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  Pref ace   

 Oxygen species constitute an important vehicle of damage in disease pathogenesis 
including several respiratory diseases. Although the information has been available 
for more than four decades, it had been diffi cult to attribute a specifi c role to oxida-
tive stress in a cause-and-effect relationship. In respiratory medicine, some of the 
earlier studies had focused on pulmonary infections, including tuberculosis. 
Advances in the study of volatile organic components in the expired air have made 
it possible to examine some of the hitherto not understood mechanisms in different 
pulmonary diseases, particularly the airway disorders. We now recognize the wide 
spread involvement of oxygen species as well as of nitrogen-free radicals in airway 
diseases, such as asthma and chronic obstructive pulmonary disease. Numerous 
reports have appeared in the last two decades which demonstrate an imbalance of 
oxidant–antioxidant mechanisms in many other respiratory disorders such as the 
interstitial lung diseases, granulomatous disorders (e.g. sarcoidosis), asbestosis, 
muscle dysfunction, pulmonary hypertension, and thoracic cancers. 

 It is the therapeutic potential of antioxidant drugs in the management of diseases 
which has made the subject as particularly interesting to the clinicians. Unfortunately, 
we do not yet have a drug known for its proven therapeutic effi cacy for almost any 
disorder. Numerous drugs are under investigation for possible supplemental roles in 
therapy of different disorders. One hopes for rapid development of drugs which, in 
addition to the primary therapy, will be able to act on specifi c target species for 
disease arrest and/or reversal. 

 We have written this monograph with a dual purpose—fi rst to review the existing 
and up-to-date knowledge on oxidative stress in different respiratory diseases, and 
secondly to sensitize the clinicians to continue to look to a broader scene of patho-
genetic spectrum of diseases for expansion of the therapeutic armamentarium. We 
do hope that this monograph shall help not only the specialist pulmonologists but all 
others who are interested and engaged in the subject of oxidative damage.  

    Chandigarh ,  India       Surinder     K.     Jindal   
   New Delhi ,  India       Nirmal     K.     Ganguly      
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1.1           Reactive Oxygen Species and Oxidative 
Stress: A Defi nition 

 Reactive oxygen species (ROS) is the collective term for all highly reactive forms 
derived from the chemistry of molecular oxygen encompassing also N, S, and Cl 
containing forms and many others that include derivatives of biomolecule oxidation 
such as lipid hydroperoxides, reactive carbonyls, and radical intermediates of amino 
acid species. (reviewed in [ 119 ]). ROS have long been the subject of toxicology 
studies aimed at defi ning their role as dangerous molecules causing oxidative harms 
to various components of cells and body fl uids. In fact, the chemistry of free radicals 
originating from radiation chemistry at the early beginning of the last century, 
developed into biology and medicine as the chemistry of oxidative stress. The term 
was fi rst used in the title of a publication by Beutler and his coworkers in 1970 [ 139 ] 
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who were studying oxidative pathways associated with glutathione metabolism of 
the red blood cell, but for a fi rst attempt to provide a defi nition to such a toxicology 
condition, we have to wait since 1985 when Helmut Sies in his book “Oxidative 
stress” [ 174 ] clearly depicted the nature of harmful toxicants for ROS involved in 
biological processes, highlighting their potential to produce cellular damage if not 
properly counteracted by the homeostatic intervention of antioxidant and detoxifi -
cation defense systems. 

 In the later years, a more comprehensive interpretation of the biochemistry and 
toxicology of ROS has been provided also fostering a revision of the concept of 
oxidative stress. Actually the chemistry of ROS is not always negative, being for 
instance involved in the host defense response and cell killing activity of phago-
cytes; under physiological conditions, ROS are steadily formed during a number of 
biochemical reactions as redox active intermediates of the cellular metabolism play-
ing a key role as signaling molecules (reviewed in [ 154 ]) and possibly as pacesetters 
of metabolic rate and lifespan of living organisms [ 119 ]. 

1.1.1     Cellular ROS 

 It is generally accepted that H 2 O 2  is the predominant intracellular ROS with physi-
ological role in redox signaling [ 17 ,  158 ], but challenging cells in culture with a 
high level of H 2 O 2  (i.e., 1 mM) can easily lead to extensive damage and even cell 
death. In contrast, it has been known that moderate levels of H 2 O 2  can increase cell 
proliferation and that the fl ux of intracellular H 2 O 2  is consistently elevated in vari-
ous cancer cell lines [ 178 ,  185 ,  188 ]. The O–O linkage of H 2 O 2 , although weak 
compared to that of dioxygen (O 2 ), renders the molecule relatively stable compared 
to radical species, allowing H 2 O 2  time to encounter and react with specifi c targets 
that it oxidizes at discrete sites [ 46 ]. By contrast, the propensity of the more reactive 
radical species, O 2  •− , to become quickly dismuted, spontaneously and enzymati-
cally, to H 2 O 2 , as well as its lack of diffusibility, limits its range of targets to those 
within the immediate vicinity of the O 2  •−  source [ 65 ]. 

 O 2  •−  is slow to react with negatively-charged molecules, which does confer some 
specifi city [ 80 ]. From a signaling perspective,  • OH is unsuitable as a result of the 
high oxidation rate constant that it has for most biomolecules, which is approxi-
mately equal to its rate of diffusion, resulting in highly nonspecifi c oxidation [ 80 ]. 
The lack of enzymatic-removal of the peroxyl and alkoxyl radicals, as well as their 
aggressive reactivity, means that their reactions with proteins are more likely to 
occur as irreversible oxidation events, leading to degradation of the damaged pro-
tein (reviewed in [ 17 ,  61 ,  62 ] and references therein).  1 O 2  seldom occurs intracel-
lularly and so is unlikely to contribute to physiological signal transduction, whereas 
HOCl, which is produced by myeloperoxidase (MPO) enzymes within neutrophils, 
is an established bactericidal agent that has also been proposed to function as signaling 
mediator in immune cells [ 132 ,  171 ].  

F. Galli et al.
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1.1.2     ROS as Signaling Molecules: The “Redox Hypothesis” 
of Oxidative Stress 

 Cellular ROS such as the superoxide anion (O 2  •− ), H 2 O 2 , and NOx as peroxynitrite 
(ONOO − ) are all redox players of metabolic pathways which are capable of initiat-
ing the signaling of a broad variety of cellular processes that are regulated by redox- 
sensitive components, such as proliferation and survival (MAP kinases, PI3 kinase, 
PTEN, and protein tyrosine phosphatases), ROS homeostasis, and antioxidant gene 
regulation (thioredoxin, peroxiredoxin, Ref-1, and Nrf-2), mitochondrial oxidative 
stress, apoptosis (Bcl2/Bax, cardiolipin/cyt c), and aging (p66Shc), iron homeosta-
sis through iron–sulfur cluster proteins (IRE-IRP), ATM-regulated DNA damage 
response, and receptor activation (e.g., αIIbβ3 integrin in platelet activation) 
(reviewed in [ 17 ,  22 ,  84 ,  136 ,  140 ,  143 ]). 

 The signaling function of ROS has been described in diverse physiological con-
ditions such as those activated in hypoxic microenvironments [ 20 ]. The molecular 
response to hypoxia requires fast-acting mechanisms acting within a wide range of 
partial pressures of O 2  [ 147 ]. Intracellular O 2  sensing is an evolutionary conserved 
feature, and the best characterized molecular responses to hypoxia are umpired 
through transcriptional activation [ 12 ]. The transcription factor, hypoxia-inducible 
factor 1 (HIF-1), is an important mediator of these adaptive responses, and its acti-
vation by hypoxia involves O 2 -dependent posttranslational modifi cations and 
nuclear translocation [ 50 ,  87 ,  157 ,  175 ]. Through the induction of the expression of 
its target genes, HIF-1 coordinately regulates tissue O 2  delivery and energy metabo-
lism [ 12 ]. Other transcription factors such as nuclear factor κB (NF-κB) are also 
redox sensitive and are activated in pro-oxidant and hypoxic conditions [ 157 ,  181 ]. 

 The redox state of thiol systems forms basis of the signaling effect of ROS 
(extensively reviewed in [ 9 ,  193 ]) and is controlled through thioredoxin (Trx) and 
glutathione (GSH)-dependent reactions. Trx and GSH systems are maintained 
under stable, but non-equilibrium conditions, due to continuous oxidation of cell 
thiols at a rate of about 0.5 % of the total thiol pool per minute. Both radical and 
non-radical oxidants, the latter includes peroxides, aldehydes, quinones, and epox-
ides, are generated enzymatically from both endogenous and exogenous precursors 
and can modify these thiols. As a mean to avoid this, cells are equipped with a 
complex machinery of H 2 O 2  and thiol-regulating enzymes such as that of the perox-
iredoxin (Prx)/sulfi redoxin system and that of thioredoxin–thioredoxin reductase/
nicotinamide adenine dinucleotide phosphate (NADPH) system and glutaredoxins 
(reviewed in [ 9 ,  154 ,  158 ,  193 ]). 

 In redox signaling pathways, ROS effector proteins generally have a highly reac-
tive Cys residue, of which oxidation changes the protein function, so as to activate 
signal transmission to downstream targets [ 192 ]. Among the ROS effectors, protein 
phosphatases, Trx and Prx family proteins own special domains/motifs to preserve the 
reactivity of Cys (redox-active Cys) and use them to react to ROS [ 71 ,  78 ,  96 ,  158 ]. 

 Starting from such an exquisite signaling role of ROS, a complementary 
hypothesis for oxidative stress in disease has been proposed, which is termed the 
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“redox hypothesis” [ 152 ]. In this respect, oxidative stress can occur as a consequence 
of disruption of H 2 O 2  regulating systems and thiol redox circuits, which normally 
function in cell signaling and physiological regulation. Because of the non- equilibrium 
conditions in the thiol pathways, aberrant generation of such a burden of oxidants at 
rates comparable to normal oxidation may be suffi cient to disrupt function.   

1.2     ROS: The Damage and the Response 

1.2.1     ROS and Oxidative Damage 

 ROS are generated as xenobiotics or endobiotics in a number of processes of rele-
vance to human toxicology. Exogenous ROS can be inhaled for instance during 
smoking or by the exposure to air pollution, ozone, and other toxicants. As far as 
endogenous processes are concerned, the exposure to physiological or noxious 
stimuli can activate different ROS-generating enzymes of specialized cells such as 
some leukocyte subsets and epithelial cells. These include NOX, Dual oxidase 
(Duox), MPO, inducible NO synthase (iNOS), and others, which ultimately can 
produce ROS at different extents [ 17 ]. 

 One of the strongest ROS-generating process is that occurring as part of the cell- 
mediated immunity in the host response to pathogens. Activated neutrophils and in 
general phagocytes, give origin to the so called “respiratory burst” [ 199 ], that is a 
sudden and potent generation of ROS addressed to operate the bacterial killing. In 
the airways, the level of this response can assume abnormal proportions in the case 
of extended lesions that are observed, for instance, in the recurrent pulmonary infec-
tions of cystic fi brosis (CF) patients [ 62 ]. In these subjects, such an infl ammatory 
environment may further exacerbate by the concomitance of the genetic defect that 
impairs the local feedback of the infl ammatory response also weakening immune- 
homeostatic events at the systemic level. Uncontrolled infl ammation is a well- 
recognized cause of oxidative stress and degeneration in the surroundings of a 
lesion. Here, the exposure to high levels of ROS produces cellular damage and even 
death by apoptosis or necrosis. 

 Depending on the type (molecular nature and intensity) and spatial distribution 
of the injurious event, such a ROS-generating machinery can lead to either acute or 
chronic and diffused events of toxicity. One of the most severe example of oxidative 
stress associated with acute infl ammation is that of sepsis associated with multi- 
organ failure [ 62 ], while a typical condition of oxidative stress associated with 
chronic of micro-infl ammation and molecular degeneration of tissues and eventu-
ally of the entire organism, is that which is observed in diabetic and kidney disease 
patients [ 98 ,  101 ], as well as in autoimmune diseases such as rheumatoid arthritis 
and LES [ 172 ], and neurodegenerative diseases [ 28 ]. 

 According to the free radical theory of aging, a sustained exposure to high levels 
of ROS by chronic infl ammation is believed to produce the cumulative damage of 
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cells and tissues, which is thought to be responsible for accelerated aging and 
 age- related disorders [ 119 ]. The rate of production of ROS and infl ammatory medi-
ators in the setting of a chronic lesion can be even slightly higher than that observed 
during normal cellular metabolism, but its consistency over time and the presence 
of an altered distribution through redox pathways, can be at the origin of damages 
to subcellular components in the cytosolic and plasmalemma as well as in critical 
organelles such as mitochondria, endoplasmic reticulum, and nucleus. This may 
lead to a vicious cycle of ROS leakage essentially from mitochondria and peroxi-
somes, which ultimately can impair the physiological signaling of cellular ROS 
through redox-sensitive pathways described in the previous section.  

1.2.2     ROS as Mediators of Tissue Reprogramming, 
Adaptation, and Repair 

 The exposure to damaging levels of ROS can result in a series of compensatory and 
adaptive responses that include the transcriptional activation of detoxifi cation, 
antioxidant, and repair genes. For instance, cellular stresses due to ischemia/
reperfusion injury or chronic exposure to fi brotic “initiators” (toxins, elevated glucose 
levels, etc.) increases expression of enzymes that generate ROS (NADPH oxidases 
(NOXs), NOX proteins, etc.) with concomitant reductions in ROS scavengers, 
such as glutathione peroxidase (GPx), catalase, and manganese/zinc superoxide 
dismutases (SODs) [ 205 ]. Increased oxidative state and a downstream redox-
dependent genomic re-programming then affects cellular growth and starts pro-
cesses of repair [ 31 ]. In various organ systems such as pulmonary, renal, and 
cardiovascular, NOX isoforms and their constituent subunit complexes play a key 
role in tissue reprogramming and adaptation. NOX proteins are multi-subunit 
enzymes that catalyze the reduction of oxygen using NADPH. ROS, generated by 
NOX, impact different signaling pathways that contribute to the pathophysiology 
of chronic lesions [ 18 ,  183 ]. The mechanisms of these responses and that of ROS 
generation vary depending on the specifi c collection of NOX isoenzymes expressed 
in different cell types or organs. These enzymes control, for instance stromal myo-
fi broblast differentiation and fate, and are effectors of normal and pathologic tissue 
repair [ 15 ,  74 ,  75 ] impacting on the expression of critical fi brogenic genes. NOX 
expression is up- regulated in several models of induced fi brosis [ 43 ,  48 ,  98 ]. The 
potent pro- fi brogenic factor TGF-β1activates NOX4 and mediates myofi broblast 
recruitment in the kidney and bleomycin-injured lung and in idiopathic pulmonary 
fi brosis [ 5 ,  25 ,  27 ]. 

 In respiratory diseases, there is an increased expression of multiple infl ammatory 
proteins in the respiratory tract, including cytokines, chemokines, and adhesion 
molecules. Chemokines have been shown to regulate infl ammation and immune cell 
differentiation. Moreover, many of the known infl ammatory target proteins, such as 
matrix metalloproteinase-9 (MMP-9), intercellular adhesion molecule-1 (ICAM-1), 
vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase-2 (COX-2), and 
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cytosolic phospholipase A2 (cPLA2), are associated with airway and lung 
 infl ammation in response to various stimuli [ 110 ,  180 ]. Injurious environmental 
stimuli can access the lung through either the airways or the pulmonary and sys-
temic circulations. The time course and intensity of responses by resident and circu-
lating cells may be regulated by various infl ammatory components of cell signaling, 
including Src family kinases (SFKs), protein kinase C (PKC) [ 1 ], growth factor 
tyrosine kinase receptors, NADPH/ROS [ 180 ], PI3K/Akt, MAPKs, NF-κB, activa-
tor protein- 1 (AP-1), and other signaling molecules. These regulate both key infl am-
matory signaling transduction pathways and target proteins involved in airway and 
lung infl ammation.  

1.2.3     Antioxidants and Antioxidant Therapy 

 Constitutive and inducible antioxidant and detoxifi cation genes are available as a 
line of defense against oxidative stress of tissues and body fl uids, and this is at least 
in part implemented by exogenous antioxidants introduced with the diet [ 61 ]. 
Actually, malnourished cystic fi brosis subjects are believed to have a higher risk of 
exposure to oxidative stress by the chronic infl ammation of the airways [ 62 ,  81 ]. 

 The exposure of tissues to increasing fl uxes of ROS, is associated with a com-
pensatory response of cells thus training inducible components of the defense sys-
tems [ 205 ]. This hormetic effect of ROS is produced for instance in muscular 
workout by the exposure to sub-maximal conditions of oxidative stress [ 118 ]. 

 The largest clinical trials carried out in the last decade have clearly demonstrated 
that acting with exogenous antioxidants to counteract the pathogenic effects of oxi-
dative stress in chronic diseases remains a chimera [ 62 ]. Antioxidant therapy and 
specifi c nutritional intervention (e.g., use of antioxidant supplements of functional 
foods) can be recommended only in the case of proven malnutrition or severe 
infl ammation and exposure to oxidative stress as a generic measure of prevention. 
This could be the case of most severe respiratory syndromes, particularly of cystic 
fi brosis that show a combination of severe nutritional and immune-infl ammatory 
symptoms in the presence of increased biomarkers of oxidative stress.  

1.2.4     Noncoding RNAs: Emerging Mediators and Possible 
Therapeutic Agents in Oxidative Stress 

 Besides the direct effects of ROS on redox-sensitive transcription factors and regu-
latory proteins described in the previous sections, other levels of control by these 
species on cell functions are emerging that include for instance translational regula-
tion by noncoding RNAs. MicroRNAs (miRNAs, miRs) are a family of small (19–25 
nucleotides in length) noncoding RNAs that regulate gene expression by sequence-
selective targeting of mRNAs, leading to a translational repression or mRNA 
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degradation, depending on the degree of complementarity between miRNAs and the 
target mRNA sequences [ 73 ,  184 ]. Since their discovery and fi rst characterization, 
the number of miRNA sequences deposited in the miRBase databases is growing 
[ 94 ,  179 ] and tools to screen them as individual or pathway-associated entities and 
to interpret their functions, are now available and in continuous implementation [ 2 ]. 
Considering that a single miRNA can target several mRNAs and a single mRNA 
might contain in the 3′ UTR sequence several signals for miRNA recognition, it is 
calculated that at least 10–40 % of human mRNAs are a target for miRNAs [ 4 ,  176 ]. 
Hence, great interest is concentrated on the identifi cation of validated targets of 
miRNAs. This specifi c fi eld of miRNA research has confi rmed that the complex 
networks constituted by miRNAs and RNA targets coding for structural and regula-
tory proteins lead to the control of highly regulated biological functions, such as 
differentiation, cell cycle, and apoptosis [ 73 ,  184 ]. Low expression of a given 
miRNA is expected to be linked with a potential expression of target mRNAs. 
Conversely, high expression of miRNAs is expected to induce low expression of 
biological functions of the target mRNAs. 

 With respect to oxidative stress, recently available publications (Table  1.1 ) 
strongly suggest that several miRNAs are induced by oxidative stress [ 1 ,  11 ,  39 , 
 40 ,  62 ,  70 ,  113 ,  117 ,  131 ,  170 ,  180 ,  185 ,  189 ]. These oxidative stress-responsive 
miRNAs may play a role linking the imbalanced redox state with deregulated 
expression of critical genes. Although in its infancy, research on oxidative stress-
responsive miRNAs and their regulation of target genes may provide new insights 
in understanding disorders also disclosing innovative therapeutic strategies 
(miRNA therapeutics).

   In order to identify putative miRNAs involved in oxidative stress, different 
authors have induced an oxidative stress to cellular systems and followed changes 
of expression of miRNAs and associated target mRNAs. Analysis of miRNA pro-
fi les revealed down-regulation of miR-150, miR-142-5p, miR-122, and up- 
regulation of miR-34c, miR-34b-5p, and miR-29b. Moreover, several papers, in 
addition to the identifi cation of the oxidative-stress-modulated miRNAs, also 
reported the target mRNA(s), allowing a more complete dissection of the loops link-
ing oxidative-stress̶miRNA̶target gene alterations̶biological functions. For 
instance, miR743a, miR-335, miR-34a, miR-200c, miR-145, miR-205, miR-320, 
Let-7, miR-23, miR144, and miR-451 have been identifi ed as miRNAs involved in 
oxidative stress. In addition to the implications concerning basic science, these 
results are of great interest with respect to possible future therapeutic strategies 
based on mimicking miRNA activity or targeting miRNAs, depending on the role of 
the considered miRNA. In fact, the so called “miRNA replacement therapy” or 
“miRNA targeting therapeutic” approaches have been recently the object of several 
reviews and, in the case of oximiRNAs, might lead to a control of oxidative stress. 
For instance, if a miRNA is down-regulated in conditions of oxidative stress, the 
miRNA replacement approach leads to antioxidant effects; conversely, if a miRNA 
is up-regulated following oxidative stress, its targeting by specifi c antagomiR might 
reverse its induced oxidative damage.   

1 Introduction to Oxidative Stress and Antioxidant Therapy in Respiratory Disorder
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1.3     Chronic Pulmonary Diseases and Biomarkers 
of Oxidative Stress 

 Oxidative stress has been implicated in the pathogenesis of various lung disorders 
such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury, 
pulmonary fi brosis, pulmonary hypertension, and lung cancer [ 53 ,  142 ]. Here we 
introduce the role of oxidative stress in the lung disease of three paradigmatic 
respiratory diseases of both acquired (COPD and asthma) and genetic (cystic 
 fi brosis) nature. 

 Bronchial asthma and COPD are currently global health problems with a major 
economic and social impact. Presently, their diagnosis, staging, and monitoring are 
based on spirometric measures, such as forced expiratory volume in 1 s (FEV 1 ) and 
forced vital capacity (FVC) [ 30 ]. However, since spirometric measures do require 
long follow-up periods to determine whether interventions tested in clinical trials 
obtain clinical relevant changes in patient status, surrogate outcome measures capa-
ble of predicting long-term responses have been intensely sought for, such as those 
based on the evaluation of oxidative stress. 

1.3.1     Chronic Obstructive Pulmonary Disease 

 Current diagnosis of COPD includes an assessment of smoking and/or occupational 
exposures, a history of cough, sputum and dyspnea, and a measure of airfl ow 
obstruction by means of spirometry [ 30 ]. The interaction of host factors with the 
environment generates the pathologic triad of COPD: persistent infl ammation, 
protease–antiprotease imbalance, and oxidative stress [ 59 ]. The infl ammatory 
response of lungs affected by COPD is characterized by a massive infi ltration of 
polymorphonuclear neutrophils. Chronic cigarette smoking and wood smoke inha-
lation expose the respiratory tree and lungs to ROS, resulting in oxidative stress and 
injury. This triggers the production of other ROS and lipid peroxidation and subse-
quent pulmonary infl ammation [ 148 ]. The oxidant burden in the lungs is further 
enhanced by the release of ROS from alveolar macrophages and sequestered neutro-
phils in the lung. Moreover, the oxidative burden to the lungs of individuals with 
COPD is compounded by alterations in the antioxidant defenses [ 59 ]. Smoking also 
exposes various components of the blood in the pulmonary microvasculature, i.e., 
red cells, plasma, and leukocytes, to an increased oxidant burden of ROS, either 
directly by diffusion into the blood or indirectly from the ROS generated from acti-
vated infl ammatory cells in the lung and/or peripheral leukocytes [ 134 ,  150 ]. 
Consequently, oxidative stress is increased in the lungs of patients with COPD com-
pared to healthy subjects, and also compared to smokers without COPD [ 112 ]. 

 Lipid peroxidation products are elevated in sputum [ 42 ,  88 ], exhaled breath 
condensate (EBC) [ 42 ,  91 ,  129 ], and plasma [ 189 ] of patients with stable COPD. 
Markers of oxidative stress are increased even further during exacerbation of 
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COPD [ 49 ] and in patients with very severe form of this disease [ 93 ]. Patients 
with COPD exacerbation had the highest levels of 8-isoprostane (8-iso-PGF 2α ), a 
widely used marker of peroxidation of arachidonic acid, in the induced sputum 
and EBC as compared to nonsmokers, healthy smokers, and symptomatic smokers 
[ 120 ]. These results are consistent with a study showing that the levels of 8-isoprostane 
were higher in the EBC of patients with COPD exacerbations compared to healthy 
nonsmoking subjects [ 23 ]. 

 At the same time, the antioxidant mechanisms are attenuated in these patients, as 
indicated by reduced levels of glutathione (GSH) in the lungs [ 54 ], lowered GPx 
activity in erythrocytes, [ 55 ] and lower antioxidant capacity in plasma during 
exacerbations of COPD [ 149 ]. However, Rahman et al. failed to document any 
relationship between plasma antioxidant capacity and spirometric variables [ 151 ]. 
The antioxidant capacity in plasma would be less valuable in relation to the mea-
surement of airway obstruction, due to high intraindividual variability in oxidative 
stress in plasma caused by smoking. There seems to be less variability in antioxidative 
enzymes measured in erythrocytes, and indeed a signifi cant relationship between 
GPx activity in erythrocytes and pulmonary function in patients with COPD has 
been found [ 83 ,  90 ]. Nadeem et al. observed signifi cant differences between the 
severity of COPD, as assessed by GOLD criteria and the oxidant/antioxidant status 
[ 134 ,  144 ]. Thus, stage III COPD patients had lower plasma antioxidant capacity 
and higher levels of total blood GSH as compared to stage II of COPD. Furthermore, 
plasma ferric reducing antioxidant power (FRAP) had positive whereas total blood 
GSH had a signifi cant negative correlation with the severity of airway obstruction, 
suggesting that the extracellular antioxidant decrease as the severity increases 
whereas major intracellular redox buffer increases to compensate this defi cit in the 
extracellular milieu. In the study by Gumral et al., the levels of erythrocyte malo-
ndialdehyde (MDA), a measure of lipid peroxidation, were signifi cantly higher in 
the exacerbation period of COPD patients than in the stable period, and this was 
paralleled by an increase in GPx and glutathione reductase (GRd) activities, as well 
as by a depression in serum melatonin levels, in the exacerbation period [ 68 ]. 
Overall, these fi ndings confi rm that exacerbation is associated with elevated levels 
of oxidative stress, which may contribute to its pathogenesis. Finally, it has been 
suggested that there is an association between systemic infl ammation and systemic 
oxidative stress refl ected by erythrocytic GPx in patients with acute exacerbations 
of COPD [ 187 ]. 

 According to the analysis made by Comandini et al., 8-isoprostane is the only 
biomarker of response to tobacco smoke exposure associated with COPD activity, 
which is expressed at higher levels in healthy smokers than in nonsmokers and at 
higher levels in COPD than in healthy smokers [ 35 ]. On the other hand, SOD is a 
biomarker negatively associated with COPD and/or tobacco smoke exposure, while 
MPO and eosinophil peroxidase (EPO) are variably associated with COPD and/or 
tobacco smoke (Table  1.2 ). Moreover, erythrocyte SOD activity is elevated in 
COPD exacerbation compared with stable COPD [ 68 ]. Also, in patients with COPD 
associated with wood smoke exposure and tobacco smoking in the previous 10 
years, an inverse correlation between plasma MDA and SOD with FEV 1  was found, 
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indicating that the disease progressed and oxidative stress continued even after 
smoke cessation [ 126 ]. Similarly, the decline in symptoms, despite persistent neu-
trophilic airway infl ammation and oxidative stress (8-isoprostane in induced spu-
tum), was observed in COPD patients 3 months after the cessation of smoking 
[ 103 ]. This fi nding suggests that clinical improvement does not necessarily corre-
late with objective assessment of disease or that these biomarkers may not be the 
best ones in regard to clinical relevance in COPD and/or that the mechanisms of 
COPD are still poorly known. Furthermore, these results raise the questions whether 
some of these markers may be predictive of which patient goes on to develop further 
lung damage and in which patient the disease processes may be arrested.

   None of the biomarkers of oxidative stress has been studied in response to ther-
apy (corticosteroids) or in longitudinal studies in order to assess their robustness 
and predictivity of acute exacerbations. As recently reviewed by Fischer et al., an 
association between genetic polymorphisms and surrogate biomarkers of oxidative 
stress and infl ammation appear to exist in relationship with the susceptibility of 
COPD, but not of disease severity and progression [ 59 ].  

1.3.2     Allergic Asthma 

 Allergic asthma is a chronic infl ammatory airway disease determined by repeated 
exposure to allergens. Eosinophils represent the major infl ammatory cell type 

        Table 1.2    Most relevant biomarkers of oxidative stress    in respiratory diseases   

 Lung disease  Sample  Biomarker  Outcome 

  COPD   EBC  8-Isoprostane  Increased levels 
 Increased in exacerbation 

 Serum  SOD  Lower levels 
 Increased in exacerbations 

 Eo, Neu  MPO, EPO  Variably associated 
  Asthma   EBC  8-Isoprostane  Increased levels 

 Increased in exacerbation 
 MDA  Increased in exacerbation 

 Serum  SOD  Lower levels and activity 
 Eo, Neu  MPO, EPO  Increased levels 
 Urine  3-Bromotyrosine  Increased levels 

  Cystic fi brosis   Plasma/urine  8-Isoprostane  Increased levels 
 Increased in exacerbations 

 BAL, plasma  GSH  Lowered levels 
 Plasma  Fat-soluble vitamins  Lowered levels 

 Vitamin C  Normal to low levels 
 Decline with age 

   Abbreviations :  BAL  bronchoalveolar lavage,  EBC  exhaled breath condensate,  Eo  eosinophils,  EPO  
eosinophil peroxidase,  GSH  reduced form of glutathione,  MDA  malondialdehyde,  MPO  myeloper-
oxidase,  Neu  neutrophils,  SOD  superoxide dismutase  
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infi ltrating the airways, although neutrophils massively invade the lungs in 
corticosteroid- resistant form of severe asthma [ 15 ]. The ROS produced by these 
leukocytes likely play an important role in the pathophysiology of asthma because 
several of the characteristic changes in the airways can be produced by the action of 
ROS [ 14 ]. ROS cause tissue damage, constriction of smooth muscles, increase in 
vascular permeability, mediator release, and bronchoconstriction [ 36 ,  167 ]. 

 Increased oxidative stress in asthma has been studied in plasma [ 76 ,  133 ,  150 , 
 203 ], BAL [ 204 ], EBC [ 16 ,  41 ,  60 ,  141 ,  196 ], and urine [ 56 ,  197 ]. In addition, EPO 
and MPO are increased in peripheral blood, induced sputum, and BAL fl uid of 
patients with asthma [ 3 ,  115 ,  127 ]. On the other hand, changes in antioxidant 
defenses have been reported, mainly in plasma [ 133 ,  150 ], lung cells [ 182 ], BAL 
[ 85 ,  203 ], and induced sputum [ 19 ]. 

 EBC has proven to be a useful biological sample for assessing oxidative stress in 
asthma and linking oxidative stress and asthma pathophysiology [ 105 ]. An inverse 
correlation between H 2 O 2 , FEV 1 , peak expiratory fl ow (PEF), and metacholine 
hyperresponsiveness has been reported [ 6 ,  79 ,  104 ]. These studies also showed that 
H 2 O 2  levels in stable asthmatic patients treated with inhaled corticosteroids (ICS) 
were lower compared with steroid-naïve patients and similar to normal subjects 
[ 6 ,  79 ,  104 ]. Finally, in two randomized double-blind placebo-controlled clinical 
trials, ICS and the oral administration of the lipid extract of New Zealand green-
lipped mussel signifi cantly decreased H 2 O 2  levels [ 7 ,  57 ], whereas montelukast had 
no effect on H 2 O 2  [ 169 ]. The EBC levels of 8-isoprostane increase in asthma in 
association with its severity [ 128 ,  168 ], and exhaled 8-isoprostane were found to be 
increased in relation with asthma exacerbation frequency [ 13 ,  86 ] (Table  1.2 ). ICS 
seem to have no effect on 8-isoprostane levels [ 125 ,  128 ,  172 ,  206 ], with two studies 
reporting a positive effect in specifi c conditions (exacerbation and aspirin sensitivity) 
but with 8-isoprostane levels still remaining higher than normal after treatment 
[ 8 ,  13 ]. Finally, a leukotriene receptor antagonist showed no effect on 8-isoprostane 
concentration in EBC of children with asthma [ 130 ]. 

 MDA levels in EBC increased during asthma exacerbations whereas GSH levels 
decreased. After steroid treatment, MDA levels decreased whereas GSH levels 
increased [ 41 ]. In a study evaluating aldehydes [(MDA), acrolein,  n -hexanal (C6), 
 n -heptanal (C7),  n -nonanal (C9), 4-hydroxynonenal (HNE), and 4-hydroxyhexenal 
(HHE)] in EBC and induced sputum in asthmatics, no signifi cant correlation 
between each other was observed, indicating that the two samples must be evaluated 
independently [ 42 ]. 

 Children with asthma have increased plasma levels of MDA and lower than nor-
mal levels of GSH. Furthermore, the higher MDA and lower GSH levels correlated 
with the severity of asthma [ 69 ]. SOD activity, but not Mn-SOD or Cu/Zn-SOD 
protein, was lower in asthmatic serum as compared with control, and activity loss 
was signifi cantly related to airfl ow limitation. Further, serum SOD activity 
 demonstrated an inverse correlation with circulating levels of 3-bromotyrosine, a 
posttranslational modifi cation of proteins produced by the EPO system of eosino-
phils [ 39 ,  40    ]. Levels of plasma GPx and SOD and of reduced glutathione, ascorbic 
acid, α-tocopherol, lycopene, and β-carotene were signifi cantly lower in children 
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with asthma as compared with healthy controls [ 164 ]. Serum SOD activity is 
related to asthma lung function, and its relationship appears to be unique to asthma 
since serum antioxidant capacity in COPDs is unrelated to airfl ow limitation 
[ 37 ,  39 ,  40 ,  145 ,  149 ]. 

 Lipid peroxidation as well as antioxidant enzyme activities in erythrocytes was 
studied in patients with asthmatic exacerbation and in stable period [ 68 ]. MDA 
levels were signifi cantly higher, whereas GPx and GRd activities, and catalase 
activity were lower and higher, respectively, in exacerbation periods than in the 
stable period. Levels of melatonin, a potent-free radical scavenger, were depressed 
during the exacerbation periods. Accordingly, serum ROS levels were signifi cantly 
higher in patients with acute exacerbation of asthma than in patients with stable 
asthma or healthy subjects [ 177 ]. 

 SOD activity is signifi cantly lower in epithelial lining fl uid and airway epithelial 
cells in asthmatic patients compared with those in the healthy controls, and the air-
way reactivity is inversely related to SOD activity [ 38 – 40 ]. Lower SOD activity 
may be partly due to the increased oxidative and nitrative stress in the asthmatic 
airway and serves as a sensitive marker of airway redox and asthma severity [ 36 ]. In 
addition to lower SOD activity, Cu/Zn-SOD protein is decreased in cells recovered 
by BAL and by bronchial brushing in asthmatic patients compared to healthy sub-
jects [ 182 ]. Oxidation and nitration of Mn-SOD are also present in the asthmatic 
airway, correlating with the severity of asthma [ 39 ,  40 ]. Catalase activity in BAL 
fl uid is lower in patients with asthma as compared with those in healthy controls, 
due to nitration and oxidation of the enzyme [ 64 ]. Thus, as in COPD, the loss of 
antioxidant activity refl ects the oxidant stress in the airway. 

 There are little data on the correlation of biomarkers of infl ammation and oxida-
tive stress with the clinical picture of asthma, disease progression, and therapeutic 
response, thus their diagnostic value should be evaluated further [ 51 ]. However, 
recent data point out to the usefulness of bromotyrosine, a noninvasive marker of 
eosinophil-catalyzed protein oxidation. Asthmatic children with high baseline lev-
els of urinary bromotyrosine were 18.1-fold more likely to have inadequately con-
trolled asthma and 4.0-fold more likely to have an asthma exacerbation over the 
ensuing 6 weeks [ 198 ]. 

 In summary, the stable end-products of the ROS-mediated reactive pathways 
may be used as reliable markers of oxidative stress in patients with asthma 
(Table  1.2 ). Identifi cation of noninvasive biomarkers of oxidative stress in patients 
with asthma will be critical for enabling assessment of treatment outcomes [ 36 ].  

1.3.3     Cystic Fibrosis 

 Cystic fi brosis (CF) is a lethal autosomal recessive disorder caused by mutations in 
the CF Transmembrane Conductance Regulator ( CFTR ) gene located on the chro-
mosome 7. The CFTR protein is mainly expressed in the apical membrane of epi-
thelial cells lining the airway mucosa and submucosal glands, acting not only as a 
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chloride channel, but also as a regulator of transport of other molecules, including 
GSH. The redox unbalance in the CF lungs has been attributed to different causes 
[ 29 ,  62 ]. An abnormal generation of ROS by airway epithelial cells, determined by 
CFTR-related intrinsic defects, is compounded by a sustained neutrophil activation 
by recurrent infections. A constitutive defect of glutathione metabolism together 
with a lowered intake and absorption of fat-soluble antioxidant vitamins contribute 
to a defective antioxidant protection, which is believed to exacerbate stress indices 
along with the progression of clinical status [ 10 ,  81 ,  203 ]. Besides targeting differ-
ent biomolecules to damage epithelial cells and extracellular fl uid components of 
the airways, oxidants can contribute to the pathophysiology of CF by exacerbating 
infl ammation [ 26 ,  32 ], and being synergic in the induction of mucins with neutro-
phil elastase [ 58 ]. 

 Many indices of oxidative stress, including the levels of protein oxidation and 
lipid peroxidation products, have been studied in CF plasma [ 10 ,  34 ,  100 ,  202 ], 
buccal mucosal cells [ 10 ], EBC [ 10 ,  109 ,  129 ,  159 ,  160 ], and BAL [ 33 ,  72 ]. 

 Several studies have tested whether markers of oxidative stress may refl ect the 
onset, severity, and response to therapy for an acute exacerbation (Table  1.2 ). 
For example, the levels of 8-isoprostane in the EBC negatively correlated with the 
respiratory function [ 129 ]. Robroeks et al. found that the presence of CF was best 
indicated by 8-isoprostane and nitrite in EBC, similarly as during an acute exacer-
bation [ 159 ]. In a following study aimed at investigating the relationship between 
lung function, structural lung changes, and noninvasive biomarkers, FVC was sig-
nifi cantly predicted by H 2 O 2 , while total lung capacity was signifi cantly predicted 
by 8-isoprostane, nitrate, and H 2 O 2  in EBC [ 160 ]. Overall, these studies indicated 
that noninvasive biomarkers of oxidative stress may help in the follow-up of CF 
patients. 

 Biomarkers of oxidative stress are increased in patients with an acute exacerba-
tion, but not in stable condition, as compared with those in healthy controls [ 121 , 
 122 ,  155 ,  202 ]. However, not all the biomarkers are useful in this context. Breath 
isoprene, a volatile product of lipid peroxidation, was signifi cantly lower in patients 
during exacerbation than in controls and increased to normal values following treat-
ment [ 122 ]. The treatment of an acute exacerbation with antibiotic therapy brings to 
a diminished oxidative stress at the systemic level [ 121 ,  122 ,  153 ], but not at the 
pulmonary level [ 155 ,  202 ], indicating the potential for more targeted antioxidant 
supplementation in CF (see below). Breath hydrogen peroxide levels are not ele-
vated in stable CF patients as compared with healthy controls [ 77 ]. However, it has 
been shown that CF patients with an acute pulmonary exacerbation have abnormally 
high concentration of H 2 O 2  in exhaled air, which decrease during intravenous antibi-
otic treatment [ 82 ], suggesting that appropriate biomarkers should be investigated 
accordingly to the lung compartment under study. Interestingly, in CF patients with 
infective exacerbations, treatment with intravenous antibiotics resulted in increased 
plasma levels of antioxidants, with a parallel decrease in lipid oxidation [ 153 ]. 

 As regards the antioxidants (Table  1.2 ), signifi cantly reduced GSH levels are 
present in the BAL fl uid of adult CF patients [ 161 ], and low levels of GSH have 
been observed in plasma [ 161 ] and blood neutrophils [ 186 ], suggesting altered 
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systemic GSH homeostasis in CF. Interestingly, the GSH content in sputum samples 
is higher in CF patients than in healthy subjects [ 44 ], indicating a disparity in GSH 
levels between the lower and the upper respiratory tracts. 

 Exocrine pancreatic insuffi ciency and a diminished bile acid pool cause malab-
sorption of fat-soluble antioxidants such as tocopherols, carotenoids, and coenzyme 
Q10 (Co-Q10), which are believed to contribute to the oxidative stress of CF 
(Table  1.2 ). Levels of plasma carotenoids such as β-carotene, β-cryptoxanthin, and 
total lycopene were signifi cantly lower in CF patients as compared to those in 
healthy controls, and this was accompanied by higher susceptibility to lipid peroxi-
dation [ 10 ,  99 ,  156 ,  163 ,  200 ]. The levels of α-tocopherol and vitamin C in plasma, 
buccal mucosal cells, and EBC decreased signifi cantly with age in association with 
a decreased respiratory function as well as with an increased oxidative stress mark-
ers, such as protein carbonyls, thiobarbituric acid-reactive substances (TBA), and 
8-isoprostane [ 10 ]. In a longitudinal study, persistently low levels of Co-Q10 were 
found more prevalent in patients with pancreatic insuffi ciency [ 97 ]. 

 Levels of plasma vitamin C have been found decreased or normal as compared 
to healthy controls, nevertheless age- and disease-related decline of this hydrosolu-
ble antioxidant was reported in CF patients [ 10 ]. CF children are reported to have 
lowered blood selenium and erythrocyte selenium-dependent GPx activity [ 137 ], 
normal plasma selenium, and lowered erythrocyte GPx activity [ 201 ], and even 
normal levels of these two parameters [ 102 ]. Plasma oligoelements, in particular, 
zinc, appear to be in the normal range at baseline [ 137 ,  190 ,  191 ,  203 ]. Neve et al. 
found that plasma zinc concentrations were signifi cantly lower in patients with 
moderate-to-severe growth retardation and with severe pulmonary disease as com-
pared to patients without growth failure and with moderate pulmonary disease, 
whereas erythrocyte zinc and copper levels were higher than normal [ 137 ]. These 
results suggest a compensatory up-regulation of the erythrocyte Cu/Zn-SOD by the 
exposure of erythroid precursor cells to ROS and/or other CF-derived stressors. 
These fi ndings have to be confi rmed by further studies. 

 A lower level of erythrocyte SOD activity was found by Best et al., whereas 
Wood et al. found that the activity of erythrocyte SOD and plasma 8-isoprostane 
were in the normal range at baseline [ 21 ,  203 ]. 

 Some pilot studies investigating the effect of GSH inhalation or that of oral GSH 
prodrug  N -acetylcysteine (NAC) were able to demonstrate increased GSH levels in 
the epithelial lining fl uid in association with improved lung function [ 24 ,  45 ,  66 , 
 162 ,  183 ,  186 ,  195 ]. However, indices of oxidative damage were found to be unaf-
fected by aerosolized GSH treatment [ 66 ,  67 ]. Both aerosol and oral formulations 
are still under investigation as for safety, tolerability, and effi cacy [ 62 ,  135 ]. 

 Supplementation with single or combined antioxidants produces poor respon-
siveness in CF as concerning oxidative stress biomarkers. For example, supplemen-
tation of vitamin C together with other antioxidants as vitamin E did not 
signifi cantly affect the levels of plasma 8-isoprostane and erythrocyte SOD activity 
[ 203 ]. This failure may depend on the dose of the supplement, since for vitamin E, 
unlike vitamin C, successful high-dose treatment appears to lower oxidative stress 
markers, such as TBA- MDA complexes, and to correct the total antioxidant capacity 
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of plasma [ 163 ]. In another study, β-carotene supplementation was observed to 
decrease MDA  concentrations in plasma and to enhance the resistance of low-den-
sity lipoproteins to oxidation [ 200 ]. More recently, the use of a CF-tailored multivi-
tamin formulation (commercial name AquaDEKs ® ) resulted in the normalization of 
β-carotene levels but with minor improvements on respiratory and growth parame-
ters and with no increase of urinary 8-isoprostane levels [ 166 ]. In another study, this 
multivitamin preparation normalized MDA levels in plasma and increased SOD 
activity and sulfhydryl groups in erythrocytes [ 165 ], indicating that larger random-
ized controlled trials are deserved. 

1.3.3.1     The Emerging Role of Oxidative Stress and Autophagy 
in Cystic Fibrosis Lung Disease 

 Cellular homeostasis is deranged in CF airways as a result of increased intracellular 
levels of ROS, induced by defective CFTR function. Increased ROS levels induce 
posttranslational changes of tissue transglutaminase (TG2), a multifunctional pro-
tein [ 138 ] that can function as a rheostat of posttranslational network in CF epithe-
lial cells [ 106 ]. In the presence of high Ca 2+  levels, TG2 works as a cross-linking 
enzyme, catalyzing several posttranslational modifi cations of target proteins. TG2 
is up-regulated in CF epithelial cells at the transcriptional and even more at the post-
transcriptional levels [ 114 ]. Indeed, TG2 undergoes a posttranslational modifi ca-
tion, the small ubiquitin like-modifi er SUMOylation, as the result of ROS- induced 
increase of the SUMO E3 ligase protein inhibitor of activated STAT (PIAS)y [ 106 ] 
which can orchestrate SUMO modifi cations in response to either oxidative or geno-
toxic stress [ 111 ]. SUMOylation is a key player of the posttranslational network as 
it regulates transcription, nuclear translocation, stress responses, and chromatin 
structure and infl uences intracellular localization, stability, and function of modifi ed 
proteins [ 63 ,  123 ,  146 ]. SUMOylation of lysines in TG2 (SUMO consensus 
sequence: ψ_kxE) is incompatible with the ubiquitination of these residues, leading 
to the inhibition of TG2 ubiquitination, thereby preventing its proteasomal degrada-
tion. High TG2 levels can in turn sustain ROS, as TG2 may stimulate the activity of 
the mitochondrial respiratory chains [ 116 ]. 

 These ROS-mediated posttranslational changes of TG2 protein, induced by 
defective CFTR function, can switch off the posttranslational regulatory mecha-
nisms and may have functional implications in epithelial homeostasis. Sustained 
TG2 activation leads to    cross-linking, increased ubiquitination, and functional 
sequestration of TG2 substrates, among which are the gamma forms of peroxisome 
proliferator-activated receptor (PPARγ) and IkBa [ 47 ,  114 ,  142 ], thus favoring 
infl ammation in CF airways [ 106 ]. TG2-mediated protein cross-linking may lead to 
proteasome overload [ 52 ] favoring protein aggregation; in fact, misfolded or post-
translationally modifi ed proteins that cannot be degraded by the proteasome 
machinery, are stocked in the cytoplasm in the form of aggresomes [ 89 ,  173 ]. 
Therefore, the proteostasis of CF epithelia is affected by a combination of genetic 
defects (resulting from the misfolded CFTR protein) and posttranslational altera-
tions (mediated by ROS/TG2 axis). 
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 Such an impaired redox balance in CF airways compromises the ability of CF 
cells to re-establish homeostasis in response to stress, either constitutive or induced 
by bacterial challenges. Indeed, it inhibits the activation of autophagy, a mechanism 
that cells adopt in response to stress. Autophagy is pivotal in promoting cellular 
clearance of protein aggregates and removal of ROS sources, such as damaged 
mitochondria [ 89 ,  92 ,  95 ,  124 ]. Thus, autophagy machinery should have been 
highly activated in CF environment. By contrast, human and mouse CF airways 
exhibit a pronounced defect in autophagy, as indicated by reduced autophagosome 
formation together with accumulation of sequestosome 1 (p62/SQSTM1), a major 
autophagic substrate. In CF airways, autophagy is impaired in spite of the normal 
expression of major autophagy genes [ 107 ], as sustained TG2 activation results in 
cross-linking of Beclin 1 (BECN1), a major player of autophagosome formation. 
This dislodges type III phosphatidylinositol 3-kinase (PtdIns3K, also known as 
hVps34, a protein that belongs to the BECN1 interactome) away from the endoplas-
mic reticulum (ER), thus impairing the generation of phosphatidylinositol 
3- phosphate (PtdIns3P) [ 194 ], that is pivotal in both autophagosome formation and 
endosomal traffi cking. Therefore, ROS-mediated TG2 activation generates a vicious 
feed-forward loop that impairs the regulation of proteostasis and sustains infl amma-
tion in human and mouse CF airways. 

 A defective autophagic response to bacterial infection has also been reported in 
murine CF macrophages. Reduced autophagosome formation in CF macrophages 
promotes Burkholderia cenocepacia survival and hypersecretion of IL-1b [ 1 ]. 

 Targeting ROS by means of a catalase-SOD mimetic (EUK-134) or the enforced 
Mn-SOD expression, or inhibiting TG2 by cystamine (or by its reduced form of 
cysteamine), can rescue autophagy, restore proteostasis, and control airway infl am-
mation in CF [ 107 ]. 

 Both EUK-134 and cystamine also favor F508del-CFTR traffi cking to the epi-
thelial surface in CF cell lines, in primary brushed nasal epithelial cells from 
F508del-CFTR homozygous patients and in lungs from F508del-CFTR homozy-
gous mice [ 107 ,  108 ]. These treatments also stabilize a functional rescued F508del- 
CFTR at the plasma membrane of airway epithelial cells and their effects extend 
well beyond drug washout. Indeed, the ROS/TG2-mediated inhibition of autophagy, 
consequent to functional depletion of CFTR, favors CHIP-mediated CFTR ubiqui-
tination at the plasma membrane, thus diverting CFTR recycling to lysosomal deg-
radation [ 194 ]. This indicates that targeting oxidative stress in CF epithelia can 
either favor F508del-CFTR traffi cking or prevent CFTR plasma membrane disposal 
[ 108 ,  194 ]. These evidences may have relevant implication in CFTR-repairing ther-
apies [ 5 ], to restore autophagy, by means of ROS-modulators or TG2 inhibitors, can 
favor the benefi cial action of CFTR potentiators in F508del-CFTR homozygous 
patients [ 108 ,  194 ]. 

 The “anti-infl ammatory” effects of both EUK-134 and cystamine also extend 
well beyond drug withdrawal unless CFTR is inhibited or depleted during the wash-
out period [ 108 ,  194 ]. This indicates their anti-infl ammatory properties rely on their 
ability to rescue and stabilize a functional CFTR at the epithelial surface. Altogether, 
these fi ndings might open a new scenario in the design of new anti-infl ammatory 
strategies for CF patients.       
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2.1            Introduction 

 Oxidative stress is defi ned as a natural physiological process in the biological 
 systems where the presence of free oxygen radicals overpowers the radical scaveng-
ing mechanisms, thus creating an imbalance between the oxidants and the antioxi-
dants. Historically, recognition of the presence of free radicals in the living cells was 
fi rst demonstrated in 1954 [ 1 ]. Soon thereafter, a therapy based on free radicals and 
radiation chemistry was proposed for ageing [ 2 ]. Numerous studies in literature have 
shown that free radicals are involved in the etiology of several human diseases, as 
well as in ageing [ 3 ]. Harman described free radicals as “Pandora’s box of evils 
which account for cellular damage, mutagenesis, cancer and degenerative diseases” 
[ 2 ]. Based on the volume of research on this subject, it is believed that the cross talk 
between various risk factors converges on a fi nal common pathway of oxidative 
stress through which they exert their deleterious effects in causing various diseases. 

 Oxidative stress represents a state of increased levels of reactive oxygen species 
(ROS), also termed as “oxygen-derived species” or “oxidants.” The function is con-
trolled physiologically by concentration of oxygen, signal transduction, and main-
tenance of redox homeostasis. The science of redox regulation is a rapidly growing 
fi eld of research that has impact on almost every discipline involving biological 
systems which have not only adapted to the coexistence of damaging free radicals 
but also developed mechanisms of using free radicals to their advantage. Numerous 
data exist in the literature that both ROS and reactive nitrogen species (RNS) are 
produced in a well-regulated manner to help maintain homeostasis at the cellular 
level in the normal healthy tissues, play an important role as second messengers, 
and regulate cellular function by modulating signaling pathways [ 3 ]. 
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 Overproduction of ROS, as well as the defi ciency of enzymatic and  nonenzymatic 
antioxidant defense mechanism creates an imbalance in the equilibration of prooxidant/
antioxidant status which governs a wide array of diverse disorders. ROS elicit and 
regulate divergent effects on cellular functions, e.g., cell growth and differentiation, 
growth factor signaling, mitogenic responses, modulation of extracellular matrix 
production and breakdown apoptosis, inactivation of nitric oxide (NO), oxygen 
sensing, and stimulation of proinfl ammatory genes and many kinases [ 4 ].  

2.2     Free Radicals 

 A free radical is defi ned as a molecule that contains one or more unpaired electrons 
in a single orbit. Molecular oxygen has two and nitric oxide (NO • ) has one unpaired 
electron which can exist independently and thus justify their free radical characters. 
A chemical reaction shall involve the transfer of one single electron. Any related 
reactive species that leads to free radical generation or other species that result from 
free radical reactions can also be included in this category. Cells use oxygen to gen-
erate energy and form free radicals as a result of ATP production by the mitochon-
dria [ 5 ]. Free radicals become a part of the propagative chain reaction whereby they 
combine with other radicals to form other more damaging species, unless the chain is 
terminated by chain breaking antioxidants to form a species which is nontoxic [ 5 ]. 
All organisms possess inherent cellular defenses to overcome oxidative stress that 
are collectively termed as antioxidants.    Free radicals have very short life, e.g., in 
milli-, micro-, or nanoseconds, and readily react with lipids, DNA, and proteins 
causing damage and form harmful products such as lipid peroxides and other lipid 
adducts. The consequent protein damage results in loss of enzyme activity, while 
DNA damage can result in mutagenesis and carcinogenesis [ 6 ].  

2.3     Generation of ROS 

 Oxygen is essential to aerobic life but, paradoxically, it can be toxic even at atmo-
spheric concentrations. ROS/RNS are formed as byproducts of normal metabolism 
in aerobic organisms. ROS is a broader term; it includes many reactive species, e.g., 
superoxide (O 2  • ), hydroxyl (OH • ), peroxyl (ROO • ), alkyl radical, alkoxyl (RO • ) radi-
cals, singlet oxygen (O) and semiquinone radical (HQ • ), and ozone (O 3 ) (Table  2.1 ). 
Hydroxyl radicals are formed in the presence of metals and hydrogen peroxide 
(Fenton reaction); peroxynitrite might play a small role in hydroxyl radical forma-
tion. In this process, certain non-radicals are also produced that are either oxidizing 
agents or easily converted into radicals, such as HOCl, ozone, H 2 O 2 , and lipid perox-
ides with no unpaired electrons. H 2 O 2  and lipid peroxides also serve as a source of 
highly reactive  • OH, ROO • , and RO •  radicals. O 2  •−  reacts quickly with very few mol-
ecules, whereas hydroxyl radical OH •  has an extremely high rate of reactivity [ 7 ].
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2.4        Sources of Reactive Oxygen Species 

 Normal metabolic processes in all the aerobic conditions constitute a major source 
of ROS. The cellular sources include the electron transport chain of mitochondria 
and endoplasmic reticulum [ 8 ]. ROS are produced by all cell types, e.g., the neutro-
phils, monocytes, macrophages, and the cytotoxic lymphocytes, and can be formed 
by the action of many enzymes. The important enzymatic sources responsible for 
ROS production include NAD(P)H oxidase, xanthine oxidase (XO), and uncoupled 
form of nitric oxide synthase (NOS). The other enzyme sources are myeloperoxi-
dase (MPO), aldehyde oxidase, cyclooxygenase, lipoxygenase, dehydrogenase, 
tryptophan dioxygenase, and fl avoprotein dehydrogenase [ 9 ]. 

 In nonphagocytic cells, a variety of cytokines such as TNF-α, IL-1, and inter-
feron (IFN)-γ are shown to generate ROS essential for their signaling by binding to 
cytokine receptors. Several growth factors are capable of generating ROS by bind-
ing to different receptors in nonphagocytic cells and initiate mitogenic signaling. 
Depending on their isoforms, they either inhibit or activate NADPH oxidase activity 
for H 2 O 2  production [ 10 ,  11 ]. All receptor serine/threonine kinases in mammalian 
cells belong to the TGF-β superfamily. TGF-β1 is shown to stimulate ROS produc-
tion in a variety of cell types [ 12 ]. 

 A number of stimuli, e.g., angiotensin II (Ang II), serotonin, 5- hydroxytryptamine 
(5-HT), bradykinin, thrombin, and endothelin (ET), are shown to generate ROS in 
different cells by binding to G protein-coupled receptors. Neurotransmitters, by 
binding to ion channel-linked receptors, mediate rapid synaptic signaling. Relatively 
little is known about ROS signaling by ion channel-linked receptors [ 10 ,  13 ] 
(Fig.  2.1 ).

Reactive Oxygen Species (ROS)

Radicals:
O2

.- Superoxide
OH. Hydroxyl
RO2

. Peroxyl
RO. Alkoxyl
HO2

. Hydroperoxyl

Non-Radicals:
H2O2 Hydrogen peroxide
HOCl- Hypochlorous acid
O3 Ozone
1O2 Singlet oxygen
ONOO- Peroxynitrite

Reactive Nitrogen Species (RNS)

Reactive Oxygen Species (ROS)

Reactive Nitrogen Species (RNS)

Radicals:
NO. Nitric Oxide
NO2

. Nitrogen dioxide

Non-Radicals:
ONOO- Peroxynitrite
ROONO Alkyl peroxynitrites
N2O3 Dinitrogen trioxide
N2O4 Dinitrogen tetroxide
HNO2 Nitrous acid
NO2

+ Nitronium anion
NO- Nitroxyl anion
NO+ Nitrosyl cation
NO2Cl Nitryl chloride

   Table 2.1    Different types 
of ROS and RNS produced 
in the cell          
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2.5        NAD(P)H Oxidase 

 NAD(P)H oxidase is a membrane-bound enzyme complex which represents a major 
source of O 2  •−  in the body. It is present in various cells, e.g., the endothelial cells, 
smooth muscle cells, fi broblasts, monocytes, and macrophages [ 14 ]. Although NAD(P)
H oxidases were originally considered as enzymes expressed only in the phagocytic 
cells, the recent evidence indicates that there is an entire family of NAD(P)H oxidases. 
The new homologs are now designated the Nox family of NAD(P)H oxidases. 
The family includes seven members such as Nox1, Nox2 (gp91phox), Nox3, Nox4, 
Nox5, Duox1, and Duox2 [ 6 ,  14 ]. They are expressed in many tissues and mediate 
diverse biological functions. The NAD(P)H oxidase found in neutrophils has fi ve 
subunits: p22phox, p47phox (or NOXO1), p67phox (or NOXA1), and p40phox 
(phox stands for  ph agocyte  ox idase), and the catalytic subunit gp91phox (or its 
homologs, Nox1 and Nox4) also termed Nox2. In quiescent cells, NAD(P)H 
oxidase exists in an unassembled state, i.e., p22phox and gp91phox are present in 
the membrane whereas p47phox, p67phox, and p40phox exist in the cytosol. 

 A number of stimuli activate NAD(P)H oxidase whereby p47phox becomes 
phosphorylated and the cytosolic subunits form a complex that translocates to the 
membrane and convert the oxidase into an assembled and active form which trans-
fers electrons from the substrate to O 2 , forming O 2  •−  [ 15 ]. Therapy based on free 
radicals and radiation chemistry was proposed for ageing [ 2 ]. In the fi rst step one 
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  Fig. 2.1    Various endogenous sources of ROS and RNS in the cell       
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electron is added to the molecular oxygen in a univalent reduction to generate 
 superoxide anion (O 2  •− ) using NADPH or NADH as the electron donor: 

 2O 2  + NAD(P)H → 2O 2  •−  + NAD(P) +  + H + . 

 Superoxide anion can be generated both enzymatically, e.g., during the NADPH 
phagocytic oxidase reaction in neutrophils, and nonenzymatically in the mitochon-
drial respiratory chain.  

2.6     Regulation of NAD(P)H Oxidase Activity 

 The mechanism behind interaction of NAD(P)H oxidase subunits in cells and how 
they generate O 2  •−  is not fully understood. Plentiful evidence exists that Nox 
enzymes are crucial for normal biological responses and contribute to the patho-
physiology of several diseases, yet their regulation and function remain unclear. 
NAD(P)H oxidase responds to the stimuli of many growth factors, cytokines, 
mechanical forces, metabolic factors, and G protein-coupled receptor agonists. Ang 
II is the most potent regulator of NAD(P)H oxidase that activates NAD(P)H oxidase 
through stimulation of various signaling pathways and through transcriptional regu-
lation of oxidase subunits [ 16 ].  

2.7     Xanthine Oxidase 

 Xanthine oxidoreductase (XOR) is another important enzymatic source of ROS 
which belongs to metallofl avoprotein family [ 17 ]. XOR (EC 1.17.1.4) catalyzes the 
oxidation of hypoxanthine and xanthine to form uric acid. XOR is shown to exist in 
two forms: xanthine oxidase (XO) and xanthine dehydrogenase (XDH). The enzyme 
catalyzes the reduction of O 2 , leading to the formation of superoxide (O 2  •− ) and 
H 2 O 2 ; it is proposed as a central mechanism of oxidative injury. 

 Principle reaction catalyzed by xanthine oxidase (XO) is the oxidation of 
 xanthine into uric acid: 

    XO + H 2 O + O 2  → Uric acid + H 2 O 2 . 

 This process is accompanied by production of superoxide: 

 XO + O 2  → XO −1  + O 2  •− . 

 The concentration of circulating XOR is low under physiological conditions, but it 
increases dramatically in certain diseases. Most of the circulating XOR form exists 
in the oxidase form. Once in circulation, XOR has the ability to initiate oxidative 
damage in remote organs with intrinsically low XOR content. XO can generate 
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nitric oxide (NO • ) by catalyzing the reduction of nitrate to nitrite and nitrite to NO •  
in the presence of NADH as an electron donor. NO •  or ONOO −  has been proposed 
as feedback inhibitor of XO via disruption of the critical molybdenum (Mo) center 
of the enzyme. The Mo cofactor or sulfate moieties in the XOR protein are critical 
components which are responsible for transcriptional and posttranslational regula-
tions of XOR activity [ 6 ,  18 ]. H 2 O 2  has also been shown to inhibit XOR activity by 
deactivating the Mo center. Phosphorylation has also been cited as a mechanism of 
posttranslational modifi cation of XOR. 

 Commercially available allopurinol and metabolite oxypurinol are the nonselec-
tive inhibitors of XOR that prevent oxidation of xanthine to uric acid. Febuxostat is 
also shown to inhibit the oxidized and reduced forms of XOR selectively without 
affecting other enzymes of purine and pyrimidine metabolism [ 19 ].  

2.8     Generation of Reactive Nitrogen Species 

 RNS is a collective term that includes nitric oxide radical (NO • ), peroxynitrite 
(ONOO − ), nitrogen dioxide radical (NO 2  • ), and other oxides of nitrogen and prod-
ucts arising when NO •  reacts with O 2  •− , RO • , and H • NO •  [ 20 ]. NO •  was initially dis-
covered in 1980 as a vasodilating substance secreted by the endothelium, termed as 
EDRF [ 21 ]. Subsequently, this factor was termed as NO • . In 1992, NO •  was chosen 
as “molecule of the year” [ 22 ]. In 1998 Furchgott, Ignarro, and Murad were awarded 
the Nobel Prize in Physiology and Medicine for their discovery of NO •  as a signaling 
molecule in the cardiovascular system [ 23 – 25 ]. 

 NO •  plays signifi cant role in cellular signaling, vasodilation, and immune 
response. It is a highly reactive small uncharged molecule containing one unpaired 
electron, therefore considered a free radical. It has a half-life of 15 s and can readily 
diffuse across the membrane due to its uncharged state. Endogenous NO •  is formed 
in the biological tissues via the action of NOS where  l -arginine and oxygen are 
converted into NO •  and citrulline via a fi ve-electron oxidative process. The reaction 
requires the presence of many cofactors such as FAD, FMN, NADPH, tetrahydrobi-
opterin, and heme [ 26 ,  27 ].  

2.9     Nitric Oxide Synthase 

 Conversion of  l -arginine to  l -citrulline and nitric oxide is carried out by NOS but 
under uncoupling conditions, these enzymes also produce superoxide: 

 NOS +  l -Arginine + O 2  •−  + NADPH → NO •  + Citrulline + NADP + . 

 NOS (Fe (II) heme) + O 2  •−  → NOS (Fe (III) heme) + O •− . 
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 There are three known isoforms of NOS with different activities; two of the 
NOS forms are constitutively expressed in neuronal cells (nNOS) or in the endothe-
lial cells (eNOS) [ 28 ,  29 ]. These constitutively expressed NOS isoforms are regu-
lated via calcium levels. As the intracellular calcium levels increase, calcium forms 
a complex with calmodulin (a calcium binding protein) which then binds to NOS 
and causes its activation. Activated NOS synthesizes small amounts of NO •  till 
calcium levels decrease. This intermittent production of NO •  is responsible 
for transmission of signals and is suffi cient to maintain a basal vasodilator tone 
[ 30 – 32 ].    NO •  as a vasodilator has been shown to inhibit leukocyte interaction with 
the endothelium, inhibit platelet aggregation and cell adhesion, and control cell 
 proliferation [ 33 ]. In oxidative stress conditions, NO •  is consumed, thereby causing 
various problems. 

 Another isoform of NOS which is subject to regulation by infl ammatory 
mediators is expressed in macrophages, and is termed as iNOS [ 34 ]. iNOS is 
independent of calcium and calmodulin ions. Once activated, it generates large 
amounts of NO •  for as long as the infl ammatory stimulus is present and kills or 
inhibits pathogens. All the NOS are homologous and have different regulation 
controls and activities. iNOS is regulated by phosphorylation/dephosphorylation 
via protein kinases; in its phosphorylated form, the activity is decreased. eNOS 
can also be regulated via phosphorylation/dephosphorylation. iNOS can also 
bind calmodulin, though calcium has little effect on its activity. In contrast to 
other signaling molecules which act through receptors, NO •  diffuses out of the 
cell where it is produced and diffuses in target cells to transmit signals and inter-
act with its molecular target, e.g., proteins, nucleic acids, and other free radicals 
like superoxide [ 35 ]. 

 NO •  is shown to act through cyclic GMP (cGMP, a second messenger). By bind-
ing to iron in heme group of GC, it activates the enzyme whereby cGMP is pro-
duced which further activates other cellular processes [ 36 ]. NO •  causes auto-ADP 
ribosylation, i.e., ribosylation of a target without enzyme catalysis, e.g., by ADP 
ribosylation of glyceraldehyde 3-phosphate dehydrogenase, therefore inhibiting 
ATP production [ 37 ]. 

 NO •  has also been shown to inhibit the activity of a number of enzymes including 
xanthine oxide, gluthathione peroxidase, cytochrome  c  oxidase, and NADPH oxi-
dase. NO •  interacts with proteins by binding to iron, present as heme group or as an 
iron sulfur complex in enzymes, and either activates or deactivates the enzyme. O 2  •−  
plays a critical role in NO • -induced toxicity where O 2  •−  and NO •  can combine in a 
radical–radical reaction which is extremely fast and form toxic product peroxyni-
trite. Peroxynitrite is a potent oxidant produced in various infl ammatory and patho-
logical conditions that can attack a wide variety of biological molecules. 
ONOO −  directly attacks sulfhydryl groups in various target molecules [ 37 ] and also 
reacts by either one- or two-electron oxidation reactions [ 38 ]. Peroxynitrous acid 
(HOONO), which has OH •− -like properties, is formed by reacting with nitric acid, 
and has oxidant properties.  
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2.10     Antioxidant Defenses 

 “Antioxidants” can be defi ned as those substances that neutralize free radicals or 
their actions [ 39 ]. These are present in low concentrations and signifi cantly prevent 
oxidation of that substrate. To counteract deleterious effects of oxidative stress, 
nature has endowed each cell with adequate protective antioxidant defenses which 
can be broadly categorized into enzymatic or nonenzymatic antioxidants based on 
their action in intracellular and extracellular compartments. Enzymatic antioxidants 
include superoxide dismutase (SOD) which catalyzes the dismutation of O 2  •−  into 
H 2 O 2  and O 2 . SOD exists in three isoforms in mammalians, i.e., copper/zinc SOD 
(SOD1), mitochondrial SOD (Mn SOD, SOD2), and extracellular SOD (ecSOD, 
SOD3) [ 40 ,  41 ]. Glutathione peroxidase reduces H 2 O 2  and lipid peroxides to water 
and lipid alcohols and in turn oxidizes glutathione to glutathione disulfi de. Catalase 
catalyzes the conversion of H 2 O 2  to water and molecular oxygen, and protects the 
cells from harmful effects of H 2 O 2  produced within the cell. This enzyme is highly 
effective during augmented oxidative stress, as reduced levels of glutathione or glu-
tathione peroxidase are available. Reduced glutathione plays a major role in the 
regulation of the intracellular redox state of the cells as it is a major source of reduc-
ing equivalents [ 42 ]. Thioredoxin reductase is responsible for thiol-dependent 
reductive processes in the cell [ 43 ]. Glutathione S-transferase and H 2 O 2  can form 
spontaneously or can be formed by dismutation of O 2  •−  catalyzed by SOD: 
2O 2  •−  + 2H +  → H 2 O 2  + O 2 . Thioredoxins are low molecular weight proteins that con-
tain a conserved dithiol motif which is responsible for a variety of biological func-
tions. Sulfur switches are shown as sensors in redox signaling pathways which 
control and integrate metabolic pathways. Three major redox controls responsible 
for regulation of these switches are thioredoxins, GSH/GSsL, and Cys/Cyss [ 44 ]. 

    The nonenzymatic category of antioxidant defenses includes low molecular 
weight molecules, e.g., glutathione, uric acid, vitamin A (retinoids), carotenoids 
particularly beta carotene with a high-antioxidant activity as it quenches free radi-
cals, and α-tocopherol (vitamin E), a fat-soluble and free radical chain breaking 
antioxidant which, due to the presence of hydroxyl (–OH) group in its structure, is 
an effective hydrogen donor. Ascorbic acid (vitamin C) acts as a hydrogen donor 
and reverses oxidation, and can act both as an antioxidant and as a prooxidant. 
Fruits and vegetables in the diet are main source of vitamin C and other nonenzy-
matic antioxidants, e.g., fl avonoids and related polyphenols. The concentration of 
these antioxidants is low and varies depending on their location. Bilirubin, lipoic 
acid, albumin, ferritin, ceruloplasmin, and transferrin also show antioxidant proper-
ties and can indirectly reduce or inhibit generation of reactive species (Table  2.2 ).

2.11        ROS/RNS Signaling 

 Data from different studies clearly demonstrate that reactive species act as second 
messengers and play a critical role in immune function and signal transduction 
thereby affecting cellular homeostasis [ 45 ]. ROS act as signaling molecules when 
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present in low concentration, and promote cell proliferation and cell survival, 
whereas an increased concentration activates NF-κB and AP-1 [ 46 ,  47 ]. At extremely 
high levels or persistent cellular ROS, these are shown to promote cell death. Redox 
system regulates ROS-mediated signaling via direct oxidative modifi cation of 
redox-sensitive signaling proteins. Multiple layers of regulation are reported at the 
level of signaling pathways [ 48 ]. Their actions are mediated through oxidative/
nitrosative reactions. These molecules may attack cysteine residues on proteins via 
oxidative/nitrosative modifi cations and alter many proteins, e.g., transcription fac-
tors, kinases, and phosphatases, which in turn may affect downstream signaling 
cascades and alter cellular fate. In the presence of a transition metal, such as iron, 
hydrogen peroxide can be converted to the highly reactive hydroxyl ion which 
amplifi es oxidative stress and its consequences [ 49 ]. 

 Hypoxia-inducible factor (HIF) is a TF shown to regulate cellular metabolism 
and cell survival under hypoxic stress. By binding to hypoxia response element 
(HRE) in the promoter of many genes, HIF1α results in activation and suppression 
of several genes involved in metabolism, e.g., cell survival/death, angiogenesis, and 
invasion/metastasis [ 50 ]. HIF1α is regulated by oxygen requiring hydrolyzing 
enzymes and is also regulated via feedback regulation under hypoxia by increased 
expression of its own regulators. Increased ROS/RNS generation is shown to stabi-
lize HIF1α via increased generation of OH •  radical from H 2 O 2 , by direct oxidative 
modifi cation and by activating multiple signaling pathways which may render 
HIF1α inactive. Use of antioxidants has been shown to decrease HIFα activity [ 51 ]. 

 One of the important signaling pathways involved in ROS regulation is that of 
serine/threonine AMP-activated protein kinase (AMPK) that contributes to the con-
trol of energy metabolism [ 52 ]. Silencing AMPKα1, a predominant catalytic sub-
unit of enzyme in human umbilical vein endothelial cells (HUVEC), was shown to 
inhibit cell proliferation and ROS accumulation [ 53 ]. 

  Table 2.2    Enzymatic and 
nonenzymatic antioxidants 
that protect against ROS/
RNS generation  

 Enzymatic antioxidants  Nonenzymatic antioxidants 

 Thioredoxin (Trx)  Vitamins C, E, A 
 Peroxiredoxins (Prx)  Thiols 
 Glutaredoxin (Grx)  β-Carotene 
 Glutathione peroxidase (Gpx)  Polyphenols 
 Reduced glutathione (GSH)  NAC 
 Oxidized glutathione (GSSG)  Zinc, selenium 
 Glutathione reductase (GR)  Glutathione 
 Extracellular glutathione 

peroxidase (eGPx) 
 Uric acid 

 Catalase  Lycopene 
 Peroxidase  Allyl sulfi de 
 Superoxide dismutase  Indoles 

 Gallic acid 
 Hesperitin 
 Catechin 
 Chrysin 
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  MAPK and SAPKs : MAPKs operate in a cascade fashion; the family includes 
ERK1/2, JNK, p38, ERK3/4, and BMK1/ERK5 pathways. The JNK and p38 kinase 
pathways are also known as SAPKs [ 54 ]. 

 Several studies demonstrate that NF-kβ, a redox-sensitive TF, can be activated or 
inhibited in response to OS and is regulated via redox-mediated mechanism at multiple 
levels of activation pathways. AP-1 is a transcription factor involved in control of 
cell growth and apoptosis. MAPKs are shown to regulate AP-1, JNK, ERK, and p38 
kinase pathways [ 55 ]. Redox-mediated regulation of AP-1 has been demonstrated 
at level of transcription and translation. Oxidative stress is shown to promote AP-1 
activity by inhibition of histone deacetylases (HDAC), by activating MAPK path-
ways [ 56 ]. NO •  is also shown to modulate AP-1 through S-glutathionylation. Both 
experimental and human studies have provided suffi cient evidence to show that OS 
can activate MAP kinase via Ras pathway. As far as SAPK pathways are concerned, 
they are differentially regulated depending on dose and duration of the stimuli and 
type of oxidative modifi cation, and are regulated at multiple levels [ 57 ]. 

  Phosphatidylinositol - 3 - kinase  ( PI3K / Akt pathway ): Signal transduction via PI3 
kinase plays an important role in the regulation of cell growth, proliferation, sur-
vival, and motility. Depending on the type and duration of ROS,    PI3K signaling is 
activated or inhibited, thus modulating cell survival pathways. Activation of PI3K/
Akt pathways is tightly kept in check by phosphatases. ROS are shown to activate 
or inhibit this pathway mainly through oxidative modifi cation of cysteine- dependent 
phosphatases (CDPs) which results in sustained activation of PI3K/Akt signaling, 
whereas redox modification of kinases results in down-regulating PI3K/Akt 
signaling [ 58 ,  59 ]. Oxidative modifi cations of ubiquitin-proteosome or other prote-
ases can also affect turnover of signaling proteins [ 60 ]. 

  Nrf2 – Keap 1 axis : An Nrf2–Keap 1 axis (NF-E2-related factor 2 protein) has been 
implicated in respiratory disorders and oxidative stress and ROS are shown to activate 
Nrf2 pathway. ROS disrupt Nrf2–Keap 1 association, whereby Keap 1 dissociates 
from Nrf2 and Nrf2 translocates to the nucleus from cytosol and binds antioxidant 
response element (ARE) in the regulatory region of many genes. Reports in Nrf2-
defi cient mice using microarray-based assays have suggested that Nrf2 modulates 
transcription of multiple genes whose protein products function as antioxidants, 
heat shock proteins, glutathione synthesis enzymes, proteasomes, and phase-2 
detoxifi cation enzymes [ 61 ,  62 ]. All these proteins are known to play a very crucial 
role in maintenance of cellular homeostasis against an onslaught of oxidative stress. 
Nrf2 has been implicated in protection against oxidative damage-induced injury, 
hyperoxia, nitrosative stress, ER stress, and exogenous prooxidants. The absence of 
Nrf2 is shown to promote apoptosis and modulate cell survival processes [ 63 ]. 

 Recent reports also suggest a novel role of redox regulation in chromatin remod-
eling which affects death/survival signals at transcriptional levels. Posttranslational 
modifi cations of signaling proteins are also regulated through redox-mediated 
mechanism. There is a lot of cross talk at the level of redox regulation which, 
through modulation of signaling proteins, may affect cell survival mechanisms, 
transcription, and signal transduction (Fig.  2.2 ).
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2.12        Respiratory System 

 Oxygen is essential to life, but at concentrations exceeding physiological limits, it 
may be hazardous to the cells. Lungs are directly exposed to very high oxygen con-
centration and thus are prone to high risk of developing oxidative stress. A variety 
of ROS/RNS are generated by infl ammatory pulmonary cells. The ROS are pro-
duced in bulk from activated macrophages in a process known as “respiratory burst” 
which acts as a fi rst line of defense against environmental triggers/pathogens. Apart 
from their role as a part of host defense in aerobic organisms, they play a different 
role independent of host defense. Neutrophils, eosinophils, alveolar macrophages, 
and epithelial cells and bronchial epithelial cells are the source of ROS/RNS in the 
lungs. There is also an array of antioxidant defenses present in the lung tissue and 
epithelial lining fl uid to counteract onslaught of oxidative stress resulting in cellular 
adaptive and protective responses. ROS/RNS usually exert their action at the cellu-
lar level through signaling mechanisms which involves genetic regulation. Thus an 
oxidant:antioxidant imbalance can lead to a variety of respiratory diseases such as 
chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary 
fi brosis (IPF). 

 ROS cause damage to the lipids, protein, and DNA resulting in lung injury and 
induce a variety of cellular responses, e.g., extracellular matrix remodeling in blood 
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  Fig. 2.2    Role of ROS and RNS in tissue damage. Infl ammation begins with a reaction to an irri-
tant or infection that is characterized by movement of fl uid and white blood cells into extravascular 
tissue. This is followed by cell proliferation and involves tissue repair and regeneration. Generation 
of free radicals, e.g., ROS and RNS, follows leading to lipids, protein, and DNA damage via activa-
tion of transcription factors through signal transduction pathways such as MAPK and PKC leading 
to infl ammation. Prolonged stimuli cause ROS:antioxidant imbalance and affect cell survival in 
terms of apoptosis and cell death       
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vessels, increased mucus secretion, and alveolar repair responses. Atmospheric 
aerosols produced due to air pollution containing hazardous agents, e.g., diesel 
exhaust, soot, polycyclic aromatic compounds, mineral dusts, ozone, nitrogen diox-
ides, ultraviolet and ionizing radiation, and tobacco smoke, are the other factors 
which can damage biological molecules and initiate a cascade of events in the respi-
ratory system. Allergenic proteins upon exposure to O 3  and NO 2  get suffi ciently 
oxygenated and nitrated and thus form toxic products leading to infl ammation and 
cellular damage. 

 The evidence is further strengthened by extensive amount of data available from 
both in vivo and in vitro studies as well as from studies using experimental animal 
models which support the view that ROS and RNS are important in maintaining 
respiratory homeostasis.  

2.13     Pharmacological Inhibitors of ROS and RNS 
in Experimental/Clinical Trials 

 Redox system is involved in the maintenance of cellular homeostasis; alterations in 
redox homeostasis can promote cell death or cell survival depending on the type and 
duration of exposure to stimuli. Functional status of cellular antioxidant and redox- 
sensitive survival signaling pathways can signifi cantly modulate the cell fate. 
Therefore, redox-based therapeutic/preventive strategies should be evolved which 
may maintain redox homeostasis to modulate redox-sensitive factors which govern 
cell fate. 

 Despite the extensively reported evidence, the pharmacological strategies to 
overcome the deleterious effects of the ROS and RNS have not been successful in 
clinical trials. There is a need to prove whether antioxidant therapy can prevent or 
overcome the damaging effects of ROS in life threatening situations. The com-
pounds must be tested for their safety, toxicity, selectivity, bioavailability, and thera-
peutic effi cacy. Combination therapy with these agents can also be tried to achieve 
synergistic clinical effects. A complete understanding of the molecular mechanisms 
of ROS/RNS, as well as epidemiological and randomized clinical trials in humans 
is needed before a drug can be routinely prescribed and used. 

 ROS and RNS induce DNA damage which activates PARP (poly (ADP-ribose) 
polymerase). Development of PARP inhibitors can be explored for therapy of the 
respiratory disorders. Neutralization of peroxynitrites and pharmacological inhibi-
tion of MMPs and PARP are promising new approaches in the experimental therapy 
[ 64 ]. Inhaled apocynin was shown to decrease ROS concentration in exhaled breath 
condensate (EBC) in mild asthmatics. In a completed clinical trial, effect of inhaled 
apocynin on ROS and NOS generation was demonstrated in 13 bronchial asthma 
and COPD patients. In comparison to placebo, H 2 O 2  and NO 2  were shown to reduce 
in EBC of COPD subjects in response to nebulized apocynin, and showed no adverse 
side effects [ 65 ]. In an in vivo placebo-controlled crossover study in different 
age group of healthy subjects, fermented papaya preparation (FPP) supplementation 
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was shown to augment SOD, a potent enzymatic scavenger of O 2  [ 66 ]. In a mice 
model of ventilator-induced lung injury, amifostin preconditioning was reported to 
attenuate oxidative stress in the lung by scavenging ROS and RNS and by augmenting 
enzymatic antioxidants, and was proposed as a promising strategy for critically ill 
patients on extended mechanical ventilation [ 67 ,  68 ]. 

 Erdosteine is a mucolytic agent for chronic pulmonary diseases and possesses 
antioxidant properties. Experimental data demonstrate benefi cial effects of this 
drug, by reducing OFR generation and increasing enzymatic antioxidant cellular 
defenses [ 69 ]. Albumin and furosemide therapy has also been proposed to be ben-
efi cial in hypoproteinemic subjects with acute lung injury (ALI) and acute respira-
tory distress syndrome (ARDS), though data on outcome are lacking [ 70 ]. Therapies 
with GSH and its analogues have been used in clinical trials but did not demonstrate 
a positive outcome, and rather shown to result in generation of undesirable toxic 
products [ 71 ]. 

 Many studies have been undertaken with inhibitors of major ROS generating 
enzymes which show promising results. Use of natural ROS scavengers and treat-
ments with exogenous antioxidants are reported to attenuate deleterious effects of 
ROS.  N -acetylcysteine (NAC), melatonin, resveratrol, vitamin C, mitochondria- 
targeted antioxidants such as mitoQ and mito vitamin E, lipoic acid, selenium (Se), 
and GSNO (a physiologic metabolite of GSH and NO • ) have been developed and 
utilized for the prevention of oxidative stress in several diseases [ 72 – 76 ]. Thioredoxin 
has also been proposed as an attractive therapeutic approach for preventing and/or 
treating cardiopulmonary disorders [ 77 ]. NO •  prodrug JS-K has also been consid-
ered as a therapeutic option [ 78 ]. In cystic fi brosis, MPO has been shown to act as a 
phagocyte oxidase blocking NO •  bioavailability and is considered a potential thera-
peutic target [ 79 ]. 

 In addition to pharmacological interventions, the data from several epidemio-
logic and observational studies suggest a positive association between antioxidant 
vitamin status and indicators of airway obstruction and pulmonary function [ 80 ,  81 ]. 
A meta-analysis of randomized controlled trials examining the role of iNO for 
treatment of ARDS or ALI in children and adults reported inconsistent results and 
prevented assessment of all outcomes [ 82 ]. Based on multiple in vitro and animal 
model studies, no specifi c pharmacologic approach for ARDS has been successfully 
validated in clinical trials [ 83 ]. GSH depletion in lung epithelial lining fl uid has also 
been noted in COPD, IPF, and ARDS [ 84 ]. Two clinical trials with aerosolized 
buffered GSH in cystic fi brosis (CF) patients have shown promising results [ 85 ]. 

 Published evidence from randomized clinical trials do not support the use of 
iNO in infants with hypoxemic respiratory failure despite its role in treatment of 
several diseases in neonates [ 86 ]. In very ill-ventilated preterm infants, iNO as a 
rescue therapy had failed, and increased the risk of severe IVH. Multiple pharma-
cological interventions such as with corticosteroids, prostaglandins, NO • , prostacyclin 
(PGI 2 ), surfactants, cisofylline, NAC, and fi sh oil have not shown any improvement 
in survival in ARDS [ 87 ,  88 ]. Low dose of iNO also did not demonstrate any 
substantial impact on duration of ventilator support or on death rate. iNO therapy 
was shown to improve oxygenation in patients with ALI or ARDS but was not 
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shown to reduce mortality [ 89 ]; rather it was proposed to be harmful [ 90 ]. The same 
effect was reported for iNO use in patients of acute chest syndrome with sickle cell 
disease [ 91 ]. 

 Antioxidants are used as chemopreventive agents in models of cancer, but use of 
beta carotene and vitamin A in lung cancer prevention trials showed no chemopre-
ventive effects, and rather increased the risk of lung cancer incidence and mortality 
in smokers. Targeting redox-sensitive signaling inhibitor molecules at signal trans-
duction, transcription, or functional levels, inhibitors, mimetics, activators, and anti-
sense nucleotides may be of potential therapeutic utility.    In this regard, NF-κB and 
Nrf2 are particularly attractive targets as they are shown to regulate transcriptional 
expression of multiple antioxidant genes. Curcumin as NF-κB inhibitor, isothiocya-
nates as Nrf2 activator, and compounds activating Nrf2 via PI3K and PKC signaling 
have also been used [ 92 ]. 

 NSAIDs have also been tried as cyclooxygenase inhibitors because of their free 
radical scavenging effect against an array of ROS and RNS. By inhibiting MPO, 
they are also shown to inhibit HOCl formation [ 93 ]. Hydroxytyrosol (HT), a pheno-
lic compound present in olive oil, demonstrated strong antioxidant activity in por-
cine pulmonary artery endothelial cells (VECS). The mechanism of action of HT 
was shown via suppression of ROS and catalase expression through phosphoryla-
tion of AMPK pathway and by activating FOXO3a [ 94 ]. 

 Studies using vitamin A and carotenoids have demonstrated benefi cial effects in 
various diseases such as diarrhea, ischemic heart disease, immunological disorders, 
acute respiratory infections, and bronchial asthma. Reports on supplementation of 
exogenous antioxidants in several clinical trials have yielded controversial and 
mixed results due to lack of quality-controlled trials [ 95 ,  96 ]. 

 Selenium supplementation was shown to increase GPx activity in a randomized 
placebo-controlled trial on oral Se supplementation on antioxidant levels in COPD 
patients [ 97 ].    Similarly, in a double-blind placebo-controlled trial using effect of 
1-year supplementation with 200 IU/day vitamin E on the incidence and duration 
of respiratory infections in 617 elderly persons, a nonsignifi cant reduction in the 
duration of cold was observed [ 98 ]. Evidence from randomized and controlled 
studies suggested that the use of specialized nutritional formula containing eicosa-
pentaenoic acid (EPA) + gamma linoleic acid and elevated antioxidants might offer 
physiologic and anti-infl ammatory effects over standard formulas [ 99 ]. 

    A randomized controlled clinical trial was conducted in 137 asthmatic adults to 
investigate the effects of a high-antioxidant diet (with lycopene), compared with 
that of a low-antioxidant diet (without lycopene) supplementation, for 14 weeks 
[ 100 ]. Increased fruit and vegetable intake resulted in improved clinical asthma 
outcomes. Antioxidant manipulation was shown to modify clinical outcomes of 
asthma; antioxidant withdrawal was associated with aggravation of infl ammation, 
lung function, and symptoms of asthma [ 101 ]. 

 eNOS derivatives play an important role in modulating pulmonary vascular tone 
and attenuating pulmonary hypertension. iNOS is also shown to contribute to the 
pathology of ALI and ARDS. Thus,  l -arginine–NO • –cGMP pathway can serve as an 
important pharmacological target in the treatment of pulmonary vascular diseases [ 102 ]. 
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Melatonin, a hormone with antioxidant properties, has been shown to provide 
signifi cant protective effects with a remarkable safety profi le in newborns which 
harbor increased oxidative stress. Also, long-term melatonin therapy in children and 
adults has not shown any signifi cant complications. Similarly, none of the animal 
studies with maternal melatonin therapy or postnatal melatonin therapy have resulted 
in any side effects [ 103 ]. 

 Acetylcysteine and carbocysteine have limited effi cacy, and reported to be safe 
in children with upper and lower respiratory tract infections (ARTIs) without 
chronic bronchopulmonary diseases [ 104 ]. Nebulized or oral thiol derivatives 
administered to patient with cystic fi brosis were demonstrated to be ineffective 
[ 105 ]. In clinical trials on ARDS in ICU patients with impaired oxygenation, enteral 
administration of fi sh oil, antioxidants, and physiological amounts of arginine was 
found to improve oxygenation and clinical outcomes [ 106 ]. 

 The various observations underscore the importance of controlled clinical trials 
for evaluation of benefi ts and risks of effective therapies. Several promising thera-
pies are being currently investigated for the treatment of ARDS, and include use of 
exogenous surfactants, antioxidants, immunomodulating agents, HMG-CoA reduc-
tase inhibitors such as statins and β2-adrenergic receptor agonists and prostacyclin. 
Reports reveal that a single pharmacotherapy may not be effective [ 107 ]. 

 Several explanations have been suggested by investigators for the failure of 
convincing evidence from antioxidant trials [ 108 ,  109 ]: (a) the cells employ homeo-
static mechanisms to restrict the total allowable antioxidant activity; supplementa-
tion of antioxidants exogenously may decrease the rate of synthesis or uptake of 
antioxidants, so that total antioxidant potential remains unaltered; (b) the amount of 
antioxidant is insuffi cient and is not targeted to the site of excessive ROS produc-
tion. In addition, it is plausible that complete removal of oxidants may lead to 
altered cellular signaling mechanisms, hence worse outcomes. Further, the potential 
of exogenous antioxidants in terms of relative specifi city and effi ciency to reduce 
each reactive species could be different. It was further emphasized that injury causing 
oxidants must be identifi ed.  

2.14     Methods of Detection of Markers 

 The presence of oxidative stress in the biological systems can be determined by 
markers/metabolites of oxidative stress, antioxidants (both enzymatic and nonen-
zymatic) in blood, urine, and tissue samples. In practice, the analytical measure-
ment of oxidative stress markers is diffi cult due to the short half-life (in seconds) 
of such compounds. This can be determined biochemically. A variety of methods 
have been employed for the determination of free radicals and oxidative stress 
metabolites [ 110 ]. 

 Electron spin resonance (ESR) spectroscopy, or electron paramagnetic resonance 
(EPR) spectroscopy, is the only analytical approach that enables direct detection of 
free radicals, such as NO • , superoxide, and hydroxyl radical. It is also able to detect 
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free radical-derived species, e.g., ascorbyl radical, tocopheroxyl radical, and 
 heme- nitrosyl complexes with limited sensitivity [ 111 ]. 

 Lipid peroxides, i.e., malondialdehyde (MDA), or other lipid adducts are deter-
mined as a measure of the cellular oxidant status; however, the method is nonspe-
cifi c [ 112 ]. F2-isoprostanes, particularly, 8-iso-PGF2alpha, is shown to be a specifi c 
and reliable indicator of in vivo oxidative stress. This marker is also not affected by 
diet, and can be easily detected in the urine [ 113 ]. Recently, a d-ROM test has been 
developed to determine reactive oxygen metabolites (ROM) in the blood that deter-
mines mainly stable lipid hydroperoxides in the serum. Redox state of the GSH/
GSSG pool in tissue and/or plasma as an indicator of oxidative stress in vivo can 
also be determined spectrophotometrically [ 114 ]. 

 NO •  is extremely diffi cult to measure due to the short half-life and a very low 
concentration in biological fl uids, and can be directly analyzed by NO analyzer. In 
routine practice, a simple spectrophotometric method is used to determine stable 
metabolites of NO • , e.g., nitrite (NO 2  − ) and nitrate (NO 3  − ) as indirect measures of 
NO production in vivo. These metabolites can also be determined by using mass 
spectrometry, gas and liquid chromatography, and electrophoretic methods. 
Asymmetric dimethylarginine (ADMA), an endogenous NOS inhibitor, can also 
be determined by ELISA, HPLC, liquid chromatography–mass spectrometry 
(LC–MS), and GC–MS [ 115 – 117 ]. 

 The antioxidants both enzymatic and nonenzymatic can easily be determined 
using spectrophotometric assays, commercially available enzymatic kits, and 
HPLC-based techniques. The total antioxidant capacity (TAC) in the plasma can 
also be determined by FRAP assay [ 118 – 120 ]. 

 EBC is a novel noninvasive source of aerosol particles of exhaled breath which 
refl ects consumption of airway lining fl uid [ 121 ].    EBC has been used for determina-
tion of a large number of biomarkers or footprints of the presence of ROS/RNS 
activity in the lungs such as lipid peroxides, isoprostanes (8-iso PGF2α), H 2 O 2 , NO •  
and NO •  metabolites, nitrated proteins such as nitrotyrosine and nitrosothiols, and 
DNA damage biomarker, e.g., 8-OH deoxyguanosine, cytokines, peptides, and cys-
teinyl leukotrienes. EBC can be used for an early assessment of airway infl amma-
tion and oxidative stress in respiratory disorders, thus is useful for making differential 
diagnosis of the airway disease and for monitoring the course of therapy. Increased 
levels of these biomarkers have been observed in smokers; patients of bronchitis, 
asthma, COPD, cystic fi brosis, and bronchiectasis; and in the presence of alteration 
of bronchomotor tone and pulmonary surfactant activity [ 87 ]. 

 Future research should be directed in identifying potential biomarkers or genetic 
markers to facilitate diagnosis and to initiate use of novel cell-based therapies, e.g., 
mesenchymal stem cells which may reduce lung injury and facilitate repair.     
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3.1           Introduction 

 Since the 1960s, a simple breath test has been used as a tool to estimate ethanol 
concentrations in blood and the capacity to drive safely. Over the past 20 years, the 
further developments and miniaturization of gas chromatography with mass spec-
trometry analytical technologies have expanded breath analysis towards the devel-
opment of fi ngerprints for specifi c diseases or respiratory pathogens. During 
exhalation, a chemically complex mixture is released that comprises volatile organic 
compounds (VOCs), condensed water vapor, and micro-droplets aerosolized from 
the fl uid that covers the alveoli, bronchi, and mouth (Fig.  3.1a ). In the VOCs, there 
are over 3,000 compounds inhaled or absorbed from the environment or produced 
during cellular metabolic processes [ 1 ]. When the exhaled breath is chilled, the 
exhaled breath condensate (EBC) can be collected, comprising variable-sized par-
ticles or droplets that are aerosolized from the airway lining fl uid (ALF), distilled 
water that condenses from gas phase, and water-soluble volatiles that are exhaled 
and absorbed into the condensing breath (Fig.  3.1b ) [ 2 – 5 ]. Since both the VOCs 
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  Fig. 3.1    Nonvolatile and volatile components in exhaled breath. In the exhaled breath, the gases 
nitric oxide (NO) and carbon monoxide (CO) as well as volatile organic compounds (VOCs) which 
are related to various metabolic processes within the body are readily detectable ( a ). When the 
stream of exhaled breath is chilled, the exhaled breath condensate (EBC) contains nonvolatile 
components mainly from the airway lining fl uid. Water vapor is rapidly diffused from the lining 
fl uid on the surface of the airway (bronchi) and airspace (alveolar) into the expiratory fl ow. The 
turbulence at the surface of the lining fl uids generated during exhalation coupled with the raining 
out of the water vapor results in variable-sized droplets that are aerosolized from the lining fl uid ( b ). 
These droplets refl ect the alveolar and airway lining fl uids which can be sampled in the condensate 
when the exhaled breath is chilled ( b )       
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and EBC can be safely and easily collected from spontaneously breathing subjects 
or mechanically ventilated patients, it provides an opportunity for noninvasive 
assessment of different biomarkers. Once the signature profi les are identifi ed and 
their predictive values validated, the profi les can be easily and noninvasively used to 
characterize phenotypes and improve accurate diagnoses and management decisions, 
monitor disease states, and determine therapeutic effectiveness.

3.2        Exhaled Volatile Biomarkers 

 Although the composition of the rich mixture depends on the health status of the 
individual, breath contains numerous gases and VOCs in trace amounts in the parts 
per billion to trillion range. The gases of current interest include nitric oxide (NO) 
and carbon monoxide (CO). The VOCs include hydrocarbons, alcohols, ketones, 
aldehydes, esters, and or heterocycles. Although relevant volatile biomarkers need 
to be identifi ed before their possible clinical application can be determined, it is 
important to determine if the source of the compound of interest is endogenous and 
from metabolic processes. Alternatively, the potential biomarker may be due to an 
exogenous source such as the ambient air, a chemical modifi cation of the immediate 
environment, or in response to a prior exposure. Exogenous VOCs penetrating the 
body as a result of environmental exposure can also be used to quantify the body 
burden. Although the lung constitutes its own microenvironment, the comparisons 
of blood, room air, and breath levels in parallel will help determine if the source of 
the volatile compound of interest is endogenous or exogenous. For collecting the 
breath, the Tedlar bags have been suggested to be superior over bags made with 
other polymers in terms of background emission, species stability, and reusability 
[ 6 ]. The important factors affecting sample integrity appear to be the degree to 
which the bag was fi lled and the molecular weight of the volatile where molecular 
masses greater than 90 exhibited losses of 20–40 %. 

3.2.1     Exhaled Nitric Oxide 

 Nitric oxide (NO) is produced in our body from  l -arginine by nitric oxide synthase 
to form  l -citrulline. NO is an important cellular signalling molecule, which func-
tions in modulating vascular tone, insulin secretion, airway tone, angiogenesis, and 
peristalsis [ 7 – 10 ]. Fractional exhaled nitric oxide (FeNO) is easily detectable by a 
chemiluminescence-based analysis in which the NO in a single breath exhalation 
reacts with ozone to form nitrogen dioxide in an excited state. When this excited 
state of nitric dioxide returns to its ground state, it emits light in quantities that are 
proportional to the amount of exhaled NO.    There are three known isoforms of nitric 
oxide synthase, but the inducible isoform is the major contributor of increased 
FeNO in the exhaled breath because expression of inducible nitric oxide synthase, 
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upregulated by a wide range of infl ammatory cytokines, is thought to be a surrogate 
marker of ongoing eosinophilic airway infl ammation. However, factors such as age, 
atopy, medication use, therapy adherence, and airway infections also contribute to 
FeNO generation. 

 Elevation of FeNO has been used in the diagnosis of asthma in both adults and 
children. Despite initial enthusiasm, FeNO as a noninvasive marker of airway 
infl ammation and the clinical usefulness of FeNO as a measure of asthma control 
are still debated. Tailoring asthma treatment based on FeNO measurements did not 
decrease asthma exacerbations or lead to better asthma control [ 11 ]. However, the 
heterogeneity of poorly controlled asthma between individuals limits the utility of 
FeNO alone as a biomarker of infl ammation, but it may still be a valuable marker in 
asthma management when paired with multiple biomarkers for diagnosis and man-
agement. When asthma management was also guided by FeNO measurement, there 
was no improvement in the symptom-free days, but there were fewer asthma exac-
erbations associated with an increased leukotriene receptor antagonist use and an 
augmentation of the inhaled corticosteroid doses [ 12 ].  

3.2.2     Exhaled Carbon Monoxide 

 Carbon monoxide (CO) is a low molecular weight gas that is a ubiquitous environ-
mental product of organic combustion but is also produced endogenously during 
heme degradation catalyzed by heme oxygenase. Under stressful conditions, the 
intracellular CO levels increase in response to upregulation of heme oxygenase 
and have been proposed to be a key mediator of oxidative damage resulting from 
peroxynitrite (ONOO − ) production [ 13 ]. CO also has a very important biological 
activity as a signalling molecule with marked protective actions namely against 
apoptosis and endothelial oxidative damage [ 14 ]. In the absence of high background 
exposure, elevated CO levels in the breath can be detected with an electrochemical 
gas sensor. Similar to exhaled NO, exhaled CO has been evaluated as a candidate 
breath biomarker of pathophysiological states, including smoking status, and 
infl ammatory diseases of the lung and other organs. Exhaled CO values have been 
evaluated as potential indicators of infl ammation in asthma, stable chronic obstruc-
tive pulmonary disease (COPD) and exacerbations, cystic fi brosis, lung cancer, or 
during surgery or critical care. However, the utility of exhaled CO as a marker of 
infl ammation and its potential value for diagnostic assessment remain unclear [ 15 ].  

3.2.3     Exhaled Volatile Organic Compounds 

 Various metabolic processes within the body produce VOCs, which are released into 
the blood and will be passed on to the airway once the blood reaches the lungs. VOCs 
can also be taken up as pollutants from the environment by inhalation or ingestion. 
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VOCs include hydrocarbons, alcohols, ketones, aldehydes, and esters. The occurrence 
of infl ammation and/or oxidative stress can result in unique VOC patterns, which are 
different from the healthy state. In a systematic literature search, patterns of exhaled 
VOCs have been applied to a broad range of patients, including subjects with severe 
disease and children [ 16 ]. This analysis concluded that profi les of VOCs are poten-
tially able to accurately diagnose various pulmonary diseases but further standardiza-
tion and validation of the diverse techniques need to be mastered before VOCs can 
be applied into clinical practice. Another potential use is based on the ingestion 
of isotopically labeled precursors and following exhalation of isotopically labeled 
metabolites. 

 In metabolomic analysis of breath of asthmatic and healthy children, a panel 
of eight candidate markers (1-(methylsulfanyl)propane, ethylbenzene, 1,4-dichloro-
benzene, 4-isopropenyl-1-methylcyclohexene, 2-octenal, octadecyne, 1-isopropyl-
3-methylbenzene, and 1,7-dimethylnaphthalene) were found to differentiate [ 17 ].    In 
other studies, asthma patients were differentiated from healthy controls based on 
their “breath-prints” but these studies were less successful in distinguishing mild 
asthmatics from severe asthmatics [ 18 ]. A set of 15 VOCs were also used to dis-
criminate asthmatic patients from controls, classify patients according to infl amma-
tory sputum phenotype, and asthma control [ 19 ]. Although FeNO and lung function 
were not predictive of asthma exacerbations, a panel of seven VOCs provided cor-
rect classifi cation, sensitivity, and specifi city [ 20 ]. In a study of recurrent wheezing 
in preschool children, analysis of VOCs by gas chromatography–time-of-fl ight 
mass spectrometry detected 913 different VOCs [ 21 ]. Using a panel of 28 VOCs, 
73 % of the preschool children with recurrent wheezing were correctly classifi ed. 
   For COPD patients, their profi le of exhaled VOCs as detected by an “electronic 
nose” (eNose; polymer-based gas sensor arrays) could be distinguished from that of 
asthmatic patients and correlated with the presence of eosinophils and neutrophils 
as well as myeloperoxidase in induced sputum [ 22 ]. 

 More recently, VOC biomarkers and biomarker profi les associated with infec-
tions have evolved [ 23 ]. For  Mycobacterium tuberculosis , four VOCs have been 
used to detect infection: methyl phenyl-acetate, methyl nicotinate, methyl p-anisate, 
and o-phenylanisole [ 24 ]. In other studies, a fi eld-deployable, pulsed discharge 
helium ionization detector was used to detect VOCs due to mycobacterial volatiles 
in breath samples from tuberculosis patients [ 25 ]. In studies with infected mice, 
secondary electrospray ionization-mass spectrometry was used to characterize the 
breath profi le of  Pseudomonas aeruginosa  and  Staphylococcus aureus  lung infec-
tions [ 26 ]. In patients with prolonged chemotherapy-induced neutropenia, eNose 
technology was used to detect a VOC profi le characteristic of pulmonary invasive 
aspergillosis [ 27 ]. 

 However, tongue biofi lms also contain anaerobic bacteria that can contribute to the 
VOC profi le breath requiring further research to identify the major source of different 
VOCs associated with systemic disease or metabolic disorders in the body [ 28 ]. 

 For lung cancer, analysis of VOCs by gas chromatography/mass spectrometry 
(GC/MS) identifi ed some alcohols, aldehydes, ketones, and hydrocarbons as potential 
biomarkers that differentiate between normal subjects and cancer patients [ 29 – 31 ]. 
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Using solid-phase microextraction and GC/MS analysis of breath, 42 VOCs were 
recognized as potential lung cancer biomarkers to be used in the development of a 
diagnostic panel, particular when incorporated with patient data and smoking histo-
ries [ 32 ,  33 ]. When exhaled breath was collected over packed polymer Tenax tubes 
and analyzed by GC/MS, 18 VOCs were signifi cantly altered in the breath profi le of 
lung cancer subjects when compared to controls [ 34 ].    For patients with cystic fi brosis 
and primary ciliary dyskinesia, VOC analysis by eNose showed that there were sig-
nifi cantly different breath profi les when compared to healthy controls or each other 
[ 35 ]. The VOC profi les were also different when patients with and without exacerba-
tions were compared. Metabolomic analysis of VOCs in exhaled breath also discrimi-
nated between cystic fi brosis patients and controls but also between those patients 
with or without  Pseudomonas  colonization [ 36 ]. Patients living with transplanted 
lungs can also be discriminated from healthy subjects by exhaled VOC profi le using 
the eNose [ 37 ]. However, plasma level of tacrolimus showed signifi cant relationship 
with the VOC profi le of lung-transplanted patients further highlighting that medica-
tions may have profound infl uence on the VOC profi le. 

 Analysis of breath VOC profi les not associated with pulmonary manifestations 
has also been pursued. In addition to alcohol use, correlations between analyses of 
urine, serum, and breath profi les demonstrated that breath VOCs were also useful 
for identifi cation of the use of other substances of abuse including methadone, 
amphetamine, methamphetamine, 6-acetylmorphine, morphine, benzoylecgonine, 
cocaine, diazepam, oxazepam, alprazolam, buprenorphine, and tetrahydrocannabinol 
[ 38 ]. Breath VOCs were evaluated in patients with end-stage renal disease for moni-
toring and therapy initiation under hemodialysis and increases were observed in 
exhaled concentrations of isoprene similar to that observed in serum at the end of 
hemodialysis [ 39 ]. In contrast, exhaled pentane increased at the onset of hemodialy-
sis but returned to baseline levels afterwards. Exhaled acetone concentrations were 
signifi cantly lower in diabetic patients when compared to non-diabetics. In patients 
after kidney transplantation, proton-transfer-reaction triple-quadrupole tandem 
mass spectrometry suggested that a C7-ketone and a branched C7-aldehyde were 
good biomarkers to monitor these patients [ 40 ]. Breath VOC analysis by proton-
transfer- reaction time-of-fl ight mass spectrometry was also able to distinguish cir-
rhotic patients from healthy subjects and to discriminate those with well-compensated 
liver disease from those at more advanced severity stage [ 41 ].   

3.3     Exhaled Breath Condensate 

 The EBC is collected from exhaled breath, usually through a cooling or freezing 
process [ 2 ,  4 ,  5 ,  42 ] and has been increasingly studied as a noninvasive research 
method for sampling the alveolar and airway space and recognized as another 
 promising source of biomarkers [ 43 ,  44 ]. In order to generate a reproducible volume 
of EBC and sampling of the ALF, the recommended method is tidal breathing 
where the volume of air that is inhaled or exhaled is included in a single breath [ 45 ]. 
In EBC sample collection, pre-condensation conditions, such as ambient air and 
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environment temperature, should be recorded; the condenser’s design, material, 
 surface area, and cooling temperature should be well adjusted;    and the subject’s 
conditions, such as medications, tobacco smoking, food and drinks, and exercise, 
can have signifi cant effects on EBC collection, and should be recoded and adjusted. 

 One principal contributor to EBC is the variable-sized particles or droplets that 
are aerosolized from the ALF which presumably refl ect the ALF itself [ 5 ,  44 ,  46 ]. 
Droplet formation within the lungs during exhalation is largely in the airways where 
turbulence is encountered. The second principal contributor to EBC is distilled 
water that condenses from the gas phase but substantially dilutes the aerosolized ALF. 
The third component comprises water-soluble volatiles that are exhaled and 
absorbed into the condensing breath. These water-soluble volatile constituents are 
found in substantially higher concentrations and are therefore more readily assayed 
than the nonvolatile compounds. In the EBC, the condensing vapor phase water 
dilutes the components of the ALF by 20-fold to 30,000-fold. It needs to be pointed 
out that the dilution of these nonvolatile biomarkers by water vapor can vary dra-
matically and, to date, there is no gold standard for assessing the dilution of ALF 
biomarkers in the EBC [ 2 ,  44 ,  47 ,  48 ]. However, dilution factors that have been used 
include urea, cations, total protein concentration, or the conductivity of lyophilized 
EBC [ 42 ,  44 ,  49 ]. In addition to dilution, the ALF profi le can be further altered by 
gross or microscopic salivary contamination. However, the ratios between various 
nonvolatile compounds in EBC are substantially different than the ratios in saliva 
suggesting that the ALF is a dominant source of EBC constituents. EBC can also be 
collected during mechanical ventilation but the condensate volumes are dependent 
on the ventilation volumes and the humidifi cation of the inspiratory gas [ 50 – 52 ]. 
Although the concentrations of the different analytes will improve by decreasing the 
humidity of the ventilator gases, this may not be well tolerated by the patient. 
Substances measured in EBC include mediators of oxidative stress and infl amma-
tion such as arachidonic acid derivatives, reactive oxygen/nitrogen species, reduced 
and oxidized glutathione (GSH)   , adenosine, ammonia, hydrogen peroxide (H 2 O 2 ), 
isoprostanes, leukotrienes, prostanoids, peptides, and infl ammatory cytokines. 
Although the EBC has great potential as a source of biomarkers in many lung 
 diseases, the low concentrations of compounds within the EBC present challenges 
in the standardization of sample collection and analysis. Validation is needed to 
 confi rm that the EBC analyte truly represents that present in the ALF, is reproduc-
ible, has normal values, and provides information for the underlying infl ammatory 
process and the response to treatment. 

3.3.1     EBC pH 

 EBC pH was considered as a promising biomarker of EBC because it is held in a 
narrow range, is controlled by lower airway source fl uid [ 53 ], and its acidifi cation 
has been reported in asthma, COPD, and cystic fi brosis [ 54 – 60 ]. The airway acidi-
fi cation may be an adjunct marker of airway infl ammation and can result 
from gastro- esophageal refl ux, inhaling acidic aerosols or acidifying gases, and 
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from direct acid formation due to disorders at the airway epithelial surface [ 61 ,  62 ]. 
In cystic fi brosis, the lack of functional cystic fi brosis transmembrane conductance 
regulator (CFTR) causes airway epithelial Toll-like receptor 5 and subsequent 
NF-ΚB signalling which leads to decreased transport of the antioxidant GSH and 
HCO 3  −  which increases the oxidation and acidity of the airway surface liquid [ 60 ]. 
Since many enzymes are pH sensitive, altered airway pH can cause a broad range of 
effects such as increasing the activity of inducible nitric synthase enzyme which 
induces the production of NO from  l -arginine [ 62 ]. 

 The measurement of EBC pH or airway acidifi cation is very challenging and com-
plicated by poor reproducibility [ 57 ,  63 ]. The pH of raw EBC samples is unstable and 
is profoundly affected by carbon dioxide, the major volatile component of EBC. One 
strategy is to deaerate and remove carbon dioxide from the EBC with an inert (carbon 
dioxide-free) gas such as argon or nitrogen. However, even after 20 min of deaeration, 
EBC samples may still contain an unpredictable and unstable amount of carbon diox-
ide, which may bias pH readings. To improve the reproducibility of pH readings and 
standardize the carbon dioxide effect on EBC pH, a  carbon dioxide gas standardiza-
tion method was developed [ 64 ,  65 ]. In this method, carbon dioxide is bubbled into an 
EBC sample in short intervals of 1 s each which causes a rapid but stepwise increase 
of the carbon dioxide partial pressure in the EBC sample. After each bubbling period, 
EBC pH and carbon dioxide partial pressure are measured simultaneously using a 
blood gas analyzer and a correlation plot between the EBC pH and carbon dioxide 
partial pressure generated. This correlation allows the calculation of pH at a carbon 
dioxide partial pressure of 5.33 kPa, the physiological partial pressure of carbon 
dioxide in the alveoli. Although more reliable and convenient methods need to be 
developed for EBC pH measurement, this method currently provides the most 
reproducible EBC pH values.  

3.3.2     Arachidonic Acid Derivatives in the EBC 

 Arachidonic acid is a polyunsaturated omega-6 fatty acid present in the phospholip-
ids of cell membranes that is metabolized through multiple pathways by multiple 
cell types. In addition to their sensitivity to arachidonic acid metabolites, airway 
epithelial cells have abundant arachidonic acid and novel cyclooxygenases (COX) 
and lipoxygenases [ 66 ]. Arachidonate metabolites can also be generated and have 
potent biologic effects on other airway cells including leukocytes, smooth muscle, 
nerves, mucus glands, and platelets. Because of the transcellular feature of arachi-
donic acid metabolism and function, ALF is the critical medium for these actions 
because it contains signifi cant amounts of arachidonic acid and its derivatives. 
Methods used to detect arachidonic acid derivatives in the EBC include GC/MS, 
liquid chromatography/mass spectrometry (LC/MS), radioimmunoassay (RIA), and 
enzyme immunoassay (ELISA). 

 Arachidonic acid can be released by the activation of enzyme phospholipase A2 
(PLA2) and further metabolized by COX, 5-lipoxygenases (5-LO), and cytochrome 
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P450 to form other biologically active compounds prostaglandins, thromboxanes, 
and leukotrienes [ 67 – 70 ]. Although leukotrienes are mainly synthesized in 
 leukocytes, non-leukocytes can take up leukocyte-derived leukotrienes through 
transcellular biosynthesis [ 71 ]. As immune modulating lipid mediators, leukotri-
enes can promote constriction of airway smooth muscle, increase microvascular 
permeability, stimulate mucus secretion, decrease mucociliary clearance, and 
increase recruitment of T cells, eosinophils, and mast cells in the airway [ 72 ,  73 ]. 
8-Isoprostane, a prostaglandin-F2-like compound, belongs to the F2 isoprostane 
class and is produced in vivo by the free radical-catalyzed peroxidation of arachi-
donic acid [ 74 ]. Elevated EBC concentrations of arachidonate metabolites such as 
8-isoprostane, leukotrienes, and prostanoids have been correlated with parameters 
of oxidative stress, respiratory infections, and infl ammation [ 75 – 77 ]. Increased con-
centrations of 8-isoprostane in the EBC have been demonstrated in multiple lung 
diseases such as asthma [ 78 ,  79 ], COPD [ 80 ,  81 ], interstitial lung disease [ 82 ], and 
cystic fi brosis [ 83 ,  84 ]. In children with recurrent wheezing episodes, LTB4, LTE4, 
and nitrites were higher in the EBC when compared to healthy controls [ 85 ]. 
Elevated leukotrienes and prostanoids in the EBC have also been correlated with 
parameters of infl ammation in the lungs [ 75 – 77 ]. Changes in the EBC may refl ect 
sustained changes or acute changes. In response to a pollen nasal allergen challenge 
with allergic rhinitis, the concentrations of 8-isoprostane and cysteinyl-leukotrienes 
increased within 2 h of the challenge and remained elevated at 24 h [ 86 ].  

3.3.3     Oxygen and Nitrogen Reactive Species and Redox- 
Relevant Molecules in EBC 

 Investigations of reactive oxygen species (ROS) and reactive nitrogen species 
(RNS) are among the many interests of EBC biomarkers for several lung diseases. 
Formation of multiple RNS starts with NO and NO metabolites have been measured 
extensively in the EBC from subjects with a variety of pulmonary diseases includ-
ing asthma, COPD, and cystic fi brosis [ 4 ,  87 – 89 ]. NO can also rapidly react with 
superoxide anion (O 2  •− ) to form highly reactive ONOO −  which can cause the nitro-
sation of either tyrosine or tyrosine residues in proteins to form 3-nitrotyrosine. 
Nitrotyrosine can then be measured in the EBC by enzyme immune assays or HPLC 
and mass spectrometry [ 90 – 92 ]. NO can also react with thiols, such as cysteine 
(Cys), GSH, or protein thiol residues, to produce S-nitrosothiols which can be mea-
sured by a colorimetric assay [ 93 ]. The end-products of NO metabolism are nitrite 
(NO 2  − ) and nitrate (NO 3  − ) which can be reliably measured in the EBC by colorimetric, 
fl uorometric, and chemiluminescent assays as well as ion, gas, or liquid chromatog-
raphy [ 94 ,  95 ]. Although the measurement of NO-related redox products is rela-
tively straightforward, the regulation of NO metabolites in different airway diseases 
is not yet fully understood and is not always consistent. For example, elevated 
nitrate/nitrite contents are found in asthmatic patients, which is postulated to be 
associated with increased NO metabolism due to increased expression of inducible 
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NO synthase [ 96 ]. In contrast, nitrate/nitrite levels are not elevated in the EBC from 
COPD patients despite infl ammation [ 97 ,  98 ]. However, increased 3-nitrotyrosine 
levels were observed in the EBC of both asthmatic and COPD patients. Since 
3-nitrotyrosine is produced from ONOO − , this suggests increased RNS stress in 
both of these airway infl ammation diseases. When compared to controls, the EBC 
from patients with idiopathic diffuse parenchymal lung disease had increased 
3-nitrotyrosine as well as 8-isoprostane [ 99 ]. 

 The ROS H 2 O 2  can be released from both infl ammatory and structural cells 
including neutrophils, eosinophils, macrophages, and epithelial cells and is measur-
able in the EBC [ 4 ,  88 ]. However, H 2 O 2  is unstable in the EBC and samples should 
be freshly collected or rapidly frozen after collection. Common methods used to 
measure H 2 O 2  include spectrophotometric, fl uorometric, or chemiluminescent 
assays and a concentration of ~200 nM is associated with different pulmonary 
pathologies [ 100 ,  101 ]. H 2 O 2  and other ROS can result in the metabolism of poly-
unsaturated lipids to form the stable by-product malondialdehyde [ 102 ,  103 ] which 
has been measured by HPLC methods to be in a 10 nM concentration range in the 
EBC [ 104 ,  105 ]. Increasing reactive oxygen and nitrogen species or their deriva-
tives in the EBC have all been used as indicators of oxidative stress or infl ammation 
in the respiratory tract. 

 In addition to ROS/RNS, the ALF also contains signifi cant antioxidant com-
pounds such as Cys and GSH. Although the GSH concentration in the bronchoal-
veolar lining fl uid is in the micromolar range, the GSH concentration in the EBC is 
in the nanomolar range suggesting an ~1,000 dilution of GSH in the EBC pool when 
compared to the bronchoalveolar lavage fl uid [ 106 – 108 ]. GSH is unique among 
thiol-based antioxidants in that it is only a tripeptide composed of glutamate, Cys, 
and glycine. Furthermore, GSH has the ability to scavenge both reactive oxygen and 
nitrogen species. Upon oxidation of two GSH moieties, two hydrogens are donated 
to form the GSH disulfi de (GSSG). GSH reductase then reduces the GSSG back to 
GSH using NADPH as the electron donor. When compared to healthy children, 
GSH was decreased while the lipid peroxidation product malondialdehyde level 
was higher in the EBC of children with asthma, indicating a pulmonary imbalance 
in the level of oxidants and antioxidants in children with asthma [ 109 ]. When sub-
jects with or without an alcohol use disorder were compared, both the lavage fl uid 
and the EBC demonstrated an ~80 % decrease in GSH, increased GSSG, and oxida-
tion of the thiol/disulfi de redox potential by ~40 mV [ 106 ,  107 ]. This suggests that 
changes in the EBC can be representative of physiological changes in the ALF.  

3.3.4     Other EBC Analytes 

 EBC proteins are another group of biomarkers monitored in airway diseases and 
systematic cytokine profi ling may be useful in diagnosis and the decision tree for 
determination of therapeutic treatments. In the EBC, the cytokines IL-1β, IL-2, 
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IL-4, IL-5, IL-6, IL-8, IL-10, IL-17, IFN-γ, TGF-β, and TNF-α have been reported 
to be in the ~50 pg/mL range [ 110 – 112 ]. Assuming an estimated ALF cytokine 
level in the order of 50 ng/mL, the dilution of different cytokines in the EBC 10 −3  is 
generally accepted [ 47 ,  113 ].    However, cytokine detection in EBC is often at the 
lower limits of detection for ELISAs and these values are further complicated by the 
absence of a gold standard for dilution of the EBC to the bronchoalveolar lavage. 

 Cytokines can also be grouped based on the type of T-lymphocytes with which 
they are associated. For cytokine analysis, a shift in the ratio of Th1/Th2 
T-lymphocytes and cytokines is usually accompanied by varied immune response 
in pathological pulmonary conditions. Examples of such approach have been 
reported in determining IFN-γ(Th1)/IL-4(Th2) ratio [ 111 ,  114 ]. Systematic 
approaches, such as proteomic analysis of EBC, have been previously used and 
may provide a more detailed overall view about cytokine profi le in the EBC. 
However, EBC is challenging for proteomic studies because of low protein concen-
trations. Proteome analysis of low-abundance proteins depends on the complexity 
of the protein mixture, the power of the resolution, and the sensitivity of the separa-
tion and identifi cation methods. Although proteomic analysis has been used with 
EBC, the majority of the proteins detected were keratins, a family of fi brous struc-
tural proteins present in the outer layer of human skin [ 115 – 118 ]. To detect low-
abundance EBC cytokines present in the pg/mL range, advanced techniques such 
as immunoaffi nity depletion and selective target enrichment may be required for 
proteomic analysis [ 119 ,  120 ]. In proteomic analysis of EBC from non-smokers 
plus healthy smokers, COPD without emphysema, and subjects with pulmonary 
emphysema associated with α(1)-antitrypsin defi ciency, profi le analysis by LC–
MS/MS identifi ed several potential biomarkers that distinguished those with lung 
disease [ 121 ]. In this analysis, distinguishing features included several infl amma-
tory cytokines (IL-1α, IL-1β, IL-2, IL-12, IL-15, IFN-α and -γ, and TNF-α); Type 
I and II cytokeratins; two  isoforms of surfactant protein A; Calgranulin A and B, 
and α1-antitrypsin. 

 Another common biomarker monitored in the EBC by mass spectrometry is 
 adenosine and adenosine monophosphate (AMP). In a study of cystic fi brosis and 
children with asthma compared to controls, the EBC AMP-to-urea ratio was ele-
vated in cystic fi brosis patients and the adenosine-to-urea ratio was elevated in 
asthma [ 122 ].    Furthermore, changes in the EBC purine-to-urea ratios correlated 
with changes in percent-predicted forced expiratory volume in 1 s after cystic fi bro-
sis exacerbation treatments. In additional studies of patients with cystic fi brosis, the 
ratio of adenosine to urea in the EBC correlated with sputum neutrophil elastase and 
correlated with the percentage predicted of forced expiratory volume in 1 s in lon-
gitudinal, multivariate models [ 123 ]. In COPD patients, a similar increase in the 
EBC adenosine- to-urea ratio was observed with the highest ratios in the most 
severely affected cohort [ 124 ]. In a cross-sectional study of asthmatic children with 
non- severe asthma and severe asthma, metabolomic profi ling of the EBC revealed 
that the compounds that discriminated between group included adenosine as well as 
retinoic acid and vitamin D [ 125 ].   
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3.4     Conclusion 

 Because it contains many potential biomarkers and the collection technique is 
 noninvasive and well accepted by subjects, analyses of exhaled breath or its conden-
sate represent exciting new approaches for investigating lung diseases as well as 
other pathologies. The potential to collect the sample remotely also provides new 
opportunities to monitor exposure, the development of pathologies, or therapeutic 
strategies. However, the key limitation for both the breath and its corresponding 
condensate as important diagnostic tools is the low concentration range. The mea-
surement of multiple substances concurrently and determination of their ratios 
would avoid potential artifacts due to correction for dilution. Contamination from 
the ambient air at the site of collection or that previously inhaled from the surround-
ing microenvironment is also an ongoing confounding infl uence that must be taken 
into account. In addition, the kinetics of uptake and elimination of environmental 
factors may be different for each compound and further complicate data interpreta-
tion [ 126 ]. Thus, the steps of identifying the biomarker and validating its applica-
tion, choosing the appropriate sensor technology, and determining the appropriate 
normalization factor must be established for each potential biomarker. Since analytes 
in the breath and condensate may change quickly, developing the most appropriate 
techniques for collecting the breath or condensate sample is essential. Ideally, the 
analytical methods should be robust enough to detect small concentration changes 
in a specifi c breath or condensate analyte and provide consistent results over time. 
In addition to the methodological issues, the establishment of different biomarkers 
as the gold standard for the different pathologies is also made diffi cult by the signifi -
cant overlap between the classifi cations of different lung pathologies and the inability 
to distinguish between them. 

 Currently, efforts to address methodological issues include standardization of 
sample collection and validation of analytical techniques. To establish the reproduc-
ibility of analyte measurements in the breath or condensate, more sensitive assays 
and new molecular detection techniques are necessary. The eNose is gaining in popu-
larity for the analysis of VOCs because it provides a rapid response and is  relatively 
inexpensive. However, additional studies are needed to validate clinical- relevant 
VOC patterns and profi les, longitudinally assess changes in these profi les, and assess 
the corresponding infl uence of different treatment strategies on the  profi le. The role 
of technologies such as selected metabolomics and proteomics is emerging and the 
development of breath or condensate profi les for a particular pathology may prove to 
be useful in screening and diagnosing lung diseases. The most useful breath and 
condensate profi les will evolve into robust predictors when system biology 
approaches are used and analyzed in light of the patient data. Systematic analysis of 
breath and condensate profi les should provide multicomponent markers with high 
discriminatory power and the concurrent measure of multiple analytes should limit 
detection bias and provide patterns of biomarkers that allow investigators to dis-
criminate between different phenotypes within a particular pathology [ 125 ]. The 
development of discriminatory metabolomic and proteomic profi les should also 
enhance our mechanistic understanding of the disease mechanisms.     
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4.1            Introduction 

 Since ancient times, it is known that the odor of a subject’s breath provides important 
information regarding health status as it refl ects the (patho) physiological processes 
occurring in the body [ 1 ]. Every health care taker recognizes the sweet acetone 
smell of the breath of an uncontrolled diabetes patient or the fi shy odor present in 
the breath of people suffering from a liver disease [ 2 ]. These smells are produced by 
excreted volatile organic compounds (VOCs) and these are a promising potential in 
facilitating noninvasive clinical diagnostics. It is therefore not surprising that the 
fi eld of VOCs analysis in exhaled air analysis has developed rapidly over the last 
few decades and great advances have been made with respect to the technical and 
statistical analytical aspects. All together, these developments have led to the dis-
covery of new biomarkers in exhaled air that may identify diseases and characterize 
their underlying biochemical processes. 

4.1.1     The Usefulness of VOCs as Biomarker 

 In order to apply exhaled VOCs as a potential and valid biomarker of disease, certain 
characteristics should be met including (1) high sensitivity and specifi city, (2) fastness 
and accuracy, (3) methodological simplicity, (4) interpretive simplicity, (5) thorough 
validation, and (6) pathophysiological link to disease [ 3 ]. 
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 An ideal biomarker of disease should recognize an illness already at an early 
stage and distinguish it from any other illness within a short processing time. 
Although current advances in sampling and analyzing techniques have already 
enabled fast breath sampling, their translation into ready-to-use clinical devices has 
not yet taken place [ 3 ]. However, unique VOC profi les have already been shown to 
discriminate healthy persons from patients suffering from a variety of pulmonary 
diseases with high sensitivity and specifi city (see also Sect.  4.1.2 ) [ 4 – 10 ]. 

 Characteristics 3 and 4 imply that ideal biomarkers should excel in simplicity in 
a methodological and interpretive way. Methodological simplicity of breathomics is 
guaranteed by the combination of its noninvasive character with a low degree of 
discomfort for the patient and a high clinical accessibility [ 11 ,  12 ]. However, the 
generated volatile biomarkers do not yet yield easy-to-interpret results as their vali-
dation and clinical usefulness are still hampered by the multiplicity of approaches 
regarding breath sampling, analysis, and normalization [ 3 ,  12 ]. 

 Characteristic 5 implies validation of biomarkers outside the study population 
they were initially selected in [ 18 ]. The usefulness of unique VOC profi les as a 
biomarker for a variety of diseases including asthma and chronic obstructive pulmo-
nary disease (COPD) has already been shown using such validation [ 4 ,  6 ]. 

 Finally (characteristic 6), a good biomarker should display a clear mechanistic 
relationship with the disease it was designed for. Unfortunately, this is a diffi cult 
requirement to meet within breathomics as compounds originating in breath may 
become biochemically altered before excretion. In other words, their volatile char-
acteristics do not necessarily refl ect the primary processes underlying the disease. 
Nevertheless, already more than half of the VOCs included in the discriminating 
profi les designed for asthma, cystic fi brosis (CF) were identifi ed as products formed 
during oxidative stress, a process discussed in Sect.  4.1.3.1 .  

4.1.2      VOC Profi ling with Relation to Pulmonary Disorders 

 Applying a single VOC as biomarker is a priori hampered in its use since it is not 
expected that one compound has enough information to describe the complex and 
heterogeneous processes including chronic diseases. Consequently, it is anticipated 
that the pathological processes are the best grasped by studying not individual com-
pounds but by exploring the total amount of exhaled VOCs called the volatome [ 3 ]. 
Certain profi les of VOCs within the volatome give a more sensitive and specifi c 
discrimination between various conditions due to its refl ection of changing environ-
mental exposures and the formation of compounds during biochemical processes. 
Recent studies applying volatome analysis have revealed that distinct VOC profi les 
are capable of discriminating healthy controls from pulmonary patients with a high 
sensitivity and specifi city [ 4 ,  7 ,  8 ,  10 ]. Our group has shown that correct classifi ca-
tion of asthmatic children and CF patients was possible with high sensitivity and 
specifi city using a VOC profi le of only eight and ten VOCs, respectively [ 4 ,  5 ]. For 
the smoking-related disease COPD, six VOCs were needed to discriminate patients 
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from healthy controls with 100 % sensitivity and 81 % specifi city [ 6 ]. Various 
independent research groups have shown that a combination of VOCs can correctly 
classify patients with lung cancer with a sensitivity and specifi city ranging from, 
respectively, 71 % to 100 % and 80 % to 100 % [ 9 ,  13 – 15 ]. Finally, patients suffer-
ing from pulmonary tuberculosis can be distinguished from healthy controls with 
96 % sensitivity and 79 % specifi city using a unique exhaled VOC profi le [ 10 ].  

4.1.3     Oxidative Stress and Infl ammation 

 VOCs represent important endogenous processes including oxidative stress and 
infl ammation. Until now, breathomics is hardly used to study damaging endogenous 
processes that underlie a variety of (chronic) diseases. However, a few studies have 
already demonstrated that breathomics can be used to identify the presence of 
oxidative stress and infl ammation. 

4.1.3.1      VOCs and Oxidative Stress 

 Oxidative stress is defi ned as an imbalance between the formation of highly reactive 
oxygen species (ROS) and the protection against these species by antioxidants [ 16 ]. 
Oxidative stress may result in increased oxidative damage and has been associated 
with the pathophysiology of various chronic diseases including sarcoidosis [ 17 ], 
idiopathic pulmonary fi brosis [ 18 ], and COPD [ 19 ]. A key process resulting from 
oxidative stress is lipid peroxidation, i.e., the oxidation of fatty acids present in, for 
example, cell membranes [ 20 ]. Volatile products formed during lipid peroxidation 
include ethane, pentane, hexanal, octanal, nonanal, propanol, and butanol [ 21 ,  22 ]. 
Some of these VOCs are reported to be elevated in the breath of COPD compared to 
controls [ 23 ,  24 ]. However, the analysis of single compounds derived from lipid 
peroxidation in exhaled air is hampered by a relatively low sensitivity and specifi c-
ity [ 3 ]. Our group currently attempts to investigate the availability and signifi cance 
of these compounds as markers of oxidative stress in the headspace of in vitro 
systems mimicking this process (Boots et al. unpublished results).  

4.1.3.2     VOCs and Infl ammation 

 Most chronic diseases are characterized by infl ammation, a process designed to 
protect the host against damage infl icted by exogenous sources [ 25 ]. Since infl am-
mation and ROS are tightly intertwined and capable of inducing one another, VOCs 
representative for infl ammatory processes are often compounds generated during 
oxidative processes [ 20 ,  25 ]. Additionally, infl ammation is associated with typical 
infl ammatory volatiles including nitric oxide (NO), nitrate, and sulphur-containing 
compounds [ 26 ]. 
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 Since all organisms generate VOCs as part of their normal metabolism, it 
 implicates that breathomics can also be applied to examine the production of vola-
tile compounds by specifi c bacteria. Indeed, certain infections are for a long time 
known to be accompanied by a distinct smell in vivo as well as in vitro [ 26 ,  27 ] and 
recent studies have shown the usefulness of VOC analysis in evaluating bacterial 
growth in both in vitro cultures and human samples [ 28 ,  29 ]. This application of 
VOC profi ling encloses the potential of developing a marker of the presence or 
absence of specifi c microbes in both environmental and clinical settings [ 27 ].    

4.2     Breath Sampling 

 Exhaled air comprises a mixture of dead space air and alveolar air. The dead space 
air consists of roughly 150 mL air from the upper airway where no gaseous exchange 
between blood and breath air is facilitated [ 8 ,  30 ]. Its composition strongly resem-
bles the inhaled air. Alveolar air originates from the lower airways where gaseous 
exchange between blood and breath takes place, resulting in a mixture of inhaled 
breath and endogenous compounds. Therefore, the concentration of the endogenous 
compounds is relatively high in alveolar air compared to dead space air. 

 In principle, there are three ways to sample exhaled air: (a) upper airway collec-
tion by sampling dead space air only, (b) lower airway collection by sampling alve-
olar air only, and (c) mixed air collection by sampling whole breath (mixture of 
dead space air and alveolar air) [ 31 ]. Some breath tests, including nitric oxide (NO) 
measurements, mainly use the dead space air since their compounds of interest 
(e.g., NO) are directly released into both the dead space and the alveolar air. 
Endogenous produced VOCs are ideally measured in alveolar air or in mixed air, its 
concentration being slightly higher in alveolar than in mixed air, depending on the 
fraction of dead space air present in mixed air. Whether this dilution may constitute 
a problem mainly depends on the sensitivity of the analytical instruments used. 
Whereas for electronic noses the concentration of VOCs may be an issue, in GC–
MS a dilution of 10–20 % is no issue at all. An advantage of sampling whole air is 
that it is technically the easiest and therefore less sensitive for mistakes. It increases 
the ease of use for the physician and decreases the degree of discomfort for the 
patient. The most reliable way to separate alveolar from dead space air is to apply a 
CO 2 -controlled valve that uses the end-tidal CO 2  concentration as a marker for the 
transition of dead space into alveolar air [ 32 ]. 

 Sampling may be performed online as well as offl ine. Online sampling requires 
that the analytical instrument is brought to the patient (or other way around), which 
is not to be a problem when handheld devices are used, but may become a burden 
when larger instruments are applied. Offl ine sampling, as required for instance 
for GC–MS analyses, gives delayed results. On the other hand offl ine sampling, for 
example collecting exhaled breath in polycarbonate bags followed by transfer of the 
samples to carbon sorption tubes is an established way to concentrate the samples 
and it allows the analysis of the sample to be executed under well-defi ned laboratory 
conditions. When measuring a high number of samples collected during a prolonged 
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period of time, it is possible to perform the measurements in a short period of time, 
thus diminishing the instrumental variation. Moreover, results of a GC–MS analysis 
may be available after 60 min, when required. 

4.2.1     Technologies to Analyze Breath for VOCs 

4.2.1.1     Electronic Nose 

 Recent advances in the fi eld of chemical sensors have facilitated the develop-
ment of these nonselective sensors, better known as electronic noses or E-noses. 
E-noses contain a series of nonspecifi c sensors capable of binding or reacting 
with VOCs present in complex gas mixtures. Various sensor principles can be 
applied including polymer-based sensors and metal-oxide-semiconductor 
(MOSFET) devices. Polymer-based sensors demonstrate volume changes upon 
contact with exhaled VOCs, thereby changing the conductance of the polymer 
[ 32 ]. MOSFET devices are transistors used for amplifying or switching elec-
tronic signals, based on the principle that VOCs upon entering the device will 
be charged either positively or negatively, affecting the electric fi eld of the sen-
sor [ 33 ]. Ultimately, both sensor principles rely on internal changes due to their 
interaction with molecules from gaseous mixtures, thereby generating a specifi c 
profi le called a breath-print. These breath-prints represent the total mixture of 
exhaled VOCs present in breath and can be used to develop pattern-recognition 
algorithms for various exposures or chronic diseases [ 34 – 38 ]. The main draw-
back of the E-nose is that the sensors implemented are not selective for single 
VOCs and are not capable of analyzing (identifying) individual components. 
Furthermore, a large number of VOCs can act on a single sensor, resulting in 
low sensitivity and specifi city with regard to classifi cation or prediction of the 
analyzed gas mixtures.  

4.2.1.2     Proton Transfer Reaction Mass Spectrometry 

 Determining the content of complex gas mixtures such as breath with proton 
transfer- reaction mass spectrometry (PTR-MS) is based on chemical ionization of 
the target molecules by a proton-transfer reaction with H 3 O +  [ 39 ,  40 ]. The thus gen-
erated protonated molecular ions of the components are mass-detected [ 41 ]. An 
advantage of this technique is that samples can be easily analyzed as no pre- 
concentration or separation processes are necessary, as is often the case for other 
analysis techniques [ 31 ]. It is suitable for real-time measurements, which is of spe-
cial importance in situations where rapid and sudden changes of VOC concentra-
tions are expected [ 42 ]. Unfortunately, PTR-MS is also a limited technique that is 
restricted to detect compounds with a proton affi nity higher than that of water [ 41 , 
 43 ]. Moreover, PTR-MS cannot differentiate isomeric and isobaric ions since they 
are all detected at the same nominal mass.  
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4.2.1.3     Selected Ion Flow Tube Mass Spectrometry 

 Selected ion fl ow tube mass spectrometry (SIFT-MS) is an analytical technique for 
the simultaneous real-time quantifi cation of several gases. This method is based on 
the formation of reactant ions (precursors) by electron impact or microwave dis-
charge in a carrier gas in a separate ionization region. In short, the exhaled gases are 
led through a fl ow tube where they react with a precursor ion, usually H 3 O + , NO + , 
or O 2  +  [ 31 ]. The ions produced during this reaction can be mass-dependently 
detected [ 44 ]. Main advantage of this technology is the very short response time of 
20 ms, which enables real-time measurements and a high sensitivity [ 44 ]. However, 
in analogy with PTR-MS, SIFT-MS does also not allow identifi cation of the whole 
breath-print as it can only detect gases for which positive precursor ions are selected 
[ 45 ]. Moreover, using only mass-to-charge ratios of chemically ionized molecular 
ions to identify specifi c VOCs present in breath remains very diffi cult. Therefore, 
this method is not suitable for pinpointing specifi c VOCs and/or underlying meta-
bolic processes to exposure or disease status.  

4.2.1.4     Ion Mobility Spectrometry 

 The ion mobility spectrometry (IMS) technique separates (molecular) ions according 
to their mobility as they move through the so-called drift tube fi lled with a purifi ed 
gas such as air or nitrogen [ 46 ,  47 ]. As the different ions present in the sample are 
forced through the tube by means of an applied electric fi eld, they will display 
different velocities based on their characteristics. Separating the ions can further be 
optimized by changing the drift length, drift gas, electric fi eld strength, temperature, 
and pressure [ 46 ,  47 ]. Combining this technique with gas chromatography improves 
its applicability.   

4.2.2     Gas Chromatography–Mass Spectrometry 

 The most commonly applied methodology to date to accurately measure trace gases 
in complex mixtures such as exhaled air is based on gas chromatography–mass 
spectrometry (GC–MS) [ 6 ,  48 ]. This method comprises a gas chromatograph (GC) 
that separates the different compounds in the mixture and a mass spectrometer (MS) 
that not only detects the separated volatile compounds but also identifi es them based 
on their total mass spectrum. Various detectors are used of which the time-of-fl ight 
(TOF) spectrometer is the most widely applied [ 31 ,  46 ,  49 ]. GC–MS is proven to be 
highly sensitive and robust, two characteristics known to add to a high degree of 
reproducibility [ 31 ,  46 ]. Figure  4.1  displays a classic example of a chromatogram 
(here called breathogram) obtained via GC–MS analysis of exhaled air.

   GC-TOF-MS is at present the only technique that can not only detect specifi c 
VOCs linked to exposure or disease status but is also able to identify these VOCs. 
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Consequently, the GC-TOF-MS method is currently state-of-the-art, capable of 
pinpointing specifi c volatile biomarkers to underlying metabolic processes that 
might contribute to damage related to exposure or disease. Therefore, it has been 
suggested that only the GC-TOF-MS method will be able to assist in the diagnosis 
of exposures and diseases in the near future as it is shown to be an excellent screen-
ing tool for new biomarkers [ 4 – 6 ,  31 ,  50 ]. This major advantage outweighs the 
minor drawbacks of this method, including the fact that it is rather time-consuming 
and cannot take place in situ [ 42 ].   

4.3     Data (Pre-)processing and Analysis of GC–MS Data 

4.3.1     Pre-processing of Raw Breathomics Data 

 In order to obtain breathomics data usable for multivariate statistical analysis 
(MSA), the raw data produced by GC–MS have to be properly pre-processed. The main 
aim of data pre-processing is to remove experimental artifacts and inter- sample 
variations which usually obscure the biologically meaningful changes  and/or lower 
the power of statistical analysis. Pre-processing of breathomics data involves at 
least three successive steps: noise reduction, background (baseline) correction, and 
alignment [ 8 ,  30 ]. 
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  Fig. 4.1    An example of a breathogram recorded via GC–MS with some names of VOCs. The 
area-under-peak is related to the concentration of the compound presented by this peak       
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 Noise reduction is usually the fi rst step of data pre-processing. It minimizes the 
degree of high frequency noise generated by the detector or other instrumental noise 
sources. It can be achieved by applying transform functions such as wavelets or 
Fourier transformations [ 51 ]. 

 Distortion in the baseline may affect not only statistical analysis but also align-
ment and quantifi cation of the compounds. Therefore, proper baseline correction is 
important. It is usually done in an automated manner. Multiple methods have been 
proposed based on different types of polynomial-fi tting algorithms [ 52 ], asymmet-
ric least squares (ALS) [ 53 ], B-splines, B-splines with penalization (i.e., P-splines) 
[ 54 ] or the use of orthogonal basis of the background spectra [ 55 ]. 

 The last step of pre-processing is alignment, i.e., removing the shifts in peak 
positions by rectifying the retention times across all samples. Nowadays many 
methods and packages are commercially or freely available for spectral alignment, 
including Dynamic Time Warping (the oldest warping techniques), Parametric Time 
Warping [ 56 ], Correlation Optimized Warping (COW) [ 57 ], MetAlign [ 58 – 60 ], 
MZmine [ 61 ], Isotope Cluster-Based Compound Matching [ 62 ], and PyMS [ 63 ]. 
The differences are mainly technical.  

4.3.2     Normalization and Scaling 

 An intermediate step between data pre-processing and MSA is normalization and 
scaling. Normalization of the individual peaks in breathomics data aims to remove 
the overall variations between measured samples (i.e., chromatograms), the so- called 
size effect. Normalization usually involves a multiplication of each measured sample 
by a constant. Different ways of computing this constant exist [ 64 – 66 ]. Scaling of 
breathomics data may be useful and/or necessary, since the amount of compounds in 
exhaled breath can vary in many orders of magnitude. Moreover, the higher the abun-
dance of a compound, the larger the variations are exhibited by this compound. Thus 
it is important to scale the compound levels before MSA to avoid spurious infl uence 
of high abundance compounds. This is particularly true in nontargeted analysis. 
An overview of different scaling methods can be found elsewhere [ 67 ].  

4.3.3     Multivariate Analysis (Supervised, Unsupervised) 

 After data pre-processing, the MSA is performed to fi nd trends in breathomics data 
and to extract only that information that is relevant to study possible biomarkers in 
the exhaled air. A proper MSA requires a good statistical validation [ 68 ] as well as 
trustworthy biological interpretation of the results. Typically, most of the multivari-
ate statistical methods used in the -omics fi eld, such as genomics, proteomics, and 
metabolomics, can also be utilized in breathomics. Generally, all multivariate 
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statistical methods can be divided in unsupervised and supervised algorithms. 
Typically, unsupervised methods are used as fi rst step in MSA. They include the 
Principal Component Analysis [ 69 ,  70 ] and Hierarchical Cluster Analysis [ 70 ]. 
Unsupervised analysis is performed to explore and visualize the data. Moreover it 
allows fi nding trends, detecting outliers, and clustering the input data into classes 
based on statistical properties of the data only. It permits a simplifi ed representation 
of the information in the breathomics data. In unsupervised statistical methods a 
priori knowledge (e.g., class information such as sick and healthy) is not used in the 
learning procedure of the algorithm. This way it is often not possible to fi nd a spe-
cifi c pattern related to a given class of, for example, the diseased patients. 
Furthermore, due to highly complex breathomics data, unsupervised methods are 
very often not powerful to extract class-related information (e.g., disease related). 
Therefore, an unsupervised approach is very often followed by supervised learning 
methods such as partial least squares discriminant analysis (PLS-DA) [ 71 ], dis-
criminant analysis [ 72 ,  73 ], random forests [ 74 ], or support vector machines [ 75 ,  76 ]. 
In supervised techniques a priori knowledge, e.g., class information, is provided as 
a dummy variable with group membership (i.e., healthy and disease) for each sam-
ple. A very important part of supervised learning is validation. In order to avoid the 
risk of overfi tting (i.e., that the statistical model is too closely fi tted to the data) the 
data should be divided in a training set (used for constructing the statistical model), 
a validation set (utilized to tune the statistical model), and an independent test set 
(used to assess the performances of the statistical model). Validation by an indepen-
dent test set delivers the means to establish a reliable predictive performance of the 
statistical model and ensures that selected VOCs of interest are indeed truly descrip-
tive of the underlying exposure or disease studied [ 68 ].   

4.4     Future of VOCs Profi ling in Pulmonary Disorders 

4.4.1     Current Issues of VOCs Profi ling in Monitoring Disease 

 As indicated in the introduction, recent studies have proven that distinct VOC pro-
fi les can discriminate healthy controls from patients suffering from infl ammatory 
lung diseases with high sensitivity and specifi city [ 4 – 6 ]. Regarding lung cancer, a 
combination of VOCs can differentiate patients from healthy controls and diseased 
controls with high sensitivities and specifi cities [ 9 ,  13 – 15 ,  77 – 79 ]. Moreover, it has 
recently been observed that exhaled VOC markers are able to distinguish patients 
with pulmonary tuberculosis from healthy controls [ 10 ] and from non-tuberculosis 
diseased controls [ 80 ]. Interestingly, pilot studies have revealed that breathomics 
can also be used to diagnose non-pulmonary diseases, including breast, ovarian, 
and hepatocellular cancer, and coronary heart diseases, with fair sensitivity and 
specifi city [ 13 – 15 ,  77 ,  81 ,  82 ]. Also infl ammatory conditions and cancer from 
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internal organs as liver and the gastrointestinal tract can be monitored [ 83 ,  84 ]. 
Breathomics is recently shown to be useful in assessing occupational or environ-
mental exposures [ 85 ,  86 ]. The profi ling of VOCs already fi ts the biomarker pre-
requisite of displaying a rather noninvasive character that combines a low degree of 
discomfort for the patient with a high clinical accessibility [ 11 ,  12 ]. Biomarkers 
should be thoroughly validated before being clinically applied to determine the real 
value of their predictive and/or discriminatory capacities. By performing such a 
validation test in one or more separate validation set(s), the real value of specifi c 
biomarkers can be evaluated outside the test set in which they were initially selected 
[ 87 ]. However, the current differences used by research groups in breath sampling 
and analysis hamper interlaboratory validation and thus clinical usefulness of volatile 
biomarkers [ 12 ].  

4.4.2     Biochemical Background of VOCs and Changes 
in Relation to Disease 

 A good disease biomarker relates to the biochemical or molecular processes 
underlying the disease it was designed for. Until now, this relationship has merely 
been the focus in studies exploring the use of individual VOCs to predict or classify 
various diseases. Especially products of lipid peroxidation have been considered as 
possible volatile biomarkers. For instance, higher exhaled pentane levels are 
reported in patients with acute asthma [ 86 ], cystic fi brosis [ 24 ], acute respiratory 
distress syndrome (ARDS, [ 88 ]), ventilator-associated pneumonia (VAP, [ 89 ]), 
obstructive sleep apnoea [ 86 ], and lung cancer [ 82 ,  90 ]. Other volatile lipid per-
oxidation products studied as possible biomarkers include ethane, hexanal, octanal, 
nonanal, propanol, and butanol [ 81 ,  86 ,  90 ,  91 ]. Interestingly, more than half of the 
number of VOCs included in the discriminating profi les designed for asthma, CF, 
and COPD by our group were identifi ed as hydrocarbons and/or possible lipid per-
oxidation products as well [ 4 – 6 ]. Moreover, due to their low solubility in blood, 
lipid peroxidation products such as ethane and pentane are exhaled within a few 
lung passages and can therefore serve not only as a pulmonary but also a systemic 
marker of infl ammation and oxidative stress [ 8 ,  91 ]. For instance, ethane and/or 
pentane are enhanced excreted in the breath of patients with sepsis, systemic 
infl ammatory response syndrome (SIRS), ischemic heart disease, myocardial 
infarction, cardiopulmonary bypass, and allograft rejection following organ trans-
plantation [ 92 – 96 ]. 

 Ideally, a biomarker should not only be linked to exposure or disease in general, 
but also to different stages of the disease including development, severity, and 
progression. Interestingly, this has already been shown for exhaled ethane as this 
VOC is higher not only in asthmatics compared to healthy controls but also severe 
compared to mild asthma [ 97 ]. Moreover, a recent study by Phillips et al. suggests 
that VOC patterns can be used to distinguish between active and nonactive 
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pulmonary tuberculosis albeit with a relatively low accuracy ranging from 65 to 
85 % [ 98 ]. However, associating volatile biomarkers with the physiology of either 
exposure or disease is still in its infancy due to the fact that the (patho) physiological 
meaning of specifi c VOCs is often not known yet. Consequently, more research 
regarding the exact identity and biological role of individual VOCs is needed. 
Unfortunately, this area of research is hampered because compounds originating in 
breath can very well be biochemically altered before their excretion, implying that 
the volatiles detected do not necessarily display a direct relation to exposure or 
disease. Therefore, more studies in clinical as well as in vitro settings are necessary 
to elucidate the biochemical origin, physiological meaning, and exhalation kinetics 
of selected VOCs. Nevertheless, even without this mechanistic knowledge, volatile 
compounds can already be valuable as a predictive tool in a clinical setting.  

4.4.3     Potential Future Applications 

 Until now, breathomics has merely been applied for diagnostic purposes and a 
future goal lies within the development of easy-to-use devices for the point-of-care 
use that can detect volatile biomarkers specifi c for various diseases. 

 Interestingly, recent developments have been made regarding the screening for 
lung cancer as it was shown that low-dose CT scanning could signifi cantly reduce 
lung cancer mortality [ 99 ,  100 ]. Since there are some diffi culties in generalizing 
these results to the community, it has once again been suggested to combine this 
screening method with other new testing techniques such as VOC measurement to 
develop a successful screening algorithm for lung cancer [ 99 ]. 

 The analysis of exhaled air, however, encloses far more intriguing promises 
including elucidation of the (clinical and pathological) heterogeneity observed in 
several chronic diseases, the determination of the pathogens responsible for occur-
ring (respiratory) infections and monitoring of the treatment effi cacy.  

4.4.4     Respiratory Infections 

 The occurrence of detrimental respiratory tract infections embodies a great burden 
not only for patients and the health care system but also for the economy [ 94 ,  95 ]. 
Especially the sudden worsening of symptoms also referred to as acute exacerba-
tions (AE), in various chronic lung diseases including COPD and CF is known to 
largely depend on such microbial infections. Fast treatment of exacerbations is 
often hampered by a poor standardization of both the defi nition and detection of 
AE in most lung diseases [ 101 ,  102 ]. Recognizing AE appears to be diffi cult for 
both the patients and care takers as exacerbation profi les vary enormously between 
individuals. Current diagnostics include clinical criteria such as changes in symptoms 
and lung function but they often occur when an exacerbation is already manifested. 
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Additionally, sputum induction or bronchoscopy accompanied by sampling 
broncho- alveolar lavage fl uid (BALF) can be applied for qualitative and quantita-
tive laboratory microbiological analysis in order to detect the exact microbial 
cause [ 103 – 105 ]. However, the usefulness of these techniques is seriously dimin-
ished by their invasiveness and by the long-duration of more than 48 h before 
results become available. To date it is still not possible to predict or quickly diag-
nose the occurrence and microbial cause of an exacerbation and thus prevent 
severe lung damage and deterioration in the long term. Therefore, there is an 
urgent need for noninvasive fast diagnostic tools that will contribute to a rapid 
diagnosis of AE in general and of the underlying microorganism(s) in particular, 
enabling an earlier start of appropriate antibiotic therapy and a more favorable 
health outcome. Analysis of exhaled air, combined with the adequate interpretation 
of selected VOC levels, might provide such a new diagnostic tool for early identi-
fi cation and closer monitoring of patients with high-risk profi les for AE. Monitoring 
high-risk patients and early identifi cation of the worsening of pulmonary symp-
toms might allow adequate therapeutic interventions with oral antibiotics and/or 
physiotherapy to prevent AE and thus improve the quality of life in these patients 
[ 106 ,  107 ].   

4.5     Summary and Perspective 

 In conclusion, it can be stated that breath analysis holds the promise to be of huge 
interest in clinical practice. It has already been proven that for some diseases breath 
profi les function as quality biomarkers and thus serve as a sensitive and noninva-
sive methodology. However, large (prospective) cohort studies are necessary in 
order to validate such selected biomarkers. Future research regarding more specifi c 
and highly sensitive sensors may provide the means for these biomarkers to be 
highly cost effective and very simple to use [ 35 ,  38 ]. At present, a wide range of 
sensors is under research including metal-oxide sensors and polymer-based sensors. 
Both sensors are capable of registering the absorption of specifi c VOCs by means 
of either resistance or acoustic variations. At present, such sensors are already 
capable of accurately detecting low concentrations of volatiles and are under devel-
opment to be used as bedside tests. At the same time, parallel approaches comprise 
the detection of disease-related VOCs by means of miniaturized GCs coupled to 
highly sensitive and specifi c detectors such as the MS. Improved sensitivity and 
specifi city followed by implementation of these technologies into small “fool-
proof” handheld devices in combination with an easy-to-apply breath collection 
procedure and advanced signal processing modules might introduce breathomics 
right into clinical practice.     
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Infections of the respiratory system caused by infecting microorganisms like bacteria, 
viruses, fungi, and protozoa may occur through three persuasive routes: tracheo-
bronchial tree, pulmonary vasculature, and via direct spread from infection in the 
mediastinum, chest wall, or upper abdomen. Once the microbe gains entry into the 
tissue, the moist, natural aerobic environment of lungs provides a favorable field to 
flourish, making the respiratory tract susceptible to infections. The micro- organisms, 
however, need to overcome a large network of pulmonary defenses [1].

5.1  Pulmonary Infection

Some of the bacterial species which cause infection in the lungs are Streptococcus 
pneumoniae, Haemophilus influenza, Staphylococcus aureus, Pseudomonas spp., 
Acinetobacter spp., Mycobacterium tuberculosis, Legionelia spp., and others. 
Infection is characterized by infiltration with polymorphonuclear neutrophils and 
histiocytes, as well as by tissue destruction, necrosis, cavitation, and formation of 
lung abscesses.

Viral infections caused by influenza, parainfluenza, adenovirus, coxsackie, echo-
virus, varicella, vaccinia, and measles viruses sometimes lead to viral pneumonia.  
It is characterized by alveolar wall thickening and infiltration of lymphocytes due to 
secretion of proteinaceous exudative material. Rhinovirus, a small non-enveloped 
single-stranded RNA virus is also associated with respiratory tract infections.  
In case of viral lung infection, huge invasion of macrophages and neutrophils gener-
ate the reactive oxygen species (ROS) which then become important players in the 
disease pathogenesis. Fungal infection can be similarly caused by inhalation of 
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spores which may later cause latent infection by the conidia. Various forms of  fungal 
infections involving the airways include histoplasmosis, coccidioidomycosis, blasto-
mycosis, cryptococcosis, and aspergillosis. Other organisms like nocardia, candidia, 
yeast, protozoa, and some tapeworms may also cause respiratory infections.

5.2  Oxidant Injury and Pulmonary Infection

Oxidant injury is caused by the oxygen-derived products, free radicals like superox-
ide anion, hydrogen peroxide, and hydroxyl radicals which are normally produced 
inside the cells during cellular processes and electron transport chain. It is highly 
reactive and may disturb cell structure and function resulting in cell injury and death. 
There are many enzymes which scavenge these oxygen intermediates. Lungs consti-
tute one of the major target organs of oxygen injury because of maximum exposure 
of the cells of the airways to oxygen and a large surface area of blood supply [2–4].

The ROS are produced mainly by two organelles of the cell i.e., mitochondria 
and endoplasmic reticulum. ROS are produced not only during molecular reduction 
of oxygen in electron transport chain but also by other mechanisms like the respira-
tory burst in phagocytes, damage of cell component by ionizing radiation, and also 
as byproducts of various enzymes like nitric oxide synthase (NOX), xanthine oxi-
dase (XO), and uncoupled endothelial nitric oxide synthase (eNOS). So ROS has 
beneficial roles in the physiological function of cells in response to factors such as 
the shear-stress and immunological defense system, thereby preventing damage 
from foreign pathogens.

Mitochondrial ROS (mROS) are superoxide molecules derived from oxygen pro-
duced at different sites of mitochondria. The mROS on one hand can cause damage 
to the cell, while on the other hand, can also help in the regulation of physiological 
functions like adaptation to hypoxia, regulation of autophagy, immunity, differentia-
tion, and longevity of cell. Production of mROS may serve as an alarm of the cell, 
suggesting a change in the extracellular environment that has been induced by stresses 
like hypoxia, starvation, infection, and growth factor stimulation. A correlation exists 
between the gravity of stressor and quantity of mROS induced, implying increased 
production of mROS to increased stress, leading thereby to cell damage/cell death. 
Because of the dual role of mROS in the cell, it may be difficult to use them as targets 
of therapy. The effects of antioxidants on mROS also vary with changes in environ-
mental conditions. The molecular targets of mROS for cellular adaptation during 
stress in different environmental conditions need further studies [5].

5.3  Oxidative Injury by Microorganisms

Pulmonary oxidant stress is an important characteristic of acute lung injury (ALI) 
[6]. Reactive oxygen intermediates (ROI) produced by the cells take part in host 
defense against infections caused by bacteria and fungi. They could bring about 
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destruction of proteins, deoxyribonucleic acids, and lipids. So, it is important to 
calibrate the ROI for effective antimicrobial defense while averting inflammation 
and injury. Production of ROS like superoxide anion, and its derivatives hydrogen 
peroxide and peroxynitrite, have been found to be associated with lung injury 
caused by influenza viruses [7]. In the earlier studies, pyran polymer-conjugated 
superoxide dismutase (SOD) when administered to virus-infected mice brought 
about reduction in mortality [8]. The peroxynitrates can also cause the oxidation of 
antioxidants like glutathione reductase, SOD, and glutaredoxin, leading thereby to 
lung injury. Oxidant injury was also found to be boosted in the mitochondrial 
 membrane with an increment of mitochondrial generation of ROS in tissues distant 
from the lungs [9]. This study also revealed that oxidant injury and metabolic stress 
contributed directly to disease development.

5.4  Mycobacteria

Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is also found to be asso-
ciated with oxidative stress. Tuberculosis involves the poor antioxidative defense, 
damaging the host tissue. Mtb has the ability to survive during the redox status of 
the host, and also the ability to use protective enzymes like SOD, catalase (KatG), 
alkyl hydroperoxidase (AhpC), and peroxiredoxins [10]. Mycobacteria induce the 
production of ROS production by mononuclear and polymorphonuclear phago-
cytes. Chemotherapy given to patients of pulmonary tuberculosis showed an 
improvement in the level of oxidative stress [11]. The production of ROS is  
also associated with the productions of DNA lesions using apurinic/apyrimidinic 
endonuclease IV (End) and exonuclease III (XthA), a 39R59 exonuclease [12]. 
Pulmonary and extra pulmonary tuberculosis are associated with decreased levels of 
blood glutathione, glutathione peroxidase, and glutathione reductase and negatively 
correlated with carbonyl protein content [13]. Since γ-glutamylcysteinylglycine or 
glutathione (GSH) protects against oxidative stress, it may have potential therapeu-
tic implications [14]. Also, ergothioneine (ERG) and mycothiol (MSH), have been 
reported in protection against oxidative stress in mycobacterium [15].

Mycobacterium tuberculosis is one of the aerobic bacteria which can survive 
under oxidative stress by various mechanisms. It has the ability to persist inside 
macrophages of the host. One of the mechanisms is F420-dependent anti-oxidant 
mechanism. This system in methanogenic archaea acts as an active enzyme cofac-
tor. It has been observed that the F420-deficient mutants (by the inactivation of fbIC 
gene) are very sensitive to oxidative stress. The fbiC gene (Rv1173) encodes  
an 856-amino-acid polypeptide FO synthase in the F420 biosynthetic pathway. The 
inhibition of the F420 biosynthesis pathway or Fqr-class proteins may act as a 
mechanism to potentiate the action of bactericidal agents [16]. To study as to how 
the mycobacterium is able to evade the host immune system, state-specific models, 
based on readily available gene expression data, can be created in silico. In such 
models, the metabolic adaptations of M. tuberculosis can be characterized by the 
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differential gene expression data with a metabolic network model [17]. More molecules 
are reported to be involved in protection of the microbes against oxidative stress as 
seen in mycoredoxin-1 and mycothiol deletion strains of Mycobacterium smegmatis 
[18]. The survival of pathogen i.e., M. tuberculosis inside the host may also be pos-
sible by oxidation-sensing regulator (MosR), a transcriptional repressor by upregu-
lating expression of rv1050 (a putative exported oxidoreductase) [19].

Heme oxygenase-1 (HO1) has a role in cytoprotection and is found to be expressed 
in large numbers in the plasma of patients with tuberculosis, acute respiratory dis-
tress syndrome, chronic obstructive pulmonary disease, and asthma. The expression 
of HO-1 therefore has been suggested to be used in prognosis of lung disease [20]. 
A signal transduction pathway in the Early Secreted Antigenic Target of 6 kDa 
induction of IL-8 expression in lung epithelial cells which has been identified might 
be important to understand the innate immune responses to tuberculosis and the 
pathogenesis of lung injury in tuberculosis [21].

There are reports on the role of serine proteases of the Mtb that provide resis-
tance to acid and oxidative stress. Rv3671c, a putative serine protease is held 
responsible for persistence of Mycobacterium tuberculosis in the hostile environ-
ment of the phagosome [22]. The periplasmic domain of Rv3671c is a functional 
serine protease of the chymotrypsin family and its activity was found to increase 
upon oxidation. On similar lines, another periplasmic protease of Mtb might have a 
special role in imparting resistance to acid and oxidative stress [23]. This transmem-
brane serine protease MarP is important for pH homeostasis in Mtb.

5.5  Bacteria

Bacterial infection leads to the exposure of bacteria-derived lipopolysaccharides, 
composed of oligo, polysaccharide, and lipid A endotoxin to the host tissue. Lungs 
are very sensitive to endotoxins; acute endotoxemia directs accumulation of macro-
phages in the target tissues. The macrophages and neutrophils that reach the infected 
site are activated by LPS releasing reactive oxygen and nitrogen species contribut-
ing to injury and organ failure [24].

Pseudomonas aeruginosa causes acute and chronic infections of the human 
lung, causing tissue injury. A siderophore (iron bound to pyochelin) secreted by the 
organism to acquire iron, may actually function as an efficient catalyst for hydroxyl 
radical (HO•) formation. Due to exposure of superoxide (O2

•−) and H2O2, sidero-
phore can augment injury to pulmonary artery endothelial cells [25]. Therefore, the 
presence of ferripyochelin at sites of lung infection by P. aeruginosa might promote 
HO• mediated damage to airway epithelial cells resulting in tissue injury.

Lung infection caused by Bordetella pertussis shows a stimulated innate resis-
tance (StIR) event which is also mediated by the generation of ROS [26].

There is evidence of inflammation and oxidative injury in bronchopulmonary 
dysplasia, a neonatal chronic lung disease. The inflammation associated with dys-
plasia is caused by the exposure of bacterial lipopolysaccharides. Bacterial LPS 

B.D. Leishangthem et al.



89

bring about increased expression of cytokines regulated by Nox-dependent signaling 
pathways [27, 28]. The inflammatory mediators help in attracting neutrophils and 
macrophages to the lungs to combat infection. Neutrophils, after stimulation pro-
duce ROS like hypochlorous acid (HOCl) by the help of myeloperoxidase enzyme. 
The levels of glutathione sulfonamide (GSA) (fourfold) and other neutrophil oxi-
dant biomarkers (twofold) were reported to be significantly higher in culture 
positive aspirates. GSA is a stable oxidation product of GSH that is formed by 
condensation of the amine group of the γ-glutamyl residue with the oxidized cyste-
ine. This has led to the recommendation of GSA as a marker of detection of bacterial 
growth in lung infection [29].

Nontypeable Haemophilus influenza (NTHI) is a major cause of acute 
 sino- pulmonary infections, responsible for exacerbations of COPD. During  
H. influenza infection, many stimuli that include reactive oxidants, bring about 
induction of Nuclear erythroid factor-2 (Nrf2), a basic leucine transcription factor. 
It detaches from its inhibitor Keap1 present in the cytosol and moves toward nucleus 
where it binds at the promoter region of antioxidant response elements (AREs) and 
help in protection against oxidant injury [30]. Also, during infection, H. influenza 
can withstand the effect of ROS produced by the cells, has various molecular mech-
anisms to protect from the stress [31].

5.6  Oxidant Injury by Viruses

The involvement of oxidative stress during viral infection has been also reported 
[32]. The addition of environmental contaminant like cadmium induced oxidative 
stress leading to imbalance in the redox state with reduction in GSH. However addi-
tion of antioxidants like GSH derivative (GSH-C4) or the GSH precursor, N-acetyl- 
l-cysteine (NAC) result in the inhibition of viral replication as studied in Madin 
Darby Canine Kidney [33].

Human immune-deficiency virus (HIV) patients are under constant oxidative 
stress as reflected in alterations in levels of ascorbic acid, tocopherols, carotenoids, 
selenium, SOD, and glutathione in various tissues. Elevated levels of hydroperoxides 
and malondialdehyde in serum are also indicative of oxidative stress during HIV 
infection. The oxidative stress contributes to HIV disease pathogenesis, viral replica-
tion, inflammatory response, reduced immune cell proliferation, loss of immune 
function, apoptosis, chronic weight loss, and increased sensitivity to drug toxicities 
[34]. A chronic infection with HIV is known to be associated with an incidence of 
pulmonary complications including hypertension, vasculopathy, lymphocytic 
alveolitis, and interstitial pneumonitis, not attributed to either opportunistic infec-
tions or presence of the virus. A transactivator, Tat (transactivator of transcription) 
protein is required for expression of full-length of viral genes, and it influences the 
expression of cellular inflammatory genes. The Tat-dependent transactivation of 
genesis known to require specific mediators that include the transcription factor, 
NF-κB, are known to be sensitive to changes in cellular oxidant burden [35].
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The HIV-1 transgenic mice demonstrate significant oxidative/nitrosative stress in 
the lungs upon administration of endotoxin. This suggests that the pulmonary com-
plications in HIV-1 infections could be due to alteration of the lung proteins by 
oxidative stress [36]. HIV-related proteins and alcohol together cause dysfunction  
in the lung epithelium. This is a significant observation as the alveolar barrier  
gets affected and addition of thiol antioxidant results in improvement in transgenic 
mice [37]. Human immunodeficiency virus 1-infected individuals display systemic 
 oxidative stress and glutathione deficiency. The master transcription factor nuclear 
factor (erythroid-derived 2)-like 2 is known to regulate the expression of antioxidant 
and phase II-metabolizing enzymes by activating the ARE that protects cells and 
tissues from oxidative stress [38].

Respiratory syncytial virus (RSV) infects the lower respiratory tract in children. 
It has been found to generate ROS in vitro and oxidative injury in lungs in vivo [39]. 
Oxidative stress induced by RSV is due to inhibition of antioxidant enzyme expres-
sion leading to an imbalance of ROS production and airway antioxidant defenses 
[39]. There is an increment in lipid peroxidation products and decrement in GSH/
GSSG ratio in RSV infected cells [40]. RSV is also one of the primary causes of 
lower respiratory tract infections in most parts of the world during the first year  
of life. Infiltrating lymphocytes present in bronchoalveolar lavage fluid (BALF) 
have been observed in mice infected with a lethal dose of influenza A/PR8/34 virus 
which demonstrated the role of oxidative stress during lung infection [41].

It has been reported that resveratrol treatment reduced the number of infiltrating 
lymphocytes and RSV lung titers which finally led to reduced inflammation. 
Furthermore, resveratrol might help to decrease the IFN-γ levels in BALF of RSV- 
infected mice by attenuating airway responses to methacholine. Resveratrol inhib-
ited the TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling 
pathway, controlled Toll-like receptor 3 (TLR3) expressions and also induced M2 
receptor expression followed by RSV infection [42]. A significant fall in SOD 1, 
SOD 3, catalase, and GST expression was found but SOD 2 expression was found 
to be elevated [40]. It was also observed that there was a decrement in the activity 
of SOD, catalase, glutathione S-transferase, and glutathione peroxidase in murine 
lungs and in the airways of children with severe bronchiolitis. It was associated with 
reduced levels of Nrf2 expression in the lungs of viral infected mice [43].

The role of antioxidants in the RSV infection has been analyzed from the effect 
of butylated hydroxyanisole (BHA), an antioxidant, in the RSV infected BALB/c 
mice; a fall in malondialdehyde and 4-hydroxynonenal content in bronchoalveolar 
lavage of infected mice indicated the reduction in lung oxidative stress. BHA treat-
ment caused a drop in clinical illness and body weight loss with the neutrophil 
recruitment to the lung and pulmonary cytokine and chemokine production after the 
infection. Along with these findings, there was a reduction in RSV-induced airway 
hyper reactivity [44].

Increased production of superoxide, increased activity of xanthine oxidase, 
 oxidized glutathione, malondialdehyde, and decreased production of oxidized glu-
tathione are some of the characteristics associated with respiratory viral  infections [33]. 
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Rhinoviruses infection is associated with an increase in levels of intercellular 
adhesion molecule (ICAM-1), an important molecule which is used as receptor for 
entry in the pulmonary epithelial cells. Increased levels of superoxide formation 
are associated with increased ICAM-1 expression in rhinovirus infection [45]. 
An increased involvement of oxidative stress with adenovirus-induced lung infec-
tion is reported as the cause of bronchiolitis obliterans in post-transplant patients. 
The association of post infectious bronchiolitis obliterans with oxidative status in 
the lungs of children has also been reported [46].

5.7  Sepsis and Pulmonary Infection

Sepsis results from serious infections caused by various pathogenic organisms like 
bacteria, viruses, and fungi which lead to multiple organ failure. Oxidative stress 
has been shown to be associated with sepsis. In a comparative study on the effects 
of oleanolic acid with dexamethasone on inflammation and apoptosis in lung and 
distal organs in experimental murine sepsis, oleanolic acid was associated with 
lower induced nitric oxide synthase (iNOS) expression and higher SOD levels than 
in the dexamethasone treated group [47]. There are reports on the improved renal and 
pulmonary function in rats with sepsis, treated with potent antioxidant NAC [48]. 
ROS elevate vascular barrier dysfunction through Ca2+ signaling in the sepsis- 
induced ALI [49]. Previous studies had also revealed that pulmonary oxidative 
stress generated in murine sepsis-induced ALI was primarily dependent upon neu-
trophil iNOS among different isoforms of NOS [50–52]. Similarly in severe viral 
infections, the level of inducible nitric oxide was found to be higher in mice that 
were infected with H5N1 and 1918 viruses, in comparison to a seasonal H1N1 virus 
in lung tissue; the level was moderate in mice that were deficient in iNOS (NOS2−/−) 
in comparison to wild-type control [51]. Additionally, this study also showed the 
delay in weight loss and death in 1918 virus-infected mice in contrast to control 
ones when treated with NOS inhibitor, NG-monomethyl-l-arginine [53].

5.8  Antioxidants in the Therapy of Infections

Antioxidants are substances that inhibit the oxidation of other molecules by termi-
nating the chain reaction of free radicals and removing their intermediates via self 
oxidation [2]. There are several types of antioxidants such as glutathione, vitamin A, 
vitamin C, vitamin E, as well as enzymes like catalase, SOD, and various peroxi-
dases. Antioxidant enzymes play an important role in defense against oxidative 
stress in the lung and in the pathogenesis of chronic respiratory diseases. Extracellular 
SOD, an important antioxidant enzyme, is found in the lungs, it controls pulmonary 
inflammation and injury by promoting bacterial phagocytosis [54].
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The role of Nrf2-mediated antioxidant system to defend the lungs from oxidative 
injury and inflammation has also been shown in in vitro and in vivo studies. The in 
vitro study reports augmentation of NF-κB activation and induction of its target 
inflammatory gene in Nrf2-deficient macrophages vs. the wild type, when these 
macrophages were examined with poly (I:C) and/or cigarette smoke extract. There 
was also an enhancement in antioxidant genes in the lungs of wild-type mice as 
compared to Nrf2-deficient mice after cigarette smoke exposure in the in vivo study 
[54]. Mortality was found to be higher in cigarette smoke-exposed Nrf2-deficient 
mice when these mice were infected with influenza virus [55]. Neu-164 and Neu- 
107, inhibitors of myeloperoxidase enzyme, exhibiting strong antioxidant activity, 
were found to reduce acute inflammation and oxidative stress triggered by cigarette 
smoke-induced inflammatory cells through scavenging the ROS [56]. The drugs 
ketamine, propofol, and ketofol are routinely used for sedation, but a recent report 
highlights their role on oxidative stress and anti-inflammatory processes in lung tis-
sue in a rodent model of endotoxemia [57]. In the sepsis (LPS mediated) induced 
ALI, ketamine infusion led to reduction in the levels of TNF-α, IL-1β, IL-6, NF-κB, 
and COX-2 mRNAs in lung tissue. Propofol was involved in lessening the levels of 
circulating TNF-α and IL-1β in lung tissue, whereas it led to augmented nitrate/
nitrite levels. The third drug, Ketofol, reduced the levels of COX-2 mRNA and the 
nitrate/nitrite level in lung tissue. However, a recent report suggests that the treat-
ment with antioxidants in excess might be deleterious as it may result in greater 
oxidative stress [58].

5.9  Anti-Oxidants and HIV Infection

HIV-1-related proteins inhibit Nrf2-mediated antioxidant defenses and thereby dis-
rupt the normally tight alveolar epithelial barrier. Nrf2-RNA silencing dampened the 
activity of Nrf2/ARE, decreased the expression of the tight junction proteins zonula 
occludens-1, occludin, and claudin-18, increased paracellular permeability of alveo-
lar epithelial monolayers derived from wild-type rats, and therefore reproduced the 
effects of HIV-1 transgene expression on the epithelial barrier. In contrast, upregulat-
ing Nrf2 activity, either by plasmid-mediated overexpression or treatment with the 
Nrf2 activator sulforaphane, increased the expression of ARE-dependent antioxi-
dants, including NAD(P)H dehydrogenase, quinone 1, and glutathione, improved the 
expression of tight junction proteins, and restored the ability to form tight barriers in 
alveolar epithelial cells from HIV-1 transgenic rats. Taken together, these new find-
ings argue that HIV-1-related proteins downregulate Nrf2 expression and/or activity 
within the alveolar epithelium, which in turn impairs antioxidant defenses and bar-
rier function, thereby rendering the lung susceptible to oxidative stress and injury. 
Furthermore, this study suggests that activating the Nrf2/ARE pathway with the 
dietary supplement sulforaphane could augment antioxidant defenses and lung health 
in HIV-1-infected individuals [38].
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5.10  Respiratory Viral Infections

Modulation of ROS production and oxidative stress contributes one of the therapeutic 
approaches in virus-induced lung infections. Use of small molecules like thiols, 
polyphenols, and antioxidant mimetics show effects on viral-induced ROS produc-
tion and oxidative stress. Also, compounds like triterpenoids, sulforaphane, and 
 isothiocyanates, increase endogenous antioxidant enzyme levels in RSV infection 
by stimulating Nrf2-dependent gene expression [39]. There may also be suppres-
sion of excessive superoxide production from NADPH oxidase 2 (Nox2), which is 
the primary enzymatic source of superoxide in mammalian inflammatory cells, 
because it markedly alleviates lung injury and virus replication caused by influenza 
A virus. So Nox2 oxidase inhibitors could be useful for suppression of virus-induced 
lung disease [8]. Mice lacking a functional phagocyte NADPH oxidase (Cybb tm1 
mice) or treated with the metalloporphyrin antioxidant manganese (III) tetrakis 
(N-ethyl pyridinium-2-yl) porpyhrin (MnTE-2-PyP) show heightened inflammatory 
infiltrates in their airways in response to pulmonary influenza infection. Raising the 
resting threshold of lung-resident antigen-presenting cells by modulating homeo-
static negative feedback loops may therefore provide generic protection against 
viral infectious disease, irrespective of the infective strain.

The treatment of lung infections caused by viruses like RSV, and bacteria like 
Pseudomonas aeruginosa may include resveratrol (3,5,4′ trihydroxystilbene) which 
is a natural polyphenolic compound that has antioxidant property. It helps in the 
attenuation of inflammatory response in bacteria infected cells. In vitro studies in 
A549 cells observed that resveratrol treatment significantly reduced ROS genera-
tion, human beta-defensin-2 expression, ICAM-1, increased glutathione peroxidase 
levels (also the markers of apoptosis), suggesting resveratrol as a protective thera-
peutic agent in lung infection [42, 59]. Long pentraxin 3 (PTX3) is a newly discov-
ered acute phase protein produced at the sites of infection and inflammation by 
tissue cells, macrophages, monocytes, and dendritic cells. PTX3 plays an important 
role in preventing infection of certain fungi, bacteria, and viruses in the lung [60]. 
Another drug, roflumilast is also found to attenuate the RSV infection in human 
differentiated bronchial epithelial cells [61]. It impeded the damage of ciliated cells 
and lowered the escalation of MUC5AC, CLCA1, IL-13, IL-6, IL-8, TNFα, and 
ICAM-1. Furthermore, it also inversed the decrement of Nrf2, HO-1, and GPx 
mRNA levels [61].

Lung infection caused by H1N1 Influenza A is found to be associated with 
uncontrolled inflammation and oxidative stress. FABP5 which belongs to the family 
of fatty acid-binding proteins (FABPs), acts as an anti-inflammatory mediator dur-
ing lung infection. FABP5 are small, highly conserved, cytoplasmic proteins that 
bind long-chain fatty acids and other hydrophobic ligands. They increase peroxi-
some proliferator-activated receptor gamma (PPAR-γ) activity resulting in reduced 
inflammation which shows the involvement of FABP5 in controlling the oxidative 
damage and inflammation during lung infection, making it a future therapeutic 
drug. Treatment with recombinant human thioredoxin-1 is also found to increase 
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the survival rate of murine model of influenza pneumonia. So thioredoxin-1 acts as 
an antioxidant and anti inflammatory molecule.

Interestingly, inhalation of recombinant human catalase (rhCAT) exerted protec-
tive effect by improving pathological process and by reducing the viral titer in lungs 
of mice exposed to influenza H1N1 viral pneumonia. Moreover, rhCAT also 
improved the serum ROS scavenger capacity [62]. Use of rhCAT had a limitation of 
its elimination from blood, hence, it was modified by coating with one of the active 
polymer, polyethylene glycol monomethyl ether (PEGrhCAT). The pharmacokinet-
ics in mice revealed that it had longer half life than native rhCAT, treatment with 
PEGrhCAT was found to be more effective than with the native form. As the 
PEGrhCAT caused reduction in viral replication, lung injury levels, and ROS 
 production, the molecule can be used as an adjuvant therapy to promote efficacy of 
anti viral drugs [63]. The use of hydrogen gas in saline has been used as therapeutic 
and prophylactic potential for the treatment of injury caused by inflammation and 
oxidative stress.

5.11  Natural Products as Anti-oxidants

The nutritional status plays a major role to maintain an optimal immune system. 
The active ingredients of the naturally derived agents may affect various domains 
suggesting an interdependence of optimal immune system and oxidative stress. 
Consumption of gold kiwi fruit leads to the reduction of plasma lipid peroxidation 
in those infected with upper respiratory tract infection symptoms. It may be possi-
bly attributed to the diet-derived antioxidants which control ROS generation [64].

Pretreatment of a heteropolysaccharide, RIWP, isolated from Radix isatidis 
enhanced murine alveolar macrophage survival by inhibiting the production of ROS 
and lipid peroxidation after stimulation with lipopolysaccharide. Upon treatment, 
the murine alveolar macrophages exhibited diminished generation of nitric oxide, 
prostaglandin E2, tumor necrosis factor-α and IL-6, and the mitochondrial membrane 
potential also returned to normal conditions [65].

There are reports on the therapeutic roles of some Chinese herbal medicine for 
the treatment of tuberculosis. The effects of Radix Ranunculi Ternati, Radix 
Sophorae Flavescentis, Prunella Vulgaris L., and Stellera Chamaejasme L. extracts 
have been found to have the capability to enhance cell-mediated immune response 
in a multi-drug resistant tuberculosis model [66]. Kampo (Traditional Japanese 
Herbal) medicine, Hochuekkito (TJ-41), have been used since they possess a prop-
erty to inhibit influenza virus replication by the regulation of interferon gamma 
[69]. The levels of GM-CSF and an antimicrobial peptide, defensin, are found  
to increase after TJ-41 treatment, so defensin might play a role in inhibiting virus 
replication [67].

Dioscorin, a Chinese herbal medicine possessing the effective antioxidant and 
anti-trypsin activities inhibited H2O2, a potent ROS engaged in lung and bronchial 
epithelium injury. The results of the study also suggested that the inhibition was 
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relayed by attenuation of H2O2 alteration on G2/M cell cycle arrest, induction of 
IκB, and reduction of NF-κB along with the inhibition of IL-8 secretion, and less 
changes in adhesion molecule expressions in H2O2-injured A549 cells [68].

In addition to the medicinal herbs, Wen-Pi-Tang extract also serves as a natural 
medicine to cure the lung injury caused by influenza virus. This virus is known to 
generate the xanthine oxidase (XO) activity of the lungs resulting in a higher level 
of oxygen-free radicals. Wen-Pi-Tang extract diminished the XO activity [69]. 
Another Chinese medicinal herb, Magnolia officinalis also possesses antioxidant 
activity [70]. Magnolol, the active compound of this herb, reduced the lipid peroxi-
dation intensity in plasma, liver, and lung of rats with sepsis [70]. A Chinese herbal 
formula, Qing-Fei-Tang, was found to attenuate the oxygen-free radicals that were 
generated after stimulation of healthy human leukocytes with opsonized zymosan. 
It also inhibited the release of slow reacting substance of anaphylaxis from guinea 
pig lung when challenged with antigen. In addition, this herbal remedy re- established 
the loss of saturated fatty acids in sputum and showed an improvement in lung 
inflammation [70].

5.12  Conclusions

Different pathogens which infect the lungs cause pulmonary inflammation and oxida-
tive stress. The activated neutrophils, macrophages, and eosinophils induce the produc-
tion of singlet oxygen and hydrogen peroxide, which damage the surrounding tissues 
and enhance production of ROS. In the presence of different infections, the host uses a 
variety of antioxidants that signal through different pathways, bring about enhanced 
transcription factor generation leading to control of the infection/inflammation/injury.

The challenge for future research lies to establish the antioxidants which can be 
used in the most efficient manner for lung infection-associated oxidative stress, 
and which of the wide range of current oxidative stress markers can we employ? 
There is an intensive ongoing search for markers which would identify the patients 
who are most likely to encounter adverse outcomes from various lung infections. 
There exists an enormous potential for not only the synthetic drugs, but also of natural 
compounds with reduced side effects as antioxidants.
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6.1            Introduction 

    Tuberculosis (TB) constitutes a huge global health burden, largely borne by the 
developing countries. As evidenced by tuberculin skin positivity, one third of 
the world’s population is infected by  Mycobacterium tuberculosis  (Mtb), the caus-
ative agent.    There were an estimated 8.7 million new cases and 1.4 million deaths 
from TB, including 0.43 million deaths in human immunodefi ciency virus (HIV)-
positive patients in the year 2011; India alone accounted for about 3.1 million TB 
prevalence and 0.3 million deaths from TB, including TB with positive HIV infec-
tion [ 83 ]. It is important to investigate the pathogenesis and immunology of TB to 
improve the disease management and control strategies. In spite of the numerous 
advances that have taken place in recent years, the mycobacterium remains enig-
matic and continues to pose a challenge.  
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6.2     Pathogenesis and Immunology of Tuberculosis 

 Tuberculosis, like other infectious diseases, represents a constant state of struggle 
between the host and the tubercle bacillus. Pathogenesis of TB can be described in 
various stages starting with the inhalation of Mtb, fi nally resulting in formation of 
granulomas which may either liquefy to produce primary TB or contain the Mtb to 
arrest the further progression [ 22 ]. The host cell-mediated immunity (CMI) tends 
to contain the disease with the help of activated macrophages. On the other hand, 
Mtb uses various strategies to withstand the potential bactericidal host defences and 
evolve as a successful pathogen causing active disease. Thus, the relative strengths of 
these opposing mechanisms fi nally determine the disease progression or arrest. 

 TB is controlled almost entirely by CMI involving macrophages whose function 
is coordinated by T lymphocytes. The activated alveolar macrophages, dendritic 
cells (DCs) and probably also the alveolar epithelial cells engulf the inhaled myco-
bacteria; the bacilli keep on replicating in the macrophages and DCs which fi nally 
burst to release the mycobacteria. These are engulfed by other macrophages and 
recruited mononucleus cells from the neighbouring blood vessels. The infl amma-
tory response spreads to the lymph nodes to initiate CMI and the T-cell activation. 

 The activated immune system is able to control the spread of TB in the majority of 
infected individuals. Both the innate and adaptive immune systems are involved in 
this process. The innate immunity consists of a complex interplay of various recep-
tors, macrophages and dendritic cells, natural killer (NK) cells and neutrophils. 
A large number of proinfl ammatory and anti-infl ammatory cytokines and chemokines 
bridge the innate and adaptive immunity [ 71 ].    The adaptive immunity involves 
CD4+/CD8+ T cells, regulatory T cells and memory T cells [ 19 ,  29 ,  75 ]. There is 
some recent evidence to support the role of B cell-mediated humoral immunity in 
protection against Mtb infection in mice [ 1 ,  48 ].  

6.3     Oxidative Stress in Tuberculosis 

 Granuloma formation in TB represents a component of host defence as it results in 
the containment of infection thus preventing the spread of tubercle bacilli within the 
same host as well as between the susceptible hosts. However, intracellular bacilli 
can be released from the granulomas due to cell death/necrosis caused primarily by 
oxygen free radicals produced by macrophages and other cells [ 4 ,  78 ,  81 ]. Oxidative 
stress results in cellular damage due to the oxidation of amino acid residues on pro-
teins, forming protein carbonyls [ 16 ], as well as oxidation of protein [ 11 ], ulti-
mately resulting in protein fragmentation [ 5 ]. 

 On the other hand, both nitrogen intermediates and oxygen radicals may also 
play an important role in the suppression of infection through mycobacterial inacti-
vation/killing. The pathogenesis of tuberculosis is fi nally determined by the balance 
between various mechanisms, such as (1) the generation of reactive oxygen free 
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radicals to kill the intracellular bacilli, (2) the antioxidant mechanisms employed by 
mycobacteria to escape the killing by free radicals in phagocytic cells and (3) anti-
oxidant mechanisms by host cells to prevent the tissue damage. This chapter is 
focused on the mechanism of generation of oxidative stress in TB patients, contribu-
tion of oxidative stress to progression/pathogenesis of disease, pathogen and host 
antioxidant mechanisms and role of antioxidants in the therapy of disease. 

 Despite the various host antioxidant mechanisms, the accumulation of free radi-
cals results in cellular and systemic oxidative stress [ 59 ]. Various studies have 
reported the increased levels of markers of oxidant-mediated tissue damage in the 
peripheral circulation of humans with active tuberculosis [ 62 ,  63 ]. Oxidative stress 
has also been implicated in the pathogenesis of lung fi brosis and lung dysfunction 
in tuberculosis patients, even following antimicrobial therapy [ 36 ,  41 ]. Besides the 
elevated levels of various by-products of free radical generation, depletion of vari-
ous antioxidants, e.g. ascorbic acid and glutathione, has also been reported in TB 
patients [ 47 ,  79 ], further aggravating the oxidative stress in these patients. These 
studies clearly show the association between excessive oxidative stress and active TB. 
Recently, a signifi cant correlation between high oxidant concentration and low con-
centration of antioxidants with varying bacillary load as well as severity of disease 
has been shown; it was also suggested that antioxidants supplementation may prove 
benefi cial as well as may help in fast recovery of TB patients [ 54 ]. In another study, 
it has been demonstrated that the oxidative stress index signifi cantly increased in 
untreated TB patients and decreased in TB patients on anti-tubercular therapy (ATT) 
with antioxidant supplementation. Hence, oxidative stress index can be considered 
as a novel marker in TB patients [ 21 ]. 

 In vitro, Mtb has been shown to be susceptible to hydrogen peroxide (H 2 O 2 )-
induced damage [ 53 ]. This reaction often referred to as ‘oxidative burst’ is further 
aggravated by chlorination in macrophages and neutrophils that increases the toxic-
ity of reactive oxygen species (ROS). At low concentrations, ROS are important for 
normal cellular functions by acting as signalling molecules in immunological 
response, blood circulation and endocrine functions [ 32 ]. During oxidative stress, 
the excess of ROS causes cell injury by oxidising various macromolecules includ-
ing proteins, lipids and DNA, thus assuming an important role in the pathogenesis 
of various diseases [ 17 ]. 

6.3.1     Role of Alveolar Macrophages 

 Alveolar macrophages represent host’s fi rst line of defence against  Mycobacterium 
tuberculosis . In the macrophages, Mtb is exposed to both oxygen-dependent and 
-independent mechanisms. In oxygen-dependent mechanisms, macrophages use 
ROS and reactive nitrogen intermediates (RNIs) to kill Mtb. Reactive oxygen and 
nitrogen intermediates have been widely reported as major antimicrobial  molecules 
produced by host during tuberculosis [ 41 ]. The rapid release of ROS and RNI in 
response to phagocytic stimuli is referred as respiratory burst/oxidative burst. In 
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response to these ROS, the host cells mount antioxidant responses. It is the 
balance between these two opposing responses that maintains cellular homeostasis. 
The production of ROS in excess of antioxidant capacity of host results in the 
oxidative stress.   

6.4     Hydrogen Peroxide 

 H 2 O 2  produced by macrophages via oxidative burst was the fi rst ROS identifi ed as 
effector molecule that mediated mycobactericidal effects of mononuclear phago-
cytic cells [ 81 ]. The role of ROS to kill Mtb in human TB is yet to be documented. 
Various studies have shown that Mtb infection results in macrophage accumulation 
and H 2 O 2  production in lungs and ascitic fl uid [ 68 ,  74 ]. The H 2 O 2  release was not 
found to be TB specifi c and there are contradictory reports regarding the ROS-
mediated killing of Mtb [ 13 ,  20 ]. Several studies have highlighted the role of oxy-
gen free radicals in host protection as well as various strategies explored by Mtb to 
avoid ROS and reactive nitrogen species (RNS) [ 40 ,  42 ,  78 ].    Comparison of 
murine knockout models lacking active NADPH oxidase (NOX) components 
with the wild- type strain indicated confl icting data among different laborato-
ries. Different studies have shown that Mtb growth was enhanced in the absence 
of active NOX [ 2 ,  20 ], whereas in another study, no difference was observed 
between knockout and wild- type mice in their ability to control Mtb infection [ 38 ]. 
The high incidence of tuberculosis in people with NADH oxidase genetic defect 
suggests the role of ROS in Mtb persistence [ 42 ]. On the contrary, a study in guinea 
pigs has demonstrated that microbicidal activity of macrophages for various strains 
of Mtb and  M. bovis  was not related to intensity of H 2 O 2  generation and respiratory 
burst [ 58 ]. A possible role of H 2 O 2  in intracellular communication during forma-
tion/dissociation of granulomas in the BCG-induced granulomatosis has been 
reported in a recent study [ 52 ]. 

 Both systemic and tissue oxidative stress were progressive and correlated with 
the loss of antioxidant mechanisms, suggesting the benefi t of antioxidant treatment 
of patients with tuberculosis [ 59 ]. Thus, it can be stated that besides ROS produc-
tion by host cells in response to mycobacterial infection, the host as well as the 
pathogen’s antioxidant mechanisms may also play an important role in the patho-
genesis of tuberculosis.  

6.5     Reactive Nitrogen Intermediates in TB 

 In response to mycobacterial infection, parallel with O 2  •−  radicals, another major 
antimicrobial pathway through inducible NO synthase (iNOS or NOS2) leads to 
increased production of NO [ 13 ,  14 ], which further react with each other to produce 
highly reactive OONO −  free radicals. The results of several studies using murine 
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models provide that NO is capable of killing mycobacteria [ 13 ,  14 ] and that iNOS- 
defi cient mice were highly susceptible to TB infection [ 38 ,  46 ]. The presence of 
increased iNOS protein and mRNA levels in bronchoalveolar lavage (BAL) speci-
mens from active pulmonary TB patients also suggests the role for NO in TB [ 56 ]. 
In our own laboratory, we saw a signifi cant depression of the respiratory burst 
response in the patient group compared to that in healthy controls [ 39 ]. On the other 
hand, the RNIs and citrulline levels were signifi cantly higher before therapy and 
returned to normal after 3 months of anti-tubercular treatment; supporting their role 
in the microbicidal activity of activated macrophages [ 39 ]. 

 Antimycobacterial effect of macrophages is known in the absence of oxidative 
burst suggesting the role of other mechanisms.    RNIs such as nitric oxide (NO), 
nitrate radical (NO 2 ) and nitrate (NO 3 ) are potent effector molecules of macrophage- 
mediated extracellular and intracellular cytotoxicity against various microorgan-
isms, including the mycobacteria [ 12 ]. Their role in human TB infection is however 
controversial. There are experimental data to suggest the putative antimicrobicidal 
role of NO and related RNI produced by human macrophages as well as the demon-
stration of high level expression of nitric oxide synthase in macrophages obtained 
from BAL fl uid of patients of active pulmonary TB [ 8 ,  56 ]   . 

6.5.1     Antioxidant Strategies by  Mycobacterium tuberculosis  

  Mycobacterium tuberculosis , in spite of being an aerobic bacterium, is also an 
intracellular pathogen that initially resides inside a membrane-bound phagosomal 
compartment of macrophages̶an environment subjected to oxidative and nitrosa-
tive stress. However, the mycobacterium has evolved a number of protective mecha-
nisms to cope with oxidative stress, responsible in the pathogenesis of tuberculosis. 
The presence of various protective enzymes, such as the catalase, superoxide dismutase 
(SOD), peroxidase–peroxynitrite reductase complex and thioredoxin–thioredoxin 
reductase system, causes neutralisation of oxygen and nitrogen free radicals. It has 
also been shown that the existence of specialised mechanism and pathways, 
e.g. those involved in DNA repair, protects the Mtb against the damage caused to 
various macromolecules by oxidative stress [ 26 ]. 

 Catalase peroxidise (KatG) is the enzyme system utilised by mycobacteria to 
detoxify H 2 O 2 .  Mycobacterium tuberculosis  has one catalase KatG that has cata-
lase, peroxidase and peroxynitritase activity [ 45 ] and has been shown to play a 
role in the virulence of Mtb. SOD is another protective enzyme which is a metal-
loprotein and is involved in the dismutation of oxygen free radicals into H 2 O 2  and 
molecular oxygen. There are two different types of SODs in Mtb; SOD A which 
is an iron containing enzyme (FeSOD) and SOD C, a copper and zinc containing 
enzyme (CuZnSOD). In various studies, both SOD A and SOD C have been 
shown to play a role in protecting Mtb against ROS [ 25 ,  61 ]. Deletion of sec A2 
gene that encodes a protein required for secretion of SOD A results in enhanced 
ROS production [ 65 ]. 
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 Mycothiol is a low-molecular-weight thiol in mycobacteria and functions like 
glutathione, which is not produced by mycobacteria. Sensitivity of mycothiol 
(MSH) mutants to oxidative stress suggests the role of mycothiol in maintaining the 
redox balance in mycobacterial cells in response to oxidative stress [ 9 ,  10 ]. 

 An orthologue for bacterial alkyl hydroperoxidases (AhpC) is encoded by 
mycobacterial  ahpC  gene [ 20 ]. It is a non-heme peroxiredoxin (Prx) utilised to 
detoxify organic peroxides by reducing them into less reactive alcohol derivatives 
[ 85 ]. Mycobacterial alkyl hydroperoxide reductase (AhpC) has been shown to pro-
tect the bacilli against both oxidative and nitrosative stress [ 50 ]. Similarly, another 
Prx system in Mtb is thioredoxin reductase (TPX) that has been shown to be highly 
effective in protecting the bacilli from host oxidative stress and has been recently 
shown to be involved in virulence [ 34 ].  Mycobacterium tuberculosis  is also known 
to contain two methionine sulphoxide reductases (MSRs) that are involved in the 
reduction of methionine sulphoxide to methionine and to protect against ROS and 
RNS [ 43 ]. 

 F 420  is a redox active enzyme cofactor which derives its name from the intrinsic 
420 nm absorption; various F 420 -dependent enzymes are known to be involved in 
oxygen detoxifi cation [ 67 ]. Various mycobacterial species including  M. leprae  are 
known to contain F 420  as well as unique F 420 -dependent glucose-6-phosphate dehy-
drogenase (   FGD). In  M. smegmatis , a non-pathogenic mycobacterial strain, FGD 
has been demonstrated to have a role in combating the oxidative stress [ 33 ]. 
Recently, it has been reported that F 420 -defi cient mutant of Mtb is hypersensitive to 
oxidative stress as well as bactericidal agents thus confi rming the role of F 420 - 
dependent antioxidant mechanism in the pathogenesis of tuberculosis by protecting 
the Mtb against the oxidative stress produced by host cells [ 31 ].  

6.5.2     Sensing of Oxidative Stress 
by  Mycobacterium tuberculosis  

 In bacteria, the oxidative/nitrosative stress is sensed by various transcription factors 
such as OxyR and SoxR. However, in Mtb, the prototypical homologue of SoxR 
is absent whereas OxyR is non-functional due to a number of mutations [ 24 ]. Two- 
component signal transduction systems are also used by many bacteria to allow 
them to respond rapidly to changes in their environment. These systems consist of 
a membrane-bound sensor histidine kinase, which in response to environmental 
stimulus undergoes auto-phosphorylation on a conserved histidine residue followed 
by transfer of phosphoryl group to a conserved aspartate residue on the downstream 
response regulator which is thereby activated as either a positive or a negative tran-
scriptional regulator. 

 The genome of Mtb has been shown to encode 11 complete pairs of two- 
component signal transduction systems [ 18 ]. Some of these sensors, such as heme- 
based DosS and DosT, are unique to mycobacteria, whereas others, such as the 
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WhiB proteins and anti-σ factor RsrA, are unique to actinobacteria [ 6 ]. Recent 
studies have demonstrated the role of a family of Fe-S cluster containing proteins 
called WhiB proteins that are putative transcription factors and have been suggested 
to play a functional role in Mtb similar to OxyR and SoxR in other bacteria [ 28 ]. 
Additionally, the DOS R-S/T two-component heme sensor system implicated in the 
virulence of Mtb is the most well-characterised signalling system in Mtb that is 
known to sense various gases including carbon monoxide (CO), nitric oxide (NO) 
and oxygen (O 2 ) [ 40 ].  

6.5.3     Host Antioxidant Mechanisms 

 The antioxidant capacity of host cells is maintained by various intracellular and 
circulating proteins/non-protein molecules and phase II detoxifi cation enzymes. 
The induction of expression of these enzymes requires binding of specifi c inducers 
to the antioxidant response element (ARE) that is present in the promoter regions of 
genes encoding phase II enzymes. The transcriptional activation of ARE-dependent 
phase II antioxidant enzymes is brought about by a nuclear erythroid 2 p45-related 
factor 2 (Nrf2), a redox-sensitive transcription factor. Under normal physiological 
conditions, Nrf2 is present in the cytoplasm whereas it translocates to nucleus under 
oxidative stress leading to transcriptional activation of phase II antioxidant enzymes 
including NAD(P)H dehydrogenase quinone I (NQO1) and glutamate-cysteine 
ligase̶an enzyme involved in synthesis of an antioxidant tripeptide glutathione 
[ 51 ,  84 ]. In extrapulmonary tuberculosis in guinea pigs, there is progressive oxida-
tive stress, particularly due to the defect in host antioxidant defences that can be 
restored by antioxidant therapy. These investigators also showed that the therapeutic 
strategies that reduce oxidative stress-mediated tissue damage may prove to be ben-
efi cial as adjunct therapy to ATT [ 59 ]. 

 The host antioxidant defence mechanism, in response to oxidative stress, could 
be executed either directly or indirectly by a number of protein/non-protein mole-
cules. In direct activity, the antioxidants scavenge the peroxidants ROS and prevent 
the initiation of ROS-mediated reactions. These include SOD, catalase, glutathione 
peroxidase (GPx) and Prxs. GPx and Prx are thiol containing compounds that use 
glutathione (GSH) and thioredoxin (Trx), respectively, as substrates. Besides these 
direct enzymatic antioxidants, vitamin C (ascorbic acid), vitamin E (alpha tocopherol), 
beta carotene and lipoic acid are some of the non-enzymatic antioxidants. 

 Indirectly, antioxidants facilitate the excretion of oxidised reactive metabolites, 
e.g. the aldehydes, quinines and peroxides. Alternatively they can also participate 
in the synthesis of thiol molecules that serve as substrate for various direct antioxi-
dant phase II detoxifi cation enzymes, e.g. glutathione- S -transferase, NADPH qui-
none oxidoreductase (NQO1), glutathione cysteine ligase (GCL), glutathione 
synthetase (GS), gamma glutamyltranspeptidase (GGT), UDP glucuronyltransfer-
ase (UGT), Trx reductase and heme oxygenase. Another non-protein antioxidant 
is a thiol tripeptide molecule glutathione that is present in both oxidised (GSSG) 
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and reduced (GSH) forms in all mammalian cells and is involved in the mainte-
nance of redox potential by eliminating the free radicals [ 7 ]. Earlier it has been 
reported that in the whole blood of Mtb-infected guinea pigs, reduced-glutathione 
(GSH) levels were markedly decreased as the infection progressed which was 
refl ected by a signifi cant decrease in the GSH/GSSG ratio [ 59 ]. These authors also 
demonstrated an overall increase in the total glutathione expression in lung lesions 
which was indicative of the host response to oxidative stress as a consequence of 
Mtb infection [ 59 ]. 

 Heme oxygenase (HO) is a key stress-response enzyme that degrades heme 
molecules, thereby releasing free iron, carbon monoxide (CO) and biliverdin that 
have anti-infl ammatory and antioxidant properties [ 30 ,  77 ]. Increased expression of 
HO-1 has been observed in the plasma of individuals with a variety of other pulmo-
nary pathologies, including acute respiratory distress syndrome, chronic obstructive 
pulmonary disease and asthma [ 55 ]. Epiphanio et al. [ 27 ] reported that HO-1 con-
tributes to the establishment of malaria infection by decreasing the host infl ammatory 
response to pre-erythrocytic stages, while Shiloh et al. [ 70 ] reported that HO-1 and 
CO induce the ‘dormancy regulon’ of Mtb and may contribute to latency in tubercu-
losis infection. Recently, Andrade et al. [ 3 ] reported the increased plasma levels of 
HO-1 in pulmonary TB patients. Considering the intracellular localisation of HO-1, 
the increased levels of this enzyme could be derived from injured tissues, thus sug-
gesting the strong association of HO-1 with both bacterial burden and disease sever-
ity in the lung. HO-1 levels have been suggested [ 3 ] as a potentially useful parameter 
for distinguishing active from latent or treated pulmonary tuberculosis. A positive 
correlation between HO-1 levels and plasma IL-10 levels and negative correlation 
with TNF-levels were also reported [ 3 ].   

6.6     Drug-Resistant Tuberculosis 

 Antibiotic resistance has been shown to get accelerated by ROS induced by antibac-
terial stimulation [ 82 ]   . In a study on the signifi cance of oxidative DNA damage in 
drug-resistant  Escherichia coli  and  Mycobacterium tuberculosis , the ROS damage 
was suggested to play a critical role [ 82 ]. Correlation between resistance to fi rst-line 
anti-tubercular drugs (in particular isoniazid) and reduced NO susceptibility has been 
shown in clinical  Mycobacterium tuberculosis  isolates from 50 sputum-smear- and 
culture-positive patients [ 35 ]. 

 In other studies the mutation rate of Mtb in response to oxidative stress was not 
increased in strains with defi cient catalase and peroxidase activity (DIC). 
Interestingly, however, there were mutations in unusual locations similar to those 
seen in clinical isoniazid-resistant strains [ 57 ]. 

    Mtb engulfed by macrophages are shown to survive and grow by inactivation of 
ROS and RNIs in the presence of several Mtb gene products [ 86 ]. For example, 
KatG, lipoarabinomannan, SOD proteins and others protect Mtb by one or the other 
mechanisms [ 6 ,  49 ]. 
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6.6.1     Role of Antioxidants in Therapeutic Strategies for TB 

 Vitamin C, an essential nutrient for some mammals, has potent antioxidant as well 
as pro-oxidant properties. There are confl icting reports suggesting either benefi cial 
or nil effect of vitamin C in the treatment of TB [ 73 ]. Vitamin C could sterilise 
Mtb cultures in vitro [ 60 ]. Correlation between the high vitamin C content of some 
medicinal plant extracts and their activity against Mtb has been shown in a recent 
study [ 76 ]. A breakthrough study has reported the pro-oxidant activity of vitamin C 
against drug-susceptible, multi-drug-resistant (MDR) and extensive drug-resistant 
(XDR) Mtb [ 80 ]. The sterilising effect of vitamin C on Mtb in this study was 
observed to be mediated by high iron concentration, ROS production and DNA 
damage. These authors proposed for further studies on the benefi ts of a high vitamin 
C diet in TB-treated patients and on the development of bactericidal drugs based on 
ROS production. 

 There is a potential role of various food supplements and other products which 
enhance the activity and production of NO and other free radicals. Arginine-rich 
food (pea nuts) in a subgroup of HIV+/TB patients showed signifi cantly better cure 
rate of anti-TB treatment [ 66 ]. On the other hand, low initial levels of NO in exhaled 
air were associated with a poor cure rate. Some of the novel copper complexes, 
studied for their SOD and antioxidant activities, have been found to promote DNA 
damage in the presence of oxidants and demonstrate anti-tuberculosis activity [ 37 ]. 
Supplementation of anti-tubercular treatment with micronutrients, vitamin E and 
selenium was shown to reduce oxidative stress in TB patients [ 69 ]. 

 Oxidative stress has been blamed for hepatotoxicity caused by several fi rst-line 
anti-TB drugs such as INH, rifampicin and pyrazinamide. Herbal drugs like cur-
cumin, silymarin and  N -acetyl cysteine (NAC) in in vitro model of human hepato-
cellular carcinoma cell lines (HepG2) showed hepato-protective effect during 
treatment of HepG2 with ATT drugs [ 72 ]. Such observations may support the adju-
vant role of antioxidant drugs with anti-TB treatment. TB patients show lower iNOS 
expression and NO production, which however tend to increase during anti-TB 
treatment [ 23 ]. 

 The Nrf2 pathway, which is frequently targeted therapeutically to control infl am-
matory disease conditions related to oxidative stress, has not been investigated in 
the context of tuberculosis [ 15 ,  44 ]. Several naturally occurring compounds such as 
isothiocyanates and thiols have been shown to induce this pathway and increase 
antioxidant and anti-infl ammatory responses. NAC is one such compound that is 
known to induce Nrf2 translocation and activation of antioxidant gene transcription 
in treated HepG2 cells [ 15 ]. It is an FDA-approved drug that is used in an aerosol 
form (Mucomyst ® ) as a mucolytic agent in patients with cystic fi brosis or chronic 
airway disease and is one of the most commonly used ROS scavenger/antioxidant 
drugs currently used clinically and in preclinical trials [ 64 ]. 

 Currently, NAC is being tested in a human clinical trial to counteract oxidant- 
mediated liver toxicity associated with tuberculosis drug therapy. In a recent report, 
the treatment of Mtb-infected guinea pigs with NAC partially restored blood 
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glutathione concentrations, and serum total antioxidant capacity, while it decreased 
spleen bacterial counts, lung and spleen lesion burden and the severity of lesion 
necrosis [ 59 ]. These data suggest that the progressive oxidative stress during experi-
mental tuberculosis in guinea pigs is due in part to a defect in host antioxidant 
defences, which can be partially restored with antioxidant treatment. Therefore, the 
therapeutic strategies that reduce oxidant-mediated tissue damage may potentially 
be benefi cial as an adjunct to therapy in the treatment and prevention of tuberculosis 
in humans [ 59 ]. 

 In conclusion, the toxic oxygen and nitrogen species are shown to play an impor-
tant role in the pathogenesis of TB and damage to different organs. There is some 
evidence to suggest the benefi cial use of antioxidants such as vitamin C and NAC in 
treatment of TB and anti-TB drug toxicity.      
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     Abbreviations 

   4HNE    4-Hydroxy-2-nonenal   
  FEV 1     Forced expiratory volume in 1 second   
  GSH       Glutathione   
  GST    Glutathione- S -transferase   
  H 2 O 2     Hydrogen peroxide   
  HDAC    Histone deacetylase   
  IL    Interleukin   
  MDA    Malondialdehyde   
  NF-κB    Nuclear factor-κB   
  NOX    NADPH oxidase   
  Nrf2    Nuclear erythroid-2-related factor 2   
  ROS    Reactive oxygen species   
  SOD    Superoxide dismutase   
  TGF    Transforming growth factor   

7.1           Introduction 

 Chronic obstructive pulmonary disease (COPD) is an increasing global health 
 problem, which is now the third leading cause of death worldwide [ 55 ]. It currently 
affects around 10 % of the population of over 45 years but this rises to 50 % in 
heavy smokers and it has been estimated that the cumulative lifetime risk of 
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developing is now over 25 % [ 34 ]. The increase in COPD globally is greatest in low 
income countries, where indoor air pollution, such as exposure to biomass smoke, 
is as common as cigarette smoking as a risk factor [ 77 ,  78 ]. The major aetiological 
factor driving this disease is likely to be increased oxidative stress in the lungs 
 following long-term exposure to cigarette smoke or the combustion products of 
biomass fuels [ 50 ]. Oxidative stress arises as a result of endogenous antioxidant 
defences being impaired and/or overwhelmed by the presence of reactive oxygen 
species (ROS). COPD is characterized by chronic infl ammation and fi brosis of the 
small airways and destruction of the lung parenchyma (emphysema) [ 39 ,  58 ]. 
A striking feature of COPD is its failure to resolve when exposure to cigarette 
smoke has stopped [ 33 ], which has led to the suggestion that other endogenous fac-
tors, such as autoimmunity or persistent infection, may also be driving the disease 
[ 4 ]. Oxidative stress appears to drive many of the pathogenetic mechanisms involved 
in COPD and its progression (Fig.  7.1 ).

7.2        Persistent Lung and Systemic Oxidative Stress in COPD 

 There is evidence for persistent oxidative stress in COPD patients, particularly 
 during acute exacerbations. Alveolar macrophages from COPD patients are more 
activated and release increased amounts of ROS in the form of superoxide anions 
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  Fig. 7.1    The many effects on increased oxidative stress in COPD. Oxidative stress may be 
increased in COPD by a reduction in the transcription factor Nrf2, activation of NADPH oxidases 
(NOX), myeloperoxidase (MPO) and reduced superoxide dismutase (SOD), which may be trig-
gered by infl ammatory stimuli. Oxidative stress is a key mechanism that drives the development 
and progression of COPD through activation of the pro-infl ammatory transcription factor nuclear 
factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK), generation of autoantibodies 
to carbonylated proteins, reduced expression of sirtuin-1, DNA damage, reduced histone deacety-
lase (HDAC)-2 expression, reduced activity of antiproteases and increased release of transforming 
growth factor (TGF)-β. Oxidative stress in COPD may be reduced by several approaches (shown 
in  grey boxes )       
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and hydrogen peroxide (H 2 O 2 ) [ 79 ]. Similarly, activated peripheral blood neutrophils 
from COPD patients release increased amounts of ROS, particularly during exacer-
bations [ 65 ]. Lung tissue from COPD patients shows increased lipid peroxidation, as 
measured by 4-hydroxy-2-nonenal (4HNE) [ 73 ]. There is an increased concentra-
tion of the volatile product of lipid peroxidation ethane in exhaled breath of COPD 
patients and this is correlated with disease severity [ 69 ]. COPD patients have 
increased concentrations of H 2 O 2 , malondialdehyde (MDA), 4HNE and 8-isoprostane 
in exhaled breath condensate [ 10 ,  22 ,  28 ,  62 ] and these are further increased during 
exacerbations [ 11 ,  70 ]. The increased markers of oxidative stress remain elevated 
in ex-smokers, indicating that they are derived from endogenous oxidative stress, 
presumably refl ecting persistent lung infl ammation [ 62 ]. Increased oxidative and 
nitrative stress result in the formation of peroxynitrite, which is increased in exhaled 
breath condensate of patients with COPD [ 68 ]. This may also be refl ected by an 
increase in tyrosine nitration, as a result of peroxynitrite, in induced sputum and 
lungs of patients with COPD [ 42 ,  75 ]. Oxidative stress is also increased in skeletal 
muscle of patients with COPD and may contribute to muscle weakness [ 8 ,  9 ]. 

 In contrast, levels of the endogenous antioxidant glutathione are lower in BAL 
fl uid from COPD patients with frequent exacerbations compared to those with 
 stable COPD [ 31 ,  72 ].    Extracellular superoxide dismutase (SOD3) polymorphisms 
are more frequent in COPD and their expression is increased in sputum of COPD 
patients, although there is reduced expression around small airways [ 74 ,  88 ].  

7.3     Source of Oxidative Stress in the Lung 

 The lung is particularly vulnerable to injury from environmental oxidative stress 
due in part to its anatomical structure. It is constantly exposed to sources of endog-
enous oxidative stress generated by mitochondrial respiration and infl ammatory 
responses to bacterial and viral infections within the lung. The environmental 
sources of airborne oxidative stress include oxidant gases, ultrafi ne particulate 
material and nanoparticles from industrial pollution and vehicular-exhaust fumes. 
However, the most important risk factor in causing COPD in the Western world is 
cigarette smoking, whereas in developing countries inhalation of combustion prod-
ucts from enclosed cooking fi res (biomass fuels) being an important additional risk 
factor [ 77 ,  78 ]. 

 Whilst exposure to cigarette smoke can drive the onset of COPD, once the 
 disease has become established, cessation of smoking does not stop the continued 
presence of oxidative stress and progression of disease [ 33 ,  54 ]. The continued pres-
ence of oxidative stress most likely arises from endogenous sources such as acti-
vated neutrophils and macrophages as well as lung epithelial cells. Indeed lung 
epithelial cells of COPD patients produce oxidative stress derived from mitochon-
drial respiration [ 86 ]. Other sources of intracellular ROS include the cytoplasmic 
ROS generating enzymes, such as NADPH oxidase (NOX) and the xanthine/ 
xanthine oxidase system as well as the myeloperoxidase (MPO), levels of which are 
all elevated in COPD patients [ 48 ,  52 ]. 

7 Oxidative Stress in COPD



118

 Superoxide radicals that are produced endogenously are relatively weak oxidizing 
agents but are rapidly converted to other more damaging ROS (Fig.  7.1 ), such as the 
hydroxyl radical and H 2 O 2 , or the very powerful and damaging peroxynitrite radical 
formed when in the presence of nitric oxide [ 68 ]. Similarly MPO, released from 
activated neutrophils which accumulate in the lungs of COPD patients, produces 
very destructive hypochlorous acid. Hypochlorous acid chlorinates tyrosine  residues 
in proteins, with the formation of 3-chlorotyrosine, which is increased in sputum of 
COPD patients [ 66 ]. However, in healthy cells intracellular antioxidant defences are 
able to effi ciently mop up these damaging ROS, thus limiting their cellular effects.  

7.4     Carbonyl Stress in COPD 

 ROS generation may result in the formation of reactive carbonyls through lipid per-
oxidation and glycoxidation of sugars, leading to the formation of several aldehydes 
that result in protein carbonylation (Fig.  7.2 ) [ 64 ]. This accumulation of reactive 
carbonyls and subsequent protein carbonylation has been commonly referred to as 
‘carbonyl stress’. It is predominantly associated with chronic disease and with ageing 
[ 25 ]. Unlike other post-translational modifi cations, protein carbonylation is non-
enzymatic and targets specifi c peptide residues, such as lysine, arginine, cysteine 
and histidine. Protein carbonylation is increasingly recognized as a major driver of 
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  Fig. 7.2    Oxidative and carbonyl stress in COPD. Oxidative stress causes lipid peroxidation result-
ing in the formation of reactive aldehydes, such as 4-hydroxy-2-nonenal. These carbonylate 
 proteins result in the formation of neo-antigens that may then elicit an antibody response, which 
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the underlying pathology associated with many chronic diseases. It is present in both 
smokers and COPD patients [ 51 ]. Increased levels of free carbonyls, such as MDA 
and 4HNE, products of lipid peroxidation, have also been detected in the lungs of 
COPD patients [ 73 ]. Levels of carbonyl stress are correlated with disease severity as 
measured by the decline in forced expiratory volume in 1 second (FEV 1 )   . Like many 
post-translational protein modifi cations, protein carbonylation can modify protein 
function, disrupting normal cell function and physiological mechanisms.

7.5        Antioxidant Defences in the Lung 

 Because the lung is constantly exposed to both external and endogenous sources of 
oxidative stress, it has evolved a number of effi cient antioxidant defensive strate-
gies, of which glutathione (GSH) plays an important part. Moreover, up to 20 % of 
all glutathione produced is found within the mitochondria in order to neutralize 
endogenous ROS production as a by-product of metabolism [ 12 ]. Protecting the 
exposed surface of the lung from the environment is the epithelial lining fl uid, which 
contains several antioxidants that include ascorbic acid (vitamin C), α-tocopherol 
(vitamin E) and uric acid. Larger molecules, such as albumin and mucin, can also 
act as sacrifi cial antioxidants due to the presence of exposed sulfhydryl groups. 
Several epidemiological studies have shown a clear association between reduced 
levels of the antioxidants in the lung, such as α-tocopherol and ascorbic acid, and 
deteriorating pulmonary function in COPD [ 40 ]. No studies to date have shown that 
dietary supplementation with antioxidants leads to clinical improvement [ 85 ]. 
However, a 10-year follow-up study did fi nd that it reduced the risk of developing 
chronic lung disease by 10 % [ 2 ] and lowered carbonyl stress levels in the systemic 
circulation [ 26 ]. 

 The exposure of airway epithelial cells from healthy subjects to acute oxidative 
stress triggers increased GSH synthesis through up-regulation of the expression and 
activity of a key enzyme in GSH synthesis, glutamylcysteine ligase [ 80 ]. However, 
this enzyme is reduced around the central bronchial epithelium and in alveolar 
 macrophages from smokers and patients with COPD [ 38 ], suggesting a defective 
regulatory mechanism.    Similar differential responses between COPD and control 
subjects were apparent with other GSH-dependent antioxidant enzymes, glutathione-
S   - transferase P1 isoenzyme (GSTP1), glutathione- S -transferase M1 (GSTM1) and 
glutathione peroxidase [ 84 ]. A genetic deletion mutation in GSTM1 is associated 
with the development of emphysema in smokers and increased susceptibility to 
developing COPD [ 17 ]. Similarly, genetic polymorphisms in the GSTP1 and epox-
ide hydrolase have been associated with increased risk of emphysema [ 29 ]. 

 Transforming growth factor (TGF)-β expression is increased in COPD and 
inhibits the expression of the antioxidant enzymes Mn-SOD (SOD2) and catalase in 
 airway smooth muscle cells [ 61 ]. Both these enzymes, which are critical for neu-
tralizing mitochondrial-derived ROS, are under the control of the transcription 
factor FOXO3. Moreover, a defi ciency in FOXO3 activity has previously been 
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associated with COPD [ 41 ]. Gene polymorphisms for SOD2 associated with reduced 
enzyme expression have also been associated with COPD [ 71 ]. Similarly, polymor-
phisms in SOD3 have also been linked to both reduced lung function in COPD [ 24 ] 
and  protection against the development of COPD in smokers when SOD3 activity is 
enhanced [ 89 ]. Over 200 cellular antioxidant and detoxifi cation enzymes are under 
the control of the transcription factor nuclear erythroid-2-related factor 2 (Nrf2), 
which regulates gene expression through binding to antioxidant response elements 
(ARE) within the promoters of the many antioxidant and cytoprotective genes [ 19 ]. 
COPD patients have reduced expression of Nrf2 responsive genes due to reduced 
Nrf2 activity [ 56 ,  57 ] and this may be the consequence of increased acetylation of 
Nrf2 as a reduction of histone deacetylase-2 (HDAC2) activity.  

7.6     Oxidative Stress and Infl ammation in the Airways 

 At least 50 different cytokines and chemokines are secreted in the lungs of patients 
with COPD [ 5 ].    Many of the intracellular signalling pathways triggering and/or driving 
the release of these infl ammatory mediators are sensitive to oxidative stress as they 
incorporate redox-sensitive molecular targets, such as the transcription  factor nuclear 
factor-κB (NF-κB), and signalling molecules such as Ras/Rac, Jun-N- terminal kinase 
(JNK), p38 mitogen-activated protein kinase (MAPK) and  protein tyrosine phospha-
tases. Oxidative stress can activate the NF-κB pathway at many levels and NF-κB 
expression and activation are increased in COPD and correlates with airfl ow limitation 
[ 30 ]. Moreover, ROS itself also act as an intracellular second messenger as infl amma-
tory stimuli induce micro-oxidative bursts which are essential for cellular activation. 
Carbonyl stress in the form of electrophilic carbonyls can also impact on many different 
signalling pathways. As with oxidative stress, this is propagated through the targeting 
of critical cysteine residues in susceptible signalling molecules [ 37 ]. 

 Oxidative stress also activates TGF-β signalling pathways, which themselves 
induce oxidative stress [ 36 ,  53 ]. This is enhanced by the inhibitory effect of TGF-β 
on Nrf2 activity and reduced expression of endogenous antioxidants [ 60 ]. 

 Oxidative stress increases the expression of matrix metalloproteinase-9 (MMP9), 
a key elastolytic enzyme involved in emphysema, and further enhances elastolysis 
through oxidative inactivation of α1-antitrypsin and secretory leukoprotease inhibitor, 
thereby enhancing the activity of neutrophil elastase [ 82 ,  87 ].  

7.7     Corticosteroid Resistance Due to Oxidative Stress 

 The ability of corticosteroids to repress pro-infl ammatory gene expression is also 
impaired in COPD as a result of oxidative stress [ 6 ,  7 ]. Oxidation, carbonylation 
and nitration reduce the activity and expression of HDAC2, which is essential for 
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the suppression of activated infl ammatory genes and the anti-infl ammatory actions 
of corticosteroids (Fig.  7.3 ) [ 45 ,  46 ]. The reduction of HDAC2 after oxidative stress 
may be due to nitration of tyrosine residues at the catalytic site and at the C terminal end 
of the molecule, leading to its ubiquitination and destruction by the proteasome [ 67 ]. 
Oxidative stress also activates the enzyme phosphoinositide-3-kinase-δ (PI3Kδ), 
which results in phosphorylation and inactivation of HDAC2 [ 83 ].

7.8        Oxidative Stress and Accelerated Ageing in COPD 

 Patients with emphysema appear to have acceleration of the normal lung ageing 
process and therein increasing evidence for cellular senescence in COPD [ 44 ]. This 
appears to be due, at least in part, to a reduction in endogenous anti-ageing mole-
cules as a result of oxidative stress. Sirtuin-1 is a protein deacetylase that is linked 
to anti-ageing effects through genomic stabilization and there is a marked reduction 
in its expression in lungs and peripheral macrophages of COPD patients that is 
related to disease severity [ 63 ]. Oxidative stress reduces sirtuin-1 enzyme activity 
and expression and this is associated with increased acetylation of NF-κB and 
increased expression of MMP9, a key enzyme involved in elastin degradation in 
emphysematous lung [ 63 ].  
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  Fig. 7.3    Oxidative stress induces corticosteroid resistance in COPD. Oxidative stress activates 
phosphoinositide-3-kinase-δ (PI3Kδ) which phosphorylates Akt and subsequently histone deacet-
ylase (HDAC)-2, which is inactivated and ubiquitinated, so that it is degraded by the proteasome. 
Oxidative and nitrative stress form peroxynitrite which nitrates tyrosine residues (NO-Tyr) on 
HDAC2, resulting in its inactivation and ubiquitination. Reduced HDAC2 activity and expression 
prevent corticosteroids from switching off multiple activated infl ammatory genes in COPD lungs       
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7.9     Oxidative Stress and Autoimmunity in COPD 

 Accumulating evidence has shown that there is an autoimmune component in 
COPD [ 23 ,  49 ]. Until recently, a mechanistic link between exposure to oxidative 
stress and developing autoimmunity in COPD was not established. However, auto-
antibodies against carbonyl-modifi ed self-proteins, as a result of oxidative stress, 
are elevated in COPD serum, and increase with disease severity [ 51 ]. Since these 
autoantibodies are complement fi xing they could contribute to parenchymal lung 
destruction. Carbonyl-modifi ed proteins are highly immunogenic and can result 
in autoimmunity. Carbonyl-modifi ed proteins are recognized by the innate immune 
system through pattern recognition receptors that are expressed on antigen- 
presenting cells, such as macrophages and dendritic cells whereupon these potent 
immunogens are processed and re-expressed in association with MHCII, thereby 
facilitating the activation of an acquired immune response [ 3 ]. Indeed, COPD 
patients exhibit a strong type 1 immune response in the lower airways with the pul-
monary accumulation of Th1 cells and dendritic cells in the small airways of COPD 
patients, expressing increased amounts of MHCII [ 39 ]. However, it is not yet certain 
whether this autoantibody response to oxidatively modifi ed protein epitopes in 
COPD is destructive, protective or simply a bystander effect. However, the autoan-
tibodies against carbonyl-modifi ed protein were of a potentially destructive IgG1 
isotype and evidence of corresponding immunoglobulin (IgG) and complement 
(C3) deposition have been observed in COPD [ 32 ,  51 ]. 

 Besides oxidative stress creating the essential neo-antigens, it also helps to drive 
the infl ux of immune cells necessary to recognize and process these neo-antigens. 
Increased oxidative stress in the lungs causes the release of CCL20 and CCL2, which 
in turn triggers the recruitment of dendritic cells, monocytes and lymphocytes. Th17 
cells may orchestrate this response and there is evidence for their activation in COPD 
lungs. Interleukin (IL)-18 concentrations are increased in COPD patients and IL-18 
signalling is enhanced by oxidative stress [ 43 ].  

7.10     Oxidative Stress and DNA Damage 

 Oxidative stress causes direct damage to DNA. There is an increase in the expres-
sion of 8-hydroxy-2-deoxyguanosine, a biomarker of oxidative damage of DNA in 
lung of normal smokers and patients with COPD, presumably refl ecting the oxida-
tive stress of cigarette smoking [ 14 ]. There are normally effi cient molecular mecha-
nisms for DNA repair and apurinic/   apyrimidinic(AP) sites are common lesions 
in DNA during the course of repair of oxidative bases. In lung of normal smokers an 
increase in AP sites refl ects active DNA repair, whereas in lungs of COPD patients 
there is no such increase, indicating a defect in DNA repair in COPD. In addition 
nuclear expression of the DNA repair protein Ku86 was signifi cantly reduced in 
COPD compared to normal smoker lungs, indicating a defect on double-stranded 
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DNA repair in COPD. Furthermore, loss of Ku86 was also found in a mouse model 
of COPD and in human bronchiolar epithelial cells after exposure to oxidant stress. 
Knock down of Ku86 mimicked the defect in AP response to oxidative stress. This 
defect in COPD repair as a result of oxidative stress may account for the increased 
prevalence of lung cancer in patients with COPD compared to smokers without 
airway obstruction [ 1 ].  

7.11     Therapeutic Implications 

 As discussed above, oxidative stress is a major driving mechanism for the patho-
physiology of COPD, so reducing oxidative stress is an important therapeutic 
 strategy [ 13 ]. This may be achieved by exogenous antioxidants or by enhancing 
endogenous antioxidants.  N -acetylcysteine is a mucolytic agent that also has anti-
oxidant effects through increasing glutathione concentrations but in a large clinical 
trial was ineffective in reducing exacerbations or disease progression in COPD 
patients [ 27 ]. However, patients not treated with inhaled corticosteroids did obtain 
some benefi t in reducing exacerbations. Carbocisteine, another mucolytic therapy 
that has antioxidant effects, showed a small reduction in exacerbations in untreated 
COPD patients [ 90 ]. A related drug erdosteine also has some evidence of clinical 
benefi t in COPD patients, although the effects and the studies are small [ 15 ]. One of 
the problems with glutathione-based antioxidants that have a thiol structure is that 
they are inactivated by oxidative stress, which prompted a search for alternative 
antioxidant molecules. 

 Dietary antioxidants include vitamin C, vitamin E, resveratrol and fl avonoids 
such as quercitin, but so far improving dietary antioxidant intake has not been 
shown to improve lung function of clinical features of COPD [ 85 ]. Other antioxi-
dants include SOD mimetics, such as AEOL 10113 [ 16 ], and nitrone spin-trap 
 antioxidants, such as NXY-059 [ 18 ]. However these antioxidants either have had 
toxicological problems or were discontinued for other reasons. There are several 
NOX isoenzyme inhibitors now in development and some of these are entering 
clinical trials [ 21 ,  47 ]. There is a need to block mitochondrial sources of ROS so 
that cell-permeable drugs may be necessary. MPO may contribute to the oxidative 
stress produced by neutrophilic infl ammation and a selective MPO inhibitor, the 
2-thioxanthine ADZ5904, reduces oxidative stress and reduces the development of 
emphysema in guinea pigs exposed to cigarette smoke [ 20 ]. However this drug has 
been discontinued for unknown reasons. 

 Perhaps the most encouraging approaches to antioxidant therapy lie with the use 
of new NRf2-activators, which activate multiple antioxidant genes and address 
the defect on Nrf2 response to oxidative stress that appears to occur in COPD cells. 
The Nrf2 activator sulforaphane denitrosylates HDAC2 and increases its activity in 
alveolar macrophages from COPD patients and in cigarette smoke-exposed mice, 
but is ineffective in Nrf2 −/−  knock-out mice, indicating that its effects are mediated via 
Nrf2 activation [ 57 ]. Sulforaphane, which occurs naturally in cruciferous vegetables 
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such as broccoli, reacts with Cys residues of the associated protein Keap1 in the 
cytoplasm to form thioacyl adducts so that Nrf2 translocates to the nucleus to switch 
on antioxidant genes. A clinical trial of sulforaphane in COPD patients is currently 
in progress. A synthetic triterpenoid bardoxolone methyl (CDDO) is effective in a 
cigarette smoke-exposed mouse model of COPD [ 81 ], but a phase 3 clinical trial in 
renal disease was terminated due to adverse effects and increased mortality [ 76 ]. 
Dimethyl fumarate (BG-12) is also an Nrf2 activator and has been effective in phase 
3 clinical trials in multiple sclerosis, although side effect such as fl ushing, nausea 
and diarrhoea is reported [ 35 ]. However, these Nrf2 activators may lack specifi city 
and there is a search for drugs that act on the pathways leading to defective Nrf2 
function in COPD, such as the PI3Kδ-HDAC2 pathway [ 59 ].  

7.12     Conclusions 

 Elevated levels of ROS are found in COPD and these may be associated with 
increased infl ammation, airway remodelling, autoimmunity, corticosteroid resis-
tance and cellular senescence. In addition systemic oxidative stress may also be a 
causal link in many COPD co-morbidities such as cardiovascular diseases and meta-
bolic syndrome as well as skeletal muscle wasting. Local oxidative stress may pro-
mote the development of lung cancer through DNA damage and impaired DNA 
repair. Following the initial environmental exposure to ROS, the subsequent intracel-
lular sources of oxidative stress may be important to understanding the pathophysiol-
ogy of this disease. The disappointing clinical effects of existing antioxidants in 
COPD studies indicate the need to develop novel more potent antioxidants  targeted 
to the correct intracellular compartment, such as the mitochondria. Combinations of 
antioxidants, targeting different cellular compartments, may prove more effective than 
monotherapy. In a similar manner, combining antioxidants with anti-infl ammatory 
drugs, bronchodilators, antibiotics and statins may complement or, in the case of 
corticosteroids, improve/restore their effi cacy.     
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8.1  Introduction

Oxidative stress is pivotal to the biological effects, tissue injury, and disease 
observed following exposures to both cigarette smoke and air pollutants. The specific 
component(s) in both cigarette smoke and air pollutants which participates in the 
biological effect, tissue injury, and disease and the cellular and molecular mechanism 
pathways which are involved are yet to be defined with certainty.

8.2  Cigarette Smoking

Cigarette smoke is comprised of between 4,000 and 7,000 constituents [87, 95]. 
Among these are numerous oxidant compounds; a puff of cigarette smoke was 
quantified to contain 1017 free radicals in the tar phase and 1015 in the gas phase [22, 
86]. In a burning cigarette, temperatures in the combustion zone (800–950 °C) 
result in a complete pyrolysis of tobacco. Immediately downstream, a rapid drop in 
temperature (to 200–600 °C) and a lack of oxygen allow for an incomplete combus-
tion. Subsequently, a complex aerosol is generated during smoking which includes 
condensed liquid droplets (the particulate fraction or tar) suspended in a mixture of 
volatile/semi-volatile compounds and combustion gases (the gas fraction). 
Polyphenols and semiquinones can be identified among the compounds in the 
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cigarette tar while superoxide, epoxides, peroxides, nitric oxide (NO; 500–1,000 ppm), 
nitrogen dioxide, peroxynitrite (ONOO−), and peroxynitrates are in the gas phase. 
Smoking one cigarette exposes the human respiratory tract to an enormous particle 
burden; between 15,000 and 40,000 μg particulate matter (PM).

Smoking produces a shift in the balance between oxidants and antioxidants, 
creating an oxidative stress (Fig. 8.1). Oxidants in cigarette smoke directly injure 
cells and tissues, inactivate defense mechanisms, and initiate inflammation which 
furthers oxidative stress following the initial exposure. It is difficult, if not impos-
sible, to determine whether oxidants included in cigarette smoke or those produced 
from the ensuing inflammatory response are primarily responsible for the 
observed oxidative stress in smokers. The endpoints of oxidative stress which have 
been quantified with smoking are numerous and diverse (Table 8.1). Measurements 

Fig. 8.1 Schematic of the oxidative stress after cigarette smoke exposure. Cigarette smoke will 
include oxidant compounds including superoxide (O2

−), hydrogen peroxide (H2O2), nitric oxide 
(NO), and peroxynitrite (OONO−). There is depletion of antioxidants (e.g., vitamins C and E and 
thiols) in the lung lining fluid. The oxidative stress culminates in a release of inflammatory mediators. 
Activated phagocytes (green cells in the blood and airway and alveolar space) further increase the 
oxidant burden with a generation of O2

−, H2O2, NO, and OONO−
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have been obtained in cells and their fractions, whole blood, serum, plasma, cord 
blood, sputum, exhaled breath, breath condensate, lavage fluid, lavage cells, urine, 
and tissues (e.g., lungs, vasculature, brain, muscle, testicles, and pancreas).

Oxidant generation with cigarette smoke exposure. Oxidants, including hydrogen 
peroxide, can be directly measured in the particulate fraction of cigarette smoke 
[125]. Metal in cigarette smoke is also included in the particulate fraction, but 
concentrations appear to be insignificant [40]. There is little evidence to support the 
assertion that iron and copper, introduced into the body by smoking, catalyze 
Fenton-type reactions in either the lung or any tissue.

Phagocytes (e.g., macrophages and neutrophils) in smokers are elevated in number, 
and also generate reactive oxygen and nitrogen species at increased rates both in the 
lung and systemically [51]. In vitro studies confirm that phagocytes collected from 
cigarette smokers spontaneously release increased amounts of oxidants such as O2

− 
and H2O2 compared to those from nonsmokers [111]. Hydrogen peroxide is elevated 
in bronchoalveolar lavage fluid and in exhaled breath condensate collected from 
cigarette smokers [27] and some portion of this was demonstrated to be attributable 
to the elevated number of macrophages in the lower respiratory tract of smokers 
and their increased release of O2

− [100]. Cell sources of O2
−, other than NADPH 

oxidoreductase, can also be increased (e.g., xanthine oxidase) [52].
Cigarette smoking is associated with lipid peroxidation with conversion of poly-

unsaturated fatty acids to hydroperoxides, endoperoxides, aldehydes (e.g., malondi-
aldehyde), and alkanes (e.g., ethane and pentane). Levels of these end products are 
increased in smokers including thiobarbituric acid-reactive products (in sputum, 
blood, and lung components), isoprostanes (in blood, urine, and breath condensate), 
4-hydroxy-2-nonenal adducts, and breath alkanes [75, 76].

Table 8.1 Endpoints of oxidative stress elevated in cigarette smokers

Generation of O2
− and H2O2

Generation of nitrite/nitrate
Levels of superoxide dismutase, catalase, myeloperoxidase, and cytochrome P450 and their 

activities
Exhaled breath ethane/alkanes, thiobarbituric acid-reactive substances, and other indices of lipid 

peroxidation
Concentrations of oxidized proteins
Total, reduced, and oxidized glutathione
Activity of glutathione peroxidase, glutathione transferase, and glutathione reductase
Prostanoids (F2-isoprostanes and PGF2 alpha), hydroxyeicosatetraenoic acid products (HETEs), 

F(4)-neuroprostanes, 7-ketocholesterol, 24- and 27-hydroxycholesterol, low-density 
lipoproteins, and other cholesterol oxidation products

Concentrations of uric acid and allantoin
DNA damage (8-hydroxy-2′-deoxyguanosine and 8-oxo-2′-deoxyguanosine)
Histopathology (e.g., 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine)
Immunohistochemistry for specific proteins, nitrotyrosine
Gene expression microarray analysis
Trolox-equivalent antioxidant capacity
Antioxidant reducing capacity
Total radical trapping parameters
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Cigarette smoking depletes antioxidants [48]. Concentrations of ascorbate and 
vitamin E are decreased among smokers [33]. Smokers have 15–20 % lower serum 
concentrations of ascorbate than do nonsmokers but, after smoking cessation, val-
ues normalize [72]. Glutathione metabolism appears to be particularly provoked by 
smoking. Despite glutathione being acutely depleted in cell and animal models and 
smokers [14, 118], levels of reduced glutathione are elevated in bronchoalveolar 
lavage fluid of chronic smokers [17]. It has been proposed that such an increase of 
lung glutathione in smokers may be an attempt, albeit insufficient, to counter excess 
oxidants with cigarette smoke exposure [70]. Exogenous antioxidants appear to 
have a capacity to prevent some portion of the biological effect and injury following 
smoking [16]. Pretreatment with antioxidants decreases lipid peroxidation follow-
ing exposure to cigarette smoke [23]. There are studies which suggest that vitamins 
C and E diminish production of oxidants by inflammatory cells and improve pulmo-
nary function in smokers [73, 111]. Supplementation with N-acetylcysteine (NAC) 
also diminishes the in vitro cytotoxicity after smoking [102].

In addition to oxygen-based free radicals, cigarette smoke is a source of reactive 
nitrogen species and presents a nitrosative stress. Nitric oxide, abundant in cigarette 
smoke and generated by inflammatory cells, has potent antioxidant and anti- 
inflammatory actions but also contributes to oxidative reactions [90]. NO reacts with 
thiols to produce nitrosothiols associated with biological effects [37]. Nitrosothiol 
levels have been shown to be higher in breath condensate collected from smokers 
compared with subjects who do not smoke [25]. NO in cigarette smoke can react 
with O2

− to form peroxynitrite [81] which decreases antioxidant capacity and aug-
ments oxidative stress [112]. Nitric oxide and peroxynitrite can cause the nitration 
of tyrosine to form nitrotyrosine products of proteins measurable in body fluids and 
tissues [82]. However, it must be pointed out that NO levels in smokers were reported 
to be normal or even lower than in nonsmokers [24]. Fractional exhaled nitric oxide 
(FENO) was reported to be decreased in smokers [98]. Such reduced NO production 
was postulated to possibly elevate oxidative stress since this molecule can function 
as an antioxidant as well as being a prooxidant [126].

In addition to an elevated oxidant burden in the lung, there is an increased sys-
temic oxidative stress in smokers [62]. Plasma trolox-equivalent antioxidant capac-
ity and total glutathione are decreased in cigarette smokers [11]. Peripheral blood 
neutrophils from smokers release more oxidants than those isolated from nonsmok-
ers [107]. The proposal that oxidants in cigarette smoke, whether in the particulate 
or the gas phase, pass through the pulmonary alveolar wall into the blood to induce 
a disseminated systemic oxidative stress is improbable as such radicals would 
quickly react with molecules in the lung [122].

Oxidative stress and disease after cigarette smoke exposure. The World Health 
Organization lists smoking as one of the ten greatest contributors to global death 
and disease and, in many countries, is the most important risk factor for numerous 
diseases (Table 8.2). Oxidative stress resulting from an imbalance between oxidants 
and antioxidants is proposed as the basis for diseases following exposure to  cigarette 
smoking.
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Lung disease follows exposure to cigarette smoke with the increased burden of 
oxidants, either caused directly by the cigarette smoke or generated by inflamma-
tory cells, injuring lung cells and depleting antioxidant defenses [15]. Exposure to 
cigarette smoke increases cell lysis and epithelial permeability; these effects are 
inhibited by antioxidants (e.g., glutathione) [63]. Among patients with chronic 
obstructive pulmonary disease (COPD), there are increased numbers of activated 
inflammatory cells in the lungs relative to healthy subjects; these cells release 
greater quantities of O2

− and H2O2 [56, 91]. A correlation has been demonstrated 
between O2

− release by peripheral white blood cells and bronchial hyperreactivity in 
patients with COPD, supporting a role for oxidants in lung disease after smoking 
[91]. Oxidants have also been demonstrated to mediate mucous hypersecretion and 
impaired mucociliary clearance which can contribute to injury in COPD [96].

Exposure to cigarette smoke causes systemic diseases [13, 77, 113]. For exam-
ple, the vascular disease caused by cigarette smoking is associated with oxidation of 
low-density lipoproteins and their deposition in the vasculature with resultant 
dysfunction [49]. A depletion of systemic antioxidants has been documented in 
atherosclerosis.

Addressing the cell and molecular mechanism of disease after exposure to ciga-
rette smoke, oxidative stress is postulated to initiate a series of cellular reactions that 
include activation of kinase cascades and transcription factors, release of inflamma-
tory mediators, initiation of inflammation, and cell injury/apoptosis [89] (Fig. 8.2). 
Consequently, oxidative stress is the initiating factor in the pathway by which ciga-
rette smoke exposure leads to disease. Key among the redox-sensitive transcription 
factors coordinating the inflammatory response to cigarette smoke are NF-κB 
(pro- oxidative) and Nrf-2 (anti-oxidative). The activation of these transcription 
factors is observed in both the lung and extra-pulmonary tissues [59].

Table 8.2 Diseases associated with cigarette smoking

Chronic obstructive pulmonary disease (COPD)
Interstitial lung disease (e.g., idiopathic pulmonary fibrosis)
Pneumonia
Tuberculosis
Influenza
Coronary artery disease, rhythm disturbances, and sudden death
Heart failure
Hypertension
Cerebrovascular disease
Peripheral vascular disease
Cataracts
Gum disease and dental caries
Raynaud’s disease
Gastroesophageal reflux and peptic ulcer disease
Cancers of the nasal and oral passages, pharynx, larynx, esophagus, stomach, pancreas, kidneys, 

bladder, breast, cervix, and lung; myeloma and leukemia

8 Oxidants, Cigarette Smoking, and Air Pollutants



136

Lung injury due to smoking (e.g., COPD and cancer) frequently does not diminish 
after smoking cessation and can rather progress in ex-smokers [97]. The basic 
cellular and molecular events underlying the biological effects of cigarette smoke 
and reasons for persistence of injury despite cessation of the exposure are not fully 
appreciated. Moreover, smoking cessation also does not eliminate the increased 
oxidative stress in the respiratory tract suggesting that retained particles may con-
tinue to participate in oxidant generation [71]. To explain this incongruity, as well 
as the observation that tissue injury in smokers is particle-related (Fig. 8.3a), it is 
proposed that tar disrupts iron homeostasis, increasing the availability of the metal 
and allowing it to participate in oxidative stress. Retained particles in the lung 
effectively complex the host iron (Fig. 8.3b). Humic-like substances, included in 
the particle, complex iron in vitro and accumulate the metal in vivo [44]. Both the 
humic-like substance and its iron complex generate free radicals, and some portion 
of this oxidant generation is metal-dependent. Following complexation of the 
metal by functional groups in the humic-like substance, the complexed iron con-
tributes to electron transport, an increased catalysis of oxidants, and continued 
oxidative stress, despite smoking cessation. In support of a role for disrupted iron 
homeostasis in disease after exposure to cigarette smoke, there is increased lavage 

Fig. 8.2 Biological effect 
after exposure to cigarette 
smoking follows the 
generation of an oxidative 
stress. Oxidant generation 
activates MAP kinases and 
transcription factors resulting 
in a release of inflammatory 
mediators, inflammation, and 
apoptosis
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iron concentration in smokers [108]. Accumulation of this metal in macrophages, 
proportional to the frequency and duration of cigarette smoking, has also been 
described among smokers [116].

8.3  Air Pollutants

Air pollutants are numerous but those considered significant include the particulate 
matter (PM), ozone, nitrogen oxides, and sulfur oxides (while measurable, atmo-
spheric concentrations of carbon monoxide are extremely low). An oxidative stress 
is associated with exposures to all these pollutants.

Air pollution particles. PM in the atmosphere is a temporally and spatially shifting 
combination of particles that vary in size and chemical composition. These particles 
originate from both anthropogenic and natural sources. Anthropogenic contribu-
tions including organic carbon are greater in the urban environment. Approximately 
40 % of particle mass in an urban setting can be attributed to fossil fuel use.

Exposure to air pollution particles is recognized to cause significant, adverse 
health effects in humans [84]. Epidemiological studies consistently demonstrate an 
association between increased levels of ambient air pollution particles and measures 
of human morbidity and mortality [32, 60, 83]. The target tissues for PM include the 
pulmonary and the cardiovascular systems; biological effects parallel those of ciga-
rette smoking, with lung and cardiac disease predominating (Table 8.3).

Similar to exposure to cigarette smoke, production of oxidants is proposed as a 
unifying mechanism for the biological activity of PM [12]. Again, paralleling ciga-
rette smoke, there is both direct generation of oxidants by the PM and an interaction 
between the particles and the host proteins. The PM produces an oxidative stress in 
both acellular and living systems. In acellular systems, air pollution particles 

Fig. 8.3 Cigarette smoke exposure, iron, and lung injury. Lung collected at autopsy shows a cor-
relation between the retention of cigarette smoke particles and destruction of lung parenchyma 
(i.e., bullous formation in this emphysematous patient) (a). A photomicrograph demonstrates that 
iron accumulates in the lung of a smoker and this appears to be particle-associated (b; Perls 
Prussian blue stain with the iron staining blue; magnification of about ×100)
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directly generate oxygen-derived free radicals. The direct generation of oxidants by 
air pollution particles from a variety of ambient and emission sources is demonstrated 
using an assay for thiobarbituric acid-reactive products [43]. Hydroxyl radical 
production by particles is detected by salicylate hydroxylation [31], and this is con-
firmed by a sensitive fluorescence method [2]. Hydroxyl radical formation is elimi-
nated under anaerobic conditions and in the presence of catalase while superoxide 
dismutase and deferoxamine decrease it. Electron spin resonance (ESR) has also shown 
oxidant generation by total suspended particulates collected from playgrounds of 
elementary schools [55], and in particles from a wildfire [64].

In vitro exposures of cells to air pollution particles result in oxidant generation in 
a wide range of cell types, including phagocytic, epithelial, and endothelial cells. 
Dusts collected from sewage incineration, a power station, and factories led to 
concentration- dependent increases in release of superoxide and hydrogen peroxide 
by alveolar macrophages [9]. Following incubation with diesel exhaust particle 
(DEP), macrophages released O2

− as measured by chemiluminescence [80]. Similarly, 
polymorphonuclear granulocytes also increased generation of oxidants after expo-
sure to ambient PM [54]; this effect was closely associated with the organic fraction 
of the particle and not altered by metal chelators. In contrast, epithelial cells exposed 
to an oil fly ash showed a concentration- and time-dependent induction of intracel-
lular oxidants, as measured using dihydrochlorofluorescein, that was associated with 
metal components [30]. The same pulmonary epithelial cell line also generated intra-
cellular oxidants following exposure to PM2.5 [45]. Particles were found to produce a 
concentration-dependent induction of intracellular O2

− using human aortic endothe-
lial cells [69]. Flow cytometry showed that diesel particles increased MitoSOX red 
intensity specific for mitochondrial O2

−. Further demonstration of oxidant production 
by the same particle was provided with increased protein carbonyl content and up-
regulation of heme oxygenase-1 (HO-1) which could be inhibited by pretreatment 
with the antioxidant NAC. Finally, a comet assay demonstrated DNA strand breakage, 
reflecting oxidant exposure, following exposure of respiratory epithelial cells to PM 
[103]. Both coarse and fine PM fractions (defined as that PM with an aerodynamic 
diameter of 2.5–10 and 0.1–2.5 μm, respectively) elicited generation of hydroxyl radi-
cal and 8-hydroxy-2′-deoxyguanosine. This investigation demonstrated that many 
cell types responded to a range of air pollution particles by producing oxidants. 
The nature of the interaction between the cell and the particle that results in oxidant 
production remains unexplained.

Table 8.3 Diseases 
associated with air pollution 
particles

Chronic obstructive pulmonary disease (COPD)
Pneumonia
Tuberculosis
Coronary artery disease, rhythm disturbances, and 

sudden death
Cerebrovascular disease
Cancer of the lung
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In vivo oxidant production following exposure to different air pollution particles 
has been confirmed. ESR revealed in vivo production of free radicals in the lungs of 
animals exposed to an oil fly ash [57]. The soluble fraction of this specific particle, 
which contained high concentrations of vanadium (V), nickel (Ni), and iron (Fe) 
compounds, was responsible for both the production of 4-pyridyl-1-oxide-N-tert-
butylnitrone (4-POBN) adducts detected by ESR (consistent with alkyl-type carbon- 
centered free radicals produced during lipid peroxidation) and the neutrophilic lung 
injury. Following intratracheal instillation of the same oil fly ash particle in rats, 
both the particle and individual component metals (vanadium, nickel, and iron) 
induced an increase in acetaldehyde in lung lavage fluid, further supporting the 
occurrence of in vivo, metal-catalyzed oxidative stress following air pollution par-
ticle exposure [74].

A time- and dose-dependent production of oxidants (i.e., O2
− and H2O2) is shown 

to follow animal exposure to concentrated ambient air pollution particles [93, 94]. 
In vivo detection of oxidant production was delineated using chemiluminescence 
sensors and measurement of thiobarbituric acid-reactive substances in the lung. 
Indices of oxidative stress and biological effects in the animals were inhibited by 
NAC. ESR with spin trap also detected oxygen radicals in bronchoalveolar lavage 
fluid after intratracheal exposure of rats to DEP [4]. Finally, thiol antioxidants were 
shown to inhibit prooxidant effects of the DEP [117]. These data support the occur-
rence of in vivo oxidative stress in animals exposed to air pollution particles.

Oxidative stress after air pollution exposure of humans has been quantified using 
8-hydroxy-2′-deoxyguanosine levels in urine, blood, and oral and nasal cells [92, 115]. 
Another study showed increased CO levels in the exhaled air of human subjects 
after exposure to DEP, which was attributed to induction of heme oxygenase-1 (HO-1) 
expression, likely to reflect an oxidative stress [78].

The components in air pollution particles that have been associated with oxidant 
generation include organic compounds and metals. Bacterial endotoxin was also 
proposed to contribute to oxidative stress after PM inhalation, but studies either do 
not support this relationship [6] or do not measure any index of oxidant generation. 
On the other hand, it may rather imply an affiliation since endpoints of biological 
activity (e.g., inflammation) may correspond to endotoxin content [8]. Air pollution 
particles contain a wide variety of organic substances including polycyclic aromatic 
hydrocarbons (PAH) and nitro-PAH, olefins, aldehydes, ketones, nitro-compounds, 
and quinones [19, 110]. These organic molecules are most commonly found in the 
smaller size fractions and combustion products of ambient air pollution particles 
[67]. In vitro oxidant generation by ultrafine particles (defined as PM with an aero-
dynamic diameter of less than 0.1 μm) correlates with the concentration of organic 
compounds [67]. The basis for this relationship between organic compounds and 
oxidant generation following exposure to ambient air pollution particles is postu-
lated to involve the following (Fig. 8.4):

 1. A quinone-based radical that directly involves redox-cycling with hydroquinone 
and semiquinone structures [61]. Using ESR, samples of PM collected from sites 
around the United States were found to have large quantities of radicals with 

8 Oxidants, Cigarette Smoking, and Air Pollutants



140

characteristics similar to semiquinones [28, 106]. Furthermore, organic compounds 
included in ambient air pollution particles may be converted to redox- cycling 
quinones through a number of different host proteins [29, 79].

 2. Direct redox-cycling by the organic compound following complexation of a 
metal [53, 88].

 3. A reaction between quinones and thiol-containing compounds with depletion of 
protective nucleophiles [21, 119].

There can also be a generation of oxidants following an interference of normal 
mitochondrial electron transfer by organic compounds [68, 119]. Several organics 
are postulated to support inappropriate electron transport between complexes I and 
III, suggesting PM redox-cycling with a capacity to disrupt the Q cycle; this might 
result in increased formation of O2

− [35, 119]. Therefore, one consequence of expo-
sure to organic compounds leading to abnormal electron transport would be disrup-
tion of normal mitochondrial function. This was documented following in vitro 
exposure to PM with organic compounds including a depolarization of the inner 
membrane of the mitochondria, changes in the mitochondrial permeability transi-
tion pore, and disordered ATP synthesis [119]. These studies support a role for 
organic components of particles in generating oxidative stress in cells, tissues, and 
living systems following exposure to PM.

Many types of air pollution particles include transition metals which contribute 
to oxidant generation [26, 104]. Metal analysis of air pollution particles sequestered 
on PM filters from sites around the United States revealed that Fe was that transition 
metal present in the highest concentration [43]. In atmospheric particulates, quanti-
ties of Fe can regularly be found in concentrations approximately tenfold higher 
than all others and therefore this metal may assume greater importance. Despite the 
variety of geographic locations, the concentrations of individual metals in ambient 
air pollution particles correlated well with each other [43]. Metals which exist in 
more than one stable valence state can catalyze an electron transfer and therefore 
demonstrate a capacity to directly generate oxidants [41, 114]

Fig. 8.4 Oxidant generation by organic components in air pollution particles. Potential pathways 
of oxidant generation by organic compounds in particulate matter include cycling of quinone with 
hydroquinone/semiquinone structures (a), direct redox-cycling by the organic compound following 
complexation of a metal (b), and depletion of thiols following reaction with quinones (c)
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In catalyzing the Fenton reaction, ferrous iron (Fe2+) reduces hydrogen peroxide 
(H2O2) with the formation of hydroxyl radical and oxidation of ferrous iron to ferric 
iron (Fe3+). Hydrogen peroxide and reductants are also required to drive such oxi-
dant generation and these are available in the respiratory tract. In addition to this 
direct production of oxidants, metals react with thiols to diminish protective capacity 
and potentially affect an oxidative stress in this manner.

Oxidant production by PM in an acellular system correlated positively with con-
centrations of Cr, Mn, Fe, Co, Ni, and Cu [85]. Deferoxamine and hydroxyl radical 
scavengers inhibited oxidant generation implicating hydroxyl radical production. 
The direct hydroxylation of salicylate after in vitro exposure to air pollution parti-
cles supported metal-dependent •OH production [31]. The soluble fraction of resid-
ual oil fly ash, which is abundant in metals, was shown to be capable of generating 
metal-dependent hydroxyl radicals in a cell-free system [18]. In other investigation, 
malondialdehyde formation was measured after incubation of ambient PM collected 
from Washington, DC [7]; the metal chelator deferoxamine inhibited this aldehyde 
formation supporting metal participation in oxidant generation.

In vitro exposure of rat alveolar macrophages to residual oil fly ash increased 
cellular production of oxidants, and this was inhibited by the addition of either the 
metal chelator deferoxamine or hydroxyl radical scavengers [42]. Addition of indi-
vidual metals to the alveolar macrophages, as both soluble sulfates and those com-
plexed to the surface of a latex bead, increased the oxidative burst. Incubation of 
alveolar macrophages with dusts from sewage sludge incineration, an electric power 
station, and factories led to a release of hydrogen peroxide by alveolar macrophages 
exposed to particles [9]. The release of hydrogen peroxide correlated best, in 
descending order, with the content of Fe, Mn, Cr, V, and As, in the dusts. Respiratory 
epithelial cells exposed to an oil fly ash showed a concentration- and time- dependent 
induction of intracellular oxidants triggered by metal components [30]. Finally, 
after exposure to an air pollution particle collected in Denver, alveolar macrophages 
generated oxidants which correlated with Fe in the PM [127]. It may be concluded 
that both parenchymal and nonstructural cells in the lung show evidence of metal- 
catalyzed oxidative stress following their in vitro exposure to PM.

ESR investigation supports the occurrence of lipid peroxidation in the lung, initi-
ated by metal-catalyzed hydroxyl radical following in vivo exposure to an air pollu-
tion particle [57]. The oxidative capacity of PM-associated metals was also 
demonstrated in human investigation. Instillation of metal-rich ambient particle into 
the lungs of healthy subjects resulted in airway inflammation characterized by 
increased oxidants and cytokine production, as well as infiltration [101]. Studies 
using particles collected in Utah Valley also suggested a role for metals [38]. 
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The closure and reopening of a steel mill impacted the composition of these particles; 
when the steel mill was operating, the PM contained significantly higher concentra-
tions of metals. Aqueous extracts from the PM with higher concentrations of metals 
presented an oxidative stress in vitro and increased IL-8 and IL-6 release by respira-
tory epithelial cells [36]. Human exposure to the same aqueous extracts with higher 
concentrations of metals caused neutrophilic inflammation in the lower respiratory 
tract and increased lavage IL-8 and TNF-α levels [39]. This investigation supports a 
potential participation of metals in oxidant generation after PM exposure. Metals 
might be involved by directly supporting electron transport producing oxidants. 
However, it should be noted that protective mechanisms against such metal- catalyzed 
oxidant generation are extensive and direct generation is unlikely. Furthermore, 
studies show that metals without the capacity for such electron transfer (e.g., zinc) 
still present an oxidative stress and their inclusion in PM also enhances oxidant 
generation [1, 46]. The mechanism may involve depletion of antioxidants.

PM exposure is not simply the result of “bystander injury” with organic and 
metal components supporting electron transport and generation of destructive oxi-
dants. Cells are not passive victims but produce oxidants in response to air pollution 
particles. Cell exposures to particles are associated with activation of NADPH oxi-
dases (NOXs), which constitute an important source of oxidant generation in both 
the alveolar environment and in the vasculature. NOXs comprise a family of enzymes 
that are multi-subunit enzyme complexes generating O2

−. In phagocytic cells, the 
oxidase consists of two membrane-bound subunits (gp91phox also known as NOX2 
and p22phox), as well as three cytoplasmic subunits (p40phox, p47phox, and 
p67phox), and a small GTPase Rac1/2 [5]. Following recruitment of cytoplasmic 
subunits to the membrane where they interact with gp91phox and p22phox, the pro-
tein is assembled and activated to generate large amounts of O2

− [10]. Non- phagocytic 
cells contain one or more alternate NOX proteins (NOX1–5) which may be similarly 
activated [3, 50]. After exposure of mice to concentrated ambient particles from 
Manhattan, aortic expression of NADPH oxidase subunits rose and was paralleled 
by elevation in O2

− generation [124]. Recently, participation of NADPH oxidase, 
and its oxidant generation, in the biological activity of PM has been demonstrated in 
mice using inflammatory endpoints, adiposity, and insulin resistance [58, 121].

The generation of an oxidative stress is fundamental to the response of cells, 
tissues, and living systems to air pollution particles. This is comparable to cigarette 
smoke and the proteins involved can be identical. PM exposure introduces an oxida-
tive stress which leads to a series of reactions including phosphorylation-dependent 
cell signaling (ERK, p38, and Jun kinases) [3, 20, 47, 69, 99, 105, 109], transcrip-
tion factor activation [65, 66, 120], and an increased expression of pro- inflammatory 
mediators. The final product is an inflammation (pulmonary and systemic), and 
apoptosis; if the response is prolonged, fibrotic and neoplastic injuries can result.

Ozone. Ozone (O3) is a secondary air pollutant formed in the atmosphere through 
a photochemical reaction requiring sunlight, hydrocarbons, and nitrogen dioxide. 
Relative to rural regions, O3 concentrations are higher in trafficked/urban areas; 
indoor levels are increased relative to the outdoor values. Ozone reacts and 
depletes thiol compounds. After exposure to ozone at atmospheric concentrations 
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(60–120 ppb), some percentage of the human population (10–15 %) will demonstrate 
decrements in respiratory function. In addition to this airway hyperreactivity, respi-
ratory tract inflammation can be observed after O3 exposure. Those with preexisting 
lung disease can suffer exacerbations of their condition following ozone exposure. 
More recently, cardiovascular disease and elevated rates of mortality were reported 
to be associated with ozone levels.

O3 depletes antioxidants and causes lipid peroxidation to affect an oxidative stress 
[123]. Exposure increases ozonides, aldehydes, organic and hydrogen peroxides, and 
organic radicals which may further promote oxidative damage. Ozone exposures initiate 
the same cell and molecular pathway of inflammation common to cigarette smoking 
and air pollution particles with activation of oxidant-sensitive MAP kinases and tran-
scription factors culminating in the release of pro- inflammatory mediators [34].

Nitrogen and sulfur oxides. Oxides of nitrogen include nitric oxide (NO), nitrogen 
dioxide (NO2), dinitrogen trioxide (N2O3), nitrogen tetraoxide (N2O4), and nitrogen 
pentoxide (N2O5). Since these various forms occur together and are interconvertible, 
NOx is used to describe their combined presence. NO and NO2 are primary pollut-
ants for which motor vehicles are the major contributors. Indoor cooking with fossil 
fuels, gas appliances, and cigarette smoke also constitutes a significant source. NO 
in the atmosphere reacts with oxygen to form NO2, which reacts with water to yield a 
solution containing a mixture of nitrous and nitric acids (HNO2 and HNO3, respec-
tively). Regarding health effects, NO2 is considered to be the most important NOx; 
500 ppm or greater of NO2 precipitates pulmonary edema, while decreased exposure 
can result in broncholitis obliterans and pneumonitis. Human exposures to nitrogen 
dioxide have some potential to produce an inflammatory reaction in the lung.

NOx exposures cause an oxidative stress in the lung. Lipid peroxidation in cells 
in animals exposed to NO2 has been confirmed; antioxidants can protect against cell 
and tissue damage induced by NO2 [123].

SO2 reacts with O2 to produce sulfate; both SO2 and SO4 concentrations are asso-
ciated with acute bronchoconstriction and increased rates of morbidity and mortal-
ity in humans. Asthmatics appear to be more sensitive to the effects of SO2 exposure. 
Effects of SO2 are observed at significantly higher levels relative to the low levels of 
ozone exposure. Exposures are associated with oxidative stress but there is far less 
evidence to support this relationship, relative to PM and ozone [123].
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9.1               Introduction 

 The increase in the prevalence of allergic diseases to epidemiological proportions 
is of great concern both in developed and developing countries [ 1 ]. This dramatic 
rise in prevalence of allergic diseases includes asthma, rhinitis eczema, and poten-
tially life-threatening allergies to certain foods, drugs, or other substances. The 
 World Allergy Organization White Book on Allergy  estimates that about 30–40 % 
of the world’s population is affected by one or more allergic conditions. What is of 
greatest concern is that this increase is especially affecting children and young 
adolescents and that the severity and complexity of these diseases are increasing. 
The increase in prevalence of these diseases contributes to patient morbidity and 
mortality as well as to increased cost in the form of medications, hospitalizations, 
health care utilization, and school/work absenteeism. Among the various factors 
that are considered to contribute to this rise in prevalence of allergic diseases are 
the hygiene hypothesis, change in lifestyles, urbanization, environmental pollution, 
climate change, and reduced biodiversity. Of these factors, the hygiene hypothesis, 
clime change, and environmental pollution have been attracting attention as important 
contributing factors [ 2 ].  
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9.2     Air Pollution and Allergic Airway Diseases 

    While the precise mechanisms underlying this increase in prevalence of allergic 
diseases and asthma are not fully elucidated, epidemiological research suggests a 
causative relationship between air pollution and the increase in incidence of these 
diseases as well as in the exacerbation of allergic airway diseases. This involves two 
aspects: the impact of the pollutants on the airways and the host susceptibility. The 
pollutants include ozone, nitrogen dioxide, and particulate matter, produced by traf-
fi c- and industry-induced pollution. Experimental studies have elucidated some of 
the cellular and molecular mechanisms on how these pollutants induce adverse 
effects in allergic diseases [ 3 ,  4 ]. Air pollution-induced oxidative stress aggravates 
airway infl ammation by inducing the production of proinfl ammatory mediators, 
enhancing bronchial hyperresponsiveness, stimulating bronchospasm, and increasing 
mucin secretion. Additionally, recent gene–environmental interactions demonstrate 
the host susceptibility to air pollutants. 

 Air pollution has a considerable impact on allergic airway-related morbidity and 
mortality. In a study done in Mexico city, traffi c-related air pollution was shown to 
have adverse effects on the respiratory symptoms and pulmonary function in asth-
matic children [ 5 ,  6 ]. In the same study, the researchers found that PM2.5, NO 2 , and 
ozone concentrations were signifi cantly related to an increased incidence of asthma 
exacerbations. In a prospective cohort study of 8,111 adults in six US cities, fi ne- 
particulate air pollution, or a more complex pollution mixture associated with 
 fi ne- particulate matter, contributed to excess mortality [ 7 ]. Exposure to ozone at 
concentrations found in ambient air was found to be associated with a reduction in 
lung function and induction of respiratory symptoms including cough and shortness 
of breath [ 8 – 11 ]. NO 2  concentrations in ambient air were found to be associated 
with cough, wheezing, and shortness of breath in children. Moreover, urban air 
 pollution may have lasting adverse effects on lung development in children and 
diminished lung function in adults [ 12 – 15 ] and reduced exposure to PM10 has been 
shown to attenuate age-related decline in lung function after 11 years [ 16 ,  17 ]. 

 Ozone is one of the most common air pollutants shown to be a trigger for asthma 
exacerbations in children, even at levels below the US Environmental Protection 
Agency (EPA) standards of 120 ppb (1 h average) and 75 ppb (8 h average) [ 18 – 21 ]. 
Studies have shown that among asthmatic children aged 6–18 years, there was a 20 % 
increase in general hospitalizations and a 19 % increased risk for ICU admissions for 
each 22 ppb increase in ozone [ 22 ]. Particulate matter, such as diesel exhaust particles 
(DEPs), is another important environmental pollutant that leads to an increased risk 
for asthma development and exacerbation [ 23 – 26 ]. Diesel exhaust contains small par-
ticles that range in size from nanoparticles to coarse particles consisting of a carbona-
ceous core with a large surface area to which chemicals are adsorbed. These include 
organic compounds such as polycyclic aromatic hydrocarbons (PAHs), nitro deriva-
tives of PAHs, oxygenated PAH derivatives (ketones,  quinones, and diones), heterocy-
clic compounds, aldehydes, and aliphatic hydrocarbons. PAHs and their oxygenated 
derivatives (e.g., quinones) can generate reactive oxygen species (ROS) in target cells. 
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The processes by which DEPs exert their infl uence on the airway cells have been 
partially elucidated [ 27 – 29 ]. 

    Endotoxin, also known as LPS, is a component of Gram-negative bacteria and 
derived from animals and agricultural activities that have been associated with asthma 
exacerbations and increased prevalence of asthma in early childhood [ 30 ,  31 ] and 
exposure to house dust LPS has been shown to have a synergistic effect [ 32 ]. A meta-
analysis has shown that LPS exposure correlated positively with wheeze in infants 
and toddlers [ 33 ]. Furthermore, both LPS and ozone can enhance sputum neutro-
philia, as LPS acts via the toll-like receptor 4 (TLR4) on the cell surface on macro-
phages. Experimental animal models suggest that at least some ozone responses are 
mediated through TLR4 [ 34 – 36 ]. Toll-like receptors recognize pathogen- associated 
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) 
[ 37 ] and are critical in initiating infl ammatory responses to a variety of stimuli, lead-
ing to the production of proinfl ammatory mediators such as IL-1β, TNF-α, and IL-6. 
Hyaluronic acid (HA), a glycosaminoglycan that is a component of the airway 
 epithelial extracellular matrix [ 38 ,  39 ], is present on the apical surface of airway epi-
thelial cells; its low molecular weight form is an endogenous ligand for TLR4 [ 40 ,  41 ]. 
In the airway epithelium, low molecular weight fragments can be generated by ROS-
induced depolymerization of hyaluronan [ 42 ,  43 ], and by hyaluronidase activity 
associated with upregulation of TNF-α in concert with IL-1β [ 44 ]. Several groups 
have shown that low molecular weight fragments of HA have proinfl ammatory 
actions [ 45 ] and that they are increased in bronchoalveolar lavage fl uid after ozone 
challenge via CD44 [ 39 ] and TLR4 [ 38 ] signaling mechanisms. Also studies have 
shown that normal volunteers, allergic nonasthmatics, and mild allergic asthmatics 
had increased HA in their respiratory tract lining fl uid after ozone exposure [ 46 ]. 

 Airway eosinophilia and increased sensitivity to allergen have been shown to be 
enhanced by ozone [ 47 – 49 ]. In a study of allergic asthmatics and normal volunteers, 
only the allergic asthmatics had an increased cell surface expression of TLR4 on mac-
rophages in induced sputum and increased levels of the proinfl ammatory cytokines 
IL-1β, IL-6, and IL-8 in the respiratory tract lining fl uid after ozone exposure [ 46 ]. 
Compared to normal volunteers, allergic asthmatics showed increased immune signal-
ing involving the NF-κB network [ 50 ], in concert with the concept that asthmatics 
have increased innate immune activation after ozone exposure. Ozone exposure has 
also been linked to the frequency of hospital admissions [ 51 ,  52 ], worsening of symp-
toms, and need for rescue medication [ 26 ] as well as asthma attacks, respiratory infec-
tions, and reductions in peak fl ow rate [ 53 ]. Future work will need to focus on 
mechanisms explaining this enhanced innate immune response in asthmatics.  

9.3     Oxidative Stress and Susceptibility to Air Pollution 

 Oxidative stress is considered to be a toxic byproduct of aerobic metabolism and a 
factor involved in tissue damage. Compounds involved in oxidative stress, such as 
H 2 O 2 , act as key molecules in signal transduction. Many types of stimuli, including 
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allergens, infections, various chemical mediators, and growth factors, can induce a 
transient increase in intracellular ROS̶in particular H 2 O 2 ̶ mainly through activa-
tion of NADPH oxidase immediately after the exposure of the stimuli to cells. 
Dynamic changes in intracellular levels of H 2 O 2  may lead to various intracellular 
signaling events. Under low levels of oxidative stress, appropriate antioxidant 
defense systems act through the activation of Nrf2. If a higher level of oxidative 
stress occurs, infl ammatory cellular responses are induced by the activation of AP-1 
and NF-κB leading to the secretion of proinfl ammatory cytokines and chemokines. 
The highest level of oxidative stress causes serious cytotoxic effects, including 
apoptosis and necrosis. Thus, the maintenance of intracellular ROS in a proper 
range is crucial in the management of various infl ammatory diseases. 

 As air pollutants promote the production of radical oxygen species in the  airways, 
genetic polymorphisms may further amplify airway infl ammation and hyperreactiv-
ity in response to environmental agents. A number of intracellular antioxidant 
enzymes including NQO1, GSTM1, GSTP1, and HO-1 regulate cellular and muco-
sal oxidant stress [ 42 – 46 ]. These enzymes are regulated by the transcription factor 
   Nrf2. Cells that encounter oxidative stress activate Nrf2 binding to the antioxidant 
response element (ARE), leading to the transcription of a broad range of antioxidant 
genes. This cellular response is designed to defend against the harmful effects of 
oxidative agents. The GSTM1, or glutathione- S -transferase Mu1, null genotype has 
been associated with increased response to environmental agents. Studies have 
demonstrated an increased risk of acute exacerbation of asthma in response to ozone 
exposure in subjects with the null genotype [ 47 ]. Dillon et al. demonstrated that 
subjects with the GSTM1 null genotype have an increased infl ammatory response 
with elevated levels of IL-1β and TNF-α in the sputum to inhaled LPS (at 20,000 
endotoxin units) [ 54 ]. Thus genotypic differences may be an important factor in 
explaining why some people are more susceptible to endotoxin exposure than oth-
ers. Subjects with the null genotype for GSTM1 and GSTP1 codon 105 variants had 
enhanced nasal allergic responses in the presence of DEPs demonstrating that 
GSTM1 and GSTP1 can enhance the effect of air pollutants on allergic infl amma-
tion [ 55 ,  56 ]. Subjects with the GSTMI null genotype have increased  neutrophil 
infl ux and increased IL-8 production into the airways following exposure to ozone 
[ 57 ,  58 ]. 

 NO 2  exposure is associated with increased emergency room visits, wheezing, 
and medication use among children with asthma [ 59 ,  60 ]. Controlled exposure studies 
of asthmatics have found that NO 2  can enhance the allergic response to inhaled 
allergens [ 61 ,  62 ]. The authors also identifi ed the impact of diesel-engine traffi c on 
asthma wheezing and bronchodilator usage. 

 Among adults with asthma, exposure to traffi c loads has been associated with 
lung function and health status [ 63 ]. This causal relationship between worsening 
asthma and diesel traffi c pollution was clearly demonstrated by McCreanor et al. 
[ 64 ], where walking along Oxford Street (more diesel exhaust) induced asymptom-
atic but signifi cantly greater reductions in FEV1 (up to 6.1 %) and forced vital 
capacity (up to 5.4 %) than did walking through Hyde Park. This effect was greater 
in subjects with moderate asthma than in those with mild asthma and accompanied 
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by increases in sputum myeloperoxidase and airway acidifi cation in exhaled breath 
condensates (EBC). A sub-analysis was performed among moderate and severe 
asthma patients, and revealed that EBC biomarkers were correlated with PM10 
concentration. 

 Three birth cohort studies from Germany, Holland, and Sweden followed 
 children until the age of 4 or 6 years and suggested a positive relationship between 
traffi c-related pollution and physician-diagnosed asthma [ 65 – 67 ]. A Japanese 
cohort study also reported an association between NO 2  levels and asthma incidence 
[ 68 ]; the authors studied the effects of air pollution on the prevalence and incidence 
of asthma among 2,506 children over a period of 4 years, and found that children 
living less than 50 m from heavily traffi cked roads were more likely to develop 
asthma. They also reported a possible link between asthma development and 
increased concentrations of PM10.  

9.4     Effect of Air Pollutants at Cellular Level 
and Oxidative Stress 

 Ohtoshi et al. [ 69 ] reported that exposure to DEP in vitro stimulates human airway 
epithelial cells to produce cytokines relevant to airway infl ammation. Bayram et al. 
[ 70 ] reported that exposure to DEP in vitro induced bronchial epithelial cells (BECs) 
to release interleukin-8 (IL-8), granulocyte–macrophage colony-stimulating factor 
(GM-CSF), regulated upon activation, normal T-cell expressed, and secreted 
(RANTES), and soluble intercellular adhesion molecules (ICAM)-1. BECs from 
asthmatic patients constitutively released signifi cantly greater amounts of cytokines 
than did those from non-asthmatic individuals. DEPs upregulated expression of the 
ICAM-1 gene in human BECs [ 71 ]. Research has also demonstrated that DEP- 
induced IL-8 production was regulated at the transcriptional level [ 72 ]. Additionally, 
DEPs have been observed to induce eotaxin gene expression in BECs [ 73 ], although 
another report refutes this [ 74 ]. DEPs induced dose-dependent activation of nuclear 
factor (NF)-κB in human BECs, as identifi ed using an electrophoretic mobility shift 
assay [ 73 ]. Studies using reporter assays with normal and mutated IL-8 promoters 
indicated that IL-8 gene transcription was induced via NF-κB activation. Hashimoto 
et al. [ 75 ] reported that DEP-induced activation of p38 mitogen-activated protein 
kinase (MAPK) plays an important role in the production of IL-8 and RANTES. 
Other reports demonstrated the importance of other intracellular signal transduction 
pathways, such as mitogen-activated protein kinase kinase (MEK)-1 [ 76 ] and c-Jun 
N-terminal kinase (jnk) [ 77 ], in DEP-stimulated human BECs and macrophages. 
DEP has been shown to have a direct impact on airway epithelial cells not 
only enhancing the release of proinfl ammatory cytokines but also upregulating 
 co- stimulatory molecules like CD86 and HLA-DR and also enhancing antigen pre-
sentation [ 78 ]. Zhang et al. [ 79 ] investigated the effects of DEPs on expression of 
fra-1, a heterodimeric partner of activator protein-1, in a murine lung epithelial cell 
line and found that DEPs markedly upregulated expression of fra-1 but not fra-2. 
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   Overexpression of fra-1 downregulated c-Jun, nuclear factor-like 2 (Nrf2) enhanced 
activator protein-1, and ARE mediated reporter gene expression, respectively. fra-1 
induction by DEPs may play a role in the selective regulation of expression of genes 
involved in alveolar epithelial cell injury and repair. Blanchet et al. [ 80 ] reported 
that PM2.5 and DEPs induced the expression and secretion of amphiregulin, an 
epidermal growth factor receptor (EGFR) ligand in BECs. Amphiregulin secretion 
was mediated by activation of the EGFR and extracellular signal-regulated kinase/
MAPK pathways. Exposure to diesel exhaust (PM10, 300 μg/m 3 ) enhanced EGFR 
expression and phosphorylation of tyrosine 1173 [ 81 ]. These fi ndings suggest that 
EGFR plays a key role in the bronchial response to diesel exhaust fumes. Long-term 
DEP exposure may lead to an airway remodeling process in asthmatics [ 82 ]. More 
profound adverse effects have also been reported, such as effects on the cardiovas-
cular system [ 83 ]. 

 DEP-induced IL-8, ICAM-1, GM-CSF, and RANTES expression is inhibited by 
antioxidant agents such as  N -acetyl cysteine (NAC) and pyrrolidine dithiocarba-
mate, so ROS may be involved in this induction [ 73 ,  84 ]. DEP-induced NF-κB 
activation was completely inhibited by pretreatment with NAC [ 84 ]. DEP-induced 
activation of MAPK pathways was also blocked by NAC and pyrrolidine dithiocar-
bamate [ 75 ]. These observations suggest that DEP-induced activation of signal 
pathways and transcription factors is a result of ROS, derived both primarily and 
secondarily from DEPs. Bonvallot et al. [ 85 ] found that the ability of DEPs to 
induce GM-CSF expression was almost completely eliminated after washing the 
DEPs, suggesting the importance of adsorbed chemicals. While exposure to DEPs 
induces proinfl ammatory gene in human airway epithelial cells, benzene-extracted 
components had effects that mimicked those of DEPs on the release of several cyto-
kines (IL-8, GM-CSF, RANTES), and NF-κB activation [ 86 ,  87 ]. 

 The role of ROS generated directly and indirectly by exposure to DEPs has been 
well studied. The ROS play an important role in proinfl ammatory reaction in air-
ways. Nuclear erythroid 2 P45-related factor Nrf2 is a key transcription factor that 
regulates host antioxidant and contributes to regulate airway infl ammation and 
exacerbation of allergic infl ammation induced by DEPs. C57BL/6J Nrf2−/− mice 
exposed to low-dose DEPs for 8 weeks showed signifi cantly increased AHR and 
lymphocyte and eosinophil counts, together with increased IL-12, IL-13, and thy-
mus and activation-regulated chemokine concentrations in bronchoalveolar lavage 
fl uid than wild-type mice. In contrast, expression of antioxidant enzyme genes 
was signifi cantly higher in wild-type mice than in Nrf2−/− mice [ 88 ]. These results 
strongly suggest that DEP-induced oxidative stress and host antioxidant responses 
are regulated by Nrf2. Furthermore, the responsiveness of the Nrf2-directed antioxi-
dant pathway acts as a major determinant of susceptibility to allergen- mediated 
asthma [ 89 ]. These fi ndings suggest that the synergistic effects of the oxidative 
stresses caused by DEPs and allergens contribute to the major pathways underlying 
exacerbation of allergic asthma. 

 It is important to develop methods of identifying susceptible individuals within 
a large population and to evaluate whether measurement of airway infl ammatory 
biomarkers in EBC would be an appropriate method of assessment.  

R. Pawankar et al.



157

9.5     Conclusion 

 Epidemiological studies have shown that air pollutants are involved in the patho-
genesis of allergic airway diseases such as asthma and rhinitis, both in terms of their 
development and exacerbation. Air pollution-induced oxidative stress is increased 
in allergic airway diseases like asthma, and this can be a critical contributor to 
asthma development and can initiate various intracellular signaling pathways that 
lead to a break in immune tolerance and exaggerated allergic infl ammation. Recent 
increases in the incidence of asthma may be attributed not only to increased oxida-
tive stress in the environment but also to host susceptibility. Controlling oxidative 
stress is critical for effectively managing asthma. Development of a safe and rapid 
method of screening individuals for their susceptibility to air pollution is also an 
important strategy.     
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     Abbreviations 

   BALF    Bronchoalveolar lavage fl uid   
  ECSOD    Extracellular superoxide dismutase   
  IPF    Idiopathic pulmonary fi brosis   
  MBD    Matrix binding domain   
  MPO    Myeloperoxidase   
  NAC     N -acetylcysteine   
  RNS    Reactive nitrogen species   
  ROS    Reactive oxygen species   

10.1          Introduction 

 The lung is continually exposed to higher oxygen levels than other tissues. 
Furthermore, exogenous oxidants, as well as pollutants, can augment oxidant pro-
duction and activate infl ammatory cells to generate additional reactive oxygen and 
nitrogen species. The lung protects itself against these oxidants with protective 
 antioxidants and antioxidant enzymes. Various disease states in the lung involve 
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dysregulation of this balance through excessive oxidant production or decreases in 
antioxidants. Idiopathic pulmonary fi brosis (IPF) is a lung disease characterized by 
progressive fi brosis of the alveolar interstitium [ 1 ,  2 ]. Reactive oxygen species 
(ROS) and markers of oxidative stress are evident in human IPF [ 3 ,  4 ] and levels of 
ROS negatively correlate with pulmonary function in IPF and may predict disease 
severity [ 5 ].  

10.2     Idiopathic Pulmonary Fibrosis 

10.2.1     Diagnosis and Pathological Findings 

 IPF is an interstitial lung disease characterized by severe and progressive fi brosis of 
the alveolar interstitium. In the United States, the prevalence of IPF is estimated to 
be 42.7 per 100,000 and the disease incidence to be 16.3 per 100,000 [ 6 ]. Patients 
develop symptoms of dyspnea (shortness of breath) and nonproductive cough with 
presentation between 50 and 70 years of age. IPF is slightly more common in males 
than females [ 2 ] and has a dismal prognosis with a 5-year mortality rate between 50 
and 70 % [ 1 ,  7 ]. 

 From the time of IPF diagnosis, there is a mean survival of 3–5 years [ 1 ,  7 ]. 
   A diagnosis of IPF is made from a thorough history and physical exam, chest radi-
ography, pulmonary function tests, high resolution computed tomography (CT), and 
lung biopsy [ 1 ,  7 ]. Patients typically present with a history of greater than 3 months 
of dyspnea and a nonproductive cough. On physical exam, bilateral dry inspiratory 
crackles may be appreciated at the lung bases. Chest radiography shows ground 
glass opacities and CT analysis shows irregular thickening of the alveolar septa. 
As fi brosis of the lung progresses, the normal lung architecture becomes distorted 
under the tension of the fi brosis. This change is often described as a “honeycomb” 
appearance of the lung [ 8 ]. 

 The gold standard of diagnosis of IPF is still pathologic examination of lung 
 tissues. Histologically, IPF has a pattern of usual interstitial pneumonia (UIP), which 
is characterized by areas of immature and mature fi brosis (temporal heterogeneity) 
and alveolar infl ammation with intervening areas of normal tissue architecture [ 8 ]. 
On H&E staining, myofi broblastic foci are present, which are light-staining areas of 
spindle-shaped mesenchymal cell expansion among collagen and matrix deposition 
(Image  10.1 ). These foci are randomly dispersed throughout the lung and are a marker 
of active disease [ 8 ] with myofi broblasts that are producing collagen and matrix com-
ponents. Infl ammation is also present and is assessed through bronchoalveolar lavage 
and interstitial microscopy, which shows the presence of macrophages, neutrophils, 
eosinophils, mast cells, and lymphocytes [ 2 ,  8 ]. The role of these cell types in the 
disease process is unclear.
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10.2.2           Pathophysiology 

 Pulmonary fi brosis can occur in various situations: due to unknown stimuli (idiopathic); 
environmental/occupational exposure, i.e., asbestos, silica; induced by pharmacologi-
cal agents, i.e., bleomycin; radiation exposure; and associated with other primary dis-
eases such as collagen vascular diseases or familial forms [ 2 ,  7 ]. These variations of IPF 
differ by their proposed pathogenic factors. The underlying processes of pulmonary 
fi brosis are currently thought to involve the presence of persistent stimuli or injury, 
aberrant wound healing, and dysregulated repair/remodeling of the lung that results in 
fi brosis (Table  10.1 ).

   Epithelial injury is thought to be one of the initial steps in the pathogenesis of 
pulmonary fi brosis. Furthermore, analysis of UIP lung biopsies revealed a signifi -
cant loss in type I epithelial cells in fi broblastic foci and areas of lung deterioration, 
along with increases in epithelial apoptosis markers [ 39 ]. Experimental animal 
models also support a role for apoptosis of alveolar epithelial cells modulated by 
the Fas–Fas ligand system in the pathogenesis of pulmonary fi brosis [ 40 – 42 ]. After 
epithelial cell death, the basement membrane of the alveolar surface is left denuded 
and exposed. Epithelial wound healing or re-epithelialization is a concerted effort 
by various cells types to restore the lung after an injury or cell death. Mesenchymal 
cells, such as fi broblasts and myofi broblasts, promote new matrix synthesis to form 

  Image 10.1    H&E staining of human lung with pulmonary fi brosis demonstrating temporal 
 heterogeneity with areas of normal thin lung parenchyma ( black arrow ) and collagen deposition in 
areas of fi brosis ( double headed arrow ). The fi broblastic foci are also present representing an area 
of active remodeling and myofi broblast activity ( star ). Image courtesy of Dr. Tim Oury       
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a suitable scaffold upon which epithelial cells can repopulate lost cells. This process 
is thought to be disrupted and dysregulated in the development of IPF. Transforming 
growth factor-β (TGF-β) is a profi brotic protein released primarily by alveolar epi-
thelial cells and macrophages within the lung. TGF-β has multiple functions includ-
ing inducing the expression of collagens, proteoglycans, and matrix components by 
fi broblast/myofi broblasts, is chemotactic to macrophages and fi broblasts, and can 
lead to the development of fi brotic lesions [ 11 ,  13 ,  43 ,  44 ]. 

 While the pathogenesis of IPF remains unclear, infl ammation and oxidant/ 
antioxidant imbalances within the lung are believed to be involved [ 5 ,  45 ]. The role 
of infl ammation has not been delineated in human disease and is a controversial 
issue, which is likely one reason why many investigators consider pulmonary fi bro-
sis to be primarily a disease of abnormal wound repair. Therapeutic studies that 
target infl ammation, such as corticosteroids, have failed to show clinical benefi ts 
[ 46 – 48 ]. However, several studies have highlighted associations between the pres-
ence of infl ammatory cells and disease prognosis. Neutrophilia and eosinophilia are 
seen in the bronchoalveolar lavage fl uid (BALF) of 70–90 % and 40–60 % of IPF 
patients, respectively [ 7 ]. This increase in infl ammatory cells has been associated 
with a worse prognosis and mortality in some clinical studies [ 18 ,  49 ,  50 ]. Immune 
activation and infl ammation have been shown to play an important role in fi brosis 
models [ 25 ,  51 ]. 

 Infl ammatory cells can damage the lung through the release of oxidative species, 
proteases (i.e.,    matrix metalloproteinases [MMPs], elastase), peroxidases (i.e., 
myeloperoxidase [MPO]), cytokines, and growth factors [ 52 ,  53 ]. These fi ndings 
collectively suggest that infl ammation, while not necessarily the primary mecha-
nism of IPF pathogenesis, may contribute to a profi brotic environment by affecting 

   Table 10.1    The various types of pulmonary fi brosis and proposed pathogenesis   

 Type of pulmonary 
fi brosis  Stimuli  Proposed pathogenic factors 

 Idiopathic  Unknown  Aberrant wound healing [ 9 ,  10 ]; profi brotic 
proteins, i.e., TGF-β [ 11 – 14 ]; oxidative 
stress [ 15 – 17 ]; initial infl ammation [ 18 – 20 ] 

 Environmental, 
occupational 

 Asbestos; silica; 
paraquat 

 Particle transition metals, i.e., free iron, and 
oxidative stress [ 21 ,  22 ]; infl ammation 
[ 23 – 25 ]; profi brotic proteins, i.e., TGF-β 
[ 22 ,  26 ] 

 Pharmacologic agents  Bleomycin; 
amiodarone 

 Agent-induced alterations in oxidants/
antioxidants [ 27 – 29 ] 

 Radiation-induced  Radiation therapy 
to the chest 

 Oxidative stress [ 30 ]; loss of antioxidants [ 31 ]; 
profi brotic proteins, i.e., TGF-β [ 32 ,  33 ]; 
infl ammation [ 34 ] 

 Hereditary familial IPF  Genetic mutations  Surfactant protein C and A1 [ 35 ], TERT and 
TERC genes [ 36 ] 

 Collagen vascular 
diseases 

 Collagen 
abnormality 

 Autoimmune tissue injury and aberrant matrix 
deposition [ 37 ,  38 ] 

     Reproduced from Free Radic Biol Med. 2011 May 1;50(9):1075–80  
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the wound repair process, level of oxidative stress, and the extent of remodeling. 
Studies support that chemotactic factors and neutrophils are present in IPF [ 20 ,  54 ] 
and increase the likelihood of disease progression and lack of response to immuno-
suppressive agents [ 1 ,  18 ,  55 ]. In IPF, infl ammatory cells may also release exaggerated 
amounts of ROS [ 17 ]. 

 Infl ammatory cells may impact IPF pathogenesis by enhancing the oxidative 
imbalance in the lung. Studies show increased ROS production in leukocytes from the 
serum and evidence of enhanced oxidative stress in the plasma and BALF of IPF 
patients [ 3 ,  4 ]. Levels of oxidative stress have been shown to negatively correlate with 
aspects of pulmonary function in IPF patients and may provide information about 
disease severity [ 5 ]. Given this evidence, free radicals are thought to play an important 
role in IPF pathogenesis, potentially through both direct and indirect mechanisms.  

10.2.3     Oxidative Stress in the Lung 

 Oxidative stress is frequently defi ned as the imbalance of oxidant production and 
antioxidant defenses, where oxidants dominate and lead to cellular dysfunction 
and tissue damage. When considering oxidative stress, the lung is somewhat unique 
due to its exposure to relatively higher oxygen tensions than other tissues. The oxygen 
pressure of inhaled air is 20 kPa (150 mmHg). Pressures in venous blood fl ow are 
around 6 kPa (45 mmHg) and may be as low as 0.13 kPa in some tissues, while the 
oxygen at the alveoli of the lung is ~13.3 kPa (100 mmHg) [ 56 ]. Thus, the lung is 
constantly facing relatively high oxygen tensions, which may augment oxidative 
insults. Under normal conditions, the ability of the lung to maintain an oxidative bal-
ance and a nontoxic pulmonary environment is likely due to a combination of mecha-
nisms including protective antioxidants, low metabolic demands, and low levels of 
transition metals. Unregulated production of ROS and reactive nitrogen species 
(RNS) in the lung and other tissues can lead to an imbalance in oxidants relative to 
antioxidants leading to oxidative and nitrosative stress, respectively.  

10.2.4     Reactive Species 

 ROS are formed from one-electron reduction of diatomic oxygen and subsequent 
one-electron reductions to achieve more reactive oxygen by-products, such as 
superoxide radical, hydrogen peroxide (H 2 O 2 ), and hydroxyl radical ( • OH) either 
spontaneously or through enzyme catalysis [ 57 – 59 ]. Hydroxyl radical can be 
formed from the reaction of H 2 O 2  with transition metal ions or the breakdown of 
peroxynitrite and is one of the most reactive radicals produced in biological  systems. 
It acts on local substrates at diffusion-limited rates of between 10 9  and 10 11  M −1  s −1  
[ 57 ], with a half-life of only milliseconds. The reactivity of superoxide and hydro-
gen peroxide is approximately    10 1–3  M −1  s −1  [ 60 ]. 
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 In vivo, other mechanisms for the generation of free radical and reduction–oxidation 
products include electron leak from mitochondrial metabolism, enzymatic reactions 
(oxidases and peroxidases), and release from activated leukocytes through the NADPH 
oxidase-catalyzed oxidative burst [ 58 ]. The mitochondrial respiration chain is extremely 
active and generates superoxide when electrons leak from the energy-producing sys-
tem. Enzymatic production of reduction–oxidation products can occur through the 
reaction of xanthine oxidase with hypoxanthine in the presence of O 2 , producing super-
oxide, xanthine, urate, and H 2 O 2 . Xanthine oxidase has been shown to be upregulated 
with lung injury and is dependent on iron stores for its increased activity [ 61 – 63 ]. 

 Activated leukocytes (neutrophils, macrophages, eosinophils) are another pri-
mary source of reduction–oxidation products through enzymes such as NADPH 
oxidase, MPO, and eosinophil peroxidase. These oxidases catalyze one- or two- 
electron reductions to form superoxide and H 2 O 2 , respectively, that contribute to the 
killing of microbes, intracellular and extracellular signaling [ 64 ,  65 ], and potential 
damage to host tissues when released from these cells [ 58 ]. 

 NADPH oxidases are important sources of reduction–oxidation products in 
many other noninfl ammatory cells in the lung. Indeed, several recent studies indi-
cate that ROS production by NADPH oxidases plays a central role in the pathogen-
esis of pulmonary fi brosis and infl ammation [ 25 ,  66 – 68 ]. The Nalp3 infl ammasome 
has been shown to have a central role in animal models of pulmonary fi brosis and is 
activated by reduction–oxidation by-products of NADPH oxidase in the lung [ 25 ]. 
Recent studies found that NADPH oxidase-4 plays a central role in ROS production 
and myofi broblast activation [ 66 ], cells known to be important in matrix remodeling 
and the progression of pulmonary fi brosis [ 66 – 69 ] further highlighting the active 
role ROS play in the pathogenesis of pulmonary fi brosis. 

 MPO is a second enzyme found in neutrophil azurophillic granules that aids in 
bacterial killing, by utilizing H 2 O 2  and chloride ions to produce toxic hypochlorous 
acid (HOCl) or bleach. MPO is a highly cationic enzyme allowing it to localize to 
cell surfaces, such as endothelial and epithelial surfaces, through interactions with 
glycosaminoglycan chains. HOCl can participate with hydroxyl radical in the frag-
mentation of extracellular matrix (ECM) components such as hyaluronan and 
 glycosaminoglycan side chains like heparan sulfate [ 70 – 72 ] (see below). MPO has 
also been shown to catalyze the metabolism of nitric oxide ( • NO) making it unavail-
able for modulating vascular tone [ 73 ]. Eosinophil peroxidase is the eosinophil 
equivalent of MPO and has similar biological activity.  

10.2.5     Nitrogen 

 An excess of various nitrogen-containing species within a system leads to nitrosative 
stress. Nitric oxide ( • NO) is an important nitrogen species produced by nitric oxide 
synthase (NOS) enzymes through metabolism of  l -arginine. There are three NOS 
enzymes, two of which are constitutively expressed: endothelial NOS (eNOS), neuronal 
NOS (nNOS), and one inducible NOS (iNOS/NOS2). Twenty times more  • NO can be 
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produced by iNOS than the other enzymes [ 58 ]. iNOS activity is induced by external 
stimuli such as bacterial lipopolysaccharide [ 74 ]. Nitric oxide mediates the relaxation of 
smooth muscle cells in the cardiovascular and pulmonary systems. However, in addition 
to these benefi cial effects of  • NO, it can contribute to pathologic processes, especially 
when produced in large quantities. Notably, nitric oxide has been shown to be important 
in the pathogenesis of pulmonary fi brosis, especially when produced by iNOS [ 75 ,  76 ]. 
Covalent reactions can occur between  • NO and NO-derived species with biological 
molecules such as proteins, DNA, lipids, and amino acids, which can modify the 
function of these molecules [ 77 ]. 

 The radicals produced by reduction of oxygen can react with freely diffusible 
nitric oxide to form additional radical species, in effect inactivating nitric oxide, 
which is a potent signaling molecule (i.e., the inactivation of nuclear factor-kappa B 
[NF-κB] [ 78 ]) and vaso-relaxant [ 74 ]. Peroxynitrite anion (ONOO − ) can be formed 
through the diffusion-limited reaction of superoxide with nitric oxide ( • NO) [ 79 ] or 
by reactions between hydrogen peroxide and nitrite [ 80 ]. The antioxidant enzyme 
superoxide dismutase (SOD), which is highly expressed in the lung, acts to keep 
superoxide levels low, thus preserving nitric oxide function [ 81 ]. Peroxynitrite is a 
powerful oxidant that can modify tyrosine residues producing nitrotyrosine and is 
also a potent oxidizer of thiols. At a physiologic pH, the protonated form of per-
oxynitrite (peroxynitrous acid) will decompose into hydroxyl radical and nitrogen 
dioxide. One-electron reduction reactions of  • NO will form nitrite, nitrogen dioxide, 
and nitrate. Notably, MPO can catalyze nitrite-dependent nitration of tyrosine resi-
dues which can further promote nitrosative tissue damage [ 82 ]. 

 A study by Saleh et al. provides support for the involvement of nitrosative stress 
in IPF lungs. They found that the lungs of IPF patients had increased NOS expres-
sion and nitrotyrosine modifi cations of proteins, suggesting that the IPF lungs were 
exposed to elevated nitrosative stress compared to healthy controls [ 83 ]. Animal 
studies further suggest that  • NO signaling stimulates increased production of remod-
eling proteins, such as TGF-β and MMP enzymes in pulmonary fi broblasts [ 75 ]. 
iNOS-null animals that were exposed to silica inhalation developed signifi cantly 
less pulmonary fi brosis than wild-type mice, supporting a profi brotic role for  • NO 
produced by iNOS in the lung [ 76 ].  

10.2.6     Oxidative Stress and IPF: Evidence from Patient 
Populations 

 The underlying pathogenesis of pulmonary fi brosis is currently thought to involve 
the presence of persistent stimuli or injury, such as oxidative stress, and dysregu-
lated repair of the lung that results in fi brosis. Several studies have found evidence 
of increased oxidative stress in IPF. Reduction–oxidation products and free radicals of 
oxygen metabolism are diffi cult to measure directly in tissues; thus, many clinical 
studies have utilized biological markers of oxidative reactions for assessment, such 
as modifi ed carbonyls, proteins, DNA, and lipids. 
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 Bronchoalveolar lavage is a technique used to sample the epithelial-lining fl uid 
of the lung. 8-Isoprostane, a product of free radical-mediated lipid peroxidation, is 
increased in the BALF of IPF patients [ 84 ], as well as in exhaled breath condensate 
along with hydrogen peroxide [ 85 ]. Exhaled ethane, a second marker of lipid per-
oxidation, is increased in patients with interstitial lung disease [ 86 ] and mirrored the 
patients’ PaO 2  levels and clinical course, as patients with signifi cantly elevated 
 levels of ethane died or rapidly deteriorated. Oxidized proteins with carbonyl modi-
fi cations are increased in the BALF of non-smoking IPF and sarcoidosis patients 
[ 87 ]. Increased carbonyl-modifi ed proteins have also been shown in systemic scle-
rosis, IPF, eosinophilic pneumonia, and allergic alveolitis [ 88 ]; however, proteomic 
studies reveal that more low molecular proteins are altered in IPF BALF [ 89 ]. These 
oxidative markers negatively correlated with pulmonary function in all of these 
studies. The role of oxidative stress and IPF phenotype was investigated by Bocchino 
et al. by evaluating the relationship between oxidative stress status and IPF pheno-
type in primary human fi broblasts from IPF and non-fi brotic control lungs. They 
established that the IPF phenotype displayed increased ROS presence, increased 
alpha smooth muscle actin and type I collagen, and resistance to cell death [ 90 ]. 
In vitro studies suggest that exposure of alveolar and bronchial epithelium to H 2 O 2  
leads to increased TGF-β expression and epithelial-to-mesenchymal cell changes, 
such as increased alpha smooth muscle actin expression, decreased epithelial markers, 
and increased ECM production [ 91 ]. 

 Antioxidant enzyme status is also altered in patients with IPF. Glutathione levels 
in alveolar epithelial-lining fl uid are decreased in IPF lungs [ 16 ,  45 ]. Markart et al. 
show that IPF patients appear to compensate for oxidative stress with increased 
expression of Nrf-2, a redox-sensitive antioxidant transcription regulator, and 
 signifi cant increases in low molecular weight antioxidants during fi brotic phases 
[ 92 ]. Notably, these antioxidants are insuffi cient to counterbalance the oxidative 
stress. Kinnula et al. report signifi cant decreases in extracellular superoxide  dismutase 
(ECSOD) in fi brotic regions of UIP lungs [ 93 ], which suggests that oxidative stress 
would be increased in these areas. The loss of antioxidants in the lung and abnormal 
cellular signaling for antioxidant expression may have a role in IPF pathogenesis.  

10.2.7     Oxidative Stress and Animal Models of IPF 

 Animal models of pulmonary fi brosis have offered opportunities to further evaluate 
the role of oxidative stress in alveolar injury, infl ammation, and fi brosis develop-
ment. The stimuli commonly used to initiate pulmonary fi brosis in these animal 
models are bleomycin (intratracheal, subcutaneous, or intraperitoneal administra-
tion), asbestos, silica, FITC, and adenoviral TGF-β, which are administered 
 intratracheally or via an inhalation chamber. Bleomycin forms a complex with 
redox-active iron, molecular oxygen, and DNA, resulting in DNA strand breaks 
[ 94 ]. Bleomycin also produces superoxide and hydroxyl radicals that can damage 
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cell membranes, lipids, and proteins [ 95 ]. Asbestos-induced pulmonary fi brosis 
studies show increased superoxide production directly through transition metal 
reactions and indirectly through oxidative bursts from recruited neutrophils and 
macrophages exposed to asbestos [ 24 ,  96 ]. 

    The NADPH oxidase (NOX) family, as discussed previously, consists of oxido-
reductase genes that have roles in the generation of ROS and promotion of pulmo-
nary fi brosis. NOX4 expression is upregulated by TGF-β and results in H 2 O 2  
production by fetal lung mesenchymal cells [ 66 ]. Hecker et al. have shown that 
NOX4 is involved in myofi broblast differentiation, contractility, and ECM produc-
tion in response to TGF-β [ 66 ]. NOX4 expression is also increased in fi broblastic 
foci of human lungs with IPF. Its role in fi brogenesis is also thought to be mediated 
via cell apoptosis via oxidative stress. Carnesecchi et al. have shown that NOX4- 
defi cient mice develop less fi brosis in a bleomycin mouse model, shown to be medi-
ated through decreased TGF-β-induced epithelial apoptosis [ 69 ]. 

 Epithelial apoptosis is thought to signifi cantly contribute to the pathogenesis of 
pulmonary fi brosis [ 40 – 42 ]. Recent studies have found that oxidative stress plays a 
key role in regulating apoptosis of these cells in models of pulmonary fi brosis. 
Specifi cally, oxidative modifi cation of Fas has been shown to enhance apoptosis 
[ 97 ,  98 ] and these studies further highlight the importance of localized oxidative 
stress leading to oxidative modifi cation of specifi c proteins that contribute to disease 
pathogenesis. 

 It has also been demonstrated that antioxidants can prevent bleomycin- and 
asbestos-induced pulmonary fi brosis. Examples include studies showing protection 
against pulmonary fi brosis with  N -acetylcysteine (NAC) and desferoxomine admin-
istration [ 29 ], treatment with lecithinized SOD, ECSOD over-expression [ 99 ], as 
well as protection when there is decreased ROS production in NADPH oxidase 
knockouts or knockdowns [ 67 ,  100 ]. In contrast a lack of SOD exacerbates 
bleomycin- induced fi brosis [ 101 ]. In bleomycin- and asbestos-induced pulmonary 
fi brosis, ECSOD protects by limiting both infl ammation and fi brosis development 
[ 101 – 103 ]. Importantly, ROS produced by asbestos fi bers have been shown to 
directly activate profi brotic TGF-β in the lung [ 22 ,  26 ], which is important in fi bro-
sis development. Furthermore, antioxidant treatment with SOD was able to inhibit 
asbestos fi ber-induced activation of latent TGF-β. These studies indicate that ROS 
can directly contribute to profi brotic activation of TGF-β, and that antioxidants may 
be useful in preventing this effect. 

 Similar to the asbestos model, intratracheal instillation of silica results in an 
acute accumulation of infl ammatory cells (neutrophils, macrophages, lymphocytes, 
and occasional eosinophils) in the alveolar spaces and interstitium [ 104 – 106 ], dam-
age to epithelial cells [ 107 ,  108 ], and subsequent collagen deposition [ 109 – 111 ] and 
fi brosis development [ 111 ,  112 ]. Models of radiation-induced pulmonary fi brosis 
have also shown a role for ROS as treatment with MnSOD has been shown to inhibit 
fi brosis [ 113 ,  114 ]. The absence of ECSOD promotes fi brosis in various inhalation 
injury models and treatment with SOD-mimetic agents, such as TBAP, is also 
 protective [ 101 ,  103 ,  115 – 117 ]. 
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 Many studies have identifi ed several potential mechanisms through which the 
presence of oxidative stress in the lungs can lead to increased infl ammation and 
fi brosis. ROS can alter infl ammation through the activation of NF-κB and activator 
protein-1 (AP-1) [ 118 ,  119 ]. These redox-sensitive transcription factors can bind to 
promoter regions in DNA and control the gene expression of a host of genes includ-
ing those controlling pro-infl ammatory cytokines, growth factors, and apoptotic 
signals [ 118 ]. NF-κB activation occurs in alveolar epithelial cells after asbestos 
exposure [ 23 ,  120 ]. Oxidative stress is also evident in the fi bro-proliferative 
response. In vitro, H 2 O 2  can stimulate the proliferation of cultured human fi bro-
blasts [ 121 ]. Furthermore, fi broblasts isolated from IPF lungs are capable of induc-
ing apoptosis in epithelial cells in vitro [ 122 ], further promoting the cycle of alveolar 
damage and abnormal repair. Hydrogen peroxide, as a diffusible factor, can lead 
to increased epithelial cell death, as well [ 53 ]. Finally, oxidative species can lead to 
direct degradation of the ECM and can control proteolytic degradation through the 
activity of MMPs and tissue inhibitors of MMPs [ 123 ,  124 ].   

10.3     Molecular Targets of Oxidants in IPF 

10.3.1     Extracellular Matrix 

 The ECM is critical for maintaining a strong structure that can withstand mechani-
cal stretch and recoil of the lung as well as providing the architectural support for 
normal epithelial growth. The ECM of the lung is composed of several major com-
ponents including collagens, elastin, fi bronectin, proteoglycans, hyaluronan, and 
laminin [ 125 ,  126 ]. Pulmonary fi brosis is characterized by often drastic changes in 
the ECM, which can be the result of excessive matrix deposition (an increase in col-
lagen deposition [ 2 ,  127 ,  128 ]), impairment in ECM degradation and resolution, or 
a combination of these two. Thus, ECM changes become very complex over the 
pathogenic course of IPF. Figure  10.1  depicts the potential changes that may occur 
in a normal lung and after epithelial injury to alveoli. 

 Heparan sulfate proteoglycans comprise a membrane-bound core protein with 
attached sulfated polysaccharide side chains [ 129 ]. Polyanionic proteoglycans, like 
heparan sulfates, have the ability to bind highly cationic proteins and transition metals. 
The binding of transition metals makes them potential sites for metal-catalyzed 
redox chemistry within the body. Furthermore, cationic proteins such as MPO and 
eosinophil peroxidase bind to the ECM and are sites of additional radical produc-
tion such as HOCl from Cl −  and hydrogen peroxide [ 71 ,  72 ]. 

 Hyaluronic acid, a glycosaminoglycan, and syndecan proteoglycans are promi-
nent in the lung and are highlighted here, representing potential ECM targets for 
ROS. These components can function in various ways within the ECM: (1) bind and 
localize soluble and insoluble ligands, i.e., growth factors, TGF-β, FGF, cytokines; 
(2) act as soluble paracrine or autocrine factors when the ectodomain is shed; 
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(3) maintain receptor abilities for internalization of ligands; and (4) facilitate leukocyte 
migration and traffi cking [ 130 ]. Syndecans are also linked to the actin cytoskeleton 
and have key roles in controlling cellular migration, proliferation, and homeostasis. 
Known ligands for syndecans that are of importance with regard to infl ammation 
and fi brosis include TGF-β1 and 2, HGF, VEGF, PDGF-AA, FGF, cytokines, and 
chemokines such as IL-8, MCP-1, and TNF-α [ 130 – 133 ]. Syndecans can also bind 
other ECM components such as fi bronectin and laminin and can bind enzymes such 
as neutrophil elastase, tissue plasminogen activator, and ECSOD. Syndecan-1 and 
-4 can bind elastase in dermal wound fl uids protecting them from their inhibitors 

  Fig. 10.1    Within normal uninjured alveoli ( a ), several processes create a homeostatic environ-
ment. The epithelium remains intact (1) along with an intact extracellular matrix (2) that binds and 
localizes many proteins such as growth factors and cytokines. Because there is no alveolar injury, 
infl ammatory cell recruitment is not necessary (3) and oxidants/antioxidants are in balance. When 
lung injury occurs ( b ), the epithelium becomes denuded (1) and the ECM is degraded by  enzymatic 
and oxidative mechanisms (2). The cellular injury, ECM degradation products, and cytokines 
cause infl ammatory cell infl ux (3) and oxidative stress (4). This complex environment results in 
impaired epithelialization and dysregulated matrix deposition (5) (Reproduced from Free Radic 
Biol Med. 2011 May 1;50(9):1075–80)       
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and modulating the proteolytic potential of the microenvironment [ 134 ]. They can also 
bind MPO, which may promote increased oxidative stress, as described above. 

 The ECM can be degraded in two primary ways: enzymatic cleavage (MMPs, 
hyaluronidases, heparanase) or oxidative cleavage, which can transform the ECM 
into soluble effector molecules. Heparanase is an endoglycosidic enzyme that 
cleaves HS side chains [ 135 ] and is capable of cleaving syndecan-1 [ 136 ]. Syndecan 
core protein ectodomains can be shed from the cell surface through proteolytic 
cleavage of the juxtamembrane region. Matrilysin or MMP7 is a protease that binds 
to heparan sulfate [ 137 ] and induces shedding of the syndecan-1 ectodomain in a 
model of acute lung injury induced by bleomycin [ 138 ]. Indeed, MMP7 is believed 
to play a central role in the pathogenesis of pulmonary fi brosis [ 139 ,  140 ]. Consistent 
with this, MMP2 and MMP9 can also shed syndecan ectodomains in vitro [ 141 ]. 
This shedding can be regulated by tissue inhibitors of MMPs, such as TIMP 3 [ 142 ]. 

 The role of oxidative stress in ECM dysregulation can be highlighted by recent 
studies of hyaluronic acid and the heparan sulfate proteoglycan syndecan-1 [ 143 – 145 ]. 
Hyaluronic acid shedding has been shown in the lungs of IPF patients [ 146 ]. Shedding 
of syndecan-1 is also signifi cantly elevated in the BALF of IPF patients. In both the 
asbestos and bleomycin mouse models of pulmonary fi brosis, syndecan- 1 is shed into 
the BALF during the infl ammatory and fi brotic phases of injury. 

 Notably, the absence of ECSOD in the lung results in exaggerated syndecan-1, 
heparan sulfate, and hyaluronic acid fragmentation or shedding [ 143 – 145 ,  147 ]. 
Combined with data that demonstrates oxidants can directly lead to shedding and 
fragmentation of these ECM components in vitro, these fi ndings suggest that 
 oxidants are directly contributing to fragmentation and shedding of the ECM com-
ponents in models of pulmonary fi brosis. The importance of oxidative fragmenta-
tion/shedding of high molecular weight hyaluronan to low molecular weight species 
is highlighted by studies demonstrating that high molecular weight hyaluronan has 
anti-fi brotic and anti-infl ammatory activity, but low molecular weight hyaluronan 
has pro-infl ammatory and profi brotic activity in the lung [ 148 ,  149 ]. Shed syndecan-
 1 can also promote fi brosis in several unique ways. Shed syndecan-1 induces neu-
trophil chemotaxis (which can be inhibited by ECSOD in vivo and in vitro), inhibits 
alveolar re-epithelialization, and stimulates fi brogenic TGF-β release [ 144 ]. These 
studies show the important role that oxidative stress has in modulating the ECM and 
how the oxidative by-products can promote fi brosis in the lung. 

 Studies also indicate that oxidative fragmentation of HS side chains can occur 
through hypochlorite species generated by MPO [ 70 – 72 ,  150 ] and through hydroxyl 
radicals generated by xanthine oxidase [ 151 ,  152 ]. This is particularly important in 
sites of infl ammation and neutrophil infl ux. Potential oxidative reactions can occur 
to the core protein itself or the polysaccharide side chains. Protein backbone oxida-
tion is more complex and signifi cant cleavage occurs only with very ROS such as 
hydroxyl radicals [ 153 ]. Oxidation and cleavage of the core protein can occur 
through hydrogen abstraction from a central α-carbon and subsequent reaction with 
oxygen to form a peroxyl radical [ 154 ]. This radical can undergo conversion to an 
α-C alcohol and the peptide bond can be cleaved by hydrolysis or to an alkoxyl 
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 species resulting in cleavage of the peptide bond. Polysaccharide side chain 
 fragmentation can occur through hydrogen abstraction from any of the C–H bonds 
on the sugar residue creating a C-centered radical, called an α-hydroxyalkyl radical 
( • C(OH)RR′) [ 153 ]. This radical can then be converted to a peroxyl radical in the 
presence of oxygen and undergo chain hydrolysis or can undergo β-scission of 
the glycosidic bond which would fragment the chain [ 153 ,  154 ].  

10.3.2     Matrix Metalloproteinases 

 ECM degradation and turnover are also regulated by the activity of MMPs and their 
tissue inhibitor counterparts (TIMPs). MMPs are matrix-degrading proteinases 
(currently a total of 22) shown to be upregulated in models of pulmonary fi brosis 
[ 124 ,  155 ]. The majority of MMPs are synthesized as proenzymes and activated by 
proteolysis of a cysteine-zinc pro-domain, called a “cysteine switch” [ 123 ,  156 ]. 
ROS are also capable of activating MMPs, increasing their transcription, and deac-
tivating proteases [ 156 – 158 ]. Thus, oxidants may play a signifi cant role in upregu-
lated activity of MMPs in pulmonary fi brosis. The substrates of MMPs are ECM 
components and soluble factors and include, but are not limited to, the following: 
(1) MMP1, 8, and 13 are collagenases targeting collagens I, II, III, VII, X, gelatin, and 
pro-TNF-α; (2) MMP2 and 9 are gelatinases targeting type IV and V collagen, gela-
tin, elastin, fi bronectin, pro-TGF-β, and pro-TNF-α; (3) MMP3, 10, and 11 are 
stomelysins that target proteoglycans, laminin, fi bronectin, gelatin, and pro-TNF-α; 
and (4) MMP7 (matrilysin) targets proteoglycans, collagens, laminin, decorin, gela-
tin, and fi bronectin [ 123 ]. Tissue inhibitors of metalloproteinases (TIMPs 1–4) are 
extracellular or membrane-bound enzymes that bind tightly to MMPs to inhibit 
their degradative activity [ 123 ]. 

 In IPF patients, MMP2 and 9 and TIMPs 1 and 2 are elevated in areas of alveo-
lar damage and at disrupted basement membranes [ 159 ]. McKeown et al. report 
increases in MMP3, 7, 8, and 9 in BALF from IPF patients with levels higher in 
patients with earlier mortality [ 160 ]. Rosas et al. report increases in MMP1 and 
7 in serum, BALF, and lung tissue in IPF patients, suggesting they may be blood 
biomarkers for IPF [ 140 ]. MMP7-null mice are also protected from bleomycin-
induced pulmonary fi brosis [ 139 ]. Animal studies show similar results with 
increases in MMP2 and 9 in the fi brotic phase of bleomycin-induced fi brosis [ 124 ]. 
Cabrera et al. report that an over-expression of MMP9 diminishes bleomycin-
induced  fi brosis [ 161 ]. In asbestos-induced fi brosis, MMP9 and MMP2 are 
 important during the infl ammatory and fi brotic phases of disease pathogenesis, 
respectively [ 124 ]. Inhibitors of MMPs have also been successful in protecting 
against asbestos- induced pulmonary fi brosis [ 124 ]. While there are differences in 
fi ndings related to the role of MMPs in pulmonary fi brosis pathogenesis, the bal-
ance of MMPs and TIMPs is likely to play important roles during the course of 
fi brogenesis in the lung.  
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10.3.3     Antioxidants in the Lung 

 The lung expresses a variety of antioxidant resources to protect against oxidative 
stress within the tissue. These antioxidant defenses include low molecular weight 
antioxidants (glutathione, vitamins̶vit. E, uric acid, etc.); metal-binding proteins 
(transferrin, lactoferrin, etc.); thiol-containing proteins with redox regulatory activity 
(thioredoxin, peroxiredoxin, and glutaredoxins); enzymes that degrade H 2 O 2  
(catalase and glutathione peroxidases); mucins; detoxifying enzymes (glutathione-
S   - transferases); and SODs. These antioxidants create a homeostatic system that 
functions to scavenge oxidative species and radicals that can damage cellular and 
matrix components. Several of these antioxidants have been shown to be important 
in IPF and are highlighted below. 

 Catalase is an important scavenger of H 2 O 2  expressed within the alveolar epithe-
lium and infl ammatory cells of the lung. H 2 O 2  has been shown to be an activator 
of pulmonary fi broblasts from IPF lungs and catalase can inhibit this activation [ 53 ]. 
A recent study reports that catalase administration to asbestos-treated wild-type 
mice protects against pulmonary fi brosis development, by inhibiting the production 
of H 2 O 2  through Rac1 GTPase-stimulated NADPH oxidase [ 162 ,  163 ]. Similarly, in 
a rat model of asbestosis, extended administration of polyethylene glycol (PEG)-
linked catalase for 20 days decreases fi brosis and collagen deposition in the lung 
[ 163 ]. It should be noted that patients with acatalasemia do not have pulmonary 
fi brosis; thus, the loss of catalase itself is not causative in pulmonary fi brosis. 

 Glutathione and alpha-tocopherol are important low molecular weight antioxi-
dants found in the lung. Glutathione has been shown to be decreased in the epithelial- 
lining fl uid [ 16 ] and in fi brotic lesions of IPF lungs. Furthermore, one study reports 
that the administration of oral NAC can increase glutathione levels in BAL fl uid 
[ 164 ], sputum [ 15 ], and within alveolar epithelial cells to reduce oxidant production 
[ 165 ], suggesting that antioxidants can be exogenously administered and alter the 
environment of the lung. Administration of aerosolized glutathione to a small num-
ber of IPF patients resulted in a shift in the lung’s oxidant–antioxidant balance 
toward the later [ 166 ]. In a recent study, alpha-tocopherol, commonly known as 
vitamin E, was reported to be elevated in the BAL fl uid of IPF patients and was 
emulated during fi brosis in the bleomycin animal model [ 92 ]. 

 SOD was fi rst described by Fridovich and McCord in 1969 [ 167 ,  168 ]. There are 
three SOD enzyme isoforms including intracellular CuZn SOD (SOD1), mitochon-
drial manganese MnSOD (SOD2), and extracellular CuZn SOD (SOD3). ECSOD 
was identifi ed by Marklund et al. in 1982 and is highly expressed in the lung [ 169 , 
 170 ]. When the epithelium of the lung is exposed to oxygen or noxious stimuli, 
extracellular antioxidants have a critical role in preventing oxidative stress. 

 ECSOD has been implicated in the pathogenesis of pulmonary diseases involv-
ing oxidative stress [ 102 ,  171 ,  172 ]. ECSOD is an active extracellular scavenger of 
superoxide free radicals by catalyzing the dismutation of superoxide into hydrogen 
peroxide and oxygen. This occurs at a rate constant of >10 9  M −1  s −1  [ 172 ]. ECSOD 
is highly expressed in the vasculature [ 173 ] and functions to preserve nitric oxide 
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(NO) bioavailability within various organ systems [ 81 ,  174 – 176 ] by removing 
superoxide that can deplete NO. Figure  10.2     depicts the structure and functional 
domains of ECSOD. This enzyme is highly expressed in the lung and localizes 
to cell surfaces by binding to heparan sulfate species [ 172 ,  177 – 180 ] and type I 
 collagen [ 147 ,  171 ] through its matrix binding domain (MBD). 

 Enzymatic cleavage of any of the four MBDs will decrease or abolish the affi nity 
of ECSOD for the matrix and cell surfaces (Fig.  10.2b )   . ECSOD has three heparin 
affi nity types: no affi nity (type A), moderate affi nity (type B), and high affi nity 
(type C). Trypsin or endoproteinase treatment of ECSOD, which targets lysine 
 residues, can abolish or weaken the matrix binding affi nity of ECSOD [ 177 ]. This 
supports the important role of the cluster of basic amino acids in the C-terminus of 
ECSOD. 

 ECSOD has been shown to play an important role in several models of 
pulmonary fi brosis including bleomycin-, asbestos-, and radiation-induced fi brosis. 
Knockout mice lacking ECSOD throughout their tissues have signifi cantly more 
lung fi brosis, acute lung injury, and infl ammation dominated by a neutrophil 
infl ux due to bleomycin and asbestos intratracheal administration [ 101 ,  103 ,  117 ]. 

  Fig. 10.2    Schematic of ECSOD structure and heparin affi nity. ( a ) The ECSOD monomer contains 
an enzymatic functional domain ( grey ), a unique matrix binding domain (MBD) at the carboxyl 
terminus ( black ) which is composed of arginine (R) and lysine (K) residues, variable free cysteine 
residues that can participate in disulfi de bonding (Cys), and an N-linked glycosylation site. The 
positively charged MBD makes the site suitable for binding to highly negatively charged heparin 
species in the ECM. ( b ) ECSOD tetramer affi nity for the matrix can be regulated by proteolytic 
removal of the MBD (Reproduced from Free Radic Biol Med. 2011 May 1;50(9):1075–80)       
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ECSOD distribution in the lungs of wild-type mice also changes, as it is lost from 
the parenchyma where it normally resides and increases in air spaces in fi brosis 
models [ 117 ,  181 ,  182 ], and after hyperoxia [ 115 ]. ECSOD appears to be exerting 
its anti- infl ammatory and anti-fi brotic effects by inhibiting oxidative degradation of 
matrix components, as discussed above.   

10.4     Therapeutic Approaches: Controlling Oxidative Stress 

10.4.1     Treatment 

 Despite recent studies and advances in the understanding of the pathogenesis and 
clinical course, there are currently no effective therapies for IPF, aside from lung 
transplantation, which comes with its own complications. Several options are avail-
able, such as anti-infl ammatory agents; however, there are very few to no clinical 
studies that show improvements in progression-free survival, functional capacity, or 
quality of life [ 183 ]. While corticosteroids have been used over the last 50 years, 
Flaherty et al. report that fewer than 20 % of patients have improvement with steroid 
therapy [ 48 ,  184 ]. Chronic, low dose prednisone may be a maintenance therapy in 
responsive patients, but is not recommended for all IPF cases [ 7 ,  183 ]. 

 Immunosuppressive/cytotoxic agents, such as azathioprine, which impairs leu-
kocyte proliferation [ 183 ], and cyclophosphamide, an alkylating agent, are used 
in patients who are non-responsive to steroids and have shown favorable results in 
15–20 % of IPF cases [ 1 ]. Raghu et al. completed a study of high dose prednisone 
therapy versus high dose prednisone plus azathioprine and found no signifi cant dif-
ferences in clinical measures, such as forced vital capacity (FVC) and diffusion 
capacity of carbon monoxide (DLCO), with either therapy [ 185 ]. Cyclophosphamide 
has shown no survival benefi t in studies [ 46 ,  186 ] and has a profound side-effect 
profi le [ 183 ,  186 ] which limits its utility. 

 Finally, anti-fi brotic agents, such as colchicine [ 187 ], have been tried, but have 
been unsuccessful in humans. Colchicine functions by decreasing collagen forma-
tion through fi broblasts and macrophages [ 183 ] and its metabolites have the ability 
to scavenge free radicals; however, this also leads to the production of secondary 
radicals [ 188 ,  189 ]. While colchicine showed promise in vitro and in animal models 
[ 190 ,  191 ], it has shown no survival or lung function benefi t in clinical IPF [ 47 ,  192 ] 
thus having limited clinical utility in IPF therapy. 

 Amidst the grim outlook of current therapies, the IPF research community con-
tinues to fi nd new molecular targets and therapeutic options, some of which have 
antioxidant activity. Pirfenidone is a pyridone molecule that has anti-infl ammatory 
and anti-fi brotic effects in both in vitro and in vivo pulmonary studies. It can also 
scavenge hydroxyl and superoxide free radicals [ 193 – 195 ]. It was successful in 
abrogating bleomycin-induced fi brosis in animal models [ 196 ,  197 ], by decreasing 
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TGF-β expression and subsequent collagen deposition. In a Phase II open-label trial, 
pirfenidone was effective in both improving 1-year survival to 78 % (compared to 
70 % reported in other studies) and stabilizing or improving lung function (diffusing 
capacity (DLCO) and FVC) in patients with advanced IPF [ 198 ]. Pirfenidone is not 
currently approved in the United States. 

 Many studies have focused on carnosine, NAC, and SODs. Administration of 
carnosine, a free radical scavenging peptide, in mice decreases infl ammatory and 
fi brotic markers in bleomycin-induced fi brosis [ 199 ] and is available for human 
administration. NAC, one of the most highly studied thiol-containing agents, scav-
enges H 2 O 2  (hydrogen peroxide),  • OH (hydroxyl radical), and HOCl and promotes 
glutathione synthesis [ 164 ]. The IFIGENIA trial (a randomized, double-blinded, 
placebo-controlled trial) reported that the addition of high dose NAC to the stan-
dard therapy of prednisone and azathioprine can signifi cantly slow IPF progression 
compared to standard therapy alone when evaluated on FVC, DLCO, and a com-
posite physiologic index [ 200 ,  201 ]. One study reported that aerosolized NAC 
resulted in improved oxygen saturation and CT image changes in IPF patients; 
however, it had no effect on pulmonary function or quality of life [ 202 ]. It remains 
unclear if there is a survival benefi t from NAC therapy. A recent study from the IPF 
Clinical Research Network analyzed the safety and effi cacy of combination ther-
apy with prednisone, azathioprine, and NAC with a randomized double-blind, 
placebo- controlled trial that demonstrated increased mortality and hospitalization 
during interim analysis with combination therapy as compared with NAC alone or 
placebo [ 203 ]. 

 Antioxidant mimetics may be another potential therapeutic strategy. A recent 
review discusses these and additional antioxidant mimetics in detail [ 204 ]. Small-
molecular- weight SOD mimetics, such as metalloporphyrins, have been effective 
in limiting radiation-induced lung injury, oxidative stress, infl ammation, and 
bleomycin- induced pulmonary fi brosis in animal models [ 116 ,  205 ,  206 ]. The 
metalloporphyrins have several distinct antioxidant actions including scavenging 
superoxide (SOD-like activity), hydrogen peroxide (catalase activity), and per-
oxynitrite and inhibiting lipid peroxidation [ 204 ] and are not readily metabolized in 
vivo [ 204 ,  205 ]. While it is hoped that novel antioxidant therapies will provide 
therapeutic benefi t to patients, it is clear that oxidative stress is just one component 
of pulmonary fi brosis. 

 Thus, combination therapies of antioxidants with other anti-fi brotic agents may 
be a more rationale approach to future therapeutic investigations (Table  10.2 )   .

   Lung transplantation is the only current option that prolongs survival in IPF 
patients. Considerations for lung transplantations should be made early on in the 
disease course, as the wait-list time is around 46 months, during which time many 
patients with advanced disease die prior to transplant [ 7 ,  183 ]. The 5-year survival 
post-transplant is approximately 40 % [ 207 ]. Lung transplantation is also associated 
with increased pulmonary and systemic oxidative stress during the post-transplant 
period [ 208 ].   
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10.5     Final Discussion 

 The current belief in IPF pathogenesis is that cellular injury, which is often  repetitive, 
acts as the inciting event for fi brosis development and oxidative imbalance within 
the lung. Causes of the oxidative stress include, but are not limited to, the cellular 
injury, transition metal exposure, infl ammation, or drugs that participate in reduc-
tion–oxidation reactions. The importance of oxidative modifi cations to the ECM 
and how they alter cellular responses in human IPF remains an open and under- 
investigated area. Recent studies show that ECM degradation products do have 
 biological function and may add to the progression of pulmonary fi brosis (Fig.  10.3 ). 
While there is not suffi cient evidence that the ECM products are initiating or caus-
ative factors in IPF, they appear to promote a profi brotic environment. 

 The current literature on the pathogenesis of tissue fi brosis focuses primarily on 
the roles of epithelial, mesenchymal, and infl ammatory cells. Specifi cally, the role 
for oxidative shedding of matrix components and the effects of the shed species dur-
ing tissue injury remain unclear. ECSOD is the most abundant antioxidant enzyme 
in the extracellular space of many tissues where it is localized through binding to 
matrix components such as heparan sulfates. Novel evidence is available that sup-
ports the importance of oxidative stress in the ECM, such as with syndecan-1 or 
hyaluronic acid, and that antioxidants, like ECSOD, have primary roles in protect-
ing the matrix and preventing detrimental downstream consequences (Fig.  10.3 ). 

 In addition to scavenging oxidants once they are produced, it may also be pos-
sible to directly inhibit their production from their source. Novel strategies to inhibit 
oxidant production by any of these complex enzymes or transition metal systems 
may provide ideal targets for therapeutic intervention for IPF patients. 

   Table 10.2    Therapeutics in IPF   

 Therapeutic  Mechanism of action 
 Clinical or laboratory 
results 

 Corticosteroids [ 7 ,  48 ,  183 ,  184 ]  Inhibition of infl ammation  Benefi t in 20 % of patients 
 Azathioprine [ 185 ]  Suppression of leukocyte 

proliferation 
 Positive effect in 15–20 % 

of steroid nonresponders 
 Cyclophosphamide [ 46 ,  186 ]  DNA alkylation  No effect on patient survival 
 Colchicine [ 188 – 192 ]  Decrease collagen synthesis; 

scavenge free radicals 
 Protective in bleomycin 

animal model 
 No benefi t in human studies 

 Pirfenidone [ 193 – 198 ]  Anti-fi brotic, TGF-β regulation; 
scavenge free radicals 

 Protective in bleomycin 
animal model 

 Increased 1-year survival 
and lung function 

 Carnosine [ 199 ]  Scavenge free radicals  Protective in bleomycin 
animal model 

  N -acetyl-cysteine [ 200 – 202 ]  Scavenge free radicals; promote 
glutathione expression 
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 This review highlights the important role that oxidative stress has in the 
 pathogenesis of IPF and emphasizes the importance of the ECM in the pathogenesis 
of pulmonary fi brosis. Oxidative degradation of the ECM may prove to be a good 
therapeutic target given that (1) intact ECM is critical for appropriate wound heal-
ing; (2) ECM degradation by-products are biologically active, and (3) the ECM 
localizes many cytokines, growth factors, and enzymes shown to potentiate fi brosis. 
Additional investigations into antioxidant therapeutics are necessary to elucidate 
their full potential, especially with regard to ECM degradation. The clinical arena 
of IPF needs more effective therapies and while antioxidants alone may not be the 
complete answer, combination therapies that include antioxidants, or inhibitors of 
oxidant generation, may contribute to future effective therapies for this disease.     

  Acknowledgment   Portions of this writing were reprinted with permission from Elsevier 
Publishing.  

  Fig. 10.3    Oxidative stress can accompany or be caused by various stimuli in the lung, i.e., repeti-
tive cellular injury, transition metal or particulate exposure, noxious drugs, infl ammation, and 
enzymatic activity such as NADPH oxidases. This oxidative imbalance can result in degradation 
of ECM components and a loss of protective antioxidants. This leaves the tissue susceptible to 
increased infl ammation, profi brotic signals, and aberrant wound healing̶all of which may con-
tribute to the progression of pulmonary fi brosis (Reproduced from Free Radic Biol Med. 2011 
May 1;50(9):1075–80)       
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        Sarcoidosis is a multisystem disorder characterized by the formation of non- caseating 
granulomas. These granulomas form as a result of a heightened helper T-cell type 1 
(Th1) response orchestrated by a number of cytokines [ 1 ]. The exact etiology is not 
clear but genetic predisposition, the type of inciting antigen, role of microbes, 
environmental and occupational factors are some aspects in its pathogenesis which 
have received the attention of investigators the world over [ 2 ]. In the past two 
decades, the role of oxidative stress in the pathogenesis of diffuse parenchymal lung 
diseases (DPLDs) including sarcoidosis has been highlighted. Oxidative stress has 
been shown to play an important part in the evolution of idiopathic pulmonary fi bro-
sis (IPF) [ 3 ]. Evidence of increased oxidative stress has also been found in sarcoid-
osis. Several mechanisms have been proposed by which the oxidative stress 
translates into lung injury in sarcoidosis [ 4 ,  5 ]. 

 The following text elaborates on the evidence of occurrence of oxidative stress in 
sarcoidosis and its proposed role in pathogenesis. The possible role of antioxidants 
to counteract oxidative stress in this disease and the clinical implications of the 
current knowledge on this subject have also been discussed. 

    Chapter 11   
 Oxidative Stress in Sarcoidosis 
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11.1     Markers of Oxidative Stress in Sarcoidosis 

11.1.1     Serum Markers (Markers of Systemic Oxidative Stress) 

11.1.1.1     Lipid and Protein Peroxidation Products 

 Malondialdehyde (MDA) is the end product of lipid peroxidation. Signifi cantly 
higher levels of MDA have been found in the serum [ 6 ,  7 ] and erythrocytes [ 7 ] of 
sarcoidosis patients as compared to controls. MDA levels were also found to be 
signifi cantly higher in patients with active disease as compared to those with inac-
tive disease [ 6 ]. Both serum and erythrocyte MDA levels are strong predictors of the 
presence of disease even after adjusting for oxidative stress and lipid parameters [ 7 ]. 
Levels of oxidized low density lipoprotein (oxLDL) are also higher in sarcoidosis 
patients, more so in patients with active disease [ 6 ].  

11.1.1.2     Oxygen-Free Radicals and Enzymatic Oxidants/Antioxidants 

 Serum and erythrocyte superoxide anion concentrations are higher in patients with 
sarcoidosis [ 7 ]. Serum total hydroperoxide levels as measured by spectrophotom-
etry are increased in clinically stable patients not treated with steroids, as com-
pared to steroid-treated patients and healthy volunteers [ 8 ]. But they do not 
correlate with the diffusing capacity of carbon monoxide (DLCO), partial arterial 
oxygen tension (PaO 2 ), Medical Research Council (MRC) dyspnea scale, or chest 
X-ray stage [ 8 ]. 

 Signifi cantly lower superoxide dismutase (SOD) activity has been found in both 
the serum and the erythrocytes of sarcoidosis patients as compared to controls [ 7 ]. 
Paraoxonase (PON1) is a hydrolase located on high density lipoprotein (HDL) that 
protects both low density lipoprotein (LDL) and HDL from oxidation [ 9 ]. It thus 
plays a role in preserving HDL’s capacity to function as an anti-apoptotic molecule 
as oxidized HDL loses its anti-apoptotic function [ 10 ]. Reduced levels of PON1 
have been reported in diseases known to have increased oxidative stress including 
diabetes, hypercholesterolemia, and cardiovascular disease [ 11 ,  12 ]. Low levels of 
serum PON1 pointing towards a decreasing antioxidant activity have been found in 
sarcoidosis patients with active disease as compared to controls as well as to patients 
with inactive disease [ 6 ].  

11.1.1.3    Non-enzymatic Low Molecular Weight Antioxidants 

 Serum vitamin C, uric acid, and reduced glutathione levels are decreased in the 
blood of sarcoidosis patients as compared to matched controls [ 13 ]. NADPH levels 
are reduced in erythrocytes of female sarcoidosis patients [ 14 ].  
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11.1.1.4     Total Oxidant Status, Total Antioxidant Status, 
and Prooxidant–Antioxidant Balance 

 Total oxidant status (TOS) gives the summation of the effect of all the oxidant mol-
ecules in the serum. It can be assessed by an assay based on the conversion of fer-
rous to ferric ions [ 15 ]. It is signifi cantly higher in the serum and erythrocytes of 
sarcoidosis patients than in controls [ 7 ]. Prooxidant–antioxidant balance (PAB) val-
ues are higher while total antioxidant status (TAS) values are signifi cantly lower in 
sarcoidosis patients as compared to controls [ 7 ,  13 ]. 

 A signifi cant positive correlation exists between serum angiotensin converting 
enzyme (ACE) levels and serum MDA and TOS levels while a signifi cant negative 
correlation is found between serum ACE and serum TAS levels [ 7 ]. 

 To summarize, markers of oxidative stress and total oxidant activity are increased, 
while antioxidant molecules and total antioxidant activity are found to be decreased 
in the sera of sarcoidosis patients. There is emerging evidence on oxidative markers 
being correlated with disease activity.   

11.1.2     Markers in Respiratory Tract Samples 
(Markers of Local Oxidative Stress) 

11.1.2.1    Lipid and Protein Peroxidation Products 

 8-Isoprostane (8-IP) is a PGF2α isomer produced in vivo by free radical-induced 
peroxidation of arachidonic acid [ 16 ]. Levels of 8-IP are elevated in bronchoalveo-
lar lavage (BAL) fl uid in sarcoidosis [ 17 ]. They are correlated negatively with the 
number of BAL fl uid lymphocytes. 8-IP levels are also elevated in the exhaled 
breath condensate (EBC) of sarcoidosis patients as compared to controls [ 18 ]. In 
another study, they were shown to be elevated in active sarcoidosis while not signifi -
cantly increased in patients with inactive disease, and were correlated with serum 
ACE levels [ 19 ]. In fact, EBC 8-IP concentrations are highest in patients with 
stage-3 disease [ 20 ]. Moreover, if 8-IP levels are below detection levels, there is a 
greater than three times increased chance of an early remission [ 20 ]. Unfortunately, 
complete remission is not associated with a consistent decrease of EBC 8-IP; how-
ever treatment with steroids reduces the levels of this molecule irrespective of 
remission [ 20 ]. 

 Ethane, an end product of lipid peroxidation of omega-3 fatty acids like linolenic 
acid, is expired as a gas [ 21 ]. Elevated concentrations of exhaled ethane, represent-
ing oxidative stress have been found in asthma and chronic obstructive pulmonary 
disease [ 22 ,  23 ]. Exhaled ethane was found to be elevated in a mixed population of 
various interstitial lung diseases including IPF, cryptogenic organizing pneumonia, 
collagen vascular disease-associated-ILD, and sarcoidosis [ 24 ]. It correlated with 
tracer uptake on gallium-67 scintigraphy [ 24 ]. 
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 Metal-catalyzed generation of reactive oxygen species (ROS), for example 
through Fenton reaction leads to oxidation of proteins which are measured as the 
total carbonyl content in the BAL fl uid [ 25 ]. BAL fl uid protein carbonyls are signifi -
cantly elevated in sarcoidosis [ 25 ,  26 ], although normal levels were found in one 
study [ 27 ]. Also, the total carbonyl content correlates signifi cantly with absolute 
eosinophil numbers in BAL [ 25 ]. Besides this, albumin, immunoglobulins, α-1 anti-
trypsin, and complement C3 are also found oxidized in the BAL of sarcoidosis 
patients [ 28 ].  

11.1.2.2    Oxygen-Free Radicals and Enzymatic Oxidants/Antioxidants 

 There is an increased ex vivo production of hydrogen peroxide by alveolar macro-
phages extracted by BAL in sarcoidosis patients [ 29 ]. However, it does not correlate 
with ACE levels, the results of gallium-67 scans, or the percent of lymphocytes in 
the BAL [ 29 ]. Hydrogen peroxide levels are also signifi cantly elevated in the EBC 
of sarcoidosis patients [ 30 ]. 

 Alveolar macrophages of patients with both active and inactive sarcoidosis pro-
duce higher amounts of superoxide anions than of healthy subjects [ 31 ]. However, 
the amount of superoxide produced on stimulation with phorbol myristate acetate is 
higher in patients with high intensity lymphocytic alveolitis than in patients with 
inactive disease [ 31 ]. In another study, alveolar macrophages from patients with 
high intensity alveolitis had a reduced superoxide anion release after in vitro stimu-
lation [ 32 ]. This apparent paradox is explained by the possible constant in vivo 
activation of the cells with subsequent reduced ability to respond after additional 
stimulation in vitro [ 32 ]. 

 Haem oxygenase-1 (HO-1) is an inducible microsomal enzyme that catalyzes the 
conversion of haem into carbon monoxide and biliverdin [ 33 ]. It plays a cytoprotec-
tive role against oxidative stress [ 34 ]. Cytokines like interleukin-1 and tumor necro-
sis factor-α (TNF-α) induce HO-1 as a protective function against oxidant injury. 
There is a decreased expression of HO-1 in fi brotic lung disorders like IPF [ 35 ], 
while it is shown to be increased in the induced sputum in granulomatous lung dis-
eases like stage I–III sarcoidosis and chronic beryllium disease [ 36 ]. There is intense 
HO-1 immunoreactivity in alveolar macrophages and weak to intense activity in the 
granulomas of sarcoidosis, while it is weak to negative in fi brotic areas of the lung 
[ 37 ]. Manganese SOD, an important enzymatic oxidant is also upregulated in sar-
coid granulomas [ 38 ]. 

 Peroxiredoxins are another group of antioxidant enzymes that can reduce 
hydrogen peroxides and organic peroxides [ 39 ]. They are shown to express in alve-
olar macrophages of sarcoidosis patients [ 40 ]. Thioredoxin, a class of small redox 
proteins is highly expressed and locally produced by sarcoid granulomas [ 41 ,  42 ]. 
It might activate T cells by acting as a local inducing factor for interleukin-2R 
expression [ 42 ]. It may also serve as a marker of ongoing cell regeneration and 
infl ammation [ 41 ].  
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11.1.2.3    Non-enzymatic Low Molecular Weight Antioxidants 

 The concentrations of ascorbic acid, α-tocopherol, and retinol are increased while 
glutathione concentrations are unaltered in the BAL fl uid of sarcoidosis patients [ 43 ]. 
This increase may represent an adaptive response to oxidative stress [ 43 ]. 

 Thus, there is an increase in lipid peroxidation products, oxidative enzymes, and 
oxygen-free radicals in the respiratory secretions in sarcoidosis. At the same time, 
the levels of antioxidant molecules are also elevated, possibly as a mechanism to 
counteract the heightened oxidative stress.    

11.2     Proposed Role of Oxidative Stress in Pathogenesis 

 The characteristic fi nding in the BAL of sarcoidosis patients is a predominance of 
lymphocytes and usually a normal level of neutrophils and eosinophils. Neutrophils 
are found to increase in late or advanced sarcoidosis [ 44 ]. Furthermore, in newly 
diagnosed patients with sarcoidosis, BAL neutrophilia [ 45 ,  46 ] and eosinophilia 
[ 46 ] indicate an unfavorable prognosis. These cells are potent producers of ROS, 
which are released upon stimulation of NADPH-oxidase. 

 Immune cells at the site of lesions of sarcoidosis produce ROS-like superoxide 
anion, which are released into blood and taken by erythrocytes through the anion 
channels [ 5 ]. SOD converts superoxide anions into hydrogen peroxide which con-
tributes signifi cantly to TOS [ 15 ]. The increased levels of superoxide and hydrogen 
peroxide lead to increased lipid peroxidation resulting in increased levels of MDA. 
Hydrogen peroxide can also catalytically inactivate SOD [ 47 ]. 

 It is possible that the relationship between ROS production and lipid peroxida-
tion is different in different subgroups of sarcoidosis patients. In patients with active 
lymphocytic infl ammation, alveolar macrophages are constantly stimulated and 
release superoxide anion [ 4 ]. These are the patients who suffer from acute disease 
with intense infl ammation which has a favorable prognosis. These patients show 
lower levels of 8-IP, thus refl ecting less of chronic lipid membrane damage. This 
happens possibly because of the rapid scavenging of ROS by naturally occurring 
antioxidants [ 4 ]. Membrane lipid peroxidation (as refl ected by levels of 8-IP) is 
greatest in a different subgroup of patients, who have radiological stage-3 disease, 
with lesser lymphocytic [ 4 ] and more of eosinophilic infl ammation [ 18 ]. Moreover, 
there is a negative correlation between the number of BAL fl uid eosinophils and 
DLCO [ 18 ]. 

 ROS play a role in infl ammation and fi brosis in multiple ways. First, they promote 
infl ammation by activating the transcription factors, nuclear factor-κB (NF- κB), 
and activator protein-1 through histone acetylation/deacetylation [ 48 ]. NF-κB, a 
potential biomarker for oxidative stress [ 49 ] is increased in alveolar macrophages 
[ 50 ] and blood monocytes [ 51 ] of active sarcoidosis patients. These transcription 
factors induce pro-infl ammatory cytokines like IL-8 [ 48 ], as well as promote free 
radical formation, thus propagating both infl ammation and oxidative stress [ 52 ]. 
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Second, ROS play a part in the proteinase–antiproteinase balance. They can 
activate [ 53 ] or inactivate metalloproteinases [ 54 ], as well as inactivate their inhib-
itors [ 55 ]. Third, ROS increase the release of transforming growth factor-β 
(TGF-β) from human alveolar epithelial cells, thus promoting fi brosis [ 56 ]. Fourth, 
ROS and reactive nitrogen species (RNS) mediate the induction of plasminogen 
activator inhibitor- 1 (PAI-1), which plays an important role in the development of 
lung fi brosis [ 57 ]. 

 An association between ACE and oxidative stress parameters [ 7 ] points to a 
possible link between oxidative stress and differentiation of monocytes to macro-
phages leading to granuloma formation. 

 Calcium oxalate is present in sarcoid granulomas, sequesters iron, and ferritin [ 58 ]. 
There is a possible link between the oxidative stress mediated by accumulated iron 
and the infl ux of alveolar macrophages, giant cell formation, and a granulomatous 
response in the lung [ 58 ]. 

 Enzymatic and non-enzymatic antioxidants are increased in the lung tissue as a 
response to oxidative stress while their systemic levels are decreased possibly due 
to increased consumption and accumulation in the lung. It is possible that there is a 
state of relative defi ciency of antioxidant molecules, despite the higher than normal 
levels [ 43 ]. Antioxidants like HO-1 may be important in the defense of alveolar 
macrophages in the infl ammatory, but not in the fi brotic stage of the disease [ 37 ].  

11.3     Role of Exogenous Antioxidants in Sarcoidosis 

 There are many antioxidant compounds that can be administered exogenously to 
counteract increased oxidative stress in various conditions. A few have been tried in 
sarcoidosis. No conclusive benefi t of any such treatment has been shown. 

 Quercetin is a dietary antioxidant. The highest concentrations are found in the 
fl ower buds (capers) of the plant Capparis spinosa. Other sources are buckwheat, 
blueberry, and cranberry. Supplementation with quercetin increases the total 
plasma antioxidant capacity in healthy volunteers [ 59 ]. Its antioxidant capacity 
is several times that of various endogenous antioxidants like glutathione and 
vitamin E [ 52 ]. Moreover, it accumulates in the lungs [ 60 ], and acts as an anti-
infl ammatory agent by reducing levels of TNF-α and IL-8, known to be elevated 
in sarcoidosis [ 13 ]. Total plasma antioxidant capacity is enhanced while MDA 
levels are reduced signifi cantly by quercetin supplementation in sarcoidosis 
patients [ 52 ]. Also, the ratios TNF-α/IL-10 and IL-8/IL-10 are reduced by quer-
cetin in patients with sarcoidosis [ 13 ,  52 ]. The baseline level of oxidative stress 
and infl ammation is a major determinant of the benefi cial effect of antioxidant 
supplementation [ 52 ]. 

 Pentoxifylline is a phosphodiesterase inhibitor which is shown to induce a dose- 
dependent suppression of the spontaneous TNF-α release from alveolar macro-
phages in sarcoidosis [ 61 ]. Besides its anti-infl ammatory properties, it also has mild 
capacity to scavenge oxygen-free radicals in vitro [ 62 ]. Although a post hoc 
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analysis of a small study suggests that pentoxifylline reduces flares and has 
steroid-sparing effects, no defi nitive conclusions can be drawn regarding the effi cacy 
of pentoxifylline in pulmonary sarcoidosis [ 63 ]. 

  N -acetylcysteine (NAC) has antioxidant, mucolytic, and anti-infl ammatory 
properties [ 64 ]. It has been used in the treatment of various pulmonary disorders 
like IPF [ 65 ]. NAC exerts a dose-dependent inhibitory effect on IL-8 and MMP-9 
release and ICAM-expression by BAL macrophages and lymphocytes from patients 
with sarcoidosis [ 64 ]. No clinical trials or experimental studies have assessed its 
therapeutic effi cacy in pulmonary sarcoidosis.  

11.4     Clinical Applications and Questions To Be Answered 

 There are many potential clinical applications of the knowledge that has been and is 
being generated on the role of oxidative stress in sarcoidosis. Certain questions need 
to be answered before the measurement of oxidative markers becomes a useful clin-
ical tool. Do markers of oxidative stress, local (BAL and EBC), or systemic (serum), 
truly refl ect the severity of disease? Whether a “high oxidative stress disease” is a 
distinct phenotype that behaves differently from “low oxidative stress disease”? Do 
increased levels of ROS and lipid peroxidation products represent different pathol-
ogy or stages of disease? As mentioned earlier, high superoxide levels associated 
with lymphocytic infl ammation were seen in reversible disease while high 8-IP lev-
els associated with eosinophilic infl ammation were observed in chronic irreversible 
disease. Could high HO-1 levels point to an active granulomatous process, while 
low levels represent fi brosis? 

 Regarding implications on therapeutics, the role of antioxidants to treating sar-
coidosis is not clear. It is evident from many of the above-described observations 
that steroids reduce oxidative stress in addition to the reduction in the level of 
infl ammation. Whether antioxidants have any additive effect when used in conjunc-
tion with steroids is a moot question to be answered. Can antioxidants slow down 
progression at a stage when steroids are either not warranted or have failed to show 
benefi t? A whole gamut of antioxidants awaits clinical testing in well-planned clini-
cal trials in carefully selected patients.     
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12.1            Introduction 

 The adverse clinical consequences of asbestos fi ber inhalation are well described 
(Table  12.1 ) [ 1 ]. There are two aspects of exposure to the asbestos fi ber that alter the 
development of these asbestos-related diseases. The fi rst effector of risk for disease 
is dose. Fibrotic lung disease (asbestosis), malignancy, and pleural changes are all 
dose-dependent. Despite efforts by investigators to show that asbestos-induced 
fi brosis must be present to provoke lung cancer or to show that pleural plaques sub-
stantially increase the risk of lung cancer, the risks for each independently increase 
with exposure̶these three clinical features occur in parallel [ 2 – 5 ]. There is no 
timeline which allows the physician to predict if, or when, one will occur before the 
other. Each manifestation can occur singularly or together. Statistical evidence 
showing one or the other event leads to malignancy has been very diffi cult to sort 
out and has been a substantial source of disagreement among epidemiologists who 
have been interested in understanding this issue.

    Chapter 12   
 Asbestos Fibers: Mechanisms of Injury 
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   The second aspect associated with the development of disease attributed to 
asbestos exposure is time̶that is not only the time from fi rst exposure to the 
current exposure in those working, but also the total time from fi rst exposure to 
asbestos regardless of the working status. It is not suffi cient to address the impact of 
the years of fi ber inhalation. In former workers, additional years following ceasing 
employment (without exposure) can be relevant. The three manifestations described 
above̶mesothelioma, fi brosis, and lung cancer̶are impacted by this notion of 
latency, that is, the time from fi rst exposure to the development of disease; however, 
the manifestation most impacted is mesothelioma. 

 Mesothelioma is the most sensitive and specifi c marker of the adverse health 
effects attributed to asbestos [ 6 ]. It is sensitive because this tumor can develop from 
lesser asbestos fi ber exposures (in the presence of a substantial [usually more than 
30 years [latency]]) and specifi c as the great percentage of those with this disease 
can provide a history of workplace or environmental asbestos exposure. 

 Several recent publications lead one to realize that the implications of asbestos 
exposure are even more disconcerting as we learn more about the consequences of its 
inhalation. The fi rst report answers the question “Is the world-wide rate for mesothe-
lioma declining from rates recognized in 1995?” [ 7 ]. In seven countries, the mortality 
rate increased (in fi ve, in a statistically signifi cant manner). The mortality rates were 
essentially no different in 24 countries (in fi ve, rates declined but were not statisti-
cally different from the 1996 rates). In the U.S., for example, the permissible expo-
sure limit for asbestos and current standard for exposure was established in 1986 
(although less stringent rules were in place prior to this) and recent rates of importa-
tion and utilization of this fi ber has dramatically lessened to less than 1,000 metric 
tons yearly (from more than 700,000 metric tons/year in the 1950s) [ 8 ,  9 ]. Exposures 
to asbestos continue    in renovated or demolished buildings or as a result of continuing 
the importing policies of brake pads, asbestos fi ttings, and washers. As an example, 
there is clear evidence that the decline in asbestos utilization in the U.S. has been 
dramatic, yet there has been no change in the U.S. mesothelioma rate from 1995 to 
2006. Countries which banned asbestos ( n  = 50 as of 2009) and countries with the 
greatest decline in asbestos utilization from 1970 to 1985 showed the greatest annual 
rate of mesothelioma decline in the 1995–2006 period, yet, overall, when comparing 
1996–2005 data, the annual rate of mesothelioma deaths in 31 countries showed no 
statistically signifi cant decline. In this report, one can only conclude that even though 
current exposures are trending downward, it appears that the latency period remains 
the driving force for the continued development of this disease. 

 The second report helps explain why the changes that have been made in many 
countries are yet to alter the frequency of this disease. Using the relative risk for meso-
thelioma in workers who had stopped working (and therefore, exposure to asbestos) 

   Table 12.1    Asbestos related 
diseases  

 Asbestosis 
 Benign pleural disease 
 Bloody exudative effusions 
 Pleural plaques 
 Diffused pleural thickening 
 Mesothelioma 
 Lung cancer 
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between 3 and 15 years ago as a comparator, the authors showed that the risk for 
mesothelioma in those still working vs. those who had ceased employment more than 
30 years ago was not different [ 10 ]. A second report is a British case- control study com-
paring cases with mesothelioma to workers in different jobs. Among all tradesmen, 
carpenters were at the highest risk for disease development. Of consequence, the life-
time risk for mesothelioma was determined when asbestos exposure occurred prior to 
the age of 30years, even if the exposure lasted for less than 10 years. Increasing the 
exposures for a greater duration beyond the age of 30 years did not signifi cantly add 
to the risk of development of the disease [ 11 ]. 

 Of these clinical manifestations associated with asbestos fi ber inhalation, United 
States federal standards have been developed to protect workers from asbestosis. 
There is no intent in the standard to diminish the number of workers with lung can-
cer, pleural plaques, or mesothelioma. The implication is that the protective effect 
of the standard will lessen the number of cases of asbestosis and in that way lessen 
the other manifestations. Cross-sectional reports suggest that the implementation of 
this standard has dramatically altered the number of cases of asbestosis (Table  12.2 ), 
although, as noted above, there has been no measurable impact on the mesothelioma 
rate. The scene in the developing world is quite alarming. As an example, in India, 
several industrial hygiene surveys report very high levels of asbestos, even though 

   Table 12.2    Selected manuscripts of cross-sectional studies by decade showing changes in the 
prevalence of asbestosis in the U.S. over time   

 1965 
 In a population of 121 asbestos workers with a 40-year latency of asbestos exposure, 94.2 % had 

a radiologic diagnosis of asbestosis 
  Selikoff IJ et al. The occurrence among insulation workers in the United States. Ann NY Acad Sci 

1965; 132:139–155  

 1979 
 In 359 present and retired shipyard workers with ≥10 years of exposure, 44 % had parenchymal 

interstitial disease 
  Polakoff PL et al. Prevalence of radiographic abnormalities among northern California shipyard 

workers. Ann N Y Acad Sci 1979; 330:333–9  

 1988 
 In 1016 workers in the sheet metal industry employed) 35 years, parenchymal interstitial fi brosis 

(consistent with asbestosis) was found in 33.1 % 
  Selikoff IJ, Lilis R. Radiological abnormalities among sheet metal workers in the construction 

industry in the United States and Canada: relationship to asbestos exposure. Arch Environ 
Health 1991; 46:30–36  

 1998 
 In electricians with >20 years of union membership, the prevalence of small opacities was 2.1 % 
  Hessel PA et al. Lung health among electricians in Edmonton, Alberta, Canada. J Occup Environ 

Med 1998; 40: 1007–12  

 2009 
 Follow-up from 1988 study. 2181 sheet-metal workers who had a negative CXR in the initial 

study were re-tested from 1986 to 2004. 5.3 % had CXR changes consistent with asbestosis. 
Of cases, 91.3 % worked ≥29 years. Workers beginning after 1970 had no disease 

  Welch LS, Halle E. Asbestos-related disease among sheet-metal workers 1986–2004: 
radiographic changes over time. Am J Ind Med 2009; 52:519–22  
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there is no direct reporting of mesothelioma in the National Cancer Registry in 
association with asbestos [ 12 ].

   There is very strong epidemiologic evidence linking chronic exposure to asbes-
tos and lung cancer, mesothelioma, and pulmonary fi brosis, yet the underlying bio-
logical and chemical mechanisms that support this linkage are not as well described. 
The basic process involves fi ber deposition in the lung (with fi ber clearance, seques-
tering of the fi ber into the interstitium, or transmission of uncleared fi bers into the 
pleura). Uncleared fi bers begin the acute infl ammatory response and evolve into 
chronic infl ammation with continuous infl ammatory cell infi ltrates, reactive oxygen 
species (ROS) formation, cytokine release, and ultimately genotoxicity with DNA 
damage affecting cell replication and differentiation. The    interaction of the ROS 
with the pulmonary milieu plays a ubiquitous role in the overall destructive process 
of the uncleared asbestos fi ber, but numerous other processes occur to lead to dis-
ease. This leads to the question: What are the important features of the asbestos fi ber 
and what are the biologic and chemical events that occur in the lung in association 
with this fi ber that place a worker at life-long risk for the development of asbestos-
associated diseases?

12.2        The Asbestos Fiber 

 Fibers can be identifi ed and counted by phase contrast optical microscopy, scanning 
electron microscopy, polarized light microscopy, and transmission electron micros-
copy. Each of these technical approaches has strengths and weaknesses in fi ber 
identifi cation and visualization. Furthermore, although there is a considerable 
agreement of what defi nes a fi ber, disagreements remain. For example, the World 
Health Organization (WHO) considers fi bers suitable for counting if the particle is 
>5 μm in length with length to diameter ratio of at least 3:1 (known as WHO fi bers) 
[ 13 ]. The National Institute for Occupational Health (NIOSH) has recommended 
that a fi ber be defi ned as any particle >5 μm in length with a length to diameter ratio 
of 5:1 and a diameter <3 μm [ 14 ]. Fiber counting using different microscopic tech-
niques and different defi nitions yield very different outcomes [ 15 ]. 

 Overall, reports on the relationship between fi ber dimensions and asbestosis 
show that the severity of pulmonary fi brosis, length of exposure, and type of expo-
sure are broadly proportional to the number of asbestos fi bers or asbestos bodies 
found in the parenchymal lung tissue [ 16 – 19 ]. In general, fi bers exceeding 20 μm in 
length are associated with asbestosis, and fi bers longer than 10 μm in length are the 
most carcinogenic. Inhalation of short amosite fi bers <5 μm in length produced 
virtually no fi brosis in rats compared with long amosite fi bers with 11 % >10 μm 
that produced extensive interstitial fi brosis at 12 months [ 17 ]. There is some evidence 
that fi bers less than 5 μm in length can also promote pulmonary fi brosis and malig-
nancy, especially when administered as a lung overload condition, as can occur in 
dust clouds [ 20 ]. 

 There is national and international agreement that exposure to asbestos fi bers 
causes lung and pleural cancer, as well as interstitial lung disease (asbestosis) [ 21 ,  22 ]. 

D.E. Banks et al.



207

Despite the perspective that the relationship of fi ber characteristics and diseases 
appears to be the best understood of all the inhaled particles recognized to cause 
disease [ 23 ], individuals with asbestos exposure may present with a series of ill-
nesses that are not obviously related. For example, it is not intuitive for the clinician 
to recognize that an exposure to an environmental agent that causes parenchymal 
fi brosis also has the potential to induce pleural malignancy. Although this link has 
been recognized epidemiologically, it has not been well explained physiologically. 
Even now, when there are some insights into the mechanisms of fi brosis associated 
with the persistence of fi bers and their make-up, there is no proven hypothesis which 
describes how fi bers leave the lung, enter the pleural space, and induce any of the 
pleural effects described in Table  12.1 . The link between these clinical manifesta-
tions could be attributed to the number of fi bers in the parenchyma as well as the 
duration that the fi bers have remained in the lung, the shape and dimensions of the 
fi bers (specifi cally length and diameter), the composition of the fi ber̶particularly 
the characteristics of the fi ber surface (important in biopersistence), and the interac-
tions between the pulmonary milieu and the fi ber which affects the way that the fi ber 
is handled (the genetic background of the host in association with the effects of envi-
ronmental agents [e.g., cigarette smoke, the presence of other fi brogenic dusts]). 
Animal reports show that once fi bers deposit in the parenchyma, they are no longer 
able to be cleared by the effi cient muco-ciliary escalator of the airway, and are dealt 
with by the substantially less effective phagocytotic properties of macrophages [ 24 ]. 

 The lung has the ability to respond differently to different particles; witness the 
different histologic features resulting from coal and silica exposures. Over time, an 
understanding of the relationship between the shape and dimensions of the different 
asbestos fi bers and their pathogenicity has evolved. The only serpentine fi ber is 
chrysotile. This accounts for 95 % of the asbestos previously used for industrial 
purposes in the U.S. The most often widely used amphibole fi ber is crocidolite, but 
this group also includes tremolite, amosite, anthophyllite, and actinolite. Chrysotile 
fi bers are soft, curly, and break easily while the amphiboles are fi rm and sharp. 

 Different types of asbestos fi bers provoke a different (lesser or greater) response. 
Authors have commented that the use of the word “asbestos” to include both serpen-
tine and the amphibole fi bers has made it more diffi cult to understand the relationships 
between the fi ber characteristics and disease [ 25 ]. As an example, not only are their 
shapes and sizes different but also chrysotile contains just trace amounts of iron while 
crocidolite can contain as much as 36 %. The elemental composition of the fi ber plays 
a role in its biochemical reactivity in the lung [ 26 ]. In a sense, this statement is borne 
out by the comprehensive review relating exposure to the asbestos fi bers with different 
characteristics and disease [ 27 ]. The authors performed a meta-analysis of the meso-
thelioma risk based on fi ber exposure recognized in the work environment in 15 epi-
demiologic studies and for the lung cancer risk in 11 epidemiologic studies. Fiber 
exposure was defi ned by the type of fi ber (chrysotile or crocidolite), fi ber length 
(either >5 and <10 or >10 m), and the fi ber diameter (<0.2, <0.4, >0.2 m and all 
widths). Based on fi bers 10 μm or longer, the risk for mesothelioma associated with 
exposure to chrysotile and crocidolite fi ber exposure was very different. The best esti-
mate for chrysotile potency to induce mesothelioma was approximately between 0 
and 1/200th that of crocidolite in inducing mesothelioma. Crocidolite was 
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approximately ten times more potent as an inducer of lung cancer compared to chrys-
otile when the fi ber was thin (width <0.4 μm and length <0.2 μm), but the potency for 
crocidolite was less, yet still more than chrysotile, when comparing the lung cancer 
rates following exposures to wider fi bers. Others have cited the carcinogenicity of 
longer amphiboles to be two orders of magnitude greater than that of chrysotile [ 28 ]. 

 This relationship between amphibole fi bers and mesothelioma was verifi ed in a 
case-control study. Lung samples from 69 male mesothelioma cases and 57 controls 
matched for age (all were under 50 years of age) and gender were evaluated and the 
mineral fi ber content identifi ed, fi bers sized, and the number of fi bers counted by 
electron microscopy. Exposure to amphibole fi bers contributed most to mesotheli-
oma. The presence of amosite and crocidolite fi bers accounted for 80 % of the 
cases, with tremolite adding another 7 % (all amphiboles). Because chrysotile has a 
much shorter biopersistence, its contribution was more diffi cult to estimate [ 29 ]. 

 An understanding of the way that the different fi bers in the lung are handled is 
incomplete. Churg and Wright addressed this in a 1994 review [ 30 ]. First, differ-
ences in the amounts of the types of fi bers deposited in the parenchyma are due to 
clearance rates and not deposition rates. Second, although exposures in most indus-
trial settings are greater to chrysotile fi bers compared to amphiboles, amphiboles 
persist in the lung in disproportionately large amounts and chrysotile in dispropor-
tionately small amounts. The process of leaching (loss of magnesium content) with 
gradual fi ber dissolution is well recognized in vitro, yet has not been suffi ciently 
proven in the human lung. Finally, the half-time for clearance of amphibole fi bers is 
thought to be years or decades, while the great majority of chrysotile fi bers are 
cleared in weeks to months, although in some instances the fi bers are sequestered in 
the interstitial space and persist [ 31 ]. Paradoxically, in some studies of fi ber persis-
tence of mesothelioma, chrysotile fi bers were recognized to be the major source of 
asbestos exposure, yet such fi bers may be identifi ed in only a minority of cases of 
mesothelioma, while amphiboles such as tremolite, which are only a very small 
fraction of the exposure and often considered contaminants to chrysotile exposures, 
are the main fi ber found in the lung [ 32 ,  33 ]. It appears that the majority of chryso-
tile fi bers are metabolized in a relatively short period, yet the persistence of these 
fi bers, particularly if they are sequestered in the lung (i.e., in the interstitium) appear 
to have the potential to contribute to disease. This general lack of biopersistence of 
chrysotile fi bers in the lung is the most likely explanation for its relative lack of 
virulence compared to amphibole fi bers [ 34 ]. 

 In the early 1980s, Stanton et al. published animal work showing that mesothe-
lioma rates in asbestos-exposed animals were fi ber size dependent. Specifi cally, if 
fi bers were long (>4 μm) and thin (<0.25 μm) in diameter there was substantially 
more disease compared to fi bers shorter and thicker [ 35 ]. Recent work has validated 
this conclusion in lung cancer. From 1940 to 1973, the North and South Carolina 
asbestos textile mills employed over 6,000 individuals. Chrysotile was the predomi-
nant fi ber used. When the development of lung cancer in this population was 
reviewed, the authors showed that lung cancer mortality was more strongly associ-
ated with those exposed to long, thin fi bers [ 36 ]. To complicate this further, cigarette 
smoking alters fi ber clearance. When the fi ber burden in the airway mucosa of 
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cigarette smokers with heavy occupational asbestos exposure was compared to a 
similarly exposed group of matched non-smokers, the amount of chrysotile fi bers 
was higher by approximately 50-fold ( p  < 0.006) and the concentration of amosite 
fi bers was increased approximately sixfold ( p  < 0.02) in smokers [ 37 ]. 

 An analysis of the fi ber content in lung biopsy or autopsy specimens from resi-
dents of Quebec with asbestos-induced lung disease was recently reported. Of par-
ticular interest in this report was the ability to relate work history to lung fi ber content. 
Although the asbestos mines in Quebec contain nearly exclusive amounts of chryso-
tile with minimal amphibole contamination, 85 % of the workers presented chryso-
tile fi bers in the lung, while 76 %, 64 %, and 43 % had tremolite, amosite, and 
crocidolite, respectively. Half of the fi bers were short, 30 % were thin and only 20 % 
corresponded to the WHO defi nition of fi bers cited above. Mean years away from 
asbestos exposure for those with asbestosis was 17 years, 29 years with mesotheli-
oma, and 19 years with lung cancer. Although the number of chrysotile fi bers declined 
disproportionately more than amphiboles over time, chrysotile particles (many of 
lesser dimensions than necessary to be classifi ed as a fi ber) were still observed in the 
lungs of workers 30 years or more after last exposure and exceeded the level found in 
unexposed populations [ 38 ]. With such information, even though the mechanisms of 
metabolism and clearance of chrysotile fi bers in the lungs are recognized to occur, 
the role of chrysotile as an agent which may induce illness cannot be discounted. 

 Despite the work cited above, others have reported that the relationship between 
fi ber types and size, and the pulmonary (i.e., fi brosis and lung cancer risk) and pleu-
ral (pleural infl ammatory changes and mesothelioma) milieu is not clear-cut [ 39 ]. It 
appears that fi bers alone can cause disease. As an example, asbestos fi bers can 
directly interfere with chromosomal segregation during mitosis and damage DNA 
[ 40 ]. Certainly, the pulmonary milieu can be changed to alter the virulence of the 
asbestos fi ber. Cigarette smoking increases the lung manifestations of asbestos- 
related disease, again suggesting that the interaction between the fi ber and the lung 
milieu (in this example in the presence of cigarette smoke), and not entirely the fi ber 
itself (with its potentiating characteristics of length, diameter, aspect ratio, and 
type), is the culprit in these diseases [ 41 ]. 

12.2.1     How Fibers Cause Disease 

 Asbestosis is defi ned by the American College of Chest Physicians as bilateral 
diffuse interstitial fi brosis of the lungs caused by the inhalation of asbestos 
fibers [ 42 ]. Most patients with clinically recognized asbestosis present with 
dyspnea and dry cough, and physical examination typically reveals inspiratory 
rales at the lung bases. Functional changes on pulmonary function testing in the 
fully developed case of asbestosis are restrictive indices with a decreased diffus-
ing capacity for carbon monoxide. Histologic examination of the lung in milder 
cases of asbestosis may show characteristic changes, yet the concomitant spiro-
metric changes are not yet measurable [ 41 ]. The typical radiographic fi nding is a 
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lower zone reticulonodular infi ltrate on plain fi lms. Computed tomography 
 features appear to be very similar if not identical to those seen in usual interstitial 
pneumonia, i.e., peripheral bands, lines, thickened interlobular septa, and honey-
combing, with disease most severe at the lung bases [ 43 ,  44 ]. 

 The microscopic pathology of asbestosis refl ects the end product of the lung’s 
response to substantial fi ber exposure over a protracted period of time. The histo-
logic hallmarks of this disease are (1) interstitial fi brosis and (2) the presence of 
asbestos bodies within the pulmonary parenchyma. Although we address asbestosis 
as the end product of a chronic infl ammatory response, relatively few infl ammatory 
cells are recognizable. Infl ammation, when it can be recognized, occurs at the site 
of fi ber deposition along the airways and alveoli. The histologic features of the dis-
ease begin with relatively homogeneous fi brosis of the alveoli adjacent to the bron-
chioles in the peripheral aspects of the lower zones of the lung. Then, depending on 
the stimulus for progressive fi brosis, fi brosis can extend towards the hilum and 
encompass surrounding bronchioles. Fibrosis which may also develop in the walls 
of the respiratory bronchioles and alveolar ducts is strictly not asbestosis, and is best 
described as bronchiolar wall fi brosis. This is another characteristic response to 
asbestos exposure [ 45 ]. 

 The metabolic processes in the lung multiply the effects associated with the 
effects of the deposition of the asbestos fi ber in the lung (Table  12.3 ). Recurrent 
asbestos fi ber exposure interacts with the pulmonary milieu and generates ROS and 
other oxidants, induces an infl ux of infl ammatory cells̶initially macrophages and 
neutrophils, but with time fi broblasts, perpetuates a self-generating release of a 
large number of cytokines and growth factors. As an example, infl ammation and 
fi brosis as well as expression of genes linked to cell proliferation and antioxidant 
defense occur in a dose-related fashion after inhalation exposures to asbestos fi bers 
[ 46 ]. Although each of the following may be, in a sense a separate process, these 
events cannot be separated and contribute to the pathology resulting from asbestos 
fi ber inhalation. These processes include oxidative stress (perhaps the most inextri-
cably linked part of the process), infl ammation, fi brosis, and genotoxicity [ 47 ].   

12.3     Infl ammation and Fibrosis 

 Research performed in the 1980s served as the starting point for understanding the 
effects of asbestos fi ber inhalation and the acute infl ammatory pulmonary effects. 
A series of lung pathology follow-up studies of young rats that had undergone a 

  Table 12.3    Mechanisms 
of disease induced 
by the asbestos fi ber  

 The acute infl ammatory response 
 The chronic infl ammatory response 
 Fibrosis 
 Transformation into malignancy 
 Development of pleural abnormalities 
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singular 1-h nose-only exposure to chrysotile fi bers showed acute infl ammatory 
changes. After 2 days, unlike infectious infl ammation where the primary cell is the 
neutrophil or lymphocyte, the primary changes at the bifurcation of the alveolar 
duct was a dramatic thickening of the epithelial and interstitial layers, with a ten-
fold infl ux of alveolar macrophages (AMs) on the bifurcation and a threefold 
increase of macrophages in the interstitium. The features of infl ammation are most 
prominent at the site of fi ber deposition. After 1 month, the number of type I and 
II epithelial cells remained increased, and the interstitium was collagenous and 
even thicker. Alveolar macrophages are more prevalent and now cells refl ecting 
localized fi brosis, i.e., myofi broblasts, and smooth muscle cells are identifi able. No 
further follow up of these abnormalities was provided, leaving the authors to pon-
der whether fi brosis would continue or resolve, and what role serial exposures 
would play in further development of fi brosis [ 48 ]. Further studies of this model 
(this time with a 5 h exposure to asbestos and intraperitoneal injection of [3]thymi-
dine at 19, 24, and 48 h, 8 days and then 1 month post-exposure with sacrifi ce 4 h 
post-injection) with determination of the cell mitotic activity by the uptake of [3]
thymidine, revealed the most activity within the fi rst 48 h with a return to normal 
at 8 days and an unchanged level at 1 month. The increased uptake correlated 
pathologically with increased numbers of bronchial-alveolar epithelial and intersti-
tial cells. The enhanced mitotic activity of the cells was thought attributable to the 
fi bers present or factors released by stimulated macrophages attracted to the areas 
of fi bers [ 49 ]. Histologically, the early stage of asbestosis is characterized by dis-
crete foci of fi brosis within the walls of the respiratory bronchioles and alveolar 
duct bifurcations where there is an accumulation of asbestos bodies [ 19 ]. Inhalation 
of asbestos fi bers triggers the accumulation of AMs with an infl ammatory reaction, 
followed by more diffuse pulmonary involvement characterized by the loss of alve-
olar epithelial type I and II cells, fi broblast proliferation, and eventually collagen 
deposition. Macrophage ingestion of asbestos fi bers triggers a fi brogenic response 
from fi broblast proliferation through release of growth factors such as transform-
ing growth factor β (TGF-β) and platelet- derived growth factor (PDGF). These 
growth factors, in addition to numerous infl ammatory cytokines such as tumor 
necrosis factor-α (TNF α) and interleukin-1β (IL-1β), collectively promote colla-
gen deposition found in asbestosis [ 50 ]. 

 Histology, cell counts, biochemical markers of infl ammation, and the extent of 
cellular proliferation were determined in the lungs of a rat model following a 
“lesser” and “greater” airborne exposure for 20 days to chrysotile asbestos. Rats 
were sacrifi ced at varying times afterward. No effects were found in the “lesser” 
exposure group, while focal histologic changes of cellularity and fi brosis and a 
increasing number of neutrophils based on the time of sacrifi ce relative to end of 
exposure was recognized in animals with the “greater” exposure. In another group 
of rats with the same exposure, but sacrifi ced following a 20-day delay, assessment 
of DNA synthesis by pre-morbid injection of antibody to 5-bromo-2′-deoxyuridine 
(BrdU) labeled cells were measured in the interstitium of the lung parenchyma, the 
bronchi and bronchioles, and the cells of the visceral pleura. Like the data described 
in the manuscript above, a signifi cant increase of DNA synthesis in all three areas 
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occurred in rats sacrifi ced 5 days after ceasing exposure (initially), but not later on 
(at 20 days or in the group sacrifi ced 40 days after initiating exposure). The sugges-
tion is that for chronic infl ammation to develop, continuous or “chronic” exposure 
is necessary. Intriguingly, increased gene expression    of manganese-containing 
superoxide dismutase, an enzyme which protects lung cells from hyperoxic lung 
injury, occured in animals sacrifi ced at all three times, and led the authors to suggest 
that this was a marker of chronic infl ammation [ 51 ]. 

 In a sophisticated study which addressed the role of fi bers vs. mediators in the 
development of infl ammatory changes, investigators began with sex-mismatched 
chimeric and naïve female mice and provided 3, 9, or 40 days of asbestos expo-
sure. The female chimeric mice received a total body irradiation and then received 
bone marrow from another population of male mice, using the sex chromosome as 
a specifi c marker. At the time of sacrifi ce of groups, lung histology, broncho- 
alveolar fl uid (BALF) cell counts, and measurement of levels of numerous media-
tors in BALF were measured to assess infl ammatory activity. Not surprisingly, 
there was less asbestos-induced infl ammation in mice which had received irradia-
tion and bone marrow transplant. This effect was most exaggerated in the mice 
who had received the longest asbestos exposure. Using markers on donor cells, the 
loss of the natural bone-marrow-derived stem cells following whole-body irradia-
tion substantially lessened the number of infl ammatory cells in the lung with the 
associated lessening of release of infl ammatory mediators [ 52 ]. The need for bone 
marrow stem cells to propagate fi brosis refl ects the systemic infl ammation induced 
by asbestos. 

 In summary, the amount of infl ammatory response triggered by ingestion of 
asbestos fi bers is primarily related to the dose and length of the inhaled fi ber. 
High doses of inhaled asbestos fi bers over short periods promote an acute alveo-
lar macrophage predominant infl ammation, whereas low doses over prolonged 
exposure periods promote neutrophil-predominant chronic infl ammation. The 
ways that acute infl ammation becomes chronic infl ammation, and in some 
instances, fi brosis and even, malignancy, is complex and not well understood. As 
noted in the earlier studies cited above, acute infl ammation is a time-limited pro-
cess. Chronic infl ammation is not time-limited and refl ects on-going tissue dam-
age in a lung with underlying injury. In the example of asbestos, the failure to 
clear and the inability to metabolize the fi ber (in particular, amphibole fi bers) 
drives the process. The histology refl ects the continuing infl ux of infl ammatory 
cells with an uncontrolled release of cytokines and growth factors and the conse-
quences of such an event. The result of the attempt to get rid of the lung of the 
foreign body and repair previously injured tissue is a proliferative response with 
even more disordered tissue. Finally, this increases susceptibility to malignancy 
by causing DNA damage. 

 Chronic infl ammation, with its associated developing fi brosis, has the potential 
to dramatically alter how fi bers are removed from the lung. The effectiveness of the 
process described below depends on the integrity of the cells lining the airway, the 
presence of intact and unobstructed lymphatic vessels, and the relative lack of inter-
stitial infl ammation and fi brosis. Using principles of fl uid dynamics, Miserocchi 
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et al. explained how fi bers are translocated from the airway into the interstitium and 
from there into the pleural space [ 53 ]. First, fi bers in the alveolar lining fl uid reach 
the interstitium through phagocytosis by type I alveolar lining cells which allow a 
“pass-through” into the interstitium by combined osmotic (through active sodium 
absorption) and hydraulic (the interstitial pressure is less than the airway) pressure 
gradients. Macrophages become “frustrated” by their inability to phagocytize the 
long fi bers; the result being the release of mediators refl ecting the heightened meta-
bolic activity of these cells [ 54 ]. Alveolar epithelial cell (ACE) injury also damages 
fi broblasts and myofi broblasts and perpetuates the infl ammatory response in the 
interstitium with the laying down of increased amounts of extracellular matrix; the 
start of or the perpetuation of the underlying pathologic process of asbestosis. 
Second, asbestos fi bers can exit the lung through lymphatic vessels. In a normally 
functioning lung, very fi ne fi bers can be cleared in 24 h [ 55 ]. The lymphatic circula-
tion inevitably drains into the blood and, in that way, fi bers may be dispersed to all 
organs [ 56 ]. Fibers in lymphatic vessels and in the blood can enter the pleural space 
dragged by water fl ux gradients. Third, movement of fi bers from the lung paren-
chyma into the pleural space can occur directly. If there is an infl ammatory response 
in the lung (such as asbestos-induced alveolitis), the interstitial pressure is raised 
and this can drive fi bers in the lung parenchyma through minute pores in the visceral 
pleura into the pleural space. In this context, it is understandable how not only 
fi brotic lung disease and lung cancer are the end-products of asbestos-induced fi bro-
sis, but how malignant mesothelioma can be included as an infl ammatory-induced 
malignancy. 

12.3.1     Reactive Oxygen Species 

 An important mechanism for the development of infl ammation and fi brosis attribut-
able to asbestos fi ber inhalation is the formation of ROS. Although not as clearly 
defi ned as ROS, reactive nitrogen species are also important messengers of toxicity. 
Three separate mechanisms for ROS production have been implicated in the devel-
opment of asbestosis. These include fi ber surface reactivity due to iron homeostasis, 
cellular release from AMs, and mitochondria-derived ROS released from both 
infl ammatory cells such as lung epithelial cells [ 50 ]. Asbestos inhalation elicits an 
AM response to phagocytize and clear the fi bers, but this response results in ROS 
production by a Ras-related C3 botulinum toxin substrate 1 (Rac1) dependent 
mechanism as well as by the release of infl ammatory cytokines and growth factors. 
After ingestion by the AM, the asbestos body becomes a fi brous structure with 
asbestos in its core surrounded by mucopolysaccharides and iron-rich proteins such 
as ferritin and hemosiderin that are redox active [ 57 ]. Only a small proportion of the 
total fi ber burden of the lung ever becomes coated, probably not more than 10 %, 
and the proportion of coated fi bers increase with fi ber length [ 17 ]. The purpose and 
function of coated asbestos fi bers is to reduce their cytotoxicity since coated fi bers 
are less cytotoxic to alveolar macrophages than uncoated fi bers. The surface of 
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asbestos fi bers deposited in the lungs acquires iron that is redox active and cycles 
between reduced and oxidized forms. Additionally, alterations in iron homeostasis 
in the lung have been observed. The asbestos body generates the highly reactive 
hydroxyl radical (HO + ) from hydrogen peroxide (H 2 O 2 ) which can lead to alteration 
in antioxidant enzymes and DNA damage in target lung epithelial, AM, and meso-
thelial cells [ 20 ,  58 ]. 

 The cytotoxic effect of asbestos on mesothelial cells was shown to occur after 
phagocytosis of crocidolite fi bers which causing increased intracellular oxidation, 
breakage of DNA strands, apoptosis, and cell-cycle arrest; phagocytosis was con-
sidered as an independent variable for toxicity [ 59 ]. 

 There are a large number of cytokines which play a role in the infl ammation 
process as it relates. In their review of infl ammation and mesothelioma, Miller and 
Shukla [ 54 ] identifi ed TNF-α, TGF-β, platelet-derived growth factor (PGDF), 
insulin- like growth factor (IGF), interleukin-6, interleukin-8, vascular endothelial 
growth factor (VEGF), and hepatocyte growth factor (HGF). 

 As an example, in vivo activated AMs release mediators of infl ammation such as 
TNF-α. This cytokine, as well as others, contribute to the ultimate response of 
malignancy. Yet, in vitro, asbestos is very toxic to human mesothelial cells and these 
cells do not transform into malignant cells, but die. When TNF-α is added to human 
mesothelial cell culture in vitro, the response is an expression of TNF-alpha recep-
tor through the NF-κB-dependent mechanism on the human mesothelial cells. 
Instead of cell death when asbestos was added, when TNF-α is present, there was 
cell damage, but resistance to cell death. Taking this a step further, the investigators 
showed that through cytogenetic techniques, many of the surviving AMs had chro-
mosomal injury. They postulated that these AMs with genetic injury are susceptible 
to malignant transformation to mesothelioma [ 60 ]. 

 Galffy et al. showed high IL-8 levels in the pleural fl uid of malignant mesothe-
lioma patients compared to those with congestive heart failure. Follow up in vitro 
studies showed that IL-8 directly promoted malignant mesothelioma cell growth, 
but not mesothelial cell growth [ 61 ]. 

 Interleukin 6 (IL-6) is a key mediator in the pathway of chronic infl ammation 
and fi brosis. Asbestos fi bers and asbestos-induced oxidative stress stimulates IL-6 
expression and secretion in pulmonary type II-like epithelial cells and in normal 
human bronchial epithelial cells. The extent of this process depends on the intracel-
lular redox-oxidative state. Intracellular OH –  scavengers such as  N -acetylcysteine 
(a precursor of glutathione) lessened IL-6 secretion by the asbestos fi ber or hydro-
gen peroxide (H 2 O 2 ). The presence of the asbestos fi ber and H 2 O 2  stimulate DNA- 
binding activity to the nuclear factor-kappa B (NF-κB), and NF-IL-6-recognized 
sites in the IL-6 promoter, the result being IL-6 induction. This can be blocked by 
another OH –  radical scavenger, tetramethylthiourea. The chronic infl ammatory 
changes build towards fi brosis. Using the measurement of [3H]thymidine incorpo-
ration to determine mitotic changes, adding recombinant IL-6 stimulated lung fi bro-
blast growth. Furthermore, elevated IL-6 levels were found in bronchoalveolar 
lavage fl uids from patients diagnosed with lung fi brosis and work-related histories 
of long-term asbestos exposure [ 62 ].  
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12.3.2     Mitochondrial Reactive Oxygen Species 

 Another factor associated with the infl ammatory process is the generation of ROS 
from the mitochondria of key target cells. In the case of infl ammatory cells, recent 
animal studies using murine models have established a prominent role for AM mito-
chondrial H 2 O 2  production in mediating the fi brogenic response of asbestosis [ 63 – 66 ]. 
Observations from these studies include the recognition that:

    1.    Alveolar macrophages exposed to asbestos produce H 2 O 2 . This may be inhibited 
by catalase or through mitigation of AM mitochondrial oxidative stress.   

   2.    Ras-related C3 botulinum toxin substrate 1 (Rac1) has been localized in the AM 
mitochondria of patients with asbestosis. Rac1 augments AM mitochondrial 
H 2 O 2  production.   

   3.    Knockdown of the complex III iron–sulfur protein in the mitochondrial electron 
transport chain reduces asbestos-induced AM H 2 O 2  production.   

   4.    Deletion of Rac1 in the AMs of asbestos-exposed mice shows reduced oxidative 
stress and pulmonary fi brosis.    

  The observations from these studies demonstrate that ingestion of asbestos fi bers 
triggers H 2 O 2  production in AM through the transfer of electrons from complex III 
to Rac1. Mitochondrial ROS production is also found in other important target cells, 
such as lung epithelial and mesothelial cells. Higher levels of mitochondrial ROS 
production and oxidative stress trigger DNA damage, p53 activation, cell-cycle 
blockade, and cell death. It has been speculated that Rac1 may be a possible 
biomarker for the presence of pulmonary fi brosis related to asbestos [ 67 ].  

12.3.3     Epithelial Cell Apoptosis 

 Asbestos-induced AM and AEC mitochondrial ROS production promotes AEC apop-
tosis that appears to be important for myofi broblast differentiation, collagen deposi-
tion by myofi broblasts, and ultimately pulmonary fi brosis. The two mechanisms by 
which cells undergo apoptosis include the extrinsic (death receptor related) and intrin-
sic (mitochondria-regulated) death pathways. Diverse stimuli, including ROS, deoxy-
ribonucleic acid (DNA) damage, and asbestos activate the intrinsic death pathway by 
increasing the permeability of the outer mitochondrial membrane; reducing the mito-
chondrial membrane potential and releasing apoptotic proteins, including cytochrome 
c. Considerable in vitro and in vivo data show that asbestos can induce both lytic cell 
death and apoptosis. Apoptosis is a regulated, ATP- dependent process characterized 
by membrane blebbing, cell shrinkage, nuclear chromatin condensation, and DNA 
fragmentation. Unlike the infl ammatory signaling arising from lytic cell death, apop-
tosis enables cells with extensive DNA damage to be eliminated without inciting 
an infl ammatory response. Substantial evidence convincingly confi rms that AEC 
apoptosis is important in the pathophysiology of pulmonary fi brosis [ 50 ]. 
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 Numerous studies have demonstrated fi ndings relating pulmonary fi brosis to 
apoptosis. Animal models of asbestosis demonstrate and patients with idiopathic 
pulmonary fibrosis develop significant injury to the alveolar epithelium. 
The AECs of patients with idiopathic pulmonary fi brosis have shown to have 
DNA strand- break formation and apoptosis. Asbestos is well described to induce 
AEC DNA damage and apoptosis. Additionally, murine models have shown that 
the presence of AEC apoptosis is suffi cient for inducing pulmonary fi brosis. 
Blocking of AEC- targeted apoptosis is protective for the development of pulmo-
nary fi brosis. Prevention of αvβ6 integrin release from lung epithelial cells, a key 
activator of latent TGF-β, prevents TGF-β activation and pulmonary fi brosis. 
Although these data fi rmly implicate AEC apoptosis in the pathophysiology of 
pulmonary fi brosis following exposure to various agents, including asbestos, 
future studies are necessary to defi ne the precise molecular mechanisms involved 
in apoptosis.  

12.3.4     p53 Cellular Response 

 Tumor protein 53 (p53) integrates various signals and initiates cellular responses 
to include cell-cycle arrest, cell differentiation, apoptosis, and other functions. 
A normal- functioning p53 response after exposure to DNA-damaging agents prevents 
the accumulation of cellular mutations. Over half of all human cancers have p53 
mutations and p53 null mice have a marked increase in cancer predisposition. 
p53 is also redox sensitive, and its transcriptional function is linked to oxidative 
stress, which allows it to mediate the cellular effects including the induction of 
apoptotic cell death [ 68 ,  69 ]. The precise mechanism of p53 regulation of cellular 
apoptosis has not been elucidated but p53 activates mitochondrial-related death 
through gene expression of pro-apoptotic stimuli and suppression of anti-apoptotic 
genetic expression. High levels of apoptosis due to asbestos fi bers may promote a 
fi brotic response in the form of asbestosis.   

12.4     Genotoxicity of Asbestos 

 Asbestos-induced genotoxicity has been demonstrated in mesothelial and lung epithe-
lial cells and studies show that all forms of asbestos are genotoxic to lung cells. 
Asbestosis exposure and fi ber toxicity is clearly linked to the development of lung 
cancer and pleural mesothelioma. The development of carcinoma in asbestos expo-
sure may be multifactorial as related to chronic infl ammation from asbestosis, the 
genotoxicity of inhaled asbestos particles, and environmental factors such as cigarette 
smoking [ 70 ]. Asbestos-related bronchogenic carcinoma most often occurs in the set-
ting of alveolitis with thickening of alveolar walls and peribronchial regions of the 
lung [ 19 ]. Animal models of asbestosis have further demonstrated adenoid 

D.E. Banks et al.



217

proliferation in the respiratory bronchioles in the background of chronic infl ammation 
and fi brosis. In asbestos, workers with greater than 20 years of exposure, it is not pos-
sible to separate the mechanisms of carcinogenesis of the lung from those of infl am-
mation or fi brosis̶the processes run in parallel. Based on case-control studies, there 
is an increase in lung cancer cases even in the absence of demonstrable pulmonary 
fi brosis [ 71 ]. The link of asbestosis with lung cancer is substantial as noted by the 
excess number of deaths due to lung cancer in patients with asbestosis [ 72 ]. Currently, 
the worldwide incidence of asbestos-induced cancer and other diseases is still on the 
rise because of their long latency periods [ 7 ]. A major factor in the development of 
lung cancer may be the formation of ROS which target mitochondrial and cause muta-
genic events [ 58 ]. Accumulating evidence have demonstrated that asbestos is geno-
toxic as assessed using a variety of techniques such as assays of DNA damage and 
apoptosis, chromosomal damage, aneuploidy studies, sister chromatid exchange, and 
altered cell ploidy [ 73 ]. An additional factor in the development of bronchogenic 
carcinoma is the high rate of cigarette smoking identifi ed in asbestos-exposed indi-
viduals. Similar to the well-established increased risk of lung cancer in patients with 
idiopathic pulmonary fi brosis, there are numerous reports that show a direct relation-
ship between excess asbestosis cases and lung cancer mortality [ 2 ]. 

12.4.1     Mechanisms of Lung Cancer and Mesothelioma 

 Many of the processes outlined previously on the development of asbestosis in 
exposed individuals also apply to lung cancer and mesothelioma [ 74 ]. Long latency 
periods for lung cancer over 20 years and greater than 40 years for mesothelioma 
suggest a multistep process of acute then chronic infl ammation with persistent fi ber- 
induced stimulation with resultant infl ammatory cell infi ltration, release of cyto-
kines, production of ROS, and DNA damage with disordered cell replication. 
Importantly, once disordered pulmonary architecture with histologically identifi -
able infl ammatory changes, the fi ber clearance process is adversely affected and the 
infl ammatory process has the potential to become heightened. ROS such as super-
oxide, hydroxyl radical, and hydrogen peroxide play a major role and are catalyzed 
by iron species on inhaled asbestos fi bers. Additionally, there is generation of nitric 
oxide involved in this infl ammatory process [ 75 ]. ROS, along with chemokines and 
cytokines, may cause alterations in growth and differentiation of target epithelial 
and mesothelial cells. In vitro studies of ROS have demonstrated breaks in DNA in 
solution and cultured cells. More recent evidence suggests the overall carcinogenic 
activity of asbestos is encompassed by several processes to include DNA damage 
caused by reactive oxygen and nitrogen species production, chromosome tangling 
with associated DNA damage, and adsorption of various carcinogens around asbes-
tos fi bers [ 76 ]. Asbestos fi bers initiate a number of signaling and survival pathways 
in mesothelial cells and lung epithelial cells and these pathways are up regulated in 
lung cancers and mesothelioma, where they contribute to tumor development, 
homeostasis, and resistance to chemotherapy [ 77 ].  
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12.4.2     Tobacco Smoking 

 Tobacco smoking is a common confounder in human studies involving asbestos 
workers due to historical rates of smoking in this population [ 78 ]. This increase in 
lung cancer among smokers is partially due to the impairment of asbestos clearance in 
smokers, which probably accounts for the observation that tobacco smoke augments 
asbestos pulmonary toxicity [ 79 ]. Asbestos fi bers can also act as condensation nuclei 
for aromatic hydrocarbons that result in a more effective transfer and uptake in tra-
cheal epithelial cells. Cigarette smoke exposure increases the retention of short fi bers 
more than the retention of long fi bers. An increase in the short fi ber load in smokers 
may play a role in fi brogenesis [ 80 ]. In addition, several models have likewise demon-
strated that cigarette smoke causes single-stranded breaks in DNA [ 81 ].  

12.4.3     Reactive Oxygen Species 

 Asbestos-initiated chronic oxidative stress and initiation of ROS production con-
tributes to carcinogenesis by the promotion of oxidative DNA damage and altera-
tion of redox signaling pathways in exposed epithelial and mesothelial cells [ 82 ]. 
The surface iron associated with asbestos bodies generates hydroxyl radical forma-
tion either through a redox reaction or by catalyzing a Fenton-like reaction. The 
uptake of asbestos fi bers can stimulate phagocytic cells such as AMs and polymor-
phonuclear leukocytes to release a variety of ROS to include the superoxide anion 
(O 2  − ), hydrogen peroxide (H 2 O 2 ), and probably hydroxyl radicals through 
membrane- associated NADPH (nicotinamide adenine dinucleotide phosphate) oxi-
dase [ 83 ]. These ROS contribute to genotoxicity through DNA damage and cell 
apoptosis with the subsequent development of malignancies. Evidence for ROS 
causation is demonstrated by several key concepts. Iron chelators and antioxidants 
prevent asbestos-induced DNA damage and apoptosis, there is a direct relationship 
between the surface iron on the fi bers and DNA-strand break formation, and fi nally 
asbestos induces the formation of oxidative DNA lesions [ 72 ].  

12.4.4     DNA Damage and Apoptosis 

 Extensive studies have provided details on the molecular mechanisms underlying 
asbestos-induced DNA damage and apoptosis [ 41 ,  68 ] Apoptosis is a highly regu-
lated physiologic cell death process critical for development, host defense, and 
prevention of malignant transformation and infl ammation throughout the body. 
Two major mechanisms regulating apoptosis are (1) the intrinsic pathway mediated 
by the mitochondria (caused by DNA damage), and (2) the extrinsic pathway 
induced by death-signaling ligands, such as TNF-α or FAS ligands [ 71 ,  84 ]. Several 
mechanisms, including iron-derived free radicals (ROS) as previously described, 
the mitochondrial intrinsic death pathway, the extrinsic death receptor pathway, and 
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altered DNA repair, have been implicated. These mechanisms, along with reactive 
nitrogen species, act in conjunction to cause apoptosis. Within the intrinsic death 
pathway, mitochondrial DNA is more susceptible to oxidative damage (such as that 
caused by asbestos-induced ROS). Studies suggest that failure of normal apoptosis 
may contribute to cancer formation. Both iron-derived ROS and TNF-α mediate the 
apoptotic death receptor pathway and increased antioxidant defenses of malignant 
cells may resist apoptosis. Finally, DNA damage induced by asbestos-derived free 
radicals activates nuclear transcription factors and activated protein 1 that governs 
apoptosis, proliferation, and infl ammatory changes [ 85 ].  

12.4.5     p53 Expression 

 An alteration in p53 expression has been implicated in the pathophysiology of 
asbestos-associated bronchogenic lung cancer [ 86 ]. Asbestos activates both p53 and 
p21 expression in lung epithelial and mesothelial cells that result in cell-cycle arrest 
[ 87 ]. Increased p53 levels have been detected in the lung cancers of asbestosis 
patients. Specifi c p53 point mutations are present in the lung epithelium of asbestos- 
exposed individuals as well as smokers. Studies performed to examine asbestos- 
induced whole genome expression profi ling confi rm that p53 activation plays a 
crucial role (along with nearly 2,500 other genes) in the regulation of tumor sup-
pression, cell-cycle arrest, apoptosis, and cell survival [ 88 ]. As such, p53 plays an 
important role in the regulation of lung cellular DNA-damage response following 
exposure to oxidative stress, as occurs with both tobacco smoke and asbestos inha-
lation. It has been noted that additional research is necessary to determine how 
p53-dependent signaling alters mitochondria-regulated epithelial cell apoptosis and 
whether this is a target to prevent malignant transformation due to asbestosis [ 50 ]. 

 In summary, current evidence suggests that all forms of asbestos are directly 
genotoxic to relevant lung target cells, both pulmonary epithelial cells and mesothe-
lial cells. Asbestos-induced genotoxicity can be found as either DNA damage or cell 
death through apoptosis. Both mechanisms trigger DNA repair mechanisms and 
complex cellular signaling pathways that ultimately determine cell death. These 
responses include cell-cycle arrest, transcriptional and posttranscriptional activation 
of select genes involved in DNA repair, and apoptosis. At the lung tissue level, it is 
speculated that high levels of apoptosis may promote a fi brotic response/asbestosis, 
while persistent DNA damage resulting from defects in apoptosis may lead to the 
formation of either bronchogenic carcinoma or mesothelioma [ 72 ].   

12.5     Conclusion 

 The cellular processes of acute and chronic infl ammation, fi brosis, and genotoxicity 
(all with associated mechanisms of ROS-mediated injury) run parallel to the clinical 
processes of asbestosis, malignant pleural disease, and parenchymal malignancy. 
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There are common mechanisms for the development of these clinical manifestations 
in the presence of asbestos exposure. It is not surprising that there remains confu-
sion regarding the requirement that pulmonary fi brosis precede lung cancer, as the 
processes of fi brosis and the development of pulmonary malignancy are dose- 
related events with common mechanisms. Yet, the explanation of how the switch is 
“turned” and how fi brosis becomes malignancy remains elusive.     

  Disclaimer   The views expressed herein are those of the authors and do not refl ect the offi cial 
policy or position of the Department of the Army, Department of Defense, or the US Government. 
The authors are employees of the US government. This work was prepared as part of their offi cial 
duties and, as such, there is no copyright to be transferred.  
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     Abbreviations 

   AP-1    Activator protein-1   
  ALS    Amyotrophic lateral sclerosis   
  COPD    Chronic obstructive pulmonary disease   
  CMV    Controlled mechanical ventilation   
  FEV1    Forced expiratory volume in 1 second   
  HSP    Heat shock protein   
  MAP kinase    Mitogen-activated protein kinase   
  MMPs    Matrix metalloproteases   
  NFκB    Nuclear factor κ-B pathways   
  RNS    Reactive nitrogen species   
  ROS    Reactive oxygen species   
  SOD    Superoxide dismutase   

13.1           Respiratory Muscles 

 The respiratory muscles are the mechanical effectors of the breathing system. They are 
often divided into three major groups: (1) the inspiratory muscles, (2) the expiratory 
muscles, and (3) the accessory muscles of respiration. The muscles that maintain the 
patency of the upper airway during the respiratory cycle are sometimes also considered 
muscles of respiration. 
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 The diaphragm is the major muscle of inspiration and accounts for approximately 
70 % of the inhaled tidal volume in the normal individuals [ 1 ]. At functional residual 
capacity, the diaphragm lies within the chest with a zone of apposition along the 
chest wall. At total lung capacity, the contracted diaphragm displaces abdominal 
contents and expands the ribs (chest wall) outward. The innervation of the diaphragm 
is via the phrenic nerve that originates from cervical nerve roots. The intercostal 
muscles are thin sheets of muscular fi bers that run between the ribs in the costal 
spaces [ 2 ]. There are two sheets of muscle fi bers, the external and internal intercos-
tals. The external intercostals function to expand the rib cage during inspiration. 
The internal intercostals are deeper and function to decrease rib cage size during 
expiration. Innervation of the intercostalis is via the intercostal nerves originating 
from the thoracic spine nerve roots. The abdominal muscles (rectus abdominis, 
internal oblique, external oblique, and transversus abdominis) also serve functions 
in respiration that mainly assist expiration. The internal and external obliques 
and transversus abdominis result in an inward movement of the abdominal wall that 
displaces the diaphragm upward into the thoracic cavity and assists exhalation. 
The abdominal muscles may also play a minor role in inspiration [ 3 ]. If their con-
traction reduces lung volume below function residual capacity, abdominal muscles 
can store elastic recoil in the chest wall that assists expansion of the chest wall dur-
ing the next inspiration. 

 The accessary muscles of respiration (sternocleidomastoid, scalenes, trapezii, 
latissimus dorsi, platysma, and pectoralis major and minor muscles) can expand the 
rib cage and assist inspiration during situations of increased ventilator damaged 
such as during exercise or during circumstances in which other inspiratory muscles 
are impaired as in tetraplegia or chronic obstructive pulmonary disease (COPD). 
It is now clear that some of them function during quiet tidal breathing [ 4 ]. The muscles 
of the upper airways are also considered to be muscles of respiration because they 
maintain the patency of the upper airway and allow air to fl ow into and out of the 
lungs [ 5 ]. Some of these also participate in protection of the lower airway during 
swallowing, a key function in the defense of the respiratory systems.  

13.2     Diseases Affecting Respiratory Muscle Dysfunction 

 The diaphragm is the major muscle of inspiration. It is a dome-shaped structure 
composed of two muscular leafl ets attached to a central tendinous dome. Diaphragm 
weakness or paralysis can involve either one of the diaphragm leafl ets or both. 
Unilateral diaphragm paralysis is most commonly due to injury to the phrenic nerve. 
Bilateral disease is most commonly due to diffuse muscle or motor neuron disease 
such as amyotrophic lateral sclerosis (ALS). 

 Muscle atrophy is present in numerous pathologies such as cancer, sepsis, 
 collagen disease, and diabetes [ 6 ,  7 ]. Moreover, muscle atrophy can also occur in 
the absence of disease during prolonged periods of reduced muscle activity [ 8 ]. 
Indeed, it is well established that prolonged bed rest, limb immobilization, or 
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diaphragm inactivity via mechanical ventilation can produce muscle atrophy in 
humans. Increasing evidence indicates that COPD is a complex systemic disease 
involving more than airfl ow obstruction [ 9 ]. Even though the mechanisms of muscle 
dysfunction in COPD are still poorly understood, data from human studies clearly 
indicate that atrophy of skeletal muscles is apparent in COPD [ 10 ]. Furthermore, 
these abnormalities are related to respiratory function, exercise intolerance, quality 
of life, mortality, and health care resource utilization [ 11 ]. Major causes of respira-
tory muscle dysfunction are listed in Table  13.1 .

13.3        Mechanisms of Muscle Atrophy 

13.3.1     Models of Muscle Atrophy 

 Skeletal muscle accounts for 40–50 % of the total body mass in a male with normal 
body weight. Skeletal muscle turnover is a dynamic process balancing protein syn-
thesis and breakdown. However, many acute and chronic illnesses cause the loss of 
muscle mass due to net breakdown of muscle proteins [ 12 ]. To investigate the mech-
anisms responsible for muscle atrophy in humans, several animal models have been 
developed to mimic the various conditions that produce human disuse muscle atro-
phy [ 8 ,  13 – 18 ]. Using the rat hindlimb suspension and limb immobilization models, 
it has been demonstrated that disuse muscle atrophy occurs due to both a decrease in 
muscle protein synthesis and an increase in the rate of proteolysis [ 13 ,  14 ]. In the 
hindlimb suspension model, the rate of protein synthesis declines rapidly after 

   Table 13.1    Major causes of respiratory muscle dysfunction   

 Neuropathic causes  Myopathic causes 

  Trauma    Muscular dystrophies  
 Cardiac or thoracic surgery  Limb girdle 
 Spinal cord injury  Duchenne and Becker 

 Radiation injury   Metabolic myopathies  
 Lung cancer  Hyper- or hypothyroidism 
 Mediastinal tumor  Acid maltase defi ciency 

  Metabolic    Collagen disease  
 Diabetes  Systemic lupus erythematosus 
 Vitamin defi ciency (B6, B12, folate)  Dermatomyositis 
  Infl ammatory neuritis   Mixed connective tissue disease 
 Idiopathic   Miscellaneous  
 Vasculitis  Amyloidosis 
  Miscellaneous   Malnutrition 
 Cervical spondylosis  Mechanical ventilation 
 Poliomyelitis  Chronic obstructive pulmonary disease 
 Amyotrophic lateral sclerosis  Idiopathic 

13 Oxidative Stress and Respiratory Muscle Dysfunction



228

the onset of muscle unloading [ 14 ]. Moreover, the decrease in protein synthesis is 
 followed by a large and rapid increase in proteolysis [ 8 ]. These data indicate that a 
reduction in the activity of skeletal muscle negatively infl uences muscle mass via 
alterations in the rates of protein synthesis and degradation that lead to disuse muscle 
atrophy. Another model used to investigate muscle atrophy is controlled mechanical 
ventilation (CMV) that unloads the diaphragm. Several animal studies reported that 
prolonged CMV results in a rapid onset of diaphragmatic fi ber atrophy [ 15 – 18 ]. 
CMV-induced muscle atrophy also occurs as a result of both decreased protein 
 synthesis and elevated proteolysis [ 17 ,  18 ]. Importantly, it is accepted that ventilator- 
induced diaphragmatic weakness contributes to diffi cult weaning from CMV.  

13.3.2     Proteolytic Pathways in Skeletal Muscles 

 Several proteolytic systems are involved in the degradation of muscle proteins [ 12 ] 
(Fig.  13.1 ). The most investigated proteases in skeletal muscles are lysosomal pro-
teases (e.g., calpain) and the proteasome system. Although lysosomal proteases are 
activated in skeletal muscle causing disuse atrophy, the importance of these prote-
ases appears limited [ 19 ,  20 ]. By contrast, there is evidence that strongly suggests 
that both calpain and the ubiquitin-proteasome pathways are involved in the muscle 
protein degradation during muscle atrophy [ 19 ,  20 ]. Moreover, another protease, 

  Fig. 13.1    Simplifi ed overview of the proteolytic degradation of myofi laments during disuse 
 muscle atrophy       
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caspase-3, may play an important role in atrophy of muscle fi bers [ 21 ]. The bulk of 
muscle proteins (50–70 %) exist in actomyosin complexes [ 22 ]. While the protea-
some system can degrade monomeric contractile proteins such as actin and myosin, 
this protease does not degrade intact actomyosin complexes [ 23 ]. Thus, myofi laments 
must be released from the sarcomere as monomeric proteins before degradation by 
proteasome pathways [ 22 ,  24 ]. There is evidence showing that both calpain and 
caspase-3 are capable of inducing a dissociation of the myofi laments [ 21 – 23 ]. 
Therefore, activation of one or both of these proteases is required to achieve proteo-
lytic degradation of myofi lamants during disuse muscle atrophy (Fig.  13.1 ).

   Calpain is a Ca 2+ -dependent cysteine protease that is activated during periods of 
muscle inactivity [ 23 ]. Calpain releases sarcomeric proteins by cleaving cytoskele-
tal proteins (e.g., titin, nebulin) that anchor the contractile elements [ 20 ,  25 ]. Calpain 
activity is regulated by the cytosolic calcium levels and the concentration of the 
endogenous calpain inhibitor calpastatin [ 23 ]. It has been argued that oxidative 
stress could play an important role in cytosolic calcium concentration elevations 
induced by reduced muscle activity [ 26 ]. A biological explanation for this thesis is 
that the oxidant-induced formation of reactive aldehydes reduces the plasma mem-
brane Ca 2+  ATPase activity [ 27 ]. This would retard Ca 2+  removal from the cell and 
promote intracellular Ca 2+  accumulation. Nonetheless, it remains unknown whether 
this mechanism is solely responsible for the calcium overload in muscle cells medi-
ated by reduced muscle activity. 

 Caspases are endoproteases that degrade proteins and sometimes cause pro-
grammed cell death [ 28 ]. In the cell, caspases are expressed as inactive precursors, 
and activation of caspases can result in events leading to protein breakdown and 
apoptosis. Recent evidence suggests that caspase-3 may play an important role in 
muscle protein degradation [ 21 ,  29 ]. Specifi cally, the activation of caspase-3 pro-
motes the degradation of actomyosin complexes, and the inhibition of caspase-3 
activity suppresses the rate of proteolysis [ 21 ]. In the case of diabetes-induced 
 muscle atrophy, it seems possible that caspase-3 is activated by the activation of 
caspase- 12 (via a calcium release pathway) and/or activation of caspase-9 (via a 
mitochondrial pathway) [ 21 ]. A key interaction between these caspase-3 activation 
pathways is that both of these types of signaling can be activated by reactive oxygen 
species (ROS) [ 28 ]. Oxidative stress can promote the activation of the calcium 
release pathway that activates caspase-3 by increased cellular calcium. Calpain acti-
vation can also contribute to caspase-3 activation via this calcium-mediated path-
way [ 30 ]. The mitochondrial pathway of caspase-3 activation is complex, but ROS 
can lead to mitochondrial release of cytochrome  C , resulting in the activation of 
caspase-9 and subsequent activation of caspase-3 [ 31 ]. It is noteworthy that 
 calpastain is a substrate for both caspase-3 and calpain. Therefore, an increase in 
caspase- 3 or calpain activity reduces the calpastain levels in cells and promotes 
calpain activation [ 21 ,  23 ]. The interactions between the calpain and caspase-3 pro-
teolytic system could play an important role in the regulation of myofi lament release 
in skeletal muscle during periods of muscle inactivity. 

 In the proteasome system of proteolysis, protein can be degraded by either 
the 20S core proteasome or the 26S proteasome [ 32 – 34 ]. This pathway plays 
an important role in ATP-dependent degradation of ubiquitinated proteins [ 35 ]. 
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Moreover, there is evidence that the 20S core proteasome can selectively degrade 
oxidative- stress modifi ed proteins without ubiquitination [ 32 ,  33 ]. The binding of 
ubiquitin to protein substrates requires the ubiquitin-activating enzyme (E1), spe-
cifi c ubiquitin- conjugating enzyme (E2) and, in many cases, specifi c ubiquitin 
protein ligase enzymes (E3). Prior studies reveal that the specifi c ubiquitin-conju-
gating enzyme E2 14K  is a regulator of skeletal muscle ubiquitin–protein conjuga-
tion. E2 14K  interacts with a specifi c E3 ligase to promote muscle wasting in a 
variety of catabolic states [ 36 ]. Moreover, two ubiquitin E3 ligases, atrogin1 and 
muscle ring fi nger-1, have been discovered in skeletal muscle [ 37 ,  38 ]. Importantly, 
ROS has been shown to up-regulate the gene expression of these key proteasome 
components [ 36 ].  

13.3.3     Oxidant Production in Inactive Muscles 

 It is well established that oxidative stress occurs when oxidant production in skele-
tal muscles exceeds the antioxidant capacity to buffer oxidants [ 12 ,  39 ]. There is 
much evidence that oxidative injury occurs during periods of disuse in locomotor 
skeletal muscles [ 26 ,  40 – 42 ] and in the unloaded diaphragm during mechanical 
ventilation [ 18 ,  43 ]. At present, it seems plausible that oxidative stress in inactive 
muscles may be due to the interaction of at least fi ve different oxidant production 
pathways: (1) xanthine oxidase (XO) pathway; (2) nitric oxide synthase (NOS); 
(3) increased cellular levels of reactive iron; (4) NADPH oxidase; and (5) mitochon-
drial production of superoxide radicals [ 40 ]. 

 XO is produced in cells via sulfhydryl oxidation or proteolysis of xanthine dehy-
drogenase by calcium-activated proteases such as calpain [ 44 ]. In the presence of 
oxygen and purine substances, XO catalyzes the formation of superoxide radicals 
and uric acid. Superoxide produced by the XO pathway can react with nitric oxide 
(NO) to form the highly reactive and biologically damaging peroxynitrite (ONOO − ) 
[ 45 ]. The production of peroxynitrite and other reactive nitrogen species (RNS) is 
related to cellular injury due to increased lipid peroxidation and nitrosylation of 
proteins [ 46 ]. NO is synthesized from the amino acid  l -arginine by many cell types. 
Synthesis occurs through NOS of three main types: neuronal NOS (NOS1), which 
was originally found in neural tissue but is also present in most cell types; endothe-
lial NOS (NOS3), originally described in endothelial cells; and inducible NOS 
(NOS2) that is predominantly found in infl ammatory conditions, but is now recog-
nized to be more widespread. The NOS convert  l -arginine into NO and  l -citrulline 
utilizing NADPH. Both NOS1 and NOS3 are calcium activated, and these synthases 
are expressed in skeletal muscle. There is evidence that NOS activity is increased 
in immobilized skeletal muscles, resulting in the increased production of NO [ 40 ]. 
In addition, both H 2 O 2  and superoxide radicals are capable of promoting the release 
of iron from ferritin [ 45 ]. In reference to iron-mediated oxidant stress in skeletal 
muscle, immobilization of the rat soleus muscle has been shown to promote 
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increases in the total muscle iron levels [ 47 ,  48 ]. This increase in muscle iron was 
related to elevated lipid peroxidation in the immobilized muscles [ 47 ]. There is 
recent evidence of a nonphagocytic and nonmitochondrial NADPH oxidase is found 
in human skeletal muscle [ 49 ]. Numerous factors can increase the NADPH oxidase 
activity in cells, including the calcium-sensitive protein kinase C-ERK1/2 pathway 
[ 49 ]. Because muscle inactivity results in an increase in intracellular calcium con-
centration, it seems plausible that the NADPH oxidase activity would increase the 
superoxide production. However, it is uncertain whether muscle inactivity results in 
an increased NADPH oxidase activity. It has been estimated that, at physiological 
levels, 1–3 % of the total oxygen reduced in the mitochondria may form superoxide 
radicals [ 45 ]. In skeletal muscle, mitochondrial production of ROS is greatest 
during heavy muscle exercise when the ATP requirement is high. In contrast, the 
mitochondrial- mediated production of ROS is at a low level during periods of 
reduced muscle activity [ 50 ]. These data indicate that mitochondrial contributions 
to disuse-mediated oxidative injury in skeletal muscle would be minimal.  

13.3.4     Antioxidant Defense Systems 

 Both enzymatic and nonenzymatic antioxidants protect muscle fi bers from oxidative 
injury during periods of increased ROS production [ 51 ]. The principal antioxidant 
enzymes include superoxide dismutase (SOD), glutathione peroxidase, and cata-
lase. Additional antioxidant enzymes such as peroxiredoxin, glutareoxin, and thio-
redoxin reductase also contribute to cellular protection against oxidation. In 
addition, numerous nonenzymatic antioxidants exist in cells (e.g., glutathione, uric 
acid, bilirubin) [ 51 ]. ROS can act through several different pathways of signaling 
transduction. According to Allen and Tresini, almost half of the ROS effects 
reported involve members of the mitogen-activated protein kinase (MAP kinase) 
and nuclear factor κ-B (NFκB) pathways [ 52 ], but the effects are not limited to these 
processes. Recently, Jin et al. studied the role of the ROS activation of NFκB and 
MAP kinases in the adaptations of muscle cells to oxidative stress and concluded 
that these pathways are critical cellular responses for maintaining muscle homeosta-
sis through up-regulation of the expression of antioxidant enzymes and other cyto-
protective proteins [ 53 ]. A single isometric contraction protocol in mouse muscle, 
which had been shown to increase muscle ROS generation, also increases the activity 
of muscle antioxidant defense enzymes such as SOD and catalase together with heat 
shock protein (HSP) 60 and HSP70 content [ 54 ], changes which were replicated in 
studies of human muscle [ 55 ]. Supplementation with vitamin C or other antioxi-
dants reduced these adaptive responses, supporting that these adaptations of muscle 
cells were regulated by ROS [ 56 ,  57 ]. Although many transcription factors are 
redox sensitive, NFκB and activator protein-1 (AP-1) are now considered to be key 
factors in the up-regulation of antioxidant enzymes such as SOD and catalase in 
response to oxidative stress [ 53 ,  58 ,  59 ].   
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13.4     Links Between Oxidative Stress and Muscle Atrophy 

 Several lines of evidence suggest that oxidative stress in inactive skeletal muscle 
contributes to muscle atrophy. Kondo et al. revealed that immobilization of skeletal 
muscles is associated with increased ROS production resulting in oxidative injury in 
inactive muscle fi bers and that disuse muscle atrophy could be retarded via antioxi-
dants [ 48 ]. This is the fi rst evidence showing that oxidants play a signaling role in the 
regulation of disuse muscle atrophy. They treated rats with the lipid-soluble antioxi-
dant vitamin-E, which reduced immobilization-induced muscle atrophy [ 40 ]. Appel 
et al. confi rmed the ability of vitamin-E to diminish disuse muscle atrophy [ 60 ]. 
Furthermore, the prevention of oxidant stress through the administration of the anti-
oxidant cysteine effectively suppressed protein ubiquitination and myosin heavy 
chain fragmentation in the gastrocnemius muscle after hindlimb suspension [ 61 ]. 
Importantly, these experiments demonstrated that maintenance of the muscle redox 
status attenuated the disuse muscle atrophy [ 61 ]. However, it should be noted that not 
all antioxidant interventions are capable of retarding disuse muscle atrophy. Koesterer 
et al. demonstrated that muscle protein oxidation, indicated by an increased level of 
protein carbonyls, was associated with hindlimb in rats [ 62 ]. Although in vitro exper-
iments demonstrated antioxidant protection against lipid peroxidation induced by 
different radical-generating systems, the antioxidant supplementation did not attenu-
ate the disuse muscle atrophy associated with hindlimb [ 62 ]. Several lines of  evidence 
link ROS to disuse muscle atrophy via the redox control of proteolysis. However, it 
is still uncertain which ROS pathways are responsible for oxidant production in 
unloaded skeletal muscles. Although evidence exists that antioxidants can retard 
muscle atrophy, it is unclear if oxidant production is an absolute requirement for 
muscle atrophy or simply contributes to the rate of muscle atrophy.  

13.5     Mechanical Ventilation and Respiratory Muscle 
Dysfunction 

 Mechanical ventilation is a critical component of intensive care medicine. 
Respiratory failure, neuromuscular diseases, drug overdose, and recovery from gen-
eral anesthetics are common indications for the use of mechanical ventilation. 
Clinical problems in weaning patients after prolonged mechanical ventilation have 
been reported in a large number of individuals, and it is postulated that a common 
cause of diffi cult weaning is diaphragmatic force and endurance defi cits [ 63 ,  64 ]. 
Several animal studies have shown that mechanical ventilation for prolonged periods 
is associated with diaphragmatic atrophy and contractile dysfunction [ 15 – 18 ]. 
Moreover, several lines of evidence suggest that an increase in protein oxidation is 
involved in the mechanical ventilation-induced diaphragm atrophy. Shanely et al. 
have reported that CMV results in increased oxidized proteins in the diaphragm, as 
indicated by elevated protein carbonyls [ 17 ,  18 ]. A more recent study showed that 
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CMV-induced oxidative injury does not occur rapidly after the onset of CMV, but is 
present after 6 h of CMV [ 43 ]. CMV-induced protein oxidation was evidenced by 
insoluble proteins in the diaphragm with molecular masses of 40 and 200 kDa. This 
work postulated that diaphragmatic actin (40 kDa) and myosin (200 kDa) are strong 
candidates for oxidation during CMV [ 43 ]. In humans, Levine et al. obtained biopsy 
specimens from the costal diaphragms of 14 brain dead organ donors before organ 
harvest (case subjects) and compared them with intraoperative biopsy specimens 
from the diaphragms of eight patients who were undergoing lung surgery (control 
subjects) [ 29 ]. The case subjects had diaphragmatic inactivity and underwent MV 
for 18–69 h; among the control subjects the diaphragmatic inactivity and MV were 
limited to 2–3 h. As compared with the diaphragm-biopsy specimens from controls, 
specimens from the case subjects showed decreased cross-sectional areas of slow- 
twitch and fast-twitch muscle fi bers of the diaphragm [ 29 ]. Furthermore, in the case 
subjects, the decrease in the diaphragmatic glutathione concentration was consistent 
with oxidative stress, and the increase in active caspase-3 suggested an increased 
rate of protein release from the myofi brillar lattice within the diaphragm [ 29 ]. 

 In critically ill patients undergoing long-term CMV, there are multiple deleteri-
ous changes in the human diaphragm, including decreased force-generating capac-
ity, muscle fi ber injury, muscle atrophy, and increased expression of ubiquitinated 
proteins, Nf-κB, and calpain isoforms, all of which have been previously implicated 
in different aspects of skeletal muscle injury and atrophy responses [ 65 ]. Further-
more, this work also showed that the degree of diaphragmatic atrophy was directly 
proportional to the length of CMV [ 65 ]. Collectively, these studies strongly suggest 
that diaphragmatic dysfunction, injury, and atrophy occur rapidly in critically ill 
patients during CMV. These fi ndings are consistent with increased diaphragmatic 
proteolysis during muscle inactivity.  

13.6     COPD and Respiratory Muscle Dysfunction 

 Skeletal muscle dysfunction is of particular interest in COPD. It directly infl uences 
exercise performance [ 66 ], is associated with poor health status [ 67 ] and is an inde-
pendent predictor of health care utilization [ 68 ] and mortality [ 69 ]. COPD is a dis-
ease characterized by a usually progressive airfl ow limitation that is not fully 
reversible, and has potentially signifi cant extra-pulmonary effects [ 70 ]. Although a 
disease of the lungs, extra-pulmonary features of COPD are increasingly recog-
nized as important contributors to morbidity and mortality [ 71 ]. Furthermore, the 
respiratory muscle function plays a key role in the pathogenesis of breathlessness 
[ 72 ] and the maximum inspiratory pressure is an independent predictor of survival 
in severe disease [ 73 ]. Although the muscle dysfunction in COPD patients is 
 characterized by a signifi cant reduction in muscle strength and endurance, cross- 
sectional studies have revealed that the muscle dysfunction in COPD is compli-
cated, comprising muscle atrophy, fi ber type shift, and loss of capillary density. The 
most commonly studied skeletal muscles are the quadriceps and the diaphragm. 
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13.6.1     Muscle Dysfunction in COPD 

 Compared with healthy controls, the quadriceps femoris muscle strength is reduced 
by about 20–30 % in patients with COPD [ 66 ,  74 – 77 ]. The degree of the reduction 
in limb muscle strength correlates with the severity of the disease process [ 74 ]. 
A marked increase in susceptibility to fatigue is also observed, with a more rapid decline 
in performance during continuous [ 78 ,  79 ] or repeated bouts of exercise [ 80 ,  81 ]. 
Reduced quadriceps strength in patients with moderate COPD could lead to poor 
exercise performance, increased dyspnea and worsening quality of life [ 66 ]. 
Furthermore, relatively low quadriceps strength is a powerful predictor of mortality 
in severe COPD patients [ 69 ]. 

 Quadriceps strength improves signifi cantly after pulmonary rehabilitation [ 82 ], 
but did not improve after treatment with bronchodilators in patients with COPD 
[ 83 ,  84 ]. Concerning the ventilatory muscles, the maximal strength of the  diaphragm 
muscle, as measured by the maximal transdiaphragmatic pressure (Pdimax), 
remains about 30–40 % lower in COPD patients as compared with control subjects 
[ 85 ,  86 ]. Also, the inspiratory muscle strength in patients with severe COPD, as 
measured by the maximal inspiratory pressure, was an average of 59 % of that mea-
sured in control subjects [ 87 ]. The inspiratory muscle strength is more severely 
reduced than that of the expiratory muscle, and proximal upper muscle strength is 
more impaired than distal upper limb strength in patients with moderate COPD [ 87 ]. 
The reduction of arm strength is milder than that of leg strength [ 77 ]. The possible 
reason for these differences is that the ventilatory    muscles, especially the diaphragm, 
have workloads different from the lower limb muscles because they are in a chroni-
cally overloaded state due to the increased work of breathing by airfl ow obstruction 
and hyperinfl ation. 

 The endurance of limb muscles is attenuated by about 30 % in patients with 
moderate COPD and the poor muscle endurance in such patients correlates posi-
tively with the physical activity index, forced expiratory volume in 1 second (FEV1), 
and resting partial pressure of oxygen in arterial blood (PaO 2 ) [ 88 ,  89 ]. The reduction 
of quadriceps muscle endurance in COPD patients has been confi rmed using artifi -
cial stimulation protocols [ 90 ], and is related to the reduced oxidative capacity of 
the mitochondria and to the development of oxidative stress in the muscle [ 78 ]. 

 The reduction in strength can largely be explained by a comparable reduction in 
the quadriceps cross-sectional area and fat-free mass independent of the airfl ow 
obstruction and COPD subtype [ 74 ,  91 – 95 ]. The magnitude of this loss of mass is 
greater than that of the whole body weight, which indicates that the loss of muscle 
tissue precedes the loss of other body tissues in COPD patients [ 74 ]. When the limb 
muscle strength is normalized per cross-sectional area or mass, no differences can 
be observed between COPD patients and control subjects [ 74 ,  91 ,  96 ,  97 ], which 
indicates that muscle atrophy seems to be the sole cause of the reduced limb muscle 
strength and endurance in COPD patients. However, when the peak torque, isomet-
ric strength, and total work of the leg muscle mass are analyzed, greater muscle 
mass is needed to generate a given functional output in COPD patients than in 
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control subjects [ 98 ]. The quadriceps twitch force was signifi cantly decreased in 
severe patients with COPD compared to that in control subjects [ 99 ]. The quadri-
ceps muscle twitch force falls more rapidly in COPD patients than in control sub-
jects even when the exercise is performed with similar oxygen consumption 
conditions, which suggests that the limb muscles of COPD patients are more fati-
gable than those of healthy individuals. These results suggest that factors other than 
atrophy might play a role in skeletal muscle dysfunction in COPD patients [ 98 ]. 

 Less is known about changes in single diaphragm fi bers, and debate exists as to 
whether their force-generating capacity is altered. Some studies reported no change 
in fi ber size [ 100 ], while others observed selective atrophy of type I fi bers [ 101 ]. 
The fi ber type of quadriceps muscles undergoes redistribution from type I (slow- 
twitch oxidative) fi bers to type IIb (fast twitch glycolytic) fi bers in severe COPD 
patients. The type I fi ber proportion declines by 20 %, whereas the proportion of 
type IIb fi bers increases by 10 % in patients with severe COPD [ 102 ]. Although the 
exact functional consequences of this fi ber type redistribution remain unclear, the 
fact that type II fi bers are fatigue-prone suggests that an increased proportion of 
type II fi bers might be an important factor in increased leg muscle fatigability and 
reduced endurance. These shifts in fi ber from type I to type II were also observed in 
vastus lateralis muscles in patients with severe COPD [ 103 ], and the proportion of 
type I fi bers correlates with FEV1, FEV1/FVC, and the BMI in patients with moder-
ate to severe COPD [ 104 ]. In contrast, the proportion of type I fi bers was increased 
and that of type II fi bers was decreased in diaphragm muscles. The overall propor-
tion of type I fi bers was increased 20–50 %, and the increase was closely related to 
lung hyperinfl ation [ 105 ,  106 ]. The shift in fi ber type from type II to type I is also 
seen in the parasternal intercostal muscles of patients with severe COPD [ 107 ]. 
Functionally, shoulder girdle muscle (pectoralis major and latissimus dorsi) strength 
and abdominal strength are preserved relative to the quadriceps [ 74 ,  76 ], presum-
ably due to the additional activity of expiratory muscles in COPD and the disuse and 
deconditioning of quadriceps muscle [ 76 ]. 

 Capillary density in peripheral muscles is reduced in patients with COPD [ 108 ]. 
The number of contacts between capillaries and fi bers is also reduced [ 102 ,  108 ]. 
As pulmonary rehabilitation in patients with COPD is associated with an increase in 
the number of capillary fi ber contacts [ 102 ], however, the reduction in the muscle 
capillarization was not detected after a pulmonary rehabilitation program [ 109 ].  

13.6.2     Involvement of Oxidative/Nitrative Stress in COPD 

 Concerning the production of RNS in the airways of patients with COPD, the 
exhaled NO levels are much lower than in asthmatic patients and are not so different 
from those in healthy subjects in spite of having almost the same degree of iNOS 
expression in the airways as asthmatic patients [ 110 ]. In contrast, 3-nitrotyrosine 
formation in the sputum cells from the patients with COPD was much higher than 
that from asthmatic patients [ 110 ]. These fi ndings suggest that, in the airways of 
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COPD, NO production might be the same as that in asthma. NO produced in the 
airways of COPD might be consumed by ROS such as superoxide anion resulting in 
the formation of RNS such as peroxynitrite. 

 The lung infl ammation of COPD patients is further aggravated by oxidative 
stress and excessive proteinases in the lung. Because peroxynitrite is a powerful 
oxidant, it can cause an imbalance between oxidants and antioxidants. Peroxynitrite 
can cause the inactivation of antiprotease [ 111 ] and the activation of matrix metal-
loproteinases (MMPs) [ 112 ]. These effects of peroxynitrite could also cause 
an imbalance in proteases/antiproteases. Peroxynitrite, but not NO, stimulates 
fi broblast- mediated tissue remodeling [ 113 ,  114 ]. Because excessive peroxynitrite 
is produced in the airways/lung parenchyma of COPD patients [ 115 ], RNS may be 
associated with the development of COPD. We have shown that 3-nitrotyrosine can 
be a marker of the airway infl ammation in patients with COPD [ 116 ]. Furthermore, 
in COPD airways, low-dose theophylline signifi cantly reduces RNS production and 
neutrophil infi ltration in airway to a greater extent than inhaled corticosteroid 
(Fig.  13.2 ) [ 117 ].

   Several studies have demonstrated that increased levels of oxidative/nitrative 
stress in muscle of COPD [ 118 – 122 ]. Oxidative stress can alter muscle contractility 
[ 39 ], potentially affecting muscle strength, and contribute to muscle fatigue. The 
administration of antioxidants improves exercise tolerance in COPD patients [ 123 ], 
showing a direct effect of ROS on exercise capacity in such patients. Oxidative 
stress can also contribute to accelerating protein breakdown [ 124 – 127 ] as a poten-
tial mechanism leading to muscle wasting [ 118 ,  119 ]. In quadriceps muscles of 
severe COPD, the total glutathione concentrations are lower, whereas the levels 
of 4-hydroxy-2-nonenal (HNE) protein and lipofuscin are signifi cantly higher than 
those detected in control subjects [ 96 ,  119 ,  127 ], and protein tyrosine nitration and 
iNOS protein are increased (Fig.  13.3 ) [ 127 ,  128 ]. Carbonyl formation and lipid 
peroxidation also increase in quadriceps muscles of patients with severe COPD [ 118 ]. 

  Fig. 13.2    Effect of 
theophylline or inhaled 
steroids on the nitration 
of tyrosine in airway. 
The ratio of 3-nitrotyrosine/
tyrosine in induced sputum 
was compared before and 
after treatment with 
theophylline or fl uticasone 
propionate in COPD patients          
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These results suggest that exercising limb muscles might be an important source of 
ROS products released into the plasma of COPD patients [ 120 ]. In contrast, little is 
known about oxidative/nitrative stress in the diaphragm of COPD patients. In one 
report, carbonyl and HNE-protein adducts were signifi cantly elevated without an 
increase in protein tyrosine nitration in the diaphragms of patients with severe 
COPD [ 129 ]. In another report, however, lipid peroxidation was not detected in the 
diaphragms of patients with moderate and severe COPD [ 130 ].

   Although indirect evidence supports a strong role for oxidative stress in depressed 
skeletal muscle strength and endurance, the contribution of oxidative stress to the 
contractile dysfunction of diaphragm remains under investigation. The levels of 
uncoupling protein 3 in the skeletal muscle (UCP3) are reduced [ 131 ], particularly 
in the subgroup of patients with low BMI [ 132 ] and in the more oxidative fi bers 
[ 133 ]. Moreover, the UCP3 levels correlate with the fat-free mass index in the 
 skeletal muscle of COPD patients [ 132 ]. As UCP3 is a protein that may protect 
mitochondria against lipotoxicity, it might prevent ROS-induced oxidative damage 
in fatty acid.   

13.7     Conclusions 

 Respiratory muscle dysfunction is an important clinical problem. Oxidative stress 
can contribute to accelerating muscle protein breakdown, and it can also alter mus-
cle contractility, potentially affecting muscle strength and endurance. Importantly, a 
growing number of studies suggest that antioxidants can serve as therapeutic agents 
in delaying the rate of muscle atrophy. Further studies are required to identify the 
precise interactions of muscle dysfunction and oxidative stress in respiratory 
diseases.     

  Confl ict of Interest Statement   No potential confl icts of interest existed with any company or 
organization whose products or services may have been discussed in this chapter.  

  Fig. 13.3    Nitrotyrosine    
levels in quadriceps 
muscle of patients with 
COPD.  BW  body weight. 
* p  < 0.001 vs. control       

 

13 Oxidative Stress and Respiratory Muscle Dysfunction



238

   References 

    1.    Mead J (1979) Functional signifi cance of the area of apposition of diaphragm to rib cage. Am 
Rev Respir Dis 119:31–32  

    2.    De Troyer A, Kelly S, Zin WA (1983) Mechanical action of the intercostal muscles act on the 
ribs. Science 220:87–88  

    3.    De Troyer A, Sampson M, Sigrist S et al (1983) How the abdominal muscles act on the rib 
cage. J Appl Physiol 54:465–469  

    4.    Legrand A, Schneider E, Gevenois P et al (2003) Respiratory effects of the scalene and ster-
nomastoid muscles in humans. J Appl Physiol 94:1467–1472  

    5.    Chia LG (1991) Locked-in syndrome with bilateral ventral midbrain infarcts. Neurology 
41:445–446  

    6.    Hasselgren PO, Fischer JE (1997) The ubiquitin-proteasome pathway: review of a novel 
intracellular mechanism of muscle protein breakdown during sepsis and other catabolic con-
ditions. Ann Surg 225:307–316  

    7.    Jagoe RT, Goldberg AL (2001) What do we really know about the ubiquitin-proteasome 
pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 4:183–190  

      8.    Booth FW (1982) Effect of limb immobilization on skeletal muscle. J Appl Physiol 52: 
1113–1118  

    9.    Barnes PJ, Celli BR (2009) Systemic manifestations and comorbidities of COPD. Eur Respir 
J 33:1165–1185  

    10.    Gosker HR, Kubat B, Schaart G et al (2003) Myopathological features in skeletal muscle 
strength in chronic obstructive pulmonary disease. Eur Respir J 22:280–285  

    11.    Montes de Oca M, Torres SH, Gonzalez Y et al (2006) Peripheral muscle composition and 
health status in patients with COPD. Respir Med 100:1800–1806  

      12.    Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of disuse muscle atrophy: role 
of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288:337–344  

     13.    Booth FW, Seider MJ (1979) Early change in skeletal muscle protein synthesis after limb 
immobilization of rats. J Appl Physiol 47:974–977  

     14.    Thomason DB, Biggs RB, Booth FW (1989) Protein metabolism and beta-myosin heavy- 
chain mRNA in unweighted soleus muscle. Am J Physiol Regul Integr Comp Physiol 257: 
300–305  

     15.    Gayan-Ramirez G, de Paepe K, Cadot P et al (2003) Detrimental effects of short-term 
mechanical ventilation on diaphragm function and IGF-1 mRNA in rats. Intensive Care Med 
29:825–833  

   16.    Le Bourdelles G, Viires N, Boczkowski J et al (1994) Effects of mechanical ventilation on 
diaphragmatic contractile properties in rats. Am J Respir Crit Care Med 149:1539–1544  

     17.    Shanely RA, Zergeroglu MA, Lennon SL et al (2002) Mechanical ventilation-induced 
 diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. 
Am J Respir Crit Care Med 166:1369–1374  

         18.    Schanely RA, Van Gammeren D, DeRuisseau KC et al (2004) Mechanical ventilation depreses 
protein synthesis in the rat diaphragm. Am J Respir Crit Care Med 170:994–999  

     19.    Furuno K, Goldberg AL (1986) The activation of protein degradation in muscle by Ca 2+  or 
muscle injury does not involve a lysosomal mechanism. Biochem J 237:859–864  

      20.    Purintrapiban J, Wang M, Forsberg NE (2003) Degradation of sarcomeric and cytoskeletal 
proteins in cultured skeletal muscle cells. Comp Biochem Physiol B Biochem Mol Biol 136: 
393–401  

         21.    Du J, Wang X, Miereles C et al (2004) Activation of caspase-3 is an initial step triggering 
accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113:115–123  

     22.    Tidball JG, Spencer MJ (2002) Expression of a calpastatin transgene slows muscle wasting 
and obviates changes in myosin isoform expression during murine muscle disuse. J Physiol 
545:819–828  

        23.    Goll DE, Thompson VF, Li H et al (2003) The calpain system. Physiol Rev 83:731–801  

K. Matsunaga



239

    24.    Wray CJ, Sun X, Gang GI et al (2002) Dantrolene down-regulates the gene expression and 
activity of the ubiquitin-proteasome proteolytic pathway in septic skeletal muscle. J Surg Res 
104:82–87  

    25.    Koh TJ, Tidball JG (2000) Nitric oxide inhibits calpain-mediated proteolysis of talin in 
 skeletal muscle cells. Am J Physiol Cell Physiol 279:806–812  

     26.    Kondo H, Nishino K, Itokawa Y (1994) Hydroxyl radical generation in skeletal muscle 
 atropined by immobilization. FEBS Lett 349:169–172  

    27.    Siems W, Capuozzo E, Lucano A et al (2002) High sensitivity of plasma membrane ion trans-
port ATPases from human neutrophils towards 4-hydroxy-2,3-trans-nonenal. Life Sci 166: 
1369–1374  

     28.    Primeau AJ, Adhihetty PJ, Hood DA (2002) Apoptosis in heart and skeletal muscle. Can J 
Appl Physiol 27:349–395  

       29.    Levine S, Nguyen T, Taylor N et al (2008) Rapid disuse atrophy of diaphragm fi bers in 
mechanically ventilated humans. N Engl J Med 358:1327–1335  

    30.    Chen M, Won DJ, Krajewski S et al (2002) Calpain and mitochondria in ischemia/reperfusion 
injury. J Biol Chem 277:29181–29186  

    31.    Leeuwenburgh C (2003) Role of apoptosis in sarcopenia. J Gerontol A Biol Sci Med Sci 
58:999–1001  

     32.    Grune T, Davies KJ (2003) The proteasomal system and HNE-modifi ed proteins. Mol Aspects 
Med 24:195–204  

    33.    Grune T, Merker K, Sandig G et al (2003) Selective degradation of oxidatively modifi ed 
protein substances by the proteasome. Biochem Biophys Res Commun 305:709–718  

    34.    Hasselgren PO, Wray C, Mammen J (2002) Molecular regulation of muscle cahexia: it may 
be more than the proteasome. Biochem Biophys Res Commun 290:1–10  

    35.    DeMaritno GN, Ordway GA (1998) Ubiquitin-proteasome pathway of intracellular protein 
degradation: implications for muscle atrophy during unloading. Exerc Sport Sci Rev 26: 
219–252  

     36.    Li YP, Chen Y, Li AS et al (2003) Hydrogen peroxide stimulates ubiquitin-conjugating activ-
ity and expression of genes for specifi c E2 and E3 proteins in skeletal muscle myotubes. Am 
J Physiol Cell Physiol 285:806–812  

    37.    Bodine SC, Latres E, Baumhueter S et al (2001) Identifi cation of ubiquitin ligases required 
for skeletal muscle atrophy. Science 294:1704–1708  

    38.    Gomes MD, Lecker SH, Jagoe RT et al (2001) Atrogin-1, a muscle-specifi c F-box protein 
highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98:14440–14445  

     39.    Reid MB (2001) Redox modulation of skeletal muscle contraction: what we know and what 
we don’t. J Appl Physiol 90:724–731  

       40.    Kondo H (2000) Oxidative stress in skeletal muscle atrophy. In: Chandan Sen LP, Hanninen O 
(eds) Handbook of oxidants and antioxidants in exercise. Elsevier, Amsterdam, pp 631–653  

   41.    Kondo H, Miura M, Itokawa Y (1993) Antioxidant enzyme systems in skeletal muscle atro-
phied by immobilization. Pfl ugers Arch 422:404–406  

    42.    Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and 
disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 35:9–16  

      43.    Zergeroglu MA, McKenzie MJ, Shanely RA et al (2003) Mechanical ventilation-induced 
oxidative stress in the diaphragm. J Appl Physiol 95:1116–1124  

    44.    Hellsten Y (2000) The role of xanthine oxidase in exercise. In: Chandan Sen LP, Hanninen O 
(eds) Handbook of oxidants and antioxidants in exercise. Elsevier, Amsterdam, pp 53–176  

      45.    Halliwell B, Gutterridge J (1999) Free radicals in biology and medicine. Oxford University 
Press, London  

    46.    Kaminski HJ, Andrade FH (2001) Nitric oxide: biologic effects on muscle and role in muscle 
disease. Neuromuscul Disord 11:517–524  

     47.    Kondo H, Miura M, Kodama J et al (1992) Role of iron in oxidative stress in skeletal muscle 
atophied by immobilization. Pfl ugers Arch 421:295–297  

     48.    Kondo H, Miura M, Nakagaki I et al (1992) Trace element movement and oxidative stress in 
seletal muscle atrophied by immobilization. Am J Physiol Endocrinol Metab 262:583–590  

13 Oxidative Stress and Respiratory Muscle Dysfunction



240

     49.    Javesghani D, Magder SA, Barreiro E et al (2002) Molecular characterization of a superoxide- 
generating NAD(P)H oxidase in the ventilatory muscles. Am J Respir Crit Care Med 165: 
12–418  

    50.    Jackson MJ (2000) Exercise and oxygen radical production by muscle. In: Chandan Sen LP, 
Hanninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier, Amsterdam, 
pp 57–68  

     51.    Powers SK, Jackson MJ (2007) Exercise-induced oxidative stress: mechanisms and impact 
on muscle force production. Physiol Rev 88:1243–1276  

    52.    Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 
28:463–499  

     53.    Ji LL (2007) Antioxidant signaling in skeletal muscle: a brief review. Exp Gerontol 
42:582–593  

    54.    McArdle A, Patwell D, Vasilaki A et al (2001) Contractile activity induced oxidative stress: 
cellular origin and adaptive responses. Am J Physiol Cell Physiol 280:621–627  

    55.    Khassaf M, Child RB, McArdle A et al (2001) Time course of responses of human skeletal 
musvle to oxidative stress induced by nondamaging exercise. J Appl Physiol 90:1031–1035  

    56.    Khassaf M, McArdle A, Esanu C et al (2003) Effect of vitamin C supplements on antioxidant 
defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol 549: 
645–652  

    57.    Jackson MJ, Khassaf M, Vasilaki A et al (2004) Vitamin E and the oxidative stress of exer-
cise. Ann N Y Acad Sci 1031:158–168  

    58.    Zhou LZ, Johnson AP, Rando TA (2001) NFκB and AP-1 mediate transcriptional responses 
to oxidative stress in skeletal muscle cells. Free Radic Biol Med 31:1405–1416  

    59.    Jackson MJ, Papa S, Bolanos J et al (2002) Antioxidants, reactive oxygen, and nitrogen 
 species, gene induction and mitochondrial function. Mol Aspects Med 23:209–285  

    60.    Appel HJ, Duarte JA, Soares JM (1997) Supplementation of vitamin E may attenuates skel-
etal muscle immobilization atrophy. Int J Sports Med 18:157–160  

     61.    Ikemoto M, Nikawa T, Kano M et al (2002) Cysteine supplementation prevents unweightind- 
induced ubiquitination in association with redox regulation in rat skeletal muscle. Biol Chem 
383:715–721  

     62.    Koesterer TJ, Dodd SL, Powers S (2002) Increased antioxidant capacity does not attenuate 
muscle atrophy caused by unweighting. J Appl Physiol 93:1959–1965  

    63.    Jubran A, Tobin M (1997) Pathophysiologic basis of acute respiratory distress in patients 
who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med 155: 
906–915  

    64.    Vassilakopoulos T, Zakynthions S, Roussos C (1998) The tension-time index and the fre-
quency/tidal volume ration are the major pathophysiologic determinants of weaning failure 
and success. Am J Respir Crit Care Med 158:378–385  

     65.    Jaber S, Petrof BJ, Jung B et al (2011) Rapidly progressive diaphragmatic weakness and 
injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183:364–371  

      66.    Gosselink R, Troosters T, Decramer M (1996) Peripheral muscle weakness contributes to 
exercise limitation in COPD. Am J Respir Crit Care Med 153:976–980  

    67.    Simpson K, Killian K, McCartney N et al (1992) Randomised controlled trial of weightlifting 
exercise in patients with chronic airfl ow limitation. Thorax 47:70–75  

    68.    Decramer M, Gosselink R, Troosters T et al (1997) Muscle weakness is related to utilization 
of health care resources in COPD patients. Eur Respir J 10:417–423  

     69.    Swallow EB, Reyes D, Hopkinson NS et al (2007) Quadriceps strength predicts mortality in 
patients with moderate to severe chronic obstructive pulmonary disease. Thorax 62:115–120  

    70.    Rabe KF, Hurd S, Anzueto A et al (2007) Global strategy for the diagnosis, management, and 
prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir 
Crit Care Med 176:532–555  

    71.    Man WD, Kemp P, Moxham J et al (2009) Exercise and muscle dysfunction in COPD: impli-
cations for pulmonary rehabilitation. Clin Sci (Lond) 117:281–291  

K. Matsunaga



241

    72.    Man WD, Mustfa N, Nikoletou D et al (2004) Effect of salmeterol on respiratory muscle 
activity during exercise in poorly reversible COPD. Thorax 59:471–476  

    73.    Gray-Donald K, Gibbons L, Shapiro SH et al (1996) Nutritional status and mortality in 
chronic obstructive pulmonary disease. Am J Respir Crit Care Med 153:961–966  

         74.    Bernard S, LeBlanc P, Whittom F et al (1998) Peripheral muscle weakness in patients with 
chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158:629–634  

   75.    Man WD, Soliman MG, Nikoletou D et al (2003) Non-volitional assessment of skeletal 
 muscle strength in patients with chronic obstructive pulmonary disease. Thorax 58:665–669  

     76.    Man WD, Hopkinson NS, Harraf F et al (2005) Abdominal muscle and quadriceps strength 
in chronic obstructive pulmonary disease. Thorax 60:718–722  

     77.    Franssen FM, Broekhuizen R, Janssen PP et al (2005) Limb muscle dysfunction in COPD: 
effects of muscle wasting and exercise training. Med Sci Sports Exerc 37:2–9  

     78.    Allaire J, Maltais F, Doyon JF et al (2004) Peripheral muscle endurance and the oxidative 
profi le of the quadriceps in patients with COPD. Thorax 59:673–678  

    79.    Man WD, Soliman MG, Gearing J et al (2003) Symptoms and quadriceps fatigability after 
walking and cycling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 
168:562–567  

    80.    Mador MJ, Deniz O, Aggarwal A et al (2003) Quadriceps fatigability after single muscle 
exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 
168:102–108  

    81.    Coronell C, Orozco-Levi M, Mendez R et al (2004) Relevance of assessing quadriceps endur-
ance in patients with COPD. Eur Respir J 24:129–136  

    82.    Pitta F, Troosters T, Probst VS et al (2008) Are patients with COPD more active after pulmo-
nary rehabilitation? Chest 134:273–280  

    83.    Fujino F, Minakata Y, Koarai A et al (2009) The regulated factors of exercise tolerance and 
improvement in exercise tolerance in COPD patients. Kokyu (in Japanese) 28:653–661  

    84.    Honda Y, Minakata Y, Sugino A et al (2012) The effect of short-acting beta 2 agonist on the 
exercise capacity of patients with COPD. Kokyu (in Japanese) 31:1058–1064  

    85.    Bellemare F, Grassino A (1983) Force reserve of the diaphragm in patients with chronic 
obstructive pulmonary disease. J Appl Physiol 55:8–15  

    86.    Polkey MI, Kyroussis D, Hamnegard CH et al (1996) Diaphragm strength in chronic obstruc-
tive pulmonary disease. Am J Respir Crit Care Med 154:1310–1317  

     87.    Gosselink R, Troosters T, Decramer M (2000) Distribution of muscle weakness in patients 
with stable chronic obstructive pulmonary disease. J Cardiopulm Rehabil 20:353–360  

    88.    Serres I, Gautier V, Varray A et al (1998) Impaired skeletal muscle endurance related to 
physical inactivity and altered lung function in COPD patients. Chest 113:900–905  

    89.    Van’t Hul A, Harlaar J, Gosselink R et al (2004) Quadriceps muscle endurance in patients 
with chronic obstructive pulmonary disease. Muscle Nerve 29:267–274  

    90.    Swallow EB, Gosker HR, Ward KA et al (2007) A novel technique for nonvolitional assess-
ment of quadriceps muscle endurance in humans. J Appl Physiol 103:739–746  

     91.    Engelen MP, Schols AM, Does JD et al (2000) Skeletal muscle weakness is associated with 
wasting of extremity fat-free mass but not with airfl ow obstruction in patients with chronic 
obstructive pulmonary disease. Am J Clin Nutr 71:733–738  

   92.    Marquis K, Debigare R, Lacasse Y et al (2002) Midthigh muscle cross-sectional area is a 
better predictor of mortality than body mass index in patients with chronic obstructive pulmo-
nary disease. Am J Respir Crit Care Med 166:809–813  

   93.    Hopkinson NS, Tennant RC, Dayer MJ et al (2007) A prospective study of decline in fat free 
mass and skeletal muscle strength in chronic obstructive pulmonary disease. Respir Res 8:25  

   94.    Mathur S, Takai KP, Macintyre DL et al (2008) Estimation of thigh muscle mass with mag-
netic resonance imaging in older adults and people with chronic obstructive pulmonary dis-
ease. Phys Ther 88:219–230  

    95.    Seymour JM, Ward K, Sidhu PS et al (2009) Ultrasound measurement of rectus femoris cross-
sectional area and the relationship with quadriceps strength in COPD. Thorax 64:418–423  

13 Oxidative Stress and Respiratory Muscle Dysfunction



242

     96.    Engelen MP, Schols AM, Does JD et al (2000) Altered glutamate metabolism is associated 
with reduced muscle glutathione levels in patients with emphysema. Am J Respir Crit Care 
Med 161:98–103  

    97.    Debigare R, Cote CH, Hould FS et al (2003) In vitro and in vivo contractile properties of the 
vastus lateralis muscle in males with COPD. Eur Respir J 21:273–278  

     98.    Malaguti C, Nery LE, Dal Corso S et al (2006) Scaling skeletal muscle function to mass in 
patients with moderate-to-severe COPD. Eur J Appl Physiol 98:482–488  

    99.    Mador MJ, Kufel TJ, Pineda L (2000) Quadriceps fatigue after cycle exercise in patients with 
chronic obstructive pulmonary disease. Am J Respir Crit Care Med 161:447–453  

    100.    Ottenheijm CA, Heunks LM, Sieck GC et al (2005) Diaphragm dysfunction in chronic 
obstructive pulmonary disease. Am J Respir Crit Care Med 172:200–205  

    101.    Stubbings AK, Moore AJ, Dusmet M et al (2008) Physiological properties of human dia-
phragm muscle fi bers and the effect of chronic obstructive pulmonary disease. J Physiol 
586:2637–2650  

      102.    Whittom F, Jobin J, Simard PM et al (1998) Histochemical and morphological characteristics 
of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci 
Sports Exerc 30:1467–1474  

    103.    Maltais F, Sullivan MJ, LeBlanc P et al (1999) Altered expression of myosin heavy chain in 
the vastus lateralis muscle in patients with COPD. Eur Respir J 13:850–854  

    104.    Gosker HR, Zeegers MP, Wouters EF et al (2007) Muscle fi ber type shifting in the vastus 
lateralis of patients with COPD is associated with disease severity: a systematic review and 
meta-analysis. Thorax 62:944–949  

    105.    Levine S, Kaiser L, Leferovich J et al (1997) Cellular adaptations in the diaphragm in chronic 
obstructive pulmonary disease. N Engl J Med 337:1799–1806  

    106.    Mercadier JJ, Schwartz K, Schiaffi no S et al (1998) Myosin heavy chain gene expression 
changes in the diaphragm of patients with chronic lung hyperinfl ation. Am J Physiol 
274:527–534  

    107.    Levine S, Nguyen T, Friscia M et al (2006) Parasternal intercostal muscle remodeling in 
severe chronic obstructive pulmonary disease. J Appl Physiol 101:1297–1302  

     108.    Jobin J, Maltais F, Doyon JF et al (1998) Chronic obstructive pulmonary disease: capillarity 
and fi ber-type characteristics of skeletal muscle. J Cardiopulm Rehabil 18:432–437  

    109.    Richardson RS, Leek BT, Gavin TP et al (2004) Reduced mechanical effi ciency in chronic 
obstructive pulmonary disease but normal peak VO 2  with small muscle mass exercise. Am J 
Respir Crit Care Med 169:89–96  

     110.    Ichinose M, Sugiura H, Yamagata S et al (2000) Increase in reactive nitrogen species produc-
tion in chronic obstructive pulmonary disease airways. Am J Respir Crit Care Med 162: 
701–706  

    111.    Whiteman M, Halliwell B (1997) Prevention of peroxynitrite-dependent tyrosine nitration 
and inactivation of alpha1-antiproteinase by antibiotics. Free Radic Res 26:49–56  

    112.    Okamoto T, Akaike T, Sawa T et al (2001) Activation of matrix metalloproteinases by 
peroxynitrite- induced protein S-glutathiolation via disulfi de S-oxide formation. J Biol Chem 
276:29596–29602  

    113.    Zhu YK, Liu XD, Skold MC et al (2001) Cytokine inhibition of fi broblast-induced gel 
 contraction is mediated by PGE(2) and NO acting through separate parallel pathways. Am J 
Respir Cell Mol Biol 25:245–253  

    114.    Ichikawa T, Sugiura H, Koarai A et al (2008) Peroxynitrite augments fi broblast-mediated 
tissue remodeling via myofi broblast differentiation. Am J Physiol Lung Cell Mol Physiol 
295:800–808  

    115.    Osoata GO, Hanazawa T, Brindicci C et al (2009) Peroxynitrite elevation in exhaled breath 
condensate of COPD and its inhibition by fudosteine. Chest 135:1513–1520  

    116.    Sugiura H, Ichinose M, Yamagata S et al (2003) Correlation between change in pulmonary 
function and suppression of reactive nitrogen species production following steroid treatment 
in COPD. Thorax 58:299–305  

K. Matsunaga



243

    117.    Hirano T, Yamagata T, Gohda M et al (2006) Inhibition of reactive nitrogen species production 
in COPD airways: comparison of inhaled corticosteroid and oral theophylline. Thorax 61: 
761–766  

      118.    Couillard A, Maltais F, Saey D et al (2003) Exercise-induced quadriceps oxidative stress and 
peripheral muscle dysfunction in patients with chronic obstructive pulmonary disease. Am J 
Respir Crit Care Med 167:1664–1669  

     119.    Allaire J, Maltais F, LeBlanc P et al (2002) Lipofuscin accumulation in the vastus lateralis 
muscle in patients with chronic obstructive pulmonary disease. Muscle Nerve 25:383–389  

    120.    Couillard A, Koechlin C, Cristol JP et al (2002) Evidence of local exercise-induced systemic 
oxidative stress in chronic obstructive pulmonary disease patients. Eur Respir J 20: 
1123–1129  

   121.    van Helvoort HA, Heijdra YF, Heunks LM et al (2006) Supplemental oxygen prevents 
exercise- induced oxidative stress in muscle-wasted patients with chronic obstructive pulmo-
nary disease. Am J Respir Crit Care Med 173:1122–1129  

    122.    Barreiro E, Rabinovich R, Marin-Corral J et al (2009) Chronic endurance exercise induces 
quadriceps nitrosative stress in patients with severe COPD. Thorax 64:13–19  

    123.    Koechlin C, Couillard A, Simar D et al (2004) Does oxidative stress alter quadriceps endur-
ance in chronic obstructive pulmonary disease? Am J Respir Crit Care Med 169:1022–1027  

    124.    Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin- 
proteasome pathway. N Engl J Med 335:1897–1905  

   125.    Buck M, Chojkier M (1996) Muscle wasting and dedifferentiation induced by oxidative 
stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and 
antioxidants. EMBO J 15:1753–1765  

   126.    Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and 
biological consequences. Free Radic Biol Med 9:315–325  

      127.    Barreiro E, Gea J, Corominas JM et al (2003) Nitric oxide synthases and protein oxidation in 
the quadriceps femoris of patients with chronic obstructive pulmonary disease. Am J Respir 
Cell Mol Biol 29:771–778  

    128.    Montes de Oca M, Torres SH, De Sanctis J et al (2005) Skeletal muscle infl ammation and 
nitric oxide in patients with COPD. Eur Respir J 26:390–397  

    129.    Barreiro E, de la Puente B, Minguella J et al (2005) Oxidative stress and respiratory muscle 
dysfunction in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 
171:1116–1124  

    130.    Wijnhoven HJ, Heunks LM, Geraedts MC et al (2006) Oxidative and nitrosative stress in the 
diaphragm of patients with COPD. Int J Chron Obstruct Pulmon Dis 1:173–179  

    131.    Gosker HR, Schrauwen P, Hesselink MK et al (2003) Uncoupling protein-3 content is 
decreased in peripheral skeletal muscle of patients with COPD. Eur Respir J 22:88–93  

     132.    Rabinovich RA, Bastos R, Ardite E et al (2007) Mitochondrial dysfunction in COPD patients 
with low body mass index. Eur Respir J 29:643–650  

    133.    Russell AP, Somm E, Debigare R et al (2004) COPD results in a reduction in UCP3 long 
mRNA and UCP3 protein content in types I and IIa skeletal muscle fi bers. J Cardiopulm 
Rehabil 24:332–339    

13 Oxidative Stress and Respiratory Muscle Dysfunction



245N.K. Ganguly et al. (eds.), Studies on Respiratory Disorders, Oxidative Stress 
in Applied Basic Research and Clinical Practice, DOI 10.1007/978-1-4939-0497-6_14,
© Springer Science+Business Media New York 2014

14.1            Introduction 

 Chronic infl ammation has since long been associated with tumorigenesis. This concept 
has been prevalent in the traditional systems of medicine, notably Ayurveda [ 1 ]. 
However, this was more of an empirical view, without any real understanding of 
what was happening at the molecular level. In the past few decades, the molecular 
mechanisms underlying this concept have begun to be understood. The role of oxi-
dative stress as the driver of chronic infl ammation has been recognized recently.  

14.2     Sources of Free Radicals 

 The evolution of aerobic respiration led to an overall increased effi ciency of energy 
production. However, its side effect was the generation of free radicals as a by- 
product of this process. The oxidative enzymes are located on the mitochondrial 
membranes; electrons are transferred to oxygen during aerobic respiration, resulting 
in the generation of free radicals or reactive oxygen species (ROS). These include 
the superoxide anion (O 2  − ), hydrogen peroxide (H 2 O 2 ), hydroxyl radical (OH • ), and 
organic peroxides. Also, during periods of hypoxia, the mitochondria produce nitric 
oxide (NO), which leads to the production of reactive nitrogen species (RNS). Other 
reactive species can be further generated, such as reactive aldehydes- malondialdehyde 
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(MDA) and 4-hydroxynonenal (4-HNE) [ 2 ]. These free radicals then react with 
macro- and micro-molecules in the cell and lead to derangements in the intracellular 
milieu, which can progress to tumorigenesis. 

 Neutrophils are among the most common cells in the lungs. Their enhanced phagocytic 
activity is due to the oxidative burst, during which process their oxygen consumption 
increases signifi cantly in order to produce free radicals. These are then used to kill 
invading microorganisms. However, the excess free radicals produced by them may 
also cause damage to the normal body mechanisms and structures [ 3 ]. There are four 
major enzymes present in neutrophils which catalyze the formation of free radicals: 
NADPH oxidase which produces the O 2  −  ion, superoxide dismutase (SOD) which 
forms H 2 O 2  from the O 2  −  ion, myeloperoxidase which is responsible for the formation 
of HOCl −  and nitric oxide synthase (NOS) which synthesizes NO [ 4 – 10 ]. 

 Another source of ROS is the autophagy of old and defective mitochondria. 
These ROS can promote tumorigenesis by affecting cell cycle pathways [ 11 ]. ROS/
RNS are primarily formed during chronic infl ammation. This can occur due to mul-
tiple factors such as exposure to physical, chemical, and biological stimuli. Among 
the factors specifi c to the lung include asbestos exposure, radiation, industrial toxins, 
cigarette smoke, and even ambient air pollution [ 12 – 14 ]. 

 Oxidative stress can also occur secondary to chronic infections, though these are 
characteristically associated with cancers in other organs, such as the liver.  

14.3     Types of Free Radicals 

 The different types of free radicals are produced in varying amounts and have 
different levels of reactivity. It has been estimated that almost 1–5 % of the total 
oxygen consumed by the body leads on to the development of the O 2  −  anion. It is 
dissociated into H 2 O 2  and water by the enzyme SOD. ROS-induced DNA damage 
is usually caused by the following reactions̶oxidation, methylation, nitration, 
deamination, and depurination. DNA damage is manifested as strand breaks, 
point mutations, strand cross-links, and mutations in proto-oncogenes and tumor 
suppressor genes. 

 H 2 O 2  is less reactive as compared to the other oxygen-derived free radicals. 
Because it is freely diffusable across the cell membranes, it may be responsible for a 
greater spectrum of activity than other radicals. The most important free radical 
involved in the causation of intracellular damage is the OH •  ion. It is very unstable, 
though it is unable to diffuse very far within the cell, it is highly reactive, and can react 
with any intracellular molecule. Damage to deoxy ribonucleic acid (DNA) leads to 
the generation of 8-hydroxyguanosine (8-OHG), which on undergoing further hydro-
lysis leads to the formation of 8-hydroxydeoxyguanosine (8-OHdG). Detection of 
this molecule strongly suggests the presence of oxidative damage and has been 
closely correlated with carcinogenesis [ 15 ]. One of the major changes it causes in 
the DNA molecule is the transversion of Guanine: Cytosine to Thymine: Adenine 
(i.e., G → T transversion). The presence of this transversion is associated with exten-
sive point mutations [ 16 ]. Other products of OH •  ion damage to DNA include 
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5-hydroxyuracil, 5-hydroxymethyluracil, 5-hydroxyadenine, 8- hydroxyadenine, and 
2, 6-diamino-4-hydroxy-5-formamidopyrimidine [ 3 ]. 

 Neutrophils produce additional ROS to the ones mentioned previously, including 
hypochlorous acid (HOCl). HOCl leads to DNA damage by causing strand cross- links, 
chlorination of bases, and oxidation of pyrimidine bases. The damage to DNA is some-
times so severe that it can cause cell death. 5-chlorouracil is formed after damage to 
DNA by HOCl; it also serves as a marker for oxidative damage due to HOCl [ 3 ]. MDA 
and 4-hydroxynonenal are other toxic products formed as a result of lipid peroxidation 
from ROS and are extremely toxic to DNA and other cellular molecules. 

 RNS also contribute to oxidative stress. The most important molecule in this 
context is NO. It is synthesized from the molecule  l -arginine by the enzyme NOS. 
NOS exists in three isoforms̶neuronal, endothelial, and inducible. The fi rst two 
isoforms are calcium dependent and produce physiological amounts of NO; how-
ever, the inducible form of NOS is calcium independent and produces excess 
amounts of NO under infl ammatory conditions. NO leads to the formation of per-
oxynitrite (ONOO − ) which leads to the formation of 8-nitroguanine. This molecule, 
similar to 8-OHdG, serves as a marker for nitrate stress-induced injury. It gets 
incorporated into DNA and undergoes spontaneous depurination, resulting in the 
formation of an apurinic site. This leads to a G→C transversion [ 12 ].  

14.4     Effects of Oxidative Stress 

 Oxidative stress affects and modulates tumor initiation, progression, invasion, 
angiogenesis, and metastasis. It acts by causing DNA mutations, epigenetic changes, 
chromosomal aberrations, protein dysfunction, and modulation of cell signaling 
pathways and second messenger systems. Oxidative stress also serves as the link 
between chronic infl ammation and cancer. 

 An important characteristic of tumor promoters is the ability to recruit normal 
cells and task them to produce free radicals in excessive amounts [ 17 ,  18 ]. Damage 
to cellular molecules produced by these radicals is essential in tumorigenesis. In fact, 
tumor promotion can be inhibited in experimental animals by the use of antioxidants 
which further inhibit the respiratory burst of phagocytes [ 17 ,  19 ]. 

 ROS also enhance tumor cell survival by multiple means. As an example, ROS 
inhibit phosphatase and tensin homolog deleted from chromosome 10 (PTEN), 
which is an inhibitor of Akt. Akt is a serine threonine kinase which has multiple 
actions; it inhibits apoptosis by inactivating proapoptotic molecules such as caspase-
 9 and promotes tumorigenesis by stabilizing oncogenes and dysregulating cell cycle 
checkpoints [ 20 – 23 ]. Uncontrolled cell proliferation, which is another characteristic 
of tumor cells, is also promoted by oxidative stress. This is modulated through patho-
logical activation of cell signaling pathways, specifi cally the mitogen- activated pro-
tein (MAP) kinase/AP-1 and NF-κB pathways [ 24 ]. ROS are also involved in tumor 
invasion, metastases, and angiogenesis. These are mediated by aberrant and uncon-
trolled signaling by ROS leading to dysregulation of matrix metalloproteinases, 
intercellular adhesion molecules and angiogenetic factors [ 25 – 29 ]. 
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 Resistance of cancer cells to chemotherapy and radiotherapy may also be mediated 
through ROS/RNS. Various molecular mechanisms of resistance have been identi-
fi ed including the activation of effl ux pumps, increased expression of detoxifying 
enzymes, and resistance to apoptosis [ 30 – 33 ]. A central role of the transcription 
factor NF-κB has been demonstrated in this regard [ 2 ]. Several chemotherapeutic 
agents used in the treatment of lung and other cancers such as paclitaxel, doxorubi-
cin, daunomycin, vinblastine, vincristine, 5-fl uorouracil, cisplatin, and tamoxifen 
are associated with the activation of NF-κB [ 34 ,  35 ].  

14.5     Antioxidants 

 A variety of antioxidant systems exist in the body to counteract the destructive 
actions of ROS (Table  14.1 ). The main antioxidant in this regard is glutathione 
which is a tripeptide and protects DNA from free radical damage. It can also act by 
directly detoxifying carcinogens and exporting them from cells. Paradoxically, ele-
vated levels of glutathione are seen in some cancers where they are associated with 
resistance to chemotherapy [ 36 – 40 ]. Glutathione peroxidase reacts with H 2 O 2  and 
other peroxides and catalyses the reduction of fatty acid hydroperoxides; glutathi-
one reductase is the complementary enzyme and regenerates glutathione from the 
reduced state [ 13 ,  41 ].

   Other antioxidant enzymes include SOD and catalase. SOD acts by converting 
superoxide anions to H 2 O 2  while catalase further converts H 2 O 2  to water. 
Peroxiredoxins also act in a similar fashion and reduce H 2 O 2  to water [ 2 ]. A recent 
cohort study evaluated the role of SOD in the prediction of all cause cancer mortality. 
The result showed that elevated levels of SOD were associated with all cancer 
mortality. These results demonstrated that elevated SOD levels may occur as a 
response to oxidant stress. However, elevated levels of SOD were not associated 
with increased mortality from lung cancer [ 42 ,  43 ]. 

 Ascorbic acid is another antioxidant compound which acts as a free radical 
scavenger. It is involved in pathways that regenerate other antioxidants. It exists 
mainly in its reduced state in the body; its oxidation produces dehydroascorbic acid, 
which is transported intracellularly and is regenerated to ascorbic acid. Similar 
compounds include α-carotene, β-carotene, cryptoxanthin, lutein, zeaxanthin, lyco-
pene, α-tocopherol, selenium, and vitamin-E [ 13 ].  

14.6     Oxidative Stress Specifi c to Lung Cancer 

 Oxidative stress has also been implicated in the causation of lung cancer. In this 
context, smoking of tobacco-based products has a special importance. The particulate 
as well as the gaseous phase of cigarette smoke contain ROS which are relatively 
stable with long half-lives. These ROS cause direct damage in addition to the 
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establishment of a secondary oxidative stress response, which is responsible for 
further injury and infl ammation. In fact, this oxidative stress response has been 
implicated as the driving force behind the spectrum of smoking induced injury in 
the lung, culminating in lung cancer [ 44 – 48 ]. 

 One of the most common forms of oxidative stress which has been described 
extensively is the peroxidation of lipids by ROS. The peroxidation of lipids leads to 
the generation of multiple products, the more common being MDA, 4- hydroxynonenal 
(4-HNE), acrolein, and crotonaldehyde. These products react with DNA molecules 
and lead to formation of DNA adducts, which are mutagenic and may contribute to 
neoplastic transformation [ 49 ,  50 ]. Acrolein and crotonaldehyde are constituents of 
cigarette smoke and behave like exogenous ROS, while MDA and 4- hydroxynonenal 
are formed upon exposure to tobacco smoke [ 51 ,  52 ]. 

 It has been found that cigarette smoking was associated with reduced levels of 
antioxidants as compared to the antioxidant levels in nonsmokers. The circulating 
levels of ascorbic acid and carotenoids have been shown to correlate inversely with 
the number of cigarettes smoked per day [ 53 ]. Other studies have shown an increase 
in the ratio of dehydroascorbic acid to ascorbic acid in smokers as compared to that 
in nonsmokers [ 54 ]. Also, another study demonstrated an increase in the levels of 
ascorbic acid 4 weeks after smoking cessation [ 55 ]. 

 Studies on the levels of antioxidant enzymes, e.g., catalase, glutathione per-
oxidase, and SOD, in smoker versus nonsmokers have shown divergent results, 
with some studies showing a decrease and others showing an increase in levels 
[ 56 – 67 ]. Overall, no satisfactory conclusion can be drawn from these studies if 
they are interpreted together. The confusion may stem from the fact that cancer 
patients may have elevated levels of antioxidant enzymes as a compensatory 
mechanism to oxidative stress. 

 Oxidant stress may also explain the association between environmental pollutant 
exposure and lung cancer. Specifi cally, the main category of environmental pollut-
ants consists of polycyclic aromatic hydrocarbons which are found primarily in effl u-
ents from power plants and internal combustion engines. Here also, it is important to 
mention the role of cigarette smoke, which may have an additive effect, over and 
above that of environmental pollution, in the causation of lung cancer. The prototype 
aromatic hydrocarbon is benzopyrene, which is also the best studied. Once activated 
by metabolic processes in the body, it leads to the formation of benzo(a)pyrene diol 
epoxide (BPDE), which further reacts with the guanosine moiety of DNS to form 
covalent BPDE-DNA adducts. These adducts are mutagenic and are associated with 
carcinogenesis in the human lung [ 68 – 75 ]. 

 The role of oxidant enzymes within the neutrophils is also highlighted by the 
above example. The conversion of benzopyrene to BPDE is catalyzed by the enzyme 
myeloperoxidase, contained in the neutrophils. In fact, certain polymorphisms of 
the gene for this enzyme have been found to be protective in lung cancer, i.e., 
463G→A transition in the promoter region of MPO. A 40–70 % decreased risk of 
lung cancer has been found for the AA genotype in some studies [ 76 – 81 ]. It has also 
been observed that the maximum benefi t of the AA allele was present in smokers, 
which suggests an associated between chemical carcinogens, oxidative stress, 
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genomic predisposition, and carcinogenesis [ 80 ,  81 ]. This linkage has been found 
to be maximum for small cell cancer of lung, which is associated with heavy 
smoking [ 76 ]. So, the conclusion would be that neutrophil-derived oxidant enzymes 
such as myeloperoxidase mediate the march from chemical carcinogen exposure to 
carcinogenesis. 

 Another role of oxidative stress in lung carcinogenesis is seen after exposure 
to fi brous and nonfi brous particles. The prototype of this group is asbestos. It is 
a fi brous particle of which various types are available, and some are more carci-
nogenic than others. For example, crocidolite (blue asbestos) and amosite 
(brown asbestos) are more mutagenic than chrysotile (white asbestos). Asbestos 
exposure is associated with the development of lung cancer and malignant 
mesothelioma. Both oxidative and nitrative stresses have been found to be asso-
ciated with asbestos. Neutrophil-derived myeloperoxidase is of prime impor-
tance in this setting. The role of RNS was demonstrated in a study which showed 
increased levels of 8- nitroguanine, iNOS, and NF-κB in the bronchial epithelial 
cells of mice which were exposed to high intratracheal levels of asbestos. 
Signifi cantly, the immunoreactivities of the mentioned compounds were higher 
in the group exposed to crocidolite as compared to chrysotile, which could 
explain the differing carcinogenic potential of these compounds [ 82 ]. 

 Evidence accumulated in clinical trials has tended to favor the imbalance between 
oxidants and antioxidants as being one of the causative factors in carcinogenesis. 
A recent study compared the levels of urinary 8-OHdG, plasma MDA, red cell 
Cu-Zn SOD, and glutathione peroxidase in 222 patients of lung cancer with 207 
control subjects [ 83 ]. It was found that the levels of 8-OHdG and MDA were signifi -
cantly higher while the red cell SOD and glutathione peroxidase activities were 
signifi cantly lower in patients than in controls [ 83 ]. Similar alterations have also 
been noted in other studies [ 84 – 86 ].  

14.7     Antioxidant Supplementation and Lung Cancer 

 Considering the exhaustive research on the aetiological role of oxidative stress in 
lung cancer, it was only logical that the therapeutic benefi t of antioxidants be tested 
in the prevention and treatment of this disease. Indeed, there have been major studies 
in the last few years on this subject. However, the results were far from expected. 

 The alpha-tocopherol beta-carotene (ATBC) trial, funded by the National Cancer 
Institute (USA), was a randomized, double-blinded primary prevention trial to study 
whether supplementation with either alpha-tocopherol or beta-carotene or both 
would lead to a reduction in the risk of lung cancer [ 87 ]. The results were unex-
pected; there was no reduction in risk with supplementation. Conversely, there was a 
16 % increase in the risk of lung cancer in subjects receiving either beta-carotene 
alone or in combination with alpha-tocopherol [ 87 ]. Similarly, the CARET trial 
tested the combination of beta-carotene and retinyl palmitate (vitamin A) taken daily 
against placebo in 18,314 men and women at high risk of developing lung cancer. 
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The trial was stopped 21 months early because there was evidence of no benefi t and 
substantial evidence of harm; in fact, there were 28 % more lung cancers and 17 % 
more deaths in the group with supplementation than in the placebo group [ 88 ]. 

 A Cochrane review included nine trials of antioxidant supplementation̶these 
included supplementation of vitamin A, C, E, carotenoids, and selenium (Table  14.1 ). 
None of the included studies showed a reduction in lung cancer risk; in fact, there 
was an increased risk of mortality with beta-carotene [ 89 ]. 

 Thus, antioxidant supplementation has not lived up to its initial promise of prevent-
ing lung and other cancers. Research into this area is still ongoing and it is expected 
that future studies may reveal compounds which are actually protective against malig-
nancy. In this context, a study published recently has shown that intake of cruciferous 
vegetables may be associated with a decreased risk of lung cancer. Cruciferous vege-
tables may act by activating phase II detoxifi cation enzymes for the deactivation of 
pro-carcinogens [ 90 ]. However, the last word on this issue is yet to be said!  

14.8     Future Implications 

 The link between oxidative stress, infl ammation, and cancer is likely to be applicable 
in the context of occurrence and progression of lung cancer since more and more 
experimental evidence is accumulating in this regard. Although there are no thera-
peutic options which can exploit this link at present, the future is likely to witness 
the discovery of anticancer agents which target this link. The potential for research 
in this direction is enormous.     

  Confl ict of Interest   The authors would like to state that there is no confl ict of interest regarding 
this chapter.  
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15.1            Introduction 

 Pulmonary arterial hypertension (PAH) is a complex and multidisciplinary disorder 
comprising a series of diseases that result from restricted blood fl ow through the pul-
monary arterial circulation [ 213 ,  232 ]. All of these conditions share a common arte-
rial histopathology characterized by medial hypertrophy, eccentric and concentric 
intimal fi brosis, and plexiform lesions [ 114 ,  213 ]. The pathophysiology of PAH is not 
completely understood. Many factors have been shown to be involved in the patho-
genesis of PAH, including growth factors, pro-infl ammatory molecules, vascular tone 
mediators, genetic mutations, microRNAs (miRs), and oxidative stress [ 5 ,  221 ,  284 ]. 
Currently, the treatment for PAH remains limited and the disease is still associated 
with a poor long-term prognosis [ 221 ]. Growing evidence suggests that reactive 

    Chapter 15   
 Pulmonary Arterial Hypertension 
and Oxidative Stress 

             Izabela     Chrobak*      ,     Christina     Mallarino     Haeger*      ,     Marcy     E.     Maracle     , 
and     Laura     E.     Fredenburgh     

        I.   Chrobak ,  Ph.D.     •     L.  E.   Fredenburgh ,  M.D.      (*) 
  Division of Pulmonary and Critical Care Medicine, Department of Medicine ,  Brigham and 
Women’s Hospital, Harvard Medical School ,   75 Francis Street ,  Boston ,  MA   02115 ,  USA    

    Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE , 
  Albuquerque, NM 87108 ,  New Mexico   
 e-mail: ichrobak@lrri.org; lfredenburgh@partners.org   

    C.  M.   Haeger ,  M.D.      
  Division of Pulmonary and Critical Care Medicine, Department of Medicine ,  Brigham 
and Women’s Hospital, Harvard Medical School ,   75 Francis Street ,  Boston ,  MA   02115 ,  USA   
 e-mail: cmallarinohaeger@partners.org   

    M.  E.   Maracle      
  McGill University ,   Montreal ,  QC ,  Canada   
 e-mail: marcy.maracle@gmail.com   

* Authors contributed equally to this chapter.

mailto:ichrobak@lrri.org
mailto:lfredenburgh@partners.org
mailto:cmallarinohaeger@partners.org
mailto:marcy.maracle@gmail.com


260

oxygen species (ROS) and oxidative stress play a pathogenic role in PAH and 
some antioxidants appear to be useful in various forms of pulmonary hypertension 
(PH) [ 373 ].  

15.2     Pulmonary Arterial Hypertension 

15.2.1     Epidemiology 

 PAH was previously considered a rare disease with an unknown frequency, but in 
2006 a French registry reported a prevalence of 15 per million [ 158 ,  232 ]. The most 
common cause found in this study was idiopathic pulmonary arterial hypertension 
(IPAH) accounting for 39.2 % of the cases, followed by anorexigen exposure, con-
nective tissue disease, congenital heart diseases (CHDs), portal hypertension, and 
HIV infection [ 158 ]. The Scottish morbidity record found a prevalence of 52 cases 
per million in an adult population [ 273 ]. In both studies, PAH was more common in 
the female population [ 158 ]. According to the Centers for Disease Control and 
Prevention (CDC), deaths attributed to PH varied between 11,000 and 16,000 per 
year between 1980 and 2002 [ 159 ].  

15.2.2     Diagnosis and Pathological Findings 

15.2.2.1     Signs and Symptoms 

 The main symptoms found in patients with PH are dyspnea on exertion (around 
60 % of patients), fatigue, angina pectoris, syncope, palpitations, and lower extrem-
ity edema [ 232 ]. Clinical signs include accentuated pulmonary component of S2 
audible at the apex (90 % of patients with IPAH), early systolic click, mid-systolic 
ejection murmur, left parasternal lift, right ventricular (RV) S4, and increased jugu-
lar “a” wave [ 232 ]. In more advanced stages of the disease, other signs may be seen, 
including a holosystolic murmur that increases with inspiration, increased jugular 
“v” waves, pulsatile hepatomegaly, hepatojugular refl ex, peripheral edema, ascites, 
low pulse pressure, and cool extremities [ 232 ]. These usually indicate right ven-
tricular (RV) failure [ 230 ]. The main chest X-ray fi nding suggesting PH is enlarge-
ment of main and hilar pulmonary arterial shadows accompanied by attenuation of 
peripheral pulmonary vascular markings [ 213 ,  230 ]. Electrocardiographic fi ndings 
that should raise the suspicion of PH include right axis deviation, signs of RV hyper-
trophy (tall R wave in RV leads and R/S ratio <1 in V5 and V6), and right atrial 
enlargement (tall p wave in leads II, III, and aVF and frontal p axis of more than 75°) 
[ 213 ,  230 ,  232 ].  
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   Table 15.1    Arbitrary criteria for estimating the presence of PH based on tricuspid regurgitation 
peak velocity and Doppler-calculated PA systolic pressure at rest (assuming a normal right atrial 
pressure of 5 mmHg) and on additional echocardiographic variables   

 Class a   Level b  

 Echocardiographic diagnosis: PH unlikely 
  Tricuspid regurgitation velocity ≤2.8 m/s, PA systolic pressure ≤36 mmHg, 

and no additional echocardiographic variables suggestive of PH 
 I  B 

 Echocardiographic diagnosis: PH possible 
  Tricuspid regurgitation velocity ≤2.8 m/s, PA systolic pressure ≤36 mmHg, 

but presence of additional echocardiographic variables suggestive of PH 
 IIa  C 

  Tricuspid regurgitation velocity 2.9–3.4 m/s, PA systolic pressure 
37–50 mmHg with/without additional echocardiographic variables 
suggestive of PH 

 IIa  C 

 Echocardiographic diagnosis: PH likely 
  Tricuspid regurgitation velocity >3.4 m/s, PA systolic pressure >50 mmHg 

with/without additional echocardiographic variables suggestive of PH 
 I  B 

 Exercise Doppler echocardiography is not recommended for screening of PH  III  C 

  Reproduced with permission from [ 125 ] 
  a Class of recommendation 
  b Level of recommendation  

15.2.2.2     Diagnosis and Classifi cation 

 PAH is defi ned as a mean pulmonary arterial pressure (mPAP) greater than 25 mmHg 
at rest with a normal pulmonary capillary wedge pressure (PCWP) of 15 mmHg or 
less and a pulmonary vascular resistance (PVR) greater than 3 Wood units [ 232 ]. 
Screening is crucial in all patients with risk factors for PAH, such as bone morpho-
genetic protein receptor 2 (BMPR2) mutation, fi rst-degree relative with BMPR2 
mutation, history of anorexigen intake (fenfl uramine), HIV infection, portal hyper-
tension, CHD with systemic-to-pulmonary shunt, systemic sclerosis, recent acute 
pulmonary embolism, and sickle cell disease (SCD) [ 232 ]. If clinical, radiologic, 
and electrocardiographic fi ndings raise the suspicion of PH, a Doppler echocardio-
gram is the screening test of choice, providing an estimate of the RV systolic pres-
sure and RV function, as well as allowing identifi cation of potential cardiac causes 
of PH [ 230 ,  232 ]. Common echocardiographic fi ndings seen in patients with PAH 
include enlargement of right-sided chambers, abnormal surface of the interventricu-
lar septum, and underfi lled left atrium and left ventricle [ 232 ]. The European 
Society of Cardiology (ESC) and the European Respiratory Society (ERS) proposed 
a series of arbitrary criteria for establishing the presence of PH based on echocar-
diographic fi ndings that have been shown to correlate with PH on right heart cath-
eterization (RHC) (Table  15.1 ) [ 125 ]. In cases where a tricuspid regurgitation profi le 
cannot be determined by conventional echocardiography, intravenous saline or 
encapsulated microbubble contrast agents can be administered to enhance the signal 
[ 147 ,  232 ]. Patients with abnormal echocardiograms, including RV systolic pres-
sure greater than 40 mmHg, should be further evaluated [ 232 ].
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   When continuing evaluation of these patients, all causes of PH (including PAH and 
non-PAH causes) must be considered in order to guide proper management [ 232 ]. 
The revised WHO classifi cation of PH (   Dana Point 2008) is shown in Table  15.2  
[ 317 ]. Although all of the secondary causes of PH should be evaluated before 
establishing the diagnosis of PAH, excluding chronic thromboembolic pulmonary 
 hypertension (CTEPH) is particularly important because the management of these 
patients is very different, as some patients may be eligible for surgical treatment 

      Table 15.2    WHO clinical classifi cation of pulmonary hypertension (Dana Point, 2008)   

 1. Pulmonary arterial hypertension (PAH) 
  1.1. Idiopathic PAH 
  1.2. Heritable 
   1.2.1. BMPR2 
   1.2.2. ALK1, endoglin (with or without hereditary hemorrhagic telangiectasia) 
   1.2.3. Unknown 
  1.3. Drugs and toxin-induced 
  1.4. Associated with 
   1.4.1. Connective tissue disease 
   1.4.2. HIV infection 
   1.4.3. Portal hypertension 
   1.4.4. Congenital heart disease 
   1.4.5. Schistosomiasis 
   1.4.6. Chronic hemolytic anemia 
  1.5. Persistent pulmonary hypertension of the newborn 
 1′ Pulmonary veno-occlusive disease (PVOD) and/or pulmonary capillary hemangiomatosis 

(PCH) 
 2. Pulmonary hypertension owing to left heart disease 
  2.1. Systolic dysfunction 
  2.2. Diastolic dysfunction 
  2.3. Valvular disease 
 3. Pulmonary hypertension owing to lung disease and/or hypoxia 
  3.1. Chronic obstructive pulmonary disease 
  3.2. Interstitial lung disease 
  3.3. Other pulmonary diseases with mixed restrictive and obstructive pattern 
  3.4. Sleep-disordered breathing 
  3.5. Alveolar hypoventilation disorders 
  3.6. Chronic exposure to high altitudes 
  3.7. Developmental abnormalities 
 4. Chronic thromboembolic pulmonary hypertension (CTEPH) 
 5. Pulmonary hypertension with unclear multifactorial mechanisms 
  5.1. Hematologic disorders, myeloproliferative disorders, splenectomy 
  5.2.  Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis, lymphangi-

oleiomyomatosis, neurofi bromatosis, vasculitis 
  5.3. Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 
  5.4. Others: tumoral obstruction, fi brosing mediastinitis, chronic renal failure on dialysis 

  Reproduced with permission from [ 317 ]  
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[ 248 ], and this condition may coexist in the presence of other risk factors for PAH 
such as scleroderma [ 232 ]. The screening test of choice for ruling out CTEPH is the 
ventilation/perfusion lung scan, since a normal result virtually rules out this condi-
tion [ 148 ,  232 ,  248 ]. Despite the usefulness of the V/Q scan in patients without 
underlying lung disease, pulmonary multidetector CT angiography (MDCTA) is 
now considered the gold standard for the diagnosis of CTEPH because it allows 
identifi cation of thrombosis, concomitant lung changes, and can aid in the diagnosis 
of pulmonary embolism in patients with preexisting lung disease [ 176 ]. Even though 
Doppler echocardiography aids in the detection of possible PH, the only way to 
confi rm the diagnosis is through RHC [ 232 ,  248 ]. Once left ventricular or valvular 
disease (Group 2), lung disease (Group 3), and CTEPH (Group 4) are excluded, a 
RHC showing a mPAP greater than 25 mmHg and a PVR greater than 3 Wood units 
with a normal PCWP <15 mmHg confi rm the presence of PAH, which means that it 
remains a diagnosis of exclusion [ 232 ].

   The most recent classifi cation of PH was established in the fourth World 
Symposium on Pulmonary Hypertension that was held in Dana Point in 2008 [ 317 ]. 
Patients with PAH should be classifi ed into one of the fi ve groups shown in 
Table  15.2  [ 317 ]. 

   Idiopathic Pulmonary Arterial Hypertension and Heritable Pulmonary Arterial 
Hypertension: Groups 1.1 and 1.2 

 IPAH is sporadic and unrelated to any family history or identifi ed risk factor [ 317 ]. 
Heritable PAH is diagnosed when there are mutations of genes that have been iden-
tifi ed as having a strong association with the PAH phenotype, such as the  BMPR2  
gene, which is present in 70 % of heritable cases. Other mutations that have been 
identifi ed in patients with PAH are located in the activin receptor-like kinase type 1 
( ALK1 ) or endoglin ( ENG ) genes [ 248 ,  317 ]. Some studies have also suggested that 
mutations in the Smad proteins and    caveolin-1 ( CAV1 ) genes may also predispose 
to PAH [ 9 ,  18 ,  28 ,  259 ,  316 ]. It is critical that these patients get involved in a com-
prehensive program that includes genetic testing, counseling, and discussion of 
risks and benefi ts [ 21 ,  317 ].  

   Drug and Toxin-Induced PAH: Group 1.3 

 Drug and toxin-induced PAH is further classifi ed depending on the strength of the 
association between the exposure and the presence of disease, but the main sub-
stances that have been found to have a strong association with PAH are anorexigens 
(aminorex, fenfl uramine) and toxic rapeseed oil. Other agents that have been related 
to PAH include cocaine, phenylpropanolamine, St. John’s Wort, chemotherapeutic 
medications, selective serotonin reuptake inhibitors (SSRIs), and amphetamines 
[ 317 ]. However, further studies are needed to establish the true association of these 
latter substances.  
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   Associated with PAH: Group 1.4 

 Associated with PAH (APAH) includes connective tissue disorders, congenital 
systemic- to-pulmonary shunts, portal hypertension, HIV infection, schistosomiasis, 
and chronic hemolytic anemia [ 232 ]. 

   PAH Associated with Connective Tissue Diseases: Group 1.4.1 

 The presence of PAH has been well established in systemic sclerosis, with an esti-
mated prevalence of 7–12 % and is associated with poor prognosis in this group of 
patients [ 138 ,  248 ,  253 ]. The presence of PAH has also been reported in systemic 
lupus erythematosus (SLE) and mixed connective tissue disease, but the exact prev-
alence has not been determined [ 317 ]. Other mechanisms may be involved in the 
induction of PH in these patients, such as left heart dysfunction, lung fi brosis, and 
primary cardiac involvement, which highlights the importance of determining the 
true cause of PH with RHC.  

   PAH Associated with HIV Infection: Group 1.4.2 

 The presence of PAH in patients with HIV infection is rare, with a prevalence of 
0.5 % [ 28 ,  317 ]. Clinical, hemodynamic, and histological fi ndings are very similar 
to those seen in IPAH patients [ 28 ,  317 ]. Concomitant PAH in patients with HIV 
signifi cantly worsens their prognosis [ 243 ].  

   Porto-pulmonary Hypertension: Group 1.4.3 

 PAH associated with an increase in the pressure of the portal circulation is classi-
fi ed as porto-pulmonary hypertension (POPH) [ 248 ]. Some prospective studies 
have shown a prevalence of 5–6 % in patients with advanced liver disease [ 303 ]. 
POPH is also a predictor of poor prognosis, since these patients are usually not 
eligible for liver transplantation due to the high perioperative morbidity and mor-
tality that have been documented in this population [ 303 ]. RHC should be per-
formed to accurately diagnose PAH, since other factors, such as fl uid overload and 
diastolic dysfunction, may elevate the pressure of the pulmonary vasculature in 
patients with portal hypertension [ 317 ].  

   Congenital Heart Diseases: Group 1.4.4 

 PAH is a fairly common complication of CHD in patients that have left-to-right 
shunts [ 81 ,  317 ]. It is estimated that 4–15 % of patients with CHD will develop PAH 
[ 81 ] and the most common anomalies associated with PAH are ventricular septal 
defects (VSD) [ 104 ]. Patients with CHD who develop PAH are classifi ed into four 
groups: Eisenmenger’s syndrome, PAH associated with systemic-to-pulmonary 
shunts, PAH with small defects, and PAH after corrective cardiac surgery [ 81 ,  317 ]. 
Eisenmenger’s syndrome is the most severe form of PAH in this context, where 
there is a reversal of the initial shunt to a right-to-left shunt, where deoxygenated 
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blood is being returned to the systemic circulation and cyanosis ensues along with 
other potential complications such as blood hyperviscosity, hemostasis, stroke, and 
endocarditis [ 81 ].  

   Schistosomiasis: Group 1.4.5 

 Before the Dana Point classifi cation of PH, schistosomiasis was listed under the sub-
group of chronic thrombotic or thromboembolic disease. Nevertheless, recent evidence 
has shown that the obstructive mechanism of schistosoma eggs plays a minor role in the 
induction of PH in this group of patients, and clinical and pathological fi ndings resemble 
those of IPAH [ 248 ,  317 ]. Although the exact mechanisms responsible for the induction 
of PH in patients with schistosomiasis remain largely unknown, the infl ammatory 
response to the schistosoma antigens with the release of cytokines that have also been 
proven to be upregulated in IPAH, as well as the presence of hepatosplenic disease and 
portal hypertension likely plays an important role [ 133 ]. For these reasons, schistoso-
miasis is now listed under Group 1 of the Dana Point Classifi cation [ 248 ,  317 ].  

   Chronic Hemolytic Anemia: Group 1.4.6 

 PAH has been identifi ed as a complication of many hemolytic anemias including 
SCD, thalassemia, hereditary spherocytosis, stomacytosis, and microangiopathic 
hemolytic anemia [ 317 ]. Histological fi ndings seen in IPAH have been commonly 
described in patients with SCD [ 317 ]. However, the true prevalence of PAH in these 
patients remains unknown since most epidemiological studies have defi ned the 
presence of PH in terms of echocardiography rather than RHC [ 317 ]. Such studies 
have documented a prevalence of 20–30 % in patients with SCD and 10–75 % in 
patients with thalassemia [ 219 ]. The pathophysiology of PAH induced by hemolysis 
is not entirely understood, but mechanisms such as inactivation of nitric oxide (NO) 
by free hemoglobin, depletion of  l -arginine in the presence of elevated arginase, 
and increased endothelin-1 (ET-1) responses have been described [ 110 ,  250 ,  301 ]. 

 Pulmonary veno-occlusive disease (PVOD) and pulmonary capillary hemangio-
matosis (PCH) are rare conditions that were included in Group 1 of the most recent 
WHO classifi cation of PH (Dana Point 2008) [ 317 ]. This inclusion was based on the 
similarities of PVOD/PCH and PAH regarding histologic fi ndings, clinical presen-
tation, risk factors, and potential for inheritance [ 317 ]. Nevertheless, they are still 
considered separate conditions classifi ed as 1′ (Table  15.2 ) [ 317 ]. 

 As discussed above, PAH is a diagnosis of exclusion and both PAH and non-PAH 
causes of PH may overlap. Therefore, it is crucial to evaluate and classify patients based 
on their etiology of PH and WHO group (Table  15.2 ), and confi rm that the elevated 
pressure is limited exclusively to the pulmonary arterial system [ 90 ]. This can only be 
accomplished with a RHC, which remains an indispensable tool in the assessment of 
patients with PH [ 90 ]. Additionally, this test gives further information that is useful to 
determine prognosis, such as the severity of the hemodynamic impairment and the 
vasoreactivity of the pulmonary circulation [ 125 ]. The diagnostic PH algorithm estab-
lished by the American College of Cardiology Foundation/American Heart Association 
Task Force (ACCF/AHA) experts can be found in Fig.  15.1  [ 125 ,  232 ].
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15.2.2.3          Gold Standard and Pathological Findings 

 The gold standard for the diagnosis of PAH is the RHC since it is defi ned by hemo-
dynamic criteria [ 125 ,  232 ]. Lung biopsy in patients with PAH is not recommended, 
since it has a high morbidity and mortality in this group of patients and is unlikely 
to change the diagnosis or treatment [ 125 ]. Therefore, the natural history of vascular 
lesions that occur in PAH is not entirely known because biopsies are not regularly 
obtained in these patients [ 232 ]. Arterial abnormalities seen in histological studies 
of patients with PAH include intimal hyperplasia, infl ammation, adventitial prolif-
eration, medial hypertrophy, thrombosis in situ, abnormal muscularization of non-
muscular precapillary arteries, and plexiform arteriopathy [ 232 ,  284 ].  

15.2.2.4     Prognosis 

 Despite a better understanding of the pathophysiological mechanisms involved in 
PAH and the improvement in treatment options, the long-term prognosis remains 
poor [ 232 ]. Data from the French Network on Pulmonary Hypertension Registry 
revealed a survival rate of 83 % (95 % CI 72–95 %) at 1 year, 57 % (95 % CI 
57–79 %) at 2 years, and 58 % at 3 years [ 158 ].   

Symptoms, signs, history suggestive of PH

Noninvasive assessment compatible with PH?

Yes

Consider common causes of PH

History, symptoms, signs, ECG, chest 
radiograph, TTE, PFT, HRCT

Group 2 or 3: diagnosis confirmed

Perform V’/Q’ scan

No

Segmental perfusion defects

Consider other uncommon causes

No

Perform RHC 
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  Fig. 15.1    Diagnostic algorithm for pulmonary hypertension. Reproduced with permission from [ 125 ]       
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15.2.3     Pathophysiology 

 PH results from an increase in PVR and restriction in blood fl ow through the 
 pulmonary vascular circulation, fi nally leading to altered right heart function [ 232 ]. 
Elevation of PVR and decreases in pulmonary vascular compliance cause increased 
RV afterload, which ultimately results in adaptive RV hypertrophy [ 221 ]. If the 
pressure overload persists, the RV eventually dilates and becomes dysfunctional, 
leading to increase in RV contraction time, asynchrony, and decreased RV stroke 
volume [ 221 ]. All of the latter changes result in underfi lling of the left ventricle 
(LV) and subsequent reduction in cardiac output [ 126 ,  221 ,  223 ]. 

 The main cause of elevated PVR is the reduction in luminal cross section due to 
vascular remodeling, which results from altered cell growth, apoptosis, migration, 
and production of extracellular matrix [ 5 ,  232 ]. Various stimuli can induce vascular 
remodeling, including mechanical forces (changes in transmural pressure, stretch, 
shear stress), infl ammatory cytokines, serotonin (5-hydroxytryptamine [5-HT]), 
hypoxia, growth factors, angiotensin II (AT-II), endothelin-1 (ET-1), increased ser-
ine elastase activity, and increased production of ROS [ 5 ]. All of these stimuli 
induce changes in different cells that are responsible for the changes seen in vascu-
lar remodeling, mainly endothelial cells (EC) and smooth muscle cells (SMC) [ 5 ]. 

15.2.3.1     Pulmonary Arterial Endothelial Cells 

 Pulmonary arterial endothelial cells (PAEC) that are exposed to injury caused by the 
various stimuli mentioned above may become dysfunctional and respond in ways 
that contribute to vascular remodeling [ 5 ]. This remodeling occurs through the 
release of agents that stimulate proliferation of pulmonary arterial smooth muscle 
cells (PASMC), such as platelet-derived growth factor (PDGF) and fi broblast growth 
factor-2 (FGF-2) and/or failure to produce factors that suppress proliferation of 
PASMC, such as apelin [ 284 ]. Furthermore, PAEC from patients with IPAH have 
increased expression of the Tie2 receptor, which results in increased production of 
5-HT and subsequent PASMC proliferation (Fig.  15.2 ) [ 5 ,  91 ,  284 ]. Moreover, dys-
functional PAEC seen in PH generate less nitric oxide (NO) as a result of uncou-
pling of endothelial NO synthase (eNOS), which ultimately leads to an increase in 
the production of ROS, particularly superoxide (Fig.  15.2 ) [ 5 ]. The effect of ROS 
in pulmonary vascular remodeling is further discussed in the next section. 
Uncoupling of eNOS is related to low levels of enzymatic cofactors  l -arginine and 
tetrahydrobiopterin (BH 4 ) [ 200 ].  l -Arginine depletion results from the upregula-
tion of arginase, which has been documented both in animal and human EC exposed 
to different stimuli, including hypoxia, lipopolysaccharide (LPS), shear stress, and 
infl ammatory cytokines [ 105 ]. Increased asymmetric dimethylarginine (ADMA) 
has also been found to be elevated in patients with PH [ 5 ,  312 ]. ADMA is an 
endogenous analogue of  l -arginine and competes for the substrate binding site of 
eNOS, which can further contribute to the uncoupling of the enzyme [ 5 ,  284 ]. 
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  Fig. 15.2    Overview of mechanisms involved in the pathogenesis of PAH. Diverse stimuli result 
in endothelial dysfunction and abnormal PASMC proliferation. Decreased NO production in 
PAEC due to eNOS uncoupling attenuates relaxation of PASMC and promotes vasoconstriction. 
Factors that contribute to eNOS uncoupling include decreased arginine, increased ADMA, 
enhanced arginase activity, low BH 4 , and disruption of the zinc tetrathiolate (ZnS 4 ) cluster. 
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Fig. 15.2 (continued) The eNOS uncoupling not only results in lower NO levels but also increases 
ROS production. Upregulation of NADPH oxidase subunits further contributes to the generation 
of ROS. Altered function of potassium Kv channels in PASMC leads to membrane depolarization 
and opening of voltage-dependent calcium channels. Infl ux of calcium ions stimulates additional 
release of Ca 2+  from the SR. Increased [Ca 2+ ] cyt  and upregulated membrane receptors (5-HT, ET-1, 
leukotrienes) decrease apoptosis and stimulate cell proliferation. Increased Ang-1 downregulates 
BMPR1A in PAEC and enhances 5-HT production, promoting PASMC contraction and prolifera-
tion. As a result of BMPRII mutations, PASMC display dysfunctional BMP signaling pathways, 
which normally inhibit cell proliferation and stimulate cell apoptosis. Mitochondrial dysfunction 
leads to increased ROS production and is evidenced by the low levels of SOD2, high levels of 
UCP2, and impaired function of complexes I and II. Increased activity of XO also results in higher 
production of ROS. Increased expression of the STAT3/Pim1/Src/NFAT axis and suppression of 
miR-204 also promote cellular proliferation and reduce apoptosis. TGF-β and BMP4 increase the 
expression of miR-143/miR-145 through the stimulation of Myocd and MRTF-A, respectively. 
These miRNAs inhibit KLF4 which ultimately results in enhanced contractile gene expression. 
 PAEC  pulmonary arterial endothelial cells,  eNOS  endothelial nitric oxide synthase,  NADPH  nico-
tinamide adenine dinucleotide phosphate,  TGF-β  transforming growth factor β,  TGFRI  type I 
receptor for TGF-β,  TGFRII  type II receptor for TGF-β,  BH   4   tetrahydrobiopterin,  ADMA  asym-
metric dimethylarginine,  DDAH2  dimethylaminohydrolase-2,  TIE2  tyrosine protein kinase recep-
tor,  Ang-1  angiopoietin,  BMP  bone morphogenetic protein,  BMPR1A  BMP receptor 1A,  BMPRI  
BMP type I receptor,  BMPRII  BMP type II receptor,  5-HT  5-hydroxytryptamine,  PASMC  pulmo-
nary arterial smooth muscle cells,  VDCC  voltage-dependent calcium channel,  PIP2  phosphati-
dylinositol 4,5- bisphosphate,  PLC  phospholipase C,  IP3  inositol triphosphate,  DAG  diacylglycerol, 
 PKC  protein kinase C,  ROC  receptor-operated calcium channel,  SR  sarcoplasmic reticulum,  Kv 
channel  voltage-gated potassium channel,  SOD2  superoxide dismutase 2,  UCP2  uncoupling pro-
tein-2,  HIF-1α  hypoxia-inducible factor α,  XO  xanthine oxidase,  RAGE  receptor for advanced 
glycation endproducts,  AGE  advanced glycation endproducts,  RTK  receptor tyrosine kinase, 
 PDGF  platelet- derived growth factor,  VEGF  vascular endothelial growth factor,  STAT3  signal 
transducer and activator,  NFAT  nuclear factor of activated T-cells,  MRTF  myocardin-related tran-
scription factor,  Myocd  myocardin,  KLF4  Krüppel-like factor 4       

ADMA has also been shown to contribute to mitochondrial dysfunction through the 
increase of uncoupling protein-2 (UCP2), which leads to augmented mitochondrial 
ROS (mROS) production and decreased ATP synthesis (Fig.  15.2 ) [ 5 ,  329 ].

   In addition to decreased synthesis of the vasodilator NO, dysfunctional endothelial 
cells also produce lower levels of prostacyclin, and higher levels of vasoactive sub-
stances such as ET-1, AT-II, and thromboxane A 2  (TXA 2 ), and growth factors, namely 
PDGF, transforming growth factor β (TGF-β), FGF-2, and vascular endothelial growth 
factor (VEGF) [ 5 ,  100 ,  227 ,  361 ]. All of these may stimulate PASMC proliferation in 
vascular remodeling [ 5 ]. Finally, PAEC from patients with PAH seem to have 
increased glycolytic activity and a highly proliferative response to growth factors, 
which contributes to the formation of plexiform lesions [ 5 ,  284 ,  382 ]. PAEC seen in 
these lesions exhibit increased levels of hypoxia-inducible factor    (HIF) subunits 
(HIF-1α and HIF-1β), which induce VEGF under hypoxic conditions [ 5 ,  342 ]. 

 Elevated expression of VEGF and VEGF receptor 2 (VEGFR2) has been docu-
mented in plexiform lesions of patients with PAH [ 221 ,  342 ]. VEGF promotes sur-
vival and suppresses apoptosis in PAEC [ 221 ,  305 ]. However, mice and rats exposed 
to hypoxia combined with the VEGFR2 inhibitor, SU5416, develop PAH [ 221 , 
 353 ]. Moreover, VEGF is decreased in the monocrotaline (MCT) rat model of PAH, 
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which correlates with early endothelial injury. Overexpression of VEGF also 
protects against chronic hypoxia and MCT exposure, and VEGFR inhibition results 
in initial EC apoptosis with subsequent selection of EC clones that are resistant to 
apoptosis and form angio-obliterative lesions [ 221 ,  353 ]. Therefore, VEGF appears 
to play a crucial role in angiogenesis and EC growth after vascular injury. Other 
factors associated with plexiform lesions are angiopoietin 1, 5-lipoxygenase, sur-
vivin, and Ki-67 [ 5 ,  129 ,  131 ,  375 ]. However, the exact mechanisms responsible for 
the formation of plexiform lesions are not completely understood [ 5 ].  

15.2.3.2     Pulmonary Arterial Smooth Muscle Cells 

 Many pathologic changes take place in the SMC layer of PAs during vascular remod-
eling. Proximal vessels usually undergo signifi cant hypertrophy, while smaller resis-
tance vessels commonly show hyperplasia [ 5 ,  231 ,  238 ]. Matrix protein deposition is 
also a characteristic feature of the muscular layer of PAs in PAH, where SMC seem to 
acquire a more synthetic, rather than contractile, phenotype, with larger endoplasmic 
reticula and Golgi apparatus, and increased production of collagen and elastin [ 5 , 
 238 ]. Muscularization of otherwise nonmuscular blood vessels results from differen-
tiation of pericytes into SMC and hypertrophy of SMC precursor cells [ 5 ,  284 ]. 

 Factors that have been identifi ed in the induction of SMC hypertrophy include 
bone morphogenetic protein 4 (BMP4), TGF-β1, 5-HT, ET-1, inhibition of glyco-
gen synthase kinase 3β (GSK-3β), and activation of p70S6 kinase [ 5 ,  174 ]. Abnormal 
activation of transcription factors (HIF-1α and nuclear factor of activated T-cells 
[NFAT]), increased expression of survivin and PDGF, calcium overload, mitochon-
drial hyperpolarization, and decreased expression of voltage-gated potassium chan-
nels (Kv) all contribute to the increased survival and decreased apoptosis of PASMC 
seen in PAH (Fig.  15.2 ) [ 221 ,  232 ]. 

 Finally, in vitro studies have shown that PASMC from PAH patients have higher 
mRNA and protein levels of Notch 3 and HES-5 [ 221 ]. Notch participates in vascu-
logenesis, angiogenesis, and differentiation of vascular SMC [ 11 ,  221 ]. HES-5, a 
target gene for Notch 3, is exclusively expressed in adult SMC and may be involved 
in SMC maturation and proliferation [ 53 ,  96 ,  221 ,  279 ].  

15.2.3.3     Neointima Formation 

 The formation of a layer of cells and extracellular matrix between the endothelium 
and the internal elastic lamina occurs in severe PH [ 5 ,  387 ]. The neointima is com-
posed of myofi broblasts that express SM markers such as smooth muscle α-actin 
and vimentin [ 5 ]. These cells lack markers of highly differentiated SMC, such as 
SM-myosin heavy chain, and do not exhibit EC markers either [ 5 ,  387 ]. The exact 
origin of these cells is unclear. They may originate in stem cells, transdifferentiation 
of endothelial cells, migration of SMC from the media, or migration of adventitial 
fi broblasts [ 5 ,  284 ]. This currently remains a subject of intense study [ 284 ].  
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15.2.3.4     Changes in the Adventitia 

 PAH is associated with thickening and disorganization of the pulmonary adventi-
tia, with excessive activation of adventitial metalloproteases [ 232 ]. In patients 
with PAH related to collagen vascular diseases such as scleroderma, the adventitia 
appears markedly remodeled [ 5 ]. Activation of fi broblasts by different stimuli can 
induce a phenotypic change in these cells, altering their structure and functional 
behavior [ 5 ]. An example of this is the induction of a contractile phenotype in 
fi broblasts by TGF-β1 and TGF-β2 [ 5 ,  387 ]. The activation and proliferation of 
fi broblasts and myofi broblasts result in thickening of the adventitia in PH, and 
some studies have shown that these changes precede remodeling of the intima and 
SMC layer, which suggests that the initial detection of vascular injury might take 
place in the adventitia [ 5 ,  146 ].  

15.2.3.5     Genes and Transcription Factors Involved in PAH 

 Genes associated with PAH have helped to identify potential mechanisms involved in 
the pathogenesis of the disease. Studies have shown that approximately 70 % of 
patients with heritable pulmonary arterial hypertension (HPAH) and 10–20 % of 
patients with IPAH are heterozygous for a mutation in  BMPR2 , which is a member of 
the TGF-β superfamily of growth factor receptors [ 284 ]. HPAH is inherited in an 
autosomal dominant fashion with incomplete penetrance and genetic anticipation 
[ 232 ]. The impaired function of the BMPR2 results in a loss of function of the SMAD 
signaling pathway, causing proliferation and decreased apoptosis of PASMC in 
response to TGF-β and BMP2 (Fig.  15.2 ) [ 232 ]. On the other hand, BMPR2 impair-
ment in EC results in increased susceptibility to apoptosis, which alters the normal 
migration and survival of EC needed in angiogenesis and regeneration of damaged 
blood vessels (Fig.  15.2 ) [ 85 ,  284 ]. Abnormal BMPR2 signaling has also been asso-
ciated with increased ET-1 production in human lung microvascular EC [ 221 ,  324 ]. 

 Recently, signal transducer and activator of transcription 3 (STAT3) has been 
shown to participate in aberrant PASMC proliferation [ 221 ,  272 ]. IL-6, TGF-β, 
PDGF, VEGF, ET-1, and AT-II can activate STAT3, which in turn increases the 
expression of Pim1 (Fig.  15.2 ) [ 221 ,  272 ,  390 ]. PIM1 promotes the activation of 
NFAT, increasing cytokine secretion, enhancing PASMC proliferation, and sup-
pressing PASMC apoptosis (Fig.  15.2 ) [ 221 ,  287 ].    STAT3 has also been implicated 
in induction of survivin expression through activation of Krüppel-like factor 5 
(KLF5) and in downregulation of eNOS expression (Fig.  15.2 ) [ 74 ,  221 ]. 

 Moreover, studies have shown that mice with deletion of the peroxisome 
proliferator- activator receptor gamma (PPAR-γ) gene develop spontaneous PAH 
[ 136 ], and mutations in this gene have also been identifi ed in patients with severe 
PH [ 5 ,  12 ,  284 ]. PPAR-γ participates in the antiproliferative effect of BMP2 sig-
naling in PASMC, which is BMPR2/PPAR-γ/ApoE dependent [ 8 ,  140 ,  221 ]. The 
receptor of advanced glycation end products (RAGE) is an upstream target of 
PPAR-γ in PAH, and has been shown to activate STAT3 and downregulate BMPR2 
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and PPAR-γ in PAH-PASMC (Fig.  15.2 ) [ 221 ,  236 ]. Furthermore, BMP2-
mediated survival of PAEC depends on the formation of a nuclear complex 
between β-catenin and PPAR-γ [ 8 ]. One of the transcriptional targets of this com-
plex is apelin, which is reduced in patients with IPAH [ 8 ]. Apelin promotes PAEC 
survival and migration, and suppresses PASMC growth [ 284 ]. Apelin-defi cient 
PAEC have increased apoptosis and promote PASMC proliferation [ 8 ,  221 ]. Other 
genes that have been associated with the PAH phenotype include  ALK1 ,  ENG , and 
 CAV1  [ 18 ,  59 ,  142 ,  218 ,  221 ].  

15.2.3.6     MicroRNAs Involved in PAH 

 miRs are now of great interest in the study of diseases that display abnormal cell 
growth, since they are involved in various posttranscriptional regulatory mecha-
nisms [ 221 ]. In PAH, only few miRs have been identifi ed as being abnormally 
expressed [ 221 ]. Downregulation of miR-204 in PAH-PASMC was found to corre-
late with PAH severity and higher cell proliferation [ 74 ]. It was shown that down-
regulated levels of miR-204 enhance a constitutive activation of Src and STAT3, 
leading to an increase in PASMC proliferation (Fig.  15.2 ) [ 74 ]. Additionally, down-
regulation of miR-204 appears to upregulate IL-6 secretion, which in turn down-
regulates BMPR2 and further contributes to the proliferative phenotype of 
PAH-PASMC [ 221 ,  272 ]. IL-6 is a potent activator of STAT3, which means that 
these interactions result in a feed-forward loop between miR-204 downregulation 
and STAT3 (Fig.  15.2 ) [ 221 ]. 

 Src and p53 pathways regulate the organization of miR-145 and miR-143, which 
are involved in SMC differentiation and proliferation [ 221 ,  283 ]. TGF-β and BMP4 
stimulate the expression of myocardin (Myocd) and Myocd-related transcription 
factor A (MRTF-A), respectively. These factors in turn activate miR-143 and miR- 
145 transcription, resulting in decreased KLF4 expression and promotion of con-
tractile gene expression in SMC (Fig.  15.2 ) [ 83 ,  221 ]. Plexiform and concentric 
lesions seen in patients with PAH display abnormal expression of miR-143/miR- 
145 and mice exposed to hypoxia show elevated levels of miR-145 [ 54 ,  221 ]. 

 In PAEC, expression of miR-126 appears to be dysregulated specifi cally in 
plexiform lesions [ 36 ,  221 ]. This miR plays an important role in neovasculariza-
tion, EC proliferation, and vascular integrity, and regulates factors involved in 
apoptosis and modulation of cell cycle arrest [ 221 ,  355 ,  391 ]. Other miRs that have 
been found to contribute to the pathogenesis of PAH include miR-150, which is 
reduced in patients with PAH and is associated with decreased NK cells and B1 
cell expansion; miR- 210, the miR most highly upregulated by hypoxia [ 195 ,  221 ]; 
miR-21, which is highly upregulated in hypoxia and appears to participate in 
abnormal proliferation and migration of PASMC [ 221 ]; and miR-17, which is also 
upregulated in hypoxia, and targets p21 and Janus kinase (JAK1) impairing angio-
genic functions of endothelial cells [ 221 ]. miRs remain a subject of intense study, 
since they are regarded as useful biomarkers, prognostic tools, and potential targets 
for future therapies [ 221 ].    
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15.3     Oxidative Stress and PAH 

 Several studies have implicated oxidative stress in the pathogenesis of PAH. 
Oxidative and nitrosative stress are characterized by an imbalance between oxidant 
and antioxidant production that can lead to downstream cell and tissue damage. 
Oxidative stress in PAH is associated with increased production of ROS and reac-
tive nitrogen species (RNS), decreased nitric oxide (NO) levels, and mitochondrial 
dysfunction. Dysregulation of ROS/RNS/NO homeostasis can impair vascular tone 
and lead to activation of antiapoptotic and mitogenic pathways resulting in cell 
hyperproliferation and obliteration of the vasculature in PAH. 

 ROS are produced from oxygen during normal metabolic processes. ROS can be 
characterized as either free radicals, reactive molecules with one or more unpaired 
electrons, or nonradicals, molecules which share unpaired electrons between two 
free radicals [ 34 ] (Table  15.3 ). Hydroxyl radical ( • OH) is considered the most reac-
tive free radical in biological systems [ 335 ]. In the lung, ROS can be generated by 
alveolar epithelial cells, endothelial cells, alveolar macrophages, neutrophils, and 
eosinophils. In the pulmonary vasculature, ROS can be produced by complexes in 
the cell membrane, within mitochondria and peroxisomes, and from within the 
cytoplasm. The major enzymatic sources of ROS include uncoupled eNOS, xan-
thine oxidase (XO), nicotine adenine dinucleotide phosphate (NADPH) oxidase 
(NOX), and mitochondrial electron transport enzymes (Fig.  15.3 ). RNS are various 
nitrogen-containing species (Table  15.3 ) that can alter protein function via 
S-nitrosylation, tyrosine nitration, and glutathionylation. NO is the predominant 
source of nitrosative stress and, at high concentrations, can react with ROS to gener-
ate other RNS, including peroxynitrite, ONOO‾.

    Table 15.3    Major oxidants   

  Oxidative stress  

 Free radicals  Nonradicals 
 Hydroxyl radical  OH •   Hydrogen peroxide  H 2 O 2  
 Superoxide anion  O 2  • ‾  Hypochloric acid  HOCl 
 Peroxyl radical  ROO •   Ozone  O 3  
 Hydroperoxyl radical  HOO •   Lipid peroxide  LOOH 
 Lipid peroxyl  LOO •  

  Nitrosative stress  
 Nitric oxide  NO •  
 Peroxynitrite anion  ONOO‾ 
 Nitrogen dioxide  NO 2  
 Nitrite  NO 2 ‾ 
 Nitrate  NO 3 ‾ 
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15.3.1        Mediators and Molecular Mechanisms of Oxidative 
Stress in PAH 

15.3.1.1     Nitric Oxide Dysregulation 

 NO is a gaseous lipophilic free radical and primary pulmonary vasodilator produced 
and released by the endothelium. In addition to regulating vascular tone, NO attenu-
ates platelet aggregation and inhibits vascular SMC proliferation and migration 
within the vascular wall [ 404 ]. NO is biosynthesized during the conversion of the 
amino acid  l -arginine to  l -citrulline by a family of enzymes called nitric oxide 
synthases (NOS). Three different isoforms of NOS have been identifi ed including 

  Fig. 15.3    Overview of the mechanisms involved in ROS production and antioxidant mechanisms 
that counterbalance this oxidative stress. eNOS uncoupling due to decreased arginine, increased 
ADMA, enhanced arginase activity, low BH 4 , and disruption of the zinc tetrathiolate (ZnS 4 ) cluster 
results in increased production of superoxide. Upregulation of NADPH oxidase subunits and xan-
thine oxidase further contributes to the generation of ROS. Superoxide dismutase catalyzes the 
conversion of superoxide to hydrogen peroxide. Hydrogen peroxide is reduced by catalase and 
glutathione peroxidase.  XO  xanthine oxidase,  SOD2  superoxide dismutase 2,  UCP2  uncoupling 
protein-2,  HIF-1α  hypoxia-inducible factor α,  BH   4   tetrahydrobiopterin,  ADMA  asymmetric dimeth-
ylarginine,  DDAH2  dimethylaminohydrolase-2,  NADPH  nicotinamide adenine dinucleotide phos-
phate,  SOD  superoxide dismutase,  GPx  glutathione peroxidase,  GSSG  glutathione disulfi de       
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neuronal NOS (nNOS), inducible NOS (iNOS/NOS2), and endothelial NOS 
(eNOS). The production of NO by NOS requires NADPH and O 2 , as well as the 
cofactors tetrahydrobiopterin (BH 4 ), fl avin adenine dinucleotide (FAD), fl avin 
mononucleotide (FMN), and Ca 2+ /calmodulin (CaM) [ 52 ,  220 ] (Fig.  15.4 ).

   After release from endothelial cells, NO binds to soluble guanylate cyclase (sGC) in 
vascular cells and converts guanosine triphosphate (GTP) to cGMP, which leads to acti-
vation of downstream cGMP-dependent signaling [ 77 ,  270 ]. cGMP is a transient signal-
ing molecule, as it is rapidly cleaved by phosphodiesterases (PDEs), predominantly 
PDE5, into 5′GMP, thereby inhibiting NO signaling (Fig.  15.4 ). Although eNOS-
derived NO is primarily responsible for endothelium-dependent vasodilation, iNOS has 
also been shown to regulate pulmonary vascular tone [ 111 ,  113 ]. 

  Fig. 15.4    Nitric oxide signaling in PAH. Oxidative stress and nitric oxide (NO) dysregulation in 
the pathogenesis of PAH. (1) Biosynthesis of NO from the amino acid  l -arginine by the enzyme 
endothelial nitric oxide synthases (eNOS) with  l -citrulline as a side product and important cofac-
tors such tetrahydrobiopterin (BH 4 ), calcium, and heme. (2) Uncoupling of eNOS̶when cofac-
tors are limited and there is production of ROS, superoxide (   O 2  • ‾) and hydrogen peroxide (H 2 O 2 ). 
(3) Binding of NO to its target protein, soluble guanylate cyclase (sGC) and conversion of guano-
sine triphosphate (GTP) to cGMP resulting in blood vessel dilation (4). (5) Cleavage of cGMP by 
PDE5 into 5′GMP leading to inhibition of NO signaling resulting in vessel contraction       
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 In mice, deletion of eNOS results in systemic hypertension [ 157 ] and mild PH 
[ 326 ], while eNOS overexpression leads to systemic hypotension [ 130 ,  265 ]. 
Exposure of eNOS-defi cient mice to chronic hypoxia exacerbates PH and right ven-
tricular hypertrophy (RVH) [ 327 ] and administration of inhaled NO attenuates 
hypoxia-induced PH, RVH, and vascular remodeling in rats [ 192 ,  297 ,  300 ]. In 
addition, recent fi ndings demonstrate that endothelial-like progenitor cells (ELPC) 
expressing eNOS reverse MCT-induced PH [ 395 ] and attenuate right ventricular 
systolic pressure (RVSP) and pulmonary arterial muscularization in a lung lobec-
tomy model of PH [ 366 ]. Taken together, these fi ndings suggest a critical role for 
dysregulation of eNOS-derived NO in the pathogenesis of PAH. 

 While there is general consensus that NO signaling is impaired in PAH, it remains 
unclear whether this is primarily due to reduced synthesis, decreased bioavailability, 
decreased responsiveness, or increased consumption of NO. Some studies have 
demonstrated attenuated bioavailability of NO via hemoglobin and superoxide 
scavenging [ 154 ] or by increased hemolysis in fatal PAH [ 156 ].  

15.3.1.2     eNOS Regulation 

 NO synthesis and bioavailability in the pulmonary vasculature are dependent upon the 
regulation of eNOS [ 60 ]. eNOS expression is controlled by two regulatory regions, the 
positive regulatory domains I and II, and its transcription is regulated by many cofactors 
acting by complex  cis  and  trans  interactions [ 309 ]. Additionally, methylation of nucleo-
tides in those regions specifi es vascular endothelial cell expression of eNOS [ 55 ]. 
Following eNOS protein translation, its compartmentalization activity is regulated by 
phosphorylation of specifi c serine and threonine residues [ 42 ,  43 ,  69 ,  194 ,  252 ], as well 
as additional posttranslational modifi cations (myristoylation and palmitoylation) which 
allow for eNOS localization to the plasma membrane and subsequent targeting to caveo-
lae [ 263 ], where caveolin-1 (Cav-1) regulates intracellular NO signaling [ 255 ]. 

 In addition to the Cav-1/caveolae traffi cking system [ 145 ,  255 ,  302 ], the chap-
eron Hsp90 has also been identifi ed as a regulator of eNOS activity by its rapid 
binding upon EC activation [ 386 ]. One possible mechanism of this regulation is 
through interaction of eNOS and Hsp90 with CaM. Following VEGF stimulation of 
EC, there is disruption of the Ca 2+ /CaM-dependent eNOS/Cav-1 complex and pro-
motion of Hsp90 and eNOS association. The Hsp90/eNOS complex is then trig-
gered for VEGF-activated Akt-dependent phosphorylation of eNOS [ 49 ,  336 ]. 
Prolonged exposure of cells to Ca 2+  results in degradation of eNOS and Hsp90, 
followed by a decrease in NO production [ 19 ]. It has also been shown that Hsp90 as 
an adaptor protein binds eNOS to sGC, allowing cGMP signaling to take place and 
facilitating responses to NO donors [ 350 ,  386 ].  

15.3.1.3     Uncoupling of eNOS in PAH 

 In addition to impaired NO signaling in the pathobiology of PAH, “eNOS uncou-
pling” in conditions of substrate/cofactor defi ciency or RNS production in the set-
ting of NO excess can lead to decreases in NO bioavailability and increases in 
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oxidative stress with downstream alterations in vascular tone and aberrant vascular 
remodeling. eNOS uncoupling can occur in the setting of BH 4  or  l -arginine defi -
ciency [ 196 ,  200 ] and results in a shift from NO synthesis to other ROS production 
with resultant endothelial dysfunction [ 72 ] (Fig.  15.4 ). All three isoforms of NOS 
contain an oxygenase and a reductase domain, each of which has its own catalytic 
activity. The oxygenase domain has binding sites for heme and BH 4 , while the 
reductase domain has binding sites for FAD, FMN, and NADPH. Both domains are 
linked by the binding site for CaM, an important regulator of NOS function. 

 For the formation of NO from  l -arginine, eNOS requires the critical cofactor 
BH 4 , which stabilizes the dimeric structure of eNOS and facilitates binding of  l -argi-
nine [ 73 ]. When BH 4  levels are insuffi cient, “eNOS uncoupling” may result with 
activation of the reductase domain and transfer of electrons to O 2 , rather than  l -argi-
nine, and production of superoxide (O 2  • ‾) [ 51 ] (Fig.  15.4 ). BH 4  can be oxidized by 
ROS to BH 2 , a competitive BH 4  antagonist [ 130 ], which shifts eNOS enzymatic 
activity towards superoxide production [ 183 ]. Defi ciency of BH 4  in a mouse model 
led to spontaneous development of PH under normoxic conditions as well as exag-
gerated hypoxia-induced PH, vascular remodeling, and RVH, which was secondary 
to reduced NOS activity and increased superoxide production associated with 
reduced BH 4  levels [ 183 ]. Furthermore, overexpression of GTP-cyclohydrolase 1, 
the rate-limiting enzyme in BH 4  biosynthesis, prevented PH in mice, and exogenous 
supplementation of BH 4  attenuated MCT-induced PH and muscularization of distal 
pulmonary arteries in rats [ 120 ,  180 ]. Additionally, the BH 4  analogue, acetyl- 7,7-
dimethyl-7,8-dihydropterin, improved NO-mediated pulmonary artery dilation and 
induced eNOS expression in the endothelium of rats with hypoxia-induced PH [ 196 ]. 

 Further support for eNOS uncoupling in the pathogenesis of PAH comes from 
Cav-1-defi cient mice that develop PH [ 222 ,  396 ] due to increased superoxide [ 179 ] 
and peroxynitrite production and tyrosine nitration-dependent impairment of protein 
kinase G (PKG) activity secondary to increased eNOS activity and NO levels [ 398 ]. 
Importantly, PH in Cav-1-knockout (KO) mice can be reversed with NOS inhibition 
and prevented with BH 4  administration in Cav-1-defi cient neonatal mice [ 376 ,  377 ]. 

 Uncoupling of eNOS can also occur in the setting of limited  l -arginine avail-
ability. Although intracellular concentrations of  l -arginine typically far exceed 
what is necessary for NO production [ 60 ], arginase can metabolize  l -arginine to 
 l -ornithine and urea, and compete with NOS for substrate. Arginase is upregulated 
in the lungs of mice exposed to hypoxia [ 173 ], as well as in hypoxia-exposed SMC 
[ 61 ], and is increased in EC of PAH patients [ 381 ]. Increases in arginase lead to 
endothelial dysfunction [ 306 ,  381 ], increases in EC and SMC proliferation [ 205 ], as 
well as increases in collagen deposition [ 186 ]. Inhibition of arginase decreases 
SMC and EC proliferation [ 67 ], and attenuates pulmonary vascular remodeling in 
an animal PH model [ 67 ]. Increased levels of  l -arginine have also been implicated 
in the development of PAH in patients with SCD [ 154 ]. In addition to limiting NO 
availability, increased arginase and enhanced synthesis of ornithine have also been 
implicated in SMC remodeling and PH [ 144 ,  266 ]. 

  l -Arginine availability can also be infl uenced by endogenous methylarginines, 
specifi cally  l -monomethlyl arginine ( l -NMMA) and ADMA, which are produced 
through posttranslational methylation of amino acids in arginine [ 14 ,  372 ] and com-
pete with  l -arginine for the binding site on eNOS [ 51 ]. Both  l -NMMA and ADMA 
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are eliminated largely through active metabolism by dimethylarginine dimethylami-
nohydrolase (DDAH) [ 204 ]. Levels of ADMA are increased in animal models of 
PH [ 17 ,  241 ] and have been associated with increased oxidative stress and endothe-
lial dysfunction [ 334 ]. Furthermore, DDAH levels are reduced in animal models of 
PH [ 17 ,  241 ] and DDAH1 overexpression in mice has been shown to decrease the 
sustained phase of hypoxic pulmonary vasoconstriction (HPV) via activation of the 
NO-sCG pathway [ 24 ]. Additionally, levels of ADMA are increased in the plasma 
of patients with pediatric and idiopathic PAH [ 132 ,  280 ] and also have been associ-
ated with increased pulmonary vascular pressures in decompensated heart failure 
patients in the intensive care unit [ 312 ].  

15.3.1.4    NO Reactions with Other ROS: Formation of RNS 

 Nitrosative stress has also been implicated in the pathogenesis of PAH. NO is the 
main RNS produced within cells and can react with other ROS such as superoxide 
to generate peroxynitrite anion (ONOO‾). Peroxynitrite is a potent oxidant that 
nitrates tyrosine residues and can lead to formation of other extremely reactive 
RNS such as nitrogen dioxide, nitrosoperoxycarbonate anion, nitrite, and nitrate. 
These RNS can lead to signifi cant alterations in protein structure and function, 
lipid peroxidation, nucleic acid damage, and cell death. Nitrotyrosine, a product 
of tyrosine nitration and marker of peroxynitrite, is upregulated in the endothe-
lium and PASMC of rats subjected to chronic hypoxia [ 87 ,  167 ] and hypoxia-
induced peroxynitrite production has been shown to increase proliferation in 
PASMC [ 3 ]. Peroxynitrite- mediated tyrosine nitration has also been shown to 
inactivate prostacyclin synthase leading to reduced levels of prostaglandin I 2  
[ 401 ], eNOS uncoupling, as well as inhibition of PKG [ 4 ,  397 ]. In addition, per-
oxynitrite can activate many signaling pathways involved in cell proliferation 
including ERK and protein kinase C [ 3 ]. Moreover, treatment of newborn rats 
with a ONOO‾ decomposition catalyst, 5,10,15,20-tetrakis(4-sulfonatophenyl) 
porphyrinato iron(III) (FeTPPS), attenuated chronic hypoxia-induced PH and 
decreased proliferation in neonatal PASMC [ 32 ]. 

 In addition to tyrosine nitration, RNS can also induce S-nitrosylation and gluta-
thionylation of regulatory proteins that may alter protein function and downstream 
signaling. Notably, NO can induce S-nitrosylation through formation of dinitrogen 
trioxide that can covalently link NO to free thiol groups on cysteine residues within 
proteins leading to formation of  S -nitrosothiols. Several S-nitrosylation targets may 
play an important role in modulating oxidative stress and vascular remodeling in 
PAH including eNOS, sGC, hemoglobin, mitochondrial complex I, NOX, and 
cyclooxygenase (COX)-2 [ 224 ]. The functional effects of S-nitrosylation of several 
of these key proteins promote vasodilation and decrease oxidative stress, although 
S-nitrosylation of sGC and eNOS may inhibit NO-mediated effects on vascular 
tone. In red blood cells (RBC), hypoxia impairs S-nitrosylation of hemoglobin and 
defi ciency of  S -nitrosohemoglobin (SNO-Hb) is associated with exaggerated HPV 
and increased pulmonary arterial pressures [ 233 ]. Furthermore, restoration of 
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SNO-Hb levels by ethyl nitrite inhalation enhanced vasorelaxation and improved 
hemodynamics and oxygenation in PAH patients [ 233 ]. Although S-nitrosylation- 
induced vascular alterations appear to be protective in PAH, the role of  S -nitrosothiols 
in the pathogenesis of PAH remains incompletely understood.  

15.3.1.5    Xanthine Oxidase 

 Xanthine oxidoreductase (XOR) is a critical source of intracellular ROS. It cata-
lyzes the terminal two steps of purine degradation, from hypoxanthine to xanthine 
and then to uric acid, with release of O 2  • ‾ and H 2 O 2  (Fig.  15.3 ). It primarily exists in 
cells as a dehydrogenase reducing NAD +  to NADH, but in the setting of infl amma-
tion, oxidation of cysteine residues or limited proteolysis converts xanthine dehy-
drogenase into xanthine oxidase (XO). XO transfers substrate-derived electrons to 
O 2 , generating O 2  • ‾ and H 2 O 2 . H 2 O 2  is a major ROS product of XOR action under 
normal and pathophysiological conditions [ 7 ,  335 ] and has been shown to regulate 
many pathways involved in vascular remodeling including proliferation and Ca 2+  
signaling [ 143 ,  356 ,  389 ]. H 2 O 2  has also been shown to contribute to superoxide 
production and decreased NO via activation of NOX [ 208 ,  400 ], eNOS uncoupling 
in an NOX-dependent manner [ 16 ,  46 ], and limiting access to BH 4 .    Furthermore, 
H 2 O 2  has been shown to inhibit the activity of extracellular superoxide dismutase 
(EC-SOD) in PASMC and treatment with catalase (which catalyzes decomposition 
of H 2 O 2 ) enhances EC-SOD activity and decreases superoxide levels in a model of 
persistent pulmonary hypertension of the newborn (PPHN) [ 363 ]. 

 XOR is upregulated in the lung and serum of rats exposed to chronic hypoxia and 
treatment with allopurinol, an XO inhibitor, attenuates hypoxia-induced PH, pul-
monary vascular remodeling, and RVH [ 151 ,  167 ]. In addition, XO activity is 
increased in the plasma of patients with IPAH [ 124 ,  321 ], suggesting a role for 
XOR-mediated ROS in the pathogenesis of PAH.  

15.3.1.6    NADPH Oxidases 

 ROS produced by oxidases such as NOX are considered a major contributor to oxi-
dative and nitrosative stress in the lungs and pulmonary vasculature [ 7 ,  82 ], and 
have been shown to play an important role in dysregulation of vascular tone in the 
setting of hypoxia [ 118 ,  211 ]. The parenchymal family of NOXs includes NOX1, 
NOX3, NOX4, NOX5, DUOX1, and DUOX2 and the phagocyte NOX includes 
gp91phox (NOX2). Only NOX1, NOX2, and NOX4 are found in the human vascu-
lature and generate ROS by electron transfer from NADPH to oxygen to generate 
O 2  • ‾ that can be further converted to H 2 O 2  by cellular superoxide dismutases 
(SODs). For enzymatic function, each NOX requires several adaptor subunits. In 
endothelial cells, NOX2 is constitutively associated with p22 phox  and, after stimula-
tion, p47 phox  is phosphorylated followed by recruitment of p67 phox , p40 phox , and Rac1 
to the NOX2 complex where it is then able to generate O 2  • ‾ [ 20 ] (Fig.  15.3 ). 
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 In the pulmonary vasculature, NOX1, NOX2, and NOX4, as well as the subunits 
p22 phox  p47 phox , p67 phox , and p40 phox  are expressed in the lung and pulmonary arteries 
of mice [ 246 ]; however, NOX4 is the predominant NOX upregulated by hypoxia in 
PASMC [ 245 ,  246 ], PAEC [ 260 ], and pulmonary artery adventitial fi broblasts [ 207 ]. 
In addition, p22 phox  and NOX4 have recently been shown to be upregulated in 
PASMC in a lamb model of pulmonary hypertension of the newborn (PPHN) [ 362 ]. 
Knockdown of NOX4 decreased ROS production and attenuated proliferation in 
PASMC and pulmonary artery adventitial fi broblasts [ 207 ,  245 ,  246 ], as well as 
increased apoptosis in adventitial fi broblasts [ 207 ]. In addition, knockdown of 
NOX4 increased EC-SOD activity as well as attenuated increases in cyclin D1 and 
NF-κB in PPHN-PASMC [ 362 ]. Furthermore, NOX4-derived ROS have been 
shown to mediate hypoxia-induced decreases in Kv channel current and increase 
Kv1.5 channel oxidation in PASMC [ 245 ]. 

 NOX4 has also been shown to be upregulated by TGF-β in PASMC [ 328 ]. TGF-β 
signifi cantly induced NOX4 expression and ROS in human PASMC in a Smad2/3- 
dependent manner that was attenuated by diphenylene iodonium, an NADPH inhib-
itor, knockdown of NOX4 by siRNA, and transfection of dominant negative 
Smad2/3 plasmids. In addition, TGF-β stimulation induced NOX4-dependent 
increases in proliferation in PASMC and, furthermore, led to increases in contractile 
protein expression that was redox- but not NOX4 dependent. Furthermore, NOX4 
has been shown to be signifi cantly upregulated in the lungs of PAH patients com-
pared with healthy donor control lungs [ 246 ]. 

 NOX1 and NOX2 have also been shown to play a potential role in the pathogen-
esis of PAH. In a chronic hypoxia-induced PH model in mice, defi ciency of NOX2 
reduced hypoxia-induced ROS production, pulmonary artery vasoreactivity, and 
attenuated hypoxia-induced increases in RVSP, pulmonary vascular remodeling, 
and RVH [ 211 ]. Interestingly, in a rat MCT-induced PH model, PASMC isolated 
from MCT-treated rats had increased expression of NOX1 and enhanced superoxide 
production. Knockdown of NOX1 reduced superoxide production as well as attenu-
ated MCT-induced increases in SOD2, cyclin D1, and phosphorylation of ERK. 
Furthermore, knockdown of NOX1 attenuated proliferation and migration of 
PASMC from MCT-treated rats [ 348 ]. 

 NOXs have also been shown to play an important role in the endothelium in 
response to hypoxia [ 122 ,  405 ]. PAEC exposed to hypoxia-reoxygenation had sig-
nifi cant release of H 2 O 2  compared with control cells and inhibition of NOX with 
diphenyliodonium attenuated H 2 O 2  production in response to hypoxia- reoxygenation 
[ 405 ]. In addition, acute hypoxic vasoconstriction (HPV) was attenuated in p47 phox - 
defi cient mice and ex vivo treatment with an NOX inhibitor signifi cantly reduced 
HPV in isolated perfused rabbit lungs [ 371 ]. Although human data on the role of 
NOX regulation in the pathobiology of PAH is limited, there is strong animal data 
supporting an important role for NOX-derived ROS in the pathogenesis of PAH. 
Further study in patients is warranted to elucidate the role of NOX in human PAH 
and to determine whether NOX represents an effective pathway for therapeutic tar-
geting in PAH.  
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15.3.1.7    Mitochondria-Derived ROS 

 Mitochondria are an additional source of ROS production that may play a role in the 
pathogenesis of PAH [ 99 ]. PAH has been reported in patients with genetic altera-
tions in mitochondrial genes [ 322 ,  349 ] and there is growing recognition that meta-
bolic aberrations and mitochondrial dysfunction exist in PASMC and PAEC isolated 
from patients with PAH [ 40 ,  117 ,  235 ,  382 ]. ROS are generated in mitochondria 
during the electron transport chain when electrons fl owing down the redox gradient 
prematurely react at complexes I and III with O 2  to generate O 2  • ‾ [ 98 ,  103 ,  370 ]. 
There is also data to suggest that complex II may be a source of mROS generation 
in the lungs from hypoxic mice and the hearts isolated from MCT-treated rats [ 267 , 
 292 ]. Additional ROS can be generated in mitochondria from superoxide by man-
ganese SOD2 that catalyzes rapid conversion of O 2  • ‾ to diffusible H 2 O 2  (Fig.  15.3 ), 
which can serve as a signaling molecule and regulate transcription factors such as 
HIF-1α [ 57 ,  137 ,  235 ] and sulfhydryl-rich voltage-gated potassium Kv channels 
[ 155 ], which have been shown to play a critical role in PAH. 

 Debate exists as to whether hypoxia increases or decreases mROS and, further-
more, whether mROS promote or protect against pulmonary vascular remodeling 
[ 98 ,  368 ]. Previous work has demonstrated that hypoxia increases mROS, Ca 2+  
infl ux, and PASMC contractility and that inhibition of the electron transport chain 
attenuates increases in Ca 2+  and HPV [ 56 ,  106 ,  290 ,  359 ]. In addition, hypoxia- 
induced increases in mROS have also been shown to enhance PASMC proliferation 
via opening of mitochondrial K +  ATP  channels and overproduction of H 2 O 2  [ 155 ]. 
Furthermore, a recent study demonstrates that redox signaling in PASMC in 
response to hypoxia is dependent upon subcellular mitochondrial compartment 
location [ 358 ]. 

 While supraphysiologic levels of mROS can lead to oxidative damage and cel-
lular dysfunction, mROS are critical regulators of vascular tone and sustained 
decreases in mROS may lead to upregulation of transcription factors and signaling 
pathways that promote aberrant vascular remodeling in PAH. Emerging data sug-
gest that mitochondrial function is impaired in PAH and that cellular metabolism is 
shifted towards glycolysis leading to enhanced cellular proliferation and resistance 
to apoptosis, similar to cancer cells (i.e., the Warburg effect) [ 39 ,  347 ]. This has 
been attributed to decreased mROS production, inhibition of Kv channels with sub-
sequent increases in Ca 2+  signaling, and activation of HIF-1α and NFAT which pro-
mote proliferation and suppress apoptosis [ 40 ,  41 ,  240 ,  369 ]. 

 Reduced levels of mROS have been found in animals models of PH including the 
fawn-hooded rat (FHR) that spontaneously develops PAH [ 40 ] and MCT-treated 
rats [ 235 ]. Additionally, PASMC isolated from PAH patients have decreased Kv1.5 
expression, increased intracellular Ca 2+  concentrations [Ca 2+ ] i , increased mitochon-
drial membrane potential, and activation of NFAT [ 41 ]. Inhibition of NFAT with 
VIVIT or cyclosporine restored Kv1.5 expression, decreased [Ca 2+ ] i , and reversed 
mitochondrial hyperpolarization leading to decreased proliferation and increased 
apoptosis in PAH-PASMC [ 41 ]. 
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 In addition, treatment with dichloroacetate (DCA), a pyruvate dehydrogenase 
kinase (PDK) inhibitor that enhances oxidative phosphorylation, improved mortal-
ity and hemodynamics, as well as reversed vascular remodeling and RVH in MCT- 
treated and chronic hypoxia-exposed rats [ 235 ,  239 ]. DCA was found to reverse 
MCT-induced vascular remodeling by restoring Kv1.5 expression, depolarizing 
mitochondria, increasing H 2 O 2  production, and inducing apoptosis in PASMC [ 235 , 
 239 ]. Furthermore, mitochondrial survivin, a cytoprotective protein that promotes 
tumorigenesis and inhibits apoptosis in cancer cells [ 94 ], has also been shown to be 
upregulated in MCT-treated rats and in pulmonary arteries of PAH patients [ 234 ]. 
Adenoviral transfection of a dominant negative survivin mutant increased Kv chan-
nel current, depolarized mitochondria, attenuated proliferation, and increased apop-
tosis in PASMC. Intratracheal administration of the survivin mutant in vivo 
improved hemodynamics and survival and attenuated vascular remodeling in MCT- 
treated rats [ 234 ]. Although confl icting data exists in animal models, mitochondrial- 
derived ROS clearly play an important role in the pulmonary vasculature and 
mitochondrial dysfunction is increasingly recognized as contributing to the patho-
biology of PAH. Future studies are necessary to evaluate whether mitochondrial- 
based therapies have effi cacy in animal models of PH and patients with PAH.  

15.3.1.8    Lipid Peroxidation and Isoprostanes 

 Lipid peroxidation has recently been recognized as an additional source of ROS 
during pulmonary vascular dysfunction [ 251 ]. Isoprostanes, chemically stable iso-
mers of prostanoids, are formed when ROS products (particularly peroxynitrite) 
react with unsaturated bonds of membrane lipids such as arachidonic acid [ 168 ]. As 
isomers of prostaglandins (PG), they can act on several cell types within the pulmo-
nary vasculature via specifi c prostanoid receptors, including the thromboxane A 2  
receptor (TP), and PGE 2  and PGF 2α  receptors (EP and FP) [ 109 ,  169 ]. In PASMC 
and EC, isoprostanes can be released in response to stimulation with growth factors 
(PDGF, TGF-β), pro-infl ammatory cytokines (TNF-α, interferon-γ, IL-1β), as well 
as by ROS (H 2 O 2  and O 2  • ‾) [ 168 ]. This can lead to activation of signaling pathways 
downstream of prostanoid receptors including RhoA/ROCK, phospholipase C 
(PLC), and cyclic AMP/protein kinase A [ 168 ], resulting in vasoconstriction and 
release of other vasoconstrictors, including endothelin-1 (ET-1) from endothelial 
cells and PASMC [ 167 ,  388 ]. 

 Isoprostane levels have been shown to be elevated in the lung in animal models 
of hypoxia- and hyperoxia-induced PH [ 166 ,  178 ]. In addition, inhibition of the TP 
receptor has been shown to reduce ET-1 production in PASMC, as well as attenuate 
RVH and lung smooth muscle-α actin expression in a hyperoxia neonatal rat model 
[ 166 ]. Urinary levels of isoprostaglandin F 2α  type-III (iPF 2α -III), a stable lipid per-
oxidation product indicative of oxidative stress [ 298 ], are signifi cantly elevated in 
patients with PAH compared with controls [ 75 ,  296 ], as well as in patients with 
 BMPR2  mutations regardless of disease status [ 201 ]. Furthermore, while urinary 
levels of iPF 2α -III inversely correlate with vasoreactivity to inhaled NO [ 75 ], 
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increased urinary iPF 2α -III levels directly correlate with hemodynamic and clinical 
response to epoprostenol [ 296 ], and recently have been found to be independently 
associated with mortality in PAH patients [ 76 ]. Although future studies in animal 
models and patients will be necessary to further elucidate the role of isoprostanes in 
PAH, emerging data suggest that isoprostanes may play a role in the pathogenesis 
of PAH and may serve as a possible lipid peroxidation biomarker in PAH patients.   

15.3.2     Oxidative Stress and Animal Models of PH 

15.3.2.1    Hypoxia-Induced PH Model 

 Oxidative stress has been implicated in the pathogenesis of PAH in several ani-
mal models of PH (Table  15.4 ). In the chronic hypoxia model of PH, hypoxia has 
been shown to induce ROS/RNS production with observed increases in lung 
superoxide [ 260 ], phosphatidylcholine hydroperoxide (PCOOH) [ 151 ], isopros-
tanes [ 178 ], nitrotyrosine [ 87 ,  167 ], and oxidized glutathione (GSSG) [ 261 ]. 
Hypoxia has also been shown to increase expression of ROS generators includ-
ing eNOS [ 112 ], NOX2 [ 211 ], NOX4 [ 245 ,  246 ], XO [ 151 ,  167 ], and, in some 
studies, mROS [ 56 ,  357 ,  359 ]. In addition, hypoxia decreases expression of the 
antioxidant EC-SOD (SOD3) in the lungs of mice [ 261 ] and in pulmonary arter-
ies from calves exposed to chronic hypoxia [ 143 ]. Furthermore, several studies 
have demonstrated effi cacy of antioxidants (e.g.,  N -acetyl cysteine) [ 198 ], inhib-
itors of ROS-producing enzymes (e.g., allopurinol) [ 26 ,  151 ,  167 ], peroxynitrite 
decomposition catalysts [ 32 ], and SOD mimetics [ 351 ] in hypoxia-induced PH 
rodent models [ 151 ,  199 ,  260 ], suggesting oxidative stress contributes signifi -
cantly to the pathogenesis of hypoxia-induced PH.

   In the hypoxia-induced PH model in newborn pigs, increases in oxidative stress 
were observed after 3 days of hypoxia with increases in isoprostanes in pulmonary 
resistance arteries [ 88 ]. Additionally, NOX1 and p67 phox  were increased and SOD1 
was decreased in pulmonary arteries from pigs raised in hypoxia for 3 or 10 days. 
Furthermore, inhibition of NOX with apocynin or treatment with an SOD 
mimetic + polyethylene glycol-catalase attenuated acetylcholine vascular responses 
of pulmonary arteries from hypoxia-exposed pigs [ 88 ].  

15.3.2.2    Monocrotaline-Induced PH Model 

 In the MCT model, increases in isoprostanes [ 177 ] and NOX1 [ 348 ] have been 
observed in rats and increased NOX4 expression was reported in mice exposed to 
MCT [ 311 ]. Additionally, while increases in antioxidants SOD, catalase, and gluta-
thione peroxidase have been reported in the lungs [ 97 ,  172 ], decreases in SOD1 and 
SOD2 have been observed in RV homogenates from MCT-treated rats [ 292 ]. 
Adenoviral overexpression of EC-SOD in MCT-treated rats decreased lung tissue 
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levels of 8-isoprostane and attenuated RVSP and pulmonary vascular remodeling 
[ 177 ]. Furthermore, several antioxidants [ 291 ,  393 ] and resveratrol [ 269 ] have 
shown benefi t in the MCT-induced PH model in rats.  

15.3.2.3    SU5416-Hypoxia PH Model 

 In the Sugen hypoxia model, rats treated with SU5416 followed by exposure to 
chronic hypoxia had signifi cantly increased expression of nitrotyrosine and heme 
oxygenase 1 (HO-1) in the lung compared with controls [ 352 ], in contrast to the RV 
where levels of HO-1 were decreased following Sugen hypoxia [ 38 ]. Treatment 
with protandim, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator which 
induces antioxidant expression (e.g., HO-1, SOD), prevented RV failure and fi bro-
sis; however, it did not attenuate pulmonary vascular remodeling [ 37 ].  

15.3.2.4    Pulmonary Hypertension of the Newborn Model 

 Increases in oxidative stress have also been demonstrated in the newborn lamb 
PPHN model where animals undergo prenatal ligation of the ductus arteriosus [ 48 , 
 325 ,  362 ], as well as a CHD model where a surgical shunt between the aorta and 
pulmonary artery is created in prenatal lambs [ 135 ]. In the PPHN model, newborn 
lambs that had undergone ductus arteriosus ligation in utero demonstrated increased 
levels of superoxide, decreased SOD expression/activity, as well as increased p67 phox  
expression in pulmonary arteries [ 48 ]. Treatment of PPHN lambs with recombinant 
SOD1 enhanced pulmonary vascular responses to inhaled NO with greater decreases 
in PVR, suggesting a critical role for NOX-mediated ROS and potential effi cacy of 
SOD in PPHN [ 325 ]. A more recent study demonstrated increased NOX4 and 
p22 phox  and decreased EC-SOD in the lungs and PASMC from PPHN lambs [ 362 ]. 
Similarly, in the neonatal shunt model, shunted lambs demonstrated elevated super-
oxide levels and increased expression of Rac and p45 phox  in the lung, as well as 
eNOS uncoupling, further supporting the role of NOX and eNOS in ROS generation 
in animal models of PH [ 135 ].  

15.3.2.5    Fawn-Hooded Rat Model 

 The FHR, a strain in which PAH occurs spontaneously, has provided critical infor-
mation on the role of mitochondrial dysfunction in the pathogenesis of PAH. The 
FHR has an autosomal recessive disorder similar to Hermansky–Pudlak syndrome 
characterized by dysfunction of several organs including systemic hypertension, 
pulmonary fi brosis, renal disease, as well as platelet and coagulation dysfunction 
[ 193 ]. As described above, PASMC isolated from FHR have decreased ROS, 
decreased SOD2 expression, as well as marked mitochondrial abnormalities, nor-
moxic activation of HIF-1α, and inhibition of Kv1.5 channels [ 40 ]. In addition, 
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PASMC from FHR demonstrate a shift in metabolism from oxidative phosphorylation 
to glycolysis despite adequate oxygen [ 293 ]. Overexpression of SOD2 in PASMC 
from FHR restored Kv1.5 expression and inactivated HIF-1α, and treatment of FHR 
with an SOD mimetic (metalloporphyrin Mn(III)tetrakis (4-benzoic acid) porphy-
rin) improved hemodynamics and exercise capacity, as well as decreased vascular 
remodeling [ 15 ].  

15.3.2.6    Genetic Models of PH 

 Genetic models have offered the opportunity to further evaluate the role of ROS in 
pulmonary vascular remodeling and the development of PAH. Several genetically 
modifi ed mice that develop PH have recently been associated with increases in oxi-
dative stress. Transgenic (TG) mice with a mutation in the cytoplasmic tail of 
 BMPR2  have increased lung levels of lipid peroxidation products, isoprostanes, and 
isofurans, and transfection of rat vascular SMC with BMPR2 mutants increases 
superoxide and peroxide production compared with wild type (WT) BMPR2- 
transfected cells [ 116 ,  201 ]. Mutations in  ALK1 , which encode an endothelial- 
specifi c receptor of the TGF-β superfamily and are associated with hereditary 
hemorrhagic telangiectasia (HHT) and PAH [ 141 ,  142 ], have also been associated 
with increased oxidative stress [ 170 ]. Mice heterozygous for  ALK1 , that develop PH 
as they age, have increased ROS in the lungs (iPF 2α -III, H 2 O 2 ) at 12 weeks of age 
secondary to increased eNOS uncoupling, and treatment with tempol, an SOD 
mimetic, prevents increases in RVSP and RVH in ALK1 +/−  mice [ 170 ]. In addition, 
TG mice overexpressing ET-1 in the endothelium, that develop hypertrophic vascu-
lar remodeling and have impaired vascular relaxation, have enhanced vascular NOX 
activity and increased expression of gp91 phox  [ 13 ], suggesting these TG mice have 
increased oxidative stress. 

 Genetic models of SOD have provided additional insight into oxidative stress 
and ROS scavenging in animal models of PH. Mice lacking mitochondrial manga-
nese SOD (MnSOD, SOD2) have severe mitochondrial injury with central nervous 
system and cardiac injury leading to signifi cant postnatal mortality [ 202 ]. Mice 
defi cient in intracellular copper-zinc SOD (CuZnSOD, SOD1) or extracellular SOD 
(EC-SOD, SOD3) have increased oxidative stress as measured by urinary isopros-
tanes and plasma thiobarbituric acid-reactive (TBARS) levels, and mice defi cient 
for both SOD1 and SOD3 have additional increases in oxidant stress markers [ 310 ]. 
The absence of SOD1 has recently been reported to be associated with the develop-
ment of spontaneous PH and is dependent on NFAT activation in PASMC [ 286 ]. 
SOD1-defi cient mice have elevated superoxide levels and develop signifi cant 
increases in RVSP under normoxic conditions. Spontaneous PH in SOD1-defi cient 
mice is attenuated by selective inhibition of NFAT as well as tempol, an SOD 
mimetic, which prevents NFAT activation in SOD1-knockout mice [ 286 ]. Although 
SOD3-knockout mice do not develop spontaneous PH, the absence of SOD3 exac-
erbates hypoxia-induced PH with signifi cant increases in RV pressures, RVH, and 
vascular remodeling compared with WT mice [ 380 ]. Similarly, a loss-of-function 
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SOD3 mutation in rats leads to increased TBARS and nitrotyrosine in the lung, as 
well as exaggerated PH and RVH following MCT, which is attenuated by the SOD 
mimetic Mn(III)TmPyP [ 380 ]. 

 Transgenic overexpression of SOD1 [ 330 ] and SOD3 [ 6 ,  177 ,  261 ] protects against 
oxidative stress and overexpression of SOD3 has been shown to both attenuate [ 261 ] 
and reverse established PH in response to chronic hypoxia [ 6 ], as well as attenuate 
MCT-induced PH [ 177 ], and PH secondary to bleomycin-induced fi brosis [ 346 ]. 
Interestingly, in both the chronic hypoxia-induced PH model and in the bleomycin 
model of secondary PH, overexpression of EC-SOD in the lung attenuated upregula-
tion of the transcription factor early growth factor-1 (Egr-1) [ 261 ,  346 ]. EC-SOD also 
decreased TGF-β induction in the bleomycin model [ 346 ] and prevented eNOS 
downregulation in the rat MCT model [ 177 ]. Additionally, PAs from EC-SOD knock-
out mice have enhanced vasoconstriction in response to 5-hydroxytryptamine (5-HT), 
while PAs from transgenic mice overexpressing EC-SOD have decreased superoxide 
production and attenuated 5-HT-induced vasoconstriction [ 210 ]. 

 The caveolin-1-knockout mouse also provides additional evidence that oxidative 
and nitrosative stress play a role in the pathobiology of PAH. Mice defi cient in 
Cav-1 develop PH spontaneously with signifi cant increases in PA pressures and 
RVH compared with WT control mice [ 396 ], and restoration of endothelial cell-
specifi c Cav-1 in knockout animals rescues the PH phenotype [ 254 ]. The absence of 
Cav-1 leads to increased activation of eNOS [ 376 ], NO-dependent peroxynitrite 
production, and tyrosine nitration of PKG, which can be reversed by PKG overex-
pression [ 397 ]. Furthermore, inhibition of eNOS with  l -NAME [ 376 ,  398 ] or BH 4  
treatment [ 377 ] prevents PH in Cav-1-knockout mice. Additionally, mice defi cient 
in both Cav-1 and eNOS are protected from the development of PH [ 398 ].   

15.3.3     Oxidative Stress and Human PAH 

 Several studies have demonstrated increases in oxidative stress in patients with 
PAH. As described above, elevated levels of urinary iPF 2α -III have been demon-
strated in PAH patients [ 75 ,  296 ] and recently have been shown to be independently 
associated with survival in PAH [ 76 ]. Additional studies have demonstrated 
increased levels of plasma malondialdehyde (MDA) [ 124 ,  162 ] and xanthine oxi-
dase [ 124 ,  321 ], as well as decreased EC-SOD [ 124 ] and glutathione peroxidase 
activity [ 162 ] in the plasma of PAH patients. Increases in oxidative stress markers 
have also been demonstrated in plasma from patients with chronic obstructive pul-
monary disease (COPD) and secondary PH [ 175 ], and in children with congenital 
portosystemic venous shunts at risk of developing PH [ 257 ]. Furthermore, oxidative 
posttranslational modifi cation of albumin has been shown in patients with both idio-
pathic PAH and PAH secondary to SCD [ 262 ]. 

 Increases in oxidative stress have also been demonstrated in lung tissue from 
PAH patients [ 225 ]. Immunohistochemical staining demonstrated increased staining 
for nitrotyrosine and 8-hydroxy guanosine, a marker of oxidative DNA damage, in 
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lung tissue from PAH patients compared with controls [ 47 ]. Levels of the eicosanoid 
metabolites, 5-oxo-eicosatetraenoic acid (5-oxo-ETE) and 5- hydroxyeicosatetraenoic 
acid (5-HETE), were also found to be elevated in lung tissue from PAH patients not 
on prostacyclin and secondary PH patients [ 47 ]. In addition, lung tissue homoge-
nates from PAH patients had decreased SOD activity and levels of SOD2 compared 
with control lungs [ 47 ]. Furthermore, SOD and glutathione peroxidase activity were 
also decreased in airway epithelial cells and lysates from bronchial tissue obtained 
from explanted PAH lungs compared with controls [ 225 ]. Taken together, substan-
tial evidence from animal models and human PAH samples suggest that oxidative 
stress plays a critical role in the pathogenesis of PAH.  

15.3.4     ROS and Mechanisms of Pulmonary Vascular Remodeling 

 Several mechanisms have been identifi ed by which oxidative stress can mediate the 
vascular alterations observed in PAH. ROS have been shown to alter the balance of 
vasoactive mediators, enhance calcium signaling, upregulate growth factors, and 
induce pro-proliferative signaling pathways, all of which can contribute to enhanced 
vasoconstriction and pulmonary vascular remodeling in PAH. XO-derived O 2  metab-
olites have been shown to signifi cantly increase thromboxane B 2  levels 30-fold while 
only minimally increase PGI 2  levels, leading to enhanced vasoconstriction in isolated 
perfused rabbit lungs [ 337 ]. In addition, peroxynitrite has been shown to inactivate 
PGI 2  synthase and reduce levels of PGI 2  [ 401 ]. ROS have also been shown to upregu-
late endothelin-converting enzyme-1 [ 215 ] and induce ET-1 expression in endothe-
lial cells [ 66 ] and, furthermore, ET-1 has been shown to stimulate PASMC 
proliferation via increases in superoxide production [ 360 ]. Additionally, H 2 O 2  has 
been shown to promote eNOS uncoupling leading to decreases in NO and further 
increases in ROS [ 46 ,  400 ]. Taken together, several studies suggest that oxidative 
stress leads to an imbalance in vascular mediators with release of potent vasocon-
strictors that can overwhelm the effects of endothelial- derived vasodilators and pro-
mote enhanced vasoconstriction and vascular remodeling in PAH. 

 ROS have also been shown to enhance Ca 2+  mobilization [ 209 ] and Ca 2+  sensiti-
zation in PASMC [ 50 ,  171 ,  185 ], and therefore may play a critical role in enhanced 
contraction and proliferation of PASMC in PAH. H 2 O 2  leads to release of Ca 2+  from 
inositol 1,4,5-trisphosphate (IP 3 )-gated sarcoplasmic reticulum stores in PASMC 
[ 209 ] via activation of phospholipase C-γ1 [ 356 ] and conversion of phosphati-
dylinositol 4,5-bisphosphate into diacylglycerol and IP 3 . Calcium mobilization by 
H 2 O 2  in PASMC [ 209 ] and sustained constriction of rat intrapulmonary arteries 
(IPA) have also been shown to be dependent on ryanodine-sensitive intracellular 
Ca 2+  stores [ 276 ]. In addition, superoxide has been shown to activate Rho A/Rho- 
kinase (ROCK) leading to increased phosphorylation of myosin light chain (MLC), 
Ca 2+  sensitization, and vasoconstriction in rat pulmonary arteries [ 185 ]. Similarly, 
hypoxia- and ET-1-induced ROS production enhance Ca 2+  sensitization via activa-
tion of Rho A/ROCK signaling in PASMC [ 50 ,  171 ]. 
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 mROS production has also been implicated in pulmonary vascular remodeling as 
discussed above. Numerous studies have demonstrated that hypoxia increases 
mROS, Ca 2+  infl ux, and PASMC contractility [ 56 ,  106 ,  290 ,  359 ]. However, more 
recent studies suggest that decreases in mROS lead to inhibition of Kv channels, 
membrane depolarization, activation of voltage-gated Ca 2+  channels, and increases 
in cytosolic Ca 2+  concentration ([Ca 2+ ]) which lead to increased vasoconstriction, 
enhanced proliferation, and suppression of apoptosis [ 40 ,  41 ,  240 ,  369 ]. 

 ROS can also increase expression of several growth factors and enhance pro- 
proliferative signaling pathways that play a critical role in vascular remodeling in 
PAH. ROS have been shown to activate latent TGF-β [ 27 ] and TGF-β can further 
induce ROS via induction of NOX4 leading to enhanced proliferation and contrac-
tion in PASMC [ 328 ]. ROS can also induce PASMC expression of FGF-2 [ 35 ] 
which is upregulated in a lamb model of increased pulmonary blood fl ow and PH 
[ 361 ]. VEGF expression is also upregulated by ROS in PASMC [ 31 ] and is depen-
dent on TGF-β activation of NADPH and ROS generation [ 226 ]. In addition, 
hypoxia has been shown to upregulate VEGF expression in pulmonary artery endo-
thelial cells [ 212 ], and both H 2 O 2  [ 249 ] and hypoxia have been shown to increase 
PDGF expression in endothelial cells [ 191 ]. 

 ROS can also activate signaling pathways and transcription factors that regulate 
cellular proliferation, growth, and apoptosis leading to enhanced proliferation and 
growth of PASMC, PAEC, and fi broblasts, as well as matrix deposition in the pul-
monary arterial wall. ROS have been shown to activate the G protein Ras leading to 
recruitment of phosphatidylinositol 3′kinase (PI3K) and activation of downstream 
signaling pathways involved in cell survival and hypertrophy, including Akt/protein 
kinase B and ERK1/2 [ 89 ,  344 ]. H 2 O 2  has also been shown to upregulate the p38 
mitogen-activated protein kinase (MAPK) pathway [ 343 ] and induce Src-dependent 
JNK activation in vascular SMC [ 389 ], as well as Src-dependent activation of big 
MAPK1 (BMK1/ERK5) in fi broblasts [ 1 ]. Peroxynitrite can also stimulate prolif-
eration of PAEC and PASMC via activation of the Ras-Raf-MEK-ERK pathway as 
well as via protein kinase C [ 3 ]. 

 ROS have also been shown to modulate key transcription factors that play a role 
in PAH and that regulate genes involved in the cell cycle and cell growth. H 2 O 2  and 
hypoxia have been shown to upregulate transcription of peroxisome proliferator- 
activated receptor-γ coactivator-1 protein-α (PGC-1α), a transcriptional coactiva-
tor and critical regulator of mitochondrial biogenesis [ 163 ]. In PASMC, hypoxia 
has been shown to induce PGC-1α expression via PI3K/Akt signaling and activate 
mitochondrial biogenesis via NRF-1 and TFAM [ 288 ]. Additionally, knockdown 
of PGC-1α inhibits hypoxia-induced cyclin expression and proliferation of PASMC 
[ 288 ], suggesting that ROS-induced PGC-1α may play a key role in regulating 
mitochondrial biogenesis and vascular remodeling in PAH. XO-derived ROS have 
also been shown to upregulate Egr-1 via ERK1/2 in PASMC, which has been 
shown to play an important role in animal models of PH [ 92 ,  203 ,  345 ]. Furthermore, 
ROS have been shown to induce NFAT expression [ 181 ], a critical transcription 
factor linked to PASMC proliferation and vascular remodeling which plays a key 
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role in the pathogenesis of PAH [ 33 ,  84 ,  286 ]. Interestingly, NFAT has recently 
been linked to the development of spontaneous PH in SOD1-defi cient mice 
suggesting a critical role for NFAT in mediating ROS-induced PAH [ 286 ].   

15.4     Antioxidants in PAH 

 Drugs that are currently available for the management of PAH include calcium 
channel blockers, prostanoids, endothelin-1 receptor antagonists, and PDE5 inhib-
itors, which lie outside the scope of this review [ 247 ]. Even though there have 
been signifi cant advances in the understanding of PAH pathogenesis and new 
therapeutic options available for treatment, PAH remains incurable and patients 
eventually progress to right heart failure and death [ 247 ]. Present therapeutic 
approaches have been developed based on the imbalance in endothelium-derived 
vasoactive mediators that exists in patients with PAH [ 247 ]. Growing evidence of 
the importance of oxidative stress in the pathogenesis of PAH has led to the iden-
tifi cation of new therapeutic targets. Antioxidant strategies for the treatment of PH 
have been recently classifi ed into four groups: enzymatic ROS scavengers 
and  regulators, small chemical ROS scavengers, inhibitors of ROS generation, and 
Nrf2 activators [ 332 ]. Additional strategies include eNOS uncoupling agents 
and mitochondria-active agents. 

15.4.1     Enzymatic ROS Scavengers and Regulators 

 Enzymatic ROS scavengers and regulators include SOD, catalase, glutathione per-
oxidase, glutathione reductase, glutaredoxin, thioredoxin, thioredoxin reductase, 
peroxiredoxin, and sulfi redoxin. These enzymatic scavengers exist naturally in 
human cells and act synergistically in order to protect tissues against free radical 
damage [ 62 ]. 

15.4.1.1    Superoxide Dismutase 

 SOD is one of the most important enzymatic antioxidants in the body and is ubiq-
uitously expressed [ 5 ,  62 ]. All three isoforms (SOD1, SOD2, SOD3) act by cata-
lyzing the rapid conversion of O 2  • ‾ into H 2 O 2  (Fig.  15.3 ) [ 5 ]. SOD has been shown 
to be downregulated in animal models of PH and PAH patients [ 5 ], and administra-
tion of SOD has been shown to be benefi cial in animal models of PH. Steinhorn 
et al. found that treatment with recombinant human SOD (rhSOD) in sheep with 
PPHN reduced PVR in vivo and enhanced relaxation responses of pulmonary 
arteries to exogenous NO ex vivo [ 325 ]. Farrow et al. also showed that rhSOD 
increases eNOS expression and restores its function, decreases generation of ROS, 
and increases BH 4  in PPHN lambs [ 115 ]. The effect of SOD administration in 
human PAH has not been studied.  
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15.4.1.2    Catalase 

 The enzyme catalase is also key in the antioxidant machinery of cells and is of 
particular importance during high levels of oxidative stress, since it has a very high 
turnover number [ 5 ]. Catalase exerts its antioxidant action by converting hydrogen 
peroxide into water and oxygen (Fig.  15.3 ) [ 5 ]. Data regarding the role and expres-
sion of catalase during PH is variable, with increased activity reported in MCT- 
treated rats [ 172 ], decreased levels in lambs with PH secondary to increased 
postnatal pulmonary blood fl ow [ 313 ], and no difference reported in humans with 
IPAH [ 225 ]. Studies to evaluate the effect of exogenous catalase in animal PH mod-
els have revealed variable results. Goats pre-treated with intravenous catalase and 
subjected to endotoxin infusions displayed minimal attenuation of PH compared 
with controls [ 229 ]. However, endotoxin-exposed sheep pre-treated with intraperi-
toneal catalase had attenuated elevation of pulmonary pressures compared to 
untreated controls [ 242 ]. Wedgwood et al. evaluated the effect of catalase on iso-
lated pulmonary arteries from PPHN lambs and found a normalization of the vaso-
dilator responses to exogenous NO [ 364 ]. They also demonstrated that intratracheal 
administration of catalase to PPHN lambs enhanced SOD3 activity and improved 
oxygenation [ 363 ]. Thibeault et al. evaluated the effect of intratracheal injection of 
liposome-encapsulated catalase in a rat model of hyperoxia, fi nding reduction in 
vascular and parenchymal damage caused by oxygen toxicity [ 340 ]. The role of 
catalase in treatment for human PAH is not clear and further studies are needed to 
determine potential benefi t [ 5 ].   

15.4.2     Small Chemical ROS Scavengers 

15.4.2.1    Dietary Antioxidants 

   Vitamin C 

 Ascorbic acid is an excellent reducing agent, capable of donating an electron to 
oxidizing radicals such as hydroxyl, alkoxyl, peroxyl, thiol, and tocopheroxyl [ 101 ]. 
This makes vitamin C a good antioxidant and a substance of interest for the treat-
ment of many diseases. Interestingly, reversible PH secondary to vitamin C defi -
ciency and clinical scurvy has been described [ 197 ,  237 ]. Furthermore, low levels 
of ascorbate have been observed in patients with high altitude PH [ 22 ], suggesting 
a potential benefi cial role of vitamin C in PAH. Xiang et al. investigated the effect 
of vitamin C supplementation in broilers with pulmonary hypertension syndrome 
(PHS) induced by low temperatures [ 379 ]. Vitamin C supplementation reduced 
PHS incidence and attenuated the percentage of thick-walled peripheral lung ves-
sels and associated muscularization of pulmonary arterioles [ 379 ]. Paradoxically, 
however, Walton et al. found that broilers with PHS secondary to low temperatures 
and fed with fl ax seed oil had higher incidence of PHS when vitamins C and E were 
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added to the diet [ 354 ]. On the other hand, Belaiba et al. showed that vitamin C 
inhibits the production of ROS and HIF-1α protein, as well as the increase of VEGF 
mRNA in PASMC stimulated with thrombin or CoCl 2   in vitro  [ 31 ]. No clinical trials 
have explored the effects of vitamin C on PH in humans. One clinical trial found no 
benefi t of vitamin C supplementation in the prevention of acute mountain sickness 
[ 23 ]. Currently, there are two ongoing clinical trials registered in the NIH that aim 
to determine the use of antioxidants, including vitamin C, as prophylaxis for acute 
mountain sickness (NCT01182792, NCT01571687).  

   Tocopherols 

 Vitamin E is the most important lipophilic antioxidant in the lung and plays a key 
role in scavenging hydroxyperoxyl radicals produced during lipid peroxidation 
[ 189 ,  341 ]. Severe oxidative stress leads to increased concentration of vitamin E in 
the lung [ 189 ]. Patients with IPAH appear to have decreased levels of α-tocopherol 
in the plasma and vitamin E levels have been shown to correlate with pulmonary 
function better than other antioxidants [ 278 ,  308 ]. These fi ndings suggest that there 
is a mobilization of vitamin E from other tissues to reach adequate levels in the lung 
[ 189 ]. There is limited and variable evidence on the effect of vitamin E in models of 
PH. In a model of broilers with PHS induced by cool temperatures, high dietary 
vitamin E attenuated mitochondrial dysfunction [ 161 ], lowered PHS-induced mor-
tality, and improved antioxidant capacity [ 44 ]. However, a subsequent study demon-
strated no mortality benefi t of vitamin E supplementation in broilers with PHS [ 45 ]. 
Additional studies found that α-tocopherol [ 182 ] and vitamin E failed to improve 
RVH in broilers with PHS, nor improved cardiopulmonary performance or NOS 
activity in isolated pulmonary arteries [ 216 ]. Further studies are needed to further 
elucidate the effects of vitamin E in PAH.  

   Carotenoids 

 The antioxidant activity of carotenoids is due to their multiple conjugated double 
bonds, which makes them susceptible to oxidative cleavage [ 314 ]. The antioxi-
dant properties of vitamin A have been of great interest in the study of many dis-
eases, including lung cancer [ 123 ]. The role of retinol in lung development, 
vasculogenesis, and angiogenesis has been well documented [ 304 ,  307 ]. In PH, it 
has been demonstrated that patients with IPAH have reduced levels of retinoic 
acid, and treatment of hPASMC with this vitamin suppressed 5-HT-induced cell 
growth in vitro [ 278 ]. In a rat hypoxia model, treatment with all- trans  retinoic 
acid (ATRA) signifi cantly reduced muscularization of peripheral PAs and medial 
wall thickness of small muscular arteries; however, it did not attenuate PH or RVH 
[ 392 ]. Similarly, in MCT-induced PH in rats, Swamidas et al. found that dietary 
retinol resulted in less vascular infl ammation in the lung and RV, but did not 
improve RVH [ 333 ]. Conversely, Qin et al. found that ATRA treatment in rats 
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with MCT-induced PH lowered mPAP and inhibited collagen accumulation and 
MMP1 mRNA overexpression in the lungs [ 281 ]. No clinical trials have evaluated 
the benefi ts of carotenoids in human PAH.  

   Flavonoids 

 The antioxidant properties of fl avonoids have been well documented in vitro [ 217 ]. 
They act through different mechanisms including chelation of metal ions, stimula-
tion of antioxidant enzymes, and inhibition of enzymes that increase oxidative stress 
[ 80 ]. The benefi ts of fl avonoids have been evaluated in a wide array of pathologies, 
including cardiovascular diseases, type II diabetes, neurodegenerative diseases, and 
cancer [ 217 ]. Many investigators have been interested in the effects that fl avonoids 
may have on oxidative stress in PH. In rat models of MCT-induced PH, administra-
tion of fl avonoids, such as quercetin and genistein, has been shown to decrease mPAP, 
RVSP, RVH, medial wall thickness, and neomuscularization of PAs, as well as inhibit 
hPASMC proliferation and progression to right heart failure [ 127 ,  150 ,  228 ]. In rats 
exposed to hypoxia, puerarin was shown to lower levels of ET-1 and type I collagen, 
enhance the activity of SOD, and improve pulmonary vascular remodeling [ 206 ]. 
Similarly, breviscapine was shown to decrease mPAP, RVH, and vascular remodel-
ing as well as decrease fractalkine and Rho-kinase mRNA expression in a rat 
hypoxia model [ 63 ,  383 ]. In addition, genistein was shown to inhibit the mean 
change in tension caused by ET-1 in IPA of rats previously exposed to chronic 
hypoxia [ 367 ]. Finally, genistein has been shown to signifi cantly attenuate PH, acti-
vate eNOS, restore endothelial function, and decrease vascular remodeling in broil-
ers with PH [ 384 ]. No clinical trials have yet explored the effects of fl avonoid 
administration in patients with PAH.  

   Resveratrol 

 Resveratrol is commonly found in foods such as grapes, plums, and peanuts, and 
has become a substance of interest because of its potential benefi ts in cardiovascular 
disease and cancer [ 86 ]. Resveratrol exerts its antioxidant effects possibly through 
scavenging superoxide radicals formed in the mitochondria, inhibiting lipid peroxi-
dation, and competing with coenzyme Q to decrease the oxidative chain complex 
[ 86 ]. Other antioxidant mechanisms of resveratrol include upregulation of antioxi-
dant enzymes, decrease in NOX levels, and regulation of GTP-cyclohydrolase 1, 
which increases BH 4  levels and reverses eNOS uncoupling [ 378 ].    In the rat MCT-
induced PH model, resveratrol attenuates elevation in RVSP, RVH, and thickening of 
IPAs [ 79 ,  268 ,  269 ]. In addition, resveratrol normalizes alterations in BMP receptors 
and SMAD signaling molecules, upregulates NOX subunits, and attenuates expres-
sion of IL-6, IL-1β, TNF-α, PDGF-α, PDGF-β, MCP-1, iNOS, and ICAM-1 in vivo. 
Furthermore, resveratrol prevented proliferation of PASMC after PDGF 
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stimulation, and inhibited cytokine-induced NF-κβ activation in PASMC in vitro [ 79 ]. 
Finally, Chun et al. also showed that resveratrol reduced mPAP and monocyte 
 chemoattractant protein-1 expression in rats with PH induced by infusion of autolo-
gous blood clot in the PA [ 68 ].   

15.4.2.2    Gases 

   Nitric Oxide 

 Currently, inhaled NO is indicated for the treatment of term or near-term neonates 
with hypoxemic respiratory failure associated with PH, and is clinically used in acute 
vasoreactivity testing in the cardiac catheterization laboratory in patients with PAH 
[ 2 ,  29 ]. Inhaled NO has also been shown to be benefi cial in patients that undergo 
surgery for CHDs or heart transplant [ 160 ]. There have been non- controlled observa-
tional clinical studies that show improved PVR and PAP and minimal adverse events 
in patients with PAH treated with long-term inhaled NO [ 29 ,  58 ,  164 ,  274 ,  275 ,  319 ]. 
However, there are still concerns about the potential risks of long- term inhaled NO 
therapy in PAH patients, including rebound PH upon sudden discontinuation, and 
toxicity due to production of NO 2  and methemoglobin [ 29 ,  160 ]. Further clinical tri-
als are needed to determine the safety profi le of inhaled NO in the treatment of PAH. 

 Most of the rationale behind the studies of inhaled NO in the treatment of PAH 
are based on the fact that NO is a selective pulmonary vasodilator, rather than the 
role it may play as antioxidant. However, recent studies have demonstrated that 
inhaled NO increases antioxidant defenses, decreases DNA damage, and improves 
lung infl ammation in rabbits exposed to conventional mechanical ventilation [ 119 , 
 299 ]. In addition, inhaled NO treatment in infants with hypoxemic respiratory fail-
ure reduced oxidative stress biomarkers, namely MDA and total glutathione [ 139 ]. 
The potential antioxidant mechanisms of NO are very complex, since this molecule 
is also involved in the production of RNS and nitrosative stress, as discussed in 
previous sections. Nevertheless, recent studies have shown that NO participates in 
scavenging of lipid peroxyl radicals, and some RNS such as ONOO‾ might even 
participate in cell signaling pathways that activate cellular antioxidants resulting in 
cytoprotective, rather than cytotoxic, effects [ 271 ].  

   Hydrogen Sulfi de 

 The toxic effects of excessive hydrogen sulfi de (H 2 S) inhalation have been well 
documented and include pulmonary edema, bronchiolitis, reactive airways disease, 
pulmonary interstitial fi brosis, and death [ 64 ]. Its main mechanism of toxicity is due 
to inhibition of cytochrome oxidase and other cellular respiratory enzymes, which 
is dependent on concentration and duration of exposure [ 64 ]. However, H 2 S is pro-
duced endogenously in the lung and studies have now shown potential benefi ts 
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of H 2 S or H 2 S donors in the treatment of chronic pulmonary diseases including 
COPD, asthma, and PH [ 64 ]. Antioxidant mechanisms of H 2 S include increasing 
glutathione levels and activation of Nrf2 with subsequent upregulation of antioxi-
dant response elements [ 277 ]. 

 H 2 S levels have been shown to be low in rats exposed to hypoxia [ 282 ], and in 
patients with acute exacerbations of COPD who have elevated PAP, compared to 
those with normal PASP [ 65 ]. Treatment of hypoxia-exposed rats with an H 2 S 
donor, sodium hydrosulfi de (NaHS), reduces mPAP and RVH [ 365 ], decreases vas-
cular remodeling, and enhances total antioxidant capacity compared with controls 
[ 282 ]. Similarly, administration of NaHS to broilers exposed to hypoxia signifi -
cantly reduced PH compared with untreated controls [ 385 ]. In addition, H 2 S 
has been shown to relax rat aortic arteries and inhibit vascular SMC proliferation 
in vitro [ 102 ,  152 ,  282 ,  394 ]. Additionally, H 2 S or injected NaHS has been shown to 
be protective in mouse lung injury models [ 121 ]. Investigations of H 2 S still remain 
in a preclinical phase.  

   Carbon Monoxide 

 Carbon monoxide (CO) is very well known for its toxic effects both in chronic 
cigarette smoke exposure or acute intoxication [ 128 ]. The interest in the role of 
CO as a therapeutic gas is relatively recent and has been based on observations 
that, at low doses, CO may have cytoprotective properties involving inhibition of 
infl ammatory and proliferative signals [ 128 ]. The anti-infl ammatory effects of CO 
have been shown in many in vivo and in vitro studies [ 128 ,  244 ], but its antioxi-
dant properties are less known. In fact, some studies have found that CO inhibits 
cytochrome c oxidase in the mitochondria, increasing accumulation of electrons 
within the electron transport chain resulting in increased generation of ROS in this 
organelle [ 402 ]. In contrast, other studies have shown that CO inhibits NOX, lim-
iting ROS production [ 323 ]. 

 Low dose CO has been shown to be protective in the FHR model, as well as in 
the hypoxia and MCT-induced PH rat models [ 403 ]. Daily treatment with 1 h of 
inhaled CO at 250 ppm protected FHRs from the development of spontaneous PH 
and prevented both hypoxia and MCT-induced increases in RVSP, RVH, and pul-
monary vascular remodeling [ 403 ]. Although effects on ROS were not assessed, CO 
was found to attenuate PASMC proliferation, decrease apoptosis, and induce eNOS 
expression in PAEC [ 403 ]. In addition, CO has been shown to attenuate PVR eleva-
tion in hypoxemic sheep [ 256 ], and decrease vascular remodeling in iliac arteries in 
a porcine model of balloon angioplasty [ 285 ]. CO has also been shown to have 
protective effects in other lung diseases including bleomycin-induced fi brosis [ 399 ], 
lung transplantation [ 187 ,  188 ], and ventilator-induced lung injury [ 95 ,  149 ,  244 ]. 
Furthermore, treatment of ex-smoking COPD patients with CO inhalation decreased 
sputum eosinophils and improved responses to methacholine testing [ 30 ]. Further 
studies are needed to determine the effi cacy of CO in patients with PAH, as well as 
to elucidate the role of CO in modulating oxidative stress in PAH.   
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15.4.2.3    Antioxidant Enzyme Mimetics 

 Substances that mimic the functions of antioxidant enzymes can also be used to 
counteract oxidative stress in the pulmonary vasculature. The antioxidant enzyme 
mimetics investigated have the same mechanism of action previously described for 
the enzymes that they emulate. 

   MnTE-2-PyP 

 MnSOD mimetics have high selectivity for mitochondria and decrease superoxide 
levels in the mitochondrial matrix, increasing the levels of diffusible H 2 O 2  [ 98 ]. The 
SOD mimetic MnTE-2-PyP has been shown to be protective in a mouse model of 
hypoxia-induced PH [ 351 ]. Treatment of mice with MnTE-2-PyP attenuated 
hypoxia-induced increases in RVSP, RVH, and pulmonary vascular remodeling 
[ 351 ]. Furthermore, MnTE-2-PyP attenuated hypoxia-induced NALP3 infl amma-
some activation, caspase cleavage, and IL-1β and IL-18 production [ 351 ]. Other Mn 
porphyrin-based SOD mimetics have demonstrated similar effi cacy in the MCT 
model and FHR [ 380 ].  

   Tempol 

    Tempol is also an SOD mimetic that has been studied in various animal models of 
PH. In rats exposed to chronic hypoxia, tempol normalized RVSP and reduced RVH 
[ 108 ], while combined treatment with tempol and tadalafi l signifi cantly prevented 
elevation in RVSP and RV dP/dt(max) and reduced oxidative stress in rats exposed 
to acute hypoxia [ 289 ]. In addition, tempol has been found to inhibit LY83583-
mediated constriction of rat IPAs [ 185 ], reduce hypoxia-induced SMC proliferation 
and remodeling in rat PAs, as well as inhibit lung ROS production [ 184 ]. Furthermore, 
treatment with tempol attenuated PH in a sheep model [ 320 ], and prevented 
spontaneous development of PH in ALK1 +/−  mice [ 170 ]. Tempol has not yet been 
evaluated in any clinical trial.  

   Ebselen 

 There is minimal information on the use of the glutathione peroxidase mimetic 
ebselen in PH; however, recent studies suggest that ebselen may have protective 
effects in the pulmonary vasculature. Ebselen has been shown to attenuate hypoxia 
and peroxynitrite-induced proliferation of PASMC in vitro [ 3 ]. In addition, 
ebselen has been shown to decrease the sustained phase of hypoxic vasoconstric-
tion of IPAs in rats [ 71 ]. More studies are needed to better understand the effects 
of ebselen on the pulmonary vasculature and determine whether ebselen has effi -
cacy in animal models of PH.    
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15.4.3     Inhibitors of ROS Generation 

15.4.3.1    Inhibitors of Oxidases 

 Inhibitors of oxidases include inhibitors of NOX, xanthine oxidase, and monoamine 
oxidase. These substances function by blocking the main enzymes that produce 
ROS in cells. 

   NADPH Oxidase Inhibitors 

 NOX inhibitors are perhaps the most studied of all the oxidase inhibitors tested in PH. 
Apocynin, an NADPH inhibitor, attenuates hypoxia-induced PH and vascular remod-
eling in lectin-like oxidized low-density lipoprotein receptor (LOX-1) transgenic 
mice that have enhanced ROS in response to hypoxia [ 264 ]. In addition, apocynin 
was shown to attenuate cold-induced PH and PA remodeling in rats [ 78 ], and restored 
pulmonary artery endothelial function and vascular responses in diabetic rats [ 214 ]. 
In lambs with PPHN induced by ductus arteriosus ligation, it has also been shown 
that apocynin signifi cantly improves oxygenation, enhances PA relaxation and eNOS 
expression, and improves angiogenic activity of PAEC [ 339 ,  363 ]. Furthermore, in 
rat PASMC, apocynin reverses hypoxia-induced decreases in Kv current density 
[ 245 ], and suppresses U46619-induced inhibition of Kv currents [ 70 ].  

   Xanthine Oxidase Inhibitors 

 Allopurinol has been the mainstay of treatment for gout for many years and has 
recently become of great interest in the study of ischemic heart disease, chronic 
heart failure, and infl ammatory diseases. In mice and rats exposed to hypoxia, allo-
purinol has been shown to decrease superoxide production, reduce PH, attenuate 
vascular remodeling, and alleviate the increased RVSP and RVH [ 26 ,  151 ,  167 ]. 
In addition, Shen et al. found that isolated rat lungs exposed to hypoxic challenges 
had attenuated HPV when treated with allopurinol ex vivo [ 315 ].   

15.4.3.2    Iron Chelators 

 Iron normally exists in cells in the form of ferric ions (Fe 3+ ), which can react with 
superoxide releasing highly reactive hydroxyl radicals. These radicals can cause 
lipid peroxidation, DNA oxidation, and protein oxidation [ 374 ]. Based on this ratio-
nale, it has been suggested that iron chelation may have a potential benefi t on oxida-
tive stress in the lung, but most investigations have failed to support this hypothesis. 
Treatment of rats exposed to chronic hypoxia with desferroxamine prevented PH and 
vascular remodeling in vivo, and inhibited human PASMC growth in vitro [ 374 ]. 
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However, human studies have demonstrated that healthy volunteers exposed to 
 desferroxamine develop increased PVR [ 25 ], and hypoxia-induced pulmonary 
vasoconstriction is enhanced by desferroxamine in healthy volunteers [ 318 ]. 
In addition, recent studies have found decreased iron levels in patients with IPAH 
and iron supplementation is now being evaluated as a potential treatment in this 
group of patients [ 153 ,  294 ]. Further studies are needed to better understand the role 
of iron in PAH pathogenesis.   

15.4.4     Nrf2 Activators 

 Nrf2 promotes gene expression of antioxidant response element (ARE)-regulated 
antioxidant enzymes in response to oxidative stress [ 165 ]. Nrf2 is held in the cyto-
plasm by an inhibitor, and activation of the PKC signaling by oxidative stress leads 
to activation and translocation of Nrf2 to the nucleus with subsequent activation of 
ARE-regulated genes [ 165 ]. Nrf activators act by eliciting this response and 
increasing the level of ARE-regulated antioxidant enzymes in cells. Protandim, an 
Nrf2 activator prevented the development of right ventricular failure and fi brosis in 
the Sugen hypoxia rat model of PH, although it did not prevent the angio-oblitera-
tive vascular remodeling [ 352 ]. In addition, Nrf2-knockout mice develop exagger-
ated RVH in response to hypoxia, and the Nrf2 activator olipraz attenuates RVH 
and vascular remodeling in wild type, but not Nrf2-defi cient, mice exposed to 
hypoxia [ 107 ]. Future studies on the potential benefi ts of Nrf2 activators in the 
treatment of PAH are necessary.  

15.4.5     Tetrahydrobiopterin 

 The role of tetrahydrobiopterin (BH 4 ) in oxidative stress and eNOS uncoupling has 
been reviewed in previous sections. Defi ciency of this cofactor has been associated 
with development of PH and IPF in animal models [ 10 ,  183 ,  338 ]. Sapropterin dihy-
drochloride (pharmaceutical preparation of BH 4 ) has been used in the treatment of 
hyperphenylalanemia [ 295 ]. Interest in the possible benefi ts of BH 4  supplementa-
tion for the treatment of PH is now increasing. Administration of BH 4  to MCT-
treated rats attenuated PH and vascular remodeling [ 120 ,  180 ], as well as decreased 
HPV and increased NO synthesis in isolated lung preparations [ 120 ,  190 ]. In addi-
tion, while BH 4  did not improve endothelial dysfunction of IPAs in a porcine model 
of PPHN [ 258 ], treatment of PAEC from PPHN lambs decreased apoptosis, 
improved angiogenesis, increased NO and eNOS dimer formation, and decreased 
superoxide production [ 338 ]. Furthermore, treatment with sapropterin dihydrochlo-
ride, in addition to sildenafi l and/or endothelin receptor antagonists, in 18 patients 
with PAH or inoperable CTEPH was well tolerated and improved 6-min walk 
 distance, although did not signifi cantly alter NO synthesis or oxidative stress [ 295 ]. 

15 Pulmonary Arterial Hypertension and Oxidative Stress



300

As BH 4  supplements have been proven to be safe in humans, they represent an inter-
esting therapeutic alternative for the treatment of PAH, but further studies are 
needed to determine their true effi cacy.  

15.4.6     Mitochondria-Activating Drugs and Mitochondria- 
Targeting Antioxidants 

 The hyperproliferative and antiapoptotic phenotype of PASMC observed in PAH is 
associated with mitochondrial suppression, altered glucose metabolism, and 
decreased mROS production [ 98 ]. These mechanisms are described in detail in pre-
vious sections. 

15.4.6.1    Mitochondria-Targeting Antioxidants 

 There has been recent interest in therapeutic strategies that specifi cally target mito-
chondria in order to restore their normal function. The fact that this organelle is 
negatively charged has led to the development of strategies that increase mitochon-
drial selectivity such as the use of a positively charged ion, namely triphenylphos-
phonium (TPP + ), to deliver vitamin antioxidants [ 98 ]. One of the agents that uses 
this cation as vehicle and has been studied in vascular diseases is MitoQ, a ubiqui-
none analogue of the mitochondrial electron transport chain [ 98 ]. Treatment of 
spontaneously hypertensive rats with MitoQ protected against the development of 
hypertension, improved endothelial function, and decreased cardiac hypertrophy 
[ 134 ]. In addition, the mitochondrial-targeted SOD mimetic mitoTEMPO decreased 
mitochondrial superoxide production, reduced cellular NOX activity, restored NO 
expression, improved endothelial-dependent relaxation, and attenuated hyperten-
sion in mice exposed to angiotensin II infusion [ 93 ].  

15.4.6.2    Mitochondrial-Activating Therapies 

 DCA and trimetazidine (TMZ) stimulate mitochondria and regulate metabolic sub-
strate entry into the TCA cycle [ 98 ]. DCA also inhibits PDK, which ultimately 
results in the inhibition of normoxic HIF-1α production and increases in pro-apop-
totic factors, reducing abnormal cell proliferation [ 98 ]. Several studies in animal PH 
models have demonstrated that DCA stimulates glucose oxidation, reduces mPAP, 
and decreases medial wall thickening of PAs [ 40 ,  98 ,  136 ,  235 ,  239 ,  331 ]. An early- 
phase clinical trial of DCA in PAH is currently being completed [ 98 ] (NCT01083524). 
TMZ has also been shown to increase glucose oxidation, suppress fatty acid oxida-
tion, restore perfusion to distal PAs, and reverse established PH in animal models 
[ 98 ,  331 ]. Finally, phenylbutyrate (PBA), a chemical chaperone which prevents 
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disruption of the ER-mitochondrial unit, has recently been shown to attenuate PH, 
vascular remodeling, and RVH in both hypoxia-induced PH in mice and in MCT- 
induced PH in rats [ 98 ].    

15.5     Conclusions 

 This review highlights the important role that oxidative stress and aberrant NO 
signaling play in the pathogenesis of PAH and emphasizes the mechanisms of 
ROS- induced pulmonary vascular remodeling in PAH. Although signifi cant prog-
ress has been made in understanding the pathogenesis of PAH, currently available 
therapies that target the imbalance of vasoactive mediators do not improve mortal-
ity in PAH patients. Emerging studies implicate oxidative stress as a key mecha-
nism in the pathobiology of PAH and therapies targeting ROS generation have 
shown effi cacy in animal models of PH. Growing evidence of the importance of 
oxidative stress in the pathogenesis of PAH has led to the identifi cation of poten-
tial new therapeutic targets in PAH. New approaches to target oxidative stress 
include ROS scavengers, inhibitors of ROS generation, Nrf2 activators, mitochon-
dria-activating drugs, and eNOS recoupling agents. Developing novel therapeutics 
to target oxidative stress in PAH is an active and exciting area of research. Although 
human data is currently limited, antioxidant therapeutics may hold promise in the 
future for treatment of PAH.     
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        The fi rst known oxidative challenge of life occurs as early as birth, when lung cells 
are exposed to a sudden several fold increase in oxygen (O 2 ) concentration. A fully- 
developed lung armed with suffi cient defense is therefore critical in ensuring that 
the newborn lung is resistant to high O 2  tensions. This prerequisite is clearly high-
lighted in the problems that can arise following a premature birth at approximately 
32 weeks or earlier, when the structural and biochemical components of the human 
lung, vital for normal respiration, are not suffi ciently developed. The extent of pul-
monary immaturity in an infant born at this stage necessitates ventilation and the 
provision of supplementary oxygen that, in the presence of a severely-reduced anti-
oxidant defense system, has the potential to increase the risk of toxicity to lung 
cells. Indeed, O 2 -related lung injury of prematurely born neonates can in turn play a 
role in the progression to broncho-pulmonary dysplasia, which is a common cause 
of morbidity and mortality in preterm infants. 

 Oxidative stress refl ects an imbalance between the systemic manifestation of 
reactive oxygen species (ROS) and the biological system’s ability to readily detox-
ify the reactive intermediates or to repair the resulting damage. Disturbances in the 
normal redox state of cells can cause toxic effects through the production of perox-
ides and free radicals that damage all components of the cell, including proteins, 
lipids, and DNA. Further, some reactive oxidative species act as cellular messengers 
in redox signaling. Thus, oxidative stress can cause disruptions in normal mecha-
nisms of cellular signaling. The genetic and pharmacological evidence that Nrf2- 
dependent GSH-induced  signaling plays a key role in lung Type II cell proliferation 
and cellular protection against oxidant-induced death was demonstrated in freshly 
isolated primary cultures. In addition to quenching high levels of ROS, signaling 
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induced by GSH is critically required for proper cell proliferation but not essential 
for maintaining differentiation [ 1 ]. A large number of oxidants are known to induce 
oxidative stress in the lungs. 

16.1     Allergy, Asthma, and Oxidants 

 Sensitization to a normally harmless allergen results in the immune system being 
biased to a predominant T-helper type 2 response. Re-exposure to the same allergen 
leads to a robust secretion of allergy-related mediators that eventually trigger symp-
toms. Our understanding of these disorders has enabled the search for therapeutic 
approaches that can either modulate the sensitization process or impact upon aller-
gic mediators, thus helping to manage allergic symptoms. Importantly, asthma is 
one of the common respiratory allergy in children. Atopic dermatitis and food- 
allergies are other important allergic problems. Asthma is a chronic infl ammatory 
disorder characterized by airway obstruction and airway hyper responsiveness 
(AHR). There is infl ux and activation of cells such as eosinophils, macrophages, and 
neutrophils to the site of infl ammation with generation of reactive oxygen and nitro-
gen species (ROS/RNS) [ 2 ]. These ROS/RNS cause endothelial barrier dysfunction, 
activate redox sensitive transcription factors, and enhance AHR [ 3 ]. The reactive 
species cause increased lipid peroxidation, mediating direct tissue damage. 

 Oxidative stress plays an important role in exacerbating the asthmatic condition, 
which is caused by over production of reactive oxidants and overwhelming of endog-
enous antioxidants [ 1 ]. In the airways, the lung maintains an endogenous defense 
system consisting of both enzymatic and non-enzymatic components to balance 
between normal physiologic function and damage which is accompanied by the 
redox environment in neutralization of free radicals. There are enzymes which help 
in quenching of free radicals/oxidants such as superoxide dismutase (SOD), catalase 
(CAT), glutathione peroxide (GTPx), hemeoxygenase, glutathione- S- transferase, 
glutaredoxin, and thioredoxin (TRX). The non-enzymatic components include vita-
mins A, C, uric acid, and glutathione [ 3 ,  4 ]. The most important scavenger and 
 inhibitor of lipid peroxidation present in the lung lining is Alpha tocopherol (vitamin 
E). It has been amply demonstrated that there is reduction in BHR and infl ammation, 
low frequency of allergen sensitization, and immunomodulation with tocopherol 
alone or in combination with vitamin C [ 5 – 7 ]. Αlphalipoic acid, another free radical 
scavenger can recycle other antioxidants and also accelerate synthesis of reduced 
glutathione (GSH) [ 8 ]. 

 The GSH redox buffer serves as one of the important defense systems of the lung. 
It is crucial in maintaining intracellular GSH/GSSG homeostasis. Any alteration in the 
lung redox potential, infl uences activation of proinfl ammatory transcription factors 
such as NF-κB and AP-1 [ 9 ]. The enzyme glutathione-S-transferase catalyzes conju-
gation of reduced glutathione with electrophilic reactive compounds resulting from 
oxidant-mediated lipid peroxidation, thus effectively detoxifying them. Earlier studies 
had shown that supplementation of antioxidants in combination is more effi cient in 
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reducing oxidative stress while maintaining cellular redox homeostasis (high GSH/
GSSG) [ 3 ,  7 ]. The earlier work with antioxidants mutated glutathione-S-transferase 
(mGST) and GSH has also demonstrated a synergistic effect in ameliorating oxidative 
stress and airway infl ammation [ 10 ]. A decreased antioxidant capacity in plasma 
and bronchoalveolar lavage (BAL) fl uid of patients with asthma provided oxidant–
antioxidant imbalance. Bronchial epithelial cells isolated from patients with asthma 
not receiving corticosteroids, were found to possess less Cu, Zn-SOD activity than 
epithelial cells obtained from control subjects [ 11 ]. Whilst there is a loss of SOD activ-
ity in the lungs of individuals with atopic asthma within minutes of an acute asthmatic 
response to segmental antigen instillation [ 12 ]. Children chronically exposed to high 
levels of ozone (O 3 ), the principal oxidant pollutant in photochemical smog, are more 
vulnerable to respiratory illness and infections. Early life ozone exposure causes per-
sistent nasal epithelial alterations in infant monkeys and provides a potential mecha-
nism for the increased susceptibility to respiratory illness exhibited by children in 
polluted environments [ 13 ]. 

 The IL-17 is important for ozone-induced bronchial hyper responsiveness but not 
for the induction of emphysema and infl ammation. This dependent effect of AHR on 
IL-17 is likely to be a direct effect of IL-17 on airway smooth muscle. It was also 
reported that IL-17A was necessary for the development of AHR in an ovalbumin-
induced asthma model [ 14 ]. 

 According to the statistical analysis through Poisson regression, it was analyzed 
that the week number and prior day accumulation of atmospheric gasses, i.e., CO, 
SO 2 , NO 2 , NOx, PM 2.5 , and O 3  led to signifi cant effect on asthma exacerbations 
among students with asthma [ 16 ]. Monitoring of air pollutants over time could be a 
reliable new means for predicting asthma exacerbations among elementary school 
children. Such predictions could help parents and school nurses implement effective 
precautionary measures [ 15 ]. 

 Exhaled breath condensate (EBC) 8-isoprostane concentrations are increased in 
asthma. EBC 8-isoprostane concentrations did not change following any inhala-
tional challenge, as compared to baseline, in either asthmatics or controls. EBC 
8-isoprostane concentrations do not acutely change following broncho-provocation 
in subjects with mild asthma [ 16 ]. Aluminum (Al) is a non-essential mineral which 
human beings are exposed to in day-to-day life. Abnormal aluminum distribution in 
our body may further precipitate oxidative stress and infl ammation, alter Th1/Th2 
lymphocyte balance, and therefore contribute to the development of asthma [ 17 ].  

16.2     Role of Antioxidants in Asthma 

 Polyphenols are one such class of compounds that are found in foods and plant 
sources and have been investigated for their anti-allergic effect in different disease 
models and in human clinical trials. Their anti-infl ammatory profi le is known 
to impact on the recruitment of immune cells to the skin and in preventing the 
 development of secondary infections following disruption of the skin barrier. 
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The interaction of polyphenols with proteins can modulate the process of allergic 
sensitization and their direct effect on allergic effector cells such as mast cells 
inhibit mediator release, resulting in the alleviation of symptoms. In addition, their 
endogenous anti-oxidant ability limits the extent of cellular injury from free radicals 
during the allergic insult. Overall, polyphenols hold promise as anti-allergy agents 
capable of infl uencing multiple biological pathways and immune cell functions in 
the allergic immune response and deserve further investigations [ 18 ]. There are 
 several other antioxidants such as SOD, CAT, GTPx, TRX, Peroxiredoxin (PRX), 
and glutathione transferase (GST)    which play a role in regulating oxidative stress in 
our lungs.  

16.3     Pediatric Infections 

 Pathogenic organisms can be considered as pro-oxidant agents because they  produce 
cell death and tissue damage. In addition, organisms can be eliminated by a specifi c 
cell-defense mechanism, which utilizes in part, reactive oxygen radicals formed by 
oxidative stress responses. This necessarily    is a defense process that however results 
in cell damage, thereby leading to the development of infl ammation, a characteristic 
oxidative stress situation. This fact shows the duality of oxidative stress in infec-
tions and infl ammation: oxygen-free radicals protect against microorganism attack, 
and can produce tissue damage during this protection to trigger infl ammation. Iron, a 
transition metal which participates in generating oxygen- free radicals, also displays 
this duality in infection. Different pathologies, such as sickle cell anemia/malaria 
and acquired immunodefi ciency syndrome (AIDS), may display this duality in part. 
In addition, it should be noted that oxidative damage observed in infectious diseases 
is mostly due to the infl ammatory response than to the oxidative potential of the 
pathogenic agent. The last point is exemplifi ed in cases of respiratory distress and 
in glomerulonephritis [ 19 ]. 

 Various biochemical events taking place during pulmonary infl ammation were 
examined in the BAL fl uids from patients with acute respiratory distress syndrome 
(ARDS) and in experimental animal models. In patients with ARDS, active neutro-
phil elastase was found in the BAL fl uids. In these fl uids, there occurred an inactiva-
tion of the major elastase inhibitor alpha 1-protease inhibitor (alpha 1-PI). This was 
caused by the oxidation of a methionine residue at the active site of the alpha 1-PI, and 
offered indirect evidence of oxidation occurring in the infl amed pulmonary tissues. 
Studies with experimental animals have been initiated to gain understanding of the 
relative roles of proteases, oxidants, arachidonate metabolites, complement, contact 
system components, and other mediators in the pathogenesis of pulmonary infl amma-
tion. Intrabronchial instillation of glucose oxidase/glucose to produce  oxidants or 
formyl-methionyl-leucyl-phenylalanine (FMLP) or phorbolmyristate acetate (PMA) 
as leukocytic stimuli induced severe acute pulmonary injury in New Zealand white 
rabbits and rhesus monkeys. The injury was accompanied by leukocytic protease 
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(acid cathepsins) release in the rabbit lungs and oxidant formation, which could 
be inhibited by neutrophil depletion. Oxidant formation was demonstrated by the 
inactivation of catalase by 3-amino-1,2,4-triazole in the presence of H 2 O 2 , a drop 
in intracellular glutathione levels, and in the rhesus monkey by inactivation of alpha 
1-PI [ 20 ]. 

 Neutrophil infi ltration into the lungs and oxidative injury is associated with 
 bronchopulmonary dysplasia. However, the pathological importance of neutrophil 
oxidants is still not clear. Nosocomial pneumonia is also implicated, but the evidence 
is limited, in part because of the diffi culty in distinguishing genuine infection from 
bacterial colonization. Good biomarkers of neutrophil oxidant activity and lung infec-
tion are needed. It has been previously tested that glutathione sulfonamide, a product 
of glutathione oxidation by myeloperoxidase-derived hypochlorous acid (HOCl) and 
a potential new neutrophil oxidant biomarker, is detectable in endotracheal aspirates 
from ventilated preterm infants. As infectious organisms stimulate neutrophils to gen-
erate HOCl, it was determined that levels of HOCl-specifi c biomarkers were increased 
in samples that were bacterial culture-positive. Glutathione sulfonamide was detected 
in 66 of 87 endotracheal aspirate samples. Levels correlated with myeloperoxidase 
activity and another HOCl-specifi c marker, chlorotyrosine. Median levels of glutathi-
one sulfonamide (fourfold) and other biomarkers (twofold) were signifi cantly higher 
in culture-positive aspirates. 

  Staphylococcus  epidermidis, a frequent colonizer, was associated with glutathione 
sulfonamide levels, no different from those in negative samples. Glutathione sulfon-
amide showed good sensitivity and specifi city for detecting bacterial growth and had a 
promise for detecting lung infection [ 21 ]. Secreted hypothiocyanous acid (HOSCN) 
kills pathogens but paradoxically is tolerated by many mammalian cells. Mammalian 
thioredoxin reductase (H-TrxR) reduces HOSCN while bacterial L-TrxR is inhibited 
by it corresponding to differential cytotoxicity. Mammalian H-TrxR confers resistance 
against HOSCN enabling its use as a selective biocide. Findings directly link mam-
malian H-TrxR to innate immunity and infl ammatory lung disease [ 22 ].  

16.4     Tuberculosis 

 Tuberculosis (TB) is associated with oxidative stress and the induction of host 
 anti- oxidants to counteract this response. Heme oxygenase-1 (HO-1) is a critical 
promoter of cytoprotection in diverse disease models including mycobacterial 
infection. Systemic levels of HO-1 were dramatically increased in individuals 
with active pulmonary and extra-pulmonary tuberculosis, particularly in children 
with bilateral lung lesions and elevated bacillary loads in sputum [ 23 ]. HO-1 levels 
effectively discriminated active from latent tuberculosis with higher predictive val-
ues than either C-reactive protein or serum amyloid protein. Moreover, there was a 
marked reduction in HO-1 levels in active TB cases following anti-tuberculous ther-
apy but not in those who failed treatment [ 23 ]. These fi ndings establish HO-1 levels 
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as a potentially useful parameter for distinguishing active from latent or treated 
pulmonary tuberculosis that is superior in this respect to the measurement of other 
acute infl ammatory proteins [ 23 ].  

16.5     Cystic Fibrosis 

 Cystic fi brosis (CF) is a fatal autosomal recessive condition caused by a defect of 
the trans-membrane conductance regulator gene that has a key role in cell homeostasis. 
A dysfunctional cystic fi brosis transmembrane conductance regulator impairs the effl ux 
of cell anions such as chloride and bicarbonate, and also that of other solutes such as 
reduced glutathione. This defect produces an increased viscosity of secretions together 
with other metabolic defects of epithelia that ultimately promote the obstruction and 
fi brosis of organs. It is largely accepted that neutrophils migrating inside the bronchial 
lumina of CF patients release large amounts of ROS, including the superoxide anion 
(O  2  − ·  ), hydrogen peroxide (H 2 O 2 ), and the hydroxyl-free radical (OH), mainly by the 
activation of the NADPH oxidase (NOX). To such exaggerated ROS production,    both 
the continuous interaction of neutrophils with bacteria and bacterial degradation prod-
ucts and the inability to engulf bacteria in bio-fi lms contribute, leading to a condition 
of “frustrated phagocytosis.” Neutrophils are therefore recognized as a major source of 
ROS in the airway surface liquid (ASL) of young children with CF [ 24 ,  25 ]. 

 Oxidative stress and infl ammation in cystic fi brosis can affect surfactant biophysical 
activity, thus leading to early alterations of lung function in patients with CF [ 26 ]. 
Oxidative damage of surfactant may involve both lipid and protein components. 
Alteration of lipid components can in turn generate toxic lipid species with cytotoxic 
activity towards nearby epithelial cells [ 27 ]. Altered protein components have been 
shown in cystic fi brosis [ 28 ]. Notably, surfactant protein D, which is an important 
innate host defense molecule, becomes unable to agglutinate  bacteria when it is modi-
fi ed by oxidation, which facilitates pathogen colonization in the lung [ 29 ]. 

 The fat-soluble vitamin supplementation is of utmost importance in daily  practice 
together with energy intake requirements and pancreatic enzyme replacement ther-
apy [ 30 ]. Among these, vitamin E, β-carotene, and ω-3FA have been observed to 
alleviate selected biochemical signs of oxidative stress as measured, for instance, 
with well-established laboratory indices of lipid peroxidation, and in some studies 
these effects were preliminarily associated with positive clinical outcomes. The 
randomized-controlled clinical trials on antioxidant supplements (including ω-3 
FA) so far carried out in CF, have failed to conclusively demonstrate their signifi cant 
benefi cial effects on respiratory symptoms, and on the consequent impact that these 
have on the quality of life of these patients [ 30 ,  31 ]. There is lack of evidence to 
support the use of these supplements in CF. Well-timed (early) interventions with 
appropriate antioxidant formulations/protocols need to be proposed for the next 
generation of trials, and the development of novel CF-tailored antioxidant and 
 anti- infl ammatory agents should be promoted.     
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17.1               Nrf2 is a Key Regulator of Oxidative Stress 

 The rise of oxygen in Earth’s atmosphere that began approximately 2.5 billion years 
ago was vital for eukaryotic and metazoan development. However, this oxidative 
environment presented challenges to early life forms, necessitating the development 
of a cellular system to detoxify oxidative stress. The primary function of the  nuclear 
factor  ( erythroid - derived 2 )- like 2  (Nrf2) pathway is to regulate baseline antioxidant 
capacity and to sense changes in the oxidative environment and initiate a cellular 
response to this environmental stress. Nrf2 is conserved across many diverse species, 
and an ortholog has even been detected in yeast (YAP1). 

 The Nrf2 protein is a basic leucine zipper transcription factor that is character-
ized by its conserved structural domain referred to as the cap‘n’collar (CNC) domain, 
which was fi rst discovered as a regulator of mandibular development in  Drosophila  
[ 1 ]. In mammals, the family of CNC-containing transcription factors consists of 
NF-E2 [ 2 ], Nrf1 [ 3 ], Nrf2 [ 4 ,  5 ], Nrf3 [ 6 ], and the more distantly related Bach1 [ 7 ] 
and Bach2 [ 8 ]. These CNC transcription factors function as heterodimers, binding 
to accessory proteins such as Mafs, to activate gene expression [ 9 ]. Early studies 
revealed that Nrf2 bound the antioxidant response element (ARE), which is a cis- 
element in the promoters of many anti-oxidative genes that is critical to their induc-
ible activation. Over-expression of Nrf2 in in vitro models increases ARE-dependent 
transcriptional induction [ 10 ], while Nrf2-defi cient mice do not exhibit inducible 
expression of ARE-containing genes [ 9 ]. Recent chromatin immune-precipitation- 
sequencing analysis identifi ed more than 650 direct inducible targets of Nrf2 [ 11 ]. 
Among the Nrf2-dependent genes are the phase II detoxifi cation genes and many 
other genes that regulate redox states. 
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 Under non-stressed conditions, Nrf2 persists at low levels in the cytoplasm where 
it is bound to its inhibitor Keap1. Keap1 is a cysteine-rich protein that binds both the 
actin cytoskeleton [ 12 ] and the Cul3-based E3 ubiquitin ligase [ 13 ,  14 ]. Keap1 
serves to anchor Nrf2 in the cytoplasm and also to signal its ubiquitination and sub-
sequent proteosomal degradation, resulting in low baseline expression of the Nrf2- 
dependent cytoprotective genes. However, the disulfi de bonds in Keap1 are highly 
sensitive to oxidative stress, and exposure to a wide variety of electrophiles/oxidants 
triggers a conformational change in Keap1, caused by modifi cation of thiol resi-
dues, releasing Nrf2 [ 15 – 18 ]. Other post-translational modifi cations also facilitate 
this dissociation, including phosphorylation of Nrf2 and S-nitrosylation of Keap1 
[ 19 – 21 ]. Upon dissociation from Keap1, Nrf2 translocates to the nucleus, heterodi-
merizes with Maf proteins, binds the ARE, and activates the coordinate expression 
of hundreds of genes. The net result is an adaptive cytoprotective response that 
detoxifi es oxidative and environmental stressors (Fig.  17.1 )   .

  Fig. 17.1    Under basal conditions, Nrf2 is bound to Keap1 in the cytoplasm, resulting in Cul3- 
mediated ubiquitination and proteasomal degradation of Nrf2. Oxidative/nitrosative stress causes 
Nrf2 to release from Keap1, where it is free to translocate to the nucleus, associate with accessory 
proteins, and coordinate the transcriptional activation of numerous antioxidative pathways. The 
Nrf2 pathway attenuates oxidative stress and infl ammation, resulting in reduced susceptibility to a 
variety of pulmonary diseases       
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17.2        Nrf2-Regulated Genes 

 Nrf2 has been shown to directly or indirectly alter the expression of approximately 
15,000 genes [ 11 ], and the number of directly inducible genes has been estimated 
at 654. Of these 654 genes, 224 are regulated under both basal and inducible condi-
tions [ 11 ]. Nrf2 is a pleiotropic regulator of numerous pathways, although the 
inducible targets of Nrf2 are primarily categorized as antioxidative genes. The 
Nrf2- dependent antioxidative response utilizes multiple pathways, such as (a) pro-
viding direct antioxidants [ 22 ,  23 ], (b) encoding enzymes that directly inactivate 
oxidants [ 24 ], (c) increasing levels of glutathione and thioredoxin synthesis and 
regeneration [ 25 ,  26 ], (d) stimulating NADPH synthesis [ 27 ,  28 ], (e) enhancing 
toxin export via the multidrug response transporters [ 28 ], (f) inhibiting cytokine-
mediated infl ammation [ 29 ], (g) enhancing recognition, repair, and removal of 
damaged proteins [ 30 ], and (h) increasing chaperones and regulating post- 
translational modifi cations [ 11 ]. Additionally, Nrf2 may  regulate the expression of 
multiple microRNAs [ 31 ], although the functional signifi cance of this is currently 
unknown. Thus, Nrf2 is a prolifi c and ubiquitous regulator of multiple pathways 
that counteract oxidative stress.  

17.3     Role of Nrf2 in Disease 

 Unlike some CNC family members, Nrf2 has not been shown to regulate develop-
mental processes. Most studies reveal only minor phenotypes in Nrf2 −/−  mice under 
non-stressed conditions. Nrf2 activity declines with aging, resulting in enhanced 
age-related oxidative stress [ 32 ]. However, one analysis of Nrf2-defi cient mice 
revealed that they exhibited shortened life-spans, glomerulonephritis, multi-organ 
infl ammatory lesions, edema, and neurological symptoms [ 33 ]. Nrf2 −/−  mice exhibit 
exacerbated phenotypes in a wide variety of disease models and in response to a 
large number of toxicant exposures, and these exacerbated phenotypes are often 
typifi ed by elevated oxidative stress, infl ammation, and fi brosis.  

17.4     Role of Nrf2 in Pulmonary Diseases 

 Lungs are constantly exposed to numerous oxidants, from both endogenous sources 
and environmental exposures. For example, a single puff of cigarette smoke  contains 
an estimated 10 15 –10 17  oxidant molecules [ 34 ]. Other sources of oxidants, including 
outdoor and indoor air pollution and ionizing radiation, place a tremendous oxidative 
burden on the lungs that results in oxidized macromolecules (nucleotides, lipids, 
proteins) that have altered or impaired functions, leading to cell damage or death. 
Thus, the Nrf2-dependent antioxidant defense pathways are vital for removing this 
stress and modifying disease susceptibility.  
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17.5     Chronic Obstructive Pulmonary Disease 

 Chronic obstructive pulmonary disease (COPD), which is the third-leading cause of 
death in the world, is characterized as a progressive decline in lung function that 
is driven by aberrant non-resolving infl ammation, oxidative stress, and protease/ 
antiprotease imbalance. COPD consists of both emphysema and chronic bronchitis, 
and is predominantly associated with exposure to environmental stressors, such as 
cigarette smoke, outdoor air pollution, household air pollution, and occupational 
exposures. Experimental models of emphysema have revealed that Nrf2 −/−  mice 
develop enhanced airspace enlargement, alveolar destruction, apoptosis, infl amma-
tion, oxidative stress, and protease/anti-protease imbalance after either chronic 
cigarette smoke exposure [ 35 – 37 ] or elastase treatment [ 38 ]. Not only has Nrf2-
defi ciency been shown to alter susceptibility to emphysema in mice, but some indi-
vidual Nrf2- dependent genes have also been shown to play a role in the pathogenesis 
of emphysema. For example, mice defi cient in the Nrf2-dependent genes NAD(P)H: 
quinone oxidoreductase 1 (Nqo1) [ 39 ] and thioredoxin-1 [ 40 ,  41 ] show enhanced 
susceptibility to emphysema. The role of Nrf2 in patients with COPD was con-
fi rmed, as lung biopsies and alveolar macrophages from COPD patients exhibited 
declining Nrf2 activity that correlated with disease severity [ 42 – 44 ]. 

 Emphysema, which is specifi cally characterized by remodeling and destruction of 
the alveoli and small airways, can be considered a disease in which the homeostasis 
between cell death and proliferation becomes unbalanced. Oxidative stress (and in 
turn Nrf2) have been shown to play a role in the regulation of both cell death and 
proliferation. In cigarette smoke-exposed mice, Nrf2-defi ciency results in decreased 
proteosomal activity and an increase in misfolded proteins, leading to endoplasmic 
reticulum stress and apoptosis [ 45 ]. Concomitantly, oxidative stress can trigger cell-
cycle arrest, and indeed lung cells from Nrf2 −/−  mice exposed to cigarette smoke 
exhibit reduced mitochondrial responses compared to cigarette smoke-exposed wild-
type mice [ 46 ,  47 ]. 

 Studies showing that Nrf2-defi cient mice have enhanced susceptibility to emphy-
sema are complemented by studies showing that genetic or pharmacologic activation 
of Nrf2 can attenuate pathological damage caused by cigarette smoke. Mice contain-
ing a tissue-specifi c deletion of Keap1 in Clara cells exhibit constitutive Nrf2 activ-
ity in the airway epithelium, and these mice show decreased oxidative stress and 
infl ammation after exposure to cigarette smoke [ 48 ]. Additionally, pharmacologic 
activation of Nrf2 via a synthetic triterpenoid (CDDO-Im) signifi cantly attenuates 
oxidative stress, airspace enlargement, and alveolar destruction in wild-type, but not 
Nrf2 −/−  mice [ 49 ]. Clinical studies using Nrf2-activating drugs are currently being 
pursued in Phase II trials, and hold substantial promise as therapeutics for delaying 
or preventing disease progression. 

 In parallel with these studies on the role of Nrf2 in COPD, numerous studies 
have been conducted to assess the ability of antioxidants to attenuate COPD. 
Studies, on the role of the antioxidant  N -acetylcysteine, which is a precursor to 
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glutathione, in cigarette smoke-induced emphysema in mice, are confl icting [ 50 ,  51 ]. 
Likewise, the role of  N -acetylcysteine as a therapy for COPD is also controversial, 
although several studies indicate that  N -acetylcysteine decreases exacerbation 
rates, reduces hospital admissions, and improves lung function [ 52 – 56 ]. Nrf2 acti-
vates numerous antioxidative pathways, including pathways that enhance glutathione 
synthesis and regeneration, and thus, Nrf2 activation may provide greater benefi ts 
than enhancing individual antioxidant pathways.  

17.6     COPD Exacerbations 

 COPD is complicated by frequent and recurrent acute exacerbations, which are 
described as sudden episodes of worsening respiratory symptoms. These symptoms 
include dyspnea, cough, and sputum production that are often followed by subse-
quent clinical deterioration [ 57 ,  58 ]. The frequency of these exacerbations correlates 
strongly with decline in lung function [ 59 – 61 ], and approximately 10 % of COPD 
patients with frequent and severe exacerbations account for 70 % of the total COPD- 
related health care cost [ 62 ]. Thus, therapeutic targets that mitigate COPD exacerba-
tions could have substantial benefi t to patient outcomes. These COPD exacerbations 
are primarily attributed to infectious agents, such as bacteria and viruses. During 
exacerbations, patients with COPD exhibit signifi cant increases in airway infl amma-
tory cells (neutrophils, macrophages, and eosinophils), cytokines (TNF-α, IL-8), pro-
teases (neutrophil elastase), and oxidative stress (H 2 O 2  and 8- isoprostane), compared 
to patients with stable COPD [ 63 – 65 ]. 

 Multiple studies indicate that Nrf2 reduces susceptibility to bacterial and viral 
infections [ 66 ,  67 ], and Nrf2 also attenuates infl ammation and oxidative stress in 
cigarette smoke-induced bacterial [ 68 ] and viral [ 69 ] exacerbations in mice. Host 
phagocytic cells release oxidants as part of their anti-microbial defense, but failure 
to detoxify this oxidative stress can result in damage to the lung parenchymal cells. 
Despite increased oxidative stress and infl ammatory cells in the lungs of COPD 
patients, bacteria and viruses have higher rates of proliferation and colonization 
than in lungs of non-COPD patients, which can be attributed to a failure of the host 
innate immune defense. Alveolar macrophages from COPD patients have defective 
bacterial phagocytosis, compared to either blood macrophages from the same 
COPD patients or alveolar macrophages from non-COPD patients [ 70 ]. A recent 
study using both cigarette smoke-exposed mice and alveolar macrophages from 
COPD patients demonstrated that activation of Nrf2 by sulforaphane restored defec-
tive bacterial phagocytic function by inducing the expression of macrophage scav-
enger receptors [ 68 ]. Thus, Nrf2 reduces exacerbation severity both through direct 
detoxifi cation of oxidative stress and enhancement of innate immune defense, 
which suggests that Nrf2 may be an important therapeutic target for improving 
COPD-related morbidity and mortality.  
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17.7     Corticosteroid Resistance in COPD 

 Current therapies for COPD patients consist of anti-infl ammatory corticosteroids 
and bronchodilators. However, even high-dose corticosteroid therapy produces only 
mild symptomatic relief, and may increase the risk of developing pneumonia. 
Steroids are effective anti-infl ammatory therapies for many diseases, including 
asthma, but COPD patients are more refractory to corticosteroid therapy, due to a 
decline in the activity of histone deacetylase 2 (HDAC2) [ 71 ]. Nrf2-deifi cent mice 
contain reduced HDAC2 levels in the lungs and increased steroid-resistant infl am-
mation after exposure to cigarette smoke [ 72 ]. Declining HDAC2 activity also 
results in deacetylation and destabilization of Nrf2 [ 73 ]. Activation of Nrf2 by sul-
foraphane improves corticosteroid responsiveness in alveolar macrophages from 
COPD patients, via regulation of S-nitrosylation of cysteine residues on HDAC2 [ 74 ]. 
This indicates that activation of Nrf2 may attenuate nitrosative modifi cations of 
HDAC2 to restore HDAC2 activity, and a combination of a corticosteroid and Nrf2 
activator may be a valuable therapy for resolving infl ammation in COPD patients.  

17.8     Asthma 

 Allergic asthma is characterized by reversible bronchial constriction, eosinophilic 
infl ammation, Th2 cytokine secretion, and mucus hypersecretion in response to a 
normally harmless inhaled allergen. Oxidative stress plays an important role in the 
regulation of the immune response; depletion of the antioxidant glutathione within 
antigen-presenting cells skews the immune response toward a Th2-mediated 
response [ 75 ]. Using a model in which mice are sensitized and subsequently chal-
lenged with ovalbumin, Nrf2-defi cient mice exhibit heightened airway resistance, 
Th2-mediated infl ammation, mucus hyper-secretion, and reduced antioxidant status 
compared to wild-type controls [ 76 ]. Additionally, airway macrophages from asth-
matic patients exposed in vivo to allergens show decreased Nrf2 activity, which can 
be restored by consumption of vitamin E [ 77 ]. Dendritic cells, which are responsi-
ble for the priming of CD4+ T cells during sensitization, play an important role in 
eliciting T-cell responses after allergen challenge. In response to an allergen, den-
dritic cells from Nrf2-defi cient mice contain elevated oxidative stress, increased 
surface expression of activation markers, cytokine secretion, and enhanced ability 
to prime T cells, compared to wild-type dendritic cells [ 78 ,  79 ]. The role of Nrf2 in 
dendritic cells of asthmatic mice or humans has not been directly assessed, but the 
potential role of Nrf2 in allergen sensitization provides interesting possibilities for 
the management of asthma. 

 A few studies have addressed the potential for Nrf2 activators to be used as thera-
peutics in asthmatics. Small molecules that activate Nrf2, such as sulforaphane [ 80 ] 
and artesunate [ 81 ] have been shown to attenuate features of allergic asthma in mice 
when given prior to challenges, although neither study demonstrated conclusively 
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that these drugs were working through an Nrf2-dependent mechanism. Further 
studies are needed to determine whether Nrf2 activators could be used in a therapeu-
tic model to reduce asthmatic symptoms. In airway smooth muscle cells (ASMCs) 
from asthmatic and non-asthmatic patients, activation of Nrf2 via sulforaphane 
 activated antioxidant responses and reduced proliferation in a TGF-β dependent 
manner [ 82 ]. On the other hand, ASMCs from severe asthmatics exhibit reduced 
Nrf2 activity compared to ASMCs from patients with no or non-severe asthma [ 82 ]. 

 Collectively, the current evidence suggests that Nrf2 modifi es sensitivity to 
asthma in both animal models and samples from asthmatic patients. Acute asth-
matic responses are typically well controlled by corticosteroids, so it is not clear 
that Nrf2 activators would be used as a rescue therapy. However, the notion that 
Nrf2 may potentially decrease sensitization and development of asthma is intriguing. 
Additionally, 5–10 % of asthmatics are not well controlled by corticosteroids. These 
patients typically demonstrate an elevated Th17-mediated infl ammation. Thus, 
there would be tremendous value in novel therapeutics that reduce this Th17 
response. To date, Nrf2 activators have not been shown to regulate Th17 responses 
in the lungs; however, the Nrf2 activator CDDO-trifl uoroethyl amide signifi cantly 
suppressed multiple sclerosis in a mouse model that is driven by Th17-induced 
infl ammation [ 83 ].  

17.9     Acute Lung Injury 

 Acute lung injury (ALI) is caused by inhalation exposure to a variety of different 
agents, including infectious pathogens and toxic chemicals, and can develop as a 
consequence of respiratory therapy (hyperoxia and mechanical ventilation). ALI, 
and its more severe form of acute respiratory distress syndrome (ARDS), leads to 
diffused pulmonary infl ammation, edema, and respiratory failure. Patients with ALI 
and ARDS exhibit high rates of morbidity and mortality, accounting for approxi-
mately 150,000 annual deaths in the US [ 84 ,  85 ]. Oxidative stress is an important 
contributor to ALI, regardless of the root cause. Numerous in vivo and in vitro 
studies indicate that Nrf2 attenuates toxicity after exposure to a wide variety of 
 toxicants, and Nrf2 also mitigates susceptibility to a wide range of pulmonary viral 
and bacterial pathogens. 

 Mechanical ventilation is vital for critically ill patients and premature newborns; 
however, mechanical ventilation initiates ALI due to hyperoxia and cyclic stretch, 
which generate oxidative stress and infl ammation. Hyperoxia frequently results in 
respiratory symptoms and permanent functional abnormalities, including broncho-
pulmonary dysplasia in infants. In response to hyperoxia exposure in either neonatal 
or adult mice, Nrf2-defi ciency enhances mortality, edema, infl ammation, and cell 
death, compared to wild-type controls [ 86 – 89 ]. Meanwhile, activation of Nrf2 via 
CDDO-imidazole attenuates hyperoxia-induced infl ammation, edema, and apoptosis 
in adult mice [ 90 ]. 

 In addition to the direct effects of hyperoxia on epithelial and endothelial cell 
injury, hyperoxia-induced ALI also leads to enhanced susceptibility to bacterial or viral 
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infections during the recovery phase. Using an animal model of hyperoxia exposure 
followed by infection with  Pseudomonas aeruginosa , Nrf2-defi cient mice exhibit 
enhanced mortality, bacterial pulmonary burden, edema, and infl ammation, compared 
to wild-type controls [ 91 ]. Even in the absence of hyperoxia, cyclic stretch caused by 
mechanical ventilation can induce oxidative stress and infl ammation. Nrf2-defi cient 
mice demonstrate elevated oxidative stress and infl ammation in ventilator-induced 
lung injury, which is suppressed by antioxidant supplementation [ 92 ]. Thus mechani-
cal ventilation causes injury via both exposure to high concentrations of oxygen as well 
as cyclic stretch, and Nrf2 mediates the harmful effects of both. There is also an asso-
ciation between traumatic brain injury (TBI) and subsequent ALI. In a mouse model of 
TBI-induced ALI, Nrf2-defi cient mice contain elevated pulmonary capillary permea-
bility, edema, apoptosis, and infl ammation, compared to wild-type animals [ 93 ]. Thus, 
Nrf2 regulates susceptibility to ALI in response to multiple stressors.  

17.10     Fibrosis 

 Idiopathic pulmonary fi brosis (IPF) is a progressive fatal disease of unknown origin. 
While the pathogenesis of IPF is unknown, oxidative stress may play an important role, 
as evidenced by the elevation of reactive oxygen species in airway cells of IPF patients 
and decreased glutathione in airways and sputum. A role for Nrf2 has been demon-
strated in a mouse model of bleomycin-induced pulmonary fi brosis. Intratracheal 
delivery of bleomycin to Nrf2-defi cient mice results in elevated  fi brosis, infl ammation, 
weight loss, and mortality, compared to wild-type controls [ 94 ,  95 ]. Nrf2-defi cient 
mice also exhibit elevated Th2 cytokines (IL-4 and IL-13) and an increased number of 
Th2 cells [ 95 ], supporting the notion that the lung Th1/Th2 balance is an important 
underlying mediator of disease susceptibility. In further support of this notion, Nrf2 
selectively regulates Eotaxin-1, a key chemokine for eosinophil recruitment, in normal 
human lung fi broblasts [ 96 ], suggesting that Nrf2 reduces allergic infl ammation via 
signaling in fi broblasts. Fibroblasts isolated from IPF patients exhibit reduced Nrf2 
expression, compared to control fi broblasts [ 97 ]. Activation of Nrf2 in IPF fi broblasts 
via either sulforaphane treatment of siRNA- mediated inhibition of Keap1 resulted in 
reduced oxidative stress and promoted myofi broblastic dedifferentiation. Thus, activa-
tion of Nrf2 may suppress pathogenesis of this fatal disease.  

17.11     Polymorphisms 

 Genetic variation accounts for the observable differences among individuals, and 
these variants are also determinants of disease susceptibility. The most common 
genetic variants are single nucleotide polymorphisms (SNPs), which are substitutions 
of individual base-pairs. The human genome contains approximately ten million 
SNPs, although the majority of these SNPs have no functional signifi cance. In a 
recent study of COPD patients, four functional polymorphisms were identifi ed in the 
promoter of Nrf2, and those haplotypes with a high expression of Nrf2 were 
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associated with decreased severe COPD, compared to those patients with low 
 Nrf2- expressing haplotypes [ 98 ]. A second analysis of SNPs in COPD patients 
 demonstrated that SNPs in Nrf2 and Keap1 were associated lower and higher lung 
function, respectively [ 99 ]. However, no polymorphisms in Nrf2, Nrf2-regulating 
genes, or Nrf2-dependent genes have been identifi ed that signifi cantly correlate with 
the rate of lung function decline [ 100 ]. It is not clear whether these polymorphisms 
result in altered levels of antioxidants in these patients. A recent study demonstrated 
that polymorphisms in Nrf2, SOD2, and GSTP1 marginally infl uence COPD- and 
asthma-related hospital admission rates after exposure to elevated air pollution [ 101 ]. 
Air pollution is often acutely linked to hospital admission rates, and this link between 
Nrf2 and air pollution-induced hospital admissions suggest that oxidative stress 
underlies this link. Additionally, a functional polymorphism in Nrf2 is strongly asso-
ciated with increased risk of ALI after trauma [ 102 ], further demonstrating a link 
between Nrf2 expression and pulmonary disease.  

17.12     Conclusions 

 The role of oxidative stress in numerous pulmonary disorders is clear, and suscepti-
bility to these diseases is strongly infl uenced by the ability of the host to detoxify 
oxidative stress. Nrf2 is a ubiquitous and pleiotropic transcription factor that regu-
lates hundreds of genes that provide anti-oxidative and cyto-protective functions in 
the cell. As such, Nrf2 serves protective roles in a variety of pulmonary and extra- 
pulmonary diseases through its induction of hundreds of ARE-containing genes, 
resulting in a coordinated response to environmental stressors. Experiments using 
animal models and human in vitro or ex vivo cells demonstrate that Nrf2 can protect 
from COPD, asthma, ALI, and IPF. These studies are supported by analysis of poly-
morphisms in patient samples, demonstrating that alterations to the Nrf2 pathway 
correlate with pathogenic responses. Nrf2 activators present viable therapeutic 
options for these and other diseases, and these are currently being explored in 
 clinical trials. The Federal Drug Administration (FDA) recently approved the fi rst 
Nrf2- activating drug, Tecfi dera, as a therapy for multiple sclerosis, and it is likely 
that similar drugs will be developed for other diseases.     
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18.1            Introduction 

 Oxidative stress is a pernicious component of all infl ammatory pathways, which are 
triggered by environmental insults and infections. Oxidative stress has demonstrated 
associations with almost all pathophysiologies of diseases, which are chronic and 
acute infl ammatory in nature. Unfortunately, research in the development of new 
antioxidants has been rather low paced, primarily because the pathophysiological 
implication of oxidative stress in a disease has always been subjected to the paucity 
of knowledge. This can well be cited as in spite of clear realization of oxidative 
stress as key component of infl ammatory disease  N -acetyl cysteine (NAC) is the 
only antioxidant molecule available to the treating physicians globally. Further, the 
antioxidant pathways are also very complex, which make it diffi cult to identify sin-
gle pathway pharmacology. 

 However, now, resources are being focused in developing molecules, which have 
potential to reduce oxidative stress. There are some possibilities that these molecules 
may have potential to incarcerate infl ammation of asthma, acute respiratory distress 
syndrome (ARDS), COPD, interstitial lung disease (ILD), tuberculosis, and pneumo-
nia, which may change the course of the disease. Further, new mechanisms of oxida-
tive stress pathways and their counteracting mechanisms are being deciphered, to an 
extent that genetic manipulation through transcription factors modulation is being 
considered as future of antioxidant therapies [ 1 ]. However, the most ubiquitously 
prevalent antioxidant pathways such as glutathione–thioredoxin pathways and super-
oxide dismutase (SOD)–catalase (CAT) synergistic mechanisms have been studied 
extensively. Therefore, current development of most antioxidants is in context to 
modulations of these pathways [ 2 – 4 ]. Also, genetic research in lung infl ammation 
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and oxidative stress has been primarily based on transcription factors such as nuclear 
factor (NF)-κB. Therefore, molecules, which modulate transcription factor NF-κB, 
are of the prime interest in development as potential antioxidant [ 1 ]. This chapter will 
primary deal with the newer antioxidant molecules, which are in the developmental 
phase for treating chronic infl ammatory respiratory diseases (Table  18.1 ).

18.2        Glutathione Pathway-Based Antioxidants 

 Glutathione is one of the most ubiquitously prevalent antioxidants in the cellular 
systems, which formulates one of the prime protective mechanisms against the oxi-
dative stress in various disease processes. In lungs, glutathione may also assist in 
maintaining the integrity of airway and alveolar epithelial cells, which are prone to 
damage due to adverse environmental conditions [ 2 ]. In chronic infl ammatory lung 
diseases there is a persistent depletion of glutathione in the respiratory system and 
systemic circulation. Therefore, glutathione is one of the primary targets in the 
development of novel antioxidants. 

 Glutathione is synthesized in the body from the amino acids  l -cysteine, 
 l - glutamic  acid, and glycine. Cysteine is the rate-limiting factor in cellular gluta-
thione synthesis. Further, in the cells glutathione is synthesized in two-step mecha-
nisms chronologically involving enzymes glutamate cysteine ligase (GCL) and 
glutathione synthetase. There is a possibility of modulating glutathione metabolism 
at every step, which can be potential targets for antioxidant therapies. One of the 
most intriguing examples of this is NAC, which provides cysteine residues in acety-
lated form for glutathione synthesis. NAC itself works as an antioxidant, provides 
direct source of cysteine, and also converts intracellular cystine to cysteine. NAC 
has been widely used in the management of ILDs and COPD. Unfortunately, chronic 
utility of NAC has been questioned in COPD management primarily due to its poor 
bioavailability in oral form [ 5 ]. Also, its acidic nature prevents its use in inhaled 
form [ 6 ]. However, the idea of providing cysteine for glutathione formation is so 
compelling that research has been directed towards formulation of new compounds, 
which may enhance the cysteine delivery to the cells. 

18.2.1     Nacystelyn 

 Nacystelyn (NAL) is lysine salt of NAC which is neutral in nature. Therefore, it can 
be safely delivered locally to the lungs through inhaled route [ 1 ,  7 ]. In vitro studies 
have shown that NAL has potential to enhance intracellular GSH levels twice as 
effectively as NAC [ 8 ] and also modulate oxidant-mediated infl ammation mecha-
nisms [ 7 ,  9 ,  10 ].    A study has also shown that NAL, at concentrations obtainable in 
vivo by inhalation, can reduce neutrophil response, and production of cytotoxic 
hydroxyl and hypohalite radical; 50 % inhibition in production of these radicals was 
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   Table 18.1    List of antioxidants under development for chronic lung diseases   

 Type of antioxidant 
 Stage of studies in lung diseases and other organ 
system diseases 

  Glutathione pathway  
 a. Nacystelyn (NAL)  a. Animal and in vitro 
 b. Procysteine  b. Human in ARDS 
 c.  N -isobutyrylcysteine (NIC)  c. Human in COPD exacerbation (similar to placebo) 
 d. Erdosteine  d. Human in COPD 
 e.  N -acetyl cysteine proline cysteine 

amide (CB3) 
 e. Animal and in vitro studies 

 f. Glutamate cysteine ligase (GCL)  f. Animal and in vitro studies 

  Peroxidase mimetics  
 a. Ebselen  a. Human studies in cardiovascular and nervous 

system diseases 
 b. BXT-51072  b. Phase 1 and preclinical trials in COPD patients 
 c. Diselinide and delluride compounds  c. Animal and in vitro studies 
 d. Cyclodextrin compounds of 

diselinide and delluride 
 d. Experimental stage only 

  Thioredoxin pathway  
 a. Recombinant thioredoxin  a. Animal and in vitro studies 
 b. p38 mitogen-activated protein 

kinase 
 b. Animal and in vitro studies 

 c. Nuclear factor-κB  c. Animal and in vitro studies 
 d. Phosphatidylinositol 3-kinase 

(PI3-K) 
 d. Animal and in vitro studies 

  Superoxide dismutase mimetic  
 a. MnTE-2-PyP 5+   a. Animal and in vitro studies 
 b. Pentaazamacrocyclic ligand-based 

mimetic 
 b. Animal and in vitro studies 

  Superoxide dismutase mimetic + catalase  
 a. AEOL-10150  a. Animal and in vitro studies 
 b. Mn-TBAP  b. Animal and in vitro studies 
 c. AEOL-11027  c. Animal and in vitro studies 
 d. AEOL-10113  d. Animal and in vitro studies 
 e. Salens  e. Animal and in vitro studies 

  Anti-NF-κB - based antioxidants  
 a. Pyrrolidine dithiocarbamate  a. Animal and in vitro studies for respiratory; current 

human applications in HIV and heavy metal 
poisoning 

 b. BAY 11-7085  b. Animal and in vitro studies 

  Spin traps  
 a. STANZ  a. Animal and in vitro studies 
 b. NXY-059  b. Animal and in vitro studies 
 Neu-164 and Neu-107  Animal and in vitro studies 
 Tanshinone IIA and cryptotanshinone  Animal and in vitro studies 
 Nano-particles  Animal and in vitro studies 
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achieved at concentration fi ve times lesser than that of NAC and three times lesser 
than that of captopril [ 11 ]. Further, a drug deposition study with inhaled NAL has 
shown that its deposition in the peripheral airways is unaffected by the presence of 
mucus in cystic fi brosis patients [ 12 ]. A study on cystic fi brosis patients illustrated 
that inhaled form of NAL is well tolerated in wide range of doses (4–16 mg) [ 13 ]. 
This indicates that NAL could graduate to become potential futuristic antioxidant 
therapy in the management of obstructive airway diseases involving both large and 
small airways and ILDs, which are primarily neutrophilic-mediated lung ailments.  

18.2.2     Procysteine ( L -2-Oxothiazolidone-4-carboxylate/OTC) 

 This is another cysteine donating compound with a better bioavailability than NAC [ 1 ]. 
Procysteine can effectively replete glutathione in oxidative stress conditions. Animal 
model studies have shown that procysteine has potential to improve survivals in pneu-
monia conditions [ 14 ]. Procysteine also improves efferocytosis and glutathione avail-
ability in the airway macrophages in smoking murine models [ 15 ]. A defective 
macrophage efferocytosis is one of the key components of COPD pathophysiology. 
Animal model studies of allergic asthma have also shown that procysteine has an 
ability to reduce expression of IL-4, IL-5, IL-13, and IL-18 [ 15 ], which are key infl am-
matory mediators that orchestrate allergic infl ammation and airway- remodelling and 
induce broncho-hyper-responsiveness (Figs.  18.1  and  18.2 ). This antioxidant can also 
modulate expression of NF-κB, which is a key transcription factor for the expression 
of infl ammatory genes. Therefore, it is likely that treatment with procysteine could 
have signifi cant therapeutic benefi ts in chronic and acute infl ammatory diseases of 
lungs. Bernard and colleagues [ 16 ] had shown that administration of 63 mg/kg pro-
cysteine can signifi cantly reduce the duration of acute lung injury and signifi cantly 
improves cardiac index in 17 patients with ARDS. However, its therapeutic potential 
in the management of chronic infl ammatory disease of the lungs is lacking.

18.2.3          N -Acetyl Cysteine Proline Cysteine Amide (CB3) 

 There is a compelling evidence to show that converting the carboxyl group of NAC to 
an amide increases hydrophobicity of the compound, which enhances its membrane 
permeability and hence ultimately can remarkably restore intracellular glutathione 
[ 17 – 21 ]. Evidences from animal studies have shown that amide-NAC can attenuate 
airway infl ammation and hyper-responsiveness by regulating activation of NF-κB and 
hypoxia-inducible factors (HIFs)-1α, and reduces oxidative stress in allergic airway 
disease [ 22 ]. NAC proline cysteine amide (CB3) is a novel amide- NAC, which is rela-
tively more potent than other NAC-amide derivates in reducing infl ammation in aller-
gic diseases [ 21 ]. Animal model studies have shown that CB3 is more potent than 
NAC in reducing    reactive oxygen species (ROS) [ 23 ]. It has been demonstrated to 
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 Fig. 18.1    Effect of OTC or α-lipoic acid on IL-4, IL-5, and IL-13 protein levels in lung tissues and 
in BAL fl uids of ovalbumin- sensitized and -challenged mice. Sampling was performed at 72 h after 
the last challenge in saline- inhaled mice administered saline (SAL + SAL), ovalbumin-inhaled 
mice administered saline (OVA + SAL), ovalbumin- inhaled mice administered drug vehicle 
(OVA + VEH), ovalbumin-inhaled mice administered OTC (OVA + OTC), and ovalbumin-inhaled 
mice administered α-lipoic acid (OVA + α-lipoic acid). ( a ) Western blotting of IL-4, IL-5, and 
IL-13 in lung tissues. ( b ) Densitometric analyses are presented as the relative ratio of each mole-
cule to actin. The relative ratio of each molecule in the lung tissues of SAL + SAL is arbitrarily 
presented as 1. ( c ) Enzyme immunoassay of IL-4, IL-5, and IL-13 in BAL fl uids.  Bars  represent 
mean ± SEM from eight mice per group. #,  p  < 0.05 versus SAL + SAL; *,  p  < 0.05 versus 
OVA + SAL (Reproduced with permission from [ 15 ])  



  Fig. 18.2    Localization of immunoreactive IL-18 in lung tissues and in BAL fl uids of ovalbumin- 
sensitized and -challenged mice. Sampling was performed 72 h after the last challenge in lung tissues 
from sensitized mice challenged with saline ( a ), from sensitized mice challenged with ovalbumin ( b ), 
from ovalbumin-inhaled mice administered OTC ( c ), and from ovalbumin-inhaled mice administered 
α-lipoic acid ( d ). Sampling was also performed in BAL fl uids from sensitized mice challenged with
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Fig. 18.2 (continued) saline ( e ), sensitized mice challenged with ovalbumin ( f ,  i , and  j ), ovalbumin- 
inhaled mice administered OTC ( g ), and from ovalbumin-inhaled mice administered α-lipoic acid 
( h ).  a – i , representative light microscopy showing IL-18-positive cells in the BAL fl uids; the  brown  
color indicates IL-18-positive cells. ( j ) To examine the cell differentials in BAL cells prepared from 
the control mice, the slides used for the detection of IL-18 ( i ) were destained with 70 % ethyl alcohol. 
The smears of BAL cells were stained with Diff-Quik solution and were viewed under a light micro-
scope. The  arrow  indicates a macrophage. Bars, 50 μm (Reproduced with permission from [ 15 ])       

have reducing effects on airway infl ammation and decrease airway hyper-responsiveness. 
CB3 has been shown to prevent translocation of NF-κB into the nucleus and prevent 
the expression of IL-4, IL-5, and IL-13, which are typical to allergic diseases [ 23 ]. 
However, here it is also important to mention that NF-κB is a universal infl ammatory 
mediator of transcription factors, which may promote CB3 to have wider applicability 
in other infl ammatory diseases as well. Many infl ammatory diseases such as asthma 
and COPD have been associated with suppression and dysfunction of regulatory 
immune system. It has been shown that CB3 has an ability to increase IL-10 which is 
the key immune regulatory cytokine [ 23 – 25 ]. Hence, it can be assumed that CB3 
could emerge as potent antioxidant in infl ammatory diseases of the lungs; however, 
currently there is no published human data with this molecule.  

18.2.4     Glutamate Cysteine Ligase (GCL) 

 This is a cardinal enzyme implicated in rate-limiting step of glutathione synthesis. 
This enzyme consists of a catalytic subunit (GCLC) and a modifi er subunit (GCLM). 
Studies have shown that GCLM has antioxidant potential and its depletion can gen-
erate oxidative stress [ 26 ,  27 ]. Further studies have shown that smokers have 
decreased expression of GCL-light chain unit [ 24 ]. A substitution in the promoter 
region of GCLM is known to reduce glutathione levels, and has been associated 
with a threefold increased risk of COPD in populations [ 28 ]. Similarly, substitution 
in GCL’s catalytic subunit (GCLC) has also shown to signifi cantly enhance the risk 
of COPD [OR 1.83, 95 % CI 1.00–3.36] [ 29 ]. Both GCLC and GCLM expressions 
have been shown to increase in the infl ammatory cells of COPD patients compared 
to smokers without COPD [ 27 ,  30 – 32 ]. Therefore, molecules, which have potential 
to manipulate the expression of GCL, are being developed as probable innovative 
antioxidants in future for various infl ammatory diseases of the lungs.   

18.3     Peroxidase Mimetic 

 Glutathione peroxidase and thioredoxin peroxidase are one of the most abundant 
peroxidase systems found in the cytosol of almost all mammalian cells [ 33 ]. Their 
primary function is to scavenge peroxides such as H 2 O 2  and lipid peroxides, and 
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neutralize peroxides to less toxic compounds and water. Over-expression of these 
peroxidases has been shown to be protective against oxidative stress in cultured 
cells and animal models [ 3 ]. Hence, it is likely that molecules, which will mimic 
these peroxidases, could emerge as potential antioxidant in treatment of various 
chronic infl ammatory diseases. Most of these compounds contain selenium or tel-
lurium. They can scavenge O  2  −  , H 2 O 2 , ONOO − , and a variety of lipid peroxides. 

18.3.1     Ebselen 

 One of the most promising and primary peroxidase mimetics which is extensively 
being researched is ebselen [2-phenyl-1,2-benzisoselenazol-3(2 H )] [ 3 ]. Ebselen is 
not only a weak glutathione peroxidase mimetic but also possesses thioredoxin 
peroxidase properties [ 34 ]. Ebselen is known to mediate propagation of decompo-
sition of ROS, hypochlorous acid, and oxygen and nitrous radicals and inhibit 
lipoxygenase, NADPH oxidase, and nitric oxide synthetase [ 3 ,  35 – 37 ]. Unlike 
other peroxidase mimetics, ebselen is well tolerated in humans. One hundred and 
fi fty milligrams of twice-a-day ebselen has been shown to improve outcomes in 
stroke, ischemic damage of brain, and neurodegenerative diseases in human 
patients [ 38 – 40 ]. However, in context to chronic infl ammatory disease of the lungs, 
benefi t of ebselen has been largely limited to animal models and in vitro studies. 
Newer analogue of ebselen, BXT-51072 (Oxis, USA), has been developed with 
better activity and potency in cell systems and is currently in Phase 1 and preclini-
cal trial for COPD treatment [ 1 ,  41 ]. 

 Peroxidase mimetics such as diselinide and delluride compounds and peptide 
compounds such as selenosubstilisin have been shown to possess higher glutathione 
peroxidase-like activity than ebselen [ 42 ]. It has been observed that these com-
pounds release free selenium and are electrophilic in nature, hence, possessing cyto-
toxic, genotoxic, and mutagenic potential that is a hindrance in their therapeutic 
application [ 43 ,  44 ]. However, cyclodextrin derivatives of these compounds with 
relatively less cytotoxic effects are being developed [ 45 ,  46 ]. Currently, there is a 
paucity of data, even at the in vitro level, to implicate their effects on living cells.   

18.4     Thioredoxin Pathway-Based Antioxidants 

 Thioredoxin system is a ubiquitous thiol oxidoreductase system that regulates cel-
lular reduction/oxidation (redox) status, which is induced in response to stress con-
ditions [ 47 ]. Recent studies have shown that changes in thioredoxin status may 
contribute to the pathogenesis of COPD, asthma, and lung injury [ 44 ,  48 ]. 
Thioredoxin is known to protect lungs from ischemia/reperfusion injury, infl uenza 
infection, bleomycin-induced injury, and/or lethal infl ammation caused by IL-2 and 
IL-18 [ 44 ,  49 ]. Therefore, potential role of recombinant human thioredoxin-1 as 
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treatment for lung infl ammatory diseases cannot be undermined. The therapeutic 
data with recombinant thioredoxin is largely limited to animal studies; however, its 
clinical application is being evaluated for lung injury, ARDS, and COPD.    New evi-
dence with ambroxol, a mucolytic agent that has been used in clinical practice for 
decades, indicates that the molecule has antioxidant effects partly mediated by thio-
redoxin system at physiological concentration [ 50 ]. Further, thioredoxin pathway 
signalling molecules, such as autophagic proteins, p38 mitogen-activated protein 
kinase, NF-κB, and phosphatidylinositol 3-kinase, are also being considered as 
important antioxidants in near future [ 44 ]. However, the major limitation in this 
context is that each of these molecules has diverse signalling functions in cellular 
physiology; therefore, their application in treatments could interfere with other sig-
nalling pathways, which may be essential for cell survival.  

18.5     Superoxide Dismutase and Catalase Pathway-Based 
Antioxidants 

18.5.1     Superoxide Dismutase Mimetics 

 Free oxygen radicals undergo detoxifi cation process in two-stage processes. First, 
free radicals are dismuted to oxygen and H 2 O 2 . This is catalyzed by an enzyme 
superoxide dismutase (SOD). Second, H 2 O 2  formed by dismutation is further neu-
tralized into water and oxygen with another enzyme called catalase (CAT). Further 
SOD is also known to scavenge reactive nitrogen and carbon radicals. Both SOD 
and CAT are metalloproteins. Infl ammatory diseases have high exogenous and 
endogenous ROS production and human cells have a cutoff ability to generate SOD 
and CAT to counteract the oxidative stress. This becomes more prominent if the 
infl ammatory stimulus is perpetual. Therefore, pertinent oxidant–antioxidant imbal-
ance is cardinal to most of the chronic infl ammatory diseases [ 3 ]. Replenishing 
SOD and CAT exogenously is an attractive antioxidant strategy. 

 SOD and CAT primarily function by enhancing redox-reaction to neutralize 
highly charged oxides, nitrogen, and carbon oxides. Naturally derived SOD and 
CAT usually do not reach the intracellular compartments where they are most 
required [ 51 ]. Studies have shown that active metals such as manganese and iron 
with rich coordination chemistries have potential to mimic SOD and CAT function-
ality of enhancing redox reactions [ 49 ,  52 ,  53 ]. Intriguingly nature has also pro-
vided cells with such compounds, particularly porphyrins, such as haem molecules, 
which form an integral component of various haem-proteins, and provide natural 
defense against oxidative stress in various cellular systems. Therefore, compounds 
with manganese and iron have emerged as natural choice for development of SOD 
and CAT mimetics. However, current data suggests that Mn-SOD mimetics are 
safer in cellular redox reactions. These SOD mimetics have more intracellular 
reachability. 
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 MnTE-2-PyP 5+  is one of the novel Mn-SOD mimetics that has been shown to 
have potential therapeutic benefi ts in stroke [ 54 ,  55 ], cardiac diseases [ 56 ,  57 ], 
malignancies [ 58 ], radiation injuries [ 59 ], lung diseases [ 60 ], and osteoarthritis [ 61 ] 
in the animal model studies. Another manganese compound, pentaazamacrocyclic 
ligand-based mimetic, is under process of development and has unique property of 
being relatively specifi c to O  2  −   scavengers. In this compound, manganese atom 
(Mn) is held by fi ve coordination points in the macrocyclic structure and is available 
only for one-electron transfers [ 62 ]. This compound can therefore function 
 specifi cally as SOD.  

18.5.2     Superoxide Dismutase Plus Catalase Mimetics 

 It is still not clear which is a better antioxidant target; is it SOD or CAT? Logically, 
targeting both looks superior to targeting single enzyme.    Therefore, another group of 
mimetics of metalloporphyrin series constituting meso-substituted synthetic porphy-
rin, and iron or manganese as metallic redox element that is coordinated by four axial 
ligands, possessing either CAT-like activity or both CAT and SOD activity, are exten-
sively being probed [ 3 ,  50 ,  51 ]. They are widely propagated as AEOL series com-
pounds. AEOL-10113 and -10150 possess high SOD- and CAT-like activity [ 63 ], 
while AEOL-11207 and Mn-TBAP possess primarily CAT activity with low SOD 
activity [ 64 ].    Animal studies have shown that treatments with Mn-TBAP can protect 
against silica-induced, bleomycin-induced [ 65 ], and paraquat-induced [ 66 – 68 ] fi bro-
sis. AEOL-10150 has been shown to attenuate infl ammation by protecting epithe-
lium from cigarette smoke-induced precancerous lesions and attenuate 
hemorrhage- induced acute lung injury [ 69 ]. AEOL-10113 has been shown to attenu-
ate lung infl ammation and bronchial hyper-reactivity in rats [ 70 ]. Therefore, it can be 
assumed that these drugs could emerge as important therapeutics in diseases such as 
ILDs, fi brotic lung diseases, occupational lung diseases, asthma, COPD, and ARDS. 

 Aromatic-substituted ethylenediamine metal complexes of manganese also 
known as salens are also being extensively researched. Animal studies have shown 
protective effects of salens against lung irradiation injury and ARDS [ 3 ]. However, 
currently its stability in biological matrix is questionable.   

18.6     Anti-NF-κB-Based Antioxidants 

18.6.1     Pyrrolidine Dithiocarbamate (PDTC) 

 Dithiocarbamates possess thiol structure and therefore function as antioxidants 
either by eliminating free radicals by thiol group or by stopping Fenton reaction. 
However, now it has been realized that dithiocarbamates also possess direct 
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anti-NF- κB properties. Oxidative stress is known to induce infl ammatory gene 
expression through activation of a pleitropic transcription factor called NF-κB. 
Activation of NF-κB is the prime and the most sought infl ammatory and oxidative 
stress pathway in pathogenesis of various chronic infl ammatory diseases. Therefore, 
concept of using dithiocarbamates in infl ammatory diseases provides an interesting 
antioxidant therapy in management of various diseases. 

 Pyrrolidine dithiocarbamate (PDTC) is a pyrrolidine derivative of dithiocarba-
mate, which is primarily being used in treatments of heavy metal toxicity and 
HIV disease in humans. Addition of pyrrolidine into dithiocarbamate enhances 
the compound’s entry into the cell and provides prolonged stability in physiologi-
cal environments. Intriguingly, PDTC does not have direct anti-NF-κB proper-
ties, but indirectly reduces its activity by inhibition of IκBα degradation, which 
is prime inactivator of NF-κB in infl ammatory models [ 71 ] (Fig.  18.3 ). Its usage 
in metal poisoning and HIV suggests that this antioxidant may not be toxic for 
chronic use in humans.

   PDTC has never been used in chronic infl ammatory lung diseases. However, data 
from animal model and in vitro studies have shown that treatment with PDTC can 
signifi cantly reduce expression of molecules and mediators, such as HIF-1α, haem 
oxygenase-1, VEGF, TNF-α, cycloxygenase-2, intercellular adhesion molecules 
(ICAM-1), vascular endothelial cell adhesion molecules (VCAM-1), and cytokine- 
induced neutrophil chemoattractant (CINC), which are known to have primary role 
in infl ammatory disease pathophysiologies [ 72 ]. Further, PDTC is also known to 
inhibit activity of myeloperoxidase, which is a viscous neutrophilic enzyme. Animal 
model studies have shown that PDTC possesses protective effects in ARDS. The 
current understanding of PDTC indicates that it could be of signifi cant therapeutic 
application in neutrophil-mediated lung diseases. However, substantial clinical data 
are needed before recommendation in chronic infl ammatory disease of the lungs.  

  Fig. 18.3    Schematic diagram 
of the mechanism of action of 
pyrrolidine dithiocarbamate 
(PDTC)       
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18.6.2     BAY 11-7085 

 BAY 11-7085 [( E )-3-(4- t -butylphenylsulfonyl)-2-propenenitrile] is a molecule, 
which inhibits NF-κB activation, although its primary role is induction of apoptosis. 
Studies have shown that BAY 11-7085 can reduce infl ammation in ovalbumin-
induced hyper-responsive mice (23) and also has potential to minimize hyperoxia-
induced lung damage by inhibiting NF-κB signalling system [ 73 ]. The therapeutic 
application of this molecule has been studied for diseases such as endometriosis [ 74 ], 
malignancies [ 75 ], and cardiac morphogenesis [ 76 ] and even lung diseases such as 
non-small cell lung cancer and animal models of asthma [ 77 ,  78 ]. However, more 
experiments are needed to establish its effi cacy as antioxidant in lung diseases.   

18.7     Other Antioxidant 

18.7.1     Spin Traps 

 Spin traps are nitrogen oxide molecules which trap the free reactive oxidant species 
in nitrone and nitro-oxide regions. The usual parent compound of the nitrone spin 
trap family is α-phenyl- N - tert -butyl nitrone (PBN), which forms a more stable 
nitroxide with ROS and hence removes harmful free radicals from circulation. 
Besides their direct free radical scavenging capabilities, nitrone spin traps also 
inhibit cyclooxygenase-2 (COX-2) and nitric oxide synthase (NOS). They may also 
decompose into nitric oxide, which itself activates many cellular mechanisms. 

 The problem with spin traps is their very short half-life and capability of generat-
ing hydroxyl radicals on decay, which has a damaging potential on the living tissues. 
Animal studies have shown that high doses of spin traps can cause impaired respira-
tion, abnormal blood chemistry, seizures, and tissue damage [ 79 ,  80 ]. Now newer 
spin traps are being developed, such as stilbazulenyl nitrone (STANZ) and disodium-
[( tert -butylimino)methyl]benzene-1,3-disulfonate- N -oxide (NXY-059), which have 
longer half-life and less toxicity [ 8 ]. The pharmacokinetic profi le of NXY-059 from 
Phase IIa studies indicates that the drug is well tolerated and safe in stroke patients 
[ 8 ,  70 ]. STANZ exhibits highest antioxidant potential compared to all other nitrone 
spin traps. The spin traps have shown promising role in various neurodegenerative 
diseases such as ischemic brain damage, Alzheimer’s disease, and Parkinson’s dis-
ease [ 81 ]. However their role in chronic lung disease has not been explored yet.  

18.7.2     Neu-164 and Neu-107 

 Two novel polycyclic molecules Neu-164 and Neu-107, containing benzene ring 
structures, have been developed, which exhibit pertinent antioxidant properties. In 
accordance with the little scientifi c evidence available with animal models and in 
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vitro experiments, these molecules demonstrate a potential towards reducing IL-6 
and macrophage infl ammatory protein-2 and also inhibit infl ammatory enzymes 
such as myeloperoxidase and 5-lipooxygenase. These antioxidants have been shown 
to have salutary role in cigarette-induced cell damage of the lung cells in animal 
model experiments [ 82 ]. However, their application in chronic infl ammatory dis-
ease of lungs is still at nascent stage plus there is lack of their toxicity data.  

18.7.3     Tanshinone IIA and Cryptotanshinone 

 In spite of path-breaking advancements in designing synthetic compounds to treat 
diseases, ancient herbal therapy has not been abolished. Tanshinone IIA (TIIA) and 
cryptotanshinone (CT) are enantiomers found in the roots of  Salvia miltiorrhiza  and 
are the key ingredients in Chinese traditional medicine. In the last couple of years, 
many experiments have shown their multiple benefi cial effects in many diseases. 
Their protective roles in kidney diseases [ 83 ,  84 ], hepatic diseases [ 85 ], and cardiac 
diseases [ 86 ] have been well established. These molecules have been found to ame-
liorate acute pancreatitis and neuronal diseases. 

 In vitro studies have shown that TIIA and CT are effective to minimize intracel-
lular ROS and alleviate antioxidant enzymes activity. These therapies have shown 
protective effects from hypoxia-induced cell damage, which is largely induced by 
reducing intracellular NO production and mitochondrial superoxides. However, 
data on respiratory cells of these molecules are relatively very few. This herbal 
therapy can be benefi cial to reduce oxidative stress-induced lung tissue damage.   

18.8     Nano-particles 

 Nano-particles are chemically synthesized organic polymers or inorganic elements 
in various forms within a size of 1–100 nm of two or more dimensions, and are now 
primarily being envisaged as drug delivery mediums for future therapies. Liposomes, 
dendrimers, and polymetric micelles are organic nano-materials, while gold, silver, 
cerium, and carbon nano-materials belong to the inorganic class of nano-carriers. 
Nano-materials are generally used as vehicles for drugs and nuclear materials, 
although some nano-materials are themselves biologically active and can act directly 
with different biological molecules. Metal-based nano-particles such as gold, silver, 
and cerium possess some antioxidant properties as well. Oxides of cerium have been 
shown to possess SOD mimetic effects [ 87 ] and have potential to inhibit NF-κB 
activity by inhibiting translocation of its p65 subunit into the nucleus. Cerium oxides 
also reduce the expression of inducible nitric oxide synthase (iNOS) [ 88 ]. 

 Another intriguing applicability of nano-particles is the antioxidant delivery to 
the target sites. This enables easy accessibility to intracellular compartments, which 
are otherwise not easily reached. The gold and polyamidoamine (PAMAM) 
dendrimers- based nano-particles delivery systems for natural antioxidants, such as 
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fl avonoids, curcumin, genistein, and resveratrol, are being developed for better drug 
deliveries. Experimental evidences suggest that the nano-particles-based fl avonoids 
(e.g., quercetin and catechin) scavenge molecular oxygen more effectively than the 
free fl avonoids [ 89 ]. Today we do not know whether nano-delivery or nano-particle 
therapies can have any potential role in chronic anti-infl ammatory diseases of the 
lungs. However, currently this is the future of antioxidant research (Fig.  18.4 ).

  Fig. 18.4    CURN prevents TNF-α-induced acute lung infl ammation in vivo. The sections were 
stained with ICAM-1 ( a ) and hematoxylin–eosin ( b ). Reproduced from: Yen F-L, Tsai M-H, Yang 
C-M, Liang C-J, Lin C-C, Chiang Y-C, Lee H-C, Ko H-H, Lee C-W. Curcumin nanoparticles 
ameliorate ICAM-1 expression in TNF-α-treated lung epithelial cells through p47  phox   and MAPKs/
AP-1 pathways (Reproduced from: [ 89 ])       
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18.9        Conclusion 

 With the current evidences from animal model studies and in vitro experiments, it is 
now possible to modulate oxidative stress at different levels of glutathione metabo-
lism and peroxide detoxifi cation mechanisms. Even manipulation of anti- 
infl ammatory genes with transcription factor seems as promising development in 
the pharmacological development. However, the development of new antioxidants 
is still at very early stages.     
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        Antioxidants are substances that inhibit oxidation of other substances generally by 
removing potentially damaging oxidizing agents in a living organism, thereby decreas-
ing free radical-induced damage. Their popularity can be gauged from the fact that, as 
of May 2013, Google search with the word “antioxidant” gave close to 40 million hits 
whereas a PubMed query with the same term raised more than 385,000 hits. Most of 
the lay press and other forms of media are full of advertisements about antioxidants’ 
putative (but mostly unproven) benefi ts coupled with lack of toxicity, in spite of the fact 
that most of the recent scientifi c evidence about  antioxidants has been unfavorable. 
In this chapter, we will objectively review the current status and future implications of 
some of the Ayurvedic and other herbal antioxidants. 

 Normal human diet contains a large number of components that serve as antioxi-
dants, the important ones being vitamins and trace elements. There is also no doubt that 
these nutrients are responsible for keeping us in good health. While there are no ran-
domized controlled trials (RCTs) to prove, most nutritionists agree that diet plays an 
important role in health maintenance, and most of us consume these dietary antioxi-
dants [ 1 ,  2 ]. There is suffi cient evidence from observational studies to show that higher 
intake of fruits and vegetables is correlated with reduced risk of several diseases [ 3 ,  4 ]. 

 Since dietary intake of antioxidants in fruits and vegetables has been shown to be 
a useful strategy to lower a person’s risk of certain diseases, supplementation with 
antioxidants as medications was expected to be taken up by the pharmaceutical 
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industry. For the past several years, markets are fl ooded with such antioxidant 
 formulations and as per some estimates [ 5 ] products with antioxidant claims 
which include foods, beverages, supplements, and cosmetics had annual retail sales 
of about US$ 65 billion, showing an annual growth of a little less than 10 % with 
 projections to reach US$ 86 billion by 2016. 

 These enormous volumes were attained without good quality evidence  showing 
unequivocally the benefi t of antioxidant supplements. On the contrary evidence 
from RCTs was far from encouraging and, in fact, showed harm. One of the fi rst 
RCTs to show that antioxidants could increase the risk of cancer was the ATBC 
(alpha tocopherol beta carotene) Trial [ 6 ]. Subsequently, other trials included by 
us in acute pancreatitis showed similar results [ 7 ]. A recent Cochrane review 
which included 78 RCTs having a total of close to 300,000 participants showed 
that antioxidants signifi cantly increased mortality (11.7 % versus 10.2 %; relative 
risk [RR] 1.03, 95 % confi dence interval [CI] 1.01–1.05) in a fi xed-effect model 
although the effect was small. In a random-effects model, the increase in mortality 
was not  signifi cant (RR 1.02, 95 % CI 0.98–1.05). 

 Importantly, if only trials with a low risk of bias were included (56 trials), the 
effect on mortality was greater (12.9 % versus 10.6 %; RR 1.04, 95 % CI 1.01–1.07). 
Among these trials, effect on mortality was greatest with beta-carotene and vitamin 
E. Mortality with beta-carotene (26 trials) was 13.8 % versus 11.1 % (RR 1.05, 
95 % CI 1.01–1.09) whereas with vitamin E (46 trials), mortality was 12.0 % versus 
10.3 % (RR 1.03, 95 % CI 1.00–1.05). Effect on mortality was not signifi cant for 
vitamin A (14.0 % versus 13.6 %; RR 1.07, 95 % CI 0.9 7–1.18), vitamin C (9.9 % 
versus 9.3 %; RR 1.02, 95 % CI 0.98–1.07), and selenium (6.7 % versus 6.4 %; RR 
0.97, 95 % CI 0.91–1.03). 

 The authors of this meta-analysis concluded that there was no evidence in favor 
of the use of antioxidant supplements for either primary or secondary prevention; it 
was recommended that antioxidant supplements should be considered as drugs, 
thereby emphasizing the need for systematic and thorough evaluation prior to mar-
keting as is done for new drugs. 

 On the other hand, diet also contains a large number of antioxidants, most of 
which come from plant sources, and are called phyto-antioxidants. Benefi cial effects 
of fruits and vegetables in promoting health are well established al though it is not 
clear what is the exact contribution of antioxidant effect to these benefi ts. 

 Several studies have shown that herbal preparations are used very commonly by 
patients across a diverse range of disorders [ 8 ,  9 ]. Many of the herbal compounds 
are consumed in excess of what a normal diet would provide, presumably for their 
antioxidant and other benefi ts. The chemical compounds that provide herbal 
 antioxidant protection include, but are not limited to, polyphenols, fl avonoids, cat-
echins, lignans, and others. Indian Systems of Medicine and Chinese Traditional 
Medicine describe various properties of these plant-based compounds and have 
been extensively reviewed [ 10 – 13 ]. 

 With this background, we will look at some of the natural and herbal/Ayurvedic 
antioxidants and analyze the evidence available for each of these. Typically, many 
of these preparations are used as normal components of Indian diets, whereas others 
are predominantly used for their medicinal properties. 
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19.1      Ocimum sanctum  Linn. (Lamiaceae) (Holy Basil;  Tulsi ) 

 Several compounds with potent antioxidant activity (at 10-μM concentrations) were 
isolated from fresh leaves and stem extracts of  O. sanctum  [ 14 ]. Out of the seven 
compounds isolated (cirsilineol, cirsimaritin, isothymusin, isothymonin, apigenin, 
rosmarinic acid, and eugenol), fi ve (cirsilineol, isothymusin, isothymonin, rosma-
rinic acid, and eugenol) showed good to excellent antioxidant activity. Another 
compound, ursolic acid, isolated from  O. sanctum  protected against lipid peroxida-
tion in liver microsomes in vitro [ 15 ]. 

 Two other fl avonoids, orientin and vicenin, isolated from the leaves of  O. 
sanctum , were shown to increase survival time in lethally irradiated mice [ 16 ]. 
When animals were pre-treated with either of the fl avonoids, a signifi cant 
decrease in chromosome aberration following gamma irradiation was seen, with 
vicenin providing the best protection. In another study,  O. sanctum  demonstrated 
protective effects against copper sulfate toxicity (mediated by free radicals) in 
rats [ 17 ]. 

 Oral treatment with very high doses of  O. sanctum  leaf extract for 15 days was 
shown to result in signifi cantly elevated activities of enzymes (cytochrome P-450, 
cytochrome b5, aryl hydrocarbon hydroxylase, and glutathione-S-transferase) 
involved in the detoxifi cation of carcinogens and mutagens in mice [ 18 ].  O. sanctum  
extract was also found to elevate hepatic and extrahepatic levels of glutathione, 
which is well known to be an important part of the body’s protective mechanism 
against free radicals. 

 Several animal studies have shown anticancer activity; in one such study, chemo-
preventive activity for  O. sanctum  seed oil, which contains fatty acids including 
linolenic acid, has been shown in 20-methylcholanthrene-induced fi brosarcoma 
tumors in the thigh region of Swiss albino mice [ 19 ]. Antioxidant activity was 
deemed to be partly responsible for the chemopreventive effect.  

19.2      Curcuma longa  Linn. (Zingiberaceae) (Turmeric;  Haldi ) 

 Used for multiple indications like anticancer, antiseptic, anti-infl ammatory, and 
other similar actions, curcumin has also been shown to possess antioxidant 
actions. Neuroprotection, partly attributable to antioxidant effect shown in alco-
hol-fed rats, has been described [ 20 ]. It is believed that curcumin may be more 
potent than alpha- tocopherol in its antioxidant effect [ 21 ]. It contains several 
known antioxidant curcuminoids like demethoxycurcumin, bis-demethoxycur-
cumin, 5′-methoxycurcumin, and dihydrocurcumin, as well as others like phenyl-
heptanoids, monoterpenes, sesquiterpenes, diphenylalkanoids, phenyl propene 
derivatives of cinnamic acid, and  terpenoids [ 22 ,  23 ].  
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19.3     Mineral Pitch (Shilajit) 

 Antioxidant and antiarthritic activities of shilajit were evaluated in an in vitro study 
[ 24 ]. It was shown that aqueous extract of shilajit exhibited free radical scavenging 
activity in a dose-dependent manner with IC50 value of 11.9 μg/mL, which was simi-
lar to that of standard ascorbic acid. This activity was attributed to the high phenolic 
content of shilajit. 

 In another study, it was shown that shilajit provided almost complete protection 
against hydroxyl radical injury and effi ciently trapped nitric oxide free radicals [ 25 ]. 
These effects were concentration dependent. In an in vitro  study , it was demonstrated 
that shilajit decreased the oxidation of reduced glutathione in rat liver homogenate [ 26 ].  

19.4      Withania somnifera  Dunal (Solanaceae) 
(Winter Cherry or  Aswagandha ) 

 Considerable in vitro and animal research shows that withanolides (withaferin A) and 
sitoindosides, the active compounds in  W. somnifera , possess antioxidant properties 
in terms of increasing the activity and/or levels of free radical scavenging enzymes 
and glutathione peroxidase. It is likely that there are more constituents in  W. som-
nifera  that might also contribute to its signifi cant antioxidant properties. Moreover, in 
some studies several compounds have been used together and it is diffi cult to attribute 
all the effects to  W. somnifera ; for instance in one study Transina, a polyherbal formu-
lation comprising  W. somnifera  and other herbs like  Tinospora cordifolia ,  Eclipta 
alba ,  Ocimum sanctum ,  Picrorrhiza kurroa , and shilajit, was used for superoxide 
dismutase activity in hyperglycemic rats [ 27 ].  

19.5      Terminalia arjuna  Roxb. W. & A. (Combretaceae) 

 Used traditionally as a cardiotonic, various studies have shown that bark extract of 
 T. arjuna  also possesses antioxidant effects.    In alloxan-induced model of diabetes 
mellitus in rats, 500 mg/kg  T. arjuna  was shown to produce signifi cant reduction in 
lipid peroxidation and increase in superoxide dismutase, catalase, glutathione per-
oxidase, glutathione-S-transferase, glutathione reductase and glucose-6-phosphate 
dehydrogenase, reduced glutathione, vitamin A, vitamin C, vitamin E, total sulfhy-
dryl groups (TSH), and nonprotein sulfhydryl groups (NPSH) in liver and kidney 
tissues [ 28 ]. 

 The effect on antioxidant status by administration of ethanolic extract of 
 T. arjuna  bark was evaluated in  N -nitrosodiethylamine-induced liver cancer in male 
Wistar albino rats in a study; it showed that peroxide levels were reduced and the 
antioxidant enzyme levels were increased [ 29 ]. 
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 The compounds responsible for this action include polyphenols (~44 %), fl avon-3- ols 
(catechin, gallocatechin, and epigallocatechin), and phenolic acids (gallic acid, ellagic 
acid, and its derivatives) [ 30 ].  

19.6     Polyherbal Preparation (Triphala) 

 Another polyherbal formulation comprising aqueous extract of the fruits of  Emblica 
offi cinalis  Linn.,  Terminalia chebula  Retz., and  Terminalia belerica  (Gaertn.) Roxb. 
was shown to inhibit gamma-radiation-induced lipid peroxidation and strand break 
formation in plasmid DNA (pBR322) in rat liver microsomes [ 31 ]. Individual com-
ponents as well as the mixture were effective, the activity being possible due to the 
presence of phenolic compounds which were present in concentrations ranging 
from 33 to 44 %. Triphala also prevented superoxide-induced hemolysis of red 
blood cells and lipid peroxidation induced by Fe 3+ /ADP/ascorbate system in rat 
liver mitochondria with tannins being the major phenolic compounds responsible 
for activity [ 32 ].  

19.7     Gold Ash ( Swarnabhasma ) 

  Swarnabhasma  is an old formulation used for a large number of indications. 
Prepared according to Ayurveda, it consists of realger (As(2)S(2)), lead oxide (Pb(3)
O(4)), pure gold (Au), and latex of  Calotropis gigantea ; after purifi cation and calci-
nation, it does not contain any organic compound but has several other elements like 
Fe, Al, Cu, Zn, Co, Mg, Ca, As, and Pb [ 33 ]. The amount of heavy metals in 
“bhasma” is measured by atomic absorption spectrometry. In an animal model of 
cerebral ischemia,  Swarnabhasma  was shown to signifi cantly improve antioxidant 
levels as measured by enzymatic parameters like peroxidase, reduced glutathione, 
catalase, glutathione reductase, glutathione-S-transferase, and others although effect 
on infarct size was not mentioned [ 34 ].  

19.8      Giloysatva  ( Tinospora cordifolia ) (Willd.) Miers ex. 
Hook.f. & Thomas. (Menispermaceae) and  Curculigo 
orchioides  Gaertn. (Liliaceae) 

     Giloysatva  is a traditional Ayurvedic formulation. The antioxidant effects of 
  giloysatva  and hydro-alcoholic extract of  C. orchioides  ( Kali musali ) were evalu-
ated in vitro [ 35 ]. Potent free radical scavenging activity was demonstrated which 
was  presumably due to the presence of various fl avonoids, alkaloids, and saponins.  
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19.9      Terminalia belerica  (Roxb. Combertaceae) 
(Belleric Myrobalan or Vibhitaka) 

 In an animal model of alloxan-induced hyperglycemia, dried 75 % methanolic 
extract of fruits of  T. belerica  improved the antioxidant defense mechanism besides 
improving the blood glucose levels [ 36 ].  

19.10      Cissampelos pareira  Linn. (Menispermaceae) (Patha) 

  C. pareira  extract was shown for the fi rst time to scavenge oxygen free radicals in 
an in vitro model as well as in an animal model (benzo(a)pyrene-induced gastric 
toxicity) of tissue injury in doses ranging from 50 to 400 μg/kg [ 37 ].  

19.11      Bacopa monniera  Linn. (Scrophulariaceae) 
(Indian Pennywort or  Nirbrahmi ) 

    Traditionally used in Ayurvedic medicine as a memory enhancer, antiepileptic 
agent, and sedative, it was also shown to possess signifi cant antioxidant activity, 
particularly with the alcoholic extract although this was about 50 % of that seen 
with vitamin E [ 38 ].  

19.12      Convulvulus plauricaulis  Linn. (Convolvulaceae) 
(Bindweed;  Shankhpushpi ) 

 Popularly known as a brain tonic,  Convolvulus pleuricaulis  has also been used as an 
antianxiety and antiepileptic preparation. Various studies have shown its antioxidant 
effects in animal models of learning and memory impairment [ 39 ,  40 ]. It contains 
several neuroactive alkaloids such as shankhpushpine, and convolamine, as well as 
other substances including hextriacontane, scopoletin,  beta -sitosterol, ceryl alcohol, 
20-oxodotriacontanol, tetratriacontanoic acid and 29-oxodotriacontanol, fl avonoid 
(kaempferol), and phytosteroids such as phytosterol and  beta -sitosterol [ 41 – 43 ].  

19.13      Aloe vera  Linn. (Aloaceae) 

    Alcoholic extract of  A. vera  leaf gel was demonstrated to possess antioxidant activ-
ity in a rat model of diabetes besides decreasing blood glucose and glycosylated 
hemoglobin and also led to improvement in hemoglobin [ 44 ]. Other studies have 
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also shown that it affords some protection against free radical- induced oxidative 
stress, which could be a combination of a direct antioxidant action and indirect 
action mediated by stimulation of endogenous antioxidant systems [ 45 ].  

19.14      Asparagus racemosus  Willd. (Liliaceae) 
(Common Asparagus;  Shatavari ) 

 Used traditionally for various actions like an antacid and as a tonic, its antioxidant 
actions have also been evaluated. Some studies have shown that it has nootropic 
effects which are partly due to its free radical scavenging action [ 46 – 48 ]. It con-
tains a large number of compounds that can contribute to this action̶vitamins A, 
B1, B2, C, E, folic acid, steroidal saponins, Mg, P, Ca, Fe, essential oils, aspara-
gine, arginine, tyrosine, fl avonoids (kaempferol, quercetin, and rutin), resin, and 
tannin [ 49 ].  

19.15      Piper nigrum  Linn. (Piperaceae, Black Pepper) 
and Piperine 

 In a rat model of metabolic syndrome induced by high fat diet,  P. nigrum  was shown 
to have benefi cial effects on tissue lipid peroxidation and increased antioxidant 
 levels [ 50 ].  

19.16      Celastrus paniculatus  Willd. (Intellect Tree; 
 Malkangani ) 

    Known to have a wide range of benefi cial actions in conditions including asthma, 
leprosy, infl ammation, dysmenorrhoea, and pruritus and possess laxative, expecto-
rant, appetite-stimulant, aphrodisiac, anti-infl ammatory, and diuretic properties, it has 
also been shown to be an antioxidant [ 51 ].  

19.17      Acorus calamus  Linn. (Sweet Flag,  Vacha ) 

 Having known sedative effects, this plant was demonstrated to have free radical 
scavenging actions in animal models of neurological disorders [ 52 ,  53 ]. It is postu-
lated that its sedative effects are due to α- and β-asarone [ 54 ] but whether they are 
responsible for the antioxidant effect remains unknown.  
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19.18     Major Challenges 

 As can be seen from a brief description given above about the various effects of 
many of the plants, it is clear that antioxidant actions have been reported as second-
ary actions on the evaluation of other primary activity(ies) of the plant. While 
many of these studies are published in Medline-indexed journals, other publica-
tions in non-indexed and lay journals are also common. The quality of the pub-
lished work in this fi eld has always never been strong. Even though the results may 
be quite consistent, these are often viewed with some skepticism by the main-
stream medicine experts. It is beyond the scope of this chapter to delve into the 
details of the reasons of whether this skepticism is justifi ed or not, but it will be 
appropriate to mention that one fi nds signifi cant arguments both for and against 
this skepticism. Also, we fear that the evaluation of antioxidant effects in most 
cases is the result of what can be termed as “convenience research” since facilities 
for estimating the various markers of oxidative stress are available in the research-
ers’ laboratories, at relatively low costs. As a case in point, we have evaluated the 
role of various herbal formulations and extracts in animal models of metabolic 
syndrome and pancreatitis without looking at the oxidant/antioxidant status of 
those compounds [ 55 – 57 ]. 

 Another related issue is lack of availability of good evidence about use of these 
antioxidants in humans. Limitations of antioxidants as promoters of good health 
have been challenged as pointed out earlier. Therefore, antioxidants are not recom-
mended routinely to patients as drugs. On the other hand, antioxidants in foods are 
known to promote health and most guidelines in diverse groups of diseases recom-
mend their intake. There is an extreme dearth of evidence whether herbal antioxi-
dants will provide any benefi t in humans. 

 The third challenge for those working in this fi eld is related to the issue of 
 bioavailability. Bioavailability refers to the rate and extent to which a chemical 
compound (drug, active component of a plant) is absorbed and becomes available 
for systemic use. Many of these plant-based products have poor oral bioavailabil-
ity. Lack of good oral bioavailability can render a compound ineffective in an 
animal model or during human use. This has been very well described in case of 
curcumin [ 58 ]. Several methods of improving the bioavailability of curcumin 
have been evaluated. One traditional way of improving bioavailability of various 
compounds is by using black pepper or its combination with other herbs, for 
example, in  trikatu  on which there are data from our institution [ 59 ] as well. 
Unfortunately, such data on bioavailability of most of the other herbal compounds 
do not exist and, to the best of our knowledge, systematic and thorough attempts 
for doing the same are also lacking, although individual researchers are working 
in isolation. 

 We have not listed all the plants having antioxidant actions; it is likely that many 
more plants will show such effects due to the presence of several chemicals such 
as polyphenols and others. We have tried to include only those for which there is 
suffi cient evidence.  
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19.19     Conclusion 

 Certain foods like fruits and vegetables, which are rich in antioxidants, have several 
health benefi ts. Whether the antioxidant effect contributes to any specifi c benefi ts 
has not been conclusively proven. Antioxidant effects of various vitamins and 
related compounds have not withstood the scrutiny of well-conducted clinical trials 
for their routine use. Research on the antioxidant effects of Ayurvedic compounds 
has focused on evaluating primary activity in a disease model along with measure-
ment of various markers of oxidative stress and antioxidant enzymes. Most of these 
studies have failed to show whether the antioxidant actions have contributed towards 
the primary activity of the herb. There are several future challenges for researchers 
in this fi eld to address the various issues.     
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