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Supervisor’s Foreword

The theoretical methods needed to describe long, flexible polymers started to be
developed in the middle of the twentieth century with great names like Flory,
Edwards and de Gennes all making important contributions. The arrival of powerful
computer simulations in recent decades has allowed us to make further progress by
a combination of coarse-graining and either brute-force solution of dynamical
equations or ensemble-averaging. Much of the field is now mature and, broadly
speaking, the physics of polymers is fairly well understood. However, there is one
important island of intellectual difficulty still stubbornly resisting erosion and that is
the physics of ring polymers. Rings are polymers that are closed into a long, cyclic
macromolecule with no ends and are an important archetype of topological com-
plexity in polymers in general. Ring polymers can be synthesised in the lab or
isolated from living systems, such as the plasmids found in bacteria or the exotic
chain mail-like genetic material of Kinetoplastida. What makes understanding rings
difficult is the topological constraint associated with their uncrossability. That is to
say that the global topological state of the system at synthesis, with whatever knots
and/or links that might then be present, must be maintained for all later times if the
polymers cannot break, fuse or cross through one another. An important special
case, that is the primary focus of this thesis is that when the polymers all remain
unknotted with themselves and unlinked from each other. This is the ensemble most
often studied in the literature and, like linear polymers (but in contrast with
chain-mail-like topologies), it is ultimately liquid-like, i.e. as it has no zero fre-
quency shear modulus, at least for temperatures above a glass transition tempera-
ture, depending (only) on the chain chemistry, below which microscopic molecular
motion is lost. What is difficult about topological constraints is that they are highly
non-local. If one wants to determine whether two ring polymer conformations are
topologically permitted or not, e.g. for inclusion in an ensemble average, one needs
information on the entire spatial configuration of both of them. While this makes
analytical progress challenging we can still turn to computer simulations.

If one reads the literature from the 80s and 90s one starts to find the first few
references of the possibility that inter-ring threadings could occur and that, were

vii



these threading to proliferate, an unusual “tangled” state of matter might arise.
This possibility greatly intrigued me when I was still a graduate student in the group
at the Cavendish Laboratory in Cambridge led by Sir Sam Edwards. The subse-
quent development of more efficient computers might partially excuse the fact that
it took 20 years for this interest to find an outlet! It is particularly pleasing to see a
similar interest in these systems sparked in Davide Michieletto who has produced a
thesis that is a tour de force for the field. At the risk of sentimentality it is also
satisfying to see the baton of polymer theory from the Halcyon days in Cambridge
handed down at least one more generation.

This thesis is mainly concerned with computer simulation of unlinked, unknotted
ring polymers in various ensembles, these being ring polymers in neutral solvent,
ring polymers in perfectly ordered gels and ring polymers in imperfect gels. Why
bring gels into the picture? One reason is that they model the environment present
in the ubiquitous separation technique known as gel electrophoresis. A more
compelling reason is discussed in this thesis: The gel meshwork allows for the
formulation of a mathematically precise definition of inter-ring threading, in which
one long ring penetrates through another, in much the same way as when one
rubber band is threaded through a second; the threaded, or “passive”, ring is pinned
for as long as the threading, or “active” ring, remains in place. The active ring can
diffuse freely while the passive ring can make any (topology-preserving) move
provided it does not cross through the active polymer at the site of the penetration.
These kinds of threadings have been notoriously difficult to pin down mathemati-
cally since, by construction, they do not alter the topological state of the system.
It has therefore been difficult to say what the essence of a threading really is and
hence which rearrangements produce (or remove) them and which do not.

There are many interesting results in this thesis but, in the interests of keeping
this introduction to a modest length, I will focus on the two that were most exciting
for me. The first of these is related to exactly this matter—the definition of a
threading. Davide’s brilliant insight was to use the gel architecture to define cells,
through which the rings must lie. When one ring threads a second this alters the
topological state of a proxy system: the polymer contours that lie within the cell,
truncated at the walls of the cell and then appropriately extended so as to be closed
outside the cell. This allows a rigorous definition of threading and, therefore,
threading to be counted and tracked in computer simulations of rings moving inside
gels. Davide was able to show that threadings do indeed occur and that they
proliferate in long rings with a number per ring that appears to be almost exactly
proportional to the ring polymer contour length. Combined with evidence for
slowing down, due to the requirement that threadings be undone in a particular
order, this is perhaps the best evidence to date for the emergence of a highly
interpenetrating state in which the longest relaxation times might ultimately scale
exponentially in, rather than as a power of, the polymer length. We refer to such a
system as a topological glass as they would have the extremely unusual property of
having exponentially slow (somewhat glassy) relaxation times but show no slowing
down in the microscopic dynamics, as the temperature is assumed to remain well
above the classical glass transition temperature throughout.

viii Supervisor’s Foreword



The second really important result in this thesis is concerned with long ring
polymers in neutral solvent at high concentrations where the polymer coils are
strongly overlapping. Do the threading that were observed in the presence of the gel
also occur in this ensemble? A new approach was required as the gel is no longer
present and its architecture cannot therefore be exploited as before. Davide’s second
really brilliant insight was to realise that threading can be identified by artificially
immobilising (“freezing”) a fraction of the ring polymers in an equilibrated simu-
lation of rings so that they have no microscopic freedom to move at all. If threading
are present then some of them will involve a ring in the frozen fraction threading
through one that is unfrozen. In this case the unfrozen chain will effectively
experience a permanent threading and be pinned at the site of that threading
throughout the simulation. The pinned chain can still move but can only diffuse
away a distance that is of the order of the equilibrium coil size as the pinning
delivered by the frozen ring must remain somewhere within its contour. Davide
then showed that such confined diffusion can be observed in these systems of rings
and, by construction that such threading would have been present, at least tran-
siently, in the equilibrated system prior to (partial) freezing. This essentially proves,
for the first time, the existence of threadings in concentrated ring systems and opens
up an entire field of study concerned with the properties of these threaded systems
and the topological glass that might eventually emerge from them.

Coventry, UK Prof. Matthew S. Turner
April 2016
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Abstract

Ring polymers offer a richness of behaviours that are of broad interest and have
deep consequences in many fields of Science. In this thesis I investigate some
general and universal properties, i.e. independent of the chemical nature of the
polymers, emerging from systems made of a collection of rings. These will be
studied by using methods of equilibrium and non-equilibrium Statistical Mechanics
together with Molecular Dynamics simulations of coarse-grained models for the
systems under investigation. Within these frameworks, important questions
regarding the macroscopic behaviour of ring-shaped polymers have yet to find a
satisfactory answer. The work presented in this Thesis finds its principal motiva-
tions in problems arising in Material Science, the so-called “melt” of rings, and in
Biology, such as the organisation of mitochondrial DNA in some organisms and the
mechanisms governing the electrophoretic separation of DNA samples in gels.
There are several theoretical challenges in these fields which represent
state-of-the-art scientific research and whose partial answers are provided in the
work presented in this Thesis. One of the major achievements of the work presented
is the general understanding of the role played by topological properties, i.e. those
invariant under smooth deformations of the polymer contour, on the macroscopic
behaviour of the investigated systems. Finally, the conclusions drawn from the
presented work can have important scientific consequences as they may ultimately
lead to a more complete understanding of complicated issues in Biology and to the
design of next-generation soft materials.
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Chapter 1
Introduction

Io stimo piú il trovar un vero, benché di cosa leggiera, che’l
disputar lungamente delle massime questioni senza conseguir
veritá nissuna.

G. Galilei

Polymers are ubiquitous in Nature. They consist of a collection of many simple units
(from the Greek word for “many” poly and for “unit” mer) and because of this, they
are among themost simple examples of physical cooperativity. Polymers are made of
repetitive patterns which make them easy to design, while their length can reach the
million of units. Polymers can be thought of as very early examples of self-replicating
objects: Given a single unit (a monomer) and enough substrate to form more units,
a long sequence of monomers is bound to appear and eventually this can even break
up forming many copies of itself. Nature has exploited this self-replicating ability
by giving polymers a central role in Biology.

Examples of biopolymers, or polymers produced by living organisms, are virtu-
ally endless: polysaccharides such as cellulose, starch and glycogen and, in general,
carbohydrates are polymers made of repeating units which originate from the chem-
ical group of monosaccharides such as glucose and are used as energy storage in
mammals or scaffolding in plants. Filaments made of actin are polymers made up of
proteins which, acting in concert with myosin, allow muscles to contract and extend.
Microtubules are hollow and chiral polymers found throughout the cytoplasm formed
as a long and dynamic self-assembly of tubulin which are crucial for intracellular
transport and mitosis. Finally, possibly the most famous biopolymer in Nature is the
deoxyribonucleic acid, or DNA, which is made as a collection of four nucleotides.

I prefer finding something true, although of small importance, rather than keep debating on the
major issues failing to achieve any truth.

© Springer International Publishing Switzerland 2016
D. Michieletto, Topological Interactions in Ring Polymers, Springer Theses,
DOI 10.1007/978-3-319-41042-5_1
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DNA is an unparalleled example of polymers ability to self-replicate and to store
information (Hurst and Dawkins 1992; Alberts et al. 2014).

The self-replicating property of polymers is one of the many features which are
fascinating about them. Ancient mesoamericans had already harnessed one of their
other crucial properties. They discovered that the liquid sap extracted from the hevea
tree would become elastic and resist tension once dried. From a microscopic point
of view, they were witnessing the first instances of vulcanisation, which is nowadays
widely used to make, among other things, shoes and tyres. The process for which
cross-linking a polymeric liquid would confer elastic properties to it would have
been fully understood only 3500 years later, around 1850 (Hosler et al. 1999).

Another pivotal feature of polymers is that some of them are easy to design
and cheap to synthesise. As a consequence, their artificial realisation soon started
to attract economic interest. During the Second World War the production of syn-
thetic fibres such as nylon and polyester received an important incentive in order to
substitute natural counterparts such as silk, cotton and wool. At the same time, coun-
tries strongly encouraged and generously financed scientific research on polymers
in order to produce more advanced forms of artificial polymers and materials. This
resulted in the first Nobel price in Polymer Science given to Hermann Studinger in
1953 for understanding that polymers were made of atoms held together by covalent
bonds (Staudinger 1920).

Two of the polymers that are nowadays most abundantly produced in the world
are polyethylene and polystyrene. These are made by long sequences of the simple
repeating units shown in Fig. 1.1. A common problem in synthesising these long
chains is branching: sometimes multi-functional units such as that in Fig. 1.1c appear
and create unwanted side-chains. When this problem is avoided, linear chains such
as that in Fig. 1.1d are produced. Other times, more complex topologies such as
branched, star or comb polymers are generated (Fig. 1.2).

In the last fifty years a number of important scientists spent part of their careers
trying to understand macroscopic properties of systems made of polymers. Two of
these, Paul Flory and Pierre-Gilles de Gennes have been awarded with Nobel prices
for their theoretical work in 1974 and 1991, respectively. Others, such as Sir Sam
Edwards and Masao Doi, are worldly renowned for their contributions to Polymer
Physics.

Fig. 1.1 a, b Examples of
artificial polymers: skeletal
and chemical formulae for
polyethylene and polystyrene
molecules. c Example of a
branch point in polyethylene.
d A linear polyethylene
chain and coarse graining of
its chemical details
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Fig. 1.2 Polymers with different topologies. From left to right: linear, star, branched (quenched),
circular or ring, linked and knotted

One of the first steps toward the formulation of a polymer theory is selecting the
right level of description. While understanding the role of chemical and local details
is crucial whenever one wants to optimise the production of a specific material or
enhance a feature of a given polymer, global and general properties are the only ones
truly necessary for understanding universal polymer features (Gennes 1971). This
process is often known with the general name of “coarse-graining” (Fig. 1.1d) and
will be extensively employed in this thesis as mean to simplify the computational
modelling and achieve more general and universal results. Details such as chemical
bonds or type of atoms forming the chains are often neglected in physical descrip-
tions of polymers, while the polymerisation index, i.e. the length of the sequence
of monomers, or the stiffness of the chain are taken into account accurately, as they
have an universal, i.e. system independent, effect on the properties of a polymer.

The largest part of the theoretical work in the past decades has been focused on
systems made of linear polymers. The behaviour of linear polymers in good solvent
and sparse solutions is well captured by the Rouse-Zimm polymer model (Gennes
1971) while the case of dense solutions, or melts, has been very successfully under-
stood in terms of the reptation model (Doi and Edwards 1998), sketched in Fig. 1.3.

According to this theory, a linear polymer in a dense solution of other chains
is constrained by the neighbouring polymers in an effective “tube”, its transversal
motion being restricted all along its contour. The dynamics of the chain is then
allowed by the “curvilinear” diffusion of defects that can flow up and down the
polymer backbone (Fig. 1.3a). As a result of such motion, the polymer itself diffuses
along the tube and its ends free themselves from the transversal constraints, exploring
new regions of the surrounding space (Fig. 1.3b). This leads the chain to “reptate”
(from the Latin reptare, to creep), through the obstacles and eventually renew the
tube (Fig. 1.3c). While this motion takes place, a smaller and smaller section of the
original chain will still be confined within the initial tube (Fig. 1.3d), finally leading
to a completely renewed and uncorrelated configuration. Any stress that had been
applied at the initial time is now completely relaxed through the curvilinear motion
of the defects.

The time required for the chain to undergo this process is called the “reptation
time” and it is proportional to the system viscosity η, readily measurable in exper-
iments. According to the reptation theory, these two quantities obey the scaling
η ∼ τrep ∼ M3, with M being the chains polymerisation length. Experimental find-
ings instead suggest a slightly higher value of M3.4. This behaviour was captured
through a further refinement of the reptation theory, also referred to as “double rep-
tation”, which takes into account the reorganisation of the tubes surrounding any
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Fig. 1.3 Reptation mechanism for linear polymers in dense solutions. a A linear polymer is sur-
rounded by neighbouring chains (grey dots) which act as an effective “tube” forcing the polymer to
perform a 1D diffusion along its backbone. b The polymer can retract the tube by freeing its ends.
c The tube is renewed whenever the chain explores new regions of space. d Both ends contribute
to the tube renewal. As time passes, the section still contained in the original tube (highlighted in
red) becomes smaller and smaller and the chain de-correlates from its starting configuration

given chain, leading to an effective constraint release (Viovy 1985). One of the most
important advances brought by the reptation theory is the fact that seemingly differ-
ent systems, such as dense solution of linear, branched or star polymers and even
cross-linked polymer systems, can be described in a unified theory (Doi and Edwards
1998).

For this reason, the realisation that the behaviour of ring polymers in solution
could not be captured by the tube model came as a shock (McLeish 2002). The
reptation theory in fact heavily relies on the presence of loose ends to describe
the disentanglement process. On the contrary, the basic assumptions on which this
theory relies are not met by rings, or circular polymers, given their lack of ends.
Because of this, the macroscopic properties of systems of un-linked and un-knotted
ring polymers in solution present some big open questions and are far from being
fully captured. For all other polymer architectures, the presence of ends is pivotal for
the chains to renew their configurations; ring polymers, having no ends, markedly
depart from such relaxation pathway. This is why ring polymers are perhaps one of
the last big mysteries in Polymer Physics (McLeish 2008).

Adding further topological constraints such as, linking between rings or knotting
(see Fig. 1.2), complicates the picture even more. In these cases, in fact, the scientific
community is not even equipped with the right mathematical tools to classify these
objects: At present, a quantity does not exist that can unambiguously distinguish
every knot or link (Adams 1994).
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Fig. 1.4 a A ring polymer that is not threaded by its neighbours (black dots) and assuming a lattice
animal (moose) configuration. b A ring that is threaded by a neighbour. Its contour can be thought
of as encircling points (blue) that cannot be crossed until the blue ring has diffused away (from
Ref. Kapnistos et al. (2008) with permission from Macmillan Publishers Ltd: Nature Materials,
copyright 2008)

Joining the two ends of an open chain would seem, at first sight, to be a relatively
trivial change; In reality, it has a profound impact on the static and dynamic properties
of a polymer (Bates andMaxwell 2005).This procedure in fact changes its topological
state, i.e. the state that is preserved under smooth deformations of its contour, and
introduces long-ranged constraints on the allowed conformations.

Whereas ring polymers have no ends to retract or protrude, they can generate
any number of temporary double-folded segments which can explore the space as
if they were terminal segments. These conformations are sometimes referred to as
“lattice animals”, or annealed branched polymers, as the branch points are free to
move along the polymer contour and they sometimes recall familiar animal shapes
(see Fig. 1.4a). From this, one can understand that although lacking of ends, ring
polymers do not necessarily display a reduced ability to explore space. Rather, they
follow unique pathways through which relax the stress. Ring polymers have, in
some sense, a greater freedom of movement with respect to their linear or quenched
branched polymers, although they suffer of much stronger topological constraints
due to the fact that they have to preserve their topological state at all times. Because
of all this, ring polymers in solution are, at present, a topic of intense debate and lively
interest among the Polymer Physics community (Kapnistos et al. 2008; Halverson
et al. 2011a; Mirny 2011; Pasquino et al. 2013; Rosa and Everaers 2014; Grosberg
2014).

In spite of our difficulties in capturing their behaviour, ring polymers are abundant
in Nature, who seems to have no difficulty at all to regulate their properties and
topology, often in very delicate and life-depending conditions, such as in the case of
bacterial DNA or inside the eukaryotic cell nucleus (Calladine et al. 1997; Alberts
et al. 2014). For instance, bacterial DNA, which is circular, has to be kept un-knotted
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and un-linked at all times during mitosis; failing to do so would lead to the death
of the organism as its replicated genetic material cannot be separated into the two
daughter cells. DNA knots and links have been frequently observed in the genetic
material of bacteria, viruses and eukaryotes, since their discovery in the late ‘70s (Liu
et al. 1976, 1981; Fairlamb et al. 1978), and because they are so ubiquitous, all
organisms have developed special enzymes—called topoisomerases (Berger et al.
1996)—whose function is to help untie DNA knots and links. This indicates how
the topological regulation in systems of bio-polymers is a serious issue, and learning
howNature deals with it might provide us with freshmeans to design next-generation
soft materials or to understand and detect genetic diseases (Cavalli andMisteli 2013;
Marini et al. 2015).

One of the most studied ensembles involving ring polymers is the so-called
“melt” of rings which consists of a dense solution of rings above its glass and/or
crystallization temperatures, i.e. a polymer liquid. The reasons for which this sys-
tem has received much attention in the last years are twofold: firstly, it has been
found to share some properties with the organisation of chromosomes inside the cell
nucleus (Cremer and Cremer 2001; Rosa and Everaers 2008; Vettorel et al. 2009;
Mirny 2011; Halverson et al. 2011a, b; Grosberg 2014; Rosa and Everaers 2014;
Halverson et al. 2014), and secondly, recent experimental advances allowed, for the
first time, its purification from linear contaminants which allowed us to study directly
the pure melt of rings using artificial polymers such as polyisoprene or polystyrene
chains (Kapnistos et al. 2008; Pasquino et al. 2013).

Despite the intense scientific effort spent characterising the dynamics of ring
polymers, a full satisfactory description has not yet been achieved. In particular,
understanding the conformations assumed by the rings in the melt is of great con-
temporary interest. Although these show some features reminiscent of a collapsed
globule (Grosberg et al. 1993; Rosa and Everaers 2014), they also display some
deviations from a fully crumpled conformation (Halverson et al. 2011a), and in par-
ticular, they show intra- and inter-chain protrusions, also known as “threadings” (Lo
and Turner 2013). A ring is said to be passively threaded by another, actively thread-
ing, ring when the contour of the former is pierced through by the contour of the
latter, very much like the rings in Fig. 1.4b.

These threadings represent serious, although not permanent, constraints on the
diffusion of the rings and it has been conjectured that when the number of such
constraints is large enough, a spanning cluster of inter-threaded rings might arise
and form what has been called a “topological glass” (Lo and Turner 2013). The
first part of this Thesis will be devoted to understanding and reproducing (in silico)
this peculiar and unique state of matter. The main objectives will be the detection
of threadings in melt and dense solutions of ring polymers and their consequent
employment as a driving element to tune the physical properties of the system and
induce a (topological) kinetically arrested state.

The second and third parts of this Thesis will be focused on more biologically-
oriented applications. As mentioned before, knotted and linked ring polymers are
abundant in Nature under the form of bio-polymers such as DNA, RNA and pro-
teins. In order to understand the mechanisms through which their formation and
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simplification is regulated inside the cell, Molecular Biologists often face the chal-
lenge of identifying knots and links topological state. This is nowadays achieved via
gel electrophoresis techniques which can efficiently and beautifully separate charged
biopolymers having different length, molecular weight and topology. In the case of
DNA this technique is even able to separate molecules with different amount of
supercoiling or at different replication stages (Calladine et al. 1997; Viovy 2000;
Trigueros et al. 2001; Arsuaga et al. 2002; Olavarrieta et al. 2002). Nonetheless, a
physical picture capturing the behaviour of knotted and linked bio-polymers moving
through gels in response to external fields as a function of their topological state is
still lacking a satisfactory theoretical model. This problem will be tackled in this
Thesis from a physical perspective and by focusing on the role of topology in the
entangling and disentangling properties of knotted polymers driven by external fields
and interacting with random and complex media, such as physical gels.

Another important biological example in which Nature has to deal with polymers
displaying topologically complex features is in the case of the mitochondrial genome
of organisms of the class Kinetoplastida, also called the “Kinetoplast DNA” (Jensen
and Englund 2012). This is made of thousands of short loops forming a spanning
linked network resembling a medieval chain-mail (Chen et al. 1995). The correct
assembly and disassembly of this network during the replicating phase and the cor-
responding topological regulation is crucial for the survival of this unique species
whose evolutionary survival is a long-standing issue in evolutionary biology (Borst
1991). How these organisms can master this complicated task is not at all clear.
Although this system presents many complicated biological issues, I will provide a
minimal coarse-grained model in order to capture the key elements of the problem
and understand the role of topology in this biological system. I will show that, in this
case, such simple coarse-grained bio-physical model can, not only contribute toward
the understanding of how the Kinetoplast is formed and regulated, but also provide
us with some insight into the evolutionary success of these organisms.

Finally, from the aforementioned examples, one can appreciate that I write this
Thesis with the aim of understanding how topology affects the general macroscopic
behaviour of systems made of ring (bio-)polymers. In particular, I will focus on three
types of topological “interactions”, namely threading, knotting and linking, and from
each one I will draw and examine specific examples mainly inspired from Material
Science and Biology.

It is worth pointing out at this stage that although real-life polymers can be vari-
ous and have the most different roles in our every-day life, ranging from polystyrene
which makes common plastics to DNA which contains the information of life itself,
they all share some universal physical properties, which are independent of their
chemical composition. This is the reason why it is possible to capture the behaviour
of such diverse systems within the same coarse-grained physical models. Focussing
on the general physical properties of the systems and discarding, as much as possible,
any chemical or biological detail can often help us understanding the general under-
lying mechanisms regulating such systems and pinpoint more general and universal
questions.



8 1 Introduction

The work presented in this Thesis will be structured as follows:
In Chap.2 I will provide the reader with a brief theoretical background on the

static and dynamic properties of polymers in solution.
In Chap.3 I will give a brief general overview of the computational details and

numerical schemes used in the rest of the Thesis and will describe the computational
models employed.

Chapter 4 will be divided into two sections: First, I will introduce an algorithm to
unambiguously detect and identify a peculiar type of topological interaction: thread-
ing of un-knotted and un-linked ring polymers. The system I will investigate is a
dense solution of ring polymers immersed in gel which will provide me with a way
to unambiguously define these elusive kind of inter-chain interactions. In addition, I
will investigate the effect of threadings on the relaxation dynamics of the rings and
provide an explanation of the observed, both in experiments (Doi et al. 2015) and
simulations (Halverson et al. 2011b), slowing down in terms of emergence of system-
spanning connected clusters of inter-threaded rings, thereby relating the increase of
spatial correlations with the increase of relaxation time.

In the second part of the Chapter I will tackle a melt of un-knotted and un-linked
ring polymers, possibly one of the most studied systems by the Polymer Physics
community in recent years. It has been conjectured (Lo and Turner 2013) that the
main topological interaction affecting the polymers behaviour in this system is that
of threading. On the other hand, currently there is no way to unambiguously identify
threadings in a melt of rings, in contrast to the case described before. For this reason
I will probe their existence dynamically, i.e. by imposing some external artificial
constraints on the rings’ motion and by studying the in silico response of the system
to this external perturbation. I will introduce a protocol that can provide us with a
way to identify the presence of threadings and ultimately show that a melt of rings
can, in fact, generate a dynamically arrested state under certain conditions.

In Chap.5 I will study another type of topological interaction: linking between
ring polymers. In order to investigate the properties inherited by a system of rings
interacting via linking I will focus on biological organisms whose viability relies on
the effectiveness of this topological interaction: theKinetoplastidae. These organisms
possess a uniquemitochondrial DNA that is made of thousands of linked DNA loops,
the “Kinetoplast DNA”. I will investigate its structure and provide a simple bio-
physical model to explain its stability and topological organisation, both of which
are still source of intense debate in the biological community. I will tackle these
issues with a philosophy of extreme simplification and the results that I will present
will shed some light into the evolutionary advantage of the Kinetoplast and might
provide us with some fresh insight into how to artificially generate an “Olympic gel”.

In Chap.6 I will study an intra-chain topological interaction: knotting. As men-
tioned before, one of the most successful and broadly used techniques to separate
knots in biological material is by using gel electrophoresis, although its theoretical
understanding is far from complete. For this reason I will focus on understanding
how knots interact with the surrounding environment and in particular I will com-
pare linear, circular un-knotted and knotted polymers dragged by an external field
through a disordered environment, such as that of a physical gel. I will investigate

http://dx.doi.org/10.1007/978-3-319-41042-5_2
http://dx.doi.org/10.1007/978-3-319-41042-5_3
http://dx.doi.org/10.1007/978-3-319-41042-5_4
http://dx.doi.org/10.1007/978-3-319-41042-5_5
http://dx.doi.org/10.1007/978-3-319-41042-5_6
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their behaviour depending on different field strengths, environmental disorder and
knot type. The results I will present will be particularly important as they can directly
inform biological experiments such as DNA gel electrophoresis and enlighten some
recent unexplained experimental outcomes.

Finally, in Chap.7 I will draw some conclusions, summarise the main findings
and attempt to provide a unifying view over the topics treated in this Thesis.
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Chapter 2
Predicting the Behaviour of Rings in Solution

No man is obliged to learn and know every thing; [...]; yet all
persons are under some obligation to improve their
understanding; otherwise it will be a barren desert, or a forest
with overgrown weed and brambles.

I. Watts

Polymeric systems offer an incredible richness of behaviour. Depending on the
solution concentration, its temperature or its quality and the polymers length, or
topology, every system made of polymers can be categorised into a “universality
class”, within which it finds a physical characterisation (scaling) of its macroscopic
properties.

The physical properties of polymers have been pioneered by Flory in the ‘50s, by
Edwards in the ‘60s and ‘70s and by de Gennes in the ‘70s and ‘80s. The theories that
they developed were mainly concerned with linear polymers and helped the under-
standing and realisation of many polymer compounds used nowadays. Both Edwards
and de Gennes became, at some stage, interested in studying polymers displaying
more complicated topologies. They mainly focused on branched and star polymers,
although both of them turned their attention to ring polymers, sooner or later, during
their lifetime. Edwards (1967, 1968) chose to tackle the matter from a field-theoretic
point-of-view while de Gennes (1979), Raphael et al. (1997) chose a more practi-
cal “gedankenexperiment” in which he studied a gel made of linked polymer rings,
broadly known as “Olympic gel”. Both these series of attempts were far from being
the most successful and important contributions brought forward by these two giants
which indicates the difficulty of the topic (and partially excuses the diffident approach
that I will assume in tackling the matter). Even though understanding ring polymers
is a difficult task, important advances in the field have been achieved in the past
decades (Cates and Deutsch 1986; Rubinstein 1986; Grosberg et al. 1993; Obukhov
and Rubinstein 1994): Ring polymers are nowadays well known for behaving very
differently from their linear counterparts, although a full theoretical description of
their static and dynamic properties is far from achieved.

© Springer International Publishing Switzerland 2016
D. Michieletto, Topological Interactions in Ring Polymers, Springer Theses,
DOI 10.1007/978-3-319-41042-5_2
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In this chapter I will briefly review themain theoretical findings regarding systems
of ring polymers in dense solutions, melts and embedded in gels. In particular, I will
separately treat static and dynamic properties, and Iwill introduce the key observables
that I will use to characterise and investigate the systems in the following chapters.

2.1 Statics

2.1.1 The Size of a Crumpled Coil

The size of a polymer coil has been investigated in various solvents and different
concentrations in the past decades. The general assumption is that the size R of a
polymer coil depends on the degree of polymerisation M as

R ∼ Mν (2.1)

where ν is also known as the entropic exponent and is related to the fractal dimension
of the coil via ν = d−1

F . The Gaussian, or ideal, approximation for the end-to-end
size Re of a polymer coil results in the scaling

R2
e =

M∑

i, j

〈
r i r j

〉 =
M∑

i

〈r2i 〉 +
M∑

i �= j

〈
r i r j

〉 = Mσ2, (2.2)

where r is the vector joining two consecutive segments along the chain, |r i | = σ is
the size of a segment and segments r i , r j are correlated only if i = j .1 This gives the
value of ν = 1/2 for ideal coils and applies to polymers in dimension d above the
upper critical dimension dc = 4, for which the ideal polymer picture breaks down
and self-avoiding (steric) constraints become too important to be neglected.

One of the most famous and important schemes to infer the value of ν for self-
avoiding polymer coils in d < dc has been advanced by Flory (1953): Given the
monomer concentration of a coil

cint � M

Rd
(2.3)

the steric repulsion inside a polymer coil of volume Rd can be given in a mean-field
picture, i.e. neglecting the inter-monomer correlations, as a virial term

Fsteric � kBT vc
2
int R

d � kBT v
M2

Rd
, (2.4)

1Local (short-ranged) correlations, do not affect the scaling.
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where v takes the role of excluded volume parameter (v > 0 for good solvents) and
has dimensions of a d-dimensional length. This repulsive term is balanced by an
entropic term which contrasts the coil expansion much further than the ideal size
(with ν = 1/2). This entropic term can be written as

Felastic � kBT
R2

Mσ2
. (2.5)

Summing both terms, the free energy of a coil can be written as

F

kBT
= Fsteric + Felastic

kBT
� v

M2

Rd
+ R2

Mσ2
. (2.6)

After minimisation in terms of the size R, this formula leads to the famous scaling
for self-avoiding coils in d dimensions

R � [
vσ2N 3

]1/(d+2)
(2.7)

which gives ν1D = 1, ν2D = 3/4 and ν3D = 3/5, which surprisingly2 well agrees
with experimental observations (in particular numerical estimates give ν3D = 0.588).

The size of a ring polymer, because of its lacking of ends, is better captured by
the radius of gyration, defined as

R2
g = 1

2M2

∑

i, j

[
Ri − R j

]2 = 1

M

∑

i

[Ri − RCM ]
2 (2.8)

where Ri is the position of segment i and RCM is the position of the ring’s centre of
mass. Nonetheless, the same Flory theory applies to rings, which follow the scaling
Rg ∼ σMν with ν = 3/5 in 3D and in good solvent in dilute conditions.

When rings are placed inside a gel structure the picture changes dramatically.
In fact, while linear polymers remain in the same universality class, i.e. retain the
same ν when placed inside a gel, rings have been shown to completely change their
behaviour. Rings embedded in a gel whose lattice spacing is less than or comparable
to the rings persistence length lP (i.e. the length needed to de-correlate the tangent
vector or, equivalently, to observe spontaneous bending due to thermal fluctuations)
assume lattice animal (LA) configurations. Examples of these have been shown in the
Introduction (Fig. 1.4). The rings assume double-folded configurations to preserve
their topology and by doing this they protrude through the gel pores via temporary
loops, or branches. The first prediction of the scaling exponent in d dimensions of
such random, or annealed, branched structures was given by Lubensky and Isaacson
(1979), Isaacson and Lubensky (1980) and, subsequently, by Parisi and Sourlas

2“Surprisingly” because Flory’s theory actually overestimates the repulsive term by neglecting
monomer-monomer correlations, but also overestimates the elastic term, thereby balancing out the
errors and leading to a very accurate estimation of the scaling of the real size R (de Gennes 1979).

http://dx.doi.org/10.1007/978-3-319-41042-5_1
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(1981) in terms of the exponent of the Lee–Yang edge singularity of the Ising model
in d −2 dimensions and it is, to my knowledge, one of the few (if not the only) exact
field-theoretic result in 3 dimensions, and gives

Rg ∼ σM5/[2(d+2)]. (2.9)

This prediction, which holds for isolated self-avoiding ring polymers in gels, or
lattice animals, in dimensions d < dc = 8, is (in 3D: ν = 1/2) incidentally the same
as that for ideal chains, although the statistics of the conformations is completely
different. It is alsoworth noting that annealed and quenched branched polymers are in
different universality classes (Gutin et al. 1993). This means that branched polymers
with fixed, i.e. quenched, functional units (or branching points), do not behave like
lattice animals, for which the branching point are temporary, i.e. can be annealed.

What happens when the coils are instead in concentrated conditions, i.e. many
different chains are overlapping and c > c∗ � M/Rd? In this case, it is well
known (de Gennes 1979; Doi and Edwards 1988) that the steric interaction between
different coils screens the coils self-avoidance. This means that in a melt of poly-
mers, i.e. a dense solution of polymers from which the solvent has been drained, the
statistics of the polymers is ideal once again, i.e. as if d ≥ dc. In this case linear
polymers return to assume ν = 1/2, but what happens to the rings? One could argue
that a ring polymer in the melt should assume the size of an ideal ring polymer, in
agreement with the behaviour of linear polymers in melt. This is not true. In fact, the
size of an ideal annealed branched polymer can be described in terms of ideal tree-
like structures and its scaling is given by the Kramers theorem (Daoud and Joanny
1981; Rubinstein and Colby 2003)

R2
g = σ2

M

∑
k M1(k)[M − M1(k)]ZM1(k)ZM−M1(k)∑

k ZM1(k)ZM−M1(k)
∼ σ2M1/2, (2.10)

where the sum is over all the bonds k which separate the branched tree into two
sub-trees (always the case as there are no loops in lattice animals) of sizes M1 and
M − M1 weighted by the corresponding probability ZM1(k)ZM−M1(k), and which
gives Rg ∼ σM1/4. On the other hand, this prediction is only valid for dimensions
d ≥ dc = 8 (de Gennes 1979; Isaacson and Lubensky 1980) and, in particular,
in d = 3 generates a clear artificial singularity in the coil mass as the degree of
polymerisation M increases. For this reason Daoud and Joanny (1981) conjectured
that the limiting scaling for a randomly annealed structure in d dimensions and in
concentrated conditions might be obtained from a free energy that contains all the
n-body terms

F

kBT
= v

M2

Rd
+ w

M3

R2d
+ · · · + tn

Mn

Rd(n−1)
+ · · · (2.11)

and whose minimisation (with respect to R) leads to

Rg ∼ σM1/d , (2.12)
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Fig. 2.1 a Themoose-like configuration of a ring polymer in gel and its tree representation bwhich
can be also mapped to a Cayley-tree (partially showed in c) whose nodes have maximum valence
equal to 4. Adapted from Ref. (Kapnistos et al. 2008) with permission from Macmillan Publishers
Ltd: Nature Materials, copyright 2008

once n → ∞. This scaling has been found, both numerically (see Chap.4 and
Halverson et al. 2011) and experimentally (see Gooßen et al. 2014; Brás et al. 2014;
Doi et al. 2015), to correctly describe the size of ring polymers in melt, or dense
solutions, in the limit of large polymerisation M .

More recently, Grosberg (2014) provided a Flory-like theory in order to specifi-
cally address and describe the scaling of ring polymers in the melt in terms of their
spatial size R and their “Cayley-tree representation” size Lc. The latter represents
the extension of the Cayley tree, or graph, representation of the lattice animal (see
Fig. 2.1). If Lc ∼ M/2 then the ring is fully stretched and all the segments belong
to the backbone Lc. On the other hand, if Lc ∼ lnM , then the ring resembles a
dendritic polymer (Grosberg 2014). By assuming the existence of a further scaling
exponent ρc such that R ∼ σMν and Lc ∼ σMρc (or R ∼ σ1−ν/ρc Lν/ρc ), one can
introduce two Flory-like free energies: Felastic ∼ kBT R2/σ2Lc which penalises the
stretching of the backbone, and a second Fbranching ∼ kBT L2

c/Mσ2 which penalises
insufficient branching on the Cayley tree. After a rescaling due to the presence of an
entanglement length-scale Me, which defines a blob size below which the statistics
is Gaussian, and that maps to an edge of the Cayley tree representation,3 one obtains:

F

kBT
∼ R2

Lc
√
Meσ

+ L2
c

Mσ2
(2.13)

which, after minimisation with respect to Lc, gives

Lc ∼ σM1/2
e

(
R

M1/3M1/6
e

)2/3 (
M

Me

)5/9

. (2.14)

3This means that M → M/Me, σ → σM1/2
e and Lc → Lc/M

1/2
e .

http://dx.doi.org/10.1007/978-3-319-41042-5_4
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For this value of Lc, the resulting free energy is a monotonic function of R and one
can therefore argue that it will attain its minimum at the minimum (physical) value
of R, i.e. R ∼ σM1/3. This therefore leads to

R ∼
{

σM1/2 for M � Me

σM1/6
e M1/3 for M  Me

or ν = 1/3 (2.15)

and

Lc ∼
{

σM1/2 for M � Me

σM−1/18
e M5/9 for M  Me

or ρc = 5/9. (2.16)

Equivalently, one finds R ∼ σ1−ν/ρc Lν/ρc
c = σ2/5L3/5

c in the limit of large rings.
In summary, within this picture rings in melt can be thought of as fractal globules
R ∼ σM1/3 whose backbone is governed by self-avoiding statistics R ∼ σ2/5L3/5

c .
While R can easily be obtain, via, for instance, the radius of gyration Rg, measuring
the size of the backbone Lc presents much more difficulties and has never been done
in the literature. This is because there exists no algorithm able to detect a tree-like
structure that is not clearly visible with naked eye, and even primitive-path analysis
fails in this case (Halverson et al. 2011).

A further attempt to capture the behaviour of rings in the melt via a Flory-like
framework is worth mentioning here. Cates and Deutsch in the ‘80s (Cates and
Deutsch 1986) advanced a model that simply assumes that rings in the melt are
topologically constrained by their neighbours and this leads them to adopt a dou-
ble folded configuration. The constraint experienced by the rings can be associated
with an entropic loss of roughly one entropy unit, or degree of freedom (kBT ), per
neighbour. Since every chain has roughly Rd/M neighbours, one obtains:

F

kBT
∼ Rd

Mσd
+ Mσ2

R2
(2.17)

where the second term is the elastic energy required to extend a chain. After the usual
minimisation in terms of R one obtains:

R ∼ σM2/(d+2) (2.18)

which gives, in particular, ν3D = 2/5. In Chap.4 I will show that this prediction is
recovered as a crossover between the short chain regime, R ∼ σM1/2, and the long
chain limit, R ∼ σM1/3.

Even though ring polymers only differ from their linear counterparts in having a
closed contour, they display markedly distinct behaviour. Understanding this, repre-
sents one of the most challenging tasks remaining in Polymer Physics. In addition,
the so-called “fractal globule” structure often associated with the scaling collapsed
state of rings in the melt has raised also some interest in the Biology community.
This is because it represents a strongly collapsed state which displays a weak level

http://dx.doi.org/10.1007/978-3-319-41042-5_4
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of entanglement among parts of the sub-chain; as a consequence, it has been iden-
tified as a good candidate to explain the structure of chromatin (Mirny 2011) and
to describe the formation and the stability of chromosome territories (Cremer and
Cremer 2001; Rosa and Everaers 2008).

2.1.2 Contact Exponents for the Crumpled Globule

Although the collapsed conformation assumed by rings in the melt is broadly
accepted, it is far from clear what their internal arrangement is. In fact, although
ν = 1/3 resembles a collapsed coil, such as one that could be observed in poor sol-
vent, there are many types of internal arrangements consistent with ν = 1/3 (Rosa
and Everaers 2014). Perhaps the most important candidates in this case are (i) the
equilibrium globule: a disordered dense packing of coil confined within a sphere of
radius R ∼ M1/3 and possessing a core filled with segments (of length s < M2/3)
following ideal statistics, i.e. r(s) ∼ s1/2; and (ii) the fractal globule: a recursive coil-
ing of mass which appears like a collapsed globule at any length scale (larger than the
entanglement length Me) within the globule (Grosberg et al. 1993), i.e. r(s) ∼ s1/3

(see Fig. 2.2). One of the key differences between these two conformations is the
probability of contact Pc(s) of two segments distant s segments along the contour
and defined as

Pc(s) =
〈
1

M

M−1∑

i=1

M∑

j=i+1

�(a − |r i − r j |)
〉

(2.19)

with a a chosen cut-off for the interaction and�(x) the Heaviside function. A mean-
field estimate of this probability leads to

Fig. 2.2 Pictorial representation of a fractal and b equilibrium, globules.While the former displays
internal segregation of the segments, the latter displays a larger degree of mixing. These different
features are reflected by the different values assumed by the contact exponent, which is γ = 1 for
the former and γ = 3/2 for the latter (from Ref. Mirny 2011 with permission of Springer)
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Pc(s) � σd

r(s)d
∼ s−νd ≡ s−γ =

{
s−3/2 equilibrium globule and s < M2/3

s−1 fractal globule,
(2.20)

where γ is called the contact exponent. The mean-field value of γ = 1 for the fractal
globule case is un-physical, since the number of neighbours per segment would, in
this case, diverge as

∑
s s

−1 → ∞. Numerical (Halverson et al. 2011, 2013) and
experimental (Lieberman-Aiden et al. 2009; Mirny 2011) observations in fact report
a contact exponent close to, but slightly greater than, unity.

Another useful quantity is how “rough” the coil surface is. This can also be
understood in terms of number of contacts nc or inter-blobs4 contacts ng . Let us
assign to these two quantities the exponents βc and βg regulating the scaling of the
contacts for an s-monomer long sub-chain as

nc(s) ∼ sβc (2.21)

being the number of contacts of a given segment with any other segment and

ng(s) ∼ sβg (2.22)

being the number of contacts between blobs sitting near one another in space. The
surface exponents βc and βg have to be related to one another by the fact that only a
number r(s)d/s of blobs can be neighbours to a given blob, and therefore:

sβc ∼ r(s)d

s
sβg = sνd−1sβg (2.23)

which gives
βc = βg + νd − 1 (2.24)

or in the case of a globule (ν = 1/d):

βc = βg. (2.25)

On the other hand, the contact exponentγ is itself related to the surface exponentβc

as the number of contacts of a given monomer with other monomers is
∑∞

s ′>s Pc(r),
which gives the total number of contacts of an s-monomer long segment as

sβc ∼ s
∞∑

s ′=s

(
s ′)−γ ∼ s−γ+2 (2.26)

4A blob being a polymer segment made of several (g) monomers where 1 � g � M and assum-
ing a size described by the scaling R(g) ∼ gν with ν = 3/5, being not interacting with other
chains (de Gennes 1979).
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or
βc + γ = 2. (2.27)

It is worth stressing that Eqs. (2.24) and (2.27) are general relations which hold
for any fractal structure and do not rely on the fractal globule assumption. Also,
from Eqs. (2.24) and (2.27) one can infer some restrictions for the values of these
exponents, in particular βc ≥ βg and 1 ≤ γ ≤ 1 + 1/d.5 It is also worth noting
that for Hilbert curves in 3D for which R ∼ M1/3 (being space filling), the contact
surface scales with β = βc = βg = 2/3 which implies γ = 4/3, while, by contrast,
the numerical estimation of β for the fractal globule case (see Chap. 4 and Halverson
et al. 2011) seems to be close to unity, β � 0.95 − 0.98, implying γ = 1.02 − 1.05
compatible with the results from Hi-C contact maps (Lieberman-Aiden et al. 2009;
Zhang et al. 2012) and the findings reported in Chap. 4.

2.1.3 The Structure Factor

Another observable that is worth investigating in order to probe the internal fractal
structure of polymer coils is the single-chain static structure factor, S1(q). Exper-
imentally, this quantity can be measured via light or neutron scattering (refer to
Rubinstein and Colby 2003 for experimental realisation details). This is defined as

S1(q) =
〈
1

M

M∑

i

M∑

j

eiq(r i−r j )

〉
(2.28)

where the average is taken over polymers,monomer positions r i and over orientations
of the scattering wave-vector q (when the system is isotropic). For wave-vectors |q|
much smaller than R−1

g (or length-scales |q|−1 much larger than Rg), the scattering
function gives

S1(q) � M, (2.29)

since all monomers within the coil contribute to the sum. When 2πR−1
g < q <

2πσ−1, one finds that all monomers nq within the volume q−3 contribute to S1(q).
In this case, the static structure factor relates to the fractal dimension of the chain as

S1(q) � nq �
(

1

qdσd

)1/νd

= (qσ)−1/ν = (qσ)−dF . (2.30)

In the case of linear polymers in melt the structure factor correctly returns dF = 2
for the whole range 2πR−1

g < q < 2πσ−1 (Kremer and Grest 1990). In the case of

5These are obtained by using 1/d ≤ ν ≤ 1, 1 − 1/d ≤ βc = βg ≤ 1, in Eqs. (2.24) and (2.27).

http://dx.doi.org/10.1007/978-3-319-41042-5_4
http://dx.doi.org/10.1007/978-3-319-41042-5_4
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ring polymers in dense solutions the scaling of Eq. (2.28) is less unambiguous and
it has been conjectured (Halverson et al. 2011) that it displays signatures of more
complex internal arrangement of the coils (see also Chap. 4).

2.2 Dynamics

2.2.1 Diffusion Coefficient and Relaxation Time

The first theories describing how ring polymers diffuse through either other chains or
a gel have been advanced separately byCates andDeutsch (1986), Rubinstein (1986),
Klein (1986). They share the same spirit, i.e. describing the diffusion of rings in the
melt assuming that rings can move in an amoebae fashion through the surrounding
(static) obstacles by successive protrusions mediated by kink-gas diffusion along
the polymer contour (de Gennes 1979). Within this framework, “kinks” or “defects”
(or excess of mass along the chain) can diffuse independently along the polymer
contour until they stop their diffusion on a segment of the randomly branched ring
structure and contribute to the extension of that segment. By assuming that the kinks
perform a 1D random walk along the contour, the time required to span a distance
Rg corresponds to the Rouse time and is computed as

τRouse ∼ M2. (2.31)

The ring can therefore renew its configuration by consecutive kinks diffusion. For a
ring made by M segments this takes a time

τ ∼ MτRouse = M3 (2.32)

or, equivalently, a diffusion coefficient

DCM ∼ R2
g

τ
= M2ν−3. (2.33)

Using the field-theoretic exponent in Eq. (2.9), i.e. ν = 5/(2d + 4), one finally
obtains

DCM ∼ M−(3d+1)/(d+2), (2.34)

which, in 3D, gives DCM ∼ M−2 roughly compatible with numerical evidence (see
Chap.4 and Cates and Deutsch 1986; Halverson et al. 2011). Incidentally, this result
is the same for linear polymers in melt, since the overall size of isolated self-avoiding
rings in a background of obstacles (or gels) is described by ν = 1/2 in 3D which
is numerically equal to the exponent for linear polymers in melt. If one were to use

http://dx.doi.org/10.1007/978-3-319-41042-5_4
http://dx.doi.org/10.1007/978-3-319-41042-5_4
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the fractal globule exponent ν = 1/3, Eq. (2.33) would give DCM ∼ M−7/3 which
is weaker than the experimentally and computationally observed scaling.

More recently, Milner, Iyer and then Grosberg (Iyer and Arya 2012; Smrek and
Grosberg 2015) advanced several other theories for the diffusion of a ring polymers
among other chains, or “fixed obstacles”. Milner and Newhall (2010) proposed an
approach based on the “centrality” of a node in the lattice animal representation of
the ring defined as

ζk = min (M1(k), M − M1(k)) (2.35)

where M1(k) is the size of one of the two sub-trees generated by cutting the k-th
bond of the tree-representation (see Fig. 2.1). They proposed that, analogously to the
reptation mechanism in linear polymers, rings undergo diffusion by vacating bonds
via the “evaporation” of one of the two sub-trees across that bond. This means that if
the centrality ζk of bond k is small, one expects its relaxation to be quick. On the other
hand, bonds whose removal produce two sub-trees with similar sizes are expected to
take the longest to disappear. Kramers theorem can be used to show that the proba-
bility distribution of the nodes’ centrality P(ζ) is given by the weights in Kramers
theorem in Eq. (2.10) (Rubinstein and Colby 2003), appropriately normalised:

P(ζ) = Zζ ZM−ζ∑
ζ Zζ ZM−ζ

�
√

nv − 1

8π(nv − 2)

(
M

ζ(M − ζ)

)3/2

, (2.36)

where nv is the valence of the nodes. This distribution has the feature that most of
the nodes have low centrality and therefore relax quickly. One can then proceed by
assuming that rings must arrange themselves in order to satisfy such a centrality
distribution, and therefore this acts as an effective entropic potential for the rings
biasing the mass diffusion as

βUζ = − log P(ζ). (2.37)

By performing Monte-Carlo simulations of trees diffusing on Bethe lattices, Milner
and Newhall finally concluded that the mass accumulated within i generations from
a given high-centrality bond scaled as M(i) ∼ i a = i1.5−1.7 and, as a consequence,
the variance of the centrality should scale as the mass diffused in a time τζ ∼ t2 or

〈�ζ2〉 ∼ ta/2 = t0.75−0.85, (2.38)

which leads to a total relaxation time for a tree formed by M nodes, corresponding
to the time required for the centrality to diffuse a “distance” of order M , of

τrelax ∼ M2/(a/2) � M8/3. (2.39)

Their result is again roughly compatible with recent findings (Kapnistos et al. 2008;
Halverson et al. 2011), although completely neglects the motion of other chains
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and, in particular, inter-chain interactions which can explain the even more recent
findings (Pasquino et al. 2013; Gooßen et al. 2014; Doi et al. 2015) (see also to
Chap.4).

Smrek andGrosberg (2015) based on the novel description of a ring as an annealed
tree made of crumpled branches decorating a self-avoiding path on a Cayley tree,
i.e. R ∼ σM1/3 and R ∼ σ2/5L3/5 with L ∼ σM5/9 (or ν = 1/3, ρ = 5/9 and
ν/ρ = 3/5), advanced an alternative picture for the dynamics of rings in the melt.
By assuming the existence of an “entanglement length” Me below which the chain
is Gaussian, i.e. Rblob ∼ σM1/2

e , which is taken as the “blob size”, the Rouse time
for a blob can be written as

τblob ∼ ζeM2
e σ

2

kBT
(2.40)

where ζe is the effective friction of a blob. The chain is formed by g = M/Me blobs
and every time a blob moves by Rblob a fraction 1/g of mass contributes to the overall
diffusion of the centre of mass. The displacement of the chain center of mass, defined
as

〈δr2CM〉 ≡ g3(t) = 〈
[rCM(t + t0) − rCM(t0)]

2〉
t0

(2.41)

where 〈. . . 〉t0 indicates average over different initial time-steps, can therefore be
written as the displacement of gρ blobs of size Rblob forming the backbone L:

〈δr2CM 〉 ≡ g3 � gρ

(
σM1/2

e

g

)2

= Meg
ρ−2σ2 (2.42)

that gives a diffusion coefficient of the blobs along the backbone of Dbb ∼ g3/τblob.
The full relaxation of the chain can be achieved once the centre of mass has travelled
the ring’s size L , i.e.

τrelax ∼ L2

Dbb
= τblobg

ρ+2 (2.43)

where one uses the fact that L ∼ M1/2
e gρσ giving

τrelax ∼ ζeσ
2

kBT
M23/9. (2.44)

The diffusion coefficient of the whole ring can be found by imposing that the ring
is displaced a distance equal to its own size (R = σM1/2

e gν) in the relaxation time
τrelax, i.e.

DCM ≡ R2

τrelax
∼ Meσ

2

τblob
g2ν−ρ−2 � DblobM

−17/9. (2.45)

http://dx.doi.org/10.1007/978-3-319-41042-5_4
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All these findings are roughly compatible with numerical and experimental evi-
dence, although they predict exponents that underestimate the observed ones. In
particular, none of these explain why the sub-diffusion of the rings can be observed
on length-scales many times the ring’s gyration radius (Halverson et al. 2011, 2014).
This may be due to chains moving and interacting non-trivially with one-another.
The main reason for this is that mean-field theories analyse the behaviour of chains
among other “fixed” chains. This is not the case in ring polymer melts where inter-
chain interactions are important (see Chap. 4 and Halverson et al. 2011) and lead
to collective behaviour. In order to correctly capture the dynamics of rings in the
melt one should take into account the collective re-arrangements and configurational
fluctuations, which makes the problem much harder to tackle.

2.2.2 How Rings Relax Stress

How rings relax their stress is perhaps one the key questions that I will try address.
Recently there have been quite a few attempts to quantify the stress relaxation of rings
in a background of obstacles (Milner and Newhall 2010) and in the melt (Kapnistos
et al. 2008; Pasquino et al. 2013; Smrek andGrosberg 2015). All the theoretical effort
has been focused on describing rings as amoebae (Rubinstein 1986) moving through
obstacles situated around the ring double-folded configuration, i.e. not threading
its contour. This strong assumption seems now ubiquitous when tackling the ring
melt problem. On the contrary, I will show for the first time that this is instead not
a correct assumption: Rings do protrude through one-another, and this has strong
consequences on the dynamics, which should be considered when formulating a
theory of their stress relaxation (see Chap.4).

Experimentally there is several evidence that melts of rings display a very low
stress-relaxationmodulusG(t)which never exhibits a plateau (Kapnistos et al. 2008;
Pasquino et al. 2013). One the other hand, their slow overall relaxation to free diffu-
sion (Halverson et al. 2011) as well as a dramatic viscosity enhancement observed
in more recent findings (Doi et al. 2015) indicate that inter-coil interactions are
important but hard to quantify.

It is very likely, that rings can relax their “internal” (or “configurational”), i.e.
intra-coil, stressmuch faster than they can relax their inter-coil correlations. This con-
jecture will be supported by computational evidence in Chap.4. Although achieving
an analytical description of this behaviour is not an easy task, I believe that numer-
ically probing the decoupling between relaxation time-scales related to different
length-scales can help the theoretical community to formulate a more appropriate
description for the motion of rings in the melt or dense solutions. In addition, the pos-
sibility that additional “relevant length-scales” exist and directly control the motion
of rings in the melt has been raised in the past by Cates and collaborators (Müller
et al. 1996; Muller et al. 2000) and might have found a direct proof in the results that
I will present in Chap.4.

http://dx.doi.org/10.1007/978-3-319-41042-5_4
http://dx.doi.org/10.1007/978-3-319-41042-5_4
http://dx.doi.org/10.1007/978-3-319-41042-5_4
http://dx.doi.org/10.1007/978-3-319-41042-5_4
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While the internal relaxation of linear polymers is intimately related to the persis-
tence of their neighbours forming the surrounding tube, this cannot be said for ring
polymers, which can create new protrusion anywhere along their contour, being not
limited by the presence of fixed ends. On the other hand, threadings, which are only
possible between ring polymers, might affect the overall relaxation, i.e. the diffusion
of the centre of mass of the polymers, leaving the internal stress relaxation mech-
anisms unaffected. In light of this I propose to focus on measuring the long-time
inter-coil correlations which can be most readily done via scattering methods, and
in particular via the coherent scattering function Sc(q, t), defined below.

2.2.3 Inter-Coil Correlations Probed by Dynamic Scattering

Intra-coil correlations on length-scales l = 2πq−1 are commonly probed by the
coherent (or in-coherent) dynamic scattering function Sc(q, t) (or Sin(q, t) obtained
setting i = j):

Sc(q, t) =
〈
1

M

M∑

i

M∑

j

eiq(r i (t+t0)−r j (t0))

〉
, (2.46)

where the average is taken over the rings in the system and different t0. In practice,
one can imagine one probe chain in the solution scattering the incident light and then
repeating the measurement over many different probe chains. This function is also
sometimes called the “self-intermediate scattering function” and its Fourier transform
the “self-part of the Van Hove function” in the glass-transition community (Berthier
and Biroli 2011), where it is one of the main tools used to capture density-density
correlations in a glass-forming systems. This scattering function was also studied by
de Gennes (1981) to capture the behaviour of one reptating linear chain among other
fixed chains.

In some cases, especially when dealing with molecular liquids or liquids made
of simple constituents, the dynamic scattering function can give some information
regarding inter-objects correlations, being internal degrees of freedom not included
in the picture. In the case of polymer liquids, characterising inter-coil correlations via
the dynamic scattering function can be less straightforward (Aichele and Baschnagel
2001; Frey et al. 2015). In particular, it is sometimes necessary to extend the com-
putation of Eq. (2.46) to all the atoms in the system, rather than the ones forming the
chains.6 In this case the function is also known as the (dynamic) “pair-correlation”
function, which is rarely studied as numerically infeasible to compute throughout
the simulation.

In light of this one is often limited to the computation of Eq. (2.46) over the beads
forming a single chain and to take the average over many chains. This means that

6In this case the computation can scale as (NM)2, for a system of N chains M beads long, rather
than NM2.
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Sc(q, t) formally captures intra-coil correlations, and does not give direct evidence
of inter-coil correlations. On the other hand, it is possible to infer some information
on the inter-coil correlations when q becomes greater than the inter-coil distance 2λ,
where λ is defined as

λ = φ−1/3Rg (2.47)

where φ is the coils volume concentration, i.e.

φ = 4NπR3
g

3σ3L3
. (2.48)

The free volume available to the coils is 1/φ and hence the free length (in units of
the radius of gyration of the polymers) is φ−1/3. This means that above overlap the
inter-coil distance is smaller than 2Rg .

The information that one can obtain from Sc(q, t) on the collective behaviour of
the rings is based on the following reasoning: the dominant contribution to Sc(q, t)
comes from beads j that have not travelled (much) further than 2π/q from the other
bead i within t time-steps. Therefore if there was a length-scale above which the
independent motion of the beads was somehow constrained, that would appear when
probing the system with the right q. In particular, one can imagine that if a ring was
permanently pinned down by a frozen obstacle threading through its contour then
one should expect

lim
t→∞ Sc(q � πR−1

g , t) = S∞
c (q � πR−1

g ) > 0 (2.49)

where S∞
c (q) is a constant greater than zero and near one, as most of the beads

forming the chain would be forever trapped in a region of linear size l � 2Rg . On
the other hand, if one was to probe larger q’s, i.e. shorter length scales, one should
in principle observe a more unconstrained relaxation, and in particular

lim
t→∞ Sc(q � πR−1

g , t) � 0. (2.50)

Although it is worth bearing in mind that this scattering function would not decay
strictly to zero, as presence of permanent obstacles, i.e. regions that the beads are not
free to explore, has the effect of suppressing the full de-correlation of the monomers.

Even in the case of multiple threadings, the cage formed by the penetrations
represent a severe obstacle only for the overall diffusion,while internalmodes, shorter
than the average distance between threadings, are left unhindered. This suggests that
in the case that the threadings are sparse enough, the ring should display a slow
decorrelation of the dynamic scattering function on length-scales comparable to the
diameter of the ring, but a faster de-correlation on shorter length scales. Extending
this reasoning to the case where the pinning ring is itself mobile, one can, in any case,
expect the passively threaded ring to be slower (again on length-scales 2πq−1 � 2Rg)
compared to a ring that is instead not threaded.Both, threaded and non-threaded rings,
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should instead relax their internal (i.e. 2πq−1 � 2Rg) stress at roughly the same rate,
i.e. having the same decay of Sc(q � πR−1

g , t).
Investigating the differences/analogies in the behaviour of the dynamic scattering

function at different length-scales can therefore give some insight into the presence
of topological constraints in solutions of rings and can shed some light onto the
dynamics of rings. This will be discussed in more detail in Chap.4.

References

Aichele, M., Baschnagel, J.: Glassy dynamics of simulated polymer melts: coherent scattering and
van Hove correlation functions. Eur. Phys. J. E 5(2), 229 (2001)

Berthier, L., Biroli, G.: Theoretical perspective on the glass transition and amorphous materials.
Rev. Mod. Phys. 83(2), 587 (2011)

Brás, A., Gooßen, S., Krutyeva,M.: Compact structure and non-Gaussian dynamics of ring polymer
melts. Soft Matter 10, 3649 (2014)

Cates, M., Deutsch, J.: Conjectures on the statistics of ring polymers. J. Phys. Paris 47, 2121 (1986)
Cremer, T., Cremer, C.: Chromosome territories, nuclear architecture and gene regulation in mam-
malian cells. Nat. Rev. Genet. 2(4), 292 (2001)

Daoud, M., Joanny, J.: Conformation of branched polymers. J. de phys. 42(10), 1359 (1981)
de Gennes, P.G.: Scaling concepts in polymer physics, Cornell University Press (1979)
de Gennes, P.G.: Coherent scattering by one reptating chain. J. Phys. (Paris) 42(5), 735 (1981)
Doi, M., Edwards, S.: The Theory of Polymer Dynamics, Oxford University Press, Oxford (1988)
Doi, Y., Matsubara, K., Ohta, Y., Nakano, T., Kawaguchi, D., Takahashi, Y., Takano, A.,Matsushita,
Y.: Melt Rheology of Ring Polystyrenes with Ultrahigh Purity. Macromolecules 48(9), 3140
(2015)

Edwards, S.: Statistical mechanics with topological constraints: I. Proc. Phys. Soc. 91, 513 (1967)
Edwards, S.: Statistical mechanics with topological constraints: II. J. Phys. A: Math. Gen. 1, 15
(1968)

Flory, P.J.: Principles of polymer chemistry, Cornell University Press. Ithaca, New York (1953)
Frey, S., Weysser, F., Meyer, H., Farago, J., Fuchs, M., Baschnagel, J.: Simulated glass-forming
polymer melts: Dynamic scattering functions, chain length effects, and mode-coupling theory
analysis. Eur. Phys. J. E 38(11), 1 (2015)

Gooßen, S., Brás, A.R., Krutyeva,M., Sharp,M., Falus, P., Feoktystov, A., Gasser, U.,Wischnewski,
A., Richter, D.: Molecular Scale Dynamics of Large Ring Polymers. Phys. Rev. Lett. 113, 169302
(2014)

Grosberg, A.: Annealed lattice animal model and Flory theory for the melt of non-concatenated
rings: towards the physics of crumpling. Soft Matter 10, 560 (2014)

Grosberg, A.Y., Rabin, Y., Havlin, S., Neer, A.: Crumpled globule model of the three-dimensional
structure of DNA. Europhys. Lett. 23(5), 373 (1993)

Gutin, A., Grosberg, A., Shakhnovich, E.: Polymers with annealed and quenched branchings belong
to different universality classes. Macromolecules 26(5), 1293 (1993)

Halverson, J.D., Lee,W.B.,Grest,G.S.,Grosberg,A.Y.,Kremer,K.:Molecular dynamics simulation
study of nonconcatenated ring polymers in a melt. I. Statics. J. Chem. Phys. 134(20), 204904
(2011a)

Halverson, J.D., Lee,W.B.,Grest,G.S.,Grosberg,A.Y.,Kremer,K.:Molecular dynamics simulation
study of nonconcatenated ring polymers in a melt. II. Dynamics. J. Chem. Phys. 134(20), 204905
(2011b)

Halverson, J.D., Kremer, K., Grosberg, A.Y.: Comparing the results of lattice and off-lattice simu-
lations for the melt of nonconcatenated rings. J. Phys. A 46(6), 065002 (2013)

http://dx.doi.org/10.1007/978-3-319-41042-5_4


References 27

Halverson, J.D., Smrek, J.,Kremer,K.,Grosberg,A.: Fromamelt of rings to chromosome territories:
the role of topological constraints in genome folding. Rep. Prog. Phys. 77, 022601 (2014)

Isaacson, J., Lubensky, T.C.: Flory exponents for generalized polymer problems. J. Phys. 41, 469
(1980)

Iyer, B.V.S., Arya, G.: Lattice animal model of chromosome organization. Phys. Rev. E 86(1),
011911 (2012)

Kapnistos, M., Lang, M., Vlassopoulos, D., Pyckhout-Hintzen, W., Richter, D., Cho, D., Chang, T.,
Rubinstein, M.: Unexpected power-law stress relaxation of entangled ring polymers. Nat. Mater.
7(12), 997 (2008)

Klein, J.: Dynamics of entangled linear, branched, and cyclic polymers. Macromolecules 118(33),
105 (1986)

Kremer, K., Grest, G.S.: Dynamics of entangled linear polymer melts: A molecular-dynamics
simulation. J. Chem. Phys. 92(8), 5057 (1990)

Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A.,
Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R., Bernstein, B., Bender, M.A.,
Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S., Dekker, J.: Com-
prehensive mapping of long-range interactions reveals folding principles of the human genome.
Science 326(5950), 289 (2009)

Lubensky, T., Isaacson, J.: Statistics of lattice animals and dilute branched polymers. Phys. Rev. A
20(5), 2130 (1979)

Milner, S., Newhall, J.: Stress Relaxation in Entangled Melts of Unlinked Ring Polymers. Phys.
Rev. Lett. 105(20), 208302 (2010)

Mirny, L.A.: The fractal globule as a model of chromatin architecture in the cell. Chromosome Res.
19(1), 37 (2011)

Muller, M.,Wittmer, J., Cates, M.: Topological effects in ring polymers. II. Influence Of persistence
length. Phys. Rev. E 61(4), 4078 (2000)

Müller, M., Wittmer, J.P., Cates, M.E.: Topological effects in ring polymers: A computer simulation
study. Phys. Rev. E 53(5), 5063 (1996)

Obukhov, S., Rubinstein, M.: Dynamics of a ring polymer in a gel. Phys. Rev. Lett. 73(9), 1263
(1994)

Parisi, G., Sourlas, N.: Critical behavior of branched polymers and the Lee-Yang edge singularity.
Phys. Rev. Lett. 46(14), 871 (1981)

Pasquino, R., Vasilakopoulos, T., Jeong, C., Lee, H., Rogers, S., Sakellariou, G., Allgaier, J., Takano,
A., Bras, A., Chang, T., Goossen, S., Pyckhout-Hintzen, W., Wischnewski, A., Hadjichristidis,
N., Richter, D., Rubinstein, M., Vlassopoulos, D.: Viscosity of Ring Polymer Melts. ACS Macro
Lett. 2, 874 (2013)

Raphael, E., Gay, C., de Gennes, P.G.: Progressive construction of an Olympic gel. J. Stat. Phys.
89, 111 (1997)

Rosa, A., Everaers, R.: Structure and dynamics of interphase chromosomes. PLoS Comput. Biol.
4(8), 1 (2008)

Rosa, A., Everaers, R.: Ring polymers in the melt state: The physics of crumpling. Phys. Rev. Lett.
112, 118302 (2014)

Rubinstein, M.: Dynamics of ring polymers in the presence of fixed obstacles. Phys. Rev. Lett.
57(24), 3023 (1986)

Rubinstein, M., Colby, H.R.: Polymer Physics, Oxford University Press, Oxford (2003)
Smrek, J., Grosberg, A.Y.: Understanding the dynamics of rings in the melt in terms of annealed
tree model. J. Phys.: Condens. Matter 27, 064117 (2015)

Zhang, Y., McCord, R.P., Ho, Y.-J., Lajoie, B.R., Hildebrand, D.G., Simon, A.C., Becker, M.S., Alt,
F.W., Dekker, J.: Spatial organization of the mouse genome and its role in recurrent chromosomal
translocations. Cell 148(5), 908 (2012)



Chapter 3
Molecular Dynamics Models

It is nice to know that the computer understands the problem
…But I would like to understand it too.

E. Wigner

Computer simulations, or “experiments” (Frenkel andSmit 2001), are important tools
for studying complex systems. This Thesis itself largely relies on computational
methods, in particular Molecular Dynamics (MD) simulations. For this reason, I
devote this chapter to describing the essence of the MD simulations employed here
and the computational details of the models described in the subsequent chapters.

Molecular Dynamics simulations have been used for the first time in the late
50’s (Alder and Wainwright 1959). They started as a method to investigate the
properties of systems of hard spheres (Alder and Wainwright 1957) and simple
liquids (Rahman 1964) and later became a fundamental technique to model the
dynamics of biomolecules (McCammon et al. 1977; Karplus and Petsko 1990). As
opposed to standardMonte-Carlo techniques, MD simulations offer the advantage of
naturally probing the dynamical properties of the systems, such as transport coeffi-
cients, time-dependent responses and rheological properties. In addition, Molecular
Dynamics models are very flexible in terms of the level of coarse-graining performed
on the model. They can either be very accurate in describing microscopic molecular
details or in evolving a more coarse-grained picture, depending on the level of detail
needed. Usually, MD models lend themselves to a much higher level of molecular
detail, than standard Monte-Carlo models. One of the key challenges of MD mod-
els is to include the appropriate inter-molecular potentials, and, in particular, find
the right level of coarse-graining required to reach the best accuracy given practical
constraints on their feasibility.

Becausemodellingmicroscopic chemical interactions are computationally expen-
sive and much of the puzzling physical features of rings in solution are hidden in
their long-time behaviour, my interest is in retaining only the key physical elements.

© Springer International Publishing Switzerland 2016
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I therefore adopt coarse-grained models for the polymers in order to reach longer
simulations time-scales. In particular, I will formulate a mesoscopic physical model
of the polymers and neglect specific chemical details. Some of the problems dis-
cussed in the following chapters will be naturally associated with specific types of
polymers. For instance, gel electrophoresis is very often performed onDNA samples,
and therefore it is natural to start from a more physically faithful description for the
DNA.On the other hand, the chemical details of the base-pair system is not necessary
to capture the physics of gel electrophoresis and will, therefore, be coarse-grained
out. In addition, addressing more coarse-grained models has often the advantage of
delivering more general results, which might be valid for other systems, as long as
they share similar physical and topological properties.

In what follows, I will firstly discuss some general elements ofMolecular Dynam-
ics simulations and secondly, I will give describe in detail the coarse-grained models
used in the following chapters.

3.1 Molecular Dynamics Scheme

The aim of a Molecular Dynamics simulation is to integrate the classical equations
of motion:

∂ r i
∂t

= vi

mi
∂vi

∂t
= Fi = −∂U

∂ r
, (3.1)

where mi and r i are, respectively, the mass and the position of the i th atom, often
also referred to as “monomers”. Fi is the force acting on the i th atom, which can
be calculated by knowing the potential energy U . This is, in general, dependent
on all the other atoms in the system, and, of course, on external fields applied to
the system from the outside. In order to reproduce the correct motion, one therefore
needs to definewhat are the interactions between the atoms in the system under study.
These can be classified as: non-bonded and bonded potentials. The former deal with
interactions between atomswhich are not connected at a molecular level, for instance
atoms belonging to different polymers. The latter describe the interactions between
atoms which do share a molecular connection, such as hydrogen and oxygen in a
water molecule.

3.1.1 Non-bonded Potentials

Each atom in the simulation can interact via non-bonded potentials with all the other
atoms in the system and, if present, a wall delimiting the simulation box. Because of
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this, one needs to define the 1-body, 2-body, 3-body, etc. interactions as

Unb =
N∑

i

u(r i ) +
∑

i

∑

j>i

v(r i , r j ) + · · · (3.2)

where u(r i ) is the potential describing the interaction between a single atom and,
for instance, a wall and v(r i , r j ) the potential describing a 2-body interaction, e.g. a
Lennard-Jones or Coulomb potential. For instance in the case of charged polymers,
one should, in principle, include both steric and Coulomb interactions. It is also
common, as long as the simulation reproduces the essential physics, to drop all the
higher order terms.

The two-body repulsion can be efficiently modelled via the following shifted-
truncated form of the Lennard-Jones (LJ) potential (or Weeks–Chandler–Andersen
model Weeks et al. 1971):

UL J (r i , r j ) = 4ε

[(
σc

ri j

)12

−
(

σc

ri j

)6

+ 1

4

]
�(21/6σc − ri j ), (3.3)

where�(x) is the usual Heaviside function, i.e. 1 for x ≥ 0 and 0 otherwise, and σc is
the minimum distance between beads. The potential depth is ε and ri j = |r i − r j | is
the distance between the i th and j th atom.This version of theLennard-Jones potential
is chosen in order to broadly model only the steric repulsion between atoms, thereby
avoiding (i) unwanted Van der Walls attractions and (ii) long-ranged interactions
without introducing discontinuity in the potentials.

Another useful way of modelling steric interactions is via a “soft” potential. One
of the most used forms of this potential is the following:

Usoft(r i , r j ) = εs

[
1 + cos

(
πri j
rc

)]
�(rc − r). (3.4)

Here, εs is the height of the potential at ri j = 0 and rc the cut-off. This potential is
generally used for initialising a system possessing partially overlapping elements.
These are in fact gently pushed apart by this potential without generating numerical
divergences. This pre-equilibration step is very important to avoid “blow-ups” and it
is usually done by performing a short run in which the parameter εs is slowly raised
typically from εs = 0 to εs = 50ε, before the LJ potential is turned on.

3.1.2 Bonded Potentials

Bonded potentials describe the interactions between atoms which share molecular
bonds. The simplest potential describing the connection between two atoms is the
harmonic potential that models the bond as a spring with stiffness κh and equilibrium
length r0:
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Uharm(r i , r j ) = κh

2

[
ri j − r0

]2
. (3.5)

This potential is usually inappropriate for use in polymer chains simulations, espe-
cially in dense conditions, as it can allow bonds to stretch and polymers to cross
through one-other. More appropriate 2-body bonded potentials exist for system of
polymers, such as the Finitely Extensible Non-linear Elastic (FENE) potential:

UFENE(r i , r j ) = −κ f

2
R2
0 ln

[
1 −

(
ri j
R0

)2
]

, (3.6)

for ri j < R0 and UFENE(r i , r j ) = ∞, otherwise. The values of the parameters
chosen here in this Thesis are R0 = 1.6 σ and κ f = 30 ε/σ 2. These choices ensure
that strand-crossing events are suppressed. This is of paramount importancewhen the
topological state of a polymer, e.g. (un-)knotted or (un-)linked, needs to be preserved
throughout the simulation.

In order to model the chains stiffness, the following 3-body bonded potential is
commonly used:

Ubend(r i , r j , rk) = kBT lp
σ

[
1 − r i j · r jk

ri j r jk

]
= kBT lp

σ
[1 − cos θ ] , (3.7)

where the angle θ is defined as the angle between consecutive bonds (see Fig. 3.1).
Here, r i j ≡ r j − r i is the vector joining two bonded monomers and l p is the persis-
tence lengthwhich corresponds to half theKuhn length lK Doi andEdwards 1988. For
instance, to correctly model hydrated double-stranded DNA (dsDNA) chain embed-
ded in a solvent in physiological conditions, one should take its persistence length
to be l p = lK /2 � 20σ , i.e. roughly 20 times its thickness.

A 4-body bonded interaction can be used to capture the torsional stiffness of
polymers: The most common choice in this case is a dihedral potential, which can

Fig. 3.1 The angle θ for the bending potential in Eq. (3.7) is defined as the angle between the
vectors joining consecutive pairs along the polymer contour. The angle φ for the dihedral potential
in Eq. (3.8) is defined as the angle between the planes defined by the pairs of vectors r i j , r jk and
r jk , rkl connecting the polymer backbone (grey beads) to the patches to the sides (blue or red)
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be modelled as a CHARMM (MacKerell et al. 1998) potential:

Udihedral(r i , r j , rk, r l) = κd [1 + cos (nφ − d)] (3.8)

where κd is the spring energy, n ≥ 0 is a free parameter, d an integer number of
degrees and φ is defined as the angle between the planes defined by the triplets of
atoms i jk and jkl (Fig. 3.1). The angle φ is defined as cosφ = n̂i jk · n̂ jkl where
ni jk = r i j × r ik and n̂ = n/n is the unit vector. This model is particularly used
when studying torsionally constrained polymers, e.g. non-nicked dsDNA, and its
consequent supercoiling properties (Brackley et al. 2014).

3.1.3 Brownian Dynamics

When the subject of the “computer experiment” involves a solvent, and the hydro-
dynamic interactions can safely be neglected, it is common practice to model the
solvent “implicitly”. Instead of integrating the deterministic motion of the small
solvent particles, one can couple the beads forming the solute with a bath at fixed
temperature T : this implies that every atom in the system undergoes some motion
which is no longer deterministic but includes a stochastic term. This is modelled
as a force that represents the random (frequent) collision of the solute with the sol-
vent (much smaller) particles. This method of simulating systems where the solute
molecules are much heavier than the solvent ones is often referred to as “Brown-
ian Dynamics”. The equation describing the motion of the atoms is the Langevin
equation:

mi
∂2r i
∂t2

= −ξi
∂ r i
∂t

− ∂U
∂ r

+ √
2kBT ξi f i (3.9)

where f i is a delta correlated white noise with zero mean

〈
f α
i (t) f β

j (s)
〉
= δ(t − s)δi jδαβ (3.10)

along eachCartesian component (Greek letters) and ξi is the friction coefficient of the
i th atom. In the limit in which the term on the left hand side of Eq. (3.9) is neglected,
i.e. in the long-time limit t � mi/ξi , the Langevin equation takes the “over-damped”
form:

∂ r i
∂t

= − 1

ξi

∂U
∂ r i

+ √
2Di f i (3.11)

where the diffusion coefficient of the i th atom is Di = kBT/ξi . Equation (3.11) is
a good approximation of the motion of atoms described by Eq. (3.9) only after an
inertial time τin = mi/ξi . The friction ξi can be expressed as ξi = mi/γd , where
γd (having time units) is a damping factor that regulates the time-scale related to
temperature relaxation. The time-scale τin can therefore be understood as the time
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required for the temperature to equilibrate across the system, or for the kinetic energy
to be redistributed. The parameter γd can be thought of as inversely proportional to
the solution viscosity and is directly tuned by the user when integrating Eq. (3.9) in
the LAMMPS (http://lammps.sandia.gov) engine, which I will employ below.

System Units

When performing Molecular Dynamics simulations it is often useful to express the
properties of the system as multiples of unit-less fundamental quantities. All the
results reported in this Thesis from MD simulations will be given in such units. In
particular, distances will be measured in units of σ , masses in units of the monomer
mass m, time in units of the Lennard-Jones (LJ) time τL J ≡ σ

√
m/ε, energies in

units of ε, temperatures in terms of ε/kB and forces in units of ε/σ .
The LJ time can be understood as the time required by a particle of mass m to

be repelled to a distance σ by a force ε/σ , and gives the time-scale for collisions
between particles interacting via the Lennard-Jones potential in Eq. (3.3). The stan-
dard convention for Lennard-Jones reduced units sets m = σ = ε = kB = 1,
therefore setting also the LJ time τL J = 1. The inertial time is related to this time by
the choice of the damping parameter γd , which is units of LJ time. In what follows
I will always set γd = τL J which gives τin = τL J = m/ξ = 1. This implies that
the overdamped limit of the Langevin equation becomes a good approximation of
Eq. (3.9) already after few timesteps.

Finally, the Brownian time τbr = σ 2/Db, where Db = kBT/ξ is the diffusion
coefficient of a bead and can be interpreted as the time needed for an atom to diffuse
its own size. With this choice of parameters, the Brownian time is equal to the LJ
time and the inertial time. Summarising, with this choice of parameters, the relevant
time-scales for the microscopic motion of the atoms are all set to 1 in LJ reduced
units.

Mapping the reduced LJ units to real units can be easily done by fixing the fun-
damental quantities in the system, i.e. the length-scale σ and the temperature T .
For instance, when the length-scale σ reflects the thickness of hydrated dsDNA, it
can take values between 2 to 15nm depending on the concentration of salt, or more
generally, positive ions, in solution (Rybenkov et al. 1993). Here, I will often use
the value of σ = 2.5nm found near physiological conditions (NaCl concentration of
0.15 M). The temperature will be set, as usual, at T = 300 K . By using the Stokes
formula for the friction of beads of diameter σ in a solution of viscosity ηsol

ζ = 3πηsolσ (3.12)

together with m/ξ = τL J = σ
√
m/ε and ε = kBT (see next section) one can obtain

an expression for the LJ time independent of the mass:

τL J = 3πηsolσ
3

kBT
= τbr = τin . (3.13)

http://lammps.sandia.gov
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By using the nominal water viscosity η = 1 cP one finally obtains τL J � 36
ns = τin = τbr . It is worth stressing that the simulation time in real-life units that
can be achieved with this scheme scales as the cubic power of the monomer size σ .
This implies that choosing the right level of detail is of paramount importance. In
the case of a dsDNA, modelling the chain as a single chain of thickness σ , or as two
spiralling helices, each of thickness σ , can dramatically reduce the typical simulation
time-scale that can be achieved by a factor of about 53.

Time Integration

The integration is performed in the canonical ensemble, i.e. number (N), volume (V)
and temperature (T) are conserved. The temperature is fixed by a Langevin thermo-
stat, which couples the system to a bath at temperature T by regulating themagnitude
of the thermal noise via the fluctuation-dissipation relation. Since the focus of this
Thesis is on systems where the thermal noise plays an important role, the tempera-
ture T is chosen so that the thermal energy kBT equals the LJ interaction energy ε

used in Eq. (3.3). The numerical integration is performed using the velocity-Verlet
algorithm (Swope et al. 1982) using a time-step of �t = 0.01τL J . The Verlet class
of algorithms has the advantage of conserving the energy, or volume of phase space,
during the time-evolution of the Hamilton equations, as opposite to, for instance,
the Euler method, which does not ensure energy conservation (Frenkel and Smit
2001). The standard implementation of the velocity-Verlet scheme requires the stor-
ing of information for two time-steps. The “velocity-Verlet” version instead has the
advantage of storing the information only for a single time-step. The standard Verlet
algorithm in the case of systems in which there is no implicit solvent, i.e. in the case
the system evolves according to Eq. (3.1), can be easily derived by looking at the
Taylor expansion of the equations of motion around time t :

r(t + �t) = r(t) + v(t)�t + a(t)
2

�t2 + b(t)
6

�t3 + O(�t4) (3.14)

r(t − �t) = r(t) − v(t)�t + a(t)
2

�t2 − b(t)
6

�t3 + O(�t4) (3.15)

where b(t) = ∂3r(t)
∂t3

, a(t) the acceleration and v(t) the velocity. By summing these

two equations one obtains:

r(t + �t) = 2r(t) − r(t − �t) + a(t)�t2 (3.16)

which is the standard form of the Verlet algorithm. It is important to stress that the
positions thereby generated are accurate up to fourth order in �t . The expression for
the velocities can be obtained using:

r(t + �t) − r(t − �t) = 2v(t)�t + O(�t3) (3.17)
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which gives:

v(t) = r(t + �t) − r(t − �t)

2�t
+ O(�t2) (3.18)

and is only accurate up to second order.
It is instructive also to look at this algorithm from another point of view: instead of

integrating Eq. (3.1) one could attempt to generate set of coordinates that minimise
the (discretised) action:

S =
nfin∑

n=nin

�t

[
m

2

(
rn+1 − rn

�t

)2

− Un({r})
]

(3.19)

where rn is the position of the atom at time-step n�t andUn({r}) is the total potential
taking into account the position of all the atoms in the system at the same time-step.
The action S is stationary when its derivative with respect to all rn is zero. This
implies:

m

(
2rn − rn+1 − rn−1

�t

)
− �t

∂Un({r})
∂ rn

= 0

or

rn+1 = 2rn − rn−1 − �t2

m

∂Un({r})
∂ rn

(3.20)

which is the Verlet algorithm. This explicitly shows that the trajectory generated by
this algorithm “shadows” the true trajectory, i.e. the one that minimises the action in
Eq. (3.19), and is exact in the limit �t → 0.

3.2 Modelling

This section describes the main models used to simulate ring polymers and gels in
this Thesis. Unless otherwise stated, the parameters used have been defined in the
previous Section. Most of the models summarised in this work, focus on polymers
whose torsional stiffness is neglected; a good approximation when simulating nicked
DNA polymers, i.e. dsDNA segments which have a gap along one of the two strands
forming the double-helix. In this case the constraint in the torsion is mechanically
released and therefore the torsional stiffness can be neglected.

3.2.1 Modelling (Knotted) Ring Polymers

Ring polymers are, in general, prepared as a string ofmonomer locations that follow a
parametrised curve inR3 (see Fig. 3.2a). The largemajority of knot types investigated
in this Thesis can in fact be described in terms of simple functions from S1 to R

3.
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Fig. 3.2 Initialising, pre-equilibrating and equilibrating a trefoil knot

For example the family of (p, q)-torus knots (Adams 1994) can be parametrised as

x(φ) = r(φ) cos(pφ)

y(φ) = r(φ) sin(pφ)

z(φ) = − sin(qφ) (3.21)

where r(φ) = cos(qφ) + 2 and φ ∈ (0, 2π). This family of knots contains the
un-knot (01), formed as a (p, 1)- or (p,−1)-torus knot, the trefoil knot (31) formed
as a (2,−3)-torus knot (left-handed) or as a (2, 3)-torus knot (right-handed), the
pentafoil (51) formed as a (5, 2)-torus knot, et cetera. The knots belonging to this
family are knots that can be drawn on the surface of a torus without self-crossings.
In particular, p and q represent the number of turns along the “longitudinal” and the
“meridional”1 direction of a torus, respectively. These have to be relatively prime to
form a knot, otherwise one would obtain a link with two or more components.

The figure of eight knot (41) is not part of the torus knot family as it cannot be
drawn on the surface of a torus (having genus G = 1) but it can be embedded on the
surface of a genus G = 2 surface, i.e. it is a two-embeddable knot (Adams 1994),
and has a simple parametrisation:

x(φ) = r(φ) cos(3φ)

y(φ) = r(φ) sin(3φ)

z(φ) = sin(4φ) (3.22)

where r(φ) = 2 + 2 cos(2φ). Other types of knots which are not torus knots, such
as the 52 or 61, can be described as Lissajous knots (Bogle et al. 1994). They can be
parametrised as

x(φ) = cos(nxφ + ψx )

y(φ) = cos(nyφ + ψy)

z(φ) = cos(nzφ + ψz) (3.23)

1The meridian is the circle bounding a disc inside the torus.



38 3 Molecular Dynamics Models

where nx , ny and nz are (relatively prime) integers and ψx ,ψy and ψz are (real)
phases. For instance, the three-half twist knot (52) can be obtained by setting n =
(nx , ny, nz) = (3, 2, 7) and ψ = (ψx , ψy, ψz) = (0.7, 0.2, 0) while the Stevedore’s
knot (61) is found by setting n = (3, 2, 5) and ψ = (1.5, 0.2, 0).

Knots for which a parametrisation is not known, such as 62 and 63, are obtained
by simulating polymers which are allowed to self-cross, i.e. ULJ = 0, and selected by
computing their Alexander polynomial (Orlandini andWhittington 2007; Micheletti
et al. 2011) (see Appendix A for further details on algorithms for identifying knot
types). The ones with the desired topology are then considered and used as a template
for creating other knotted conformations to be used in other simulations.

Topology-Preserving Equilibration

Each of the polymers is initialised by performing a short run (∼100 τL J ) in which
the atoms forming a chain M beads long repel each-other via a soft potential and
consecutive atoms are connected via a harmonic potential (see Fig. 3.2):

Upre-eq =
M∑

i=1

[Uharm(r i , r i+1) + Ubend(r i , r i+1, r i+2)
] +

M−1∑

i=1

M∑

j=i+1

Usoft(r i , r j ).

(3.24)
In Eq. (3.24), a modulo-M indexing is taken implicitly, i.e. M + 1 ≡ 1, in order

to join the chain ends. The persistence length is initially taken small (ξp = 1σ ).
This allows the system to adjust the length of the bonds and eliminate any unwanted
overlapping between atoms at the same time avoiding generating numerical diver-
gences. After the pre-equilibration run, the topology of the knot is generally checked
once more, as strand crossings have a non-negligible chance to occur while the soft
repulsive potential is on. The equilibration run is then performed using the following
intra-chain potential:

Ueq =
M∑

i=1

[UFENE(r i , r i+1) + Ubend(r i , r i+1, r i+2)
] +

M−1∑

i=1

M∑

j=i+1

ULJ(r i , r j ),

(3.25)
which strongly suppresses any intra-chain crossings. The length of the equilibration
run depends on the system concentration and the ring’s length. Typically, this can
range between teq � 104 to 107 τL J time-steps. In this Thesis I will consider a system
“equilibrated” when each of the rings has travelled a mean square distance of at least
its own size, i.e. the mean square displacement of the centre of mass of the rings is
at least the radius of gyration squared (see Fig. 3.3).

Throughout pre-equilibration and equilibration runs, the inter-ring interaction can
be safelymodelled via the Lennard-Jones potential, Eq. (3.3), since different rings are
normally prepared distant enough to avoid overlapping during the initial time-steps.
The inter-chain potential is therefore:
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Fig. 3.3 Equilibration of a system rings with M = 256 beads in dilute regime. Red data-points
show the mean square displacement of the centre of mass of the rings

〈
δ2rCM (t)

〉
averaged over

the rings. Blue data-points show the average radius of gyration squared 〈R2
g (t)〉. In the long-time

limit the mean square displacement follows the law 〈δ2rCM (t)〉 = 6Dt , which is here recovered
with D = 1/M (see Sect. 3.1.3). The equilibration is reached once each ring has diffused at least
once its own size Rg ; in this case teq � 3 104 τL J . On the left, a graphical representation of a ring
diffusing its own Rg is shown, with red→blue a proxy for time

Uinter =
N−1∑

α=1

N∑

β=α+1

M∑

i=1

M∑

j=i

UL J (r iα , r jβ ), (3.26)

where N is the number of chains in the system and the indexes i and j run over the
atoms in the chains which are labelled with α and β. In the case there also is a gel in
the system (see Sect. 3.2.2), the interaction between beads forming the polymers (of
size σ ) and the gel structure (of size σg) is also modelled as a purely steric interaction
via the following potential

Umesh =
Mgel∑

k=1

N∑

α=1

M∑

i=1

ULJ (rk, r iα ), (3.27)

where k runs over the atoms forming the gel and the minimum distance is σc =
(σ + σg)/2.

Characterising Polymer Knots with Their Average Crossing Number

How can we characterise a knot’s complexity? This is a very difficult, open problem,
which I believe will generate research and scientific discussion for many years to
come. Some observables can capture some of the physical properties of knotted
polymeric strands. For instance, by parametrising a knot K as a function f : S1 →
R

3, one can define the average crossing number (ACN) of K as its unsigned writhe:

ACN (K) = 1

4π

∫

K

∫

K

|( f ′(s1) × f ′(s2)) · ( f (s1) − f (s2))|
| f (s1) − f (s2)|3 ds1ds2. (3.28)
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In some sense, this formula gives the number of crossings of a certain knot configu-
ration, averaged over the 3D space. This has to be compared with the more common
“minimal crossing number” (MCN) which is the minimal number of crossings in
any knot diagram of a knot (see Appendix A). The ACN is in general higher than
the minimal crossing number of a knot and thanks to the “averaging” property of
this quantity, the ACN has been found to be an appropriate quantity to characterise
the complexity of knots subject to thermal fluctuations and migrating through a
medium. In particular, it is worth stressing that the ACN of knotted polymers pos-
sesses two crucial properties: (i) the ACN grows with the length of the polymer
and it has been found to increase a little faster than linearly for random walks, i.e.
ACN (M) � M log(M) (Diao et al. 2003; Orlandini et al. 1994) for a M segments-
long walk, and (ii) the ACN of knots can be computed from their ideal configuration,
for instance generated as energy minimising configurations (Kusner and Sullivan
1994, 1998) or via “tube inflation” procedures (Katritch et al. 1996), and even once
these knots are then left to thermalise or their contour length is increased, their ther-
mally averaged (or “mean”) ACN is in a one-to-one correspondence to their “ideal”
ACN (Katritch et al. 1996). In this respect, the thermally fluctuating knots retain
some of their ideal properties and these are well captured by the ACN (Katritch et al.
1996).

This can be observed in Fig. 3.4awhere I report the thermally averaged value of the
ACN of knots as a function of their “ideal” ACNmeasured from ideal configurations.
In addition, Fig. 3.4b clearly shows thatmore complexknotswith samecontour length
assume more compact configurations. In particular, it was found (Stasiak et al. 1996)
that the square gyration radius is inversely proportional to the ACN, i.e.

〈R2
g〉−1 ∼ ACN (3.29)

Fig. 3.4 aAverage crossing number averaged over knotted configuration subject to thermal fluctua-
tions (〈ACN 〉) as a function of theirACNcalculated fromenergyminimising configurations (Kusner
and Sullivan 1994). The one-to-one correspondence allows us to uniquely use the ACN from the
ideal configurations. b The radius of gyration squared as a function of the ACN clearly shows that
more complex knots assume more compact configurations
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and that this is related to the faster sedimentation speed (Piili et al. 2013;Weber et al.
2013) and faster electrophoretic migration (Stasiak et al. 1996) of more complex
knots. Because of these reasons, the ACN obtained from ideal configurations is a
good quantity for identifying the complexity of knots travelling through media and
it will be used in Chap.6 to uniquely distinguish knot types in that context.

3.2.2 Modelling a Physical Gel

Gels are polymer networks formed by cross-linking polymeric strands. Cross-linking
is generated by, for instance, the presence of cross-linkers, such as proteins in biolog-
ical networks (Broedersz andMacKintosh 2014), or a high concentration of polymer
bundles, such as in agarose gels (Pernodet et al. 1997), which is one of the most
famous and broadly used examples of gels (Ross 1964; Stellwagen 2009; Viovy
2000). Agarose gel is commonly used as a buffer to perform gel electrophoresis
experiments in order to separate DNA and other bio-polymers. This technique relies
on the fact that charged polymeric strandswith different lengths, topology ormolecu-
larweight possess differentmobilitieswhenmoving throughporousmedia (Calladine
et al. 1991, 1997; Viovy 2000). The main feature that controls how a gel separates
molecules with different sizes is the (typical) mesh size ξg (Calladine et al. 1997).
The more peaked the distribution of pore sizes is, the more uniformly the gel acts as
a barrier for molecules larger than the pore size. In practice, agarose gels present a
broad distribution of pore sizes, which becomes narrower and centred around smaller
pore sizes as the concentration of agarose increases (Maaloum et al. 1998). In addi-
tion, the electrophoretic trapping of circular DNA in agarose gels at strong fields
suggests that gels possess dangling fibres which can thread through, and impale, cir-
cular DNA and other bio-polymers possessing closed contours (Cole and Åkerman
2003; Stellwagen and Stellwagen 2009).

The Young’s modulus of agarose is roughly in the region Eagar = 0.1 − 1 MPa
and depends on the agarose concentration. In any case, it is around 300 times smaller
than the one of DNA: EDNA � 300MPa (Marko and Cocco 2003; Kolahi et al. 2012).
Nonetheless, the persistence length of single agarose fibre of thickness σagar � 2nm
has been found to be lagarp � 10nm (Guenet and Rochas 2006). Agarose bundles
in the sol/gel phase usually form by aggregating a number n f � 10 − 20 of single
fibres into “fibrils”, which can then display a thickness σfibril � 20−40nm (Pernodet
et al. 1997) and much higher persistence lengths. Even by assuming a simple linear
scaling of the persistence length of the bundle as a function of n f , justified by weak
interaction among fibres (Mogilner and Rubinstein 2005), the persistence length of a
fibril can still reach values lbundlep � 100 − 200nm, much higher than than of DNA.

The small Young’s modulus of the whole material is often explained as a conse-
quence of the presence of flexible joints in the agarose gel matrix, while the single
fibrils and dangling ends (Guenet and Rochas 2006) are generally considered stiff.

Recently developed artificial gels made of solid nano-wires (Rahong et al. 2014)
provide a more selective pore size distribution, and possess a very large Young’s

http://dx.doi.org/10.1007/978-3-319-41042-5_6
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Fig. 3.5 Sketch of the gel structure, modelled as a perfect rigid cubic lattice and b with dangling
ends.Modelling a gel as a rigidmesh is particularly appropriate for artificial gelsmade of solid nano-
wires (Rahong et al. 2014). Including dangling ends in the model can be of paramount importance
when investigating gel electrophoresis of ring polymers (see Chap.6)

modulus (Ewires � 100 GPa) which makes the network less susceptible to deforma-
tions.

From a theoretical point of view, a gel can be thought of as a collection of strands
which create a 3D mesh. For simplicity, this mesh is often approximated as a perfect
(cubic) lattice (Weber 2006),with a lattice spacing equal to the averagemesh size 〈ξg〉.
In this case, the pore size distribution is p(ξg) = δ(ξg −〈ξg〉). In first approximation,
the gel structure can also be considered rigid, i.e. completely static, which is a very
good approximation in the case of artificially made gels of solid nano-wires.

In Chap.4, where I will focus on detecting threadings in systems of rings, I will
be modelling the gel as a rigid, perfect, cubic mesh (as in Fig. 3.5a). In this case,
the microscopic structure of the gel is not expected to play a crucial role in the
diffusion of rings. In addition, the fact that the gel is perfect eases the formulation of
an algorithm that can unambiguously detect the threadings.

In other cases, as in Chap.6, modelling the gel microscopic structure in detail is
important. For instance, the electrophoretic mobility of ring polymers in gel has been
found to be strongly dependent on the presence of dangling fibres (Mickel et al. 1977;
Turmel et al. 1990; Åkerman 2002; Cole and Åkerman 2003; Stellwagen and Stell-
wagen 2009). Because of this, in Chap.6, where I will focus on the electrophoretic
mobility of knotted ring polymers (Trigueros et al. 2001; Arsuaga et al. 2002), the
gel will be modelled as an imperfect mesh, by halving some of the edges forming
the cubic lattice with a certain probability p (see Fig. 3.5b).

By tuning the probability p one can directly regulate the average number of
dangling ends that can be found in the system, although their length will be fixed to
half the lattice spacing, i.e. lde = ξg/2.Unless otherwise stated, the gel lattice spacing
ξg has been chosen to reproduce the pore size of an agarose gel at 5% (Pernodet et al.
1997) or of an artificial gel after 3 growth cycles (Rahong et al. 2014), i.e. ξg = 200nm
= 80σ in MD units. While this value is unusually high for a standard experiment of
gel electrophoresis, it is closer to the typical pore size found in high resolution gel

http://dx.doi.org/10.1007/978-3-319-41042-5_6
http://dx.doi.org/10.1007/978-3-319-41042-5_4
http://dx.doi.org/10.1007/978-3-319-41042-5_6
http://dx.doi.org/10.1007/978-3-319-41042-5_6
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electrophoresis (Stellwagen and Stellwagen 2009). The mesh structure is, unless
otherwise stated, made up by static beads of size σg = 10σ � 25nm, which is
compatible with the diameter of either agarose bundles (30nm (Pernodet et al. 1997)
and the nano-wires (20nm (Rahong et al. 2014)).

In general, I will be considering gels whose lattice spacing is comparable with the
polymer’s Kuhn length, this is because, from a physical perspective, lattice spacings
much greater than the Kuhn length can leave the gel so sparse that the rings rarely
encounter it. Alternatively, for lattice spacingsmuch shorter than theKuhn length, the
simulation includes an increasingly large fraction of passive gel monomers, which
tend to increase the volume fraction of the system and hence limit the concentration
of rings that can be studied efficiently using numerical schemes.
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Chapter 4
Threading Rings

It looks as if it was a bride, walking down the isle, while her
dress is being pulled back by flower girls whose dresses are also
being pulled by flower girls whose dresses are pulled by other
flower girls …

A.Y. Grosberg

Understanding the dynamical and rheological properties of solutions of long ring
polymers is of primary importance in several areas of soft matter, material science
and biophysics (Cremer and Cremer 2001; Kapnistos et al. 2008; Halverson et al.
2011b, 2013). As mentioned in Chap.2, ring polymers do not follow the standard
reptation theory and in order to make progress it seems that the scientific community
will require innovative and unconventional approaches to analyse their properties.

In this chapter I will address a long-standing problem (Klein 1986; Cates and
Deutsch 1986), that of detecting and investigating threadings between rings in solu-
tion. In particular, I will first study ring polymers in a particular ensemble: a solution
of ring polymers embedded in a rigid gel. Differently from previous works, where
“a background of obstacles” was used to mimic the presence of topological obsta-
cles surrounding any specific ring polymer in solution (Rubinstein 1986; Obukhov
and Rubinstein 1994; Milner and Newhall 2010), here I intend to introduce a real
physical gel, made of a different polymeric units with respect to the ring polymers.

I will focus on this system with the aim of investigating the effect of threadings
between rings, i.e. inter-chain threading, on the dynamics of the solution and I will
show that these are dominant in the limit of large rings, when a spanning cluster of
inter-threading rings emerges.

In the second part of this chapter, I will instead turn my attention to a more
conventional system in which ring polymers are forced in a dense solution without
the presence of a static gel. In this case, there currently is no algorithm that can
unambiguously identify these inter-chain threadings. On the other hand, I will show
that these can be detected by appropriately perturbing the system. In particular, this
perturbation, borrowed from recent approaches to the glass transition in colloidal and
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liquid glass formers (Berthier and Biroli 2011), will be shown to trigger a mechanism
for which a kinetically trapped state emerges, thereby producing the first in silico
evidence of a “topological glass”.

4.1 Threading of Rings in a Gel

The polymers are here modelled as N bead-spring chains each formed by M beads
and the dynamics is integrated using the MD scheme as described in Chap.3. The
polymers are prepared unlinked and unknotted from either themselves and the gel
(see Fig. 4.1a), which is formed by a perfect cubic lattice, i.e.without dangling ends,
or equivalently by setting p = 0 (see Sect. 3.2.2).

The systems under study have N = 50 polymers with M = 64, M = 128, M =
256, M = 512, M = 1024 and M = 1512 and the box linear size L is changed in
order to keep the monomer density fixed at ρ = NM/(L3 − Vgel) � 0.14σ−3. Here
the polymers Kuhn length is set to lK = 10σ, the gel lattice spacing l = lK and
the mesh structure is formed by beads of size σ equal to that of the polymers (see
Chap.3). The reason for this is twofold: (1) if l � lK the system would map onto
the classic “melt” picture, a system in which I am not interested in this chapter;
(2) if l � lK the rings would appear rigid on the length scales of the gel structure
and, in addition, the system would be overcrowded with atoms forming the gel
structure rather than the rings, which would not be efficient in terms of computer

Fig. 4.1 a Snapshot of a system with N = 50 chains of length M = 256. The gel lattice (grey)
can be seen to be filled with ring polymers each shown in different colour. Periodic boundary
conditions are used to ensure the absence of surface effects or dangling ends. b Segmental mean
squared displacement of the rings 〈δr2s 〉 scaled by 〈R2

g (M)〉 and plotted against time τL J . Notice

the difference from the reptation theory prediction for linear polymers in a melt, where 〈δr2s 〉 ∼ tα,
and α = 1/2, 1/4, 1/2 before the tube is renewed and the polymer can freely (α = 1) diffuse. The
inset shows the scaling of the average squared gyration radius 〈R2

g 〉 as a function of the chains’
length. Notice the crossover from “Gaussian” (ν = 1/2) behaviour to crumpled (ν = 1/3) globule
via the Cates–Deutsch exponent ν = 2/5 (see Chap.2)

http://dx.doi.org/10.1007/978-3-319-41042-5_3
http://dx.doi.org/10.1007/978-3-319-41042-5_3
http://dx.doi.org/10.1007/978-3-319-41042-5_3
http://dx.doi.org/10.1007/978-3-319-41042-5_2
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resources. The systems are all well into the overlapping regime, i.e. where coils
overlap onto each other. The overlapping monomer density for the system with
shortest chains is ρ∗ = N ∗M/(L3 − Vgel) � 0.05σ−3 where N ∗ is such that φ =
4N ∗πR3

g/3(L
3 − Vgel) = 1. In Fig. 4.1a I sketch the system for the case of shortest

rings M = 256 beads.
Even though these systems are not technically a melt of rings, but a dense solu-

tion of rings embedded in a gel whose chemical structure could, in principle, differ
from that of the polymers, it is tempting to conjecture that rings may not “feel” the
difference between topological interaction caused by neighbouring rings and those
caused by the gel structure. In light of this, one could argue that the results I will
present in this chapter could, in principle, be translated and applied to the case of
a pure melt of rings. In support of this conjecture, in the inset of Fig. 4.1b, I show
the three distinct regimes of the squared radius of gyration R2

g , i.e. R
2
g ∼ M2ν with

ν = 1/2 → 2/5 → 1/3, observed in the case of a pure melt of rings (Cates and
Deutsch 1986; Grosberg et al. 1993; Grosberg 2014; Halverson et al. 2011a).

As described in Chap.2, rings in the melt with M < Me, where Me is the rings’
entanglement length, are thought to behave similarly to isolated self-avoiding rings
in a gel,1 for which the Parisi–Sourlas result (Parisi and Sourlas 1981) holds and the
rings are found to be in the same universality class of self-avoiding annealed branched
polymers, with fractal dimension dF = 1/ν = 2. For longer rings, the entropy loss
due to the conservation of topology, i.e. un-knotted and un-linked from their neigh-
bours, causes the rings to collapse and crossover to a crumpled globule regime, with
fractal dimension dF = 3. Although it is far from being a definite proof that the sys-
tem considered here can be compared to a melt of rings, it is somehow encouraging
that the same scaling of Rg is observed here.

In Fig. 4.1b I also report the segmental mean square displacement of the rings,〈
δr2s (t)

〉
, defined as

〈
δr2s (t)

〉 ≡ g1(t) =
〈
1

M

M∑

i

[r i (t + t0) − r i (t0)]2
〉

. (4.1)

This quantity keeps track of the diffusion of single monomers forming the chains
and is therefore very susceptible to any kind of entanglement at the level of segmental
relaxation. This shows that for the systems with M ≤ 1024, after an initial sub-
diffusive regimewhere 〈δr2s 〉 ∼ t1/2, the chains freely diffuse only once the polymers
have travelled many times their own size, i.e. 〈δr2s 〉 ≥ R2

g . This is similar to the
behaviour observed in a melt of rings (Halverson et al. 2011b) and rather different
from the case of a melt of linear polymers (Kremer and Grest 1990) where the
free diffusion is reached, via a sequence of distinct sub-diffusive regimes, when the
segmental displacement has travelled a shorter distance, of order one R2

g .

1It is interesting to notice that in the ensemble I study in this chapter, the picture of “rings in a gel”,
or “in a background of obstacles”, is more appropriate than in the case of a pure melt.

http://dx.doi.org/10.1007/978-3-319-41042-5_2
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For the longest chains presented here, M = 1512, the freely diffusive regime has
not been achieved in the simulation runtime. It isworth stressing that the samenumber
of time-steps had been run for equilibrating the system and it was considered equili-
brated based on the following points (Halverson et al. 2011a): (i) the value of 〈Rg(t)〉
had been observed to settle at a constant value for several decades and (ii) the rings
had travelled, on average, at least one Rg . It is also worth noticing that this system
displays a slowing down at large times: After an initial Rouse regime, an entangled
regime with 〈δr2s 〉 ∼ t1/4 is observed even at times as large as 4 107 τL J timesteps.
All this is, once again, compatible with previous findings in the melt (Halverson et al.
2011b), which suggests that these two systems are, after all, not so different.

Threading between polymers have been thought of as candidates to drive a dynam-
ical slowing down in systems of rings (Lo and Turner 2013), and the severe sub-
diffusive regime in the segmental displacement (Fig. 4.1) has not yet been investi-
gated in its own right either in a melt or in a gel. In addition, no method to detect
topological interactions, such as threadings, exist currently in the melt. This strongly
encourages the study of threadings and their effect on the rings dynamics in the sys-
tem I proposed; as I will show in what follows, the presence of a rigid background
structure in fact allows us to unambiguously define and detect the presence of these
topological interactions and their persistence in the system.

4.1.1 Detecting Threadings Between Rings

Threadings are not topological invariants, i.e. a threaded configuration such as that
in Fig. 1.4b where the shark is threading the other animal, can become un-threaded
by smoothly deforming the polymers. For this reason, threadings are very hard to
define, let alone identify.

Threadings can be thought of as local properties of the conformation of the rings;
the global topology of the rings remains unlinked from both other rings and the
gel. The gel architecture provides a natural local volume—a single unit cell—within
which a threading of one ring through another can be identified. This is done by
exploiting the following property: each polymer enters and exits a given cell through
its faces; the unique topological characteristic of ring polymers, unlinked from the
cubic lattice, is that each time the contour passes out through a face of any given unit
cell, labelled c, this must be accompanied by a returning passage back through the
same cell face.

The threading of polymer i by polymer j within cell c can then be defined by
performing some operations onto the polymers contour length: First a contraction of
ring i is formed by sequentially connecting the pointswhere it passes through any face
of cell c by straight lines, as illustrated by the yellow lines in Fig. 4.2b. This procedure
creates a closed loop ic contained entirely within cell c and its bounding faces, and
it also takes into account possible re-entrant configurations, where a ring pierces
more than once a cell face. This “contraction procedure” in fact joins consecutive
intersection points of the polymer with the faces of the box in order to form a closed

http://dx.doi.org/10.1007/978-3-319-41042-5_1
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Fig. 4.2 Threading identification procedure. The green strands of chain j passing through a face
of the cell are separately closed to form two loops jc1 and jc2 . Each one of them is topologically
linked with the yellow contour ic, a unique contraction of chain i formed by connecting the points
that pass through the faces of the unit cell. In contrast, the green ring is not threaded by the yellow,
as one can see by reversing the roles of chains i and j (see d). This implies that threadings can
be sub-divided into “passive” and “active” (see later in the text), differently from other types of
topological interactions, such as linking, which is mutual

contour entirely contained within one unit cell. In this way the gel is used to identify
threadings as local configurations in which the conformation of the ring outside of
the chosen cell is unimportant. Next, each of the other strands occupying cell c and
labelled by jc, belonging to a different polymer j , are considered. These strands
connect a single entry and exit point through the faces of c. The ends of each strand
can be closed outside the cell to form a closed loop.2 The next step is then to compute
the linking number between each pair of jc and ic thereby created. This will be non-
zero if, and only if, ring i is threaded by that strand of ring j . There are some cases
in which the linking number computation can return zero although the two rings are
physically inseparable, as in the case of a Whitehead link (Adams 1994). I expect
these exceptions to be rare in our system, as the rings are stiff on the length scale of
a gel lattice spacing and therefore such complex configurations are not common.

This procedure is reminiscent of a method used in the literature to measure entan-
glements in a melt of linear polymers (Orlandini and Whittington 2004), where the
authors probed the level of entanglement in the system by ideally carving a box from

2These could be closed at infinity, but anywhere away from the cell would suffice.
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it and by computing the linking number between pair of curves generated by ran-
domly closing the strands entering and exiting that box. In that case, the procedure
was prone to ambiguities in the closing procedure, and, in addition, the size of the
box sampled from the system was somehow arbitrary. In the system presented here
both these problems are resolved by using the natural entanglement length of the
system, i.e. one gel lattice size, this in fact not only gives a natural choice for the
size of the probing box but also ensures that every ring entering a face of the box
is also exiting the same face, therefore creating a natural choice also for the closing
procedure.3

To better understand the algorithm, it is perhaps useful to concentrate on a specific
example. For instance, consider Fig. 4.2. The two strands of the green ring in Fig. 4.2a
are threading the yellow ring. After performing the closing procedure (Fig. 4.2b), the
absolute value of the linking numbers between the closed yellow loop and each of the
green loops is equal to one (Fig. 4.2c). Inverting the procedure by swapping the roles
of i and j would lead to the configuration in Fig. 4.2d, which has linking number of
zero between any pair of loops. Note also the emphasis on the fact that I compute the
magnitude of the linking number between each pair: the sum of the signed linking
numbers would in fact always give zero, as the two original rings are topologically
unlinked.

The local threading of ring i by ring j in cell c at time t can therefore be defined by
Thc(i, j; t) = 1

2

∑
jc

|Lk(ic, jc; t)|—equal to 1 for the example shown in Fig. 4.2b—
and the total threadings between these rings by summing this over all cells

Th(i, j; t) = 1

2

∑

c

∑

jc

|Lkc(ic, jc; t)| . (4.2)

This procedure is perfectly well defined, even when identifying threadings asso-
ciated with rings that share either the entry and/or the exit faces of the unit cell of
the gel, as shown in Fig. 4.3. While the definition of threading used in this chapter
is unambiguous, it is helpful to examine what is recorded in the three cases shown:
Fig. 4.3a The rings thread through each other in the cell. Both of the yellow/yellow-
dashed contours, closed at infinity are linked with the green ring, closed by a straight
line connecting the points it leaves the cell. The yellow ring is therefore reported as
actively threading the green ring by the algorithm. Figure4.3b There is no threading
in the unit cell since the penetrating ring enters, and then leaves, the green shaded
area delimited by the green ring contour. The closed yellow/yellow-dashed contours
are both unlinked from the green ring, closed on the edge of the box. In this case
the algorithm reports three unlinked rings, hence it detects correctly that there is no
threading present, hence no topological constraint. Figure4.3c shows the case where
there are two local threadings which happen in two different unit cells. In this case,
one might argue that by summing the contributions of the two cells, the two rings
are not threading. On the other hand, in both cells the rings are acting as a constraint

3It is fair to say that the similarity between these two methods became apparent, at least to me, only
after we finalised the algorithm to detect threadings.
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Fig. 4.3 Sketches of “tricky” threadings, where rings share the same entry/exit face and detected
by the algorithm described in this chapter. The rings in a and c would be correctly detected as
threading, being the rings configuration locally threaded inside the unit cell. The rings in b would
also be correctly classified as non-threading being the yellow ring entering and exiting the green
contour within the unit cell

for each-other motion within the single cells and therefore the algorithm correctly
reports both local threadings. It is finally worth pointing out that pair of threadings
like the ones depicted in Fig. 4.3 will usually be short lived, as they can quickly
annihilate.

The detection of a threading is necessarily a strictly local measure, on the scale
of the cell volume. If the cell volume is increased no threadings will eventually be
recorded since rings in the melt are unlinked by construction. A passive threading
of ring i by ring j is detected when Thc(i, j; t) = 1 and Thc( j, i; t) = 0 while the
ring i actively threads j when Thc(i, j; t) = 0 and Thc( j, i; t) = 1. For example,
in Fig. 4.2b, the yellow ring is passively threaded by the green one, and the latter is
actively threading the former and not vice versa. This means that threading, unlike
linking, is directional and non-mutual.

4.1.2 Extensive Threading Leads to Extensive Correlations

The equilibriumaverage of threadings over rings and over time can be found by taking
〈∑ j T h(i, j; t)〉i,t/N ≡ 〈Th〉/N , where 〈. . . 〉i,t denotes the average over rings and
over time. This represents the number of passive threadings per chain and is reported
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Fig. 4.4 Number of
threadings 〈Th〉 per chain as
a function of the length of
the chains M . In the inset I
plot pth , crudely the
probability of threading in a
cell containing two different
chains, as computed in
Eq. (4.4). See text for details

in Fig. 4.4. As one can notice, this quantity is found to scale extensively with M , i.e.
it is a critical quantity in the system. Within the lengths used in these simulations,
one does not see any deviation from the linear regime. This strongly suggests that
longer rings will lead to even more numerous threadings.

One can conjecture that the existence of these penetrations is bound to affect the
dynamics of the rings, as they effectively are constraints on the rings diffusion. A
measure to quantify the effect of the dynamics is given by the penetrations time-
correlation function

Pp(t) =
〈∑

j T h(i, j; t0)Th(i, j; t0 + t)
〉

i〈∑
j T h(i, j; t0)Th(i, j; t0)

〉

i

(4.3)

This quantity represents the average fraction of survived passive threadings of ring
i after a time interval t , see Fig. 4.5a.

For the longest rings, Pp(t) tends to flatten, resembling a plateau, before relaxing
to a constant value Pp(t → ∞) ≡ P∞

p , this being the mean probability that two
different, randomly chosen chains are penetrating. By using a mean-field argument,
one can argue that the probability of threading between two chains in any cell that is
occupied by both rings, pth , can be approximated as the large time probability that
they are found threading through one another divided by the number of shared cells
that they both occupy Nsc

pth = P∞
p /Nsc ∼ P∞

p

(L/ l)3

M2
, (4.4)

or

P∞
p ∼ pth

M2

(L/ l)3
, (4.5)
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Fig. 4.5 Time-correlation function Pp(t) of the penetrations (or threading persistence) as computed
in Eq. (4.3). The inset compares the relaxation of the spatial stress carried by the rings, through the
modulus G(t) defined in Eq. (4.7), with Pp(t) defined in Eq. (4.3) for the system with M = 1512.
The spatial stress is clearly relaxed more quickly than the threadings and the dotted line indicates
a power law decay of t−0.4 (Kapnistos et al. 2008)

where Nsc is the number of cells c shared between two rings each visiting a fraction
fc = Nv/(L/ l)3 of the cells in the system, i.e. Nsc � f 2c (L/ l)3. The fraction of
cells visited by any one ring was also found to be extensive in the rings length, i.e.
Nv ∼ M . This is compatible with the fact that the rings fractal dimension is dF = 3
in the large M limit, i.e. R3

g ∼ M . Combining this with P∞
p (in Fig. 4.5) one can

estimate pth → 0.015, reported in the inset of Fig. 4.4. The prediction (dashed line)
is particularly well matched by the simulations (data points) at large M , where the
scaling R3

g ∼ M is more appropriate to describe the size of the coils. Crudely, this
quantity represents the “background probability” of threading between any two ring
segments sharing a gel unit cell, and it is independent of any correlations that may
have existed at earlier times. The fact that pth is found to be constant at large M
it is very encouraging, as it implies that any two rings sharing a unit cell thread
through one another with the same probability pth independently on their length M .
As a consequence, by increasing M the system is bound to generate more and more
threadings, i.e. constraints on the overall motion of the rings.

In light of this, one could argue that the addition of 〈Th〉 threadings has the net
effect of imposing a number constraints on the system and therefore on the degrees
of freedom, Ndof , of the system. Although it might be non-trivial to quantify the
degrees of freedom of a melt of rings, it is safe to assume that, because ring poly-
mers have to preserve their topological state, threadings represent a severe (although
temporary), constraint on the translational degrees of freedom, Ntr , of the chains. As
a consequence, one could think that in the case

Ntr/〈Th〉 ∼ 1, (4.6)
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the system has saturated its translational degrees of freedom, and therefore the chains
are all correlated to one another via threadings, hindering the fluid motion of the
system. This scenario, that could be (loosely) compared to the Maxwell isostaticity
condition of frames (Maxwell 1864; Kane and Lubensky 2013), captures the primary
motivation of this Thesis, i.e. to find a state in which these topological interactions
can drive a dynamically arrested state, or a “topological glass”. In this respect, a
melt of rings is a more promising candidate than, for instance, a blend of rings
contaminated with linear chains (Halverson et al. 2012). Although such a system has
showed a surprising rubbery plateau even after small addition of linear contaminants,
there are no topological constraints that can be imposed on linear polymers, and for
this reason, the largest relaxation time of the system is bound above by the slowest
relaxation of the linear polymers, i.e. τrelax ∼ M3.

In order to better understand the correlation between spatial stress and threading
relaxation in the system studied here, one can compare the threading persistence
Pp(t) with the stress relaxation modulus, G(t) (Doi and Edwards 1988). Here, the
stress carried by the rings can be computed easily, once again making use of the rigid
gel structure, as

G(t) =
〈∑

c g(i, c; t0)g(i, c; t0 + t)
〉
i〈∑

c g(i, c; t0)g(i, c; t0)
〉
i

(4.7)

where g(i, c; t) = 1 if ring i is present in cell c at time t and 0 otherwise. While
G(t) is a standard quantity in polymer science and usually measures the rheological
response, it is likely that, in practice, this quantity would be difficult to separate from
that of the gel structure. Tracking the diffusion of labelled tracer rings is therefore
likely to be the most effective experimental probe of their dynamics in the system
studied here.

From the inset of Fig. 4.5 it is clear that the stress carried by the rings relaxes
more quickly than the threadings, i.e. G(t) decays more quickly than Pp(t). This is
consistent with the fact that one ring, penetrated by another in any particular cell,
can independently relax the stress it carries in all other cells. A counter-intuitive
finding that has been confirmed several times in the literature (Kapnistos et al. 2008;
Halverson et al. 2011b, 2013, 2014; Grosberg 2014), is that rings relax their spatial
stress much faster than their linear cousins, G(t) ∼ t−2/5 (Kapnistos et al. 2008),
leading to a much lower (zero-shear) viscosity

η0 =
∫

G(t)dt ∼ M1.4, (4.8)

which is compatible with the one observed here (see dotted line in the inset of
Fig. 4.5), they have also been observed to continue their sub-diffusive motion long
after the stress has completely relaxed. Long-lived penetrations, such as those leading
to the long “fat” tails of Pp(t) in Fig. 4.5, may be responsible for this remarkable
and unique finding. In fact, one could argue that a ring can start its free diffusion
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Fig. 4.6 Three dynamic relaxation times for rings in concentrated solution. The time taken for inter-
nal re-arrangements (captured by τdiam) is shown to be much shorter than τrelax and 〈T0.1〉, capturing
the self-diffusive and the threading relaxation time-scales, respectively (see text for details). The
shadowed region delimits the confidence bounds expected for the final data point for the unthreading
time 〈T0.1〉 at M = 1512, were it to continue to follow this power law. This point is approximately
30 standard deviations outside the confidence interval, consistent with a dramatic slowing-down
due to the development of a strongly connected network of inter-ring penetrations. The arrow on
top of the data point showing τrelax for the longest rings M = 1512 indicates that this represents a
lower bound: the crossover to diffusive motion has not yet occurred at the longest computationally
accessible times. A sketch of two rings fully relaxing their configurations while retaining a threading
between them is also show

(〈δr2s 〉 ∼ t) only after it has travelled many times its own size 〈R2
g〉1/2 (see Fig. 4.1b),

i.e. only once themost persistent penetrations have relaxed, on the time-scales shown
in Fig. 4.5.

Figure4.6 compares three measures for the relaxation of rings:

(i) the re-orientation time τdiam, defined as

τdiam ≡
∫ ∞

0
Cdiam(t)dt =

∫ ∞

0

〈di (t0 + t) · di (t0)〉i〈
di (t0)2

〉
i

dt (4.9)

where di (t) is the diameter vector of ring i at time t computed by considering
fixed pairs of anti-podal beads along the chain (as in Ref. (Halverson et al.
2011a));

(ii) the overall diffusion time τrelax defined as

τrelax ≡ 〈R2
g 〉/6DCM (4.10)

corresponding to the time taken for a chain to diffuse a distance compared to
its radius of gyration;
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(iii) the un-threading time-scale 〈T0.1〉 defined as the solution of the equation

Pp(T0.1) ≡ 0.1, (4.11)

representing the average time required by a ring to lose 90% of its original
threadings, i.e. the time required to “renew” its neighbours.4

Comparing the scaling behaviour of these quantities is exceptionally meaningful: for
short rings all these three time-scales are similar to one another, on the other hand,
when the size of the rings is increased, one can observed that the internal relaxation
decouples from the overall displacement, i.e. τdiam � τrelax. This finding is peculiar
of ring polymers, since that for linear polymers these two time-scales are related
via the tube renewal time-scale. In addition, the un-threading time 〈T0.1〉 and the
diffusion time τrelax seem to instead follow the same scaling, meaning that the time
taken to fully diffuse one coil size scales accordingly to the time taken to renew the
threadings.

More importantly, these time-scales are observed to deviate from the scaling
〈T0.1〉 ∼ τrelax ∼ M2.5 when the longest chains are simulated. In fact, for the system
with M = 1512 one finds 〈T0.1〉 � 2 107 τL J , that is twice as large as the value
expected (see Figs. 4.5 and 4.6), while the value of τrelax represents only a lower
bound, having not been able to observe free diffusion of these rings within the
simulation run-time (and therefore leading to only an upper bound on the value of
DCM for the rings with M = 1512). This encourages the conjecture that, at this
length, threadings are densely populating the system, thereby creating many long-
lived correlations between rings. In particular, one could speculate that the system
with M = 1512 is approaching the regime in which Eq. (4.6) holds, i.e. the number
of translational degrees of freedom are saturated by inter-chain constraints.

In light of the findings reported in Fig. 4.6, it safe to conclude that the un-threading
time-scale is strongly related to the time-scale of the overall ring diffusion and it is
perhaps the leading contribution to it. In other words, Fig. 4.5 unambiguously proves
that threadings impose inter-chain correlations up to times that can be compared with
the time taken by the rings to diffuse their centre of mass over many Rg .

4.1.3 The Emergence of a Spanning Network
of Inter-Threaded Chains

At this stage it is therefore sensible to ask whether it is also possible to spatially relate
such topological constraints. In fact, it is reasonable to imagine that, by increasing
the length of the rings, one can generate a situation in which every ring is both,
actively threading and passively threaded by, a number of other rings. This clearly

4〈T0.1〉 can be conceptually compared to the time taken by a linear polymer to renew its confining
tube, begin threadings a sort of “tube” (or “cage”) for rings.
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generates a network of inter-threaded rings. One can therefore ask: are the large-time
correlations related to the presence of extended spatial correlations?5

In order to quantify the network of penetrations from a “spatial” point of view, it
can be useful to make use of the threading matrix Th(i, j; t) introduced earlier. This
keeps track of the threading of ring i by ring j at time t and it is, in some sense, the
equivalent of an “adjacencymatrix” for the threading rings. The graph representation
of the network of threaded rings can therefore be described in terms of a directed
graph G = G(E,V) where V is the set of vertices, a subset of the set of N rings in
the system, and E is the set of directed edges from ring j to ring i , which represent
the threadings of ring j through ring i . The time-evolution of the network is given
by Th(i, j; t), and from this it is possible to quantify the emergence of extended
structures of inter-threading rings by using the size of the largest strongly connected
component |Nscc| and the first Betti number b1(G), which naively represents the
number of 1-dimensional circular holes in the network, and is therefore a signature
of “looped” correlated clusters of rings.

Recalling that a strongly connected component is defined as a sub-graph (Gscc) of
G for which every vertex has a path to reach every other vertex within that sub-graph,
one can notice that every ring in Gscc has to have at least one passive (in-coming
arrow) and one active (out-going arrow) threading. In other words, all the rings
belonging to a strongly connected component are related to one another via a chain
of threadings.

In Fig. 4.7 I report the computed values of Nscc and b1(G) averaged over time and
show snapshots of some networks as an example. One can notice that while for short
rings the components are small, i.e. the network is fragmented, this is no longer true
for longer rings. In this case one observes the formation of larger clusters. When the
largest connected component contains O(N ) vertices, it signifies that a percolating
cluster of inter-penetrating rings has emerged. At this stage, every ring is connected
and correlated with some other ring via a sequence of threadings. While such a
representation is static, i.e. if one took two snapshots of the network at different
times it would look very similar, it is clear that the emergence of system-spanning
clusters of threaded rings has to affect the dynamics of the rings. I conjecture that
the dynamical effect, or dynamic transition, is actually captured by the significant
deviation showed in Fig. 4.6. In other words, the strong increase of relaxation time-
scales observed inFig. 4.6 is related to a corresponding increase of spatial correlations
which can be captured by the emergence of a system-spanning connected component
of inter-threaded rings.

5It is interesting to notice that the same question is also frequently asked when studying more
conventional glass-forming materials (Berthier and Biroli 2011).
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Fig. 4.7 Betti number b1(G) and size of the largest strongly connected component |Nscc(G)|
computed by taking the time average of the matrix Th(i, j; t) after equilibration. Snapshots of
some graphs G(E,V) corresponding to M = 256 (a), 512 (b), 1024 (c) and 1512 (d) beads. The
colors highlight the strongly connected components in the graphs (see text for details). The numbers
near the nodes identify the rings in the simulation. Notice that N = 50 (dashed line) is themaximum
number of rings in the system and the crossover |Nscc(G)| � 50 appears to be attained at around
M = 2000 by extrapolating the last two data points (dotted line)

4.2 Threading of Rings in Dense Solutions

In the previous section I introduced a method to detect and identify threadings in
a solution of rings embedded in a static gel structure. An obvious extension of this
work is to try and quantify the effect of threadings in a dense solution. Clearly, the
same protocol that I developed in Sect. 4.1.1 will be no longer valid. In this section
I will therefore first investigate a solution of rings and then attack the problem of
characterising threadings from the kinetic point of view by taking inspiration from
recent protocols advanced by some authors in the Condensed Matter community
working on glass-transitions (Biroli et al. 2008; Berthier andBiroli 2011; Cammarota
and Biroli 2012; Karmakar and Parisi 2013).

In practice, it is computationally straightforward to transform the system investi-
gated in Sect. 4.1 to a pure solution of rings. By taking equilibrated configurations
and deleting the beads forming the gel, similar to an in silico etching, one can in fact
obtain pure solutions of N rings M beads long. The monomer density of the systems
thereby obtained is lower, i.e. ρ = 0.1σ−3, and therefore one expects that the rings
will accommodate in order to fill the vacant space. Technically, at these densities, the
systems are classified “dense solutions” rather than “melts” being only moderately
above the overlap (number) density ρ∗ � 0.03σ−3. For computational purposes, I
will not increase the density further, hoping that this will not invalidate the extension



4.2 Threading of Rings in Dense Solutions 61

Fig. 4.8 a Snapshot from MD simulations of a melt with N = 50 and M = 256. b Schematic
representation of inter-threading rings forming hierarchical levels of threadings enumerated from
the innermost to the outermost with respect to the black ring. c Pierced lattice animal representation
of rings in solution (adapted from Ref. (Kapnistos et al. 2008) with permission from Macmillan
Publishers Ltd: Nature Materials, copyright 2008)

of the results reported in this section to the case of concentrations that more closely
mimic the melt state. After thermalisation, the systems look like the one sketched
in Fig. 4.8a where I also report a schematic illustration of a configuration in which
many rings thread through one another in a hierarchical fashion starting from the
black ring (Fig. 4.8b).

4.2.1 Overlapping Crumpled Globules

As discussed in Chap. 2, the size of a ring polymer in the melt is that of crumpled
globule. In reality, this regime is achieved only when rings are large. Shorter rings
assume the ideal size with ν = 1/2 which crossovers, via ν = 2/5, to the collapsed
regime with ν = 1/3 (see Fig. 4.9). Although this exponent provides us with infor-
mation regarding the overall size of the polymer coils, it does not inform us of their
internal structure. A better way to probe the internal arrangement of the coils is by
using the static scattering function, or form factor, S1(q) defined in Chap.2 (see
Eq. (2.28)). One in fact expects that, in the range 2π/Rg < q < 2π/σ, this function
scales as

S1(q) ∼ (qσ)−dF (4.12)

where dF is the fractal dimension of the chain at length scale 2π/q and it is related
to the entropic exponent as dF = 1/ν (Rubinstein and Colby 2003). Linear chains
in the melt display dF = 2 for a broad range of q’s (Halverson et al. 2011a). Ring
polymers in the melt have instead a more complex arrangement: because their ideal
size differs from the size assumed in the limit of large polymerisation index, one can in
principle detect two regimes: at contour lengths below (s < Me) and above (s > Me)

http://dx.doi.org/10.1007/978-3-319-41042-5_2
http://dx.doi.org/10.1007/978-3-319-41042-5_2
http://dx.doi.org/10.1007/978-3-319-41042-5_2
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Fig. 4.9 Static scattering function S1(q) plotted against qRg and divided by the length M of the
rings. The scattering vector q probes length scales l = 2πRg/(qRg) and shows a more complex
behaviour than for systems of linear polymers. Inset average radius of gyration squared (〈R2

g 〉)
showing the two scaling regimes R2

g ∼ M2ν with ν = 2/5 and ν = 1/3 (see Chap.2)

the entanglement length, or blob size, Me. In fact, below Me one expects that the
chain simply follows the Gaussian statistics for an open polymer s monomers long;
for this reason one expects the size of a blob to scale as Rb(s < Me) ∼ s1/2 (being
the self-avoidance screened out) (Grosberg 2014). On the other hand, larger contour
lengths are more crumpled and follow Rb(s > Me) ∼ s1/3. This markedly different
behaviour cannot be captured in melt of linear polymers, as both regimes, below the
above the entanglement length, follow the Gaussian statistics with Rb(s) ∼ s1/2.

For the rings the situation is more complicated, as represented in Fig. 4.9. Let us
focus on the longest ringsM = 2048: ForqRg > 2πRg/ lK � 16,where lK = 10 σ is
the polymers’ Kuhn length, the structure factor probes length scales below the Kuhn
length and therefore returns, as expected, a scaling S1(q) ∼ q−1, valid for rigid
rods. In the regime, π < qRg < 2πRg/ lK , the scattering function probes length-
scales between 2Rg and lK . In this case, Fig. 4.9 shows that the fractal dimension dF
changes from dF = 3 to dF = 2 at around qRg � 4 corresponding to length scales
l = 2πRg/4 � 40 σ, i.e. several Kuhn lengths but smaller than the diameter of the
chain 2Rg. In the large length scale limit, qRg � 1, the magnitude of wave vector |q|
is much smaller than any distance |r i − r j | between beads in the chain and therefore
the structure factor is simply S1(q) = M .

In Fig. 4.10 I report the scaling of surface monomers ms computed as the number
of monomers of each chain “in contact” with other chains, i.e. having a distance
d ≤ ρ−1/3 from other monomers, and ρ−1 being the free volume available to each
monomer in units of σ. This quantity has been discussed in Chap.2 and, in particular,
its exponent β has been recognised to be a good measure of the coils “roughness”.
Contact exponents β close to one indicate highly rough surfaces with a large number
of interactions with other chains. In Fig. 4.10 one can observe that β � 1 within
errors for the systems with the longest chains. It is worth stressing that it might seem
counter-intuitive that a globule with exponent ν = 1/3 and a contact exponent γ � 1

http://dx.doi.org/10.1007/978-3-319-41042-5_2
http://dx.doi.org/10.1007/978-3-319-41042-5_2
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Fig. 4.10 a Surface monomers ms computed as described in the text and the two observed scaling
ms ∼ Mβ with β = 0.9 and β = 0.99 in agreement with Ref. (Halverson et al. 2011a) and Chap.2.
b Number of contiguous chains nc and neighbouring chains nn as defined in the text. Notice that
the former is quantitatively more numerous than the latter; N = 50 is the maximum number of
chains in the systems. c Contact probability Pc(s) as defined in Chap.2 and observed to follow a
scaling near s−1 as predicted in Eq. (2.20) for a crumpled globule (slightly dependent on the chosen
cut-off a). d Pair correlation function of the coils centre of mass g(r) as defined in Eq. (4.13). The
maximum of this function defines the average distance of the chains centre of mass and it is found
to be smaller than 2Rg

(reported in Fig. 4.10c) has a number of contacts that scales nearly linearly with the
length of the coil M . The only plausible explanation is that although the coils are
collapsed and crumpled, they are also highly inter-penetrating and not segregating.
All this strongly suggests that rings in melt might inter-thread, similarly to the rings
embedded in the gel studied in the previous section.

The fact that coils are inter-penetrating rather than segregating is also strongly
suggested by the pair correlation function of the coils centre of mass:

g(r) = 2

N (N − 1)

N∑

I

N∑

J

δ
(|rCM,I − rCM,J | − r

)
. (4.13)

This function shows a distinct peak at r < 2rmax � 2.6Rg , being Rg = √
3/5rmax the

mean radius of an homogeneous sphere of radius rmax, (see Fig. 4.10d), and therefore
implies that the coils behave similarly to ultra-soft colloids of size 2rmax rather than
segregated hard spheres (Likos et al. 2014). In light of this, it is reasonable to study
the number of different chains with which each coil can interact with. A very crude
approximation of the number of neighbours is nn ∼ Rd

g /M , that gives the number

http://dx.doi.org/10.1007/978-3-319-41042-5_2
http://dx.doi.org/10.1007/978-3-319-41042-5_2
http://dx.doi.org/10.1007/978-3-319-41042-5_2
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of chains within a d-dimensional volume of linear size Rg centred in any one coil.
Equivalently, one can count the number of coils whose centre of mass separation is
smaller than sum of their gyration radii, i.e.

nn =
〈
∑

J

�
(
Rg,I + Rg,J − |rCM,I − rCM,J |

)
〉

I,t

, (4.14)

where �(x) is the usual Heaviside function and 〈. . . 〉I,t identifies the average over
rings and time-steps. One can imagine to define a different measure of “contact”
exploiting the measure of the surface monomers. One can define the number of
contiguous chains nc as the number of chains whose monomers are in contact. It
is worth noting two features of nc as reported in Fig. 4.10b: (i) it is larger than nn ,
meaning that the contacts between different chains are not restricted to neighbouring
chains within a volume Rd

g but go beyond the gyration radius, possibly via long
protrusions; (ii) while nn ∼ Rd

g /M ∼ Mdν−1 it is roughly constant (dν − 1 = 0) in
the crumpled regime, the number of contiguous chains nc seems to increase as M1/3

before plateauing for the longest chains at around N � 30. This means that any given
chain is contiguous, in the sense defined earlier, to 30 other chains in the system.

All this is in agreement with previous observations in the melt, where the rings
have been found to assume configurations possessing long protrusions and strongly
deviating from a compact sphere (Halverson et al. 2011a). This encourages us to
probe the dynamics of the rings, and in particular, to design a protocol that allows
us to investigate the effects of threadings and their spatial correlations.

4.2.2 The Slow Exchange Dynamics of Rings

At this stage it is reasonable to ask whether one can explicitly measure an inter-chain
correlator in order to unambiguously observe the exchange dynamics of rings in
solution. Recently, this has been done by tracking neighbouring chains (Lee et al.
2015), i.e. chains whose centres of mass are closer than the sum of their size. Here,
we want to exploit the computation of contiguous chains, to define a correlator of
contiguity over time. This is done by computing a dynamic N × N matrix P(t)
whose elements are defined as

PI J (t) =
{
0 if di j ≥ ρ−1/3

1 if di j < ρ−1/3
(4.15)

where di j is the distance of any two monomers i and j belonging to chains I and J ,
respectively. From this it is straightforward to obtain the correlator
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ϕnc(t) =
〈
1

N

N∑

J=1

PI J (t)PI J (t − �t) . . . PI J (t0)

〉

I,t0

(4.16)

where 〈. . . 〉I,t0 indicates the average over rings and initial times t0. This function
quantifies the exchange dynamics of contiguous chains and, in particular, it is bound
to track the quickest time-scale in the exchanging process since it involves the product
of PI J over all the intermediate time-steps between t0 and t . In other words, if two
chains are not contiguous at any time during the simulations, that pair no longer
contributes to ϕnc(t), i.e. limt→∞ ϕnc(t) = 0.

Figure4.11 shows the behaviour of ϕnc(t) as a function of the time-lag and for
different systems. The exchange dynamics of contiguous pairs can be fitted as a
simple exponential for the shortest chains with M = 256, while for longer chains
the behaviour of ϕnc(t) is best fitted by stretched exponentials of the form

ϕnc(t) = exp

(
− t

τnc(M)

)βnc(M)

(4.17)

with βnc decaying from βnc(M = 256) = 1 to βnc(M = 2048) � 0.5 (see Fig. 4.11).
The values of τnc instead show a striking exponential increase which suggests the
rapid emergence of slow dynamics in the exchange dynamics of the rings. Stretched
exponentialswith stretching exponents smaller than one and exponentially increasing
relaxation times are both strong signatures of the onset of glassy dynamics and
dynamical heterogeneities in glass-forming systems (Berthier and Biroli 2011) and
it encourages further investigations into the inter-coil correlations in systems of rings.

Fig. 4.11 Left fraction of persistent contiguous chains ϕnc(t) is plotted against time for different
chains length. It is worth noticing that while the decay for short chains is very well approximated by
a simple exponential, for longer chains one observes (i) that the behaviour is well fitted by stretched
exponentials (solid lines) and also (ii) the presence long-time fat tails. Right Top values of τnc and
of Right Bottom βnc used to fit the data points ϕnc(t) with stretched exponentials
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It is also worth noticing that the decay time of ϕnc(t) is conceptually intimately
related with the tube renewal time for a system of linear polymers. In fact, one can
imagine that very persistent contiguous chainsmust possess some level of correlation
that does not allow them to drift away fromeach-other, similarly to the chains forming
the reptating tube of any one linear polymer. One can therefore argue that the motion
of contiguous chains is strongly correlated and one possible cause might be the
presence of threadings. Unfortunately, it is not possible to directly check if this is
the case in this system, as opposed to the case of rings embedded in a gel.

Finally, it is worth stressing that while linear polymers cannot fully renew their
conformation until they decorrelate from the chains forming their tube, there is no
explicit constraint for ring polymers to relax the spatial stress stored along their
contour by, for instance, renewing their protruding segments (see G(t) in Fig. 4.5
and τdiam compared with τrelax in Fig. 4.6), while retaining proximity with contiguous
chains. In other words, the type of “entanglement” at which ring and linear polymers
are subjected to in dense solutions is rather different and one can speculate it to have
a strong “topological” character.

4.2.3 Inducing a Topological Glass by Randomly Pinning
Rings

The major problem that one faces when studying threadings in solutions of rings is
that this topological interaction is not well defined and virtually impossible to iden-
tify and characterise in this condition. As a consequence, the effect of threadings on
the dynamics of the rings is even more elusive and for this reason very poorly under-
stood. This is why in this section I will attack this problem from an unconventional
perspective. I will in fact make use of techniques adopted by studies on glass-forming
systems and in particular I will take inspiration from a number of recent papers that
advanced the idea, and investigated the behaviour, of glass-forming systems under
an external pinning field (Bouchaud and Biroli 2004; Biroli et al. 2008; Cammarota
and Biroli 2012; Karmakar and Parisi 2013; Cammarota 2013; Gokhale et al. 2014;
Nagamanasa and Gokhale 2015; Ozawa et al. 2015).

In these systems a fraction cp of constituents are artificially frozen in time and
the response of the system to this perturbation is studied. One of the most strik-
ing findings is that the glass transition temperature of prototypical glass formers
such as spin-glasses display a dependence on the value of the pinned fraction cp
(Cammarota and Biroli 2012). In the case of spin glasses, this effect has been con-
jectured to be intimately related with the fact that pinning spins reduces the configu-
rational entropy of the system. This means that the systems are more prone to reach
the ideal glass-transition state (at which the systems displays zero configurational
entropy) at temperatures higher than the natural Tg (Cammarota andBiroli 2012;Kar-
makar and Parisi 2013), thereby facilitating their experimental and numerical inves-
tigation. Several protocols have been used to probe the response of systems to this
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artificial perturbation, and in particular, different geometries have been adopted
where the frozen fraction of constituents, spins or particles, are distributed either on
a plane (Nagamanasa and Gokhale 2015), randomly (Cammarota and Biroli 2012;
Gokhale et al. 2014) or to form cavities (Mézard and Parisi 2001; Cammarota 2009).

The Physics underlying the glass-transition is still very much debated. In partic-
ular, whether it can be interpreted as an ideal thermodynamic transition, or solely a
kinetic one, is a long debated topic. For sure, systems in which the glass-transition
is driven by pinning a fraction of the constituents display a high level of corre-
lations and possibly, complicatedly structured “cooperatively rearranging regions”
(CRRs) (Nagamanasa and Gokhale 2015). The existence and growth of these regions
when T → Tg hadbeen suggested 50years ago byAdamandGibbs (AdamandGibbs
1965) in a seminal paper. For instance, in a glass-forming system made of colloidal
particles, CRRs are made of particles surrounding any one particle and allow the
macroscopic motion of this particle by cooperatively re-arranging their position. As
the temperature (or the density) approaches the glass-transition one, these regions
grow in size thereby freezing the position of the particle at the centre of the cluster,
limiting its motion to local vibrations within a cage. Analogously, if one believes
that rings in the melt, or in dense solutions, assume inter-threaded configurations as
pictured in Fig. 4.8b then CRRs can be conceptually related to the longest sequence
of rings that needs to come undone for the black ring to fully renew its neighbours.
When a fraction cp of constituents in a glass-forming system is frozen, this con-
tributes, in a complex way, to increasing the size of CRRs. In fact, freezing all the
neighbours around a probe particle would mean creating an infinitely large CRR
around that particle.

In light of this picture it is natural to ask the following question: what happens if
one starts to randomly pin a fraction cp of rings in a solution of rings? or even, what
happens if one artificially freezes all the rings apart from one?

If one reasons from a standard reptation theory point of view (Doi and Edwards
1988), then the prediction is that the probe polymer will simply snake or diffuse
trough the frozen obstacles. This is in fact what one observes in the case of systems
of linear polymers (see lime data points in Fig. 4.12a), where in the limit of large time-
scales the diffusive behaviour is nearly6 indistinguishable when compared with the
pure melt case (cp = 0). On the contrary, by repeating the same in silico experiment
on the corresponding system of equilibrated rings with same contour length, one
observes a striking behaviour: the centre of mass of the probe (free) ring is forever
trapped in a region smaller than Rg (see red data points in Fig. 4.12a).

This remarkable difference is due to the topology of the constituents, as no other
parameter has been changed. One can imagine that if the probe ring assumed con-
formations such as the moose in Chap.1 (Fig. 1.4a), i.e. not threaded by other rings,
then it would simply diffuse through the frozen background by protruding its contour
through the spaces, very much like predicted by the theories of ring polymers motion
advanced in the 80’s (Rubinstein 1986, 1987; Cates and Deutsch 1986) and more

6Since the mobile chain leaves a hole that produces an uniformity in the system density and could,
in principle, interfere with a perfectly free diffusion.

http://dx.doi.org/10.1007/978-3-319-41042-5_1
http://dx.doi.org/10.1007/978-3-319-41042-5_1
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Fig. 4.12 a Mean square displacement of the centre of mass g3(t) of polymer diffusing through
N − 1 frozen polymers. The data points are averaged over many choices of the probe. Lime data
points represent linear polymers while red data points represent system of ring polymers both
systems are chosen with M = 256 and N = 50. The corresponding mean squared displacement for
the two systems in the case where no polymer is frozen (c = 0) is also shown as solid lines. b–d
Mean square displacement of the centre of mass g3(t) for different choices of cp and for different

systems: bM = 256, cM = 512 and dM = 1512. The kinetically arrested state cp = c†p is reached
when the un-frozen polymers cannot diffuse further than Rg and the corresponding g3 are indicated
as dashed lines. Dark horizontal dashed lines represent 〈R2

g 〉 for the different cases

recently (Milner and Newhall 2010; Smrek and Grosberg 2015). Otherwise, if the
probe ring was threaded, such as the modified moose in Fig. 4.8c or the black ring
in Fig. 4.8b by its red, green and blue neighbours, then it is reasonable to expect its
diffusion to be strongly constrained, or even completely hindered, by the fact that its
neighbours become frozen.

A short threading segment is expected to contribute very little, as it can be easily
circumvented, but if the threading segment was longer and itself threaded, that would
created a much more persistent obstacle for the free ring and perhaps impossible to
get rid of (especially if the sequence of rings that needs to be escaped forms a
network larger than the ring size or, even, as large as the system size (see Sect. 4.1
and Fig. 4.7)).

Similarly to what has been observed in glass-forming liquids when a region of the
system was pinned by, for instance, optical traps (Gokhale et al. 2014; Nagamanasa
and Gokhale 2015), here one can argue that it might be possible to exploit the
topological interactions occurring within a dense solution of rings to generate a
kinetically trapped subset of the system, for instance by adopting the following
protocol: Starting from the unperturbed case, i.e. cp = 0, one can increase the value
of cp until themean square displacement of the centre ofmass (g3(t)) of the remaining
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fraction f p ≡ 1 − cp of rings ceases to display free diffusion, i.e. limt→∞ g3(t) ∼
const . This value of cp, to which I will refer to as c∗, is the critical fraction of pinned
rings for which all the other non-explicitly pinned rings are trapped by topological
interactions, i.e. threadings. An example of this protocol is reported in Fig. 4.12b–d
where I show the mean squared displacement of the rings centre of mass for different
systems and for a range of cp.

More formally, one can define c†p by introducing the following order parameter:

R−1
c ≡ lim

t→∞〈g3(t)〉−1/2, (4.18)

which has dimensions of an inverse length and jumps from 0 to finite values only
when the un-frozen rings are “caged” by the topological interactions. From this,
it is therefore natural to identify c†p as the value of cp at which R−1

c displays the
discontinuity. Another way of defining c†p that is perhaps more familiar to the com-
mon practice in the literature about the glass transition is by measuring the overlap
parameter (Karmakar and Parisi 2013) for the coils

Qcoil
s (t; cp) =

〈
1

f pN

∑′

I

�(w − |rCM,I (t + t0) − rCM,I (t0)|)
〉

t0

(4.19)

and for the monomers

Qmon
s (t; cp) =

〈
1

f pN
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I

M∑

i∈I
�(w − |r i (t + t0) − r i (t0)|)

〉

t0

, (4.20)

where
∑′ indicates the sum restricted to the un-frozen f N ≡ (1 − cp)N rings,�(x)

is the Heaviside function and the window parameter w is set to 2Rg (Karmakar and
Parisi 2013) since I am interested in averaging out the jiggling of the coils within
cages of linear size w = 2Rg .

According to the interpretation of the arrested dynamics that I have given above
in terms of cages formed by threadings, one expects that, as cp approaches c†p,

Qcoil
s (t; c†p) = 1∀t, (4.21)

since the center of mass of the un-frozen coils start rattling inside cages of size 2Rg.
At the same time, one also expects that the monomers are instead partially free to
decorrelate from their initial state, giving

0 < lim
t→∞ Qmon

s (t; c†p) < 1. (4.22)

These predictions are nicely recovered from the explicit computation of the overlap
parameters whose behaviour is reported in Fig. 4.13.
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Fig. 4.13 Overlap parameters Qcoil
s (t; cp) (solid lines) and Qmon

s (t; cp) (dashed lines). It is worth
noting that while the large time value of both Qcoil

s (t; cp) and Qmon
s (t; cp) vanish at cp = 0, they

display an arrested decay for larger cp until at cp = c†p the overlap parameter Qcoil
s (t; cp) equals

unity at any time

At this stage it is important to stress another message that can be inferred from
Figs. 4.12 and 4.13. The value of c†p is dependent on the length of the polymers M .
In fact, this seems to decrease when M is increased, thereby suggesting that fewer
and fewer rings need to be artificially frozen in order for the system to display the
kinetically arrested state. Before investigating further the M dependence of c∗, I will
first discuss the coherent scattering function Sc(q, t), that is often referred to in the
glass-transition literature. This is here computed over the f pN = (1 − cp)N free
rings and can quantify the relaxation, or decorrelation, associated with length scales
l = 2π/q.

It is common practice to tune the scattering vector at values corresponding to
rmax, where rmax is the position of the peaks of the pair correlation function g(r).
In this case, it is more appropriate to tune it to values corresponding to the coils
diameter 2Rg , since this is the length scale above which one is interested to probe the
rings’ dynamics. For this reason I here choose two values of q: one corresponding to
length-scales slightly greater than 2Rg , i.e. q1 = 2/Rg and the second corresponding
to length scales slightly smaller than 2Rg , i.e. q2 = 4/Rg . In Fig. 4.14 I report Sc(q, t)
for different values of c and compare these choices of q for systems made rings
M = 512 and M = 1512 beads long.

As mentioned in Chap.2, the scattering function is dominated by pair of beads
that have not travelled much further than 2πq−1 after t time-steps, and for this
reason it is more sensitive than g3(t) to the slow elements of the system. In Fig. 4.14
one can observe that when cp = 0, that is the case of an unperturbed system, the

http://dx.doi.org/10.1007/978-3-319-41042-5_2
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Fig. 4.14 Coherent scattering function Sc(q, t) (normalised by Sc(q, 0)) for different values of c
and for q = q1 = 2/Rg (Top Row) and q = q2 = 4/Rg (Bottom Row) for a system with M = 512
(Left) and M = 1512 (Right)

scattering function displays a decay at both values of q. When cp is increased, the
scenario changes dramatically: Sc(q1, t) shows an arrested decay which is strongly
reminiscent of those observed in glass-forming systems approaching Tg (Kob et al.
1997). On the other hand, shorter length-scales, i.e. longer wavelengths, show amuch
faster de-correlation as showed by Sc(q2, t). In particular, in this latter case, all the
curves seem to differ very little from one another indicating that there is no (or little)
effect of the increasing cp in the relaxation of those length-scales. These findings
agree remarkably well with the “pierced lattice animal” representation. As I argued
in Chap.2, threadings that are not dense enough are in fact most likely to slow down
the translational degrees of freedom, i.e. long length scales, while leaving shorter
length scales free to relax the stress and re-arrange the rings’ configuration.

While in the case of vitrifying systems the appearance of a plateau in the intermedi-
ate scattering function canhavemultiple and sometimesnotwell understood (Berthier
and Biroli 2011) origins, in this case it can be explained in terms of threadings: above
c†p, length-scales 2πq

−1 � πRg display no relaxation at all, since the translation of
the un-frozen rings at distances greater than 2Rg is completely suppressed. On the
other hand, length-scales shorter than 2Rg can still relax and de-correlate, since
rings are free to create new protrusions anywhere along their contour. This means
that the two time-scales associate with internal organisation of the ring conformation
(equivalent to τdiam of the previous section) and the diffusion of the centre of mass
(equivalent to τrelax of the previous section), are decoupled.

In other words, the situation presented here is a clear example of how rings
can relax their internal stress without displaying free diffusion, which is temptingly

http://dx.doi.org/10.1007/978-3-319-41042-5_2


72 4 Threading Rings

similar to the phenomenon that has been observed both numerically and experimen-
tally for ring polymers in the melt (Kapnistos et al. 2008; Halverson et al. 2011a;
Pasquino et al. 2013) but for which a clear explanation was still lacking.

This scenario is also strongly reminiscent of α and β relaxation modes in Mode
Coupling Theory (Aichele and Baschnagel 2001; Berthier and Biroli 2011) of glass
transition. Caged polymers spend the majority of their time re-arranging their inter-
nal structure without performing macroscopic jumps. In this respect, ring polymers
behave like particles in colloidal glass-forming systems as T approaches Tg, for
which the macroscopic motion (α relaxation) decorrelates from the local jiggling (β
relaxation). In particular, it is common in the glass-transition literature, to define a
non-ergodic parameter fc(q) equal to the value of Sc(q, t) at the plateau (Aichele
and Baschnagel 2001). In the case studied here, one can simply take

fc ≡ lim
t→∞ Sc(q, t), (4.23)

computed for q = 2/Rg , as the decay of this scattering function is arrested at that
value (Fig. 4.14).7

Before continuing with the analysis of this system, I would like to stress, once
again, that these features are not observed in system of linear polymers, in which an
arbitrary fraction cp of polymers can be artificially frozenwhile virtually un-affecting
the long-time behaviour of the other polymers. The features observed in the systems
presented here are solely due to the rings topology, and are the first unambiguous
signature of the presence of threadings between rings in solution.

The Phase Diagram of the System Suggests the Emergence of a “Topological
Glass” in the Large M Limit

The behaviour of the non-ergodic parameter fc is reported in Fig. 4.15. It is clear that
the transition from fc = 0 for cp = 0 to larger values of the non-ergodic parameter
is sharper as the length of the rings increases. This implies that one requires a smaller
and smaller perturbation parameter cp to “force” the system from a liquid-like to a
glass-like one. The behaviour of fc, when plotted against f p = 1 − cp (see inset in
Fig. 4.15) is well fitted by the functional form

fc = 1 − f α
p = 1 − (1 − cp)

α � α(M)cp (4.24)

in the small cp limit and where the exponentα seems to increase with the rings length
M , indicating a quicker approach to large values of the arrested decay of Sc(q, t).

7It is perhaps interesting to think about what would happen if one were to relax the uncrossability
condition imposed on the chains and substitute it with a potential barrier of finite height A. In this
scenario, one expects the scattering function to re-establish its decay although only after a time
t ∼ 〈Th〉 exp A that corresponds to an activated process where at least some of the threadings must
be by-passed. In this picture, the system would probably display a long-time α relaxation which
decouples from the local rattling proportionally to the number of threadings in the system.
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Fig. 4.15 Left functional behaviour of fc plotted against cp and f p = 1 − cp in the inset. The
behaviour is well fitted by fc = 1 − f α

p with α increasing with the length of the rings. Right phase
space diagram for a systems with rings M beads long and where a fraction cp of rings have been
artificially frozen in space and time. The coloured data points indicate the value of Fc defined in
Eq. (4.25) which goes from Fs = 0 (red) at cp = 0 to Fs = 1 (blue) at cp ≥ c†p . The fit through the
last four data points indicates an exponential behaviour of the transition line whose cp → 0 limit
gives Mg � 3500 at which a spontaneous glass might emerge

Having defined rigorously defined c†p from Rc in Eq. (4.18) or, equivalently, using
the overlap parameter Qcoil

s , from Eq. (4.21), it is possible to obtain the functional
form of c†p(M), that is reported in Fig. 4.15.

In addition, one can use the large time value of the coils overlap parameter to
define

Fs ≡ lim
t→∞ Qcoil

s (t) (4.25)

which is a good estimation of the closeness of the system to c†p (recall that Fs = 1 at
cp = c†p). The behaviour of c

†
p(M) and Fs is reported in the phase space (c, 1/M).

The straightforward interpretation that comes out from this plot is that the transition
line M†(c), or c†p(M), divides the parameter space into a liquid-like and glass-like
regions. Furthermore, from this plot it is clear that the limit cp → 0 is an inter-
esting one. In fact, at M†(cp → 0) ≡ Mg , the system is conjectured to display a
dramatic response to a tiny perturbation, eventually leading to the emergence of a
spontaneously vitrifying system.

The values of c†p for the four systems with largest chains follow, remarkably well,
an exponential of the form

M†(cp) = Mge
−3.3c†p (4.26)

with
Mg ≡ lim

c→0
M†(cp) � 3500. (4.27)

Although the precise value of Mg might suffer from the finite size of the simulated
systems, the general behaviour of the transition line encourage the conjecture that in
the limit of large polymerisation index M , a spontaneous glass might occur.
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Even though performing simulations with such big M or purifying solutions of
very long rings might be too difficult with the current technology, the results that
I reported here strongly encourage the experimental realisation of the perturbation
protocol employed in this section. The response to this perturbation should in fact
become more and more dramatic as the length of the rings increases, eventually
requiring only a small fraction of rings to be frozen to cause the whole system to be
kinetically trapped.

One can furthermore argue that this perturbation protocolmight be experimentally
realised by using optical traps as in recent experiments on colloidal glass forming
systems (Gokhale et al. 2014). Another option for its experimental realisability could
be considering a mixture of polymers having different freezing temperatures. In this
scenario, the parameter c could be directly related to the mixture concentration and
temperature of the system. Another option could be considering a bi-disperse system
or blends, where longer and heavier (and slower) ring polymers are in solutions
with lighter ones. By changing the ratio of the concentrations one could in principle
control an equivalent c parameter also in this case.

It is finally worth stressing once again that all this is performed at temperatures
where the thermal energy equals the LJ interaction energy (the Langevin thermostat is
fixed to T = ε/kB) and at fixed monomer density ρ = 0.1σ−3. This implies that the
diagram reported in Fig. 4.15 is one of the first instances of vitrification occurring in
a system where neither temperature, or density, are the main control parameters used
to drive the glass-transition. This is in fact solely driven by topological interactions,
and for this reason it cannot be observed in systems of topologically trivial polymers
such as linear ones.

One should finally emphasise that the transition observed in these systems is
not a thermodynamic one, i.e. there is no divergence of thermodynamic quantities.
Although it is clear that at c†p the system displays a macroscopically different behav-
iour, this is only due to the topological interactions present in the system, which
cause kinetic traps. In this respect, one can talk of “topological correlations” which,
in the case studied here, are the main players controlling the purely kinetic glass
transition.8

4.3 Conclusions

In this chapter I have tackled the problem of investigating topological interactions
in solutions of un-linked and un-knotted ring polymers, i.e. threadings. In the first
section of this chapter I showed that these are readily studied when the solution of
rings is forced to move inside a static gel structure and I described a novel method
to quantify ring-ring penetrations by exploiting its architecture. This method allows
one to identify and quantify both, inter-ring threadings and their effect on the rings

8and is broadly analogous, although in a much less coarse-grained sense, to what happens in glass-
forming systems belonging to the class of “Kinetically Constrained Models” (Palmer et al. 1984).
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dynamics. On the other hand, it is worth highlighting that the gel structure can
have a non-negligible effect the rings. The presence of the grid, and the consequent
topological constraint that acts on the rings (as they have to be unlinked from it at
any time), might play an important role on the equilibrium configurations of the
rings, which might display more elongated and squeezed shapes, with respect to
those assumed in absence of the gel. In addition, the relaxation of the rings might
be slowed down by the facts that the rings have additional constraints to respect,
on top of those presented by the neighbouring chains. As I will show in the next
chapters, the presence of a gel and its detailed microscopic structure, plays a crucial
role in the out-of-equilibrium dynamics of ring polymers (see Chap.6). When an
external force is driving the polymers, they can in fact get impaled and permanently
entangled. While the effects of the gel on the equilibrium properties of the rings
might be less dramatic, quantifying their relevance would nonetheless be important.
A more detailed investigation of these effects would be a natural continuation of the
work presented in this chapter. This could readily be done by investigating systems in
which the gels possess lattice spacings varying from l � lK to l � lK . In the former
limit, the rings are expected to be in the regime of extreme elongation, while in the
latter the system properties could readily be compared to those observed in a pure
melt of rings.

The most important and remarkable result of the first section is that threadings
are a critical quantity, in that they extensively grow with the length of the rings.
It is also worth stressing that I have showed the existence of connected clusters of
inter-threaded rings, whose size grows with the number of threadings in the system.
A cluster of inter-penetrating rings of size O(N ) has been showed to emerge for
the longest chains that I investigated. Correspondingly, the same system displays a
dramatic slowing down of its diffusion (see Fig. 4.6).

Although the results presented in thefirst section of this chapter are formally bound
to hold in the case of a dense solution of rings immersed in a static gel structure, it is
worth noting that many of the reported findings are in agreement with those for a pure
melt of rings. In particular three quantities are worth comparing: (i) the scaling of the
radius of gyration R2

g ∼ M2ν with ν = 1/2 for short rings and ν = 1/3 for long ones,
is in perfect agreement with recent MD simulations of a melt of rings (Halverson
et al. 2011a; Rosa and Everaers 2014) and theoretical predictions for the melt case
(see Chap.2); (ii) the segmental displacement, reported here to reach free diffusion
only when rings have travelled many times their own size 〈δr2s 〉/〈R2

g 〉 > 1, and to
display a slowing down 〈δr2s 〉 ∼ t1/4 for M = 1512 is in agreement with (Halverson
et al. 2011b); (iii) the stress relaxation, found to decay as a power lawG(t) ∼ t0.4 and
on time-scales much shorter than the overall relaxation of the chain (free diffusion)
is in agreement with experimental and numerical evidence for the melt (Kapnistos
et al. 2008; Halverson et al. 2011b). All this strongly encourages the speculation that,
after all, the system studied here is not too far from a melt of rings. In particular,
the topological constraints to which the chains are subjected to in the case when a
gel is present can be thought of as constraints coming from other chains in the melt.
This conjecture is in part similar to what was assumed in the literature (Cates and

http://dx.doi.org/10.1007/978-3-319-41042-5_6
http://dx.doi.org/10.1007/978-3-319-41042-5_2
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Deutsch 1986; Rubinstein 1986; Obukhov and Rubinstein 1994) when the authors
investigated melt of rings by placing a background of obstacles surrounding the rings
(but not threading them!).

In the second section of this chapter I focused on probing threadings in dense solu-
tions of rings. Because no current algorithm is capable of unambiguously identifying
threadings in this situation, I have tried to investigate this system from an uncon-
ventional point of view, hoping, and to my opinion, managing, to detect signatures
directly associated with threadings.

Firstly, I showed that rings in dense solutions display a high level of inter-coil
correlations (via measuring the contiguity persistence ϕnc(t) reported in Fig. 4.11).
These correlations have then been further explored by probing the kinetics of the
systems under an external perturbation. This has been implemented by freezing in
space and time a fraction cp of coils in the system. The response of different length-
scales to this perturbation has been measured by computing the coherent scattering
function Sc(q, t) on the fraction f p = 1 − cp of non-frozen rings. This showed that
while length scales l � 2Rg are strongly affected by the frozen fraction of rings,
shorter length scales are less affected, implying that while the translational degrees
of freedom of the rings are suppressed by the frozen rings, internal relaxation modes
are largely unhindered. This has been interpreted as a strong signature of the fact
that the inter-coil correlations take the form of threadings.

Finally, I showed that the critical fraction of frozen rings c†p needed to drive
a kinetically trapped state for all the remaining f N = (1 − cp)N rings displays a
strongdependence on the length of the ringsM . Byplotting the transition line cp = c†p
in the phase space (cp, 1/M) I then showed that the results from the simulations imply
that the limit cp → 0 gives a critical value for M(c†) ≡ Mg at which a spontaneous
glass might emerge.

I hope that these results motivate further investigations into this interesting
problem. In particular, I conjecture that novel experimental set-ups that have very
recently been used to probe the glass-transition in colloidal and molecular liquid
systems (Gokhale et al. 2014; Nagamanasa and Gokhale 2015) might be used to put
into practice the perturbation protocol proposed here and finally prove the existence
of this long sought “topological glass”.
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Chapter 5
A Bio-Physical Model for the Kinetoplast
DNA

Sometimes careful physics-based thinking can illuminate
complicated issues in biology

M.E. Cates

The Kinetoplast DNA (or KDNA) (Simpson 1967) is one of the most complex
and singular forms of DNA in nature. It is uniquely found in the mitochondrion of
a group of unicellular eukaryotic organisms of the class Kinetoplastida. Some of
these organisms have been studied since the late ’60s because they are responsible
for several serious diseases such as sleeping sickness and leishmaniasis (Young and
Morales 1987), and are among the earliest diverging eukaryotic organisms containing
a mitochondrion (Avliyakulov et al. 2004).

The Kinetoplast DNA is made of thousands (∼5000) of short (1–2.5kbp) DNA
loops which are interlinked to form a large network. The short loops, or “mini-
circles”, are also linked with fewer (∼30) larger loops, or “maxi-circles”, consisting
of around 30–50kbp (Shapiro and Englund 1995). The maxi-circles contain standard
mitochondrial genetic material, which is made readily translatable only thanks to the
guide RNAs (gRNAs) encoded in the mini-circles. These have in fact been found
to be mostly made by RNA-editing genes and to be genetically heterogeneous, i.e.
few genetic sequences are repeated in every mini-circle (Lukes et al. 2005; Lai
et al. 2008; Jensen and Englund 2012). C. fasciculata mini-circles assemble in a
network whose shape resembles that of a disc. Its dimensions have been found to be
around 1µm in diameter and 0.4µm in thickness (Pérez-Morga and Englund 1993b;
Lukeš et al. 2002; Jensen and Englund 2012). Networks which are removed from
the mitochondria, e.g. via cell lysis, expand into an elliptical shape whose minor and
major axis are respectively around 10 and 15µm, i.e. roughly a hundred times bigger
than their dimension in vivo (Jensen and Englund 2012), possibly implying that the
networks experience a confinement within the mitochondria.
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A “tripartite attachment complex” (TAC) keeps the Kinetoplast statically in place
near the basal body, from which it is physically separated by the mitochondrial enve-
lope (Ogbadoyi et al. 2003). Electron microscopy images of Kinetoplast networks
in vivo (Renger and Wolstenholme 1971, 1972; Lukeš et al. 2002; Ogbadoyi et al.
2003; Gluenz et al. 2007; Lai et al. 2008; Souza et al. 2009; Docampo et al. 2010)
show the mitochondrion as an elongated organelle connected to a bulge containing
the Kinetoplast via a narrow neck. This strongly suggests that the network experi-
ences a geometric confinement within a specific region of the mitochondrion. The
mitochondrial envelope can therefore be thought of as acting a physical constraint
on the outer structure of the network, while it is likely that histone-like proteins, such
as p16, p17 and p18, or “KAP proteins” encoded in genes KAP2, KAP3 and KAP4,
act as chemical constraint on the inner structure (Xu and Ray 1993; Xu et al. 1996;
Hines and Ray 1998; Silver 1986; Lukeš et al. 2001; Avliyakulov et al. 2004).

The concentration of DNA in the Kinetoplast has been found to be around
50mg/ml (Shapiro and Englund 1995), similar to that measured in bacteria
(20mg/ml) but far smaller than the one inside the head of a T4 bacteriophage
(800mg/ml or more) (Kellenberger et al. 1986). This suggests that the mini-circles
are overlapping but there is considerable space between DNA strands (Shapiro and
Englund 1995). Previous findings showed that the loops are linked only once with
their neighbours (Chen et al. 1995b). In addition, the valence of each ring, i.e. the
number of linked neighbours, has been found to be around 3 in a pre-replicating net-
work and approaching 6 at the end of duplication and before the network is split into
the two daughter cells (Chen et al. 1995a, b; Liu et al. 2005). This has been thought
of as a consequence of the fact that during replication the Kinetoplast doubles the
number of mini-circles, while retaining roughly the same volume. Only after that the
network has been fully duplicated, the cell increases its volume and separates into
two progeny cells. In light of this, the density of mini-circles is expected to play a
major role in the network topology (Diao et al. 2012). In addition, the mini-circles
have been observed to be in a non-supercoiled state (Rauch et al. 1993). This has been
conjectured to be a consequence of evolutionary pressure: because relaxed loops are
more likely to form linked structures than supercoiled ones (Rybenkov et al. 1997),
some of these organisms seems to have traded supercoiling in order to preserve the
network linkedness (Rauch et al. 1993).

During replication, catenation between the loops represents a non-trivial topo-
logical problem, which is solved as follows: First Topoisomerase II disentangles
one loop at a time from the network (Shlomai 1994; Liu et al. 2005), the loop
then diffuses through a region called the Kinetoflagellar Zone (KFZ), where the
duplication process begins. The latter is then always completed at the “anti-podal
sites” (Drew and Englund 2001), specific regions that flank the Kinetoplast where
a higher concentration of ligase, polymerase and topoisomerase enzymes has been
observed (Melendy et al. 1988; Morris et al. 2001). Finally, the two progeny mini-
circles are re-attached to the periphery of the network (Pérez-Morga and Englund
1993b). The Kinetoplast in C. fasciculata has been found to spin relatively to the
anti-podal sites (Pérez-Morga and Englund 1993b; Liu et al. 2005), and the newly
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duplicated mini-circle become re-attached with some lag-time with respect to the
original mini-circle, most likely to allow specific enzymes to fill the gaps between
DNA sequences (Shlomai 1994). This process has the side-effect to ensure an uni-
form distribution of the genetic material contained in the mini-circles throughout
the network (Liu et al. 2005). Both mini-circles are catenated to the network in a
nicked state. The nicks along one of the two DNA strands have been conjectured
to act as “bookkeepers” (Englund 1978, 1979; Kitchin et al. 1984). Thanks to this
mechanism, it is in fact very likely that mini-circles can be safely duplicated only
once during the replication of the network (Shlomai and Linial 1986).

During this process, the physical size of the network has been observed to remain
constant, while the number of mini-circles contained and the valence of each mini-
circle to double (Chen et al. 1995a). At the end of duplication, around the stage of
cell division, the volume of the Kinetoplast doubles and the valence of the network
is brought back to 3, thanks to topoisomerase enzymes, the nicks and gaps in the
mini-circles are repaired (Englund 1978) and two copies of the network are produced
by slicing the network through the middle, once again, most likely mediated by topo
II (Pérez-Morga and Englund 1993b; Liu et al. 2005).

The organisation and duplication of the KDNA has the unique feature that it
must undergo complex topological changes in a precise and consistent order. This
could not be done without the action of topoisomerases, which is crucial for this
machinery to work correctly, not only for decatenation of mini-circles from the
network, but also for the re-attachment at the end of duplication (Shlomai and Zadok
1983; Chen et al. 1995b). RNA interference (RNAi) experiments showed that by
suppressing the production of topoisomerase enzymes, the Kinetoplast is unable to
form and most of the mini-circles remain in a free (unlinked) state (Wang et al.
2000). As a consequence, the progeny cells are typically malfunctioning and likely
to die. Type II topoisomerase is well-known for playing a crucial role in simplifying
knots and catenanes which occur in DNA (White et al. 1987); On the other hand,
it has also been shown that the same enzyme is also capable of creating complex,
linked structures (Hsieh and Brutlag 1980; Kreuzer and Cozzarelli 1980; Brown
and Cozzarelli 1981), and its action to be tuned by a number of factors, such as
DNA concentration or condensation mediated by the presence of polyamines, e.g.
spermidine (Krasnow and Cozzarelli 1982).

All this strongly suggests that, on one hand, theKDNA is a complicated biological
structure regulated bymany subtle biological processes. On the other hand, seen from
a purely physical perspective, the KDNA is represented by a state in which loops
are linked to each other to form a connected component that spans the entire genetic
repertoire. In particular, the presence of topoisomerase enzymes regulates the ability
of loops to link to, or unlink from, one another thereby tuning the ability of the
network to form.

In this chapter I will describe a effective 1D model for the replication of the
Kinetoplast DNA. One of the most puzzling and interesting aspects of its replication
is that it generates the same network structure at each replication cycle with very
few, or none, mistakes (Jensen and Englund 2012). The cell viability requires a key
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feature: the genetic information contained in the Kinetoplast has to be passed on to
the progeny. This means that either quantity and quality of the genetic material have
to be conserved.

In this chapter I have shown that it can be argued that the percolating network
structure of the Kinetoplast could have been evolved in order to meet the need to
conserve the quantity of genetic material. The percolating nature of the network can
in fact be though of as a natural mechanism through which these organisms ensure
that most of the mini-circles belong to a unique component and therefore are not free
to diffuse away from theKinetoplast. On the other hand, the linkedness of the network
might not be beneficial to the cell during replication as in fact it could hinder the
duplication process. How the Kinetoplast is duplicated and divided into the progeny
is, in fact, far from being well understood (Chen et al. 1995a; Jensen and Englund
2012), and this is mainly due to its complexity. In spite of this, from a bio-physical
perspective, the duplication of the Kinetoplast can be thought of as made of three
major stages which correspond to three topological changes in the network structure.
As a consequence, in what follows I will introduce a minimal analytical model that
focuses on these three steps and attempt to get some insight into this complicated
issue by aggressively simplify the problem, in the same spirit of this chapter.

5.1 Modelling the Network Replication

As mentioned before, the replication of the Kinetoplast involves three major stages:
(i) the removal of mini-circles from the network via the action of Topoisomerase

II (Shlomai 1994),
(ii) the free diffusion of the un-linked mini-circles away from the Kinetoplast core

and toward the anti-podal regions where they are duplicated (Jensen and Englund
2012)

(iii) the re-attachment of the progeny mini-circles to the periphery of the net-
work (Pérez-Morga and Englund 1993b).

These three conditions are necessary for the network replication and the organism
viability. These stages can be translated in three pseudo-equations as follows:

(i) Each mini-circle is unlinked from its linked neighbours at a rate that is propor-
tional to the local concentration of Topoisomerase II (φT ) (see Fig. 5.1a):

(N)Linked
RφT−−→ Unlinked + (N − 1)Linked. (5.1)

(ii) While diffusing, each mini-circle begins its duplication thanks to polymerase
enzymes present in the kinetoflagellar zone around the Kinetoplast (Morris et al.
2001; Drew and Englund 2001). This process occurs at a rate αwhich is regulated by
the speed at which polymerases duplicate the genetic sequence.Mini-circles can only
be transcribed at this stage alongside to their duplication, i.e. while their are unlinked
from the network. This is supported by the fact that transcription enzymes cannot
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Fig. 5.1 a Graphical representation of the reaction in Eq. (5.1). Topoisomerase (red dots) unlinks
mini-circles (coloured loops) from the central connected network. bGraphical representation of the
reaction in Eq. (5.2). Each mini-circle duplicates at rate α and indirectly triggers the downstream
production of Topoisomerase (red dots) at rate κ. c Graphical representation of the reaction in
Eq. (5.3). Each mini-circle forms a catenane with another mini-circle (either free or linked) at a
rate proportional to the local concentration of Topoisomerase. d The model is further simplified by
substituting the two anti-podal sites where re-attachment occurs with a shell; this can be thought
of as an average over the relative position of the (rotating) Kinetoplast core with respect to the
anti-podal sites within the replication time-window

easily enter the depths of the compact network structure, and even in the case they
would, the entanglement caused by the density of material would strongly suppress
any transcriptional activity. In other words, I assume that the genetic information
contained in the mini-circles is more easily and readily accessible at the stage when
they are free from the network.

Relying on the well established fact that mini-circles contain RNA-editing genes
(Jensen and Englund 2012), I further assume that mini-circles transcription trig-
gers, among other things, the downstream production of topoisomerase II at a rate
κ via transcription and RNA-editing factors encoded in the mini-circles genetic
material (see Fig. 5.1b). This assumption is supported by RNA interference (RNAi)
experiments (Wang et al. 2000), in which the expression of genes encoding for
topoisomerase II and mitochondrial mRNA synthesis are inhibited, causing loss of
Kinetoplast and cell death. In pseudo-equations this stage reads:

Unlinked
α−→ Unlinked + Unlinked

and

Unlinked
κ−→ Topoisomerase. (5.2)
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(iii) Once the progeny mini-circles diffuse to the anti-podal sites, they are
re-ligated by gap-filling enzymes (Pérez-Morga and Englund 1993a) and re-attached
at the periphery of the network. The re-attachment rate can be thought again pro-
portional to the local concentration of topo II (φT ) (Wang and Englund 2001) (see
Fig. 5.1c):

Unlinked + Unlinked
AφT−−→ Linked

or

Unlinked + Linked
AφT−−→ Linked (5.3)

where the pseudo-equations represent the cases in which the free mini-circle is re-
linked to an other un-linked or an already linked mini-circle, respectively. Finally,
the rates R and A are key parameters in this model and represent the rates of removal
(R) and re-attachment (A) of mini-circles from and to the network.

A final comment on the model is in order: During the replicating phase of
C. fasciculata, the Kinetoplast core has been observed to rotate relatively to the
anti-podal sites where re-attachment occurs (Pérez-Morga and Englund 1993b). In
light of this, and of the inherent rotational symmetry of the final replicated net-
work (Pérez-Morga and Englund 1993b; Jensen and Englund 2012), one could argue
that effectively, the two anti-podal complexes can be replaced with a shell that sur-
rounds the Kinetoplast core (see Fig. 5.1d). This substitution is equivalent to perform
a time-average of the relative position of the complexes with respect to the core over
the whole replicating phase. The entire system can be visualised as a rotationally
symmetric 2-dimensional disk divided into a core r ≤ Rk filled by the Kinetoplast at
the beginning of the replication (t = 0) and a shell Rk < r < Rmax (initially empty
of genetic material) which plays the role of region where re-attachment occurs.

Modelling Topological Changes

The three stages are therefore related to three topological operations: (i) un-linking
of mini-circles from the network, (ii) duplication of single mini-circles and (iii)
linking of the progeny mini-circles back to the network. These are captured by the
pseudo-equations (5.1)–(5.3).

One can now argue that the system could be also described in terms of the relative
density of linked ρl(x, t) and unlinked ρu(x, t) mini-circles and of topoisomerase
II enzyme φT (x, t). At the beginning of replication, the (normalised) density of
linked mini-circles is 1 within the Kinetoplast core (ρl(x, 0) = 1 for |x| ≤ Rk and
0 otherwise), and there are no unlinked mini-circles (ρu(x, 0) = 0 ∀ x). During
the replicating phase, the total number of mini-circles grows and at the end of the
replication the total number ofmini-circles is twice the initial number, i.e.ρ∗

l +ρ∗
u = 2,

where ρ∗
l and ρ∗

u are the final (uniform) values of ρl and ρu, respectively.
By describing the system in terms of these local densities, or “fields”, one can

translate Eqs. (5.1)–(5.3) into three coupled equations:
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dρl

dt
= − RρlφT + AφTρu (ρl + ρu) + Dl∇2ρl (5.4)

dρu

dt
= + RρlφT − AφTρu (ρl + ρu) + Du∇2ρu + αρu [2 − (ρu + ρl)] (5.5)

dφT

dt
= + κρu − φT

τ
+ DT∇2φT , (5.6)

where the first and second terms in Eqs. (5.4)–(5.6) capture the reactions represented
by Eqs. (5.1)–(5.3) and the last term in Eq. (5.5) ensures that the un-linked mini-
circles duplicate at rate α until the sum ρu + ρl reaches 2, at which point the growth
is stopped, while the third terms describe the usual diffusion of mini-circles and topo
II with their respective diffusion constants.

The value ofα at whichmini-circles are duplicated can be estimated by noting that
polymerase replicates DNA at a speed between 20bp/s (in bacteria) and 500bp/s (in
eukaryotes) (Dignam et al. 1983; Wickiser et al. 2005; Schwartz and Quake 2009).
Therefore the typical duplication time results to beof aboutα−1 � 2000bp/(100bp/s)
= 20s.

In addition, the rate of (indirect) production of topo II is set as κ = α = 0.05 s−1.
This choice is justified by the fact that the transcription of mini-circles is expected
to take a time comparable to their duplication. Finally, the decay time τ associated
to topoisomerase enzymes can be set to τ = 600 s, being this its typical half-life in
bacteria (Taniguchi et al. 2010).

Since unlinked mini-circles are freed from the network, they are expected to dif-
fuse away from the Kinetoplast core. Previous studies have reported that mini-circle
duplication begins in the Kinetoflagellar Zone (KFZ), a dense matrix of filaments
which attaches the Kinetoplast to the flagellar basal body (Ogbadoyi et al. 2003),
surrounding the Kinetoplast and filled with Polymerase enzymes, and it is always
completed inside the anti-podal regions, where a high concentration of gap-filling
enzymes has been found (Jensen and Englund 2012). The diffusion coefficients, Dl,
Du and DT regulate the diffusive behaviour of, linked and unlinked mini-circles and
of topo II enzymes, respectively.

In other words, the values of all the parameters (a part from A and R) in Eqs. (5.4)–
(5.6) can be directly informed by biological evidence. The rate of attachment A and
of removal R are therefore the only true free parameters of this model and possibly
the most difficult to study experimentally.

5.2 The Stable Point Is a Marginally Linked Network

Equations (5.4)–(5.6) are most readily studied numerically, also thanks to the rota-
tional symmetry of the problem.Here Iwill instead study these equations analytically.
Equations (5.4)–(5.6) correctly describe an unstable fixed point of the system when
topo II is depleted from the system. In other words, the state
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S(t = 0) =
{

ρl(x, 0) = 1 ∀ x s.t. |x| ≤ Rk

ρu(x, 0) = 0,φT (x, 0) = 0 ∀ x
(5.7)

satisfies Eqs. (5.4)–(5.6) and is a fixed point of the system. I would like to stress that
this state can be truly thought of as the biological initial state of the Kinetoplast as
the replication cannot take place without the presence of a topological enzyme in
solution. As soon as some molecules of topo II are added to the system,1 Eqs. (5.4)–
(5.6) quickly drive the system away from this state and toward full replication, i.e.
ρu + ρl = 2, which is the true stable fixed point of the system.

This can be easily found by setting the left hand side of Eqs. (5.4)–(5.6) to zero
and by assuming that, thanks to diffusion, at the end of the replication time TR the
densities of linked and unlinked mini-circles and of topo II are uniform across the
Kinetoplast, i.e. ρu,l(x,TR) = ρu,l(TR) and φT (x,TR) = φT (TR), one obtains

ρ∗
l = 4

R/A + 2
= 2 − ρ∗

u. (5.8)

This shows that the final state of replication S(t = TR) corresponds to a system in
which ρu(τR) + ρl(τR) = ρ∗

u + ρ∗
l = 2 and that the relative abundance of linked and

un-linked mini-circles
ρ∗
u

ρ∗
l

= 1

2

R

A
(5.9)

is directly dependent on the ratio R/A ≡ β. In the case β � 0 one can expand the
stable fixed point in Eq. (5.8) and obtain

ρ∗
l ∼ 2 − β + O(β2) (5.10)

and
ρ∗
u ∼ β + O(β2). (5.11)

In this case the final state corresponds to a system in which a small fraction ρ∗
u of

mini-circles is un-linked from the network and almost all the other mini-circles in
the system belong to the Kinetoplast network.

Because the aim is to generate a fully linked network, one can naïvely imagine
to simply set R = 0 so that β = 0; by doing so one instead forbids the network
replication, as the initial removal is of paramount importance for the mini-circles
to fully duplicate in the anti-podal complexes. The other option to minimise β is to
have a large attachment rate, i.e. the time taken by topo II to catalyse a single-strand
passage τcross has to be short. On the other hand, τcross should be itself related to the

1This could be argued to be too sensitive to the presence of topo II, and some threshold could be
added to regulate the sensitivity of S(t = 0) to the value φT . In order to keep things simple I decided
to neglect this correction.
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inverse of the activity (or the “turnover number”) kcat of topo II (Duplantier et al.
1995), which has been studied in the past by measuring the ATPase activity of DNA
gyrase in presence of DNA substrates (Maxwell and Gellert 1984). In light of this,
it is possible to relate the attachment rate A to the experimentally measured turnover
(ATPase activity) number as

A ∼ kcat ∼ 1s−1, (5.12)

which provides a bound on the values assumed by this parameter. In other words,
the value of the attachment rate A cannot be arbitrarily changed, but depends on the
bio-chemical structure of topo II and its efficiency. In addition, it has to be stressed
that the removal of a mini-circle from the network requires, at least, three strand-
crossing operations in order to free the ring from the average number of neighbours
(which is three, see Ref. (Chen et al. 1995b) and this chapter). This implies that R is
necessarily smaller A, and taking into account the condition R > 0, one arrives at

0 < β < 1. (5.13)

The expression in Eq. (5.13) is a strong statement on the topology of the network.
In fact, any state in which R/A ≡ β is strictly greater than zero corresponds to a
marginally linked network, i.e. a network that does not include all the mini-circles
in the system. In particular, Eqs. (5.8) and (5.13) imply 2/3 < ρ∗

l /(ρ
∗
l + ρ∗

u) < 1 and
0 < ρ∗

u/(ρ
∗
l + ρ∗

u) < 1/3 or (using Eq. (5.9))

0 < ρ∗
u/ρ

∗
l < 1/2. (5.14)

This means that in any case (even in the very unlikely case that R = A) the final
fraction of mini-circles linked to the Kinetoplast core is the largest majority, i.e. the
Kinetoplast will always form a unique spanning component. This is rather encour-
aging as this implies that the Kinetoplast will never fail to form a percolating core
and it is therefore, in this respect, foolproof. Obviously, the best result is achieved
at small β, for which the final state is the closest to a fully linked network. On the
other hand, Eqs. (5.12) and (5.13) imply that β can be tuned only by acting on R in
the range 0 < R < A.

At this stage it is also worth pointing out that acting on R is likely to not only
affect the final topology of the network but also the time required to replicate the
network in full (TR). By looking at Eqs. (5.5) and (5.6) one can in fact notice that
unlinked mini-circles are produced at rate R from the linked structure proportionally
to the local concentration of topo II, φT , which is itself (indirectly) produced by the
presence of unlinked mini-circles. In other words, decreasing R is likely to have a
double negative feedback effect on the network replication. It is therefore likely that
TR is strongly dependent on β, and in particular, small removal rates Rmight lead to
very long replication times TR.



88 5 A Bio-Physical Model for the Kinetoplast DNA

5.3 Redundancy in the Genetic Material Allows
for Faster Replication Times

Being the evolutionary pressure very high for these organisms, the replication time
TR is a crucial parameter for their survival. Having a long replication time is in fact
far from being an evolutionary advantage. On the other hand, their survival is also
strongly related to their ability to pass on their vital genetic information, i.e. their
ability to preserve the genetic material, which is itself strongly dependent on the
linkedness of the network (this chapter). In light of this it is therefore tempting to
speculate that the value of β had been tuned by evolution to balance the need of a
well-linked network, i.e. ρ∗

l � 2, and that of a reasonably short time to complete
replication.

The competition between these two effects can be summarised in one equation that
describes the growth of a population ofN organisms as a function of two parameters:
β and γ. The latter can be interpreted as the critical lethal fraction of mini-circles
unlinked from the Kinetoplast at the end of replication, beyond which the progeny
cells are no longer viable. The equation reads:

1

N

dN

dt
= T−1

R (β)
[
1 − γ

(
2 − ρ∗

l (β)
)] = f (β). (5.15)

Equation (5.15) simply states that a population ofN organisms grows at a rate propor-
tional to the speed of replication,2 i.e. proportionally to T−1

r (β) and to the likeliness
of possessing a number ρ∗

u = 2 − ρ∗
l of un-linked mini-circles smaller the critical

lethal fraction γ. In other words, if β and γ are such that

γρ∗
u(β) = γ(2 − ρ∗

l (β)) ≥ 1, (5.16)

the population cannot grow, as the Kinetoplasts generated are not retaining enough
genetic material to ensure the viability of the progeny.

All this strongly relies on the crucial assumption that mini-circles which are not
linked to the Kinetoplast at the end of the replication are most likely lost during cell
division and are, therefore, not passed onto the progeny cells. This means that γ sets
a necessary fraction of mini-circles that need to be linked below which not enough
genetic material is retained for the progeny to be viable.

Since f measures the total growth rate of a population of Kinetoplasts, it gives a
measure of the species evolutionary fitness. Maximising such fitness means finding
the most “fit” pair {β, γ}. By setting df /dβ = 0, one finds:

df

dβ
= − 1

T 2
R(β)

dTR(β)

dβ

(
1 − γρ∗

u(β)
) − 1

TR(β)
γ
dρ∗

u

dβ
= 0. (5.17)

2In a time T , N0 initial cells duplicate T/TR = m times, i.e. Nm = N0 exp (m log (2)).



5.3 Redundancy in the Genetic Material Allows for Faster Replication Times 89

As I showed before, in the limit β � 1 one can approximate ρ∗
u ∼ β +O(β2), which

gives:

− 1

T 2
R(β)

dTR(β)

dβ
(1 − γβ) − 1

TR(β)
γ

(
1 − β

4

)
+ O(β2) = 0. (5.18)

By assuming that in the range 0 < β < 1 the replication time TR(β) cannot be zero
or infinitely large, one can write:

1

TR(β)

dTR(β)

dβ
= −γ

1 − β/4

1 − γβ
(5.19)

which, once again approximating for small β, leads to

d

dβ
logTR(β) � −γ [1 + β (γ − 1/4)] . (5.20)

This implies that in the lowest approximation, the functional form of the replication
time TR(β) can be estimated as

TR(β) ∼ e−γβ+O(β2). (5.21)

Although this functional form of the replication time should be, in principle, be
recovered from Eqs. (5.4)–(5.6), it is rather appealing (or fortunate) that it is obtained
from maximising the fitness function in Eq. (5.15). On the other hand, this restricts
the validity of Eq. (5.21) to the case in which the fitness is maximum, i.e. a precise
combination of γ and β, rather than to the whole space and also to the case in which
β is small. In light of this, one can assume that TR takes the form in Eq. (5.21) and
go back to Eq. (5.17) to write

γeγβ

(
β + 2 − 2γβ

β + 2

)
− γeγβ 4

(β + 2)2
= 0 (5.22)

and finally obtain

γ = 1

2

β + 4

β + 2
. (5.23)

In Fig. 5.2 I show the curve given by Eq. (5.23) which identifies the maximum
fitness line in the space (γ,β). As mentioned before, γ describes the critical lethal
fraction of mini-circles unlinked from the Kinetoplast at the end of the replication,
i.e. ρ∗

u = 2 − ρ∗
l . Because each mini-circle carries genetic material, the parameter

γ can also be interpreted as “redundancy” in the genetic material carried by the
mini-circles. It is worth noting that in the limit γ → 1, the system requires β → 0
in order to satisfy Eq. (5.23). This means that every mini-circle needs to be linked
to the network at the end of the replication, i.e. every mini-circle is crucial for the
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Fig. 5.2 Relation between the parameters γ and β = R/A as obtained in Eq. (5.23). For a given
value of γ, Eq. (5.23) gives a threshold for β∗ above which the replicated network (although built
faster) is too poorly linked to retain the necessary fraction of genetic material γ, and the progeny is
therefore not viable. On the other hand below β∗ the replicated network is safely generated as the
linkedness of the network ensures that enough genetic material is passed on, although T−1

R is much
slower. The balance is given by the thick line for which the replication rate is the fastest given that
a fraction γ of genetic material needs to be linked to the Kinetoplast and it identifies, therefore, the
“maximum fitness” line

survival of the organism (see Eq. (5.15)). This can be interpreted with the fact that, in
this case, each mini-circle carries unique genetic information, and any loss of mini-
circles would cause the reduction of evolutionary fitness. In other words, setting the
parameter γ = 1, signifies that there is no redundancy in the genetic material carried
by the mini-circles, and each one of them has to be passed on to the progeny in order
for the organism to survive.

On the other hand, the mini-circles in the Kinetoplast have been observed to
possess a slightly redundant genetic information, meaning that they encode largely
heterogeneous genetic material but display some highly conserved genes (Jensen and
Englund 2012). This is in agreement with Eq. (5.23) and Fig. 5.2 and, in particular,
sets a rough estimation of γ below unity. This implies that β is not so close to zero and
therefore the final network is most likely to be marginally linked and the replication
process to be faster than it would be if γ was set to one.

All this also implies that the initial assumption that β ∼ 0 is not crude at all, in
particular because (i) the Kinetoplast is notably well linked, i.e. ρ∗

u � 0 and ρ∗
l � 2

and (ii) the redundancy of the genetic material is strictly greater than zero, although
very small, i.e. γ � 1.

It is important to bear in mind that all this is dependent on the assumption that
any mini-circle which is not linked to the Kinetoplast at the end of the replication
is lost during the separation into progeny cells. While this assumption might at first
sound too crude, it is worth stressing that it is supported by experimental evidence,
which assessed the viability of the progeny cells when topo II is inhibited from the
Kinetoplast, i.e. κ in Eq. (5.6) set to zero. This means that the Kinetoplasts were not
able to topologically regulate their formation, and as a consequence, the resulting
networks appeared fragmented, not forming a spanning component and ultimately
led to progeny cells death (Wang et al. 2000; Wang and Englund 2001). All this
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implies that the formation of a nearly perfect spanning component is crucial for the
organism survival and this could have been evolutionarily adapted, by introducing
some genetic redundancy, to allow a faster replication.

5.4 Conclusions

In conclusion, in this chapter I introduced an analytical model for the replication
of the Kinetoplast DNA. Although this model aggressively simplifies this complex
biological system, some of its crucial assumptions are supported by experimental evi-
dence and a careful analysis of the results can give some insight into the Kinetoplast
unique structure.

In particular, the replication of this biological network can be described as a self-
regulated process, requiring only the input of a small initial level of topoisomerase
to fully replicate the Kinetoplast. The final topological state of the network is found
to be crucially controlled by the ratio between the removal rate R and the re-linking
rate A, i.e. β = R/A, with the degree of linkage decreasing with increasing β. I also
showed that taking into account precision and speed of the replication, it is possible
to explicitly write a fitness function whose maximisation leads to a maximum fitness
line in the parameter space (γ,β), γ being a “redundancy factor” or the critical
fraction of unlinked mini-circles at the end of the replication. This finally allowed
me to argue that it may be possible that the Kinetoplast is poised at a critical point
where the redundancy of its genetic material allows for a faster replication without
compromising its fitness, although this intriguing conjecture ought to be supported
by future experiments. It is in fact my hope that further biological experiments on
this genome will shed new light onto its complicated and beautiful organisation.

From the work I presented here and somewhere else (Michieletto et al. 2015) I
drew a key message: the available experimental findings on the Kinetoplast can be
understood in terms of simpler systems, boiled down to few crucial elements.

First of all, the mini-rings form linked structures by passing through one another
and a good quantitative agreement with the available experimental observations can
be retrieved simply by assuming that the network is formed by a random strand-
crossings and that its level of linkage can be regulated by the concentration of
mini-circles within the mitochondrion. The network is found to be neither too
poorly, nor too heavily, connected, but near what is seems to be the percolation
threshold (Michieletto et al. 2015). Being close to the percolation transition may
well provide an evolutionary advantage for the Kinetoplast DNA network, as this
structure may be favoured over a more heavily connected network, as it facilitates
the decatenation during replication, but at the same time ensures that mini-circles
are not released by mistake, conferring robustness and increasing the conservation
of genetic material across generations. In other words, too heavily linked network
would be very good at preserving the genetic material, but would severely slow down
the replication stage of the network, where the Kinetoplast has to be taken apart. On
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the other hand, networks that are too poorly linked might result in the loss of genetic
material during cell mitosis and therefore put the cell viability at risk.

I have also shown that by considering a simplemathematicalmodel for the network
replication, one is able to argue two crucial aspects of the Kinetoplast: first, that the
network replicates efficiently if it is marginally linked, which supports the findings
reported in Ref. (Michieletto et al. 2015) which showed that the Kinetoplast is neither
too poorly nor too heavily linked, and second that the genetic composition of themini-
circles may be tuned in order to display some redundancy with the goal of speeding
up replication without losing fitness or viability.

A final remark is in order: these organisms have had a very unusual evolutionary
path. They show a uniquely structured mitochondrial genome, very distant from
anything else in Nature. On the other hand, they seem to have found an (unstable)
equilibrium, since small changes in the Kinetoplast structure usually lead to the
evolution of novel species which rapidly diverge from their common ancestor (Lai
et al. 2008) (in some cases, the network structure seem to have been traded for
super-coiling, e.g. in the Pan-KDNA structure of Cryptobia helicis (Lukeš et al.
2002)). I here speculate that this equilibrium must have been reached via successive
“attempts”, i.e. mutations, which slightly modified the topological structure until a
balance between several key elements, such as speed of replication, accuracy and
resistance against mistakes had been reached, leading to the to-date KDNA structure.

Finally, I would like to stress again that the survival of these organisms depends on
the regulation of the Kinetoplast topology; Nonetheless, their genome is consistently
duplicated with very few, or no, mistakes at every duplication cycle. Such reliable
topology regulation is far from being trivial to achieve. During the ’70s de Gennes
advanced the idea of an “Olympic gel” (de Gennes 1979) and 40 years later, the
scientific community has not made much progress toward its realisation. Perhaps the
answer lies within these organisms, as they have made an Olympic gel out of their
own mitochondrial genome (it is fair although to say that they had some millions of
years to try and make it!).

A better understanding of how they manage this incredible feat would surely
improve the current understanding and ability to realise similar topological materials,
perhaps using techniques drawn from modern synthetic biology.
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Chapter 6
The Role of Topology in DNA Gel
Electrophoresis

The Red Queen said: “Now, here, you see, it takes all the
running you can do, to keep in the same place”

L. Carroll

Topology plays a key role in the biophysics of DNA, and is intimately related to its
functioning. For instance, transcription of a gene redistributes twist locally to create
what is known as supercoiling, while catenanes or knots can prevent cell division,
hence they need to be quickly and accurately removed by specialised enzymes known
as topoisomerases. But how can one establish experimentally the topological state of
a givenDNAmolecule? By far themost successful andwidely used technique for this
is gel electrophoresis (Calladine et al. 1997; Bates and Maxwell 2005). This method
exploits the empirical observation that the mobility of a charged DNA molecule
under an electric field and moving through a gel depends on its size, shape and topol-
ogy (Bates andMaxwell 2005; Stasiak et al. 1996). Nowadays, gel electrophoresis is
a ubiquitous technique (Calladine et al. 1997; Viovy 2000; Dorfman 2010), since it
readily allows the separation of polymers with different physical properties and it is
systematically used for DNA identification and purification (Calladine et al. 1997).

Gel electrophoresis is so empirically reliable that it can be used, for instance, to
map replication origins and stalled replication forks (Olavarrieta et al. 2002), to sepa-
rate plasmids with different amount of supercoiling (Olavarrieta et al. 2002; Cebrián
et al. 2014), and to identify DNA knots (Stasiak et al. 1996; Arsuaga et al. 2005).
The most widely employed variant of this technique nowadays is two-dimensional
gel electrophoresis, where a DNA molecule is subjected to a sequence of two fields,
applied alongorthogonal directions (Bates andMaxwell 2005).The two runs are char-
acterised by different field strengths, and sometimes also gel concentrations (Cebrián
et al. 2014); with suitable choices, the joint responses leads to increased sensitivity.

Even though widely employed, gel electrophoresis of topologically non-trivial
polymers present some difficult theoretical challenges and remain largely theoreti-
cally unexplained. Some other aspects are reasonably well established. For instance,
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it is now widely accepted that the physics of the size-dependent migration of linear
polymers can be explained by the theory of biased polymer reptation (Rubinstein
1987; Duke 1989; Viovy and Duke 1993; Barkema et al. 1994; Viovy 2000). Like-
wise, the behaviour of, for example, nicked, torsionally relaxed, DNA knots in a
sparse gel and under a weak field is analogous to that of molecules sedimenting
under gravity (Weber et al. 2013; Piili et al. 2013). The terminal velocity can be
estimated via a balance between the applied force and the frictional opposing force,
which is proportional to the average size of the molecule: as a result, more complex
knots, which are smaller, move faster under the field. However, the mechanisms reg-
ulating the electrophoretic mobility of DNA knots at intermediate fields, and in more
concentrated agar gels, are much less well understood (Viovy 2000; Weber et al.
2006a; Cebrián et al. 2014).

In these cases, experiments suggest that the mobility of DNA knots is usually a
non-monotonic function of the knot complexity, or, more precisely, of their average
crossing number (Katritch et al. 1996; Stasiak et al. 1996) (ACN): initially knots
move more slowly as their ACN increases, while, past a critical ACN, more complex
knots move faster. The combination of the responses to external fields directed along
twoperpendicular directions leads to a characteristic electrophoretic arcwhich allows
one to separate the first simple knots more clearly in a 2D slab (Trigueros et al. 2001;
Arsuaga et al. 2002, 2005; Cebrián et al. 2014). There is currently no theoretical
framework that quantitatively explains the non-monotonic behaviour at intermediate
or large fields and the consequent formation of arc patterns.

In this Chapter I will show that much of the difficulty in capturing their behaviour
may be due to an incorrect model for the gel structure. In the past, the standard way
to tackle this problem was to treat the gels as perfect meshes of obstacles (Calladine
et al. 1991; Alon and Mukamel 1997; Viovy 2000). On the other hand, it is well
known that physical gels have irregularities, such as dangling ends (Whytock and
Finch 1991; Cole and Åkerman 2003; Rahong et al. 2014). These are common in
agarose gels formed at low agarose concentrations because many of the agarose
bundles fail to cross-link with other fibers, thereby generating partially cross-linked
open strands (Whytock and Finch 1991). More recently, dangling ends have also
been directly observed in artificial gels made of solid nano-wires using transmission
electron microscopy (Rahong et al. 2014) (see also Chap. 3 for details on gels and
their modelling).

The presence of these dangling ends plays a very weak role when linear poly-
mers are undergoing gel electrophoresis. Conversely, gel electrophoresis experiments
involving polymers with looped structures are expected to depend rather strongly on
the topological interactions between the polymers and the gel structure (see for
instance Fig. 6.1). When a dangling end threads through the ring polymer, the latter
becomes “impaled” and its free motion is re-established only when the threading
is removed. This makes the presence of dangling ends in the gel a key element for
a realistic model of gel electrophoresis experiments and to study the dynamics of
topologically looped polymers.

Inspired by these observations, in this Chapter I will focus on the dynamical
properties of rings subject to an external force that move within a mesh of obstacles

http://dx.doi.org/10.1007/978-3-319-41042-5_3
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Fig. 6.1 Assembling a random environment: A probability p is assigned to each edge so that half
of it can be knocked out at a random end. By assembling multiple cells it is possible to construct
a random environment which resembles the disordered structure of a gel, where dangling ends
populate the medium. To the right a typical snapshot of the system is shown. The external force in
this case is directed upward. Periodic boundary conditions are applied to the simulation box and
the gel structure is here thinned for clarity

modelled as a 3D irregular cubic lattice. The “irregularities” are represented by
randomly positioned dangling ends (see Fig. 3.1 in Chap. 3 or Fig. 6.1 in the next
section). I expect that these defects interacting with the rings and may result in
interesting behaviours that may have been overlooked in the past.

In particular, in Sect. 6.1 I will show that, in the regime of strong electric field and
sufficiently high concentration of dangling ends, un-knotted ring polymers migrate
slower as the external bias (force) is further increased. This means that the system
displays a “negative differential mobility” (Zia et al. 2002; Baerts et al. 2013; Ghosh
et al. 2014), which has been beautifully captured by the phrase “getting more from
pushing less” in the literature. In other words: the flux generated by large external
fields is smaller than the one produced by weaker ones and in the system studied in
this chapter, this phenomenon is entirely due to the topology of the polymers.

I will also show that the topological interactions between ring polymers and the
gel architecture can provide information on the microscopic structure of the gel. The
results presented in fact suggest that a gel electrophoresis experiment can establish
the level of disorder in the medium by comparing the results obtained by running
linear and ring polymers. This represents a novel way to exploit topology to “sense”
the disorder in the microscopic structure of a material in a non-invasive way.

Finally, in Sect. 6.2 I will investigate the gel electrophoresis of knotted ring poly-
mers and, in particular, I will describe a model that captures the electrophoretic arc
(i.e. non monotonic mobility) in 2D gel electrophoresis techniques. This will be
explained in terms of competition between shrinking size and increasing complexity
of DNA knots.

http://dx.doi.org/10.1007/978-3-319-41042-5_3
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6.1 Gel Electrophoresis of DNA Rings and Strands

The model I am introducing here is that of a random gel through which the rings are
forced tomove. The gel is constructed starting from a regular cubic lattice fromwhich
a random fraction p of dangling ends is created. These are made by halving some
edges of the cubic lattice with probability p1 and directed toward a random direction
(see Chap. 3). A typical configuration of this random mesh is shown in Fig. 6.1.
Different values of p produce various levels of disorder which I can accurately
tune. The mesh size is set at 200 nm which is comparable to that of agarose gels
at concentrations around 5% (Pernodet et al. 1997). The strands are made of static
beads of diameter σg = 10σ = 25 nm.

The choice of modelling the gel as completely static might seem very crude
approximation but several experiments reported values for the persistence length of
single agarose fibers in the range of 2–10 nm; in particular, Guenet andRochas (2006)
reports a persistence length of about 9 nm (the same work also presents evidence of
the presence of dangling ends in the gel). Furthermore, each agarose bundle is formed
by a number n f of fibers, with n f ranging between 10 and 20 (Guenet and Rochas
2006), and has a diameter of 10–20 nm (Sugiyama et al. 1994). The persistence
length of a full fibril might depend linearly or quadratically on n f (depending on
the structure of the bundle and strength of inter-fiber interactions) (Mogilner and
Rubinstein 2005). In light of this, a conservative estimate of the persistence length
for an agarose bundle is about that of DNA, i.e. 50 nm. This implies that agarose is
quite rigid on the scale of a dangling end. This approximation also allows one to save
computer time and simulate longer DNA rings for longer times, which is important
to monitor the speed of the polymers.

Rings moving through the gel are modelled by a set of N circular semiflexible
chains each of M beads of diameter σ = 2.5 nm (see Chap. 3 for details). Here I
consider either systems of N = 10 ringswithM = 512 beads each or systems of N =
20 rings and M = 256 beads. These two cases correspond to circular DNA of about
3.7 kbp (contour length Lc � 1.3µm) and 1.9 kbp (Lc � 0.65µm) respectively. The
simulation box has linear dimension L = 320σ and periodic boundary conditions
in all three directions. In both cases considered, the systems are in the dilute limit
and interactions between rings are therefore neglected in the analytic calculations,
although they might rarely occur in the simulations.

The external electric field is modelled as a constant force applied on each
monomer. Assuming that the electric charge is uniformly distributed along the rings,
the total force F can be distributed uniformly on each monomer, which is subjected
to a force F/M . The force acting on each ring can be thought of as resulting from
an electric field as F = qr E, where qr = Mq and q is the representative charge of
a single bead. The force acting on each bead can be expressed in units of ε/σ � 1.6
pN, the total force acting on the rings being a multiple of F = 1.6MpN. Since each

1The halving probability p is always taken smaller than the critical (inverse) percolation probability
1 − pc � 0.75 (pc being the bond percolation probability on a cubic lattice) to avoid the presence
of sparse un-connected clusters of un-physically rigid parts of the gel.

http://dx.doi.org/10.1007/978-3-319-41042-5_3
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Fig. 6.2 Average centre of mass displacement along the field direction, 〈�ZCM 〉. The field strength
in this case is E = 0.05 ε/qσ and the two sets of rings considered have (a) M = 256 and (b)
M = 512 beads. The curves refer to different values of p. Linear polymers are here observed to
be insensitive to the gel disorder as they show (dashed black and dotted grey lines) no variation in
speed when p is varied (b). To ease comparison with real units one can bear in mind that is possible
to map simulation units in real units, and it turns out that 106 σ � 2.5 mm and 107 τL J � 0.37 s
(see Sect. 3)

bead corresponds to σ = 2.5 nm � 7 bp, and each base-pair contains two phosphate
groups which account for a negative charge each, one can approximate the charge in
each bead as 14qe, where qe is the electron charge.2

The force exerted to the beads can therefore be thought of as a result of the action
of an external electric field pointed towards−ẑ and re-scaled by the charge of a bead.
In this case, the field strength felt by each bead can be expressed in units of V/cm as
Ẽ = 1.6/22.43 1019 pN/C � 7 kV/cm. In this chapter, the fields used range from
10−3 to 10−1 Ẽ , i.e. between 7 and 700 V/cm, which are roughly compatible to the
values used in standard DNA gel electrophoresis (Mickel et al. 1977; Levene and
Zimm 1987; Viovy 2000).

6.1.1 Linear Polymers Are Insensitive to Microscopic
Disorder

In order to investigate the effect of the dangling ends on the dynamics of the DNA
rings, I am going to monitor the average centre of mass displacement along the
direction ẑ of the field, 〈�ZCM 〉 for different values of the parameter p (see Fig. 6.2).
It is evident from the figure that the polymers severely slow down their motion as
the fraction p of dangling ends increases. In order to show that this is due to the ring
topology, I repeated an identical simulationwhere the rings were swappedwith linear
polymers of same contour length. Their displacement is reported as black dashed and
grey dotted lines in Fig. 6.2 and clearly show that the variation of fraction of dangling
ends does not interfere with the motion of the linear chains. I therefore argue that, as

2Here, I neglect the screening due to ions in solution (Maffeo et al. 2010; Stefano et al. 2014). These
will be considered in the next section. In any case, the correction due to the presence of ions account
only for a pre-factor on the corresponding real-life values of the fields used in the simulations.

http://dx.doi.org/10.1007/978-3-319-41042-5_3
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expected, linear polymers are insensitive to changes in the microscopic structure of
the gel whereas the motion of ring polymers is crucially related to the disorderedness
of the gel.

The mobility of the rings μ(M, p) is readily recovered from Fig. 6.2. This can be
found using the relation

μ(M, p) = 〈v〉
|F| (6.1)

where the average velocity 〈v〉 is computed using the average displacement of the
centre of mass at the longest simulation time step, namely

〈v〉 = 〈�ZCM(t = 107τL J )〉
107τL J

. (6.2)

It is worth stressing that even though the total simulation time is arbitrary, if this is
long enough, it gives the right relative speed between the rings moving through gels
at different p. The same principle is used to obtain the mobility of DNA molecules
gel electrophoresis experiments.

In themain panel of Fig. 6.3 themobilityμ(M, p) is reported for rings ofM = 256
beads driven by two different external fields strengths |E| = E , as a function of the
average fraction of dangling ends p. For fixed E and M , the mobility decreases as p
increases since rings are more likely to become threaded, and hence immobilised, by
the gel’s dangling ends. This behaviour seems to be well captured by an exponential
law of the form μ ∼ e−Bp, where B is shown to scale extensively with MqE (inset
of Fig. 6.3). This result can be interpreted within the assumption that the rings move
with mobility μ0 only when not impaled and otherwise are essentially immobile.
Hence one can write

Fig. 6.3 The mobility μ is reported as a function of p. The data points report the two choices for
M and to two values of the field strength E , as labelled. One can notice that the data points can
be fitted by exponentials of the form μ ∼ e−Bp (dotted and dashed lines). In the inset, I show
that the pre-factor B seems to scale extensively (solid line) with F = MqE . This supports the
conjecture that impaled rings can be thought of as particles trapped in potential wells whose height
is proportional to the field strength (see text)
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μ = (1 − s)μ0 (6.3)

with s the fraction of time in which a ring is stuck. This may be approximated by

s = αpv

αpv + e−�G/kBT
. (6.4)

Here, the rate of hitting a dangling end when a ring is moving through the gel
is assumed to be proportional to both the velocity v and the density of ends p.
Furthermore, the disentanglement rate is assumed Arrhenius-like and proportional
to e−�G/kBT with �G the free energy barrier needed to disentangle a ring from a
dangling end. The energy barrier�Gmay be thought of as begin itself proportional to
the force exerted on the ring times the length of the dangling end, i.e.�G = MqEl/2,
since a ring must move the length of the penetrating segment l/2 against a force
F = MqE . As one can notice from the picture, this conjecture very well captures
the exponential variation with B ∼ MqE . On the other hand, it does not explain
the exponential dependence in p. I have yet to find an analytical explanation for
this, but one can imagine being related to more complicated forms of entanglements,
where more than one dangling end is involved in the impalement. If this was the case,
the energy barrier needed to be overcome for a ring in order to free itself would be
somewhat proportional to the density of dangling ends, and therefore the presence
of p in the exponent somewhat justified.

6.1.2 Getting More from Pushing Less

Another very interesting feature that one can observe in this system is shown in
Fig. 6.4. The figure reveals a very intriguing non-equilibrium property of the system:

Fig. 6.4 The average speed 〈v〉 of the rings is here shown as a function of the force exerted on
a single bead qE . The two panels show the two choices of rings’ length: (a) M = 512 and (b)
M = 256 beads. One can readily notice that for p � 0.4 the functional form of the average speed
versus field strength shows a non-monotonic behaviour. This is quite unique and defines a negative
differential mobility ∂〈v〉/∂E < 0 for fields E > 0.01 ε/qσ and p > 0.3. In order to ease the
comparison with read units one can bear in mind that it is possible to map 0.1 σ/τL J � 6.7 mm/s
and 0.01 ε/qσ � 70 V/cm (see Chap. 3)

http://dx.doi.org/10.1007/978-3-319-41042-5_3
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the average centre of mass speed 〈v〉 decreases as the strength of the field E increases
for sufficiently high density of dangling ends p.

This behaviour canbe related to the definitionof themobility inEq. (6.1) combined
with the result expressed in Eq.6.3. In particular:

〈v〉 = μF ∼ Fe−Fpl/2kBTμ0, (6.5)

which clearly shows that the average velocity is expected to display a non-monotonic
behaviour in F .

One can better capture this behaviour by measuring the differential mobil-
ity (Baiesi et al. 2009, 2011; Baerts et al. 2013) of the rings. Numerically this can
be readily obtained as:

μN
D = ∂

∂F
〈v(F)〉. (6.6)

This quantity is reported in Fig. 6.5 and it clearly shows the field strength at which
the rings start to decrease their mobility. By mapping the simulation units in real
units (see Chap. 3) one finds that

μN
D(F) = 0 (6.7)

at F � 0.01 ε/qσ � 70 V/cm.
Although this value is around one order of magnitude larger than the values used

to observe “exclusion” from the gel of rings with similar length than the ones studied
here, i.e. some rings would not travel through the gel when pushed with a field of
around 4–8 V/cm, in Mickel et al. (1977), there is to say that there are viscosity of
the solution, salt concentration, screening of electric charges and other factors are

Fig. 6.5 The average speed of the centre of mass of rings, 〈v〉 in units of σ/τL J is shown for
a system of N = 20 rings with M = 256 beads and with p = 0.4 (diamonds in Fig. 6.4). The
numerical differential mobility can be computed as reported in the text and is here expressed in
units of σ2/ετL J , as a function of the force acting on single beads qE . One can readily notice the
change from positive to negative mobility as qE � 0.01ε/σ � 70 V/cm

http://dx.doi.org/10.1007/978-3-319-41042-5_3
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only crudely taken into account in the model presented in this chapter. The addition
of these details in fact would have made the model more complete but also more
complicated and would have perhaps hidden some of the effects that I have reported
in this chapter.

In agreement with the results presented here, the findings in Mickel et al. (1977),
Cole and Åkerman (2003) report that usually, closed circular samples migrated faster
than linear DNA, and this could be explained in terms of the average size of rings
which is smaller than the one for linear DNA, for equally long molecules. Under
some conditions, the same literature instead reports an inversion of this trend, which
can be explained by the fact that either field strength or dangling ends have started
to trap the rings.

Another finding reported in Cole and Åkerman (2003) and supporting the con-
jecture explored in this chapter is that rings travelling through more concentrated
agarose gels, although having overall lower mobility, they show a negative differen-
tialmobility turning point at higher field strengths. This can be explainedwith the fact
more concentrated agarose gels are known to possess less dangling ends (Sugiyama
et al. 1994), since the fibres are more likely to fuse together rather than remain non
cross-linked. In light of this, a smaller p in fact might lead to a larger critical field at
which μN

D = 0, although I have not explored this case in the chapter.
Finally, Mickel et al. (1977) reports that for fields around 4–8 V/cm, the closed

circular DNA roughly 2 kbp long, would not even travel through the gel and would
display a broad electrophoretic band. This is a clear indication suggesting a strong
entanglement effect, which causes the broadening, or “smearing” of bands.

It is also worth stressing that a behaviour in which objects pushed by an external
force are observed to travel slower when the force is increased has recently attracted
much scientific interest. On the one hand, the reason for this is that new theories
are starting to well describe non-equilibrium physics for the first time (Baerts et al.
2013). Formulating generalised relations for fluctuation-dissipation theorems and
diffusion coefficients in systems where energy is absorbed and consumed is of pri-
mary importance in order to achieve a better understanding of the physics of life. On
the other hand, experiments (Galajda et al. 2007) and simulations (Ghosh et al. 2014)
are probing new designs where “active”, i.e. out-of-equilibrium, elements and non-
trivial environments are made interact in order to tune arbitrarily desired responses.
In light of this, the present system can be thought of as an excellent example of
system where one can obtain more by pushing less (Zia et al. 2002). The rings are
in fact shown to show a larger mobility at low external fields rather than high ones.
In other words, this would be like getting more current in your circuit by applying
less voltage...a rather strange system!

6.1.3 Topology Can Sense Disorder

In this Section I investigated the role played by topology in the motion of un-knotted
ring polymers through a gel modelled as a disordered environment. It is remark-
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able that by comparing the behaviour of linear and circular polymers one can infer
the degree of microscopic disorder in the medium (Fig. 6.2). On one hand the find-
ings presented here provide us with an explanation for irregular migration speeds
detected in experiments comparing linearised and circular plasmids (Mickel et al.
1977; Levene and Zimm 1987; Trigueros et al. 2001); on the other, they also strongly
encourage the speculation that with a proper choice of a “topological” polymeric
probe, there is the possibility to explore the properties of complex disordered envi-
ronments from a novel perspective. Polymers with specific topologies may in fact
be exploited to design novel ways of sensing the changes in the microscopic struc-
ture of porous environments in a new and non-invasive way, e.g. by looking at their
mobilities.

Novel techniques nowadays allow the construction of gels with arbitrary topolo-
gies. One way to measure the level of order/disorder in such materials would be to
compare the mobilities of linear and ring charged polymers moving though them.
Because such procedurewould also be non invasive, the same sample could be probed
by means of, for example, atomic force microscopy in order to have several ways of
assessing the structure.

In the previous Sections I also showed that the trapping of ring polymers by the
environment is an effect that can be quantified by a simple reasoning leading to
Eqs. (6.3)–(6.4). These equations state that the entanglement effect, represented by
the fraction of time spent in the immobile state, s, is analogous to an Arrhenius
process. In other words, this means that in order to re-establish the free motion, the
rings have to retrace their steps and overcome an energy barrier that I shown to be
proportional to the force exerted on each ring F = MqE times the length of the
obstacle, which is here simply taken as half the length of the lattice spacing. This in
tunr implies that the entanglement barrier is as strong as the force drifting the rings
through the gel. Stronger external fields not only mean that they travel faster when
free, but also that they have to overcome an exponentially larger barrier when immo-
bile. In simplifiedmodels (Baiesi et al. 2015) this effect is often modelled as particles
pushed by an external force and falling into wells whose height is proportional to the
external force itself, leading to the same negative differential mobility reported here.

The phrase “getting more from pushing less” has recently been used to describe
situations in which a higher current can be obtained by lowering the field strength
(Zia et al. 2002;Baerts et al. 2013). This phenomenonhas been shown towell describe
the behaviour of ellipsoidal Janus particles in corrugated channels (Ghosh et al. 2014).
Here, another important realisation of this phenomenon, which is intimately related
to the broadly used gel electrophoresis technique, has been illustrated. This is an
instance of “negative response” and can be interpreted with recent advances in the
field of non-equilibrium statistical mechanics. The covariance between displacement
and average experienced force, which is zero in equilibrium conditions, may become
the dominant contribution to non-equilibrium susceptibilities (as the mobility) and
overtake the diffusion term to render the response negative.
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6.2 Gel Electrophoresis of DNA Knots

In the previous Section I studied the behaviour of un-knotted DNA rings and linear
strands. In this Section I will instead focus on knotted DNA rings and their behav-
iour in (2D) gel electrophoresis experiments. This topic presents some outstanding
questions which require a satisfactory answer in order for experiments to exploit
the separation properties of gels at their best. In particular, the formation of an
arc-shaped pattern in 2D gel electrophoresis experiments of DNA knots is largely
mysterious (Trigueros et al. 2001; Olavarrieta et al. 2002; Trigueros and Roca 2007;
Cebrián et al. 2014). Although this finding is nowadays a broadly accepted empir-
ical fact, there is no accurate theoretical explanation of this phenomenon from first
principles. The aim of this Section is to shed some light into the physics governing
this topological pattern.

In analogy to the previous Section I start with a systemof 10 nicked, i.e. torsionally
relaxed, DNA loops of M = 512σ � 3.7 kilo-base pairs (kbp) knotted DNA chains
migrating through a gel with lattice spacing l = 80σ = 200 nm. In order to simulate
a 2D gel electrophoresis experiment (see for instance Cebrián 2014) I perform a
simulation in which a weak external field is directed toward z and afterwards, once
the first field has been switched off, a second one, stronger in intensity, is applied
in a perpendicular (y) direction. The simulations are performed using a Brownian
Dynamics scheme (seeChap. 3 for details) and the gel is constructed as in the previous
Sections: a cubic mesh to which some (half) edges are removed at random (see also
Chap. 3) and in what follows the probability of generating a dangling end p is fixed at
p = 0.4 (see Fig. 6.6. The DNA rings are prepared either un-knotted, or form one of
the first few simple knots (with up to 9 crossing in their minimal projection (Adams
1994)). Most of the knots are prepared simply by using the parametrisations given in
Chap. 3. If a simple curve to form a knot was not known, I had simulated polymers
which could randomly perform strand crossings until the knot detection algorithm
(see Appendix A) would indicate the occurring of the wanted knot.

Fig. 6.6 Snapshot of the
system to scale together with
some examples of DNA
knots. The gel is generated
as in the previous section,
with p = 0.4, and knots are
made travel through it. Also
shown some equilibrium
configurations knotted
polymers; being the figure to
scale one can readily
appreciate that the size of the
knots tends to decrease with
the knot complexity

http://dx.doi.org/10.1007/978-3-319-41042-5_3
http://dx.doi.org/10.1007/978-3-319-41042-5_3
http://dx.doi.org/10.1007/978-3-319-41042-5_3
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The average crossing numbers (ACN) for the knots is a good measure for their
complexity. The ACN used in this Section have been obtained from
Kusner and Sullivan (1994), where the authors computed the ACN corresponding to
Möbius energy minimising knotted configurations. The thermally averaged ACN of
the samples used in this work has been computed from equilibrated configurations
and has been found to be in a one-to-one correspondence to the values in Kusner
and Sullivan (1994) (see Chap. 3 Fig. 3.4), confirming the known linear relationship
between the ACN of ideal and thermally equilibrated configurations (Katritch et al.
1996).

The ringswere equilibrated by running a simulation at zero external field of 5×106

τBr time steps, which are disregarded before the external force is switched on. The
rings were then subjected to an in silico gel electrophoresis process where a weak
electric field is first applied (�50 V/cm) along the vertical (z) direction, followed
by a stronger field (�150 V/cm) along a transversal, say y, direction. I will refer
to these two fields as “weak” and “stronger”, or “moderate”, in what follows. The
mean and standard error of various properties, as the mean displacement along ẑ,
are understood in the usual non-equilibrium meaning, i.e. they are calculated by
averaging over the rings in the system and over different runs starting from different
(equilibrated) initial conditions, and not over time.

As in the previous Section, the external field is modelled as a force f acting
on each bead forming the polymers. Differently to before, here I assume that in
physiological conditions half of the charges from the phosphate groups are screened
by counter-ions (Maffeo et al. 2010; Stefano et al. 2014).3 In line with this choice,
each bead (σ = 2.5 nm � 8 bp) contains a total charge of qb = 16qe/2, where qe
is the electron charge. It is therefore possible to map the external force applied onto
each bead to an effective electric field E = − f /qb. Although this mapping is a
crude approximation of the Coulomb interaction between the charged DNA, the ions
in solution and the applied electric field, I find that one can recover a “weak field”
behaviour of the knotted samples, i.e. linear increase of the speed as a function of
their ACN, up to ∼50 V/cm, which is roughly comparable with the field intensity
used in experiments. The fields used in this section range from E = 1.25 V/cm to
E = 625 V/cm. This range also corresponds to a range of forces acting on each
bead from f = 1.6 10−4 pN to f = 0.08 pN or total forces F = M f from 0.08
pN to 20 pN, which are compatible with forces used in both gel electrophoresis and
single-molecule experiments.

6.2.1 Non-monotonic Speed of DNA Knots in Gel

By monitoring the trajectories of the knots through the gel (Fig. 6.7 shows also the
cases for p = 0 for completeness) I computed the average speed of their centre of

3Differently to the previous Section, the parameters used here are closer to the ones used recently
in the literature (Stefano et al. 2014).

http://dx.doi.org/10.1007/978-3-319-41042-5_3
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Fig. 6.7 In this figure I show the trajectories of some of the knots together with their instantaneous
radius of gyration for different cases. a and b refer to the case of a gel with dangling ends while
for reference, I also show in c and d the case of a gel without dangling ends. From top-bottom,
figures a–c show te response of the knots under weak fields (∼50 V/cm) while figures b–d show
the response under strong fields (∼150 V/cm). From these figures it is important to notice that
while the weak field response of the knots is similar in the case with or without dangling ends,
the response under strong field is radically different. When dangling ends are present the knots
become entangled for long times, as one can see from the long stalls in displacement and the large
values of their Rg . This intermittent motion is unique to this case and it can be directly observed in
experiments done by fluorescent tagging the DNA samples. For a clip in which fluorescent plasmids
are travelling through a network of nanowires (Rahong et al. 2014), see http://www2.ph.ed.ac.uk/
~dmichiel/Rings_GelEP.mp4

mass along each of the field directions (Fig. 6.8). As expected, the mobility along
the direction of the weak field increases with the topological complexity of the
configurations. Along the direction of the moderate field, however, the mobility of
the knots displays a non-monotonic behaviour. In particular, the un-knot now moves
faster than either the trefoil or the 41 twist knot, and has an average speed similar to
the 51 knot. This non monotonic behaviour of the knot mobility, as a function of the
ACN, was previously observed in typical experiments with torsionally relaxed DNA
knots (Trigueros et al. 2001; Arsuaga et al. 2002, 2005; Trigueros and Roca 2007;
Cebrián et al. 2014).

It is interesting to notice that one cannot observe the electrophoretic arc in simu-
lations where the gel is a regular cubic mesh, i.e. a mesh with no dangling ends and
p = 0. While this has been so far the typical way to model an agarose gel (Weber
et al. 2006a, b), it does not lead to a non-monotonic behaviour of the knot mobility.
This result is in agreement with previous simulations based on lattice knots in regular
gels (Weber et al. 2006a).

http://www2.ph.ed.ac.uk/~dmichiel/Rings_GelEP.mp4
http://www2.ph.ed.ac.uk/~dmichiel/Rings_GelEP.mp4
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Fig. 6.8 The average velocity of different knot types along the direction of the weak (a–c, ∼50
V/cm) and the moderate (b–d ∼150 V/cm) field. From left-right a–b represent the case in which
the gel has dangling ends, while c–d the case in which p = 0. One can notice that while the weak
field case displays a linear increase in speed with knot type, the strong field case shows a non-
monotonic behaviour. The combination of a monotonic behaviour along the weak field direction
with a non-monotonic one along the stronger field, gives rise to the arc shape in agreement with
the ones observed in experiments (Trigueros et al. 2001; Trigueros and Roca 2007; Cebrián et al.
2014). It is worth stressing that the p = 0 case instead shows a monotonic increase also at strong
fields. The dashed lines are not fitted functions but guides for the eye

These findings therefore strongly suggest that the causes for the non-monotonic
behaviour, observed in the case of irregular gels, are to be found in the interaction
between the knots and the gel dangling ends. It is worth highlighting that in Weber
et al. (2006a, b) the authors already investigated the behaviour of knots under weak
and strong fields. In their work, they reported a monotonic behaviour between knot
complexity and its speed even at very high fields. Although they observed that for
electric fields stronger than a certain critical value more complex knots migrated
slower than simpler ones, their findings would not lead to the arc pattern observed in
experiments of 2Dgel electrophoresis but to a straight linewhere simpler knotswould
travel further than more complex ones. In light of this, the results presented here, that
the presence of dangling ends in the gel is crucial for retrieving the non-monotonic
speed of the knots, while regular gels always lead to monotonic separations, do not
contradict previous results (and in particular the ones in Weber et al. (2006a, b)) but
instead suggests a different explanation for the experimentally observed, and yet
unexplained, arc pattern.

The conjecture that I pursue here, that the interactionwith the dangling ends is cru-
cial in the mobility of the knots, is also supported by the fact that linear (open) DNA



6.2 Gel Electrophoresis of DNA Knots 109

samples, are frequently observed to migrate faster than covalently closed (unknot-
ted) ones, in gel electrophoresis experiments performed in both strong and weak
fields (Trigueros et al. 2001; Arsuaga et al. 2005; Trigueros and Roca 2007; Cebrián
et al. 2014). As I shown in the previous Section, this can be simply explained by the
fact that rings become impaled and entangled with the gel’s dangling ends therefore
supporting the conjecture that a complete model for gel electrophoresis has to take
into account topological polymer-gel interactions.

6.2.2 Entanglement with Dangling Ends

Having established that the presence of dangling ends in gels severely affect the
transport properties of the knotted DNA loops under moderate electric fields, it is
natural to look at the possible mechanisms ruling this phenomenon.

The typical trajectories and average extension of some knotted loops, as theymove
through a regular model gel and a gel with dangling ends are markedly different at
moderate fields (see Fig. 6.7. In a regular gel, knots respond to the field, by shrinking
their size so as to channel through the pores of the gel more efficiently. This mech-
anism, also known as “channelling”, for which polymers squeeze through the gel
pores, has already been observed in previous works (Mohan and Doyle 2007a, b),
and it was previously conjectured to play a role in the non-monotonic separation
of DNA knots in gels, as more complex knots could deforming differently when
squeezing through the pores (Cebrián et al. 2014). On the other hand, as discussed
previously, I find that this behaviour is not sufficient to explain the electrophoretic
arc, as for regular gels I always observe a monotonic, although not linear, increase
in speed with the knots’ complexity (Fig. 6.8).

On the contrary, in the case of irregular gels, knotted loops entangle with the
dangling ends. These entangled states (or “impalements”) require some time to be
unravelled and this is the reason of the anomalously long pauses observed in the knot
trajectories (see Fig. 6.7). Clearly, as the DNA gets longer, “impalements”, which
can either be parallel or perpendicular with respect the direction of the field, become
progressively more likely. As a matter of fact this could be one of the reasons why
it is in practice infeasible to perform efficient gel electrophoresis experiments with
circular DNA longer than 10 kbp (Dorfman 2010): at these sizes impalements are so
frequent that they may cause DNA breakage.

In analogy with the phenomenon of threading, which slows down the dynamics
of un-knotted loops either in a melt or in a gel (as discussed in detail in Chap. 4), and
that of “crawling” of knots around obstacles (Weber et al. 2006b), it is reasonable to
expect that more complex knots will take longer to disentangle themselves from an
impalement. One can argue that this mechanism, when competing with the reduced
Stokes drag of more complex knots in gels, is ultimately responsible for producing
a non-monotonic dependence as a function of their complexity, i.e. their ACN.

http://dx.doi.org/10.1007/978-3-319-41042-5_4
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6.2.2.1 Competition Between Size and Knottedness

Given that “impalement” events are key factors in determining the mobility of DNA
knots within gels with dangling ends, it is important to find a way to define and
measure this entanglement. Impalementmay occurwith dangling ends oriented along
several directions but it is reasonable to expect that all these events involve a similar
mechanism in which, i.e. one dangling end “pierces through” the knot.

To quantify the degree of knot-gel entanglement, I consider an equilibrated knot
configuration in the gel, and project it on the plane � perpendicular to the field
direction. I then choose randomly a base point P , at a distance from the projection
plane that is much bigger than the radius of gyration of the projected configuration,
Rproj

g . Starting from P it is possible to draw an arc which pierces only once the
projection plane � at a point, Q, chosen randomly, within a disk D defined as

D ≡
{
r ∈ �

∣∣∣ |r − RCM | < Rproj
g

}
(6.8)

and with uniform probability so that the whole D is un uniformly sampled. The
arc and the plane define a semi-space and one can close the path with a second arc
connecting Q and P and living in the other semi-space (see Fig. 6.9a. To measure
the topological interaction of the arbitrary curve with the knotted configuration, I
compute the absolute value of the linking number, |Lk|, between the circular path
and the knot. Figures6.9b, c show the result of this procedure when applied to two
different knots, the un-knot and the 91.I finally define the “average entanglement
number”, 〈π〉 (AEN) by averaging the value of |Lk| obtained using many closed
paths with different Q, and over different knot configurations. This is taken as a
measure of the degree of (possible) entanglement between a knotted molecule and
the surrounding gel.

In some sense, this procedure is reminiscent of the one used to assess the “group”
of a knot (Adams 1994), or one might think of this as “piercing” the Seifert surface
of the knot and taking the average over many “piercings” (〈π〉) (see Chap. 3 and
Appendix A).

It is perhaps important to highlight at this stage that the linking number measures
how much two closed curves are homologically linked but it cannot tell whether
two loops are topologically linked. For instance the Whitehead link (Rolfsen 2003)
is a topological link but has linking number zero. Consequently, the definition of
entanglement number may make use of configurations which can having linking
number 0 although topologically inseparable. This means that some regions within
a projected knot might give rise to a locally null entanglement number π(x, y) = 0
for (x, y) ∈ W . W being a region of the knot projection through which a loop, if
drawn, would lead to a topological link between the loop and the knot, with linking
number 0. This means that this measure is not perfect, but in absence of something
better, it will be used in what follows to quantify DNA-gel entanglements.

From Fig. 6.9d one can notice that 〈π〉 increases roughly linearly with ACN: it is
reasonable that more complex knots in fact can, on average, become more entangled

http://dx.doi.org/10.1007/978-3-319-41042-5_3
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Fig. 6.9 a The “piercing”, or “entanglement”, number is defined by averaging over many projec-
tions of an equilibrated knotted configuration on the plane � and by computing the linking number
between random loops passing through the disk D as defined in Eq. (6.8). b and c show the results
of the procedure described in panel a for an un-knotted configuration in (b) and a 91 knot in (c).
The regions of D are coloured according to the computed absolute value of the linking number
(see colour map at the right). Note that for the 91 case there are regions of high linking number
|Lk| = 3, which are completely absent from the unknotted case. These are clearly more prone to
become severely entangled with the dangling ends of the gel since once that region is threaded,
more than one winding of the chain is needed to free the whole polymer. d shows the final average
entanglement number 〈π〉 directly compared with the mean squared radius of gyration divided by
(l/2)2 (remember that l is the gel pore size) for different knot types classified in terms of ACN

with the gel. On the other hand, I do not have an explanation about why 〈π〉 should
grow linearly with ACN. Nonetheless, it is interesting to compare this behaviour
with that of the mean squared radius of gyration normalised by the size of (half) the
gel lattice spacing (see Fig. 6.9d). As I shown in Chap. 3, the average extension of a
knot is inversely proportional to its ACN (Stasiak et al. 1996; Piili et al. 2013).

Furthermore, the curves in Fig. 6.9d indicate a possible interpretation of the non-
monotonicmobility of the knots in disordered gels based on the interplay between the
size of a knot and its knottedness,leading to awell defined “entanglement complexity”
with the gel dangling ends. On the one hand more complex knots experience less
frequent collision with the gel structure, and hence should travel more easily through
the pores. On the other hand, once a knot-gel collision takes place, more complex
knots experience a more intricate entanglement with the gel (higher values of AEN
are more probable) and in turn, this will take longer to be unravelled (Stasiak et al.
1996; Weber et al. 2006a, b, 2013).

http://dx.doi.org/10.1007/978-3-319-41042-5_3
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6.2.2.2 Hitting and Waiting Times

The above argument suggests the existence of two time scales in the process: one is
the time τ f between two successive knot-gel collisions yielding a local entanglement;
the other, τdis, is the time needed by the knotted loop to fully disentangle from the
impalement. The time scale τ f increases as the knot average size decreases and
hence increases with knot complexity (ACN). In other words more complex knots
experience, on average, less collisions with the gel than their simpler counterparts.
The second time-scale, τdis, is instead an increasing function of 〈π〉 (see Fig. 6.9d)
and hence of the knot complexity (measured in terms of ACN). According to this
conjecture, the slowest topoisomer in an irregular gel with a given lattice spacing
will be the one with the “worst” compromise between a high rate of collisions, and
a sufficiently high value 〈π〉.

To investigate more quantitatively the dependence of τ f and τdis on the knot type
(ACN), one can analyse the trajectories of the knotted loops in the gel by computing:
(i) the average number of times a knot arrests its motion in the gel (entanglement
event), 〈ne〉, and (ii) the distribution of the duration of these entanglement events.
The duration of the entanglement events can be identified as the time intervals dur-
ing which the spatial position of the centre of mass of the configuration deviates
significantly from the expected collision-free field-driven linear motion with speed
v f ree = Fz,y/Mζ = fz,y/ζ.

In Fig. 6.10a I also show that the average number of entanglement events 〈ne〉
decreases with the knot complexity (i.e. ACN). On the other hand, the distribution
of the duration of these events displays an intriguing bimodal shape, with two peaks
occurring respectively at short and very long times (see Fig. 6.10c). Furthermore,
as reported in Fig. 6.10d, the average fraction of time in which the knot is trapped,
τw/τtot (τtot is the time of the full trajectory), is a non-monotonic function of the
ACN, in line with the result on the mobility under moderate field (Fig. 6.8).

The peak at long times in the waiting time distribution can be interpreted as the
signature of “head-on” collisions of the knots with the gel. In these cases the dangling
ends involved are opposite to the direction of the knotmotion and result in very strong
entanglements and very difficult to unravel. Nonetheless, either if this long-time peak
is excluded or not from the statistics, the characteristic disentanglement time τdis turns
out to increase (linearly) with the knot complexity, i.e. with ACN (see Fig. 6.10b).

One can assume that this bi-modal shape is due to a shift in the energy barrier
that the knots have to overcome in order to disentangle from the dangling ends.
In analogy to the previous Section, one can think to this process as an Arrhenius
process, where the energy barrier is a function of the length of the dangling end and
of the magnitude of the external field, as seen in the case of unknotted rings travelling
through a disordered gel. In addition, and differently from before, one should also
take into account the fact that the energy barrier should have a dependence on the
knot complexity.

When the external field is too strong, disentanglement events are very rare, for
any knot type. All knots end up being permanently entangled; on the other hand,
when the field is too weak, the typical disentanglement time is very short, and the
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Fig. 6.10 a Average number of events in which the knot is entangled with the surrounding gel
(entanglement events) as a function of ACN. bAverage disentanglement time as a function of ACN.
In these estimates only entanglement events with duration shorter than 200 τBr are considered. This
is done in order to remove the “head on” impalements. c Typical distribution of waiting times. The
examples reported is that of a trefoil knot 31, showing the bimodal shape discussed in the text.
d Average fraction of “waiting” (immobile) time as a function of ACN shows a non-monotonic
behaviour that complements the one seen for the speed of the knots. It in fact shows that the slower
knots are the ones, unsurprisingly, that are the more “waiting”

dependence of τ f as a function of the ACN dominates the motion of the polymers,
re-establishing the usual linearly increasing speed.

6.2.3 An Equivalent Random Walk Description

As shown in previous sections, 2D electrophoresis experiments and Brownian
Dynamics simulations of knotted loops in irregular gels are in qualitative agreement
under many aspects.

In this section I propose a simple model to understand more deeply the findings
reported in the previous Sections. In this model, I consider a knotted DNA molecule
movingwithin the irregular gel as a biased as a 1-dimensional BiasedRandomWalker
(BRW). The BRW can move to the right (arbitrary direction of the external force)
by one step (broadly this corresponds to one unit cell of the gel) unless it is trapped
into an entangled state (due to impalement) with a probability λe(K) = τ−1

f (K),
obtained from the MD simulations.

In the weak field regime one can consider the disentanglement time very small
and therefore simply assume that any knot will only stop for one time step with
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probability λe. In other words, there is no dependence on topology for the waiting
part of the BRW. This is equivalent to a Poisson process whose probability of getting
entangled after t time-steps is given by:

Pent (x(ACN ), t) = 1 − [1 − λe(Rg(K))]t � 1 − exp [−λe(K)t], (6.9)

where we stress the dependence of λe on the knot type via its size Rg. The average
time between interactions is given by 〈τ f 〉 � λ−1

e and the average number of stops on
a time t is 〈ne〉 = λet . The relative separation between two knots can be expressed as

�x(K1,K2) = v f ree(t f ree(K1) − t f ree(K2))

= v f reet (λe(K2) − λe(K1)) (6.10)

where v f ree is the velocity of the knots when no interactions occur (when hydro-
dynamics is negligible this is the same for all knots), t is the observation time and
t f ree = t − λet . From this is clear that the separation between knots K2 and K1 is
proportional to the difference of their entanglement rates, as expected.

Now, I will introduce a topology dependent disentanglement time: every time
that the BRW undergoes a “stop”, I require that it has to wait an amount of time that
increases proportionally to its average entanglement number (see 〈π〉 in Fig. 6.9). The
disentanglement time is picked from an exponential distribution with characteristic
time given by the empirical one observed in the MD simulations (see Fig. 6.10), i.e.

tw = − ln x/λdis (6.11)

where x is a random number between 0 and 1 and λ−1
dis = τdis. As discussed before,

the disentanglement time τdis is expected to be a function of 〈π〉, i.e. to increase
linearly with the ACN. One can therefore use:

τdis(ACN ) = A〈π〉 + τdis(01) (6.12)

where A = 5 τBr is an empirical parameter fitted from the simulations and τdis(01) =
30τBr is the empirical average disentanglement time of the unknot. In addition, long
waiting times which are typical of head-on impalements are taken into account by
adding a small probability (q � 0.05, compatible with the bimodal distribution in
Fig. 6.10) and conditioned to the fact that an entanglement event happened. For this
one can set τlong = A〈π〉 + 250. So the average disentanglement time from a head-
on impalement is still knot-dependent but is much longer than any characteristic
disentanglement time for other types of entanglements.

As one can see from Fig. 6.11 this crudely simplified model strikingly recovers
the non-monotonic mobility of the knots as a function of their ACN and can predict
the shape of the arcs for many other values of the ratio Rg(01)/ l which controls the
hitting probability.



6.2 Gel Electrophoresis of DNA Knots 115

Fig. 6.11 aAverage speed along the direction of the moderate field from Fig. 6.8b. The dashed line
is obtained from the biased continuous random walk model, and corresponds to the (shifted and
rescaled) red curve in (b). b Average relative separation (in units of lattice spacing over time) of
the knots as a function of the ACN for different parameters, as predicted by the continuous random
walk model. The grey dashed line in (a) is obtained by shifting the red curve in (b) by the value of
〈vy〉(01) and rescaling it by the free velocity v f ree

It is worth stressing that in this simple description the only relevant parameters are
the hitting rate, or τ f , for the unknot and the parameters characterising the bimodal
distribution of waiting (i.e. disentanglement) times, i.e. τdis. The values of these para-
meters are set in order to reproduce the data reported in Fig. 6.10. Once calibrated on
theMD simulations, thismodel can be used to predict the shape of the electrophoretic
arc for any arbitrarily large ACN without explicitly performing the MD simulation.
In particular, it can predict the electrophoretic arc also for molecules with different
length with respect to the size of the gel pores l. This enters as a parameter in the
hitting probability λe, as longer molecules have larger size and hence larger λe.

Because simple, I argue that this model is able to show that the key physical mech-
anisms leading to the non-monotonic mobility at moderate field are the hitting and
waiting times, which are both depending on the knot’s topology, but in diametrically
opposite ways (Fig. 6.10). Note that, as the random walker solely moves to the right,
the field strength does not enter explicitly into the model, but rather, it is consid-
ered to be neither too weak to allow backward moves or too strong to completely
suppress disentanglement of the knots. Both these cases in fact would not deliver an
electrophoretic arc.

One can finally simplified model to predict the moderate field mobility and the
shape of the electrophoretic arcs of DNAknots in gels of variable pore size, e.g. tuned
via agarose concentration (Pernodet et al. 1997) or nano-wire growth cycle (Rahong
et al. 2014). The plots presented in Fig. 6.11b suggest that tighter gels give rise to
more curved (or deeper) arcs where the slowest knot has a higher ACNwith respect to
sparser gels. Moreover, since the entanglement rate λe and the disentanglement time
τdis (both of these relative to the same quantities for the un-knot) should depend only
on the ratio between the knot extension and the gel pore size l, a similar trend should
be observed also by increasing the DNA loop contour length by keeping fixed l. This
is in qualitative agreement with experiments, as electrophoretic arcs are straighter for
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Fig. 6.12 Reconstruction of
a 2D gel electrophoresis
experiment from the data in
Fig. 6.11b and zoom over the
relative position of the
family of 6-crossings knots
for two cases in which the
minimum of the arc is at
their left and their right

shorter DNAmolecules (Trigueros and Roca 2007). A further quantitative prediction
can be drawn from these findings is that the relative position of the three 6-crossing
knots can be controlled by tuning the pore size (Fig. 6.12) of the gel. Indeed the size
of the pores determines whether the 61 Stevedore’s knot is to the left or to the right
of the minimum of the mobility curve: in the former case 61 will moves faster in
the gel than the 62 and 63 knots (which, having higher ACN have also higher AEN),
while in the latter case it will move more slowly. This detailed prediction could be
tested in future electrophoresis experiments with knotted DNA loops moving within
different gels.

6.3 Conclusions

In this Chapter I have studied the behaviour of linear, un-knotted circular and knot-
ted polymers drifting in a disordered gel. There are several open questions in this
field, which are all pertinent to the theoretical understanding of gel electrophore-
sis techniques, such as the anomalous mobility of ring polymers in gels, and the
non-monotonic speed of knotted DNA samples.

In Sect. 6.1 I showed that themobility of ring polymers moving through a physical
gel is strongly affected by their interaction with the surrounding environment. Ring
polymers can be slowed down by several order of magnitude by becoming entangled
with the gel structure. This is strongly correlated with the fact that the topology of the
rings is closed, and has to remain closed at all times. Linear polymers can disentangle
from the gel structure with virtually no slowing down (or at least much more quickly
than rings).
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Because the entanglement of ring polymers becomes stronger as the field driving
the polymers is increased, there exists a critical field E∗ above which ring poly-
mers will travel slower than their linear counterparts. In the limit of very large
external fields, ring polymers show very low gel mobilities, as experimentally
observed (Mickel et al. 1977; Cole and Åkerman 2003; Stellwagen and Stellwagen
2009).

It is also worth pointing out that this peculiar behaviour of rings in gels can be
used to probe the microscopic disorder of porous materials. Ring polymers could
in fact be adopted as “topological probes” and their mobility compared with that
of linear samples, thereby providing us with information regarding the microscopic
disorder of materials.

In Sect. 6.2 I studied a system of knotted polymers moving through a gel pos-
sessing rigid dangling ends. At weak fields one can recover the well-known linear
relationship between migrating speed and knot-type while at stronger fields, one can
instead observe a non-monotonic behaviour. This puzzling feature, has been tackled
in the literature but never fully explained. In particular, in Weber et al. (2006a, b)
the authors studied the effect of crawling of knots around gel obstacles and dragged
by weak and strong fields. Although they reported a very interesting field inversion
effect (where more complex knots were observed to travel slower than less complex
ones) their findings would nonetheless lead to a monotonic response of the knots’
speed as a function of their complexity, i.e. the knots would from a straight line
in a 2D gel electrophoresis experiment. On the other hand, the findings presented
in this chapter show that in order to obtain a non-monotonic response of the knots
speed, the presence of dangling ends is key. Only by accounting for dangling ends,
the non-monotonic speed, and therefore, the re-entrant envelope displayed by the
knotted DNA strands, can be retrieved. This pattern can, in fact, be better understood
by taking into account the topological interactions, or impalements, of the knots with
the irregularities of the surrounding gel. While more complex knots assume more
compact configurations, and hence smaller Stokes friction than simpler knots, they
also experience more complex impalements with the gel and hence longer disentan-
glement times. These two competing effects give rise to the non-monotonic speed
of the knots observed in the experiments, a feature that, remarkably, is absent for
knotted loops moving in a regular gel (i.e. no dangling ends). It is also remarkable
that the patterns observed in the experiments can be reproduced via a simple Biased
Random Walk model, with “topology-dependent” hitting and disentangling times,
where the depth of the arc pattern can be finely tuned via few key parameters. Even
though it is clear that the findings reported in this chapter can reproduce the arc
pattern thanks to the addition of dangling strands in the gel, it is still unclear what
is the microscopic disentanglement mechanism undergone by the knots once they
interact with the gel. While the results show that more complex knots take longer
time to disentangle, the reason why this is the case is still an open question. This
might be due to complex tightening around the dangling ends, which would be knot
dependent, or due to some correlations between the strands that need to overcome
the obstacle in order for the knot to re-establish its motion. Yet unexplained, this
complex disentanglement mechanics is surely worth exploring in the future.
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It is my hope that the results presented here will inform and stimulate further
experimental and numerical investigations of the role of topology in the anomalous
electrophoretic mobility of circular and knotted polymers. I aimed to provide models
as simple as possible while retaining the essential physics, and to provide sound and
testable outcomes that can inform more accurate experimental set-ups to separate
bio-polymers of different topology.

It is also worth stressing that this chapter is a clear example of how topology not
only affects the intrinsic properties of a polymer, such as its size (gyration radius), but
also how it interacts with the surrounding environment. The “topological interaction”
of a knotted DNA with the irregular environment of a physical gel, for instance, has
been here shown to play a key role in driving the non-monotonic electrophoretic
mobility of DNA topoisomers.
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Chapter 7
Conclusions

What it all boils down to is 1% inspiration and 99%
perspiration.

T.A. Edison

In light of the results of this Thesis, one could argue that joining the ends of a
linear polymer has had an unimaginable effect on the polymer static and dynamic
behaviours and it has had a much deeper consequences than one might have naïvely
anticipated.

From the change of universality class (Chap. 2) to the possibility of displaying a
kinetically arrested state at any temperature (Chap.4) and to have different interac-
tions with the surrounding environment depending on their knottedness (Chap.6),
ring polymers have been shown to offer a richness of behaviours whose full under-
standing is possibly one of the main theoretical challenges for the Polymer Physics
community in the years to come.

All of this can be summarised by the notion that ring polymers assume well
defined topological states, i.e. (un-)knotted and/or (un-)linked, and can interact via
three types of inter- and intra-chain topological interactions: threading, linking and
knotting. Clearly, these cannot be even defined in systems of linear, or topologically
trivial, chains.

These interactions are here investigated in Chaps. 4, 5 and 6, and in each of them
I have tried to focus on specific biologically-oriented examples and applications
which allowedme to better grasp the meaning and consequences of these topological
interactions in real-world problems.

In Chap.4 I have shown that threadings play a major role in the dynamics of dense
solutions of rings. In particular, under some conditions which are not too far (and
possibly not far at all!) from experimentally realisable set-ups, the motion of dense
solution of rings can be dominated by correlations induced by topological interactions
(or “topological correlations”) which lead a kinetic arrest, or a “topological glassy”
state.

Linking between rings has been explored in Chap.5, and in particular in the
case of the Kinetoplast DNA. The remarkable and unique structure formed by the
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mitochondrial genome of organisms of the classKinetoplastida offers an exceptional
example of how important this topological interaction is even in their bare existence
and survival. I showed that the topological regulation of the network of linked rings
thereby formed can be understood in terms of simple bio-physical models which,
despite their simplicity, can provide us with some fresh insight into this mysterious
structure.

Last, but not least, knotting represents one of the most studied and historically
important topological (self-)interactions. Despite the enormous effort in character-
ising the behaviour of knots in various contexts, much is still to be understood. In
Chap.6 I brought my (little) contribution toward the general understanding of this
topic by investigating the puzzling and unexplained non-monotonic speed of knotted
DNA samples in 2D gel electrophoresis experiments at high fields. This long debated
phenomenon has been found to be intimately related to topology as both, the knots’
size and their interactions with the gel, are controlled by their knottedness.

Above all, I have here tried to take inspiration from the biological world to ask,
and answer, questionswhich could be relevant and interesting for a broad spectrum of
researchers. The scope of the work has always been to provide an accurate, although
coarse-grained, description of the systems and to retain the key elements in play. The
objective that I set myself was to provide clues toward a deeper understanding of the
subjects and I, in particular, aimed to generate experimentally testable predictions
and to inform further experiments which are, after all, the final proof of any theory.

http://dx.doi.org/10.1007/978-3-319-41042-5_6


Appendix A
Identifying Knots

Identifying unambiguously any knot type is, currently, impossible. The design of
an algorithm that will make this possible is one of the biggest challenges for knot
theorists in the years to come. Mathematically, knot types are usually identified
by analysing the topological properties of the knot complement, i.e. the manifold
formed by removing the knot from the space in which it is embedded (S3 − K), or
the topological properties of the Seifert surface S constructed from a knot diagram
representation of a knot (Adams 1994). In practice, these procedures are hardly
translated into automated algorithms that can be repeated over thousands of knots.
For this reason it is often preferred to use simpler methods, although less reliable.
One of these methods is the computation of polynomials, such as the Alexander
polynomial.

The construction of the Alexander polynomial starts from a knot diagram a knot
(see Fig.A.1a). Being a knot diagram a 2D representation of a 3D object, it is not
unique but depends on the perspective chosen for the projection. On the other hand,
it can be shown that two knot diagrams of the same knot are equivalent, i.e. can be
transformed into one another via a sequence of moves called “Reidemeister moves”
(see Fig.A.1). In addition, knot diagrams that cannot be transformed into one another
belong to different knot types. There are several quantities that can be calculated from
knot diagrams, e.g. the minimal crossing number, the Dowker code, the bridge num-
ber or the Alexander and Jones polynomials. Here, I will describe the computation
of the Alexander polynomial �(t).

The procedure is the following: (1) Assign a direction to the contour and mark
the n crossings and n arcs between crossings (see Fig.A.1a); (2) Determine the sign
of the crossings using the standard right-hand rule (see Fig.A.1b); (3) Construct an
n × n matrix M , where the entries of the x th row are

M(x, i) = 1 − t; M(x, j) = −1; M(x, i) = t; (A.1)

if the x th crossing is positive, or

M(x, i) = 1 − t; M(x, j) = t; M(x, i) = −1; (A.2)
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Fig. A.1 a Knot diagram of a 41 knot. b Positive and negative crossings. c The three types of
Redemeister moves, from Orlandini and Whittington (2007)

if the x th crossing is negative, and where i, j, k are the strands forming the crossing
such that i passes over j and k. (4) Delete one row and one column, i.e. take one
minor of the matrix, and (5) compute its determinant �(t).

From the knot represented in Fig.A.1 one gets:

M(t) =

⎛
⎜⎜⎝
1 − t 0 −1 t
−1 t 1 − t 0
−1 1 − t 0 t
0 t −1 1 − t

⎞
⎟⎟⎠ → M ′(t) =

⎛
⎝

t 1 − t 0
1 − t 0 t
t −1 1 − t

⎞
⎠ (A.3)

whose determinant is �(t) = −t2 + 3t − 1: the Alexander polynomial of a figure of
eight (41) knot.

Because Alexander polynomials of different knot diagrams of the same knot can
differ up to ±tm with m ∈ Z, it is common practice to compute �(−1) (and identify
�(−1) with −�(−1)) so to avoid ambiguities. The Alexander polynomial is a good
knot invariant for a number of practical applications, in particular when dealing with
many randomly generated configurations. On the other hand, it cannot distinguish
between, for instance, the 820 knot and the Granny 31#31 knot or between a knot and
its mirror image and it is, therefore, to be used with caution.
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