphorus. Such a large
concentration of one chemical element (0.7/0.12 = 5.8) is exceptional, since all other
elements are about even in their need/supply ratio.

Biomagnification occurs when organisms at the bottom of the food chain con-
centrate some element at a value above its concentration in the surrounding soil or
water. Producers take in inorganic nutrients from their surroundings. Since a lack of
these nutrients (e.g., phosphorus) can limit the growth of the producer, considerable
amounts of energy can be spent to pump them into their bodies and store it.

Pollutants present in the environment, such as DDT or mercury, are also brought
into the producer’s body and stored by the same mechanism. This first step in bio-
magnification is called bioaccumulation: the pollutant is at a higher concentration
inside the producer, than it is in the environment.

The second stage of biomagnification occurs when the producer is eaten by organ-
isms above it in the food chain. Consumers of any level consume a lot of biomass
from the trophic level immediately below. If that biomass contains the pollutant, the
pollutant will be taken up in large quantities by the consumer. Pollutants that bio-
magnify are absorbed and stored as well in the bodies of the consumers. This occurs
more often with pollutants that are soluble in fat. Water-soluble pollutants usually
cannot biomagnify in this way, because they would dissolve in the bodily fluids of
the consumer, and be expelled.

Based on the concept of input and output rate, the concept of bio-geochemical
cycle can be introduced. While energy does not cycle through an ecosystem, chemi-
cals do. The inorganic nutrients cycle through the trophic levels, as well as entering
into the atmosphere, oceans and rocks. Each element has its own unique cycle, but all
of the cycles have some things in common. A reservoir is a part of the cycle where a
particular element is held in large quantities for long periods of time. In an exchange
pool, on the other hand, the element is held for only a short time (its residence time).
For example, oceans are a reservoir for water, while a cloud is an exchange pool. In
this respect, the animal and vegetal species in an ecosystem are biovectors, in that
they serve the function of moving the elements from one level to the next in the cycle.
For instance, the trees of the tropical rain forest bring water up from the forest floor

4A subject brilliantly raised by Isaac Asimov in his 1959 essay Life’s bottleneck; see, e.g., the study
by Lougheed in [16].
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to be evaporated into the atmosphere. Likewise, coral endosymbionts take carbon
from the water and turn it into limestone rock. Needless to say, the energy for most
of the transportation of chemicals from one place to another is provided by the Sun,
with a minor participation of the geothermic heat.

The carbon cycle is relatively simple (Fig. 12.12). From a biological perspective,
the key events are the complementary chain of chemical reactions embodied in the
respiration and photosynthesis. Respiration (see Chap.4) takes carbohydrates and
oxygen, and combines them to produce CO2, H2O, and store energy. Photosynthesis
(Chap. 2) takes CO2 and water, and produces carbohydrates (glucose) and molecular
oxygen. Photosynthesis takes energy from the sun and stores it in the carbon-carbon
bonds of carbohydrates; respiration releases that energy. Both plants and animals
carry on respiration, but only plants can carry on photosynthesis. Themain reservoirs
forCO2 are in the oceans and rocks: carbondioxide dissolves readily inwater,where it
may precipitate as calcium carbonate (limestone). Corals and algae help this reaction
and build up limestone reefs in the process. On land and in the water, plants take
up carbon dioxide, which now has three possible fates: (i) it can be liberated to the
atmosphere by the plant through respiration; (ii) it can be eaten by an herbivore, or (iii)
it can remain in the plant until the plant dies. Animals obtain all of their carbon from
their food, and, thus, all carbon in biological systems ultimately comes from plants.
When an animal or a plant dies, the carbon can either be respired by decomposers
(and released to the atmosphere), or it can be buried intact and ultimately form coal,
oil, or natural gas (fossil fuels).

As shown in Fig. 12.12, the carbon cycle is tightly linked to the oxygen cycle.
Oxygen is present in the CO2, in the carbohydrates, in water, and as a O2 molecule.
Oxygen is released to the atmosphere by autotrophs during photosynthesis. In fact,
all of the oxygen in the atmosphere is biogenic, i.e., it was at some time released
from water through photosynthesis. It took about 2 billion years for cyanobacteria

Fig. 12.12 Simplified scheme of the oxygen-carbon cycle

http://dx.doi.org/10.1007/978-3-319-30647-6_4
http://dx.doi.org/10.1007/978-3-319-30647-6_2
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to raise the O2 content of the atmosphere to the 21% of today; this opened the way
for developing complex organisms such as multicellular animals, which need a lot
of oxygen.

The nitrogen cycle (Fig. 12.13) is more complex, because of the different chemi-
cal forms of nitrogen useful for life, and because organisms are responsible for each
of the interconversions. As we know, nitrogen is critically important in forming the
amino acids. The chief reservoir of nitrogen is the atmosphere, which is made up
by about 78% nitrogen. N2 gas in the atmosphere is a non-reactive gas, which can
be fixed in two basic ways. First, lightning may provide enough energy to split the
molecule and fix it in the form of nitrate (NO3). This process is replicated industri-
ally, to produce nitrogen fertilisers, and it is the very same used by Miller and Urey
in their experiments about the ancient Earth’s atmosphere (see Chap.3). The other
form of nitrogen fixation is by nitrogen-fixing bacteria, who use enzymes to break
apart N2, instead of the huge amount of energy from lightning. Depending on the
pH, such bacteria fix nitrogen in the form of nitrate (NH4) or ammonia (NH3), and
can be found free-living in the soil; or in symbiotic associations with the roots of
bean plants and other legumes (rhizobial bacteria); or as photosynthetic cyanobacte-
ria (blue-green algae). Most plants can take up nitrate and convert it to amino acids.
Animals acquire almost all of their amino acids by eating plants or other animals.
When plants or animals die or release waste, the nitrogen is returned to the soil, most
likely as ammonia. Nitrite bacteria in the soil and in the water take up ammonia and
convert it to nitrite (NO2), followed by nitrate bacteria, which convert it to NO3.
This latter is useable by the plants to continue the cycle. Nitrogen finally returns to
the air with the help of denitrifying bacteria, which take the nitrate and combine the
nitrogen back into N2 gas.

The phosphorous cycle, shown schematically in Fig. 12.14, is the simplest. For
biological purposes, the only interesting form is the phosphate, PO4. This is a heavy,

Fig. 12.13 Simplified scheme of the nitrogen cycle

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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Fig. 12.14 Simplified scheme of the phosphorus cycle

non-volatile molecule, always either incorporated into an organism, dissolved in
water, or in the form of rock. When a phosphate rock is exposed to water, especially
if at a slightly acidic pH, the rock is weathered out and goes into solution. As we
learned in Chap.3, phosphorus is an important constituent of cell membranes, of
DNA, RNA, and ATP/ADP. Animals obtain all their phosphorous from the plants
they eat, and also use phosphorus as a component of bones, teeth and shells. When
animals or plants die or expel waste, the phosphate can be returned to the soil or
water by the decomposers. There, it can be taken up by another plant and used again.
This cycle will continue until phosphorus is lost at the bottom of the ocean, where
it becomes part of the sedimentary rocks. Phosphorus can be extracted from mines,
for the principal purpose of producing fertilisers. As we hinted before, mining of
phosphate and its use as fertiliser greatly accelerates the PO4 cycle, and may cause
local overabundance of phosphorous, particularly in coastal regions, at the mouths
of rivers, and anyplace where sewage is released into the water. Local abundance of
phosphate can cause overgrowth of algae in the water, which use up all the oxygen
in the water and kill other aquatic life (eutrophisation). Marine birds also play a
unique role in the phosphorous cycle. These birds take phosphorous-containing fish
out of the ocean and return to land, where they defecate. Their guano contains high
concentrations of phosphorus, and in this way marine birds return phosphorous from
the ocean to the land. The guano is often mined, again to make “natural” fertilisers,
and may form the basis of the economy in some areas of the world.

12.8 The Limits of the Ecosystems

Since the input of materials in a living organism is linked to the flux of energy,
we could predict that the limiting values of the input rate, rkl , or better of the sum
rl = ∑

k r
k
l of all the elemental components of the biomass of an individual (as

http://dx.doi.org/10.1007/978-3-319-30647-6_3
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well as of the entire population), could exhibit some form of scaling, for example by
getting progressively smaller for the larger animals.

What values these rates could take is open to themost ample speculation.However,
it can be imagined that for each species occupying a given trophic level, the rate could
vary between a minimum and a maximum value. Since the power (energy input per
unit time) follows a 3/4-scaling, Eq. (12.20), the specific power should rather scale
with the exponent −1/4 of the mass, P/M ∝ M−1/4. Therefore, it could not be too
surprising if also the ratio between rmin and rmax , should vary with the same −1/4
power law, or:

rl,min ∝ M−1/4rl,max (12.43)

There are no experimental measurements of such energy (=food) input rates. On
the other hand, the zookeepers know well that a smaller daily amount of food is
necessary for one big elephant, than for a herd of small animals whose masses sum
up to the same mass of the elephant. For a population of animals, an upper limit to
the input of food mass can be set by the availability from the environment. If this
availability, let’s call it m, is known or measurable, the upper bound of the biomass
of that species is given by the following relation:

Mmax = m

rmin
(12.44)

This quantity is very much analogous to the concept of carrying capacity of
the ecosystem, which was introduced in the Verhulst model above. Since m does
not depend on the feeding population, it should be Mmax ∝ M1/4. In other words,
for a given availability m, a much larger biomass of big animals can be supported,
compared to small animals. However, when expressed in absolute numbers, the larger
mass of the individuals will prize the smaller animals. Suppose that m kg/day of hay
are available in a country farm, for feeding horses and sheep. For horses of average
mass 400 kg, and sheep of about 50 kg, the supported biomass should be in the ratio
(400/50)0.25, i.e. about 1.7 times more horse biomass than sheep. In absolute values,
however, ten horses would correspond to (400×10)/(50×1.7) = 47 sheep (instead
of 4,000/50 = 80, if the scaling were even).

In the simple ecosystem diagram of Fig. (12.11), the mass of each element in
any level, Mk

l , can be described by at least two variables, one input xkl−1,l and one
output xkl,l+1. If we consider the values M1 = ∑

k M
k
1 , for the primary producers,

these could increase indefinitely in the absence of an upper level of herbivores. If,
on the contrary, the environmental pressure of the herbivores is very high, M1 risks
to fall into desertification. The response of the ecosystem, in such cases, is based
on the values of the rates rkl . For environments with high feeding pressure, plant
species with very fast growth rates will develop. Because of the same relationship
Eq. (12.44), plants with a very fast reproductive cycle will be typically small, such as
the predominant short grass in the savannah, with just a few trees widely spaced. At
the opposite, in an environment where there is a large supply of rainwater, and with
a much reduced presence of herbivores, large plants and dense forests can thrive.
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The same principles can be applied to the next steps up in the food chain. The
total biomass of consumers of a given species, in a given level, is:

Ml =
∑

k

Mk
l =

∑

k

[
xkl−1,l − xkl,l+1 − xkl,d

]
(12.45)

by assuming for the sake of simplicity that the consumers feed only on one single
species in the lower level, xl−1,l , are predated by one single species in the upper level,
xl,l+1, and have a natural death rate xl,d .

If the input rates are sufficient and the output rates not too negative, such species
can accumulate biomass. Progressively, the total ecosystem equilibrium will shift to
a preference for species characterised by larger individual mass, since this allows to
optimise the carrying capacity (see again Eq. (12.44)). If for any reasons themortality
rates increase, for example the arrival of new predators, hostile microorganisms,
scarcity of food and water input, etc., the equilibrium will be displaced to species
with individuals of smaller unit mass and faster reproduction rates.

Such automatic regulatory mechanisms of ecosystems, which were just presented
in an extremely simplified version, may induce sometimes very drastic changes in the
animal and plant populations, over times relatively short but definitely longer than
the human lifespan, all by maintaining nearly constant the total circulating reserve
of materials. Such changes, which we sometimes qualify of destruction of habitat,
are indeed long-time adjustments of the equilibrium between different species. If
the fluxes xi j are not sensibly altered, biomass will be just redistributed within a
perfectly closed ecosystem (even if such hypothesis is often difficult to maintain).
In a well developed forest, the most part of the circulating reserve is contained in
the plant bodies, leaving room for but a very moderate fauna biomass. Progressive
destruction of the forest and herbivores pressure will open the outer limits to a
savannah-like environment, putting back into circulation part of the reserve toward
the decomposers (worms, nematodes) and the smaller plants, which in turn may
favour the development of larger animals, from herbivores to carnivores.

A true, and practically irreversible, destruction of an ecological habitat comes if,
instead, some part of the circulating reserve is destroyed, or displaced. This is for
example the case of intensive agricultural exploitation, when for several consecutive
years some edible plant species are densely cultivated over an extended area. The
direct consequence is the impoverishment of the circulating reserve, in one or more
of the key elements, such as magnesium, phosphorus, nitrogen, etc. The artificial
fertilisation by chemicals may supply back some of the lost elements, however with
many undesirable side effects, such as the eutrophisation by excess of phosphates
or nitrates, soil acidification, accumulation of toxic elements (fluorides, mercury,
cadmiumand other heavymetals), down tomore complicate feedback effects, such as
the breakdown of symbiotic relationships between plant roots andmycorrhizal fungi.
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12.8.1 Trophic and Non-trophic Interactions

The input/output relations displayed in Fig. 12.11 describe the direct effects of avail-
ability of food, from the lower-lying to the upper-lying levels of the food chain, and
therefore are called trophic interactions. However, it is increasingly accepted that
other kind of biological interactions, less direct but equally effective, can take place
among the species occupying a same ecological niche. For example, the mutualism
(species benefiting from the independent activity of each other) between herbivores
and bacteria living inside their intestines; or the commensalism (feeding on the same
source without mutually affecting) existing between humans and domesticated ani-
mals; or, at the opposite, the antagonism (reduction of a species’ fitness by the pres-
ence of another), such as someChihuahuan desert ants that interferewith the foraging
of red ants, by systematically blocking their colonies access holes. Such interactions,
which do not involve directly food-chain relations, are called non-trophic. Includ-
ing them in dynamical models may prove very effective, however observing and
estimating the fitness costs and benefits of such interactions among species can be
very problematic, and the way interactions are interpreted can profoundly affect the
ensuing conclusions.

In a one-of-a-kind experiment that was run in the years 2002–2009 at the Göt-
tingen University in Germany [17], C. Scherber and his coworkers cultivated under
extremely well-controlled conditions an ensemble of 82 identical plots, each mea-
suring 20 × 20 m2, inseminated at the beginning of the experiment with a variable
number of species, each with different plantation density; numbers of species equal
to 1, 2, 4, 8, 16, 60, with densities ranging from 4 to 16 units, were used, each unit
being composed by a constant number of plants. Each plot was maintained under
constant conditions by standard gardening techniques, and without using extra fer-
tilisers or insecticides. During the 8 years of continued observation, the scientists
registered the abundance and the richness for all vegetal and animal species, both
above and below the ground.

The objective of this experiment was to precisely measure the evolution of the
different populations, as a function of the availability and variability of primary food
(richness) for the herbivores. In 1921, the Swedish chemist Arrhenius formulated a
law to explain the variation of biodiversity among species occupying the surface A
of an ecosystem:

S = cAz (12.46)

Here S is the number of different species, or richness, a direct measure of the
biodiversity; the constant c is the richness factor, broadly comprised between about
20 and 20,000; and the exponent z is the accumulation factor, typically between 0.2
and 0.5. The abundance is defined as the number of individuals composing a given
species, at a given site and time.

Figure12.15 shows that the increase in richness has a positive correlation with
both the abundance and biodiversity of all species, both above and below ground,
at all the trophic levels, from the herbivores to the omnivores, to a variable extent
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(different constants c) and with different response times. After a variable-length
initial transitory, nearly all species appear to settle to a power-law growth, which
follows rather well the Arrhenius law S = cAz . The precise role of the exponent z is
demonstrated in Fig. 12.16a: a value z � 0 corresponds to a flat abundance-richness
curve, while values of z � 0.3−0.4 show a strong dependence of the number of
animal species on the number and density of different plants in each plot. Such a
measure of biodiversity fits well also with the impact on the different trophic levels,
where it is found that the biodiversity naturally decreases while going up in the
levels, from the primary producers, up to the herbivores, carnivores, and omnivores.
In particular, Fig. 12.16b, c show that the z exponent for most species is sensibly
reduced, upon reducing the plant richness. This latter was in fact the main control
parameter of the experiment, which could be adjusted by changing the density and
diversity of plant species initially installed in each plot.

Different mathematical models were put forward, to analyse and interpret the
8-years long experimental data, all generally based on linear correlation analysis.

Fig. 12.15 Abundance (left) and biodiversity (right) for the organisms living above and below
ground in the Göttingen experiment, as a function of the richness of species planted in each plot. For
all animal and vegetal species, both abundance and biodiversity clearly increase with the richness,
showing a good correlation with the Arrhenius law. [From Ref. [17], repr. w. permission]
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Fig. 12.16 Growth rate of the population for the animal species living above and below ground,
as a function of the abundance and richness of each plot. a Role of the exponent z in describing
the biodiversity: z = 0 gives a flat curve, values of z � 0.3–0.4 show a strong dependence on
the number of different plant species. b, c The exponent z of all species (or accumulation factor)
decreases with reducing the plant (this was the principal parameter, controlled by changing the
density and diversity of seeds). [From Ref. [17], repr. w. permission]

A first model, called top-down, in which the abundance of carnivores is the main
controlling factor for the population of lower-lying herbivores, was found to be in
clear disagreement with the data. Similarly, other models based on direct correlations
were rejected; for example, one in which plant richness directly links to the carnivore
biodiversity. Actually, the experiment shows that plant richness only has an influence
on the primary consumers, notably herbivores and nematodes. Such variations, in
turn, affect the chain in a bottom-up way, by modifying the secondary consumers
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and so on, going up in the food chain. Indirect effects of plant species richness
were observed also on soil microbes, probably mediated either through changes
in plant roots production, or through root exudates (i.e., alterations in the below-
ground chemistry). The results of this unique experiment suggest that the effects
of the species richness from one trophic level to others decrease progressively with
trophic distance. However, probing such trophic and non-trophic correlations with a
relatively limited number of control variables is a difficult endeavour.

Trophic and non-trophic interactions have been included also in generalised
Lotka-Volterra models [18]. In this type of analysis, the linear equations (12.41)
are replaced by a coupled set of differential equations of the type (12.37):

dQi

dt
=

∑

j

ai j Qi Q j − bi Qi (12.47)

Here the state vector Qi indicates the interacting species, e.g., Q1 = plants, Q2 =
herbivores, Q3 = carnivores, Q4 = land nutrients, Q5 = reserve pool; the coefficients
ai j describe the cross interactions between the different levels, including both trophic
( j = i ± 1) and non-trophic (i + 1 < j < i − 1) interactions; and the coefficients
bi describe the mortality or degradation rates of each species. (Note that many of
the coefficients ai j would be nevertheless equal to zero, since not all the possible
interconnections can actually take place.)

Suchmodels have been able to theoretically predict an unexpected bottom-up con-
trol of carnivores by plants, with the carnivore biomass being indirectly controlled
by plant and herbivore biomass, as opposed to a top-down control of herbivores by
carnivores. These structural equation models are a powerful tool for detecting com-
plex mutual interdependencies, greatly enhancing our understanding of biodiversity
effects in multi-trophic systems.

12.8.2 Linear Models of Structured Population

In the last Sections we looked at dynamical models, as a complement and alternative
to the older (both linear and non-linear) analytical models, which often result in non-
integrable systems whose solution is practically impossible. Another major criticism
to the analytical models is that they treat all the individuals in a population as being
identical. However, natural populations display a rich differentiation, with subgroups
each having diverse behaviour from the average. For instance, the death rate of the
young individuals can be high at birth and decreasing with age; or the fact that young
individuals not yet in their reproductive phase do not contribute to the growth of the
population; and for adults, the death rate increases with age. In insect populations, we
must account for the distinct life stages (egg, larva, pupa, adult), which actually have
the characters of a distinct population each, but whose numbers are however strictly
correlated to each other. For example, only adults can lay eggs and reproduce, and
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death rates can be very different in the different stages. Plants also have various life
stages, such as dormant seed, seedling, non-flowering, and flowering. To describe
such differences, a populationmodel needs to be structured, with separate treatment
for the different components (subgroups) of the population under study, each with
its own characteristics.

In this conclusive Section we will focus, for the sake of simplicity, on simply
linear models of structured populations. The observed behaviour could only be rela-
tively simple, leading to typically exponential growth, as it is the case with any linear
approximation (see Malthusian models above). However, with some revealing dif-
ferences that may suggest roads for further development (see also “Further reading”
at the end of this chapter, [21]).

In a simplemodel, let us imagine a population of individuals divided into a number
of age groups, such as newborns = N , youngs = Y , adults = A, and olds = O . Indicate
the numbers of individuals in each group at a given time with a subscript t , and their
total as Tt = Nt + Yt + At + Ot . For each group we attribute different birth, death
and reproduction rates. A reasonable description of the time evolution of the entire
population could be:

Nt+1 = b1Yt + b2At + b3Ot + Nt (1 − d1)

Yt+1 = g2Nt + Yt (1 − d2)

At+1 = g3Yt + At (1 − d3)

Ot+1 = g4At + Ot (1 − d4) (12.48)

Herewe stated that the number of newborns at time t+1 is a function of the number
of youngs, adults and olds present at time t , each with their respective reproduction
probability b1, b2, b3, plus the number of new individuals already present at time t
diminished by the natural rate d1 of mortality at birth; with the second equation, the
number of young individuals depends on the number of newborns at the time before,
minus their own mortality rate; next, the number of adults depends on the number of
youngsters, minus their own mortality; and finally, the number of ageing individuals
at t + 1 is a fraction of the number of adults entering the old age, minus the old
individuals dying at the same time with probability d4. Depending on the various
coefficients, the evolution of the single groups, and of the total population T , can be
studied.

Onewayof looking at the equations above, is to turn the equations into a linear sys-
tem. The variables are collected in a vector with four components, x = (N ,Y, A, O),
and each equation in the group above becomes one row of a matrix M:

M =

⎛

⎜⎜⎝

(1 − d1) b1 b2 b3
g2 (1 − d2) 0 0
0 g3 (1 − d3) 0
0 0 g4 (1 − d4)

⎞

⎟⎟⎠ (12.49)
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such that the populations at time t + 1 are obtained from the populations at time t
via a matrix-vector product xt+1 = M ⊗ xt , or more explicitly (see Appendix A):

⎛

⎜⎜⎝

Nt+1

Yt+1

At+1

Ot+1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

(1 − d1) b1 b2 b3
g2 (1 − d2) 0 0
0 g3 (1 − d3) 0
0 0 g4 (1 − d4)

⎞

⎟⎟⎠

⎛

⎜⎜⎝

Nt

Yt
At

Ot

⎞

⎟⎟⎠ (12.50)

A matrix like M is called a projection or transition matrix, since it allows to
“predict” the population at a subsequent time from the values at a given time. Variants
of this simple model have known a certain success in human population modelling.
A version due to Patrick Leslie [19] considered the population divided into 6 groups
of 15-years span; it assumed all the coefficients di = 1, so that the projection matrix
has all zeros on the diagonal; the top row coefficients, bi , describe the age-dependent
fecundity, while the sub-diagonal coefficients gi the survival probability in passing
from one age group to the subsequent. A variant proposed in 1969 by Michael Usher
[20], which has found notable use in forest management, included di ’s different
from zero, to examine the effect of fractions of population remaining in a given class
without passing on to the next.

As an example of application of the Usher model, consider a plant that (i) needs
some years before maturing into a flowering stage and (ii) that, after reaching matu-
rity, does not always flower every year. In addition, (iii) its seeds may lie dormant
for some time before germinating. The life cycle of an ensemble of these plants over
several years can be described by the following life stages: Ut , number of dormant
seeds at time t ; Yt , number of young plants; Ft number of mature, flowering plants;
and Nt , number of mature plants not flowering in the time t . The projection matrix
can be written as:

M =

⎛

⎜⎜⎝

(1 − d1) 0 b1 0
g2 (1 − d2) b2 0
0 g3 (1 − d3) b3
0 0 g4 (1 − d4)

⎞

⎟⎟⎠ (12.51)

The coefficients state that: (1− d1) is the fraction of ungerminated seeds that can
still germinate in the next year, while b1 are new seeds produced by the flowering
plants; b3 is the fraction of non-flowering plants that go back in the flowering group
at the subsequent time; g2, g3, g4 describe transfer of, respectively U → Y , Y →
F , and F → N . A numerical solution is shown in Fig. 12.17, starting from an
initial population of 50 seedlings planted at time t = 0. Only the first few steps of
the numerical solution are shown, since at long times the growth becomes merely
exponential, for each of the populations (in the log-linear plot, all graphs tend to
parallel straight lines for t > 20−30). However, at short times there are interesting
oscillations, especially when looking at the interplay between mature plants cycling
between the flowering and sterile states (green and red graphs, respectively).
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Fig. 12.17 Early stages of the simulation of the plant growth model (12.51), with the parameters
d1 = 0.98, d2 = 0.9, d3 = 0.8, d4 = 0.9, g2 = 0.95, g3 = 0.14, g4 = 0.43, b1 = 12, b3 = 0.32,
and starting from Y = 50 seedlings installed at time t = 0

Despite their relative simplicity, examples of use of linear models in demography
and ecology abound in the literature. The following Problems 12.6 and 12.7 offer a
little bit of challenge to the student, to guess a linear model in a couple of realistic,
albeit still idealised natural systems. Linear models of the type described can give
useful insights by using the power of linear algebra analysis, by studying the behav-
iour of the matrix eigenvalues and eigenvectors. Important features can be extracted,
like the intrinsic growth rate, stable and dominant age distribution of a population,
and so on. While such a treatment goes clearly beyond the introductory level of this
book, the interested reader can refer to the “Further reading” suggestions at the end
of this chapter.

Problems

12.1 Savannah’s beauties
By way of an allometric analysis, you are trying to determine a meaningful rela-
tionship between the body mass, and the characteristic sizes of a family of african
antelopes. Find a scaling relation with the best length parameter, and comment on
the results.

Mass (Kg) Leg length, H (m) Nose-to-tail length, D (m) Neck length, h (m)
Speke’s gazelle 8 0.45 0.8 0.4
Royal antelope 1.5 0.3 0.40 0.3
Impala 150 1.1 2.02 0.7
Waller’s gazelle 22 0.6 1.12 0.5
Antelope 48 0.8 1.45 0.55
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12.2 Climbing heights
According to the metabolic scaling law, the energy consumed per day for resting
body functions is E = 75M0.75, and walking at sea level adds about 2 kcal/(kg-h).
A man of 70kg is climbing uphill a slope with 12% inclination at a pace of 3 km/h.
After 20min of climbing, it is measured that he consumed 121 kcal. What this tells
you about the efficiency of his muscles?

12.3 The life of a heart
In comparative metabolism studies across a large range of different mammals with
masses ranging from a few grams to many hundreds of kg, two allometric scaling
law have been established, the first one for the heart rate h = 241M−0.25 beats/min,
and the second for the average life span T = 15M0.20 years. What do such equations
suggest about the heart capacity across different mammals? Compare for example a
mouse of 30g and a man of 70 kg.

12.4 The fish hatchery
A fish hatchery is stocked with a population N0 of juvenile fish, which is subject to a
natural depletion rate r . After a time T to allow the fishes to grow, fishing commences
and causes an additional depletion rate q. Obtain an expression for the population
at time t > T , and determine the fraction of the initial N0 that can be recovered by
fishing.

12.5 Influenza spreading
Starting from the 1920s, mathematical models of epidemics begun to be formulated.
In their simpler versions, they require to work with at least four parameters: (i) the
size N of the population, (ii) the number Q of individuals already immune from
the virus, (iii) the number of infected individuals I (usually starting with I = 1),
and (iv) the infection spreading probability, R0, also called the reproduction number.
Therefore N = Q+ I +S, with S the “susceptible” population, which at a given time
is neither infected nor immune. In a simple population model, R0 = pτ , the product
of the probability p of an I encountering an S per unit time, times the average time
span of virus activity τ ; if R0 > 1 the infection spreads in the population. One of the
basic findings of such models is that at steady state, it is R0 · S = N . At the start of
a new epidemic, I � N , so it can be neglected, and Q + S = N . All this given, can
you deduce a critical vaccination threshold, Qc, that is a minimum fraction of the
population that needs to be immunised at t = 0 to avoid spreading of the epidemic?

12.6 From egg to adult
An insect like Tenebrio molitor, the common flour beetle, goes through three life
stages: egg, larva, and adult. We can model this evolution in discrete steps: progress
from egg to larva; from larva to adult; finally, adults lay eggs and die in one more
step. Let Et = the number of eggs, Lt = the number of larvae, and At = the number of
adults at time t . Suppose we collect data from a colony and find that only 4% of the
eggs survive to become larvae, 39% of the larvae make it to adulthood, and adults on
average produce 73 eggs each. (a) Build a linear model with recurrence equations of
the typeWt+1 = αWt +β and show that the result can be expressed as a Malthusian
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growth law. (b) Next, consider the possibility that some fraction of adults, like 65%,
do not die after laying eggs, and see how the model is modified.

12.7 The constant gardener
Your are monitoring the growth of two species of plants in a plot. An and Bn denote
the number of each species in the plot at week n. When a plant dies, a new plant
grows in the empty space, but the new one can be of either species. The species A
are long-lived plants, with a mortality of 1% in any given week, while 5% of the
species B die in the same time. However, because B are rapid growers they are more
likely to succeed in winning a space left by a dead plant; 75% of all vacant spots
go to species B plants, and only 25% go to A. Build a linear model of the garden
evolution and study its practical consequences.

(*) The terms of the Creative Commons Attribution-ShareAlike 3.0 and 4.0 International License
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Chapter 13
Solutions to the Problems

The problems at the end of each Chapter are not just meant as numerical applications
of the many equations displayed in the text. Rather, each one is an occasion to learn
something more, to go a bit deeper on some aspects that were only hinted at in
the Chapter, or to apply the concepts you just learned to some unusual, or even
funny situation. This is why in this final part complete solutions to the problems
are provided, with quite detailed discussions about the implications of a particular
solution, and some possible developments suggested by the answer to the problem.

However, it is the duty of any good student to try to solve the problems indepen-
dently, without looking at the solutions in the first place. Each problem is a little
challenge, taking you a little step further. Do not take for granted that just ‘read-
ing’ the solution will improve or deepen your understanding of the subject. It is the
thinking around that does it. The goal is not as much to answer the exercises, as it
is to figure out how to answer the exercises. Also, remember that in many cases a
problem can have more than one solution, and that the one proposed in the text could
not necessarily be the best (e.g., in terms of approximations, elegance, simplicity,
formal rigour, etc.). Use the solutions only when you run out of options, but always
use your own brains first!

Chapter 2

2.1 Basic nomenclature
(a) closed; (b) strictly speaking closed, but practically isolated for all we can see; (c)
open; (d) closed; (e) closed; (f) open.

© Springer International Publishing Switzerland 2016
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2.2 Formal identities

(a) From the equipartition it is E = 3
2NkBT ; the equation of state of a perfect gas

is PV = NkBT , from which P = 2
3
E
V .

(b) From the (Euler) equation E = T S − pV + μN , it follows immediately F =
−pV + μN .

(c) Write the total differential dG = dF + d(pV ) = dF + pdV + Vdp. On the
other hand, dF = dU − d(T S) = dU − TdS − SdT , and the fundamental
equation of thermodynamics says that dU = TdS − pdV + μdN . Then, dF =
−pdV − SdT + μdN , and finally dG = −SdT + μdN + Vdp. Therefore, G
depends on T , N and p, as independent variables.

2.3 Thermal engine

(a) The whole system is open, since it exchanges energy and matter (the air from the
fan) with the external world. The subsystem represented by the cooling fluid is
closed, since it exchanges only energy but not matter with the rest of the world.

(b) The operation can be divided into four steps, which are cyclically repeated.
(1) Heat is absorbed by the circulating fluid in the warm room. It becomes a
room-temperature, low-pressure gas, before entering the compressor. (2) The
fluid enters the compressor and comes out as a high-pressure, hot gas. Passing in
tubes outside the building, the hot gas dumps heat to outside air. (3) The warm
gas from outside enters a constriction and is further pressurised to form a liquid
in the condenser. (4) The liquid undergoes free expansion into a gas and cools.
The cool gas then flows in pipes inside the room. Although the air conditioner
pumps heat from cold to hot regions, it does not violate the Second Law of
thermodynamics: the compressor adds entropy, so that the total entropy of the
system actually increases.

2.4 Exchanges of entropy
One possible strategy is to assume that the two parts of water come separately at
equilibrium in a slow time, and find the entropy change in each of the hot and the
cold water, then add these to get the total entropy change. The entropy changes can
be computed by using the ‘caloric’ definition dS = δQ/T . The amount of heat to
bring the volume of water V from one temperature to another at ΔT degrees of
difference is simply calculated from the specific heat of water, as: cP = 4,186 J/(kg-
K), δQ = cPρVΔT , with ρ = 1,000 kg/m3 the density. The final temperature T f is
found by imposing that the amount of heat lost from the water at higher temperature
is equal to the heat gained by the water at lower temperature:

cPρ 50(T f − 55) + cPρ 25(T f − 10) = 0

from which T f = 40 ◦C. Now the entropy of the two volumes of water is found by
integrating the heat released/gained between the respective temperatures at start and
the final temperature, i.e. their sum is zero:
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ΔScold = cP

∫ 313

283

dT

T
= cP ln

313

283
= 10,550 J/K

ΔShot = cP

∫ 313

328

dT

T
= cP ln

313

328
= −9,800 J/K

The total entropy is 10,550 – 9,800 = 750 J/K, and it is seen that the entropy of the
cold water is increased, since its temperature is raised, while the opposite is true for
the hot water. Note that we had to integrate the relation between heat, temperature
and entropy, since the (quasi-static) process of interest is not isothermal.

2.5 Boiling, temperature and pressure
While heating the pressure cooker up to T around 100 ◦C, there are three components
contributing to the pressure: the expansion of water (negligible), the evaporation of
water (negligible until the temperature reaches very close to the boiling point), and
the expansion of the air filling the pot. For this latter, main contribution, we apply
the perfect gas equation, PV = nRT , with n the number of moles. Since one mole
is 22.4 l, n = 0.134 here, and ΔP = 0.134 · 8.3145 · 373/0.003 = 138.5 kPa. By
applyingClapeyron’s equation,weget the newapproximate valueof the boilingpoint,
T = 100.7 ◦C. Enclosing the water under pressure brings it to boil at a (slightly) later
time.

2.6 Stefan-Boltzmann T 4 law
Consider that the energy E of the perfect gas depends only on the temperature. Start
from:

TdS = dE + pdV = d(eV ) + e

3
dV = edV + V

(
de

dT

)
dT + e

3
dV

So:

TdS = V

(
de

dT

)
dT +

(
e + e

3

)
dV = V

(
de

dT

)
dT + 4e

3
dV

Now, take the derivatives of S with respect to T and V :

∂S

∂T
= V

T

de

dT
∂S

∂V
= 4

3

e

T

then take the cross-derivatives, and equate them:

∂

∂V

∂S

∂T
= 1

T

de

dT
= ∂

∂T

∂S

∂V
= 4

3

(
T
de

dT
− e

)
1

T 2
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By rearranging the terms:
de

dT
= 4

e

T

which can be integrated by separating the variables to ln e = 4 ln T + c′, or e = cT 4.

2.7 A negative temperature
For a given total energy of the system E = Me (to be conserved), the particles can
be variably distributed according to a number of microstates given by:

Ω(E) = N !
M !(N − M)!

corresponding to the different combinations of M (distinguishable) particles occu-
pying the excited state, while the remaining N − M are in the ground state. For
N → ∞ we can use the Stirling’s approximation for the logarithm, and obtain the
system entropy as:

S/kB = lnΩ(E) �
� (N ln N − N ) − (M lnM − M) − ((N − M) ln(N − M) − (N − M)) =
= N ln N − M lnM − (N − M) ln(N − M)

or:

S = kB

(
N ln

N

(N − M)
− M ln

M

(N − M)

)
= NkB

(
ln

1

1 − x
− x ln

x

1 − x

)

with x = M/N . Now, the temperature is by definition:

1

T
= ∂S

∂E
= ∂S

∂(Me)
= 1

e

∂S

∂M
= 1

Ne

∂S

∂x

(since the particles in the ground state contribute 0 to the total energy). Therefore:

e

kBT
= ∂

∂x

(
ln

1

1 − x
− x ln

x

1 − x

)

= ∂

∂x
[ln 1 − ln(1 − x) − x ln x + x ln(1 − x)] =

= 1

1 − x
− ln x − x

x
+ ln(1 − x) − x

1 − x
= ln

1 − x

x
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The plot of the temperature is shown in the graph above. It is seen that for M > N/2
the temperature is actually negative. The reason for this, is that when the energy
is such that more than half of the particles have to be in the excited state, the cor-
responding density of states (that is the number of microstates per energy interval
dΩ/dE) becomes a negative function: in practice, this means that upon increasing
the energy further, the number of available microstates actually decreases. In virtu-
ally none of known physical systems this does occur, and therefore no system would
exist at a negative temperature. However, it has recently been found that some very
exotic spin-systems could show a similar effect (see Ref. [16] in Chap.2).

2.8 Greenhouse gases 1
The original Sackur-Tetrode expression for the perfect gas contains only the kinetic
energy K . However, in the atmosphere a gas molecule of mass m is also subject to
gravity from the Earth, and the total energy to consider is now E = K − Nmgh.
Therefore we can write:

S(N , V, E) = NkB ln

[(
V

N

) (
2m(K − Nmgh)

N

)3/2
]

+ NkBT

(
5

2
+ 3

2
ln

2π

3h2

)

= NkB ln

[(
V

N

) (
4πm(K − Nmgh)

3h2N

)3/2
]

+ 5

2
NkBT

To simplify the final expression, note that (K − Nmgh) = 3
2kBT . Then, the deriva-

tive of S with respect to N is:

∂S

∂N
= kB ln

[(
V

N

)(
2πmkBT

h2

)3/2
]

− mgh

T

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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and the chemical potential is therefore:

μ(h) = −kBT ln

[(
V

N

)(
2πmkBT

h2

)3/2
]

+ mgh

Now impose that μ(h) = μ(0), for any h, however with a different number of mole-
cules N (h) at each altitude. Then:

−kBT ln

[(
V

N (h)

)(
2πmkBT

h2

)3/2
]

+ mgh = −kBT ln

[(
V

N (0)

) (
2πmkBT

h2

)3/2
]

which after simplification gives: kBT ln N (h) + mgh = kBT ln N (0).
Then: N (h) = N (0) exp(−mgh/kBT ), i.e., the concentration decreases exponen-
tially with the altitude and the mass of the molecule.

2.9 Greenhouse gases 2
By looking at Fig. 2.5, it can be seen that the important contribution to the greenhouse
effect comes from the gases absorbing part of the radiation reemitted by the Earth’s
surface at T = 300K, i.e. the blue part of the spectrum in the figure given in the
problem.

(a) Water vapour is the most effective, since it absorbs over a very large part of the
spectrum, starting from a wavelength of few µm and higher.

(b) According to their concentration and absorption capability in this spectral region,
the ranking is: water vapour, CO2, methane, N2O, ozone.

(c) Because the lifetime of water vapour in the atmosphere is very short, while N2O
and CO2 last for about 100years, once arrived in the upper atmospheric layers.

Chapter 3

3.1 Thermodynamic and probabilistic entropy are the same
The number of microstates is Ω = N !/(n1!n2! . . . nm !). From the Stirling approxi-
mation, ln x ! � x ln x − x , or x ! � (x/e)x , so we can replace:

Ω = (N/e)N

(n1/e)n1(n2/e)n2 . . . (nm/e)nm
= NN

nn11 nn22 . . . nnmm

If we take pi = ni/N for the probabilities, it is:

Ω = 1

(n1/N )n1(n2/N )n2 . . . (nm/N )nm
= 1

pn11 pn22 . . . pnmm

http://dx.doi.org/10.1007/978-3-319-30647-6_2
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By taking the logarithm and multiplying by kB/N :

kB
N

lnΩ = −kB
∑

i

pi ln pi

3.2 Information entropy
Information entropy was defined as the difference between the logarithm of the num-
ber of available states for the system, ΔSI = kB(lnΩ f − lnΩd) = kB ln(Ω f /�d),
with d and f being, respectively, the fully disordered and the fully functional state
of the information-carrying system considered. For a disordered polymer f is very
close to d, so their difference in Ω is small. For a crystal, Ω f is of order 1, and Ωd

is represented number of combinations of the n atoms on the p unit cell positions is
the binomial coefficient

(n
p

)
; since both n and p are not very large numbers, again

the logarithm of the ratio of Ωs is not a big number. For a protein instead, Ω f is of
order 1, but Ωd can be very large, since the number of amino acids n can easily be
of the order of tens of thousands.

3.3 Entropy of erasure
Here we want to see the difference between losing the information, by rearranging
at random the nucleotides in a DNA sequence of length N , and the physical destruc-
tion of the bonds, to return the sequence to an ensemble of disconnected nucleotides
(monomers). Considering the number of bases contained in the sequence, the maxi-
mum number of combinations in a given arrangement is 2 × N/3, since each strand
can code for N/3 amino acids, and each combination will correspond to one or
more proteins. Each base can contain one of the four nucleotides, so the number of
microstates is 42N/3. The associated entropy isΔS = kb ln 42N/3 = 2

3NkB ln 4. Since
N ∼ 6 × 109, it is ΔS ∼ 7.6 × 10−14 J/K.
The chemical entropy isΔS = δQ/T , where for δQwecan take the average enthalpy
of dissociation of a single base, ΔH ∼ 8 kcal/mol, then ΔS ∼ 25 cal/mol-K ∼ 100
J/mol-K (the experimentally measured value is slightly different). One human DNA
is ∼10−14 moles of individual nucleotides, therefore ΔS ∼ 100 × 10−14 J/K.

3.4 Genetic mistakes
An error in transcription would lead to many erroneous protein copies, whereas an
error in translation affects only one protein copy.Moreover, the transcription is based
on a one-to-one correspondence, whereas the translation seeks correspondence of
three nucleotides to one amino acid; this means that mRNAmessages would require
a higher fidelity “per letter” to achieve the same error rate as transcription.

3.5 Peptide bonds in proteins
Arrows 2 and 5 are peptide bonds; 2 and 3 are alpha-carbon bonds; 1 is an amide
bond.

3.6 The Solar system has a negative heat capacity
The velocity of a planet (massm) orbiting at a distance r around the Sun (mass M) is
obtained by equating the centripetal force to the gravity, F = GMm/r2 = mv2/r ,
from which v = √

GM/r .
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If some energy is added into the system the orbits expand, planets are more loosely
bound, and require less velocity to keep from collapsing. The orbiting system is in
equilibrium when its kinetic energy is just enough to prevent collapse. But in this
case planets have a lower “temperature” despite we added kinetic energy. The added
energy went into the gravitational potential.
This can be verified by looking at the total energy as the sum of kinetic energy K =
1
2mv2 and potential energy from the gravitational force, U = −GMm/r = −mv2,
that is E = K +U = − 1

2mv2. By equating kinetic energy and temperature, it is then
E = − 3

2kBT . The total energy is negative, and so it is its derivative with respect to
T ; so, the heat capacity is negative.

Chapter 4

4.1 The ΔG of metabolic reactions

(a) At equilibrium ΔG = 0 = ΔG0 + RT ln K , from which Keq = exp(−ΔG0/

RT ). In this case, Keq = exp(−7,500 J/mol)/(8.3145 J/mol-K)(298K) =
0.0485.

(b) Again, ΔG = ΔG0 + RT ln([B]/[A]), giving:

ΔG = 7,500 + (8.3145 · 310) ln[0.0001/0.0005] = 3.35 kJ/mol

Being ΔG > 0, the reaction is non-spontaneous.
(c) The reaction can proceed if B is the reactant for a highly exergonic, subsequently

(downstream) coupled reaction, whose total ΔG < 0.

4.2 Switching from ATP to ADP
It is ΔG = −RT ln K , hence the rate constant is K = exp(−ΔG/RT ). At equilib-
rium:

Keq = [ATP][AMP]
[ADP]2 = e−ΔG/RT

From the tables in Ref. [2] in Chap. 4, the ΔG for the ATP+AMP/ADP inter-
conversion is +3,700 kJ/mol, giving Keq = exp−(−3,700 J/mol/8.3145 J/mol-K ·
298K) = 4.45. Now solve for [AMP], and substitute the concentrations:

[AMP] = [5 × 10−4M]2 · Keq

[5 × 10−3M] = 2.3 × 10−4M = 0.22mM

4.3 Energy harvesting
For all cases, the complete oxidation reaction is written [substrate] + xO2 → yCO2

+ zH2O. The absolute yield in ATP is recovered by the value of about 5 ATP per
mole of O2 consumed in the respiration (oxidation phase). Then:

http://dx.doi.org/10.1007/978-3-319-30647-6_4
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(a) pyruvate, x = y = z = 3, yield 15 ATP; (b) lactate, x = 2.75, y = 3, z = 2.5,
yield 13.75ATP; (c) glucose, x = y = z = 6, yield 30ATP; (d) fructose diphosphate
is just like glucose plus two HPO−

3 groups, therefore x = y = z = 6, yield 30 ATP.

4.4 Human blood
The equilibrium constant is in each case given by the following ratio of concentra-
tions:

Kn = [H+][In−1]
[In]

with In the potassium ion with protonation state n, for [H2O]=1 M. Therefore we
firstly need the concentration of [H+] = 10−7.4 = 3.98 × 10−8 M. From this and the
values of K1, K2, K3 we calculate the following relative ratios:

[H2PO
−
4 ]

[H3PO4] = 7.5 × 10−3

3.98 × 10−8
= 1.88 × 105

[HPO2−
4 ]

[H2PO
−
4 ] = 6.2 × 10−8

3.98 × 10−8
= 1.56

[PO3−
4 ]

[HPO2−
4 ] = 2.2 × 10−13

3.98 × 10−8
= 5.53 × 10−6

It is seen that the most abundant ions are H2PO
−
4 and HPO2−

4 , present with about
a 2:3 ratio, while the neutral H3PO4 and the highly charged PO3−

4 have negligible
concentrations. Note however that such ratios can rapidly change by small changes
of the pH.

4.5 Gym doesn’t slim
The net conversion of fats into glucose is forbidden because the way to get the
carbon atoms from fats into oxaloacetate (the precursor to glucose) is through the
citric acid cycle. However, although two carbon atoms enter the cycle as acetyl CoA,
two carbon atoms are also lost as CO2 before oxaloacetate is formed. Thus, although
some carbon atoms from fats may end up as carbon atoms in glucose, we cannot
obtain a net synthesis of glucose from fats.

4.6 Pigeon muscles love citrate

(a) x = 4.5, y = 6, z = 4. The number of moles of O2 per 3 µM of is 4.5 · 3 =
13.5μM.

(b) Since leads to the consumption of much more O2 (85 – 49=36 µM) than simply
by the oxidation of itself (13.5 µM), this means that facilitates O2 consumption,
by increasing the overall efficiency of the combined cycles.

4.7 Antibiotics
Because by blocking the ATP-synthase it blocks also the electron respiratory cycle,
and leads to suffocation.
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4.8 Transmembrane proteins
The protein structure will be arranged in such a way that the hydrophobic segments
are contained within the membrane, while the hydrophilic segments are exposed to
water, either outside or inside the cell, as shown in the sketch below.

Chapter 5

5.1 Stationary flux
The solution for the stationary concentration profile is c(x) = cA − (x/L)Δc, with
Δc = cA − cB . The flux is constant within the membrane thickness, and equal to:
j = −D(dc/dx) = D(Δc/L), positive parallel to the direction of the concentration
gradient Δc > 0.

5.2 Artificial blood
The osmotic pressure from the proteins inside is sufficient to break the membrane.
By adding 1 mM of salt, this dissociates and the two ions create enough osmotic
pressure from the outside, to equilibrate that of hemoglobin from the inside. Probably,
doubling the NaCl concentration will make an excess of pressure from the outside,
so 1 mM should be just ok.

5.3 A cell spewing glucose
The environment outside the cell is practically infinite, therefore the concentration
cout is constant. The time-dependent concentration inside is cin = N (t)/V . The flux
is j (t) = PMΔc(t). Note that the flux can be negative, if the outside concentration
is higher than inside. For the cell with surface A = 4πR2, N (t) varies as dN/dt =
−Aj (t) = APMΔc(t). Dividing by V , it is:

d(Δc)

dt
=

(
APM

V

)
Δc

After integration,Δc(t) = Δc(0) exp(−t/τ ), with the time constant τ = V/(APM).

5.4 A breathing bacterium
The surface concentration is zero at steady state, c(R = R0) = 0, whereas the con-
centration at large distance from the bacterium is constant, c(R = ∞) = c0. Imag-
ine a family of concentric spherical surfaces with radius R1, R2 . . . Rn , around the
sphere R0 of the bacterium. The oxygen at each surface is constant, and so is the flux
j = J/A. Therefore:
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j = J

4πR2

On the other hand, Fick’s law also gives j = −D(dc/dR). By integration one finds:

c(R) = A + J

4πRD

The two constants A and J are found by imposing the above boundary conditions
on c: A = c0, J = −4πR0Dc0. Finally:

c(R) = c0

(
1 − R0

R

)
, for R < R0

5.5 Haute cuisine
The glucose concentration outside the cells is much higher than inside, therefore
an osmotic gradient is established. Since there is no water on the outside to try to
compensate the glucose/water concentration, the water comes from inside the cells
pushed by the osmotic pressure.

5.6 Separation by sedimentation
The viscous resistance for a supposedly spherical particle of size D is the Stokes’ law,
f =v 6πηD. The centrifugal force for a spinner at angular speed ω and distance r
from the centre is fc = mω2r . By equating the two forces at steady state, the equation
governing the process is:

v = dr

dt
= sω2r

with the sedimentation coefficient s = v/a = m/6πηD. By simply separating the
variables we get: dr

r = sω2dt . This can be integrated, to give: ln r = sω2t + c, or
r = r0 exp(sω2t). Hence the time A gets to r = 10 is:

rA = 10 = 5 exp((30 × 10−13)(1,0002)t), t = ln 2/(30 × 10−7) = 2.31 × 105 s =
64h 10min.

At this time, the radial position of B is:

rB = 5 exp((10 × 10−13)(1,0002)(2.31 × 105)) = 6.3 cm.

5.7 Membrane permeability
Assuming that the outgoing rate is roughly given by PM Acin , and the number ofmole-
cules in the cell isVcin , we can take the ratio between the two as τ = Vcin/PM Acin =
(R/3)(1/PM). It is found τ = 5.5min for glycerol, and τ = 926 h for glucose.

5.8 Blood flow in the arteries
The flux must be equal before and after the split, i.e. j1 = p1/Z1 and j1 = 2 j2 =
2(p2/Z2). Since the Z are inversely proportional to the power 4 of the respective R,
all the rest being equal this gives: p1R4

1 = 2p2R4
2 . Then, because R2 = R1/2, it is

p1R4 = 2p2(R/2)4, that is: p2 = 8p1.
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5.9 The osmose on Mars
Since the osmotic pressure pushes thefluid against the hydrostatic pressure, p = ρgh,
the fact that Mars has a much lower gravity than the Earth (g = 3.711 vs. 9.807 kg
m/s2, or N)makes the fluid to go higher on the “red planet”, by a factor of 9.807/3.711
= 2.64.

Chapter 6

6.1 Swimming bacterium
The distance of arrest x0 is given by Eq. (6.47). We take for the bacterium the same
density of water, ρ = 1 g/cm3, therefore V = 4

3π(15 × 10−4)3 = 1.41 × 10−8 cm3,
and m = 1.41 × 10−8 g.

x0 = mv0
6πRη

= (1.41 × 10−8)(0.3)

6π(15 × 10−4)(10−2)
= 0.15µm

6.2 Actin polymerisation velocity
The polymerisation velocity is the product of the monomer length δ× the number
of monomers added/removed from the chain per unit time, v = δ(dn/dt). With the
values given in the problem, dn

dt = (7.50 · 0.1) − 1.25 = −0.5 s−1 in the first case,
and dn

dt = (7.50 · 0.5) − 1.25 = +2.5 s−1 in the second case. The corresponding
polymerisation velocity is −2.5 nm/s, or +12.5 nm/s, respectively. A negative poly-
merisation velocity means that the F-actin filament is shortening its length by losing
monomers.

6.3 Chain polymerisation

(a) The amount of free radicals available for continuing the polymerisation is:

[M ′] =
(

(0.5)(5×10−5)

2×107 [8 × 10−3]
)1/2 = 10−7 M, at steady state.

(b) The kinetic length of the polymer is the ratio between elongation and nucleation.
We calculate firstly k = kp/2

√
uki kt :

k = 2640

2(0.5 · (5 × 10−5) · (2 × 107))1/2
= 59

Then, v = 59 · 2 · (8 × 10−3)1/2 = 10.55mol/s.
(c) vp = kp[M][M ′] = 5.28 × 10−4 mol/s.

6.4 Microtubules association/dissociation constants
Making the assumption that the association is favoured over dissociation over some
concentration range, for a given concentration [T] of tubulin in the solution, micro-
tubules of average fixed length n will be in equilibrium with free tubulin α − β

http://dx.doi.org/10.1007/978-3-319-30647-6_6
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dimers, according to the equation: Tn−1 + T ↔ Tn , with the association constant K
given by:

K = [Tn]
[Tn−1][T]

The crucial observation is that at equilibrium, it is [Tn] = [Tn−1]. Therefore,
the constant is inversely proportional to the concentration of free tubulin dimers,
K = [T]−1.The centrifuge can be used to separate the long microtubules from the
fraction of free tubulin, at each given dilution. We will choose a rotation speed for
which the microtubules will sediment, whereas the dimers will remain in suspen-
sion. From Problem 5.6 we know that the sedimentation coefficient is proportional
to the mass of the microtubule and free dimer, respectively, therefore the two differ
by a factor of n, and so does their sedimentation time. Subsequently, the floating
suspension (so-called supernatant) is manually separated from the precipitate. Aro-
matic residues, like tyrosine and tryptophan, absorb UV light at 280 nm, so you can
measure the absorbance of the suspension in the UV-spectrometer, and deduce the
tubulin concentration [T].
One important requirement to useUV absorption is that your protein actually absorbs
decently. In otherwords, theremust be enough aromatic residues in its composition.A
particular tubulin sequence can be obtained from the website www.rcsb.org/pdb, see
for example the accession codes 5JCO or 5IJ0 (there will be many other examples).
You should take the one-letter sequence of the protein, e.g. starting with MRECISI-
HVGQAGV…(it could be several hundreds of amino acids long), and plug this in
the webpage www.web.expasy.org/protparam/. This will give you a vast amount of
informations about tubulin, among which its extinction coefficient that turns out to
be slightly above 1. Therefore, the UV-absorption can be quite correctly measure the
tubulin concentration.

6.5 DNA replication

(a) About 40min (each half of 4.6 × 106 DNA nucleotides, divided by 1,000
nucleotides per second). More than one replication fork is needed (actually there
are two forks moving in opposite directions, called a “replication bubble”). In
eukaryotes this is even more critical, since the genome is much longer (the 150
millions of base pairs would require a month to replicate with a single fork);
actually, there are many replication forks working in parallel, to complete the
copy in shorter times.

(b) 96.2 revolutions per second (1,000 nucleotides per second divided by 10.4
nucleotides per turn for B-DNA gives 96.2 rps).

(c) 0.34 µm/s (1,000 nucleotides per second corresponds to 3,400 Å/s because the
axial distance between nucleotides in B-DNA is 3.4 Å).

www.rcsb.org/pdb
www.web.expasy.org/protparam/
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(a) About 40min (each half of 4.6 × 106 DNA nucleotides, divided by 1,000
nucleotides per second). More than one replication fork is needed (actually there
are two forks moving in opposite directions, called a “replication bubble”). In
eukaryotes this is even more critical, since the genome is much longer (the 150
millions of base pairs would require a month to replicate with a single fork);
actually, there are many replication forks working in parallel, to complete the
copy in shorter times.

(b) 96.2 revolutions per second (1,000 nucleotides per second divided by 10.4
nucleotides per turn for B-DNA gives 96.2 rps).

(c) 0.34 µm/s (1,000 nucleotides per second corresponds to 3,400 Å/s because the
axial distance between nucleotides in B-DNA is 3.4 Å).

6.6 Active and passive diffusion

(a) The profile of flux is constant in case of constant boundary concentrations, there-
fore the concentration profile, Δc = − jΔx , is linear. The Brownian motion is
at the origin of the diffusion process, molecules statistically cross the membrane
in both directions, however the chemical potential gradient makes the amount of
molecules going in the direction of lower concentration to be on average larger.
Hence a net flux is observed.

(b) It is the filtration coefficient, KM , having dimensions of [velocity]/[pressure].
This established how efficiently a flow goes through the membrane for a given
pressure applied on one side. The pressure in this case is much larger than the
brownian force, therefore while the molecules continue their thermal agitation,
they are steadily pushed in one direction.

6.7 Michaelis-Menten kinetics
A Lineweaver-Burk plot has to be constructured (see figure below). By putting the
data on a 1/velocity-1/concentration plot, the intercept at zero gives 1

vmax
= 4000M−1,

or vmax = 2.5 × 10−4 M/s. The slope is 40 s, fromwhich KM = (40)(2.5 × 10−4) =
1 mM. The formation rate of the product is:

kP = vmax

[E0] = 2.5 × 10−4

2.3 × 10−9
= 1.1 × 105 s−1

Therefore, the catalytic efficiency is:

eP = kP
KM

= 1.1 × 105

0.001
= 1.1 × 108 M−1s−1
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Chapter 7

7.1 Absolute and relative refractory period
Iin the first case, the response is governed by the sum of the absolute+relative refrac-
tory period, i.e. τ = 1 + 4 = 5 ms. The maximum frequency is then ν = 1/τ � 200
Hz. In the second case, the neuron is limited only by the absolute refractory period,
so ν � 1,000 Hz.

7.2 The GHK equation
(a) With R = 8.316 J/(K mol), T = 296.15 K, and F = 96, 487.302 C/mol, it is
RT/F = 0.0258 J/C = 25.5 mV. Then:

Vrest = 25.5 ln

[
1 · 4mM + 0.002 · 142mM

1 · 140mM + 0.002 · 14mM

]
= −89mM

The individual Nernst potentials for K and Na may be found from:

VK = RT

ZF
ln

(
cout
cin

)
= 25.5 · (−3.555) = −90.7

VNa = RT

ZF
ln

(
cout
cin

)
= 25.5 · (2.317) = +59.1

Vrest is much closer to VK than to VNa at rest.
(b) Each ionwill flow in the direction that sends Vm closer to its ownNernst potential,
therefore more K should enter the cell, while the same amount of Na ions should exit
(equal charges).

7.3 The cable equation
Oneneed to compute the secondderivative of each function, andverify by substitution
that each of them represents a solution. Remember that X = x/λ and L = l/λ.
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(a) V (x) = A exp(−X) + B exp(X), V ′(x) = λ[−A exp(−X) + B exp(X)], and
V ′′(x) = λ2[A exp(−X) + B exp(X)].

(b) V (x) = A cosh(X) + B sinh(X), V ′(x) = λ[A sinh(X) + B cosh(X)], and
V ′′(x) = λ2[A cosh(X) + B sinh(X)].

(c) V (x) = A cosh(L − X) + B sinh(L − X), V ′(x) = λ[A sinh(L − X) + B
cosh(L − X)], and V ′′(x) = λ2[A cosh(L − X) + B sinh(L − X)].

7.4 Axon resistance
In the foregoing, the axon radius is a = d/2, and the resistances are Rm = 2πarm ,
Ri = πa2ri .

(a) For the infinite axon: R∞ = 2
π
(RmRi )

1/2d−3/2 = 2
π
(707)(40 × 10−4)−3/2 = 1.78

M�.
For the semi-infinite axon: R∞/2 = 2 (1.78) = 3.56 M�.
For the finite-length axon, since it is between two neurons we can impose the
condition of “sealed-end”: RL = (λri ) coth(L). With:

λ =
(
rm
ri

)1/2

=
(
Rm/(2πa)

Ri/(πa2)

)1/2

=
(

(40 × 10−4)5,000

2(100)

)1/2

= 0.316 cm

ri = Ri

πa2
= 100

π(40 × 10−4)2
= 2 × 106 �/cm

we obtain: RL = (0.316)(2 × 106) coth(40 × 10−4) = 157 M�.
(b) For both the infinite and semi-infinite axon: V (x = 1.5) = 200 exp(−1.5/

0.316) = 1.74 mV.
For the finite axon: V (x = 1.5) = 200(cosh(3 − 1.5)/ cosh 3) = 46.7 mV.

7.5 Triple junction
For each of the three segments we have three similar equations:

V1 = A1 exp(−X) + B1 exp(X)

Va = Aa exp(−X) + Ba exp(X)

Vb = Ab exp(−X) + Bb exp(X)

In the most general situation we need 6 boundary conditions to determine the six
unknown constants. For a current I0 injected at x = 0, and for open ends at La, Lb:

dV1(0)

dx
= −λri I0

Va(La) = Vb(Lb) = 0

Three more constraints come from imposing the conditions at the node L . The poten-
tial must be continuous there, V1(L) = Va(L) = Vb(L). Moreover, according to the
first Kirchhoff’s law, the current must be conserved at L:
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1

λri

dV1(L)

dx
= 1

λri

dVa(L)

dx
+ 1

λri

dVb(L)

dx

with λri = √
(rmri )−1 = d3/2

√
π2/(4RmRi ). If the branches have the same phys-

ical properties (which is not unrealistic) but have different diameters, the current
conservation condition is:

d3/2
1

dV1(L)

dx
= d3/2

a

dVa(L)

dx
+ d3/2

b

dVb(L)

dx

By taking the derivatives and imposing the conditions, it is ‘easily’ obtained:

B1 = A1 − λri I0

Aa = −Bae
2La

Ab = −Bbe
2Lb

Ba = A1 + B1e2L

e2L − e2La

Bb = A1 + B1e2L

e2L − e2Lb

The last condition to obtain A1 from the current condition is slightly more cumber-
some:

A1 = λri I0

[
1 + (w1 + wa + wb − 1)

(wa + wb − 1)e2L

]−1

w1 = 2d1
d1 − da − db

wa = daw1

d1

1

e2(L−La) − 1

wb = dbw1

d1

1

e2(L−Lb) − 1

7.6 Electric frog
By taking the x axis parallel to the direction of v, and the y axis parallel to D, the
distance to the detector of each current pulse I+/−, varies over time as:

R+/− =
√

(vt ∓ d)2 + D2

We must use Eq. (7.41) to find the potential induced at the detector location by each
moving current source, and sum the two. Note that the detector is grounded, so its
potential is zero. Therefore the voltage detected is:

V = I0
4πσ

(
1

R+
− 1

R−

)
= 4.2 × 10−9

(
1√

(1,000x − 0.5)2 + 9
− 1√

(1,000x + 0.5)2 + 9

)

http://dx.doi.org/10.1007/978-3-319-30647-6_7
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with the following plot:

7.7 A mouse’s ear

(a) The relationship between frequency andwavelength is ν = c/λ, with c the speed
of sound (340m/s at sea level), so a larger size implies a lower frequency cut-off.
If we look at the maximum frequency for each size in the plot, also the figure
shows this inverse proportionality. Since the human frequency range is 20Hz to
20 kHz, scaling of all physical dimensions by a factor of 10 would mean that the
mouse’s range of hearing should be about 200Hz to 200 kHz.

(b) The figure indicates that the sensitivity increases by about 10 dB, i.e. by a factor
of 10, at every doubling of the size of the “microphone”. A factor of 10 in size
corresponds to log2 10 = 3.32 doublings, therefore the sensitivity of themouse’s
ear should be 103.32 � 2,000 times less sensitive than the human’s.

(c) Since there are no major differences in the response times and thresholds of
mouse neurons compared to a man’s, the mouse ear transduction mechanism
must be 2,000 times more sensitive than the human mechanism.

7.8 A bird’s ear

(a) The scheme could be the one depicted in (a) below, considering a dendrite receiv-
ing input from two pairs synapses coming from each ear.

(b) The summation of signals from different ears is spatial, therefore the input is
linearly summed and compare to the threshold. The summation of signals from
the same ear is temporal, therefore is summed non-linearly on the capacitance of
the membrane, and remains sub-threshold. A possible algorithm is schematised
in (b).

(c) In the first case, an action potential is fired. In the second case, the signal produces
only a sub-threshold potential, plotted in (c).
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Chapter 8

8.1 Hollow versus filled
The cross-section moment of inertia for a hollow cylinder isI = π(D4 − d4)/32 =
1,054 nm4. The same area for the cross section of a filled cylinder corresponds to a
diameter D′ = √

D2 − d2 = 6.63 nm, therefore its moment is I ′ = π(D′)4/32 =
190 nm4. The bending rigidity is, respectively, κb = (1.5 × 108)(1,054 × 10−36) =
1.58 × 10−25 J-m and κ′

b = (1.5 × 108)(190 × 10−36) = 2.85 × 10−26 J-m. These
translate into respective persistence lengths of λp = (1.58 × 10−25)/(4.14 × 10−21)

= 38 µm, and λ′
p = (2.85 × 10−26)/(4.14 × 10−21) = 6.9 µm. Such a simple cal-

culation shows why a hollow structure is more rigid than a filled one, for the same
amount of material/unit length.

8.2 Bacterial DNA

(a) With d = 0.34 nm, it is L = (0.34)(3.45 × 106) = 1.17 mm.
(b) Thepersistence length isλp = κb/kBT = EI /kBT . The cross-sectionmoment

of inertia is calculated by assuming the DNA as a filled straight cylinder,
I = πD4/32 = 1.57 nm4. Therefore at T = 300 K, λp = (3.5 × 108)(1.57 ×
10−36)/(4.14 × 10−21) = 133 nm. This is a factor of 10−4 shorter than the con-
tour length, so the DNA is very flexible on this length scale.

(c) The DNA volume is v = Lπ(D/2)2 = (1.33 × 10−3)π(10−9)2 = 4.17 × 10−21

m3, which can be packed inside a sphere of radius 160 nm.
(d) For a freely fluctuating polymer, it is Ree = N 1/2b, where the Kuhn’s length

b � d/2 = 0.17 nm., therefore Ree = 316 nm. The gyration radius for a flexible
polymer is by definition Rg = Ree

√
6 = 129 nm. All these measures can be

compared to the size of E. coli, which can be approximated as a cylinder of
diameter 0.6 µm and length 2 µm.

8.3 Exocitosis
Setting to zero the energy E1 of the flat membrane, and at E2 = 8πKb that of the
fully detached liposome (independent on the radius R), the energy of the interme-
diate configuration (cylinder + half-sphere) is E3 = πKb(4π + L/R). The energy
barrier is passed at the configuration for which E3 = E2: beyond this point it is more



592 13 Solutions to the Problems

convenient (energy-wise) for the pseudopod to break up. This corresponds to a length
of the extruded cylinder L = R(8 − 4π).

8.4 Membranes with an edge
(a) At the interface between a region of A and B phospholipids, there are mole-
cules of B that expose 4 extra CH2 groups to water, each covering about h = 0.125
nm in height and r = 0.2 nm in radius (see Appendix D for a similar calcula-
tion). By assuming that half of each molecule is in contact with the B island,
the other half of the lateral surface of the molecule (schematised as a half of
a truncated cylinder, see green surface in the figure) is in contact with water.
Therefore, each molecule along the perimeter of the interface adds an interfa-
cial energy equal to ΔE = ΣΔA, with ΔA = 1

2 (2πr(4h)) = 0.314 nm2, that is
ΔE = (0.03)(0.314 × 10−18) = 9.4 × 10−21 J. By considering that one molecule
adds a length of perimeter equal to πr , the extra interface energy per unit length (of
the A/B interface) is ΔEl = 0.15 × 10−12 J/m.

(b) Each domain has a perimeter of about 35 nm, therefore the total energy of the A/B
interfaces is ΔEl = (10)(35 × 10−9)(0.15 × 10−12) = 5.25 × 10−21 J. If the whole
of the B lipids were grouped into one (circular) island of 1000 nm2, the perimeter
would be 112nm, henceΔEl = (112 × 10−9)(0.15 × 10−12) = 1.68 × 10−21 J. The
coalescence of all the islands into one liberates the equivalent of 3.57 × 10−21 J.
(c) By comparing the last value to the thermal fluctuation energy at 300 K, kBT =
4.14 × 10−21 J, such energies are well within the range of thermal fluctuations. We
could expect to see a coexistence between B domains, dynamically merging and
breaking apart.

8.5 Membranes with a dimple

(a) The zero-mode (i.e., qx = qy = 0) deformation energy is of the order of ΔE =
(kBT )2/Kb × (L2/h2), it does not depend on the extent of fluctuatingmembrane
but only on the L/h ratio.

(b) Given the value of Kb = 15 kBT , it is ΔE ∼ kBT for h ∼ L/
√
15.

8.6 Pulling chromosomes

(a) To set an upper limit, let us take that one single microtubule pulls a chromosome.
Given the long duration of the process, compared to the molecular time scales,
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it can be assumed that it occurs at steady state. The viscous force opposing
the pulling is F = 6πηvD, with: η the viscosity of the nucleoplasm, which
can be taken to be a factor of ∼1,000 higher than pure water; v the steady-
state velocity, equal to about v ∼ (15µm)/(600 s) = 2.5 × 10−8 m/s; and D
a geometrical factor, approximately given by D = 3.45a for drag parallel to
the major axis, or D = 5.125a for drag perpendicular to the major axis (such
geometric formulas for dragging ellipsoids can be easily found on the internet).
Let us consider the worst situation, the maximum force should be about F =
6π(1 kg/m-s)(2.5 × 10−8 m/s)(5.125 × 10−6 m) � 2.5 pN.

(b) The total work is W = (2.5 pN)(15µm) = 3.75 × 10−17 J. Considering 30.5
kJ/mole of ATP, each ATP molecule gives 5 × 10−20 J, then about 750 ATP per
chromosome are consumed, at a rate of about 1 ATP/s.

8.7 Pushing cells with a laser
To move a cell of size R, the laser trap must overcome the Stokes’ drag force,
fD = 6πηRv. For η = 10−3 Pa-s the viscosity of water, one needs to estimate the
average velocity of the Brownian motion. At the temperature of T = 300 K this can
be obtained from the 1

2mv2 = 3
2kBT , as v = √

3kBT/m. The mass of the cell, by
taking a density similar to water, is m = ρ( 43πR

3). Then, the velocity is:

v =
√

3kBT

ρ( 43πR
3)

which gives respectively 1.72 × 10−3 and 5.44 × 10−5 m/s for the prokaryote versus
eukaryote cell. The drag force is therefore equal to fD = (6π)(10−3 Pa s)(10−6 m)

(1.72 × 10−3 m/s) = 32.4 pN for the bacterium, and fD = 10.25 pN for the larger
eukaryote cell. Compared to the equation for the laser power, to move either cell it
is required respectively P ≥ ( fDc)/(Qn) = (32.4 × 10−12)(2.9979 × 108)/(0.01 ·
1.3) = 750 mW for the bacterium, and P = 235 mW for the eukaryote cell.
This calculation shows that the smaller cell is subject to a larger Brownian force,
therefore more laser power is required to move it, despite the much smaller mass.
Actually (since we neglected the gravity), the power varies with cell size as R−1/2.

Chapter 9

9.1 Average elastic modulus
The average modulus is defined in terms of the volume fractions of the components,
E = f1E1 + f2E2 (“rule of mixtures”). Water contributes zero. The average volume
fractions for cortical bone are 25%water, 40%mineral and 35% organic. Therefore,
for the wet bone we have E = 0.4 · 54 + 0.35 · 1.25 = 22 GPa; for the dry bone
E = (0.4/0.75) · 54 + (0.35/0.75) · 1.25 = 29.4 GPa.
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9.2 Skin stretching

(a) 0.32 MPa in the parallel direction, and 2.16 MPa in the perpendicular.
(b) 26 and 37% in the perpendicular and parallel direction, respectively.
(c) By extrapolating to zero the second part of each curve, it is Eperp = 35 MPa,

Epara = 29 MPa.
(d) The integral of σdε can be approximated by a triangle under the curve (the

first small portion before the triangle contributes little). For the perpendicular
direction we find τ0 � 37 MPa, and for the parallel τ0 � 41 MPa.

9.3 Artery relaxation

(a) The Maxwell model reads: ηE ε̇ = ησ̇ + Eσ. For the case of a constant strain
applied, ε̇ = 0, then the stress equation is:

dσ

dt
= −(E/η)σ

This is integrated to obtain: σ = σ0 exp(−t/τ ), with the relaxation time is τ =
η/E . From the stress at 1 h, this is obtained as: τ = −3600/ ln(0.75/1) = 1.25 ×
104 s−1.

(b) By substituting the time t = 3h in the sameequation,σ = 1 exp(−10800/12500)
= 0.42 MPa.

(c) Apply the Kelvin-Voigt model, σ = Eε + ηε̇, after the stress is released σ = 0.
Therefore the strain relaxation equation is:

dε

dt
= −(E/η)σ

As above, integration gives: ε = ε0 exp(−t/τ ), with the relaxation time τ =
η/E . At the release, the strain is ε0 = (2.3 − 2)/2 = 0.15. After 1 h 25′, or
5100 s, the strain reduced to ε = (2.2 − 2)/2 = 0.1. Therefore, τ = −5100/ ln
(0.1/0.15) = 1.25 × 104 s−1, as expected since the relaxation times of the stress
and strain are – in the linear viscoelastic case – the same.

9.4 Stretch the leg
The walking man of 70kg exerts a force on the leg equal to F = 70 · 9.807 = 686.5
N. The effective spring constant is k = ES/L for a cross section area S over
a length L . For the tendon loaded in compression we have kt = (1.5 × 109)(π ·
0.00752)/0.08 = 3.3 × 106 N/m, and a corresponding compression Δx = F/kt =
686.5/(5.3 × 106) = 0.2 mm. For the bone it is kb = (20 × 109)(π · 0.022)/0.35 =
71.8 × 106 N/m, hence Δx = F/kb = 686.5/(71.8 × 106) = 0.01 mm. Due to the
larger Young’s modulus, even with a larger size the bone deforms much less than the
tendon.

9.5 Jumping cat
The energy of the cat at landing is Mgh = (4.5 kg)(9.807)(3 m)=132.4 J, dis-
tributed on the four legs, therefore each leg receives 33.1 J, and each of the four
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identical muscles 8.275J of mechanical work as input. Since the muscle volume is
V = π(2)2(12) = 151 cm3, the mechanical work corresponds to an equivalent pres-
sure of 54.9 kPa. For a bending angle θ, the diagram below shows that the height of
point a is ya = (L + a) cos θ, while its displacement is xa = (L − a) sin θ.

Therefore, the length of the muscle (line joining the origin O with a) is: H 2 = (L +
a)2 cos2 θ + (L − a)2 sin2 θ = L2 + a2 + 2La cos 2θ. The length L is that of the
bone, ideally equal to the length of the muscle minus the distance a. This expression
has a maximum for θ = 45◦. By substituting the numerical values of the problem,
we have L = 10 cm, a = 2 cm, and H = 10.2 cm at the maximum compression,
corresponding to a strain ε = 1.8/12 = 0.15. The elastic energy at the maximum
compression is then:

Eel = 1

2
Eε2 = 1

2
(20 × 103 Pa)(0.15)2 = 225 J/m3

Themechanical input pressure is more than 200 times larger than this value, meaning
that the muscle alone would not be able to absorb a shock of this kind. By looking
at the results of Problem 9.4, it should be clear that most of the elastic energy in a
shock is absorbed by the tendons (and by the bones, if too large), while the muscles
take care of the slow movements of the body against gravity.

9.6 Muscles and temperature

(a) It is the Young’s modulus E , and Poisson’s ratio ν.
(b) By expressing the deformed volume as V ′ = L(1 + ε)πR2(1 − νε)2 = V0(1 +

ε)(1 − νε)2, it is:

ΔV

V
= 1 − (1 + ε)(1 − νε)2 � ε(2ν − 1)

to first-order in ε. The Poisson’s ratio is ν = 0.125, independent on the tem-
perature (see answer (c)). Therefore ΔV/V = −0.75ε, with ε(T ) = 0.02 +
0.004(T − 10) (temperature T in degrees ◦C).

(c) The Poisson’s ratio is at all temperatures 0.25/2 = 0.5/4 = 0.75/6 = 0.125. For a
fixed loadW = Yε, theYoung’smodulus decreases with temperature as E(T ) =
5E0/(T − 5), with E0 the modulus at T = 10 ◦C; then at T = 23.5 ◦C it is E =
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0.27E0; the strain is 7.4%, as it could be predicted also by linear extrapolation
of the ε(T ) curve.

9.7 Implant materials
Let’s rewrite the equation in terms of the ratio ε = E f /Em > 1 (a reinforcement
with E f < Em makes little sense):

E∗ = f ε

(
1 − tanh ns

ns

)
+ (1 − f )

ns �
√

2

ε ln(1/ f )

and study the condition for which E∗ > 1 (the overall modulus is larger than the pure
matrix’s Em). The function is quite complex and can be studied only graphically. By
looking at the behaviour of the curve for ε = 1, 5, 10, it can be seen that theminimum
fraction at which E∗ > 1, firstly decreases from 1 (blue) to about 0.75 (for ε � 5,
red), then increases again and, for large values of ε, tends to saturate to f ∼ 0.8
(green). With such high values of filling, clearly the properties of the fibres dominate
over the matrix.

9.8 Bend, break or twist
Note that all the properties but the (d) are structure-dependent, i.e. they are not
intrinsic material properties but depend on the shape, size and loading conditions of
the structure (in this case, the thin cylinder fixed at its bottom end).

(a) The bendingmoment of inertia isI = πD4/32 = 1 × 10−9 m−4. For the lateral
load of F = 50 N, the deflections (in cm) are calculated from the equation
d = π

0.5 (50 N)(0.53 m3)/(E · (10−9 m−4)). From the table, it is seen that most
materials will slightly bend; the cartilage and the dandelion will likely break
under a deflection larger than the length of the stem.

(b) The applied tensile stress is σ = F/A, with A = π(0.0052)m2 the cross section
area. From the table, the calculated stress for a pull of 500N is larger than the
tensile strength, for cartilage, vine and dandelion. Thesewill break under tension,
the other materials will stretch but resist the force.

(c) The applied compressive stress is also σ = F/A. Here we must firstly calculate
the critical buckling force, from Euler’s formula Fcrit = π2

3 (E · (10−9 m−4)/
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(0.52 m2). The critical stress for bending is σcri t = Fcrit/A. From the table, it
is seen that in all cases the critical bending stress is inferior to the compressive
strength, for this diameter and length of the stick. Under a compressive force of
1000 N, corresponding to a compressive stress of 12.7 MPa, all sticks will bend,
and cartilage and dandelion will eventually break.

(d) For a full cylinder, the bend-to-twist ratio κb/κt can be taken equal to E/2G,
because J � 2I . From the calculated values in the table, it is likely that car-
tilage, vine, oakwood, bamboo and dandelion could add a considerable twisting
to the compression load. Note that this is true for practically all vegetables.

Material Deflection at F = 50 N (cm) Tensile stress at F = 500 N (MPa) Critical buckling stress (MPa) E/2G

Tendon collagen 0.85 100 2.5 3.6
Tooth enamel 0.03 35 60 0.45
Bone 0.1 200 20 2.5
Cartilage >L 2.5 0.02 6.7
Vine green stem 1.06 6 2 5.6
Oakwood w/grain 0.33 170 6.5 5.9
Bamboo 0.21 190 10 7.7
Dandelion stem L 3 0.008 13.3

Chapter 10

10.1 Sarcomeres
At 1 the maximum contraction is reached, there is no longer force generation. In 3
the overlap between myosin (thick filaments) and actin (thin filaments) is maximum,
therefore between 1 and 3 the force generated by the muscle increases linearly, up to
the maximum. The break in linearity at the point 2 corresponds to the detachment of
the thick filaments from contact with the Z-lines. Between 3 and 4 there is a ‘plateau’
corresponding to elongation at constant force for awidth equal to theH-zone, since in
the H-zone there are no overlapping myosin-actins. Extending the sarcomere beyond
4, is associated with a linear decrease in the number of actin-myosin interactions,
and active force production should become zero at 5, where the sarcomere length is
maximum (sum of twice the thin filaments length + the thick filament length + twice
the Z-line thickness), that is between 3.6 (frog) and 4.2 µm (human). The following
scheme summarises these steps:

10.2 Summer training
All of the three reasons suggested may have a part in explaining cramps. ATP is
needed for several processes involved in muscle relaxation. Loss of liquids implies
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reduced salts, which can also prevent normal muscle function. Interrupted blood flow
prevents efficient delivery of oxygen, needed for ATP production during cellular
respiration.

10.3 Weightlifters
The simplest way is to consider the potential energy change for lifting a 5-kg weight
by 0.25 m. E = mgh = (5 kg)(9.8 m/s2)(0.25 m) = 12.25 J. If 1 ATP is used per
myosin step along, the number of ATPs needed for the task is 12.25 J/(30.5 kJ/mol)=
4.02 × 10−4 mol, or 2.42 × 1020 molecules. As it was noted (see p. 228), in the
tight-coupling model all myosins work together in steps of about 5 nm; in the loose-
coupling model, about 40–60 % of the myosin heads work in “loose” steps of 35–38
nm. This means 2.42 × 1020 myosin steps in the former model, and about half this
value for the latter (however, with longer steps).

10.4 Cyclic muscle work

(a) The power is related to the cyclic work as P = Wv (Eq. (10.12)). Therefore:

W = 1

ν
(−270 + 10ν − 0.07ν2)

(b) Taking the derivative dW/dν = 270/ν2 − 0.07 and setting it to zero, the maxi-
mum of W is at vW = 62 Hz. By contrast, the maximum of P is for dP/dν =
10 − 0.14ν = 0 equal to νP = 71.4 Hz.

(c) The relation between stress and cyclic power is P = σεν. For the data of
the proble, it is ε = 1/15, and σ = 15(−270 + 10ν − 0.07ν2)/ν. The force-
frequency law is: f = σS, therefore f = (1.8 × 10−5)(−4,050 + 150ν −
1.05ν2)/ν (N).

10.5 Dimensional analysis of sunday’s oven roast
The physical variables thatmaymatter in this case should be: the thermal conductivity
of the meat, κ, its density, ρ, the meat’s specific heat, cP , and its characteristic
dimension, like the largest diameter of the piece of meat, D. We want a variable with
dimensions of time, the cooking time τ ∝ καρβ(cp)γdδ , i.e., four exponents with
four equations.

http://dx.doi.org/10.1007/978-3-319-30647-6_10
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The dimensions of the variables are: [κ] = [MLT−3Θ−1], [ρ] = [ML−3], [cP ] =
[L2T−2Θ−1], and [D] = [L].
The four equations for the exponents of M, L, T and Θ are:

0 = α + β

0 = α − 3β + 2γ + δ

1 = −3α − 2γ

0 = −α − γ

from which α = −1,β = 1, γ = 1, δ = 2, giving:

τ = k

(
ρcpD2

κ

)

After a few failed roasts to determine the constant k, you should be on business with
your equation. Note that the fact that κ and cP are the only variables containing the
temperature in their denominator makes it obvious to include their ratio. Moreover,
the time is proportional to D2, that is both the volume or mass to power 2/3: it should
be common barbecueing experience that the larger the roast, the shorter the relative
cooking time (i.e., roasting 2 kg takes less than twice the time to roast 1 kg).

10.6 Dimensional analysis of blood pressure
The scaling equation for the pressure dropwouldbewritten as:Δp/ΔL ∝ ηαεβDγvδ .
The physical dimensions are the following: [p/L] = [ML−2T−2], [η] = [ML−1T−1],
[ε] = [D] = [L], [v] = [LT−1]. The roughness ε and the diameter D have both units
of length, and can therefore be grouped into one nondimensional parameter. Hence:

Δp

ΔL
∝ ηαεβ+1vδ f

(
D

ε

)

and:
[ML−2T−2] = [ML−1T−1]α[L]β+1vδ · Π

The equations for the exponents are:α = 1,−2 = −1 + (β + 1) + δ,−2 = −1 − δ,
from which β = −2, δ = 1. The desired equation is then:

Δp

ΔL
∝ ηv

ε2

(
D

ε

)a

This equation tells that the pressure drop is inversely proportional to the square of
the roughness, and is invariant for blood vessels with a similar D/ε ratio. It is an
important finding to be able to correlate with the level of cholesterol accumulation on
the vessel inner surface, which determines an increase in the rugosity of the surface.
With increasing thickness of the deposit on the inner wall, the pressure drop goes to
zero, meaning that the flow is slowed down by cholesterol accumulation. Therefore,



600 13 Solutions to the Problems

the heart has to increase the pump pressure to keep a steady flow. Note that this
could be read as another form of the Hagen-Poiseuille equation, Δp = 32ηLv/D2;
however, in that derivation the length-squared in the denominator is the diameter
of the vessel, while here it was emphasised the role of the arterial clotting. The
generalisation of the H-P equation to a non-stick-slip surface (of which this is just the
functional equivalent) would require the experimental measurement of the exponent
a for the nondimensional parameter Π = D/ε.

Chapter 11

11.1 Water walkers
From the force equilibrium equation, Fb/Fc = Mg/2ΣL sin θ < 1, the minimum
condition for the insect to float without sinking is M/L < 12Σ/g.

11.2 Climbing the tree
Water climbing a height h by capillarity must overcome a pressure difference equal
toΔP = ρgh. However, climbing keeps going until the maximum height is attained.
After that, water from the topmust be removed tomake room for otherwater climbing
up.
(a) In the case of a tree, with typical height of about 5–30 m, the energy to remove
the water comes from evaporation. The latent heat of evaporation being 44 kJ/mol
(supplied by the heat of the Sun), it ismuchmore than thework done by the capillarity
force, equal to mgh = (0.018 kg/mol)(9.81 m-s−2)(30 m) = 5.3 J/mol. Therefore,
more energy is necessary to remove the water from the top, than it is necessary to
bring it up there. Why the Second Principle? Because if this were not the case, the
tree would be creating a “Perpetual Motion of the Second Kind”, namely a machine
that spontaneously converts thermal energy into mechanical work. Note that some
people, every now and then, have been proposing hydroelectric machines based on
the principle of capillarity, obviously without success.
(b) It is also interesting to compute the minimum thickness of the capillary required
to equilibrate the heat of evaporation. Although this is just a first approximation, the
capillarity height is h � 1.48 × 10−5/R. Then, h = 44 kJ/mol/mg = 249 km (!),
for which it should be R = 2.49 × 106/1.48 × 10−5 = 0.6 Å, that is much smaller
that the size of the molecule itself.

11.3 Revolving parabola
The drawing is given in the following figure. The area of the surface of revolution is
calculated by the general formula: A = 2π

∫ b
a f (x)

√
1 + [ f ′(x)]2dx .

In this case f (x) = 1 + 1
2 (x − 2)2, and f ′(x) = x . Therefore:
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A = 2π
∫ 4

1

[
1 + 1

2 (x − 2)2
]
(1 + x2)1/2dx

= 2π
∫ 4

1

[
1
2 x

2 − 2x + 3
]
(1 + x2)1/2dx

= 2π

{(
x

8
− 2

3

) √
R3 + 23

16

[
x
√
R + ln(

√
R + x)

]}4

1

= 82.372

with R = 1 + x2 (the indefinite integral can be easily calculated from the tables of
Gradshteyn and Ryzyk).

11.4 Morphing snails
The length of the spiral curve in parametric form is calculated from the general
expression:

L =
∫ b

a

√(
dx

dt

)2

+
(
dy

dt

)2

dt

Therefore:

L A =
∫ 3π+2

0
[49(sin t + t cos t)2 + 49(cos t − t sin t)2]1/2dt

=
∫ 3π+2

0
[49(sin2 t + t2 cos2 t + cos2 t + t2 sin2 t)]1/2dt

=
∫ 3π+2

0
7
√
1 + t2dt

LB =
∫ 4π+1

0
[(t sin t + t2

2 cos t)2 + (t cos t − t2

2 sin t)2]1/2dt

=
∫ 4π+1

0
[t2 sin2 t + t4

4 cos2 t + t2 cos2 t + t4

4 sin2 t]1/2dt

=
∫ 4π+1

0
t

√
1 + t2

4
dt
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By using the same integration rules of the previous problem, we have:

L A =
∫ 3π+2

0
7
√
1 + t2dt

= 7
2

[
t
√
1 + t2 + ln

(
t +

√
1 + t2

)]3π+2

0
= 469.54

LB =
∫ 4π+1

0
t

√
1 + t2

4
dt = 4

3

[√
(1 + t2

4 )3
]4π+1

0

= 429.78

Then A is slightly older than B. However, note that comparing the snails by just
the shell length is not a good idea, since shells of different shape grow to different
lengths over the same time.

11.5 Packing problems
(a) A circle of radius 1 has an area equal to π, that is π/4 = 0.785 that of the smallest
square enclosing it, with side L = 2. Two unit circles can be fitted in a square with
side equal to L = (

√
2 + 2), their area is 2π, that is 2π/L2 = 0.539 times the area of

the square. The solution for three circles ismore tricky: turn the three touching circles
such that their centres are at (−1,0), (+1,0), (0,

√
3) (see figure); the angle α is easily

found to be equal to π/6; then the side if the square is L = 2(1 + cos(π/6), and the
area of the three circles is 3π/L2 = 0.609 that of the square. Four circles is just 4
times the solution for one. Five unit circles fit in a square with side L = (2

√
2 + 2),

that is an area 5π/L2 = 0.634 times the area of the square.

(b) A sphere of unit radius has a volume v = 4
3π. The volume of the tangent cube

is 23 = 8, therefore the packing fraction is π/6. For the face-centred close packing,
five spheres are placed in a square (see above), with three spheres exactly filling the
diagonal. Therefore the side of the square is L = 4/

√
2 (from the centre of the first

to the centre of the third sphere, see below). The second layer is made by placing
four spheres above the midpoints of each side of the square. The third layer is built
like the first one, and so on. With this construction, the volume fraction occupied by
the spheres within the cube can be counted: six half spheres centred on each face
of the cube(green, see figure), plus 1/8 of a sphere at each of eight vertices (blue).
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This makes a total of 4 whole equivalent spheres contained in the cube (an infinite
3D array of such cubes and spheres fills the space). Therefore, the packing fraction
is (44

3π)/(16
√
2) = 0.7405.

11.6 Cell migration and gradients
The cell colony has an ovoid shape. A circle can turn into an ovoid by applying a
map, so the reverse map turns the ovoid back to a circle. Starting from the equation
of a circle, x2 + y2 = r2, a transformation t (x) is applied to the y coordinate, as
x2 + [t (x) · y]2 = r2. Examples are t (x) = (1 − ax)−1, t (x) = exp(−ax), t (x) =
(1 + ax) (see example plots below, with r = 10 and x0 = 25).
In all cases, the amplitude along one direction (e.g., the x) is modulated by a non-
linear, monotonic function along the other (e.g., the y). A monotonic function along
a given direction implies a directional gradient, which should be the sign of a mor-
phogen atwork in the cell culture, acting along a preferential direction. The non-linear
driving force of the morphogen is here summed to the circularly-symmetric driving
force from ordinary diffusion, turning its circular growth pattern into an ovoid.

11.7 Human growth
You can draw horizontal and vertical lines at points of interest, and measure with a
ruler the ratios of such quantities, compared to the unit height. Several observations
can be made (see plot below). First of all, apart from the very early stages of embryo
growth, the changes over age T (in years) for all measurements seem to be rather
homogeneous and smooth. By dropping the first point, they all seem to follow laws
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of the type p = a ln T . The relative size of the head decreases steadily, both in length
and width, coherently with the fact that the brain size changes relatively little after
two years of age. The space of legs keeps growing in relative size, and in a nearly
symmetrical way to the decrease of the head, such that the torso keeps a constant
relative span over the entire 0–25-years age. The same constancy is observed for the
length of the arms, whose size proportion remains practically stable relative to the
growth of the whole body.

Chapter 12

12.1 Savannah’s beauties
We fit the mass-length scaling law by M ∝ Lk , on a log-log plot. By replacing L
with H , D or h, the exponent k is respectively obtained from the slope of the straight
lines, equal to 3.6, 3 and 5.7. The correlation coefficient is comparable for all three
variables, and slightly better for h (r = 0.85, 0.87, 0.94, respectively). The preferred
approximation is definitely that of taking L = D, the total (nose-to-tail) length,which
gives a physically more meaningful M ∝ L3 dependence.
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12.2 Climbing heights
By climbing for 20min he covers a distance of 1,000 m. For a slope of 12%, this
corresponds to raising by 119 m (1,000 is the hypothenuse of the triangle). His
energy consumption for normal metabolism plus horizontal walking is E = (75 ·
700.75)(20/1,440) + (70 · 2/3) = 25.2 + 46.7 = 71.9 kcal. Therefore, the amount
of energy added by climbing is 121 – 71.9 = 49.1 kcal. The mechanical work done
in raising 70kg against the gravity for 119m is W = (70)(9.807)(119) = 81.7 kJ,
or 19.5 kcal. By comparing this value with the climbing energy expenditure, the
efficiency of the muscles is about 19.5/49.1 � 40 %, that is not bad compared to a
typical engineering machine.

12.3 The life of a heart
If we take the product of the two scaling laws, [beats/minute][years·(365)(1,440)],
a “law” for the number of heart beats in an animal’s life is obtained, as h · T =
(241M−0.25)(365)(1,440)(15M0.20) = 1.9 × 109M−0.05 beats. Such a scaling law
with a very weak (close to zero) exponent, seems to state that there should not much
difference in the number of beats in a lifespan of animals even with very different
body masses. For example, in a mouse of 30g and a man of 70 kg, these numbers
would be 2.26 versus 1.54 billion beats. Such a law is difficult to disprove, because the
small exponentmakes for large uncertainty. If for example the exponent is determined
with a large uncertainty of 50%, sayM−0.025, the variation in the predicted hear beats
would be just a few per cent. This is the problem of working with small exponents.
On the other hand, scaling laws are expected to give general trends, not to predict
exact values. For example, the average life span of a mouse is about 3years, and
their typical heart rate is around 350 beats/min, which gives ∼0.55 billion heart
beats. While this is off by about a factor of 4 compared to our allometric estimate,
the order of magnitude is correct.

12.4 The fish hatchery
For times t < T , the population of fishes grows according to a simple Malthusian
law, dN/dt = −r N , N (t) = N0 exp(−r t). For t ≥ T , it is dN/dt = −(r + q)t ,
with solution N (t) = NT exp(−(q + r)t). To determine the constant, set N (T ) =
NT exp(−q + r)T = N0 exp(−r t). Hence NT = N0 exp(qT ), and the complete
solution is:

N (t) = N0e
qT e−(q+r)t

The fraction of the initial N0 recovered by fishing at a time t > T is found as:
P = qN (t)/N0 (probability of catching × the number of fish at time t , normalised
to the initial population N0). Then:
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P(t) = q

N0

∫ t

T
N (t ′)dt ′ = qeqT

∫ t

T
e−(q+r)t ′dt ′

=
[
−qeqT e−(q+r)t ′

(q + r)

]t

T

= qeqT

q + r

[
e−(q+r)T − e−(q+r)t

]

= qe−rT

q + r

[
1 − e−(q+r)(t−T )

]

12.5 Influenza spreading
It is S = N − Q, then R0(N − Q) = N , from which Q/N = 1 − 1/R0 is the frac-
tion of immune individuals over a population of N . If we impose R0 > 1 in the last
equation, this gives a fraction Q/N > 0. This is equal to the minimum threshold Qc,
needed to keep the spreading under control.

12.6 From egg to adult
(a) The model can be described by three equations:

Et+1 = 73At

Lt+1 = 0.04Et

At+1 = 0.39Lt

By putting the three stages (egg, larva, adult) in chain, we have At+3 = 0.39[Lt+2 =
0.04(Et+1 = 73At )] = (0.39)(0.04)(73)At . This is a finite-difference equation, that
can be turned into its differential equivalent:

d A

d(3t)
= 1.139A

whose solution is A(t) = A0 exp(0.38t), a Malthus-like exponential growth.
(b) In this case, the third equation must be modified into: At+1 = 0.39Lt + 0.65At .
The model cannot be solved simply by recurrence. Instead we write the three equa-
tions in matrix form. The vector of variables is xt = (Et , Lt , At ), and xt+1 = Mxt ,
that is: ⎛

⎝
Et+1

Lt+1

At+1

⎞

⎠ =
⎛

⎝
0 0 73

0.04 0 0
0 0.39 0.65

⎞

⎠

⎛

⎝
Et

Lt

At

⎞

⎠

To obtain the equivalent of the previous finite-difference equationwemust repeatedly
apply the matrix, as xt+3 = M3xt . The matrix product gives:

M3 =
⎛

⎝
1.139 18.51 30.84
0 1.139 1.898

0.010 0.165 1.414

⎞

⎠
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It can be seen that off-diagonal terms appear, which means that all the three stages
are interacting in determining the respective population evolution. In particular, note
that the M33 term is larger than the 1.139 of case (a) above, i.e., the growth of adult
population is obviously faster if some of them survive the egg deposition stage. All
the three populations (egg, larva, adult) grow exponentially.

12.7 The constant gardener
The model can be set in two recurrence equations, describing how the population
of the two plant species at week n + 1 depends on the populations at week n. By
accounting for A the fraction (99%) surviving, plus the 25% probability of winning
a free spot from the 1% A and the 5% B dying, and for the B plants the same but
with their own probabilities, it is:

An+1 = 0.99An + 0.25(0.01An + 0.05Bn)

Bn+1 = 0.95Bn + 0.75(0.01An + 0.05Bn)

After simplifying, the problem can be set as a linear model xn+1 = Mxn , with xn =
(An, Bn), and:

M =
(
0.9925 0.0125
0.0075 0.9875

)

This problem cannot be solved other than by numerical iteration of the matrix-
vector product. The plot below shows the result of two different initial conditions,
respectively A0 = 100, B0 = 10 (black curves) and A0 = 10, B0 = 100 (red curves).

The two populations tend to a constant asymptote, irrespective of the initial values,
and their ratio at long times is (in this special case) equal to 5/3. While a simple
general formula for raising a matrix to a power p does not exist, by iterating the
matrix-matrix product numerically for a large number of time steps, say 104, it is
obtained:

M104 =
(
0.62327 0.62327
0.37673 0.37673

)

The two columns are identical, and the ratio of the upper- and lower-row coefficients
is 1.6544, very close to 5/3.



Physical Units, Constants and Conversion
Factors

Here we regroup the values of the most useful physical and chemical constants used
in the book. Also some practical combinations of such constants are provided. Units
are expressed in the International System (SI), and conversion to the older CGS
system is also given. For most quantities and units, the practical definitions currently
used in the context of biophysics are also shown.
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Basic physical units (boldface indicates SI fundamental units)

SI cgs Biophysics
Length (L) meter (m) centimeter (cm) Angstrom (Å)

1 0.01 m 10−10 m

Time (T) second (s) second (s) 1 µs = 10−6 s
1 1 1 ps = 10−12 s

Mass (M) kilogram (kg) gram (g) Dalton (Da)
1 0.001 kg 1/NAv = 1.66 · 10−27 kg

Frequency (T−1) s−1 Hz
1 1

Velocity (L/T) m/s cm/s µm/s
1 0.01 m/s 10−6 m/s

Acceleration (L/T2) m/s2 cm/s2 µm/s2

1 0.01 m/s2 10−6 m/s2

Force (ML/T2) newton (N) dyne (dy) pN
1 kg · m/s2 10−5 N 10−12 N

Energy, work, heat joule (J) erg kBT (at T = 300 K)
(ML2/T2) 1 kg · m2/s2 10−7 J 4.114 pN · nm

0.239 cal 0.239 · 10−7 cal 25.7 meV
1 C · 1 V 1 mol ATP = 30.5 kJ = 7.3 kcal/mol

Power (ML2/T3) watt (W) erg/s ATP/s
1 kg · m2/s3 = 1 J/s 10−7 J/s 0.316 eV/s

Pressure (M/LT2) pascal (Pa) atm Blood osmolarity
1 N/m2 1013̇25 Pa ∼ 300 mmol/kg

1 bar = 105 Pa ∼300 Pa = 3 · 10−3 atm
Electric current (A) ampere (A) e.s.u. Transmembrane

1 2.998 · 109 A current ∼1-2 mA/cm2

Electric charge (A/T) coulomb (C) statCoulomb (stC)
1 A·s 2.998 · 109 C

Electric volt (V) statCoulomb (stC) Neuron action potential
potential (ML2/T3A) 1 W/A 2.998 · 109 C ∼ 100 mV
Electrical ohm (�) statOhm (st�) Cell membrane (with K+
resistance (ML2/T3A2) 1 V/A 1.11265 · 10−12� and Na+ channels)

1-2 k� · µm2

Temperature (K) kelvin (K) celsius (◦C)
1 1
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Useful physical constants and their combinations

Avogadro’s number, NAv = 6.0221409 × 1023 mol−1

Atomic mass unit, mu = 1
12m(12C) = 1.66053904 × 10−27 kg

Boltzmann’s constant, kB = 1.3806485 × 10−23 J/K (joule/kelvin degree) = 8.617×10−5 eV/K
Planck’s constant, h = 6.62607 × 10−34 J s = 4.132 eV/fs, � = h/2π
Stefan-Boltzmann’s constant, σ = 5.670367 × 10−8 W/(m2K4)
Gas constant, R = 8.31446 J/(K· mol) = 1.987 cal/(K· mol) = NAv · kB
Molar volume at STP Vm = 22.414 litre/mol
Speed of light, c = 2.99792458 × 108 m/s
Elementary charge, e = 1.60217662 × 10−19 C (coulomb)
Vacuum dielectric constant, ε0 = 8.854 · 10−12 F/m (faraday/metre)
Coulomb’s constant, Kc = 1/(4πε0) = 8.9875 × 109 Nm2 C−2

Faraday’s constant, F = 96485.309 C/mol
muc2 = 1.4924 × 10−10 J = 931.494 MeV
Kce2 = 2.3071 × 10−28 Jm = 1.44 eVnm
�c = 3.1615 × 1026 Jm = 197.33 eVnm
RT = kBT × NAv = 2.479 kJ/mol (at 300 K)
h/kBT = 0.16 ps (at 300 K)

Useful conversion factors (with some old-fashioned units)

To convert from: To: Multiply by:
radian degree arc 57.29578
angstrom nanometer 0.1
light-year metre (m) 9.461 × 1015

cm3 litre 0.001
eV joule (J) 1.6021 × 10−19

eV (wavelength) cm−1 8,065.73
eV (wavelength) nanometer 1,239.84
teraHertz (THz = 1012Hz) meV (wavelength) 4.13567
standard atmosphere kilopascal (kPa) 101.325
bar kilopascal (kPa) 100
millimeter of mercury (at 0 ◦C) kilopascal (kPa) 0.1333224
millimeter of water (at 4 ◦C) pascal (Pa) 9.80665
pound/sq.inch (lb/in2, psi) pascal (Pa) 6,900
centipoise (viscosity) pascal-second (Pa s) 0.001
horse-power (hP) watt (W) 746
kilowatt-hour (kWh) megajoule (MJ) 3.6
calorie joule (J) 4.184
eV kcal/mole 23.0609
gauss tesla (T) 0.0001
weber/sq.metre tesla (T) 1
ampere-hour coulomb (C) 3,600
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A
Accretion mechanism, 496
Acetylation, 107
Actin, 193, 207, 261

monomer (G-actin), 226
polymerisation, 226
polymerisation speed, 227
treadmilling effect, 228

Action potentia
Hodgkin-Huxley experiment, 280

Action potential, 262, 275, 278
in muscle, 442
plants, 303
post-synaptic, 291
propagation speed, 282
subthreshold, 285
wave-like propagation, 284

Active transport, 264
Adiabatic transformation, 14
Adipocytes, 147
Adiposomes, 147
ADP, adenosine diphosphate, 113, 215, 430
Albedo, Earth surface, 39
Allometry, 529
Amino acid, 105
Amphiphilic molecule, 169, 337
Anaerobic glycolysis, 134
Ancient Greek medial school, 96
Antiporter, ion channel, 134
Apex predator, 555
Aquaporin, see ion channel
Archimedean tiling, 488
Argentavis, 538
Arrhenius law, of biodiversity, 563
Asakura and Oosawa experiment, 169
Aspect ratio, 484

ATP, adenosine triphosphate, 78, 113, 188,
206, 209, 221, 240, 264, 276, 357,
430

Autocatalysis, 507
Autocatalytic reaction, 80
Avalon explosion, 90
Average curvature, surface, 486
Avogadro’s number, 11
Axoplasm, 271

B
Bacterial DNA, 71
Ballot theorem, 179
Bartel and Szostak experiment, 80
Basal metabolic rate, 138
Bending modulus

of a rmembrane, 325
of a rod, 324, 326

Bilateral symmetry, 505
Binomial distribution, 66
Biodiversity, 554

abundance, 563
richness, 563

Bio-geochemical cycle, 557
Biomass, 555
Biomass, upper bound for a species, 561
Biosphere, 30
Biosynthesis

clay hypothesis, 89
iron-sulphur hypothesis, 89

Biot number, 143
Biphasic material, 387
Biphasic model, human tissues, 390
Bistable oscillator, 439
Black body, 41
Body plan, 90, 505
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Boiling point, 55
Boltzmann

constant, 17
entropy definition, 19
entropy equation, 62
kinetic theory of gas, 25

Boltzmann factor, 216, 345
Bond number, 481
Bone size scaling, 537
Brain plasticity, 292
Brain-blood barrier, 188
Brittle, material, 374
Brown fat, 147
Brownian motion

and membrane diffusion, 180
early experiments, 178
Einstein’s equations, 205
rectified, 216
Smoluchowski problem, 179

Bulk modulus, 371
Buoyancy force, 537

C
Calvin’s cycle, see photosynthesis
Cambrian explosion, 90
Cantilever, 444
Capillarity, 478

meniscus, 479
Capillarity length, 481
Carbohydrates, 153

furanose, 154
monosaccharide, 153
pyranose, 154

Carbon cycle, 558
Cardiac index, 139
Carnot, cyclic thermal engine, 18
Carrying capacity, 546
Catalyser, see enzyme
Catalytic efficiency, enzyme, 234
Cell cycle, 354
Cell nucleus, 337
Cellulose, 397
Central Dogma, 100
Centromere, 101
Chaotic system, see deterministic chaos
Chemical potential, 27
Chemiosmotic theory, 120
Chlamydomonas, unicellular alga, 189, 255
Chlorophyll, 476
Cholesterol, 199
Chondrocyte, 386
Chromatid, 101

Chromatin, 101, 356
Chromosome, 101, 356
Chronaxy, 278
Cilium, 236
Clausius, irreversible transformation, 18
Clausius, thermodynamic entropy, 23
Claverie and Rault, see mimivirus
Clay hypothesis, see biosynthesis
Clock-and-wavefront model, 511
Closed ecosystem, see ecology
Closed system, 20
Codon, 105
Coenzymes, 151
Cohesin, 356
Cohesin, motor protein, 357
Colloid, 169
Competition, between species, 550
Condensin, 356
Condensin, motor protein, 357
Conductance, neuron membrane, 269
Constant, vector field, 50
Constitutive relation, 370
Contour length, 174
Cortical tension, see membrane
Cost of transport, 541
Coupled oscillators, 513
Creatine phosphate, 146
Creep, 377
Crescentin, bacterial protein, 351
Cross bridges, sarcomere, 425
Crowding agents, 172
Cryptochrome, 257
Curl, see rotor
Current summation, synaptic, 293
Cyclic machine, 207, 213

ratchet, 216
Cytoskeleton, 244

actin, 193
centromere, 193
microtubules, 193
spectrin, 195

D
Damping coefficient, aerodynamic, 448
Debye-Huckel approximation, 175
Debye length, 175
Debye repulsion, screening, 173
Deformation (elastic) energy, 416
Dendritic spines, 292
Depletion force, 169
Depolarisation, membrane, 270
Deterministic chaos, 547
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butterfly effect, 548
critical bifurcation, 548
loss of information, 548
Lyapunov exponent, 548
Lyapunov time, 548

Diastole, heart contraction, 296
Diffusion

across membrane, 176
Diffusion coefficient, 177, 191, 205
Diffusion equation, 180
Dinosaurs

extinction, 95, 539
running speed, 458

Diodora aspera, gastropod, 191
Diploblastic, body plan, 505
Dipole moment, 167
Dirac delta function, 45
Divergence angle, 515
Divergence, of a vector, 49
DNA

exon, 77, 103
Franklin and Wilkins x-ray diffraction,
97

grooves, major and minor, 100
intron, 77, 103
methylation, 107, 108
mismatch, 99
Nirenberg and Khorana genetic code, 97
nucleoside, 99
nucleotide, 98
Watson and Crick model, 97

Drag coefficient, 206
Drag force

in rotation, 240
Stokes coefficient, 239

Drosophila melanogaster, fruit fly, 257, 260,
428, 510

Ductile, material, 374
Dulong and Petit, specific heat, 22
Dutch famine, 1944, 108
Dynamic range, neuron, 295
Dynamometer, 419
Dynein, 207, 237

E
Ecological niche, 537
Ecology, 544

automatic regulatory mechanism, 562
bioaccumulation, 557
biomagnification, 557
biovectors, 557
circulating reserve, 555

closed ecosystem, 556
food chain, 555
mobile ecosystem, 556
trophic level, 555

Ecosystem
producers versus consumers, 555

Ectoderm, 505
Edema, tissue, 187
Elastic compliance, 409
Elastic constant, 409
Elastic energy, storage, 535
Elastic moduli

bulk modulus, 411
Lamé parameters, 410
Poisson’s ratio, 414
shear modulus, 412
Young’s modulus, 412

Elastic modulus, 370
Electric permittivity, relative, 312
Electrocardiogram, 300
Endoderm, 505
Endoergic, reaction, 69
Endoplasmic reticulum, 337
Energy accumulation rate, 543
Energy barrier, 213
Energy budget, 543
Energy surface, 213
England’s theory, maximum dissipation, 82
Enthalpy, 27
Entropic force, see generalised force
Entropy

information, 36
negative, 36

Environmental pressure, 561
Enzymatic cycles, 124
Enzyme, 126
Epigenetic modification, 106
Equation of continuity, 180
Equilibrium constant, 127
Equilibrium, statistical postulate, 12
Equipartition of energy, law, 22
Erythrocyte, red blood cell, 193
Escherichia coli, bacterium, 71, 72, 104, 124,

174, 248, 328, 351, 353
Euchromatin, 101
Euglenid, 242

euglenoid motion, 242
Euler equation, 404

beam flexion, 404
cantilever bending, 404

Eutrophisation, 560
Exclusive competition, principle, 552
Extensive variable, 10
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Extinction coefficient, 249
Extracellular potential, 281

F
Fermentation, 135
Fermi-Dirac statistics, 172
Fick’s laws, diffusion, 180
Filtration coefficient, 186
Flagelline, 237
Flagellum, 236

and Type-III system, 237
axoneme, 237
proton pump, 237

Fluctuation therem, 82
Foraminiferan, 95
Fountain effect, liquid He, 477
Fourier series, 53
Fourier transform, 53
Fracture strain, 416
Fracture stress, 416

bone, 395
tendon, 393

Froude number, 457
FtsZ, bacterial protein, 351

G
Galenus, pneuma theory, 96
Gamma function, 45
Gaussian integral, 46
Gene, 104

splicing, 104
Generalised force, 160
Gibbs free energy, 27, 29
Gibbs statistical factor, entropy, 18
Gilbert, W., RNA world, 87
Global heating, 40
Glucose-6-phosphate, 146
Glucose transporter, GLUT, 145
Glycan, see polysaccharide
Glycerine, 152
Glycocalyx, 337
Glycogen, 116
Glycolysis, 116, 123
Golden mean, or Sectio aurea, 515
Golgi organ, 337
Gonium, pluricellular alga, 189
Gould andEldredge theory, punctuated equi-

libria, 94
Gradient, of a scalar function, 48
Gravity, variations, 539
Gyration radius, 174, see also polymer

H
Hagen-Poiseuille equation, 186, 483
Heart chambers, atrium, ventricle, 296
Heart vector, 301
Heat capacity, 140
Helmoltz free energy, 26, 82
Hemicellulose, 397
Heterochromatin, 101
Hexatic phase, 199
Hill’s law, locomotion, 532, 534
Hill’s law, muscle contraction, 429
Histone, 101, 356

acetylation, 107
Homochirality, amino acids, 89
Hydraulic resistance, 186
Hydrodynamic radius, see polymer
Hydrogen bond, 167
Hydrolysis, 116, 150
Hydrophobic

surface, 478
Hydrophobic attraction, effect, 169
Hydrophobic force, 167
Hydrophylic

contact angle, 477
surface, 477

Hysteresis, 377
Hysteresis loop, 392

I
Immiscible fluids, 181
Instability, dynamical, 492
Intensive variable, 10
Internal energy, 13
Interneuron, 288
Inversion potential, 291
Ion channel, 263

aquaporin-1, 264
indirect active transporter, 265
ligand-gated, 264
light-gated, 264
mechanical-gated, 264
porin, 128, 264
proton pump, 265
sodium-potassium pump, 264
voltage-gated, 264

Iridescence, 486
Iron-sulphur theory, see biosynthesis
Irreversibility, 19, 61
Irrotational, vector field, 50
Isolated system, 12, 15
Isometric effort, 427
Isometry, 529
Isotonic equilibrium, 165
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K
Ketone bodies, 146
Kinesin, 207, 222

KIF5, 223
Kirchhoff’s laws, 311
Krebs cycle, 122
Kronecker delta function, 46
Kuramoto model, 513

L
Lamé coefficients, 52
Lamé parameters, 371
Laplace’s equation, 486
Laplace’s law, 166, 193, 194, 349, 479, 486
Laplacian operator, 49
Leslie model, 568, see also population

dynamics
Leucocyte, white blood cell, 193
Lever-arm model, 220
Liebig’s law, of the minimum, 557
Lift-to-weight ratio, 541

birds versus airplanes, 542
Lignin, 398
Limit cycle, 551
Limiting shape, 492

catenoid, 492
Linear system, 567
Lineweaver-Burk plot, 234
Lipid double layer, 197
Lipid droplets, 146
Lipid vesicles, 338
Liposome, 198
Lithosphere, 30
Logistic function, 545
Loose-coupling model, 221
Lotka-Volterra equation, 550

coexistence and symbiosis, 553
competition versus cooperation, 552
economic cycles, 551
non-trophic interactions, 566
predator-prey model, 551

Lyapunov exponent, see deterministic chaos
Lysis, membrane rupture, 165, 193

M
Macroscopic state, 10
Magnetic permeability, relative, 312
Malthusian catastrophe, 545
Malthusian growth law, 544
Mass-growth rate, 544
Mass, maximum for an animal, 536
Material surplus, 543

Maxwell-Boltzmann distribution, 65, 329
Maxwell’s equations, 311
Mayer and Joule, heat-energy equivalent, 14
Maynard-Smith, theory of proto-cell, 86
Mayr theory, allopatric speciation, 94
Membrane

cortical tension, 193
diffusion, 176
double layer, 197
semipermeable, 161

Meniscus, 479
Mesoderm, 505
Metabolic rate, 145
Metabolism

surface scaling law, 540
Metabolism, 3/4 scaling, 543
Methylation, 107, 108
Micelle, 196
Michaelis constant, 234
Michaelis-Menten

equation, 234
kinetics, 234
rate constants, 219

Microscopic state, 11
Microtubule, 193, 222
Miller and Urey experiment, 84
Mimivirus, 88
Minimal model, membrane, 341
Minimal surface, 484, 491
Mitochondrion, 337

cardiac, 436
Mitosis, 424
Mobility, 191, 206, 268
Moment of inertia, 533
Monomer, 317
Motility assay, 207
MreB, bacterial protein, 351
Muscle

antagonist, 424
contraction frequency, 423
direct, insect, 439
indirect, insect, 439
intrinsic rapidity, 430
sarcomere, 424
sarcosome, 424
strain, 426
stress, 423
tonic, 431

Muscle, mechanical work, 531
Myocyte, muscle cell, 424
Myofibril, 424
Myosin, 207, 261

myosin-II average speed, 221
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myosin-V speed, 222
myosin-V stall force, 222
power stroke, 209

Myotendinous junction, 391
Mytilus edulis, mollusk, 191

N
Negative entropy, 33, 34
Nernst equation, 266
Neuromuscular junction, 260, 441
Neuron, 258

aminergic versus cholinergic, 551
mitochondria, 222

Neuron refractory period
absolute, 285
relative, 285

Newtonian fluid, 184
Nicotinamide, 152
Nitrogen cycle, 559
Nitrogen fixing bacteria, 559
Nuclei, central nervous system, 294
Nucleoside, 150
Nucleosome, 101
Nucleotide, see DNA

O
Ohm’s law, 268
Oncotic pressure, 187
Open system, 27
Optical tweezers, 334
Orthodromic conduction, 285
Osmolar solution, 165
Oxidative phosphorylation, 133
Oxygen cycle, 558

P
Parenchyma, 400, 402
Particle flux, 177
Partition coefficient, 181, 263
Partition function, 63
Patch-clamp technique, 254
Pauli repulsion, 172
Péclet number, 188
Pectin, 397
Pendulum, body oscillation, 534
Penrose tiling, 489
Permeability, 181, 263, 390
Perrin experiments, colloids, 25
Persistence length, 327, 330
Persistence length, membrane, 347
Phenotype, 101

Phosphodiester bond, 150
Phospholipid, 195
Phosphorus cycle, 559
Photon, 35
Photosynthesis, 35
Phototaxis, 256
Phyllotaxis, 515
Plankton, 192
Plasma, 193
Plasma membrane, 337
Poisson-Boltzmann equation, 175
Poisson’s ratio, 371
Polymer, 317

contour length, 319
end-to-end distance, 320
entropic spring, 332
folding, 329
gyration radius, 321
heteropolymer, 318
homopolymer, 318
hydrodynamic radius, 321
Kuhn length, 327

Polysaccharide, 154
Population dynamics, 544
Porin, see ion channel
Post-synaptic terminal, 259
Power surplus, 543
Pre-stress, 403
Pre-synaptic terminal, 259
Prigogine theory, entropy production, 82
Probability, microscopic, 61
Projection matrix, see transition matrix
Protein

active site, 155
alpha helix, 154
beta sheet, 154
homeodomain, 505
primary structure, 154

Protein concentration, cytoplasm, 71
Protein, native conformation, 105
Proton pump, 119

ATP synthase, 237
Pterosaurus, 538
Punctuated equilibria, see speciation
Pyrogen, 144
Pyruvate, 122

R
Radial symmetry, 505
Rank, see tensor
Reading frame, RNA, 105
Redox cofactor, 151
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Redox reaction, 129, 131
Regular polyhedra, 489
Remodelling, 368
Reservoir, thermodynamic, 10
Resilience, 392
Resilin, 440
Resting metabolic rate, O2 consumption,

145
Resting potential, 269
Retinotopy, 295
Reynolds number, 183
Rheobasic current, 278
Riboflavin, 152
Ribose, 150
Ribosome, 102, 104
Ribozyme, 87
RNA

messenger RNA, 102
ribosomal RNA, 104
ribosome, 104

RNA-world hypothesis, 80, 87
Rotor, of a vector (curl), 49

S
Sackur-Tetrode entropy, perfect gas, 18
Saltatory conduction, neuron, 282
Sap, see tree trunk
Sarcomere, 209, 261, see also muscle
Sarcoplasmic reticulum, 424
Sarcosome, see muscle
Saturated fatty acid, 196
Saturation, neuron receptors, 295
Scalar or dot product, 48
Scaling

of animal jumping, 531
of animal speed, 534
of moment of inertia, 533
of muscle work, 531
of walking frequency, 533

Scaling analysis, 528
Scaling coefficient, 529
Scaling exponent, 529
Scaling factor, 528
Scaling law, metabolic, 145
Scaling, of bone size, 537
Scaling of bone size, prehistoric birds, 538
Scaling, of muscle power, 540
Schrödinger negative entropy, 34
Sedimentation, 191
Sedimentation coefficient, 202
Shannon equation, entropy, 75
Shear modulus, 371

Shear stress
in a viscous fluid, 184

Single-dipole model, heart, 301
Sinoatrial node, heart, 300
Skin

epidermis, 381
hypodermis, 382

Skin, tissue, 381
Smoluchowski equation, 175
Soap bubble, surface tension, 485
Solar constant, CS , 38
Solenoidal, vector field, 50
Somites, see tissue
Space filling, 487
Speciation, 94

allopatric, 94
phyletic gradualism, 94
punctuated equilibria, 94

Spectrin, 195
Squid, giant axon and synapse, 266
Stahl theory of vitalism, 96
Standard solid model, 380
Starling equation, 187
Stefan-Boltzmann law, 41, 137
Steric protection, 172
Stern layer, 175
Stevin’s law, 483
Stick-slip, boundary, 183
Stirling’s approximation, factorial, 47
Stoney equation, 445
Strain, 408

tensor, 409
Strain-rate sensitivity, 377
Strength, material, 416
Stress, 407

tensor, 407
Stress relaxation, 377
Stress-strain diagram, 415
Stress-strain relations, 370
Stride length, 533
Strouhal number, 463
Structured population model, 567
Supernatant, 585
Surface force, 476
Surface of revolution, 493
Surface tension, 486
Surface tension, cell, 166
Surface to volume ratio, 484
Symporter, 124
Symporter, ion channel, 134
Synapse, 222, 289

chemical, 259, 289
electrical, 260, 289



620 Index

excitatory, inhibitory, 292
in plants, 305
neuromuscular, 260, 441

Synaptic cleft, 259
Synaptic potential, 290
Syncysis, 424
Systole, heart contraction, 296

T
Tenocyte, 386
Tensor

invariants, 52
matrix form, 50
notation, 50
product, 51
rank, 51

Thermal engine, 30
Thermal ratchet, 216
Thermal receptors, skin, 139
Thermal reservoir, 26
Thermodynamic system, 9
Thermogenesis, plants, 148
Thermostat, see thermal reservoir
Time constant, capacitor, 310
Tissue

blastula, 503
diploblastic, 505
gastrula, 503
segmentation, 505
somites, 505
triploblastic, 505

Titin, 336
Toroid, 494
Torus, 494
Toughness

of rhinoceros skin, 386
Toughness, material, 373, 416
Transfer function, 213
Transition matrix, 568
Translation table, RNA-amino acids, 105
Tree trunk

heartwood, 398
phloem, 400
sapwood, 398
tracheids, 400
xylem, 400

Triacylglycerol, 116
Triglycerides, 115, 147, 152
Triploblastic, body plan, 90, 505
Trophic interaction, 563

mutualism, commensalism, antagonism,
563

Trophic level, see ecology

Troponin, 210
Troponin-C, 261
Tubulin, 227, 249
Turing’s model, morphogenesis, 507
Twisting modulus, 397, 405

U
Ubiquinone, 130
Unsaturated fatty acid, 196
Usher model, 568, see also population

dynamics

V
Vector product, 48
Verhulst model, 545
Vesicle, 198
Viral capsid, 88
Virus, 88
Viscoelasticity, 377

Kelvin-Voigt model, 380
Maxwell model, 380
motor proteins, 360
of cartilage, 388
of skin, 384
of tendon, 391
of woods, 401
standard solid model, 380

Viscosity, 206
of biological fluids, 239
of water, 206

Voigt notation, 409
Voltage-clamp technique, 279
Volume force, 476
Volumetric flux, 184
Volvox, unicellular alga, 189, 255

W
Wächtershäuser iron-sulphur theory, 89
Water column, 192
White fat, 147
Wiechert model, 381
Worm-like chain, 388

X
Xylem, see tree trunk

Y
Yield stress, 416
Young’s modulus, 371

Z
Zeta potential, 175
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