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     Professor Irina Obrosova 

 A native of Ivanovo, Ukraine, Professor Irina  
Obrosova was born on 26 November 1956. 
After attending Central High School in Kiev, 
she joined Kiev State University to study 
Biology and qualifi ed with the Highest 
Honors in Biology in 1979. She went on to 
do a higher degree in Biochemistry at Kiev 
State University and was awarded a Ph.D. 
in 1985. Following a couple of years as a 



Junior Research Scientist, in 1987 she was 
appointed Senior Research Scientist in the 
Department of Diabetology, Institute of 
Endocrinology and Metabolism, Kiev. 
Her exceptional scientifi c qualities led her 
promotion to the position of Leading 
Research Scientist, Department of 
Diabetology, Institute of Endocrinology and 
Metabolism between 1991 and 1993. 

 Many of us fi rst came to know Professor 
Irina Obrosova in 1991, when she gave an 
impressive oral presentation related to 
diabetic neuropathy at the European 
Association for the Study of Diabetes 
(EASD) meeting in Dublin, Ireland. Irina 
relocated to the USA in 1993 and had 
numerous interactions with peers at 
American and international meetings, 
including the Annual Meeting of the 
NEURODIAB (Diabetic Neuropathy Study 
Group of the EASD). Irina was an extremely 
bright and talented individual who has made 
an important contribution to the diabetes 
complications fi eld. Her research on 
pathogenetic mechanisms of diabetic 
neuropathy has been excellent, and her 
fi ndings have been reproduced by many 
leading investigators. 

 Irina moved to the University of Michigan 
in 1996, where she became a renowned 
expert in diabetic neuropathy and was soon 
promoted to a research faculty position. 
In Michigan, she conducted seminal studies 
demonstrating a key role for aldose 
reductase and oxidative stress in diabetic 
neuropathy, cataract formation as well as 
early diabetic retinopathy. Her excellent 
research and communication skills enabled 
her to obtain several research grants 



including a career development award from 
the National Institute of Health/National 
Institute of Diabetes and Digestive Kidney 
Diseases (NIH/NIDDK). Recognition of her 
skills led her to secure a tenured position as 
an Associate Professor at Pennington 
Biomedical Research Center (PBRC). 
Further development of her career at PBRC 
and promotion to full professorship was a 
clear illustration of what can be achieved by 
a talented and dedicated researcher in an 
excellent scientifi c environment and with 
institutional support. While being at PBRC, 
Irina discovered several important 
mechanisms of diabetic neuropathy 
including nitrosative stress, PARP 
activation, and more recently, activations 
of 12/15-lipoxygenase and 
Na+/H+-exchanger-1. She also contributed 
important data describing a key role for 
PARP activation in diabetic cataract, 
nephropathy, and early retinopathy. 

 In her career, Irina received grant support 
from both federal and private organizations, 
including a research grant from Juvenile 
Diabetes Research Foundation International 
(JDRF), two research grants from the 
American Diabetes Association, two R21 
grants, and, more recently, two RO1 grants 
from the NIH to study the role of Na+/
H+-exchanger-1 in diabetic neuropathy 
and peroxynitrite as a clinical marker for 
progression of diabetic neuropathy. She 
has published many high quality papers in 
prestigious journals including  Diabetes , 
 the Federation of American Societies for 
Experimental Biology Journal ,  Diabetologia , 
and others. She has presented her work at 
national and international meetings and has 



given invited lectures at the annual meetings 
of American Diabetes Association, EASD, 
Japan Diabetes Society, American 
Association of Vision and Eye Research, 
European Association for Vision and Eye 
Research, as well as invited seminars at 
several leading universities. She has also 
chaired many oral and poster sessions at 
international meetings, a clear testament 
for her international reputation in diabetes 
research. She was also a chartered member 
of the NIH Clinical Neuroplasticity and 
Neurotransmitters study section that reviews 
neuropathy-related grants, as well as a 
member of the ADA and Juvenile Diabetes 
Research Foundation grant review panels. 
She has reviewed grants for special emphasis 
panels at the NIH, as well as program project 
grants for the European Union and grants for 
American Institute of Biological Sciences, 
and several other associations. 
She served as a reviewer for many leading 
journals including  Nature Neuroscience , 
 Nature Protocol ,  Diabetes ,  FASEB Journal , 
and others. In short, Professor Obrosova had 
an excellent 
reputation in diabetes complications research 
and as a result was highly respected by her 
peers in the diabetes research. 

 Irina was an outstanding scientist with an 
international reputation who had a clear 
evidence of an exceptional scholarly career 
by numerous, high quality scientifi c 
publications. She was highly articulate and 
unafraid to speak her mind, something that 
will be truly missed by her colleagues at 
future research meetings. She had a formi-
dable intellect and could see through fl aws 
in scientifi c methodology. At a personal level 



she was a very loyal and supportive friend. 
She loved traveling around the world with 
her nephew Oleksandr and enthusiastically 
shared her experiences with her friends by 
bringing back treasures she had purchased, 
including novel paintings and jewelry. 
Unfortunately she was diagnosed with 
pancreatic cancer in early 2012 and passed 
away on 4 December 2012. Throughout her 
seven-month battle with cancer, she 
remained devoted to her work and was 
concerned about completing the projects she 
had going and for the people working for 
her. Her friends and colleagues were 
extremely sad at her untimely death, 
as she had so much more to offer. A highly 
intelligent, passionate, hard working and 
talented scientist, Irina will be greatly 
missed by her many friends in NEURODIAB 
and other institutions. Her strength of 
character in the face of adversity is an 
example to all of us. Her achievements in the 
fi eld of diabetic complications will continue 
to inspire future young scientists. Stanley 
Arnold once remarked, “The greatest thing 
about life is to spend it for something that 
will outlast it.” We think you will agree that 
Irina’s achievements will stand the test of 
time. The Diabetes Complications fi eld will 
be a poorer place without outstanding 
scientists like Irina.       

 Sheffi eld, UK Solomon Tesfaye 
 Iowa City, IA, USA Mark A. Yorek 
 Birmingham, UK Martin J. Stevens 
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1.1            Introduction 

 Oxidative stress is an important component of diabetes and its complications 
[ 1 – 15 ]. Studies showing that treatment with antioxidants prevents diabetes- and 
hyperglycemia- induced impairment of endothelium-dependent relaxation suggest 
that oxidative stress is a major factor in the development of diabetic vascular disease 
[ 7 ,  16 – 20 ]. In addition, treatment of streptozotocin-induced diabetic rats with anti-
oxidants has demonstrated that oxidative stress and vascular dysfunction may be a 
major factor in the development of diabetic neuropathy [ 5 ,  6 ,  8 ,  21 – 23 ]. In this 
chapter I will present past studies from my laboratory that have focused on the 
effect of streptozotocin-diabetes-induced oxidative stress on vascular reactivity of 
epineurial arterioles and neural function.  

1.2     Diabetes-Induced Oxidative Stress and Vascular 
Dysfunction in Epineurial Arterioles 

 My laboratory has for many years focused on the effect of diabetes on vascular and 
neural dysfunction.    Our studies fi rst demonstrated that vascular impairment of epi-
neurial arterioles, blood vessels that provide circulation to the sciatic nerve, and 
reduced endoneurial blood fl ow precede neural dysfunction as determined by slow-
ing of motor nerve conduction velocity (see Fig.  1.1  [ 24 ]). Our studies demon-
strated that one week after the induction of diabetes using streptozotocin, that 

    Chapter 1   
 Oxidative Stress and Diabetes-Induced 
Vascular Dysfunction: Role in Diabetic 
Neuropathy 

             Mark     A.     Yorek    
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vasodilation in response to a low dose of acetylcholine was signifi cantly impaired 
and after two weeks of diabetes, maximum impairment in acetylcholine-mediated 
vascular relaxation was observed [ 24 ]. During this time period endoneurial blood 
fl ow of the sciatic nerve was also reduced. Impairment in motor nerve conduction 
velocity was not observed until after two weeks of diabetes suggesting that vascular 
dysfunction may be an early development in diabetes and a major factor contribut-
ing to diabetic neuropathy.
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  Fig. 1.1    The effect of streptozotocin-diabetes in the development of vascular and neural dysfunc-
tion. Vascular reactivity to acetylcholine by epineurial arterioles (section A ED 50 ), endoneurial 
blood fl ow (section B), and motor nerve conduction velocity (section C) was examined in control 
(0) and streptozotocin-induced diabetic rats following 6–30 days of diabetes. Data is presented as 
the mean ± SEM. * P  < 0.05 compared to control (0)       
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   Acetylcholine-induced vasodilation of epineurial arterioles is mediated by two 
mechanisms involving the production of nitric oxide (NO) and endothelium-derived 
hyperpolarizing factor (EDHF) [ 25 ]. This is important since one mechanism by 
which superoxide/oxidative stress can cause vascular dysfunction is by quenching 
the bioactivity of NO (see below). A primary factor contributing to diabetes-/
hyperglycemia- induced impairment in vascular relaxation in epineurial arterioles is 
increased oxidative stress [ 26 ,  27 ]. Oxidative stress occurs when the balance 
between the production of oxidation products and the ability of antioxidant mecha-
nisms to neutralize these products is shifted in the favor of formation/accumulation 
of oxidative stress products. 

 It is widely known that diabetes causes an increase in the production of reactive 
oxygen species [ 18 ,  28 – 30 ]. The most common forms are superoxide (O 2  − ), hydro-
gen peroxide (H 2 O 2 ), hydroxyl radical (OH − ), and peroxynitrite (ONOO − ) [ 31 ]. 
There are many potential sources for production of these compounds. Superoxide 
can be produced by the electron transport chain of the mitochondria, NADH oxi-
dase, NAD(P)H oxidase, xanthine oxidase, nitric oxide synthases, cyclooxygenase, 
lipoxygenase, and cytochrome P-450 [ 31 ]. Superoxide can spontaneously acquire 
an electron to form hydrogen peroxide.    Hydrogen peroxide can also be formed from 
superoxide via superoxide dismutase (SOD), of which there are three isoforms: 
manganese (Mn)-SOD, which is located in the mitochondria, and two isoforms of 
copper and zinc (Cu, Zn)-SOD, which are located in the cytosol or extracellularly, 
respectively [ 31 ]. Hydrogen peroxide can be converted to water by the action of 
catalase or by glutathione peroxidase in the presence of reduced glutathione [ 31 ]. 
However, in the presence of trace metals such as iron (Fe), hydrogen peroxide can 
form OH −  via a process known as the Fenton reaction [ 31 ]. The formation of per-
oxynitrite is also important pathologically and occurs by the reaction of O 2  −  and NO 
[ 30 ,  31 ]. We have demonstrated that superoxide and peroxynitrite, as indicated by 
the presence of nitrotyrosine staining, formation is increased in epineurial arterioles 
from diabetic rats (see Fig.  1.2  [ 26 ,  27 ]).

   In a hallmark study Brownlee et al. [ 32 ,  33 ] presented a unifying hypothesis that 
increased production of superoxide by the mitochondrial chain is a causal link 
between elevated glucose and three of the main biochemical pathways (glucose- 
induced activation of protein kinase C, increased formation of glucose-derived 
advanced glycation end products, and increased glucose fl ux through the aldose 
reductase pathway) responsible for diabetes/hyperglycemia complications [ 32 ,  33 ]. 
Our studies have indicated that in epineurial arterioles from diabetic rats, the 
increased formation of superoxide seems to be primarily derived from the mito-
chondria [ 34 ]. We had previously demonstrated that reducing superoxide formation 
and oxidative stress in diabetic rats by treatment with several different types of 
antioxidants improved vasodilation by acetylcholine in epineurial arterioles of the 
sciatic nerve [ 26 ,  27 ]. In studies designed to investigate the source of superoxide 
formation in epineurial arterioles of the sciatic nerve from diabetic rats, we demon-
strated that antioxidants were capable of preventing superoxide formation and 
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reversing diabetes-induced vascular impairment in vitro. Dihydrolipoic acid and to 
a lesser extent α-lipoic acid were effective in decreasing superoxide formation and 
restoring acetylcholine-mediated vasodilation to arterioles from diabetic rats. 
α-Lipoic acid is capable of scavenging hydroxyl radicals, hypochlorous acid, and 
singlet oxygen, but not superoxide or peroxyl radicals [ 35 ,  36 ]. α-Lipoic acid is also 
effective at chelating transition metals. In contrast, in its reduced form as dihydroli-
poic acid, it is a good scavenger of superoxide and prevents initiation of lipid per-
oxidation [ 35 ,  36 ]. 

 In vivo α-lipoic acid can be converted into dihydrolipoic acid [ 35 ]. In addition, 
both α-lipoic acid and dihydrolipoic acid can regenerate other cellular antioxidants 
including dehydroascorbate, ubiquinol, oxidized glutathione, and, indirectly, the 
tocopherols [ 35 ]. The combination of these properties was likely responsible for the 
effectiveness of α-lipoic acid and dihydrolipoic acid in decreasing superoxide for-
mation [ 34 ]. Tempol, a superoxide dismutase mimetic, also reversed the diabetes- 
induced impairment of acetylcholine-mediated vasodilation and increased 
superoxide formation in epineurial arterioles [ 37 ]. This is in agreement with other 
studies, which demonstrated that tempol or M40403, another superoxide dismutase 
mimetic, restores diabetes-induced endothelial dysfunction [ 27 ,  37 ,  38 ]. The 
decrease in superoxide formation by α-lipoic acid, dihydrolipoic acid, or tempol 

  Fig. 1.2    Representative images for superoxide and nitrotyrosine staining in epineurial arterioles 
from control and streptozotocin-induced diabetic rats. Duration of diabetes was 8 weeks       
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and the reversal of the diabetes-induced impairment in vasodilation suggest that the 
increased formation of superoxide and perhaps scavenging of nitric oxide is respon-
sible in part for the reduced vascular response to acetylcholine in epineurial arteri-
oles from diabetic rats. This is supported by our previous studies demonstrating the 
formation of superoxide and/or peroxynitrite by epineurial arterioles of the sciatic 
nerve from diabetic rats causes vascular dysfunction that is prevented with treat-
ment by antioxidants in vivo [ 26 ,  27 ]. This was further supported by studies demon-
strating that pretreatment with  l -arginine in vitro improved acetylcholine-mediated 
vasodilation in epineurial arterioles from diabetic rats without decreasing the for-
mation of superoxide by these vessels. Acute pretreatment with  l -arginine of ves-
sels from diabetic rats as well as  l -arginine treatment of diabetic animal models and 
humans has led to the suggestion that reduced availability of nitric oxide during 
periods of hyperglycemia may be responsible for impaired vascular relaxation 
[ 39 – 43 ]. This may be due to a limitation in arginine as a substrate for nitric oxide 
synthase in diabetes or an increase in scavenging of nitric oxide by superoxide 
[ 26 ,  27 ,  44 ]. Our studies would support the latter conclusion. We have demonstrated 
increased superoxide and peroxynitrite formation in epineurial arterioles of diabetic 
rats and impairment in endothelium-dependent vascular relaxation that is prevented 
by antioxidant treatment [ 26 ,  27 ]. 

 In studies to investigate the possible sources of superoxide formation in epineu-
rial arterioles of diabetic rats, we found that increased formation of superoxide 
by epineurial arterioles was attenuated by preincubation with rotenone but not 
  m - chlorophenylhydrazone  (CCCP) or thenoyltrifl uoroacetone (TTFA) [ 34 ]. 
Rotenone is an inhibitor    of complex I of the mitochondrial electron transport chain, 
TTFA is an inhibitor of complex II, and CCCP is an uncoupler of oxidative phos-
phorylation. We are unsure why CCCP was less effective than rotenone in reducing 
superoxide formation by epineurial arterioles of the sciatic nerve of diabetic rats. It 
is possible that CCCP did not penetrate the vascular wall under the incubation con-
ditions. Nonetheless, this study implicated complex I of the mitochondrial electron 
transport chain in the production of superoxide by epineurial arterioles of the sciatic 
nerve of the diabetic rat. In our studies increased formation of superoxide by epi-
neurial arterioles from diabetic rats was also partially decreased by diphenylene 
iodonium (DPI). DPI has been used for many years as a NAD(P)H oxidase inhibitor 
[ 45 ]. Therefore, our studies at fi rst would suggest that NAD(P)H oxidase may also 
be a source for the production of superoxide by epineurial arterioles of the diabetic 
rat. However, Li and Trush have reported in studies with monocytes that DPI at 
concentrations that inhibit NAD(P)H oxidase diminished the production of super-
oxide by mitochondrial respiration [ 46 ]. They found that DPI was as potent as rote-
none in inhibiting the production of superoxide by the mitochondria, likely by 
complex I. If the studies by Li and Trush are correct, we cannot unequivocally state 
that NAD(P)H oxidase is a source of superoxide formation by epineurial arterioles 
of the sciatic nerve.  
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1.3     Neural Dysfunction 

 In two separate studies we examined the effect of treating streptozotocin-diabetic 
rats with α-lipoic acid or M40403 on vascular dysfunction, endoneurial blood fl ow, 
and nerve activity, as determined by measuring motor nerve conduction velocity 
[ 26 ,  27 ]. These studies demonstrated that treating diabetic rats using a prevention 
protocol with α-lipoic acid or M40403 prevented the diabetes-induced decrease in 
motor nerve conduction velocity and endoneurial blood fl ow (Fig.  1.3 ) and impair-
ment of acetylcholine-mediated vascular relaxation by epineurial arterioles 
(Fig.  1.4 ). These treatments generally improved markers of oxidative stress includ-
ing serum thiobarbituric acid reactive substance and superoxide and nitrotyrosine 
staining of epineurial arterioles [ 26 ,  27 ]. These studies imply that diabetes causes 
the increased production of superoxide and peroxynitrite in neural microvascular 
tissue and this is responsible for impaired vascular function. Moreover, improving 
vascular function in diabetes by use of antioxidants also restores endoneurial blood 
fl ow and neural activity.

    Diabetes has been shown to cause an increase fl ux of glucose through the aldose 
reductase pathway that leads to the accumulation of sorbitol by nerve and other tis-
sues [ 33 ]. Numerous investigators have demonstrated that treating diabetic rats with 
an aldose reductase inhibitor improves nerve function, and we have shown that 
treatment with an aldose reductase inhibitor also improves vascular dysfunction in 
epineurial arterioles [ 47 ]. The mechanism responsible for improving diabetes 
impaired vascular and nerve function by aldose reductase inhibitor treatment is 
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  Fig. 1.3    Effect of treatment of streptozotocin-induced diabetic rats with 0.5 % α-lipoic acid or 
M40403 on motor nerve conduction velocity and endoneurial blood fl ow. Data is presented as the 
mean ± SEM % of control. * P  < 0.05 compared to control;  +  P  < 0.05 compared to diabetic       
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unclear but in part may be due to reducing oxidative stress [ 47 ]. Previously we had 
reported that treating streptozotocin-induced diabetic rats with 0.5 % α-lipoic acid 
(see above) provides maximum protection against diabetes-induced oxidative stress 
and the development of vascular and neural dysfunction [ 26 ]. We have also reported 
that sorbinil, an aldose reductase inhibitor, partially prevented the development of 
diabetes-induced vascular and neural defects but were not as effi cacious as antioxi-
dant therapies [ 26 ,  47 ]. We next sought to determine whether combining these 
therapies at lower doses may be synergistic [ 48 ]. We found that the combination of 
0.25 % α-lipoic acid and fi darestat (3 mg/kg B.W.), an aldose reductase inhibitor, 
completely prevented the diabetes-induced impairment of acetylcholine-mediated 
vascular relaxation in epineurial arterioles of the sciatic nerve (Fig.  1.5 ) and that 
this combination was more effective in preventing diabetes-induced vascular dys-
function than monotherapy of either compound. Our explanation for these results 
was that treatment of diabetic rats with fi darestat in combination with α-lipoic acid 
favored the formation of dihydrolipoic acid. α-Lipoic acid is a good metal chelator 
and is capable of scavenging hydroxyl radicals, hypochlorous acid, and singlet 
oxygen, but not superoxide or peroxyl radicals [ 35 ,  36 ,  49 ,  50 ]. However, in its 
reduced form, as dihydrolipoic acid, it is a good scavenger of superoxide and pre-
vents initiation of lipid peroxidation [ 35 ,  36 ,  49 ,  50 ]. In vivo, the conversion of 
α-lipoic acid to dihydrolipoic acid requires either NADH or NADPH [ 49 ,  51 ]. In 
the mitochondria, preferentially R(+)-α-lipoic acid is converted to dihydrolipoic acid 
by the action of dihydrolipoamide dehydrogenase which requires NADH [ 50 ,  51 ]. 
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  Fig. 1.4    Effect of treatment of streptozotocin-induced diabetic rats with 0.5 % α-lipoic acid or 
M40403 on acetylcholine-mediated vascular relaxation by epineurial arterioles. Data is presented 
as the mean ± SEM % of control. * P  < 0.05 compared to control;  +  P  < 0.05 compared to diabetic       
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Both stereo- isoforms of α-lipoic acid can be reduced in the cytosol by glutathione 
reductase or thioredoxin reductase, both require NADPH [ 50 – 52 ]. In neutrophils, as 
well as rat heart, kidney, and brain, NADH-dependent reduction of α-lipoic acid is 
prominent, whereas with rat liver, NADH- and NADPH-dependent pathways were 
about equally active [ 50 ,  52 ]. In erythrocytes and endothelial cells, NADPH is the 
primary reducing cofactor for α-lipoic acid [ 50 ,  53 ]. In diabetes, NADPH levels are 
reduced due to the increased fl ux of glucose through the aldose reductase pathway 
[ 40 ,  41 ]. Therefore, blocking the aldose reductase pathway with an aldose reductase 
inhibitor such as fi darestat likely protects cellular NADPH levels permitting the 
formation of dihydrolipoic acid. This explanation is supported by our studies dem-
onstrating that serum dihydrolipoic acid levels are increased in diabetic rats treated 
with α-lipoic acid and fi darestat [ 48 ]. These studies suggest that in addition to pro-
tecting glutathione production, treatment of diabetic rats with an aldose reductase 
inhibitor may promote the formation of dihydrolipoic acid. This result may explain 
the antioxidant properties of aldose reductase inhibitors [ 54 ]. In these studies there 
was a synergistic effect on improving lens glutathione levels when treating diabetic 
rats with the combination of α-lipoic acid and fi darestat. Treatment of diabetic rats 
with fi darestat alone independently improved endoneurial blood fl ow and motor 
nerve conduction velocity, by 50 and 60 %, respectively, and reduced superoxide 
formation in the aorta. Furthermore, treating diabetic rats with 3 or 15 mg/kg body 
weight of fi darestat had a concentration-dependent effect on improving endoneurial 
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  Fig. 1.5    Effect of treatment of streptozotocin-induced diabetic rats with 3 mg/kg fi darestat and/or 
0.25 % α-lipoic acid on acetylcholine-mediated vascular relaxation by epineurial arterioles. Data 
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blood fl ow, motor nerve conduction velocity, and acetylcholine-mediated vasodila-
tion in epineurial arterioles. Taken together our results imply that some markers of 
oxidative stress and neural function are signifi cantly improved by monotherapy 
using α-lipoic acid; however, the greatest benefi cial effects were observed on all 
markers of oxidative stress and vascular function when the combination treatment 
consisting of α-lipoic acid and fi darestat was used.

   In summary, diabetic neuropathy is a multifactorial disorder and vascular dys-
function in part due to an increase in oxidative stress is a contributing factor. Since 
diabetic vascular and neural disease is multifactorial, combination therapy may be 
the best approach for an effective treatment. The studies presented above suggest 
that an effective combination therapy should include an antioxidant such as α-lipoic 
acid and an aldose reductase inhibitor.     
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2.1            Introduction 

    Diabetes mellitus is a group of metabolic diseases that produces an increase in 
blood glucose as a result of inadequate production/release of insulin by the beta 
cells of the pancreas (type 1 diabetes mellitus, insulin-dependent diabetes, juvenile- 
onset diabetes) or as a result of inadequate responses of cells to insulin that is 
 produced/released by the pancreas (type 2 diabetes mellitus, non-insulin-dependent 
diabetes, adult-onset diabetes). Estimates suggest that there are about 26 million 
children and adults (over 8 % of the population) that have been diagnosed with dia-
betes, about 7 million individuals that have diabetes but have not been diagnosed, 
and about 79 million people that are prediabetic. The cost of diabetes has been 
estimated to be over $180 billion per year (disability, work loss, and premature 
mortality). The complications from diabetes include, but are not limited to, hyper-
tension, neuropathy, nephropathy, blindness, peripheral vascular disease, infl amma-
tion, heart disease, and stroke. Thus, diabetes contributes to an increase in morbidity 
and mortality in children, adolescents, adults, and the elderly. It remains critical to 
defi ne mechanisms by which diabetes contributes to dysfunction of many organ 
systems in order to provide new therapeutic approaches for the prevention of 
diabetes- induced disease states. In this chapter, we will focus on mechanisms by 
which type 1 diabetes (T1D) may contribute to an increase in oxidative stress in the 
brain and how this increase in oxidative stress may contribute to cerebrovascular 
dysfunction, brain injury, cognitive dysfunction, and perhaps stroke.  

    Chapter 2   
 Cerebrovascular Disease in Type 1 Diabetes: 
Role of Oxidative Stress 
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2.2     Oxidant Pathways in Diabetes 

 T1D impairs nitric oxide synthase (NOS)-dependent responses of large and small 
peripheral and cerebral blood vessels. Mechanisms responsible for T1D-induced 
impairment in vascular function appear to be related to the generation of reactive 
oxygen species (ROS) through a variety of cellular pathways. This increase in oxi-
dative stress during T1D can occur from many cell types (endothelium, vascular 
smooth muscle, neurons, glia, astrocytes) and represents an imbalance between the 
production of ROS by oxidizing enzymes and the scavenging of these ROS by anti-
oxidant defense enzymes, which serve to interfere with the downstream signaling 
events triggered by these ROS. In T1D, the activity of ROS-producing enzymes is 
increased, while antioxidant defense enzymes appear to be unaltered or decreased, 
shifting the balance in favor of ROS production. There are several oxidant- producing 
and antioxidant-protecting pathways that are altered by T1D in peripheral and cere-
bral blood vessels. In the following sections, we will outline some of the key aspects 
of these pathways. 

2.2.1     Cyclooxygenase Pathway 

 The cyclooxygenase pathway has been implicated in synthesis of ROS for many 
years and has been thought to be a contributor to the formation of ROS during dia-
betes [ 30 ,  154 ,  156 ]. Early studies by Kontos and colleagues [ 88 ,  90 ,  91 ,  173 ] found 
that application of arachidonate to the cerebral microcirculation could produce dila-
tion of large and small cerebral arterioles. This dilation could be inhibited by a 
combination of superoxide dismutase (SOD) and catalase, thus implicating a role 
for superoxide anion, hydrogen peroxide, and hydroxyl radical [ 90 ,  173 ]. It is now 
becoming apparent that hydrogen peroxide may be acting as an endothelium-derived 
hyperpolarizing factor in the brain and other vascular organs [ 89 ,  92 ,  104 ,  167 ]. 
Support for the production of ROS by the cyclooxygenase pathway during diabetes 
can be found in early studies by Pieper et al. [ 127 ,  129 ] and Tesfamariam et al. 
[ 155 ]. Pieper et al. [ 127 ] found that oxygen radicals, generated via xanthine plus 
xanthine oxidase, could impair relaxation of the thoracic aorta in nondiabetic and 
diabetic rats and that catalase and SOD could enhance relaxation of the thoracic 
aorta in diabetic rats [ 129 ]. Tesfamariam et al. [ 155 ] found that indomethacin could 
restore impaired relaxation of the thoracic aorta in diabetic rats to that observed in 
nondiabetic rats. Thus, it appeared that ROS generated via the activation of the 
cyclooxygenase pathway could contribute to impaired vascular function of periph-
eral blood vessels during T1D. With regard to cerebral vessels, we [ 108 ] found that 
treatment with indomethacin or the thromboxane A2/prostaglandin H2 receptor 
(SQ 29548) improved impaired endothelial NOS (eNOS)-dependent responses of 
cerebral arterioles in diabetic rats. In addition, others [ 79 ] have reported that 
 indomethacin can restore impaired cerebrovascular reactivity to insulin in 
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insulin-resistant obese rats. Taken together, these fi ndings suggest that the produc-
tion of a cyclooxygenase constrictor substance and/or the production of ROS via the 
cyclooxygenase pathway may contribute to impaired eNOS-dependent responses of 
cerebral arterioles during T1D.  

2.2.2     NADPH Oxidase 

 NADPH oxidases are a primary source of ROS in the vascular system and are active 
in all cell types within the walls of blood vessels [ 66 ,  162 ]. NADPH oxidases are 
comprised of two membrane bound subunits (Nox and p22phox), up to three cyto-
plasmic subunits (p67phox, p47phox, and p40phox), and a G protein (Rac1/Rac2). 
Several NADPH oxidases have been identifi ed (Nox1, Nox2, Nox4, and Nox5), and 
these are a primary source of ROS in the vasculature [ 13 ,  17 ,  30 ,  156 ]. Since the 
formation of ROS (presumably via an increase in cellular levels of glucose) appears 
to be of primary importance in vascular dysfunction during T1D, compounds that 
inhibit Nox activity may offer therapeutic benefi ts in T1D-induced cerebrovascular 
dysfunction (Fig.  2.1 ). In fact, investigators have shown that inhibition of Nox with 

     Fig. 2.1    Hyperglycemia- 
induced activation of 
NADPH oxidase. Activation 
of NADPH oxidase isoforms 
via an increase in cellular 
levels of glucose 
(hyperglycemia) can increase 
the formation of superoxide 
(O 2  − ) from numerous cellular 
sources. Superoxide can then 
combine with nitric oxide 
(NO), forming peroxynitrite 
(ONOO − ), which can then 
reduce NO bioavailability, 
leading to cerebrovascular 
dysfunction       
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apocynin reversed upregulation of Nox enzymes, improved nitric oxide function, 
and reduced vascular dysfunction of peripheral blood vessels in diabetic animals 
[ 8 ,  15 ,  56 ,  124 ]. While studies have shown that apocynin can infl uence the patho-
genesis of stroke [ 153 ] and can improve impaired cerebrovascular function during 
hyperhomocysteinemia [ 33 ], few studies have examined the role of Nox enzymes in 
impaired responses of cerebral blood vessels during T1D. In a previous study, we 
found that T1D increased superoxide levels in brain tissue and increased the protein 
expression of various subunits of Nox in brain tissue and cerebral blood vessels 
[ 105 ]. Further, we found that chronic treatment of diabetic rats with apocynin could 
reverse the increase in superoxide levels in brain tissue and also could reverse 
impaired eNOS-dependent responses of cerebral arterioles [ 105 ]. Although studies 
have shown that Nox may be of benefi t during diabetes, some have questioned the 
specifi city, potency, and toxicity of this type of treatment and how it may translate 
to treatment of humans with diabetes or, in fact, with other disease states [ 73 ,  161 ]. 
Thus, while there may be a signifi cant role for Nox enzymes in the generation of 
ROS, there may not be enough defi nitive evidence to determine which isoform of 
Nox may be most important in cerebral vessels during T1D.

   The precise cellular pathway underlying increased Nox expression/activity in 
T1D remains unclear. One possibility is that angiotensin II plays a critical role 
(Fig.  2.2 ). Stimulation of vascular smooth muscle cells with angiotensin II, throm-
bin, lipopolysaccharide, and cytokines increases the activity of NADPH oxidase, 
vascular p47phox expression, and production of ROS [ 1 ,  21 ,  54 ,  65 ,  66 ,  93 ]. Since 
tissue and plasma levels of angiotensin-converting enzyme, and thus angiotensin II, 
are elevated in diabetics [ 42 ,  97 ,  138 ] and since angiotensin II has been shown to 

  Fig. 2.2    Role for angiotensin 
II in mediating 
hyperglycemia-induced 
activation of NADPH 
oxidase. Angiotensin, acting 
via AT-1 receptors, can 
activate NADPH oxidase, 
lead to a decrease in NOS 
activity (and subsequent 
formation of NO), and/or 
increase the synthesis/release 
of endothelin-1 (ET-1). These 
actions can lead to a decrease 
in NO bioavailability and 
cerebrovascular dysfunction       

 

D.M. Arrick and W.G. Mayhan



17

activate NADPH oxidase (presumably Nox2) via stimulation of AT-1 receptors [ 65 , 
 132 ,  177 ], it seems reasonable to suggest that the formation of superoxide during 
T1D may be related to angiotensin II-induced stimulation of Nox. Support for this 
concept can be found in studies that report treatment of diabetic subjects with 
angiotensin- converting enzyme inhibitors improves impaired NOS-dependent 
responses of large peripheral blood vessels [ 24 ,  116 ]. Given that angiotensin II can 
infl uence the brain via the circulation and via local production, it is not surprising 
that the cerebral circulation is also quite sensitive to angiotensin II. Investigators 
have shown that angiotensin II can produce endothelial dysfunction, impair neuro-
vascular coupling, and alter the transport properties of the blood–brain barrier [ 6 , 
 35 ,  48 ,  62 ,  67 ,  81 ,  112 ,  137 ]. With regard to T1D, we have reported that treatment 
of diabetic rats with enalapril [ 163 ] or losartan [ 6 ] can alleviate impaired eNOS- 
dependent responses of cerebral arterioles [ 163 ]. Although most studies have sug-
gested that angiotensin II promotes endothelial dysfunction largely due to activation 
of NADPH oxidase and the subsequent formation of superoxide, additional mecha-
nisms may also account for angiotensin II-induced vascular dysfunction. For exam-
ple, angiotensin II can limit the production of nitric oxide [ 61 ,  100 ], can lead to the 
formation of an endothelium-derived contracting factor [ 38 ,  102 ,  172 ], and can lead 
to an increase in the synthesis/release of endothelin-1 [ 130 ,  179 ]. Impaired responses 
of cerebral arterioles during T1D have also been implicated to be related to altera-
tions in nitric oxide production [ 79 ,  84 ], the production of a cyclooxygenase con-
strictor substance [ 79 ,  108 ], and/or the increased synthesis of endothelin-1 [ 4 ]. 
Thus, future studies will be required to determine the mechanism underlying the 
role for angiotensin II in cerebrovascular dysfunction during T1D.

2.2.3        Mitochondria 

 The mitochondria are a key source of ROS in cells as a result of an imbalance in the 
electron transport chain. Since oxidative stress is now widely accepted to play a key 
role in vascular dysfunction in a variety of disease states, including T1D, it has 
become apparent that the mitochondria might be a major contributor to this increase 
in oxidative stress (Fig.  2.3 ). The production of ROS by the mitochondria is a very 
complex process that involves oxidative phosphorylation across the electron trans-
port chain; for review see [ 135 ]. Although mitochondrial complexes I and III may 
be mainly responsible for the generation of ROS, complexes II and IV may also 
result in the production of ROS [ 25 ,  115 ]. The mechanism by which hyperglycemia 
can lead to an increase in the synthesis/release of ROS by mitochondria is not 
entirely clear, but appears to involve an increase in electron donors (NADH and 
FADH2) through the electron transport chain. The role of mitochondria in impaired 
vascular function during T1D has not been extensively examined, but investigators 
have shown that inhibition of the electron transport chain can reduce oxidative 
stress in the heart [ 25 ,  98 ]. In addition, rotenone, an inhibitor of complex I, has been 
shown to decrease the levels of hydrogen peroxide in the posterior cerebral artery of 
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diabetic mice and partially reverse decreased calcium currents in smooth muscle 
cells during T1D [ 40 ]. Thus, we speculate that inhibition of the electron transport 
chain may have important implications for cerebrovascular dysfunction in T1D. 
Support for this concept may come from studies of type 2 diabetic patients. One of 
the more common treatments of type 2 diabetes is metformin. One mechanism of 
metformin is the ability to inhibit complex I of the electron transport chain [ 20 ]. 
Therefore, it is conceivable that inhibition of the mitochondrial electron transport 
chain also may have important clinical applications to T1D.

2.2.4        Endothelial NOS 

 eNOS is modulated by many mechanisms including enzyme phosphorylation, inter-
actions with various proteins, several transcription factors, levels of substrate, and 
the availability of critical cofactors. In addition, there are various downstream regu-
lators of cellular signaling pathways that are able to modulate eNOS function 
including Rho kinase (RhoA) [ 140 ]. With regard to cofactors for eNOS, tetrahydro-
biopterin (BH 4 ) has been shown to be a critical component of eNOS regulation 
[ 2 ,  23 ,  64 ]. In order for eNOS to remain active, it must remain in a dimeric form and 
BH 4  contributes to the ability of eNOS to remain in this state [ 16 ,  32 ,  168 ]. There 
are many studies that have shown that hyperglycemia/diabetes can produce 

  Fig. 2.3    The role of the mitochondria. Increases in cellular levels of glucose can stimulate the 
mitochondria to release ROS via activation of NADPH oxidase and through the electron transport 
chain. Once formed, ROS can then produce a decrease in NO bioavailability and cerebrovascular 
dysfunction       
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reductions in the cellular levels of BH 4 , leading to an “uncoupling” of eNOS to its 
monomeric form, thereby increasing the formation of eNOS-derived superoxide [ 3 , 
 49 ,  69 ,  86 ,  120 ]. Thus, it is conceivable that eNOS uncoupling is a viable mecha-
nism by which T1D can produce cerebrovascular dysfunction (Fig.  2.4 ). Support for 
this concept can be derived from studies that have shown that treatment of type 2 
diabetic patients or patients following a glucose challenge with BH 4  can improve 
eNOS-dependent dilation [ 71 ,  76 ]. In addition, treatment with sepiapterin, a precur-
sor of BH 4 , or supplementation with BH 4  produced an improvement in eNOS- 
dependent responses of peripheral arteries in diabetic rats [ 11 ,  120 ,  121 ]. Only a 
limited number of studies have examined the infl uence of BH 4  on cerebral blood 
vessels. Early studies have shown that application of BH 4  to cerebral blood vessels 
could produce dilation or constriction dependent upon the size of the cerebral artery 
and/or species [ 82 – 84 ,  136 ]. A more recent study [ 79 ] reports that supplementation 
with sepiapterin in insulin-resistant obese rats improved dilation of cerebral arteri-
oles in response to insulin suggesting eNOS uncoupling in this model. Unfortunately, 
there are no studies that we are aware of that have examined the infl uence of chronic 
treatment with BH 4  or sepiapterin on responses of cerebral arteries or arterioles dur-
ing T1D. We have, however, shown that supplementation with BH 4  improves 
impaired responses of cerebral arterioles during other disease states [ 44 ,  145 ,  146 ], 
and thus it is conceivable that eNOS uncoupling may play a critical role in impaired 
vascular function during T1D.

  Fig. 2.4    eNOS uncoupling. The formation of ONOO −  by an increase in cellular levels of glucose 
can contribute to cerebrovascular dysfunction by oxidizing tetrahydrobiopterin (BH 4 ) to dihydro-
biopterin (BH 2 ). This defi ciency in the availability of BH 4  would force eNOS from its dimeric form 
to its monomeric form (an uncoupled state). Once in this uncoupled state, electrons fl owing from 
the eNOS reductase domain to the oxygenase domain are diverted to molecular oxygen rather than 
to  l -arginine, resulting in the production of superoxide (O 2  − ) rather than nitric oxide (NO). Once 
formed, superoxide can inactivate NO and produce cerebrovascular dysfunction       
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2.2.5        Protein Kinase C 

 The protein kinase C (PKC) family comprises at least fi fteen isoforms. This family 
of protein kinase enzymes is involved in managing the function of other proteins 
through the phosphorylation of hydroxyl groups of serine and threonine amino acid 
residues on these specifi c proteins. PKC enzymes are activated by signals such as 
increases in the concentration of diacylglycerol (DAG) or calcium ions (Ca 2+ ). 
Hence, PKC enzymes play important roles in several signal transduction cascades. 
Increases in cellular levels of glucose can increase the synthesis of DAG which, in 
turn, will activate the classical isoforms of PKC [ 60 ,  72 ,  77 ]. Once PKC is acti-
vated, a variety of events can occur within the cell, which may result in alterations 
in vascular permeability and/or vascular function (Fig.  2.5 ). For example, activation 
of PKC can lead to a decrease in eNOS, an increase in the expression of endothe-
lin-1, and an increase in oxidative stress via NADPH oxidase [ 9 ,  18 ,  31 ,  77 ,  122 , 
 131 ,  133 ,  169 ,  180 ]. In addition, activation of PKC can induce the activation of 

  Fig. 2.5    Infl uence of PKC on cerebrovascular dysfunction. Hyperglycemia can increase the syn-
thesis of diacylglycerol (DAG) which will activate the classical isoforms of protein kinase C 
(PKC). Once PKC is activated, a variety of events can occur within the cell, including an increase 
in the expression of endothelin-1 (ET-1) and the activation of NADPH oxidase. These events will 
lead to cascade of actions to decrease NO bioavailability and cerebrovascular dysfunction       

 

D.M. Arrick and W.G. Mayhan



21

several proinfl ammatory agents such as tumor necrosis factor-α (TNF-α), vascular 
endothelial growth factor (VEGF), and nuclear factor-κB (NF-κB) [ 47 ,  50 ,  101 , 
 142 ,  158 ,  166 ].

   Many investigators have reported a role for PKC in impaired endothelial func-
tion of peripheral blood vessels during T1D [ 46 ,  70 ,  114 ,  115 ,  178 ]. In addition, a 
few studies have implicated a role for activation of PKC in impaired responses of 
cerebral blood vessels during T1D. Studies by Pelligrino et al. [ 123 ] have shown 
that treatment of diabetic rats with staurosporine could restore impaired responses 
of pial arterioles in diabetic rats. In subsequent studies, Pelligrino and colleagues 
[ 170 ] found that PKCδ activity was increased in the glio-pial tissue of diabetic rats, 
suggesting that this isoform of PKC may ultimately lead to impaired neurovascular 
coupling during T1D. Others also have reported impairment in neurovascular cou-
pling in diabetic rats was related to an increase in the activity of PKC [ 171 ]. This 
increase in the activity of PKC appeared to be responsible for a decrease in large 
conductance (BK) calcium channel and inward rectifi er (Kir) calcium channel 
activity [ 171 ]. In addition, we have shown that acute hyperglycemia could impair 
NOS-dependent responses of pial arterioles in rats and this impairment could be 
reversed by treatment with a PKC inhibitor [ 106 ]. Thus, it appears that activation of 
PKC, through the stimulation of various downstream events, can infl uence cerebro-
vascular function during T1D.  

2.2.6     Poly(ADP-Ribose) Polymerase 

 Poly(ADP-ribose) polymerases (PARPs) are an important set of nuclear enzymes 
that appear to be involved in the response of the cell to DNA injury/DNA strand 
breaks [ 27 ,  59 ,  126 ]. These enzymes, of which PARP-1 is most abundant, normally 
function in DNA repair, but extensive activation of PARP can promote cellular dys-
function and/or cell death via mechanisms involving depletion of NAD+ and ATP 
within the cell [ 27 ,  59 ,  126 ]. Activation of PARP has been implicated in the patho-
genesis of several disease states including stroke [ 29 ,  43 ,  109 ,  126 ], infl ammation 
[ 63 ,  80 ,  151 ,  181 ], myocardial dysfunction [ 28 ,  119 ,  164 ,  180 ], autoimmune dis-
eases [ 125 ,  126 ], and cognitive impairment following hypoglycemic cell death 
[ 144 ]. Since oxidative stress can induce the activation of PARP [ 57 ,  59 ] and since 
oxidative stress is increased in T1D, it is conceivable that PARP activation may 
contribute to vascular dysfunction during T1D (Fig.  2.6 ).

   Several studies have suggested that PARP activation is increased in T1D and this 
increase may contribute to cardiovascular and endothelial dysfunction. Pacher et al. 
[ 119 ] have reported an increase in the activation of PARP in the heart of diabetic rats 
and mice, cardiac dysfunction, and a decrease in NOS-dependent reactivity of the 
thoracic aorta. In addition, these alterations in cardiac/vascular function observed in 
diabetic rats and mice could be restored to that observed in nondiabetic animals by 
treatment with PJ-34 [ 119 ]. Studies by others [ 57 ,  58 ] also report that T1D activates 
PARP and induces endothelial dysfunction of the thoracic aorta. In addition, 
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treatment of vascular rings from PARP-defi cient mice with glucose (30 mM for 
16 h) did not produce endothelial dysfunction, and acute treatment of vascular rings 
from wild-type mice with PJ-34 prevented endothelial dysfunction induced by an 
acute episode of hyperglycemia [ 57 ]. In studies using T1D rats, we found that acute 

  Fig. 2.6    The contribution of PARP. Hyperglycemia during T1D can stimulate increased levels of 
angiotensin II (AII) and activate PKC. AII and PKC can increase the production of superoxide 
anion (O 2  − ) via activation of NADPH oxidase. Once formed, O 2  −  can react with nitric oxide (NO) 
to form peroxynitrite (ONOO − ), to induce DNA strand breaks thereby activating poly(ADP-ribose) 
polymerase (PARP). PARP activation can trigger a proinfl ammatory pathway and the generation of 
infl ammatory mediators (TNFα, iNOS and/or NF-κB) that may lead to cerebrovascular dysfunc-
tion. Activation of PARP may, via a metabolic pathway, produce a decrease in NADPH and 
GAPDH leading to a decrease in cellular energy status (ATP), a decrease in production of eNOS, 
and a further increase in ROS through activation of several pathways. This decrease in cellular 
energy status and increase in oxidative stress can lead to cerebrovascular dysfunction       

 

D.M. Arrick and W.G. Mayhan



23

treatment of pial arterioles with an inhibitor of PARP (PJ-34) could restore impaired 
NOS-dependent reactivity [ 5 ]. We suggested that the infl uence of PJ-34 on vascular 
function was related to its effect on superoxide levels in brain tissue since PJ-34 
prevented an increase in superoxide levels found in diabetic rats. 

 In addition to studies that have examined the role of PARP activation in cerebro-
vascular dysfunction during T1D, others have suggested that PARP plays an impor-
tant role in protection of the brain following cerebral ischemia/reperfusion [ 14 ,  26 , 
 68 ,  140 ]. These investigators have shown that treatment with inhibitors of PARP 
decreased brain injury and disruption of the blood–brain barrier following ischemia/
reperfusion by a mechanism that appeared to be related to preventing an increase in 
the synthesis/release of infl ammatory mediators (TNFα, IL-6, E-selectin, and 
ICAM-1) [ 68 ], thereby preserving endothelial tight junction integrity [ 96 ]. Although 
no studies to our knowledge have examined the infl uence of PARP inhibition on 
brain injury following ischemia/reperfusion during T1D, given the results from pre-
vious studies, we suggest that future studies should examine the role of this impor-
tant pathway in the pathogenesis of cerebral ischemia-/reperfusion-induced brain 
injury and disruption of the blood–brain barrier during T1D. We speculate that the 
results from these types of studies might have important implications regarding 
mechanisms for the increased incidence of stroke and cognitive dysfunction 
observed in diabetic subjects. 

 Given that PARP activation is a very complex process, it would appear diffi cult 
to determine mechanisms that PARP activation produces vascular dysfunction, 
including cerebrovascular dysfunction, during T1D. Two pathways have been pro-
posed to account for the role of PARP activation in T1D: the proinfl ammatory and 
metabolic pathways. The proinfl ammatory pathway [ 59 ,  147 ,  149 ] suggests that 
PARP activates multiple pathways of damage, including NF-κB, PKC, and/or 
 generation of advanced glycosylation end products (AGEs). Activation of these 
pathways can stimulate the synthesis/release of infl ammatory mediators (E-selectin, 
IL-6, TNFα, ICAM-1, and iNOS) that have been implicated in endothelial 
 dysfunction and brain injury observed in T1D and can generate ROS from addi-
tional pathways [ 68 ,  94 ,  103 ,  117 ,  128 ,  134 ,  181 ]. Thus, it is possible that PARP 
activation during T1D can increase the formation of infl ammatory mediators that, in 
turn, produce endothelial dysfunction directly and/or via the production of ROS. 
The metabolic pathway [ 57 ] suggests that hyperglycemia during T1D stimulates the 
production of oxidants. Although the pathway for the formation of these oxidants in 
T1D is not entirely clear, it may involve the activation of NADPH oxidase via 
increased levels of angiotensin II [ 42 ,  54 ,  65 ,  97 ,  132 ,  138 ]. Evidence suggests that 
angiotensin II can activate PARP in cultured endothelial cells and can induce DNA 
strand breaks [ 150 ]. In addition, angiotensin II-induced endothelial dysfunction can 
be prevented by inhibition of NADPH oxidase and PARP [ 150 ]. In addition to a 
possible role for angiotensin II, elevated levels of glucose also have been shown to 
activate PKC and produce oxidative stress [ 55 ,  95 ,  176 ]. Further, it has been sug-
gested that oxidative stress may further stimulate the activity of PKC via activation 
of PARP [ 41 ]. It is also conceivable that oxidative stress-induced stimulation 
of PARP, in turn, activates endothelin-1 to produce vascular dysfunction [ 110 ]. 
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Finally, PARP activation can increase ROS formed via an increase in AGEs and the 
polyol pathway, both of which have been implicated as an important source of ROS 
during T1D [ 19 ,  141 ,  175 ]. Regardless of the precise cellular mechanism, once ROS 
are formed they can induce DNA strand breaks to activate PARP, producing a cel-
lular energy crisis. Without suffi cient energy, the endothelium could presumably 
produce additional levels of ROS and/or have less potential to produce nitric oxide. 
This metabolic pathway is supported by data obtained from studies that have shown 
that exposure of endothelium to oxidants can produce depletion of NAD+ in cells 
that can be prevented by inhibition of PARP, endothelial dysfunction in T1D can be 
prevented by inhibition of PARP, glucose-induced endothelial dysfunction is pre-
vented in PARP-defi cient mice, and altering the energy status within endothelial 
cells can infl uence vascular function [ 22 ,  58 ,  59 ,  119 ].   

2.3     Antioxidant Pathways 

 Excess production of ROS in the vascular system, the peripheral organ systems, 
and/or the brain by T1D can be regulated through the expression of a variety of 
endogenous antioxidant enzymes. These antioxidant enzymes serve to protect the 
vasculature and/or organ systems, including the brain, by scavenging ROS and 
interfering with or preventing the activation of downstream signaling events trig-
gered by these ROS. Unfortunately, in T1D where there is a dramatic increase in the 
levels of ROS, these antioxidant enzyme systems may not be able to adequately 
regulate these excess levels of ROS and/or may be adversely affected by T1D. This 
consequence would tip the balance in favor of a prooxidant environment to detri-
mentally affect vascular function during T1D. 

2.3.1     Superoxide Dismutases 

 The bioactivity of nitric oxide depends, in part, on its ability to interact with ROS, 
especially superoxide [ 12 ]. Early fi ndings suggested that superoxide inactivates 
nitric oxide [ 174 ] and studies since have shown that inactivation of nitric oxide by 
superoxide contributes to impaired vascular function [ 36 ,  37 ,  107 ]. While there is 
considerable attention paid to examining the role of superoxide during disease 
states, little information is available regarding the functional signifi cance of altera-
tions in the activity/expression of antioxidant pathways during disease states. 
SODs exist in three isoforms localized within specifi c cellular compartments. 
Copper-zinc SOD (SOD-1, CuZnSOD) is located predominately within the cyto-
sol, as well as in the nucleus, and is expressed in all mammalian cells. Manganese 
SOD (SOD-2, MnSOD) is localized to the mitochondrial matrix, and it is consid-
ered to be the primary SOD isoform in relation to oxidative stress in the mitochon-
dria. SOD-2 is needed to protect cellular constituents from superoxide derived 
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from the electron transport chain. Extracellular SOD (SOD-3, EC-SOD) is also 
a copper-zinc-containing SOD and is secreted extracellularly. SOD-3 is found 
bound to heparin sulfate proteoglycans on the surface of cells. It appears that the 
predominant form of SOD in blood vessels is SOD-1, followed by SOD-2 and the 
least involving SOD-3 [ 51 – 53 ,  143 ]. During T1D, superoxide levels are increased 
in brain tissue [ 7 ], but levels of SODs in the brain during T1D are not as clear. 
Some studies have reported an increase in SOD-2 in brain tissue of diabetic rats 
[ 75 ], but others showing decreases in total SOD activity in the brain [ 87 ,  118 ], and 
a decrease in SOD-2 and SOD-1 activity and mRNA in the aorta of diabetic rats 
[ 78 ,  85 ]. In addition, we have reported that SOD-1 and SOD-2 proteins are similar 
in brain tissue and cerebral microvessels from nondiabetic and diabetic rats, even 
though levels of superoxide are increased in brain tissue from T1D rats [ 7 ].  

2.3.2     Glutathione Peroxidases 

 In addition to SODs, other antioxidant systems tightly regulate cellular redox bal-
ance. Cellular protection against ROS and their related by-products involves the 
activities of endogenous enzymes that belong to the oxidoreductase superfamily 
[ 139 ]. Glutathione peroxidases (Gpx) are a family of antioxidant enzymes that par-
ticipate in the neutralization of hydrogen peroxide to water utilizing glutathione 
(GSH) as its substrate. A previous study has shown that Gpx1 plays a functional role 
in reactivity of cerebral blood vessels in mice [ 111 ]. In addition, previous studies 
have suggested that T1D can reduce Gpx mRNA in patients with T1D [ 74 ] and can 
reduce glutathione levels in the aorta [ 152 ] and brain [ 118 ] of rats, that the glutathi-
one pathway is susceptible to oxidative stress [ 39 ], and that glutathione can protect 
diabetic rats from neuropathy [ 165 ]. However, the role of this endogenous enzyme 
pathway in protection of cerebral vessels during T1D remains unclear. 

 Taken together, these fi ndings seem to indicate that antioxidant enzymes (SODs 
and Gpx) may not be able to compensate for increases in superoxide levels in the 
brain during T1D and thus may not be able to protect the vasculature from the dam-
aging effects of ROS during T1D.   

2.4     A Common Link? 

 On a cellular/molecular level, there are several major pathways that have been 
implicated in T1D-induced increases in oxidative stress to account for dysfunction 
of blood vessels of peripheral organ systems and the brain. Those discussed in this 
chapter include the cyclooxygenase pathway, NADPH oxidase, eNOS uncoupling, 
the mitochondria, PKC, and PARP. In addition to these oxidant-producing path-
ways, it appears that T1D can infl uence oxidant-protecting pathways (SODs and 
Gpx) to further alter the balance to favor the damaging effects of ROS. Although not 
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entirely clear for cerebral blood vessels, based upon fi ndings from previous studies 
(see [ 19 ,  115 ]), it appears unlikely that oxidant-producing pathways act indepen-
dently. A unifying hypothesis that has been presented by others [ 18 ,  19 ,  34 ,  115 , 
 175 ] suggests that as glucose enters the cell, it stimulates the mitochondria to release 
superoxide, which in turn activates a number of downstream pathways (PKC, cyclo-
oxygenase, infl ammatory cytokines, PARP). These downstream pathways can pro-
duce a further increase in the generation of ROS and/or excite other pathways that 
could contribute to vascular dysfunction. However, this type of unifying hypothesis 
may not adequately account for the complexity of vascular dysfunction during T1D 
since inhibition of one of these pathways could not discount the formation of ROS 
from other distinct pathways, unless there was a linear relationship between the 
pathways. Faraci [ 45 ] has suggested that angiotensin II, acting via AT-1 receptors, 
can stimulate an increase in the synthesis of ROS from the mitochondria as well as 
promote infl ammation and thus account for cardiovascular-related impairment in 
vascular function. Others [ 147 ,  148 ] have suggested that increases in cellular levels 
of glucose can stimulate the production of ROS from a variety of sources, which 
then activates PARP. Once activated, PARP would stimulate a number of down-
stream pathways (polyol pathway, PKC, AGEs, infl ammatory mediators) that could 
then lead to the production of more ROS to produce vascular dysfunction. However, 
one might assume that inhibition of a singular pathway might not restore impaired 
vascular function given that other oxidant-producing pathways would remain intact. 
However, studies as outlined in this chapter have shown that inhibition of presum-
ably singular cellular pathways can improve impaired responses of peripheral and 
cerebral blood vessels during T1D. Thus, although the basic principle that ROS are 
critical for impaired cerebrovascular function during T1D is certain, what remains 
uncertain is(are) the cellular pathway(s), indeed networks, that may be activated by 
ROS during T1D. We suggest that additional studies need to be completed before 
we can fully address the complexity of the interactions between the various cellular 
pathways that ultimately contribute to the generation of ROS during T1D.  

2.5     Therapeutic Interventions 

 Based upon the experimental evidence presented in this chapter, one might specu-
late that inhibition of ROS during T1D would be an attractive therapeutic approach 
for addressing cerebrovascular dysfunction and its consequences, i.e., cognitive 
impairment and/or ischemic stroke. The vast majority of studies, several of which 
are presented in this chapter, have shown that short- and long-term treatment using 
scavengers of ROS improves vascular function in animal models of T1D. In addi-
tion, there are limited data to suggest that treatment of humans with scavengers of 
ROS improves endothelial function during T1D [ 159 ,  160 ] and brain injury follow-
ing subarachnoid hemorrhage [ 10 ]. However, others have failed to demonstrate a 
dramatic effect of antioxidant therapy in human subjects with diabetes and/or other 
cardiovascular-related diseases [ 99 ,  113 ]. There may be several potential key 
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aspects as to why there are differences with regard to the benefi cial effects of 
 inhibition of ROS on vascular function in human subjects. First, the duration of 
exposure to antioxidant therapy may be important. A recent study reports that rever-
sal of endothelial dysfunction in type 2 diabetic humans was only observed with 5 
years of treatment with a combination of agents that lowered blood pressure, blood 
lipids, and ROS [ 157 ]. Second, it is possible that the duration of exposure to ROS 
during disease states in humans may create a condition whereby the endothelium is 
less able to respond to antioxidant therapy. Third, it would be rare for a human 
population not to have multiple risk factors for cardiovascular and cerebrovascular 
dysfunction. Therefore, the population being studied may not be an appropriate 
choice due to these multiple risk factors. Fourth, it is diffi cult to adequately control 
human subjects during a drug trial and there may be confounding infl uences in 
studying this type of population. Fifth, it is certainly possible that mechanisms con-
tributing to vascular dysfunction during disease states, including T1D, are much 
more complex in humans than in animal models and different modes of therapy 
need to be examined in more long-term studies before conclusions can be drawn 
regarding the role of ROS in the pathogenesis of disease states. It may be premature 
to suggest a single therapeutic approach to limit the production of ROS during 
cardiovascular- related diseases, including T1D.  

2.6     Closing Statement 

 The production of ROS appears to be the critical component of cerebrovascular 
dysfunction during T1D. Once ROS are formed, they can damage the endothelium 
directly and/or activate downstream networks that can lead to the generation of 
infl ammatory mediators and/or produce an additional increase in the levels of ROS. 
We suggest that these processes not only contribute to impairment of dilator and 
constrictor responses of cerebral arteries and arterioles but also contribute to 
impaired neurovascular coupling, leading to an increase in the susceptibility of the 
brain to injury following ischemia/reperfusion, cognitive dysfunction, and an 
increase in prospect for ischemic stroke in diabetic humans.     
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3.1            Introduction 

 The American Heart Association lists the prevalence of diabetes as 27.9 million 
people 20 years of age or older or greater than 12 % of this population. Another 87.3 
million people (about 38 %) have prediabetes (fasting blood glucose of 100 to 
<126 mg/dL) [ 1 ]. In patients with type 2 diabetes, the average life expectancy is 
reduced by approximately 10 years, and 80 % die from cardiovascular complica-
tions. The number of type 2 DM patients is increasing due to population growth, 
aging, urbanization, and increasing prevalence of obesity and lack of physical activ-
ity. The total economic cost of diagnosed diabetes in the United States in 2012 was 
$245 billion [ 2 ]. 

 Diabetes mellitus is a chronic disease of glucose metabolic dysfunction. 
Complications associated with diabetes include retinopathy, nephropathy, neuropa-
thy, and increased risk for developing cardiovascular disease. Diabetic subjects have 
signifi cantly elevated morbidity and mortality to many cardiovascular-related dis-
eases, including hypertension, stroke, coronary artery disease, myocardial infarc-
tion, congestive heart failure, cardiomyopathies, sudden cardiac death, and 
accelerated atherosclerosis. 

 The cardiovascular and metabolic risk factors associated with diabetes include 
insulin resistance, impaired glucose tolerance, hypertension, high cholesterol and 
triglycerides, hyperglycemia, obesity, decreased coronary blood fl ow, increased 
oxidative stress, low-grade infl ammation, and altered local vasomotor mechanisms. 
Dysfunction of the coronary circulation is an important contributor to increased 
cardiovascular morbidity and mortality in subjects with diabetes. 

    Chapter 3   
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 The metabolic syndrome is an emerging epidemic characterized by a cluster of 
risk factors including insulin resistance, abdominal obesity, atherogenic dyslipid-
emia, hypertension, and proinfl ammatory and prothrombotic states and often pre-
cedes development of type 2 diabetes. Each individual characteristic is a signifi cant 
risk factor for development of vascular dysfunction and cardiovascular disease. 
Vascular dysfunction and progression of coronary artery disease is increased with 
each additional risk factor.  

3.2     The Coronary Circulation 

 The myocardium has a very limited anaerobic capacity and requires a continuous 
supply of oxygen from the coronary circulation to meet the metabolic requirement 
of the heart. If the need for oxygen is not met, there is an immediate and substantial 
decrease in cardiac function. Decreased coronary blood fl ow results in under perfu-
sion of the myocardium or ischemia. Several laboratory and clinical studies have 
shown that cardiac pump function is compromised in diabetes [ 3 – 5 ]. Frequently, 
many pathologies combine to compromise blood pressure and cardiac conduction 
resulting in a mismatch between myocardial supply and demand. The cause of the 
dysfunction is multifaceted, including changes in cardiac myocytes, interstitial 
fi brosis, and changes in the coronary vasculature. Although some studies have 
shown coronary blood fl ow abnormalities are primarily due to accelerated athero-
sclerosis in the diabetic heart, recent studies suggest coronary vasodilation may be 
a more    pathophysiological response. 

 Coronary fl ow reserve is the difference between maximal and baseline coronary 
blood fl ow and is a measure of the capacity of the coronary circulation to respond to 
a vasodilator challenge. The dilator challenge may be induced by an imposed 
increase in myocardial nutrient demand (i.e., exercise) or by a pharmacological 
agent that produces dilation (i.e., adenosine). In diabetic patients, coronary fl ow 
reserve is reduced [ 6 ,  7 ]. Reduced coronary fl ow reserve could be related to 
depressed vasodilator capability, enhanced vasoconstrictor responsiveness, and/or 
structural remodeling of the coronary microvasculature. 

 Studies on basal coronary fl ow in diabetic patients at rest have shown varied 
results and conclude that baseline coronary fl ow may or may not be altered [ 8 ,  9 ]. 
However, when challenged, the ability of coronary arteries to increase blood fl ow is 
impaired. Momose et al. [ 10 ] used positron emission tomography (PET) to show 
elevated baseline blood fl ow, and reduced microvascular resistance is present in 
asymptomatic, non-insulin-treated type 2 diabetic patients. This suggests a state of 
activation of endothelial-dependent vasodilation at baseline which limits the fl ow 
response to stress conditions (cold pressor test and adenosine-mediated vasodila-
tion), which is present without other symptoms of diabetes. Other studies have 
shown maximum coronary dilator capacity to pharmacological agents is signifi -
cantly attenuated in type 2 diabetic compared with nondiabetic patients [ 6 ,  7 ]. 
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These studies also suggest that the primary cause of the altered coronary fl ow  dilator 
reserve is due to reduction of the dilator reserve of coronary microvessels. 

 Diabetes impairs the ability of the coronary microcirculation to match myocar-
dial oxygen supply with myocardial oxygen demand. Possible mechanisms include 
anatomical changes, alterations in endothelial-dependent control of coronary blood 
fl ow, altered vasoactive neural–hormonal pathways, and dysfunction of microvas-
cular ion channels.  

3.3     Endothelial Dysfunction 

 Morphologic changes have been reported in the diabetic microcirculation at all lev-
els, including small arteries, arterioles, capillaries, and venules. Some of the pathol-
ogies include capillary basal lumina thickening, increased fi brosis and alterations of 
elastic fi bers, perivascular fi brosis, microvascular rarefaction, and reduced coronary 
capillary density. 

 Since 1980 when Furchgott and Zawadzki reported that the endothelium is 
responsible for the vasodilator response to acetylcholine [ 11 ], it has been known 
that the endothelial lining is a physical barrier between blood and the underlying 
tissue and that this thin layer of cells is an endocrine organ producing and releasing 
many metabolically active substances. Endothelial cell structure and functional 
integrity are important in maintenance of the vessel wall and circulatory function. 

 Endothelial cells produce and secrete numerous compounds that regulate a vari-
ety of physiological and pathophysiological processes, including coagulation, 
infl ammation, permeability, cell adhesion, and vasomotor tone. Altered endothelial 
response is involved in atherosclerosis, hypertension, pulmonary hypertension, sep-
sis, and infl ammatory syndromes. 

 The endothelium regulates arterial tone and blood fl ow via production of several 
vasoactive compounds including dilators nitric oxide (NO), prostacyclin, 
endothelial- derived hyperpolarizing factor (EDHF), and constrictors endothelin-1 
and angiotensin II. There are a variety of endothelial-dependent vasodilators with 
various signal-transduction mechanisms, including acetylcholine, thrombin, brady-
kinin, substance P, serotonin, ATP, and ADP. 

 Endothelial dysfunction is a pathological condition characterized by an imbal-
ance between endothelial-derived relaxing factors and endothelial-derived contract-
ing factors and is due to changes in the synthesis, bioavailability, and/or action of 
endothelial factors leading to reduction of endothelial-dependent vasodilation and/
or increase response to vasoconstrictor agonists. In diabetes, this balance is altered 
and the increased vasoconstrictor effects can be unopposed leading to increased 
arterial stiffness and arterial tone and promote vasospasm. 

 The primary vasodilator released from the endothelium has been identifi ed as 
NO or a related molecule. Vascular endothelial cells synthesize NO from  l -arginine 
by the action of endothelial nitric oxide synthase (eNOS) as a transduction mecha-
nism for the activation of the soluble guanylate cyclase in vascular smooth muscle. 
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Increases in 3′5′-cyclic monophosphate cause vascular relaxation. NO is a potent 
vasodilator and also reduces platelet agreeability, limits vascular smooth muscle 
cell proliferation, and inhibits leukocyte adhesion. Decreased NO availability 
appears to play a major role in coronary endothelial dysfunction associated with 
diabetes. Reduced availability of other vasodilator agents (prostacyclin and EDHF) 
and simultaneously increased activity of vasoconstrictor substances (including 
endothelin-1 and angiotensin II) also play a role. 

 The literature contains inconsistent reports of endothelial dysfunction in diabetes 
[ 4 ,  12 – 16 ]. Endothelial-dependent dilation has been shown to be augmented, not 
altered, and attenuated in coronary arteries from diabetic patients and animals. 
Discrepancies may be due to species, technique, vessels studied, size of vessels, 
glycemic status, age, gender, duration of diabetes, or degree of hyperglycemia. 

 In isolated human arteries, Szerafi n et al. have shown bradykinin elicited greater 
coronary vasodilation in type 1 and type 2 diabetic patients than in controls [ 17 ]. 
Inhibition of cyclooxygenase (COX) by nonspecifi c inhibitor indomethacin and 
COX-2 by NS-398, a COX-2 specifi c inhibitor, did not affect bradykinin-induced 
dilation in nondiabetic subjects, but signifi cantly reduced bradykinin responses to 
control level in coronary arterials from patients with diabetes. The authors also 
show marked COX-2 immunostaining in endothelial and smooth muscle layers in 
coronary arteries from patients with diabetes, but not in arteries from controls. Thus, 
increased COX-2 expression contributes to enhanced release of dilator prostaglan-
dins in diabetic humans. This enhanced COX-2 expression may be an adaptive 
mechanism to compensate for impaired vascular function, aiming to reduce the det-
rimental effects of diabetes on coronary blood fl ow. 

 Many detrimental effects of diabetes are linked to elevations in serum glucose 
that is accompanied by increased levels of superoxide. Tesfamariam and Cohen [ 18 ] 
incubated rabbit aorta in high glucose (44 mM) for 6 h and showed impairment of 
endothelial-dependent relaxation to acetylcholine, which was prevented by the pres-
ence of superoxide dismutase (a superoxide scavenger), catalase (a hydrogen perox-
ide scavenger), or allopurinol (an inhibitor of xanthine oxidase and scavenger of 
free radicals). They conclude that free radicals generated during exposure to ele-
vated glucose are responsible for impaired endothelial cell function and that oxida-
tive stress may be the basis by which hyperglycemia induces vascular complications 
known to occur in diabetes mellitus. Gutterman and colleagues have shown that 
24 h exposure to high glucose (23 mM) increases superoxide production [ 19 ] and 
dilation to isoproterenol, forskolin, and papaverine is impaired in rat coronary arter-
ies [ 20 ]. Thus, acute hyperglycemia causes increased free radical formation and 
produces endothelial dysfunction. 

 In humans, the course of developing type 2 diabetes occurs over several years 
and often is preceded by development of the metabolic syndrome. The Zucker obese 
rat is insulin resistant, hypertensive, and dyslipidemic and is a model of the meta-
bolic syndrome. A model of type 2 diabetes is the Zucker diabetic fatty (ZDF) rat. 
This rat becomes hyperglycemic by 10 weeks of age when fed a high-fat diet, and 
glucose remains elevated throughout their life span [ 21 ]. At 10 weeks of age, ZDF 
rats are hyperinsulinemic; however, by 22 weeks of age, serum insulin levels decline 
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to below levels of insulin in age-matched lean control rats [ 21 ]. A similar decrease 
in insulin levels is observed in human type 2 diabetes, which is thought to be caused 
by pancreas β-cell exhaustion. Free fatty acids, triglycerides, and cholesterol levels 
are higher in Zucker obese and ZDF rats compared with lean littermate controls. 
The Zucker obese and ZDF rat strains have been well characterized as models of the 
metabolic syndrome and type 2 diabetes [ 12 ,  22 ,  23 ]. We utilized these rat models 
to examine the development and progression of coronary vascular dysfunction asso-
ciated with the metabolic syndrome and type 2 diabetes [ 24 ]. In coronary arteries 
from Zucker obese rats, we showed acetylcholine-mediated dilation was attenuated 
at 28–36 weeks of age. In coronary vessels from ZDF rats, endothelial dysfunction 
was observed earlier at 16–24 weeks of age (Fig.  3.1 ). Responses to sodium nitro-
prusside were not altered in these coronary arteries. Increases in indices of oxidative 
stress preceded the development of vascular dysfunction and may serve as a marker 
of endothelial damage [ 24 ]. This study showed the progression and degree of vas-
cular pathology is dependent on the number of risk factors affected.

   Another model for type 2 diabetes has recently been established. High-fat-fed 
rats injected with a low dose of streptozotocin (STZ) have been shown to produce 
diabetes with similarities to the human type 2 diabetes. Low-dose STZ slightly 
reduces B cell function, and hyperglycemia is obtained [ 25 ,  26 ]. Treating high-
fat- fed rats with a low dose of STZ damages insulin-producing B cells so that hyper-
glycemia develops even though insulin levels are similar or higher than in chow-fed 
normoglycemia rats. The diabetes in these rats is analogous to the development of 
human type 2 diabetes when the decline in hyperinsulinemia is not able to compen-
sate for insulin resistance and hyperglycemia occurs [ 25 ]. Using this model, we 
have shown that high-fat-fed rats gained more weight than the high-fat STZ-treated 
animals and blood glucose was higher in high-fat STZ-treated animals 
(20.9 ± 1.2 mM) than control (6.0 ± 0.2 mM) or high-fat-fed rats (6.6 ± 0.3 mM). 
Serum insulin and leptin levels were increased in high-fat-fed rats, but not in high- 
fat STZ rats [ 27 ]. Endothelial-mediated function was evaluated in isolated coronary 
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arteries. We found acetylcholine-mediated relaxation was attenuated in coronary 
arteries from high-fat-fed rats and further attenuated in high-fat STZ animals 
(Fig.  3.2 ).

   Other rat models of type 2 diabetes include the Goto-Kakizaki (GK) rat model, 
which is nonobese and spontaneously develops glucose intolerance, moderate 
hyperglycemia, hypoinsulinemia, and mild hypertension. Kold-Petersen et al. [ 13 ] 
have shown coronary arteries from GK rats develop less myogenic tone than control 
(Wistar) rats; however, acetylcholine-mediated relaxation was not different. The 
authors conclude that the attenuation of myogenic tone is due to a decreased Ca 2+  
sensitivity and suggest the lack of endothelial dysfunction may be due to modest 
hyperglycemia observed in GK rats. The Otsuka Long-Evans Tokushima Fatty 
(OLETF) rat develops insulin resistance around 12 weeks of age and shows late 
onset hyperglycemia (20 weeks of age) and reduced insulin levels around 60 weeks 
of age. Kajikuri et al. [ 28 ] found increased vascular superoxide production in 
OLETF rats; however, endothelial-mediated dilation in coronary arteries was not 
altered at 28 weeks of age. The authors suggest the endothelial function is retained 
due to enhanced eNOS protein expression. In contrast, another study evaluated mes-
enteric arteries from aged (36 week old) OLETF rats and showed endothelial dys-
function [ 14 ,  29 ], in this rat model. 

 We have also studied a model of type 1 diabetes in rats. Rats were made diabetic 
with an injection of STZ (55 mg/kg), to destroy pancreatic B cells. Blood glucose 
levels were 24 ± 0.08 mM in diabetic animals. In rats with 6-week duration of STZ 
diabetes, acetylcholine-mediated (Fig.  3.3 ) and bradykinin-mediated relaxation was 
attenuated in coronary arteries after 14 weeks of diabetes [ 30 ]. Sodium nitroprus-
side responses were not altered in coronary arteries from these rats.

   EDHF may play an important role in regulating vascular tone and reactivity, 
especially in small resistant vessels when NO-mediated control is compromised. 
Park et al. have shown that endothelial-mediated vasodilation is NO dependent in 
coronary arterioles in control mice; however, that portion of NO-dependent dilation 
is reduced in db/db mice, a model of type 2 diabetes [ 31 ]. Their study also shows 
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that H 2 O 2 , K + , and epoxytrienoic acids, all candidates for EDHF, are involved in 
ACh relaxation in coronary arterioles from diabetic mice. This data suggest that 
EDHF may compensate for diminished NO-dependent dilation in diabetes.  

3.4     Endothelial-Dependent Vasoconstriction 

 Endothelin exerts a potent, prolonged vasoconstrictor effect in coronary arteries. 
Vasoconstriction is produced through the endothelin type A receptor, which is cou-
pled to G-protein signaling, which activates phospholipase and Ca 2+  channels. In 
insulin-resistant states and diabetes, plasma endothelin-1 (ET-1) concentration is 
increased, and this elevated plasma ET-1 concentration is associated with decreased 
coronary blood fl ow reserve and is recognized as a mediator of endothelial dysfunc-
tion in coronary artery disease [ 32 ]. Diabetes is also associated with altered ET-1 
signaling, as shown in aorta from obese Zucker rats where ET-1-mediated vasocon-
striction is potentiated [ 33 ]. 

 There is considerable evidence demonstrating enhanced reactive oxygen species 
as pathological factor responsible for impaired vasomotor function. Decreased dila-
tion may be mediated by increased production of reactive oxygen species by vascu-
lar NADPH oxidase and reduced NO bioavailability. The majority of studies report 
no change in endothelial-independent vasodilation responses to sodium nitroprus-
side. This indicates impairment of NO-mediated dilation is not related to alterations 
in vascular smooth muscle responsiveness to NO. 

 Increased generation of reactive oxygen species is an underlying cause of vascu-
lar dysfunction in diabetes. The source of vascular oxygen free radicals in diabetes 
is not clear. NAD(P)H oxidase is elevated by hyperglycemia, and increased NAD(P)
H oxidase levels have been shown to increase superoxide generation. Gupte et al. 
have shown that hyperglycemic-induced increases in NAD(P)H oxidase activity did 
not come from an increase in the expression of the NAD(P)H oxidase subunits, but 
more likely as a result of chronic activation via intracellular signaling pathways 
[ 34 ]. Huang et al. used db/db mice to characterize complexities of endothelial 
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dysfunction related to changes in oxidative stress, NO bioavailability, and eNOS 
signaling during the progression of diabetes [ 35 ,  36 ]. They show vascular superox-
ide production was progressively increased, and shear stress-induced dilation was 
reduced in arteries from 3-month mice and further attenuated in arteries from 
9-month mice. Elevated levels of free radicals reduce the bioavailability of NO via 
scavenging or inactivating NO and forming peroxynitrite, which is a highly reactive 
species, to uncouple eNOS and induce nitrotyrosine formation of signaling mole-
cules. There is also evidence that superoxide and peroxynitrite are mediators of 
pancreatic cell death and may serve as pathogenic factor precipitating diabetes [ 37 ]. 

 An interesting study performed by Belin de Chantemele et al. subjected arteries 
to normal or high fl ow by alternatively ligating mesenteric arteries in lean Zucker 
and Zucker diabetic fatty rats [ 16 ]. They found superoxide production (dihydro-
ethidium staining) was higher and ACh-mediated dilation was lower in high-fl ow 
arteries when compared to normal-fl ow arteries. Superoxide overproduction in ZDF 
rats impaired NO-dependent dilation and high-fl ow remodeling. The increased ROS 
production induced by type 2 diabetes altered the ability of arteries to adapt their 
structure and function in response to a chronic increase in blood fl ow. The impair-
ment was reversed by an antioxidant treatment. 

 There may be further defects in agonist-induced signaling in coronary arteries. 
Possible candidates for defects could include diabetes-induced alterations in protein 
kinase A and the protein kinase C (PKC) pathways. The link between diabetes and 
increased activation of the PKC pathway is believed to involve the state of chronic 
hyperglycemia which leads to an increased level of circulating advanced glycosylated 
end products (AGEs). The AGEs bind to the endothelial-bound signal-transduction 
receptor RAGE, which in turn leads to activation of the smooth muscle cell PKC 
and thus increases oxidative stress. 

 Ion channels in cells of the vascular wall are important for determining vascular 
tone. Coronary smooth muscle cells have a relatively steady membrane potential. In 
coronary smooth muscle cells, membrane potential is maintained by calcium and 
potassium ions channels. When cells are hyperpolarized, intracellular Ca 2+  is 
reduced and promotes vasodilation. A depolarizing stimulus increases intracellular 
Ca 2+  to produce vasoconstriction. There are 2 types of Ca 2+ -mediated channels, the 
L-type (long lasting) and t-type (transient) channels. There are four classes of potas-
sium (K + ) channels expressed in coronary vascular smooth muscle cells: (1) voltage- 
dependent (Kv), (2) Ca 2+ -activated (Kca), (3) ATP-sensitive (Katp), and (4) inward 
rectifi er (Kir) channels. Voltage-gated potassium channels are important for regulat-
ing membrane potential and determining coronary vascular resistance and blood 
fl ow. Bubolz et al. have shown enhanced peroxynitrite production in diabetic rats 
contributes to voltage-gated potassium channel dysfunction in the coronary micro-
circulation [ 38 ]. There are three subtypes of calcium-activated K +  channels: small 
(SKca), intermediate (IKca), and large or high (BK Ca ), named due to their conduc-
tance abilities. BK Ca  channels may play a compensatory dilator role in disease states 
such as diabetes due to increased release of EDHF, which activates BK Ca  when less 
NO is available [ 39 ]. Katp is the most studied K +  channel and, under normal metabolic 
conditions, has a very low open-state probability in vascular smooth muscle cells. 
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However, during diabetes, aprikalim (Katp opener)-induced dilation has been shown 
to be enhanced in coronary microvessels of diabetic dogs [ 40 ]. It has been shown that 
glibenclamide, a Katp channel inhibitor, reduces coronary blood fl ow and coronary 
venous PO 2 . This suggests that the role of Katp channels in regulating coronary 
smooth muscle membrane potential is altered in diabetic states. Kir has the highest 
expression in resistance vessels, which suggest role in regulation of coronary blood 
fl ow; however, few studies have focused on Kir in the diabetic coronary circulation. 

 Diabetes substantially increases the risk of developing coronary disease. 
Mechanisms responsible for increased risk of coronary artery disease in patients 
with diabetes include hyperglycemia, elevated free fatty acids, insulin resistance, 
reduced NO production, increased NO inactivation, increased infl ammatory status, 
and increased production of    advanced glycosylated end products. Each of these fac-
tors promotes increased oxidative stress and endothelial dysfunction. In the coro-
nary microcirculation, endothelial dysfunction causes chronic vasodilation that 
leads to increased capillary pressure and hyperperfusion, which in turn leads to 
morphologic changes that narrow the lumen and compromise the bioavailability of 
nitric oxide. These changes limit the ability of the diabetic coronary circulation to 
increase myocardial perfusion to meet an increase in myocardial nutrient demand. 

 A better understanding of the underlying microvascular and endothelial patho-
physiology associated with diabetes that contributes to cardiovascular disease 
would help to develop new targets for prevention and treatment of vascular compli-
cations associated with diabetes. 

 With the increasing prevalence of diabetes, it is worthwhile that signifi cant effort 
be made to improve our understanding of the etiology underlying cardiovascular 
complication associated with diabetes. An option for decreasing the late stage com-
plications of diabetes may be intervening earlier in the disease process before vas-
cular dysfunction occurs. Future research should focus on areas to improve strategies 
to prevent and treat diabetes and its complications at the molecular, cellular, organ, 
animal, and population levels.     
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4.1            Introduction 

 There is a strong relationship between chronic kidney disease (CKD) and 
cardiovascular disease (CVD) risk [ 1 – 3 ]. The increased risk for CVD in those with 
CKD is heightened in the presence of traditional Framingham CVD risk factors 
such as type 2 diabetes, hypertension, and dyslipidemia, and the ensuing CVD con-
tributes to a more rapid progression to end-stage renal disease (ESRD), defi ned as 
glomerular fi ltration rate (GFR) <15 mL/min/1.73 m 2  [ 4 ]. It    should also be noted 
that the relationship between CKD and CVD events is a graded one, wherein there 
exists a strong linear relationship between diminishing GFR and increasing CVD 
events. In this context, there is an alarming trend wherein younger ESRD patients 
have an equivalent CVD risk equivalent to those above 65 years of age in the general 
population. Thereby, there is growing interest in CVD risk reduction strategies in 
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earlier stages of CKD not only to reduce the CVD burden but also to reduce pro-
gression of CKD [ 5 ]. 

 The mounting evidence of the kidney cardiovascular relationship prompted the 
National Kidney Foundation (NKF) task force on CVD in chronic renal disease to 
consider CKD as a coronary artery disease equivalent for the purposes of risk strati-
fi cation [ 6 ]. Moreover, the work group also recommended considering patients with 
CKD in the “highest-risk group” for subsequent CVD events [ 6 ]. This recommen-
dation was largely based on fi ndings suggesting that, even after adjusting for most 
traditional Framingham risk factors for CVD, the higher mortality noted in CKD 
subjects from CVD suggests the possible contribution of uremia-related, nontradi-
tional risk factors [ 7 ]. This has led to an understanding of a complex association of 
both traditional- and nontraditional-related CVD risk factors in CKD patients. To 
better delineate this dynamic disease process, this chapter will focus on the patho-
physiology of CVD in CKD subjects along with early identifi cation of CKD to 
prevent disease progression.  

4.2     Epidemiology 

 CKD is an ongoing public health dilemma affecting approximately 24–28 million, 
with an estimated 20 million yet unidentifi ed, with more than one million of them 
receiving some form of renal replacement therapy [ 8 ,  9 ]. According to the United 
States Renal Data System 2010 annual report (USRDS), the incidence of Medicare 
CKD in patients aged 65 or older was 4.3 % in 2008, an increase from 1.2 % seen 
in 1995. The prevalence of CKD patients among Medicare patients aged 65 and 
older is noted to be 7.6 %, a 4.6 times increase from the rate of 1.7 % seen in 1995. 
The rising incident and prevalent rates for CKD are paralleled by an increasing 
annual cost of Medicare ESRD program in the USA approaching approximately 
20.8 billion dollars. The estimated annual Medicare cost to treat patients with CKD 
is 57.5 billion US dollars, thus contributing to 28 % of the total Medicare expendi-
ture [ 10 ].  

4.3     Defi nition and Classifi cation of CKD 

 The Kidney Disease Outcomes Quality Initiative (NKF KDOQI) established 
clinical guidelines in 2002 for the defi nition of CKD for staging purposes that 
continue to be adapted. The diagnosis of CKD is based on the presence or 
absence of structural damage to the kidney and the level of kidney function, 
irrespective of the cause [ 11 ]. CKD is defi ned as either (a) kidney damage ≥3 
months, as confi rmed by kidney biopsy or markers of kidney damage as noted 
by the presence of structural or functional abnormalities such as abnormal 
blood, urine, or imaging studies, with or without decrease in GFR, or (b) 
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GFR < 60 mL/min/1.73 m 2  for ≥3 months with or without kidney damage [ 11 ]. 
Staging of CKD is based on the level of GFR; stage 1 = 90–120 mL/min/1.73 m 2  
and stage 2 = 60–90 mL/min/1.73 m 2  both require the presence of abnormal 
urine or imaging studies, wherein stages 3–5 do not; stage 3 = 30–60 mL/
min/1.73 m 2 ; stage 4 = 15–30 mL/min/1.73 m 2 , and stage 5 < 15 mL/min/1.73 m 2  
is roughly equivalent to ESRD.  

4.4     Pathophysiology of CKD 

 There are multiple risk factors that place individuals at risk for the development and 
more rapid progression of CKD, the most common of which are long-standing dia-
betes and hypertension. The pathophysiology of CKD involves a sequence of initi-
ating events specifi c to the underlying etiology, leading to a set of common 
consequent mechanisms ultimately resulting in the reduction of renal mass and 
function. In those with diabetes, and to a lesser extent hypertension, there is an ini-
tial adaptive hyperfi ltration mediated by elevation of glomerular capillary pressure 
and fl ow along with functional hypertrophy of the remaining nephrons. These initial 
adaptive responses eventually become maladaptive over a course of time and predis-
pose to atrophy, fi brosis, and sclerosis of the remaining functional nephrons. There 
are numerous mechanisms that elicit the initial adaptive hyperfi ltration and subse-
quent maladaptive tissue remodeling of nephrons such as inappropriate activation of 
the sympathetic nervous system and the renin–angiotensin–aldosterone system 
(RAAS) [ 12 ].  

4.5     CKD as Risk Factor for CVD 

 As compared to age-matched control subjects without kidney disease, patients 
with CKD have increased CVD mortality even after adjusting for traditional CVD 
risk factors [ 10 – 14 ]. The strength of this association is driven by CKD patients 
with GFR < 60 mL/min/1.73 m 2  who are at increased risk for CVD compared to 
those with an eGFR > 60 [ 13 ]. Further, approximately half of the mortality in 
ESRD patients has been attributed to heart disease [ 10 ]. However, it is important 
to note this is a graded, linear relationship that begins in the earliest stages of 
CKD with GFR approaching 120 mL/min/1.73 m 2  and with proteinuria. The 
observation the majority of individuals do not reach the requirement of renal 
replacement therapy (e.g., dialysis or transplantation) due to the high CVD mor-
tality has led to an increase in scientifi c exploration in prevention and detection 
strategies [ 15 ,  16 ]. It    is known that individuals with CKD have a high prevalence 
of other disorders that independently are associated with poor CVD outcomes, 
such as the presence of diabetes and hypertension; reduced physical activity; and 
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the presence of high concentration of infl ammatory or oxidative biomarkers and 
deranged lipid parameters.  

4.6     Traditional and Nontraditional CVD Risk 
Factors in CKD 

 The relationship between CKD and CVD is largely considered to be due to the 
occurrence of many common traditional Framingham risk factors such as hyperten-
sion, diabetes, dyslipidemia, and advancing age [ 17 ,  18 ]. However, there has been 
little information on successful CVD risk prediction with established equations in 
subjects with CKD, suggesting the presence of other risk factors that confer addi-
tional CVD risk in CKD. Uremia-related risk factors, the term fi rst used by Sahart 
et al., refers to the risk factors that accumulate in CKD patients as a result of 
impaired renal clearance [ 19 ]. 

4.6.1     CKD and the Cardiorenal Metabolic Syndrome 

 Metabolic syndrome (e.g., cardiorenal metabolic syndrome) is a constellation of 
metabolic abnormalities including the presence of 3 or more clinical abnormalities 
such as hypertension, diabetes, atherogenic dyslipidemia, abdominal obesity, and 
albuminuria and/or diminished renal function that are associated with a pro- 
infl ammatory and pro-thrombotic state. This constellation of metabolic and renal 
disorders is a risk factor for developing both CKD and CVD. Central to the meta-
bolic dysregulation is inappropriate activation of RAAS [ 20 ,  21 ] and insulin resis-
tance with the compensatory hyperinsulinemia that contribute to infl ammation and 
oxidative stress and the development of endothelial dysfunction [ 17 ,  22 – 24 ]. 
Multiple cross-sectional [ 25 ,  26 ] and prospective studies [ 27 ] support the associa-
tion between the cardiorenal metabolic syndrome and CKD. Furthermore, the risk 
for CVD-related outcomes in individuals with CKD increases incrementally with 
each component of the syndrome (e.g., hypertension, diabetes, obesity, and dyslip-
idemia) [ 28 ].  

4.6.2     Role of Common Uremia-Related Comorbidities 
in the Pathogenesis of CKD-Related CVD 

 In addition to traditional Framingham CVD risk factors    individuals with CKD pos-
sess intrinsic uremia-related risk factors such as mineral metabolism disorders, ane-
mia, and increased levels of infl ammatory and oxidative markers; abnormal 
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apolipoprotein levels; elevated plasma homocysteine [ 6 ]; and enhanced coagulabil-
ity that independently contribute to the development of endothelial dysfunction as a 
precursor to CVD risk [ 25 – 31 ]. 

4.6.2.1     Mineral Metabolism Disorders: Calcium and Phosphorus 
Metabolism 

    During the early stages of CKD, a diminution of 1,25-vitamin D3 formation and gut 
calcium absorption occurs leading to compensatory increase in parathyroid hor-
mone (PTH). A compensated state of increased phosphorus concentration, normal 
serum calcium concentration, and low normal vitamin D3, along with mild to mod-
erate increases in PTH, exists until GFR declines to <30 mL/min. As kidney disease 
progresses to end stage, increases in phosphorus concentration and decrease in vita-
min D3 ultimately result in overt secondary hyperparathyroidism (2HPT) in the 
majority of individuals of CKD. Recent epidemiologic data has shown a strong 
clinical correlation between hyperphosphatemia and CVD mortality in ESRD 
patients, manifesting as vascular calcifi cation [ 32 ]. A 41 % increase in relative risk 
of death from coronary artery disease has been noted with serum phosphate concen-
tration greater than 6.5 mg/dL, as has 20 % increase in mortality from sudden death 
[ 33 ]. Further, increased serum phosphate concentration has been noted as an inde-
pendent predictor for mortality in ESRD patients [ 34 ]. 

 The sequential effects of disturbed mineral homeostasis are mediated by promo-
tion of vascular calcifi cation, bone resorption, and direct PTH toxicity [ 29 ,  32 ]. 
Hyperphosphatemia is considered a potent stimulant of intimal and medial calcifi -
cation of blood vessels [ 35 ]. Intimal calcifi cation involves formation of atheroscle-
rotic plaque, which upon destabilization leads to an adverse cardiovascular event. 
On the other hand, medial calcifi cation increases arterial stiffness, thus decreasing 
vascular compliance without compromising arterial lumen [ 36 ]. Numerous indices 
of arterial stiffness such as aortic pulse wave velocity and elastic modulus are noted 
to be strong independent predictors of CVD in ESRD patients [ 31 ]. This association 
between abnormal bone-mineral metabolism and increased vascular calcifi cation 
has been suggested as the major uremia-related risk factor contributing to increased 
risk of CVD in CKD population.  

4.6.2.2     Anemia 

 Anemia is thought to be a contributing risk factor for cardiac remodeling leading to 
the development of left ventricular hypertrophy (LVH), congestive heart failure 
(CHF), and CVD mortality [ 30 ]. The development of anemia starts early in CKD 
and is multifactorial. Indeed, decreased levels of erythropoietin, iron depletion, 
chronic infl ammation, bone marrow fi brosis, and impaired erythropoietin response 
are a few common causes of anemia in individuals with CKD [ 37 ]. Two different 
studies conducted using the National Health and Nutrition Examination Survey 
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(NHANES) III suggest the prevalence of anemia increases from 1 % at an eGFR of 
60 mL/min/1.73 m 2  to 9 % at an eGFR of 30 mL/min/1.73 m 2  and to 33–67 % at an 
eGFR of 15 mL/min/1.73 m 2  [ 38 – 40 ]. Data from NHANES and the NKF’s Kidney 
Early Evaluation Program (KEEP) support anemia in those 61 years and older with 
stage 3 or higher CKD [ 41 ]. 

 Treatment of anemia with erythropoiesis-stimulating agents    (ESAs) has shown 
to decrease LVH in CKD as well as ESRD patients on dialysis [ 42 ]. However   , the 
use of ESAs remains controversial due to two randomized control trials, Correction 
of Hemoglobin and Outcomes in Renal Disease (CHOIR) [ 43 ] and Trial to Reduce 
Cardiovascular Events with Aranesp Therapy (TREAT) [ 44 ], studies which do not 
support improved outcomes among patients’ subgroups randomized to higher 
hemoglobin level. Further, treatment of anemia in hemodialysis patients with severe 
cardiac disease was associated with increased risk of death in the Normalization of 
Hemoglobin trial [ 45 ]. However, in another Canadian study, normalization of LV 
dilatation did not show any increased risk of mortality [ 46 ]. Further    randomized 
control studies are needed to delineate whether correction of anemia, and to what 
level, has with CVD morbidity and mortality.  

4.6.2.3    Hyperhomocysteinemia 

 An elevated plasma homocysteine level is considered an independent CVD risk fac-
tor in the general population [ 6 ]. There are numerous confl icting studies indicating 
a potential role for homocysteine in CKD and CVD mortality and morbidity. 
Homocysteine levels are persistently elevated in ESRD patients and also in patients 
with cardiac diseases. Another study suggests that the antioxidant drug acetylcyste-
ine reduces plasma homocysteine level to normal range and is associated with 
improvements in endothelial dysfunction and CVD events when administered long 
term in patients undergoing hemodialysis [ 47 ]. However   , it is unclear the role the 
diminished kidney function and clearance has to elicit this relationship. A recent 
study would suggest that elevations in plasma homocysteine levels may simply be a 
function of reductions in GFR [ 48 ]. Thereby, further long-term interventional stud-
ies are needed to better understand the role of homocysteine for CVD risk in CKD.  

4.6.2.4    Infl ammatory and Oxidative Stress 

 C-reactive protein (CRP) has been observed to be elevated in patients with kidney 
disease [ 49 ] and has been shown to be an independent predictor of CVD events in 
the general population [ 50 ]. Recent data would suggest CRP may be a marker for 
CVD in individuals with CKD undergoing renal replacement therapy with perito-
neal dialysis, hemodialysis, or post-kidney transplant [ 51 – 54 ]. In earlier stages, 
CRP was also noted to be an independent predictor of CVD events in women with 
creatinine clearance <74 mL/min and with no underlying CVD [ 54 ], thereby sug-
gesting a potential role for infl ammation in the development of CVD in CKD. To 

J.P. Buddenini et al.



55

further substantiate the role of infl ammation in CVD, the use of aspirin is associated 
with CVD risk reduction directly related to CRP levels [ 50 ]. 

 Oxidative stress has also been noted as an underlying mechanism for CVD in 
CKD potentially due to ongoing low-grade infl ammation and impaired antioxi-
dant mechanisms [ 55 ]. The strength of the association between the cardiorenal 
metabolic syndrome and CKD underscores the signifi cance of oxidative stress due 
to metabolic dysregulation in the pathogenesis of CVD in CKD due to excess reac-
tive oxygen species [ 56 ]. 

 The evidence derived from numerous cross-sectional, population-based, and 
prospective studies supports the role of uremia-related risk factors in CVD in CKD. 
However, a direct relationship between intervention focusing on uremic, nontradi-
tional risk factors and CVD risk reduction has yet to be established, and further 
large-scale randomized controlled trials are needed to verify these associations.    

4.7     Screening and Detection 

 It is not known whether population-based screening of CKD is cost-effective. In a 
recent study, population-based screening for CKD with assessment of estimated 
GFR was found to be not cost-effective in subgroups with hypertension or older 
people. However, targeted screening of patients with diabetes was associated with 
cost-effectiveness [ 57 ]. Current practice guidelines promote early screening and 
detection of CKD patients in order to prevent the progression of kidney disease. 
Several initiatives like NKF-sponsored KEEP, National Institutes of Health (NIH) 
Healthy People 2010, and the National Kidney Disease Education Program 
(NKDEP) have emphasized educating patients as well as healthcare professionals 
about the positive impact of early screening and diagnosis. At this point, it is con-
ventional wisdom that a concerted team effort by primary care physicians and sub-
specialists is necessary to tackle this public health dilemma [ 58 ]. 

 The NKF Kidney Disease Outcomes Quality Initiative (KDOQI) recommends 
screening at-risk individuals for CKD using blood pressure, GFR estimation, urine 
albumin to creatinine ratio, urine analysis, and imaging studies of kidneys (in select 
at-risk individuals) [ 59 ]. Those identifi ed as highest risk are individuals with diabe-
tes, hypertension, autoimmune diseases, and patients recovering from an episode of 
acute renal failure or with family history of kidney diseases. 

 The    most common indices used in clinical practice for evaluation of CKD are 
serum creatinine (sCr) as a marker for clearance and then estimating GFR as well as 
determination of proteinuria. Even though sCr is the most commonly used test in 
clinical practice to assess renal function, sCR may not be the most accurate in early 
stages of kidney disease when screening and detection are critical. There are mul-
tiple reasons including biologic, pharmacologic, and estimation misclassifi cation. 
In this context, rises in sCr appear only after signifi cant loss of functioning neph-
rons. Moreover, the generation of sCr is based on muscle mass and diet, and the 
excretion or secretion of sCr is infl uenced by drugs such as cephalosporins, 
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aminoglycosides, cisplatin, cimetidine, and trimethoprim. However, estimating 
GFR may be the best available index for kidney function. The National Kidney 
Disease Educational Program (NKDEP) of the National Institute of Diabetes and 
Digestive and Kidney Diseases (NIDDK) and American Society of Nephrology 
(ASN) recommend estimating GFR from serum Cr by using either Modifi cation of 
Diet in Renal Disease (MDRD) study equation or Cockcroft-Gault equation [ 60 , 
 61 ]. Both equations take into account sCr along with age, sex, and weight variables 
thus minimizing the limitations of using sCr alone. However, there are limitations 
of the MDRD equation for estimation of GFR due to imprecision and systematic 
underestimation of GFR at higher levels [ 62 ]. Thereby, in 2009 a recent adaption for 
estimating GFR, the Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI) [ 63 ], may overcome the limitations of MDRD in earlier stages for screening, 
detection, and classifi cation of CKD. 

 Proteinuria is another accepted marker for kidney damage and serves as a guide 
for screening and detection for CKD especially in earlier stages. However, the pres-
ence of increasing levels of proteinuria in CKD is associated with a poor prognosis 
for both progression of CKD and the development of CVD [ 64 ,  65 ]. Thereby accu-
racy is important and measurement of albumin to creatinine ratio or total protein to 
creatinine ratio in untimed spot urine samples is widely accepted for assessment of 
proteinuria [ 4 ]. One of the earliest markers of kidney disease is microalbuminuria, 
defi ned as urinary albumin excretion between 30 and 299 mg/24 h. Annual screen-
ing allows early identifi cation of CKD in those at highest risk and also serves as a 
prognostic tool [ 66 ].  

4.8     Treatment 

 The treatment options for CKD patients are focused on risk factor reduction and 
interventions to prevent or slow the progression of CKD and importantly decrease 
risk for CVD-related outcomes. Treatment guidelines for risk factor reduction focus 
on blood pressure and glycemic control in CKD. Evidence supports that reduction 
in systolic blood pressure without decreasing albuminuria is insuffi cient in prevent-
ing the progression of CKD. Thereby, optimization of blood pressure with therapies 
targeting proteinuria should be a primary goal [ 67 ]. The reduction of proteinuria has 
shown protective effects in CVD risk in those with diabetic kidney disease [ 67 ]. 
Both the Diabetes Control and Complications Trial (DCCT) and the UK Prospective 
Diabetes Study (UKPDS) support the decreased risk of development of microalbu-
minuria and overt nephropathy with intensive glycemic and blood pressure control 
[ 68 ,  69 ]. However, the UKPDS further supports that blood pressure reduction may 
take precedence. 

 There is suffi cient evidence to support utilizing interventions that target RAS 
that have shown to improve CVD-related outcomes and kidney-related out-
comes in patients with or without diabetes [ 70 ]. The    African American Study of 
Kidney Disease and Hypertension (AASK) addressed the optimal drug regimen 
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for African Americans with hypertensive renal disease supported by the ratio-
nale that ACE inhibitors that improved renal outcomes [ 71 ,  72 ]. Moreover, 
the Lotrel and Enalapril in African Americans with Diabetes (LEAAD) study, 
conducted in African American patients with both hypertension and diabetes, 
concluded that combination therapy with ACE inhibitor/CCB (calcium channel 
blocker) was much better in achieving RAS  blockade and BP reduction compared 
to monotherapy with ACE inhibitors [ 73 ].  

4.9     Conclusion 

 Recent work has clearly established a strong relationship between CKD and an 
increased CVD risk. In    this context, the relationship is a graded linear relationship 
beginning at the earliest stages of CKD, thereby highlighting the importance for 
detection of CKD early to improve kidney-related outcomes. Current recommenda-
tions by NKF and other societies classify individuals with CKD in the highest-risk 
group for CVD. Recent studies in CKD population have noted the concurrent pres-
ence of uremia-related risk factors along with traditional CVD risk factors leading 
to the development of CVD. However this association of uremia-related risk factors 
is yet to be conclusively proven to establish a causal relationship. In the clinical 
practice, CKD is a compelling indication for aggressive blood pressure control. 
However, additional risk factor reduction strategies in CKD patients should be pur-
sued by clinicians.     
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5.1  Introduction

The pathogenesis of type 2 diabetes includes pancreatic β-cell dysfunction and 
 insulin resistance, most importantly in hepatocytes, myocytes, and adipocytes. Type 
2 diabetes is also well known to be a progressive disorder [1] characterized by both 
deteriorating capacity for insulin release and insulin action. Both defects are recog-
nizable early in the course and present even in nondiabetic offspring of patients with 
type 2 diabetes [2–4]. In contrast, the pathogenesis of type 1 diabetes involves one 
major organ and cell type, in other words, autoimmune destruction of pancreatic 
β-cells. At the cellular and molecular levels, the pathogenesis of both type 1 and 
type 2 diabetes is far more complex. Here the focus will be on the role of mitochon-
dria and mitochondrial reactive oxygen species (ROS).

Type 2 and autoimmune type 1diabetes are clearly associated with altered 
mitochondrial function, including ROS production, although cause and effect rela-
tionships remain in dispute. Several studies document the existence of oxidative 
damage in diabetes. For example, plasma markers of lipid peroxides such as  
8-iso- prostaglandin F2α [5], conjugated dienes, and lipid hydroperoxides [6] are 
elevated early in the course of type 1 diabetes, while antioxidant capacity assayed 
as total plasma antioxidant capacity (TRAP) is reduced [6]. Moreover, DNA damage 
is detectable in circulating lymphocytes of subjects with insulin-dependent diabetes 
and correlates to the extent of glucose elevation [7]. There is also strong evidence 
for oxidative damage in cells and tissue of persons with type 2 diabetes including 
blood hydroperoxides [8] and PGF2 alpha [9] and evidence of oxidative damage to 
DNA [10–12].
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Although ROS clearly originate from multiple cell components, considerable 
evidence points to mitochondrial ROS as particularly important in disease states 
including diabetes and its long-term complications of diabetes. It has been sug-
gested that elevated glucose and/or free fatty acids drive the formation of ROS [13–
15] impairing both β-cell insulin release and insulin sensitivity and contributing to 
the complications of diabetes [13, 16, 17]. A common supposition, although prob-
ably oversimplified, is that metabolism of these nutrients generates high levels of 
substrate flux to mitochondria resulting in high mitochondrial NADH/NAD and 
FADH2/FAD ratios and high potential at low respiration rates (closer to state 4 con-
ditions) and, thereby, more electron leak [17, 18]. In particular, this would apply to 
cells which take up glucose by facilitated diffusion independent of circulating insu-
lin, characteristic of the classic sites of diabetic complications including the retina, 
kidney, neurons, and vascular endothelium [19]. On the other hand, insulin- sensitive 
cells including the muscle, heart, and liver depend on insulin for glucose uptake 
and/or metabolism. Hence, other factors are likely important in generating the 
diabetes- related oxidative damage observed in these cells.

The following text will first address mechanisms whereby mitochondria generate 
ROS. Subsequently, we discuss the detection and quantification of ROS production. 
This is followed by a review of evidence for oxidative damage to the cell types most 
relevant to diabetes, including myocytes, hepatocytes, adipocytes, and islet β-cells 
as well as non-insulin-sensitive cells representing targets for complications.

5.2  Mitochondrial ROS Production

The mitochondrial electron transport system generates superoxide derived from 
electron leaks as substrates are metabolized [20]. Biologically important ROS 
include the superoxide radical, O2

·–; the hydrogen peroxide, H2O2; and the hydroxyl 
radical, OH·. At physiologic pH, superoxide-induced damage is limited in that the 
species self-reacts (dismutates) or, more efficiently, is catalyzed by superoxide dis-
mutase (SOD) to form H2O2 [21] which is scavenged by catalase after exit to the 
cytoplasm. Thus, superoxide and H2O2 per se are not thought to be particularly 
destructive. However, there is still potential for marked damage due to lipid peroxi-
dation, reaction with nitric oxide (NO) to form peroxynitrite, and through genera-
tion of the damaging hydroxyl radical through a series of steps dependent on the 
presence of redox metals such as iron or copper. This occurs as follows:

 2 22 2 2 2O H O H O·− ++ → +  

 
O O2 2

·- + ( ) ® +Fe III Fe(II)
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Mitochondria are considered the major intracellular site of superoxide production 
[17, 22, 23], albeit exact quantification is difficult. The mitochondrial contribu-
tion varies with the respiratory state being greater near state 4 when membrane 
potential is less mitigated by ATP synthesis [24]. The major sites of superoxide 
production within mitochondria are somewhat uncertain, but large amounts appear 
to derive from complexes I and III [23] (Fig. 5.1). Complex I superoxide is released 
nearly exclusively to the matrix side of the inner membrane, whereas complex III 
generates superoxide to both the matrix and outward to the intermembrane and 
extra-mitochondrial space [25, 26]. As recently reviewed [27], there is credible evi-
dence for several sites wherein mitochondria generate superoxide. Prominent 
among these are two sites in complex I termed site IF (the FMN-containing NADH 
binding site) and site IQ (an ubiquinone reduction site). Site IF generates superox-
ide under conditions of forward electron transport during complex I substrate oxida-
tion. Its activity can be increased if downstream transport within complex I is 
blocked (e.g., by rotenone) in which case upstream redox sites are fully markedly 
reduced. In contrast, the IQ site becomes highly active when electrons donated at 
complex II are delivered to complex I through a process termed reverse electron 
transport [28]. Whether or to what extent reverse transport actually occurs in vivo 
under physiologic conditions is not clear. Considerable superoxide is also generated 
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the convergent nature of electron donation at one of the four sites, complex I (NADH ubiquinone 
reductase), complex II (succinate dehydrogenase), the electron transfer flavoprotein (ETF), or a 
mitochondrial form of GAPDH. Reduced ubiquinone is processed through the Q cycle in complex 
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·−) is produced at the sites 
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in complex III during redox cycling (cyclic conversion of reduced ubiquinol to 
 oxidized ubiquinone and back) in complex III. This occurs in a site termed IIIQo 
representing the outer quinone-binding site of the Q cycle, wherein the cycling 
intermediate semiquinone species leaks electrons to molecular oxygen. The half- 
life of the semiquinone is highly dependent on mitochondrial membrane potential 
(or ΔΨ) and thus can be regulated by uncoupling [29]. Redox cycling of CoQ may 
also occur within complex I although by a less defined mechanism(s) but also sensi-
tive to ΔΨ.

In addition to superoxide production in complexes I and III, lesser amounts are 
derived from other mitochondrial sites. These include pyruvate dehydrogenase, 
2-oxoglutarate dehydrogenase, the electron transferring flavoprotein (the entry 
point of electrons from flavin-linked beta-oxidation of fatty acids), and glycerol 
3-phosphate dehydrogenase [27]. Some superoxide may also derive from the suc-
cinate dehydrogenase complex and cytochrome c although this is probably very 
little [27]. Finally, mitochondrial ROS are generated at the iron-sulfur centers in the 
aconitase protein where conversion of superoxide to the hydroxyl radical results in 
inactivation of the enzyme [30, 31].

Although this review is concerned with mitochondrial ROS, it should be noted 
that considerable ROS is derived from outside this organelle including oxygen radi-
cals from peroxisomal β-oxidation of fatty acids [32], NAD(P)H oxidase [33], xan-
thine oxidase, arachidonic acid metabolism, microsomal P450 enzymes [34], and 
the prooxidant heme molecule [35].

5.3  Assessment of Mitochondrial ROS and Oxidative 
Damage

In general oxidative stress (mitochondrial or other) is evident in two ways, first as 
ROS production in real time (e.g., superoxide production rates) and second as exis-
tent oxidative damage (e.g., lipid peroxides).

5.3.1  ROS Production

It is relatively easy to assess ROS production in isolated mitochondria but more dif-
ficult in intact cells or tissues, especially when we are interested in organelle- specific 
(mitochondrial) ROS. For isolated mitochondria, we and others often use the fluo-
rescent probe, 10-acetyl-3,7-dihydroxyphenoxazine (DHPA or Amplex Red, 
Invitrogen), considered by some as optimal for ROS production by the isolated 
organelles [27]. The data can be easily quantified as H2O2 production per unit time 
per unit mitochondrial mass by including a standard curve generated by exogenous 
H2O2. However, it is important to remember that although DHPA is generally 
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considered a measure of superoxide production, it measures this radical indirectly 
as H2O2 generated by conversion of superoxide by mitochondrial SOD. Other 
probes including 2′,7′-dichlorodihydrofluorescein diacetate (DCF or H2DCF-DA) 
[36] and luciferin [37] have also been used to assess mitochondrial superoxide, 
although we believe with less specificity. Since specificity is concerning for any 
fluorescent probe, steps should be taken to further document the radical species 
being observed. For example, catalase or SOD (or analogs) can be used to metabo-
lize H2O2 or superoxide, thereby supporting specificity by reducing or completely 
blocking the observed fluorescent signal.

In contrast to fluorescent probes, a highly specific, albeit far more cumbersome, 
means to assess mitochondrial superoxide is by electron paramagnetic resonance 
(EPR) spectroscopy. EPR can be carried out by adding spin trap to mitochondria 
incubated under desired conditions (substrate, inhibitors, etc.). We and others have 
used the spin trap, 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) generating a specific 
signal representing either superoxide or the hydroxyl radical. Moreover, these two 
possibilities can be separated by adding SOD, which should abolish the signal gen-
erated by superoxide but not the hydroxyl radical. In our experience with skeletal 
muscle and endothelial cell mitochondria, essentially all the signal derives from 
superoxide.

We suggested a way to measure superoxide from isolated mitochondria in a man-
ner that imparts a degree of specificity for matrix ROS compared to superoxide 
released external to the organelles [36]. Fluorescent H2O2 probes such as DHPA and 
EPR spectroscopy measure mitochondrial superoxide in different fashion. When 
DHPA is added to isolated mitochondria, the probe detects H2O2 generated from 
superoxide by matrix MnSOD. H2O2 so generated diffuses outward from mitochon-
dria and reacts with horseradish peroxidase in the incubation medium to trigger 
fluorescence. H2O2 produced in this way derives largely from superoxide generated 
at complex I and released to the matrix [26]. In contrast, the EPR spin trap, DMPO, 
detects superoxide directly after efflux outward from mitochondria. Superoxide 
produced in this way derives largely from the Q cycle at complex III [26]. Some 
complex III superoxide is also released to the matrix. However, DMPO will not eas-
ily penetrate mitochondria and matrix superoxide is rapidly converted to H2O2, so 
the spin trap should detect very little matrix superoxide.

Theoretically, it is possible to assess complex III superoxide released to the cyto-
plasmic side of isolated mitochondria simply by measuring H2O2 production, for 
example, as DHPA fluorescence in the presence and absence of added SOD. 
Exogenous SOD should increase fluorescence to the extent that it was generated by 
conversion of externally released superoxide to H2O2. Superoxide production has 
been effectively assessed in this way in studies of the topology of the muscle, heart, 
and liver mitochondria [26], although that required mathematical correction for 
fluorescent interference.
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5.3.2  Mitochondrial ROS Production in Intact Cells

Several studies measured intact cell total ROS production as H2O2 using fluorescent 
probes such as carboxy dichlorodihydrofluorescein (with more or less attention to 
radical specificity). However, most intact cell studies do not separate mitochondrial 
from cytoplasmic ROS. A degree of specificity for intact cell mitochondrial super-
oxide, as opposed to cytoplasmic, can be detected using mitochondrial-targeted 
dihydroethidine (DHE) or “MitoSOX.” MitoSOX is a DHE derivative conjugated to 
the cation triphenylphosphonium resulting in potential-dependent accumulation of 
the probe in the mitochondrial matrix. The accumulation in the matrix should be 
very large as cationic triphenylphosphonium conjugated molecules accumulate 
many fold [38]. The difference in fluorescence between untargeted DHE and 
MitoSOX may provide a semiquantitative index of relative cytoplasmic and mito-
chondrial superoxide. A concern, however, is the degree to which MitoSOX could 
undergo oxidation in the cytoplasm, which is difficult to ascertain. Since DHE and 
MitoSOX do not measure H2O2, treatment with a SOD mimetic should decrease 
fluorescence and serve as a means of validation that superoxide is being measured. 
It is also important to consider that mitochondrial-targeted DHE is dependent on 
membrane potential to enter the organelles. Resolution of this requires that potential 
be monitored and an appropriate correction be applied. Although difficult, this has 
been accomplished using tetramethylrhodamine methyl ester (TMRM) to measure 
fluorescence in cerebellar granule neurons [39]. DHE (mitochondrial targeted or 
not) has been criticized as nonspecific and some advocate analysis of the oxidation 
products by high-pressure liquid chromatography (HPLC) to document specificity 
for superoxide as opposed to H2O2 [40].

Mitochondrial ROS have also been assessed using the dye, JC-1, whose fluores-
cence changes from green to red fluorescence dependent on the mitochondrial 
membrane potential. Difficulties include specificity and difficulty quantifying the 
signal. Approaches have also been used to assess ROS in intact tissues or even in 
vivo using DHE or certain dyes whose properties depend on oxidation states within 
cells [41, 42], although mitochondrial specificity is even more challenging. A novel 
EPR approach to this issue has recently been described. Differentially targeted EPR 
spin traps were used to assess mitochondrial ROS in intact lymphocytes in a study 
describing an interactive effect of mitochondrial ROS with phagocytin NADPH oxi-
dase [43].

5.3.3  Oxidative Damage

As opposed to ROS production or production rates, existent oxidative damage can 
be assessed by several markers within cells, tissues, blood, and urine. Since these 
are not specific to mitochondrial ROS, isolation of the organelles or careful 
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visualization of fluorescent probes is necessary. Commonly used markers are available 
for DNA damage, lipid peroxidation, and protein oxidation. Examples include 
8- hypdoxyguanosine for RNA or DNA damage, 4-HNE (4-hydroxynonenal) or 
TBARS (thiobarbituric acid reactive substances) for lipid peroxidation, and 
 nitrotyrosine or oxidized glycation products (glycoxidation) for protein damage. 
A decrease in aconitase activity in isolated tissue or mitochondrial samples can also 
be used as a marker of mitochondrial oxidative damage [30, 31]. In work by this 
author and colleagues, we assessed markers of protein glycation and glycoxidation 
in skin biopsy samples from a large population of well-characterized subjects with 
type 1 diabetes. Carboxymethyllysine, an advanced glycation end product reflecting 
glycoxidation, and the glycation marker, furosine, predicted the progression of 
microvascular complications of diabetes even after adjustment for hemoglobin A1c 
levels [44]. The extent of superoxide release (after the fact as opposed to real time) 
has been measured in situ in whole vessel aortic tissue using DHE or even 
mitochondrial- targeted DHE [42, 45]. Finally, antioxidant enzyme content and 
activity can also be assessed as reflecting oxidative stress. However, it is difficult to 
know whether changes in these parameters reflect actual damage versus adaptive 
ongoing protection.

5.4  Diabetes-Related Oxidative Stress in Mitochondria  
in Specific Cell or Tissue Type

Here we will consider mitochondrial ROS and oxidative damage within the cell 
types most relevant to diabetes including myocytes, hepatocytes, adipocytes, and 
islet β-cells as well as non-insulin-sensitive cells representing targets for complica-
tions. We will attempt to integrate defects in a way consistent with the pathophysiol-
ogy of diabetes and its complications.

5.4.1  Oxidative Damage and Pancreatic Islet β-Cells

Most cases of type 1 diabetes result from autoimmune destruction of islet β-cells, 
and ROS may account for a significant part of this damage. Of note is that levels of 
protective antioxidant enzymes including SOD, catalase, and GPX are relatively 
low in islets compared to the liver, kidney, brain, lung, skeletal muscle, heart, adre-
nal gland, and pituitary gland [46]. So, this may account for a particular sensitivity 
of pancreatic β-cells toward cytotoxic damage, as evidenced by sensitivity to certain 
toxins, for example, alloxan or streptozotocin, which are agents known to cause free 
radical damage to islets [47, 48]. Overexpression of SOD [49] or glutathione per-
oxidase [50] mitigates radical-induced islet damage due to these compounds. 
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Moreover, antioxidant treatment reportedly improves the function of murine islets 
after transplantation in mice [51]. There is also evidence that high circulating glu-
cose, once established, increases islet cell H2O2 content with subsequent toxicity 
including reduction of the transcriptional factor PDX-1 which is critical for activa-
tion of the insulin gene promoter [52].

Interestingly, prooxidant heme compounds may have a role in the islet pathol-
ogy of diabetes. Induction of heme oxygenase-1 (HO-1) with cobalt protoporphy-
rin (CoPP) in nonobese diabetic (NOD) mice increased anti-apoptotic proteins in 
the pancreas [53]. Heme oxygenase catalyzes the rate limiting step in heme deg-
radation converting heme to biliverdin while consuming oxygen and generating 
Fe2+ and carbon monoxide [54]. This may affect mitochondrial function, at least 
based on studies in renal mitochondria of diabetic rats. These studies showed that 
CoPP increased the expression of the carnitine, citrate, deoxynucleotide, dicar-
boxylate, and ADP/ATP carriers associated with an increase in cytochrome c 
oxidase activity and phosphorylation of the anti-apoptotic proteins AKT and 
BcL-XL [55].

Oxidative damage to islet β-cells has also been observed in human type 2 diabe-
tes by nitrotyrosine staining of islets obtained at autopsy [56]. Moreover, islets from 
rats exposed to high fat in the form of oleate infused in vivo demonstrated impaired 
glucose-stimulated insulin release. This could be inhibited by the antioxidants, tau-
rine or N-acetylcysteine which increase glutathione [57]. When incubated ex vivo, 
the islets which had been exposed to oleate demonstrated increase H2O2 production 
again preventable by the antioxidant compounds or by the SOD mimetic Tempol.

Mitochondrial uncoupling appears important in ROS mediated islet toxicity. 
This might be expected based on logic since it is well known that high mitochon-
drial membrane potential increases superoxide generation by the electron transport 
chain [28, 29]. Of note is that superoxide is itself a signal activating uncoupling 
protein-2 (UCP2) [58]. This could be construed as an adaptive means to reduce 
potential and protect against superoxide. Emre et al. [59] found that mice deficient 
in UCP2 were more sensitive to diabetes induced by multiple low doses of strepto-
zotocin compared to wild-type mice. This was accompanied by evidence for 
increased damage due to ROS and nitric oxide radicals along with greater intra-islet 
lymphocytic infiltration.

Based on the above, one could speculate that control of mitochondrial membrane 
potential through an agent capable of mild uncoupling might be a useful therapeutic 
tool. However, even if this were feasible, it is important to remember that uncou-
pling reduces ATP production, a process dependent on mitochondrial inner mem-
brane potential. Further, ATP is critical to insulin release through the well-established 
mechanism of triggering closure of KATP channels resulting in calcium entry, depo-
larization, and insulin release. In fact, UCP2-deficient mice have higher islet ATP 
levels and increased glucose-stimulated insulin secretion [60]. These concepts are 
depicted in (Fig. 5.2).
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5.4.2  ROS and Oxidative Damage in Insulin-Sensitive  
Target Tissues

5.4.2.1  Skeletal and Cardiac Muscle

Skeletal muscle and heart depend strongly on insulin for glucose uptake and metab-
olism while liver depends on insulin for glucose metabolism. So, any factor that 
impairs these processes, ROS or other, will lead to insulin resistance. In fact, a com-
mon explanation for the duality of insulin resistance and impaired insulin secretion 
that characterizes type 2 diabetes is ongoing damage to mitochondria of insulin- 
sensitive peripheral cells [61] along with progressive impairment in mitochondria of 
islet β-cells [17].

Muscle represents the major peripheral tissue which transports and utilizes glu-
cose in response to insulin. However, because of the dependency of glucose trans-
port on insulin, muscle mitochondria are not subject to glycemia-driven ROS in the 
same way as non-insulin-sensitive cells. On the other hand, this is not the case for 
fatty acids, which circulate in higher concentrations in both type 1 and type 2 
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diabetes in the untreated state. Intramyocellular lipid content is elevated in humans 
with obesity, diabetes, and insulin resistance, and much of this lipid is actually 
localized near mitochondria [62] and potentially sensitive to ROS-induced peroxi-
dation. Indeed, lipid peroxides are elevated in muscle of subjects with obesity and 
insulin resistance [63]. Figure 5.3 depicts processes triggered by fatty acid exposure 
leading to insulin resistance.

Fatty acids and lipid peroxides induce uncoupling protein-3 (UCP3)-mediated 
uncoupling which in theory may be beneficial by reducing ROS and enhancing 
export of toxic fatty acids [64]. But, as is the case for islet cells, uncoupling may be 
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Fig. 5.3 Consequences of excess fatty acyl-coenzyme A (acyl-CoA) and reactive oxygen species 
(ROS) production on the insulin signaling pathway leading to the insulin-responsive glucose trans-
porter, GLUT4. In response to insulin, tyrosine residues undergo autophosphorylation, and the IR 
acquires tyrosine kinase activity leading to phosphorylation of the insulin receptor substrate-1 
(IRS-1). This initiates a signaling cascade activating serine/threonine kinase-protein kinase B 
(Akt) and translocation of the GLUT4 to the cell membrane. GLUT4 then fuses with the plasma 
membrane resulting in glucose uptake by facilitated diffusion. Mitochondrial dysfunction opposes 
insulin signaling by (1) interfering with oxidation of fatty acyl-CoA and consequent accumulation 
of intracellular lipid and diacylglycerol and (2) by generation of ROS. Both processes activate 
serine kinase reactions leading to serine phosphorylation of IRS-1 and interference with insulin 
signal transduction. FA fatty acid, FATPs refers to various transport proteins active in fatty acid 
uptake
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a beneficial compensatory response but one that might have a cost in terms of an 
uncoupling-induced decrease in ATP production.

Boudina et al. [65] reported an increase in ROS production, a decrease in ATP 
production, and an increase in a marker of oxidative damage (4-HNE) in heart mito-
chondria of insulin-resistant, obese, and leptin receptor-deficient db/db mice, a 
model of extreme obesity associated with diabetes. But interestingly, this group 
noted a decrease in ROS production from heart mitochondria of an insulin-deficient 
model, the Akita mouse, which more closely resembles human type 1 diabetes [66]. 
Hence, these findings suggest fundamental differences in the mechanisms underly-
ing ROS production and ROS protection between heart mitochondria of insulin- 
deficient mice compared to mitochondria isolated from an obese, insulin-resistant 
strain. We also noted no increase (or an actual decrease) in ROS production mea-
sured both as fluorescent H2O2 release and as superoxide by EPR from mitochondria 
of the heart, gastrocnemius muscle, and liver of insulin-deficient rats made diabetic 
with streptozotocin (STZ) [67]. These findings were associated with an upregula-
tion of MnSOD and UCP3 as well as cytoplasmic catalase in the heart and muscle 
and an increase in glutathione peroxidase in the liver mitochondria. Hence, the 
upregulation of antioxidant protection does suggest that islets isolated from insulin- 
deficient mice had been exposed to antecedent in vivo oxidative stress.

In this regard, we point out an important caveat applicable to the above studies of 
ROS in insulin-deficient diabetes and to many other studies. This has to do with the 
interpretation of mitochondrial ROS data. In our studies of STZ diabetes, respira-
tion was also reduced. In isolated mitochondria, respiration is proportional to elec-
tron transport culminating in electron transfer to molecular oxygen. Importantly, 
when superoxide production was normalized to respiration, superoxide was actually 
significantly increased (not decreased) in muscle mitochondria of STZ-diabetic rats, 
i.e., ROS per unit electron transport was increased. A simple analogy underscores 
the importance of the metric, ROS per unit electron transport. ROS production 
viewed independent of e− transport is analogous to motor vehicle heat generation 
viewed independent of the speed of the vehicle. In a recent manuscript, we also 
reported an increase in superoxide generation per unit ATP produced in STZ- 
diabetic muscle mitochondria [68].

We also examined superoxide production both as H2O2 fluorescence and by EPR 
spectroscopy in mitochondria isolated from the muscle, heart, or liver of rats subject 
to high-fat feeding along with a low dose of streptozotocin [69]. These treatments 
led to a state resembling very mild human type 2 diabetes or “prediabetes” defined 
as an increase in the fasting blood glucose to over 100 mg/dL but not over 125 mg/
dL [70]. Our results did not show excess superoxide production (or an alteration in 
respiration) indicating that the mitochondria, incubated in vitro, were not intrinsi-
cally altered to generate excess ROS.

As indicated above, there is evidence for oxidative DNA damage in type 2 diabe-
tes [10–12]. This is supported by cell culture studies wherein L6 myotubes exposed 
to high fat manifest mitochondrial DNA damage that, interestingly, improved with 
a targeted DNA repair enzyme [71]. In addition FTO, a gene expressed at higher 
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levels in muscle from humans with type 2 diabetes associated with obesity, increased 
oxidative damage and mitochondrial dysfunction when expressed in myotubes [72].

5.4.2.2  Liver

Several reports implicate diabetes-related oxidative stress in the liver. We and others 
have observed [67, 73] that GSH content is reduced in liver mitochondria of insulin- 
deficient STZ-diabetic rats. In our work, the reduction in glutathione (GSH) was 
associated with an increase in GPx expression apparently, in compensation for oxi-
dative stress. Interestingly, mitochondria isolated from fatty liver of obese mice 
demonstrated opposite alterations, showing increased GSH and a reduction in GPx 
enzyme activity [74]. On the other hand, proteomic analyses of liver tissue from 
obese humans with type 2 diabetes revealed decreased levels of GSH and higher 
levels of protein and lipid oxidative damage [75]. Livers of Goto-Kakizaki (GK) 
rats, a model of type 2 diabetes, manifest altered mitochondrial complex activities 
(decreases in I, III, and IV and increases in II and V) as well as oxidative damage in 
the form of protein oxidation, decreased SOD and glutathione S-transferase, and 
decreased total antioxidant capacity [76]. However, GSH was increased. So, overall, 
the above studies implicate oxidative stress to the liver in diabetic models, although 
GSH levels vary between these reports. Possibly, this is due to differences in the 
extent of compensation (or lack of) dependent on the model examined.

Impaired aldehyde dehydrogenase (ALDH) has been implicated in diabetic com-
plications. As opposed to excess generation of ROS and products of oxidative dam-
age, ALDH is important in detoxification. Impaired ALDH will increase levels of 
lipid peroxidation products such as 4-HNE, a reactive aldehyde that modifies pro-
teins. There is evidence that glycoxidation and/or hyperglycemic pseudohypoxia 
impairs ALDH and leads to accumulation of lipid peroxides in the liver of insulin- 
deficient diabetic rats [77]. Hyperglycemic pseudohypoxia refers to the increased 
NADH to NAD+ ratio observed in insulin-deficient diabetes without a decrease in 
tissue pO2 [78].

It is also of interest that cytochromes P450, important in biotransformation and 
metabolism, are expressed in liver mitochondria where they represent a source of 
ROS. Further, there is evidence that hepatic CYP2E1 mRNA and/or protein expres-
sion is increased in certain conditions including obesity and type 2 diabetes [79].

5.4.2.3  Adipose Tissue

Experimentally induced mitochondrial dysfunction in adipocytes results in increased 
ROS and impaired insulin signaling [80]. In another study, ROS production altered 
gene expression in cultured adipocytes, a process that could be alleviated by over-
expression of mitochondrial uncoupling protein [81]. It has also been found that 
high-fat feeding to mice leads to endoplasmic reticulum (ER) stress in adipose tis-
sue, while fatty acid treatment of cultured adipocytes induced ER stress [82]. 
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Interestingly, a recent report showed that adipose oxidative damage observed in 
obese insulin-resistant animal models could be mitigated by green tea catechins, 
although how this relates to mitochondria is not clear [83].

On the other hand, it has been reported that ROS may actually have a positive 
role in insulin signaling since pharmacologic depletion of GSH in mice actually 
increased energy expenditure and reduced diet-induced obesity [84], so the overall 
effects of ROS on adipose tissue health are open to some question.

5.4.3  Oxidative Damage in Non-Insulin-Sensitive Cells 
Relevant to the Long-Term Complications of Diabetes

The major long-term complications of diabetes involve cells that do not depend on 
insulin for glucose uptake. These cells take up glucose by facilitated diffusion inde-
pendent of insulin [19] and include the classic sites of diabetic complications 
including the retina, kidney, neurons, and vascular endothelial cells. It has been 
suggested that an excess glucose load results in increased substrate flow to mito-
chondria and consequent enhanced ROS production [85]. In fact, glycemic effects 
of this nature have been reported for mitochondria of diverse cell types including 
bovine endothelial cells [14, 86], retinal endothelial cells [13], renal mesangial cells 
[87], cardiomyocytes [88], and epineural blood vessels [89]. Moreover, diabetes is 
associated with increased fatty acid oxidation and increased intracellular fat accu-
mulation both of which have been implemented in mitochondrial ROS generation 
[15, 61].

On the other hand, not all reports show that exposing cultured cells to glucose 
increases ROS [90, 91]. Moreover, there are reports of increased ROS production on 
exposure to low glucose [92, 93]. In fact, recent studies in our laboratory using a 
recently available extracellular oxygen and acidification sensor (Seahorse, Inc) 
showed that cultured bovine aortic endothelial (BAE) cells exposed to high glucose 
manifest no greater ROS production and no greater basal or maximal mitochondrial 
oxygen consumption compared to cells exposed to physiologic glucose [94]. Hence, 
we believe that effects of glucose on ROS may depend on exact medium and culture 
conditions that are still unclear.

There are multiple mechanisms whereby ROS could lead to the complications of 
diabetes. Superoxide reacts with nitric oxide to form peroxynitrite. This will induce 
lipid peroxidation and consume nitric oxide which can impair endothelial-mediated 
vasodilation. Superoxide can also damage iron-sulfur centers reducing catalysis by 
enzymes such as aconitase [31]. Moreover, hydrogen peroxide, produced from 
superoxide by MnSOD, can react with iron to form the very reactive hydroxyl mol-
ecule. Thus, mitochondrial superoxide generates other radicals, thereby imparting 
diffuse damage to protein, DNA, RNA, and lipids. Moreover, mitochondrial dam-
age and consequent dysfunction will disrupt calcium transits and can induce the 
mitochondrial permeability transition pore leading to apoptosis [95].
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Based on studies in BAE cells, it has been posited that hyperglycemia-induced 
mitochondrial ROS leads to diabetic complications through pathways including 
generation of advanced glycosylation end products (AGEs), protein kinase C (PKC) 
activation, and polyol formation [14]. In the first case, glucose-induced ROS 
increase levels of methylglyoxal, which is known to induce the formation of AGEs. 
In addition, ROS-activated PKC can lead to diabetic complications by triggering the 
production of several proteins. Examples are renal mesangial matrix proteins lead-
ing to glomerular damage [96] or platelet-derived growth factor and the vasocon-
strictive endothelelin-1 which are associated with diabetic retinopathy [97]. 
Moreover, antioxidant administration decreases sorbitol accumulation in BAE cells 
exposed to high glucose. This implies that ROS increase glucose-driven polyol for-
mation through the aldose reductase pathway, a mechanism linked to diabetic com-
plications [14].

Below, we review evidence for mitochondrial-related, diabetes-induced oxida-
tive damage in specific target cells.

5.4.3.1  Retina

Studies using transformed retinal cells (rMC-1) and bovine retinal endothelial cells 
(BREC) revealed increased superoxide production upon exposure to 25 mM, as 
opposed to 5 mM, glucose [13]. This was thought to be primarily from mitochon-
dria, since inhibition of the mitochondrial electron transport chain complex II nor-
malized superoxide production whereas inhibition of NADPH oxidase or nitric 
oxide synthase had little or no effect. On the other hand, Busik et al. [90] showed 
that 25 mM glucose did not increase ROS production in human retinal endothelial 
cells. This finding was explained since the increased glucose concentration did not 
actually increase glucose utilization in these cells. In contrast to the lack of effect of 
glucose, these authors [90] found that stimulation by interleukin-1β or tumor necro-
sis factor-α did induce ROS production in human retinal endothelial cells suggest-
ing that diabetes-related endothelial injury may be related more to cytokine 
production than to excess glucose. This study utilized specific spin traps to verify 
intracellular production of superoxide by EPR spectroscopy.

Kanwar et al. [98] reported that superoxide production, measured as lucigenin 
fluorescence, was increased in retinal tissue isolated from streptozotocin-diabetic 
mice with blood glucose concentrations approximately 400 mg/dL. This was pre-
vented by overexpression of MnSOD in the diabetic mice before isolation of the 
retinal tissue. These authors also reported that diabetes decreased mitochondrial 
content of reduced glutathione. Cui et al. [99] used a confocal microscopy approach 
and reported that high glucose in culture medium increased ROS production in 
bovine retinal capillary endothelial cells and pericytes associated with apoptosis. 
These authors also noted increased uncoupling protein expression and MnSOD sug-
gesting mitochondrial compensation for ROS. Oddly the induced UCPs included 
uncoupling protein-1 (UCP1) generally expressed only in brown fat. But in this 
respect, a more recent report did describe a -3826A/G polymorphism in the UCP1 
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gene associated with diabetic retinopathy in type 1 diabetic patients [100]. Consistent 
with the above studies, Koluru et al. [101] showed that retinal mitochondria from 
rats after 8 months (but not 2 months) of STZ-induced diabetes are characterized by 
leakage of markers of apoptosis (cytochrome c and the BAX protein). In another 
report, this group showed that MnSOD overexpression in transgenic mice inhibited 
oxidative damage to the retina manifest as 8-hydroxy deoxyguanosine (8-OHdG) 
and nitrotyrosine [102].

5.4.3.2  Renal

Friederich et al. [103] showed that diabetic rats express increased mitochondrial 
UCP2 in proximal tubular cells associated with increased oxygen use and suggested 
that the increase in UCP2 was protective against oxidative stress. In another report 
UCP2 was negatively associated with H2O2 production in kidney mitochondria of 
diabetic rats [104]. Manabe et al. [105] reported that high glucose increased ROS 
fluorescence in human mesangial cells associated with potentially harmful cytokine 
expression, an effect that was blocked by astaxanthin, a carotenoid that accumulated 
in mitochondria. High glucose also reportedly increased H2O2 production by dichlo-
rodihydrofluorescein fluorescence in human mesangial cells [87]. This was sup-
pressed by reduction in membrane potential by chemical inhibition or by UCP1 
overexpression, but, curiously, also suppressed by MnSOD which should actually 
increase H2O2 production from superoxide.

Coughlan et al. [106] demonstrated renal mitochondrial oxidative damage in 
32-week streptozotocin-diabetic rats manifest as lucigenin luminescence in kidney 
slices, an effect that was reduced by alagebrium, a cross-link inhibitor of AGE 
accumulation. Interestingly, renal carboxymethyllysine, an AGE marker of glycox-
idation and lipid peroxidation, was also inhibited linking oxidative damage to pro-
tein glycosylation. In another report, methylglyoxal formation (a precursor to 
AGEs) accompanied an increase in superoxide production by renal cortical mito-
chondria of 12-month STZ-diabetic rats [107]. Mitochondrial ROS were implicated 
in renal pathology in the Goto-Kakizaki rat, a rodent model of type 2 diabetes 
[108]. This study showed a reduction in tissue aconitase activity, a mitochondrial 
enzyme susceptible to inactivation by reactive oxygen, along with an increase in 
lipid peroxides.

5.4.3.3  Neural Cells

Moreira et al. [109] reported no increase in H2O2 production by brain mitochondria 
isolated from 12-week streptozotocin-diabetic rats. However, that study did show 
increased H2O2 production accompanied by upregulation of glutathione peroxidase 
in kidney mitochondria of the diabetic rats.

There is evidence that hyperglycemia-induced oxidative damage induced by 
insulin-deficient diabetes results in programmed cell death in dorsal root ganglia 
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and Schwann cells [110]. Moreover, involvement of mitochondrial ROS in this 
 process is evident since the apoptotic changes can be prevented by reduction of 
membrane hyperpolarization by overexpression of uncoupling proteins [111].

There is also evidence for neurovascular dysfunction in diabetes related to 
 mitochondrial oxidative stress. This is discussed in the next section.

5.4.3.4  ROS and Vascular Cells

Diabetes increases the risk of cardiovascular events two- to fourfold. In part, this 
could be due to impaired vascular function since both endothelial and smooth mus-
cle cell-mediated vascular reactivities are impaired by diabetes [112, 113]. 
Therefore, mitochondrial function as affected by diabetes is particularly important 
with respect to vascular cells.

Interaction of superoxide with nitric oxide will result in lipid peroxidation prod-
ucts [114] suggesting that the oxygen radical would impair vascular function. 
Impaired endothelium-dependent vasodilation has been demonstrated in various 
vascular beds of animal models of diabetes and humans with type 1 and type 2 dia-
betes [115]. Thus, hyperglycemia-induced production of superoxide by mitochon-
dria of endothelial cells has been suggested as a common explanation for 
diabetes-induced vascular dysfunction [14]. Studies of epineurial arterioles of the 
sciatic nerve derived from diabetic rats have provided evidence that the generation 
of oxidative stress through the production of superoxide and peroxynitrite impairs 
vascular function and endothelium-dependent vascular relaxation [116–119]. It was 
suggested that complex I of the mitochondrial electron transport chain was respon-
sible for the increase in superoxide formation since pretreating epineurial arterioles 
from diabetic rats with rotenone reduced formation of this radical [89]. Also, treat-
ing diabetic rats with three different types of antioxidants prevented diabetes- 
induced superoxide production and peroxynitrite formation in the aorta and 
epineurial arterioles further suggesting that increased oxidative stress contributes to 
diabetes-induced vascular and neural disease [116–118].

Other studies provide further evidence that antioxidants prevent vascular compli-
cations in diabetes. Treating diabetic rats with Tempol, a stable SOD mimetic, abol-
ished the diabetes-induced increase in vascular superoxide, malondialdehyde, and 
8-epi-prostaglandin F(2α) and also prevented the impairment in relaxation of aortic 
rings to acetylcholine [120]. In addition, Keegan et al. demonstrated that treating 
diabetic rats with α-lipoic acid improved endothelium-dependent vascular relax-
ation of corpus cavernosum smooth muscle [121]. Cameron and colleagues demon-
strated that treating diabetic rats with α-lipoic acid or the metal chelators, 
hydroxyethyl starch deferoxamine or trientine, prevented impairment of vascular 
relaxation associated with hyperalgesia and neurovascular deficits [122–126].

Finally, heme oxygenase reportedly protects the vasculature in diabetes. 
Biliverdin, a product of HO-1 catalysis, has antioxidant properties, while another 
product, carbon monoxide, has vasodilatory, anti-inflammatory, and antiprolifera-
tive effects [35]. The inducible subtype HO-1 is present in many tissues and 
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upregulated by several stimuli including growth factors, inflammatory cytokines, 
hypoxia, peroxynitrite, and nitric oxide. HO-1 improves endothelial dysfunction in 
diabetes [127] and has angiogenic properties [128]. Further, treatment of geneti-
cally obese mice by induction of HO-1 with cobalt protoporphyrin ameliorated vis-
ceral and subcutaneous fat accumulation, increased adiponectin, and improved 
insulin sensitivity [129].

5.5  Overall Multicellular Effects of ROS and Type 2 
Diabetes

Given the above considerations, we can ask how ROS-induced mitochondrial dys-
function within different cell and tissue types might lead to type 2 diabetes or, if not 
directly causative, how mitochondrial dysfunction could contribute to the progres-
sive nature of diabetes and its complications. Figure 5.4 depicts a simplistic over-
view of this process. Obviously, there is considerable detail yet to be resolved. 
Hopefully, further understanding will lead to approaches that effectively target 
mitochondria within multiple tissues in a way that mitigates the onset and progres-
sion of type 2 diabetes.

Myocyte
Substrate overload with

lipid accumulation
Metabolic inflexibility
Excess superoxide
Impaired insulin signaling

Decreased insulin
release

Adipocyte
Oxidative
damage

Reduced fat
oxidation

Insulin insensitive target cell
Mitochondrial ROS
Mitochondrial respiratory

dysfunction,
Decreased ATP production

β-cell
Excess superoxide
Uncoupling (decreased ATP)
Impaired insulin release
Altered calcium signaling

Defective
insulin action

Hepatocyte
Oxidative damage
Impaired fat oxidation with

cell lipid accumulation
(steatosis)

Export of
glucose and fat

Fatty acids
Adipokines

Hyperglycemia
Circulating FFAs

Diabetic complications Worsening diabetes

Fig. 5.4 Schematic depicting how defects in different cell types collectively lead to hyperglyce-
mia and elevated free fatty acids (FFAs), worsening diabetic complications, and the progressive 
worsening of the diabetic state
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5.6  Therapeutic Implications

Both lifestyle and pharmacologic interventions have been suggested with variably 
reported success. These are addressed below.

5.6.1  Lifestyle Modification

Lifestyle modification including exercise and diet decreases the risk for developing 
type 2 diabetes [130], while physical activity improves glucose tolerance [131]. 
Moreover, mitochondrial dysfunction may underlie the factors associated with dia-
betes and the metabolic syndrome including obesity, hyperlipidemia, hypertension, 
and vascular disease. In this regard, exercise offers several benefits including 
increased electron transport activity in muscle, stimulation of mitochondrial bio-
genesis through effects on PGC-1α, and improved sensitivity to insulin [132, 133]. 
Exercise also activates AMPK which improves both glucose and fat oxidation [132]. 
Calorie restriction is known to prolong the lifetime of rodents, nematodes, and 
maybe humans [134]. In this regard, there is evidence that calorie restriction favors 
mitochondrial biogenesis, oxygen use, ATP formation, and expression of SIRT1 
which activates PGC-1α [135, 136], a factor important for mitochondrial biogene-
sis. Several specific food types have alleged antioxidant properties (not reviewed 
here), for example, beans blueberries, pecans, cinnamon, etc. However, it is difficult 
to claim that any specific food or lifestyle intervention targets mitochondrial- specific 
oxygen radicals. Pharmacologic approaches to this have been suggested as described 
in the next section.

5.6.2  Pharmacological Intervention

Metformin is most often the initial pharmacologic agent used in type 2 diabetes. 
Metformin has mitigating effects on ROS production, activates AMPK, and favors 
mitochondrial proliferation [137, 138]. In clinical use, metformin, unlike insulin or 
insulin secretagogues, is not associated with weight gain. Another group of drugs 
that improve insulin sensitivity and enhance mitochondrial biogenesis are the angio-
tensin receptor blockers or inhibitors of angiotensin-converting enzyme. These 
agents also reduce oxidative stress, although the mechanisms still need clarification 
[139].

Newer pharmacologic approaches to improving mitochondrial function may be 
on the horizon. Resveratrol, an ingredient in red wines, is a polyphenolic SIRT1 
activator which, like calorie restriction, has antiaging effects in lower organisms 
[140–142], reduces signs of aging in mice [143], and extends survival [140]. Other 
related small molecules have been described which are more potent than resveratrol 
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to enhance the action of SIRT1 on substrates for deacetylation [144]. Resveratrol is 
believed to have antioxidant properties [145, 146] although these are not known to 
be targeted to mitochondria.

As mentioned above (Sect. 5.4.2.1), high fatty acyl-CoA flux may result in mito-
chondrial overload with adverse consequences toward ROS production and carbo-
hydrate metabolism. Therefore, it may be possible to improve glucose utilization 
through measures that inhibit mitochondrial uptake of long chain acyl-CoA mole-
cules. For example, lipid suppression of glucose utilization is mitigated by eto-
moxir, an inhibitor of carnitine palmitoyltransferase 1, or by knockdown of 
malonyl- CoA decarboxylase, an enzyme that promotes mitochondrial β-oxidation 
by preventing malonyl-CoA-induced inhibition of CPT-I [147, 148]. Other targets 
potentially amenable to pharmacologic manipulation include AMPK, which 
enhances both glucose and fat oxidation [149, 150], pyruvate dehydrogenase [151], 
or the various shuttle mechanisms regulating uptake of TCA intermediates [152].

Various other compounds or vitamins with antioxidant properties and effects on 
mitochondria have been used in attempts to prevent, control, or reduce the compli-
cations of diabetes. These include coenzyme Q, vitamin E, α-lipoic acid, 
N-acetylcysteine (NAC), vitamin C, and inducers of heme oxygenase.

As the major mobile mitochondrial electron carrier, coenzyme Q has long been 
of interest as a therapy for obesity and to improve diabetic states. However, the 
therapeutic use of CoQ10 and other antioxidants in vivo, particularly in human stud-
ies directed at vascular events, has been disappointing [153, 154]. This may be due 
to concerns about toxicity and, therefore, inadequate dosing or inability to deliver 
agents to target sites of ROS production. Ubiquinol, the reduced from of CoQ, acts 
as an antioxidant in mitochondria both by regeneration of vitamin E and by directly 
reacting with peroxyl radicals. Thus, CoQ acts in mitochondria both as an antioxi-
dant and as a mobile electron carrier [155, 156]. However, in our experience, 
CoQ10, in either the ubiquinol or ubiquinone redox state, does not appear to have 
direct effects on mitochondrial ROS [36, 157] and may not easily enter 
mitochondria.

The antioxidant properties of vitamin E are felt to be based on its oxidation to the 
tocopheroxyl radical enabling this lipophilic molecule to inhibit lipid peroxidation 
[156]. However, vitamin E did not improve cardiovascular outcomes in a large mul-
ticentered trial and actually increased congestive heart failure [158]. Vitamin E also 
did not prevent the progression of carotid intima-media thickness in high-risk 
patients with diabetes [159]. Water-soluble ascorbic acid (vitamin C) is widely mar-
keted for its antioxidant properties [160, 161] and, as stated above, appears to regen-
erate reduced vitamin E. However, there is no evidence to support a role in the 
management of diabetes [162].

Other antioxidant molecules of with possible therapeutic action include α-lipoic 
acid and NAC. In vivo, α-lipoic acid is reduced to dihydrolipoic acid and, as such, 
is an effective scavenger of superoxide [163]. In this form, the compound regener-
ates other antioxidants including glutathione, vitamin C, and vitamin E. In retina of 
STZ-diabetic rats, α-lipoic acid mitigated the diabetes-induced decrease in mito-
chondrial and cytosolic NAD+/NADH ratios [164]. This compound also prevented 

5 Mitochondria and Oxidative Stress in Diabetes



82

lipid peroxidation when administered to rats [165] and improved β-cell function in 
apolipoprotein E-deficient mice given STZ [166]. α-Lipoic acid also protected the 
retinal microvasculature in diabetic rats by reducing nitrotyrosine and oxidized 
DNA [167]. In human studies, α-lipoic acid has been administered intravenously 
and improved diabetic peripheral neuropathy [168]. Oral α-lipoic acid also improved 
peripheral neuropathy but caused nausea, vomiting, and vertigo [169].

Inducers of heme oxygenase mitigated islet damage and improved glycemia in 
diabetic mice [53] and improved obesity and insulin sensitivity in genetically obese 
mice [129]. These findings have not, as yet, been translated to human studies.

5.6.3  Mitochondrial-Targeted Antioxidants

The likely role of mitochondrial ROS in human disease has led to efforts to develop 
effective antioxidant compounds targeted to mitochondria. One approach involves 
the synthesis of compounds linking agents such as redox forms of quinone (ubiqui-
nol and ubiquinone) or vitamin E to alkylated triphenylphosphonium compounds. 
These lipophilic cations are avidly taken up into the relatively negative mitochon-
drial matrix [170]. Two such compounds (alkyltriphenylphosphonium cations) 
incorporating ubiquinone or vitamin E, termed mitoQ and mitoVit E, respectively, 
have been synthesized [170]. By virtue of their delocalized positive charge, these 
agents accumulate several hundredfold in mitochondria [38]. A major mechanism 
may be to decrease lipid peroxidation by virtue of the quinol moiety acting as a 
chain-breaking antioxidant [171]. A problem, however, is that these agents, under 
certain conditions, can also have prooxidant effects [36]. Moreover, they have meta-
bolic effects and above certain concentrations will inhibit ATP production [172].

In addition to the above triphenylphosphonium cationic molecules, other 
approaches to mitochondrial antioxidant therapy are under investigation. One 
involves synthetic peptides with antioxidant properties designed to target mitochon-
dria. These penetrate mitochondria targeting the inner membrane by a poorly under-
stood mechanism [173]. Peptides containing tyrosine residues effectively scavenge 
oxygen radicals and peroxynitrite and inhibit lipid peroxidation [173, 174]. Such 
peptides were reported to preserve insulin sensitivity in rats fed a high-fat diet [175]. 
A limitation is that these peptides also possess opioid receptor affinity and activity 
[176–178].

5.7  Summary

Although we do not suggest that ROS provide a unifying explanation for diabetes, 
it does seem clear that ROS contribute to defects in both insulin secretion and insu-
lin action seen in type 2 diabetes. Also, the inflammatory damage which character-
izes type 1 diabetes is mediated, at least in part, through islet ROS. In persons with 
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type 2 diabetes, the high nutrient flux and consequent ROS production appear to 
mediate loss of β-cell function. In insulin-sensitive tissues including the liver, mus-
cle, heart, and adipose, high fatty acid flux leads to oxidative damage. At the same 
time, non-insulin-sensitive tissues including the eye, kidney, nervous system, and 
vasculature are exposed to both high circulating glucose and fatty acids and, conse-
quently, ROS-induced diabetic complications.
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6.1            Introduction and Objectives 

 Recently it has been proposed that “If nerve conduction (NC) is normal, a validated 
measure (with class 1 evidence) of small fi ber neuropathy (SFN) may be used” to 
defi ne and quantify the severity of diabetic sensory-motor polyneuropathy (DSPN) 
[ 1 ]. NC assesses large myelinated nerve fi ber function and has been used as an end 
point in clinical trials of human diabetic neuropathy, based on relative ease of quan-
tifi cation, reproducibility, and reasonable sensitivity and specifi city [ 2 ]. However, 
recent data have demonstrated minimal worsening [ 3 ] and improvements [ 4 ] in 
electrophysiology in placebo and epidemiological cohorts with little relation to 
other measures of small fi ber and autonomic function in diabetic patients [ 5 ]. 

 Small fi bers constitute 79.6 % [ 6 ] to 91.4 % [ 7 ] of peripheral nerve fi bers. Damage 
to this class of fi bers underlies the symptoms of painful diabetic neuropathy, which 
are typically distal, symmetrical, and associated with nocturnal exacerbation. The 
descriptors used by patients to describe the symptoms can be variable but often 
include the following: prickling, aching, and burning pain with intermittent sharp 
stabbing electric-shock-like pains and on examination one can elicit dysesthesia and 
allodynia.    In addition to these troublesome symptoms, dysfunction and damage to 
this class of fi bers are also key to the genesis of foot ulceration through the effect on 
sudomotor function [ 8 ], pressure-induced vasodilation [ 9 ,  10 ], and of course heat 
and pain perception [ 11 ]. Moreover, an increasing body of data shows that small 
fi ber damage may precede large fi ber damage in diabetic neuropathy [ 12 – 14 ]. 

 Therefore it appears pertinent to address whether any defi nition of DSPN should 
include a measure of small fi ber neuropathy. Issues that arise before we can adopt 
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the assessment of SFN to diagnose DSPN include establishing the reproducibility, 
sensitivity, specifi city, and accuracy but also the practical viability of any proposed 
test. For the purposes of this review, we will consider the available evidence for 
established and emerging measures of “small fi ber damage” to diagnose and stratify 
the severity of DSPN.  

6.2     Quantitative Sensory Testing 

6.2.1     Thermal Thresholds 

 Abnormalities in heat-pain thresholds refl ect small fi ber dysfunction, and a number 
of instruments including CASE IV, thermoesthesiometer, and Medoc instruments 
have been used to quantify this parameter. In 498 type 2 diabetic patients and 434 
control subjects, an elevated warm threshold was the most frequent abnormality 
(60.2 %) compared to an abnormal cold threshold (39.6 %) and abnormal sural nerve 
conduction velocity (12.9 %), and it was related to both symptoms and glycemic 
control [ 15 ]. However, a careful study of 59 diabetic patients with and without 
symptomatic neuropathy showed that unlike cold perception thresholds and IENFD, 
warm perception thresholds did not differentiate diabetic patients with and without 
symptoms [ 14 ]. Similarly, in a study of 191 diabetic patients, there was no difference 
in heat-pain thresholds between those with and without painful neuropathy [ 16 ].  

6.2.2     Pain-Related Evoked Potentials 

 In a study of 57 diabetic patients with entirely normal electrophysiology, the latency 
was increased and amplitude was reduced for pain-related evoked potentials 
(PREPs), elicited by nociceptive electrical stimulation of the skin [ 17 ].  

6.2.3     Nerve Axon Refl ex/Flare Response 

 Stimulation of the nociceptive C fi ber results in both orthodromic conduction to the 
spinal cord and antidromic conduction to other axon branches, i.e., the axon refl ex 
(Fig.  6.1 ) which can stimulate the release of peptides, such as substance P and cal-
citonin gene-related peptide, resulting in vasodilation and increased permeability. 
Studies have shown that this neurovascular response mediated by the nerve axon 
refl ex is reduced in diabetic neuropathic patients, correlates with other nerve func-
tion measurements, and has reasonable sensitivity and specifi city in identifying 
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patients with diabetic neuropathy [ 18 ,  19 ]. The LDI fl are test evaluates 44 °C heat- 
induced vasodilation [ 20 ] and is reduced in subjects with impaired glucose toler-
ance (IGT) [ 21 ] and type 2 diabetic patients with and without neuropathy [ 22 ,  23 ] 
but interestingly is normal in patients with type 1 diabetes of long duration [ 21 ].

   More longitudinal data and perhaps assessment after interventions when com-
pared with established tests are necessary before these techniques can be recom-
mended for clinical use.   

6.3     Skin Biopsy 

 Skin biopsy, a minimally invasive procedure, allows morphometric quantifi cation of 
intraepidermal nerve fi bers (IENF) most commonly expressed as the number of 
IENF per length of section (IENF/mm) [ 24 ,  25 ] (Fig.  6.2 ). Intra- and interobserver 
variability for the assessment of IENF density demonstrates good agreement [ 25 , 
 26 ], declines with age, and does not appear to be infl uenced by weight or height 
[ 27 ]. An international consortium of investigators has recently compiled a norma-
tive database for IENFD in 550 participants and shown an effect of age, but no 
infl uence of height, weight, or BMI [ 28 ]. The blister technique is an alternative less 
invasive procedure which assesses innervation of the epidermis alone and shows 
good agreement with punch biopsy [ 29 ].

  Fig. 6.1    Nerve axon refl ex: stimulation of the C nociceptive nerve fi bers leads to antidromic 
stimulation of the adjacent C fi bers, which secrete various vasomodulators such as substance P, 
calcitonin gene-related peptide (CGRP), and histamine that cause vasodilation and increased 
blood fl ow       
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6.3.1       Diagnostic Yield of IENF Quantifi cation 

 No study assessing the sensitivity and specifi city of IENF in DSPN is available. 
However, several studies in SFN have included patients with DSPN. In 58 patients 
with pure SFN, a cutoff IENF density of ≤8.8 per mm at the ankle was associated 
with a sensitivity of 77.2 % and a specifi city of 79.6 % [ 30 ]. Similarly, in 67 patients 
with pure SFN, a sensitivity of 88 % and a specifi city of 88.8 % have been reported 
[ 31 ]. In a study of 210 patients with SFN, which included 65 diabetic patients, the 
Z-scores and 5th percentile provided the highest specifi city (98 and 95 %, respec-
tively) but a very low sensitivity (31 and 35 %, respectively) compared to the ROC 
analysis (specifi city 64 %, sensitivity 78 %) [ 32 ]. These fi ndings suggest that the 

  Fig. 6.2    Skin biopsy with PGP 9.5 immunostaining for IENF showing normal IENF (→) in a 
control subject ( top ) and absence of IENF with only dermal nerve fi bers (→) in a diabetic patient 
with severe neuropathy ( bottom )       
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diagnostic yield of skin biopsy may depend on the reference and cutoff values 
selected and the defi nition of SFN adopted. IENF density correlates inversely with 
thermal thresholds. While some have reported a closer correlation with warm and 
heat-pain thresholds [ 30 ,  33 – 35 ] compared to cooling thresholds [ 36 ,  37 ], others 
have reported the opposite, with a closer correlation with cold rather than heat 
detection thresholds [ 16 ,  38 ]. A recent study has demonstrated no correlation 
between IENFD and the neuropathy symptom score, but interestingly an inverse 
correlation was demonstrated with the severity of pain assessed using the VASmax 
[ 39 ]. The correlation between quantitative sensory testing (QST) and IENF density 
therefore remains controversial. 

 The American Academy of Neurology, American Association of Neuromuscular 
and Electrodiagnostic Medicine, and American Academy of Physical Medicine and 
Rehabilitation have concluded however that skin biopsy may be considered for the 
diagnosis of DSPN, particularly SFN, with a level C recommendation [ 40 ]. More 
recently, under the auspices of the European Federation of the Neurological 
Societies and the Peripheral Nerve Society, revised guidelines on the use of skin 
biopsy concluded that IENF density is a reliable and effi cient technique to confi rm 
the clinical diagnosis of SFN with level A recommendation [ 41 ]. 

 Additional morphological features of IENFs include the branch density, length, 
and mean dendritic length; all show an early reduction which progresses with neu-
ropathic severity [ 13 ,  42 ]. Several studies with serial skin biopsies in patients with 
SFN have shown that axonal swellings predict a decline in IENF density [ 43 – 45 ]. 
However, they occur not only in patients with SFN [ 46 ] but also in normal individu-
als [ 47 ], and isolated swellings with normal IENF densities have been observed in a 
variety of other neuropathies [ 47 – 50 ].   

6.4     Diabetic Neuropathy 

 In patients with diabetic neuropathy, the prevalence of abnormal NC, QST, and 
IENF was comparable [ 39 ]. However, IENF density was signifi cantly reduced in 
patients with normal NC, suggesting early damage to small nerve fi bers [ 12 ,  14 ]. 
   Although, a recent study has shown comparable abnormalities in electrophysiology, 
thermal thresholds and loss of IENF in diabetic patients with mild neuropathy [ 39 ]. 
There is an inverse correlation between IENF density and the severity of DSPN, 
defi ned by the neurological disability score [ 13 ,  34 ,  51 ] and the neuropathy impair-
ment score [ 14 ]. Additionally, IENF density appears to be lower in diabetic patients 
with painful compared to painless neuropathy [ 13 ,  34 ,  52 ]. A 1-year diet and exer-
cise intervention program in patients with SFN and IGT led to increased IENF 
density [ 53 ]. However, no change was observed in 18 diabetic patients after simul-
taneous pancreas/kidney (SPK) transplantation [ 54 ]. This may refl ect the marked 
IENF loss at baseline [ 55 ], particularly in diabetic patients undergoing SPK and the 
slower regeneration rate of IENF in diabetic patients [ 56 ]. These data suggest that 
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IENF loss is an early feature of diabetes, progresses with increasing neuropathic 
severity, and may improve with appropriate intervention. 

 A considerable body of experimental data has been generated recently to show 
that IENF loss may be an early morphological marker of small fi ber damage in ani-
mal models of diabetes. A loss of epidermal innervation similar to that observed in 
diabetic patients has been observed in rodent models of both type 1 and type 2 dia-
betes, and several therapeutics have been reported to prevent reductions in intraepi-
dermal nerve fi ber density in these models [ 57 ]. Several studies have assessed 
cutaneous innervation in mouse footpad [ 58 – 60 ] and showed a reduction in intraepi-
dermal innervation of both fl ank and footpad skin [ 61 ]. There is high interobserver 
agreement when two experts use the protocol used in humans to quantify the density 
of IENFs [ 62 ]. In a study in nonhuman primates with naturally occurring obesity 
and type 2 diabetes, hypertrophic epidermal nerve fi bers were found in monkeys 
with short-time hyperglycemia; however, a severe reduction of nerve fi bers was 
demonstrated in those with a duration of diabetes exceeding 8 years [ 63 ]. In diabetic 
mice, although the total epidermal innervation appears unchanged in early diabetes, 
staining for peptidergic fi bers is signifi cantly reduced [ 64 ]. These early changes 
may have a functional relevance, as previous studies in rodents demonstrate behav-
ioral defi cits prior to quantifi able intraepidermal nerve fi ber loss [ 65 ]. Thus IENF 
density can be reliably quantifi ed in the footpad of healthy and neuropathic rats and 
interestingly correlates signifi cantly with tail nerve conduction velocity [ 62 ]. These 
fi ndings support the use of IENF quantifi cation as an outcome measurement in 
experimental neuropathies.  

6.5     Nerve Biopsy 

 Nerve biopsy has traditionally been used to quantify myelinated nerve fi ber density 
which is reduced and correlates with abnormalities in neurophysiology [ 66 ,  67 ] but 
may also predict development of future neurophysiological defi cits [ 68 ]. Few stud-
ies have quantifi ed unmyelinated nerve fi ber damage, but some have shown that it 
precedes myelinated nerve fi ber damage in sural nerve biopsies and therefore it 
may be used to detect early DSPN [ 7 ]. However, nerve biopsy is an invasive and 
highly specialized procedure which requires neurosurgical expertise to identify and 
perform, especially when a fascicular biopsy is required. Furthermore, electron 
microscopy demands considerable expertise and there are very few centers which 
can perform quantifi cation. It therefore cannot be advocated for use to diagnose 
DSPN [ 69 ].  
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6.6     Corneal Confocal Microscopy 

 Corneal    confocal microscopy (CCM) is a noninvasive ophthalmic technique that 
has been shown to detect small sensory corneal nerve fi ber loss in diabetic neuropa-
thy (Fig.  6.3 ) [ 70 ], idiopathic small fi ber neuropathy and IGT patients [ 71 ], and 
Fabry disease, a condition which is characterized by painful neuropathy [ 72 ], by 
visualizing the subbasal nerve plexus in Bowman’s layer of the cornea. Corneal 
nerve fi ber damage correlates with IENF loss and severity of neuropathy in diabetic 
patients [ 13 ,  73 ] and is more marked in patients with painful diabetic neuropathy 
[ 13 ]. A correlation between loss of corneal nerve fi bers and the stage of diabetic 
retinopathy has also been demonstrated [ 74 ]. CCM may also be more sensitive than 
IENFD in detecting early damage [ 13 ] and repair after SPK transplantation [ 55 ,  75 ]. 
Thus corneal nerve fi ber density improves 6 months after combined pancreas/kid-
ney transplantation [ 75 ]. CCM has been shown to have high reproducibility [ 76 ], 
with reasonable sensitivity and specifi city [ 77 ]. To enhance the practical application 
of this technique, an automated image analysis system has also been developed 
recently to rapidly quantify corneal nerve pathology [ 78 ]. A progressive loss of 
corneal sensation with increasing severity of neuropathy provides a functional cor-
relate of corneal nerve fi ber loss in diabetic patients [ 79 – 81 ].

   Therefore as CCM is noninvasive, it may be an ideal technique to assess altera-
tions in small nerve fi ber pathology in relation to PDN and progression or regres-
sion of neuropathic defi cits.  

  Fig. 6.3    Corneal confocal microscopy image of a control subject ( right panel ) with normal 
 corneal nerve (→) density compared to an image from a diabetic patient with severe neuropathy 
and marked loss of corneal nerve fi bers ( left panel )       
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6.7     Sudomotor Dysfunction 

6.7.1     Sympathetic Skin Response 

 Sympathetic skin response (SSR) assesses sudomotor and hence small fi ber dys-
function. In an early study it failed to differentiate the presence or absence of neu-
ropathy in a series of 337 diabetic patients [ 82 ]. However, it has recently been shown 
to predict the risk of foot ulceration comparable with abnormalities in NDS and 
elevated vibration perception [ 83 ]. It has also been shown to have a sensitivity of 
87.5 % and a specifi city of 88.2 % for detecting diabetic autonomic neuropathy [ 84 ].  

6.7.2     Quantitative Sudomotor Axon Refl ex Testing 

 Quantitative sudomotor axon refl ex testing (QSART) evaluates sudomotor function 
by assessing the local sweat response to iontophoresis of acetylcholine [ 85 ] and has 
been shown to be highly sensitive in the detection of distal SFN [ 86 ]. QSART evalu-
ates postganglionic axon function as opposed to the polysynaptic pathways assessed 
using SSR. In a series of 31 diabetic patients with early neuropathy, it appeared to 
be better at detecting early neuropathy than SSR [ 87 ].  

6.7.3     Neuropad 

 The neuropad test is a simple visual indicator test which uses a color change to 
defi ne the integrity of skin sympathetic cholinergic innervation. Neuropad responses 
have been shown to correlate with the modifi ed NDS, QST, CAN, and IENF loss 
with relatively high sensitivity but lower specifi city for detecting DSPN [ 88 ,  89 ]. 
A recent study has shown that an abnormal neuropad test in those with a normal 
NDS may predict the development of diabetic neuropathy after 5 years [ 90 ]. This 
appears to refl ect early small fi ber involvement which is missed using NDS as a 
measure of neuropathy.  

6.7.4     Sudomotor Innervation 

 Recently, a novel stereologic technique has been applied in skin biopsies and 
showed a correlation between sweat gland nerve fi ber density, neuropathic symp-
toms, neurological defi cits, and sweat production [ 91 ]. However, morphometric 
data in patients with diabetic SFN are limited and further studies are warranted.   
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6.8     Defi nition of SFN 

 Given the overwhelming evidence for the involvement of small fi bers in the early 
and late phases of peripheral nerve damage in diabetic patients, we propose to grade 
SFN as follows: (1)  possible , presence of distal symmetrical symptoms and/or clini-
cal signs of small fi ber damage; (2)  probable , presence of distal symmetrical symp-
toms, clinical signs of small fi ber damage, and normal or abnormal sural NC study; 
and (3)  defi nite , presence of length-dependent symptoms, clinical signs of small 
fi ber damage, normal or abnormal sural NC study, and/or abnormal QST thermal 
thresholds at the foot and reduced IENF density at the ankle. 

 At present it is not possible to suggest criteria to defi ne the severity of SFN in 
DPN. However, as normative ranges are established for the different tests of small 
fi ber dysfunction and damage, it may be possible to devise a measure of severity 
using different percentiles or quartiles as cutoffs.     
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7.1            Introduction 

 Lower limb amputations remain common and the principal cause is diabetes despite 
improvements in clinical care [ 1 – 5 ]. The underlying factor contributing to amputa-
tion in diabetes is usually diabetic foot disease and ulceration [ 4 ], and the lifetime 
risk of developing a foot ulcer has been estimated to be as high as 15 % [ 5 ,  6 ]. The 
annual population-based incidence of foot ulceration has been reported to range 
from 1.0 to 4.1 % and the prevalence ranges from 4 to 10 % [ 7 ]. Despite improve-
ments in the care of diabetes and many of its complications, the burden of diabetic 
foot disease and ulceration is likely to continue to increase with lower extremity 
amputations affecting 30 % of subjects with diabetes 40 years and older [ 8 ]. 

 Foot ulcers have many effects beyond their immediate physical consequences. 
For example, ulceration can cause substantial emotional and fi nancial losses [ 2 ,  9 ], 
and a diabetes-related amputation markedly worsens quality of life and increases 
the risk of further amputations [ 10 ]. Ominously, the presence of foot ulceration and 
subsequent amputation can predict very poor clinical outcomes with mortality rates 
after amputation reported to be 40 % at 1 year and 80 % at 5 years which is in fact 
worse than for many malignancies [ 11 ]. The optimal approach to the management 
of complications of the lower limb in diabetes lies in prevention through the 
implementation of screening programs aimed at the early detection of neuropathy, 
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ischemia, deformity, and edema. These programs have been demonstrated to 
 prospectively reduce the need for subsequent amputations [ 12 ,  13 ]. Still, even with 
aggressive screening, chronic ulceration in the lower limbs remains one of the most 
common and most serious consequences of diabetes.  

7.2     Diabetic Foot Ulcers: Causes and Complications 

 Understanding the causes of diabetic foot ulceration is key to developing better 
preventative and treatment approaches. Contributing factors which predispose to 
foot ulceration include sensory loss, ischemia, and infection [ 1 ,  2 ,  4 ]. Many subjects 
with foot ulceration have some degree of insensitivity refl ecting the presence of 
peripheral somatic neuropathy which can be identifi ed in over 80 % of subjects with 
diabetic foot ulcers [ 2 ]. The presence of autonomic dysfunction is also thought to be 
important by impairing skin lubrication, altering callus formation, and altering 
blood fl ow regulation. Structural deformities in the insensate foot which contribute 
to abnormally increased pressure [ 14 ,  15 ] are a fundamental factor contributing to 
foot ulceration. Infection is often present and polymicrobial, but systemic manifes-
tations may be absent despite extensive, limb-threatening sepsis [ 16 ]. Subjects with 
diabetes are prone to develop peripheral vascular disease and calcifi cation which is 
characteristically worse below the knee and a contributing factor in approximately 
60 % of diabetic subjects with non-healing foot ulcers. Impaired lower limb circula-
tion is a factor in up to 46 % of subjects who have a major amputation [ 17 ]. 
A widespread microangiopathy complicates diabetes, and skin blood fl ow regula-
tion has been reported to be abnormal in many subjects at risk of the development 
of foot complications and may contribute to the chronicity of the diabetic foot ulcer 
[ 17 ]. Abnormalities of skin blood fl ow regulation have been implicated in the patho-
genesis of diabetic foot lesions by some authors [ 18 – 22 ]. Chronic ischemia in the 
poorly perfused tissue leads to secondary changes that are the proximal cause of 
wound-healing failure. One such change is dermal atrophy. 

7.2.1     Dermal Atrophy: Occurrence in Diabetic Skin and a 
Common Intermediate in Chronic Wound Formation 

 In diabetes, skin structural and functional defi cits may contribute to the risk of 
developing foot ulceration. For example, atrophy of dermal connective tissue (which 
resembles an accelerated aging process) has been proposed to be important as an 
early event in the development of a foot ulcer and contribute to impaired healing 
once ulceration has occurred [ 23 ,  24 ]. In diabetes, proliferation of skin fi broblasts is 
reduced [ 25 ,  26 ] which in concert with reduced procollagen synthesis and increased 
levels of connective tissue-degrading matrix metalloproteinases (MMPs) may 
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contribute to ulceration and impaired healing. Levels of procollagen 1 are greatly 
reduced in the skin of diabetic patients with foot ulcers, which contributes to 
increased skin fragility (Fig.  7.1 ).

7.2.2        Oxidative Stress and Ulceration 

 Oxidative stress is implicated in the development of diabetic complications [ 27 ] 
including neuropathy [ 28 ,  29 ] and foot ulceration [ 16 ,  30 ]. In addition, chronic 
wounds of multiple etiologies are characterized by the presence of increased oxida-
tive stress [ 31 – 38 ] which may play a key role in the failure of cellular elements to 
promote wound healing. In concert with the antioxidant response in other cellular 
compartments and tissues, inappropriate downregulation of dermal antioxidant 
defense pathways can be the result of overproduction of oxidants in chronic wounds 
[ 38 – 40 ]. In turn increased oxidative stress can damage DNA, erode telomeres, and 
ultimately contribute to cellular senescence [ 41 ]. The level of reactive oxygen spe-
cies (ROS) production can dictate the physiological response with high levels pro-
moting telomere-independent premature senescence, whereas lesser degrees of 
ROS can accelerate telomere shortening [ 42 ]. The complications of diabetes are 
often viewed as refl ecting accelerated aging, and this may well be relevant for the 
diabetic ulcer since aged tissue is more susceptible to senescence [ 43 ,  44 ]. 

 Exposure to ROS can also result in apoptosis in many cell types. ROS can induce 
apoptosis via H 2 O 2  via activation of c-Jun N-terminal kinase (JNK) pathway [ 45 ]. 
   Activated JNK translocates to the mitochondria and inhibits by phosphorylation the 
anti-apoptotic factor Bcl-2 and phosphorylates and thus activates proapoptotic Bax, 
Bim, and Bmf [ 44 ]. Effectors of apoptosis are ultimately activated by cytochrome  c  
release. In the chronic wound, ROS can stimulate the degradation of hypoxia- 
inducible factor 1 (HIF-1) [ 46 ] which is detrimental to wound healing, since induc-
tion of HIF-1α-dependent genes such as vascular endothelium-derived growth 

  Fig. 7.1    Procollagen 1 immunohistochemistry from a nondiabetic subject and a diabetic subject 
with foot ulceration showing a reduction in procollagen 1 staining in the diabetes       
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factor, hemoxygenase-1 (HO-1), and endothelial and inducible nitric oxide synthase 
[ 47 ] promotes wound healing via improving perfusion. 

 Increased ROS can also increase poly(ADP-ribosyl)ation. Poly(ADP-ribosyl)
ation is the process by which polymers of ADP-ribose (PAR) are attached via an 
ester bond to glutamic acid, aspartic acid, or lysine residues, mediated by the 
enzyme PAR polymerase (PARP) [ 48 ]. There are currently 18 known members of 
the PARP family, two of which, PARP1 and 2, are known to play a role in DNA 
repair [ 48 ]. PARP1 binds as a homodimer to single-strand DNA breaks where it is 
activated and catalyzes the cleavage of NAD+ forming nicotinamide and ADP- 
ribose, the polymers of which are added to nuclear proteins [ 49 ,  50 ]. Increased 
oxidative/nitrosative stress seen in diabetes can result in DNA damage and PARP1 
activation [ 51 – 53 ]. Although PARP1 plays a benefi cial role in DNA repair, it is pos-
sible that hyperactivation in diabetes leads to detrimental effects [ 50 ,  53 ]. Excess 
cleavage of NAD+ by PARP would exacerbate the effect of increased fl ux through 
sorbitol dehydrogenase which results in further depletion of NAD+ aggravating oxi-
dative stress [ 54 ]. In addition NAD+ is required as a cofactor for the conversion of 
GAPDH. GAPDH is modifi ed with PAR in response to diabetes-induced superox-
ide, reducing GAPDH activity. Hyperglycemia-induced ROS inhibits GAPDH 
activity in vivo by modifying the enzyme with PAR [ 54 – 56 ]. Hyperglycemia- 
induced    GAPDH suppression by PAR can be prevented by PARP inhibitors [ 54 ]. 

 Thus ROS-induced activation of PARP in cells such as keratinocytes, fi broblasts, 
Schwann cells, and tissues such as the vasculature could have an important effect on 
the structural and functional integrity of the skin. The effects of diabetes on PARP 
activation in the skin in subjects at high risk of foot ulceration are shown in Fig.  7.2 . 
Skin punch biopsies were performed on the lower leg skin of healthy nondiabetic 
subjects and subjects with diabetes complicated by neuropathy for measurements of 
PARP activation. Diabetic subjects with neuropathy demonstrated an ~40 % increase 
in PAR-stained nuclei compared to normal controls. Thus oxidative/nitrosative 
stress in the skin may contribute to foot ulceration by promoting damage to small 

  Fig. 7.2    Comparison of percentage of PAR positive nuclei in nondiabetic and diabetic subjects 
with and without foot complications. * p  < 0.05 vs NDC, ** p  < 0.01 VS NDC.  NDC  nondiabetic 
control,  DC  diabetic control,  DPN  diabetic peripheral neuropathy,  DFU  diabetic foot ulceration, 
 CNA  Charcot neuroarthropathy       
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nerve fi bers in the skin, by damage to local cellular elements via PARP activation, 
and by impairing the wound-healing response.

7.2.3        Structural and Functional Skin Defi cits in Diabetes 

 In diabetes, dermal atrophy of the lower limb skin is associated with increased elab-
oration and activation of MMP, including MMP-1 (interstitial collagenase), MMP-2 
(gelatinase A), and MMP-9 (gelatinase B) (Fig.  7.3 ) [ 24 ]. Increased MMP elabora-
tion is thought to be an “early event” in skin degeneration since it precedes overt 
changes in skin structure. Subsequently, sustained reduction in collagen synthesis 
occurs in concert with widespread collagen destruction [ 57 – 59 ].    Gene expression of 
MMP1, MMP-9, and tissue inhibitor of matrix metalloproteinase (TIMP)-1 and 
TIMP-2 has been reported to be similar in skin samples from nondiabetic and dia-
betic patents. However levels of MMP-2, tumor necrosis factor (TNF)-α, and inter-
leukin (IL)-1β mRNA were reported to be elevated in subjects with [ 60 ]. Levels of 
oxidative/nitrosative stress as well as TNF-α and IL-1β are increased in chronic 
non-healing wounds [ 60 – 63 ] which is thought to stimulate secretion of MMPs but 
inhibit TIMPs [ 64 ,  65 ]. The abundance and activity of some MMPs have been 
reported to decrease as wounds heal, although this response is complex and poorly 
understood [ 66 ]. Collagenase (MMP-1 and MMP-8) [ 67 ,  68 ] and gelatinase 
(MMP-2 and MMP-9) [ 64 ] activity is increased in chronic wounds and TIMP-1 is 
decreased [ 69 ]. In normal healing, the production and activation of MMPs and deg-
radation of the extracellular matrix and cell migration during the infl ammatory 
phase promote the formation of the new basement membrane [ 70 ]. In turn, protein-
ases activate growth factors which promote granulation tissue and matrix formation 
and collagen synthesis by fi broblasts, which initially comprises procollagen III 
which is replaced by procollagen I. The infl ammatory phase of healing is thought to 
be augmented and prolonged in chronic wounds [ 71 ,  72 ] which would serve to 

  Fig. 7.3    Effect of diabetes 
on skin matrix 
metalloproteinases in 
nondiabetic subjects and 
subjects with diabetes       
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increase the release of local proteases such as the MMPs and infl ammatory  cytokines 
[ 73 ,  74 ]. Chronic wounds are also characterized by impaired formation of granula-
tion tissue. In subjects with diabetic foot ulcers, levels of TIMP-1 have been reported 
to be reduced, whereas MMP-1, MMP-8, and MMP-9 are increased and MMP-2 is 
activated [ 69 ]. Activation of MMP-9 has been associated with impaired healing in 
pressure ulcers [ 72 ].

7.2.4        Oxidative Stress and the Fibroblast 

 In diabetes impaired fi broblast proliferation and function may play an important 
role in contributing to damage of the skin [ 25 ,  26 ]. In many patients with diabetes, 
ulceration occurs in the presence of both sensory loss and ischemia [ 1 – 4 ]. Therefore 
given that fi broblasts with senescent characteristics can be identifi ed in the lower 
limbs of patients with vascular insuffi ciency which precedes wound formation, 
abnormal fi broblast function may predispose to ulceration rather than being a con-
sequence of the wound environment. 

 As discussed above, in chronic wounds, oxidative stress [ 37 ] and downregu-
lation of type 1 collagen [ 75 ,  76 ] are associated with fi broblast senescence [ 76 ]. 
Conversely, senescent fi broblasts and fi broblasts from chronic wounds [ 40 ] have 
been reported to generate increased oxidative stress [ 77 ,  78 ]. Pro-MMP-2 and 
pro-MMP-3 have been reported to be increased in fi broblasts from diabetic 
patients [ 79 ]. Mitogen- activated protein kinases have been identifi ed as trans-
ducers linking high glucose to biochemical defi cits in diabetes [ 80 ,  81 ]. 
Activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/
JNK-2) via ROS and increased lipid peroxidation can lead to upregulation of 
MMP expression [ 82 ] via increased AP-1 [ 83 ]. Oxidative stress is increased in 
fi broblasts cultured in fragmented collagen, and the antioxidant MitoQ10 has 
been shown to reduce expression of MMP-1 [ 84 ]. MMP-1 levels are increased 
with skin aging [ 84 ] which may be related to the increased fragmentation and 
disorganization of collagen fi brils observed in the dermis [ 85 ]. In contrast how-
ever,     mmp - 2  gene expression is not regulated by AP-1 which may explain the 
attenuated response in high glucose or diabetes [ 24 ]. Collagen synthesis is regu-
lated at a transcriptional and posttranslational level [ 18 ].    Increased ROS has 
been reported to increase gene expression and the activity of MMP-1 in concert 
with a reduction in the expression of pro-α1(I) collagen and pro- α1(III) collagen 
[ 86 ] and reduce collagen production in human dermal fi broblasts (HDF). In 
HDF, UVB-induced activation of ERK and p38MAPK mediates downregulation 
of type 1 procollagen [ 87 ]. Finally, TNF-α which is increased in subjects with 
diabetes [ 88 ] can also lead to upregulation of MMPs in fibroblasts [ 89 ] and 
suppress pro-α1(I) collagen transcription [ 90 ].  
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7.2.5     Keratinocyte Function Can Be Disrupted 
by Oxidative Stress 

 The epidermis plays an important role in wound healing, and so defi cits in epider-
mal function impact the healing of wounds [ 91 ]. Wounding results in proliferation 
of epidermal keratinocytes and upregulation of MMPs including MMP-1 and MMP- 
9. Keratinocytes migrate over the provisional matrix and close the wound [ 91 ]. In 
aged skin, reduced growth potential [ 92 ] and motility [ 93 ] of keratinocytes may 
contribute to the development of superfi cial wounds which have the potential to 
develop into deeper chronic ulceration. Less well understood is the role of epider-
mal changes in diabetes as contributors to the formation of non-healing wounds. 
Reduced keratinocyte proliferation may contribute directly to the atrophic changes 
occurring in the epidermis of diabetic subjects [ 25 ,  26 ]. Keratinocyte motility is also 
impaired in diabetes [ 31 ]. Since epidermal motility and proliferation contribute to 
wound closure [ 28 ], it is easy to envision how alterations in these responses directly 
contribute to slowed repair of wounds in diabetic skin.  

7.2.6     Oxidative Stress and Nitric Oxide 

 Oxidative stress is thought to be critical in the development of the complications of 
diabetes [ 28 ,  29 ] including foot ulceration [ 31 ,  32 ]. Increased production of vascu-
lar superoxide (O 2− ) in diabetes may inactivate nitric oxide (NO) and contribute to 
vascular dysfunction [ 94 ]. Nitric oxide is almost important in wound repair [ 95 ] 
through a number of mechanisms including angiogenesis [ 96 ] and by migration and 
proliferation of fi broblasts [ 97 ], epithelial [ 98 ] and endothelial cells [ 96 ], and kera-
tinocytes [ 95 ]. Decreased wound NO synthase expression and NO levels are associ-
ated with impaired wound healing in diabetic mice, and  l -arginine improves wound 
healing [ 99 ]. Decreased endothelial NO synthase expression is evident in the skin 
taken from the dorsum of the foot in diabetic subjects [ 97 ]. However the precise 
mechanisms whereby NO defi ciency impairs wound healing remain unclear.  

7.2.7     The Role of Advanced Glycosylation End Products 

 Impaired wound healing in diabetes may also refl ect accumulation of advanced gly-
cosylation end products (AGEs) [ 100 ,  101 ]. Indeed, increased skin AGEs has been 
observed in diabetic subjects with neuropathic foot ulceration [ 102 ]. Glycosylation 
of growth factor receptors may impair cell proliferation. Accumulation of AGEs in 
diabetic wounds and interaction with the receptor for AGEs (RAGE) can upregulate 
expression of proinfl ammatory molecules including endothelin-1, TNF-α, and 
MMPs [ 101 – 103 ].    The formation and tensile strength of granulation tissue can be 
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reduced by TNF-α, an effect which may be mediated by increased generation of 
activated MMPs and an effect which is mediated by IL-1.    Upregulation of RAGE in 
cells important in the infl ammatory response, including vascular endothelial cells, 
mononuclear phagocytes, and fi broblasts [ 104 ], can result in decreased collagen 
deposition, reduced angiogenesis, and a reduction in the quality and quantity of 
granulation tissue. These changes will ultimately result in poor wound healing and 
decreased neovascularization of diabetic wounds [ 101 ,  104 ,  105 ]. Wound healing in 
rats is impaired by the AGE precursor methylglyoxal which reduced the granulative 
tissue response [ 106 ]. Aberrant cross-linking of matrix proteins promoted by AGEs 
can also disrupt the deposition of extracellular matrix. Diets rich in AGE delay 
wound healing in experimental models [ 105 ]. Levels of infl ammatory cytokines 
TNF-α, IL-6, and MMPs can be reduced by RAGE blockade which promotes wound 
healing [ 101 ].  

7.2.8     Oxidative Stress and Skin Perfusion 

 Oxidative stress in the diabetic vasculature [ 107 ] may impair skin perfusion by a 
mechanism involving increased diacylglycerol and protein kinase C (PKC) which 
contributes to vascular dysfunction and skin small vessel disease. Increased lipid 
hydroperoxides may result in increased cyclooxygenase activity as well as throm-
boxane synthesis [ 108 ,  109 ] but reduced prostacyclin synthase activity [ 110 ] which 
can result in vasoconstriction [ 19 ,  111 ]. Vasodilatation of the skin in diabetes is 
reduced in response to occlusive ischemia [ 111 ], local [ 19 ,  20 ]] and indirect heating 
[ 112 ], as well as trauma [ 113 ]. Damage to unmyelinated primary afferent fi bers in 
diabetes impairs vasodilatation mediated by unmyelinated C fi bers [ 114 – 116 ]. The 
relationship between cutaneous mechano-sensitivity and vasodilation is known as 
pressure-induced vasodilation (PIV) [ 117 ]. PIV permits augmentation of skin blood 
fl ow and delays the development of pressure-induced ischemia. This response is 
NO-mediated and involves capsaicin-sensitive afferent nerve fi bers which release 
calcitonin gene-related peptide in the endothelium [ 118 ]. PIV is absent in subjects 
with diabetes [ 117 ] and in diabetic animal models [ 119 ]. In diabetes, therefore, foot 
deformity and increased plantar pressures may contribute to a greater degree of 
perfusion impairment. Impaired skin circulation may increase oxidative stress and 
thereby decrease glutathione reductase activity leading to GSH depletion. This, in 
turn, may contribute to impaired cellular proliferation, decreased collagen and pro-
teoglycans synthesis, and enhanced protease activity [ 120 ].  

7.2.9     Oxidative Stress and Charcot Neuroarthropathy 

 Charcot neuroarthropathy is an underdiagnosed complication of the diabetic foot 
[ 121 – 123 ] which can result in progressive bone and joint destruction, skin 
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breakdown, and ultimately amputation (Fig.  7.4 ). We have reported that compared 
to subjects with diabetic peripheral neuropathy alone, patients with Charcot neuro-
arthropathy may have distinctive small nerve fi ber neurological defi cits and skin 
vascular responsiveness which may predispose to ulceration [ 122 ]. The etiology of 
Charcot neuroarthropathy remains unclear, but increased oxidative/nitrosative 
stress may play a role. For example, RAGE defense mechanisms have been reported 
to be impaired in patients with Charcot neuroarthropathy [ 124 ], a fi nding which 
may contribute to skin blood fl ow defi cits and bony fractures [ 124 ,  125 ]. We recently 
sought to determine whether activation of PARP could be involved in the pathogen-
esis of the Charcot foot [ 126 ]. Skin punch biopsies were performed in the skin of 
the upper leg in patients with and without diabetes, neuropathy, and/or a Charcot 
foot. The percentage of PAR-stained nuclei in the skin was increased by 32 % in 
subjects with diabetes alone, but the highest levels were measured in subjects with 
Charcot neuroarthropathy (Fig.  7.2 ). This increase of PARP suggests that multiple 
downstream targets of oxidative stress are activated in these subjects which may be 
involved in the pathogenesis of this disabling complication and also offer a potential 
therapeutic target.

  Fig. 7.4    Ulceration of the 
chronic Charcot foot       
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7.3         Possible Future Therapeutic Options to Prevent Foot 
Ulceration and Accelerate Wound Healing 

7.3.1     Treatment with Topical Retinoic Acid 

 In diabetes, topical retinoid treatment improves histological structure and biochemi-
cal function of the damaged skin [ 24 ,  92 ,  127 ]. In vitro studies have shown that 
treatment of skin from subjects with diabetes with retinoic acid or a synthetic reti-
noid in organ culture can reduce active MMP-1 and MMP-9 by 75 and by 81 %, 
respectively [ 24 ,  128 ]. Type I procollagen is reduced in diabetic patients with foot 
ulceration [ 126 ], and production is signifi cantly increased in retinoic acid-treated 
skin in concert with inhibition of MMP elaboration production [ 24 ,  128 ]. Thus reti-
noic acid can improve the overall structure and function which should make it more 
resistant to ulcer formation and improve healing should ulceration occur. 

 The antioxidant effects of retinol and retinoids are well described [ 129 ,  130 ] and 
have been explored in a number of different cell lines. For example, retinoic acid 
has been reported to reduce susceptibility to oxidative stress in PC12 cells [ 131 ] 
in neurons [ 132 ,  133 ] and in mesangial cells by a mechanism involving AP-1 [ 134 ]. 
A limited number of studies have assessed whether retinoids can attenuate glucose- 
induced oxidative stress. In high-glucose-exposed human endothelial cells, for 
example, 9- cis  retinoic acid decreases oxidative stress by inhibition of PKC activa-
tion [ 135 ]. In cortical neurons, retinoic acid prevents the high-glucose-mediated 
reduction of superoxide dismutase (SOD) activity, reduced glutathione depletion, 
increased lipoxygenase, and total thiol abundance [ 136 ]. The mechanism of the 
antioxidant actions is unclear but may involve upregulation of antioxidant gene 
expression [ 137 ]. 

 Conversely at supraphysiological concentrations both retinol and retinal can 
cause DNA breakage via increased superoxide production [ 138 ,  139 ]. Retinol has 
been reported to increase oxidative stress in rat Sertoli cell which was associated 
with increased activities of SOD, catalase, and glutathione peroxidase    [ 138 ]. In 
HDF, high concentrations (20 μM) of retinol and retinal can increase oxidative 
stress and apoptosis [ 140 ].  

7.3.2     Treatment with Alpha Lipoic Acid 

 Lipoic acid (1,2-dithiolane-3-pentanoic acid) is a potent scavenger of several oxy-
gen radical species including hydroxyl radical, superoxide, singlet oxygen, peroxyl 
radicals, hypochlorous acid, and nitric oxide [ 141 ]. The effects of alpha lipoic acid 
(ALA) have been extensively evaluated in diabetic rodent models of chronic com-
plications.    For example, ALA signifi cantly improves or normalizes defi cits in digi-
tal sensory nerve conduction velocity, endoneurial nutritive nerve blood fl ow, 
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mitochondrial and cytoplasmic NAD+/NADH ratios, GSH and GSH + GSSG 
 content, and the activities of SOD, catalase, and cytochrome b5 reductase and cor-
rects the increased GSSG/GSH ratio [ 142 ]. The effects of ALA on nerve function 
are in part, mediated through a mechanism involving NO. ALA has also been exten-
sively evaluated in man, including seven phase I clinical studies (which included 
type 1 diabetic patients), three phase II clinical studies in type 2 diabetic subjects, 
and fi ve phase III clinical studies. ALA has been shown to ameliorate some neuro-
pathic symptoms and defi cits in diabetic subjects with DN [ 143 – 145 ]. In vitro stud-
ies have demonstrated the ability of lipoic acid to prevent injury of vascular 
endothelial cells [ 146 ,  147 ] by agents including AGEs. Protection of endothelial 
cells against injury is thought to refl ect the downregulation of several pro-injury 
events that depend on oxygen radicals. We have previously explored the ability of 
ALA to promote wound healing in skin abrasion wounds of STZ-D rats [152]. Our 
results in vivo demonstrated that ALA could restore wound healing to rates observed 
in healthy nondiabetic animals. At the histological level in STZ-D rats, ALA was 
found to induce a much denser provisional matrix, a more luxuriant vasculature 
(evidenced by the presence of large numbers of red blood cells in the provisional 
matrix), and fewer infl ammatory cells in the matrix. These fi ndings are consistent 
with those of    Demiot et al. [ 148 ] who demonstrated that PIV in diabetic rodents 
could be prevented by ALA. In subjects with diabetes, with or without neuropathy, 
the effect of ALA has been explored using nail-fold video-capillaroscopy on skin 
capillary blood cell velocity at rest and during postreactive hyperemia (occlusion of 
the wrist for 2 min, 200 mmHg). ALA was found to precipitate a signifi cant decrease 
in the time to peak capillary blood cell velocity [ 149 ] during postocclusive hyper-
emia, consistent with an effect on the microcirculation. In contrast, in vitro, ALA 
treatment of keratinocytes has little effect on proliferation and does not lead to a 
measurable hyperplasia in the skin of treated rats. Likewise, ALA has no substantial 
effect on fi broblast proliferation or on elaboration of type I procollagen by these 
cells. In these regards, the effects of ALA appear to be substantially different but 
complementary to those observed in the presence of retinoic acid. Finally, the oxi-
dative formation of CML from glycated proteins is reduced by lipoic acid [ 150 ].  

7.3.3     The Role of Taurine Depletion and Potential 
Replacement Strategies 

 In diabetic animal models, antioxidants have been shown to correct experimental 
diabetic neuropathy [ 142 ,  151 ], improve skin blood fl ow responses [ 148 ], and pro-
mote wound healing [ 152 – 155 ]. Taurine is a sulfur-containing free amino acid 
which can function as an osmolyte calcium modulator and neurotransmitter [ 151 , 
 156 – 160 ]. Taurine also exhibits antioxidant properties in some tissues [ 159 ], but 
the precise mode of its antioxidant actions remains unclear. Intracellular taurine 
depletion may result in wide-ranging metabolic perturbations including impaired 
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cellular response to oxidative/nitrosative stress with resultant cytotoxicity [ 151 , 
 156 ,  159 ]. Indeed hyperglycemia-induced taurine depletion has been demonstrated 
in the nerve [ 151 ,  157 ], lens [ 161 ], and mesangial cells [ 162 ] of diabetic rodents. 
Taurine replacement has been shown to attenuate oxidative stress in these tissues 
[ 159 ,  161 ,  162 ]. 

 In the skin, taurine has been proposed to play a role in keratinocyte hydration 
[ 163 ] and is highly concentrated in the skin epidermis [ 164 ] and can increase wound 
tensile strength [ 165 ]. Taurine is actively transported by its Na + - and Cl − -dependent, 
high-affi nity transporter [ 166 ,  167 ]. In primary cultures of human keratinocytes, 
taurine and NAC have been shown to attenuate the TNF-α-induced production of 
infl ammatory cytokines [ 168 ]. In high-fructose-fed rats, taurine prevented increases 
in skin collagen glycation and peroxidation [ 169 ]. The application of a taurine- 
containing gel to full thickness skin wounds of mice was found to increase wound 
tensile strength by decreasing malondialdehyde and increasing hydroxyproline lev-
els [ 165 ]. These data indicate that taurine therapy may be helpful in reversing skin 
structural defi cits complicating diabetes. In cultured HDF exposure to high glucose 
increases oxidative stress and reduces the expression of types I and III procollagen 
(α1), an effect which can be reversed by the addition of taurine (MJS unpublished 
observations). However the lack of benefi cial effect of antioxidant therapy on MMP 
activation or skin structural defi cits in organ-cultured skin from diabetic patients at 
risk for foot ulceration suggests that systemic rather than topical therapy may be 
required to achieve in vivo. 

 The formation of non-healing wounds in the skin of diabetic patients—espe-
cially in the lower legs and feet—remains a major clinical problem. Although 
numerous factors contribute to the formation of foot ulcers in diabetic patients, a 
critical intermediary event is the progressive atrophy of dermal connective tissue in 
the at-risk skin and the impaired healing response. Although the mechanisms that 
contribute to these defi cits are no doubt multifactorial, increased oxidative/nitrosa-
tive stress most likely plays an important role at many levels ranging from fi broblast 
function to skin perfusion. Better understanding of these defi cits may offer the 
opportunity to develop new therapeutic approaches utilizing agents which can 
effectively combat oxidative/nitrosative stress in the skin. Of interest, the targets of 
retinoids and α-lipoic acid action, for example, as well as the mechanisms by which 
these agents act, appear to be complementary. Therefore, ultimately the combina-
tion of retinoic acid with an antioxidant may ultimately prove to be the optimum 
therapeutic approach to improved overall skin quality and function. Clinical trials 
are needed to test the effi cacy of these treatment approaches.      
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8.1            Introduction 

 Diabetic encephalopathies are being increasingly recognized as complications 
accompanying both type 1 (juvenile) (T1DM) and type 2 diabetes (T2DM). Like 
other so-called microvascular complication, diabetic encephalopathy appears to dif-
fer in the two types of diabetes, suggesting differences in underlying pathobiologi-
cal mechanisms [ 1 ,  2 ]. Neurobehavioral studies in children with T1DM have shown 
defi cits in attention, processing speech, executive function, and memory [ 3 – 5 ], and 
imaging studies have demonstrated structural defi cits of both gray and white matter 
structures, particularly in limbic areas [ 5 ,  6 ]. Experimental studies in type 1 diabetic 
models have suggested that insulin and C-peptide defi ciencies as well as hypergly-
cemia contribute to cognitive defi cits [ 7 ,  8 ]. In contrast to earlier belief, recurrent 
episodes of hypoglycemia do not appear to play a major role on cognition. The 
incidence of type 1 diabetic encephalopathy is likely to increase due to the global 
increase in the incidence of T1DM and its occurrence in increasingly younger age 
groups [ 9 – 11 ] at a time when the brain is still developing and hence particularly 
susceptible to metabolic insults. In this chapter available clinical data will be 
reviewed, and underlying mechanisms from data obtained mainly from experimen-
tal studies will be discussed. 

 In the last one and a half decades, several epidemiological studies have described 
an association between T2DM and dementia and Alzheimer’s disease. Studies 
including several ethnic and racial groups have shown a multifold increased inci-
dence of dementia in T2DM patients [ 12 – 14 ]. Apart from hyperglycemia and insu-
lin resistance in the central nervous system, common comorbidities such as 
hypercholesterolemia, hypertension, and obesity appear to exacerbate the linkage 
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between T2DM and dementia, besides age alone. Additionally, T2DM appears to 
accelerate dementia and Alzheimer’s disease as compared to patients without 
T2DM. 

 As with T1DM, the incidence of T2DM is increasing globally, more so in devel-
oping and heavily populated nations like China and India [ 15 ]. Interestingly, the 
projected increases in disease incidences of T2DM and Alzheimer’s disease between 
years 2000 and 2040 show similar trends with a frightening threefold increase over 
this time period [ 2 ,  15 ,  16 ]. 

 In this review the epidemiological linkages between T2DM and dementia and 
Alzheimer’s disease will be reviewed. Again, based mainly on fairly limited experi-
mental data, likely underlying pathogenetic mechanisms will be discussed. 

 Hence, the projected future with respect to diabetic cognitive impairments 
appears grim. However, recent approaches as how to prevent and modify emerging 
encephalopathies provide some glimmer of hope and will be discussed at the end of 
each section.  

8.2     Type 1 Diabetic Encephalopathy 

8.2.1     Clinical Studies 

 In the last number of decades, it has become evident that T1DM may have adverse 
effects on CNS function and cognition and that these effects are accentuated in 
children with early onset of diabetes [ 3 ,  17 ,  18 ]. These fi ndings are alarming, since 
at the present time the greatest incidence of T1DM, globally, is in children under 5 
years of age. 

 Diabetic children are likely to perform more poorly at school than their nondia-
betic peers, with lower scores on academic achievement tests and verbal intelli-
gence [ 19 ,  20 ]. Neuropsychological tests have revealed defi cits in a variety of 
cognitive spheres such as sustained attention, psychomotor speed and visuopercep-
tual function, learning, and memory skills [ 5 ,  21 – 23 ]. Verbal IQ scores appear to 
decline with duration of diabetes and tend to be more severe with earlier onset of 
disease. Apart from age of onset, gender seems to have an effect in that boys per-
form worse than girls [ 3 ,  24 ]. In contrast to earlier beliefs, recent studies have not 
associated cognitive defi cits with repeated episodes of hypoglycemia [ 25 – 27 ].  

8.2.2     Imaging of T1DM Patients 

 A number of studies have examined brain volumes in patients with T1DM. A high 
incidence of mesio-temporal lobe sclerosis was demonstrated as being evident 
already after 7 years of diabetes. This abnormality was unrelated to previous 
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episodes of severe hypoglycemia [ 28 ]. Volumetric studies of patients 12 years after 
onset of diabetes showed signifi cant white matter atrophy in parahippocampal, tem-
poral, and frontal white matter. These abnormalities were associated with decreased 
volumes of insular cortex, hippocampus, and thalamic structures [ 18 ]. Morphometry 
of voxel-based analyses has demonstrated decreased densities in thalami, superior, 
and middle temporal gyri and frontal cortex in patients with duration of T1DM for 
15–25 years [ 6 ,  29 ]. These fi ndings are consistent with recent pathological exami-
nations of two patients with early onset of diabetes and who succumbed to ketoaci-
dosis. The postmortem exams showed severe neuronal loss in hippocampus and 
frontal cortex accompanied by white matter atrophy of the frontal and temporal 
lobes. The fi ndings were associated with marked down regulation of IGF-1 and 
insulin receptors and activation of neuroinfl ammatory factors [ 30 ,  31 ]. They corre-
lated with MRS studies of neurometabolites indicative of neuronal viability [ 31 ,  32 ] 
and suggest that limbic temporal and frontal structures are particularly vulnerable 
and probably underlie compromised cognition such as attention, information pro-
cessing, executive function, and memory as indicated by impaired functional con-
nectivity [ 33 ]. 

 The recent increase in the incidence of T1DM and its onset at increasingly 
younger ages are being observed not only in developed countries but also in heavily 
populated developing countries [ 9 – 11 ]. The reason for this very concerning trend is 
not known. Various factors have been put forward, such as formula rather than 
breast milk feeding during early infancy, increasing incidence of childhood obesity 
triggering infl ammation potentially triggering autoimmunity targeting pancreatic 
β-cells, and increased incidence of Cesarean sections [ 34 – 36 ].  

8.2.3     Factors Underlying Type 1 Diabetic Encephalopathy 

 Based on the clinical longitudinal data described above, it is evident that age of 
onset of T1DM is important with a greater impact on the brain when undergoing 
development. It has been suggested that impaired cerebral blood fl ow may infl uence 
performances on neuropsychological tests. Other likely underlying infl uences 
include hyperglycemia with activation of the polyol pathway, compromised neuro-
trophic support, and cerebral blood fl ow [ 3 ,  18 ,  31 ,  37 ,  38 ]. 

 Only recently have systematic studies in animal models of type 1 diabetes started 
to emerge. Neurobehavioral defi cits, using the Morris water maze, have been dem-
onstrated in streptozotocin-induced (STZ) diabetic rats. Such defi cits were associ-
ated with defi cits in hippocampal long-term potentiation of the CA1 fi eld, refl ective 
of synaptic plasticity in hippocampus, and information storage in the brain [ 39 ]. 
Interestingly, normalization of hyperglycemia by insulin treatment from onset of 
diabetes prevented the impairments in long-term potentiation and Morris water 
maze performances, whereas interventional insulin treatment resulted in only par-
tial effects [ 39 ]. In contrast to long-term potentiation, long-term depression was 
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enhanced in the CA1 fi eld of hippocampus [ 40 ]. These data tend to suggest that the 
underlying pathogenetic mechanisms are operable shortly after onset of diabetes. 

 Other cerebral abnormalities in somatosensory, visual, and auditory evoked 
potentials occur in the STZ-diabetic and the spontaneously diabetic Bio-breeding/
Worcester (BB/Wor-rat). Such abnormalities are followed by degenerative axonal 
changes in the optic nerve and dorsal columns of the spinal cord and are modifi ed 
by insulin treatment [ 1 ,  41 – 43 ]. 

 The type 1 diabetic BB/Wor-rat model shows spontaneous onset of diabetes due 
to an immune-mediated β-cell destruction. It shows complete insulin and C-peptide 
defi ciencies, requiring small sustenance doses of insulin. Compared to the STZ- 
induced model, it is less affected systemically by emaciation. Longitudinal studies 
in this type 1 diabetic model have revealed a sequence of metabolic, functional, and 
structural defects in white and gray matter. 

 One of the earliest metabolic changes seen in this model is signifi cantly sup-
pressed expression of hippocampal insulin and IGF-1 receptors [ 44 ]. These defi cits 
were accompanied by signifi cant suppression of hippocampal IGF-1, IGF-2, and 
NGF and its receptor NFF-TrkA [ 2 ,  44 ]. Such abnormalities in the hippocampal 
neurotrophic network were substantially prevented by full replacement of C-peptide 
[ 44 ]. Simultaneous neurobehavioral testing using the radial arm maze [ 45 ] showed 
no delays in latencies in completing the learned tasks. However, the numbers of type 
1 and type 2 errors refl ecting impaired reference and working memories were sig-
nifi cantly increased. Interestingly, these early functional defi cits were prevented by 
C-peptide replacement from onset of diabetes. C-peptide replacement has no effect 
on systemic hyperglycemia [ 44 ]. Not surprisingly, micro-PET examination of 3 
months diabetic animals showed a threefold increase in glucose uptake in hippo-
campus and cerebral cortex, despite an approximately 30 % defi cit in the uptake rate 
constant of the 18 F -fl uorodeoxyglucose (FDA) tracer [ 44 ]. 

 These early abnormalities may have far-reaching consequences as to impaired 
cognition. Insulin, IGF-1, and NGF provide important functions in hippocampus 
with respect to acetylcholine and glutamate synthesis and protection of cholinergic 
neuronal populations [ 46 – 48 ]. So, for instance, insulin itself promotes choline acet-
yltransferase (ChAT) and inhibits acetylcholinesterase (AChE), thereby intimately 
involved in acetylcholine synthesis. Intact insulin signaling and that of other neuro-
trophic factors are pivotal to normal synthesis of neuroskeletal proteins, their phos-
phorylation and normal assembly [ 49 ]. The early perturbations of trophic factor 
activities in the BB/Wor-rat were followed by signifi cant degeneration of presynap-
tic connections in hippocampus coupled with a markedly decreased expression of 
synaptophysin in 4-month diabetic rats. Again these early degenerative changes 
were fully prevented by C-peptide replacement [ 44 ]. As mentioned above, the 
regional metabolic rates of glucose in various brain regions showed approximately 
a threefold increase, which is consistent with data reported in humans [ 50 ]. Increased 
cerebral glucose was associated with an increased expression of the receptor for 
advanced glycosylation end products (RAGE) mainly colocalized with glial fi bril-
lary acid protein (GFAP)-positive proliferating astrocytes and to a lesser extent with 
hippocampal pyramidal cells [ 51 ]. The upregulation of RAGE was accompanied by 
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upregulation of tumor necrosis factor alpha (TNF-α) and interleukins (IL) IL-1β, 
IL-2, and IL-6, whereas the anti-infl ammatory IL-10 was signifi cantly downregu-
lated [ 51 ]. This upregulation of RAGE is not likely to be solely due to increased 
exposure to glucose and activation of the polyol pathway, since the nuclear factor 
kappa light-chain enhancer of activated B-cells (NF-κB), already increased by 
impaired insulin signaling, is known to be a potent regulator of RAGE expression 
[ 2 ,  51 ,  52 ]. Furthermore, TNF-α has an inhibitory effect on insulin signaling, hence 
providing a self-perpetuating activation of innate infl ammatory responses [ 2 ,  51 ]. 
These perturbations of RAGE and infl ammatory interleukins were prevented by 
C-peptide [ 69 ], suggesting that the activation of innate infl ammation is mainly 
mediated via impaired insulin-like signaling by C-peptide. 

 As mentioned above, defi cits in reference and working memory occur early in 
the BB/Wor-rat. Longitudinal testing using the Morris water maze paradigm 
revealed normal performances in 4-month diabetic rats. Signifi cant defi cits, signify-
ing multiple cognitive spheres such as problem solving, formation of internal repre-
sentation of the environment, storage, and retrieval of memory, were only evident in 
6-month diabetic rats [ 7 ,  53 ,  54 ]. C-peptide replacement from onset of diabetes 
showed at 8 months signifi cant but not full prevention of the Morris water maze 
abnormalities [ 53 ]. These data suggest that progressive learning and memory defi -
cits occur in a duration-related fashion. Only at 7 months did diabetic animals show 
increased expression of the postsynaptic glutamate synaptic subunits involved in 
Ca 2+  permeability of AMPA receptor channels playing crucial roles in long-term 
synaptic plasticity, long-term suppression, and memory formation [ 55 ]. 

 Both insulin and C-peptide demonstrate strong antiapoptotic effects. We have 
previously shown that insulin- and C-peptide-defi cient diabetes in the BB/Wor-rat 
are accompanied by a number of proapoptotic factors, like NGFR-p75, Fas, Bax, 
PARP, 8-OHdG, and caspase 3 and 12 [ 7 ,  53 ,  56 ]. Activation of such factors in the 
hippocampus was associated with increased TUNEL staining of hippocampal pyra-
midal cell neurons, increased DNA laddering, and decreased density of pyramidal 
cell neurons, particularly in the CA1 region [ 7 ]. 

 In the BB/Wor-rat, white matter changes occur early and precede those of gray 
matter structures. They are characterized by apoptotic loss of myelinating oligoden-
droglia cells and a compensatory proliferation of astrocytes in temporal and frontal 
white matter [ 2 ,  44 ,  57 ]. Apart from indices of apoptotic and oxidative stress, these 
changes are also associated with an upregulation of RAGE, TNF-α, and proinfl am-
matory interleukins, similar to what is seen in humans [ 30 ]. Similar changes were 
reported in the STZ-induced diabetic Swiss Webster mouse [ 8 ]. In both situations, 
the abnormalities were preceded by defects in insulin and IGF-1 signaling and pre-
vented by systemic C-peptide replacement and intranasal insulin administration, 
respectively [ 8 ,  44 ]. 

 These fi ndings underline the central role of impaired insulin-signaling activities 
in the development of type 1 diabetic encephalopathy. This notion is supported by 
the effects of C-peptide replacement with a known effect on insulin-signaling ele-
ments [ 58 ], although it does not bind to the insulin receptor itself as it has some-
times been incorrectly quoted. 
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 The above fi ndings are consistent with those using an intranasal delivery system 
of insulin itself to the brain [ 8 ]. In this system, as with C-peptide replacement, sys-
temic blood glucose levels are not affected. Intranasal insulin delivery to STZ- 
induced diabetes in Swiss Webster mice over an 8-month period showed prevention 
of cognitive decline, white matter atrophy, and atrophy of sensory-motor cortices, 
striatum, and hippocampus. These changes were associated with correction of 
mRNA of intermediaries of the P13K/Akt pathway as well as prevention of hippo-
campal and cortical synaptophysin and ChAT levels [ 8 ]. Hence, these extensive data 
demonstrate a preventional effect of direct nasal insulin delivery similar to the 
effects achieved by systemic C-peptide replacement.  

8.2.4     Summary of T1DM Encephalopathy 

 It is clear that the factors underlying T1DM encephalopathy are complex, interac-
tive, and not fully understood [ 2 ]. However, from epidemiological and experimental 
studies, certain commonalties are starting to emerge. Age of onset of diabetes 
appears to be of signifi cance, suggesting that metabolic perturbations by T1DM 
during a stage when the brain is still developing are signifi cant resulting in more 
severe consequences. The brain development encompasses two hypertrophic growth 
spurts whereby that of gray matter structures precede those of white matter and 
peaking around birth in both humans and the rat [ 59 ,  60 ]. The growth spurt of the 
white matter occurs postnatally in both species. Both spurts last well into early 
adulthood. This may explain the earlier white matter changes compared to those of 
the gray matter in rat models, who at the time of diabetes onset still experience the 
later occurring white matter growth spurt. 

 As shown particularly in the longitudinal animal studies, insulin defi ciency 
within the brain and its consequences as to the expression of other neurotrophic fac-
tors probably play a central and possibly initiating role. Immediate downstream 
consequences involve synthesis of neurotransmitters, neuroskeletal component with 
subsequent effects on neurite integrity and connectivity. Additional effects include 
oxidative stress as well as apoptotic stress with loss of myelinating glia in the white 
matter and neuronal populations in gray matter structures. 

 Obviously along this simplifi ed sequence of pathobiological events, other factors 
certainly play interactive roles. Hyperglycemia most likely plays a contributing role 
as indicated by clinical studies [ 3 ]. It probably contributes to oxidative stress and to 
activation of the innate immune responses [ 2 ]. Other contributing factors not 
touched upon here that are likely contributors are impaired cerebral blood fl ow and 
relative hypoxemia.  
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8.2.5     What Do We Do About It? 

    As alluded to above, T1DM encephalopathy is most likely going to become a major 
medical and social problem over the next decades, although the detailed mecha-
nisms underlying this potential epidemic are not known. However, as indicated by 
some clinical studies and experimental data, normalization of central insulin-signal-
ing mechanisms should be a prominent goal. We have available to us today rela-
tively simple tools that are highly likely to be of signifi cant benefi t in preventing and 
modifying the development of T1DM encephalopathy. Direct insulin delivery sys-
tems to the CNS have repeatedly been shown experimentally to be of tremendous 
benefi ts [ 8 ,  61 ]. Likewise systemic C-peptide replacement to sustain insulin-related 
signaling mechanisms has repeatedly been shown, again in animals, to have signifi -
cant benefi cial effects. Not only would the simple replacement of C-peptide benefi t 
encephalopathy associated with T1DM, but also other so-called chronic T1DM 
complications both in humans and animal models (see recent review [ 62 ]). 

 This is not to say that these simple and relatively inexpensive measures are going 
to cure the complications including encephalopathy of T1DM, but from a logical 
point of view, it would be the best approach easily available to us today to prevent 
them and modify their clinical expressions.   

8.3     Type 2 Diabetic Encephalopathy 

8.3.1     Epidemiology and Clinical Studies 

 The relationship between diabetes and cognitive defects was suggested already in 
1922 [ 63 ]. A number of studies in different ethnic groups have demonstrated a link-
age between T2DM and mild cognitive impairment (MCI) and AD. The projected 
increases in the prevalence of diabetes and dementia show similar and parallel 
trends in the various ethnic groups [ 2 ,  15 ,  16 ] being greatest in heavily populated 
regions such as China, India, and South America [ 2 ,  15 ,  16 ]. The coexistence of 
cerebrovascular disease and T2DM enhances the correlation with MCI and the 
development of dementia [ 14 ,  64 ,  65 ], underlining the common coexistence of cere-
brovascular disease with T2DM. 

 Several studies have demonstrated an increase of AD in T2DM patients as com-
pared to nondiabetic individuals. The Rotterdam Study [ 12 ] examined some 6,000 
patients 55 years and older over a 2-year period using the Mini Mental State 
Examination (MMSE) and Geriatric Mental State Schedule scores. In this study, 
T2DM patients showed a twofold increased risk for developing dementia. Patients 
treated with insulin were at an even higher relative risk being 4.3-fold. Arvanitakis 
et al. [ 66 ] examined over 800 nuns and priests longitudinally over 9 years. Fifteen 
percent of the cohort had or developed T2DM and showed a 65 % increased risk for 
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developing AD. The Honolulu-Asia Aging Study [ 14 ,  67 ] examining more than 
2,500 Japanese Americans showed a 1.8-fold increased risk for developing AD and 
2.3-fold increased risk for vascular dementia. The risk for developing AD increased 
signifi cantly to 5.5-fold in those T2DM patients who also had the APOE 4ε allele. 
It should be noted though that the    Framingham study found an increased risk for 
developing AD in patients who were negative for the APOE 4ε genotype [ 68 ]. 

 In a follow-up study of the Honolulu-Asia Aging Study [ 67 ], in which the authors 
examined the association between fasting insulin levels and dementia, they found 
increased risk for dementia in patients with the lowest and highest 15 % percentiles 
of fasting insulin levels. A recent study of patients older than 75 years of age showed 
that uncontrolled and/or undiagnosed diabetes increased the risk for AD more than 
twofold [ 69 ]. However, negative studies have also been reported showing nonsig-
nifi cant relationships between T2DM and AD but with a higher relationship between 
T2DM and vascular dementia [ 70 ]. 

 A number of studies have addressed the different attributes of the metabolic syn-
drome and cognitive decline. With respect to hypertension, there are generally 
decreased cognitive performances in hypertensive as compared to normotensive 
individuals [ 71 ]. Follow-up studies showed that hypertension during midlife was 
associated with an increased risk of cognitive defi cits and dementia at a later age 
[ 72 ]. Hypertension causes changes of large cerebral vessels and may severely com-
promise cerebral perfusion by luminal narrowing of small arterioles resulting in 
hypoxemia with infarctions and white matter changes so-called leukoaraiosis [ 73 , 
 74 ]. Controlled trials employing antihypertensive compounds have provided mixed 
results. Few studies have reported benefi cial effects on dementia [ 75 ,  76 ]. Therefore, 
hypertensive cerebral vasculopathy may further enhance the effects of diabetic 
microangiopathy with adverse effects on the cerebral microcirculation. Obesity is 
associated with poorer cognitive scores, and as with hypertension, obesity in midlife 
leads to worse cognitive performances in late life [ 72 ]. Obesity is associated with 
leptin metabolism. Impaired leptin homeostasis increases the amount of extracel-
lular amyloid-β and tau phosphorylation in animal models. Administration of leptin 
results in improvement of cognitive performance, reduction of extracellular 
amyloid-β, and reduction of tau phosphorylation [ 77 ]. In AD reduced circulating 
levels of leptin are inversely correlated with the severity of cognitive defi cits. 
Hyperlipidemia has in some studies been reported to be associated with increased 
risk of cognitive defi cits [ 78 ], whereas others show reversed associations [ 79 ]. 
Pathological and experimental data suggest a pathogenetic role for elevated choles-
terol levels in cognitive impairment and dementia    (see Sect.  8.3.3 ).  

8.3.2     Imaging Studies in Type 2 Diabetes 

 It is well known that brain volume decreases with age, being more prominent in the 
frontal lobe than in other brain regions and that this decline in volume is greater in 
males than in females [ 80 ,  81 ]. Normal aging is also associated with an increased 
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incidence of both symptomatic and silent cerebral infarcts [ 82 ] and with an increased 
prevalence of white matter lesions approaching 100 % at age 85 [ 83 ]. 

 The incidence of lacunar and silent infarcts is increased up to twofold in T2DM 
patients as compared to matched nondiabetic individuals [ 82 ,  84 ]. Recent population- 
based studies demonstrate an increased incidence of white matter lesions in patients 
with type 2 diabetes [ 84 – 86 ]. T2DM patients show reduced volumes of hippocam-
pus and amygdala [ 87 ,  88 ] and a threefold increased risk for medial temporal lobe 
atrophy [ 89 ] compared to nondiabetic individuals. A relationship between white 
matter lesions, brain atrophy, and cognitive function has been described in some 
studies [ 90 ,  91 ]. There is evidence to suggest that these progressive defi cits in brain 
structure may develop already in patients with prediabetes [ 92 ]. Single components 
that comprise the metabolic syndrome also impact on brain pathology. Hypertension 
without diabetes is a known major risk factor for stroke and white matter atrophy 
[ 82 ,  92 ], and hyperlipidemia per se is associated with increased risk of stroke [ 93 ]. 

 From longitudinal clinical studies, it is therefore clear that the linkages between 
T2DM, dementia, and Alzheimer’s disease are multiple. Age alone is an important 
factor, which enhances the vulnerability of the brain to other insults. Of the attri-
butes of diabetes alone, hyperglycemia per se is of pathogenetic impact in part 
responsible for nonenzymatic glycation and oxidative stress (see below). Another 
not always considered factor is the early perturbations of insulin resistance, leading 
to impaired insulin signaling and hyperinsulinemia with downstream effects on 
various nerve growth factors, infl ammation, tau, and amyloid handling [ 94 ,  95 ]. 
Below an attempt will be made to construct a pathogenetic scheme linking type 2 
diabetes to Alzheimer’s disease.  

8.3.3      Mechanisms Underlying Alzheimer’s Disease 
in Type 2 Diabetes 

 From the epidemiological data referred to above, it is clear that multiple mecha-
nisms contribute to the increased incidence of AD in diabetes and metabolic syn-
drome. Undoubtedly, advancing age is a major factor. Hyperglycemia is an important 
factor in reducing cerebral blood fl ow by decreasing vasoreactivity [ 96 ,  97 ] and 
contributes to oxidative stress. Vasodilatation is mainly mediated by NO synthe-
sized in endothelial cells by endothelial NO synthase (eNOS). eNOS expression is 
reduced in a hyperglycemic environment, probably by reduced protein kinase C 
(PKC) and increased activity of NADPH oxidase [ 97 ,  98 ]. Hence, such effects on 
vasoreactivity will in addition to pathological changes of the microvasculature 
referred to above compromise cerebral microcirculation.  
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8.3.4     Insulin-Related Mechanisms 

 Most of the mechanistic data linking T2DM with dementia and AD-like pathologies 
referred to here are obtained from experimental data. Increasing age is accompanied 
by a decrease in cerebral insulin and IGF levels and a desensitization of their recep-
tors with impaired downstream signaling activities. However, the expression of, for 
example, the insulin receptor is not necessarily downregulated, whereas that of the 
IGF-1 receptor usually is [ 99 – 101 ]. Such age-related changes become more pro-
nounced with AD and are accompanied by increased levels of circulating insulin. 

 Insulin and IGF-1 mediate a myriad of effects in the brain, such as glucose utili-
zation and energy metabolism, oxidative stress, gene regulation of other neuro-
trophic factors and their receptors, cholinergic gene expression, expression and 
phosphorylation of neuroskeletal proteins including tau, and regulation of β-amyloid, 
and they exert anti-infl ammatory and antiapoptotic effects [ 8 ,  53 ,  101 – 103 ]. 
Impaired insulin/IGF-1 signaling in insulin-resistant T2DM impairs tyrosine phos-
phorylation and phosphorylation of IRS molecules with downstream inhibitory 
effects on the extracellular signal-related kinase/mitogen-activated protein kinase 
(ERK/MAPK) pathway, as well as the    phosphatidylinositol 3-kinase/phosphory-
lated Akt (P13 kinase/Akt) pathway and glycogen synthase kinase 3β (GSK-3β). 
Impaired insulin-signaling activity acts unfavorably on the expression and translo-
cation of several transcription factors such as nuclear factor kappa light-chain 
enhancer of activated β-cells (NFκB) and the    cyclic AMP-responsive element-bind-
ing protein (CREB) and GSK-3β with effects on proinfl ammatory factors and apop-
tosis [ 8 ,  53 ,  103 ]. 

 Increased expression of NFκB occurs via phosphorylation of I-κB, due to 
impaired insulin signaling, with disinhibition of NFκB [ 104 ,  105 ]. Activation of 
NFκB also occurs in the presence of high glucose [ 106 ,  107 ]. NFκB plays a central 
role in the initiation of the infl ammatory cascade with activation of tumor necrosis 
factor alpha (TNF-α), interleukins, and C-reactive protein [ 2 ,  44 ,  51 ,  106 ,  107 ]. The 
upregulation of TNF-α has an inhibitory effect on insulin and IGF-1 signaling, 
thereby providing a self-perpetuating loop [ 108 ]. NFκB is also a potent modulator 
of apoptosis and ROS production. 

 Impaired insulin signaling suppresses early gene responses of c-fos and c-jun 
with consequences for the expression of IGF-I, IGF-II, NGF, and NT-3 expression 
and their receptors [ 56 ,  109 ]. Both insulin and NGF provide signifi cant neurotrophic 
support in hippocampus with respect to cholinergic and    glutamergic function [ 46 , 
 48 ]. Insulin is closely tied to neurotransmitter synthesis including acetylcholine and 
glutamate, and NGF exerts a protective effect on cholinergic neurons. Recent 
advances in our understanding of incretin hormones have led to advances in treating 
T2DM. Glucagon-like peptide-1 (GLP-1) receptor agonists have shown to be effec-
tive in lowering glucose and enhance insulin action [ 110 ]. Experimental studies of 
STZ-diabetic transgenic mice treated with GLP-1 have revealed exciting data show-
ing amelioration of amyloid-β and tau levels [ 111 ]. Treatment with PPAR agonists 
in intracerebrally STZ-treated rats has shown increased insulin receptor expression 
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and binding [ 112 ]. It is therefore almost certain that impaired insulin action plays an 
important and central role in the increased susceptibility for AD in T2DM. A further 
evidence for this linkage in patients is the fi nding that the patients with prediabetes 
without defi ned diabetes [ 113 ] and with metabolic syndrome alone [ 114 ] show 
poorer cognitive performances with increased rates of decline over time [ 114 ].  

8.3.5     Amyloid Metabolism 

 The hallmarks of AD are the deposition of amyloid-beta (Aβ) and the presence of 
hyperphosphorylated tau isoforms in neurofi brillary tangles. Aβ deposition is asso-
ciated with impaired insulin signaling, although other mechanisms (see below) are 
also contributory. Direct effects of insulin on Aβ deposition are twofold. It has been 
shown both experimentally and in humans that insulin enhances Aβ release from 
neurons [ 115 ]. Furthermore the insulin-degrading enzyme (IDE) degrades both Aβ 
and insulin [ 115 ] Therefore, in a situation of elevated insulin levels, insulin resis-
tance will increase intracellular Aβ and favor extracellular accumulation of Aβ. The 
net effect of insulin resistance and hyperinsulinemia is therefore increased levels of 
intracellular and extracellular Aβ levels, respectively. Interestingly, recent data sug-
gest that oligomeric C-peptide may promote amyloid states [ 116 ]. Infl ammation 
with activation of microglia promotes Aβ accumulation and amyloid precursor pro-
tein (APP) expression and cleavage increase with oxidative stress [ 117 ,  118 ]. In 
T2DM, C-peptide levels are elevated along with insulin.  

8.3.6     Cholesterol and Amyloid Deposition 

 There is now both overwhelming clinical and experimental data supporting the con-
cept that increased cholesterol levels are involved in amyloidogenesis. The amy-
loidogenic processing of APP occurs in membrane rafts or so-called caveolae of the 
cell membrane. These membranous microdomains are enriched in cholesterol, 
sphingolipids, and saturated phospholipids [ 119 ,  120 ]. Both the insulin and IGF-I 
receptors are located within these domains. The abnormal processing of APP to Aβ 
and C-terminal fragment (CTF) of APP occurs in the caveolae and is mediated by 
β- and γ-secretases. The normal processing of APP to soluble APPα (sAPPα) occurs 
outside the domains of the caveolae [ 80 ]. High cholesterol levels increase the num-
ber and the size of caveolae and regulate the levels of caveolin-1, with increased 
expression of APP, activation of β- and γ-secretases, and hence the formation of Aβ 
[ 121 – 124 ]. A further factor regulating cholesterol homeostasis is the ε4 allele of 
Apo E, which is identifi ed as an important risk factor in AD [ 125 ,  126 ]. This is not 
totally unexpected since Apo 4ε is a lipoprotein that carries and facilitates the trans-
port and incorporation of cholesterol within caveolae. Its expression increases the 
formation of Aβ fi brils and decreases sAPPα yielding a reciprocal regulation of Aβ 
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and sAPPα [ 127 ,  128 ]. Indeed in vivo experimental studies show that  high- cholesterol 
diets increase Aβ levels and that cholesterol depletion inhibits Aβ generation [ 129 , 
 130 ]. Brain cholesterol is not solely dependent on dietary uptake or hepatic synthe-
sis but is also derived from in situ synthesis [ 131 ]. It should be mentioned though 
that altered signaling of the colocalized insulin receptor also has an impact on APP 
metabolism [ 128 ]. This may not be totally surprising, since there are multiple inter-
actions between the scaffolding of insulin, IGF-1, and caveolin-1 signaling [ 132 , 
 133 ]. Evidence suggests that, for instance, statins not only lower cholesterol levels 
(both systemic and endogenous) but also suppress β-secretase activity in caveolae 
and promote that of α-secretase, thereby directly attenuating abnormal APP metab-
olism [ 120 ]. 

 The central role of caveolin-1 in the perturbed APP handling and amyloidogen-
esis has also been shown in vitro. High glucose exposure alone signifi cantly 
increases caveolin-1 expression, APP, BACE, and Aβ. These increases are signifi -
cantly greater by addition of cholesterol alone and still further increased by the 
combination of high glucose (30 mM) and high cholesterol (7 μg/ml). These data 
suggest a synergistic effect on the perturbed APP metabolism by hyperglycemia and 
hypercholesterolemia [ 124 ]. It is even further enhanced, as would be expected, by 
incubation of neuroblastoma cells with high cholesterol and Apo 4ε [ 124 ].  

8.3.7     Abnormal Tau Processing 

 Tau plays a major role in regulating microtubules, axonal transport, and neuritic 
outgrowth. Abnormal phosphorylation results in tau dysfunction occurring in mul-
tiple neurodegenerative disorders, the so-called tauopathies, and constitutes the 
major component of paired helical fi laments that make up the neurofi brillary tangles 
in AD. 

 The linkage between abnormal APP handling and aberrant phosphorylation of 
tau is not well understood. Activation of several caspases occurs secondary to 
impaired insulin signaling [ 7 ,  94 ,  134 ,  135 ] and to amyloidogenic APP metabolism 
and is believed to initiate proteolytic cleavage of tau [ 101 ,  136 ]. Once cleaved, tau 
loses its inhibitory domain of the C-terminal, hence allowing N-terminal fragments 
to phosphorylate and polymerize. Exposed epitopes are susceptible to phosphoryla-
tion by various kinases, some of which emanate from the compromised insulin- 
signaling cascade such as GSK-3β, PP2A, and Cdk5 [ 101 ]. Furthermore, Aβ 
oligomers induce phosphorylation of tau via inactivation of insulin receptor sub-
strate and upregulation of JNK [ 137 ]. Such mechanisms possibly link the amyloido-
genic APP handling as well as impaired insulin signaling to abnormal tau disposition 
in AD.   
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8.4     Studies in T2DM Animal Models 

 Numerous studies using transgenic or knockout models with streptozotocin-induced 
diabetes have linked insulin and IGF-1 signaling to abnormal tau and APP handling. 
On the other hand, relatively few studies have utilized genetically non-manipulated 
type 2 diabetic animal models to study the relationship between T2DM and AD. 

 We reported on the spontaneously type 2 diabetic BBZDR/Wor-rat, which devel-
ops obesity, hyperglycemia, and insulin resistance with hyperinsulinemia as well as 
elevated cholesterol levels, hence closely mimicking the human disorder [ 101 ,  138 ]. 
   Eight months of diabetes, in this model, shows severe neuronal loss in cerebral cor-
tex associated with signifi cant decreases in presynaptic densities and expression of 
synaptophysin and profound gliosis and a ninefold increase in degenerating neurites 
as compared to age-matched control rats [ 101 ,  138 ]. The insulin receptor is not 
downregulated in frontal cortex, whereas insulin-signaling intermediaries such as 
pAkt and GSK-3β are suppressed signifying insulin resistance. On the other hand, 
the expression of the IGF-IR localized to caveolae is downregulated in frontal cor-
tex. These abnormalities are accompanied by marked increases in APP, β-secretase, 
Aβ, and CTF, as well as a 2.5-fold increase in hyperphosphorylated tau. The amy-
loidogenic APP metabolism was associated with a signifi cant increase in caveolin-1 
expression. The latter is linked to insulin resistance and hypercholesterolemia in 
this model [ 101 ]. This was confi rmed by in vitro studies and was further accentu-
ated by exposure to Apo4E [ 124 ]. Similar but substantially milder changes are 
observed in the type 1 counterpart model, the BB/Wor-rat [ 101 ,  138 ], which is con-
sistent with recent fi ndings in the T2DM db/db mouse model and in the T1DM STZ 
mouse model [ 139 ]. Therefore, in these models, central insulin resistance and 
increased exposure to cholesterol can be directly linked to amyloidogenic APP han-
dling and hyperphosphorylation of tau, the very hallmarks of AD.  

8.5     Summary T2DM Encephalopathy 

 Based on the clinical and experimental data described above, there are undoubtedly 
mechanistic connections between T2DM and AD perpetuating the latter in T2DM 
patients. It appears that insulin resistance associated with upregulation of caveolin-1 
is of central importance with direct effects on amyloid and tau accumulations and 
indirect and secondary effects via apoptotic and oxidative stressors on neurodegen-
eration. Furthermore, impaired insulin action affects other neurotrophic factors, 
neurotransmitters, and structural neuroskeletal proteins contributing to neurite 
degeneration. Other common clinical abnormalities associated with T2DM, such as 
hyperlipidemia and obesity, appear to accentuate the abnormalities caused by insu-
lin resistance, such as enhanced amyloidogenic processing of APP and activation of 
innate infl ammatory factors with further reciprocal adverse effects on insulin signal-
ing and oxidative and apoptotic stressors eventually resulting in neuronal loss. 
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 Although many questions remain as to the detailed linkages between the two 
disorders, certain relationships are starting to become increasingly clear. Therefore, 
continued investigations are needed in order to start to formulate potential therapeu-
tic interventions in order to curtail the increase of these two major epidemics and 
their relationship.  

8.6     Preventional and Interventional Approaches 

    As with other chronic complications of diabetes, T2DM-associated AD has been 
referred to a sT3DM [ 68 ], multiple factors are at work. It appears that insulin resis-
tance with downstream effects on amyloidogenesis and tau protein accumulation 
plays a pivotal role. It therefore seems essential to ameliorate insulin resistance and 
attending hyperinsulinemia as well as hyper-C-peptidemia. Both insulin and 
C-peptide form oligomers, so-called amyloid-beta-derived diffusible ligands 
(   ADDLs) [ 116 ,  140 ] which may impact an insulin signaling and Aβ deposition. 

 Therefore, antidiabetic agents such as insulin sensitizers seem to be a logical 
starting point. Clinical trials and several experimental studies have demonstrated 
benefi cial effects of PPARγ agonists (see reviews in [ 141 ,  142 ]). Such compounds 
as rosiglitazone or pioglitazone confer not only an insulin-sensitizing effect but also 
anti-infl ammatory, antioxidative, and anti-amyloidogenic effects. Hence, this group 
of drugs represents attractive compounds for the treatment of AD in T2DM. 

 Advances in our understanding of incretin hormones have led to advances in the 
treatment of T2DM. GLP-1 receptor agonist has demonstrated benefi cial effects 
with respect to enhanced insulin action and glucose lowering [ 110 ]. Transgenic 
mice with STZ-induced diabetes treated with GLP-1 have demonstrated ameliora-
tion of Aβ and tau levels [ 111 ]. Acetyl- l -carnitine (ALC) is another compound that 
has undergone clinical trials. It enhances acetylcholine production via improvement 
in mitochondrial function and enhancement of ATP. It inhibits hippocampal excito-
toxicity and promotes responses to NGF. In patients with AD, it improves behav-
ioral defi cits like short- and long-term memory, spatial learning task, and those of 
personal recognition [ 143 ,  144 ]. ALC has also demonstrated benefi cial effects on 
diabetic neuropathy [ 145 ]. Apart from these targeted therapy, it is obvious from the 
above that good glycemic control, control of hypertension, and hyperlipidemia 
when present should be benefi cial.     
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9.1            Introduction 

 Diabetes mellitus (DM) is a global epidemic that is associated with signifi cant 
health, social and economic burden [ 1 – 4 ]. Diabetes-related vascular complications, 
endothelial dysfunction and cardiovascular disease (CVD) remain the main causes 
of the increased morbidity and mortality of DM. The development of vascular com-
plications in DM is multifactorial. The main putative mechanism includes the acti-
vation of poly(ADP-ribose) polymerase (PARP), aldose reductase, protein kinase C 
(PKC) and the hexosamine pathway and increased production of advanced  glycation 
end products (AGE), increased infl ammation and endothelial dysfunction [ 5 ,  6 ]. 
Hyperglycaemia-induced oxidative stress (OS) and nitrosative stress (NS) seem to 
play a pivotal role in the activation of these multiple harmful pathways as well as 
infl ammation leading to endothelial dysfunction and vascular complications 
(Fig.  9.1 ) [ 5 ,  7 – 9 ].

   Obstructive sleep apnoea (OSA) is a common medical disorder that affects at 
least 4 % of men and 2 % of women [ 10 ] and is very common in patients with type 
2 DM (T2DM) [ 11 – 20 ]. OSA was identifi ed recently as an “oxidative stress” disor-
der, due to the recurrent cycles of deoxygenation followed by re-oxygenation simu-
lating ischaemia–reperfusion    injury [ 21 ,  22 ]. In addition, OSA has been associated 
with increased infl ammation and endothelial dysfunction [ 21 – 24 ]. OSA-induced 
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OS seems to play an important role in the pathogenesis of OSA-related complica-
tions and in the associations between OSA and several vascular and metabolic risk 
factors. Furthermore, as OSA is very common in patients with T2DM, it is plausible 
that OSA contributes to OS, infl ammation and endothelial dysfunction in hypergly-
caemic patients and the activation of several pathways resulting in further vascular 
disease and endothelial dysfunction. 

 In this chapter, we will review the evidence of the relationship between OS and 
DM and between OSA and OS, infl ammation and endothelial dysfunction, and we 
will highlight recent advances regarding the impact of OSA in patients with DM.  

9.2     Obstructive Sleep Apnoea 

9.2.1     Defi nitions 

 OSA is characterised by instability of the upper airway during sleep, which results 
in markedly reduced (hypopnoea) or absent (apnoea) airfl ow at the nose or mouth 
[ 10 ]. These apnoea/hypopnoea episodes are usually accompanied with cyclical 
changes in oxygen saturation, blood pressure and heart rate, micro arousals that 
cause sleep fragmentation, reduction in slow wave and REM and changes in the 
intrathoracic pressure (as an attempt to overcome the obstruction) (Fig.  9.2 ) [ 10 ]. 

  Fig. 9.1    Summary of mechanisms that relate hyperglycaemia to microvascular complications in 
patients with diabetes.  AR  aldose reductase,  PK  protein kinase,  AGE  advanced glycation end prod-
ucts,  PARP  poly(ADP-ribose) polymerase,  GAPDH  glyceraldehydes-3 phosphate dehydrogenase. 
Adapted from [ 9 ] with permission       
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The American Academy of Sleep Medicine (AASM) guideline has defi ned apnoea 
as cessation or ≥90 % reduction in airfl ow for a period of ≥10 s and hypopnoea as 
≥30 % reduction in airfl ow for ≥10 s associated with ≥4 % drop in oxygen satura-
tion [ 25 ]. Apnoeas are classifi ed into obstructive or central based on the presence or 
absence of respiratory/abdominal efforts. An example of apnoeas and hypopnoeas 
can be found in Fig.  9.3 .

    The apnoea–hypopnoea index (AHI) is the average number of apnoea and hypop-
noea episodes per hour during sleep and is a marker of the severity of OSA [ 10 ]. An 
AHI ≥5 events/h is consistent with the diagnosis of OSA [ 26 ]. OSA can be classi-
fi ed into mild, moderate and severe based on AHI 5 ≤ 15, 15 ≤ 30 and ≥30 events/h. 
The respiratory disturbance index (RDI) is another OSA measure that includes the 
AHI in addition to respiratory effort-related arousal, which is defi ned as a sequence 
of breaths characterised by increasing respiratory effort leading to an arousal from 
sleep, but that does not meet criteria for an apnoea or hypopnoea [ 10 ].  

9.2.2     Epidemiology 

 OSA prevalence varies considerably between studies (4–26 % in men and 2–28 % 
in women), mainly due to differences in the population studied, study designs and 
the method and criteria used to diagnose OSA [ 10 ,  27 ]. In addition, OSA prevalence 
is affected by many risk factors such as ethnicity (possibly higher risk in Afro- 
Caribbeans) [ 27 – 33 ], gender (higher risk in men) [ 27 ], hormonal status (higher risk 
in postmenopausal women or men receiving testosterone replacement) [ 34 ] and age 
(increasing risk in older population, but the relationship is not linear as it reaches a 

  Fig. 9.2     Top : normal hypnogram showing sleep stages 1–4 and REM.  Bottom : hypnogram from a 
patient with severe OSA showing multiple arousals and lack of SWS and REM sleep.  SWS  slow 
wave sleep,  REM  rapid eye movement       
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plateau around the age of 65–70 years) [ 27 ,  28 ,  34 ,  35 ]. Excess body weight, how-
ever, is the major risk factor for OSA, although not all OSA patients are obese or 
overweight [ 34 ]. In the Wisconsin Sleep Cohort study, each increase in BMI by one 
standard deviation resulted in a 4-fold increase in OSA prevalence [ 36 ]. In addition, 
prospective studies showed that weight gain is associated with the development of 
or worsening of pre-existing OSA [ 37 ,  38 ]. This was further supported by ran-
domised controlled trials showing that weight loss (via lifestyle modifi cations or 
surgical intervention) improves/cures OSA [ 39 ,  40 ].  

9.2.3     Comorbidities 

 OSA is associated with several cardiovascular risk factors, but as most OSA patients 
are obese, it is diffi cult to state    the impacts of OSA from those of obesity. 

9.2.3.1     Hypertension 

 OSA was found to be an independent predictor of the lack of nocturnal dip in blood 
pressure (BP) in 328 adults enrolled in the Wisconsin Sleep Cohort Study who com-
pleted 2- or more 24-h ambulatory BP studies over an average of 7.2 years [adjusted 

  Fig. 9.3    An example of a sleep study from a patient with type 2 diabetes and OSA. The  top row  
shows air fl ow followed by thoracic and abdominal movements followed by oxygen saturation. 
 Red areas  represent apnoeas,  pink areas  represent hypopnoeas and  green areas  represent oxygen 
desaturation       
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OR (95 % CI) for baseline AHI 5–14.9 and ≥15 versus AHI < 5 were 3.1 (1.3–7.7) 
and 4.4 (1.2–16.3), respectively] [ 41 ]. In another prospective study based on the 
Wisconsin Sleep Cohort Study, patients with OSA were found to be at increased 
risk of developing sustained hypertension over a 4-year period (relative to an AHI 
of 0 at baseline, the adjusted OR for the presence of hypertension at follow-up were 
1.42 [95 % CI 1.13–1.78), 2.03 (1.29–3.17) and 2.89 (1.46–5.64) for an AHI of 
0.1–4.9, 5.0–14.9 and ≥15.0, respectively;  p  = 0002 for the trend] [ 42 ]. The associa-
tions of hypertension with OSA were seen in men and women, old and young, all 
ethnic groups and amongst normal-weight and overweight individuals [ 43 ].  

9.2.3.2     Insulin Resistance, Dysglycaemia and T2DM 

 OSA is associated with components of the metabolic syndrome and with insulin 
resistance (IR) independent of obesity [ 44 ]. Several studies examined the associa-
tion between OSA and IR; most showed an association [ 12 ,  45 – 64 ], but some did 
not [ 65 – 71 ]. The studies were mostly cross-sectional and the adjustment for con-
founders varied signifi cantly. Studies that did not show such a relationship included 
fewer participants and potentially were underpowered. 

 OSA has also been associated with prediabetes (impaired fasting glucose and 
impaired glucose tolerance). In a subset of the Sleep Heart Health Study, relative to 
those with RDI < 5, individuals with mild and moderate to severe OSA had adjusted 
OR of 1.27 (95 % CI 0.98–1.64) and 1.46 (1.09–1.97), respectively, for fasting glu-
cose intolerance [ 57 ]. Sleep-related hypoxaemia was also associated with glucose 
intolerance independently of age, gender, BMI and waist circumference [ 57 ]. In 
another cross-sectional study of 2,588 participants, OSA (RDI ≥ 10) had higher 
adjusted OR of 1.3 (1.1–1.6) for IFG, 1.2 (1.0–1.4) for IGT, 1.4 (1.1–2.7) for IFG 
plus IGT and 1.7 (1.1–2.7) for occult diabetes compared to those without OSA [ 72 ]. 

 OSA has also been shown to increase the risk of incident T2DM in several pro-
spective studies [ 73 – 78 ]. These studies used a variety of methods to diagnose OSA 
(from symptoms to polysomnography) and to diagnose T2DM (from self-reported 
to OGTT); these studies consistently show that OSA is an independent predictor of 
incident T2DM   . 

 As T2DM and OSA share major risk factors such as obesity and age and OSA is 
associated with IR, it is not surprising that epidemiological cross-sectional studies 
showed that OSA is very prevalent in patients with T2DM (23–86 %) [ 11 – 20 ]. The 
variation in OSA prevalence between studies is due to the differences in population 
characteristics (primary versus secondary care, long versus short diabetes duration, 
ethnicity, obesity, etc.) and the differences in the methods and the criteria used to 
diagnose OSA. 

 A small number of studies assessed the relationship between OSA and glycae-
mic control in patients with T2DM, and they showed that OSA and its severity are 
associated with poorer glycaemic control (both HbA1c and fasting plasma glucose) 
and glycaemic variability after multivariable adjustments for several confounders 
such as age, sex, race, BMI, number of diabetes medications, level of exercise, years 
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of diabetes and total sleep time in some studies [ 18 ,  79 – 82 ]. These studies were 
relatively small ( n  = 31–92). The adjusted mean increase in HbA1c between patients 
with and without OSA varied between 0.7 and 3.69 % depending on the OSA 
severity. 

 Despite that some studies showed that CPAP treatment improves insulin sensitiv-
ity, the impact of CPAP on glycaemic control in patients with T2DM has been incon-
sistent.    Several studies evaluated the impact of CPAP on glycaemic control in patients 
with T2DM [ 11 ,  83 – 88 ], of these, only one is a randomised clinical trial [ 88 ], with the 
rest being uncontrolled pre- to post-assessments. The one randomised controlled 
study showed no change in HbA1c after CPAP therapy for 3 months. The lack of posi-
tive effect could be attributed to the small study sample, the limited duration of fol-
low-up and the suboptimal adherence to CPAP (3.6 h/night). In marked contrast, 
uncontrolled studies have shown improvements in insulin sensitivity [ 11 ,  83 ], post-
prandial hyperglycaemia [ 84 ], glycaemic variability [ 87 ] or HbA1c [ 84 ,  85 ].  

9.2.3.3     Cardiovascular Disease and Mortality 

 Three prospective studies showed that OSA (based on polysomnography) predicts 
the development of CVD [ 89 – 91 ]. In a study of 182 consecutive middle-aged men 
free of CVD at baseline who were followed for 7 years, the incidence of CVD was 
36.7 % of patients with OSA versus 6.6 % subjects without OSA ( p  < 0.001) with an 
adjusted OR of 4.9 (1.8–13.6) [ 89 ]. CPAP treatment was associated with lower 
incidence of CVD compared to those non-treated (56.8 versus 6.7 %,  p  < 0.001) 
[ 89 ]. In another prospective study in which men with OSA were followed for a 
mean of 10.1 years, patients with untreated severe OSA had a higher incidence of 
fatal and nonfatal CVD than did untreated patients with mild–moderate OSA, sim-
ple snorers, patients treated with CPAP and healthy participants [ 90 ]. After adjust-
ment for confounders, untreated severe OSA signifi cantly increased the risk of fatal 
(OR 2.87, 95 % CI 1.17–7.51) and nonfatal (3.17, 1.12–7.51) CVD compared with 
healthy participants [ 90 ]. In another important prospective study, 1,022 patients 
were followed up for a median of 3.4 years [ 91 ]. After adjustment for confounders, 
OSA was signifi cantly associated with stroke or death (hazard ratio, 1.97; 95 % CI 
1.12–3.48;  p  = 0.01) [ 91 ]. Furthermore, in patients with stable coronary artery dis-
ease, patients with OSA had larger atherosclerotic plaque volume as assessed by 
intravascular ultrasound, and AHI correlated positively with the plaque volume 
( r  = 0.6,  p  = 0.01) [ 92 ]. The role of the nocturnal events in OSA to the occurrence of 
myocardial infarction is further supported by a study that showed patients with 
OSA were more likely to develop acute myocardial infarction between 12 and 6 am 
compared to patients matched for comorbidities but do not have OSA (32 versus 
7 %,  p  = 0.01) [ 93 ]. 

 The impact of OSA on mortality was examined in the Wisconsin Sleep Cohort 
[ 94 ] and the Sleep Heart Health Study [ 95 ]. In an 18-year follow-up, there was a 
stepwise reduction in survival with worsening OSA. The adjusted hazard ratio (HR, 
95 % CI) for all-cause mortality with severe versus no OSA was 2.7 (1.3–5.7) [ 94 ]. 
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In 6,441 men and women that were followed up for 8.2 years, compared to those 
without OSA (AHI <5 events/h), the HR (95 % CI) for all-cause mortality in those 
with mild, moderate and severe OSA were 0.93 (0.80–1.08), 1.17 (0.97–1.42) and 
1.46 (1.14–1.86), respectively, after adjustment for age, sex, race, smoking status, 
BMI and prevalent medical conditions [ 95 ]. Measures of intermittent hypoxae-
mia, but not sleep fragmentation, were independently associated with all-cause 
mortality [ 95 ].    

9.3     Oxidative Stress 

 The term OS refers to the situation of a serious imbalance between the production 
of free radicals and the antioxidant defence mechanisms, leading to potential tissue 
damage [ 96 ]. Free radical species are a variety of highly reactive molecules that can 
be divided into different ROS, reactive nitrogen species (RNS) and reactive chlorine 
species (RCS). A common feature of cells that are damaged by hyperglycaemia is 
the presence of ROS/RNS causing OS [ 97 ,  98 ]. ROS/RNS can interact with the 
nitric oxide (NO), which promotes the formation of peroxynitrite while diminishing 
the bioactivity and bioavailability of NO resulting in endothelial dysfunction, 
infl ammation and atherosclerosis [ 21 ,  99 ]. In addition, OS interacts with lipids, pro-
tein, carbohydrates and DNA causing cellular damage and dysfunction [ 100 ]. 

 There are four protein complexes (I–IV) in the mitochondrial electron transport 
chain [ 5 ]. Glucose metabolism through the tricarboxylic acid cycle (TCAC) gener-
ates electron donors [ 5 ]. The main electron donors are NADH, which gives elec-
trons to complex I, and FADH 2 , which donates electrons to complex II [ 5 ]. These 
electrons are passed to coenzyme Q and then transferred to complex III, cyto-
chrome- C, complex IV and fi nally molecular oxygen, which they reduce to water 
[ 5 ]. Throughout the electron transport system, ATP levels are precisely regulated 
[ 5 ]. As electrons are transported some of the energy of those electrons is used to 
pump protons across the membrane at complexes I, III and IV, which generates a 
voltage across the mitochondrial membrane [ 5 ]. The energy from this voltage gradi-
ent drives the synthesis of ATP by ATP synthase; alternatively, uncoupling proteins 
(UCPs) can move down the voltage gradient to generate heat to keep the rate of ATP 
generation constant [ 5 ]. 

 In hyperglycaemia, there is more glucose being oxidised in the TCAC, which 
pushes more electron donors into the electron transport chain which results in the 
voltage gradient increase across the mitochondrial membrane [ 5 ,  101 ] until a criti-
cal threshold is reached [ 5 ]. At this point, electron transfer is blocked resulting in 
the backup of electrons generating superoxide which is degraded to hydrogen per-
oxide (which is then converted to H 2 O and O 2 ) by the enzyme superoxide dismutase 
(SOD) [ 5 ]. In experimental studies, abolishing the voltage gradient by using uncou-
pling protein-1 (UCP-1) results in the lack of ROS production in hyperglycaemia [ 5 , 
 98 ]. Similarly, hyperglycaemia does not increase ROS when superoxide is degraded 
by over-expressing the enzyme manganese SOD (MnSOD) [ 5 ]. In endothelial cells 
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that are deprived of mitochondrial DNA (ρ 0 ), the impact of hyperglycaemia on ROS 
production was completely lost [ 5 ]. Similarly, in ρ 0  endothelial cells, hyperglycae-
mia completely fails to activate the polyol, PKC and hexosamine pathways or AGE 
formation [ 5 ]. Inhibiting ROS production and normalising mitochondrial ROS 
levels prevents the activation of the AGE, PKC and polyol pathways by glucose 
[ 98 ]. This suggests that diabetes-induced ROS and OS are important in stimulating 
the AGE, PKC and polyol pathways which results in the development of vascular 
complications, although these same pathways also increase ROS production and OS. 

 The key glycolytic enzyme GAPDH plays an important role in activating the 
AGE, PKC, hexosamine and polyol pathways [ 5 ]. GAPDH activity is reduced in 
patients and animals with diabetes, and GAPDH inhibition does not occur when 
ROS production is prevented by UCP-1 or MnSOD [ 5 ,  97 ]. When GAPDH activity 
is inhibited, the level of all the glycolytic intermediates that is upstream of GAPDH 
increases, resulting in the activation of the AGE and PKC pathways because the 
methylglyoxal (an AGE precursor) and DAG (a PKC activator) are formed from 
glyceraldehyde-3 phosphate. In    addition, the levels of glycolytic metabolite 
 fructose- 6 phosphate increase, which activates the hexosamine pathway, and intra-
cellular glucose levels increase, which activates the polyol pathway (Fig.  9.4 ) [ 5 ].

   However, experimentally, ROS can inhibit GAPDH activity only at concentra-
tions higher than those found in patients with DM; hence, a different mechanism of 

  Fig. 9.4    Potential mechanism by which hyperglycaemia-induced mitochondrial superoxide 
 overproduction activates four pathways of hyperglycaemia damage. Excess superoxide partially 
inhibits the glycolytic enzyme GAPDH, thereby diverting upstream metabolites from glycolysis 
into pathways of glucose overutilisation. This results in increased fl ux of dihydroxyacetone phos-
phate (DHAP) to DAG, an activator of PKC, and of triose phosphates to methylglyoxal, the main 
intracellular AGE precursor. Increased fl ux of fructose-6-phosphate to UDN- N -acetylglucosamine 
increases modifi cation of proteins by O-linked  N -acetylglucosamine (GlcNAc), and increased glu-
cose fl ux through the polyol pathway consumes NADPH and depletes GSH. Adapted from [ 5 ]       
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GAPDH inhibition was sought [ 5 ]. Poly(ADP-ribosyl)ation is the process by which 
PAR are attached via an ester bond to glutamic acid, aspartic acid or lysine residues, 
mediated by the enzyme PARP [ 102 ]. PARP 1 and 2 are known to play a role in 
DNA repair [ 102 ]. Increased OS results in DNA damage and PARP1 activation 
[ 103 – 105 ]. Although PARP1 plays a benefi cial role in DNA repair, it is possible that 
hyper-activation in diabetes leads to detrimental effects [ 105 ,  106 ]. Excess cleavage 
of NAD+ by PARP would exacerbate the effect of increased fl ux through SDH 
which results in depleting NAD+ further, leading to OS [ 105 ]. In addition NAD+ is 
required as a cofactor for the conversion of glyceraldehyde-3-phosphate. 
Hyperglycaemia-induced ROS inhibits GAPDH activity in vivo by modifying the 
enzyme with PARP [ 5 ,  97 ,  107 ]. PARP inhibition reduces OS and inducible NOS 
(iNOS) expression in high glucose-treated human Schwann cells [ 108 ]. 

 In addition to the excess in superoxide production, hyperglycaemia results in 
reduction in the antioxidant defence system such as GSH, vitamin E, vitamin C, 
alpha lipoic acid (ALA) and taurine [ 109 ]. These antioxidants protect tissues from 
free radical damage and are recycled or regenerated [ 109 ]. GSH is by far the most 
important antioxidant in most mammalian cells. Hyperglycaemia induces GSH 
depletion and impairs GSH regeneration; GSH depletion has been linked to the 
development of diabetes complications [ 110 ]. Taurine is a β-amino acid 
(2- aminoethanesulfonic acid) with antioxidant properties [ 111 ,  112 ]. Taurine deple-
tion is an important mediator of glucotoxicity and OS [ 111 ,  112 ]. Nerve taurine 
replacement ameliorates defi cits in nerve blood fl ow, NCV and OS in experimental 
DN and counteracts OS [ 113 ,  114 ]. Furthermore, hyperglycaemia reduces the 
expression of taurine transporter in Schwann cells which is reversed by the use of 
antioxidants [ 115 ].  

9.4     OSA and OS, Infl ammation and Endothelial Dysfunction 

9.4.1     OSA and Oxidative and Nitrosative Stress 

 Repetitive episodes of re-oxygenation following hypoxia, as seen in OSA, simulate 
ischaemia–reperfusion injury which results in the generation of ROS [ 116 ]. This 
hypothesis is supported by several in vivo, in vitro and human studies. It must be 
noted, however, that studies of intermittent hypoxia in animals may not be transfer-
rable to humans, as the severity of intermittent hypoxia in animal studies is much 
worse than in patients with OSA and the duration of exposure (days–weeks) is 
much shorter than in humans, who might have undiagnosed OSA for many years 
before seeking medical advice. In addition, animal studies that examined the impact 
of intermittent hypoxia do not take into account that OSA in humans has other 
aspects than intermittent hypoxia such as sleep architecture disruption and changes 
in the intrathoracic pressure. 
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 Many markers have been used to demonstrate the relation between OSA and OS 
including plasma, exhaled breath condensate and urinary 8-isoprostane levels; 
plasma levels of malondialdehyde (MDA); urinary o,o’-dityrosine; plasma levels of 
TBARS206; urine levels of 8-hydroxy-2’-deoxyguanosine (8-OhdG); and ROS pro-
duction in monocytes, granulocytes and neutrophils upon in vitro stimulation [ 22 ]. 
Intermittent hypoxia has been associated with mitochondrial dysfunction, OS and 
increased ROS production [ 21 ,  22 ,  117 ,  118 ]. ROS levels have been shown to be 
2–3 times higher in patients with OSA compared to healthy controls [ 21 ,  119 ,  120 ]. 
Schulz et al. showed increased ROS production in neutrophils from OSA patients, 
which was reversed by CPAP treatment [ 120 ]. Similar results were found in mono-
cytes by other investigators [ 119 ]. Multiple studies have shown increased oxidised 
lipids, DNA and carbohydrates in patients with OSA and animals exposed to inter-
mittent hypoxia [ 21 ,  121 – 127 ]. In addition, studies showed that patients with OSA 
have increased levels of lipid peroxidation (interaction between free radicals and 
lipids) [ 121 ,  123 ], oxidised LDL [ 125 ,  128 ], protein carbonylation (interaction 
between free radicals and protein) [ 129 ] and 8-OhdG (marker of DNA oxidation) 
[ 24 ]. OSA treatment (CPAP and mandibular advancement devices) seems to lower 
OS levels [ 120 ,  121 ,  123 ,  130 ,  131 ]. In addition, OSA is associated with reduced 
antioxidant capacity which can be reversed by CPAP treatment [ 132 ,  133 ], adding 
to the imbalance caused by increased generation of ROS/RNS and resulting in OS 
and NS. 

 The evidence for NS is limited in patients with OSA. In one report endothelial 
expression of nitrotyrosine correlated with AHI despite adjustment for age and adi-
posity in patients with OSA [ 134 ], which is reversible by CPAP treatment [ 135 ]. 
Another study, however, showed no increase in circulating nitrotyrosine levels in 
patients with OSA [ 136 ]. 

 Not all studies showed evidence of increased OS in patients with OSA [ 137 , 
 138 ]; these studies were small and had methodological issues regarding the choice 
of control group and the length of CPAP treatment.  

9.4.2     OSA and Infl ammation 

 As OSA is associated with increased OS, then it would be expected that OSA should 
be associated with increased infl ammatory cytokines and adhesion molecules, 
driven by increased ROS/RNS as well as increased sympathetic activity and obesity 
that can increase infl ammation by increased free fatty acid (FFA) release. 

 Intermittent hypoxia has been shown to be associated with the activation of the 
transcription factor nuclear factor κB (NF-κB) in vivo, which was reversible with 
CPAP treatment [ 139 ]. Intermittent hypoxia has also been associated with 
increased hypoxia-inducible factor-1 (HIF-1) in vivo and in vitro [ 140 – 142 ], 
which can directly stimulate tens of downstream molecules resulting in IR [ 142 ]; 
increased lipid biosynthesis [ 143 ] systemic infl ammation [ 144 ] and sympathetic 
activation. HIF-1 activation in OSA can occur either secondary to hypoxia itself 
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[ 145 ], OS [ 146 ] or NF-κB activation [ 147 ]. Sleep fragmentation/deprivation has 
also been associated with increased infl ammation. Sleep deprivation has been 
shown to be associated with increased infl ammatory markers such as IL-6 and 
TNF-alpha [ 148 ,  149 ]. 

 OSA has been associated with elevated plasma cytokines such as IL-6, IL-8, 
TNF-α, CRP, granulocyte chemotactic protein-2 (GCP-2) and monocyte chemotac-
tic protein-1 (MCP-1) independent of obesity [ 22 ,  49 ,  150 – 157 ]. CPAP treatment 
was shown to be effective in reducing these cytokines [ 158 ,  159 ]. Not all studies 
showed a relationship between OSA and infl ammation [ 160 ,  161 ] with obesity 
being the main confounder. 

 Adhesion molecules (selectins and integrins) play an important role in infl amma-
tion and in the interaction between the endothelium and platelets and white cells. 
Polymorphonuclear cells, monocytes and T lymphocytes have been shown to have 
increased adhesion molecules, increased avidity to endothelial cells and increased 
prolonged lifespan of active polymorphonuclear cells in patients with OSA com-
pared to controls [ 24 ,  119 ,  120 ,  162 – 166 ], which is combined with OS that could 
result in endothelial damage and vascular disease. In addition, endothelial cells 
from patients with OSA showed increased expression of adhesion molecules (inter-
cellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule (VCAM), 
E-selectin and P-selectin) compared to controls, which might be reversible with 
CPAP treatment [ 156 ,  157 ,  167 – 169 ].  

9.4.3     OSA and Endothelial Dysfunction 

 Endothelial dysfunction is an important step in the development of micro- as well as 
macrovascular disease. OS, NS and infl ammation result in defi cits in the production 
and action of nitric oxide resulting in endothelial dysfunction. In addition, OSA is 
associated with multiple risk factors of vascular disease such as hypertension, obe-
sity and hyperlipidaemia. Hence OSA would be expected to be associated with 
endothelial dysfunction. 

 Several studies have shown reduced circulating as well as endothelial levels of 
NO in patients with OSA which improves after CPAP treatment [ 135 ,  170 ,  171 ]. 
Endothelial-dependent vasodilatation was shown to be impaired in OSA patients 
independent of hypertension [ 172 ] and obesity [ 173 ] and cardiovascular risk factors 
[ 174 ]. Brachial artery diameter correlated in one study with hypoxia measures 
rather than the AHI [ 174 ], highlighting the role of hypoxia in the association 
between OSA and endothelial dysfunction. A study that used laser Doppler fl owm-
etry to examine forearm skin microcirculation found that OSA was associated with 
lower baseline blood fl ow compared to subjects without OSA and that the response 
to acetylcholine and sodium nitroprusside was not impaired by OSA [ 175 ]. There is 
also evidence to suggest that OSA is associated with increased inhibitors of endo-
thelial NO synthase which further contributes to the endothelial dysfunction 
observed in OSA [ 176 ]. Using pulse wave as an indicator of atherosclerosis, a study 
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showed that OSA patients had signifi cantly higher pulse wave velocity compared to 
age- and BMI-matched controls [ 177 ]. 

 In addition to the impaired vasodilatation, OSA might be associated with 
increased production of vasoconstrictors. Some studies showed that OSA is associ-
ated with increased ET-1 levels [ 167 ,  178 – 180 ], others did not [ 181 ,  182 ]. 
Endothelial repair capacity (judged by circulating endothelial progenitor cells) is 
also impaired in patients with OSA free of overt CVD [ 135 ] and endothelial apop-
tosis increased [ 183 ]. 

    CPAP treatment was shown to improve fl ow-mediated vasodilatation [ 184 ], 
endothelial-dependent vasodilatation [ 185 ] and endothelial repair capacity [ 183 ] 
and vasoreactivity [ 186 ].   

9.5     OSA Molecular Consequence and Vascular 
Disease in Type 2 Diabetes 

 In the previous paragraphs we have showed that OSA is associated with increased 
OS, NS, infl ammation and endothelial dysfunction, which contribute to the associa-
tion observed between OSA and CVD. We have also shown that OSA is very com-
mon in patients with T2DM. T2DM of course is a well-recognised cause of OS, NS, 
infl ammation, endothelial dysfunction and vascular disease independent of obesity. 
Hence, OSA and T2DM share many molecular consequences (Fig.  9.5 ), whether 
having OSA and T2DM combined is worse than having T2DM alone is not clear.

   This has generated a lot of interest amongst investigators recently, and several 
studies are ongoing to answer this question. Some of the early results from the 

  Fig. 9.5    The postulated mechanisms linking OSA to DPN (and microvascular complications). 
 HTN  hypertension,  ROS  reactive oxygen species,  RNS  reactive nitrogen species,  PKC  protein 
kinase C,  AGE  advance glycation end products. Adapted from [ 19 ]       
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cross-sectional studies suggest that OSA might exacerbate the impact of 
hyperglycaemia. 

 In one study of OSA, AHI and nocturnal hypoxaemia were associated with 
increased NS (as measured by serum nitrotyrosine) and OS (as measured by plasma 
lipid peroxide) in patients with T2DM [ 19 ].    OSA, AHI and nocturnal hypoxia were 
also associated with PARP activation in patients with T2DM independent of obesity 
(Tahrani unpublished data). Hence, having OSA in patients with T2DM generates 
more OS which could drive further endothelial dysfunction and vascular complica-
tions. Indeed, using laser speckle contrast imaging, patients with OSA and T2DM 
were shown to have worse baseline as well as endothelial-dependent and endothelial- 
independent vasodilatation [ 19 ]. AHI and nocturnal hypoxia also correlated with 
the parameters of endothelial dysfunction [ 19 ]. 

 Whether these associations with OS, NS and PARP activation and endothelial 
dysfunction translate into clinically detectable disease in patients with OSA and 
T2DM is unknown. However, several studies have shown a cross-sectional associa-
tion between OSA and diabetes-related microvascular complications such as periph-
eral neuropathy [ 19 ], sight-threatening retinopathy [ 187 ], proliferative retinopathy 
[ 187 ,  188 ] and diabetic nephropathy [ 189 ] independent of traditional risk factors 
including obesity and age. Longitudinal studies have also shown that OSA is associ-
ated with the progression of microvascular complications such as the development 
of pre-proliferative/proliferative diabetic retinopathy and decline in renal function 
(as measured by estimated glomerular fi ltration rate) [ 190 ,  191 ]. 

 The relationship between OSA and macrovascular disease was assessed in one 
observational cross-sectional analysis from the Sleep AHEAD study that found an 
association between OSA and the prevalence of self-reported stroke but not other 
CVD [ 192 ]. A recent pre- and post-study showed that CPAP reduced systolic blood 
pressure in patients withT2DM by approximately 9 mm Hg (from a baseline of 
149 mm Hg) and lowered pulse rate without an impact of lipids [ 193 ].  

9.6     Summary and Conclusion 

 OSA is very common in patients with T2DM and can result in similar molecular 
consequences similar to those caused by hyperglycaemia including OS, NS, 
increased infl ammation and endothelial dysfunction. Early evidence suggests that 
patients with OSA and T2DM are at increased risk of OS, NS and endothelial dys-
function compared to those with T2DM alone. 

 OSA is associated with increased risk of vascular risk factors, CVD and mortal-
ity. Whether patients with OSA and T2DM are at increased risk of vascular disease 
compared to those with T2DM alone requires further investigation, but several 
cross-sectional studies have shown increased risk of diabetes-related microvascular 
complications in patients with T2DM and OSA compared to T2DM alone. One 
observational study also suggested an increased risk of macrovascular disease in 
patients with OSA and T2DM compared to T2DM only. 

9 Oxidative Stress, Infl ammation and Endothelial Dysfunction…



162

 CPAP treatment is effective in lowering OS, NS and infl ammation and  improving 
endothelial function. CPAP is also effective in lowering BP and has been associated 
with lower mortality in observational studies. Whether such benefi ts extend to those 
who have OSA and T2DM is unknown. One non-randomised trial suggested that 
CPAP can lower systolic BP in patients with T2DM. 

 Further observational cohort studies are needed to understand the molecular con-
sequences of OSA in the context of patients with T2DM and to defi ne the role of OSA 
in the development or progression of diabetes-related micro- as well as macrovascular 
complications. Interventional studies assessing the role of OSA treatment in manag-
ing diabetes-related complications and vascular risk factors are also needed.     
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10.1            Background 

 Taurine (2-aminoethanesulphonic acid) (Fig.  10.1 ) is a free amino acid found as 
zwitterions in most body fl uids. Taurine was fi rst discovered in 1827 as a compo-
nent of bile where taurine plays an essential role in conjugation to bile acids thus 
enabling solubility at physiological pH [ 1 ]. The major physiological roles of taurine 
are as an organic osmolyte and antioxidant; however, it has also been reported to act 
as a scavenger of carbonyl compounds, a modulator of cytosolic calcium and an 
analgesic and also has neurotrophic properties [ 2 ,  3 ].

10.2        Taurine Biosynthesis 

 Taurine is synthesised from cysteine by metabolism through the cysteine sulphate 
pathway. Cysteine is oxidised to cysteine sulphinic acid by cysteine dioxygenase, 
which is then decarboxylated by cysteine sulphinate decarboxylase (CSD) to form 
hypotaurine. This latter step is rate limiting; hence the capacity for taurine synthesis 
is thought to be dependent upon the level of CSD. All cells appear capable of differ-
ent levels of taurine synthesis, but to a differing extent with CSD activity higher in 
the liver and brain than in the sciatic nerve [ 4 ], and maybe absent from the axon 
altogether [ 4 – 6 ]. Levels of taurine synthesis vary between mammals; however, all 
mammals are dependent upon dietary taurine intake [ 7 ]. Rodents such as rats and 
mice have high levels of taurine synthesis, compared to humans [ 4 ,  6 ,  8 ]. Cats do 
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not express CSD and are entirely reliant upon dietary taurine intake; as such cats 
with taurine-restricted diets have been used as models of taurine defi ciency. 

 Despite the requirement for dietary taurine intake, taurine defi ciency is rare. 
Taurine is found ubiquitously in animal products along with nuts, legumes and 
sulphur- rich vegetables such as sprouts, cabbage, onions, garlic and turnips. 
Additionally there is an inverse regulation of taurine transport in the renal proximal 
tubules which controls urinary taurine excretion [ 9 ]. Despite this, taurine defi ciency 
has been observed in both vegans [ 10 ] and patients with diabetes.  

10.3     Taurine Transport 

 The plasma taurine concentration is approximately 50 μM [ 11 ], whereas the intra-
cellular taurine concentrations range from 5 to 50 mM [ 2 ,  12 ,  13 ], varying due to the 
demand for taurine. For example leukocytes have high taurine concentrations, 
20–50 mM, due to the ability of taurine to scavenge hypochlorous acid (HOCl) 
generated during an infl ammatory response [ 2 ]. The high intracellular taurine con-
centration is achieved by active transport across the cell membrane, mediated by a 
high-affi nity low-capacity transporter known as the taurine transporter (TauT). The 
active transport of taurine across the cell membrane is dependent upon the move-
ment of 2 Na +  ions and 1 Cl −  ions per taurine molecule. The energy required for 
taurine transport is derived from the movement of sodium down its electrochemical 
energy gradient generated by the Na + K +  ATPase; as such taurine uptake is by sec-
ondary active transport [ 9 ,  12 ]. 

10.3.1     Molecular Identity of the Taurine Transporter 

 TauT has been cloned from various tissues and animal species such as mouse and 
rat brain [ 14 ], dog renal MDCK (Madin–Darby canine kidney) cells, human thyroid 
[ 15 ], placenta [ 16 ], retinal pigment epithelial (RPE) cell line, mouse retina and 
bovine endothelial cells. These have demonstrated that TauT shares up to 90 % 
sequence similarity between mammals, illustrating the importance of TauT in mammals. 

  Fig. 10.1    Chemical 
structure of taurine 
(2-aminoethanesulphonic acid)       
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These studies also showed that TauT belongs to the superfamily of Na + - and 
Cl − -dependent transporters, such as those for serotonin, dopamine, noradrenalin, 
γ-aminobutyric acid (GABA) and creatinine [ 17 ]. The TauT gene is located on 
human chromosome 3p21–25, encoding a protein between 590 and 655 amino acids 
in length with a molecular weight of approximately 65–70 kDa. Hydropathy plots 
indicate there are 12 transmembrane regions with the protein having intracellular C 
and N terminals [ 17 ].  

10.3.2     Gating of Transport 

 Several potential phosphorylation sites have been identifi ed on TauT that affect tau-
rine transport. Han et al. [ 18 ] identifi ed Ser 322 on S4 loop as a location for protein 
kinase C (PKC) phosphorylation leading to reduced taurine affi nity. Furthermore by 
substituting charged residues in the S4 loop, other amino acid residues on S4 were 
found to play an important role in the gating of taurine transport by altering the Km 
of the transporter, demonstrating direct interaction between this loop and taurine 
binding [ 12 ]. In addition elevations in cyclic adenosine monophosphate and subse-
quent protein kinase A (PKA) activation increased taurine uptake, an effect blocked 
by PKA inhibition [ 9 ]. As for PKC-mediated phosphorylations, these effects were 
shown to alter the affi nity of TauT for taurine rather than its expression [ 19 ,  20 ].  

10.3.3     Regulation of Expression 

 The promoter region of TauT has been identifi ed in both rat and human leukocytes 
[ 21 ]. In common with the function of taurine as an osmolyte, the promoter region 
of TauT contains a tonicity response element (TonE), and TauT expression is 
increased in hypertonic conditions [ 21 ]. The other major function of taurine is as an 
antioxidant, and the TauT promoter also contains an antioxidant response element 
(ARE), and TauT expression is increased in pro-oxidant conditions. In different 
studies TauT expression has been seen to be downregulated by glucose, nitric oxide 
donors, calmodulin as well as taurine itself. Identifi cation of the TauT promoter also 
identifi ed binding sites for proto-oncogenes such as p53, WT1, ERG the activator 
protein 1 (AP-1) as well as two oestrogen receptor half sites and the transcription 
factor Sp1 [ 12 ].  

10.3.4     Taurine Depletion in Diabetes 

 The link between taurine and diabetes has been explored since the early 1990s and 
taurine depletion is measured in many animal and tissue culture models. Table  10.1  
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lists the current publications measuring taurine in patients with diabetes. Taurine 
depletion in patients was initially observed by Franconi et al. [ 22 ]. Taurine levels in 
the plasma and platelets of 39 patients with type 1 diabetes and 34 aged-matched 
controls with no signifi cant difference in body mass index or rate of albumin excre-
tion were measured. They found patients with diabetes had lower plasma and plate-
let taurine concentrations. In addition an inverse correlation between taurine 
concentration and HbA1c was demonstrated. These data have since been repeated 
in type 2 patients, showing reduced taurine levels in plasma and platelets [ 23 ]. They 
demonstrated reduced uptake of  3 H-labelled taurine in platelets of patents as well 
as increased  3 H taurine release, demonstrating a disruption in mechanisms for tau-
rine homeostasis [ 11 ]. In the third study, this time in PBMCs isolated from patients 
with type 2 diabetes, whilst the plasma taurine was again reduced, the mRNA 
expression of TauT was increased and not associated with HbA1c [ 23 ]. This sug-
gests a feedback mechanism to retain PBMC taurine content. Unfortunately neither 
taurine content within the PBMC nor  3 H taurine uptake was measured to ascertain 
how the mRNA expression paralleled with TauT activity or taurine content. 
Interestingly when the patients were stratifi ed with complications, TauT mRNA 
expression was further decreased in patients with retinopathy and a trend towards 
a decrease in those with macroangiopathy, when compared to patients without 
complications [ 23 ].

   In the fi nal study looking specifi cally at renal taurine clearance, a handful of 
patients with diabetes and healthy controls (8 of each) were given a taurine load 
(6 × 500 mg tablets), and their plasma taurine load as well as urinary excretion was 
measured. Considering the small number of patients involved in the study, the 
results were impressive. The peak plasma concentration was signifi cantly smaller in 
patients than in controls following the taurine load, and the urinary excretion was 
higher. These suggest that patients with diabetes have reduced lower intestinal tau-
rine absorption, as well as impaired taurine renal tubular reabsorption, potentially 
explaining why patients with diabetes have lower plasma taurine levels [ 24 ].  

   Table 10.1    Taurine content in platelets and plasma from patients with diabetes   

 Taurine content 

 Plasma (μM)  Platelet (nM/mg protein) 

 Healthy control  Patient  Healthy control  Patient 

 De Luca et al. a  [ 11 ]  48.6  32.1  183  148 
 Franconi et al. b  [ 22 ]  93.3  65.6  990  660 
 Bianchi et al. a  [ 23 ]  46.5  28.7  –  – 
 Mean  62.8  42.13  586.5  404 

   a Type 1 patients 

  b Type 2 patients  
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10.3.5     TauT Expression in Diabetes 

 Intracellular taurine content is maintained by TauT. The downregulation of TauT by 
high glucose was fi rst demonstrated by Stevens et al. [ 25 ] in RPE cells where glu-
cose decreased taurine transport and TauT expression. This reduction in TauT 
expression has also been measured in isolated culture of mesangial cells [ 26 ] as well 
as isolated human Schwann cells exposed to chronic high glucose [ 27 ]. This reduced 
taurine uptake due to a reduction in Vmax that corresponded to reduced TauT 
mRNA and protein expression levels [ 28 ]. In animal models TauT expression has 
been measured in the retina of STZ-D rats by western blot. These showed a gradual 
decrease in TauT expression, signifi cant after 8 weeks, but not 4 weeks. Interestingly 
dietary supplement of taurine (5 g/100 g diet) not only increased TauT expression in 
STZ-D rats but also increased twofold in expression in control animals after only 2 
weeks’ treatment [ 29 ]. 

 In patients with diabetes, TauT expression has been indirectly measured in plate-
lets, where  3 H taurine uptake was reduced [ 11 ]. The only direct measure of TauT 
expression in patients is from Bianchi et al. [ 23 ] where they measured TauT mRNA 
expression from isolated PBMCs and showed a fourfold increase in TauT expres-
sion from PBMCs.    As mentioned in the previous section, this suggests a feedback 
mechanism to restore intracellular taurine content, since neither taurine content 
within the PBMC nor  3 H taurine uptake was measured to ascertain how the mRNA 
expression paralleled with a TauT activity or taurine content. 

10.3.5.1     Mechanism of Taurine Transport Dysregulation in Diabetes 

 The major functions of taurine are as an antioxidant and an osmolyte. In concert 
with this, the promoter region of TauT contains both an ARE and a TonE. In isolated 
culture models, TauT expression is upregulated by both hypertonic and pro-oxidant 
conditions [ 21 ,  28 ]. In diabetes these two factors are in confl ict. High glucose 
increases oxidative stress; however, it also results in increased polyol pathway fl ux 
increasing intracellular sorbitol content. The compatible osmolyte hypothesis sug-
gests organic osmolytes are coordinately regulated; hence accumulation of one leads 
to depletion of another. Accumulation of sorbitol leads to depletion of other organic 
osmolytes such as myoinositol and taurine, which occurs through TauT downregula-
tion. Sorbitol content is regulated by aldose reductase (AR) expression, and over-
expression of AR in RPE cells reduces TauT mRNA expression and protein [ 21 ]. 

 Inhibiting both of these pathways restores TauT expression and taurine content. 
Treatment of human Schwann cells exposed to chronic high glucose with either the 
AR inhibitor sorbinil or the antioxidant α-lipoic acid (ALA) restored TauT expres-
sion and taurine uptake [ 28 ]. The same is the case in STZ-D rats where inhibition of 
both restores nerve taurine content [ 30 ,  31 ]. The apparent paradoxical effect of an 
antioxidant restoring TauT expression appears to be due to the neutralising effect of 
reactive nitrogen species and nitric oxide. Nitric oxide donors alone reduce TauT 
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expression and taurine uptake in human Schwann cells. In human Schwann cells 
treated with chronic high glucose, inhibition of nitric oxide synthase (NOS) with 
 l -NG-nitroarginine methyl ester ( l -NAME) restores TauT expression and taurine 
uptake [ 28 ] (Fig.  10.2 ). Treatment of rats with  l -NAME slows nerve conduction 
velocity [ 31 ], and this could be due to the actions on eNOS, not expressed in iso-
lated human Schwann cells.

10.3.5.2        TauT Activity in Diabetes 

 As well as a reduction in TauT expression, other factors such as increased PKC 
activity and reduced Na + K +  ATPase activity may directly reduce the activity of TauT 
independent of TauT expression, further impairing taurine uptake (Fig.  10.2 ). The 
energy required for taurine transport is derived from the movement of sodium down 
its electrochemical energy gradient generated by the Na + K +  ATPase. As such taurine 
uptake is reliant upon the Na + K +  gradient, maintained by the Na + K +  ATPase. 
Impaired Na + K +  ATPase activity is observed in many tissues in animal models of 
diabetes, such as lens, heat, erythrocytes and sciatic nerve [ 31 ], therefore reducing 
taurine uptake in these tissues. 

 TauT phosphorylation by PKC has been identifi ed at Ser 322 on the S4 loop lead-
ing to reduced taurine affi nity [ 12 ]. The activation of PKC (primarily β and δ) is 
increased in various tissues in diabetic animal models, such as the retina, heart, 
aorta and renal glomerulus.    This increased activity reduces not only TauT activity 
but also expression; in RPE cells exposed to high glucose, inhibition of PKC with 
bisindolylmaleimide (BIM) overcomes the glucose-induced reduction in taurine 
uptake [ 25 ].   

  Fig. 10.2    Glucose-induced dysregulation of taurine uptake. Oxidative stress increases taurine 
uptake, an effect inhibited by glucose. Reduced taurine uptake is infl uenced by glucose-induced 
increases in PKC activity, increased aldose reductase fl ux, reduced Na + K +  ATPase activity and 
increased NO, possibly due to increased nitrotyrosine of nitrosylation       
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10.3.6     Mechanism of Action of Taurine Supplementation 

10.3.6.1     Glucose Uptake and Insulin Resistance 

 As early as the 1930s, studies reported the hypoglycaemic effects of taurine [ 6 ]. 
These results are by no means consistent and there are many studies that demon-
strate the benefi cial effects of taurine occur with no change in blood glucose or 
HbA1c [ 3 ,  32 ,  33 ]. A longer-term study has demonstrated taurine supplementation 
for 6 months did reduce blood glucose levels in STZ-D rats [ 34 ], suggesting longer- 
term taurine supplementation may be required for the hypoglycaemic effect to be 
observed. 

 More recent work has been conducted by one group looking at the effect of tau-
rine on β-islet function and insulin secretion. Carneiro et al. [ 35 ] studied the effect 
of taurine supplementation on β-islet function in nondiabetic mice. Taurine- 
supplemented mice had higher glucose-induced insulin secretion and greater glu-
cose tolerance. The islets of these mice also had higher insulin content and slower 
cytosolic Ca 2+  oscillations in response to glucose stimulation.    This group also dem-
onstrated taurine improves insulin sensitivity in mice fed a high-fat diet and have 
become hyperglycaemic and insulin resistant. In these mice taurine supplementa-
tion improved both insulin resistance and glucose tolerance [ 36 ]. It could therefore 
be possible that taurine is aiding insulin sensitivity in type 2 diabetes; however, 
whether and how taurine may be effecting insulin signalling in type 1 diabetes is 
unclear.  

10.3.6.2     Blood Flow and Platelet Aggregation 

 In diabetic neuropathy there is a considerable debate about the role of metabolic 
versus vascular disturbances in the progression of the condition. Sections  10.7.3 –
 10.7.8  discuss the metabolic effects of taurine supplementation; however, taurine 
also has benefi cial effects on the vascular disturbances and blood fl ow. In diabetic 
animal models, taurine partially restored nerve blood fl ow in both STZ-D mice [ 37 ] 
and Zucker diabetic fatty rats [ 38 ] as well as induced VEGF expression in the retina 
of STZ-D rats [ 39 ]. The mechanism of these effects is not clear; however, the results 
are similar to that of antioxidants observed in STZ-D rats [ 30 ,  40 ], demonstrating 
they could be due to reducing ROS and restoring function in vascular smooth mus-
cle cells [ 2 ] or restoring NO signalling. 

 Taurine is able to increase cholesterol solubility increasing its excretion, and 
several studies have demonstrated that taurine administration is able to reduce 
serum cholesterol in both diabetic animals [ 41 ] and human subjects. In particular 
Zhang et al. [ 42 ] demonstrated taurine supplementation reduced circulating triglyc-
erides and reduced BMI in obese young nondiabetic adults. Platelet hyper- 
aggregation is a contributing factor for complications, and there is a close relationship 
between platelet aggregation in diabetic patients and diabetic complications [ 6 ]. 
Taurine is found in high concentration in platelets (10–50 mM) [ 6 ], and clinical 
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studies have demonstrated this concentration is reduced in diabetic patients. Oral 
taurine supplementation, however, can reverse this depletion and normalise platelet 
hyper-aggregation [ 2 ]. Interestingly this effect was not found in obese, nondiabetic 
men [ 43 ]. In this study baseline plasma taurine levels were normal, and although 
this was increased by taurine supplementation, platelet taurine content was not mea-
sured. It therefore appears taurine depletion, possibly induced by hyperglycaemia, 
is required for taurine to be effective at normalising platelet aggregation. Finally in 
a short 2-week study of patients with type 1 diabetes, supplementation with 1.5 g 
taurine per day (3 × 500 mg) restored    arterial stiffness and brachial artery reactivity 
with no effect on other measurements such as HbA1c, blood pressure, cholesterol or 
heart rate [ 44 ]. These results are suggestive of a taurine having a benefi cial effect in 
endothelial cell dysfunction. 

 Taurine is regularly seen to have anti-hypertensive effects in both nondiabetic 
animal models and humans [ 45 ,  46 ]. The anti-hypertensive effects of taurine could 
be due to antioxidant or anti-infl ammatory effects; however, taurine also attenuates 
the actions of angiotensin II on Ca 2+  signalling and protein synthesis demonstrating 
other possible mechanisms for the anti-hypertensive action of taurine [ 2 ]. Many of 
the actions of taurine on hypertension are by suppression of the sympathetic ner-
vous system which may also have effects on nerve blood fl ow, thereby reducing 
hypertension [ 46 ].  

10.3.6.3      Antioxidant Actions of Taurine 

 One of the major actions of taurine is as an antioxidant, and in vitro TauT expression 
and taurine uptake are increased in response to pro-oxidants [ 21 ,  27 ], suggesting 
increased taurine uptake as a defensive response.    In isolated culture and animal 
models of diabetes, taurine supplementation reduces markers of oxidative stress in 
different tissues, i.e. lipid peroxidation in plasma [ 47 ], heart, muscle, liver, kidney 
[ 48 ] and sciatic nerve [ 3 ]; nitrated proteins, oxidative stress and lipid peroxidation 
in isolated human Schwann cells [ 27 ,  28 ] and decreased superoxide formation in 
β-islet cells from rats infused with high glucose [ 49 ]. 

 The mechanism(s) by which taurine acts as an antioxidant, however, is(are) 
unclear. The taurine precursor hypotaurine is able to neutralise classic ROS, but 
Aruoma et al. [ 50 ] established that taurine is incapable of directly scavenging clas-
sic ROS, O 2− , OH and H 2 O 2 . It has been speculated that the antioxidant effects of 
taurine are via indirect mechanism by increasing antioxidant defence enzyme; how-
ever the effects seem to be a reversal of toxic effects rather than directly increasing 
antioxidant defence enzymes [ 51 ]. One example of this is the prevention of 
glutamate- induced neurotoxicity and subsequent ROS increase. Prolonged activa-
tion of the  N -methyl  d -aspartate (NMDA) receptor by glutamate results in overload 
of intracellular and mitochondrial Ca 2+ , causing mitochondrial damage and ROS 
production [ 52 ]. Taurine reduces ROS production in glutamate-induced neurotoxic-
ity, but neither by a direct antioxidant mechanism nor by increasing the antioxidant 
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defence system. Instead taurine has a direct effect on Ca 2+  uptake via the Na + /Ca 2+  
exchanger, reducing Ca 2+  infl ux and thereby reducing cellular toxicity and ROS 
[ 53 ]. In isolated human Schwann cells, chronic high glucose resulted in increased 
SOD, CAT activity and GSH abundance; however although taurine supplementation 
reduced oxidative stress and lipid peroxidation, this was without effect on the anti-
oxidant defence system [ 27 ]. Hence, it is possible that the effects of taurine on 
glucose-induced oxidative stress are due to an indirect effect on other mechanisms 
increasing oxidative stress such as a carbonyl scavenging, rather than directly on 
ROS, or antioxidant defence [ 51 ].  

10.3.6.4     Anti-infl ammatory Actions 

 HOCl is a major bactericidal agent generated by polymorphonuclear leukocytes and 
eosinophils. Although taurine is unable to scavenge classic ROS, it does react with 
HOCl in a 1:1 ratio neutralising HOCl and forming the less toxic oxidant taurine 
chloramines [ 2 ]. Hence, taurine acts as an anti-infl ammatory agent by neutralising 
HOCl. It has been demonstrated that taurine chloramines act as an infl ammatory 
mediator to reduce iNOS, TNF-α, IL6 and IL8 in polymorphonuclear cells [ 54 ]. 
These pro-infl ammatory mediators are increased in patients with diabetes [ 55 ] and 
due to hyperglycaemia [ 56 ].  

10.3.6.5     Carbonyl Scavenging 

 Taurine is a free amino acid and therefore it has a free amino group which can react 
with carbonyl groups forming a Schiff base with the sugar carbonyl, sparing the 
proteins from glycation [ 6 ].    Taurine supplementation reduces AGE and protein gly-
cation in many diabetic models: isolated human erythrocytes, fructose-fed rats and 
fructose-treated bovine lens. Taurine is able to scavenge both toxic aldehydes and 
other carbonyl compounds [ 2 ,  51 ].  

10.3.6.6    Calcium Signalling 

 Abnormal [Ca 2+ ] in diabetes is thought to contribute to the development of dia-
betic neuropathy and the associated pain. Resting [Ca 2+ ] is increased in sensory 
neurons and DRGs in both STZ-D rats and mice, and the amplitude of multiple 
voltage- gated calcium channels is also increased in diabetic models. Ca 2+  over-
load is reported in diabetic mitochondria, which is important as mitochondrial 
dysfunction is repeatedly cited as a result of the metabolic dysfunction observed 
in diabetes [ 56 ]. 

 Taurine is known to modulate Ca 2+  homeostasis [ 2 ]. It is able to counter 
 glutamate-induced Ca 2+  elevations [ 57 ], inhibit excessive Ca 2+  accumulation in 
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cardiomyocytes and attenuate abnormal Ca 2+  signalling in sensory neurons of 
STZ-D rats [ 58 ]. How taurine does this is unclear and may differ in different situa-
tions. For instance, in glutamate-induced neurotoxicity, taurine is able to lower 
[Ca 2+ ] by directly affecting the Ca + /Ca 2+  exchanger. However, other studies have 
demonstrated interactions between taurine and either phospholipids or phosphoino-
sitol, by inhibiting phosphoinositide turnover [ 57 ] or by altering Ca 2+  binding to 
membrane phospholipids [ 58 ].  

10.3.6.7    Na + K +  ATPase 

 Na + K +  ATPase is an ubiquitously expressed membrane pump that utilises ATP to 
export three Na +  ions and import 2K +  ions [ 59 ]. Many cellular functions are coupled 
to the movement of sodium ions, for example, in the nerve, the Na +  gradient is 
required for nerve impulses to travel; however, it is also required for the transport of 
molecules such as myoinositol and taurine. Na + K +  ATPase activity is reduced by 
oxidative and nitrosative stress, and in diabetes Na + K +  ATPase activity is disrupted 
[ 60 ]. In the sciatic nerve, lens, heart and erythrocytes, this disruption results in a 
decrease in Na + K +  ATPase activity. Considering the role of the Na + K +  ATPase in the 
nerve, decreased activity impairs nerve impulses and there is a close correlation 
between decreased Na + K +  ATPase activity and diabetic neuropathy [ 59 ]. Taurine 
supplementation restores Na + K +  ATPase activity in the nerve of STZ-D rats [ 37 ], as 
well as the retina of STZ-D rats and in peroxynitrite-treated liver samples [ 61 ]. 
Although the mechanism of this action is unclear, since the Na + K +  ATPase is down-
regulated by oxidative and nitrosative stress, it is likely to be an antioxidant effect.  

10.3.6.8     Role of Taurine in Mitochondrial Function 

 The regulation of mitochondrial taurine content appears to be independent of cyto-
solic taurine content. This can be elucidated from the existence of a mitochondrial 
TauT which has been identifi ed, but not characterised [ 62 ], that mitochondrial tau-
rine content is approximately a third of the cytosolic taurine content [ 51 ] and deple-
tion of taurine by β-alanine treatment does not reduce mitochondrial taurine [ 51 ]. 

 In the mitochondria, taurine plays a role in protein synthesis where it forms con-
jugates with uridines of mammalian mitochondrial tRNA [ 62 ,  63 ]. In certain mito-
chondrial diseases, these taurine modifi cations are lacking, reducing synthesis of 
certain mitochondrial proteins. Exposure of taurine to β-alanine depleted the cyto-
solic (but not mitochondrial) taurine content by 45 %. This led to a reduction in 
synthesis of respiratory chain subunits ND5 and ND6, which led to an increase in 
oxidative stress and decline in electron transport chain activity, an effect reversed by 
taurine supplementation [ 64 ]. 

 It has also been reported that taurine has buffering properties in the  mitochondrial 
matrix, disruption of which could lead to insuffi cient buffering of the matrix [ 65 ]. 
Therefore taurine is potentially able to stabilise the environment in the mitochondria 

T. Askwith



183

and prevent leakage of reactive compounds into the mitochondrial environment, 
indirectly acting as an antioxidant [ 65 ].   

10.3.7     Taurine Supplementation in Diabetes 

 The reduction in circulating and intracellular taurine can be replenished by taurine 
supplementation. This has been demonstrated in rats as well as in diabetic patients. 
In a short, 90-day trial, patients with diabetes received 500 mg taurine supplementa-
tion three times a day for 90 days. This restored both platelet and plasma taurine 
content. Taurine supplementation also reduced platelet aggregation in patients with 
diabetes, with no effect on the healthy controls. However, there was no effect on 
HbA1c or cholesterol [ 22 ]. 

10.3.7.1    Diabetic Neuropathy 

 In STZ-D rats TauT is expressed in the vascular endothelium, Schwann cells, axons 
and neurovasculature; therefore, downregulation of TauT could result in taurine 
depletion in key sites implicated in diabetic neuropathy. Indeed, taurine depletion 
has been identifi ed in the sciatic nerve of STZ-D rats [ 30 ] as well as isolated human 
Schwann cells exposed to chronic high glucose. This reduced taurine uptake due to 
a reduction in Vmax that corresponded to reduced TauT mRNA and protein expres-
sion levels [ 27 ]. 

 The effect of taurine supplementation in neuropathic animal models has been 
extensively studied. In STZ-D rats taurine supplementation prevents nerve conduc-
tion velocity defi cits, hyperalgesia as well restoring nerve blood fl ow [ 37 ,  58 ]. 
   Taurine also reduced nerve oxidative stress, restored normal calcium signalling and 
reduced nerve growth factor defi cits [ 3 ]. These studies have been repeated in part in 
Zucker fatty rats where taurine supplementation restored nerve conduction velocity 
and nerve blood fl ow [ 38 ].  

10.3.7.2    Diabetic Retinopathy 

 In isolated culture of RPE cells, TauT expression and activity is downregulated by 
high glucose [ 25 ]. Taurine supplementation also protects isolated rat ganglion cells 
from hypoxia-induced apoptosis by preventing mitochondrial dysfunction [ 66 ]. 
Similarly in vivo taurine supplementation reduces glial cell apoptosis, as well as 
attenuating the induction of glial fi brillary acid protein (GFAP) expression, a marker 
of gliosis in STZ-D rats [ 29 ,  39 ]. As with the improvement in nerve blood fl ow 
observed in neuropathy, it is also possible that taurine improved retinal vascular 
function, as taurine supplementation attenuates induced VEGF expression in the 
retina of STZ-D rats [ 39 ]. Finally in STZ-D rats, taurine also reduces retinal gluta-
mate content as well as in cultured Müller cells [ 29 ,  39 ].  

10 Taurine Treatment for Complications of Diabetes



184

10.3.7.3    Diabetic Nephropathy 

    In isolated culture of renal tubular cells exposed to high glucose, taurine blocked 
many of the markers of nephropathy, stimulating p42/44 MAPK, JAK2, STAT1, 
STAT3, fi bronectin, type IV collagen synthesis as well as increased concentration of 
cyclin D/CDK4 and suppressed p21 NafI/Cup1 and p2KIPI [ 67 ]. In STZ-D rats co-
administration of taurine and streptozotocin reduced the histological appearance of 
renal injury as well as renal monoaldehyde and oxidised low- density lipoprotein, 
suggesting the protective effect of taurine against early-stage renal injury [ 68 ]. Four 
months after STZ-D administration, by which time animals demonstrated protein-
uria, rats were treated with 1 % taurine added to their drinking water. Taurine treat-
ment prevented a further rise in proteinuria and improved renal histology and 
reduced TGF-β expression in the glomeruli as well as several markers of oxidative 
stress, such as pentosidine and nitrotyrosine [ 69 ]. These suggest that taurine could 
prevent progression of nephropathy in patients with established nephropathy.    

10.4     Conclusion 

 In the past 20 years of research, a link between diabetes/taurine depletion and dia-
betic complications has been established. The mechanisms behind the depletion in 
taurine appear to surround dysfunction of TauT regulation. In animal models, tau-
rine has the ability to restore many of the molecular biomarkers as well as physio-
logical measurements associated with retinopathy, nephropathy and neuropathy. 
Whilst the mechanisms behind these effects are unclear and require further study 
such as the utilisation of TauT knockout animal and in vitro models, the potential 
benefi ts of these effects to patients with diabetes demonstrate the requirement for 
further clinical studies to be performed.     
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11.1            Introduction 

 The world prevalence of diabetes among adults (aged 20–79 years) has reached 
epidemic proportions and unfortunately continues to rise. A recent study that 
included all 216 countries of the United Nations as an update to prior analyses per-
formed by the World Health Organization and International Diabetes Federation 
supports this notion. It was reported that the worldwide prevalence of diabetes is 
expected to grow from a rate of 6.4 % in 2010, affecting 285 million adults, to 7.7 % 
affecting 439 million adults, by 2030 [ 1 ]. In the USA, there are currently more than 
26 million adults with diagnosed diabetes, with an estimated 36 million adults to be 
diagnosed by 2030 [ 1 ]. Type 2 diabetes accounts for 90 % of cases, as a conse-
quence of increased insulin resistance in skeletal muscle, liver, and adipose tissue, 
and impaired insulin secretion from the pancreatic β-cell due to islet cell dysfunc-
tion. Of particular concern is that type 2 diabetes is also now being diagnosed fre-
quently in young children and adolescents, which may add unforeseeable 
socioeconomical burdens. The high prevalence of diabetes is explained in part by an 
increasing incidence of obesity and metabolic syndrome as a consequence of the 
adaptation to a westernized diet and a sedentary lifestyle. These data, based on a 
larger number of studies, indicate a growing burden of diabetes, particularly in 
developing countries. 
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 Cardiovascular disease (CVD) mortality remains the main cause of excess mor-
tality among patients with diabetes and also represents a signifi cant cause of mor-
bidity. For instance, myocardial infarction, stroke, and peripheral vascular disease 
are two to four times more prevalent in diabetic patients [ 2 ,  3 ]. Moreover, vascular 
disease occurs earlier and follows a more aggressive course [ 3 ]. Thus, the cardio-
vascular event rate in diabetic patients without documented coronary artery disease 
(CAD) is equivalent to that of nondiabetic patients with CAD [ 2 ,  3 ]. Moreover, 
diabetic patients have higher mortality following myocardial infarction than non-
diabetic subjects [ 2 ,  3 ]. Women with diabetes lose their premenopausal cardiopro-
tection and are vulnerable to CAD at the same rate as men [ 4 ]. 

 The development of CVD in diabetes is dependent on underlying genetic predis-
position and on coexisting independent accelerating factors such as hypertension 
and dyslipidemia, which when acted on by various initiating events, result in infl am-
matory changes. The contribution of hyperglycemia to the pathogenesis of diabetes 
complications in both type 1 [ 5 ,  6 ] and type 2 diabetes [ 7 ] is beyond dispute. 
Infl ammation and hyperglycemia unleash a cascade of events that affects cellular 
proteins, gene expression, and cell-surface receptor expression in the endothelium, 
ultimately resulting in progressive pathologic changes and subsequent vascular 
complications. Several critical mechanisms of hyperglycemia-induced diabetic vas-
cular damage have been described including redox imbalances secondary to 
enhanced aldose reductase (AR) activity and increased polyol pathway fl ux, 
increased advanced glycation end products (AGEs), and increased expression of the 
receptor for AGEs, activation of protein kinase C (PKC) isoforms, and overactivity 
of the hexosamine pathway [ 8 ]. However, clinical studies designed to block these 
pathways individually have failed to prevent the development and progression of 
diabetes vascular complications [ 8 ,  9 ]. In addition, while tissue-specifi c factors may 
accentuate diabetic damage, it has become increasingly apparent that all diabetic 
complications share a common pathophysiology. 

 During the past two decades, considerable evidence has implicated oxidative 
stress in several distinct conditions, including aging, atherosclerosis, neurodegen-
erative diseases, diabetes, and end-stage renal disease (reviewed in [ 10 – 17 ]. These 
observations led to the seminal theory described by Brownlee in 2000 that all of the 
different pathogenic mechanisms described above stem from a single hyperglycemia- 
induced process, namely, overproduction of superoxide by the mitochondrial 
electron- transport chain [ 18 ]. 

 In this chapter, we discuss the link between oxidative stress, endothelial dysfunc-
tion, and diabetic vascular disease. We will also discuss the potential relationship of 
carbonyls and lipids to oxidant-generating pathways and the rationale for therapies 
aimed at decreasing oxidative stress. Identifying specifi c pathways of reactive oxi-
dant generation in diabetes will ultimately lead to rational design of drugs to inter-
rupt this process and prevent diabetic complications.  
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11.2     Oxidative Stress in Diabetes 

11.2.1     Excessive Free Radical Production and Oxidative Stress 

 Oxidative stress occurs when there is an imbalance in the relative rates of oxidant 
generation and oxidant scavenging, with a subsequent increase in the level of oxi-
dized biomolecules and associated tissue damage [ 19 ]. The term “oxygen free radi-
cals” summarizes a variety of highly reactive molecules that can be divided into 
different categories, e.g., reactive oxygen species (ROS), reactive nitrogen species 
(RNS), and reactive chlorine species (RCS). Superoxide (O 2  − ) is the initial oxygen 
free radical formed by the mitochondria, which is then converted to other more 
reactive species that can damage cells in numerous ways [ 20 ]. 

 The most prominent members of such categories include superoxide (O 2  − ), 
hydroxyl radical (OH − ), peroxyl radical (ROO − ) in the ROS group, and nitric oxide 
(NO) in the RNS group and are summarized in Table  11.1 .     

 Although free radical reactions are essential for host defense mechanisms uti-
lized by neutrophils, macrophages, and other cells of the immune system, the over-
production of free radicals may cause tissue injury and cell death [ 21 – 27 ]. In vitro 
and human studies have demonstrated ROS-induced DNA and protein damage 

   Table 11.1    Reactive species generated from oxygen, nitrogen, and chlorine   

 Radicals  Non-radicals 

  Reactive oxygen species (ROS)  
 Superoxide, O 2  −   Hydrogen peroxide, H 2 O 2  
 Hydroxyl, OH −   Hydrochlorous acid, HOCl 
 Peroxyl, RO 2  −   Hypobromous acid, HOBr 
 Alkoxyl, RO −   Ozone, O 3  
 Hydroperoxyl, HO 2  −   Singlet oxygen  1 Δ g  

  Reactive nitrogen species (RNS)  
 Nitric oxide (nitrogen monoxide), NO  Nitrous acid, HNO 2  
 Nitrogen dioxide, NO 2  −   Nitrosyl cation, NO +  

 Nitrosyl anion, NO −  
 Dinitrogen tetroxide, N 2 O 4  
 Dinitrogen trioxide, N 2 O 3  
 Peroxynitrite, ONOO −  
 Peroxynitrous acid, ONOOH 
 Nitronium (nitryl) cation, NO 2  +  (e.g. 

as nitryl chloride, NO 2 Cl) 
 Alkyl peroxynitrites, ROONO 

  Reactive chlorine species (RCS)  
 Atomic chlorine, Cl −   Hypochlorous acid, HOCl 

 Chlorine, Cl 2  
 Nitronium (nitryl) chloride, NO 2 Cl 
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[ 28 – 32 ], with subsequent inactivating effects on the function of a large variety of 
receptors, antioxidant defense and repair enzymes, or transport proteins [ 33 ]. 

 The end products of free radical attacks are relatively straightforward indicators 
of oxidative stress. Nevertheless, some controversy continues to exist about which 
markers of oxidative stress are most reliable in predicting long-term outcomes and/
or are most suitable as future clinical practice indicators. An important reason was 
related to the sensitivity of the methods used for detecting these biomarkers.  

11.2.2     Detection of Oxidative Stress In Vivo by Mass 
Spectrometry 

 Antibody-based assays and dihydroethidium fl uorescence have been extensively 
used to study oxidation-specifi c epitopes and oxidant production in targets of dia-
betic damage and atherosclerosis. These techniques are highly sensitive, and the 
ability of immunochemical studies to provide anatomical data can localize oxidative 
events. However, they are nonspecifi c and, at best, only semiquantitative. In con-
trast, mass spectrometry (MS) offers a powerful set of analytical tools for quantify-
ing and identifying biomolecules. Isotope dilution gas-chromatography (GC)/MS is 
emerging as a highly sensitive and specifi c method to quantify oxidation of specifi c 
amino acid markers. Biomolecules such as oxidized amino acids derived from 
plasma or tissue are separated by GC, derivatized and ionized (Fig.  11.1 ).

   The mass-to-charge ratios of ions derived by fragmenting the ionized, deriva-
tized parent compound are determined by MS [ 14 ]. Such a spectrum can unequivo-
cally identify a target biomolecule because each compound has a unique 
fragmentation pattern. The analyte is quantifi ed by adding a stable, isotopically 
labeled internal standard, which is identical to the target analyte except for the 
heavy isotope. With certain ionization processes, such as electron capture negative- 
ion chemical ionization, it is possible to detect and quantify sub-femtomole levels 
of biomolecules.  

11.2.3     Proposed Pathways for Generating Oxidative 
Stress in Diabetes 

 Many pathways oxidize proteins in vitro. However, the specifi c pathways that pro-
mote oxidative stress in diabetes have not been conclusively identifi ed. One reason 
is that oxidizing intermediates are diffi cult to detect in vivo because they are short- 
lived and generated at low levels. Proposed pathways for increased oxidant genera-
tion and oxidative stress in diabetes and prediabetes are outlined in Fig.  11.2  [ 10 , 
 13 ] and are discussed below.
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  Fig. 11.1    Proposed oxidation products of protein-bound aromatic amino acids by myeloperoxi-
dase, tyrosyl radical, glycoxidation/hydroxyl radical, and reactive nitrogen species (RNS). 
Myeloperoxidase converts tyrosine to 3-chlorotyrosine; tyrosyl radical cross-links tyrosine to form 
 o , o ′-dityrosine; RNS convert tyrosine to 3-nitrotyrosine; hydroxyl radical produces ortho-tyrosine 
and meta-tyrosine from phenylalanine. Reproduced from [ 14 ]       

  Fig. 11.2    Potential pathways for increased oxidant generation in diabetes and atherosclerosis. 
 AGE  advanced glycosylation end products,  eNOS  endothelial nitric oxide synthase,  MPO  myelo-
peroxidase. Reproduced from [ 14 ]       
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11.2.3.1       The Glycoxidation Pathway 

 Glucose-mediated oxidative reactions are collectively called glycoxidation path-
ways. In its open-chain form, glucose has a carbonyl group that can be involved in 
oxidative chemistry. In the presence of oxygen, glucose can auto-oxidize to a 
hydroxyl radical or other ROS, which cross-links proteins [ 34 ]. Glucose also reacts 
nonenzymatically with proteins to form the reversible Schiff base adduct, which 
subsequently can rearrange itself into the stable Amadori product and advanced 
AGEs. In diabetes, AGEs are found in increased amounts in the extracellular matrix. 
In vitro, free metal ions catalyze steps in a nonenzymatic glycoxidation pathway 
that generates AGEs. One important intermediate is the hydroxyl radical, which can 
peroxidize lipids and convert phenylalanine residues of proteins into two unnatural 
isomers of tyrosine,  ortho -tyrosine and  meta -tyrosine [ 35 – 37 ]. Reduced, redox- 
active metal ions (M  n + ) such as Fe 2+  and Cu 1+  generate hydroxyl radical (HO·) when 
they react with hydrogen peroxide (H 2 O 2 ). Thus, glycoxidation reactions can be one 
mechanism for diabetic complications.  

11.2.3.2     The Reactive Nitrogen Pathway 

 Another pathway for generating oxidants involves NO, which is produced by endo-
thelial cells to regulate vascular tone. NO is also produced during infl ammation by 
macrophages, which are early components of atherosclerotic lesions. NO reacts 
with superoxide (O 2  ·− ) to generate peroxynitrite (ONOO − ), a potent oxidant that 
converts tyrosine residues to 3-nitrotyrosine. Thus, 3-nitrotyrosine is a marker for 
the reactive nitrogen pathway. 

   Enzymatic Pathways That Generate Superoxide, Hydrogen Peroxide, 
and Peroxynitrite 

 At neutral pH, O 2  ·−  is a reducing agent rather than an oxidant. However, it dis-
mutates enzymatically or nonenzymatically into hydrogen peroxide (H 2 O 2 ), which 
can oxidize thiol residues and act as an oxidizing substrate for heme proteins such 
as myeloperoxidase (MPO). O 2  ·−  also reacts at a diffusion-controlled rate with NO 
to form ONOO − , a powerful RNS that nitrates tyrosine residues and damages a wide 
range of biomolecules.   

11.2.3.3     The Mitochondrial Electron-Transport Pathway 

 In tissues and organs, mitochondrial electron transport mediated by the cytochrome 
enzyme complex is an important source of O 2  ·−  and consequently of H 2 O 2 . Plasma 
levels of both glucose and free fatty acids (FFAs) are elevated in diabetes, and both 
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of these substrates promote an increased fl ux of electron donors (NADH and 
FADH 2 ) in the mitochondrial electron transport in cells. Substrate-driven mitochon-
drial oxidation pathway has been proposed as one mechanism for damaging cells in 
diabetes [ 17 ]. As a result, the voltage gradient across the mitochondrial membrane 
increases until a critical threshold is reached. At this point, electron transfer inside 
complex III is blocked, causing the electrons to back up to coenzyme Q, which 
donates the electrons one at a time to molecular oxygen, thereby generating super-
oxide. The mitochondrial isoform of the enzyme SOD degrades this oxygen free 
radical to hydrogen peroxide, which is then converted to H 2 O and O 2  by other 
enzymes. In primary arterial endothelial cells in culture, intracellular hyperglyce-
mia increases the voltage across the mitochondrial membrane above the critical 
threshold necessary to increase superoxide formation [ 8 ] and, subsequently, 
increases production of ROS. Neither hyperglycemia nor increased fatty acid oxida-
tion in vascular endothelium increases ROS nor activates any of the pathways either 
when the voltage gradient across the mitochondrial membrane is collapsed by 
uncoupling protein 1 (UCP-1) or when the superoxide produced is degraded by 
MnSOD [ 38 ]. 

 Mitochondrial O 2  ·−  overproduction mediated by hyperglycemia might also 
increase polyol pathway activity, PKC activity, and hexosamine fl ux, resulting in 
cellular dysfunction and tissue damage [ 17 ]. Exposing endothelial cells to exoge-
nous oxidants leads to mitochondrial damage and can augment O 2  ·−  production, a 
mechanism whereby oxidative stress perpetuates oxidative stress [ 39 ]. Moreover, 
superoxide inhibits glyceraldehyde phosphate dehydrogenase, a key glycolytic 
enzyme whose inactivity could make upstream metabolites accumulate. Such inhi-
bition of glycolysis might promote end-organ damage by diverting metabolites into 
the hexosamine pathway or stimulating the polyol and diacylglycerol (DAG)–PKC 
pathways. Benfotiamine, a lipid-soluble thiamine analog that inhibits these path-
ways by activating transketolase, an enzyme in the pentose pathway shunt, can pre-
vent complications from diabetes in experimental animal models [ 40 ].  

11.2.3.4     NADPH Oxidases 

 A family of NADPH oxidases, also known as the NOX enzymes, are major produc-
ers of O 2  ·−  in the vasculature [ 39 ]. Several NOX isoforms present in the endothelium 
and smooth muscle cells are selectively upregulated by pathologic stimuli. Potential 
factors include angiotensin II, endothelin-1, hypercholesterolemia, shear stress, 
nonesterifi ed fatty acids (NEFAs), hyperglycemia, and growth factors. Angiotensin 
II may represent a pathophysiologically relevant pathway for stimulating the pro-
duction of reactive intermediates by artery wall cells because inhibitors of this path-
way lower the risk for cardiovascular events [ 41 ]. In humans, NADPH oxidase 
activity correlates inversely with endothelial function, even after other major risk 
factors for atherosclerosis, including diabetes and hypercholesterolemia, are taken 
into account [ 42 ,  43 ].  
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11.2.3.5     Uncoupled Endothelial Nitric Oxide Synthase 

 Endothelial nitric oxide synthase (eNOS) synthesizes NO in endothelial cells, and 
its uncoupling has been described in various conditions, including diabetes, hyper-
tension, and hypercholesterolemia. One proposed mechanism involves oxidation of 
its cofactor, tetrahydrobiopterin (BH 4 ) [ 44 ]. Under those conditions, eNOS transfers 
electrons to molecular oxygen, generating O 2  ·−  [ 45 ]. An alternative mechanism for 
uncoupling eNOS involves overproduction of angiotensin II, which can induce 
dihydrofolate reductase defi ciency. Because dihydrofolate reductase maintains BH 4  
in its reduced form, its defi ciency uncouples eNOS. BH 4  oxidation and NOS uncou-
pling have been demonstrated in hypertension, diabetes, and hypercholesterolemia. 
Moreover, administering BH 4  improves endothelium-dependent vasodilation in 
experimental animals and humans with those conditions [ 42 ].  

11.2.3.6     Xanthine Oxidase 

 Another possible source of O 2  ·−  and H 2 O 2  in mammalian cells is xanthine oxidase, 
which converts hypoxanthine and xanthine to uric acid while reducing molecular 
oxygen. Hydrogen peroxide can increase levels of xanthine oxidase, further accen-
tuating O 2  ·−  production. Infl ammatory cytokines, such as tumor necrosis factor- 
alpha, and oxidation of cysteine residues by oxidants such as peroxynitrite can 
result in the conversion of xanthine dehydrogenase to xanthine oxidase [ 42 ]. 
Xanthine oxidase is an important source of oxidants in a variety of pathophysiologi-
cal states, including diabetes, hypertension, atherosclerosis, ischemia–reperfusion, 
and heart failure [ 42 ]. Endothelial levels of xanthine oxidase are elevated in humans 
with heart failure and subjects with CAD, and they correlate with degree of impair-
ment in endothelium-dependent vasodilation [ 42 ].  

11.2.3.7     The Myeloperoxidase Pathway 

 The major pathway through which macrophages and other phagocytic cells of the 
innate immune system generate oxidants begins with the cells’ membrane-bound 
NADPH oxidase (NOX), which produces superoxide, which can be converted by 
superoxide dismutates into hydrogen peroxide. The hydrogen peroxide can be used 
by another phagocyte enzyme, MPO [ 46 ,  47 ], to convert chloride ion to hypochlo-
rous acid. 

 Oxidation of NO with oxygen yields nitrite (NO 2  − ), which MPO converts to 
nitrogen dioxide radical, a potent nitrating intermediate [ 48 ,  49 ]. 

 RNS, including peroxynitrite and NO 2 ·, might contribute to the infl ammatory 
process by nitrating lipoproteins and other biomolecules. Hyperglycemia can acti-
vate PKC [ 50 – 52 ], which leads to phagocyte activation, secretion of MPO, and 
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oxidant generation. NEFAs that commonly are overabundant in diabetes can also 
activate phagocytes in vitro. These changes might enhance the production of super-
oxide and hydrogen peroxide, which MPO converts into more potent cytotoxic oxi-
dants, such as hypochlorous acid and nitrogen dioxide radical.  

11.2.3.8     The Glucose–Polyunsaturated Fatty Acid Pathway 

 Recent studies indicate that high glucose can promote localized oxidative stress in 
tissues vulnerable to diabetic damage by interacting with polyunsaturated fatty 
acids (PUFAs) via a carbonyl/PUFA pathway [ 53 ]. For instance, it was reported 
that by incubating glucose with low-density lipoproteins (LDL) or a model pro-
tein, ribonuclease (RNAse), pathophysiologically relevant concentrations of glu-
cose modifi ed LDL, as evidenced by the formation of oxidized amino acids, even 
though metal ions were absent [ 53 ]. In striking contrast, glucose exposure did not 
increase levels of oxidized amino acids in RNAse. These observations suggest 
that glucose promotes LDL oxidation because the particle contains lipid as well 
as protein. In subsequent experiments incubating RNAse with saturated, monoun-
saturated, or PUFA, it was found that glucose stimulated protein oxidation only in 
the presence of a PUFA. Thus, glucose appears to promote protein oxidation by a 
pathway involving peroxidation of PUFAs, as this reaction was inhibited by lipid-
soluble antioxidants [ 53 ]. Additional experiments replacing glucose with a vari-
ety of short- chain and phosphorylated sugars that have highly reactive carbonyl 
group described that all of the carbonyl compounds promoted oxidation of LDL 
(but not RNAse) protein more effectively than did glucose. In contrast, LDL oxi-
dation was not enhanced by sorbitol, the reduced form of glucose that lacks a 
carbonyl moiety [ 53 ].    

11.3     Oxidized Amino Acids as Potential Markers of 
In Vivo Oxidative Stress 

 There is increasing evidence that oxidized amino acids in plasma can serve as mark-
ers for noninvasively assessing oxidative stress in vivo. In steady state, plasma levels 
of these markers are proportional to their rate of generation and can serve as indices 
of chronic oxidative stress in vivo [ 13 ,  15 ,  54 – 58 ]. A recent case–control study dem-
onstrated that systemic levels of protein-bound nitrotyrosine were signifi cantly 
higher among patients with CAD compared with those with healthy arteries and that 
statin therapy lowered levels of oxidation markers in plasma raising the possibility 
that statins can potentially be antioxidants [ 56 ,  57 ,  59 ]. Therefore, these markers can 
be used to assess degree of oxidative stress and to monitor effi cacy of therapy.  
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11.4     Mechanisms Linking Oxidative Stress 
with Vascular Damage in Diabetes 

11.4.1     Oxidative Stress and Increased AGE in Diabetic 
Vascular Disease 

 Critical intermediaries in the formation of AGEs are 3-deoxyglucosone (3DG) from 
fructoselysine and glyoxal and methylglyoxal from either Amadori compounds, 
Schiff base intermediaries, or direct oxidation of sugars [ 60 ]. With time these prod-
ucts undergo chemical rearrangement, dehydration and fragmentation reactions, 
and cross-linking to form irreversible AGEs. AGEs can damage tissues through a 
number of mechanisms, including generation of oxidizing intermediates [ 61 – 65 ], 
modifi cation of intracellular proteins that promote altered function, formation of 
immune complexes, and interaction with a cellular receptor called RAGE ( r eceptor 
for  AGE ). RAGE binding induces the production of ROS, which in turn activates the 
pleiotropic transcription factor nuclear factor (NF)-B [ 66 ], causing multiple patho-
logical changes in gene expression and promotion of cytokine release [ 10 ,  67 ]. 
Giardino et al. [ 68 ] have shown that the intracellular formation of AGE and the 
lipid peroxidation are closely interdependent processes, in that inhibition of lipid 
peroxidation prevents the formation AGE products. Although RAGE binds to 
AGE- modifi ed proteins in vitro with high affi nity, its ligands in vivo are unclear. 
High levels of AGEs accumulate in renal failure, even in nondiabetic patients, and 
this process reverses after renal transplantation, implicating the kidneys in AGE 
production and/or clearance [ 69 – 72 ]. 

 Many studies have shown that age-adjusted levels of pentosidine and N ε - 
carboxymethyllysine (CML), two widely investigated AGE products, correlate with 
the development of diabetic micro- and macrovascular disease [ 36 ,  73 – 76 ]. Animal 
and human studies have also shown that diabetes is associated with poor outcomes 
following acute vascular occlusive events. For instance, diabetic animals have a 
decreased vascular density following hind limb ischemia [ 77 ] and impaired wound 
healing [ 78 ]. Human angiograms demonstrate fewer collateral vessels in diabetic 
patients compared with nondiabetic controls [ 79 ]. Clinically, this contributes to 
increased rates of lower limb amputation, heart failure, and increased mortality after 
ischemic events. These defects that result, in part, from a failure to form adequate 
compensatory vasculogenesis in response to ischemia appear to be mediated by 
AGEs. High glucose induces a decrease in transactivation by the transcription factor 
hypoxia-inducible factor (HIF)-1, which mediates hypoxia-stimulated chemokine 
and vascular endothelial growth factor (VEGF) production by hypoxic tissue, as 
well as chemokine receptor and eNOS expression in endothelial precursor cells in 
the bone marrow. AGE-modifi ed proteins in the circulation can affect a range of 
cells and tissues. A specifi c RAGE has been shown to mediate signal transduction 
via generation of ROS, activation of NF-B, and p21 ras [ 80 ,  81 ]. In endothelial cells, 
AGE binding to its receptor alters the expression of several genes, including 
thrombomodulin, tissue factor, and VCAM-1 [ 82 – 84 ]. These effects induce 
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procoagulatory changes on the endothelial cell surface and increase the adhesion of 
infl ammatory cells to the endothelium. In addition, endothelial AGE receptor bind-
ing appears to mediate, in part, the increased vascular permeability induced by dia-
betes, probably through the induction of VEGF [ 85 ,  86 ]. RAGE defi ciency attenuates 
the development of atherosclerosis in the diabetic apoE −/−  model of accelerated ath-
erosclerosis. Diabetic RAGE −/− /apoE −/−  mice had signifi cantly reduced atheroscle-
rotic plaque area. These benefi cial effects on the vasculature were associated with 
attenuation of leukocyte recruitment; decreased expression of proinfl ammatory 
mediators, including the NF-B subunit p65, VCAM-1, and MCP-1; and reduced 
oxidative stress [ 87 ].  

11.4.2     Oxidative Stress, Increased Polyol Pathway Flux, 
and Vascular Damage 

 Among the proposed mechanisms that could explain how hyperglycemia-induced 
increases in polyol pathway fl ux could damage the tissues involved, an increase in 
redox stress caused by the consumption of NADPH appears to be most widely 
accepted. NADPH is a cofactor required to regenerate reduced glutathione (GSH), 
and GSH is an important scavenger of ROS; a decreased NADPH could induce or 
exacerbate intracellular oxidative stress. Overexpression of human AR increased 
atherosclerosis in diabetic mice and reduced the expression of genes that regulate 
regeneration of GSH [ 88 ]. In diabetic rats, decreased glutathiolation of cellular pro-
teins is associated with decreased NO availability and restoring the NO levels in 
diabetic animals was shown to increase glutathiolation of cellular proteins, to inhibit 
AR activity, and prevents sorbitol accumulation.  

11.4.3     Oxidative Stress, PKC Activation, and Vascular Damage 

 PKC is a serine/threonine kinase involved in signal transduction events in response 
to specifi c hormonal, neuronal, and growth factor stimuli [ 89 ], a process dependent 
on Ca 2+  ions and phosphatidylserine and enhanced by DAG [ 90 ]. PKC has several 
unique structural features that facilitate its regulation according to redox status. 
Prooxidants react with the regulatory domain to stimulate PKC activity, and antioxi-
dants react with the catalytic domain of PKC and inhibit its activity [ 91 ]. At least 11 
isoforms have been identifi ed to date, which differ in structure and substrate require-
ments [ 89 ] and have wide differences in tissue localization. For example, PKCβ is 
present in pancreatic islet cells, monocytes, the brain, and many vascular tissues 
including the retina, kidney, and heart [ 92 – 96 ]. 

 Hyperglycemia primarily activates the β and δ isoforms of PKC in cultured vas-
cular cells [ 97 ], and their excessive activation operates as a third common pathway 
mediating tissue injury induced by diabetes-induced ROS. Increased ROS inhibit the 
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activity of the glycolytic enzyme GAPDH, raising intracellular levels of the DAG 
precursor triose phosphate and subsequent enhanced de novo synthesis of DAG from 
glucose via triose phosphate [ 96 ]. Several signaling cascades induced by glucose-
induced activation of PKC and of p38 mitogen-activated protein kinase (MAPK) and 
by fatty acid oxidation in insulin-resistant arterial endothelial cells and heart may 
play important role in diabetic atherosclerosis and cardiomyopathy. These include 
platelet-derived growth factor (PDGF) receptor-β dephosphorylation and pericyte 
apoptosis [ 98 ], decreased NO production in smooth muscle cells [ 99 ], inhibition of 
insulin-stimulated expression of eNOS in cultured endothelial cells [ 100 ], increased 
expression of the permeability-enhancing factor VEGF in vascular smooth muscle 
cells [ 101 ], overexpression of the fi brinolytic inhibitor, plasminogen activator inhib-
itor (PAI)-1, and the activation of NF-B in cultured endothelial cells and vascular 
smooth muscle cells [ 102 ,  103 ]. PKC activation has also shown to play a role in 
mediating increased O 2  −  production, activation of cyclooxygenase-2 (COX- 2) 
pathway by glucose, and reduced NO availability, contributing therefore to endothe-
lial dysfunction [ 104 ,  105 ].  

11.4.4     Mitochondrial Superoxide Production Links Pathways 
of Vascular Damage in Diabetes 

 Experimental evidence from in vitro and in vivo studies shows that hyperglycemia 
inhibits GAPDH activity. GAPDH is commonly thought to reside exclusively in the 
cytosol. However, it normally shuttles in and out of the nucleus, where it plays a 
critical role in DNA repair [ 106 ]. A decreased GAPDH activity induces an increase 
in the levels of all the upstream glycolytic intermediates [ 8 ], which in turn activates 
the polyol, the PKC, the AGE, and hexamine pathways, and increases the expres-
sion of the receptor for AGEs and its activating ligands in the vasculature as 
described above [ 8 ]. 

 It was shown that hyperglycemia-induced increased superoxide production 
inhibits GAPDH activity by modifying the enzyme poly(ADP-ribose) polymerase 
(PARP) [ 106 ]. When increased intracellular glucose generates increased ROS in the 
mitochondria, free radicals induce DNA strand breaks, thereby activating PARP. 
PARP is a profuse nuclear enzyme of eukaryotic cells that has been implicated in 
response to DNA injury. When activated by single-strand DNA (ssDNA) breaks, 
PARP initiates an energy-consuming cycle by transferring ADP-ribose units from 
NAD +  to nuclear proteins, resulting in a rapid depletion of the intracellular NAD +  
and ATP pools, which slows the rate of glycolysis and mitochondrial respiration 
leading to cellular dysfunction [ 107 – 113 ]. 

 By inhibiting mitochondrial superoxide production with either uncoupling pro-
tein- 1 (UCP-1) or MnSOD, both modifi cation of GAPDH by poly(ADP-ribose) 
(PAR) and reduction of its activity by hyperglycemia were prevented [ 8 ]. Uncoupling 
proteins are a family of proton carriers that are expressed at the inner mitochondrial 
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membrane and are responsible for proton leak across the membrane into the cristae. 
   Thus, protons pumped into the intermembranous space through electron transfer 
bypass oxidative phosphorylation, and these processes are said to be uncoupled. 
Activity of uncoupling proteins decreases the inner mitochondrial membrane poten-
tial and can relieve the stress of excess NADH entering the electron transfer chain 
[ 114 ]. Therefore, blocking of mitochondrial overproduction of superoxide by either 
UCP-1 or MnSOD prevents the inhibition of GAPDH activity by hyperglycemia.   

11.5     Oxidative Stress in Diabetes and Atherosclerosis 

 Atherosclerosis is a chronic infl ammatory disease characterized by infi ltration of 
lipids and infl ammatory cells, such as monocyte-derived macrophages and T lym-
phocytes, into the artery wall [ 115 ]. It is well known that elevated levels of LDL 
cholesterol greatly increase the risk for atherosclerosis [ 116 ]. However, in vitro 
studies suggest that LDL by itself is not atherogenic and needs to be modifi ed to 
initiate atherosclerotic disease [ 117 ,  118 ]. This conclusion led to the “oxidation 
hypothesis,” which proposed that LDL must be oxidatively modifi ed to become 
atherogenic. 

 Although oxidative stress has a well-established role in diabetic complications 
and atherosclerosis, its origins and magnitude remain poorly understood. Moreover, 
it is not known whether oxidative stress is a primary event that occurs early in the 
disease or whether it represents a secondary phenomenon that merely refl ects end- 
stage tissue damage [ 28 ]. This distinction has important clinical relevance. If oxida-
tive stress simply refl ects tissue damage, interventions that reduce it may fail to 
affect the disease process. If oxidative stress promotes tissue injury, therapies that 
interrupt oxidative pathways early in the disease may prevent complications, and 
those that act later may slow disease progression. 

 There seems to be general agreement that the production of free radicals is 
increased in diabetic patients. For example, numerous investigators have reported 
elevated levels of products of lipid, protein, and nucleic acid oxidation such as 
8-epi-prostaglandin F 2  (8-epi-PGF 2 ), 8-hydroxy-2-deoxyguanosine (8-OHdG), and 
oxidized LDL in subjects with both type 1 and type 2 diabetes when compared to 
healthy age-matched subjects [ 119 – 132 ]. Davi et al. [ 132 ] also reported that urinary 
levels of 8-epi-PGF2-α are increased in patients with both type 1 and 2 diabetes and 
decrease signifi cantly with aggressive control of hyperglycemia. Several studies in 
experimental models of diabetes reported that free radicals contribute to the onset 
and progression of diabetes complications [ 133 – 138 ]. Others reported that lipid 
peroxidation correlates closely with all diabetic complications in vivo and contrib-
utes to the development of atherosclerosis [ 139 – 141 ]. We have recently demon-
strated that systemic oxidative stress is increased in type 1 diabetic patients with 
early microangiopathic complications and subclinical cardiovascular autonomic 
neuropathy (CAN) [ 142 ]. Compared to healthy control subjects, asymptomatic dia-
betic subjects with subclinical microangiopathy presented increased levels of urine 
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8-epi-PGF2-α, and the highest levels of 8-epi-PGF2-α were found in subjects with 
more advanced CAN [ 142 ]. 

 However, Baynes [ 143 ] presented evidence that oxidative stress may not occur 
early in the disease process, but may rather be an underlying pathogenic factor in 
the progression of the disease. 

 One of the major problems in assessing when oxidative damage occurs in the 
disease process or whether there is an accumulation of free radical-derived tissue 
damage with duration of disease is the stability of the oxidation products [ 143 ]. 

 Oxidizing intermediates are diffi cult to detect in vivo because they are short-
lived and generated at low levels. To sidestep this problem, more recently several 
groups of investigators have identifi ed and are able to monitor acid-stable products 
of protein oxidation, both in vitro and in vivo [ 10 – 15 ,  48 ,  53 – 55 ,  144 – 155 ]. The 
overall approach is to use isotope dilution GC/MS to accurately identify oxidized 
amino acids isolated from tissue proteins. These markers, which include  ortho -tyro-
sine,  meta -tyrosine, dityrosine, 3-nitrotyrosine, and 3-chlorotyrosine (Fig.  11.1 ), 
are sensitive indicators of the biochemical pathway affected by oxidative stress 
occurring in the disease process. 

 Studies using sensitive and specifi c MS methods to quantify oxidation products 
have cast doubt on the concept of a generalized increase in oxidative stress in dia-
betic humans. For example, Wells-Knecht et al. [ 156 ] performed careful, quantita-
tive studies on collagen, a long-lived protein that is freely exposed to blood glucose 
and lipids. They concluded that diabetes does not enhance oxidative stress because 
collagen from diabetic and euglycemic subjects contained similar age-adjusted lev-
els of  ortho -tyrosine and methionine sulfoxide, two well-characterized markers of 
protein oxidation in vitro. Other mass spectrometric studies have failed to fi nd dif-
fering levels of glycoxidation products in urine and blood of diabetic and euglyce-
mic humans [ 69 ,  157 ]. These observations argue strongly against a generalized 
increase in oxidative stress in diabetes, at least in the extracellular compartment. 
None of the above studies excluded the possibility of localized, tissue-specifi c 
increases in oxidative stress in organs vulnerable to diabetic damage: the retina, 
kidney, vascular wall, and peripheral nerve tissue. 

11.5.1     Diabetic Endothelial Dysfunction, Oxidative Stress, 
and Atherosclerosis 

 Endothelial dysfunction is a key early feature in atherogenesis [ 158 ,  159 ]. It is char-
acterized by a reduction in the bioavailability of vasodilators such as endothelium- 
derived NO and a relative or absolute abundance of vasoconstrictors. This imbalance 
impairs endothelium-dependent vasodilation, the functional hallmark of endothelial 
function [ 158 ,  159 ]. Endothelial dysfunction is also involved in plaque progression 
and its complications [ 158 ,  159 ] and may contribute to infl ammatory responses. 

 NO mediates vasodilatation by activating soluble guanylate cyclases that regu-
late ion channels, macrophage cytotoxicity, and neurotransmission [ 160 ]. A decline 
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in NO bioavailability can result from multiple factors, including accelerated NO 
degradation, decreased expression of eNOS, lack of substrates for eNOS, and 
decreased eNOS activation [ 39 ,  42 ]. 

 Oxidative stress-induced disruption of endothelium-dependent vasodilation is 
involved in the pathogenesis of diabetes complications, atherosclerosis and CVD. 
Several lines of evidence support a role for ROS in inducing impaired endothelium- 
dependent vasodilation. For example, in experimental diabetes, the superoxide radi-
cal was shown to induce rapid NO inactivation, as NO reacts with the O 2  –  to form 
peroxynitrite and becomes a prooxidant [ 133 ,  161 – 169 ]. In addition, NO modulates 
cellular respiration through direct inhibition of cytochrome oxidase by competi-
tively occupying the oxygen-binding site [ 170 ]. In vascular smooth muscle cells, 
oxidants have also been implicated in changes to signaling pathways downstream of 
cGMP, the second messenger of NO [ 171 ]. 

 NO synthase, the enzyme catalyzing the conversion of  l -arginine to citrulline 
and NO, is critically situated in endothelial cells, vascular smooth muscle cells, and 
sympathetic ganglia. Both constitutively expressed, calcium-dependent isoforms of 
NOS and an inducible isoform associated with infl ammation and cell activation 
[ 172 ,  173 ] have been described. 

 Constitutively expressed eNOS is instrumental in the regulation of vascular func-
tion and can generate both NO and O 2  − . In the presence of Ca 2+ /calmodulin, eNOS 
produces NO from  l -arginine by means of electron transfer from NADPH through 
a fl avin-containing reductase domain to oxygen bound at the heme of an oxygenase 
domain, which also contains binding sites for tetrahydrobiopterin and  l -arginine. In 
the absence of tetrahydrobiopterin, NO synthesis is shifted to the generation of O 2−  
[ 174 ]. Very recently it was reported that oxidative stress alters eNOS activity by 
promoting S-glutathionylation, a reversible protein modifi cation involved in cellular 
signaling and adaptation, in endothelial cells, and in intact and hypertensive vessels. 
This in turn reversibly decreases NOS activity with an increase in O 2  −  generation 
resulting in impaired endothelium-dependent vasodilation [ 174 ]. This suggests that 
agents with thiol-reducing properties may be benefi cial in reversing endothelial 
dysfunction and ameliorating CVD. 

 Inducible forms of NOS are increased in the vascular muscle cells of diabetic rats 
[ 175 ] and other tissues [ 176 ] and may promote upregulation of net NO production. 
High NO, in the presence of excess O 2  − , results in the formation of peroxynitrite, a 
potent oxidant that promotes nitration of protein tyrosine residues, producing a dis-
tinctive molecular fi ngerprint for nitric oxide-derived oxidants, 3-nitrotyrosine. An 
alternative mechanism for generating nitric oxide-derived oxidants involves MPO 
[ 48 ], a leukocyte-derived enzyme enriched in atherosclerotic lesions that serves as 
an independent predictor of cardiovascular risk. 

 In human studies, nitrotyrosine has been detected in LDL and high-density lipo-
proteins (HDL) isolated from human diabetic atherosclerotic lesions [ 15 ,  144 ,  145 ], 
and plasma nitrotyrosine levels are elevated in patients with CAD [ 56 ,  59 ]. It was 
also suggested that nitrotyrosine may serve as an infl ammatory marker for CAD, as 
in multivariable analysis systemic levels of protein-bound nitrotyrosine were inde-
pendently associated with the presence of CAD [ 56 ]. In addition, statin therapy was 
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shown to promote signifi cant reductions in systemic nitrotyrosine, independent of 
the reduction in lipoprotein levels [ 56 ,  59 ]. 

 Impaired endothelial function has been demonstrated in subjects with both type 
1 and type 2 diabetes and in obese, insulin-resistant subjects [ 171 ]. Because acute 
hyperglycemia promotes vasodilation in humans, glucose might directly or indi-
rectly enhance NO release and oxidant generation [ 177 ]. 

 In subjects who develop type 2 diabetes, endothelial dysfunction predates hyper-
glycemia, suggesting that other factors such as insulin resistance and increased con-
centrations of FFAs initiate endothelial dysfunction in this setting. In established 
diabetes, hyperglycemia acts in concert with hypercholesterolemia, hypertension, 
and other factors to induce worsening of endothelial dysfunction. Hyperglycemia 
and elevated levels of FFAs promote oxidative phosphorylation in mitochondria and 
also boost the production of reactive intermediates such as superoxide that acceler-
ate NO degradation [ 17 ]. 

 In addition, more recent studies have suggested that T-786C    single-nucleotide 
polymorphism (SNP) in the promoter of eNOS is associated with blunted NO bio-
activity and is associated with changes in markers of oxidative stress [ 178 ].  

11.5.2     Oxidative Stress, PARP Activation, 
and CVD in Diabetes 

 One of the important pathways of peroxynitrite-mediated vascular dysfunction in 
diabetes involves the activation of PARP [ 179 ]. For many decades, PARP was 
mainly viewed as an enzyme primarily involved in DNA repair and maintenance of 
genomic stability. Mild activation of PARP regulates multiple cellular reactions 
such as DNA repair, gene expression, and cell survival [ 180 ]. However, overactiva-
tion of PARP could initiate a series of cellular processes that culminate instead with 
cellular damage [ 106 ]. 

 Over the last decade, additional roles of PARP have been identifi ed in the 
sequelae of nitrosative stress, including contributing to the pathogenesis of endothe-
lial dysfunction in diabetes [ 181 ]. In experimental diabetes, both pharmacological 
PARP inhibition and the PARP −/−  phenotype prevented the activation of PARP, but 
had no effect on the DNA single-strand breakage [ 182 ]. Subsequent studies demon-
strated that the diabetes-associated loss of endothelial function is not only prevent-
able but also rapidly reversible with PARP inhibition [ 182 ]. Treatment with the 
PARP inhibitor ameliorated vascular PAR accumulation in the diabetic blood ves-
sels and restored normal vascular function without altering systemic glucose levels, 
plasma-glycated hemoglobin levels, or pancreatic insulin content [ 183 ]. The poten-
tial of PARP inhibition in reversing endothelial dysfunction has also been demon-
strated in an autoimmune nonobese diabetic model of diabetes [ 184 ] and in 
leptin-defi cient db/db mice. 
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 In humans, PARP activation is present in healthy subjects at risk of developing 
diabetes as well as in established type 2 diabetic patients, and it is associated with 
impairments in the vascular reactivity in the skin microcirculation [ 185 ]. In diabe-
tes, increased oxidative and nitrosative stress also occurs in cardiomyocytes and 
endothelial cells and, in concert with PARP activation, may contribute to cardiomy-
opathy [ 186 ]. PARP activation may cause an energy defi cit and cell death through 
depletion of NAD+, an ATP-consuming process. PARP, through inhibition of 
GAPDH, diverts glucose from glycolytic pathways into alternative fates, including 
AGE formation, hexosamine, polyol pathway fl ux, and PKC activation, which 
mediate hyperglycemia-induced cardiac tissue damage [ 186 ,  187 ].  

11.5.3     Infl ammation, Oxidative Stress, Oxidized LDL, 
and Atherosclerosis 

 Atherosclerosis is a chronic infl ammatory disease characterized by infi ltration of 
lipids and infl ammatory cells, such as monocyte-derived macrophages and T lym-
phocytes, into the artery wall [ 115 ]. It was shown that elevations of infl ammation- 
sensitive plasma proteins precede clinical CVD and are intricately linked with the 
development of cardiovascular events [ 188 – 190 ]. It was also proposed that in dia-
betes, oxidative stress and chronic infl ammation act in concert in the development 
and progression of atherosclerosis [ 10 ,  13 ]. 

 Although it is well known that elevated levels of LDL greatly increase the risk 
for atherosclerosis [ 116 ], in vitro studies suggest that LDL by itself is not athero-
genic but needs to be modifi ed to initiate atherosclerotic disease [ 117 ,  118 ]. This 
conclusion led to the “oxidation hypothesis,” which proposed that LDL must be 
oxidatively modifi ed to become atherogenic. Several lines of evidence support the 
hypothesis that LDL must be oxidatively modifi ed to become atherogenic. For 
instance, oxidized LDL (OxLDL) has been isolated from human and animal athero-
sclerotic tissue, and immunohistochemical studies have detected oxidized lipids in 
atherosclerotic lesions [ 191 – 193 ]. All major cell types involved in atherosclerosis—
smooth muscle cells, endothelial cells, and macrophages—produce reactive oxi-
dants that can oxidize LDL in vitro [ 194 – 196 ]. Oxidized LDL is taken up by 
scavenger receptors of macrophages, which then become lipid-laden foam cells, the 
pathologic hallmark of early atherosclerotic lesions [ 197 ]. Moreover, OxLDL 
attracts mononuclear cells and stimulates the production of monocyte chemoattrac-
tant protein-1 and other infl ammatory cytokines, leading to the conversion of fatty 
streaks to more advanced complex lesions as smooth muscle cells migrate from the 
media into the subendothelial space. Oxidized LDL may also stimulate smooth cells 
to synthesize extracellular matrix and activate a signaling cascade by interacting 
with the lectin-like OxLDL receptor [ 197 ,  198 ]. Finally, several structurally unre-
lated lipid-soluble antioxidants that inhibit LDL oxidation in vitro also inhibit ath-
erosclerosis in hypercholesterolemic animals [ 199 – 201 ].  
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11.5.4     Glucose-Oxidized LDL and Atherosclerosis in Diabetes 

 Macrophage proliferation has been implicated in the progression of atherosclerosis. 
Recent studies have investigated the effects of hyperglycemia and hyperlipidemia 
on macrophage proliferation in murine atherosclerotic lesions and isolated primary 
macrophages [ 152 ]. Glucose promoted lipid and protein oxidation of LDL in vitro. 
Oxidation of LDL with glucose resulted in a selective increase in protein-bound 
 ortho -tyrosine and  meta -tyrosine. Moreover, glucose-oxidized LDL—but not ele-
vated levels of glucose alone—stimulated proliferation of isolated macrophages. 
These observations may be pertinent to diabetic vascular disease because macro-
phage proliferation in atherosclerotic lesions was observed in LDL receptor- 
defi cient mice that were both hypercholesterolemic and hyperglycemic but in not 
mice that were only hyperglycemic [ 152 ].  

11.5.5     Oxidative Stress, Insulin Resistance, 
Visceral Adiposity, and CVD 

 Obesity and visceral adiposity frequently associate with diabetes and insulin resis-
tance. Also, insulin resistance clusters with the metabolic syndrome, a constellation 
of classic CAD risk factors such as lipid abnormalities, visceral adiposity, impaired 
glucose tolerance, and hypertension, which is considered a prediabetic state. 
Emerging data support the hypothesis that oxidative stress plays a causal role in 
insulin resistance [ 202 ] and might be linked with visceral adiposity. For instance, 
increased levels of 8-epi-PGF2-α were associated with body mass index and blood 
glucose levels in a cohort of the Framingham Heart Study [ 203 ] and with visceral 
adiposity and insulin resistance in men in a smaller study [ 204 ]. Although correlation 
does not prove causation, the results of these studies suggest that obesity is an impor-
tant factor for enhanced oxidative stress and that this oxidative stress may trigger the 
development of insulin resistance. Mature adipocytes function as an endocrine/para-
crine organ that secretes numerous adipokines, cytokines, and growth factors, par-
ticularly in the setting of insulin resistance. Several adipokines and cytokines, such 
as adiponectin, interleukin-6 (IL-6), retinol-binding protein-4 (RBP-4), resistin, and 
tumor necrosis factor-α, are associated with insulin resistance. RBP-4 is an adipo-
cyte-derived molecule that is elevated prior to the onset of diabetes [ 205 ], and it 
appears to impair insulin signaling in muscle and promote insulin resistance [ 206 , 
 207 ]. Visceral fat releases IL-6, which can contribute to local and systemic infl am-
mation and elevation of C-reactive protein levels [ 208 ]. Moreover, tumor necrosis 
factor-α mediates its effect through hydrogen peroxide generation [ 209 ]. It was also 
reported that hydrogen peroxide impairs insulin signaling [ 210 ] and inhibits glucose 
transport [ 211 ], two cardinal features of insulin resistance. Similar results were 
reported in children. For instance, Molnar et al. [ 212 ] demonstrated a reduced anti-
oxidant capacity in obese children with metabolic syndrome in whom plasma alpha-
tocopherol and β-carotene levels corrected for plasma lipids (cholesterol + triglyceride) 
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were signifi cantly lower compared with healthy controls [ 212 ]. Some have specu-
lated that oxidative stress is a potential consequence of insulin resistance after it was 
reported that insulin promotes hydrogen peroxide generation in fat cells [ 213 ]. Thus, 
insulin resistance is intricately linked with visceral adiposity and oxidative stress, 
and it may promote endothelial dysfunction and CAD.  

11.5.6     Cardiovascular Autonomic Neuropathy (CAN) 
in Diabetes and Oxidative Stress 

 CAN is an important complication of diabetes [ 214 ], associated with a high risk of 
cardiac arrhythmias and sudden death [ 215 – 220 ] and with high cardiovascular mor-
bidity [ 214 ,  221 ]. In diabetes, the development of CAN is a function of complex 
interactions among degree of glycemic control, disease duration, age-related neuro-
nal attrition, and systolic and diastolic BP [ 222 ,  223 ]. Hyperglycemia plays the key 
role in the activation of various biochemical pathways related to the metabolic and/
or redox state of the cell that act in concert to impact autonomic neuronal function 
in diabetes including the increased oxidative/nitrosative stress [ 224 – 227 ]. 

 Autonomic innervation is the primary extrinsic control mechanism regulating heart 
rate variability and cardiac performance. It has been shown that chronic hyperglyce-
mia promotes progressive autonomic neural dysfunction in a fashion which parallels 
the development of peripheral neuropathy, e.g., beginning distally and progressing 
proximally. The earliest manifestations of CAN in diabetes tend to be associated with 
various degree of parasympathetic denervation. As such, the initial development of 
CAN in diabetes is characterized by early augmentation of sympathetic tone [ 228 ]. 
Our data [ 142 ] and others [ 229 ] confi rmed that, early in the progression of CAN com-
plicating type 1 diabetes, there is a compensatory increase in the cardiac sympathetic 
tone in response to subclinical peripheral denervation. Later, sympathetic denervation 
follows beginning at the apex of the ventricles and progressing toward the base. 

 The initial prevalent cardiac sympathetic activity with subsequent abnormal nor-
epinephrine signaling and metabolism, increased mitochondrial oxidative stress 
[ 230 ], and calcium-dependent apoptosis [ 231 ] may contribute to myocardial injury 
[ 230 ,  232 ] and explain the high risk of cardiac events and sudden death in these 
patients. The sympathetic imbalance associated with CAN may also critically infl u-
ence myocardial substrate utilization [ 233 ] and contribute to mitochondrial uncou-
pling [ 234 ], regional ventricular motion abnormalities, functional defi cits, and 
cardiomyopathy [ 142 ].  

11.5.7     Oxidative Stress and Diabetic Cardiomyopathy 

 In type 1 DM (T1DM), left ventricle (LV) dysfunction often precedes or occurs in 
the absence of signifi cant CAD or hypertension [ 142 ,  235 – 240 ]. Indeed, alterations 
of diastolic [ 142 ,  237 ,  241 ] and systolic [ 242 ] function are reported in otherwise 
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healthy diabetic subjects and often predate the development of other chronic dia-
betic complications. This suggests that diabetes has direct effects on the heart, 
which can contribute to the development of cardiomyopathy and LV dysfunction in 
the absence of overt large vessel disease. Such effects may occur via various other 
mechanisms including subclinical microvascular disease, presence of CAN, impair-
ment in myocardial metabolism, effi ciency and energetics, and activation of oxida-
tive stress. Sympathetic activation associated with CAN generates high myocardial 
norepinephrine levels with abnormal norepinephrine signaling and metabolism and 
subsequent catecholamine toxicity [ 232 ,  243 ]. These may contribute to myocardial 
injury via cytotoxic effects to the heart associated with increased production of 
mitochondrial ROS [ 230 ,  244 ], and calcium-dependent apoptosis [ 230 – 232 ,  245 ], 
and may explain the progression to LV dysfunction and future risk for CVD events. 
For instance, CAN is accompanied by depressed diastolic fi lling [ 246 ] and reduced 
LV ejection fraction [ 247 ], which correlates with heterogeneous cardiac [ 123 I] meta -
iodobenzylguanidine (MIBG) and [ 11 C] meta -hydroxyephedrine (HED) retention 
[ 248 ,  249 ]. Our prior studies identifi ed diastolic dysfunction early in the course of 
T1DM [ 142 ]. 

 The heart is unique among organ systems in its continuous need for high-
energy phosphates to maintain contractile function. It can switch between differ-
ent substrates depending on substrate availability, hormonal milieu, oxygen 
availability, and metabolic demands [ 250 ]. Myocardial glucose and FFA metabo-
lism are tightly coupled, with increased FFA metabolism inhibiting myocardial 
glucose metabolism and vice versa. Sympathetic toxicity induces insulin resis-
tance and may compromise regional glucose utilization [ 186 ]. This alteration, 
together with the increased FFA supply, due to catecholamines’ induced fatty 
acids extraction and oxidation [ 251 ,  252 ], switches cardiac energy generation to 
utilization of FFA. Therefore, FFA, an ineffi cient energy source [ 253 ], may con-
tribute to more than 90 % of the myocardial oxygen (O 2 ) consumption in the dia-
betic heart [ 254 ,  255 ], which may induce mitochondrial uncoupling [ 234 ,  256 ], 
increased O 2  demand [ 234 ,  256 ], and generation of ROS (Fig.  11.1 ). Mitochondrial 
uncoupling when associated with defi cits in glucose metabolism may also predis-
pose to programmed cell death and fi brosis [ 235 ,  236 ,  257 ]. All these changes in 
the type of substrate in the presence of sympathetic activation may reduce cardiac 
effi ciency—the ratio of cardiac work to myocardial oxygen consumption [ 246 , 
 258 – 261 ]. 

 In addition, increased myocardial catecholamines associated with sympathetic 
activation increase oxygen consumption, cause energy depletion [ 246 ,  253 ,  262 , 
 263 ], and promote increased glycolysis and subsequent myocardial acidosis [ 253 , 
 264 ]. Reduced cardiac effi ciency and increased oxygen demand make the heart 
especially vulnerable to damage following increased workload or ischemia. 
Therefore, these evidences suggest that, in T1DM, chronic adrenergic stimulation 
and LV sympathetic imbalance may lead to cell injury, impaired myocardial effi -
ciency, myocardial remodeling, abnormal myocardial contractile patterns, and sub-
sequent cardiomyopathy.   
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11.6     Hyperglycemia and Diabetic Cardiovascular 
Complications: Evidence from Clinical Trials 

 Diabetes strongly increases the risk for atherosclerotic macrovascular disease. 
Many epidemiological studies have reported that progressively higher fasting [ 265 , 
 266 ] or post-load glucose [ 267 ,  268 ] or HbA 1c  levels [ 269 ,  270 ] predict a progres-
sively higher incidence of cardiovascular outcomes. It was also reported that the rate 
of death from CAD is two to four times higher in diabetic men than in the general 
population [ 2 ] and that CAD is more prevalent even in premenopausal diabetic 
women. The signifi cant gains that have been made in reducing mortality from CVD 
for the general population have not been as dramatic in the diabetic population, and 
several groups of diabetic individuals even show an increase in cardiovascular mor-
tality [ 271 ]. Both the degree of glycemic control and the duration of diabetes predict 
the risk of diabetic complications [ 272 ]. The importance of hyperglycemia as a risk 
factor for CAD in the general population and in diabetes is further highlighted by 
the fi nding of the INTERHEART study that HbA 1c  is an independent risk factor for 
MI in the presence of multiple other independent cardiovascular risk factors and 
across most geographical regions and ethnicities. The INTERHEART study, a large 
case–control study of MI conducted in 29,972 people in 52 countries, reported that 
self-reported diabetes and eight other cardiovascular risk factors confer more than 
90 % of the population-attributable risk of MI globally [ 273 ]. The same study also 
found that the degree of glycemic control, as assessed by HbA 1c , provides more 
information on MI odds than self-reported diabetes status or many other established 
risk factors including age, sex, hypertension, dyslipidemia, smoking, obesity, and 
psychosocial stress, as every 1 % HbA 1c  increment independently predicts 19 % 
higher odds of MI [ 274 ]. These fi ndings suggest that hyperglycemia may be toxic to 
the artery wall and increases cardiovascular risk through a mechanism that appears 
to be independent of these other cardiovascular risk factors and that this mechanism 
is relevant with and without a history of diabetes and operates on a global level. 

 In type 1 diabetes, the Diabetes Control and Complications Trial (DCCT) found 
that strict glycemic control dramatically lowered the incidence of microvascular 
complications [ 5 ,  6 ,  275 ]. These observations have given rise to the “glucose 
hypothesis,” which suggests that glucose mediates many of the deleterious effects 
of the disease. At DCCT closeout, all subjects were encouraged to adopt intensive 
treatment and most agreed to participate in the observational Epidemiology of 
Diabetes Interventions and Complications (EDIC) study [ 276 ]. 

 Subsequent EDIC evaluations demonstrated long-term benefi ts of prior intensive 
glycemic control on microvascular complications [ 277 – 279 ], and CVD [ 280 ] in 
spite of the fact that the HbA 1c  separation between former DCCT intensive and 
conventional groups narrowed substantially at EDIC year 1 and was no longer sta-
tistically signifi cant by EDIC year 5 [ 280 ] (Table  11.2 ). Intensive treatment reduced 
the risk of any CAD event by 42 % and the risk of nonfatal myocardial infarction, 
stroke, or death from CAD by 57 %, strongly suggesting that glycemic control 

11 Oxidative Stress and Cardiovascular Disease in Diabetes
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lowers macrovascular disease endpoints as well [ 280 ]. Most recently we reported 
persistent benefi cial effects of intensive versus conventional therapy on measures of 
CAN, a complication associated with high mortality risk, up to 14 years of follow-
 up in EDIC [ 281 ]. Additionally, intensive therapy during the DCCT associated with 
decreased progression of intima–medial thickness, a surrogate marker for athero-
sclerosis, 6 years after the end of the trial. This benefi cial effect of prior intensive 
glucose control is termed “metabolic memory” [ 279 ], but the pathophysiological 
mechanisms responsible for this effect are still unclear.  

 In type 2 diabetes the United Kingdom Prospective Diabetes Study (UKPDS) 
also showed microvascular benefi ts with intensive glucose control and suggested a 
trend toward less macrovascular disease with intensive glucose-lowering therapy, 
but the difference did not reach statistical signifi cance [ 7 ,  282 ] (Table  11.2 ). 
However, most recently, a signifi cant persistent benefi t for myocardial infarction 
and death from any cause was reported after intensive glucose-lowering and metfor-
min therapy in this cohort during 10 years of posttrial follow-up of the UKPDS 
participants [ 283 ] (Table  11.2 ). 

 However, in type 2 diabetes, strict glucose control alone does not prevent cardio-
vascular events in patients with more advanced disease [ 284 – 286 ] or requires long 
time of follow-up in patients newly diagnosed [ 283 ] (Table  11.2 ). Also, the increased 
mortality associated with tight glucose control in the Action to Control Cardiovascular 
Risk in Diabetes (ACCORD) trial [ 285 ] has challenged the “tight glucose” concept, 
raising the possibility of detrimental effects associated with a tight glucose control 
including higher incidence of severe hypoglycemia, important weight gain, and 
drug interactions. In addition, recent evidence suggests that glycemic variability 
may also infl uence the risk of cardiovascular complications, possibly through a 
mechanism mediated by activation of oxidative stress [ 287 ]. Among patients with 
type 2 diabetes, markers of oxidative stress levels were four times higher in patients 
with the greatest glycemic variability compared with patients having the lowest 
glycemic variability, and the acute glucose variability was a strong predictor of total 
free radical production [ 287 ]. 

11.6.1     Antioxidants in Preventing Cardiovascular Disease 

 The proposed role of oxidized LDL in atherogenesis suggests that a high dietary 
antioxidant intake might prevent premature vascular disease in humans. 
Antioxidants such as vitamin E, vitamin C, α-lipoic acid (thioctic acid), taurine, 
GSH, fl avonoids, uric acid, and various enzymes (catalase, superoxide dismutase, 
GSH peroxidase) are metabolic intermediaries or substrates, which protect biologi-
cal tissues from free radical damage, and are recycled or regenerated by biological 
reductants [ 288 ].  

11 Oxidative Stress and Cardiovascular Disease in Diabetes
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11.6.2     Epidemiological Evidence: Prospective Cohort Studies 
(Table  11.3 ) 

 A wide range of prospective cohort studies confi rm the above considerations (Table 
 11.3 ). For instance, the lower cardiovascular mortality observed in Mediterranean 
populations when compared with Northern European countries has been attributed 
to differences in the intake of antioxidant-rich foods and beverages [ 289 ]. In line 
with this, a meta-analysis of cohort studies including almost 4,00,000 patients [ 290 ] 
reported that high vitamin E and vitamin C intake was associated with a lower rate 
of coronary heart disease. Higher quintiles of serum vitamin E (within the physio-
logical range) were associated with lower mortality for cancer and CVD after a 
follow-up of 19 years in 29,092 male smokers enrolled in the Alpha-Tocopherol, 
Beta-Carotene Cancer Prevention (ATBC) study [ 291 ]. In the roughly 8,000 sub-
jects of the NHANES-II study, the lowest quartile of serum vitamin C had an 
increased mortality for cancer and cardiovascular mortality in men but not in 
women, who had higher ascorbate levels at baseline [ 292 ]. Notably, the major limi-
tation of these studies was that higher consumption of antioxidant-rich vegetables 
and fruits is also associated with generally “healthier” lifestyle, including physical 
exercise and abstinence from smoking.   

11.6.3     Interventional Trials on Antioxidant Vitamins 
(Table  11.3 )  

 A number of interventional trials were conducted between 1996 and 2002, mainly 
administering vitamin E, in the synthetic or natural form, β-carotene, and vitamin C, 
alone or in combination, and at different dosages. Some studies showed a benefi t of 
vitamin E supplementation in the secondary prevention of CVD [ 293 ] and of vita-
min E plus C supplementation in slowing carotid intima–media thickening in hyper-
cholesterolemic patients [ 294 ]. However, a meta-analysis that pooled data from 
clinical trials using β-carotene and vitamin E in diverse population groups failed to 
demonstrate a benefi cial effect of antioxidant supplements on cardiovascular mor-
bidity and mortality [ 295 ]. Similarly, a meta-analysis of randomized, placebo- 
controlled trials published until January 2010 evaluating the effects of vitamin E 
supplementation of ischemic and hemorrhagic strokes demonstrated a relatively 
small risk reduction of ischemic stroke and a generally more severe outcome of 
hemorrhagic stroke, advocating against the widespread use of vitamin E [ 296 ]. 
A recent Cochrane systematic review of all primary and secondary prevention ran-
domized clinical trials on antioxidant supplements (β-carotene, vitamin A, vitamin 
C, vitamin E, and selenium) versus placebo or no intervention found no evidence to 
support antioxidant supplements for primary or secondary prevention and suggested 
that vitamin A, β-carotene, and vitamin E may increase mortality [ 297 ]. 

R. Pop-Busui et al.
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 Recently, the neutral effect of vitamin C plus E supplementation was confi rmed 
by the results of the Physicians Health Study, which enrolled 14,641 middle-aged 
male physicians with low prevalent CVD, followed up for about 10 years [ 295 ]. 

 Additional attempts made with the supplementation of folic acid, which might 
compensate for the oxidation of the NOS coenzyme BH 4 , also did not show a prog-
nostic impact of this type of supplementation. Thus, the 2004 AHA Committee for 
Nutrition, Physical Activity, and Metabolism discouraged the use of antioxidant 
supplementation for the prevention of CVD [ 298 ]. As a further confounding factor, 
questions have been raised about the safety of prescribing antioxidant vitamins, 
with an increased overall mortality associated with β-carotene, vitamin A, and vita-
min E supplementation, possibly due to increases in cancer mortality, reported in 
some of these trials [ 299 ]. 

 However, the majority of prospective, double-blind, placebo-controlled trials of 
one proposed lipid-soluble antioxidant, vitamin E, have failed to demonstrate any 
reduction of clinical events in patients with established atherosclerosis [ 300 ]. The 
disappointing results of these trials have led some to question the role of oxidative 
damage in the pathogenesis of CAD in humans. It might be, however, that vitamin 
E’s ability to serve as an antioxidant in vivo should be questioned [ 300 ]. Thus, 
despite the impressive ability of other lipid-soluble antioxidants to block atheroscle-
rosis in hypercholesterolemic animals, vitamin E at doses that fail to lower choles-
terol levels has not exerted a consistent inhibitory effect in such experiments. These 
observations [ 300 – 302 ] emphasize the importance of documenting that a proposed 
antioxidant intervention actually inhibits oxidative reactions in vivo. 

 There is also remarkably little information about the infl uence of vitamin E sup-
plementation on lipid oxidation in humans. Indeed, a recent study of healthy humans 
taking dietary supplements as high as 2,000 IU/day for 8 weeks found no change in 
levels of three lipid oxidation products: 4-hydroxynonenal and two isoprostanes 
[ 303 ]. The investigators assessed products of lipid peroxidation using GC/MS, a 
sensitive and specifi c method. These results strongly suggest that vitamin E failed 
to inhibit lipid peroxidation in these individuals. 

 Trials of antioxidants and carbonyl-trapping agents in humans suffering from 
diabetes have also yielded discouraging results. Chronic treatment with vitamin E 
failed to decrease cardiovascular events in a large study that included a high per-
centage of diabetic patients [ 304 ]. One possible reason is that antioxidant therapy 
might benefi t only subjects who exhibit increased oxidative stress. Indeed, the renal 
failure patients who benefi ted from vitamin E therapy [ 305 ] might have been a sub-
set with greatly increased carbonyl and oxidative stress [ 70 ]. 

 The effects of the xanthine oxidase inhibitor, allopurinol, were studied extensively 
in clinical trials in subjects with or without diabetes. A recent report [ 306 ] examined 
the effects of allopurinol on endothelial function and oxidative stress in type 2 dia-
betic patients. The investigators showed that allopurinol increased the endothelium-
dependent mean blood fl ow response to acetylcholine by 30 % and decreased systemic 
levels of malondialdehyde. However, the relevance of endothelium- dependent mean 
blood fl ow response as a surrogate marker for CVD has been questioned because this 
technique predicted that vitamin E would prevent vascular disease. 
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    Pharmacological agents currently in clinical practice with demonstrated benefi t 
in CAD may act in part by serving as antioxidants. Angiotensin-converting enzyme 
(ACE) inhibitors and statins have lowered CAD event rates in randomized con-
trolled trials in diabetic patients [ 41 ,  307 ]. As noted above, many lines of evidence 
suggest that angiotensin II triggers oxidant production by endothelial cells and other 
cells of the artery wall. Interestingly, the ACE inhibitor ramipril slowed the onset of 
type 2 diabetes in the Heart Outcomes Prevention Evaluation (HOPE) trial [ 41 ], 
though this effect was not confi rmed in a more recent trial [ 308 ]. Ramipril’s well- 
recognized ability to mitigate the prooxidant effect of angiotensin II may in part 
account for its effi cacy. A case–control study demonstrated that systemic levels of 
protein-bound nitrotyrosine were signifi cantly higher among patients with CAD 
and that statin therapy lowered levels of oxidized amino acids in plasma, raising the 
possibility that statins can potentially be antioxidants [ 56 ,  57 ,  59 ]. 

 Despite a sound biological rationale and a number of preclinical and clinical 
lines of evidence, studies testing the effects of classical antioxidants such as vitamin 
C, vitamin E, or folic acid in combination with vitamin E have been disappointing. 
Rather, substances such as statins, angiotensin-converting enzyme inhibitors, or 
AT1-receptor blockers, which possess indirect antioxidant properties mediated by 
the stimulation of NO production and simultaneous inhibition of superoxide pro-
duction (e.g., from the NADPH oxidase), have been shown to improve vascular 
function in preclinical and clinical studies and to reduce the incidence of cardiovas-
cular events in patients with CVD.  

11.6.4     Diet and Polyphenols 

 The recommendation of a healthy diet, rich in fruits and vegetables and whole grain 
foods, is still standing [ 309 ]. Adherence to the Mediterranean diet has been sug-
gested to have a benefi cial effect on mortality from all causes and on the primary 
and secondary prevention of CVD [ 310 – 313 ]. It was suggested that the Mediterranean 
diet may exert positive infl uences on human health and coronary heart disease in 
particular, due to its antioxidant and anti-infl ammatory effects [ 314 ,  315 ]. Results 
from the 25-year follow-up of the Seven Countries Study, the Nurses’ Health Study, 
the HALE project, and the Greek arm of the EPIC study [ 316 – 319 ] underline its 
protective role in regard to coronary heart disease. Adherence to the Mediterranean 
diet protects against the development of coronary heart disease in patients with 
hypertension, hypercholesterolemia, and the metabolic syndrome [ 320 – 322 ]. 
Adherence to the Mediterranean diet was also shown to have benefi cial effects on 
the secondary CVD prevention. For instance, two randomized clinical trials per-
formed in patients surviving a fi rst myocardial infarction, the Lyon Diet Heart Study 
and THIS DIET [ 323 ,  324 ], adherence to the Mediterranean diet was associated 
with lower mortality risk and overall and cardiovascular event-free survival, 
although body weight was not signifi cantly changed .    In a randomized trial of 215 
overweight people with newly diagnosed type 2 diabetes who were never treated 
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with antihyperglycemic drugs, a Mediterranean-style diet led to more favorable 
changes in glycemic control and coronary risk factors and delayed the need for 
antihyperglycemic drug therapy compared with a low-fat diet and a low- carbohydrate 
diet [ 311 ]. In another randomized trial, a Mediterranean-style diet was also shown 
to improve endothelial function and vascular infl ammatory markers in patients with 
the metabolic syndrome compared with a prudent diet [ 312 ]. 

 In line with this concept, attention has been focused on another family of antioxi-
dant compounds, i.e., polyphenols, a group comprising about 8,000 different mol-
ecules, among which fl avonoids are the most studied family. Polyphenols are potent 
antioxidants abundant in vegetables and particularly in derived products such as 
chocolate, tea, and wine. This more “natural” approach to antioxidant supplementa-
tion seems to be promising, since the antioxidant capacity of these compounds is 
not simply related to direct ROS scavenging but also to inhibition of enzymatic 
sources of oxidative stress and stimulation of endogenous antioxidant enzymes. 
Benefi ts from polyphenol-rich foods and beverages are likely to arise from multiple 
pathways, and the antioxidant power appears to be only one of these [ 325 ]. A meta- 
analysis of 113 interventional studies for a total of roughly 6,000 subjects who 
underwent different kinds of food/beverages or extracts supplementation at differ-
ent doses demonstrated that these compounds ameliorate endothelial function, an 
intermediate endpoint strongly associated with cardiovascular prognosis, both in 
healthy subjects and in patients with cardiovascular risk factors, while signifi cantly 
reducing blood pressure [ 326 ]. 

 Two meta-analyses of small, relatively short-duration randomized clinical trials 
suggested that chocolate reduces both systolic and diastolic blood pressure [ 327 ] 
and increases fl ow-mediated dilation after acute and chronic intake. Others have 
shown that cocoa fl avonoids are associated with decreased susceptibility to low- 
density lipoprotein oxidation [ 328 ] and improved endothelial function. A prospec-
tive study of 31,823 women aged 48–83 years without baseline diabetes or a history 
of HF or myocardial infarction, followed for a mean of 8 years, found that moderate 
habitual chocolate intake was associated with a lower rate of HF hospitalization or 
death [ 329 ]. 

 Despite these promising data, further questions remain to be solved. First of all, 
it remains unclear how potent are the antioxidant properties of polyphenols and 
which molecules in this class are the most potent ones. Further, it needs to be clari-
fi ed whether these compounds possess other properties beyond their chemical anti-
oxidant ones. Also, concentrations of active substances present in food and 
beverages show remarkable variability due to genetic and agronomic factors, post- 
harvest handling, and subsequent processing steps. Such problems could theoreti-
cally be overcome by using standardized formulations for supplementation, but this 
fi eld still awaits exploration. In addition, in recommending an increase in fl avonoid- 
rich substances such as chocolate and wine consumption, physicians must be care-
ful in balancing caloric and alcohol intake, and this therapeutic approach requires 
patients’ compliance with chronic lifestyle changes. At the moment, strong evi-
dence obtained with long-term randomized controlled trials is still lacking, and no 
conclusion on the effi cacy and safety of fl avonoid supplementation can be reached. 
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Although more promising than other direct antioxidants, whose clinical effi cacy is 
limited by the disadvantageous biochemical properties described previously, the 
available evidence with fl avonoids consists mainly of prospective cohort studies and 
of mechanistic studies, in vitro or in animals; short-term interventional randomized 
trials only addressed blood pressure reduction or endothelial function as surrogate 
endpoints of cardiovascular health. In the meta-analysis mentioned earlier, the posi-
tive results on endothelial function and blood pressure were obtained only after 
several weeks’ administration of certain fl avonoid-rich foods, particularly tea and 
chocolate [ 326 ]. 

 Furthermore, it needs to be mentioned again that an increased antioxidants 
intake, rather than being the cause of improved outcome, could be simply a marker 
of a healthier lifestyle. Thus, future research should more clearly address differ-
ences between different kinds of polyphenols, in order to identify which type of 
intervention would constitute the most feasible and effective approach for cardio-
vascular patients. Additionally, research should aim to clarify whether these encour-
aging results can be translated into reduction of events in our patients.   

11.7     Conclusions 

 Strong evidence emerged in the last decade shows that oxidative stress is one major 
factor in the onset and the development of diabetes vascular disease. Until we can 
fully control blood glucose levels, antioxidants might be helpful for treating dia-
betic patients and their complications. It is more reasonable to assume that mixtures 
of antioxidant therapies, possibly in combination with trace elements and vitamins 
that enhance metabolic processes, may provide a better therapeutic option. Large- 
scale clinical trials are needed to evaluate the long-term effects of these antioxidants 
in diabetic patients.     
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12.1            Introduction 

 Diabetes mellitus is considered one of the most important diseases of our time as its 
prevalence is globally increased every year. A large amount of evidence has proved 
that there is a strong association between diabetes, oxidative stress, and endothelial 
dysfunction. It is also well recognized that endothelial dysfunction, which is present 
even in people at risk of developing diabetes, is strongly connected with oxidative 
stress and considered as a preliminary risk factor for the development of atheroscle-
rosis and cardiovascular disease. Thus, a lot of research effort has been focused 
during the last years toward the direction of reducing diabetes-related oxidative 
stress, either with the use of different pharmaceutical agents or with life style 
interventions. 

 In this chapter we are going fi rst to analyze briefl y the basis of oxidative stress in 
diabetes and then to focus on the different studied interventions for the diabetes- 
related oxidative stress reduction.  
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12.2     Oxidative Stress in Diabetes Mellitus 

 Helmut Sies was the fi rst to defi ne oxidative stress in the following way: “Oxidative 
stress is a change in the pro-oxidant/antioxidant balance in the favor of the former, 
potentially leading to biological damage” [ 1 ]. Diabetes is currently recognized as an 
oxidative stress disorder [ 2 ]. Oxidative stress per se is characterized by high accu-
mulation of reactive oxygen species (highly reactive molecules generated during 
oxidative metabolism and energy production) that cannot be coerced by the endog-
enous circulating neutralizing agents and antioxidants [ 3 ]. The causative mecha-
nisms of oxidative stress due to hyperglycemia are shown in Fig.  12.1 .

12.3        Increased Superoxide Production 

 Diabetes mellitus is associated with increased production of superoxide (O 2  − ), 
mainly due to hyperglycemia [ 3 ]. Hyperglycemia causes an increase in intracellular 
glucose concentration in insulin-independent cell types, such as endothelium. More 
particular, increased intracellular glucose concentration results in an increased rate 
of glycolysis, which in turn increases the fl ux of pyruvate (the product of glycolysis) 
through the tricarboxylic acid (TCA) cycle. This increased fl ux of pyruvate through 
the TCA cycle appears to be responsible for overproduction of superoxide [ 3 ]. 

  Fig. 12.1    Mechanisms of oxidative stress in hyperglycemia       
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 Hyperglycemia, however, is not the only mechanism by which diabetes causes 
increased superoxide production. Diabetes is also associated with increased levels 
of free fatty acids, which contribute to increased superoxide production [ 4 ]. Other 
circulating factors that are elevated in diabetes, such as leptin, also contribute to 
increased ROS generation [ 5 ]. 

12.3.1     Oxidative Stress and NO 

 Nitric oxide (NO) plays a key role in vascular health, regulating the endothelial 
vasodilatation and protecting the vascular wall by inhibiting infl ammation, cellular 
proliferation, and thrombosis [ 3 ]. Increased superoxide and reactive oxygen species 
negatively affect vascular health by downregulating endothelial-derived NO. 
Decreased NO bioavailability increases the vascular tone, promoting also structural 
and biological changes that lead to atherosclerosis [ 3 ,  4 ]. NO quenching by per-
oxynitrite (ONOO − ) and decreased NO production are the main causes of decreased 
NO bioavailability [ 3 ,  4 ,  6 ]. In addition, under certain conditions, the superoxide 
anion reacts with NO to form peroxynitrite, further reducing the bioavailability of 
NO in the vasculature leading to impaired protein and lipid function (see Fig.  12.2 ) 
[ 7 ]. Peroxynitrite, in turn, inactivates the factor (6R)-5,6,7,8-tetrahydro- l -biopterin 

  Fig. 12.2    Hyperglycemia-induced endothelial dysfunction. Superoxide produced secondary to 
hyperglycemia combines with NO to form peroxynitrite. This reduces the bioavailability of NO 
and induces nitrosative stress by multiple mechanisms including modifi cations of macromolecules 
and PARP induction       
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(BH4), which plays a signifi cant role in NO production by the endothelial NO syn-
thase (eNOS), leading to further reduction of NO bioavailability. BH4 defi ciency 
uncouples the eNOS complex and promotes production of superoxide by eNOS, 
thus producing more oxidative stress promoting vascular dysfunction and athero-
sclerosis [ 7 ].

12.3.2        Other Effects of Oxidative and Nitrosative Stress 

 The degradation of tyrosine nitrated proteins produces free nitrotyrosine. This 
marker of nitrosative stress has been found in tissues, atherosclerotic lesions, and 
blood [ 8 – 10 ]. In addition to the modifi cation of biomolecules, peroxynitrite affects 
important signaling pathways triggering mitochondrial dysfunction and cell death 
in endothelial cells and cardiomyocytes [ 11 ].  

12.3.3     PARP Activation 

 Oxidative and nitrosative stress has been proved to activate poly(ADP-ribose) poly-
merase (PARP), which is an important mediator of vascular dysfunction in diabetes 
[ 7 ,  11 – 13 ] even prior to the onset of microvascular disease [ 14 ]. PARP activation 
initiates a series of cell cycle events (see Fig.  12.2 ) that deplete intracellular nicotin-
amide adenine dinucleotide (NAD) and adenosine 5′-triphosphate (ATP) pools, thus 
limiting glycolysis and mitochondrial respiration, leading to vascular cell dysfunc-
tion and death [ 6 ].  

12.3.4     Protein Kinase C Activation 

 Hyperglycemia and increased production of free fatty acids increase the activity of 
protein kinase C (PKC) promoting oxidative stress through activation of mitochon-
drial NADPH oxidase. Increased PKC activity has also a number of other effects 
including decreased NO production, increased vascular permeability, increased 
microvascular protein accumulation, increased plasminogen activator inhibitor-1 
(PAI-1) expression and activation of nuclear factor-kappa B (NF-κB) in endothelial 
cells and vascular smooth muscle, and increased endothelin-1 (ET-1) production. 
All these actions promote vascular occlusion, stimulate infl ammation, and ulti-
mately lead to endothelial dysfunction [ 2 ,  15 ]. PKC may also be activated by 
increased diacylglycerol (DAG) levels either from de novo synthesis of DAG (from 
glycolytic intermediates) or from increased activity of the polyol pathway and via 
ligation of RAGE [ 16 ]. Inhibition of PKC with ruboxistaurin (or LY333531) greatly 
improves microvascular fl ow to the retina, kidney, endoneural blood supply, and 
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mesenteric bed in animal models [ 17 – 19 ]. Despite these promising fi ndings, 
ruboxistaurin has had less robust results in humans [ 20 ].  

12.3.5     Advanced Glycation End Products 

 Hyperglycemia may also promote oxidative stress by contributing to the production 
of advanced glycation end products (AGEs) which are nonenzymatically glycated 
proteins or lipids susceptible to oxidation after exposure to aldose sugars [ 21 ]. 
AGEs can produce ROS and trigger mechanisms that generate the production of 
intracellular oxidants. In addition, AGEs have been found to alter extracellular 
matrix protein function, cause vascular leak, decrease the bioavailability of 
endothelium- derived nitric oxide (NO), and promote infl ammation and endothelial 
dysfunction [ 22 ]. 

 Additionally, AGEs may also induce oxidative stress and endothelial dysfunction 
by binding and activating RAGE which results in a sustained activation of NF-κB 
and its target genes increasing also the endothelial cell permeability to macromol-
ecules [ 23 ]. Elevated levels of AGEs have been noted in the serum of diabetic 
patients and correlate with progression of diabetic complications such as nephropa-
thy [ 24 ,  25 ]. Treatment of animals with inhibitors of AGE formation, such as ami-
noguanide, can prevent diabetic microvascular complications [ 26 ].  

12.3.6     Polyol Pathway 

 Hyperglycemia may also promote oxidative stress by increasing polyol pathway 
fl ux [ 27 ]. The enzyme aldose reductase usually presents low affi nity to glucose. 
However, in a high glucose concentration environment, the increased intracellular 
glucose results an increased activity of aldose reductase and a consequent increase 
of the glucose reduction to sorbitol which is further oxidized to fructose. This pro-
cedure, which consumes NADPH, decreases the reduced glutathione and increases 
the PKC activation, subsequently increasing the oxidative stress [ 3 ]. Inhibition of 
aldose reductase has been shown to prevent diabetic nephropathy, retinopathy, and 
neuropathy in animal models [ 27 ]. Larger clinical trials in humans, however, have 
had mixed results, thus raising questions regarding the importance of this mecha-
nism [ 28 ,  29 ].  

12.3.7     Hexosamine Pathway 

 Hyperglycemia, fi nally, may also shunt excess glucose through the hexosamine path-
way [ 30 ]. Excessive intracellular glucose results in conversion of fructose-6- phosphate 
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to glucosamine-6-phosphate and ultimately to  N -acetylglucosamine, promoting a 
series of reactions that increase oxidative stress by NADPH depletion, TGF-beta and 
plasminogen activator inhibitor-1 (PAI-1) gene expression increase, and endothelium 
nitric oxide synthase (eNOS) activity inhibition [ 31 ].  

12.3.8     Diabetes and Cellular Adhesion Molecules (CAMs) 

 Endothelium can be activated by the effect of various factors including oxidative 
stress, producing infl ammation molecules like iCAM and vCAM MCP and induc-
ing the adhesion and accumulation of monocytes at the arterial wall. This is the fi rst 
step for the development of endothelial dysfunction and atherosclerosis. This pro-
cess has been proved to be present not only in diabetes but also in the prediabetic 
state many years before the diagnosis of diabetes [ 32 ]. 

 Diabetes has been found to be closely associated with endothelial dysfunction in 
both resistance and conduit vessels of the peripheral circulation [ 33 – 37 ] as well as in 
the coronary circulation [ 38 ,  39 ]. The soluble adhesion molecules   , E-selectin, vascu-
lar cell adhesion molecule (VCAM)-1, and intercellular adhesion molecule (ICAM)-
1, the presence of which is highly associated with vascular infl ammation and 
oxidative stress, are found to be elevated in subjects with T2DM [ 40 – 43 ]. Similarly, 
increased levels of von Willebrand factor (vWF), a measure of endothelial cell dam-
age and activation, are found in diabetes [ 40 ,  42 ,  43 ]. Furthermore, microalbumin-
uria, which has been proved to be an independent predictor of endothelial dysfunction, 
may possibly indicate a widespread vascular dysfunction in diabetes [ 40 ,  44 ]. 

 The pathogenetic mechanisms underlying the development of endothelial dys-
function in diabetes have not been fully identifi ed. Oxidative stress and the subse-
quent reduction on NO bioavailability seem to play the most signifi cant role 
according to the data so far.   

12.4     Methods of Assessing Endothelial Function 

 Prior to the development of macrovascular and microvascular clinical disease, early 
changes in endothelial function can be measured. These changes refl ect alterations 
in the regulation of vascular tone or reactivity which is infl uenced by endothelial 
NO production (endothelium-dependent vasoreactivity) as well as vascular smooth 
muscle relaxation in response to NO (endothelium-independent vasoreactivity). In 
endothelium-dependent vasodilation, acetylcholine, shear stress, or hypoxia can 
activate endothelial cells to release NO. The stimuli of shear stress and hypoxia are 
utilized in the fl ow-mediated dilation (FMD) technique to produce endothelium- 
dependent vasodilation. In contrast, endothelium-independent vasodilation occurs 
as a result of smooth muscle cell relaxation in direct response to exogenous NO 
(from NO donors such as nitroglycerin or nitroprusside). Vascular reactivity refers 
to both endothelium-dependent and endothelium-independent vasodilation. 
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12.4.1     Vascular Reactivity Measurements 
in the Macrocirculation 

 Macrovascular disease is most commonly assessed by ultrasound measurements of 
brachial artery diameter and the common carotid intima–media thickness (IMT). 
Changes in brachial artery diameter after stimuli measure early functional changes 
associated with atherosclerosis. Endothelium-dependent vasodilation of the bra-
chial artery can be assessed by intra-arterial infusion of substances that act on the 
endothelium to release NO, such as acetylcholine, or by FMD. FMD is induced by 
occluding the brachial artery with a pneumatic tourniquet to the upper limb for a 
total of 5 min [ 45 ]. Tissue hypoxia and pH changes in the area distal to the occlu-
sion, causes reactive vasodilation in the skin and muscle microcirculation immedi-
ately after release of the occlusion. This process causes a brief period of high blood 
fl ow and increased shear stress in the brachial artery that stimulates the endothelial 
production of NO and vasodilation that can be measured on high-resolution ultra-
sound (see Fig.  12.3 ). Endothelium-independent vasodilatory function of the bra-
chial artery can be assessed by intra-arterial or sublingual administration of NO 
donors such as nitroglycerin or nitroprusside.

   In contrast, common carotid IMT identifi es anatomic changes consistent with 
early atherosclerosis. Carotid artery IMT is an ultrasound measure of the distance 
between the intima to the outer edge of the media. Increased intima–media thick-
ness occurs early in the process of atherosclerotic plaque formation prior to luminal 

  Fig. 12.3     a  The assessment of fl ow-mediated vasodilation in the brachial artery. A 7.0 MHz or 
greater linear array transducer is used to image the brachial artery above the antecubital fossa in 
the longitudinal plane. A regular sphygmomanometer is employed to occlude the artery blood 
fl ow. The sphygmomanometer can be placed either at the forearm ( a ) or at the upper arm level ( b ). 
Two-dimensional grayscale scans are taken, one at rest, before the cuff infl ation ( c ), and 1 min after 
the cuff defl ation that leads to artery dilation ( d ). The percentage of the post-occlusive artery diam-
eter increase over the baseline represents the FMD         
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narrowing. IMT is associated with the presence of conventional atherosclerotic risk 
factors and can predict the development of cardiovascular events [ 46 ,  47 ] (see 
Fig.  12.4 ).

12.4.2        Microcirculatory Measurements 

 Microcirculatory vascular reactivity is most commonly assessed by laser Doppler 
fl owmetry to measure blood fl ow in the skin. Blood fl ow is estimated from the com-
bination of number and velocity of moving red cells within arterioles, capillaries, 
and postcapillary venules. A laser beam is delivered to the skin via a fi ber optic light 
guide, and refl ected light is gathered by a second set of photodetectors. Light 
refl ected by moving objects, such as red blood cells, is refl ected at a different fre-
quency. The Doppler shifted fraction of the light signal and the mean Doppler fre-
quency shift is calculated to generate a value in mV, which is proportional to the 

  Fig. 12.4     a  Image of the common carotid artery. A 7.5 MHz linear array transducer and high- 
resolution ultrasound were used. The carotid bifurcation can be seen on the right of the picture.  b  
Simplifi ed diagram of the arterial wall boundaries indicating the adventitia–media ( A ) of the near 
wall, intima–blood boundaries ( B ) for the near wall, and adventitia–media ( C ) and intima–blood 
boundaries ( D ) for the far wall         
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quantity and velocity of red blood cells with the measured superfi cial skin microcir-
culation [ 48 ]. 

 The microcirculation can be studied without systemic side effects by using ion-
tophoresis and microdialysis techniques that allow for precise, local delivery of 
vasoactive agents. Iontophoresis uses a small charge to facilitate transcutaneous 
delivery of charged substances into the skin without trauma or pain (Fig.  12.5 ). The 
length of stimulation, strength of current used, and area of delivery determine the 
number of molecules transported. Endothelium-dependent vasodilation is assessed 
by delivery of acetylcholine using anodal current given its positive charge, whereas 
endothelium-independent vasodilation is assessed by the delivery of the anion 
sodium nitroprusside using cathodal current. Microdialysis can be used to deliver 
larger, water-soluble vasoactive agents that lack a charge. These techniques allow 
for noninvasive measurement of abnormal endothelial function prior to the develop-
ment of overt clinical disease.

12.5         Therapeutic Interventions That Modify 
Oxidative Stress 

 Signifi cant amount of evidence has proved that oxidative stress may be very harm-
ful for the vasculature, especially in individuals with diabetes; thus, research has 
been focused the late years in investigating possible therapeutic ways against 

  Fig. 12.5     a  Measurements of direct and indirect effect of vasoactive substance using single-point 
laser probes: one probe is used in direct contact with the iontophoresis solution chamber ( colored 
ring ) and measures the direct response. The center probe measures the indirect response (nerve 
axon-related effect). A small quantity (<1 mL) of 1 % acetylcholine chloride solution or 1 % 
sodium nitroprusside solution is placed in the iontophoresis. A constant current of 200 mA is 
applied for 60 s achieving a dose of 6 mC/cm −2  between the iontophoresis chamber and a second 
non-active electrode placed 10–15 cm proximal to the chamber (black strap around the wrist). This 
current causes a movement of solution to be iontophoresed toward the skin.  b  Laser Doppler fl ow-
metry: A helium-neon laser beam is emitted from the laser source to sequentially scan the circular 
hyperemic area (seen surrounding the laser beam) produced by the iontophoresed vasoactive sub-
stance to a small area on the volar surface of the forearm       
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oxidative stress in patients with diabetes including the use of therapeutic agents or 
lifestyle interventions. Agents, including vitamins E, C, α-lipoic acid, statins, angio-
tensin-converting enzyme inhibitors (ACE inhibitors), angiotensin II receptor 
blockers (ARBs), and thiazolidinediones, as well as lifestyle interventions, have 
been evaluated in large clinical trials and will be discussed in the following section. 
Many other agents have been noted to have antioxidant properties, but have not been 
evaluated in human clinical trials and are beyond the scope of this chapter. 

12.5.1     Vitamin E 

 Vitamin E is a fat-soluble vitamin that has been found to present signifi cant antioxi-
dant properties. Initial studies showed that vitamins E and C supplementation may 
improve markers of oxidative stress and endothelium-dependent vasodilation in 
both experimental diabetic models and clinical trials [ 17 ,  49 – 51 ]. Specifi cally, vita-
min E supplementation has been initially proved to ameliorate endothelial dysfunc-
tion in both cholesterol-fed rabbits and streptozotocin-diabetic rats [ 49 ,  52 ]. 
Furthermore, in human studies, acute administration of vitamin E has generally 
been shown to improve endothelium-dependent vasodilatation in both type 1 and 
type 2 diabetes [ 53 ]. The Cambridge Heart Antioxidant Study (CHAOS) that 
employed vitamin E (400–800 IU) reported a signifi cant risk reduction from nonfa-
tal myocardial infarction after an 18-month follow-up period, accompanied, though, 
by a nonsignifi cant increase of cardiovascular deaths in the same group [ 54 ]. 

 However, the initial enthusiasm regarding the possible vaso-protective role of 
vitamin E dropped after the results of subsequent animal and human studies. More 
particular, animal studies reported that the supplementation of vitamin E or/and C 
may lead to endothelial dysfunction in both diabetic and healthy animals [ 16 ,  17 ] 
possibly due to pro-oxidant effects of vitamin E on vitamin C in the presence of NO 
and/or the de novo synthesis of vasoconstrictive prostanoids [ 16 ]. In addition, the 
PPP trial that included diabetic patients revealed no reduction in cardiovascular 
events or death after vitamin E supplementation. The study showed also an increased 
risk of adverse events with vitamin E supplementation, raising further concerns 
about its use [ 55 ]. 

 A study from our unit, which included patients with both type 1 and type 2 dia-
betes treated with high dose of vitamin E (1,800 IU daily) for 12 months, found no 
improvement in endothelium-dependent or endothelium-independent vasodilation, 
in both skin microcirculation and brachial artery macrocirculation tests [ 56 ]. 
In addition, vitamin E supplementation had no effect in left ventricular function 
[ 56 ]. Interestingly in the same study, endothelin (a potent vasoconstrictor) was 
increased in the treatment group after 6 months and normalized by 12 months. In 
addition, endothelium-independent vasodilation and systolic blood pressure slightly 
worsened by the end of the 12-month treatment period. Of interest, C-reactive pro-
tein (CRP), a marker of infl ammation, was decreased in the vitamin E-treated group, 
concluding that, although vitamin E may present a benefi cial anti-infl ammatory 
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effect, reducing CRP does not seem to have a positive effect on cardiovascular 
function. 

 The GISSI-Prevenzione trial employed vitamin E (300 mg per day) and  n -3 poly-
unsaturated fatty acids (PUFA) or placebo for a median of 3.5 years [ 57 ]. Patients 
treated with vitamin E had no benefi t in preventing cardiovascular events. On the 
contrary, patients with left ventricular dysfunction (ejection fraction < 50 %) pre-
sented a 50 % increased risk of developing congestive heart failure [ 57 ,  58 ]. In the 
Heart Outcomes Prevention Evaluation study (HOPE), conducted    in more than 
9,500 subjects, it was concluded that vitamin E supplementation had no effect on 
cardiovascular outcomes in all subgroups including the individuals with diabetes 
[ 59 ]. 

 The HOPE trial was extended to the HOPE—The Ongoing Outcomes (HOPE- 
TOO) trial reported no difference in cardiovascular outcomes (including myocardial 
infarction, stroke, and death from cardiovascular causes) between the vitamin E 
treatment and placebo groups. On the contrary, subjects treated with vitamin E had 
higher rates of heart failure and heart failure-related hospital admissions. These 
fi ndings were present in all groups of patients including the patients with diabetes 
and were persistent through both HOPE and HOPE-TOO [ 60 ]. The reason for the 
association between the increased rate of heart failure and vitamin E supplementa-
tion was unclear; however, the authors expressed the hypothesis that a pro-oxidative 
effect of vitamin E, in certain circumstances, could possibly depress the myocardial 
function. Finally initial meta-analyses did not show any effect of vitamin E on sur-
vival [ 61 ,  62 ]. 

 In a recent meta-analysis of 19 clinical trials, the relationship between vitamin E 
supplementation and total mortality was examined. The results showed that in 9 of 
11 trials testing high-dose vitamin E (≥400 IU/day), the all-cause mortality risk 
increased, prompting the conclusion that high doses of vitamin E (≥400 IU/day) 
should be avoided [ 63 ]. Finally, both cardiovascular outcomes and atherosclerosis 
progression by carotid intima–media thickness are not improved by vitamin E in a 
group of high-risk patients with vascular disease or diabetes in both HOPE study 
and SECURE trial [ 60 ,  64 ,  65 ]. 

 Vitamin E has been also tested in the prevention of type 2 diabetes. Two interven-
tional studies that used vitamin E or β-carotene supplementation did not show any 
positive effect on the delay of the development of type 2 diabetes [ 66 ,  67 ].    In another 
recent study [ 63 ], vitamin C supplementation was added to vitamin E, for testing the 
hypothesis that vitamin C is necessary for the regeneration of the oxidized vitamin 
E. However, the analysis of the study revealed neither benefi t nor harm, by the 
supplementation of vitamin C, vitamin E, and β-carotene on the primary prevention 
of type 2 diabetes. 

 In conclusion, as the data, so far, indicate, there is currently no compelling 
evidence to support the use of vitamin E for preventing cardiovascular disease in 
diabetes. On the contrary, high doses of vitamin E may be associated with serious 
side effects. Thus, it is reasonable to suggest that such high dose should be 
avoided.  
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12.5.2     Vitamin C 

 Vitamin C (or ascorbic acid) is a water-soluble vitamin that, except its numerous 
biological effects, demonstrates a signifi cant antioxidant role. It prevents oxidation 
of LDL and, as already mentioned, regenerates oxidized vitamin E. In addition, it 
stabilizes BH4, an eNOS cofactor, subsequently increasing NO production. Initial 
studies involving acute increases of the vitamin C plasma levels reported a signifi -
cant improvement of endothelial function in multiple disease models of oxidative 
stress. Indeed, in a study by Beckman et al., it was reported that hyperglycemia- 
induced endothelial dysfunction in healthy volunteers was reversed by vitamin C 
infusion [ 68 ]. In addition, intra-arterial infusion of vitamin C has been reported to 
improve endothelial function in both type 1 and type 2 diabetic patients [ 69 ,  70 ]. 
Furthermore, other studies presented an immediate improvement of the endothelial 
function in subjects with essential hypertension, after vitamin C infusion, whereas 
other antioxidants such as  N -acetylcysteine did not have similar effect [ 71 ]. 

 In a cohort study of 11,348 adults for 10 years (the fi rst National Health and 
Nutrition Examination Survey (NHANES I) [ 72 ], increased vitamin C intake 
(approx 300 mg per day) was associated with a 45–25 % risk reduction in all-cause 
mortality including mortality from cardiovascular events in men and women, 
respectively. Additionally, in an observational study in 85,118 female nurses fol-
lowed for 16 years, vitamin C supplementation was associated with a signifi cantly 
lower risk (28 %) of coronary disease (relative risk of 0.72) after statistical correc-
tion for other cardiovascular risk factors [ 7 ,  73 ]. This benefi t was noted again by 
researchers in the EPIC-Norfolk prospective population study [ 74 ]. 

 Although initial acute studies have shown signifi cant improvement in endothelial 
function with vitamin C administration, long-term therapy did not present similar 
results. In a recent study, the combined therapy with vitamins C and E in types 1 and 
2 diabetic patients showed an improvement in endothelial function only in patients 
with type 1 diabetes [ 53 ]. In another study, high oral doses of vitamin C did not 
improve endothelial function in type 2 diabetic subjects [ 75 ]. 

 In summary, according to the current data, there is no compelling evidence to 
support the use of vitamin C for preventing cardiovascular disease in diabetes. New 
randomized, placebo-controlled studies addressing the cardiovascular benefi ts of 
vitamin C supplementation, independent of other vitamin supplements, need to be 
conducted to support evidence regarding the possible cardiovascular benefi t of vita-
min C supplementation in patients with diabetes.  

12.5.3     α-Lipoic Acid 

 α-Lipoic acid is a hydrophilic antioxidant allowing it to exert benefi cial effects in 
both aqueous and lipid cellular environments. α-Lipoic acid is reduced to its 
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conjugate base, dihydrolipoate, which is able to regenerate other antioxidants such 
as vitamins C and E, as well as reduced glutathione. 

 A long-term treatment with α-lipoic acid in diabetic animal models demonstrated 
improvements in metabolic profi le including blood glucose, plasma insulin, choles-
terol, triglycerides, and lipid peroxidation as well as the microvasculature [ 76 ]. In 
contrast, short-term treatment with α-lipoic acid in rat models of insulin resistance 
and insulin defi ciency did not improve hyperglycemia or fasting triglycerides [ 77 ]. 

 In the microcirculation of diabetic rats, α-lipoic acid reduces nitrotyrosine levels 
and prevents pathologic retinal vessel changes [ 78 ]. Additionally, α-lipoic acid has 
been proved to prevent AGE-dependent depletion of reduced glutathione and ascor-
bic acid and the subsequent activation of NF-kappa B in endothelial cell culture 
[ 79 ]. Thus, it appears that α-lipoic acid supplementation may reduce oxidative 
stress improving the metabolic derangements and microvascular function in animal 
and in vitro models. 

 Human studies with α-lipoic acid have been mainly focused in the treatment of 
diabetic polyneuropathy. In initial studies, a 19-day supplementation with α-lipoic 
acid improved the symptoms of diabetic polyneuropathy [ 80 ], while a longer-term 
therapy (initial IV infusions, then oral treatments for 2 years) objectively improved 
peripheral nerve function [ 81 ]. 

 On the contrary, another trial followed the patients for 7 months, demonstrated 
no improvements in symptoms in the group with α-lipoic acid [ 82 ], while 4 years 
treatment in the NATHAN 1 trial reported improvements in only some neuropathic 
defi cits and symptoms, but not objective nerve conduction, in patients with mild to 
moderate distal symmetric neuropathy [ 83 ]. In addition, there was a nonsignifi cant 
trend of developing serious adverse events in the treatment group indicating that 
although there may be a possible improvement in neuropathy, the long-term oral 
therapy may increase the risk of serious adverse events [ 83 ]. 

 The effects of α-lipoic acid have been studied also in autonomic diabetic neu-
ropathy and surrogate markers of macrovascular disease in a small number of sub-
jects. A 4-month treatment with α-lipoic acid showed a slight improvement in heart 
rate variability measurements, without, though, changing the symptoms of auto-
nomic dysfunction [ 84 ]. Finally, in a study of 4 weeks of oral α-lipoic acid supple-
mentation, it was reported that there was a signifi cant improvement of the 
endothelium-dependent vasorelaxation of the brachial artery compared to the pla-
cebo group, accompanied by a signifi cant reduction in markers of endothelial acti-
vation (interleukin-6 and plasminogen activator-1) [ 85 ]. 

 Concluding, the impact of lipoic acid on clinical cardiovascular end points is still 
unknown. Given also the increased risk of serious adverse events in long-term 
administration, the use of α-lipoic acid supplements cannot be recommended for 
patients with diabetes.  
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12.5.4     Statins 

 Statins improve the lipid profi le by inhibiting the enzyme hydroxymethylglutaryl 
coenzyme A reductase (HMG-CoA reductase) reducing the risk of cardiovascular 
morbidity and mortality [ 86 ]. Several studies have proposed that statins may 
decrease oxidative stress consequently improving the endothelial function. 

 Indeed, statins decrease NADPH activity, reducing the formation of reactive 
oxygen species and downregulating the renin–angiotensin system. They also 
reduce the oxidation of ROS and LDL cholesterol by reducing the activity of the 
NADPH oxidase in endothelial cells [ 87 – 94 ]. In addition, statins reduce the 
foam cells formation (responsible for atherosclerotic lesions formation) by 
decreasing the oxidized LDL uptake by the monocytes [ 95 ,  96 ]. Furthermore, 
statins downregulate AT1 receptor at the transcriptional level, improving mea-
sures of oxidative stress and vascular function [ 90 ]. Interestingly, atrovastatin 
has been proved to demonstrate free radical scavenging abilities through its 
hydroxymetabolites [ 97 ]. 

 By reducing the oxidation of LDL, statins upregulate eNOS expression, conse-
quently improving the vascular function in animal models of type 2 diabetes and 
hypercholesterolemia [ 98 – 100 ].    Statin-mediated increment in eNOS function was 
reported to be critical in vascular regeneration and restored myocardial vasorelax-
ation after experimentally induced myocardial infarction in the mouse model. This 
benefi t was not observed in eNOS−/− mice [ 101 ]. 

 It is a common knowledge that treatment with statins reduces the risk of major 
vascular events [ 102 ,  103 ]. However, its benefi t in improving endothelial dysfunc-
tion has not been clearly identifi ed so far. Indeed, treatment with statins did not 
improve vasoreactivity in patients with poorly controlled diabetes [ 104 ]. On the 
other hand, endothelium-dependent vasodilation signifi cantly improved, indepen-
dently of lipid lowering, in patients with better glycemic and lipid control in both 
type 1 and type 2 diabetes [ 105 – 110 ]. 

 Statins were also reported to ameliorate postprandial hypertriglyceridemia- 
and hyperglycemia-induced endothelial dysfunction, reducing also the serum 
nitrotyrosine levels in type 2 diabetes suggesting that its short-term, lipid-inde-
pendent vascular benefi ts are secondary to decreased oxidative and nitrosative 
stress [ 111 ]. 

 In conclusion it seems that statins improve endothelial function prior to reduc-
tions in LDL unless there is overwhelming oxidative stress related to type 2 diabe-
tes. The reduced response to statins may also be related to the increased levels of 
asymmetric dimethylarginine (ADMA), a competitive inhibitor of eNOS. Indeed, a 
recent study has been shown that a 3-week treatment with statin failed to improve 
vasoreactivity in patients with increased levels of ADMA [ 112 ].  
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12.5.5     ACE Inhibitors and ARBs 

 ACE inhibitors and ARBs exert their clinical effects by decreasing the binding of 
angiotensin II to the AT1 receptor, by decreasing levels of angiotensin II and by 
inhibiting the interaction of angiotensin II to the AT1 receptor, respectively. ACE 
inhibitors and ARBs have been proposed to improve endothelium-dependent vaso-
relaxation by decreasing superoxide production and increasing NO bioavailability 
[ 113 – 116 ]. These actions are mainly derived by the inhibition of angiotensin II 
which opposes many of the actions of NO. In particular angiotensin II causes vaso-
constriction, altered vascular smooth muscle function, increased infl ammation via 
NF-κB, and hypercoagulability by increased formation of PAI-1. In addition angio-
tensin II induces vascular superoxide production by uncoupling eNOS upon loss of 
dihydrofolate reductase (DHFR), which is a BH4 salvage enzyme [ 113 ]. 

 Recent studies have shown that ACE inhibitors and ARBs improve vascular 
function and cardiovascular outcomes in type 2 diabetes. Both agents unequivocally 
improve endothelial function in patients with type 2 diabetes [ 117 – 120 ]. Valsartan 
therapy improved resting forearm skin blood fl ow and resting brachial artery diam-
eter after a 12-week treatment in patients with type 2 diabetes. However, their 
impact on endothelial function in patients with type 1 diabetes is less clear 
[ 121 – 124 ]. 

 HOPE and LIFE studies have shown that ACE inhibitors and ARBs improve 
cardiovascular as well as all-cause mortality outcomes in patients with diabetes. 
The benefi t seemed to be higher in patients with diabetes than in nondiabetics [ 125 , 
 126 ]. The presence of native LDL increases AT1 receptor expression at least two-
fold in a sustained manner for 24 h by stabilization of posttranscriptional mRNA 
[ 127 ]. Furthermore, angiotensin II is binding with the AT1 receptor, upregulating 
the endothelial oxidized LDL receptor (LOX-1) in endothelial cells. This upregula-
tion of LOX-1 receptor is prevented by ARBs and ACE inhibitors, limiting the 
potential diffusion of oxidized LDL from the blood into the vessel wall, thus reduc-
ing the possibility of plaque formation [ 128 ]. Given that statins decrease the levels 
of native LDL which is responsible for the at least twofold increase of theAT1 
receptor expression [ 127 ], a coadministration of ACE inhibitors/ARBs with a statin 
may produce a synergic decrease in oxidative stress and vasoconstriction, as well as 
a decreased uptake of oxidized LDL and improved endothelial function [ 128 ].  

12.5.6     Thiazolidinediones 

 Thiazolidinediones is an antidiabetic agent category also known as PPAR-gamma 
agonists that bind nuclear PPAR-gamma receptors in adipocytes which function as 
transcription factors for genes important in adipocyte differentiation, lipid metabo-
lism, and insulin sensitivity. PPAR-gamma receptors are also expressed in cells 
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involved in the process of atherosclerosis including endothelial cells, vascular 
smooth muscle cells, monocytes/macrophages, and T cells. 

 Increased amount of evidence supports that apart from enhancing glycemic con-
trol, thiazolidinediones improve surrogate measures of vascular disease. Indeed, 
thiazolidinediones have been proved to improve endothelium-dependent vasodila-
tion as well as measurements of carotid IMT in patients with diabetes [ 129 – 133 ]. In 
addition, both rosiglitazone and pioglitazone have been reported to increase the 
regenerative capacity of endothelial progenitor cells in individuals with diabetes 
[ 134 ,  135 ]. This improvement in vascular function has been found to be associated 
with reduced NADPH oxidase activity, decreased LDL oxidation, and reduction in 
vascular infl ammation [ 133 ,  136 ]. 

 However, although thiazolidinediones proved to have a signifi cant improvement 
in oxidative stress and vascular function, there are serious concerns that one of 
them, rosiglitazone, worsens clinical cardiovascular outcomes. Thus, rosiglitazone 
has been reported to be associated with increased risk of congestive heart failure, as 
well as myocardial infarction [ 137 ,  138 ]. Thus, the current consensus is that rosigli-
tazone may have detrimental effects in patients with previous heart disease and 
diabetes, and its use cannot be recommended in these patients. Unlike rosiglitazone, 
larger clinical trials of pioglitazone in high-risk patients with type 2 diabetes and 
prior MI have demonstrated an improvement in rates of myocardial infarction, but 
increased edema formation and heart failure remain concerns [ 139 ,  140 ].  

12.5.7     Antioxidants and Mediterranean Diet 

 A study in 34.486 postmenopausal women reported that increased intake of vitamin 
E through diet was associated with decreased risk of death from coronary artery 
disease, while vitamin E supplementation did not affect the risk of death from car-
diovascular disease [ 141 ]. This study exemplifi es the paradox noted in several large- 
scale clinical and epidemiologic studies that diet but not vitamin supplementation 
seems to improve cardiovascular outcomes. 

 A great amount of evidence the last few decades has shown that this type of diet 
has impressive effects in reducing cardiovascular risk [ 142 ]. In addition, low adher-
ence to Mediterranean diet has been proven to increase the risk for metabolic syn-
drome [ 143 ]. Olive oil, a main component of the diet, has signifi cant antioxidant 
properties and is considered one of the primary factors that contribute to these ben-
efi cial effects [ 144 ]. 

 In a recent study involving subjects with metabolic syndrome, the Mediterranean 
diet presented anti-infl ammatory and antithrombotic properties improving the endo-
thelial function and insulin sensitivity [ 145 ]. Therefore, the current consensus is 
that a diet that encompasses the main components of the Mediterranean diet can 
greatly reduce cardiovascular risk in diabetic patients.  
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12.5.8     Green Tea and Coffee 

 Coffee, a common beverage in western countries, has been reported to possibly 
have antioxidant effects through minerals (such as magnesium), phytochemicals (in 
caffeine), and antioxidants. Several studies have shown that coffee decreases the 
risk of type 2 diabetes although there have been reports that caffeine itself may 
impair glucose metabolism in type 2 diabetics [ 146 ,  147 ]. However, it is not clear 
how coffee decreases the risk of type 2 diabetes especially since caffeine (and its 
phytochemicals) does not seem to play a signifi cant role. 

 Green tea, another widely consumed beverage, also seems to have protective 
effects as its polyphenols have antioxidant properties. A study that followed 
Japanese subjects for 11 years reported that the consumption of green tea was asso-
ciated with a decrease in all-cause mortality as well as mortality from cardiovascu-
lar disease [ 148 ]. In another Japanese study, consumption of green tea, coffee, and 
total caffeine was associated with a decreased risk for type 2 diabetes in a 5-year 
follow-up period [ 149 ].  

12.5.9     Exercise 

 Exercise or physical activity is recommended for the prevention or the initial ther-
apy of type 2 DM and ischemic heart disease [ 150 ]. Many studies have also shown 
that exercise can reduce blood glucose, apolipoprotein B-rich lipoproteins, oxida-
tive stress, or infl ammatory cytokines and elevate HDL cholesterol, insulin sensitiv-
ity, antioxidant capacity, or mitochondrial function [ 151 – 154 ]. 

 Other studies indicated also that exercise may inhibit the expression of NOX in 
human arteries [ 155 ], possibly providing a novel mechanism for the benefi cial 
effect of exercise and may help diabetic patients to prevent cardiovascular disease. 
NOX is a transmembrane enzyme located in intracellular organelles and functions 
in the generation of superoxide.   

12.6     Conclusions 

 Although there was initially much enthusiasm for the antioxidant therapy in diabe-
tes, especially in the form of supplemental vitamins, clinical trials have not shown 
evidence of decreased risk of cardiovascular outcomes. Vitamins E and C supple-
mentation, therefore, cannot be currently recommended. On the other hand, diet 
rich in antioxidants, especially Mediterranean diet, can provide considerable reduc-
tion in cardiovascular risk and may be of particular benefi t to subjects with diabetes. 
Finally, statins, ACE inhibitors, and ARBs, alone or in combination, seem to present 
antioxidative properties. However, its use cannot be recommended, as their 
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indications so far are limited to hypercholesterolemia and hypertension, respec-
tively.    Further research is needed in order to be determined whether they could be 
possibly used for their antioxidant vascular protective properties.     
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