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  Pref ace   

 Plants are the major source of secondary metabolites which are used as pharmaceu-
ticals, fl avours, fragrances, colouring agents, food additives and agrochemicals. In 
recent decades, plant cell, tissue and organ cultures have emerged as an alternative 
over whole plant cultivation for the production of valuable secondary metabolites. 
Cells, adventitious roots, hairy roots, shoots and embryos have been successfully 
cultured  in vitro  for the large scale production of secondary metabolites. Strain 
improvement, selection of high-producing cell lines, optimization of medium and 
culture environment have led to the enhanced production of bioactive and value 
added products. In recent years, a couple of bioreactor confi gurations have been 
developed and successfully adopted for the  in vitro  cultivation of plant cells and 
organs. Bioreactors such as mechanically agitated, airlift and photo-bioreactors 
have been designed and used for large scale cultivation of algal, higher fungal and 
plant cells. Bioprocess engineering parameters such as mixing, oxygen supply and 
shear stress have been investigated towards successful commercial scale cultivation. 
Various bioprocess operation modes including batch, fed-batch, two-stage cultiva-
tion, and bioseparation of intracellular metabolites have been suggested for enhanced 
and sustainable recovery of secondary metabolite products. More recently, over- 
expression of regulatory genes in up-regulating a series of enzyme activities in the 
metabolic pathways is also being achieved through genetic and metabolic engineer-
ing approaches. 

 This book provides recent progresses and limitations of production of biomass 
and bioactive compounds using bioreactor technology as mentioned above. It con-
tains six parts: Part   I     describes bioreactor designing advantages and limitations of 
bioreactor cultures; Part   II     deals with the production of biomass and bioactive com-
pounds from cell suspension cultures; Part   III     contains chapters on production of 
secondary metabolites from suspension cultures of plant organs – shoots, adventi-
tious roots and embryos; Part   IV     deals with the strategies for enhanced production 
of secondary products, large-scale cultures and metabolic engineering of selected 
metabolites; Part   V     contains bio-safety assessments of plant cell and organ culture 
products; and the fi nal Part   VI     contains physiological disorders in plants cultured in 
bioreactors. 

http://dx.doi.org/10.1007/978-94-017-9223-3_part1
http://dx.doi.org/10.1007/978-94-017-9223-3_part2
http://dx.doi.org/10.1007/978-94-017-9223-3_part3
http://dx.doi.org/10.1007/978-94-017-9223-3_part4
http://dx.doi.org/10.1007/978-94-017-9223-3_part5
http://dx.doi.org/10.1007/978-94-017-9223-3_part6
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Limitations of Bioreactor Cultures        
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    Chapter 1   
 Design of Bioreactors for Plant 
Cell and Organ Cultures 

             Milen     I.     Georgiev    

        M.  I.   Georgiev     
  Laboratory of Applied Biotechnologies ,  The Stephan Angeloff Institute of Microbiology, 
Bulgarian Academy of Sciences ,   139 Ruski Blvd. ,  Plovdiv   4000 ,  Bulgaria   
 e-mail: milengeorgiev@gbg.bg  

    Abstract     Demands for sustainable supply of plant biomass and/or value added- 
molecules (incl. native and heterologous therapeutic proteins, specialty proteins and 
industrial enzymes) have been the driving efforts to develop alternative ways for 
their bioproduction. Plant cell and organ cultures have been demonstrated an effi -
cient, cost effective and eco-friendly alternative to classical technologies (i.e. by 
harvest from wild) and chemical (semi)synthesis. The progress has resulted in 
development of several commercial processes for large-scale production of plant 
biomass and high value molecules, besides numerous proof-of-concept studies at 
laboratory- and pilot-scale. This chapter summarizes the bioreactor confi gurations 
for plant cell and organ cultures, and attempts to outline the immense potential of 
plant  in vitro  culture-based bioprocesses for sustainable supply of biomass and 
value-added molecules for various purposes along with the major challenges that 
remain.  

  Keywords     Bioreactors   •   Cell cultures   •   Organ cultures   •   Mechanically driven 
 systems   •   Pneumatically driven systems  

1.1         Introduction: From Simple Carboy Systems 
to Large- Scale Bioreactors 

 Per defi nition bioreactor is any device or vessel that is used to carry out one or more 
biochemical reactions in order to convert any starting material ( inter alia  substrate) 
into product(s) [ 1 ]. Bioreactor cultivation and subsequent up-scaling represent the 
fi nal steps in the development of bio-based processes. In general, the basic function of 
a bioreactor is to provide optimal conditions for effective cell growth and metabolism 
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by strict regulation of various environmental (chemical and physical) key factors [ 2 ,  3 ]. 
Though it is diffi cult to dedicate the very fi rst attempt to cultivate plant cells in biore-
actors, the pioneering work of Routien and Nickell [ 4 ] is a benchmark. In 1956, 
authors were granted the fi rst patent for the cultivation of plant cells  in vitro  in simple 
20-L carboy systems. Soon after that, the National Aeronautics and Space 
Administration (NASA) started a research program on plant cell culture for regenera-
tive life support systems. Plants and the relevant  in vitro  cultures were grown under 
various conditions of microgravity (space shuttles, parabolic fl ights, biosatellites, the 
orbital stations Salyut and Mir) along with ground studies using rotating clinostat ves-
sels (reviewed in Sajc et al. [ 5 ]). In the 1970s, further attempts to develop bioreactor 
confi gurations suitable for plant cells resulted in the development of a conical glass V 
shaped reactor (as called by the authors V-shape fermenter) for plant cell suspension 
cultures. This V shaped reactor has proved useful for both biomass and metabolite 
production [ 6 ]. Later, the concept of high shear sensitivity of plant cells was devel-
oped and only air-lift reactors were considered suitable [ 7 ,  8 ]. For instance, Kurz and 
Constabel [ 9 ] wrote “The most suitable reactor developed so far is the airlift reactor.... 
However this design is only applicable to cultures with a cell dry weight lower than 
20 g L −1 ”. Accordingly,  Nicotiana tabacum  cell suspension culture was up-scaled in 
360-L and 1,500-L bubble aeration-type bioreactors [ 10 ]. However, several indus-
trial-scale processes developed in early 1980s utilizing stirred-tank reactors (STRs) 
subsequently challenged these perceptions [ 2 ,  8 ]. Nowadays, ca. 60 years after fi rst 
dedicated attempts to grow plant cells in bioreactors has become nearly impossible to 
select the “best” bioreactor confi guration for different plant  in vitro  cultivations. 

 The selection and design of each bioreactor confi guration and operational mode 
are unique, which however, underlying some basic principles, as low stress environ-
ment, adequate mixing, and oxygen and heat transfer [ 2 ]. In most cases, bioreactors 
available for microbial fermentation can be implemented for hosting plant cells with 
some slight modifi cations. In general, reactor design should ensure that nutrients are 
effectively provided to the cells. Cell growth and product formation kinetics should 
be assessed (by respective sampling) so that, the optimal environmental conditions 
can be defi ned and thus the most suitable operational mode to be determined. 
Transport phenomena, including mixing, shear forces, and oxygen transfer, should 
be continuously followed during the cultivation process in order to defi ne the crite-
ria for bioreactor design and up-scaling. Operating parameters, such as dissolved 
oxygen concentration (DO 2 ) and substrate concentration(s), temperature of cultiva-
tion, pH and agitation speed, among others, should be easy to monitor and set-up. 
In addition, the bioreactor confi guration should be as simple and inexpensive as 
possible and it should be easily operated while ensuring long-term sterility [ 2 ].  

1.2     High-Value Molecules Produced by Plants 
and Relevant  In Vitro  Culture 

 The vast chemical diversity of the plants has been exploited since time immemorial 
by humans to diminish and prevent pain, to produce pleasure, for use in religious 
ceremony and to cure various human disorders. The chemical entities responsible 
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for this biological activity are, in most cases, low-molecular weight compounds that 
are often accumulated at very low amounts in plants [ 11 ]. For instance, paclitaxel 
(Fig.  1.1 ) content in  Taxus  plants accounts on <0.02 % of the dry weight of the bark, 
where its levels are highest, therefore, commercial production of this complex diter-
penoid by natural harvest is not economically feasible as  Taxus  plants grow very 
slow [ 12 ]. Recently, Wilson and Roberts [ 13 ] estimated that 340 tons of  Taxus  bark 
or 38,000 trees would be required to meet the 25 kg/year demand for the antineo-
plastic drug paclitaxel. In search of alternative solutions, two different routes for the 
total synthesis of paclitaxel were developed 20 years ago, however, the process 
involves 40+ reactions, utilizes harsh solvents, and has overall low product yields, 
which makes chemical synthesis of paclitaxel economically and environmentally 
unfavourable so far (reviewed in Wilson and Roberts [ 13 ]).

   In addition, several plants accumulating metabolites of pharmaceutical interest 
are listed as endangered species (due to continuous overharvesting of natural popu-
lations), and therefore novel approaches have to be found in order to ensure the 
sustainable production of value-added molecules. 

 Today, over 25 % of modern medicines are derived either directly or indirectly 
from plants, especially in case of cancer therapy (60 %), infectious diseases (75 %), 
but also in metabolic syndrome and immuno-suppression therapy. Of course, these 
numbers also include microbial sources, but the signifi cance of plants in the produc-
tion of pharmaceuticals is undoubtful. To name a few, paclitaxel (Taxol ® ), galan-
thamine (Nivalin ®  and Reminyl ® ) and artemisinin (Fig.  1.1 ) are currently good 
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  Fig. 1.1    Selected examples of high-value molecules produced by plant cell/organ culture, grown 
in bioreactors       
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examples in this approach and amongst the blockbuster drugs worldwide [ 14 ]. The 
most important commercially relevant pharmaceuticals, derived from plants, are 
valued at over $ 25 billion per year in the USA alone [ 11 ]. In addition, World Health 
Organization (WHO) estimates, at least 80 % of the population in developing coun-
tries still relies exclusively on traditional medicine for their primary health care 
needs (Georgiev [ 14 ] and the literature cited therein). According to Food and 
Agriculture Organization of UN (FAO), world population is expected to grow by 
over a third, or 2.3 billion people, between 2009 and 2050 [ 15 ]. This purely means 
that in near future humans will face multiple challenges such as: (1) more food and 
fi bre have to be produced to feed the growing population; (2) more feed stocks for 
a potentially huge bioenergy market and (3) more medicines ( inter alia  of natural 
origin) to cure human diseases. 

 Continuously increasing demands for plant biomass and therapeutic molecules, 
produced by ever greener processes, along with dramatic reduction in plant biodi-
versity, are the driving force to develop alternative ways to supply value-added mol-
ecules [ 8 ,  16 ]. Biotechnological production of secondary plant metabolites has been 
of interest for many decades. Nowadays, plant cell and organ cultures have become 
increasingly attractive and cost-effective alternatives to classical approaches (i.e. 
natural harvest and chemical synthesis) for the mass production of plant-derived 
metabolites (“green cell factories” concept), because of their several advantages. 
First, genetic modifi cation in a contained system can readily be applied without the 
regulatory barriers associated with fi eld grown crops. Second, a cell/organ culture 
system can be up-scaled in bioreactors with controllable production rates [ 16 – 18 ]. 
Furthermore, plant cell/organ culture is the only economically feasible way of pro-
ducing some high-value molecules from rare and/or threatened plants. The progress 
in this fi eld so far has resulted in the mass production of biomass and high-value 
molecules ( see below ) by different companies [ 2 ,  13 ,  19 ,  20 ].  

1.3     Bioreactors for Dedifferentiated Plant Cell Culture 

 Stainless steel stirred tank reactors, bubble column reactors and air-lift reactors 
(Fig.  1.2a–c ) directly derived from microbial bioprocesses are commonly used – 
with slight modifi cations – to grow plant cell suspension cultures up to 75 m 3  of 
culture volume [ 21 ]. Nowadays, stirred tank reactors are the most widely used reac-
tor confi gurations for growing plant cells, because of their several advantages such 
as easy scale-up, good fl uid mixing and oxygen transfer capacity, availability of 
numerous impellers types (reviewed in Georgiev et al. [ 2 ]) and compliance with 
current Good Manufacture Practices (cGMP) requirements [ 3 ]. Reasonably, most of 
the existing commercial processes with plant cell suspension cultures (discussed 
below) are based on STRs of m 3 -scale. Towards minimization of production costs 
and validation efforts under cGMP regulations, several single-use bioreactor con-
fi gurations for hosting plant cell culture have been developed recently, e.g. the 
wave-mixed reactors (Fig.  1.2d ), slug bubble bioreactor (Fig.  1.2e ), wave and 
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undertow bioreactor (Fig.  1.2f ), CELL-Tainer, AppliFlex, Saltus Virbormix reactor, 
and OrbShake reactor [ 2 ,  8 ], among others. Single-use bioreactors are comprised of 
cultivation containers/bags, made of US Food and Drug Administration-approved 
plastics [ 21 ,  22 ]. Single-use bioreactors become increasingly accepted for biotech-
nological processes at small and medium size scale during the past decade. 
Numerous studies [ 23 – 25 ] have clearly shown their advantages, such as reduced 
contamination and cross-contamination rates, easy compliance with cGMP regula-
tions, savings in time and costs, and reduced waste and thus clear environmental 
impact. Thus, single-use bioreactors have a wide range of applications for the pro-
duction of therapeutic proteins [ 20 ,  26 ] and in the production of plant biomass and 
secondary metabolites for cosmetics purposes [ 2 ].

   An effective bioreactor operational mode should provide adequate volumetric 
yield and overall high system productivity, which means more product(s) are formed 
per unit time per liter of bioreactor volume [ 2 ]. A major drawback of batch  processes 
is that signifi cant amount of time is taken up by the system and media sterilization, 

a b c

d

e

f

  Fig. 1.2    Bioreactor confi gurations for plant cell culture. ( a ) Stirred tank reactor, ( b ) Bubble col-
umn reactor, ( c ) Air-lift reactor, ( d ) Wave bioreactor, ( e ) Slug bubble reactor, ( f ) Wave and under-
tow (Georgiev et al. [ 8 ] and the literature cited therein)       
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fi lling and emptying, and cleaning the system. Thus, towards improving the cost-
effectiveness of the plant cell culture-based bioprocesses, various operational modes 
have been developed, including multi-stage batch, fed-batch, single- or multi-stage 
continuous (chemostat), semi-continuous (draw-and-fi ll) and perfusion (continuous 
with cell retention) cultivation [ 2 ,  8 ]. A comparison of different cultivation modes 
and feeding regimes is summarized in Table  1.1 . Among these, the most promising 
towards high productivity and thus most successfully applied ones for suspended 
plant cells are fed-batch and perfusion.

   Towards the development of new bioreactor confi gurations, we designed a glass- 
column bioreactor, operated with pulsed aeration in the Laboratory of Applied 
Biotechnologies, Plovdiv, Bulgaria [ 27 ]. In bubble column reactors, the sole source 
of agitation is the pneumatic power input provided by isothermal expansion of the 
sparged gas from the bottom [ 1 ,  28 ]. The air balloon type of aeration (created  via  
pulsed aeration) signifi cantly reduces cell exposure to the local zones of high shear 
stress. Moreover, such type of aeration (also called slug bubble or Taylor-like) 
ensures both effective mass transfer of oxygen into the liquid medium and homog-
enization of the culture medium [ 3 ,  27 ]. The bioreactor was further used for cultiva-
tion of  Harpagophytum procumbens  (devil’s claw) cell suspension and to study the 
production of pharmaceutically important verbascoside (a phenylethanoid glyco-
side, possessing desirable pharmacological activities for human health, such as anti-
oxidant, antiinfl ammatory, antineoplastic, wound-healing and neuroprotective 
properties) [ 29 ]. As a result, both accumulated devil’s claw biomass and the high- 
value verbascoside productivity in the column reactor with pulsed aeration were 
higher than the respective levels, reached in the shaken fl asks and STRs. 
Consequently, the biomass [expressed as g biomass/(L day)] and verbascoside 
[expressed as mg verbascoside/(L day)] productivity were up to 30 % and threefold 
higher, respectively, in the pulse-sparged column bioreactor than other cultivation 
systems. The accelerated growth of the devil’s claw cells and their high productivity 
imply that the pulse-aerated glass column bioreactor might be quite suitable system 
for hosting the plant cell suspension cultures. The construction of the bioreactor 
from glass also allows cultivation of phototrophic/photomixotrophic cultures [ 27 ]. 
A similar type of bioreactor, named the “slug bubble reactor”, has been developed 
for the cultivation of  Nicotiana tabacum  cell suspension culture [ 30 ]. The slug bub-
ble reactor is made of fl exible gamma-sterilized biopharmaceutical grade polyethyl-
ene and can be operated in a single-use cultivation mode, as discussed above. 

 Nowadays, 30 years after the development of the fi rst  industrial process  based on 
plant cells (shikonin production by  Lithospermum erythrorhizon  cell suspension cul-
ture), dozens of molecules are produced commercially using plant cell cultures. These 
include paclitaxel (Taxol ® ), berberine, ginseng biomass,  Echinacea  polysaccharides 
and several therapeutic and heterologous proteins, among others [ 2 ,  8 ,  13 ]. At present, 
in Ahrensburg (Germany), Phyton Biotech operates the world's largest cGMP plant 
cell culture facility with bioreactors specifi cally designed to meet the needs of plant 
cells in culture. The total production capacity of the taxanes train runs is up to 
880,000 L/year. The Phyton Biotech is a global provider of chemotherapeutic agents 
including paclitaxel, docetaxel APIs (active pharmaceutical ingredients) and taxane 
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intermediates (  www.phytonbiotech.com    ; accessed March 2014). The  Taxus  cell cul-
ture-based paclitaxel bioproduction was also commercialized by Samyang Genex 
Corporation (Taejon, South Korea) at m 3 -scale [ 18 ]. In addition to relatively well 
established bioproduction of plant-derived molecules, in recent years, several biotech 
companies have been turning plants (and relevant cell suspension cultures) into drug 
factories in order to produce therapeutic proteins that could not be made otherwise or 
to make them cheaper [ 31 ]. Protalix BioTherapeutics (Israel) uses the next-generation 
recombinant protein expression system platform to produce a wide range of complex 
and biologically equivalent human proteins (e.g. ELELYSO, a plant cell-expressed 
form of the glucocerebrosidase enzyme for treatment of Gaucher’s disease) in trans-
genic carrot and tobacco cell cultures in single- use plastic bag bioreactors (  www.
protalix.com    ; accessed March 2014). Another remarkable example includes the 
development of recombinant animal vaccine against Newcastle Disease virus, pro-
duced by transgenic tobacco cell cultures and marketed by Dow Agrosciences [ 20 ].  

1.4     Bioreactors for Differentiated Plant Organ Culture 

 In general, the differentiated plant organ culture consist of plantlets, shoot culture, 
adventitious (=normal roots) and transformed root culture (=hairy roots; harbouring 
T-DNA of  Agrobacterium rhizogenes  pRi plasmid). In the past two decades, plant 
organ culture have become increasingly considered as an attractive platform for 
bioproduction of plant-derived metabolites and therapeutic proteins, because of 
their several advantages, such as genetic and biochemical stability, and capacity for 
organogenesis-associated synthesis of metabolites, to name a few [ 2 ,  7 ,  19 ,  32 ,  33 ]. 

 Diverse bioreactor designs (Fig.  1.3 ) have been used for cultivation of differenti-
ated plant organ culture, including mechanically driven reactors (e.g. STRs, wave- 
mixed and rotating drum reactors), pneumatically driven systems (e.g. air-lift 
reactors and bubble column reactors), besides abundant bed reactors (e.g. mist reac-
tors and trickle-bed reactors) and temporary immersion systems [ 2 ,  34 ]. The mor-
phology of differentiated plant organ culture demands a special consideration for 
the adequate bioreactor confi guration, which should (1) provide low-shear environ-
ment for tissue growth and (2) ensure reduced mass transfer limitations. The forma-
tion of strong nutrient and oxygen gradients in the tissue is a major issue in densely 
packed plant tissue beds, e.g. non-homogeneous growth [ 2 ,  21 ,  34 ,  35 ].

   Thus, the use of ordinary STRs is, in general, not highly recommended because of 
the high stress-sensitivity of plant organ culture. However, slight changes in the STR 
internal hardware confi guration – e.g. separation of the plant tissue from the impeller 
(by using a mesh for instance) or just a simple reduction of the agitation speed – have 
resulted in successful cultivation of transformed root cultures of  Beta vulgaris  [ 36 ] 
and  H. procumbens  [ 37 ] and  Atropa belladonna  [ 38 ] in bioreactors of different scale 
(Table  1.2 ). Pneumatically driven air-lift and bubble column reactors are probably the 
most frequently used confi gurations for hosting differentiated plant organ culture [ 2 ]. 
Among others, a modifi cation of air-lift reactor, named balloon type bubble  bioreactor 
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(Fig.  1.3b ), appeared quite suitable for large-scale biomass and metabolite mass pro-
duction by adventitious root culture of  Panax ginseng ,  Hypericum perforatum , 
 Morinda citrifolia  and  Echinacea  (Baque et al. [ 19 ] and the literature cited therein). 
In a recent interesting study, Georgiev et al. [ 43 ] reported the successful cultivation 
of  Leucojum aestivum  shoot culture in modifi ed glass- column bioreactor with inter-
nal sections (Fig.  1.3c ) for production of galanthamine (naturally occurring alkaloid 
used in the treatment of mild-to-moderate Alzheimer’s disease, marketed as Nivalin ®  
and Reminyl ® ). The introduction of internal sections ensures submerged cultivation 
of the shoot culture and adequate mass and oxygen transfer, which resulted in high 
biomass accumulation (>20 g L −1 ) and galanthamine production (1.7 mg L −1 ).

   Furthermore, mist bioreactor (Fig.  1.3d ), trickle-bed reactor (Fig.  1.3e ), wave 
induced bioreactor (Fig.  1.3f ) as well as several temporary immersion systems 
(Fig.  1.3g, h ) have been validated as suitable for cultivation of plant organ culture 
(Table  1.2 ) (recently reviewed in Georgiev et al. [ 2 ]). It should be, however, 
noted that most of the temporary immersion systems are still of laboratory-scale, 
therefore, further more detailed experiments in large-scale volumes are pending to 
prove their effi cacy. 

a b c d

e

g

f

h

Generator
of mist

Balance scale

Inlet air

Exhaust gas

  Fig. 1.3    Bioreactor confi gurations for plant organ culture. ( a ) Bubble-column bioreactor, ( b ) 
Balloon type bubble bioreactor, ( c ) Column photo-bioreactor with internal sections, ( d ) Mist bio-
reactor, ( e ) Trickle-bed bioreactor, ( f ) Wave bioreactor, ( g ) Temporary immersion system RITA®, 
( h ) BioMINT reactor (Georgiev et al. [ 2 ] and the literature cited therein)       
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  Industrialization of plant organ culture  bioprocesses is not yet fully devel-
oped, mostly due to the morphological features of differentiated  in vitro  cultures 
and the resultant challenges [ 2 ,  34 ]. One such challenge is the way to transfer plant 
tissue inocula from seed reactor to large-scale reactor, which apparently cannot be 
preformed pneumatically (as usually done in suspended culture-based processes). 
The recently developed commercial system at 10 m 3 -scale for biomass and bioac-
tive ginsenoside production from  Panax ginseng  adventitious roots by CBN Biotech 
Company, South Korea [ 19 ] could contribute towards solving “inocula transfer” 
issues. Monitoring of the plant tissue growth in bioreactors during the cultivation 
process (up to several weeks) is another worth mentioning challenging issue [ 2 ,  34 ]. 
A number of methods are, therefore, developed for (indirect) estimation of the tis-
sue growth (in  off - line  or in  on - line  mode), such as measuring conductivity, osmo-
larity and redox potential of the culture medium (thoroughly summarized in 
Georgiev et al. [ 47 ]). Nevertheless, more reliable and accurate methods for bio- 
monitoring are continuously sought.  

1.5     Conclusions and Perspectives 

 For ca. 60 years of research, we have witnessed profound changes in development 
of plant  in vitro  culture-based bioprocesses for mass production of biomass, and 
plant derived-molecules and therapeutic proteins, which clearly outlined their 
immense potential for commercialization. Dozens of commercial processes were 
then developed and several others are on the pipeline. Nowadays, the design and 
confi guration of bioreactors used adequately refl ect the physiological requirements 
of plant cell and organ culture. It increasingly appears likely that single-use bioreac-
tors, originally developed for highly sensitive mammalian culture, will become 
more often used (e.g. 3D bioreactor-based systems) for growing plant cells that do 
not exhibit Newtonian fl uid behaviour. Wider commercialization of plant  in vitro  
culture-based processes implies the development of more reliable methods for bio-
process monitoring (for plant organ culture bioprocesses in particular) and improve-
ment of overall process performance. Recent and emerging “omics” platforms (and 
metabolomics in particular) are likely to accelerate this process.     
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    Abstract     The trend for using disposable bioreactors in modern biotechnological 
processes has also been adopted for plant cell cultivations. In fact, plant cell cultures 
are now being grown in disposable bioreactors with volumes up to 400 L. This trend 
has been witnessed for both the development and commercial manufacture of thera-
peutic proteins, secondary metabolite-based pharmaceuticals and cosmetic com-
pounds. Prominent examples of commercial products are Protalix’s ELELYSO and 
Mibelle Biochemistry’s Phyto Cell Tech-derived bioactive compounds. 

 This chapter discusses the current state of disposable bioreactor technology for 
plant cell cultures. After a brief introduction to the general fundamentals of dispos-
able bioreactors (relevant technical terms, advantages and limitations of disposable 
bioreactors) a current overview of disposable plant cell bioreactors and their instru-
mentation will be provided. We will describe the working principles and engineer-
ing characteristics of disposable bioreactor types that are scalable and successfully 
being used for the cultivation of plant cell suspension and hairy root cultures. In 
addition, we will provide selected application examples focusing on the cultivation 
of geraniol producing tobacco cells. The chapter will end with perspective on future 
developments of disposable bioreactor technology for plant cell cultures.  

  Keywords     Bubble column   •   Disposable bioreactor technology   •   Hairy root culture   • 
  Instrumentation   •   Mist bioreactor   •   Orbitally shaken   •   Oscillating   •   Plant cell sus-
pension culture   •   Recombinant protein   •   Secondary metabolite   •   Stirred   •   Tobacco  
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  Abbreviations 

   1 to 3D    1 to 3-dimensional   
  BY-2    Bright Yellow-2   
  CFD    Computational fl uid dynamics   
  CHO    Chinese hamster ovary   
  DCO 2     Dissolved carbon dioxide   
  DO    Dissolved oxygen   
  EVA    Ethylene vinyl acetate   
  fw    Fresh weight   
  Glc    Glucose   
  GMP    Good manufacturing practice   
  hCTLA4Ig    Recombinant cytotoxic T-lymphocyte antigen 4 immunoglobulin   
  k L a    Oxygen mass transfer coeffi cient   
  Lac    Lactate   
  LED    Light emitting diode   
  PC    Polycarbonate   
  PE    Polyethylene   
  PP    Polypropylene   
  PS    Polystyrene   
  PU    Polyurethane   
  P/V    Specifi c power input   
  pcv    Packed cell volume   
  PVC    Polyvinylchloride   
  rpm    Rotations per minute   
  SBB    Slug bubble bioreactor   
  TI    Temporary immersion   
  vvm    Air volume per medium volume per minute   
  WUB    Wave and undertow bioreactor   

2.1           Introduction 

 During the past 10 years, disposable bioreactors have increasingly replaced their 
reusable glass or stainless steel counterparts in modern biotechnological production 
processes. This trend is applied for research and commercial production processes 
up to medium volume scales [ 1 ,  2 ]. This is a logical consequence of the main advan-
tages of disposable bioreactors when they are used and operated correctly, which 
include: reduced contamination rates, time and cost savings, lowered waste and 
environmental impact [ 3 – 5 ]. These advantages have been demonstrated in various 
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studies and can be attributed to the plastic materials (ethylene vinyl acetate, EVA; 
polycarbonate, PC; polyethylene, PE; polypropylene, PP; polystyrene, PS; polyure-
thane, PU and polyvinylchloride, PVC) that are used to make the cultivation con-
tainers for disposable bioreactors. The containers are either a free-standing, rigid 
vessels that are most frequently manufactured from PS or PC, or fl exible two- 
dimensional (2-D), respectively three-dimensional (3-D) bags. Such culture bags 
are made from multilayered fi lms which are typically composed of: (1) the contact 
layer that is in direct contact with the culture medium and cells, (2) the gas/vapor 
barrier layer that limits the diffusion of gases and vapor, (3) the external layer that 
provides the mechanical stability to the bag and (4) the tie layers which use physico-
chemical interactions to bond the contact-, gas/vapor- and external layer together. 
PP, PE and EVA have proven to be suitable as contact layers [ 6 – 8 ]. In cases, where 
bags are used as cultivation containers, disposable bioreactors often require an addi-
tional bag holder. The holding device (e.g., stainless steel support container, tray or 
table), which fi xes and shapes the bag, is often electrically heated or incorporates 
water-fi lled double jackets to control the temperature. 

 Regardless of whether the cultivation container is a rigid vessel or a fl exible bag, 
if it is pre-sterilized by the vendor, by beta- or gamma-irradiation and discarded 
after a single bioprocess, it is deemed to be a disposable and single-use bioreactor. 
Not surprisingly, their application results in reduced cleaning and sterilization 
work. Disposable single-use bioreactors play a dominant role when high-value 
products such as therapeutic proteins have to be developed and manufactured within 
a short period of time. It is worth mentioning that the majority of commercially 
available disposable single-use bioreactors were originally designed to produce 
animal cell- based seed inocula and therapeutic proteins such as antibodies and vac-
cines [ 2 ,  9 ,  10 ]. 

 However, there are disposable bioreactors, whose cultivation containers are used 
multiple times. Their plastic cultivation containers are either provided sterile or 
have to be steam- or gas-sterilized prior to use. By defi nition, these bioreactors are 
disposable multi-use bioreactors [ 11 ,  12 ]. Disposable single-use bioreactors are 
typically available as mid-level instrumented versions with volumes of up to 2 m 3  
[ 13 ], whereas disposable multi-use bioreactors are less- or minimally instrumented 
plastic containers that are designed for cultivations at bench top and (more rarely) 
pilot scales (double digit L-range). In comparison to disposable single-use contain-
ers, disposable multi-usable versions are more complex and can be more time- 
consuming to operate. However, they are cheaper to manufacture and to purchase, 
and thus claimed as low-cost systems. 

 Both disposable multi-use and disposable single-use bioreactor types have been 
successfully used in  in vitro  cultivations of plant cell suspension cultures, hairy root 
cultures, embryogenic cultures, meristematic tissue and fi lamentous tissue cultures 
[ 12 ,  14 ,  15 ]. By introducing the Life Reactor (the fi rst disposable bag bioreactor for 
plant cells) in the early 1990s, the company Osmotek paved the way for today’s 
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cultivations aimed at the production of bioactive compounds for pharmacy and 
 cosmetics. This bioreactor was the prototype of the Wilson’s Plastic-lined Bioreactor 
[ 16 ] and, fi nally, the 400 L system [ 17 ,  18 ] used by the company Protalix to com-
mercially manufacture the taliglucerase alpha, recombinant glucocerebrosidase, 
enzyme (commercially known as ELELYSO) under GMP (Good Manufacturing 
Practice) compliant conditions. The market launch of the fi rst wave-mixed bag bio-
reactor, the Wave Bioreactor, in the late 1990s represented a further milestone in the 
development of disposable bioreactors [ 19 ]. It paved the way for further versions of 
wave-mixed disposable bioreactors such as the BIOSTAT Culti Bag RM, the 
AppliFlex or the Wave and Undertow Bioreactor (WUB) which will be discussed in 
detail in Sect.  2.3.1 . These wave-mixed bag bioreactors are currently most widely 
used when plant cells are grown in disposable bioreactors. For example, Mibelle 
Biochemistry and Sederma has already developed and manufactured the bioactive 
compounds for cosmetics, such as Phyto Cell Tec Argan, Solar,  Vitis ,  Malus domes-
tica , Alp Rose and RESISTEM in the BIOSTAT Culti Bag RM [ 20 ]. Greenovation 
also uses the same bioreactor to produce different therapeutic proteins using 
 Physcomitrella patens  suspension cells. 

 Interestingly, there have been no reports of any negative infl uence on cell growth 
and expression of products caused by interactions between medium components 
and the inner contact layer of the plastic bag for plant cell cultivations. This limita-
tion was described by Kadarusman et al. [ 21 ] and Altaras et al. [ 22 ] for cultivations 
of Chinese hamster ovary (CHO) cells propagated in chemically defi ned culture 
media in bags with a PE fi lm as the contact layer. The strength of this effect was 
dependent on the sensitivity of the cell line, the composition of the culture medium, 
the initial cell density, the procedure for irradiating the bag and the bag storage 
procedure. The most-feared inhibitory substances which can migrate from the fi lm 
material into the cell culture broth under processing conditions are called cytotoxic 
leachables [ 23 ,  24 ]. Recently Hammond et al. [ 25 ] ,  identifi ed bis (2.4-di-tert-butyl 
phenyl) phosphate as a leachable compound that decreases mitochondrial mem-
brane potential and inhibits CHO cell growth at concentrations of just 0.1 mg L −1 . 
This substance is formed when PE bags are fabricated, subsequently irradiated 
(between 25 and 50 kGy) and when trisarylphosphite processing stabilizers were 
used. The risk of leachables being released from the disposable bags represents the 
most cited limitation of disposable bioreactors and the main reason for not using 
them in animal cell-based production processes.  

2.2     Disposable Bioreactors Suitable for Growing 
Plant Cell Cultures 

2.2.1      Instrumentation of Disposable Bioreactors 

 A second bottleneck of today’s disposable bioreactors is their current instrumenta-
tion and automation. It is a fact that disposable bioreactors are not as highly 
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instrumented and automated as the reusable versions. The standard parameters for 
process control and automation parameters for plant cell cultivations in reusable 
bioreactors include temperature, pH-value, fl ow rate, dissolved oxygen (DO), agita-
tion speed, fi lling level, foam level and pressure. In addition to these, advanced 
parameters such as vessel weight, conductivity, viscosity and substrate and metabo-
lite concentrations can also be monitored. 

 As described by Glindkamp et al. [ 26 ] and Lindner et al. [ 27 ] disposable bioreac-
tors are equipped with  in situ  and/or external sensors. Both  in situ  (in direct contact 
with the process fl uid) and  external  (contacting the process fl uid optically or  via  a 
sterile sample removal system) sensors are available as standard or disposable 
 elements. Standard sensors have to be cleaned and sterilized separately and should 
be connected to the bioreactor  via  aseptic couplings before inoculating and starting 
the bioreactor. In contrast, disposable bioreactors with disposable sensors are 
shipped for ready to use. Nevertheless, the number of disposable sensor types and 
vendors that are available is considerably smaller than those for standard systems. 
Furthermore, the selection of the sensor is restricted to systems for which the manu-
facturer of the disposable bioreactor offers an implementation option. In other 
words, the compatibility of analytics is generally defi ned by the manufacturer of the 
disposable bioreactor. 

 Table  2.1  gives an overview of available disposable sensors, their measurement 
principles, measurement range and vendors. There is a wide range of disposable 
sensor types for temperature, pressure, pH-value and DO concentration. Constraints 
exist for process parameters such as fl ow rate, conductivity, dissolved carbon diox-
ide (DCO 2 ), biomass, substrate and metabolite concentrations since there are only a 
few systems available.

   Due to the fact that all the disposable sensors shown in Table  2.1  were designed 
for animal cell cultivations, further limitations have to be considered when they are 
used for plant cell cultivations. These limitations are related in particular to optical 
pH and DO sensors and arise from differences in sensor measurement ranges, fl uid 
fl ow behavior and the demand of light for phototrophic cultivation conditions. For 
example, optical pH sensors only deliver reliable measurements of values ranging 
between 5.5 and 8.5. But pH-values occurring in plant cell cultivations are normally 
between 4 and 6 [ 28 ,  29 ]. This means that measurements of a pH range between 4 
and 5.5 (typical values within the fi rst 48 h of cultivation that indicate early ammo-
nium assimilation and late nitrate assimilation) are problematic while using optical 
sensors. 

 High viscosities of plant cell culture broths and changes from Newtonian to non- 
Newtonian fl uid fl ow behavior [ 30 – 34 ] may complicate optical pH and DO mea-
surements as a result of the background noise and incidental light intensity. However, 
the biggest issue of all optical sensors is their photobleaching, where phytochemical 
destruction of the dye being sensitive to the parameter which should be measured 
occurs. For this reason, disposable cultivation vessels containing disposable sensors 
have a restricted storage time and must be protected from light and as a result, their 
usage is not recommended for cultivations requiring light. For these kinds of culti-
vations, standard sensors are preferred, which have a further effect on the selection 
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of the type of plant cell bioreactor that can be used. Additionally not all disposable 
bioreactor types can be equipped with standard sensors.  

2.2.2     Categorization Approach for Plant Cell Bioreactors 

 According to the technical literature, static bioreactors characterized by unenforced 
power input and used for screening studies at mL-scale are generally less relevant 
than the dynamic ones. Dynamic bioreactors being in the focus of our chapter 

    Table 2.1    Selection of commercially available disposable sensors   

 Process parameter  Measurement principle 
 Measurement 
range  Vendor 

 Pressure  Semiconductors  0–5 bar  Finesse Solutions 
 PendoTECH 
 SciLog 

 Temperature  Semiconductors  −10–125 °C  BURNS Engineering 
 GE Healthcare 
 PendoTECH 
 SciLog 

 pH  Optical and potentiometric  In the majority:  Finesse Solutions 
 5.5–8.5  Metroglas 
 Max: 2–10  Ocean optics 

 PreSens 
 Sartorius Stedim 
Biotech 

 DO  Optical  In the majority:  Finesse Solutions 
 0–100 %  Ocean Optics 
 Max: 0–250 %  PreSens 

 DCO 2   Optical  1–25 %  PreSens 
 Flow rate  Infrared refl ection, 

ultrasound Coriolis concept 
 0–20 L min −1   Equfl ow, Levitronix 
    5–24,000 g 
min −1  

 PendoTECH 

 Conductivity  Semiconductors  1–200 μS cm −1   PendoTECH 
 SciLog 

 Biomass, cell 
density 

 Capacitance-based  10 5 –10 9  cells 
mL −1  

 Aber Instruments 
 Fogale Nanotech 

 Glucose (Glc), 
lactate (Lac) 

 Enzymatic (ionselective 
electrodes) 

 Glc: 0.2–10 g L −1   C-CIT 
 Lac:0.1–5 g L −1  

 Glutamine, 
glutamate 

 Enzymatic (ion-selective 
electrodes) 

 0.1–9 g L −1   C-CIT 

  Remark: For a detailed explanation of the measurement principles the interested reader is referred 
to the homepages of the cited vendors [ 26 ] and [ 27 ]  
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become important if the bioreactor volume rises and higher biomass respectively 
cell densities or product titers are required. A categorization approach for dispos-
able plant cell bioreactors which takes their mixing and power input principle into 
account is shown in Fig.  2.1 .

   Three main classes can be distinguished: (1) mechanically driven disposable bio-
reactors, (2) hydraulically driven disposable bioreactors and (3) pneumatically 
driven disposable bioreactors. As summarized in Table  2.2 , mechanically, hydrauli-
cally and pneumatically driven versions of disposable bioreactors with fi lling vol-
umes up to 400 L have been operated to produce plant cell-based biomass, secondary 
metabolites and recombinant proteins such as antibodies.

   Mechanically driven disposable bioreactors represent the largest group. Their 
mixing is either performed by rotating stirrers (Fig.  2.2a ), tumbling stirrers 
(Fig.  2.2b ), rocking platforms (Fig.  2.2c ), raising platforms (Fig.  2.2d ), vibrating 
perforated disks (Fig.  2.2e ) or orbitally shaken platforms (Fig.  2.2f ). In addition to 
the mechanically driven disposable bioreactor types listed in Table  2.2 , disposable 
bubble columns (Fig.  2.2g ) can be used when plant cell suspension cultures are 
being grown. Pneumatically driven bubble columns are simpler in design (immov-
able parts, no shaft seal). Mass and heat transfer is achieved by direct sparging of air 
or gas into the tall cultivation container. This results in the rising of bubbles which 
cause mixing and fl uid circulation of the culture medium.

   If the organ cultures (hairy root cultures, meristematic or fi lamentous tissue and 
embryogenic cultures) are being grown, continuous immersion of the cells (which is 
typical in mechanically and pneumatically driven bioreactors) may cause adverse 
effects. Process limitations, including limited gas exchange, cell hyperhydricity, 

  Fig. 2.1    Classes of disposable plant cell bioreactors according to their mixing and power input 
principles (only scalable dynamic versions are considered). This categorization approach is based 
on the general classifi cation of disposable bioreactors which was recommended by DECHEMA’s 
temporary working group “Single-use technology in biopharmaceutical manufacture”       
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 chlorophyll defi ciency as well as changes in enzymatic activity and protein  synthesis 
have been reported [ 63 ,  64 ]. Alternatively, temporary immersion (TI, also known as 
ebb-and-fl ow regime) was realized in specially designed disposable bioreactor types 
usually used for plant breeding purposes. Prominent examples of disposable TI biore-
actors are Osmotek’s Ebb-and-Flow Reactor [ 65 ] and Nestlé’s Box-In-Bag Bioreactor 
[ 45 ,  65 ]. Using these bioreactors, a repetitive fi lling and draining of the bioreactor 
occurs. After temporarily wetting the entire organ culture with the culture medium, the 
excess medium is drained away by gravity. A similar effect can be achieved by operat-
ing a wave-mixed bioreactor bag with a low amount of culture medium (10–20 % of 
the total bag volume). As a result of the culture bag position and the fi lling level in the 
bag, there are two segments of the organ culture, the one which is immersed and the 
other which is not immersed. This cultivation technique [ 49 ] is benefi cial for hairy 
root and embryogenic cultures for which disposable mist reactors were also 
developed. 

 In mist reactors (Fig.  2.2h ) gas represents the continuous phase and power input 
is normally affected by pumps. The culture is exposed to air or other gas mixtures 

a

e f g h

b

c

d

  Fig. 2.2    Schematic diagrams of disposable plant cell bioreactor types. ( a ) Bioreactor with rotating 
stirrer, ( b ) Bioreactor with tumbling stirrer, ( c ) Bioreactor with rocking platform, ( d ) Bioreactor 
with raising platform, ( e ) Bioreactor with vibrating disk(s), ( f ) Bioreactors with orbitally shaken 
platform, ( g ) Bubble column, ( h ) Mist bioreactor       
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and is periodically (seldom continuously) subjected to the nutrients from the culture 
medium. The cells are pumped from a medium storage vessel, and nutrients are 
delivered in the form of droplets whose diameters range between 0.01 and 10 μm 
[ 66 ]. Culture immobilization on a matrix is stringently required for mist reactors 
and is also shown to be advantageous for disposable wave-mixed bioreactors, but it 
is not required in the latter [ 49 ].   

2.3     Scalable Disposable Bioreactors for Plant Cell 
Suspension and Hairy Root Cultures: 
Types and Their Engineering Characteristics 

2.3.1       Disposable Wave-Mixed Systems 

 In disposable wave mixed bioreactors the complete platform and subsequently the 
sections of the platform on which the culture bag is fi xed will move. The rocking 
movement induces a wave in the bag containing the medium and the cells. The wave 
movement introduces bubble-free oxygen into the fl uid from the headspace of the 
bag and the surface of medium is continuously renewed. The generation and propa-
gation of the wave within the bag infl uences the fl uid fl ow, mixing time, oxygen 
mass transfer rate, shear stress acting on cells and, thus resulting in cell growth and 
product formation. As discussed by Löffelholz et al. [ 13 ] currently available wave-
mixed bioreactors mainly differ in their oscillatory motion, which can be one-, two- 
or three-dimensional (1-D, 2-D or 3-D). 

 For cultivations, based on plant cell suspension and hairy root cultures only ver-
sions with 1-D oscillatory motion (BIOSTAT Cultibag RM, Wave Bioreactor, 
AppliFlex, WUB) have been used till date. The majority of engineering and biologi-
cal data is described for the BIOSTAT Cultibag RM and its precursor, the BioWave. 
Its bag (fi lling volume up to 300 L) is fi xed on the rocking tray that also regulates 
the temperature. In the BIOSTAT CultiBag RM, intensity of mixing and aeration 
can be controlled by the rocking rate, the rocking angle, the fi lling level of the bag 
(up to 50 % maximum) and the aeration rate [ 46 ]. Eibl et al. [ 38 ] and Werner et al. 
[ 19 ] summarized relevant engineering parameters for typical process conditions for 
animal and plant cell cultures in this bioreactor system. It was demonstrated that the 
fl uid fl ow in the bag with 1-D oscillatory motion can be characterized by a modifi ed 
Reynolds number. Furthermore, maximum oxygen mass transfer coeffi cients (k L a) 
of up to 10 h −1  ,  mixing times between 20 and 50 s, and specifi c power inputs (P/V) 
between 70 and 180 W m −3  were measured and calculated. These values are regarded 
as suffi cient for growing both animal and plant cells. Using Computational Fluid 
Dynamic (CFD) simulations Werner et al. [ 19 ] discovered more homogeneous 
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energy dissipation and more homogeneous shear stress pattern in the BIOSTAT 
CultiBag RM than in stirred reusable cell culture bioreactors using Rushton turbines 
and paddle impellers. They assume that this is the reason for increased biomass 
respectively cell counts and product titers that have been shown in different com-
parative growth and production studies with Newtonian culture broths. The possi-
bility of mass and gas transfer limitations was found for wave-mixed bags with 1-D 
oscillatory motion and fast growing tobacco Bright Yellow-2 (BY-2) suspension 
cells [ 38 ]. Cell growth (doubling times of 16 h) was accompanied by an increase in 
viscosity from 0.001 to 0.41 Pas during cultivation. Despite of doubling P/V by 
adjusting the maximum rocking rate (42 rpm) and the maximum rocking angle 
(10°) at maximum fi lling volume (2 L bag), no wave was generated. Indeed, the 
culture broth only moved slightly. Although wave-mixed bioreactors ensuring 
higher k L a values and power inputs (such as the CELL-tainer with its 2-D oscilla-
tory motion bag [ 67 ] or the XRS Bioreactor System with its 3-D oscillatory motion 
bag [ 68 ]), there are currently no reports of their use for cultivation of either plant 
suspension cells or hairy roots. 

 A further disposable wave-mixed bioreactor with a 1-D oscillatory motion which 
has successfully been used to grow plant cell suspensions and hairy roots is the 
AppliFlex [ 36 ,  43 ]. This type is available up to a fi lling volume of 25 L and has a 
3-D single-use bag. Furthermore, in contrast to the previously described BIOSTAT 
CultiBag RM which can only be operated with disposable sensors in the pillow-like 
(2-D) single-use bag, the AppliFlex can also be equipped with standard sensors. 
Studies revealed that it delivers comparable mass and gas transfer, growth and pro-
duction results to those observed in the BIOSTAT CultiBag RM. Like the BIOSTAT 
CultiBag RM, an AppliFlex photobioreactor version operating with light emitting 
diodes (LEDs, white, blue and red light) can be supplied on request for light cul-
tures (see also Sect.  2.4.2  and Fig.  2.3 ).

   The main difference between the WUB, the AppliFlex and the BIOSTAT 
CultiBag RM is that the WUB has no rocker unit and the fact, that it was only 
designed for plant cell applications. In the WUB, the wave is induced by periodic 
upward movement of the fl exible head and/or foot section of the horizontal table 
which displays the fi xation platform on which the bag (20–250 L fi lling volume) is 
located. The subsequent undertow movement results from the platform(s) lowering. 
According to Terrier et al. [ 44 ] the k L a values are similar to those observed in the 
BIOSTAT CultiBag RM at comparable scales. The angle of the platform, the per-
centage of the fi lling volume located on and moved by the platform, the aeration rate 
and the time taken for the platform to perform one oscillation had the most impact 
on the k L a value. 

 Like disposable wave-mixed bioreactors with 1-D oscillatory motion, where 
foaming and fl otation were found to be negligible in cultivations with plant and 
animal cells, the addition of an antifoam agent in disposable orbitally shaken sys-
tems is unnecessary.  

2 Disposable Bioreactors for Cultivation of Plant Cell Cultures



28

2.3.2     Disposable Orbitally Shaken Systems 

 Orbitally shaken erlenmeyers at mL-scale are widely used for inoculum productions 
and screening studies with plant and animal cell cultures. The results from engineer-
ing characterization of orbitally shaken erlenmeyers [ 69 – 74 ] provided the basis for 
increased acceptance of their use for process optimization. Determined mixing 
times, power consumptions, k L a values and energy dissipation rates indicated their 
suitability for growing animal and plant cell cultures without oxygen limitation and 
damages resulting from excessive shear stress. Furthermore, liquid distribution pro-
voked by orbital shaking is well-defi ned and predictable [ 75 ]. These fi ndings fi nally 
led to the scaling-up of orbital shaking technology for both animal and plant cells. 
The fi rst successful scaling-up from shake fl ask to a 36 L orbitally shaken bioreactor 
was reported by Liu and Hong [ 76 ] for insect cells in 2001. For plant cell suspension 
cultures the possibility of scaling-up orbital shaking technology was fi rst described 
5 years later. Raval et al. [ 77 ] demonstrated that 20 and 50 L orbitally shaken biore-
actors (rigid Nalgene vessels) could facilitate growth of BY-2 suspension cells. 
Encouraged by these results bag-based orbitally shaken bioreactor systems were 
developed. 

 A well-investigated disposable orbitally shaken bioreactor series is the OrbShake 
Bioreactor series which consists of a peripheral measurement and a control unit, and 
a support container made from stainless steel. There are commercial systems with 
50 L (SB50-X) and 200 L (SB200-X) fi lling volumes that operate with 3-D cylindri-
cal single-use bags in which single-use sensors are implemented. In the SB-50X 
(25 °C, 75–90 rpm, 0.12–0.3 vvm)  Corylus avellana  suspension cells were success-
fully propagated (data not shown). The feeding operation which ran for 22 days 
delivered a peak biomass concentration of 380 g fw L −1 . This means that the fresh 
weight of biomass increased more than fi vefold, corresponding well to the biomass 

a

b c

  Fig. 2.3    Wave-mixed BIOSTAT CultiBag RM 20/50 with bottom-mounted LEDs for growing 
phototrophic cultures. ( a ) Suspension culture in a 2 L wave-mixed bag ( b ) Rocker with  blue  
(455 nm),  red  (645 nm) and  white  (400–780 nm with a colour temperature of 3,000 K) LEDs ( c ) 
LED control unit       
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increase found for cultivations with the same cell culture and in stirred (disposable 
single-use and reusable) bioreactors. 

 Meanwhile a 2,500 L prototype of the OrbShake Bioreactor (SB-2000X) was 
characterized and delivered identical maximum k L a values as the SB-200X (per-
sonal communication, Tibor Anderlei, Kühner AG, October 2013). Anderlei et al. 
[ 78 ] reported k L a values of up to 25 h −1  for the SB200-X with 100 L fi lling volume, 
and mixing times between 25 and 70 s depending on the shaking frequency which 
ranged between 50 and 70 rpm. 

 Klöckner et al. [ 79 ] established a scale- and volume-independent k L a correlation 
that was successfully verifi ed for bioreactor volumes from 2 to 200 L for orbitally 
shaken bioreactors in general. This allows cultivation parameters (reactor diameter, 
shaking frequency, shaking diameter, fi lling volume, viscosity, k L a, gravitational 
acceleration) to be defi ned for different scales and ensures suffi cient oxygen supply 
in growth studies of BY-2 suspension cells. 

 Further an orbitally shaken bag-based system that is suitable for growing plant 
cell suspensions and hairy roots is based on the Infors’s Multitron Cell with shaker 
bag option which makes orbital shaking of 2-D culture bags (3 × 2 L bags or 2 × 10 L 
bags or 1 × 20 L bag) possible. Using the Infors’ Multitron Cell with shaker bag 
option, the maximum fi lling volume per shaker unit is limited to 10 L. While gener-
ating a homogeneous distribution of the cell culture broth, the mechanical stress is 
low and the maximum gas transfer is comparable to those found in wave-mixed 
bioreactors with 1-D oscillatory motion [ 51 ]. Filling levels from 20 to 100 % (this 
relates to the maximum fi lling volume of the bag of 50 %) resulted in mixing time 
intervals between 8 and 50 s for shaking frequencies between 30 and 120 rpm and 
shaking diameters of 25 and 50 mm respectively. If the shaking diameter rose, the 
gas-liquid transfer increased and the mixing time decreased. Measurements of the 
k L a (values exceeded 15 h −1 ) under typical process conditions confi rmed that the 
oxygen supply is suffi cient for unlimited plant cell culture growth. For tobacco 
BY-2,  Vitis vinifera  and  Helianthus annuus  suspension cells Werner et al. [ 51 ] and 
Greulich et al. [ 80 ] observed similar growth as seen in rocking (wave-mixed) bags. 
By realizing comparable fl uid fl ow conditions, peak biomass concentrations 
between 380 and 480 g fw L −1  were measured after 7 days. It is also remarkable that 
the maximum fi lling volume, medium shaking frequency and maximum shaking 
diameter resulted in unexpectedly high k L a values. For example, in case of a 2 L 
culture bag (CultiBag RM 2 L operated at 1 L fi lling volume, 70 rpm and 50 mm) a 
k L a of 68 h −1  was achieved, whereas a k L a of 40 h −1  was determined for the 20 L 
culture bag (CultiBag RM 20 L running with 10 L fi lling volume at 60 rpm and 
50 mm). Particularly in the 20 L bag, a range of operating parameters was identifi ed, 
in which demixing occurred. This phenomenon has already been described for 
orbitally shaken fl asks and is also known as out-of-phase operating condition [ 81 , 
 82 ]. According to Büchs et al. [ 83 ] out-of-phase operation occurs when frictional 
forces exceed centrifugal forces during orbital shaking. Knowledge of this critical 
range helps to avoid ineffi cient feeding and process scale-up strategies.  
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2.3.3     Disposable Oscillating System with Vibrating Disk(s) 

 Compared to wave-mixed and orbitally shaken systems, disposable oscillating 
bioreactors with one or more vibrating disk(s) are of minor importance for culti-
vations involving plant cell cultures. The Saltus Vibromix Bioreactor, in which 
the power input is regulated  via  disk’s amplitude and frequency, belongs to this 
disposable bioreactor family. Its core is the single-use bag (2 L up to 500 L fi ll-
ing volume), which is temperature controlled by a heating jacket incorporated 
into the stainless steel container. The bag contains a vertically oscillating hollow 
shaft on which one or more conically perforated disks are fi xed. This results in 
an axial fl ow movement of the medium in the bag which mixes and aerates the 
cells. The conical shaped disk holes reduce vortex formation; induce the upward 
and downward fl ow, and infl uence the mixing and oxygen supply in the bag [ 84 ]. 
Due to high power inputs achieved in the Saltus Vibromix Bioreactor (a maxi-
mum value of 1,887 W m −3  was reported by Werner and Nägeli [ 85 ]), use of this 
disposable bioreactor for shear sensitive cell cultures is not recommended. At 
maximum power input, aeration rates between 0.05 and 1 vvm and 2 L fi lling 
volume k L a values between 26 and 82 h −1  were reported, in contrast to k L a values 
between 11 and 55 h −1  for a 10 L fi lling volume. In order to make the Vibromix 
Bioreactors more suitable for plant cell cultivation (and more effi cient when 
operated with low power input), bags containing an additional sparger were 
developed. This design modifi cation contributed to an increase in the plant cell 
biomass produced in a bag with apple suspension cells at 100 L fi lling volume 
(personal communication, Herbert Reichert, Meissner Filtration Products Inc., 
June 2011).  

2.3.4     Disposable Stirred and Tumbling Systems 

 When carrying out a search for cultivations with disposable stirred bioreactors and 
plant cells only two references describing the cultivation in ThermoFisher’s S.U.B. 
could be found at the time of writing this chapter [ 36 ,  38 ]. This is surprising because 
reusable stirred bioreactors are frequently used in plant cell suspension-based pro-
ductions and they represent the largest plant cell bioreactors (with 75 m 3  in the 
paclitaxel production process). 

 The single-use bag of the S.U.B. (available from 50 L up to 2 m 3 ) is equipped 
with an angular stirrer (pitched blade stirrer that is off-center) and a sparger. The 
user can choose between an implemented micro- or ring sparger and standard- or 
single-use sensors. The 50 L reactor that was used in the studies of Raven et al. [ 36 ] 
and Eibl et al. [ 38 ] has been comprehensively characterized. CFD analysis revealed 
a downward pumping axial fl ow pattern of the stirrer and two different sized fl ow 
loops (Fig.  2.4 ) [ 86 ]. Assuming a steady fl uid fl ow pattern, specifi c power inputs 
(P/V) of up to 19 Wm −3  were predicted by CFD for a 50 L fi lling volume and a tip 
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speed of 3.1 m s −1 . The mixing times (between 9 and 155 s) and k L a values (ranging 
from 2 to 25 h −1 ) determined for typical cell culture conditions were comparable to 
reusable cell culture bioreactors at the same scale [ 87 ,  88 ]. Good correlation with 
the results which were experimentally determined or predicted by CFD was proven. 
Moreover, the results are in a similar range to those of other disposable stirred bag 
bioreactors such as the XDR, the Mobius CellReady and the BIOSTAT CultiBag 
STR (for more information about these bioreactors the reader is referred to [ 13 , 
 86 ]). However, in experiments with the 50 L S.U.B. antibody expressing biomass 
delivered approximately 20 % lower levels of the packed cell volume (pcv), and a 
high fl otation level of the grown BY-2 suspension cells was observed. This biomass 
fl otation resulting in cell and product loss was attributed to the microsparger which 
was implemented in the bags used in the investigations [ 36 ].

   Recent growth studies with  Corylus avellana  suspension cells have shown the 
effi ciency of the UniVessel SU Bioreactor for growing plant cell suspension  cultures 

  Fig. 2.4    CFD predicted fl ow pattern of the pitched blade impeller in the S.U.B. (25 L fi lling vol-
ume). The dimensionless velocity profi le on the x-y plane is exemplarily depicted when the biore-
actor is operated at 200 rpm, which corresponds to a tip speed of 1.23 ms −1 . In this case the P/V is 
60 Wm −3  and the mixing time is 10 s. The arrows show the fl ow pattern, whereas the color contours 
illustrate the dimensionless velocity between 0 and 1       
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at bench top scale for the fi rst time [ 35 ]. In growth experiments (batch mode) per-
formed in the UniVessel SU Bioreactor and the BIOSTAT Bplus (this is the reusable 
counterpart of the UniVessel SU) comparable morphology, doubling times (3 days), 
growth courses and peak biomass concentrations (530 g fw L −1 ) were observed. 
This was expected due to the comparability of the engineering data for both bench-
top bioreactor versions, as proven by Kaiser et al. [ 89 ]. 

 The UniVessel SU Bioreactor operated with a rigid single-use vessel (2 L fi lling 
volume) in which two-stage segment blade stirrers, an L-shaped macrosparger and 
a standard sensor were mounted. Previously realized CFD simulations confi rm the 
presence of an axial fl ow pattern with downward pumping discharges from the stir-
rers at clockwise rotation [ 90 ]. Mixing times are dependent on P/V and fi lling vol-
ume. When the BIOSTAT UniVessel SU runs at tip speeds between 0.15 and 1.8 m 
s −1  (50 up to 625 rpm), P/V is between 0.4 and 435 W m −3  ,  and the mixing times 
range from 3 to 100 s [ 13 ]. 

 A proof-of-concept-investigation of whether disposable tumbling systems can be 
applied to grow tobacco suspension cells has also been recently performed (see in 
detail in Sect.  2.4.2 ). It was carried out by using an Integrity Wand Mixer from 
ATMI (now a part of Pall Life Sciences) at bench top scale. The positive results can 
be taken as basis for further studies with corresponding bioreactor systems, such as 
the Nucleo Bioreactor and the Pad-drive Bioreactor. Both bioreactor systems differ 
only in the fact that their control units have a single-use cube-shaped bag with a 
paddle-shaped mixing which performs an elliptical rotating motion. The cultivation 
bag also includes a micro-sparger that is fi xed at the mixing device and ensuring k L a 
values up to 200 h −1  [ 91 ]. As shown by Farouk and Moncaubeig [ 92 ], mixing in 
these bioreactors follows both radial and axial fl ow patterns, while the bag walls 
prevent vortex formation.  

2.3.5     Disposable Bubble Columns 

 We have already mentioned that the Life Reactor (a bubble column bioreactor of 1 
or 5 L fi lling volume) was the fi rst disposable, scalable plant cell bioreactor cited in 
the literature. It had a conical shaped bag and was preferred for growing meriste-
matic clusters and somatic embryos from ornamental, vegetable and woody plant 
species (e.g., lilies, orchids, potatoes, bananas) for plant breeding purposes. Ziv’s 
results emphasized its superiority over reusable bubble columns [ 62 ]. Increased bio-
mass growth was demonstrated, when foaming was reduced. Reduced foaming was 
also reported for the plastic-lined bioreactor in which  Hyoscamus muticus  suspen-
sion cells were propagated in bags of up to 100 L fi lling volume [ 56 ]. 

 Scientists at Nestlé designed and characterized the Slug Bubble Bioreactor 
(SBB). At the bottom of the SBB (10–150 L fi lling volume) long bullet-shaped bub-
bles (slug bubbles) are intermittently generated by a solenoid valve. The slug bub-
bles are comparable to “Taylor bubbles” [ 93 ,  94 ] and rise to the top of the  cylindrical 
bag. Air quantity is controlled by adjusting the air inlet pressure and the valve open-
ing time and frequency in the SBB. Ducos et al. [ 45 ] hypothesized that mixing is 
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enhanced in the rear of every slug bubble. Maximum k L a values of 17 h −1  were mea-
sured. Increasing the valve opening time and/or the valve opening frequency resulted 
in an increase in an average gas fl ow rate and fi nally higher k L a values. Tobacco 
BY-2 cells grown in the SBB (10, 20, 500, 70 L fi lling volume) showed a similar 
growth behaviour to the WUB (10, 20, 30, 100 L fi lling volume, see Sect.  2.3.1 ) and 
a reusable stirred cell culture bioreactor (10 L fi lling volume). Doubling times 
between 38.4 and 60 h and peak biomass concentrations between 12.3 and 17.8 g dry 
weight L −1  were achieved. In contrast, biomass growth and isofl avone production 
were again more effi cient in the SBB (20, 50 L fi lling volume) and the WUB (20 L 
fi lling volume) in comparison to the reusable stirred cell culture bioreactors. The 
reduced growth and isofl avone production in the reusable stirred bioreactor are 
ascribed to the higher shear stress that was assumed for this bioreactor type [ 45 ]. 

 Kwon et al. [ 58 ] demonstrated the applicability of a disposable bag-based bubble 
column (3 L fi lling volume) for the production of recombinant cytotoxic T-lymphocyte 
antigen 4-immunoglobulin (hCTLA4Ig) using rice suspension cells. Oxygen transfer 
effi ciency, mixing times, cell growth and protein expression were similar to a dispos-
able wave-mixed bioreactor (3 L fi lling volume) and cell growth and hCTLA4 Ig 
productivity were slightly improved compared to a reusable stirred bioreactor (3 L 
fi lling volume). At this point, it should be mentioned that the pneumatically driven 
bench top bioreactor is referred to as an airlift bioreactor. As there is no visible 
mechanical separation created by a draught tube or baffl es (dividing the fl ow in a riser 
and downcomer and being typical for airlift bioreactors) in the culture bag, we classi-
fi ed this disposable bioreactor as bubble column (and not as an airlift bioreactor type). 

 Interestingly, 400 L bag-based bubble columns are currently the largest dispos-
able plant cell bioreactors in operation. They are based on the Life Reactor and are 
used in recombinant protein production (taliglucerase alpha, alpha galactosidase, 
alpha-1-anti-trypsin, anti-tumour necrosis factor fusion protein) by the company 
Protalix to grow genetically modifi ed carrot cells. Details of this bioreactor design 
can be found in the respective patent [ 17 ].  

2.3.6     Disposable Mist Bioreactor Systems 

 There are two disposable mist bioreactor designs being suitable for propagating 
plant organ cultures like embryogenic or hairy root cultures. These are the bench top 
systems developed by Pamela Weathers’ group (1 up to 20 L root bed) and ROOTec 
company’s 60 L mist bioreactor (Fig.  2.5 ). Both systems are based on a disposable 
bag in which a mesh matrix allows immobilization of cells and supports biomass 
growth [ 14 ,  53 – 55 ,  95 ]. The composition and preparation of Weathers’ disposable 
mist bioreactor (versions with 1 and 4 L root bed) are comprehensively described by 
Liu et al. [ 54 ]. An ultrasonic nuzzle is applied in Weathers’ disposable mist 
 bioreactor for aerosol distribution in the headspace of the bag, whereas ROOTec’s 
mist bioreactor uses a pneumatic distribution system (personal communication Jost 
Harr, ROOTec, February 2014). Mist reactors run either in batch or continuous 
mode. In batch mode (in which coalesced mist culture medium is collected) the 
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medium can be recycled back into the bag after exciting it. In case of continuous 
cultivation, fresh medium is continuously fed into the bag and the mist culture 
medium is discarded after it has passed once over the organ cultures.

   More reports have been published about cultivations in disposable Weathers’ 
mist bioreactors than any other type of disposable mist bioreactor. In addition to 
embryogenic cultures from  Daucus carota  [ 55 ] mouse interleukin12 expressing 
tobacco hairy roots [ 54 ],  Artemisia annua  and  Arachis hypogaea  [ 95 ] hairy roots 
have also been successfully propagated.   

2.4     Applications with Disposable Bioreactors 

2.4.1     Tobacco Cell-Based Cultivations with Disposable 
Bioreactors 

 In this section, we present selected results of geraniol production using a transgenic 
tobacco cell suspension and a hairy root culture. Geraniol is an acyclic monoterpene 
alcohol that has a great potential for agriculture applications [ 96 ] as well as the 

a b

  Fig. 2.5    ROOTec’s disposable mist bioreactor. The mesh matrix supports root growth in long- 
term cultivation processes exceeding 3 or more months. This bioreactor was used in order to pro-
duce biomass from hairy roots of different plant species. Among others, hairy roots from  Atropa 
belladonna  ( a ) , Scutellaria baicalensis  ( b ),  Carlina acaulis ,  Cichorium intybus ,  Lepidium meyenii , 
 Linaria alpina ,  Ocimum basilicum  and  Panax ginseng  have been grown. Photo and information 
were kindly provided by ROOTec (Switzerland)       
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pharmaceutical and cosmetic industry [ 97 – 99 ]. Disposable mechanically driven 
bioreactors (wave-mixed BIOSTAT CultiBag RM, CultiBagRM orbitally shaken in 
the Multitron Cell and WandMixer with tumbling stirrer) were used for the studies 
at bench top scale (max. 25 L fi lling volume). The results obtained in batch and fed 
batch (feeding or feeding with medium exchange) experiments represent the basis 
for the scale-up approach targeting production of 1 g geraniol in disposable bioreac-
tors that is described in Sect.  2.4.4 . 

 Prior to the benchtop scale cultivation, investigations of growth and production 
behavior were carried out in non-instrumented disposable bioreactors (orbitally 
shaken erlenmeyers and TubeSpin Bioreactors) at mL-scale. The results indicated 
growth-coupled product accumulation for both transgenic cultures (the tobacco cell 
suspension culture of  Nicotiana tabacum  cv. Samsun NN and the hairy root culture 
of  N. tabacum  cv. Petit Havana SR1).  

2.4.2         Cultivations with Geraniol Producing Tobacco 
Suspension Cells 

 Cell suspension cultures derived from transgenic tobacco ( N. tabacum  cv. Samsun 
NN) constitutively overexpressing  Valeriana offi cinalis  geraniol synthase (VoGES) 
[ 100 ] were maintained in Gamborg’s B5 medium. The culture medium was supple-
mented with 0.1 mg L −1  kinetin, 1 mg L −1  naphthalene acetic acid and 20 g L −1  
sucrose. The cells were subcultured once in a week. Growth conditions in the erlen-
meyers were like the following: temperature 26 °C, illumination 16 h light, intensity 
~95 μmols −1  m −2 , and 8 h darkness. The fl asks were agitated on a shaker (25 mm 
shaking diameter) operating at 140 rpm. 

 Geraniol production was monitored in the wave-mixed BIOSTAT CultiBag RM 
with 2 L (1 L fi lling volume) or 20 L (10 L fi lling volume) culture bags and the 20 L 
Integrity Wand Mixer operated with 8.5 L fi lling volume. Production processes 
lasted between 16 and 23 days and were executed in batch mode with a light inten-
sity of either 95 or 146 μmol s −1  m −2 . Illumination was ensured by internal LEDs in 
case of the BIOSTAT Culti Bag RM (Fig.  2.3 ), whereas illumination for the Integrity 
Wand Mixer was external (fl uorescent tubes). Wave-mixed culture bags were inocu-
lated with 10 % pcv (corresponding to 19.2 g fw L −1 ) and operated at a rocking angle 
of 6° and an aeration rate of 0.1 vvm. The BIOSTAT Culti Bag RM’s rocker rate was 
increased from 20 to 42 rpm during all cultivations. The Integrity Wand Mixer was 
operated at 40 rpm with an aeration rate of 0.3 vvm and the initial biomass concen-
tration was 59 g fw L −1 . All cultivation conditions are summarized in Table  2.3 .

   Figure  2.6  shows the plots of biomass concentrations (Fig.  2.6a ) and geraniol 
contents (Fig.  2.6b ) achieved in wave-mixed culture bags. As expected, the conduc-
tivity (Fig.  2.6c ) decreased during cell cultivations, ranging between 3.8 and 0.20 m 
Scm −1 . The pH-values (Fig.  2.6d ) were in a typical range for plant cell cultivations 
(see Sect.  2.2.1 ). Assuming an identical initial biomass concentration for all experi-
ments in 2 L wave-mixed bags, growth was similar and independent of the light 
intensity. Within 16 days we were able to generate peak biomass concentrations of 
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   Table 2.3    Cultivation conditions for geraniol producing tobacco suspension cells   

 BIOSTAT CultiBag 
RM with CultiBag 
RM 2 L 

 BIOSTAT 
CultiBag RM with 
CultiBag RM 
20 L 

 ATMI Integrity 
WandMixer 20 L 

 Process mode  Batch  Batch  Batch  Batch 
 Filling volume  [L]  1  1  10     8.5 
 Cultivation time  [days]  16  16  18  16 
 Inoculation 
density 

 [%] pcv  10  10  10  5.9 

 Aeration rate  [vvm]  0.1  0.1  0.1  0.3 
 Rocking rate/
stirrer speed 

 [rpm]  20–38  20–42  22–37  40 

 Rocking angle  [°]  6  6  66  – 
 Illumination 
intensity 

 [μmol 
s −1  m −2 ] 

 95  146  95  95 

 Light regime  [h]  16  16  16  16 

a

c d

b

  Fig. 2.6    Cultivation of geraniol producing suspension cells in the BIOSTAT Culti Bag RM and 
ATMI Integrity Wand Mixer under phototrophic conditions. ( a ) Biomass accumulation, ( b ) gera-
niol content, ( c ) conductivity, ( d ) pH-value.  Circle : cultivation in a 20 L Culti Bag RM at 95 μmol 
s −1  m −2 .  Square : cultivation in a 2 L Culti Bag RM at 146 μmol s −1  m −2 .  Triangle : cultivation in a 
2 L Culti Bag RM at 95 μmol s −1  m −2 .  Diamond : cultivation in a 20 L ATMI Integrity Wand Mixer 
at 95 μmol s −1  m −2        
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160 g fw L −1  of culture medium. Even a peak biomass concentration of 274 g fw L −1  
was reached in the 20 L culture bag (containing 10 L culture broth) on the day 16. 
The geraniol containing biomass propagated in the wave-mixed 20 L bag was 21 % 
higher than that produced in the 20 L Wand Mixer (peak biomass concentration of 
126.3 g fw L −1 ). Geraniol accumulation in the produced biomass was determined 
according to the procedure described by Vasilev et al. [ 100 ] and in the medium it 
was determined in 5 mL medium aliquots with the addition of 0.5 mL buffer. 
Concentrations ranged between 12 to 26 μg g −1  fw in the wave-mixed bags and 
5.7 μg g −1  fw in the Integrity Wand Mixer. Interestingly, up to 201.6 μg geraniol L −1  
was detected in samples taken from the Integrity Wand Mixer medium. We deter-
mined that the 20 L Wand Mixer delivers 1.6 mg intracellular and 6.3 mg extracel-
lular geraniol in comparison to 33 mg intracellular geraniol resulting from the 
biomass that can be produced in a 20 L wave-mixed bag. Consequently, it is more 
effi cient to use a wave-mixed bioreactor for suspension cell-based terpenoid pro-
duction and scaling-up processes.

2.4.3         Cultivations with Geraniol Producing Hairy Roots 

 Geraniol producing hairy root cultures have been established and maintained as 
described by Ritala et al. [ 41 ]. The roots were cultivated in Gamborg’s B5 medium 
supplemented with 30 g L −1  sucrose. The inoculum for the experiments in the wave- 
mixed and orbitally shaken bags was generated either in petridishes or in orbitally 
shaken Tube Spin systems (Table  2.4 ). The Tube Spins are rigid centrifuge-like 
tubes which guarantee sterile gas exchange  via  the 0.22 μm membrane implemented 
in the cap. The Tube Spin 50 (10 mL fi lling volume) was inoculated with 10 g (fw) 
L −1  of hairy root biomass and was maintained at 26 °C, 240 rpm with a 25 mm shak-
ing diameter for 10 days. Growth conditions were controlled in an INFORS HT 
Multitron shaker incubator. The Tube Spin 600 was operated with 60 mL fi lling 
volume at 120 rpm with the same INFORS HT control unit as the Tube Spin 50s.

   All disposable bioreactors were inoculated with 5 g fw L −1  of hairy roots. 
However, the inoculation strategy was different (Table  2.4 ). The customized culture 
bags with screw caps were inoculated with whole roots, whereas the standard bags 
without screw caps were inoculated with root tips. The roots for these standard bags 
were cut and transferred into a 2 L medium storage bag prior to inoculation of the 
bioreactor culture bag and a so called “bag-to-bag” strategy was developed. 

 Experiments which were carried out under comparable process conditions in 2 
and 20 L orbitally shaken (50 mm shaking diameter, 30 rpm, 0.2 vvm) and wave- 
mixed bioreactors (6°, 8 rpm, 0.2 vvm) revealed similar results for geraniol produc-
tion, which were rather low (<10–11.8 μgg −1  fw). The biomass growth was similar 
in all bioreactor types, but was different in studied process modes applied in the 
cultivation (Fig.  2.7 ). The highest biomass growth was observed in the wave-mixed 
50 L bag (Fig.  2.7  and Table  2.4 ). This approach culminated in a fi nal biomass of 
1.2 kg fresh weight, in which 7.9 μg intracellular geraniol g −1  fw was detected. 
Thus, the fresh root mass (in the 50 L wave-mixed bag) resulted in a total of 9.5 mg 
of intracellular geraniol in 57 days.
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     Table 2.4    Cultivation of geraniol producing hairy roots in various disposable bioreactors   

 Cultivation system/
bioreactor 

 Inoculum 
source 

 Duration 
[d] 

 Process 
mode 

 Filling 
volume 
[L] 

 Growth 
index g  

 Geraniol 
concentration 
[μg g −1  fw h ] 

 2 L bag, BIOSTAT 
CultiBag RM 

 Petri dish  21  Batch  0.2 f   27.8  8.8 
 29.8  8.7 

 28  Fed 
batch b  

 0.2–
0.3 f  

 33.9  13.3 
 25.9  12.9 

 29  Fed 
batch c  

 41.5  10.4 

 10 L bag, BIOSTAT 
CultiBag RM 

 28  Fed 
batch b  

 0.3–
0.75 f  

 92.6  8.8 

 20 L bag, BIOSTAT 
CultiBag RM 

 29  Fed 
batch c  

 1–1.6 f   17.5  6.3 
 Petri dish a   28  37.1  11.8 

 50 L bag, BIOSTAT 
CultiBag RM 

 TubeSpin 
600 a  

 57  Fed 
batch d  

 2.5–
4.5 f  

 95.2  7.9 

 2 L bag, multitron 
cell 

 Petri dish  21  Batch  0.2 f   26.6  9.2 
 24.2  9.2 

 20 L bag, multitron 
cell 

 29  Fed 
batch c  

 1–1.6 f   64.9  6.3 
 TubeSpin 
50 a  

 57  0.5–
2.6 f  

 123.5  9.77 

 SBX-50  TubeSpin 
600 a  

 53  Fed 
batch e  

 5–10  20.5  9.63 

   a Single tips of hairy roots were inocultaed to the culture bag with a “bag-to-bag” strategy (see text) 
  b Two feeds 
  c Three feeds 
  d Two feeds and medium exchange on day 31, 38, 46 and 52 
  e Four feeds 
  f TI-like conditions 
  g Growth index represents the ratio of maximum biomass fresh weight to initial biomass fresh 
weight 
  h fw fresh weight  

  Fig. 2.7    Final biomass and geraniol contents in different disposable bioreactor systems.  White 
bar : fresh weight;  Shaded bar : geraniol content.   1   batch cultivation,   2   fed batch cultivation,   3   bag-
to- bag and “single-tip” inoculation       
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   In a SBX-50 production run (30–50 rpm, 0.4 vvm) 513.4 g fresh biomass deliv-
ering 9.6 μg geraniol g −1  fw was harvested after 53 days. This corresponds to a total 
amount of 4.9 mg of geraniol in a 50 L bag being roughly half of the amount pro-
duced in wave-mixed system within approximately same time period.  

2.4.4      Generic Approach for Geraniol Production 
Process Up-Scaling 

 After comparing the results of the suspension cell- and hairy root-based geraniol 
production processes, we decided to work with the phototrophic suspension cell 
culture in order to develop a scale-up approach aimed at the generic production of 
1 g geraniol in a wave-mixed bioreactor. According to our estimates this takes 
41 days, using the three-step scale-up procedure depicted in Fig.  2.8 . This includes 
(1) inoculum production in shake fl asks, (2) inoculum-strain production in the 
BIOSTAT CultiBag RM 20/50 LED and (3) the geraniol production in the BIOSTAT 
CultiBag RM 600 LED.

   The fi rst step is based on the production of cells from the shake fl ask mainte-
nance culture. It represents the generation of the inoculum for the initial production 
bioreactor, which is referred to as inoculum strain. Cells from the maintenance cul-
ture are used to inoculate fi ve shake fl asks (1,000 mL fi lling volume) with 400 mL 
culture volume in batch mode. After 1 week incubation (26 °C, 140 rpm, 25 mm 
shaking diameter, day 16 h – night 8 h rhythm, 95 μmol s −1  m −2 ) suffi cient cell mate-
rial (pcv of 50 %) with high viability (>90 %) is available to start the inoculum 
strain production. 

 The second step requires the BIOSTAT CultiBag RM 20/50 equipped with a 
LED illumination platform. Pooled cells (biomass pcv of 10 %) from step (1) serve 
as inoculum for the 20 L culture bag running with 10 L fi lling volume at 26 °C, 
0.2 vvm at 16 h light (95 μmol s −1  m −2 ) and 8 h dark in batch mode. Driving the 
disposable bioreactor at a rocking angle of 6° and a rocking rate between 20 and 

  Fig. 2.8    Scheme of the generic approach for the manufacture of 1 g geraniol with suspension cells 
in wave-mixed bioreactors       
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38 rpm resulted in a biomass pcv of 60 % after 9 days. This is suffi cient to inoculate 
the production bioreactor that should be operated in fed batch mode (two feeding 
steps). 

 The BIOSTAT CultiBag RM 600 equipped with LEDs was chosen for the gera-
niol production step (3) lasting for 25 days. The cell medium (10 L) from the 20 L 
culture bag has to be transferred into the 600 L culture bag and diluted with 50 L 
culture medium to be able to reach the initial biomass pcv of 10 %. After 5 days 
operation (rocking angle 6°, 14–20 rpm, 0.3 vvm) biomass pcv reaches 30 %, fol-
lowed by a fi rst feed with 120 L culture medium. By increasing the fi lling volume 
of the bag up to 180 L, biomass pcv drops to 10 %. Subsequently, the cultivation is 
continued for another 5 days until a biomass pcv of 30 % is ensured. Afterwards, 
second feeding is performed by adding 150 L fresh culture medium. This action 
involves a slight overfi lling of the culture bag of about 10 % (as already mentioned, 
the maximum fi lling volume of wave-mixed bags is normally defi ned as 50 % of the 
total bag volume by the manufacturer). In addition, pcv drops to 16 %. After this 
fi nal manipulation, cultivation runs 15 days until a biomass pcv of 60 % (corre-
sponding to a fi nal biomass concentration of 270 g fw L −1 ) is achieved. In more 
specifi c terms, the 600 L culture bag provides a total amount of fresh biomass of 
89.1 kg delivering 1.07 g geraniol (if we assume a similar geraniol concentration as 
detected in the experiments with 20 L culture bags).   

2.5     Summary and Future Prospects 

 Disposable bioreactors are suitable for both cultivation of plant cell suspension and 
hairy root cultures. For the development and production of high-value products such 
as biopharmaceuticals e.g. therapeutic antibodies, disposable single-use versions 
are preferred, whereas disposable multi-use systems have advantages for low- and 
mid-value products due to the costs of the individual bags. Taking into account the 
physiological characteristics, growth, biosynthetic capacity of production cells and 
the required scale of the bioreactor, the user can choose a disposable bioreactor type 
that is mechanically, pneumatically or hydraulically driven. Today, the highest num-
bers of disposable bioreactors are available for suspension cells with a low to 
medium cell growth in Newtonian culture broths. Users have access to commer-
cially available disposable bioreactors with up to 2 m 3  fi lling volume. The 400 L 
bag-based bubble columns from Protalix represent the largest disposable plant cell 
bioreactors available at the time of writing this article. Disposable bioreactors 
instrumented with standard sensors are recommended in order to monitor the pro-
cess in case light is required for cultivation. 

 Mass transfer limitations may occur if the production cell line grows rapidly and 
there is a high increase of culture broth viscosity. Due to the possible limitations of 
power input in wave-mixed bioreactors with 1-D oscillatory motion, those with 2-D 
or 3-D oscillatory motion should be chosen in such cases. The use of disposable 
bubble columns and stirred bioreactors should also be investigated. However, 
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 aeration with micro-spargers, which can result in strong fl otation (and thus loss of 
cells and product) should be avoided. 

 Indeed, the most diffi cult types of cultivation to perform involve organ cultures, 
in particular hairy roots, whose root integrity must be maintained, since homoge-
neous root growth without mass transfer limitations must be guaranteed. In addition 
to wave-mixed bioreactors with 1-D oscillatory motion (that operate in a TI-like 
mode) disposable mist bioreactors are most suitable for hairy roots. 

 Promising results from cultivations with plant cell suspensions and hairy root 
cultures, and the growing interest in new plant cell-based products such as vaccines 
and bioactive substances for cosmetics will contribute to the increased application 
of disposable bioreactors in the future. It is undoubted that disposable bioreactors 
will allow more rapid and cheaper development and manufacture of products. If 
low- and mid-value products are the focus, there is the need for low-cost culture 
bags. The need for expensive, GMP approved culture bags that are currently used by 
the majority is questionable for these products.     
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    Abstract     Bioactive compounds are the compounds having pharmacological or 
toxicological effects on humans and animals. At present, the bioactive compounds 
are categorized into two groups, secondary metabolites (originating from natural 
sources like plants, mammals, fungi, bacteria etc.) and therapeutic recombinant 
molecules (which are produced by using recombinant DNA technology in bacteria, 
mammals, plants etc.). Of the compounds produced from various sources, second-
ary metabolites produced from plants command highest market demand. Plants are 
also proved to be an ideal host system for the production of recombinant therapeutic 
molecules. Therefore, there has been a long pursuit for development of a technology 
which can provide high yielding plant based bioactive production system. An amal-
gam of plant cell culture and bioreactor technology was crucial in this direction. The 
plant bioreactor technology, so developed, has been put to the test many times for 
commercial scale production of plant bioactive molecules. There have been 
instances of success, but in general growth of plant bioreactor industry has been 
very slow. This chapter highlights various aspects of slow but successful growth of 
plant based bioactive production from culture vessel to bioreactor. We have evalu-
ated the key drivers and accelerators which have made the journey of plant bioreac-
tor industry successful. Speed breakers of this journey have also been discussed. 
Thorough and rigorous analysis of these parameters may help the industry/academia 
to speed up the growth of plant bioreactor industry for the production of 
bioactives.  
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3.1         Plant Bioreactor for Bioactives: Achievements vs 
Expectations 

 Bioactive compounds are the compounds having pharmacological or toxicological 
effects on humans and animals. Historic representatives of bioactives are secondary 
metabolites obtained from various natural sources like bacteria, fungi, mammals, 
plant etc. With the advent of rDNA technology therapeutic recombinant molecules 
are also included in this category. Amongst the various natural sources, bioactive 
molecules from plants command highest consumer demand. However, the commer-
cial productivity of these molecules is infl uenced by low yield from natural sources 
(bioactive molecules are usually less than 1 % of the plant dry weight) and high cost 
of chemical synthesis. Therefore, plant cell culture technology was looked upon as 
an alternative production system for these high valued molecules. Subsequently, an 
amalgamation of plant cell culture and bioreactor technology has resulted in devel-
opment of successful plant bioreactor technology for commercial scale production 
of plant bioactive molecules. Shikonin was the fi rst bioactive to be produced at com-
mercial level, Mitsui Petrochemical Industry Co. Ltd. (Japan) achieved this feat 
from plant cells of  Lithospermum erythrorhizon  in 750 L bioreactor in 1984. After 
a dry spell of about 20 years, another success was reported in the year 2002 for the 
production of Taxol by Bristol-Myers Squibb and Phyton Biotech, Inc. Till date, it 
is the largest commercial application of plant cell culture, utilizing the Chinese yew 
( Taxus chinensis ) cultivated in 75,000 L bioreactors [ 1 ]. 

 Realizing the potential of plant as an apt host system for recombinant therapeutic 
protein, the plant bioreactor industry took a leap in this area as well. Year 2012 was 
a hallmark year for plant bioreactor industry for recombinant protein production. 
The FDA (USA) gave its fi rst ever clearance to a plant-made pharmaceutical prod-
uct, Elelyso™ for treating Gaucher’s disease [ 2 ]. A list of plant based bioactives 
produced commercially at bioreactor level and their manufacturers is given in 
Table  3.1 . These examples clearly indicate that plant based bioactive production can 
be viably upscaled from culture vessels to bioreactors to achieve market scale pro-
ductivities. However, the timelines of success do hint a fact that growth of plant 
bioreactor industry has been slow (Fig.  3.1 ). This chapter aims at discussion of vari-
ous aspects of slow but successful growth of plant based bioactive production from 
culture vessel to bioreactor and also makes plant scientists to ponder over exploiting 
the potential of plant cell with measures to take care about its limitations (Fig.  3.2 ).

3.2          Key Drivers for Success in Plant Bioreactor Technology 

 Applied facet of plant tissue culture technique has provided a platform for mass pro-
duction of plant derived bioactives using bioreactor technologies. Culture vessel 
phase of plant tissue culture technique helps in providing proof of concept which can 
further be translated into mass production strategies. Mass production in plant 
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   Table 3.1    Plant based bioactives produced commercially at bioreactor level [ 10 ,  38 ]   

 Plant system  Bioactive  Manufacturer 

  Heterologous proteins  
  Daucus carota   Elelyso ™   Protalix (Israel) 
  Oryza sativa   Cell culture products 

(rh-lactoferrin, rh-albumin), 
(rh-lyzozyme, rh-transferrin) 

 Invitria (USA) 

  Secondary metabolites  
  Catharanthus roseus   Arbtin  Mitsui Chemicals, Inc. (Japan) 
  Coptis japonica   Berberines  Mitsui Chemicals, Inc. (Japan) 
  Echinacea purpurea 
Echinacea angustifolia  

 Echinacea polysaccharides  Diversa (Germany) 

  Panax ginseng   Ginseng  Nitto Denko Corporation (Japan) 
  Taxus spp   Paclitaxel  Phyton Biotech, Inc. (USA/

Germany) Genexol® – Samyang 
Genex (Korea) 

  Podophyllum   Podophyllotoxin  Nippon oil (Japan) 
  Coleus blumei   Rosmarinic acid  A. Nattermann & Cie.GmbH 

(Germany) 
  Duboisia spp   Scopolamine  Sumitomo Chemical Co., Ltd. 

(Japan) 
  Lithospermum 
erythrorhizon  

 Shikonin  Mitsui Chemicals, Inc.(Japan) 

  Fig. 3.1    Industrial bioreactor based bioactive production and market launch timeline. First mar-
keted secondary metabolite ( SM ) was Shikonin by Mitsui Petrochemical Industry Co. Ltd in 1984 
and second was Paclitaxel by Bristol-Myers Squibb in 2002. The gap was about 20 years. Following 
this, many secondary metabolites were launched in market using bioreactor technology. The only 
recombinant protein ( RP ) produced by bioreactor technology is human glucocerebrosidase (human 
prGCD) by Protalix BioTherapeutics which was launched recently in 2012       
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bioreactors provides stable yields in less space and controlled conditions. Following 
systems are recognized as key drivers for the success of plant bioreactor technology. 

3.2.1     Callus and Cell Suspension Culture 

 Cell suspension culture provides higher biomass, fast growth and homogeneity in 
cells. Various secondary metabolites such as taxol, catharanthine have been pro-
duced using the cell suspension culture and callus culture at laboratory scale [ 3 ]. 
BY-2 and NT-1 cell lines of Tobacco are well characterized to support the produc-
tion of recombinant bioactive molecules [ 4 ]. Many proteins including human anti-
rabies monoclonal antibody and erythropoietin have been successfully produced 
using these cell lines [ 5 ]. Further, these cell lines have potentiality to secrete 0.6–
80 KD protein molecules in the medium which helps in the reduction of down-
stream processing cost [ 6 ]. Other plant cells such as rice, tomato and carrot have 
also been used for this purpose [ 7 – 9 ]. 

 Suspension cultures have also proven their potential for their immediate applica-
tion in bioreactors for industrial scale production. Elelyso (Taliglucerase alfa), a 
May 2012 USFDA approved recombinant drug for the treatment of Gaucher’s 
 disease and high paclitaxel producing  Taxus baccata  cells are some other examples 
for commercial scale production using cell suspension cultures in bioreactors [ 2 , 
 10 ]. Suspension cultures of  Glycine max  and  Nicotiana tabacum  at capacity of 
10–100 L, suspension culture of  Hyoscymus muticus  for the production of 
 hyoscyamine in 100 L capacity bioreactor, production of anthraquinones form the 
cultures of  Frangula alnus,  production of azadirachtin from  Azadirachta indica  are 
some of the culture in the pipeline of commercialization [ 11 – 13 ]. 

 In our laboratory, we have seen the potential of callus culture for the production 
of plant bioactive molecule vasicine. We found 0.011 % w/w vasicine concentration 
in leaf callus of  Adhatoda vasica  and 0.13 % w/w concentration of total sennosides 
in callus mass of  Cassia senna  [ 14 ].  

3.2.2     Hairy Root Culture 

 Hairy root cultures being differentiated cultures are successful system in the 
 production of bioactive molecules using bioreactors. Various secondary metabolites 
such as berberine, resveratrol and taxol as well as recombinant proteins such as 
murine lgG1 monoclonal antibody are successfully produced in this system [ 5 ,  15 –
 17 ]. Hairy root cultures are genetically stable for long time and provide  consistent 
expression of proteins in a relatively short time with higher biomass [ 18 ]. Hairy root 
culture of  Panax ginseng  is the present successful example for the  commercialization 
of this technique for biomass production [ 3 ]. Reports have  demonstrated the success 
of Atropin and Ginseng production through hairy roots which is more than the fi eld 
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grown plants. ROOTec, a German based company  produces camptothecin and 
podophyllotoxin from the hairy root cultures [ 19 ].  

3.2.3     Bioreactor Design 

 Novel design concept has played a pivotal role in success stories of plant bioreac-
tors. Different culture types require different optimized design considerations. 
Although many of the bioactives produced successfully in the conventional micro-
bial bioreactors such as stirred tank reactor, bubble column, airlift etc. but the differ-
ent prerequisites of plants such as higher sensitivity to shear stress due to a rigid cell 
wall, long generation time etc. raise the need of some modifi cations. Bioreactors 
with good mixing and lower shear stress are preferable for cell cultures [ 12 ,  20 ]. 
However, the most recent development in this fi eld is the use of disposable bioreac-
tors containing growth chamber made up of FDA approved biocompatible plastics 
[ 12 ]. These bioreactors use pre-sterilized bags which reduce the possibility of con-
tamination and hence unnecessary efforts and costs required to maintain the produc-
tion safety are negligible. US FDA approved Elelyso (Taliglucerase alfa) was 
produced in 400 L capacity disposable bioreactors by Protalix [ 10 ]. High paclitaxel 
production using  Taxus baccata  cells is another successful example of Big wave™ 
disposable bioreactor. Nestle R&D centre in France developed two disposable bio-
reactors of capacity 10–100 L (the wave and undertow bioreactors and slug bubble 
bioreactors) for culturing cell suspension of  Glycine max  and  Nicotiana tabacum . 
Ebb and fl ow bioreactor is used to produce Hyoscyamine from the cell suspension 
cultures of  Hyoscymus muticus  of 100 L capacity [ 12 ,  13 ]. 

 The bioreactors used for hairy root cultures are of three types: liquid phase, gas 
phase and hybrid [ 10 ]. Gas phase nutrient mist bioreactors and temporary  immersion 
systems save the roots from hyperhydricity [ 21 ]. Introduction of meshes, cages and 
polyurathene foam for immobilization of roots give opportunity to culture roots in 
submerged conventional bioreactors [ 12 ]. Bubble column and airlift reactors are 
more successful conventional reactors than stirred tank at commercial level for roots 
due to their simplicity. However, hyperhydricity is one of the major concerns, so mist 
bioreactors or temporary immersion systems are preferred. The hairy root based com-
pany ROOTec developed their own mist bioreactors for the production of many sec-
ondary metabolites from the hairy root cultures of different plant species [ 19 ] (  http://
www.rootec.com/en/products/all-products)    . Many high capacity disposable reactors 
are also available commercially for the production from hairy roots [ 12 ].  

3.2.4     Process Design 

 Operational considerations are also important factors for success of bioreactors based 
on cell cultures and hairy root cultures. Designing of bioreactor systems for suspension 
cultures is directed towards the reduction shear stress. Proper oxygen supply and 
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gaseous exchange are a very critical factor in case of cell suspension cultures. More 
gaseous fl ow than required can cause evaporation of some essential components. 
Improper aeration gives rise to foaming problem in cell culture during scale up. 
Temperature should be such which should not affect the bioprocess activities in the 
culture with the maintenance of the metabolite production. The optimum temperature 
should be 20–23 °C but can vary with the species as well as with the type of product 
[ 20 ,  22 ]. Many cell suspension cultures have tendency to form aggregates with differ-
ent morphology. Deviation from the desired type of aggregation may affect the culture 
growth and cell-cell interaction which is necessary to maintain the productivity. 
Viscosity of culture medium changes due to formation of aggregates and high biomass. 
Accumulation of other metabolites can also change the rheology of the medium and 
hence growth. Consideration of shear stress is also necessary for the hairy roots as it can 
activate the wound response in hairy root cultures resulting in callus formation, thus 
causing reduction in productivity [ 20 ]. Roots can form a network due to which uniform 
supply of the medium may be obstructed. Mineral elements are the very important fac-
tors for the growth of roots and to increase biomass. Immersion time is a critical factor 
for root cultures and over lodging can cause hyperhydricity. Inoculum size also affects 
the  productivity. More tissue mass can cause problems during scaling up.   

3.3     Accelerators for the Plant Bioreactor Technology 

 Use of in vitro culture system coupled with genetic engineering has proved as an 
accelerator in the bioreactor technology. Prospects and skills of production of non- 
botanical products like expression of human genes in the plant system, transfer of 
non-botanical or trans-botanical metabolic pathway specifi c gene in the culture sys-
tem have proved to be potential accelerators of the technology. Some of the examples 
like overexpression of genes encoding Limonene synthase in peppermint, overex-
pression of Chalcone isomerase resulting in increased fl avonoids upto 78 % in tomato 
peel ( Lycopersicum esculentum ) [ 23 ], expression of a set of genes from marine 
sources encoding the fatty acid chain elongation and desaturation enzymes required 
for the synthesis of LC-PUFA from their C18 PUFA precursors in  Arabidopsis thali-
ana  seed, have helped the technology to be commercially more viable [ 24 ].  

3.4     Speed Breakers in Plant Bioreactor Technology 

 As evident in Fig.  3.1  the pace of applied and commercialized growth of plant bio-
reactors is very slow in spite of having lot of potential and advantage over other 
bioreactor systems. Major reasons of this slow pace are associated with inherent 
complicated nature and rich diversity in the plant systems, and some are with the 
gap between academics and industries. Limited knowledge/acceptability of genetic 
engineering and transgenics are another eclipse in this growth. Following are some 
of the troughs which make the growth slow and which should be worked out to get 
maximum output by investing time and energies very smartly. 
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3.4.1     Plant Culture Systems 

 Many plants are non-amenable to grow in culture, those that could be easily grown 
under suitable conditions may lack desired biosynthetic activity or yield is too low 
to be commercially viable. Inherent features of plant cell system chosen for up scal-
ing in plant bioreactor itself sometimes limit the process. Plant cell suspension cul-
tures are heterogeneous in nature, therefore, bioactive yield from such cultures is 
variable. Probability of genetic instability makes the production inconsistent. In 
case of hairy root cultures, their growth creates a tight matrix within a culture, lead-
ing to nutrient transport limitations that result in areas of senescent cells [ 25 ]. These 
nutrient gradients also attribute to variability in root growth and productivity. Yield 
can also impede due to hyperhydricity which makes the roots very vulnerable. 
Further, both plant cell suspensions and hairy root cultures are sensitive to shear 
stress and mechanical agitation resulting in cell wounding [ 25 ]. Low protein pro-
duction, contamination, high downstream processing cost, degradation of secreted 
protein in medium by proteolytic enzymes are the major limitations for the produc-
tion of recombinant bioactive molecules in plant systems.  

3.4.2     Post Translational Modifi cations 

 Being safer for humans, plants are considered as the most suitable host system for 
engineered biothearpeutics. Plants are easily approachable and can be utilized in 
raw form, this has given birth to the concept of edible vaccines. However, the highly 
modifi ed and evolved internal physiological system of plants works as a barrier to 
produce foreign proteins in their original effi cient form. There are many events such 
as proteolysis, misfolding, aggregation, oxidation of methionine, deamination of 
asparagine and glutamine, and glycosylation occurring in cells during the post 
translational modifi cations (PTMs) of recombinant bioactive molecules. All of 
these PTMs are important for the stability, solubility, bioactivity, effi cacy and effi -
cient secretion of the proteins. Glycosylation is one of the most crucial steps regard-
ing the addition of correct glycans to the proteins in cells. Plants are highly 
competent and capable for the production of large and complex proteins and addi-
tionally plants provide higher biomass which is directly linked to the maximum 
production of bioactive molecules. However, during the post translational modifi ca-
tions plants add some unwanted β (1,2)-Xylose and core α (1,3)-Fucose residues 
instead of core α (1,6)-Fucose residues and terminal Neuraminic acid (NeuAc) 
resulting it to become immunogenic to humans [ 26 ,  27 ]. NeuAc, which is responsi-
ble for the activity and stability of the proteins, is not found in a plant. Till date, many 
bioactive molecules such as erythropoietin, human haemoglobin, human epidermal 
growth factors and human serum albumin etc. have been produced in plants [ 28 ]. 
Still, none of these products are available in market except glucocerebrosidase pro-
duced in the carrot suspension cells [ 8 ]. Therefore, protein glycosylation is one of 
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the major concern in the plant cells for the production of bioactive molecules which 
needs proper attention to resolve the problem of improper glycosylation in plants.  

3.4.3     Bioreactor System Designs 

 The concept of bioreactors originated mainly for the microbial products and then 
extended to the higher eukaryotic systems. Earlier the microbial bioreactor designs 
were utilized for plants but different requirements of the systems raise the need of 
designs specifi cally developed for the plants like bubble column bioreactor, tempo-
rary immersion systems, continuous fl ow reactor, etc. An important critical step in 
general for all bioreactors is determination of inoculum size for differentiated plant 
in vitro systems [ 29 ]. Achieving uniform distribution of the cultures in the growth 
chamber is very diffi cult. Different techniques need to be used for inoculation in a 
bioreactor like using of a seed vessel to obtain inoculum roots that were transferred 
aseptically by means of helical screw in a 500-L hybrid reactor; homogenization and 
transfer of the biomass into bioreactors as slurry; change of the cultivation mode 
from batch to fed-batch [ 30 ]. Different bioreactor types can signifi cantly affect the 
culture growth and product accumulation. Therefore, development of such processes 
needs optimization in direction to develop plant bioreactor based technologies.  

3.4.4     Scientifi c Mindset 

 Scientists focus primarily on research rather than business or regulatory aspects. 
Basic researches are driven mainly by the curiosity and interest of a particular sci-
entist. Research areas like development of in vitro cultures, elicitation, plant genetic 
engineering, bioreactor upscaling, etc. requires long period of time to get success-
fully translated into commercial value. Scientists are more comfortable with their 
slow pace of research and have patience to carry on research for years even with 
negative results because curiosity to solve the unresolved mystery. Such slow and 
long time frame for a research solution cannot cope up with the fast changing indus-
try market interests. Academia should make to stand stable to cope up with fast 
changing technologies. Lack of proper resources and infrastructure also inhibit the 
scientists to take their efforts to commercially practical scale.  

3.4.5     Industrial Mindset 

 Establishing plant fermentation systems involve large capital start-up costs. The 
batch times for plant cultures are very large, so maintenance and monitoring needs 
are also big. Industry thinks in terms of short range goals and wants result in short 
expected time frames. Industry cannot risk delays and loss of profi ts. While 
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considering money investment, industry prefers a low risk industry with proved 
profi table products. Mammalian cells are widely used by industry for the produc-
tion of recombinant therapeutics which exhibit satisfactory glycosylation. Further 
industry is quite experienced with handling regulatory guidelines and cGMP issues 
for mammalian bioreactor industry as compared to plant bioreactor industry which 
is still emerging. On account of these factors, industry is still hesitant to venture into 
commercial plant bioreactor sector.  

3.4.6     Lack of Academic and Industry Synergism 

 Differences in mindsets of an academician and a corporate person stop them to come 
together on a single platform. The working culture differences keep these two heads 
apart. An industrialist always thinks for profi t and prefers to secure their researches in 
the form of patents or in the name of trade secrets. In contrast to institutes, leakage and 
sharing of knowledge is unacceptable in an industry. Demands of huge returns limit 
the institutes to work with industries. Mutually exclusive preferences, demands, 
visions and research achievements criteria weaken the faculty and fi rm collaboration. 
Slow pace of research in the academic institutes does not match with the higher expec-
tations of industries of getting quick results. Examples are there which exhibited the 
power of crossing the lines to work together and enhances the surety of success. The 
successful production of shiknonin from the plant culture was a result of combined 
efforts of Kayoto University and Mitusi petrochemical in Japan. Another example of 
successful alliance is Kitasato University and Nitto Denko in Japan, resulting in the 
production of ginseng [ 31 ]. Existence of very few illustrations shows the necessity for 
more synergistic efforts with crystalline purity, sincere, honesty and immaculate trans-
parency which are very essential to create and also to maintain the collaborations.  

3.4.7     Public Mindset 

 The public i.e. consumers are the ultimate decision makers for a product to be com-
mercially successful in market. At present, public has many issues with plant 
recombinant bioactive molecules. 

    Ethical Issues 

 Ethical issues of certain groups of public, including religious bodies have been 
major determinants in withdrawal of many such bioactive molecule producing 
plants from fi elds. They fi nd it unethical or inhumane to introduce gene of animal or 
human origin into plants [ 32 ,  33 ].  
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    Health Issues 

 General public is also worried about risk of allergenicity (usually glycoproteins) of 
these new recombinant bioactives from plants [ 34 ]. Transgenic technologies use 
sensitive genes such as, antibiotic marker genes and promoter sequences derived 
from viruses. During repetitive plant transformations, antibiotic resistance genes 
will accumulate and plant breeders will soon encounter diffi culties in locating new, 
harmless antibiotic marker genes. The obvious fear is that antibiotic marker genes 
could be recruited into humans along with the gene for foreign proteins (and domes-
tic animals) rendering antibiotics ineffective in curing bacterial infections. Plants 
producing insulin, growth hormones, plantibodies etc. are direct applications of 
genetic engineering for human health but for strict vegetarians it could pose an ethi-
cal issue.  

    Socio-economic Issues 

 Developing countries believe that genetically modifi ed whole plant bioreactors are 
profi t crops majorly for western developed countries and developing countries are 
only being exploited in the business for growing these plants at cheap rates. In midst 
of such anti-GM public perception, it is not easy to convince investors to fund plant 
bioreactor industry or even any related academic research.   

3.4.8     Environmental Risks from Transgenics 

 Plants prove their potential to be a good choice for foreign protein production 
hence they are themselves considered as a natural bioreactors as genetically modi-
fi ed crops but these effi cient bioreactors can harm ecosystem, food webs, biodiver-
sity and germplasm. There are ample evidences that transgenic crops and their 
genes, through pollen dispersal, can spread even between species. There is also a 
low probability of chloroplast movement from transgenic oilseed rape into wild 
species [ 35 ]. The effects of transgene escape on the environment are uncertain, 
result into “genetic pollution”, for example tailoring herbicide resistance, poses 
threat that what and how much of the herbicide should be used, its persistence and 
residual effects and development of resistant target species or gene fl ow to non-
target  species. This can also threat ecosystems and biodiversity. Gene fl ow 
increases outcrossing that out competes in the ecosystem. Genetic transformation 
can harm biodiversity by reduction in insects that serve as food at higher trophic 
levels. For instance monarch butterfl ies feeding on GM corn leaves had deduced 
growth [ 36 ]. These risks may not be visible instantaneously but should be taken 
care of.  
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3.4.9     Regulatory Concerns/IPR Confl icts 

 The commercialization of plant biotechnology has advanced rapidly over the past 
5 years. Intellectual property rights, mainly in the form of patents, have been funda-
mental to the commercial development of the technology. Several hundred patents on 
plant genes, techniques for genetic modifi cation and transgenic plants have now been 
granted and many more have been fi led. Although patenting in biotechnology gener-
ally is now widely practiced by public and private sector researchers alike, exces-
sively broad claims and restrictive licensing remain a potential threat for innovation. 
Patenting and licensing in this area restricts competition and increases monopolies on 
key plant technologies. This may further restrict innovation, fair access and trade. The 
ultimate outcome in this direction could be decline in willingness to invest in research 
and development and share knowledge in public domain. Ownership of genes and the 
need for patents is a further area for ethical debate. Innumerable IPR court cases are 
fi led among farmers and public sectors of developing countries, plant bioreactor 
industry, anti-GM NGOs, academicians who developed the technology etc. 

 Patents based on the natural therapeutic products are also a matter for concern. 
Most of the biodiversity is concentrated to some developing countries. They have 
ample resources to generate plant based natural products but are deprived in research 
resources. Most of the plant based therapeutics extract from the traditional knowl-
edge acquired by the indigenous communities since time immemorial. Traditional 
knowledge of these countries is exploited by the multinational companies, modi-
fi ed, utilized and fi led as patents. Resource limitations in developing countries 
restrict them to use their legacy for themselves and bound to buy their modifi ed 
versions in high amount. Many examples of biopiracy are there like use of turmeric, 
neem, hoodia plant, banana extract; melon extract etc. for treating various diseases 
provokes the governments to raise voice to protect their traditional knowledge. 
Claiming rights related to improvements in plant traits (like enhanced yield of sec-
ondary metabolite) using advance technologies can also raise clashes because the 
basic genetic information used for transgenic plant bioreactor development is 
extracted from the ecosystems of developing nations [ 37 ]. These unnecessary IPR 
confl icts slow the research pace and reduce the productivity. 

 It is clearly evident that neither academia nor even industry would want to 
involve in such legal issues, therefore the industry would more likely feel comfort-
able in investing for a proposed plant bioreactor strategy only after thorough thought 
process which would require some considerable time investment.   

3.5     Conclusion and Future Perspectives 

 Advances in the biotechnology particularly methods for culturing plant cell cultures 
has provided new means for the commercial production of even the rare medicinal 
plants and chemical they provide, so there has been a considerable interest in plant 
cell cultures as the potential alternative to the traditional agriculture for the 
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industrial production of the secondary metabolites. The objectives of many indus-
tries are to develop plant cell culture techniques to the stage where they yield sec-
ondary products more economically than the whole plant grown under natural 
conditions or synthesizing the product. 

 Design of a suitable bioreactor with low-shear impeller, and selection of an 
appropriate mode of cultivation is required for increased metabolite production. 
Optimization of medium ingredients by statistical techniques, application of appro-
priate mathematical models for optimized cell cultivation, feeding strategy of meta-
bolic precursors, and extraction of intracellular metabolites by organic solvents can 
lead to signifi cant enhancement in productivity of secondary metabolites.     
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    Chapter 4   
 Production of Carotenoids Using Microalgae 
Cultivated in Photobioreactors 

             Alexei     Solovchenko      and     Konstantin     Chekanov   

    Abstract     Carotenoids  comprise a diverse group of natural biomolecules with a 
plethora of benefi cial effects. These compounds include potent bioantioxidants, 
provitamins, and safe colourants that are in high demand by pharmaceutical, cos-
metic and food industries. A few species of unicellular algae (called carotenogenic 
microalgae ) mainly the representatives of Chlorophyta, are among the richest bio-
logical source of carotenoids such as β-carotene  and astaxanthin  . This chapter cov-
ers the mass cultivation of the microalgae in closed systems (photobioreactors) for 
the production of value-added carotenoids. The biochemistry and regulation of the 
biosynthes is of secondary carotenoids are considered together with the biotechnol-
ogy of most important carotenogenic microalgae species. Special attention is paid 
to the real-time optical monitoring of carotenoid accumulation in microalgal 
cultures.  

  Keywords     Astaxanthin    •   β-carotene    •   Carotenoids   •   Dunaliella    •   Haematococcus   • 
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4.1           Introduction 

 “Carotenoids ” is the name of a diverse (ca. 800 members) group of C 40  coloured 
lipid-soluble molecules ubiquitous in photoautotrophic organisms [ 1 – 3 ]. In nature, 
carotenoids (Car) serve mainly as the accessory light-harvesting  pigments and pho-
toprotective compounds preventing photo-oxidative damage to photoautotrophic 
cells [ 4 – 6 ]. These compounds are also responsible for the red, orange and yellow 
colours of leaves, fruits, as well as many fl owers. Numerous animal species contain 
carotenoids (e.g. astaxanthin  in shrimp and salmon or rhodoxanthin in bird feathers) 
which are absorbed from the food, mainly unicellular algae [ 2 ]. The remarkable 
ability of Car to eliminate harmful reactive oxygen species (ROS ) and other radical 
and non-radical harmful species in the cell [ 7 ,  8 ] is determined by the characteristic 
structure of these compounds featuring nine or more conjugated double bonds 
(Fig.  4.1 ). 

 It was found that Car exert a plethora of benefi cial effects in animals and humans 
[ 9 ]; at the same time these organisms cannot synthesize Car pigments and the only 
source of Car for them is through the uptake of food. Probably the most studied is 
the role of vitamin A  (retinol ) produced from its precursor β-carotene . Being a 
potent scavenger of the free radicals, Car protect essential biological functions 
within the cell by terminating peroxidation of membrane lipids, preventing oxida-
tive damage to proteins and DNA by UV  and other pro-oxidant factors [ 10 ,  11 ]. 
Accordingly, Car could prevent or in some instances, cure various diseases such as 
cancers of various types, chronic infl ammatory diseases, metabolic syndrome, dia-
betes, diabetic nephropathy, cardiovascular diseases, gastrointestinal diseases, liver 
diseases, neurodegenerative diseases, eye diseases, skin diseases, exercise-induced 
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  Fig. 4.1    Carotenoids include ( a ) carotenes and ( b ) xanthophylls native or non-native to photosyn-
thetic apparatus;the latter could be accumulated as secondary (extrathylakoid) carotenoids [ 35 ,  44 ]       
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fatigue, male infertility and renal failure [ 12 – 14 ]. The knowledge on the biological 
roles of carotenoids in humans and animals is advancing rapidly providing an impe-
tus for research on the effi cient ways of the production of Car. 

 Due to the important role of these pigments in pigmentation, growth and repro-
duction of commercially valuable animal species, certain Car found extensive use in 
the food and feed industry [ 15 ,  16 ]. Aquaculture which is currently the fastest grow-
ing sector of agriculture is another fi eld supporting the rapid increase in the demand 
of Car, mainly astaxanthin , for the production of feed additives  [ 2 ]. In particular, the 
farming of salmon and shrimp grew exponentially from 1980s till 2000s and the 
trend continued [ 17 ] so the market of Car feed, particularly of astaxanthin, tended 
to expand rapidly. 

 The traditional technique of industrial production of Car (particularly, β-carotene ) 
is through the extraction  from higher plant materials such as carrot roots, palm oil etc. 
[ 18 ,  19 ]. The market share of natural Car dwindled signifi cantly upon the emergence 
of synthetic Car,  since artifi cial synthesis is generally cheaper and offers a greater 
productivity. At the same time synthetic Car  have their drawbacks such as lower 
bioavailability and increased toxicity when compared to their natural counterparts 
[ 20 ,  21 ] which leave alone the environmental hazards of the chemical synthesis [ 19 ]. 

 The growing demand of Car stimulated the search for a robust industry-scale 
source of these compounds. It became clear that chemical synthesis of complex Car 
species that exist in nature as confi gurational isomers is greatly complicated by low 
yields and the necessity of the complex purifi cation steps. On the other hand, micro-
bial synthesis of Car appeared as an attractive alternative. Heterotrophic and photo-
autotrophic microbial processes employing respectively carotenogenic fungi or 
unicellular algae (microalgae) were developed for this purpose [ 2 ]. The latter pro-
cess attracted a considerable attention over the last two decades as a result of the 
impressive progress in microalgal biotechnology. The advances in the fi elds of bio-
chemistry and regulation of carotenogenesis  in microalgae as well as design of 
highly effi cient bioreactors and processes made it possible to produce Car from 
microalgae in a cost-effective manner. Indeed, a number of companies have estab-
lished for the production of Car from the algal biomass at an industrial scale [ 22 ,  23 ]. 

 An important choice for the production of Car from microalgae is that between 
cultivation in open ponds or in closed system—photobioreactors (PBR ). Both culti-
vation methods have their advantages and drawbacks (Table  4.1 ) which are analyzed 
in detail elsewhere [ 22 ,  24 ]. Briefl y, cultivation in PBR appears to be a more versatile 
method (although more expensive as well) specifi cally designed for cultivation of the 
species requiring precisely controlled conditions and susceptible to contamination . 
At the same time, outdoor cultivation in open ponds is feasible only in the regions 
characterized by a suitable climate and inexpensive supply of fresh water meaning 
that cultivation in PBR is an only option for the areas with temperate climate.

   The present chapter is dedicated to the advantages and caveats of the production 
of secondary Car  from microalgae cultivated in PBR . We will discuss the specifi cs 
of biosynthesis of Car in these organisms and its regulation. Special attention will 
be paid to PBR operation and maximizing Car output as well as for online monitor-
ing of the microalgal culture conditions.  
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4.2     Biotechnologically Important Carotenoids 
and Carotenogenic Microalgae  

 More than 800 carotenoid species with linear or cyclic structure were discovered 
in plants, including microalgae so far [ 5 ,  25 ]. These pigments are divided accord-
ing to their substituent composition into carotenes , the simple hydrocarbon com-
pounds, and xanthophylls  containing oxygen atoms within hydroxy-, epoxy- or 
keto-groups (Fig.  4.1 ). The carotenoids of the most of microalgal species are rep-
resented by carotenes and xanthophylls with characteristic three-headed absorp-
tion maxima in the blue part of the spectrum, 400–490 nm [ 3 ,  26 ,  27 ]. The 
carotenes, β-carotene , the xanthophylls, astaxanthin  and lutein  are the major carot-
enoids from the standpoint of commercial biotechnological production. The 
microalgal species and processes used for their commercial production are eluci-
dated below. 

4.2.1     Primary vs. Secondary Carotenoids 

 According to their role, Car could be divided into two major groups. Photosynthetic 
or primary Car  are closely associated with photosynthetic apparatus (PSA) of the 
plant cells i.e. with thylakoid membranes where they participate in light-harvesting  
quench triplet Chl molecules, eliminate ROS  and stabilize the pigment-protein 
complexes [ 28 – 31 ]. Primary carotenoids include β-carotene  and a number of xan-
thophylls  such as lutein , neoxanthin, violaxanthin, antheraxanthin, and zeaxanthin 
(in Chlorophyta); the structures of xanthophylls of other groups algae are much 
more diverse [ 4 ]. The composition of primary carotenoids is highly conserved 

     Table 4.1    The comparison of open and closed systems for cultivation of microalgae   

 Parameter  Open pond  Closed photobioreactor 

 Cultivation conditions control  Impossible  Easy achieved 
 Operational expenses  Low a   High 
 Capital expenses  Low b   High 
 Footprint  Large  Small 
 Maintenance  Simple  Complex 
 Contamination  Susceptible c   Easy to control 
 Productivity  Very low  Moderate to high 
 Light utilization effi ciency  Low  High 
 Optimal cell density  Low  High to very high 

   a If a free water supply is available 
  b Provided that the land cost is negligibly low 
  c Unless extremophile algae resistant to contamination  are cultivated  
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[ 26 ,  28 ]. Lutein is a biotechnologically important xanthophyll but it is accumulated 
within microalgal cells as a primary Car.  So, the production of lutein is out of 
scope of the present review. The following discussion will be focused on the spe-
cifi c group of Car—secondary Car  which are quite widespread in different taxa of 
plants [ 5 ,  32 ]. 

 Under stressful conditions certain microalgal species accumulate Car outside the 
thylakoid membranes in dedicated structures such as plastoglobuli (inside the chlo-
roplast) or cytoplasmic oil bodies (outside the chloroplast) similar to oleosomes of 
higher plants [ 33 ]. These extrathylakoid or extraplastidial secondary Car   do not 
participate in photosynthesis and are represented by carotenoids of both native (e.g. 
β-carotene  in  Dunaliella    salina  [ 34 ,  35 ]) and non-native to PSA such as astaxan-
thin [ 36 ]. The secondary xanthophylls  are often accumulated in the form of fatty 
acid esters [ 36 ]; the signifi cance of xanthophyll esterifi cation is covered in the 
Sect.  4.3.3 . The proposed functions of secondary Car  in the microalgae include 
blocking excess PAR, sink for the excess photo assimilates, suppression of ROS  
generation (mainly  via  consumption of O 2  in xanthophyll biosynthesis) and the 
detoxifi cation of already produced ROS [ 33 ,  37 – 43 ].

   The composition and stoichiometry of primary Car  within PSA is under strict 
genetic and regulatory control, it means that these pigments cannot accumulate in 
very high amounts but only in certain proportion when compared to the other pho-
tosynthetic pigments, mainly chlorophylls [ 28 ]. On the contrary, secondary carot-
enoids can be accumulated in microalgae in the amounts by far superior to that of 
primary Car  e.g. up to 6 % of dry weight in the case of astaxanthin  in  Haematococcus 
pluvialis   [ 45 ]. 

 Until recently, the functions of secondary Car  in microalgae remained largely 
unclear. The studies carried out during the past decade suggest that the photoprotec-
tive function of secondary Car  seems to be the most important. Evidently, secondary 
Car  participate in the screening of excess PAR, prevent photooxidation of PSA com-
ponents and storage lipids as recently reviewed by Solovchenko [ 33 ]. Understanding 
of the physiological signifi cance of secondary Car  accumulation is essential for the 
development of an effi cient process for their production from microalgae. So, this 
topic is elaborated as below. 

  Optical screening.  A large body of evidence points to the higher tolerance of 
microalgae with increased secondary Car  content to high-light stress . The structural 
stability of cytoplasm-localized lipid droplets referred to as oil bodies (OB ) contain-
ing secondary Car  is important since it allows attaining a high local concentration 
of secondary Car . It is essential for the effi cient attenuation of light before it reaches 
vulnerable structures in the cell [ 40 ,  42 ,  46 ]. 

  Elimination of ROS  . As noted above, Car are powerful scavengers of free radi-
cals and quenchers of excited molecules. Evidently, secondary Car  protect against 
peroxidation of storage lipids accumulated in OB . It is supposed that secondary 
Car -containing OB  located around the nucleus form a barrier that protects DNA 
from oxidative damage [ 47 ]. The intensive synthesis of oxygenated Car in microal-
gae is also believed to reduce the O 2  concentration in the cell [ 48 ]. An important 
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factor controlling the formation of ROS under adverse environmental conditions is 
a sink of electrons from plastoquinone pool in the plastidic electron transport chain 
to plastidial terminal oxidase (PTOX)  via  the desaturase enzymes participating in 
the synthesis of Car [ 48 ,  49 ]. 

  Sink for excessive photosynthates.  Under unfavorable conditions, intense bio-
synthesis of secondary Car  evidently provides a sink for the excess photo assimi-
lates, thereby reducing the risk of photooxidative damage due to over-reduction of 
electron carriers in the chloroplast electron transport chain. Additionally, photo-
assimilates can be consumed for the biosynthesis of FA required for the esterifi ca-
tion of secondary Car  such as astaxanthin [ 49 ].  

4.2.2     The Most Commercially Important Secondary 
Carotenoids 

    β-carotene  

 The β-carotene  (Fig.  4.1a ) is a pigment of increasing demand and a wide spec-
trum of commercial applications: as a safe food colorant (the most important 
application [ 22 ]); as vitamin A  (retinol) precursor in food and animal feed; as an 
ingredient of cosmetics and multivitamin preparations; and as a health food 
product [ 2 ]. 

 The main process employed for the production of natural β-carotene  is the cul-
tivation of the green, unicellular alga  Dunaliella    salina  accumulating this Car to 
12–14 % of cell dry weight under stressful conditions [ 50 ]. Chemically synthe-
sized β-carotene is the all-trans isomer whereas β-carotene from  Dunaliella   is a 
mixture of two stereo isomers, all-trans and 9-cis in approximately equal propor-
tions resulting in superior bioavailability and health-promoting properties substan-
tiating the commercial interest to the algal carotenes  [ 51 ]. The pioneering works on 
mass- cultivation of  Dunaliella   were carried out by Masyuk [ 52 ] and Semenenko 
[ 53 ] in USSR at 1965–1975 but essentially were not recognized at that time. Later, 
their vision was proved by vast experience of commercial growing of this micro-
alga in other countries. State of art in  Dunaliella   production is extensively reviewed 
in [ 50 ,  54 ]. 

 One of the greatest promises of microalgal sources of β-carotene  is the mitiga-
tion of global defi ciency of (pro) vitamin A . As emphasized by [ 55 ], the defi ciency 
of this vitamin, especially in children, is one of the most noticeable nutritional 
 problems in many parts of the world and affects an estimated 250 million children 
under 5 years of age (according to World Health Organization surveys,   http://www.
who.int/nutrition/topics/vad/en/index.html    ). 

 Market price of  Dunaliella   biomass could be as high as € 2,000 kg −1 ; prices of 
β-carotene  from  D. salina  are ranging from $300–$3,000 kg −1  depending on the 
purity and the form, crystals or 1–13 % oil solution; useful byproducts of β-carotene 
from  Dunaliella   are glycerol (up to 30 % of dry) and feed protein [ 54 ,  56 ].  

A. Solovchenko and K. Chekanov

http://www.who.int/nutrition/topics/vad/en/index.html
http://www.who.int/nutrition/topics/vad/en/index.html


69

    Astaxanthin 

 Astaxanthin, the most powerful natural antioxidant [ 9 ] is synthesized by some 
microalgae [ 4 ], plants, fungi, and bacteria [ 2 ,  27 ]. Astaxanthin does not exert a pro-
oxidant effect typical of other carotenoids [ 57 ]. Furthermore, astaxanthin  is not a 
vitamin precursor hence it’s overdose does not pose the threat of hypervitaminosis. 

 Molecule of astaxanthin  has two asymmetric carbon atoms at the positions 3 and 
3′ of the ionone rings at either ends of the molecule. Depending on the hydroxyl 
groups attached to these carbon atoms, different enantiomers of the molecule may 
appear. Generally, two confi guration of an asymmetric atom are possible: R, when 
the hydroxyl group is above the plane of the molecule, and S, when the hydroxyl 
group is below the plane of the molecule. Hence the three possible enantiomers of 
astaxanthin are designated R, R, S,S and R,S (meso-form). The bulk of astaxanthin 
in  Haematococcus pluvialis  , the richest natural source of astaxanthin [ 58 ], is in the 
form of mono- and diesters of palmitic (16:0), oleic (18:1) orlinoleic (18:2) fatty 
acids . Fatty acids are esterifi ed onto the 30 hydroxyl group(s) of astaxanthin after 
biosynthesis of the carotenoid, increasing its solubility and stability in the cellular 
lipid environment. The composition of astaxanthin esters in  H. pluvialis  is similar 
to that of crustaceans, the natural dietary source of salmonids: the astaxanthin pool 
of  H. pluvialis  red cysts is comprised of ca. 70 % monoesters, 25 % diesters and 5 % 
of the free xanthophyll [ 2 ]. 

 Both free and fatty acid-esterifi ed astaxanthin  in  H. pluvialis  have optically pure 
(3S, 30S)-chirality [ 59 ]. The  Phaffi a  yeast contains pure 3R, 30R astaxanthin, and 
synthetic astaxanthin is a mixture of all three isomers [ 60 ]. As reviewed by Johnson, 
Schroeder [ 2 ] and, more recently, by Lorenz, Cysewski [ 15 ], over 95 % of the feed 
market consumes synthetic astaxanthin, mainly from BASF (Germany) and 
Hoffman-La Roche (Switzerland) [ 56 ]. Synthetic astaxanthin contains only 25 % of 
the biologically active isomer. On the other hand, consumers demand natural prod-
ucts making the synthetic pigments, especially in feed additive, much less desirable 
extending hereby the opportunity for the production of natural astaxanthin by 
 Haematococcus . 

 The production of synthetic astaxanthin  for aquaculture is about 100 ton per year 
selling at $ 2,500 kg −1 . Estimated global production of microalgae for the same 
purpose is 1,000 ton per year. Accordingly, the production of  H. pluvialis  biomass 
should be increased to 10 000 ton per year to displace the synthetic pigment only in 
aquaculture [ 15 ,  56 ]. The main disadvantage of the natural astaxanthin from  H. 
pluvialis  is its high price ($ 7,000 kg −1 ).   

4.2.3     Carotenogenic Microalgae 

 Microalgal species, which display a characteristic accumulation of gross amounts 
of Car within the cells, are commonly referred to as carotenogenic microalgae . 
Accumulation of secondary Car  is a typical of microalgae withstanding extreme 
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temperatures, irradiances, nutrient defi ciencies, and salinities. Domination of caro-
tenogenic microalgae in the ecosystems with extreme growth conditions is ascribed 
to their high tolerance to unfavorable environment, one of factors of which is the 
high content of secondary Car  in their cells. Therefore, it is not surprising that the 
overwhelming majority of biotechnologically important microalgae are represented 
by extremophilic and stress-tolerant species. 

     Dunaliella    salina  

 The genus  Dunaliella   (Chlorophyceae, Volvocales) includes a variety of bifl agel-
lated marine and fresh water microalgae (Fig.  4.2 ), detailed information about the 
taxonomy, the cell morphology and the ultrastructure of these species could be 
found elsewhere [ 61 ]. Algae from the genus  Dunaliella   lack a rigid polysaccharide 
cell wall, and are enclosed by a thin elastic plasma membrane covered by a mucous 
surface coat [ 50 ]. A few extremophilic representatives of  Dunaliella   (e.g. some 
strains of  D. salina ) are capable of accumulation of large amounts of β-carotene (up 
to 12 % of cell dry weight). This pigment is accumulated within the chloroplast but 
represents a typical secondary Car  localized in the lipid droplets (so called carotene 
granules) surrounded by the dedicated proteins [ 62 ]. Accordingly, the induction of 
carotenogenesis  in the  Dunaliella   occurs under severe stress .

   The process of β-carotene  accumulation is apparent as the change of color from 
green to orange or even red which often observed during season blooms of the algae 
in saline lakes and lagoons, the natural habitats of the carotenogenic  Dunaliella   spe-
cies. Apart from high salt concentration, such habitats are often characterized by 
low availability of nitrogen, high temperatures and irradiance. Under such stressful 
conditions the carotenogenic representatives of  Dunaliella   not only grow well but 
thrive and often become the dominant microalgal species. Currently  Dunaliella   is 
mass cultivated predominantly in open ponds on saline and brackish or even sea 
water in desert areas. A few attempts to grow  Dunaliella   in PBR  of different design 
(plastic tubes, plastic sleeves, shallow trays etc.) were not successful due to eco-
nomical limitations [ 50 ].  

10 μm

  Fig. 4.2    Changes in the cell morphology of  Dunaliella    salina  (from left to right) in the course of 
high-light and salinity stress  induced accumulation of β-carotene  (Courtesy of Dr. Elena Seliwanova 
(unpublished))       
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     Haematococcus pluvialis   

 The green microalga  Haematococcus pluvialis   (Figs.  4.3  and  4.4 ) is the richest and 
therefore the most extensively studied [ 47 ,  63 – 65 ,  49 ] biological source of astaxan-
thin , the xanthophyll with a plethora of benefi cial effects. Since the culture of green 
(vegetative) cells of  H. pluvialis  is very sensitive to contamination , this microalga is 
mass cultivated almost exclusively in PBR  (Table  4.1 ).  H. pluvialis  accumulates 

  Fig. 4.3    Palmelloid cells ( left ) and ( right ) red cysts of  Hamatococcus pluvialis . Note the 
beginning of astaxanthin  accumulation in the green palmelloid cells. Astaxanthin content 
reaches the maximum in the cysts that almost lack chlorophyll (A. Solovchenko, 
unpublished)       
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  Fig. 4.4    Oil bodies in transmission electron micrograph of a red cyst of Hamatococcus sp. OB 
oilbodies, SG starch grains, Th thylakoids. Scale bar is 5µm (K. Chekanov, unpublished)       

 

 

4 Production of Carotenoids Using Microalgae Cultivated in Photobioreactors



72

astaxanthin in cytoplasmic OB . Generally, accumulation of astaxanthin is induced 
under stressful conditions slowing down the cell division and enhanced by high 
irradiance [ 47 ].

4.3           The Biosynthesis of Secondary Carotenoid and Its 
Regulation 

4.3.1     The Basic Steps of the Carotenoid Biosynthesis  

 The initial steps including the assembly of the carbon skeleton, desaturation, cycli-
zation, and hydroxylation (all steps in case of secondary β-carotene ) of the synthesis 
of primary and secondary Car  are common and briefl y described below; more elab-
orate reviews could be found elsewhere [ 33 ,  34 ,  48 ]. The specifi c stages of second-
ary Car  biosynthesis are considered below; for additional detail see the recent 
review by Lemoine and Schoefs [ 49 ]. 

  Assembly of the carbon skeleton.  As in higher plants, the precursor of Car in 
green microalgae is isopentenyl pyrophosphate (IPP, C 5 ) originating from 
glycerophosphate- pyruvate or mevalonate pathway. The enzyme IPP isomerase 
reversibly converts IPP to its allyl isomer dimethyl allyl pyrophosphate (DMAPP), 
a primer for the isoprenoid chain synthesis. Successive attachment of three IPP 
molecules to a DMAPP molecule in the reaction catalyzed by GGPP synthase yields 
the molecule of geranyl geranyl pyrophosphate (GGPP, C 20 ). Two GGPP molecules 
add up to form the symmetric molecule of phytoene in the reaction catalyzed by 
phytoene synthase (PSY). 

  Desaturation and cyclization.  Phytoene molecule,  via  four desaturation reac-
tions catalyzed by phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS), is 
converted sequentially to phytofl uene, ζ-carotene, neurosporin, and lycopene. The 
elongation of the conjugated double-bond system results in the transformation of 
the colorless Car precursors into colored compounds, starting from ζ-carotene. 
Plastid terminal oxidase (PTOX) supposedly serves as a co-factor of desaturases in 
microalgae contributing considerably to cell protection against oxidative stress  (see 
above). Desaturation is also a rate-limiting stage of secondary Car  biosynthesis. 

 The membrane-bound enzymes β-lycopene cyclase (CRTL-B) or ε-cyclase cata-
lyzes the formation of cyclic Car from the symmetric linear molecule lycopene. 
Major Car of microalgae feature β- and ε-rings differing from each other by the 
position of the double bond (a typical example is lutein  comprising one β- and one 
ε-ring). In spite of the high homology to β-cyclase, ε-cyclase, it produces only a 
single ε-ring with the formation of the monocyclic δ-carotene (ε-, ψ-carotene). It is 
assumed that cyclases play a key role in the control of cyclic secondary Car  
formation. 

  Oxygenation.  The pathway of the biosynthesis of oxygenated secondary Car  is 
relatively well studied [ 66 – 68 ]. The hydroxylation of α- and β-carotenes  at the 
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 position 3 yields, respectively, zeaxanthin and lutein . The addition of a ketogroup at 
the position 4 of one or both rings results in the formation of orange-red ketocarot-
enoids echinenone and canthaxanthin, the precursors of astaxanthin . 

 The reaction of β-carotene  oxygenation is catalyzed by β-C-4-oxygenase (the 
ketolase designated as CRTO or BKT) encoded in  H. pluvialis  by  crtO  or  nkt  gene. 
The enzyme CRTO plays a key role in the accumulation of astaxanthin [ 67 ].  

4.3.2     Stimuli Promoting Accumulation of Carotenoids 
in Microalgae 

 Primary or photosynthetic accumulated under conditions favorable for the cell divi-
sion and culture growth i.e. under optimal irradiance, nutrient availability, and tem-
perature. A certain increase in the primary Car  yield could be achieved by application 
of mild stress  conditions which promote accumulation of the Car over Chl but do 
not compromise the culture growth [ 22 ]. More severe stress  leads to a decline in Chl 
and hence in primary Car  due to highly conserved stoichiometry of these pigments 
within PSA. 

 The physiology of secondary Car  accumulation appears to be more sophisticated. 
Generally, these pigments are accumulated under the infl uence of various stressors 
which slowdown or cease completely the algal cell division. A number of studies 
indicate the involvement of ROS  in the induction of Car biosynthesis as secondary 
messengers. In particular, the addition to the culture of ROS generators, such as 
hydrogen peroxide, induces accumulation of secondary Car  even in darkness, mim-
icking the action of environmental stressors; On the contrary, the addition of ROS 
scavengers suppresses carotenogenesis [ 69 ]. Overall, the plastoquinone pool which, 
under stressful conditions, stays in a reduced state most of the time serves as the 
redox sensor for the regulation of both primary and secondary Car  biosynthesis [ 49 ]. 

  Light intensity and quality.  Many researchers concur that high irradiance 
 effi ciently induces the accumulation of secondary Car  in carotenogenic microalgae , 
often in dose-dependent manner [ 47 ,  70 ,  71 ]. The data on the role of light in the 
induction of astaxanthin  synthesis in  H. pluvialis  are more controversial. Although 
many fi ndings confi rm the stimulatory effect of high PAR irradiance on astaxanthin 
synthesis, the accumulation of this pigment occurs even in darkness in the presence 
of the organic source of carbon or a ROS  generator [ 64 ,  72 ]. Remarkably, under 
unfavorable conditions the increased ROS concentrations triggering carotenogene-
sis  could be reached even at a relatively low illumination  intensity. 

 The spectral quality of light is also an important factor inducing carotenogenesis . 
However, little is known about the impact of UV  on secondary Car  biosynthesis in 
microalgae so far. Still, irradiation with UV-A (but not UV-B) in addition to PAR 
stimulated massive accumulation of β-carotene  in  Dunaliella   [ 73 ,  74 ]. 

  Lack of mineral nutrition . The defi ciency or lack of nutrient elements, 
mainly nitrogen and phosphorus, is also a factor stimulating accumulation of 
secondary Car . Thus, nirogen and/or phosphorus starvation of  H. pluvialis  
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resulted in the  formation of cysts from vegetative cells accompanied by 
 accumulation of astaxanthin  [ 47 ].  Parietochloris incisa  growing on nitrogen-free 
medium displayed an enhanced accumulation of β-carotene  in OB  [ 75 ]. 
Interestingly, herbicides impairing nitrogen assimilation by inhibiting glutamine 
synthase induced astaxanthin accumulation in  H. pluvialis as effi ciently as 
 nitrogen starvation [ 76 ]. 

  Osmotic stress  . An abrupt increase in the concentrations of osmotics in the cul-
ture medium enhances Car accumulation in carotenogenic microalgae , usually after 
a certain lag. Thus, in  D. salina  treated with high NaCl concentration the duration 
of this lag depends on the initial salt concentration and the degree of its increase 
whereas the magnitude of carotenogenesis  is determined by the fi nal salt concentra-
tion [ 70 ]. 

  Temperature . Suboptimal temperatures, especially in combination with high 
PAR also induce secondary carotenogenesis . In particular, in  D. salina  these stresses 
induced gross accumulation of β-carotene . Apparently, low temperatures are impor-
tant for induction of carotenogenesis in snow algae [ 41 ]. 

  Organic carbon feeding.  Feeding with the organic carbon source such as 
organic acids or sugars often enhances accumulation of secondary Car  by caroteno-
genic microalgae  capable of heterotrophic of photoheterotrophic growth as reviewed 
by Solovchenko [ 33 ]. This effect was observed in  Trentepohlia aurea  after addition 
of peptone to medium and in  Chlorella protothecoides  at the addition of glucose and 
urea. The presence of mono- and disaccharides enhanced the synthesis of astaxan-
thin in  C. zofi ngiensis . It is essential that the addition of the glucose analogs does not 
have the same effect. So, it cannot be ascribed to the osmotic action of the added 
sugars. Probably, the molecules sensing the presence of glucose such as hexokinase 
are involved in the induction of carotenogenesis .  

4.3.3      Relationships Between Accumulation of Carotenoids 
and Lipids 

 It is important to realize that such hydrophobic molecules as Car, especially caro-
tenes , cannot accumulate in an appreciable amount within the hydrophilic cytoplas-
mic or stromal compartments of the cell without a suitable depot. The primary Car  
are contained within the nonpolar ‘pouches’ of thylakoid membrane-bound pigment- 
protein complexes of PSA. So, they essentially do not interact with the hydrophilic 
environment [ 77 ]. By defi nition, secondary Car  cannot share the same subcellular 
compartment with a primary Car . As noted above, they accumulated in the dedi-
cated structures—plastoglobuli and OB . All the structures serving as the depot for 
secondary Car  are formed with the participation of neutral lipids , mainly triacylg-
lycerols (TAG) and dedicated amphiphilic proteins, oleoresins [ 78 ]. Furthermore, 
xanthophylls  such as astaxanthin  are esterifi ed by fatty acids . Thus, in  H. pluvialis  
and carotenogenic members of the genus  Chlorella  during the fi nal steps of cyst 
formation, more than 95 % of secondary xanthophylls are converted to fatty acid 
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(predominantly from the C18 family) esters [ 58 ]. This makes possible the 
 accumulation of large amounts of relatively polar xanthophylls in the hydrophobic 
environment of the OB . 

 The induction of secondary Car  biosynthesis in  H. pluvialis  and other caroteno-
genic microalgae  is accompanied by rapid TAG accumulation. Eventually, in this 
microalga TAG more than 95 % of cell lipids are represented by the TAG of second-
ary Car -containing OB . So, it is not surprising that a close connection exists between 
the secondary Car  biosynthesis and lipid, in particular FA and TAG biosynthesis. 
Moreover, the formation of lipid inclusions, the potential depots for secondary Car , 
readily proceeds even when Car biosynthesis is inhibited but inhibition of TAG 
accumulation essentially abolishes the accumulation of the Car [ 79 ]. Therefore, it is 
clear that stress -induced accumulation of neutral lipids  in the form of cytoplasmic 
or stromal inclusions is a prerequisite for the accumulation of secondary Car  in 
microalgal cells. Accordingly, these events explain the similarity of the stimuli trig-
gering the mass accumulation of lipids and those stimulating the biosynthesis of 
secondary Car  in microalgal cells.   

4.4     Production of Microalgal Carotenoids 
in Photobioreactors 

 A considerable effort is being invested into the development of cost-effective 
 production of microalgal biomass which is diffi cult to achieve. Different cultivation 
systems have been designed for large-scale cultivation of microalgae [ 80 ,  81 ] which 
roughly fall into two distinct groups—open (ponds and their variations) and closed 
(photobioreactors, PBR ; see e.g. Fig.  4.5 ). Each group has its advantages and draw-
backs as summarized in Table  4.1 .

   Collectively, open systems are economically viable only if the cost of the land is 
very low, there is a free source of water, a contamination -resistant algal species (e.g. 
extreme halophile such as  Dunaliella    salina ) is cultivated, and the climatic condi-
tions are suitable. Mass cultivation of microalgae in open ponds is reviewed else-
where [ 24 ,  82 ]. 

 More recently developed and technologically advanced closed PBR  are more ver-
satile to support the growth of any microalga under precisely controlled conditions 
and without the risk of contamination . The major drawback of PBR is high construc-
tion and operation cost due to a technical complexity. At the same time PBR provide 
considerably higher productivity, higher quality of biomass and, what is more impor-
tant, robust biomass composition due to more stable cultivation conditions. 

 The objective of the cultivation is to obtain maximum yield of biomass with 
certain minimal content of certain Car. The strategy to achieve this goal depends on 
the type of the Car. Generally, primary or photosynthetic Car such as lutein  are 
accumulated along with biomass accumulation under conditions favorable for pho-
tosynthesis. The larger the photosynthetic antenna size, the higher the productivity 
of the microalgal culture in terms of primary Car  content since lutein is  predominantly 
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bound to light harvesting  proteins comprising the antenna [ 29 ]. On the contrary, 
secondary Car  such as β-carotene  or astaxanthin  are accumulated under stressful 
conditions retarding microalgal cell division [ 47 ,  62 ]. This makes apparent the 
importance of correct choice and careful maintenance of the cultivation conditions 
suitable for the algal growth and accumulation of the ‘target’ Car. In the following 
subsections, general considerations regarding the cultivation conditions of microal-
gae in PBR  are given; the section concludes with the approaches for the production 
of secondary Car  from the microalgae grown in PBR. 

4.4.1     Illumination and Optimal Cell Density 

 Autotrophic cultivation of microalgae presumes adequate illumination  of the cul-
ture in PBR . Illumination can be natural, artifi cial or combined. The productivity of 
cultivation under sunlight is less stable because of diurnal and seasonal fl uctuations 

  Fig. 4.5    Cultivation of  H. 
pluvialis  in tubular 
photobioreactor (Algatech, 
Israel). Note the tubular 
fences with green vegetative 
cell suspension ( right ) and 
those with red astaxanthin - 
rich cysts ready for harvest 
( right ) (Photo: 
A. Solovchenko)       
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in solar light. On the other hand, in PBR with artifi cial illumination a substantial 
part of cultivation costs is comprised by energy costs which are mitigated in part by 
increased productivity. Obviously, the optimal approach to illumination should 
combine the advantage of both natural and artifi cial illumination. 

 The conditions commonly referred to as ‘intensive cultivation conditions’ presume 
high cell density in PBR . Under such conditions, strong light absorption of pigments 
in the algal cells resulting in strong mutual shading. Therefore, at a cell density high 
enough (>1 g·L −1 ) only the cells within the thin (>10 mm) surface layer of the suspen-
sion are getting enough light for photosynthesis, other part of the PBR volume essen-
tially resides in darkness [ 83 ]. At the same time, it is not feasible to increase the 
illuminated (photic) zone of the PBR by mere increase of the incident irradiance. 
The reason is that photo inhibition of the cells in the surface layers increases whereas 
the cells, those within more deep layers will not get enough light [ 83 ,  84 ]. 

 There could be several ways to achieve a uniform illumination  of microalgal 
cells in PBR  at high cell densities. The fi rst is to keep the light path (volume-to- 
surface ratio) in PBR to a minimum by choosing a fl at panel design or a small- 
diameter tubular design. Essentially, an important goal of PBR design is to make the 
entire volume of a PBR its photic zone . 

 Another option is to mix the suspension at an optimal rate, so that each cell 
would reside in the photic zone  just enough time to absorb the amount of light nec-
essary for photosynthesis (see the Sect.  4.4.2  below). The ATP and NADPH mole-
cules synthesized during the stay in the photic zone are supposed to support the CO 2   
fi xation when the cell travels through the dark volume of the PBR  [ 85 ]. This allows 
the construction of PBR supporting ultra-high cell densities and to supply enough 
light without the risk of photo inhibition [ 86 ]. 

 The third strategy is based on intermittent illumination  [ 87 ]. The length and the 
intensity of light fl ashes as well as the lengths of dark intervals between the fl ashes 
are also selected to allow the cells to absorb enough light and to utilize the photosyn-
thates during the dark periods. However, fi nding the optimal parameters for intermit-
tent illumination appeared to be a complex task which has not been solved yet [ 85 ].  

4.4.2      Mixing  and Sparging  

 Mixing  prevents the cell sedimentation and accelerates the mass transfer within 
PBR  thereby assuring proper distribution of nutrients. Apart from a suffi cient PAR 
irradiation, continuous CO 2   supply is also necessary for effi cient photosynthesis. 
Moreover, photosynthetic O 2  evolution in a closed vessel of PBR would dramati-
cally increase the dissolved O 2  to the level conductive for the photooxidative dam-
age. So, it is clear that adequate gas (CO 2 /O 2 ) exchange and nutrient distribution 
which is achieved through mixing is essential for attaining high growth rates and 
productivity of a microalgal culture in PBR [ 88 ]. 

 The current PBR  designs most frequently adopt mechanic or pneumatic mixing 
[ 89 ]. Mechanic mixing is usually accomplished by pumping the microalgal  suspension 
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into a stirred tank fi tted with some kind of stirring wheel. More practical is the 
 pneumatic stirring with air or air-CO 2   mixture bubbled through the suspension in a 
vertical column or a fl at panel (also called airlift ). Additional benefi ts of pneumatic 
mixing include simultaneous CO 2  feeding and O 2  removal from the suspension. 

 Atmospheric CO 2   concentration is limiting photosynthesis in most photoautotro-
phic organisms. Accordingly, a certain enrichment of the gas mixture used for 
sparging  PBR  with CO 2  generally enhances the productivity [ 90 – 92 ]. The extent of 
the enrichment depends on the tolerance of the cultivated microalga to CO 2  which 
is species-specifi c [ 93 ]. Interactive effects of elevated CO 2  percentage in the bub-
bling gas mixture and other factors are so far largely unknown. Nevertheless this 
problem is expected to draw a considerable attention in view of the possible use of 
fl ue gases for CO 2  enrichment of microalgal cultures with the added value of the 
greenhouse gas sequestration [ 94 ]. 

 Generally, higher the mixing rate, the higher will be the mass transfer effi ciency. 
At the same time, one cannot increase the mixing rate above a certain threshold level 
because in a suspension fl owing too rapidly microalgal cells encounter shear stress . 
This stress may result in the decline of the culture growth or even in cell disruption. 
Consequently, mixing rate will be limiting the growth of microalgae in PBR  [ 95 ].  

4.4.3     Temperature and pH 

 Together with illumination , mineral nutrition, and mixing temperature and pH 
(acidity) of the medium are among the most important factors determining the pro-
ductivity of microalgal cultures [ 83 ]. A common approach to maintain the pH of the 
culture is CO 2   sparging  on demand by means of a pH controller. 

 The temperature values close to the optimum promote the biomass accumulation 
and hence are favorable for the biosynthesis of primary Car  such as lutein  (see 
above). Extremely low temperatures induce the accumulation of secondary Car  in 
so called snow algae many of which are carotenogenic species [ 41 ]. In spite of the 
fact that low temperatures effi ciently induce carotenogenesis , it is impractical to 
apply in large-scale PBR . 

 Cultivation of microalgae in outdoor PBR  poses the challenge of maintaining the 
optimum temperature which is mandatory e.g. during the fi rst stage of cultivation 
(accumulation of biomass, see the Sect.  4.4.5  below). In particular, to prevent over-
heating of the culture in a cost-effective manner local resources are used such as 
cooling with deep ocean cold water  via  heat exchanger (in Hawaii) or evaporative 
cooling by mean of water sprinkling (in arid areas).  

4.4.4     Medium Composition 

 Cultivation of algae can be photoautotrophic, heterotrophic and mixotrophic. Media 
with organic carbon sources such as acetate, glucose or molasses are used for mixo- 
and heterotrophic cultivation [ 96 ]. Such type of cultivation are not light-dependent 
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and lead to increase in the productivity in some cases. As a result, PBR  for hetero-
trophic cultivation has a relatively small surface to volume ratio hence their design 
could be simpler in comparison with PBR for photoautotrophic cultivation. On the 
other hand, the use of organic carbon sources increases the risk of culture contami-
nation,  so, the sterility should be maintained more strictly in this case. 

 As shown by Kobayashi et al. [ 72 ],  H. pluvialis  can be grown mixotrophically or 
even heterotrophically (i.e. in the dark) employing an organic acid (e.g. acetate) or 
carbohydrate as the carbon source. Nevertheless, the current mainstream process of 
the production of astaxanthin  from  H. pluvialis  relies on its photoautotrophic culti-
vation in PBR . The reason is higher productivity of the photoautotrophic process, 
let alone the high cost of organic medium constituents and the risk of contamination  
of the culture by heterotrophic bacteria. Still, examples exist for successful com-
mercial implementation of the mixotrophic process (Table  4.2 ).

4.4.5          Cultivation of Carotenogenic Microalgae 
 in Photobioreactors 

 Photobioreactors employed for cultivation of microalgae are evolved to a vast diver-
sity, which has been reviewed extensively [ 97 – 100 ]. The most common designs 
include tubular, fl at plate PBR , vertical and horizontal. An effi cient PBR should 
provide uniform illumination  of the culture, adequate mass transfer for nutrient 
delivery and gas (CO 2  /O 2 ) exchange, easy maintenance and a precise control of 
cultivation parameters in a cost-effective manner. At the same time, there is no ‘best 
reactor’ performing equally well for different cultures and target products [ 100 ]. 

 Generally, a PBR  operates under conditions providing a rapid culture growth 
(biomass accumulation). At the same time, secondary Car  are accumulated under 
stressful conditions that slow down the growth of microalgae. As a result, obtaining 
suffi cient and sustainable biomass and Car productivities even in PBR is a non- 
trivial problem, especially under outdoor conditions, which are less controllable. 
Optimized productivity can be achieved by cultivation under conditions that allow 
at least partially circumventing the negative consequences of nutrient or light stress  
such as optimized cell densities, light path and geometry of the cultivation facility, 

    Table 4.2    The companies commercially producing astaxanthin -enriched biomass of  H. pluvialis    

 Company  Country 
 Yield (ton/
year)  PBR  type 

 AstaReal (subsidiary of Fuji Chemical, 
  www.bioreal.se    ,   www.astareal.com    ) 

 Sweden  – a   Cylindric (indoor, 
mixotrophic) 

 Alga technologies (  www.algatech.com    )  Israel  – a   Tubular (outdoor) 
 Cyanotech (  www.cyanotech.com    )  USA 

(Hawaii) 
 13–15  Tubular + open pond 

 Mera pharmaceuticals (  www.merapharma.
com    ) 

 USA 
(Hawaii) 

 6.6  Tubular 

  Adapted from Del Campo et al. [ 22 ] 
  a No data  
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growth stage of the inoculum etc. Another option is to employ various types of the 
double-stage process, the form of batch cultivation where the culture is fi rst grown 
under optimal conditions promoting accumulation of biomass with low Car content. 
After accumulation of suffi cient amount of the green biomass the culture is sub-
jected, at the second phase, to stressful conditions (e.g. nitrogen and/or phosphorus 
deprivation or an increase in salinity) causing cessation of cell division and promot-
ing the accumulation of Car. For more effi cient use of light energy, PBR designs 
were proposed combining the two stages where the cells cultivated in the central 
vessel (vegetative cells) are shaded by the culture grown in outer jacket. The surface 
of the outer jacket can be illuminated at high irradiances inducing carotenogenesis  
without the risk of photoinhibition of the cells grown in the inner shaded vessel. 

 The fi rst stage (accumulation of the green biomass) in the case of  H. pluvialis  
cultivation is almost exclusively carried out in PBR  to prevent contamination  and to 
strictly maintain near optimal growth conditions. The second stage (induction and 
accumulation of Car) occurs under stressful conditions making the contamination 
less likely hence this stage could be carried out in open ponds (Table  4.2 ). Still, 
contamination, especially by parasitic fungi (Fig.  4.6 ), is one of the most frequent 
reasons for the  H. pluvialis  culture crash [ 101 ] so, cultivation in PBR remains the 
preferred methods. Most methods for commercial production of astaxanthin - 
enriched  H. pluvialis  biomass provide the pigment content in the range 1.5–3 % 
DW [ 22 ].

   The same time certain level of secondary Car  accumulation could be achieved 
during vegetative cell growth as it was shown for  H. pluvialis  [ 22 ]. It is possible, by 
careful control of nutrient (nitrogen) content of the medium, to obtain a descent 
yield of astaxanthin  under continuous culture. These fi ndings made it possible to 
develop an alternative single-stage process for the astaxanthin-enriched biomass of 
 H. pluvialis . 

10 μm

  Fig. 4.6    A cell of  H. 
pluvialis  infested by a 
parasitic fungus 
(K. Chekanov, unpublished)       
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 To the best of our knowledge, a commercially viable process for cultivation of 
 Dunaliella   in PBR  does not yet exist but is arguably possible. The key drivers 
behind this effort are higher productivity and better quality of the biomass. As a 
result of optimization of cultivation conditions (irradiance and nitrogen availabil-
ity), an average β-carotene  content as high as 10 % DW is attainable [ 22 ].  

4.4.6     Biomass Harvesting  and Downstream Processing 

 One of the most challenging issues of developing commercially viable processes for 
microalgal bioproducts is biomass harvesting  and dewatering. Sedimentation of the 
cells under the action of gravity is time-consuming and often incomplete. The most 
widespread techniques of microalgal cell harvesting are fi ltration, centrifugation, 
and chemical fl occulation  or biofl occulation and combinations of these methods 
[ 91 ,  92 ,  102 ]. For harvesting the Car-enriched biomass in large-scale cultivation in 
open ponds, a combination of fl occulation and surface adsorption is used whereas 
the biomass grown in PBR  is usually harvested by centrifugation. The astaxanthin - 
rich cysts of  H. pluvialis  feature higher density than the cultivation medium. Hence, 
they could be harvested by sedimentation under the action of gravity or a low-speed 
centrifugation. 

 Several attempts were made to employ vacuum or pressurized fi ltration for bio-
mass harvesting . The diatomite and cellulose fi lters were effi cient only for the sepa-
ration of large cells whereas smaller cells such as that of  Chlorella  required 
membranous fi lters, which were clogged rapidly. Taking into account the need for 
frequent change or cleaning of the fi lters and high energy input, there was but small 
difference in the costs between fi ltration and centrifugation [ 92 ]. Centrifugation is a 
convenient, though energy intensive, and hence expensive method since it allows 
quick separation from the medium of more than 95 % of algal cells regardless of the 
species. As a result, the latter method remains preferred for obtaining the biomass 
for value-added product such as Car [ 103 ]. 

 Flocculation is based on the use of reagent (such as FeCl 3  or Al 2 (SO 4 ) 3 ) which 
compensates the negative charges at the surface of the cells which normally prevent 
the aggregation of microalgae [ 104 ]. Alternatively, alkali and polycations such as 
chitosan are used [ 105 ]. 

 Some microalgae such as  Chlorella minutissma  are capable of biofl occulation 
i.e. begin to fl occulate without addition of chemicals at the late stationary or under 
certain growth conditions. As a result of fl occulation , cell aggregates are formed 
which are much easier to separate by fi ltration, low-speed centrifugation or even by 
gravity [ 104 ]. 

 For large and heavy cells such as  H. pluvialis  red cysts, it turned feasible to use 
the combined process of sedimentation with subsequent centrifugation and drying 
of the paste in thin layer. Then, the biomass could be cracked e.g. by milling to 
fracture the thick and tough cell wall to increase the extractability or bioavailability 
of astaxanthin . However, the downstream processing of the biomass of  carotenogenic 
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microalgae  often constitutes the know-how of the corresponding companies which 
scarcely share any information about this step. 

 A considerable challenge is represented by extraction  of Car from the microalgal 
cells. One of the main problems with extraction of pigments from microalgae is the 
presence of tough cell walls. A variety of organic solvents is used for pigments 
extraction [ 23 ]. The most common is extraction with a non-polar solvent, usually 
hexane. Selective extraction of astaxanthin  from  H. pluvialis  is also achieved with 
dodecane and methanol. The extractability with this method could be as high as 
95 % of the total pigments. Vegetable oils (so-called green solvent) such as olive oil 
allows the extraction up to extract 93.9 % of the pigments with the added benefi t for 
environmental safety. Finally, extraction with super critical CO 2   is a promising 
alternative to the existing methods. This method provides shorter extraction time 
and saves toxic and expensive organic solvents. By contrast, CO 2  is relatively cheap, 
chemically inert, non-toxic and stable [ 23 ]. Major drawbacks of supercritical fl uid 
extraction are contamination  of the extract with chlorophylls and the need for 
expensive equipment.   

4.5     Approaches for Optical Monitoring of Carotenogenic 
Algal Cultures 

 Mass cultivation of microalgae for value-added products such as Car requires fast 
and reliable techniques, preferably non-destructive, for on-line monitoring of the 
target product contents and the physiological condition of the algal culture. These 
techniques provide information, which is essential for timely and informed decisions 
on adjustment of illumination  conditions, medium composition and for the choice of 
the time for biomass harvesting . Often, the decisions must be taken within hours and 
mistakes may lead to a signifi cant reduction in productivity or in total culture loss 
[ 106 ]. Traditionally, the pigment content in microalgal cells is determined with the 
use of spectrophotometry and chromatography [ 79 ] which are time- consuming, 
expensive, and not readily available at mass cultivation facilities. These consider-
ations make obvious the need for a reliable, rapid and preferably non- destructive 
technique for fast appraisal of the relative Car content in microalgal cultures. 

 Remarkably, the engagement of protective mechanisms based on the build-up of 
secondary Car  within OB  in the cells is accompanied by specifi c and directional 
changes in the optical properties of the algal suspensions [ 107 ]. Recent reports 
show that astaxanthin  presence and subcellular distribution  in vivo  could be charac-
terized [ 108 ] and even distinguished from β-carotene [ 44 ] using advanced spectral 
techniques such as Raman spectroscopy. Development of methods for non- 
destructive monitoring  based on optical spectroscopy requires a deep understanding 
of the relationships between the changes in light absorption by algal cells and 
dynamics of their pigment and lipid contents. 

 In particular, the increase in the Car/Chl ratio under various stresses, including nitro-
gen starvation and high light, is characteristic of many microalgal species [ 33 ]. In par-
ticular, in  H. pluvialis  [ 47 ,  109 ] carotenogenesis  occurs under stressful conditions in 
parallel with the degradation of Chl manifesting the reduction of photosynthetic 
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 apparatus in order to avoid photooxidative damage [ 107 ,  110 ]. It was found that the 
Car/Chl ratio, but not the absolute amount of Chl or Car correlates directly with high 
light-stress  tolerance in  H. pluvialis  [ 107 ] making Car/Chl an informative index of the 
cell physiological condition. As a result, the molar Car content exceeds that of Chl and 
the Car begin to exert the dominant contribution strongly to the absorption between 400 
and 500 nm evident in many algal species [ 111 ]. This spectral feature was employed 
for the development of algorithms for estimation of Car/Chl ratio in the biomass of 
 Parietochloris incisa  [ 112 ,  113 ],  H. pluvialis  [ 107 ,  114 ], and  Nannochloropsis  sp. 
[ 115 ]. It should be noted that the correction for the contribution of light scattering into 
overall attenuation of light by the suspension prior to the normalization turned to be 
necessary for the precise estimation of the pigment ratio. The peculiarities of the spec-
tra processing and the development of the algorithms are reviewed elsewhere [ 111 ]. 

 Finding relationships between pigment content in  H. pluvialis  whole-cell sus-
pension, especially cysts with high Car content (or Car/Chl ratio), turned to be a 
non-trivial problem, primarily due to the optical complexity of this system. In par-
ticular,  H. pluvialis  cells contain high amounts of pigments which are localized in 
specifi c structures (thylakoid membranes of chloroplast or cytoplasmic OB  in case 
of Chl and primary Car  or secondary Car , respectively) non-uniformly distributed 
within the cell volume [ 47 ,  78 ]. As a result, a number of serious obstacles for mea-
surement of optical density spectra in  H. pluvialis  cell suspension arise including 
rapid cell sedimentation, signifi cant infl uence of light scattering, strong pigment 
aggregation, and sieving effect. 

 The analysis of cell suspension spectra revealed that the amplitude of the raw 
absorbance spectra was not directly correlated to their pigment content. The nor-
malization of the spectra to the red Chl maximum essentially equalized the contri-
bution of Chl to light absorption making apparent the relative contribution of Car, 
which drastically increased in the course of carotenogenesis.  Hence, the absorbance 
normalized to the Chl red maximum exhibited a tight relationship with Car/Chl in a 
broad range of its changes [ 114 ]. 

 Collectively, there is a solid ground to believe that one could obtain a quantitative 
record of the development of stress -induced carotenogenesis  in  H. pluvialis  and a 
number of other carotenogenic microalgae  non-destructively  via  optical density 
measurements. In particular, the normalized optical density in the broad band 
around 500 nm, as well as the green edge features, could be employed in the devel-
opment of models for rapid assay of Car/Chl in the algal cells suspensions. However, 
obtaining a calibration in the widest possible range of Car/Chl changes in any par-
ticular culture system and careful control of the biomass load per fi lter is crucial for 
the robustness of Car/Chl estimation.  

4.6     Economic Aspects of Carotenoid Production 
with Microalgae 

 Global market of nutraceuticals and food supplements containing Car is 
 characterized with confi dence as vigorously growing. Thus, in 2010 it was esti-
mated $1.2 billion and expected to grow to $1.4 billion by 2018 (BCC research; 
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  http://www.bccresearch.com/pressroom/fod/global-carotenoids-market-
reach-$1.4-billion- 2018        ). The market is dominated by β-carotene , lutein  and 
astaxanthin  (Fig.  4.7 ). The highest consumption of carotenoids is expected by the 
pharmaceutical industry [ 56 ].

   Carotenoids  from microalgae grown in PBR  are, in main instances, unable to 
compete with their synthetic counterparts. This situation could be amended by opti-
mization of the production processes. Thus, the basic steps of the commercial pro-
duction of Car from microalgae include (i) algae cultivation, (ii) biomass harvesting , 
and (iii) extraction  and purifi cation of carotenoids [ 22 ]. The capital expenses  for 
cultivation of microalgae include the cost of land, PBR, equipment for the harvest-
ing and drying of biomass, communications and infrastructure. The operational 
expenses  include salaries, nutrients (mineral components of the media and CO 2  ), 
energy, water, maintenance of machinery, taxes, insurance etc.[ 45 ]. The typical cost 
structure of  H. pluvialis  cultivation in PBR is as follows. Energy for illumination  
makes up ca. 40 %, the cost of culture medium is ca. 6 % [ 116 ]; biomass harvesting 
contributes up to 30 % to the total cost of product. The rest is comprised by the cost 
of biomass dehydration [ 92 ]. 

 Generally, cost-effi ciency of the system is determined by many factors including 
the design and the size of PBR . Thus, in case of a fl at panel PBR, scaling up from 
17 to 200 L signifi cantly reduced the total costs of production per year from $ 
394 kg −1  to $ 242 kg −1  dry biomass [ 116 ]. Still, the cultivation using raceway is 20 
times cheaper than cultivation in PBR [ 45 ]. So, the target productivity in a PBR 
should be at least 20 times higher than in a raceway pond. On the other hand, open 
pond cultivation is not suitable for microalgal species susceptible for contamination  
such as vegetative cells of  H. pluvialis . Hybrid technologies  combining cultivation 
of vegetative cells in PBR with subsequent induction of carotenogenesis  in open 
ponds (see Sect.  4.4.5  above) appear to be the cheapest solution. As shown by Li 

β-apo-carotenal-
ester

β-carotene

Iutein

Astaxanthin

Capsanthin

Annatto

β-apo-8-
carotenal

Lycopene

Canthaxanthin

Zeaxanthin  Fig. 4.7    The structure of 
global carotenoid market at 
2010 (BCC research)       

 

A. Solovchenko and K. Chekanov

http://www.bccresearch.com/pressroom/fod/global-carotenoids-market-reach-$1.4-billion-2018
http://www.bccresearch.com/pressroom/fod/global-carotenoids-market-reach-$1.4-billion-2018


85

et al. [ 45 ], the cost of astaxanthin  in this case is estimated at $ 718 kg −1 ($ 18 kg −1  
biomass containing about 2.5 % astaxanthin). This cost is much lower than the cur-
rent cost of natural and even synthetic pigment. However, such a low expenses are 
achievable only if the labor cost and other costs are as low as they are in China [ 45 ].  

4.7     Conclusions and Outlook 

 Carotenoid molecules are naturally designed for protection of vulnerable biomole-
cules in the cell from harmful effects of environmental stresses, ROS , and other 
aggressive chemical species. Certain Car such as β-carotene , astaxanthin , and lutein  
are of immense practical signifi cance. These compounds are potent antioxidants 
with diverse benefi cial effects on health. They are used as medicine preparations, 
widely consumed as nutraceuticals and safe food colorants and beauty product 
ingredients, functional food and feed additives . 

 Microalgae are the most effi cient cellular factories of carotenoids though the 
examples of successful commercial cultivation of microalgae for Car are so far lim-
ited. The key reasons are expensive production of high-quality microalgal biomass 
and strong competition with cheap (though less effi cient and environmentally safe) 
synthetic Car . 

 Several approaches could be proposed to make natural carotenoids from micro-
algae more competitive. First, we need to put an emphasis on the investigation of 
natural biodiversity to search for more effi cient algal strains. Thus, Olaizola [ 117 ] 
estimated ca. twice more productive strains accumulating 10 % astaxanthin  (vs. cur-
rent 3–5 %) will make astaxanthin from  H. pluvials  competitive as feed additive. 
Taking into account that only 1–2 % of microalgal biodiversity currently estimated 
as several million species are known, the search for new effi cient strains defi nitely 
holds promise. 

 Second, we need more thorough understanding of the physiology of secondary 
carotenogenesis  in microalgae. The insight into these processes forms the founda-
tion for the development of more energy-effi cient and hence cost-effi cient photobio-
technology for commercial production of Car from microalgal biomass. In particular, 
a considerable progress is being made in the techniques for on-line monitoring of 
physiological condition and biochemical composition of microalgal cultures  in situ  
(in the PBR  vessel) for timely, informed decisions for the culture management. 
Then, a considerable effort is invested in metabolic engineering of microalgae 
aimed to remove the major bottlenecks of the biosynthesis of Car. 

 Third, innovative methods for harvesting  and preparation of the microalgal bio-
mass and the extraction  of Car are needed. The most important targets here are 
energy savings, completeness and selectivity of the extraction as well as avoidance 
of the expensive and toxic solvents. 

 Finally, there is a need to bridge the gap between the developed technology suit-
able for implementation at industrial scale and the latest scientifi c achievements in 
the fi eld of Car production from microalgae.     
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    Chapter 5   
 Submerged Fermentation of Medicinal Fungus 
 Cordyceps sinensis  for Production 
of Biologically Active Mycelial Biomass 
and Exopolysaccharides 

             Jing-Kun     Yan     and     Jian-Yong     Wu    

    Abstract      Cordyceps  ( Ophiocordyceps )  sinensis , the Chinese caterpillar fungus or 
 Cordyceps  in brief, is an important medicinal fungus in Chinese herbal medicine 
with a wide range of health benefi ts and bioactivities. Because wild  C. sinensis  fun-
gus (in the form of insect caterpillar-fungal fruiting body complex) is very expen-
sive and rare in nature, mycelial fermentation has become the main source of  C. 
sinensis  fungal materials. Liquid or submerged fermentation of fungal mycelia has 
been widely exploited for large-scale production of  C. sinensis  mycelium biomass 
and exopolysaccharides (EPS). This chapter will give a brief introduction of the 
biological characteristics of the  C. sinensis  fungus and its medicinal functions and 
applications, and then mainly review the conditions and characteristics of  C. sinen-
sis  mycelial culture for the production of mycelial biomass and EPS in shake-fl asks 
and stirred-tank fermenters. In addition to the relevant studies reported by other 
research groups, this chapter will summarize the major fi ndings from the studies by 
our own group with the Cs-HK1 fungus, including the fl uid transport properties and 
the process parameters from small laboratory to large-scale industrial fermenters, 
the problems in separation and recovery of mycelial biomass and EPS from the 
viscous fermentation liquid, and the isolation, purifi cation and molecular properties 
of polysaccharides.  
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  Abbreviations 

   Cs     Cordyceps sinensis    
  DO    Dissolved oxygen   
  EPS    Exopolysaccharide   
  MW    Molecular weight   
  MWCO    Molecular weight cut-off   
  PE    Peptone   
  PS    Polysaccharide   
  PSP    Polysaccharide-protein complex   
  TKN    Total Kjeldahl nitrogen   
  YE    Yeast extract   

5.1           Introduction 

 Edible and medicinal fungi (mushrooms) are widely applied to functional foods 
and nutraceutical products because of their proven nutritive and medicinal prop-
erties [ 1 ,  2 ]. Polysaccharides (PS) represent a major class of bioactive molecules 
from edible and medicinal fungi which have notable antitumor, immunomodula-
tory and other medicinal properties [ 3 ,  4 ]. PS-rich water extracts of mushrooms 
or mycelia have been applied to a wide range of functional food and cosmetic 
products, and some purifi ed PS fractions such as β-glucans and PS-protein com-
plexes (PSPs) from edible and medicinal fungi have found clinical applications 
for immunotherapy and cancer treatment, and as an adjuvant for chemotherapy/
radiotherapy [ 5 ]. Because of the limited and unstable supply of wild mushrooms, 
cultivation of  fungal mycelia or mushrooms (in fruiting body form) by solid and 
submerged fermentation has been a major source of fungal materials including 
the PS extracts. Liquid or  submerged fermentation is a more favourable and effi -
cient process than solid-state fermentation for the production of mycelial bio-
mass and bioactive compounds, especially the exopolysaccharides (EPS) [ 6 ,  7 ]. 

  Cordyceps  ( Ophiocordyceps )  sinensis , the Chinese caterpillar fungus or Dong-
chong-xia-cao in Chinese, is a special mushroom with a fruiting body formed on 
caterpillars (Fig.  5.1 ).  C. sinensis  is one of the most famous and highly valued 
medicinal fungi in China [ 8 ], and has also attracted worldwide attention in recent 
years [ 9 – 12 ].  C. sinensis  has been used traditionally in China mainly as a general 
tonic for a number of health benefi ts, e.g. strengthening the lung and kidney func-
tions, restoring health after prolonged sickness, enhancing the physical perfor-
mance, and improving the quality of life, while the recent studies have shown 
several pharmacological  activities of  Cordyceps  including antitumor, antiaging, 
anti-fatigue, anti-infl ammation, anti-atherosclerosis and antioxidant activities 
[ 13 – 15 ]. As the wild or natural caterpillar fungi as fungus fruiting body-caterpillar 
complexes are rare and cannot meet the increasing demand, mycelial fermenta-
tion has become a major source of  Cordyceps  materials. A number of studies 
have been reported over the last 10 years on mycelial fermentation of  C. sinensis  
for the production of mycelial biomass and EPS [ 16 ,  17 ].
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   This chapter presents a brief introduction of the, biological characteristics and 
medicinal properties of  C. sinensis , and the recent studies on submerged fermenta-
tion of this fungus for the production of mycelial biomass and EPS. The studies by 
our group on the mycelial fermentation processes of a  C. sinensis  fungus, Cs-HK1, 
will be discussed in detail, including the medium composition and culture condi-
tions, characteristics of mycelial morphology and broth rheology. This chapter it 
also points out on the problems and considerations in large-scale fermentation and 
product recovery, and the chemical properties, health effects and bioactivities of 
mycelium and polysaccharides.  

5.2      C. sinensis  species and value 

  Cordyceps sinensis  (Berk.) Sacc. [≡ O phiocordyceps sinensis  (Berk.) G.H. Sung, 
J.M. Sung, Hywel-Jones & Spatafora] is an ascomycete fungus (instead of basidio-
mycetes for most of the edible mushrooms), which is a parasite on the caterpillars of 
the  Hepilus  spp. moths. As shown in Fig.  5.1 , a mature  C. sinensis  caterpillar fungus 
forms a fruiting body on an insect larva. The infection of larva by the fungus usually 
starts in late autumn (with the colonization of the larva by fungal spores) and  continues 
through the winter (underground), till the next spring or early summer, when a stalked 

The larva
Head of stroma

The stroma

  Fig. 5.1     Cordyceps  
( Ophiocordyceps )  sinensis  
fruiting body-caterpillar 
complexes: morphology and 
natural habitat [ 18 ,  19 ]       
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fruiting body protrudes from the head of the dead larva to appear above the ground. 
This fruiting body-caterpillar complex is called Dong-Chong-Xia-Cao 冬虫夏草 in 
Chinese which means “winter-worm and summer-grass”, signifying its seasonal 
changes in morphology [ 8 ]. Natural  C. sinensis  are mainly distributed on the Qinghai-
Tibetan plateaus at an altitude of 3,500–4,500 m above sea level, scattering over fi ve 
provinces in western China, Tibet, Qinghai, Sichuan, Yunnan and Gansu [ 20 ]. 

 In recent years, wild or natural  C. sinensis  has become increasingly scarce and 
classifi ed as an endangered species because of reckless harvesting and unfavorable 
weather conditions for its proliferation [ 8 ]. Artifi cial cultivation of the caterpillar 
fungi is formidable owing to the complex fungal parasite-insect host relationship, a 
biological process and the special environmental conditions for the formation of 
natural caterpillar fungi. Cultivation of fungal mycelia by solid or liquid fermenta-
tion is the only viable alternative for mass production of  Cordyceps  material. Many 
fungal species have been isolated from natural  C. sinensis  caterpillar fungus such 
as  Paecilomyces sinensis ,  Paecilomyces hipeali ,  Cephalosporium sinensis , 
 Tolypocladium sinensis , and  Hirsutella sinensis  [ 21 ,  22 ]. Some of these species 
have been successfully applied to liquid and submerged fermentations for large- 
scale production of  C. sinensis  fungal mycelia. In recent years, there are many com-
mercial health products made of  C. sinensis  fungal mycelia in capsules and various 
other formulations (Fig.  5.2 ). The Cs-4 fungus  Paecilomyces hepiali  Chen has been 

  Fig. 5.2    Commercial cordyceps health food products made of fungal mycelium       
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most widely applied to commercial production of  C. sinensis  mycelia by  fermentation 
since the fi rst Cs-4 mycelium product called “JinShuiBao Capsules金水宝胶囊” was 
made in 1982 by Jiangxi Jinshuibao Pharmaceutical Company Ltd. (Nanchang, 
Jiangxi, China) [ 13 ].

    C. sinensis  contains several classes of bioactive compounds, of which nucleoside 
analogues and polysaccharides are the two major classes. More than ten nucleosides 
and analogues have been isolated from  C. sinensis , adenosine and 3′-deoxy-
adenosine or cordycepin are regarded as the marker constituents of  C. sinensis . 
Polysaccharides are one of the most abundant classes, which account for 8–10 % of 
the biomass [ 23 ,  24 ]. Other bioactive compounds in  C. sinensis  include sterols, 
amino acids and peptides. It has been shown that the fungal mycelium biomass can 
have the similar chemical composition and pharmacological activities as that of 
natural  C. sinensis  fungus [ 25 ].  

5.3     General Conditions for Submerged Fermentation 
of  Cordyceps  

5.3.1     Nutrient Requirements for  Cordyceps  Mycelial Cultures 

 The fungal cells in fermentation processes can utilize carbon, nitrogen and sulfur as 
the major nutrients for growth (biomass) and metabolite production (primary and sec-
ondary metabolites). Carbon is the major structural element of all the organic com-
pounds in living organisms. Glucose and sucrose are most common carbon sources, 
and fructose and mannose are also used for certain species and production processes. 
Polysaccharides such as starch is often used as the less expensive carbon source, 
which needs to be hydrolyzed into its mono-sugar subunits by specifi c enzymes in the 
microorganisms before being utilized [ 26 ]. Nitrogen sources are divided into two 
classes, organic and inorganic. The most common organic nitrogen sources are those 
complex natural products such as yeast extract, peptone, corn steep liquor and casein 
hydrolysate. Nitrate (NO 3  − ) and ammonium (NH 4  + ) are most common inorganic nitro-
gen sources for many microorganisms including fungi. Most fungal cultures require at 
least one complex organic nitrogen source, and some cannot even utilize any form of 
inorganic nitrogen [ 27 ,  28 ]. Phosphorus and sulfur are another two major inorganic 
elements required for microbial and fungal growth. Inorganic salts such as KH 2 PO 4  
and K 2 HPO 4  are most common phosphorus sources as well as the sources for potas-
sium. Salts of SO 4  2− , e.g., (NH 4 ) 2 SO 4  and MgSO 4 , are common sulfur sources, and 
thiosulfate (S 2 O 3  2− ), sulfi de or organic sulfur (such as the sulfur containing amino 
acids) are used as the sulfur sources for a some fungal species [ 27 ,  28 ]. 

 As shown in Table  5.1 , glucose and sucrose have been the common carbon sources, 
and yeast extract, peptone and corn steep powder have been the common nitrogen 
sources for various  C. sinensis  species in mycelial cultures. Inorganic salts KH 2 PO 4 , 
K 2 HPO 4  and MgSO 4  are included as the K, P, S, and Mg sources in almost all the 
media; NH 4  + , NO 3  +  and Fe 2+  are also added to a few. Most of the media have a simple 
composition containing altogether not more than fi ve different components.
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5.3.2        Oxygen Supply and Culture Conditions 

  C. sinensis  fungi are aerobic organisms and their mycelial cultures require constant 
oxygen supply. In liquid fermentation, oxygen is usually supplied by air-sparging into 
the broth. The dissolved oxygen (DO) level in mycelial culture is a major factor which 
strongly affects the mycelial growth rate, and perhaps also affects the yield of bioactive 
products such as exopolysaccahrides (EPS) [ 36 ,  37 ]. On the other hand, the oxygen 
requirements may be different for cell growth and metabolite synthesis. In a previous 
study on  C. militaris  mycelial culture, for example, DO was controlled at 60 % air satu-
ration during initial period or the fi rst stage for mycelial growth and was lowered to 30 % 
in later period or the second stage for the cordycepin production, leading to 15 % higher 
cordycepin yield than with a single DO level throughout the entire culture period [ 38 ]. 

 In addition to nutrients and oxygen, the medium pH and culture temperature are 
important factors for microbial cultures including fungal mycelial fermentation 
(Table  5.1 ). Although  C. sinensis  is a cold resistant species, its metabolism is inhib-
ited when the cultivation temperature drops to 0 °C [ 39 ]. The fungus grows slowly 
at 1–4 °C, and most rapidly at 20–25 °C. Normally it grows well in slightly acidic 
pH range (pH 5–7). For submerged fermentation at 20–25 °C, the mycelial growth 
usually reaches the maximal concentration in 5–7 days of cultivation. The period of 
cultivation not only affects the yield but also the chemical composition and the 
medicinal property of the mycelial biomass.  

5.3.3     Culture Vessels for Mycelial Fermentation and Yields 
of Biomass and EPS 

 Fermenters are the major pieces of equipment for large-scale production of mycelial 
biomass and fungal metabolites. Stirred-tank fermenters are dominantly used for 
liquid fermentation in both industry and laboratory, which provide effi cient mixing 
and oxygen transfer conditions and also allow for monitoring and controlling the 
culture conditions [ 7 ,  40 ]. Disc turbine with vertical blades (Rushton) is the com-
mon and standard impellor found on industrial and laboratory fermenters, which 
pumps the fl uid in a radial direction. Another type of impeller more suitable for 
mycelial broth of high viscosity is the axial fl ow hydrofoil design, which can pump 
liquid up or down and provide better bulk mixing than the Rushton type. Stirred- 
tank fermenters used in most previous studies on  C. sinensis  mycelial cultures were 
mostly agitated with the standard Rushton impellor [ 25 ,  37 ,  38 ,  41 ]. In mycelial 
culture fermenters, effi cient mixing and oxygen transfer may become increasingly 
diffi cult with time because of the increase in broth viscosity and with the increase in 
biomass and EPS concentrations. The cell morphology and the rheological proper-
ties of mycelial broth have strongly affected by the hydrodynamic conditions. 
Consequently, these biological characteristics and physical properties are all major 
factors affecting the performance and productivity of the mycelial fermentation. 

 Table  5.1  provides a summary of the mycelial biomass and EPS yields of sev-
eral  C. sinensis  species obtained in various conditions in shake-fl aks and small 
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fermenters. The biomass and EPS yields varied in a wide range from 10 g L −1  to 
54 g L −1 , and <1.0 g L −1  to >40 g L −1  with the fungal species and culture conditions, 
respectively. Most of these results were obtained in small volumes shake-fl asks or 
stirred-tank fermenters.   

5.4     Mycelial Culture of  C. sinensis  Fungus Cs-HK1 

5.4.1     Fungal Species and Mycelial Culture 

 The Cs-HK1 fungus was originally isolated from the fruiting body of a natural 
 C. sinensis  in our lab and identifi ed as a  Tolypocladium  sp. fungus (China General 
Microbiological Culture Collection Center: CGMCC6004) [ 42 ]. The Cs-HK1 
mycelial culture was stored on solid potato-dextrose-agar (PDA) medium at 
20 °C. The liquid culture medium was composed of 40 g L −1  glucose, 10 g L −1  yeast 
extract, 0.5 g L −1  MgSO 4  and 1 g L −1  KH 2 PO 4 . Liquid culture was usually propa-
gated in 250 mL Erlenmeyer fl asks each containing 50 mL of liquid medium on a 
shaking incubator operated at 150 rpm and 25 °C.  

5.4.2     Carbon and Nitrogen Nutrients and Mycelial Growth 
in Liquid Culture 

 Various organic nitrogen sources including yeast extract (YE), peptone (PE), corn 
steep liquor (CSL) and urea, and inorganic nitrogen sources, such as KNO 3 , NH 4 Cl 
and NH 4 NO 3  in medium containing 40 g L −1  glucose were compared. Among those 
organic nitrogen sources, YE and PE were most favorable for mycelial growth with 
a maximum mycelial dry weights of 16.5 and 13.8 g dw L −1 , respectively (Fig.  5.3a ), 
and the highest biomass concentration was attained with 10 g L −1  yeast extract and 
5 g L −1  peptone plus the inorganic salts. Therefore, the fi nal liquid medium for 
Cs-HK1 mycelial culture was made of glucose (40 g L −1 ), yeast extract (10 g L −1 ), 
peptone (5 g L −1 ), KH 2 PO 4  (1 g L −1 ) and MgSO 4 ·7H 2 O (0.5 g L −1 ). Fig.  5.3b  shows 
the typical time courses of mycelial growth and sugar, and nitrogen consumption of 
the Cs-HK1 fungus in shake-fl ask cultures. The mycelium biomass showed a lag-
phase in the fi rst 1–2 days and exponential growth in the next 2–3 days (specifi c 
growth rate estimated at 1.1 d −1 ). The biomass of mycelium reached a maximum 
concentration of 23.2 g dw L −1  on day 7 and changed a little during days 7–9, and 
then started to drop on day 10. The time courses of glucose and total nitrogen (TKN) 
appeared to be mirror images of the biomass growth curve, with both nutrient con-
centrations dropping slowly in the fi rst 2 days, and rapidly from day 2 to day 6, and 
leveling off thereafter.
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5.4.3        Chemical Composition of Cs-HK Mycelium and Natural 
 C. sinensis  

 The protein and total carbohydrate contents of the Cs-HK1 mycelium were similar 
or slightly higher than in the natural species, and the PS content of mycelium was 
much higher than that of natural  C. sinensis  (Table  5.2 ). The contents of most nucle-
osides detected in the fungal mycelium were signifi cantly higher than those in the 
natural  C. sinensis . In particular, the contents of two marker constituents of  C. 
sinensis , cordycepin and adenosine in the mycelium extract were about three and 
fi ve times respectively of those in the natural species.
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  Fig. 5.3    ( a ) Effects of 
nitrogen sources on mycelial 
growth by Cs-HK1.  1  KNO 3 ; 
 2  NH 4 Cl;  3  NH 4 NO 3 ;  4  
CO(NH 2 ) 2 ;  5  YE;  6  PE;  7  
CSL; error bars for SD, n = 3; 
and ( b ) Time courses of 
mycelium biomass and sugar, 
and nitrogen concentrations 
in Cs-HK1 fungus liquid 
cultures (TKN for total 
Kjeldahl nitrogen nitrogen 
determined by the standard 
Kjeldahl method) [ 42 ]       

  Table 5.2    Contents of total 
protein, carbohydrate and 
polysaccharide and major 
nucleosides in natural  C. 
sinensis  (Cs) and Cs-HK1 
fungal mycelium (cultured 
for 7 days)  

 Components  Cs-HK1 mycelium  Natural Cs 

 Protein (mg g −1 )  11.7 ± 0.07  9.54 ± 1.11 
 Sugar (mg g −1 )  654.6 ± 21.5  643.1 ± 18.0 
 Polysaccharide (mg g −1 )  244.2 ± 11.6  129.5 ± 14.8 
  Nucleosides (μg/g dw)  
 Uracil  13.3 ± 0.56  3.35 ± 0.30 
 Cytosine  5.03 ± 0.36  69.4 ± 7.15 
 Adenosine  1116.8 ± 8.25  264.6 ± 6.66 
 Cordycepin  65.7 ± 2.01  20.8 ± 2.56 

  Contents are expressed in per gram dry weight of mycelium and 
natural Cs; values represent means ± SE, n = 2  
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5.5         Cs-HK1 Mycelial Fermentation from Small 
to Large- Scale Fermenters 

 In previous studies, we have established the Cs-HK1 mycelial culture, derived the 
suitable medium and culture conditions, analyzed the chemical composition and 
bioactive components of Cs-HK1 mycelial biomass and detected the antitumor 
activities of mycelial extracts [ 42 ,  43 ]. The results showed that Cs-HK1 mycelial 
fermentation can produce a mycelial biomass with the similar medicinal proper-
ties as that of natural  C. sinensis . The potential and capability of Cs-HK1 mycelial 
culture for commercial application needs to be evaluated in large-scale fermenters. 
Stirred-tank or mechanically-agitated fermenters are the most common culture 
vessels for liquid or submerged fermentation in the industry. Several factors are 
important for operation of stirred-tank fermenters, dissolved oxygen (DO), mycelial 
morphology and broth viscosity and rheological characteristics. In this part, we fi rst 
studied the culture characteristics of Cs-HK1 fungus in small laboratory fermenters, 
and then evaluated the performance in pilot and large-scale industrial fermenters for 
mycelial biomass and EPS production, and fi nally examined the problems and alter-
natives for separation and recovery of mycelial biomass and EPS from fermentation 
broth. The mycelial fermentation experiments were performed in 1–15 L fermen-
ters, and large-scale production in 2,500 L and 10,000 L fermenters. 

5.5.1     Oxygen Uptake Rate 

 Specifi c oxygen uptake rate qO 2  was determined in a 1-L stirred-tank fermenter by 
the dynamic gassing-out method [ 44 ]. The fermenter used was a BIOSTAT® B Plus 
1-L stirrer tank fermenter (Sartorius, Germany), having a total volume of 1.6 L and 
working volumes of 0.4−1 L. The agitator consisted of two 6-vertical blade disk 
impellers on a rotating shaft with an impeller/tank diameter ratio of 0.41. Wall baf-
fl es were removed during the experiments to avoid mycelial blockage and adhesion. 
The fermenter was assembled with probes or electrodes for dissolve oxygen (DO), 
pH, temperature, and antifoam detection, which were all connected to a controller 
panel and a computer. Air fl ow rate was kept at 1 vvm, and DO in the fermenter was 
controlled by adjusting the agitation speed. Another 15-L stirred-tank fermenter, 
BIOSTAT® B Plus (Sartorius, Germany) was also used for comparison of the myce-
lium and EPS production with those in 1-L. Antifoam 289 (Sigma, St Louis, MO, 
USA) was added to the medium at 0.1 % (v/v). The inoculum was taken from shake- 
fl ask culture of the Cs-HK1 incubated for 6−7 days at 20 °C, and added to the fer-
mentation medium at 0.1 % (v/v). Culture pH was not controlled during the 
fermentation period. 

 The qO 2  measurement was conducted 24 h after inoculation when the mycelial 
culture was in the exponential growth phase. At this time, the air supply to the fer-
menter was abruptly stopped, so that, the DO concentration dropped with time 
approximately in a linear trend, and its slope (in mol L −1 h −1 ) divided by the cell 
concentration (in kg L −1 ) and equal to qO 2  (in mol O 2  kg −1  cell-h −1 ). As shown in 
Fig.  5.4a , the DO in the liquid culture dropped slowly in the fi rst day (day 0–1) after 
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inoculation, and then dropped steeply to nearly zero in the next 3 days (days 1–3) 
and remained at the low level thereafter. The rapid DO drop was in a parallel trend 
with the rapid mycelial growth. Between days 3 and 5, the DO was nearly depleted 
while the mycelial biomass was growing rapidly. The low DO level during this 
period was probably due to rapid oxygen consumption by the fungal cells and inef-
fective oxygen supply. The latter problem was caused by the ineffi cient mixing of 
the mycelial broth with the formation of a stagnant zone by the viscous mycelial 
broth near the wall and away from the impellers.

   As shown in Fig.  5.4b , the specifi c oxygen uptake rate (qO 2 ) of Cs-HK1 in the 
1-L mycelial fermenter, this exhibits the typical saturation kinetics of batch fermen-
tation. qO 2  increased rapidly with DO from 0 to about 10 % air saturation and then 
remained relatively steady at higher DO levels. From this plot, we derived the  critical 
DO as 10–20 % air saturation and the maximum qO 2  as 2 mol O 2  kg −1  cell-h −1  for the 
growth of Cs-HK1 mycelium in liquid culture. 

 According to the experimental results at different DO levels (5, 10 and 15 % air 
saturation) in the 1-L fermenters (Table  5.3 ), both biomass and EPS concentrations 
increased with the DO level. The small increase in the mycelial biomass (about 5 %) 
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  Fig. 5.4    Oxygen uptake rate 
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disk turbine impellers): ( a ) 
DO and biomass time courses 
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■ biomass yield); ( b ) Specifi c 
oxygen uptake rate       

  Table 5.3    Mycelial biomass 
and EPS yields attained at 
different DO levels in 1-L 
fermenters (6-day period)  

 DO (% air 
saturation) 

 Biomass 
(g dw L −1 )  EPS (g L −1 ) 

 5  22.5  3.2 
 10  24.2  4.1 
 15  25.4  4.7 
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with DO increased from 10 to 15 % was in agreement with the critical DO level 
around 10–20 % as suggested in Fig.  5.4b . However, the EPS production increased 
more dramatically with the DO level at that range, suggesting that a higher DO 
concentration was required for effi cient EPS production.

5.5.2        Mycelial Culture Characteristics of Cs-HK1 
in Laboratory Fermenters 

 Figure  5.5  shows the time courses of Cs-HK1 mycelial culture in 1-L fermenters at 
10 % air saturation including biomass growth, nutrient consumption, medium pH 
change and EPS production. The mycelial biomass grew rapidly (exponentially) 
from day 2 to 5 and reached a maximum biomass 23.9 g dw L −1  on day 6; glucose 
concentration dropped to below 2 g L −1  on day 5 and to nearly zero on day 6; total 
nitrogen level dropped to 0.5 g L −1  which was about 17 % of the initial level. During 
the mycelial fermentation, the pH of culture medium dropped from 6.0 to 4.6–4.8 
probably due to the organic acids produced by the fungal cells (Fig.  5.5b ); the EPS 
production was nearly parallel to the mycelial growth, with the EPS concentration 
increasing most rapidly between 2 and 5 and reaching 4.6 g L −1  on day 6.

   The Cs-HK1 mycelial culture in a 15-L fermenter followed the similar time 
course as that of biomass growth, oxygen consumption and medium pH change to 
those in the 1-L fermenters, exhibiting a very low DO level from day 3 to day 5 
when the mycelial biomass was increasing rapidly. Table  5.4  presents a summary of 
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the major growth parameters in the 1-L and 15-L fermenters and in shake-fl asks. 
The biomass and EPS concentrations (on day 5) in both fermenters were higher than 
in shake-fl asks, implying that the mycelial growth and EPS production rates were 
higher in the fermenters than in shake-fl asks. This difference was probably attrib-
uted to more effective mixing and oxygen supply in the fermenters than the shake- 
fl asks. In addition, the mycelial cultures in the fermenters had a lower biomass yield 
but higher EPS yield in glucose than in shake-fl asks, suggesting that, at higher oxy-
gen concentrations, more sugar can be converted to EPS biosynthesis than biomass. 
The similar trend has also been observed with other  Cordyceps  mycelial cultures in 
previous studies [ 36 ,  37 ,  41 ].

5.5.3        Morphological and Rheological Characteristics 

 As observed under a microscope (Fig.  5.6 ), the Cs-HK1 mycelia were in fi lamen-
tous form in the early days of culture when the mycelial concentration was low, and 
gradually formed a center core (pellet) surrounded by long fi laments. Such a highly 
fi lamentous mycelium resulted in a paste-like liquid which was extremely diffi cult 
to separate by fi ltration (as shown later).

   Figure  5.7  shows the apparent viscosities of the fermentation liquid (with myce-
lia) and mycelium-free broth during the fermentation process. The broth viscosity 
started to increase from day 2 to day 3 and increased steeply from day 3 to 5, with 
a trend similar to the biomass time course shown in Fig.  5.5 . As for the mycelium- 
free fermentation broth, the apparent viscosity did not show any signifi cant increase 
in the fi rst few days 0–3, and a sharp increase between days 4 and 5, exhibiting a 
similar trend to the EPS time course shown in Fig.  5.5 . Apparently, the viscosity of 
broth can be mainly attributed to the mycelium, and that of medium to the EPS in 
the medium. The apparent viscosity of mycelial broth was 750 mPa-s and that of 
medium was 100 mPa-s at day 5 (at shear rate of 10.5 s −1 ).

   Figure  5.8  shows the rheological profi les of the mycelial culture broth and liquid 
medium on days 3–5, and Table  5.5  presents the corresponding parameters for the 
power-law model. Both culture broth (containing mycelia) and mycelium-free 
medium exhibited pseudoplastic rheology following the power-law ( τ  =  Kγ   n  ) with 

   Table 5.4    Major culture parameters of Cs-HK1 mycelial culture in small lab fermenters and 
shake-fl asks (all harvested on day 5)   

 Shake-fl ask 
(50 mL) 

 Fermenters (liquid volume) 

 1 L  10 L 

 Maximum biomass, g dw L −1   18.1 ± 1.88  23.9  21.5 
 Average growth rate, g dw day −1   3.62 ± 0.37  4.78  3.58 
 Remaining glucose in medium, g L −1   15.1 ± 2.1  1.8  7.4 
 Biomass yield on glucose, g dw g −1  glc  0.72  0.62  0.66 
 Cordycepin content, μg g −1  dw  20.5 ± 3.3  25.9  22.3 
 EPS concentration, g L −1   2.01 ± 0.33  4.32  3.92 
 EPS yield on Glc, mg g −1  glc  80.6  113.0  120.2 
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the fl ow behavior index  n  < 1, which is typical for mycelial broths and biopolymer 
solutions [ 7 ,  37 ,  45 ,  46 ]. The fl ow consistency index  K  increased steadily over the 
fermentation period in correlation with increase in the apparent viscosity of myce-
lial broth and liquid medium.

5.5.4         Mycelium and EPS Production in Large-Scale Industrial 
Fermenters 

 Figure  5.9  shows the major steps for the scaling up of Cs-HK1 mycelial culture 
from stock culture, shake-fl ask (starter) culture, seed fermenter and to the produc-
tion fermenter, followed by the downstream processes for separation of biomass 
and PS. The large-scale fermentation was carried out in industrial stirred-tank fer-
menters of two different volumes, 2.5 × 10 3  L and 10 × 10 3  L. The air fl ow rate was 
kept at 1 vvm (same as in the small fermenters) and DO was controlled above the 
critical DO level (10 % air saturation) by adjusting the agitation speed. Antifoam 

Day 1 Day 2

Day 3 Day 4 Day 5

Day 0

  Fig. 5.6    Morphological changes in mycelia during the submerged culture of Cs-HK1 in a 15-L 
stirred-tank fermenter at 100× magnifi cation (bar = 100 μm)       
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was added to the fermentation medium at 0.1 % (v/v). For inoculum preparation, 
the culture broth from shake-fl asks (on day 7) was inoculated into a seed fermenter 
(100 L) at 0.1–0.3 % (v/v), which was operated for 3 days. The broth from the seed 
fermenter was pumped to the production fermenters to initiate the fermentation. 
After 5–6 days of operation, the fermentation liquid was sent to a plate-and-frame 
fi lter for separation of mycelium biomass from the liquid medium.

   Figure  5.10  shows DO and pH changes in a 10 × 10 3  L fermenter (liquid volume 
~5.0 × 10 3  L). Similar to that of the small fermenters (Fig.  5.4 ), the DO dropped 
rapidly to a low level from day 1 to 3. Table  5.6  presents the major production 
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   Table 5.5    Rheological parameters of Cs-HK1 mycelial culture broth according to the power-law   

 Mycelial broth  Culture medium 

 Culture time (day)  K (Pa-s n )  n  K (Pa-s n )  n 

 2  56.9  0.5  n.d.  n.d. 
 3  623.9  0.2  17.5  0.9 
 4  2572.2  0.3  185.8  0.2 
 5  3876.1  0.3  654.5  0.2 

   Note : Viscosity of mycelia broth and liquid medium on earlier days was too low and could not be 
measured by the same viscometer. Regression R 2  values >0.998 for all parameters 
  K  fl ow consistency index,  n  fl ow behavior index  
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Stock culture Shake flask Seed fermenter

Production fermenter

Inoculum preparation

Fermentation liquid

Centrifugation or
filtration

Liquid brothBiomass

Extraction (hot water/alkaline)

Liquid extract

Concentrate (evaporation)

Ethanol precipitation

Precipitate
(crude PS)IPS EPS

  Fig. 5.9    Large-scale fermentation and downstream process for extraction and recovery of 
polysaccharides       
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parameters of Cs-HK mycelial fermentation in 2.5 × 10 3  L and 10 × 10 3  L fermen-
ters. Compared with the results in shake-fl asks, the biomass and EPS yields 
(i.e. concentrations on day 6) were much higher, and the cordycepin contents 
(in mycelial biomass) were slightly lower. The higher growth rate and EPS yield in 
the large- scale fermenters may be attributed to more effi cient mixing and oxygen 
supply than in shake-fl asks. Comparative analysis of growth rate in various cultures 
revealed that performance was better in large fermenters than in shake-fl asks and 
small laboratory fermenters. Thus, the scale-up process of Cs-HK1 mycelial culture 
in large fermenters was successful.

    Moreover, the Cs-HK1 mycelial broth containing biomass and extracellular 
products harvested from the industrial fermenters has been tested for anti-fatigue 
activities in forced animal swimming experiments. The mycelium hot water extract 
showed the most signifi cant effects, increasing the swimming endurance of mice up 
to 100 %, and also increasing the glycogen levels and reducing the lactic acid and 
blood urea nitrogen levels signifi cantly [ 47 ].  

5.5.5     Problems and Strategies for Recovery of Biomass 
and EPS from Viscous Broth 

    Filtration Resistance 

 Figure  5.11  shows the mycelial broth withdrawn from the industrial fermenters after 
5–6 days of fermentation. The fermentation liquid was pumped to a plate-frame 
fi lter for separation of mycelial biomass from the spent medium. However, the 
paste-like mycelial broth caused great diffi culty for fi ltration. With 200–800 mesh 
cloths, the fi ltration fl ux was negligible no matter how high was the fi ltration pres-
sure; with a large-pore cloth (100 or lower mesh size), the fi ltrate contained large 
amount of mycelia. Centrifugation at relatively high speeds (e.g. 10,000 rpm) had to 
be applied to separate the biomass and the liquid medium.

   Table 5.6    Production parameters of Cs-HK1 mycelial in large-scale fermenters and shake-fl asks 
(6-day period)   

 Shake-fl ask 
(50 mL) 

 Fermenter volume a  

 2.5 × 10 3  L  10 × 10 3  L 

 Maximum biomass, g dw L −1   19.1 ± 0.66  22.1  23.5 
 Average growth rate, g dw day −1   3.18 ± 0.06  3.68  3.91 
 Remaining glucose in medium, g L −1   10.4 ± 1.1  2.5  3.2 
 Biomass yield on glucose, g dw g −1  glc  0.64  0.68  0.63 
 Cordycepin content, μg g −1  dw  35.4 ± 8.2  32.2  30.4 
 EPS concentration, g L −1   2.12 ± 0.03  4.9  5.1 
 EPS yield on Glc, mg g −1  glc  71.6  130.7  138.6 

   a Actual liquid volume = 50–75 % fermenter volume  
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   Liquid viscosity is a major factor contributing to fi ltration resistance. Since vis-
cosity decreases with temperature, increasing the broth temperature may be effec-
tive to ease the fi ltration problem. Therefore, we tested the fi ltration of culture broth 
at elevated temperature. As shown in Fig.  5.12 , the fi ltration rate was increased to 
35 % with the temperature increase from 22 to 30 °C, and by 15 % from 30 to 
40 °C. The results indicate that increase in the broth temperature can enhance the 
fi ltration process moderately.

       Recovery of EPS from Fermentation Medium 

 Because of the large amount of ethanol required (four times the medium volume) for 
EPS isolation from the fermentation broth, ethanol precipitation is neither economi-
cal nor environment friendly. Ultrafi ltration (UF) was exercised as an alternative for 
concentration and partial purifi cation of EPS from the medium. With a 10 kDa 
MWCO UF membrane at 4 bar pressure and room temperature for 7 days, the EPS 

  Fig. 5.11    Cs-HK1 mycelial 
broth from industrial 
fermenters       
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  Fig. 5.12    Effect of 
temperature on fi ltration rate 
of mycelial broth       
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was concentrated by fourfold and the liquid volume was reduced by nearly 75 % 
(Fig.  5.13 ). Although the UF method was time-consuming, it could signifi cantly 
reduce the ethanol volume required for EPS precipitation. The ultrafi ltration rate 
may be increased with cross-fl ow operation and use of a higher MWCO membrane.

5.6          Molecular Structures and Properties of Polysaccharides 

5.6.1     Extraction and Purifi cation of Polysaccharides 

 Polysaccharides are the major bioactive constituents of  C. sinensis  species and other 
medicinal fungi [ 48 – 52 ]. As natural  C. sinensis  is very expensive, mycelium 
 biomass produced by fermentation is a major source for the Cordyceps polysaccha-
rides. In addition to the polysaccharides (IPS) extracted from the mycelium bio-
mass, EPS can be produced by liquid fermentation of some  C. sinensis  fungal 
species, such as the Cs-HK1 mycelial culture in liquid media. As shown in Fig.  5.10 , 
IPS is usually extracted from the mycelial biomass with hot water or aqueous alka-
line. Organic solvent precipitation is a common method for the initial isolation of 
polysaccharides in aqueous solutions. Among various organic solvents, ethanol is 
the most favorable in laboratory and industry due to its relatively low cost, low tox-
icity to human and desirable physicochemical properties. The volume of ethanol 
required for the precipitation of a given PS depends mainly on its MW and the 
precipitation conditions and, in most cases, 3–5 volume ratios of ethanol to PS solu-
tion (70–80 % v/v) for complete precipitation of IPS in the aqueous extract solu-
tions or EPS in liquid fermentation media. 

a b c

  Fig. 5.13    Recovery of EPS from Cs-HK1 fermentation medium. ( a ) Concentrated EPS culture 
medium; ( b ) Permeate of UF; ( c ) EPS precipitated with ethanol       
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 After the precipitation, the polysaccharide precipitate can be further purifi ed, 
fi rstly by dialysis to remove salts and low-MW organic molecules, and then protein 
removal by chemical/enzymatic methods, and decoloration by physical and chemi-
cal methods. Further purifi cation of the polysaccharides is performed through col-
umn chromatography, such as ion-exchange and gel fi ltration (Fig.  5.14 ).

   However, the EPS isolated from the Cs-HK1 fermentation medium by a single- 
step precipitation with 4–5 volumes of ethanol was a crude mixture of PS, proteins 
and PSPs in a wide MW range. To precipitate the different MW fractions of EPS, 
we applied a step-wise or gradient precipitation procedure with ethanol volume 
ratios of 1/5, 1, 2, and 5 to the liquid medium (Fig.  5.15 ) [ 53 ]. Usually PS with a 
higher MW precipitates at a lower ethanol volume ratio or concentration in the solu-
tion. Table  5.7  shows the properties and compositions of EPS fractions attained 
from this experiment. The high-MW fraction P 1/5  attained at the lowest ethanol ratio 
was mainly composed of polysaccharides with negligible protein content, and vice 
versa. The gradient ethanol precipitation is a simple and workable for the initial 
fractionation of PS, proteins, and their complexes with different molecular sizes.

Crude IPS/EPS (in water)

Dialysis
Low MW
wastes

Deproteination; Decoloration

Column Chromatography
(IEC/SEC) 

Concentration
(Evaporation)

Dialysis

Purified PS 

  Fig. 5.14    Procedure of major 
steps for purifi cation of 
polysaccharides isolated from 
mycelial extracts (IPS) or 
fermentation broth (EPS)       
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Cs-HK1 fermentation liquid

Centrifuged

Liquid broth Mycelium biomass

Precipitated at 1/5V ethanol

Precipitate P1/5 Supernatant

Precipitated at 1V ethanol

Supernatant Precipitate P1

Precipitated at 2V ethanol

SupernatantPrecipitate P2

Precipitated at 5V ethanol

Supernatant Precipitate P5

  Fig. 5.15    Isolation of EPS fractions from fermentation broth of Cs-HK1 by gradient ethanol pre-
cipitation [ 53 ]       

   Table 5.7    Yields and chemical compositions of EPS fractions isolated from Cs-HK1 fermentation 
medium by gradient ethanol precipitation (Fig.  5.15 ) (in a 15 L fermenter fi lled with 8 L of liquid 
medium, run for 6 days at 20 °C, 1 vvm and DO above 20 % air saturation)   

 Frac  Yield (mg)  Sugar (wt %)  Protein (wt %)  MW (kDa) 

 P 1/5   2,854  83.6 ± 5.0  0.9 ± 0.2  47,400 
 P 1   375  31.2 ± 1.2  28.5 ± 1.4  2,870 
 P 2   1,822  21.0 ± 0.5  50.8 ± 0.1  630 
 P 5   1,815  6.3 ± 0.9  64.4 ± 0.4  16 
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5.6.2         Molecular Properties of Polysaccharides 

 As shown in Table  5.8 , polysaccharides with different monosaccharide constituents, 
molecular weights (MWs) and chemical structures have been isolated from  C. 
sinensis  mycelia (IPS) and fermentation broth (EPS). Their average MW varied 
over a wide range from 10 3  to 10 7  Da. Their chemical structures have been charac-
terized and elucidated based on established analytical methods involving infrared 
spectroscopy, liquid-state nuclear magnetic resonance (NMR), solid-state NMR, 
gas chromatography (GC), GC-mass spectroscopy (GC-MS), high-performance liq-
uid chromatography (HPLC), acid hydrolysis, methylation analysis, periodate- 
oxidation, and Smith degradation [ 54 – 56 ]. These PS have shown antitumor, 
immunomodulatory, hypoglycemic and antioxidant activities.

   IPS from cultured  C. sinensis  usually consist of glucose, mannose and galactose 
in various molar ratios with 1→4 (6)-glucopyranosyl (Glcp), 1→6-mannopyranosyl 
(Manp), and 1→4 (6)-galactopyranosyl (Galp) [ 49 ,  50 ,  52 ]. For example, our group 
isolated two water-soluble polysaccharides, WIPS and AIPS, from hot water and 
dilute alkaline extracts, respectively, of the mycelial biomass of a  C. sinensis  fungus 
Cs-HK1, which were characterized as α-D-glucans with a backbone of (1→4) 
linked α-D-glucopyranosyl (Glcp) (>60 %) (Fig.  5.16a, b ) [ 57 ].

   A few PS structures have also been purifi ed from the EPS isolated from the cul-
ture broth of  C. sinensis , which were mostly heteropolysaccharides. For instance, 
our group reported that EPS-1A which isolated from a fermentation broth of  C. 
sinensis  Cs-HK1 was found to be a slightly branched heterpolysaccharide with a 
backbone of (1→6)-α-D-glucose residues (~77 %) and (1→6)-α-D-mannose resi-
dues (~23 %). Branching occurs at the O-3 position of (1→6)-α-D-mannose resi-
dues of the backbone with (1→6)-α-D-mannose residues and (1→6)-α-D-glucose 
residues and terminated with β-D-galactose residues [ 58 ]. 

 Some IPS and EPS also contained uronic acid, proteins and inorganic elements. 
These PS conjugates isolated from  C. sinensis  also represent a major class of bioac-
tive compounds and may exert more important pharmacological effects than neutral 
polysaccharides. More recently, our group reported that an acidic polysaccharide 
AEPS-1, which has a linear backbone of (1→3)-linked α-D-Glcp residues with two 
branches, namely, α-D-Glcp and α-D-pyrano-glucuronic acid (GlcUp), attached to 
the main chain by (1→6) glycosidic bonds at every seventh α-D-Glcp unit 
(Fig.  5.16c ) [ 59 ]. In addition, a novel poly-N-acetylhexosamine (polyhexNAc) of 
about 6 kDa with strong antioxidant activities has been purifi ed from the low-MW 
fraction of EPS produced by the Cs-HK1 mycelial fermentation. The molecular 
structure was elucidated as a [-4-β-D-ManNAc-(1→3)-β-D-GalNAc-(1→] disac-
charide repeating unit in the main chain with a Gal branch randomly occurring at 
the 3rd-position of ManNAc (Fig.  5.16d ) [ 60 ].   
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  Fig. 5.16    The chemical structures of ( a ) AIPS: (1→4)-α-D-glucan and ( b ) WIPS: branched 
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5.7     Concluding Remarks 

 Submerged fermentation of fungal mycelium is a relatively simple and cost- effective 
process, providing a renewable source of naturally-rare medicinal fungi. It also 
allows for convenient and fruitful manipulation of the culture conditions to control 
or enhance the accumulation of desired active ingredients. In addition to mycelium 
biomass, EPS in the fermentation broth are useful products with nutraceutical and 
therapeutic potential. There is a need to study further the relationship between the 
fermentation conditions and the contents of bioactive compounds in the mycelium 
biomass and to develop more effective downstream processes for the separation and 
recovery of mycelial biomass and EPS.     
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    Chapter 6   
 Ginseng Cell Culture for Production 
of Ginsenosides 

             Nguyen     Trung     Thanh     ,     Hosakatte     Niranjana     Murthy     , and     Kee-Yoeup     Paek    

    Abstract      Panax ginseng  C. A. Meyer (Araliaceae) is one of the most valuable ori-
ental herbs and has been used as a healing drug and a health tonic in Korea, Japan 
and China since ancient times. Cultivation of ginseng in fi elds takes a long time, 
generally 4–6 years, and needs extensive efforts for quality control since plant 
growth is susceptible to many environmental factors including soil, shade, climate, 
pathogens and pests. On the other hand, the culturing of plant cells has been consid-
ered as a potential alternative for the effi cient production of ginseng biomass and its 
active ingredients, such as ginseng saponins. In this chapter, the research work on 
cell suspension cultures of Korean ginseng ( P. ginseng ) using bioreactor technol-
ogy, the various culture factors and the process variables such as growth regulators, 
sucrose concentration, types of bioreactors, inoculum density, aeration volume, gas-
eous composition such as oxygen, carbon dioxide and ethylene and elicitation on 
suspension cultures have been presented.  

  Keywords     Bioreactor cultures   •   Ginseng   •   Ginsenosides   •   Panax ginseng   •   Suspension 
cultures  
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  Abbreviations 

   2 4-D    2, 4-Dichlorophenoxy acetic acid   
  DW    Dry weight   
  FW    Fresh weight   
  IAA    Indole-3-acetic acid   
  IBA    Indole-3-butyric acid   
  MJ    Methyl jasmonate   
  MS medium    Murashige and Skoog medium   
  NAA    α-Naphthalene acetic acid   
  vvm    Air volume per medium volume per minute   

6.1           Introduction 

  Panax ginseng  C. A. Meyer (Araliaceae) has been widely used as a tonic and medi-
cine since ancient times, particularly in oriental countries including Korea, Japan 
and China. It is effective for gastro-enteric disorders, diabetes, blood circulation, 
and has been used as an adjuvant to prevent various disorders. Thus, ginseng has 
been recognized as a miraculous medicine in preserving the health and attaining the 
longevity. The principal bioactive constituents of  P. ginseng  are the ginsenosides, a 
group of triterpene glycosides also known as saponins [ 1 ]. Currently, 30 ginsen-
osides have been recognized and they have been grouped under protopanaxadiol 
saponins (Rb group) and protopanaxatriol saponins (Rg group). Antiplatelet, hypo-
cholesterolemic, antitumor, immunomodulatory functions, and their activity of 
improving the central nervous system have been attributed to the pharmacological 
importance of various ginsenosides [ 2 ,  3 ]. 

 Plant cell suspension cultures are more advantageous for the for large scale pro-
duction of secondary metabolites such as ginsenosides using bioreactor technologies 
[ 4 ]. The tissue culture of ginseng was fi rst documented in 1964, after that numerous 
studies on ginseng were reported in the succeeding years [ 1 ]. Various successful 
efforts on  in vitro  culture of ginseng cells or tissues for the production of ginsenosides 
have been reported [ 5 – 8 ]. Murashige and Skoog (MS) [ 9 ] medium is commonly used 
for establishing cell and tissue cultures and other various physiological and physical 
factors have been investigated for the production of biomass and ginsenosides [ 1 ]. 
The addition of growth regulators is essential for cell growth, biomass accumulation 
and product formation. Choi [ 10 ] has investigated the  in vitro  culture of  P. ginseng  
extensively and indicated that plant growth regulators such as 2, 4-D and kinetin in 
the medium affected the levels of saponins in callus and cell suspension cultures. For 
example, 3.62 % of total saponins were detected in the callus cultivated in MS 
medium containing 5 mg L−1 2, 4-D and 1 mg L−1 kinetin, while 8.78 % was produced 
in 10 mg L−1 2, 4-D and 1 mg L−1 kinetin medium. Zhong [ 11 ] found that a higher 
concentration of 7 mg L−1 kinetin inhibited the cell growth. The highest saponin con-
tent (13.9 %) was achieved in a medium containing 2.0 mg L−1 IAA and 0.07 mg L−1 
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kinetin. Sucrose is a common carbon source used in ginseng cell cultures and the rate 
of biomass growth is usually directly correlated with the sugar consumption. Many 
researchers have worked out different types and concentration of sugars depending 
upon the cell lines used for cultures. Choi et al. [ 12 ,  13 ] found that the optimal con-
centration of sucrose for cell growth was between 30–50 g L−1, and 70 g L−1 sucrose 
inhibited cell growth, while the saponin content showed a steady increase with the 
increase in sucrose concentration up to 60 g L−1. In suspension cultures of  Panax 
notoginseng  cells, Zhang and Zhong [ 14 ] found that the constant or intermittent feed-
ing of sucrose or other sugars was more effective than increasing the initial concen-
tration to enhance the biomass and yield of secondary metabolites. Effects of nitrogen 
sources on the production of ginsenosides by cell cultures were investigated by Zhang 
et al. [ 15 ] and Ushiayama [ 16 ] and they have reported that a lower NH 4  +  to NO 3  −  ratio 
is more favorable for saponin production. Zhang and Zhong [ 14 ] found that an 
increase in initial phosphate from 1.25 to 3.75 mM enhanced both cell growth and 
saponin yield in cell suspension cultures of  P. notoginseng . The effect of K +  and Cu 2+  
ions have also been investigated on cell growth and metabolite production in ginseng 
[ 17 ,  18 ]. 

 Bioreactor cultures (stirred tank and airlift bioreactors) were established for 
large scale production of ginseng cell biomass and saponin production [ 19 – 21 ]. 
Impact of fed-batch cultures [ 14 ,  22 ], condition of the medium [ 23 ] and high- 
density cultures [ 14 ,  24 – 26 ] were experimented and the increased biomass and pro-
ductivity of saponins and polysaccharides was achieved. 

 Recent reports show that saponins account for about 3–4 % in Korean ginseng, 
and more than 30 kinds of ginsenosides have been found in it, double the number of 
ginsenosides occurring in the ginsengs of other countries [ 2 ]. Considering that each 
of these ginsenosides has different pharmacological activities, it becomes apparent 
that Korean ginseng has a pharmacological effectiveness superior to those of other 
ginseng species [ 2 ]. Therefore, we were interested in establishing cell cultures of 
Korean ginseng and carried out a series of experiments for the production of ginsen-
osides in bioreactor cultures, and here we have summarized various aspects of gin-
seng cell cultures for the production of useful metabolites in a large scale.  

6.2     Cell Suspension Cultures of Ginseng in Shake Flasks 

6.2.1     Induction of Callus 

 Calli were induced from Korean ginseng ( P. ginseng  C.A. Meyer) root on MS semi- 
solid medium supplemented with 1.0 mg L−1 2, 4-D and 3 % sucrose in the dark at 
25 °C [ 27 ]. The callus proliferation was achieved on MS semi-solid medium supple-
mented with 2.0 mg L−1 NAA, 0.1 mg L−1 kinetin, and 30 g L−1 sucrose. Suspension 
cultures were established in 300 mL conical fl asks containing 100 mL MS medium by 
adding 6 g callus and were maintained on rotary shaker at 105 rpm, in the dark at 
25 °C. Cells were maintained by subculturing on to a fresh medium once every 15 days.  
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6.2.2     Effects of Auxins on Cell Growth and Ginsenosides 
Production in Cell Suspension Culture of  P. ginseng  

 To understand the growth characteristics of cell suspension cultures of ginseng in 
shake fl asks, the effects of plant growth regulators (2, 4-D, IBA, and NAA) on cell 
growth and saponin production, and nutrient utilization by the cultured cells were 
studied. The maximum biomass yield was obtained in medium containing 2, 4-D as 
compared to IBA or NAA. It was observed that a relatively lower concentration of 
IBA and NAA was unfavorable for cell growth and production of ginseng saponins 
(Table  6.1 ). With an increase in IBA or NAA concentration from 1 to 9 mg L−1 in 
the medium, the dry weight of cells increased and this phenomenon was reported 
from other cultures as well, in which high auxin levels were often good for cell 
growth [ 28 ]. In our experiments, the highest dry weight of cells was obtained with 
IBA (10.5 g L−1) and NAA (9.7 g L−1) at a concentration of 9 mg L−1.

   The effects of auxin (2, 4-D, IBA, and NAA) concentrations on saponin accumu-
lation by  P. ginseng  cells were also studied. Total saponin production was signifi -
cantly enhanced as the initial auxin level was raised from 1 to 7 mg L−1 of IBA and 
from 1 to 3 mg L−1 of NAA. However, a further increase in auxin concentration (up 
to 9 mg L−1) led to a decrease in saponin accumulation (Table  6.1 ). The maximum 
saponin production of 7.29 ± 0.2 mg g−1 DW and 8.76 ± 0.1 mg g−1 DW was achieved 
at IBA concentration of 7 mg L−1 and NAA concentration of 3 mg L−1 respectively. 
These results are considered to be useful for exploration of the biosynthesis mecha-
nism and in a large-scale bio-processing of the ginseng cell cultures. 

 Plant growth regulators are one of the key factors to infl uence the biomass accu-
mulation and secondary metabolite production. In saffl ower cell cultures, high con-
centration of auxin was suitable for the cell growth, while high concentration of 
cytokinin was favorable for red and yellow pigment production in  Carthamus tinc-
torius  [ 29 ]. Son et al. [ 30 ,  31 ] found that 4 mg L−1 IBA was suitable for the moun-
tain ginseng adventitious roots growth. So, the infl uence of growth regulators during 
 in vitro  culture is species specifi c. In this study, IBA (7 mg L−1) was found to be 

    Table 6.1    Effect of auxins on cell growth and ginsenosides production in cell suspension culture   

 Auxin 

 Concentration 

(mg L−1) 
 Fresh wt. 
(g L−1) 

 Dry wt. 
(g L−1) 

 Ginsenosides (mg g−1 dry wt.) 

 Rg  Rb  Total 

 2,4 D  1  328 a a      11.9 a  1.81 ± 0.1  2.35 ± 0.2  4.16 ± 0.3 
 IBA  1  144 d  7.5 d  2.16 ± 0.3  3.05 ± 0.1  5.21 ± 0.3 

 3  170 c  8.8 cd  2.09 ± 0.6  3.49 ± 0.2  5.58 ± 0.3 
 5  178 c  9.1 c  2.43 ± 0.2  3.31 ± 0.4  5.74 ± 0.2 
 7  216 b  10.1 b  2.6 ± 0.3  4.69 ± 0.2  7.29 ± 0.2 
 9  226 b  10.5 b  1.42 ± 0.6  4.22 ± 0.2  5.64 ± 0.3 

 NAA  1  132 d  7.1 e  2.85 ± 0.4  5.33 ± 0.2  7.18 ± 0.2 
 3  134 d  7.3 de  3.28 ± 0.3  5.48 ± 0.1  8.76 ± 0.1 
 5  152 cd  7.8 d  2.61 ± 0.1  4.83 ± 0.2  7.44 ± 0.1 
 7  164 c  7.6 cd  2.16 ± 0.1  4.08 ± 0.3  6.24 ± 0.3 
 9  188 c  9.7 b  2.16 ± 0.5  2.45 ± 0.2  4.61 ± 0.3 

   a Mean separation by Duncan’s multiple range test at  P  ≤ 0.05  
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 favorable auxin for the increase in cell mass as well as increase in total saponin yield 
(10.1 g L−1 DW and 7.29 ± 0.2 mg g−1 DW, respectively), while NAA at 3 mg L−1 was 
favorable for saponin accumulation but not effective for increasing cell biomass 
(7.3 g L−1 DW and total saponin 8.76 ± 0.1 mg g−1 DW). For this reason IBA (7 mg 
L−1) was used during the cell suspension cultures of  P. ginseng .  

6.2.3     Effect of IBA and Cytokinin Combinations on Cell 
Growth and Ginsenosides Production in Cell Suspension 
Culture of  P. ginseng  

 To determine the effect of types and concentrations of cytokinins on increase in cell 
biomass and ginsenoside production, kinetin and BA at 0.1, 0.5 and 1 mg L−1 were 
combined with 7 mg L−1 IBA. The results (Table  6.2 ) clearly showed that the addition 
of cytokinins (BA and kinetin) did not affect the proliferation of cells in culture.

   The saponin productivity (particularly Rb group) was increased when the 
medium was supplemented with 0.1–0.5 mg L−1 BA or kinetin (Table  6.2 ). The 
highest saponin content was (7.08 ± 0.1 and 7.34 ± 0.2 mg g−1 DW) obtained with a 
combination of IBA at 0.5 mg L−1 of BA or kinetin. Further increase in cytokinin 
concentrations led to the decrease in ginsenoside content. A relatively high cytoki-
nin level was not favorable to secondary metabolite synthesis. A similar phenome-
non was also reported in other plant cell cultures. In  P. notoginseng  suspension cell 
cultures, Zhong [ 11 ] found that both the saponin content and cell biomass produc-
tion were decreased with an increase in kinetin concentration. 

    Flow Cytometric Analysis of  Panax ginseng  Cells 

 To verify the genetic stability of regenerated cells, 2C DNA values of suspension 
cultures were analyzed by fl ow cytometry and compared with donor plant. The his-
tograms obtained with  P. ginseng  cells of different inoculum densities cultured for 
25 days in MS medium with 7 mg L−1 IBA and donor plant are shown in Fig.  6.2a . 

    Table 6.2    Effect of IBA and cytokinin combinations on cell growth and ginsenoside production 
in cell suspension culture of  P. ginseng    

 Cytokinin 
 Concentration 
(mg L−1) 

 Fresh wt. 
(g L−1) 

 Dry wt. 
(g L−1) 

 Ginsenoside (mg g−1 dry wt.) 

 Rg  Rb  Total 

 0  221 a a   11.0 ab  2.17 ± 0.1  4.36 ± 0.2  6.43 ± 0.2 
 BA  0.1  230 a  11.0 ab  1.81 ± 0.1  2.75 ± 0.2  4.56 ± 0.3 

 0.5  252 a  11.5 a  1.75 ± 0.4  5.33 ± 0.1  7.08 ± 0.1 
 1  242 a  11.0 a  1.79 ± 0.1  3.53 ± 0.2  5.33 ± 0.2 

 Kinetin  0.1  224 ab  11.1 ab  1.16 ± 0.1  4.61 ± 0.3  5.76 ± 0.3 
 0.5  240 a  11.7 a  1.49 ± 0.3  5.85 ± 0.2  7.34 ± 0.2 
 1  242 a  11.4 a  1.56 ± 0.2  3.51 ± 0.3  5.07 ± 0.1 

   a Mean separation by Duncan’s multiple range test at P ≤ 0.05  
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In suspension culture, most of the cells were diploid (Fig.  6.1a–d ), revealing a peak 
at nearly the same position as the standard diploid donor plant (Fig.  6.1e ). However, 
in other plant species high chromosomal variability during  in vitro  cultures has been 
reported [ 32 ]. Nevertheless,  P. ginseng  callus line has mostly retained its ploidy 
level even after 4 years of culture on the callus induction medium containing rela-
tively high levels of 2,4-D.

   To examine more closely the cell division activity within a culture passage of 
25 days, the percentage of cells in the three phases of the cell cycle, G1, S and G2 + 
M, were evaluated by fl ow cytometery in both donor plant and suspension culture 
cells with different inoculum densities (4, 6, 8, 10 g FW/100 mL MS medium). The 

a b

c

e

d

  Fig. 6.1    Flow cytometric analyses of  P. ginseng  at different density cell. ( a ) 4 g, ( b ) 6 g, ( c ) 8 g, 
( d ) 10 g/100 mL medium and ( e ) mother plant       
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results are  summarized in Figs.  6.2  and  6.3 . The ratio of cells in S phase clearly 
show a parallel development at G1 (52 %), other phase variants show as S (29–
33 %); G2 + M (15–18 %; Fig.  6.2 ).

    The results of cell cycle analysis of cells at different phases of cell cycle over a 
period of 25 days also revealed the stability of cells without much variation (Fig.  6.3 ).   

6.2.4     Effect of Sucrose Concentrations on Cell Growth 
and Ginsenoside Production in Cell Suspension Culture 
of  P. ginseng  

 The effect of sucrose concentration at a range of 10–70 g L−1 were studied to fi nd 
out the optimal sucrose concentration for cell growth and saponin production and 
the results are presented in Table  6.3 . Dry cell weight increased with an increase 
in sucrose concentration from 10 to 30 g L−1. Further, increase in sucrose 
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concentration of up to 50 or 70 g L−1 decreased the cell biomass. The highest 
biomass yield was obtained (180.6 g L−1 FW and 10.8 g L−1 DW) at 30 g L−1 of 
sucrose concentration.

   In case of  Vitis vinifera  cell culture, both a lag phase and reduced cell concentra-
tion were observed under a relatively high sucrose concentration of 50 g L−1 [ 33 ]. 
For cell culture of  Coleus blumei , a high initial sucrose concentration of 60 g L−1 led 
to a higher biomass accumulation without an obvious lag phase [ 34 ]. With suspen-
sion cultures of  Perilla frutescens , the growth rate increased with an increase in 
initial sucrose level of up to 60 g L−1 in the medium [ 26 ]. Choi et al. [ 12 ,  13 ] found 
that the optimal concentration of sucrose for cell growth was between 30 and 50 g 
L−1 and 70 g L−1 sucrose inhibited cell growth, while the saponin content showed a 
steady increase with sucrose concentration of up to 60 g L−1 in  Panax ginseng . It is 
clear that initial sucrose concentration is important for the proliferation of plant 
cells and its effect depends on a specifi c cell lines. Similarly, the saponin content of 
the cells was also dependent on initial sucrose concentration in the medium as that 
of cell mass (Table  6.3 ). Initial sucrose concentration of 30 g L−1, signifi cantly 
increased the saponin accumulation in the cells (7.36 ± 0.2 mg g−1 DW) and total 
saponin production decreased at a higher sucrose concentration of up to 70 g L−1. In 
cell suspension cultures of  P. notoginseng  also, manipulation of medium sucrose 
could effectively enhance the saponin production [ 35 ].   

6.3     Ginseng Cell Culture in Bioreactors 

6.3.1     Effect of Bioreactor Types on Cell Growth and Saponin 
Production in Bioreactor Cultures of  Panax ginseng  

 The effect of various types of airlift bioreactors such as cylinder, cone, balloon and 
bulb type bioreactors of 5 L capacity containing 4 L of optimized medium (MS 
medium with 7 mg L−1 of IBA, 0.5 mg L−1 kinetin and 30 g L−1 sucrose) was tested 
for biomass accumulation and metabolite production and results are presented in 
Table  6.4 . Balloon type bioreactor was found suitable for biomass accumulation and 

    Table 6.3    Effect of sucrose concentrations on cell growth and ginsenoside production in cell 
suspension culture of  P. ginseng    

 Sucrose concentration 
(g L−1) 

 Fresh wt. 
(g L−1) 

 Dry wt. 
(g L−1) 

 Ginsenoside (mg g−1 dry wt.) 

 Rg  Rb  Total 

 10  26.6 d a   2.9 d  0.32 ± 0.1  0.62 ± 0.2  0.92 ± 0.1 
 30  180.6 a  10.8 a  3.17 ± 0.1  4.19 ± 0.1  7.36 ± 0.2 
 50  98.2 b  8.4 b  1.06 ± 0.2  2.23 ± 0.1  3.29 ± 0.1 
 70  52.1 c  5.7 c  0.08 ± 0.1  1.56 ± 0.2  1.64 ± 0.2 

   a Mean separation by Duncan’s multiple range test at  P  ≤ 0.05  
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255.4 g L−1 FW, 10.6 g L−1 DW were recorded. The highest ginsenoside amount of 
4.17 mg g−1 DW was also documented with balloon type bioreactors and this might 
be due to high initial  k   L  a values (Table  6.5 ). Kim et al. [ 36 ] have also reported that 
balloon type bioreactors are suitable among the various confi gurations of bioreac-
tors tested for ginseng adventitious root cultures.

6.3.2         Effect of Aeration Volume on Cell Growth and Saponin 
Production in Bioreactor Cultures of  Panax ginseng  

 The cell multiplication, growth and accumulation of secondary metabolites in biore-
actors were strongly infl uenced by aeration volume [ 37 ] and it is essential to inves-
tigated suitable aeration volume to achieve biomass and metabolite productivity. 
Constant aeration of 0.05, 0.1, 0.2 and 0.3 vvm as well as variable aeration volume 
of 0.5/0.1/0.2/0.3 (i.e., aeration volume was changed for every 6 days) were tested 
and the results of effect of aeration volume on cell growth and yield of ginsenosides 
are presented in Tables  6.6  and  6.7 . Increment of aeration volume with the increasing 
time duration was found suitable for both biomass and ginsenoside productivity.

   Table 6.4    Effect of bioreactor types on  k   L  a coeffi cient and cell growth during cell culture of  P. 
ginseng    

 Bioreactor type  Initial  k   L  a (h −1 ) 

 Biomass 

 Growth rate a  
 Fresh wt. 
(g L−1) 

 Dry wt. 
(g L−1)  % dry wt. 

 Cylinder  5.25  240 b b   9.1 b  3.8  4.14 
 Balloon  6.98  255 a  10.6 a  4.0  4.82 
 Bulb  6.95  251 a  10.1 a  4.0  4.59 
 Cone  5.69  245 ab  9.8 ab  3.9  4.45 

   a Growth rate is the quotient of the dry weight after culture and the dry weight of the inoculum size 
  b Mean separation within column by Duncan’s multiple range test at P ≤ 0.05  

   Table 6.5    Effect of bioreactor types on ginsenoside production   

 Bioreactor type 

 Ginsenoside (mg g−1 wt) 

 Rg  Rb  Total a   Rb: Rg b  

 Cylinder  1.45 ± 0.2  2.37 ± 0.3  3.82 ± 0.4  1.67 ± 0.4 
 Balloon  0.79 ± 0.1  3.38 ± 0.6  4.17 ± 0.6  4.27 ± 0.7 
 Bulb  1.09 ± 0.3  3.07 ± 0.5  4.16 ± 0.5  2.98 ± 1.2 
 Cone  1.35 ± 0.3  2.59 ± 0.1  3.95 ± 0.2  1.98 ± 05 

   a Total content = Rb + Rg 
  b Rb: Rg = (Rb1 + Rc + Rb2 + Rd)/(Rg1 + Re + Rf)  
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6.3.3         Effect of Inoculum Density on Cell Growth 
and Saponin Production in Bioreactor Cultures 
of  Panax ginseng  

 The effect of inoculum density of the cultured cells on biomass and metabolite 
accumulation is well established by various studies [ 38 – 40 ]. For example, Jeong 
et al. [ 40 ] investigated the production of ginsenosides from adventitious root sus-
pension cultures at an inoculum density of 2.5, 5.0, 7.5 and 10.0 g L−1 and reported 
10 % increment in ginsenosides with an inoculum density of 5.0 g L−1. The results 
of the effect of inoculum density on biomass and secondary metabolites accumula-
tion in the present study are depicted in Fig.  6.4 . Of the varied inoculums tested (40, 
60, 80 and 100 g) 100 g L−1 fresh weight was good for fresh and dry biomass accu-
mulation (Fig.  6.4a ,  b ). However, metabolite accumulation was optimum with inoc-
ulum density of 60 g L−1 (Fig.  6.4c ). The maximum saponin production of 4.4 mg g−1 
DW was achieved and therefore, 60 g L−1 inoculum density was used for further 
experiments.

    Table 6.6    Effect of aeration volumes on  k   L   a  and cell growth in bioreactor culture   

 Aeration volume (vvm) 
 Initial  k   L  a 
(h −1 ) 

 Biomass 

 Growth rate a  
 Fresh wt. 
(g L−1) 

 Dry wt. 
(g L−1)  % dry wt. 

 0.05  4.95  165 d b   5.7 d  3.44  2.58 
 0.1  7.84  244 b  10.3 a  4.22  4.68 
 0.2  11.42  225 c  9.1 b  4.02  4.08 
 0.3  16.81  211 c  7.9 c  3.76  3.61 
 0.05/0.1/0.2/0.3 c   5–16.58  263 a  10.6 a  4.04  4.82 

   a Growth rate is the quotient of the dry weight after culture and the dry weight of the inoculum size 
  b Mean separation within columns by Duncan’s multiple range test at P ≤ 0.05 
  c Aeration volume increased at 6-day intervals  

   Table 6.7    Effect of aeration volumes on ginsenoside production in bioreactor culture   

 Aeration volume (vvm) 

 Ginsenoside (mg g−1 wt) 

 Rg  Rb  Total a   Rb: Rg b  

 0.05  0.72 ± 0.1  1.82 ± 0.2  2.55 ± 0.3  2.52 ± 0.1 
 0.1  1.47 ± 0.3  2.54 ± 0.1  4.01 ± 0.4  1.76 ± 0.3 
 0.2  1.06 ± 0.6  2.65 ± 0.2  3.71 ± 0.3  3.58 ± 0.3 
 0.3  1.29 ± 0.2  2.32 ± 0.4  3.61 ± 0.2  1.86 ± 0.6 
 0.05/0.1/0.2/0.3 c   0.98 ± 0.3  3.31 ± 0.2  4.28 ± 0.3  3.57 ± 0.8 

   a Rb: Rg = (Rb1 + Rc + Rb2 + Rd)/(Rg 1  + Re + Rf) 
  b Total content = Rb + Rg 
  c Aeration volume was increase at 6-day intervals  

N.T. Thanh et al.



131

6.3.4        Effect of Oxygen Supply on Cell Growth and Saponin 
Production in Bioreactor Cultures of  Panax ginseng  

 Ginseng cells were cultured in 5 L capacity airlift bioreactors and the effect of 
 oxygen levels was tested on accumulation of biomass and ginsenosides. The growth 
kinetics of  P. ginseng  cells cultivated in balloon type-bubble bioreactors at four 
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different levels oxygen supply [20.8 % (control), 30 %, 40 %, and 50 %] are 
 presented in Fig.  6.5  [ 41 ]. The cell growth and biomass accumulation increased 
gradually with the time duration and maximum biomass level was reached after 
25 days. Similar growth patterns have been previously reported for  P. notoginseng  
cell cultures [ 24 ]. The maximum FW (316 g L−1) was achieved at 40 % oxygen; the 
corresponding DW was 12.8 g L−1 (Fig.  6.5a ,  b ). Increase of 15 % in fresh cell 
 biomass and 10 % in dry cell biomass were evident, compared to the control (20.8 % 
O 2  supply) cultures. Similar positive effects of oxygen supply on cell growth have 
been reported for tobacco suspension cultures [ 42 ].

   Profi les of total saponin (ginsenoside) production are shown in Fig.  6.5c . Highest 
saponin accumulation was recorded on 20–25 days and declined thereafter. The 
maximum total saponin concentrations were 3.8, 4.4, 4.5 and 2.85 mg g−1 DW at 
20.8, 30, 40, and 50 % O 2  supply respectively (Fig.  6.5c ). Highest saponin levels 
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were achieved at 40 % O 2  supply; the lowest levels were achieved at 50 % O 2   supply. 
The results indicate that oxygen supplementation to bioreactor-based ginseng 
 cultures was benefi cial for biomass accumulation and saponin production.  

6.3.5     Effect of Carbon Dioxide on Cell Growth and Saponin 
Production in Bioreactor Cultures of  Panax ginseng  

 Ginseng cell cultures were supplemented with various concentrations of carbon 
dioxide (1, 2.5 and 5 %) and their effect was tested on biomass accumulation and 
productivity of ginsenosides [ 43 ]. The fresh mass of cells with 0.03 % CO 2  (control) 
was 227 g L−1 and corresponding dry mass was 11.6 g L−1 (Fig.  6.6a ,  b ). It was 
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found that optimum accumulation of fresh (258 g L−1) and dry mass (12.1 g L−1) was 
with the supply of 1 % CO 2  in the bioreactors. Thus 13.7 and 4.3 % increase in fresh 
and dry cell mass was evident with the supply of 1 % CO 2 . This fi nding is in agree-
ment with the earlier reported results that carbon dioxide is required for the growth 
of plant suspension cultures [ 44 ,  45 ]. The biomass accumulation declined with the 
further increase in CO 2  concentration. Fresh and dry cell mass was decreased by 
30.1 and 38.3 %, respectively with the supply of 5 % CO 2 .

   The ginsenoside production increased with the lapse of time and signifi cantly higher 
saponin content was observed in control condition (Fig.  6.6c ). After 30 day of culture 
increased CO 2  supply 1, 2.5 and 5 % led to decrease in saponin accumulation up to 11.6, 
19.5 and 50.6 %, respectively. However, the enhancement in secondary metabolites with 
an increase in CO 2  concentrations has been reported in the cell cultures of  Thalictrum 
minus  [ 46 ],  T. rugosum  [ 47 ],  Stizolobium hassjoo  [ 48 ] and  Catharanthus roseus  [ 49 ].  

6.3.6     Effect of Ethylene on Cell Growth and Saponin 
Production in Bioreactor Cultures of  Panax ginseng  

 The infl uence of ethylene supplementation at 5, 10 and 20 ppm levels were tested 
with ginseng cell cultures and results are depicted in Fig.  6.7a ,  b . Growth kinetics 
revealed similar trends as in case of O 2  and CO 2  supplementation. Increment of 16 
and 8 % in dry biomass was recorded with supplementation of 5 and 10 ppm of 
ethylene respectively, whereas supplementation of 20 ppm decreased the biomass 
accumulation signifi cantly when compared to control. This result suggests that eth-
ylene had stimulatory or inhibitory effect on cell growth in bioreactor culture sys-
tem. Similar results have been reported in cell culture of different  Taxus  species [ 50 ].

   Figure  6.7c  shows the profi le of saponin content under different concentrations 
of ethylene in  P. ginseng . The yield of ginsenoside production was decreased sig-
nifi cantly in all the ethylene concentrations compared to control. Recently, Zhang 
and Wu [ 51 ] reported that ethylene inhibitors induce or stimulate the secondary 
metabolite production by inhibiting ethylene production endogenously or supplied 
concentration in the medium. Ethylene effects on growth and differentiation is 
highly variable and it is not yet clear why ethylene promotes growth, differentiation 
and secondary metabolite production in some case and inhibits them in others [ 52 ].   

6.4     Elicitation 

6.4.1     The Effect of MJ on Cell Growth and Ginsenosides 
Production 

 The growth and secondary metabolite accumulation in  Panax ginseng  cell culture are 
represented in Tables  6.8  and  6.9  [ 53 ]. Cell growth was signifi cantly affected by the 
application of MJ. The fresh weight, dry weight and growth ratio of the cells, decreased 
with increasing MJ concentration, resulting in a cell growth ratio of 3.48 at 400 μM MJ.
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  Fig. 6.7    Growth kinetics    of 
cell fresh weight ( a ), dry 
weight ( b ) and ginsenoside 
accumulation ( c ) of  P. 
ginseng  in bioreactor cultures 
under different C 2 H 4  
concentrations       

   Table 6.8    The effect of methyl jasmonate (MJ) on ginseng cell growth after 25 days of bioreactor 
culture   

 MJ concentration (μM) 

 Biomass 

 Growth rate a   Fresh weight (g L−1)  Dry weight (g L−1) 

 0  311.9 a b   12.6 a  4.62 
 50  304.2 ab  11.3 b  4.14 
 100  294.9 b  11.4 b  4.28 
 200  293.1 b  11.3 b  4.26 
 400  240.2 c  9.4 c  3.48 

   a Growth ratio is the quotient of the dry weight after cultivation and the dry weight of the inoculum 
  b Mean separation within column by Duncan’s multiple range test at P < 0.05  
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    On the other hand, ginsenosides content was signifi cantly enhanced by the addi-
tion of MJ. Total ginsenosides content increased with increasing MJ concentration, 
and reached a maximum of 8.82 mg g−1 DW at 200 μM MJ, representing a 2.2-fold 
increase over the control (3.96 mg g−1 DW). Both Rb group and Rg group 
 ginsenosides reached a maximum at 200 μM MJ but the content of Rb group gin-
senosides increased more signifi cantly than that of Rg group ginsenosides. There 
was 1.3-fold increment in Rg group ginsenosides, whereas threefold increment of 
Rb group ginsenosides was evident compared to the control. The Rb/Rg group ratio 
was 2.32 with an application of 200 μM MJ. Figure  6.8a  shows the dynamic changes 
in the content of the Rb/Rg ratio with 200 μM MJ treatment over the control.

6.4.2        Accumulation of Ginsenosides After MJ Treatment 
in a Two-Stage Bioreactor Operation 

 Based on the results of the fi rst experiment, bioreactor cell cultures were established 
and ginseng cells were cultured for 15 days without MJ treatment. Two hundred 
micrometer MJ was added to the cultures after 15 days for elicitation and accumula-
tion of ginsenosides. Figure  6.8b – d  shows ginsenosides accumulation in ginseng 
cell culture during 10 days of 200 μM MJ addition. The content of ginsenosides and 
Rb group ginsenosides gradually increased, reaching maximum values 8 days after 
treatment and showing a little change thereafter. Contents of total ginsenosides, Rb, 
and Rg group ginsenosides increased 2.9, 3.7, and 1.6 times, respectively. Among 
the Rb group ginsenosides, Rb1 content increased signifi cantly by four times but the 
contents of Rb2, Rc and Rd increased only slightly. Among Rg group ginsenosides, 
Rg1 and Re showed 2.3-fold and 3.0-fold increments, whereas there was only a 
slight increment in Rf group ginsenosides. Similarly, jasmonates have been used to 
elicit higher accumulation of metabolites in cell cultures of  Taxus chinensis  [ 54 ] and 
 Panax notoginseng  [ 55 ]. 

 This study indicates that MJ could increase the accumulation of individual ginsen-
osides and signifi cantly modify the Rb/Rg group ratio. The strategy developed here, 

   Table 6.9    Effect of MJ on biosynthesis of ginsenosides after 25 days of bioreactor culture   

 MJ concentration (μM) 

 Ginsenosides [mg g−1 DW] 

 Rg  Rb  Total a   (Rb: Rg) b  

 0  1.87 ± 0.1  2.09 ± 0.2  3.96 ± 0.3  1.12 ± 0.1 
 50  1.84 ± 0.5  2.80 ± 0.2  4.63 ± 0.4  1.59 ± 0.4 
 100  2.35 ± 0.1  4.84 ± 0.2  7.19 ± 0.3  2.06 ± 0.1 
 200  2.65 ± 0.1  6.17 ± 0.3  8.82 ± 0.3  2.32 ± 0.1 
 400  2.32 ± 0.3  4.62 ± 0.2  6.94 ± 0.3  1.97 ± 0.2 

  Values represent mean with standard error 
  a Total saponin content = Rb + Rg 
  b Rb: Rg = (Rb1 + Rc + Rb2 + Rd)/(Rg1 + Re + Rf)  
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i.e., initial culturing of cells without elicitors and subsequent treatment of cell cultures 
with 200 μM MJ is useful for enhancing ginseng cell biomass as well as simultane-
ously enhancing ginsenoside production. Initial culturing of cells without elicitors and 
subsequent treatment of cell cultures with 200 μM MJ, is useful for enhancing ginseng 
cell biomass as well as the ginsenoside production simultaneously.   
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  Fig. 6.8    Dynamic changes in Rb and Rg ginsenosides in ginseng cells grown for 25 days after 
methyl jasmonate ( MJ ) treatment (200 μM) in bioreactors ( a ). Accumulation of total ( b ), Rb ( c ) 
and Rg ( d ) group ginsenosides in ginseng cells grown for 10 days after MJ treatment (200 μM) in 
bioreactors. The cells were grown for 15 days without MJ       
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6.5     Scale up of Ginseng Production in Bioreactors 

 Based on the above results of 5 and 10 L bioreactor cultures (Fig.  6.9a ,  b ), we culti-
vated pilot-scale cultures of ginseng cells in 500 and 1,000 L airlift bioreactors 
(Table  6.10  and Fig.  6.9c ). The total biomass of 187 kg fresh weight and 6.2 kg dry 
weight with a total saponin production of 7.86 mg g−1 DW was obtained in 500 L drum 
bioreactor. Similarly, 400 kg fresh weight (Fig.  6.9d ) and 13.2 kg dry weight with a 
total saponin production of 7.75 mg g−1 dry weight were also obtained in 1,000 L bal-
loon type bioreactor. These results are comparable to that of ginseng cell cultures in 

a b

c d

  Fig. 6.9     Panax ginseng  cell cultures in bioreactors. ( a ) Cell suspension cultures in 5 L balloon 
type airlift bioreactors. ( b ) 500 L drum type airlift bioreactor. ( c ) 1,000 L airlift bioreactor. ( d ) 
Biomass harvested from 1,000 L bioreactor       

   Table 6.10    Ginseng cell cultures in bioreactors   

 Bioreactor type 

 Biomass 

 Total saponin (mg g−1 DW)  FW  DW 
 DW 
(g L−1)  % dry wt. 

 5 L balloon  1.28 kg  54 g  13.1  4.22  8.82 
 500 L drum  187 kg  6.2 kg  12.4  3.32  7.86 
 1,000 L balloon  400 kg  13.3 kg  13.3  3.33  7.75 
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5 L bioreactor (Table  6.6 ). In the previous studies, stirred tank bioreactors have been 
used and taken to scale up process also [ 19 ]. Shamakov et al. [ 20 ] and Strogov et al. 
[ 21 ] determined the suitable agitation speed for effi cient mixing and oxygen transfer. 
Asaka et al. [ 56 ] used airlift bioreactors and achieved higher biomass and ginsenoside 
productivity than stirred tank bioreactors. However, all these were batch cultures. In 
order to improve the productivity of biomass and secondary metabolites, fed-batch 
and high density cell cultures were used by Zhang and Zhong [ 14 ] and reported a cell 
concentration as high as 35 g dry cell L−1. 2.8 and 3.4 fold increment saponin and 
polysaccharide productivity was revealed in high density fed-batch cultures. By adopt-
ing fed-batch, high density cell cultures in Korean ginseng it is possible to achieve 
improved productivity and research work is in progress in this direction.

6.6         Conclusions and Future Perspectives 

 Ginseng cell culture has been evolved as an alternative for fi eld cultivation as it 
has the advantages of higher biomass accumulation and ginsenosides production. 
Extensive research work has been carried out on ginseng cell and tissue cultures, 
such as optimization of culture medium, physical conditions for the production of 
biomass and ginsenosides productivity [ 1 ]. In the current studies, cell cultures 
were established in Korean ginseng and various physiological and physical 
parameters which affect the biomass and metabolite accumulation have been opti-
mized. Elicitation technology has been achieved for enhanced accumulation of 
ginsenosides. Cell cultures have been also established in large scale airlift biore-
actors (500 and 1,000 L) to obtain voluminous biomass and metabolite productiv-
ity. Recently, various bioengineering parameters like fed-batch cultures [ 14 ], high 
density cell cultures [ 22 ,  23 ] have been adopted in  Panax notoginseng  cell cul-
tures and obtained improved productivity of metabolites. Elicitation of ginseng 
cell cultures with vandate [ 57 ] and  N ,  N ’-dicyclohexylcarbodiimide [ 58 ] have 
also been reported for enhanced saponin productivity. There is scope for improve-
ment of secondary metabolite production in Korean ginseng with the adoption of 
these techniques. Further, research in the improvement of the ginseng cell culture 
technologies may be useful for commercial production of ginseng raw material.     

  Acknowledgment   Nguyen Trung Thanh would like to thanks the National Foundation for 
Science and Technology Development (Ministry of Science and Technology, Vietnam) for fi nan-
cial support of project 106.11.142.09.  
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    Abstract      Panax quinquefolium  L. and  Glycyrrhiza uralensis  Fisch. are important 
medicinal plants and health food that are used worldwide. Field cultivation of  Panax 
quinquefolium  and  Glycyrrhiza uralensis  is an extremely time consuming and 
labor-intensive process. Plant cell culture offers an alternative for obtaining valu-
able chemicals, especially plant-specifi c bioactive secondary metabolites. In this 
review, cell suspension cultures of  Panax quinquefolium  and  Glycyrrhiza uralensis  
are described for the production of bioactive compounds.  

  Keywords     Bioreactor   •   Cell suspension   •    Glycyrrhiza uralensis    •    Panax 
quinquefolium   
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   2, 4-D    2, 4-Dicholorphenoxy acetic acid   
  B5    Gamborg’s medium   
  BA    Benzyl adenine   
  BTBB    Balloon-type bubble bioreactor   
  LH    Lactalbumin hydrolysate   
  MJ    Methyl jasmonate   
  MS    Murashige and Skoog medium   
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  NAA    α-naphthalene acetic acid   
  PHE    Phenylalanine   
  SOUR    Specifi c oxygen uptake rate   
  vvm    Air volume per culture volume per minute   

7.1           Introduction 

  Panax quinquefolium  (American ginseng) is a widely used herb belonging to the 
family  Araliaceae . It has gained a tremendous global trade and is recognized as a 
health food supplement [ 1 ]. Dried root powder/extract of this plant is widely used 
as a health tonic for anti-stress, anti-fatigue, aphrodisiac and anti-aging properties 
[ 2 ,  3 ]. Ginseng saponins (ginsenosides), the secondary metabolites of this plant 
are its pharmacologically active components. The two major groups of ginsen-
osides are Rb and Rg groups derived respectively from 20 (S) protopanaxadiol to 
20 (S) protopanaxatriol. Ginsenosides Rb 1 , Rb 2 , Rc and Rd are from the Rb group 
and ginsenosides Re, Rg 1  and Rg 2  are from the Rg group. Ginseng polysaccha-
ride, a primary metabolite of the plant possesses antitumor and immunological 
activities [ 4 ]. 

 Licorice roots and stolons of some  Glycyrrhiza  species, the oldest medicinal 
plants have been used by human beings. Glycyrrhizic acid, namely a kind of triter-
penoid saponin, is an important pharmacologically active component in it [ 5 ]. 
Glycyrrhizic acid has signifi cant effects similar to the adrenal cortical hormone and 
can be used in clinical trials as an anti-infl ammatory, anti-ageing, decompression, 
immunity enhancer, and for improving the physiological functions and restraining 
cancer cells growth showing really a curative effect [ 5 ]. Flavonoids, the secondary 
metabolites of this plant are especially used for whitening and dispelling the freckle 
and as an anti-oxidative [ 5 – 8 ]. Polysaccharides, the primary metabolites in 
 Glycyrrhiza uralensis  have drawn the attention of researchers due to their physical 
and functional properties [ 9 ]. In recent years, licorice has been increasingly used as 
a healthy additive formulated into a variety of commercial products, including 
drugs, foods, drinks and cosmetics, which are marketed in Asia as well as in many 
other countries all over the world [ 5 ,  10 ]. 

 Field cultivation of  P. quinquefolium  requires skillful land management tech-
niques and an intensive pest control programme and also the plant has a prolonged 
growth period. Furthermore, intensive replanting of  P. quinquefolium  will lead to 
recurring diseases. So, a second planting made in the same fi eld will often fail [ 11 , 
 12 ]. Natural sources of wild licorice are very limited because of the low budding 
ratio of the seeds and destructive exploitation by people [ 13 ]. The current supply 
of licorice is mainly from fi eld cultivation, which is an extremely time consum-
ing and labour-intensive process. Plant cell culture offers an alternative for obtain-
ing the valuable chemicals, especially plant-specifi c bioactive compounds. In this 
article, bioreactor culture of suspension cells in  P. quinquefolium  and  G. uralensis  
are described.  
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7.2     The Cell Suspension Culture of  Panax quinquefolium  

7.2.1     Culture Medium and Conditions 

 The Murashige and Skoog (MS) medium and its modifi ed form were mainly used 
for the cell suspension cultures of  P. quinquefolium . Zhang et al. [ 14 ] have studied 
the effects of three various media formulation on the cell cultures of  P. quinquefo-
lium  and the results showed that the biomass of  P. quinquefolium  cells and saponin 
content were optimum in Murashige and Skoog medium. 

 The changes in the components of the medium will affect the growth of cells and 
the synthesis of saponins. Reducing the concentration of KNO 3 , CaCl 2  and MgSO 4  
in the MS medium to 1/8, 1/6 and 1/4 of the original concentration will promote the 
growth of the  P. quinquefolium  cells. The reduction in the concentration of KNO 3  
and CaCl 2  is not good for the saponin synthesis. However, reduction in the concen-
tration of CaCl 2  appropriately will benefi t the saponin synthesis. 0.65 mmol L−1 
phosphate is the optimum concentration for the growth of  P. quinquefolium  cells 
and 1.25 mmol L−1 phosphate is optimum for the synthesis of saponin and polysac-
charide [ 15 ]. These results suggested that inorganic ions have a regulative effect on 
the metabolism of saponins. 

 The consumption of sucrose is approximately 80 % in the growth cycle of  P. 
quinquefolium  suspension cells. It shows that 3 % sucrose was enough to provide 
the amount of the carbon that the cells need for the multiplication to produce new 
generation of cells [ 16 ]. In addition, the consumption of inorganic phosphate was 
highest (31 %), followed by the nitrogen source (22.5 %) and the calcium consump-
tion was the lowest (9 %) among a large number of elements of the medium. 

 Among the various growth regulators supplemented to MS medium such as 
NAA, 2, 4-D, BA and Kinetin, it was 1.0 mg L−1 2, 4-D and 0.25 mg L−1 kinetin 
supplemented medium showed optimum biomass growth and accumulation of 
ginsenosides. 

 The inoculum size was 4 % (fresh weight), culture temperature was 24 ± 1 °C and 
subculuting once in 20 days was found suitable for biomass accumulation. The cells 
grew slowly at lower temperatures (below 20 °C) as well as at higher temperatures 
(above 28 °C). In the experiments which were carried out to investigate the effect of 
pH, the higher (6.8–7.0) or lower (5.5) initial pH was not benefi cial to the growth of 
cells and the synthesis of saponins. The higher fresh weight, dry weight and saponin 
content were obtained at the initial pH of 6.0–6.5 [ 17 ]. In addition, the agitation 
speed of 100–120 rotation per minute, aeration rate of 0.6–0.8 vvm, working vol-
ume range of 100–500 mL and the amplitude of 2.5 cm were suitable for accumula-
tion of optimal biomass and saponins. 

 Effect of various elicitors were tested to facilitate hyper-accumulation of sapo-
nins in cell cultures of  P. quinquefolium . The experimental results showed that 0.1 % 
mevalonate inhibited the growth of cells in suspension cultures and promoted the 
synthesis of saponin, which reached to 6.14 %; 100 mg L−1 leucine had no signifi -
cant effect on the cell growth, but it promoted the synthesis of saponin; 444 mg L−1 
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 magnesium acetate, 160 mg L−1 ATP and 1.0 mg L−1 niacin promoted the growth of 
cultured cells and synthesis of saponin, respectively with the cobolt γ irradiation at 
4,000 Gy  60    , the saponin content was higher than that of the control group, and the 
total saponin content reached to 10.40 % after subculturing for fi ve times. In addi-
tion, both the osmotic pressure regulator mannitol and D – galactose promoted the 
synthesis of saponins [ 18 ].  

7.2.2     Bioreactor Cultures 

 Application of bioreactors in the cultivation of plant cells as well as organ cultures 
for the production of biologically active metabolites has been reported for many 
plants [ 19 – 21 ]. The bioreactor culture system offers many advantages over classical 
tissue culture because the culture conditions in the bioreactor can be optimized by 
real-time manipulation of temperature, pH, oxygen, carbon dioxide and nutrients in 
the medium. Therefore, cell proliferation and regeneration rates can be increased. In 
addition, the production cost and time can be substantially reduced, product quality 
can be controlled and standardized, it can be free of pesticide contamination, and 
production can be conducted year-round without geographical constraints [ 22 ]. 

    Dynamic Accumulation of Growth and Active Components 

 Cell suspensions were established in a 5 L stirred tank bioreactor containing 3 L MS 
liquid medium supplemented with 1.0 mg L−1 2, 4-D and 0.25 mg L−1 Kinetin. 
Inoculum size was 75 g fresh weight and the cells were mixed using impeller 
(100 rpm). The airfl ow rate was adjusted 0.1 vvm during cultivation and pH of the 
medium was adjusted to 6.0 before autoclaving of the medium. The cell growth was 
initiated after 3 days of culture initiation, after 18 days the cells entered into a pro-
gressive deceleration phase and the maximum growth was achieved on day 21, after 
that, cells entered the stationary phase. The contents of ginsenoside Re increased 
slowly within fi rst 6 days, and the highest contents of 0.58 mg g−1 was achieved on 
day 21. The contents of ginsenoside Rb1 and polysaccharide increased quickly dur-
ing the earlier stage, and the highest contents were achieved on day 24 and day 18 
respectively (Fig.  7.1 ) [ 23 ].

   Because all primary and secondary metabolic events are governed by the active 
biomass, which is the total dry weight minus intracellular carbohydrate [ 24 ], the 
biosynthesis of both saponin and polysaccharide depend on active biomass. 
Therefore, the dry weight of cells and the contents of ginsenoside Re, Rb1 and poly-
saccharides reached the peak simultaneously and approximately on the 21st day. 
The polysaccharide contents reached to a maximum and then decreased when the 
cell growth entered the progressive deceleration phase. It may be attributed to 
the decrease in carbon source concentration in the medium, and in this case, the 
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 degradation rate of polysaccharide was higher than its synthetic rate, which affected 
the accumulation of polysaccharide. The degraded polysaccharide was used as a 
carbon source by the cells [ 23 ].  

    Effect of Sucrose 

 The sucrose concentration showed a sharp drop from 30 to 3.83 g L−1 within the fi rst 
3 days and slow consumption after 6 days (Fig.  7.2 ). However, the concentration of 
fructose and glucose increased quickly during the earlier stage, and the highest con-
centration was achieved on day 6 and 9 respectively. After this, the concentration of 
fructose and glucose decreased gradually and the glucose concentration was almost 
zero on the 18th day of culture, but a small amount of fructose remained and the 
fructose concentration decreased from 6.82 to 3.51 g L−1 within the fi nal 10 days 
(Fig.  7.2 ) [ 23 ].

   Glucose and fructose concentration in the medium increased signifi cantly dur-
ing the fi rst stage and then decreased slowly. This indicates that extracellular hydro-
lysis of sucrose lead to the formation of glucose and fructose. This hydrolysis 
might be due to the acid invertase, which may have been secreted from cells into 
the medium. In the fi rst stage of culture, with the consumption of sucrose, cell 
weight, Re, Rb1 and polysaccharide started to accumulate. Sugar concentration 
was getting low after 18 days of culture, at this time the cell entered the progressive 
deceleration phase and polysaccharide contents were decreased. However, the con-
tents of ginsenoside continued to increase, which may be attributed to residual 
fructose [ 23 ].  
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    Effect of Nitrogen 

 Ammonium concentration showed sharp drop from 20 to 4.27 mmol L−1 within fi rst 
3 days. Ammonium had not been detected after 18 days of cultivation. Nitrate was 
consumed gradually from culture imitation and had little change after 21 days of 
cultivation (Fig.  7.3 ) [ 23 ].

   The preferential uptake of ammonium at the beginning of culture has been 
observed for many species, which is also associated with a fall in pH of the culture 
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medium. Ammonium had been exhausted after 18 days of cultivation, at this time 
cells entered the progressive deceleration phase, and gradually stopped growing. 
The results indicated that ammonium was the crucial factor for cell growth. Besides, 
the synthesis of ginsenosides may be related to the residual nitrate. These results 
suggested that nitrate and ammonium have different effects on cell culture in 
 P. quinquefolium  [ 23 ].  

    Effect of Phosphate 

 Phosphate concentration showed a sharp drop in the fi rst 3 days and its concen-
tration could not be detected during day 24–30 (Fig.  7.4 ) [ 23 ]. Phosphate is 
another key nutrient for plant cell growth and metabolite formation. Phosphate 
participates in energy metabolism and biosynthesis. In this experiment, we 
found that phosphate was rapidly depleting in the medium during  P. quinquefo-
lium  cell suspension culture and got exhausted after 24 days of cultivation, at 
this time, cells entered the  stationary phase and the contents of Rb1 decreased 
gradually [ 23 ].

      Elicitation 

 To stimulate the biosynthesis of saponins and polysaccharides  Panax quinque-
folium  bioreactor cell cultures were treated with elicitors after 20 days of culture 
initiation. Combination of elicitors (100 mg L−1 LH and 2 mg L−1 MJ) and single 
elicitor (100 mg L−1) were added and results are presented in Fig.  7.5 . The combi-
nation of LH and MJ synergistically stimulated ginsenoside accumulation when 
compared to LH alone; however, there was no improvement in polysaccharide 
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content. 31.37 mg L−1 saponins were recorded 100 mg L−1 treatment, whereas 
45.93 mg L−1 saponins were recorded with combined treatment of LH and MJ 
(Fig.  7.5 ) [ 25 ].

   Elicitor may induce the transcription and translation of specifi c genes in the sec-
ondary metabolic pathway, therefore, the content of active secondary metabolites in 
plant tissue cultures can be increased. At present, elicitors have received the wide-
spread application in the studies on the production of active components in plant 
cell cultures. LH, which is an important nutrient in plant cell culture, is often used 
as an elicitor to enhance the contents of secondary metabolites [ 25 ]. Methyl jasmo-
nate and its derivatives are considered to be involved in a part of the signal transduc-
tion pathway that induces particular enzymes catalyzing biochemical reactions to 
form defense compounds of low molecular weights in plants, such as polyphenols, 
alkaloids, quinones, terpenoids and polypeptides [ 25 ,  26 ].  
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   Fed-Batch Cultures 

 When 30 g L−1 sucrose was fed to the cells which were cultured in bioreactors on 
day 16 at residual sugar level was below 15 g L−1, dry cell growth rate and polysac-
charide contents were higher than in batch cultivation. Higher polysaccharide pro-
ductivity (1.608 g L−1) was observed when compared with batch cultivation 
(0.819 g L−1). Fed- batch cultivation did not signifi cantly enhance the total saponin 
contents, while the total saponin contents showed a slow drop after 24 days when 
compared to that of batch cultivation. Because of an increase in biomass, the high-
est total saponin yield (7.828 mg L−1) was obtained on day 24, and the value was 
about 36 % higher than that of the batch cultivation (Fig.  7.6 ) [ 27 ]. From this 
investigation, we found that fed- batch cultivation of  P. quinquefolium  cells signifi -
cantly improved the production of ginsenoside and polysaccharides when com-
pared to that of batch operation [ 27 ].

      Two-Stage Cultivation 

 After 16 days of culture 30 g L−1 sucrose was added to the medium. In the second 
stage of culture, elicitors (100 mg L−1 LH and 2 mg L−1 MJ) were added to the 
medium on day 20. In the two-stage culture system, both the growth and polysac-
charide content had a little change when compared to that obtained in fed-batch 
culture. However, the total saponin content was higher than that of fed-batch cul-
ture. Use of the treatment combining sucrose, LH and MJ caused a signifi cant 
increase in total saponin yield (31.52 mg L−1) in cell cultures after 27 days. Saponin 
yields were increased by 4.03- and 4.34-fold when compared to fed-batch cultiva-
tion and batch cultivation respectively (Fig.  7.7 ) [ 27 ].

   Based on the results of carbon source consumption and elicitor effects, two- stage 
cultivation process was carried out in 5 L stirred tank bioreactor to enhance the cell 
density and metabolite production. In the second stage of culture, addition of LH 
and MJ signifi cantly increased the total saponins in the cell cultures. The two- stage 
culture system was more effective in improving the contents of active components 
[ 27 ].    

7.3     The Cell Suspension Culture of  Glycyrrhiza uralensis  

7.3.1     Culture Medium and Conditions 

 MS or B 5  medium are commonly used in the suspension cultures of  G. uralensis  
cells. 2, 4-D has a signifi cant infl uence on the biomass of the  G. uralensis  cells. In 
addition, the inoculum size was 6–10 %; the initial pH was 5.8–7.0; the concentra-
tion of the sucrose was 50 g L−1; and the growth cycle was 21 days [ 28 ]. 
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  Fig. 7.6    Effects of fed-batch cultivation on  P. quinquefolium  cells in 5 L stirred tank bioreactor. 
( a ) Effects on biomass; ( b ) Effects on saponin content; ( c ) Effects on polysaccharide content; ( d ) 
Effects on saponin yield. ( e ) Effects on polysaccharide yield. Symbols: (◆) batch cultivation, (■) 
fed-batch cultivation, add 30 g·L −1  sucrose on day 16         
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  Fig. 7.7    Effects of two-stage culture on  P. quinquefolium  cells in 5 L bioreactor. ( a ) Effects on 
biomass; ( b ) Effects on saponin content; ( c ) Effects on polysaccharide content; ( d ) Effects on 
saponin yield; ( e ) Effects on polysaccharide yield. Symbols: (■) Batch culture; (▲) Fed-batch 
culture, add 30 g L−1 sucrose nod 16; (×) Two stage culture, add 30 g L−1 sucrose on day 16, add 
100 mg L−1 LH and 2 mg L−1 MJ on day 20         
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 In the shake fl ask culture, the concentration of nitrogen and phosphate were 
gradually reduced during the culture period. In the linear phase of the cell growth, 
the phosphate source was almost completely used. The sucrose in the culture 
medium of carbon sources converted to deoxidize sugar which can be directly used 
by the plant cells, eventually exhausted in 22 days. 

 A certain concentration of methyl jasmonic acid, salicylic acid and fungus poly-
saccharide can increase the yield of total fl avonoids, increase the contents of H 2 O 2  
and malondialdehyde as well as the activity of phenylalanine lyase, catalase and 
peroxidase in the cells. The appropriate concentration of precursor phenylalanine, 
tyrosine, cinnamic acid and sodium acetate did not inhibit the growth of cells, and 
can promote the biosynthesis of total fl avonoids. The accumulation of total fl avo-
noids in  G. uralensis  cells can be promoted by the appropriate drought pressure and 
using the appropriate concentration of mannitol, KCl and sucrose [ 29 ].  

7.3.2     Bioreactor Cultures 

   Optimization of the Aeration Volume 

  Glycyrrhiza uralensis  cell suspension cultures were established in 5 L capacity bal-
loon type bubble bioreactors (BTBB) containing 3 L MS medium supplemented 
with 1 mg L−1 2, 4-D, 1.0 mg L−1 NAA, 0.2 mg L−1 BA and 30 g L−1 sucrose. Two-
hundred gram cells (fresh weight) were cultured for 20 days at 23 ± 2 °C. The cul-
tures were aerated at 0.2, 0.4, 0.6, 0.8 or 1.0 vvm. The highest accumulation of cell 
biomass was achieved at an aeration volume of 0.6 vvm. Similar to the fi ndings for 
cell growth, the highest content of the triterpenoid saponins and fl avonoids were 
obtained at an aeration volume of 0.6 vvm (Fig.  7.8 ) [ 30 ].

   Optimizing the aeration volume is one conventional way of controlling the gas-
eous composition, which can affect the cell growth [ 31 ]. The air supplied into bio-
reactors play two important functions: one is supply of dissolved oxygen for 
metabolic activities, and the other one is agitation [ 32 ]. In general, a high aeration 
volume is benefi cial in speeding up the transfer of oxygen into bioreactors, a pro-
cess that improves both secondary metabolite accumulation and cell growth [ 33 ]. 
However, such a high volume is not always advantageous to the accumulation of 
biomass and compounds in plant cultures, probably because of physiological dam-
age due to the excessive agitation and shear stress [ 31 ].  

    Dynamic Change of Growth and Specifi c Oxygen Uptake Rate (SOUR) 

 Cell growth was started rapidly 5 days after culture initiation, and the maximum 
dry weight was achieved on day 20. SOUR increased quickly within the fi rst 
5 days. After this, SOUR showed a sharp drop and was almost zero after 10 days 
(Fig.  7.9 ) [ 30 ].
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      Step-Wise Aeration Treatment 

 The harvested cells of  G. uralensis  under three modes of aeration (0.6 vvm, 0.4–
0.6–0.4 vvm and 0.6–0.4 vvm) after 20 days are presented in Fig.  7.10 . The highest 
growth rate of cell biomass was achieved at an aeration volume of 0.6 vvm. The 
highest content of the triterpenoid saponins and fl avonoids were obtained at an aera-
tion volume of 0.6–0.4 vvm. Overall, the highest triterpenoid saponins yield 
(2.58 mg L−1) and fl avonoids yield (24.33 mg L−1) was obtained at 0.6–0.4 vvm 
(Fig.  7.10 ) [ 30 ].

   We have shown earlier that 5 days later, cells increase to grow rapidly and exhibit 
a stationary phase after 15 days. SOUR increases quickly within the fi rst 5 days. 
After this, SOUR shows a sharp drop and will be almost zero after 10 days. For this 
reason, we designed a step-wise aeration treatment with 0.4–0.6–0.4 vvm and 0.6–
0.4 vvm, respectively. Jeong et al. [ 34 ] and Lee et al. [ 35 ] reported that a gradual 
rise in aeration volume is favorable for growth of cells/organs in bioreactors because 
the high infl ow of air agitates cells, thereby elevating the concentration of dissolved 
oxygen in the culture while accelerating the cell growth, whereas maintaining a 
constant, high aeration volume throughout the culture period inhibits their growth 
due to sheer stress [ 30 ].  

   Growth Kinetics 

 Bioreactor cultures were aerated with 0.6–0.4 vvm, growth kinetics was studied and 
results are presented in Fig.  7.11 . The cell growth increased quickly from 0 to 
15 days, after 20 days of cultivation, the dry cell growth rate reached its peak (8.78). 
SOUR increased quickly within the fi rst 5 days. After this, SOUR showed a sharp 
drop and was almost zero after 10 days. The highest triterpenoid saponins and fl a-
vonoids contents were obtained on day 10 and day 15 respectively. Linear correla-
tions and a high calculated correlation coeffi cients (r 2  = 0.99) were observed between 
cell growth and medium conductivity (Fig.  7.11 ) [ 31 ].

   From our investigation, we found that SOUR of cells at an aeration volume of 
0.6–0.4 vvm increased quickly within the fi rst 5 days. After 5 days, SOUR showed 
a sharp drop and was almost zero after 10 days. This resembles the result of 0.6 vvm 
treatment [ 31 ]. It has been reported that conductivity values refl ect nutrient uptake 
by the cells, therefore, electrical conductivity measurements have been used as an 
indirect method for biomass estimation [ 36 ]. A prompt measure can be obtained by 
exploiting the known linear relationship between changes in medium conductivity 
and cell growth [ 37 ].  

  Fig. 7.10    Effects of step-wise aeration on  G. uralensis  cells after 20 days of culture. ( a ) The 
 G. uralensis  cells harvested; ( b ) Effects on growth rate; ( c ) Effects on triterpenoid saponin and 
fl avonoids content; ( d ) Effects on triterpenoid saponin and fl avonoids yield         
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   Elicitation 

 Further, to increase the production of fl avonoids and polysaccharides in cell cul-
ture, 2 mM PHE and 5 mg L−1 MJ were added to culture media after 10 days of 
culture. The combination of PHE and MJ synergistically stimulated fl avonoids and 
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polysaccharide accumulation when compared with MJ alone, but did not signifi -
cantly enhance the biomass content. Finally, these results led to higher fl avonoids 
productivity (10.62 mg L−1) than single treatment of 5 mg L−1 MJ (9.58 mg L−1) 
(Fig.  7.12 ) [ 38 ].

      Different Kinds of Cultivation Methods 

 Fed-batch cultivation of suspension cells was carried out in the BTBB, 30 g L−1 of 
sucrose was added on 8th day. Dry cell yield and polysaccharide content were 
both higher than that of the batch cultivation for 21 days culture. Dry cell yield 
reached from 10.73 g L−1 in batch cultivation to 12.08 g L−1 in fed-batch cultiva-
tion. Higher polysaccharide yield (1.19 g L−1) was observed when compared with 
batch cultivation (0.56 g L−1). Nevertheless, fed-batch cultivation did not signifi -
cantly enhance the total fl avonoids contents after 21 days culture when compared 
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  Fig. 7.12    Effect of PHE on cell growth and production of active components in 5-L BTBB ( a ). 
Effect of MJ on cell growth and production of active components in 5-L BTBB ( b ). Effect of MJ 
and PHE on cell growth and production of active components in 5-L BTBB ( c ). Dry cell yield ( red 
square ), polysaccharide content ( blue diamond ), total fl avonoids content ( green triangle ). Each 
value represents mean ± standard error of three replicates       
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with that of batch cultivation. A higher total fl avonoids yield (55.42 mg L−1) that 
was about 22 % higher than that of the batch cultivation was obtained on 21st day. 
In brief, fed-batch cultivation of  G. uralensis  cells improved the dry cell yield and 
accumulation of  fl avonoids and polysaccharides when compared with batch 
cultivation. 

 During the two-stage cultivation of suspension cells in BTBB, 30 g L−1 sucrose 
was added to the medium on 8th day and the elicitors (2 mM PHE and 5 mg L−1 
MJ) were added to the medium on 10th day in the second stage of culture. Both 
the dry cell yield and the polysaccharide content in two-stage culture system 
slightly changed when compared with fed-batch culture, but were signifi cantly 
higher than that in batch cultivation. Dry cell content was increased by 1.05- to 
1.15-fold when compared with fed-batch cultivation and batch cultivation on 
15th day. The polysaccharide yield was increased by 1.14- to 2.12-fold when 
compared with fed-batch cultivation and batch cultivation on 15th day. However, 
the total fl avonoid content was obviously higher than that in fed-batch culture. 
The treatment of combined sucrose, PHE and MJ caused a signifi cant increase in 
total fl avonoids yield (132.36 mg L−1) on 15th day, which was increased by 2.26- 
to 2.67-fold when compared with fed-batch cultivation and batch cultivation, 
respectively. In a word, two-stage cultivation system compared with fed-batch 
cultivation showed the unclear infl uence on the dry cell and polysaccharide con-
tents, but obviously affected the total fl avonoid production. Obviously, two-stage 
cultivation system had the signifi cant impact on all of the dry cell, polysaccha-
rides and total fl avonoid contents when compared with the batch cultivation 
(Fig.  7.13 ) [ 38 ].

   Sucrose, as a primary energy source, is the widespread carbon source for the 
plant cell culture. The rate of biomass growth is directly correlated with sucrose 
consumption. Therefore, we added the source on 8th day when carbon source 
reduced to a lower level, which signifi cantly enhanced the  G. uralensis  cell 
growth. The carbon consumption was also consistent with the cell growth and 
might affect cell growth and fl avonoid biosynthesis [ 38 ]. Depending on the 
effects of source, precursor and elicitor, two-stage cultivation process has been 
carried out in the 5 L BTBB to enhance the cell growth and secondary metabo-
lite production. In addition, two-stage process with a high-density culture was 
 practical for producing secondary metabolites. On the basis of dry cell yield and 
polysaccharide accumulation in cellular  Glycyrrhiza , two-stage cultivation 
 system was similar to the fed-batch cultivation, and was better than the batch 
cultivation. On the other hand, in view of fl avonoids production, two-stage 
 cultivation system was the best method among these three cultivation systems. 
These results provided the basis for commercial- scale cultivation in suspension 
cells of  G. uralensis  in bioreactor, which could provide a new way to produce 
biologically active substances for cosmetics and health food. Furthermore, 
the understanding of induction mechanism on secondary metabolic pathways 
should be explored and the scale of bioreactor should be further remarkably 
expanded after being treated with the combining elicitation of PHE and 
MJ [ 39 ].  
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   Scale Up Process 

 Maximum growth rate of 3.18- and 10.86-fold were obtained in 5 L and 10 BTBBs, 
respectively after 20 days of inoculation, which were signifi cantly higher than that in 
0.5 L conical fl ask (1.33-fold). Bioreactor cultures of  G. uralensis  cells are shown in 
Fig.  7.14 . Chen et al. [ 40 ] reported that maximum dry weight and growth rate of  G. 
uralensis  cells in 9 L airlift bioreactor were 16.25 g L−1 and 0.9 g L−1 day−1, respec-
tively, which were higher than that in conical fl ask. We also found that growth rate of 
 G. uralensis  cells in bioreactor was signifi cantly higher than that of conical fl ask.
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  Fig. 7.13    Effects of two-stage culture on  G. uralensis  cell in a 5-L BTBB. Effects on biomass ( a ). 
Effects on total fl avonoids content ( b ). Effects on total fl avonoids yield ( c ). Effects on total poly-
saccharide content ( d ). Effects on total polysaccharide yield ( e ). Batch culture ( blue diamond ); 
fed-batch culture, 30 g L −1  sucrose added on day 8 ( red square ); two-stage culture, with the addi-
tion of 30 g L −1  sucrose on day 8 and 2 mM PHE and 5 mg L −1  MJ on day 10 ( green triangle ). Each 
value represents mean ± standard error of three replicates       
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    Abstract      Echinacea purpurea  (L.) Moench, the purple cone fl ower is one of the 
world’s most important medicinal herbs and active ingredients of purple cone fl ower 
are caffeic acid derivatives namely caftaric acid, chlorogenic acid, caffeic acid, 
cynarin, echinacoside and cichoric acid. Efforts have been made in the recent past 
for the production of caffeic acid derivatives from adventitious root cultures. 
Bioreactor cultures have been established for large-scale production of biomass and 
bioactive compounds and various physiological parameters affecting the biomass 
and accumulation of caffeic acid derivatives have been investigated. Advances in 
adventitious root cultures of  Echinacea purpurea  for the production of bioactive 
compounds have been summarized in this review.  
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  Abbreviations 

   DW    Dry weight   
  FW    Fresh weight   
  IBA    Indole-3-butyric acid   
  MS medium    Murashige and Skoog medium   
  SNP    Sodium nitroprusside   
  vvm    Air volume per medium volume per minute   

8.1           Introduction 

  Echinacea purpurea  (L.) Moench, the purple cone fl ower is one of the world’s most 
important medicinal herbs which are widely grown in various parts of the world. 
Research shows that it has the ability to stimulate the immune response against the bac-
terial and viral infections. It is valuable in preventing or treating cold, fl u and also skin 
infections such as acne and boils.  E. purpurea  is also a good wound healer [ 2 ]. Echinacea 
products are the most popular herbal immunostimulants in North America and Europe. 
Echinacea is the top selling single botanical product [ 10 ] and the market leader in vol-
ume of sale at 10 % of total medicinal herbs sales [ 18 ]. The potential compounds found 
in purple conefl ower are caffeic acid derivatives namely caftaric acid, chlorogenic acid, 
caffeic acid, cynarin, echinacoside and cichoric acid (Fig.  8.1 ). Of these, cichoric acid 
has immunostimulatory properties and can promote phagocyte activity  in vitro  and 
 in vivo . It has also been shown to have antiviral activity especially against HIV [ 1 ,  7 ].

   Cell and organ cultures have emerged as a valuable route for biosynthesis of 
phytochemicals having medicinal importance. In this regard,  E. purpurea  cell and 
hairy root cultures were used to produce immunologically active caffeic acid deriva-
tives and polysaccharides [ 6 ,  8 ,  9 ,  14 ,  16 ,  17 ], however, no further work on optimi-
zation of medium parameters, physical factors and large scale cultivation of cells 
and hairy roots were investigated. Nevertheless, successful adventitious root cul-
tures were established by Jeong et al. [ 4 ] and Wu et al. [ 20 – 23 ] using bioreactor 
system for the production of potential bioactive compounds and various culture 
strategies have been worked out. In this review, the various bioprocessing method-
ologies which control the  E. purpurea  adventitious root biomass and bioactive com-
pound production are highlighted. 

8.1.1     Induction of Adventitious Roots and Establishment 
of Suspension Cultures 

 Calli masses were induced from the roots of  Echinacea purpurea  which were col-
lected from the wild and cultured on Murashige and Skoog medium [ 11 ] supple-
mented with 2.0 mg L −1  IBA and 50 g L −1  sucrose in dark at 25 ± 2 °C [ 20 ]. 

H.N. Murthy et al.



169

Adventitious roots were induced from the calli masses upon subculturing to half 
strength MS medium supplemented with 2.0 mg L −1  IBA and 50 g L −1  sucrose. 

 Bioreactor cultures (balloon type bubble bioreactors with 5 L capacity) were initi-
ated using 4 L half strength modifi ed MS medium (ammonium and nitrate ratio was 
5:25 mM) supplemented with 2 mg L −1  IBA and 50 g L −1  sucrose. Bioreactor cultures 
were established using 7 g L −1  inoculum and were maintained in dark at 25 ± 2 °C for 
8 weeks. The growth pattern of adventitious roots typically showed a lag phase of 
0–1 weeks, exponential phase of 2–7 weeks and then remained stationary after 7th 
week onwards (Fig.  8.2a ) [ 4 ]. After 7 weeks of culture, the biomass reached its peak 
(10.5 g L −1  DW), which was 13 times higher than initial inoculum dry weight. The 
accumulation of dry adventitious root mass was found to be much higher in bioreac-
tor cultures (10.5 g L −1  DW) than in the shake fl ask cultures (6.6 g L −1  DW) [ 4 ]. The 
electrical conductivity (EC) and hydrogen ion concentration (pH) of the medium 
decreased during the course of time (Fig.  8.2b ) and this was due to depletion of nutri-
ents in the culture medium and increased metabolite accumulation in the biomass. 
Similarly, there was decrease in sucrose concentration over the culture period and 
increase in fructose and glucose with the cultures (Fig.  8.3a ). The kinetic changes in 
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the concentrations of NH 4  + , Ca   2+ , K + , NO 3  − , Mg 2+ , SO 4  2− , and HPO 4  −  was reported in 
adventitious root cultures (Fig.  8.4 ) [ 4 ]. The uptake of these ions and hydrolysis of 
sucrose into simple sugars indicate the utilization of nutrients by the growing adven-
titious roots. These aspects observed during the culture also indicated that the biore-
actor cultures adequately meet the nutritional needs of the  E. purpurea  adventitious 
root cultures (Fig.  8.4 ). The total phenolic and fl avonoid contents were increased 
with the cultures over the period and their concentration was optimum after 5 weeks 
(60 and 32.8 mg g −1  DW respectively; Fig.  8.3b ). The accumulation of 5.28 mg g −1  
DW caftaric acid, 5.53 mg g −1  DW chlorogenic acid, and 27.51 mg g −1  DW cichoric 
acid in bioreactor cultures (Fig.  8.5 ) were higher than that of hairy roots cultivated in 
fl ask cultures (3.56 mg g −1  DW of caftaric acid, 0.93 mg g −1  DW chlorogenic acid, 
and 19.21 mg g −1  DW cichoric acid) [ 9 ]. Therefore, bioreactor cultures are suitable 
for the large scale production of caffeic acid derivatives.

8.1.2           The Effect of Inoculum Density on Adventitious Root 
Growth and Metabolite Accumulation 

 Table  8.1  illustrates the effect of inoculum density on the growth of adventitious 
roots and accumulation of phenolics and fl avonoids. Among the various inoculum 
densities tested (2.5, 5.0, 7.0, 10.0 and 15.0 g L −1 ) maximum biomass accumulation 
was obtained (79.0 g L −1  FW and 10.4 g L −1  DW) when 15 g L −1  of adventitious 
roots were used as inoculum. However, the maximum phenolic and fl avonoid con-
tents (58.5 mg g −1  DW and 38.6 mg g −1  DW respectively) were with the inoculum 
density of 7 g L −1 . Similarly, 4.1 mg g −1  DW caftaric acid, 5.1 mg g −1  DW chloro-
genic acid and 28.1 mg g −1  DW cichoric acid were produced with the inoculum 
density of 7 g L −1  (Table  8.2 ) [ 4 ]. These results clearly demonstrate that inoculum 
density is also one of the factors which determine the accumulation of biomass and 
the productivity of bioactive compounds by  in vitro  cultures.

8.1.3         The Effect of Different Aeration Rates on Biomass 
and Metabolite Accumulation 

 Aeration is an important factor which infl uences the biomass growth and metabolite 
accumulation in bioreactors [ 3 ]. In airlift bioreactors, aeration fulfi lls three main 
functions: maintenance of aerobic conditions, desorption of volatile products, 
removal of metabolic heat. Additionally, aeration is also meant for agitation of bio-
mass which promotes homogeneity of cultured cells and organs. The adventitious 
root cultures which were maintained with four modes of aeration, 0.05, 0.1, 0.2 and 
0.3 vvm for initial 5 weeks showed a profound infl uence on biomass growth. Highest 
biomass growth of 70.1 g L −1  FW and 9.0 g L −1  DW was observed with the cultures 
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aerated with 0.1 vvm (Table  8.3 ). The highest accumulation of phenolics and 
fl  avonoids (60.7 mg g −1  DW and 38.8 mg g −1  DW respectively), caftaric acid 
(4.7 mg g −1  DW), chlorogenic acid (5.6 mg g −1  DW) and cichoric acid (26.6 mg g −1  
DW; Tables  8.3  and  8.4 ) [ 4 ] were also obtained when the aeration rate was 0.1 vvm. 
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  Fig. 8.5    Kinetics of 
production of caffeic acid 
derivatives from adventitious 
roots of  E. purpurea  cultured 
in bioreactor (-◊- caftaric 
acid; -▫- chlorogenic acid; 
-Δ-cichoric acid; -x- total 
caffeic acid derivatives)       

   Table 8.1    Effect of inoculum density on adventitious root growth of  Echinacea purpurea  and the 
productivity of phenolics and total fl avonoids after 5 weeks of culture using 5 L balloon type 
bubble bioreactor containing 4 L MS half strength medium   

 Inoculum density 
(g L −1  FW) 

 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 ) 

 Growth 
ratio 

 Total phenolics 
(mg g −1  DW) 

 Total fl avonoids 
(mg g −1  DW) 

 2.5  55.6 e a   4.5 e  15.4  34.2 e  25.8 d 
 5.0     59.2 d  6.3 d  10.5  55.2 b  33.8 b 
 7.0  67.2 c  9.0 c  10.8  58.5 a  38.6 a 
 10.0  74.8 b  10.1 b  8.2  45.4 c  27.6 c 
 15.0  79.0 a  10.4 a  5.4  40.6 d  23.4 e 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  

   Table 8.2    Effect of inoculum density on the production of caffeic acid derivatives from 
adventitious roots of  E. purpurea  after 5 weeks of culture using 5 L balloon type bubble bioreactors 
containing 4 L MS half strength medium   

 Inoculum density (g L −1  FW) 

 Caffeic acid derivatives (mg g −1  DW) a  

 Caftaric acid  Chlorogenic acid  Cichoric acid  Total b  

 2.5  2.3 ± 0.1  4.2 ± 0.2  16.5 ± 0.2  23.0 ± 0.3 
 5.0  2.4 ± 0.1  4.5 ± 0.1  27.2 ± 0.1  34.1 ± 0.1 
 7.0  4.1 ± 0.1  5.1 ± 0.1  28.1 ± 0.4  37.3 ± 0.3 
 10.0  2.7 ± 0.1  4.5 ± 0.1  27.2 ± 0.1  34.4 ± 0.1 
 15.0  2.3 ± 0.1  2.7 ± 0.1  25.2 ± 0.1  30.2 ± 0.1 

   a Mean values of three replicates ± standard error 
  b Total caffeic acid derivatives = caftaric acid + chlorogenic acid + cichoric acid  
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The higher aeration rates at 0.2 and 0.3 vvm were not suitable for biomass and 
metabolite accumulation.

8.1.4         The Effect of Incubation Temperature and Photoperiod 

 Productivity of secondary metabolites in cell and organ suspension cultures is also 
dependent on physical factors like temperature and light [ 13 ,  25 ]. Adventitious root 
cultures of  E. purpurea  were cultured under different temperatures including 10, 15, 
20, 25 and 30 °C to verify the effect of temperature by Wu et al. [ 20 ] and results 
showed that adventitious root biomass accumulation was highest with the cultures 
incubated under 20 °C and optimum of 65.5 g L −1  fresh biomass and 10.4 g L −1  dry 
biomass was recorded, the growth ratio was 12.5 (Table  8.5 ). Accumulation of total 
polyphenolics and fl avonoids was also optimal under 20 °C. Optimum of 4.7 mg g −1  

    Table 8.3    Effects of air supply on the growth of adventitious roots of  E. purpurea  and the 
productivity of phenolics, fl avonoids after 5 weeks of culture using 5 L balloon type bubble 
bioreactors containing 4 L MS half strength medium   

 Air supply 
(wm) 

 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 ) 

 Growth 
ratio 

 Total phenolics 
(mg g −1  DW) 

 Total fl avonoids 
(mg g −1  DW) 

 0.05  70.5 ab a   8.9 ab  10.6  60.9 a  37.8 a 
 0.1  70.1 ab  9.0 ab  10.8  60.7 a  38.8 a 
 0.2  63.1 de  8.2 c  9.7  61.1 a  38.3 a 
 0.3  61.4 e  8.1 c  9.5  58.7 b  35.6 b 
 0.05–0.1  66.1 cd  8.8 b  10.4  60.2 a  38.2 a 
 0.05–0.2  67.5 bc  8.8 b  10.5  61.1 a  38.9 a 
 0.05–0.3  71.9 a  9.2 a  10.9  61.1 a  38.7 a 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  

   Table 8.4    Effects of air supply on the production of caffeic acid derivatives from adventitious 
roots of  E. purpurea  after 5 weeks of culture using 5 L balloon type bubble bioreactors containing 
4 L MS half strength medium   

 Air supply (wm) 

 Caffeic acid derivatives (mg g −1  DW) a  

 Caftaric acid  Chlorogenic acid  Cichoric acid  Total b  

 0.05  4.7 ± 0.1  5.6 ± 0.1  25.0 ± 0.1  35.3 ± 0.1 
 0.1  4.7 ± 0.1  5.6 ± 0.1  26.6 ± 0.1  37.2 ± 0.2 
 0.2  3.8 ± 0.1  5.5 ± 0.1  24.1 ± 0.1  33.4 ± 0.1 
 0.3  3.6 ± 0.1  5.2 ± 0.1  22.5 ± 0.6  31.3 ± 0.5 
 0.05–0.1  4.8 ± 0.1  5.8 ± 0.1  27.6 ± 0.1  38.2 ± 0.1 
 0.05–0.2  4.8 ± 0.1  6.0 ± 0.1  28.3 ± 0.2  39.1 ± 0.3 
 0.05–0.3  4.9 ± 0.1  6.0 ± 0.3  28.1 ± 0.3  39.0 ± 0.4 

   a Values are means of three replicates ± standard error 
  b Total caffeic acid derivatives = caftaric acid + chlorogenic acid + cichoric acid  
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DW caftaric acid, 5.2 mg g −1  DW chlorogenic acid and 28.4 mg g −1  DW cichoric 
acid were recorded with the treatment of cultures at 20 °C (Table  8.6 ). Increase in 
incubation temperature from 20 to 30 °C reduced the accumulation of caffeic acid 
derivatives by 11 % (Table  8.6 ).  E. purpurea  adventitious root cultures were incu-
bated in dark and different light irradiation conditions/photoperiod such as 0/24, 
3/21, 6/18, and 12/12 h light and dark regimes and inhibition of adventitious root 
biomass accumulation under light regimes was recorded. Maximum biomass growth 
(67 g L −1  fresh biomass and 9.8 g L −1  dry mass) was observed in the dark grown 
cultures (Table  8.7 ) [ 20 ]. However, light favours the accumulation of caffeic acid 
derivatives and the amount of caftaric acid (6.5 mg g −1  DW), chlorogenic acid 
(5.2 mg g −1  DW) and cichoric acid (34.2 mg g −1  DW) were highest with the cultures 
treated with 3/21 h light and dark regime (Table  8.8 ). Light is an important physical 
factor, which infl uences the formation of primary and secondary metabolites.

8.1.5           Improvement of Metabolite Production by Medium 
Replenishment Strategy 

 Among the various strengths of MS medium tested for biomass growth and accu-
mulation of metabolites, half strength MS medium was found suitable and in this 
medium optimum accumulation of fresh (73.6 g L −1 ) and dry weights (10.03 g L −1 ) 

   Table 8.5    Effect of incubation temperature on adventitious root growth of  E. purpurea  after 
5 weeks of culture   

 Growth temperature (°C)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Growth ratio 

 10  19.6 e a   2.8 e  2.6 
 15  39.3 d  6.5 d  7.4 
 20  65.5 a  10.4 a  12.5 
 25  60.3 b  9.5 b  11.4 
 30  56.1 c  8.3 c  9.8 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  

    Table 8.6    Effect of incubation temperature on the production of caffeic acid derivatives from 
 E. purpurea  after 5 weeks of culture   

 Growth temperature (°C) 

 Caffeic acid derivatives (mg g −1  DW) a  

 Caftaric acid  Chlorogenic acid  Cichoric acid  Total b  

 10  1.9 ± 0.1  4.6 ± 0.1  13.4 ± 0.02  19.9 ± 0.1 
 15  4.4 ± 0.1  4.4 ± 0.1  22.0 ± 0.6  30.8 ± 0.5 
 20  4.7 ± 0.1  5.2 ± 0.1  28.4 ± 0.2  38.3 ± 0.1 
 25  4.1 ± 0.1  5.1 ± 0.1  25.1 ± 0.1  34.2 ± 0.1 
 30  4.1 ± 0.1  4.4 ± 0.1  25.3 ± 0.2  33.9 ± 0.2 

   a Mean values of three replicates ± standard error 
  b Total caffeic acid derivatives = caftaric acid + chlorogenic acid + cichoric acid  
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and also growth ratio (12.0; Table  8.9 ) were reported [ 21 ]. The optimal phenolic and 
fl avonoid contents were 61.14 mg g −1  DW and 38.40 mg g −1  DW respectively with 
0.5 strength MS medium and this medium was also responsible for the highest accu-
mulation of caftaric acid (4.35 mg g −1  DW), chlorogenic acid (4.87 mg g −1  DW) and 
cichoric acid (29.05 mg g −1  DW; Table  8.10 ). These results indicate that the adventi-
tious roots of  E. purpurea  require only low nutrient concentrations, which is a criti-
cal determinant in controlling growth of adventitious roots and for the accumulation 
of secondary metabolites.

    Fed-batch cultivation is frequently used in plant cell cultures for enhancing the 
biomass and production of secondary metabolites. Wu et al. [ 21 ] demonstrated 
the effects of feeding different strength MS medium on biomass growth and 

   Table 8.7    Effect of light irradiation on adventitious root growth of  E. purpurea  after 5 weeks 
of culture   

 Photoperiod light/dark (h)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Growth ratio 

 0/24  67.0 a a   9.8 a  10.6 
 3/21  68.6 a  9.8 a  8.8 
 6/18  68.5 a  9.7 a  9.6 
 12/12  51.6 b  6.6 b  6.5 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  

   Table 8.8    Effect of light irradiation on the production of caffeic acid derivatives after 5 weeks of 
culture of  E. purpurea    

 Photoperiod light/dark (h) 

 Caffeic acid derivatives (mg g −1  DW) a  

 Caftaric acid  Chlorogenic acid  Cichoric acid  Total b  

 0/24  4.4 ± 0.3  5.0 ± 0.6  27.9 ± 0.7  38.5 ± 1.2 
 3/21  6.5 ± 0.3  5.2 ± 0.1  34.2 ± 0.6  47.3 ± 0.9 
 6/18  6.3 ± 0.3  4.5 ± 0.2  33.1 ± 0.5  45.2 ± 1.1 
 12/12  3.1 ± 0.1  3.2 ± 0.2  29.9 ± 0.1  37.0 ± 1.1 

   a Mean values of three replicates ± standard error 
  b Total caffeic acid derivatives = caftaric acid + chlorogenic acid + cichoric acid  

   Table 8.9    The effect of different strengths of MS medium on the adventitious root growth of  E. 
purpurea  and productivity of phenolics and fl avonoids after 5 weeks of culture in 5 L balloon type 
bubble bioreactor containing 4 L of medium   

 MS medium 
strengths 

 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 ) 

 Growth 
ratio 

 Total phenolics 
(mg g −1  DW) 

 Total Flavonoids 
(mg g −1  DW) 

 0.25  50.9 d  7.10 c  8.2  57.28 b  35.14 b 
 0.5  73.6 a  10.03 a  12.0  61.14 a  38.30 a 
 0.75  67.2 b  9.23 b  11.0  37.78 c  22.61 c 
 1.0  59.7 c  6.7 d  7.7  21.66 d  11.50 d 

  Mean separation within columns by Duncan’s multiple range tests at 5 % level  
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metabolite production (Tables  8.11  and  8.12 ). Feeding of 0.5 MS medium at the 
end of 2nd week of culturing was found benefi cial and was responsible for the 
highest biomass accumulation, i.e., the fi nal fresh and dry biomasses were 83.1 
and 14.76 g L −1 , respectively and growth ratio was 18.2 (Table  8.11 ). Medium 
feeding strategy was also helpful in the accumulation of caftaric acid (5.76 mg g −1  
DW) and cichoric acid (26.12 mg g −1  DW). In  Panax notoginseng  cell cultures, 
carbon and nitrogen feeding enhanced cell growth, accumulation of ginseng sapo-
nin and polysaccharides [ 26 ]. The feeding of sucrose or sucrose combined with 
casein hydrolysate to basal medium during the growth phase (day 14) effectively 
sustained ginseng cell growth and increased the biomass growth index by 50–60 % 
over that of the control [ 24 ]. Therefore, the strategy of medium optimization and 
replenishment can be followed for improvement of biomass and metabolite 
accumulation.

   Table 8.10    The effect of different strengths of MS medium on the productivity of caffeic acid 
derivatives from adventitious roots of  E. purpurea  after 5 weeks of culture in 5 L balloon type 
bubble bioreactors containing 4 L of medium a    

 MS medium strengths 

 Caffeic acid derivatives (mg g −1  DW) a  

 Caftaric acid  Chlorogenic acid  Cichoric acid  Total b  

 0.25 MS  2.19 ± 0.01  5.02 ± 0.01  28.06 ± 0.10  35.27 ± 0.08 
 0.5 MS  4.35 ± 0.01  4.87 ± 0.09  29.06 ± 0.01  38.28 ± 0.16 
 0.75 MS  3.03 ± 0.02  4.70 ± 0.01  19.93 ± 0.01  27.66 ± 0.01 
 1.0 MS  1.46 ± 0.01  2.86 ± 0.01  8.16 ± 0.01  12.48 ± 0.04 

   a Mean values of three replicates ± standard error 
  b Total caffeic acid derivatives = caftaric acid + chlorogenic acid + cichoric acid.  

    Table 8.11    Effects of media replenishment on the adventitious root growth of  E. purpurea  and 
productivity of phenolics and fl avonoids after 5 weeks of culture in 5 L balloon type bubble 
bioreactor containing 4 L of half strength MS medium   

 Strength of 
medium and 
replenishment 
schedule 

 Medium 
strength 

 Fresh 
weight 
(g L −1 ) 

 Dry 
weight 
(g L −1 ) 

 Growth 
ratio 

 Total 
phenolics 
(mg g −1  DW) 

 Total 
fl avonoids 
(mg g −1  DW) a  

 Control  65.3 f  9.80 g  11.7  60.3 a  37.0 a 

 After 3 weeks 
initial culture 

 0.25 MS  78.8 c  12.65 c  15.4  59.2 a  34.4 b 
 0.50 MS  83.1 a  14.76 a  18.2  59.2 a  34.2 b 
 0.75 MS  82.4 a  14.78 a  18.2  56.8 b  31.9 cd 
 1.00 Ms  83.6 a  14.94 a  18.4  54.8 b  30.6 e 

 After 3 weeks 
initial culture 

 0.25 MS  63.8 g  10.62 f  12.8  60.4 a  34.1 b 
 0.50 MS  70.0 d  11.97 e  14.5  60.5 a  35.1 b 
 0.75 MS  67.8 e  12.32 d  15.0  59.3 a  32.3 c 
 1.00 MS  80.5 b  13.71 b  16.8  56.5 b  31.1 des 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  
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8.1.6         Elicitation 

 Wu et al. [ 22 ] investigated the involvement of nitric oxide elicitation in the synthesis 
of caffeic acid derivatives in the adventitious root cultures of  E. purpurea.  When 
roots were treated with (0, 50, 100, or 250 μM) sodium nitroprusside (SNP), an 
exogenous nitric oxide producer, the accumulation of phenolics, fl avonoids and caf-
feic acid derivatives was enhanced (Tables  8.13  and  8.14 ). Elicitation with 100 μM 
was found suitable for production of metabolites, whereas higher concentration 
caused a decline in their accumulation. Wu et al. [ 22 ] have interpreted that boosting 
of metabolites due to 100 μM SNP treatment might be due to over production of 
phenylalanine ammonia-lyase (a key enzyme in secondary metabolite synthesis), 
whereas increased concentrations of SNP were responsible for severe stress that 
developed due to an over-accumulation of hydrogen peroxide (Fig.  8.6a ). This was 
consequently manifested as damage to the membrane lipids (i.e. lipid peroxidation; 
Fig.  8.6b ).

   Table 8.12    Effect of media replenishment on the productivity of caffeic acid derivatives from 
adventitious roots of  E. purpurea  after 5 weeks of culture in 5 L balloon type bubble bioreactors 
containing 4 L half strength MS medium   

 Strength of medium and 
replenishment schedule 

 Amount of caffeic acid derivatives (mg g −1  DW) a  

 Caftaric acid 
 Chlorogenic 
acid  Cichoric acid  Total b  

 Control  4.67 ± 0.08  5.73 ± 0.11  25.68 ± 0.06  36.07 ± 0.13 
 After 2 weeks 
initial culture 

 0.25 MS  5.88 ± 0.01  4.60 ± 0.23  27.24 ± 0.04  37.72 ± 0.18 
 0.50 MS  5.76 ± 0.01  4.26 ± 0.06  26.12 ± 0.05  36.15 ± 0.02 
 0.75 MS  5.59 ± 0.08  4.03 ± 0.05  25.99 ± 0.06  35.61 ± 0.07 
 1.00 Ms  4.87 ± 0.08  3.83 ± 0.01  24.30 ± 0.11  33.04 ± 0.18 

 After 3 weeks 
initial culture 

 0.25 MS  6.98 ± 0.02  4.93 ± 0.01  26.11 ± 0.02  38.07 ± 0.02 
 0.50 MS  6.14 ± 0.08  5.10 ± 0.10  25.18 ± 0.01  36.52 ± 0.18 
 0.75 MS  5.43 ± 0.01  4.73 ± 0.26  24.78 ± 0.08  34.94 ± 0.10 
 1.00 MS  5.16 ± 0.02  4.61 ± 0.04  19.08 ± 0.47  28.84 ± 0.45 

   a Mean values of three replicates ± standard error 
  b Total caffeic acid derivatives = caftaric acid + chlorogenic acid + cichoric acid  

   Table 8.13    Effect of elicitation with NO produced (SNP) on root growth, production of phenolics 
and fl avonoids in the adventitious roots of  E. purpurea  after 5 weeks of culture in 5 L bioreactor 
containing 4 L half strength MS medium   

 SNP supply 
(μM) 

 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 ) 

 Growth 
ratio 

 Total phenolics 
(mg g −1  DW) 

 Total fl avonoids 
(mg g −1  DW) 

 Control  70.1 a a   11.17 b  13.5  57.9 b  37.3 b 
 50  70.4 a  11.33 bc  13.7  57.4 b  37.4 b 
 100  69.8 a  11.31 b  13.7  61.1 a  39.9 c 
 250  69.4 a  11.99 a  14.6  53.6 c  35.6 a 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  
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8.2           Scale-Up Cultures 

8.2.1     Adventitious Root Culture in 20 L Bioreactors 

 Wu et al. [ 23 ] have established large-scale bioreactor cultures using 20 L balloon- 
type bioreactors for the production of  E. purpurea  adventitious roots and caffeic 
acid derivatives (Fig.  8.7a ). They found that dry biomass of  E. purpurea  adventi-
tious roots increased slowly from the day 10 and reached a peak of 11 g L −1  on the 

   Table 8.14    Effect of elicitation with NO produced (SNP) on the accumulation of caffeic acid 
derivative in the adventitious roots of  E. purpurea  after 5 weeks of culture in 5 L bioreactor 
containing 4 L of half strength MS medium   

 SNP supply (μM) 

 Caffeic acid derivatives (mg g −1  DW) a  

 Caftaric acid  Chlorogenic acid  Cichoric acid  Total b  

 Control  3.22 ± 0.03 c  4.73 ± 0.12 ab  27.59 ± 0.16 c  35.53 ± 0.07 c 
 50  3.47 ± 0.02 b  4.53 ± 0.02 b  28.82 ± 0.54 c  36.82 ± 0.58 c 
 100  3.71 ± 0.03 a  4.95 ± 0.04 a  34.89 ± 0.32 a  43.55 ± 0.31 a 
 250  3.68 ± 0.04 a  4.60 ± 0.07 b  33.64 ± 0.44 b  41.93 ± 0.54 b 

   a Mean values of three replicates ± standard error 
  b Total caffeic acid derivatives = caftaric acid + chlorogenic acid + cichoric acid  
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  Fig. 8.6    Hydrogen peroxide 
( a ) and lipid peroxidation 
( b ) in the adventitious roots 
of  E. purpurea  as affected by 
NO elicitation after 5 weeks 
of culture       
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60th day. A 15-fold increment in total dry biomass was evident when compared 
with dry biomass (0.7 g L −1 ) of initial inoculum. The total phenolics and fl avonoids 
increased quickly from 10th day onwards and reached a maximum value of 57 and 
34 mg g −1  DW respectively on the 50th day.

8.2.2        Pilot Scale Bioreactor Cultures 

 Pilot-scale cultivation of  E. purpurea  was evaluated by Wu et al. [ 23 ] and it was 
found that about 26 and 40 kg fresh and 3.6 and 5.1 kg dry biomass of adventitious 
roots could be achieved in 500 L and 1,000 L airlift bioreactors respectively after 
50 days of culture (Table  8.15 ; Fig.  8.7b–d ). Adventitious root biomass grown in 
pilot scale bioreactors (Fig.  8.7e–f ) were also effi cient in accumulation of caffeic 
acid derivatives and the contents of total caffeic acid were 27 mg g −1  DW and 
31 mg L −1  DW respectively with adventitious roots grown in 500 L balloon type 
bubble bioreactor and 1,000 L drum bioreactor (Table  8.15 ). Among the different 
caffeic acid derivatives, cichoric acid content was higher (20.1 and 22.5 mg −1  DW) 
when compared to caftaric acid (2.8 and 3.9 mg −1  DW) and chlorogenic acid (4.4 
and 4.9 mg −1  DW). During the scale up of plant cell and organ cultures, a decrease 
in the productivity may occur as confi rmed by Kwok and Doron [ 5 ] and Scragg 
et al. [ 12 ], however, the scale-up of adventitious root cultures of  E. purpurea  did 
not show any decrease either in biomass production or in caffeic acid 
productivity.

a

d e f

b c

  Fig. 8.7    Cultivation of adventitious roots in airlift bioreactors: Adventitious roots of  Echinacea 
purpurea  in 20 L airlift bioreactor ( a ), 500 L balloon type bubble bioreactor ( b ), 500 L horizontal 
drum type bioreactor ( c ), and 10,000 L vertical bioreactors ( d ). Adventitious root biomass har-
vested from bioreactor ( e  and  f )       
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8.3         Extraction of Caffeic Acid Derivatives 
from Adventitious Root Biomass 

 Extraction of bioactive compounds is the most important step in utilization of raw 
materials by the commercial sectors such as pharmaceutical, food and chemical 
industries. A heat refl ux method was applied for the extraction of bioactive com-
pounds including caffeic acid derivatives from powdered roots of  Echinacea pur-
purea  [ 19 ]. Three extraction variables, i.e., type, concentration of solvent (water, 
20, 40, 60, 80 and 100 % methanol and ethanol each), extraction temperatures 
(40, 60, 80 °C) were compared. Results revealed that 60 % ethanol was found suit-
able for the extraction of the active ingredients (Tables  8.16  and  8.17 ). Optimum 
yields of  phenolics (52.3 mg g −1  DW), fl avonoids (32.4 mg g −1  DW), polysaccharides 
(49.6 mg g −1  DW), caftaric acid (4.9 mg g −1  DW), chlorogenic acid (5.4 mg g −1  DW) 
and cichoric acid (24.6 mg g −1  DW) could be achieved with use for 60 % ethanol. 

    Table 8.15    Growth and productivity of adventitious roots of  E. purpurea  in different capacity 
airlift bioreactors cultured in half strength MS medium supplemented with 2 mg L −1  IBA and 
50 g L −1  sucrose   

 Bioreactor type 
and volume 

 Fresh 
weight 
(kg) 

 Dry 
weight 
(kg) 

 Caffeic acid derivatives ( mg g −1  DW ) a  

 Caftaric 
acid 

 Chlorogenic 
acid 

 Cichoric 
acid  Total b  

 20 L balloon  1.2 ± 0.1  0.2 ± 0.1  4.4 ± 0.5  5.4 ± 0.2  28.0 ± 1.5  37.9 ± 1.2 
 500 L balloon  26.3 ± 0.5  3.6 ± 0.1  2.8 ± 0.1  4.4 ± 0.4  20.1 ± 0.8  27.4 ± 0.5 
 1,000 L drum  40.5 ± 0.5  5.1 ± 0.1  3.9 ± 0.1  4.9 ± 0.1  22.5 ± 0.6  31.5 ± 0.6 

   a Mean values of three replicates ± standard error 
  b Total caffeic acid derivatives = caftaric acid + chlorogenic acid + cichoric acid  

   Table 8.16    Phenolics, fl avonoids and polysaccharide contents in the dried adventitious root 
extracts of  Echinacea purpurea  from the various types and concentrations of solvents used for heat 
refl ux extraction   

 Solvent concentration (%.v/v) 
 Total phenolics 
(mg g −1  DW) 

 Total fl avonoids 
(mg g −1  DW) 

 Total polysaccha-
rides a  (mg g −1  DW) 

 Distilled water  25.20 f  12.5 e  52.9 b 
 Methanol  20  35.8 e  19.3 d  43.4 f 

 40  36.4 e  22.9 cd  40.6 g 
 60  47.1 b  32.6 a  53.8 a 
 80  51.6 a  32.8 a  53.8 a 
 100  14.1 g  3.3 f  50.3 c 

 Ethanol  20  33.7 ed  23.2 c  47.3 ed 
 40  38.8 d  27.8 b  49.6 d 
 60  52.3 a  32.4 a  49.6 d 
 80  43.7 c  29.3 b  46.2 ef 
 100  11.6 g  1.5 g  44. f 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  
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The extraction temperature is one of the important factors infl uencing the recovery 
of the bioactive compounds during heat refl ux action [ 15 ]. The samples of  E. pur-
purea  adventitious roots were extracted with 60 % ethanol at 40, 60, and 80 °C 
for two hours and the results showed that treatment of samples at 60 °C was 
found suitable for obtaining optimum amounts of bioactive compounds (Tables  8.18  
and  8.19 ).

   Table 8.17    Contents of caffeic acid derivatives in the dried adventitious root extract of  Echinacea 
purpurea  as affected by the type and concentration of solvents used for heat refl ux extraction   

 Solvent concentration (%.v/v) 

 Caffeic acid derivatives (mg g −1  DW) a  

 Caftaric acid  Chlorogenic acid  Cichoric acid 

 Distilled water  1.2 ± 0.1  0.7 ± 0.1  0.3 ± 0.1 
 Methanol  20  4.5 ± 0.1  1.5 ± 0.1  6.7 ± 0.1 

 40  4.9 ± 0.1  1.6 ± 0.1  12.9 ± 0.1 
 60  4.9 ± 0.1  5.0 ± 0.1  22.7 ± 0.2 
 80  4.9 ± 0.1  5.0 ± 0.1  23.9 ± 0.1 
 100  0.8 ± 0.1  0.2 ± 0.1  1.0 ± 0.1 

 Ethanol  20  3.9 ± 0.1  1.9 ± 0.1  6.1 ± 0.1 
 40  4.7 ± 0.1  4.8 ± 0.1  21.3 ± 0.1 
 60  4.9 ± 0.1  5.4 ± 0.1  24.6 ± 0.1 
 80  1.2 ± 0.2  5.0 ± 0.1  16.2 ± 0.1 
 100  0.2 ± 0.3  0.2 ± 0.1  0.33 ± 0.1 

   a Mean values of three replicates ± standard error  

   Table 8.18    Phenolics, fl avonoids, and polysaccharides contents in the dried adventitious root 
extract of  Echinacea purpurea  as affected by the solvent temperature during heat refl ux extraction 
for 2 h   

 Solvent temperature (°C) 
 Total phenolics 
(mg g −1  DW) 

 Total fl avonoids 
(mg g −1  DW) 

 Total polysaccharides 
(mg g −1  DW) 

 40  52.9 ab a   32.3 ab  50.5 b 
 60  53.4 a  33.1 ab  56.6 a 
 80  53.1 ab  34.4 a  52.4 b 

   a Mean    separation within columns by Duncan’s multiple range test at 5 % level  

   Table 8.19    Content of caffeic acid derivatives in the dried adventitious root extract of  Echinacea 
purpurea  as affected by the solvent temperature during heat refl ux extraction for 2 h   

 Solvent temperature (°C) 

 Caffeic acid derivatives (mg g −1  DW) a  

 Caftaric acid  Chlorogenic acid  Cichoric acid 

 40  3.4 ± 0.1  52.8 ± 0.4  21.6 ± 0.6 
 60  4.1 ± 0.1  3.6 ± 0.1  28.8 ± 0.5 
 80  4.4 ± 0.2  3.7 ± 0.1  0.4 ± 0.2 

   a Mean values of three replicates ± standard error  
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8.4           Conclusion and Perspectives 

  Echinacea purpurea  L. is one of the important and top selling medicinal plants 
widely used to alleviate colds, sore throats and other respiratory infection. The 
Echinacea products (e.g., infusions, tinctures and capsules) are used to stimulate 
immune system. The major immuno- stimulating properties are attributed to the 
bioactive compounds including caffeic acid derivatives. Efforts have been made by 
various groups of scientists to develop  in vitro  culture techniques for the production 
of caffeic acid derivatives through cell, adventitious and hairy root cultures [ 4 ,  6 ,  8 , 
 9 ,  14 ,  16 ,  17 ,  20 – 23 ]. Successful, adventitious root cultures of  E. purpurea  have 
been developed and various techniques such as optimization of culture medium, 
physical parameters and strategies to improve bioactive compounds have been 
developed. For commercialization of  E. purpurea  adventitious roots, large-scale 
and pilot scale cultures have been achieved using airlift bioreactors. Effi cient extrac-
tion methods using heat refl ux method have also been developed. 

 Post-harvest storage of fresh  E. purpurea  adventitious roots and package and 
practice methods should be developed. Another major hindrance for commercial-
ization of  E. purpurea  products is that the Korean Food drug and Administration 
(KFDA) considers Echinacea as drug rather than the functional food, however, 
United States Food Drug Administration (US FDA) recognized Echinacea products 
as herbal drug as well as functional food. Hence, various products of Echinacea are 
available in the markets of United States of America.     
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    Abstract      Morinda citrifolia  (Noni) is one of the most famous oriental medicinal 
plants, which has been used in folk medicine by Polynesians owing to its anticancer, 
antibacterial, antiviral, antifungal, antitumor and antialergic effects. People are pas-
sionate about Noni because of its effectiveness against diabetes, high blood pressure 
and many other illnesses. Among diverse constituents of Noni, anthraquinone and 
its derivatives (rubiadin, alizarin and damnacanthal) have been found to be major 
components responsible for their biological and pharmacological actions. The 
increasing global demand for biomass of Noni refl ects the issues and crisis created 
by diminishing renewable resources and increasing consumer populations. 
Moreover, continuous harvesting from its natural stands for diverse usages and 
reduced land for cultivation in the world accelerated the defi ciency to the establish-
ment of mother plants. As one of alternative approaches, cell and tissue culture has 
been widely explored for rapid and effi cient production of biomass and bioactive 
compounds. Recently, adventitious root culture of  M. citrifolia  has been established 
in large-scale air-lift bioreactors in view of its commercial applications. In this 
chapter, various physiological, engineering parameters, and selection of proper cul-
tivation strategy affecting biomass and bioactive compound production have been 
discussed. In addition, advances in adventitious root cultures including factors for 
process scale-up and recent research aiming at maximizing automation of the biore-
actor production processes are also highlighted.  
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  Keywords     Adventitious root   •   Anthraquinone   •   Bioreactor culture   •   Elicitation   • 
  Rubiadin   •   Scale-up process   •   Two-stage culture  

  Abbreviations 

   APX    Ascorbate peroxidase   
  AQ    Anthraquinone   
  BTBB    Bulb type bubble bioreactor   
  CAT    Catalase   
  DPPH    1, 1-diphenyl-2-picrylhydrazyl   
  G-POD    Guaiacol peroxidase   
  IBA    Indole-3-butyric acid   
  Kinetin    6 furfuryladenine   
  LEDs    Light emitting diodes   
  MeJa    Methyl jasmonate   
  MS    Murashige and Skoog   
  NAA     α -naphthalene acetic acid   
  PAL    Phenylalanine ammonia lyase   
  PGR    Plant growth regulator   
  PPF    Photosynthetic photon fl ux   
  ROS    Reactive oxygen species   
  SOD    Superoxide dismutase   
  TDZ    Thiadiazuron   
  vvm    Air volume/culture volume/min   
  WP    Water potential   

9.1           Introduction 

 Medicinal plants are the inexhaustible source of life saving drugs for majority of the 
world’s population. Secondary metabolites accumulated in the medicinal plants are 
responsible for various bioactive properties. These compounds are isolated by sol-
vent extraction from the naturally grown whole plants, and are used as pharmaceu-
ticals, nutraceuticals, pigments, food staffs and cosmetics. Biosynthesis of secondary 
metabolites in plants grown in nature is often restricted to species or genus, or might 
be activated only during a particular growth and developmental stage, under specifi c 
season, or by nutrient availability and environmental stress. Moreover, for medici-
nal purpose, destruction of plants continuously from their natural stands has caused 
a major threat to the plant species for their existence. Clearly, the development of an 
alternative and complimentary method to whole plant cultivation for the stable pro-
duction of biologically important secondary metabolites is an issue of considerable 
socioeconomic importance. For these reasons, in the past several decades, a lot of 
efforts have been made for plant cell culture as an alternative method to whole plant 
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cultivation for the production of pharmacologically important plant secondary 
metabolites [ 1 ]. However, the production of secondary metabolites by cell culture is 
not always satisfactory. Because, high water content in cells, foaming and wall 
growth in culture vessel and unstable production of metabolites are the main obsta-
cles. Therefore, organ cultures such as adventitious root, hairy root, shoot and 
embryo cultures have gained popularity over the years [ 2 – 7 ]. 

 Researches in plant biotechnological advances have shown that bioreactor cultiva-
tion of adventitious root is an attractive and alternative method to the whole plant, cell 
or hairy root culture for biomass and bioactive compound production. Adventitious 
roots induced under sterile condition in phytohormone supplemented medium have 
shown high rate of proliferation, tremendous potentialities of accumulation and stable 
production of valuable secondary metabolites [ 8 ,  9 ]. Therefore, to overcome the 
aforementioned problems, bioreactor technology is needed for the cosmic-scale culti-
vation of adventitious roots as a source of valuable biologically important plant-
derived secondary metabolites. Bioreactor culture system provides better advantages 
than the traditional tissue culture system because the culture condition in a bioreactor 
can be controlled by online monitoring of important process parameters such as tem-
perature, pH, and concentrations of oxygen and carbon dioxide inside the bioreactor 
vessel. The nutrient concentration can be optimized and nutrient uptake can also be 
enhanced by continuous medium agitation. Additionally, production cost and time 
can be reduced by enhancing cell proliferation and regeneration rates, quality of the 
product can be controlled, product can be freed from pesticide contamination, and the 
product can be harvested all year round to meet the increasing global demand [ 10 ,  11 ]. 

  Morinda citrifolia  (L.), commercially known as Noni, is a member of the 
Rubiaceae (coffee family) that has been used in folk remedies by Polynesians for 
over 2,000 years. It has a broad range of therapeutic effects [ 12 ], and contains sev-
eral medicinally active compounds including polyphenolics, organic acids and alka-
loids. Of the phenolic compounds, the most common are anthraquinones (AQ) [ 12 ]. 

 The demand for Noni roots and extracts has increased in recent decades. For 
medicinal purposes, Noni root requires 2–5 years of fi eld cultivation in regions with 
high temperature and humidity levels [ 13 ]. Additionally, Noni is susceptible to 
attack by a wide array of pests and diseases, and a continuous harvesting from its 
natural stands has posed a major threat to the established mother plants. Procurement 
of valuable secondary metabolites from cultivated plants is not always satisfactory 
[ 6 ]. Therefore,  in vitro  cell suspension culture was attempted for production bio-
logically active secondary metabolites including AQ in  Morinda citrifolia  [ 13 – 17 ]. 
However, high water content, low AQ concentrations in cells, continuous foaming, 
and wall growth in the bioreactor are all obstacles for large-scale production of  M. 
citrifolia  in cell suspension cultures [ 6 ,  13 ]. As an alternative approach, we have 
established an adventitious root culture system of  M. citrifolia  in shake fl asks and 
bioreactors [ 4 ,  18 – 22 ]. When culture systems are changed from shake fl ask to bio-
reactors and scaled up from pilot-scale to industrial levels, additional optimizations 
are needed. During scale-up, reduced productivity often results from any of several 
factors (shear stress, oxygen supply, nutrient requirements, gas composition, etc.) 
which can affect the performance of bioreactor cultures [ 5 ,  11 ,  23 ,  24 ]. Therefore, 
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it is essential to optimize these factors for each plant species and explant types (cell 
or root) to maximize the production of biomass and target metabolites. This review 
highlights the advances of adventitious root cultures, metabolite production and 
scope of commercialization of  M. citrifolia  in bioreactors. 

9.1.1     Preparation of Explants 

 Adventitious roots were induced from 2-month-old young leaves of approximately 
10 × 10 mm size collected from  in vitro -grown plantlets of  Morinda citrifolia .  In 
vitro  plantlets were raised from mature seeds after being sterilized with a 4 % 
sodium hypochlorite solution for 20 min then soaked in 2 % sodium hypochlorite 
for 10 min in a laminar hood. They were then washed in sterile distilled water and 
clipped using a sterilized clipper. Seeds were inoculated in test tubes containing 
10 mL Murashige and Skoog (MS) medium without growth regulator [ 18 ,  19 ].  

9.1.2     Induction and Proliferation of Adventitious Roots 

   Auxin Types and Their Concentrations for Induction 
of Adventitious Roots 

 The selected leaf explants collected from the  in vitro -grown plantlets were placed 
on MS medium supplemented with different concentrations (0.5, 1.0, 2.0, 3.0 and 
5.0 mg L −1 ) of indole-3-butyric acid (IBA), 30 g L −1  sucrose, and 2.3 g L −1  gelrite in 
a Petri dish containing 25 mL medium for adventitious root induction. Cultures 
were maintained in 16-h photoperiod under a 20 μmol m −2  s −1  photosynthetic photon 
fl ux (PPF) of fl uorescent and darkness at 25 ± 2 °C for 5 weeks. 

 IBA and NAA showed differential effects on adventitious root induction from 
leaf explants of  M. citrifolia . Under light conditions, numerous conspicuous adven-
titious roots were induced with lower concentrations of IBA (0.5 and 1.0 mg L −1 ). 
With increasing IBA concentrations, complex structures of adventitious roots were 
made due to profound callusing (Fig.  9.1a ). But the incidence of callusing increased 
with the increasing NAA concentrations compared to that of IBA with similar 
 concentrations. Although numerous adventitious roots were induced by NAA com-
pared to low concentrations of IBA, higher callus formation led to compact struc-
tures with adventitious roots. On the other hand, dark environment enhanced 
callusing instead of adventitious root formation in both IBA and NAA containing 
media (Fig.  9.1b ). The pattern of callus formation showed similar trends with the 
increment of IBA and NAA concentrations. But the effect on callusing was more 
pronounced in NAA when compared to similar concentrations of IBA. The forma-
tion of adventitious roots was totally absent in the cultures containing higher con-
centration (5 mg L −1 ) of NAA [ 18 ].
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   The study was focused on selecting a callus-free healthy root line that can main-
tain its sustainability to produce biomass and bioactive compounds. Considering 
this phenomenon, 1 mg L −1  IBA proved to be the best auxin source to induce adven-
titious roots from leaf explants of  M. citrifolia  [ 18 ]. Numerous reports ascribed the 
involvement of auxin in the initiation of adventitious roots and that division of root 
initials is dependent upon exogenous or endogenous auxins. IBA and NAA are 
proved to be more effective than the naturally occurring IAA [ 25 ]. On the contrary, 
 in vitro -cultured explants may involve in organogenesis and develop shoots or roots 
depending on the morphogenetic potentiality of the cells. Three distinct stages dur-
ing organogenesis, namely dedifferentiation, induction of organogenesis pathway 
and development of organs have been reported [ 26 ]. In case of  M. citrifolia , it has 
been observed that the leaf explants developed conspicuous protuberances from the 
cut ends after 3 weeks under light compared to the cut ends under dark. These pro-
tuberances develop into adventitious roots directly without the callus phase after 
another 2 weeks [ 18 ]. 

 The triggering process of differentiation and induction pathways depends on spe-
cifi c plant hormones and plant species. For example, 2, 4-dicholorophenoxy-acetic 
acid (2, 4-D) initiated callus formation, and IBA was responsible for adventitious 

Control

IBA

(mg L–1) 0.5 1.0 2.0 3.0 5.0    

NAA

b

Control

IBA

(mg L–1) 0.5 1.0 2.0 3.0 5.0

NAA

a

  Fig. 9.1    Effects of IBA and NAA on the induction of adventitious root from leaf explants (cul-
tured on MS medium supplemented with 30 g L −1  sucrose) of  Morinda citrifolia  under light ( a ) and 
dark ( b ) conditions after 5 weeks; Control (without hormone)       
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root development from the callus in  Panax notoginseng  [ 27 ]. In case of  Andrographis 
paniculata , NAA proved to be the best auxin to induce adventitious roots from leaf 
explants directly without the callus phase [ 28 ]. The triggering of adventitious root 
induction from leaf explants of  M. citrifolia  was also observed with 1 mg L −1  IBA 
without the callus phase [ 18 ].  

    Light Quality on Induction Mechanism and Metabolites Content 

 The selected leaf explants collected from  in vitro -grown plantlets were placed on a 
solid MS medium supplemented with 1 mg L −1  IBA, 30 g L −1  sucrose, and 2.3 g L −1  
gelrite in a petri dish containing 25 mL medium. Cultures were maintained in a 16 h 
photoperiod under a 20 μmol m −2  s −1  PPF for fl uorescent, red, blue, red + blue (1:1) 
and 4.5 μmol m −2  s −1  PPF for far-red LEDs at 23 ± 2 °C for 5 weeks. Light quality 
showed signifi cant effects on adventitious root induction (Fig.  9.2 ). Under red light, 
numerous adventitious roots were induced (25.60 explants −1 ), followed by a lesser 
number under blue light. Fluorescent light ranked third, followed by red + blue. The 
lowest roots were induced under far-red light (6.20 explants −1 ). The combinations of 
red + blue light triggered the callus formation process that led to the compactness of 
adventitious roots. However, under far-red light, the lack of callus, as well as poor 
induction with browning of roots, was observed [ 18 ].

   The organogenesis process with respect to root, callus, or somatic embryogene-
sis depends markedly on the light source or plant growth regulators. Callus produc-
tion of  Cydonia oblonga  quince leaves increased by increasing 2, 4-D concentrations, 
while blue + far-red light reduced callusing response among different light sources 
[ 29 ]. This suggests the involvement of the blue absorbing photoreceptor system in 
the callus formation process and for root regeneration; phytochrome seemed to be 
the only photoreceptor involved. In case of wild carrot, callus production increased 
with the decreasing embryo production under lights other than red and green [ 30 ]. 
In  M. citrifolia , NAA and dark environment have a marked effect on the callusing 
process. In contrast, induction of adventitious roots markedly decreased callus for-
mation under fl uorescent light, while red + blue or red light alone enhanced the 
callusing process [ 18 ]. 

 Antioxidant enzyme (CAT, G-POD, SOD and APX) activities were varied with 
different light sources. CAT and G-POD activities were highest under red followed 

Fluorescent Red (R) Blue (B) R + B Far-red 

  Fig. 9.2    Effects of light quality on the induction of adventitious root from leaf explants (cultured 
on MS medium supplemented with 1 mg L −1  IBA and 30 g L −1  sucrose) of  M. citrifolia  after 5 weeks       
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by fl uorescent light. The lowest activity occurred under the combination of red + 
blue light. APX activities were highest under fl uorescent light, followed by blue 
light, while the lowest APX activities were observed under far-red light that was 
much closer to red + blue light. Higher but very close SOD activities were observed 
under red, red + blue and far-red light, but the lowest under fl uorescent and blue 
light. However, SOD activities were not signifi cantly affected by light sources [ 18 ]. 
The activities of those enzymes were lowest under red + blue and far-red light, 
which led to the accumulation of higher H 2 O 2  in induced roots. However, the joint 
functions of CAT, G-POD, and APX under fl uorescent and blue light mitigate the 
toxic effects of H 2 O 2  by converting it to non-toxic H 2 O [ 18 ]. 

 Changes in antioxidant activities were greatly affected by light source and the 
stage of organ development. For example, In Toyonaka strawberry, SOD, CAT and 
G-POD activities were highest under the red fi lms. These activities were decreased 
when almost all the calluses ceased to grow [ 31 ]. Shohael et al. [ 32 ] also reported 
the stimulated activities of G-POD, CAT, and reduced APX activity under red light 
in  Eleutherococcus senticosus  somatic embryos. They concluded that higher CAT 
activity than G-POD under red light was involved in the protection of embryos from 
stress conditions. In our study, red light stimulated CAT and G-POD activities, but 
higher APX activity under fl uorescent light jointly functions with CAT and G-POD 
to eliminate the toxic effects of H 2 O 2  and triggers the induction of healthy callus- 
free adventitious roots [ 18 ]. 

 Light is an important factor affecting growth, organogenesis and the formation of 
plant products including both primary and secondary metabolites. Total anthraqui-
nones (AQ), phenolics and fl avonoid contents were signifi cantly infl uenced by differ-
ent light sources (Table  9.1 ). Far-red light, followed by red light stimulates higher 
AQ, phenolics and fl avonoid contents in the induced roots. The formation of these 
secondary metabolites showed similar patterns with moderate content under fl uores-
cent and blue light, while the lowest content was observed under red + blue light. The 
stimulatory effect of far-red light on secondary metabolite formation in the induced 
root is associated with oxidative stress due to higher accumulation of H 2 O 2  and MDA 
content. On the other hand, lower secondary product formation under red + blue light 
might be due to fewer calluses with adventitious roots [ 18 ]. It is widely believed that 

   Table 9.1    Effects of light quality on secondary metabolite contents in induced adventitious roots 
of  M. citrifolia  after 5 weeks a, b, c    

 Light quality  AQ (mg g −1  DW)  Phenolics (mg g −1  DW)  Flavonoids (mg g −1  DW) 

 Fluorescent  15.14d  16.38b  10.23b 
 Red (R)  18.40b  17.75a  12.09a 
 Blue (B)  15.28c  16.41b  9.81b 
 R + B  11.04e  13.81c  7.30c 
 Far-red  23.05a  18.71a  13.24a 

  Experiments    were performed three times 
  a Explants cultured on MS medium supplemented with 1 mg L −1  IBA with 30 g L −1  sucrose 
  b Each treatment consisted of 20 petridishes and each petridish contained four explants 
  c Mean separation within columns by Duncan’s multiple range tests at 5 % level  
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the synthesis of secondary metabolites in plants is part of the defense response of 
plants to stress. Oxidation has been associated with the stress of plants [ 33 ].

       Proliferation of Adventitious Roots 

 The induced adventitious roots were further proliferated in liquid MS media supple-
mented with 5 mg L −1  IBA, 30 g L −1  sucrose and 10 g L −1  inoculum. The cultures 
were agitated at 100 rpm on a gyratory shaker in darkness at 23 ± 2 °C for 4 weeks. 
The roots were subcultured at every 4 weeks [ 18 ,  19 ].   

9.1.3     Establishment of Suspension Cultures in Shake Flask 

    Effect of Auxin on Root Growth and Metabolite Production 

 In order to determine the optimum concentrations of plant growth regulators, the 
adventitious roots were grown under different concentrations of IBA and NAA (1, 
3, 5, 7 and 9 mg L −1 ) in full strength MS medium containing 30 g L −1  sucrose and 
10 g L −1  inoculum in 250 mL Erlenmeyer fl asks containing 100 mL liquid medium 
for 4 weeks. Roots were also grown in a hormone-free medium that served as the 
control. The fresh weight (FW) and dry weight (DW) of the roots increased with 
increasing concentrations of both IBA (up to 5 mg L −1 ) and NAA, and IBA was 
found to be more effi cient in increasing the FW and DW compared to NAA. The 
maximum FW (54.02 g L −1 ) and DW (4.48 g L −1 ) were achieved at 5 mg L −1  IBA; 
the control FW was 6.44 g L −1  and control DW was 0.72 g L −1  [ 19 ]. 

 Previous investigators have suggested that the response of adventitious root 
growth to growth regulators varies from species to species. In case of  Gymnema  
cells, NAA was found to be more effective than IBA [ 34 ]. The highest dry mass 
production from adventitious roots  Echinacea angustifolia  was achieved at 2 mg L −1  
IBA when compared to NAA [ 35 ]. In adventitious root cultures of  Panax ginseng , 
IBA was found to be more effective than NAA in promoting the dry mass [ 36 ]. In 
 Karwinskia  root cultures, the highest root dry mass was produced under light on 
media supplemented with IBA when compared to NAA [ 37 ]. The authors have con-
cluded that media enriched with NAA support the formation of callus-like masses 
with very short roots, resulting in a lower dry mass. On the other hand, IBA seems to 
be most effective substance for inducing and elongating roots in  Karwinskia  root 
cultures. 

 To continue our optimization, we also checked AQ, phenolics and fl avonoid pro-
duction under the same conditions. The maximum content of AQ (63.10 for IBA, 
55.60 for NAA mg g −1  DW), phenolics (29.46 for IBA, 22.97 for NAA mg g −1  DW) 
and fl avonoid (60.23 for IBA, 49.47 for NAA mg g −1  DW) were observed in roots 
cultured at 1 mg L −1  IBA and NAA, respectively [ 19 ]. High auxin levels are often 
deleterious to secondary metabolite accumulation [ 38 ]. Higher concentrations of 
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NAA (7 and 9 mg L −1 ) decreased the secondary metabolite contents at higher rate 
than those of IBA in our study. This clearly shows that the effect of auxins on sec-
ondary product formation markedly depends on the types of auxin used and their 
concentrations. For example, in case of  M. citrifolia  cell culture, high concentra-
tions of NAA reduced the production of AQ [ 14 ,  17 ]. On the other hand, the produc-
tion of AQ was induced by NAA and inhibited by 2, 4-D in the same species [ 39 ]. 
They observed that in cultures treated with high concentrations of NAA, concomi-
tant alkalization occurred in the cytoplasm, leading to cell death and subsequent 
drop in metabolite accumulation. However, 5 mg L −1  NAA enhanced the secondary 
metabolite accumulation when compared to the similar concentrations of IBA in our 
study. These results clearly suggest that secondary product formation can be sepa-
rated from growth. Based on the growth of adventitious roots in terms of DW and 
production of metabolites, we selected 5 mg L −1  IBA as a suitable concentration for 
our further experiments.  

    Combined Effect of Auxin and Cytokinins on Root Growth 
and Metabolite Production 

 In order to elucidate the optimum concentrations of kinetin and TDZ for the produc-
tion of secondary metabolites, adventitious roots were grown in full-strength MS 
medium containing 30 g L −1  sucrose and 10 g L −1  inoculum treated with different 
concentrations (0.1, 0.3 and 0.5 mg L −1 ) of kinetin and TDZ after adding 5 mg L −1  
IBA in shake fl ask. Roots that were grown in a medium containing only 5 mg L −1  IBA 
served as control. The FW and DW of adventitious roots were signifi cantly sup-
pressed by different concentrations of kinetin and TDZ when supplemented with 
5 mg L −1  IBA. The maximum FW (55.16 g L −1 ) and DW (4.88 g L −1 ) of the roots were 
obtained at 5 mg L −1  IBA (control). The FW and DW of the roots decreased sharply, 
particularly with increasing TDZ levels [ 19 ]. Cytokinin can inhibit root growth, espe-
cially under dark conditions. In contrast, the inhibitory effect of kinetin on root growth 
may be due to a reduction in the auxin content in the root [ 40 ]. The fact that the auxin-
cytokinin combinations applied decreased root DW in this study may be due to inter-
actions among these growth regulators showing impact on root growth [ 19 ]. 

 The combinations of auxin and cytokinins resulted in signifi cant increase in sec-
ondary metabolite content, especially when the auxins were combined with differ-
ent concentrations of TDZ. When increasing concentrations of cytokinins were 
combined with IBA, the contents of total AQ, phenolics and fl avonoids also gradu-
ally increased (Table  9.2 ). This increasing trend was more conspicuous in the cul-
ture containing different levels of TDZ compared to those of kinetin. The maximum 
contents of total AQ (30.90 mg g −1  DW), phenolics (29.98 mg g −1  DW) and fl avo-
noids (36.61 mg g −1  DW) were achieved when 0.5 mg L −1  TDZ were combined with 
the control [ 19 ].

   Phenolics are considered to be the secondary metabolites that are synthesized in 
plants through the phenylpropanoid pathway and function as a defense mechanism 
that reacts to various biotic and abiotic stress conditions [ 41 ]. In addition to this, 
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oxidative stress also plays an important role in the production of secondary metabo-
lites in plants. Ali et al. [ 42 ,  43 ] showed that H 2 O 2  and O 2  −  induced ginsenoside 
content in adventitious roots of  Panax ginseng . TDZ, a substituted urea compound, 
is also known to be a synthetic growth regulator that acts by modulating endogenous 
plant growth regulators, either directly or as a result of stress induction such as cal-
lus induction, induction of defoliation and plantlet differentiation [ 44 ]. 

 The accumulation of AQ was increased by about 134 % in TDZ-treated roots and 
by 29 % in kinetin-treated roots when compared to the control. At 0.5 mg L −1  TDZ, 
the H 2 O 2  content increased about fourfold compared to the control, and at the same 
concentration of TDZ, the AQ, phenolics and fl avonoids contents also increased 
[ 19 ]. A similar induction of AQ content was also noted with increasing H 2 O 2  levels 
in  M. eliptica  cell cultures [ 15 ]. H 2 O 2  is known to be the signal that induces antioxi-
dant defense systems in plants in response to biotic and abiotic stresses [ 45 ]. This 
suggests that the TDZ-induced H 2 O 2  accumulation observed in our study may play 
a signifi cant role in the production of AQ [ 19 ].  

    Effect of Medium Salt Strength on Adventitious Root 
Growth and Metabolite Production 

 In an attempt to improve root growth and secondary metabolite production, 15 g L −1  
(FW) adventitious roots of  M. citrifolia  were cultured in different strengths (0.25, 0.50, 
0.75, 1.0, 1.5, and 2.0) of MS medium supplemented with 5 mg L −1  IBA and 30 g L −1  
sucrose [ 18 ,  19 ]. Medium salt strength signifi cantly infl uenced the growth and second-
ary metabolite content in adventitious root cultures of  M. citrifolia  [ 20 ]. A gradual 
decrease of FW and DW, as well as decrease of % dry weight and growth ratio was 
observed with the increasing medium salt strength (Table  9.3 ). The highest FW 
(53.25 g L −1 ) and DW (5.18 g L −1 ) weight of roots, maximum % of DW (9.71) and 
growth ratio (3.87) were achieved at 0.25 strength MS medium. High (1.5, 2.0 MS) salt 

   Table 9.2    Combined effect of auxin and cytokinins on secondary metabolite contents in 
adventitious roots of  M. citrifolia  after 4 weeks of culture a, b    

 PGR c  
 Concentration 
(mg L −1 ) 

 AQ (mg g −1  
DW) 

 Phenolics 
(mg g −1  DW) 

 Flavonoids (mg g −1  
DW) 

 Control (IBA)  5.0  13.16 ± 0.01  17.89 ± 0.75  14.27 ± 0.49 
 Control + 
Kinetin 

 0.1  13.47 ± 0.01  20.14 ± 0.13  15.55 ± 0.24 
 0.3  17.07 ± 0.01  21.83 ± 0.02  18.40 ± 0.99 
 0.5  15.02 ± 0.02  20.35 ± 0.24  16.91 ± 0.76 

 Control + TDZ  0.1  20.57 ± 0.02  27.35 ± 0.61  23.54 ± 0.93 
 0.3  27.78 ± 0.03  29.57 ± 0.76  33.05 ± 0.50 
 0.5  30.90 ± 0.40  29.98 ± 0.20  36.61 ± 0.61 

   a Adventitious roots were cultured in full strength MS medium containing 30 g sucrose L −1  and 10 g 
inoculum L −1  
  b Values are of three replicates along with standard error 
  c  PGR  plant growth regulator  
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strength inhibited root growth as evidenced from the decreased fresh and dry root bio-
mass and growth ratio when compared to those recorded at low salt strength (0.25 MS). 
The best media for the production of total AQ, phenolics and fl avonoids were 2.0 and 
0.25 strength MS in terms of contents and yield, respectively (Table  9.4 ). Except 2.0 
strength MS medium, the secondary metabolite content showed increasing trend with 
the increasing medium salt strength. However, the highest overall yields of total AQ, 
phenolics and fl avonoids were recorded at 0.25 strength MS treated cultures as mani-
fested in the higher accumulation of root dry mass and secondary metabolites [ 20 ]. 
These results imply that the culture of  M. citrifolia  adventitious root requires low levels 
of medium salt strength for the production of root dry mass and bioactive compounds. 
The results of our present study are inconsistent with the fi ndings of Wu et al. [ 35 ] 
where 0.25 and 0.50 MS salt strength showed better performance to enhance dry bio-
mass and secondary metabolite accumulation in adventitious root cultures of  Echinacea 
angustifolia . The authors concluded that suitable interactions among the nutrients in 
low salt strength treated culture enhanced the availability of ions to the roots.

   Table 9.3    Effects of MS salt strength on growth of adventitious roots of  M. citrifolia  after 4 weeks 
of culture a    

 MS salt strength  Fresh weight (g L −1 )  Dry weight (g L −1 )  % dry weight  Growth ratio 

 0.25  53.25a  5.18a  9.71a  3.87a 
 0.5  50.88ab  4.05b  7.96b  3.03b 
 0.75  49.35ab  3.98bc  8.09b  2.97bc 
 1.0  48.45ab  3.83bc  7.93b  2.86bc 
 1.5  45.48b  3.55bc  7.84b  2.66bc 
 2.0  37.75c  3.33c  8.81ab  2.49c 

  Mean separation within columns by Duncan’s multiple range test at 5 % level 
  a Adventitious roots were cultured in MS medium supplemented with 5 mg L −1  IBA, 15 g L −1  inoc-
ulum size and 30 g L −1  sucrose using 250 mL conical fl ask containing 100 mL medium  

   Table 9.4    Effect of MS salt strengths on secondary metabolite production from adventitious roots 
of  M. citrifolia  after 4 weeks of culture a    

 MS salt 
strength 

 AQ  Phenolics  Flavonoids 

 Contents 
(mg g −1  DW) 

 Yield b  
(mg L −1  DW) 

 Contents 
(mg g −1  DW) 

 Yield 
(mg L −1  
DW) 

 Contents 
(mg g −1  DW) 

 Yield 
(mg L −1  
DW) 

 0.25  20.41a  105.75a  17.15 cd  88.84a  14.28a  73.96a 
 0.50  15.98c  64.70c  17.22 cd  69.76c  11.55c  46.80b 
 0.75  14.92d  59.38e  18.02 cd  71.72c  10.38d  41.30c 
 1.0  16.04bc  61.45d  18.82c  72.10c  10.48d  40.01c 
 1.5  16.14b  57.30f  20.82b  73.92c  10.97 cd  38.93c 
 2.0  20.48a  68.18b  24.45a  81.41b  12.55b  41.80c 

  Mean separation within columns by Duncan’s multiple range test at 5 % level 
  a Adventitious roots were cultured in MS medium supplemented with 5 mg L −1  IBA, 15 g L −1  inoc-
ulum size and 30 g L −1  sucrose using 250 mL conical fl ask containing 100 mL medium 
  b Yield = Dry weight (g L −1 ) * content (mg g −1  dw)  
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    The appropriate concentration of medium constituents is crucial for the growth 
of isolated plant cells and organs. In contrast, the optimal concentration of macro 
and microelement also play a pivotal role to enhance the rate of organ development, 
morphology and secondary metabolite accumulation [ 10 ]. In  Panax ginseng  adven-
titious root cultures, both half and full strength media were suitable for root dry 
mass production whereas maximal secondary metabolite production was achieved 
with a full strength MS medium [ 46 ]. Sivakumar et al. [ 10 ] also observed that half 
strength MS medium ensured the highest ginsenoside content and yield in adventi-
tious roots of  Panax ginseng  cultured in bioreactors, whereas 2.0 strength MS 
medium inhibited root growth instead led to high ginsenoside content but low yield. 
In  Bupleurum falcatum  adventitious root culture, a full-strength MS medium was 
found suitable for both root development and saikosaponin production [ 47 ]. 

 Electrical conductivity (EC) value refl ects the uptake of medium salts (ions) by 
the cells, so the conductivity measurements have been used as an indirect method of 
biomass estimation [ 48 ]. In our study, EC value progressively increased with the 
increasing medium salt strength. High EC value was observed in the residual media 
containing high salt strength due to lower uptake of ions by the roots. After 4 weeks 
of culture, high amounts of cations (Na + , NH 4  + , K +  and Ca 2 ) and anions (Cl − , NO 3  − , 
PO 4  3−  and SO 4  2− ) were observed in the residual media treated with high salt strength. 
Meanwhile, adventitious roots cultured at 0.25 strength medium effi ciently utilized 
almost all the cations and anions that led to decrease in EC value. However, the 
contents of cations and anions varied differently. For instance, in case of nitrogen 
sources like NH 4  +  and NO 3  − , the adventitious roots consumed preferably NH 4  + . 
PO 4  3−  was totally exhausted from the media after 4 weeks in the cultures containing 
low salt strength (0.25–0.75 MS) while K +  and NO 3  −  were not crucial for the growth 
of  M. citrifolia  adventitious roots in this study [ 20 ]. These results indicate that  M. 
citrifolia  adventitious root cultures require low salt strength containing media as 
well as NH 4  +  and PO 4  3−  regarded as the key elements for intensive growth and sec-
ondary metabolite production [ 20 ]. The requirement of nutrient elements varied 
with plant species according to their secondary metabolism. For example, in  Panax 
ginseng  adventitious root culture, NH 4  +  was proven as a key element while Na +  and 
K +  were not necessary for the root growth and ginsenoside production [ 10 ]. 

 Water potential (WP), the chemical potential of water in the system was decreased 
with the increasing medium salt strength. Higher salt strength (1.5 and 2 MS) 
resulted in a more negative WP values caused by high concentration of ions in the 
residual media which indicated that ions were not properly utilized by the roots. In 
contrast, negative WP induced water defi cit condition which negatively affected 
water uptake by the roots from their surrounding media. Therefore, root growth was 
strongly inhibited at high salt strength treated cultures [ 20 ]. It could be hypothe-
sized that salt stress may damage plants due to a combination of causes, including 
mainly osmotic injury and specifi c ion toxicity [ 49 ] that affect a wide variety of 
physiological and metabolic processes in plants [ 50 ]. 

 Proline is an important component of salt-stress induced responses in plants. The 
content of free proline was markedly increased with the increasing medium salt 
strength (Fig.  9.3a ). More than twofold increase in free proline content was recorded 
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in roots grown under higher salt strength compared to lower salt strength treated 
cultures [ 20 ]. Proline accumulation has been frequently observed in salt-stressed 
plants. Lutts et al. [ 51 ] observed an increase in proline accumulation in rice cultivars 
caused by salinity stress. In  Spathiphyllum  leaves, higher proline accumulation was 
also observed when plantlets were grown under higher EC levels [ 52 ]. Most of the 
attempts to account for the phenomenon have focused on the ability of proline to 
mediate osmotic adjustment, to stabilize sub-cellular structures and scavenge free 
radicals. On the other hand, proline accumulation may reduce stress-induced cellu-
lar acidifi cation. The increased NADP + /NADPH ratio mediated by proline biosyn-
thesis is likely to enhance activity of the oxidative pentose phosphate pathway to 
support the demand for increased secondary metabolite production under stress 
[ 53 ]. Presumably, higher proline accumulation induced secondary metabolite con-
tent at high salt strength treated roots in this study.

   1, 1-diphenyl-2-picrylhydrazyl (DPPH) activity is a proper indicator for investi-
gating the free radical scavenging activities of phenolic compounds [ 54 ]. In our 
current study, DPPH radical scavenging activity was signifi cantly elevated with the 
increasing medium salt strength (Fig.  9.3b ). More than two-fold increase in DPPH 
radical scavenging activity was recorded in the culture treated with higher (2 MS) 
salt strength compared to lower (0.25 MS) salt strength. In contrast, a positive cor-
relation was observed between DPPH radical scavenging activity and accumulation 
of phenolic compounds in roots relation to as increased medium salt strength. Higher 
salt strength resulted in a signifi cant proline accumulation in roots which might be 
responsible for enhancing DPPH radical scavenging activity in this study [ 20 ]. 

 Medium salt strength signifi cantly infl uenced Phenylalanine ammonia lyase 
(PAL) enzyme activity (Fig.  9.4a ). A gradual increase of PAL activity was observed 
as medium salt strength increased. A more than twofold PAL activity was induced 
in roots cultured at two strength MS medium when compared to the roots cultured 
at 0.25 strength MS medium [ 20 ]. Phenolic compounds are considered as secondary 
metabolites that are synthesized in plants and help in defense mechanism in response 
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to various stress conditions [ 55 ]. Most natural phenolic compounds in plants are 
derived from  trans -cinnamic acid formed by deamination of L-phenylalanine by 
L-phenylalanine ammonia-lyase (PAL) [ 56 ]. We observed stimulatory effects of 
medium salt strength on PAL activity (Fig.  9.4a ) in relation to accumulation of phe-
nolic compound (Fig.  9.4b ) that lead to an investigation of the role of a key regula-
tory enzyme in phenol synthesis [ 20 ]. PAL plays a pivotal role in phenol synthesis 
and many of reports emphasized the correlation between increase in the correspond-
ing PAL gene expression/activity and increases in phenolic compounds in response 
to different stimuli [ 56 ]. A strong and positive correlation (r 2  = 0.9806) between 
PAL and phenol synthesis was observed at different salt strength treated roots in our 
study. In root suspension cultures of  Panax ginseng , similar phenomenon was also 
reported by Ali et al. [ 43 ] in response to copper stress. It is worth to be mentioned 
here that an increase in phenol synthesis provoked by salt stress is not the aim of the 
current study. But the primary aim was to optimize culture conditions by revealing 
the suitable salt strength and thus to enhance biomass accumulation as well as AQ 
formation at the expense of phenol synthesis. We observed that phenol synthesis 
was positively correlated with PAL activity (Fig.  9.4b ), and that reduction of PAL 
activity triggers AQ biosynthesis in relation to medium salt strength. Considering 
these phenomena, 0.25 strength MS medium was proven as the best salt strength to 
enhance biomass accumulation and AQ biosynthesis in root suspension cultures of 
 M. citrifolia  [ 20 ].

       Effect of Sucrose on Adventitious Root Growth and Metabolite Production 

 To discern suitable sucrose concentration for enhancing root growth and metabo-
lites, 15 g L −1  inoculum (FW) was inoculated in one-fourth strength MS medium 
supplemented with 5 mg L −1  IBA [ 19 ,  20 ] and different concentrations (0, 1, 3, 5, 7 
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and 9 %) of sucrose [ 21 ]. Adventitious root cultures were agitated in 100 rpm on a 
gyratory shaker under darkness at 23 ± 2 °C for 4 weeks. A differential and signifi -
cant effect of sucrose concentration on biomass accumulation and metabolite pro-
duction was observed in this study with different concentrations of sucrose [ 21 ]. 
Figure  9.5a, b  show the positive polynomial relationship among root dry weight 
(R 2  = 0.7301) and growth ratio (R 2  = 0.7293) with different sucrose concentrations, 
indicating root dry weight and growth ratio increased up to a certain concentration 
(5 %) then decreased with increasing sucrose concentration. The maximum root dry 
weight (5.40 g L −1 ) and growth ratio (12.50) were observed in the culture treated 
with 5 % (w/v) sucrose, while higher concentrations of sucrose (7 and 9 % in w/v) 
decreased root dry weight and growth ratio. These results suggest that the biomass 
growth was repressed by relatively higher initial sucrose concentrations (7 and 
9 %), which might be due to a relatively higher osmotic pressure in the cultured 
roots. Sucrose is considered as an important carbon and energy source in plant cell 
and tissue culture because; initial concentration can affect growth and the yield of 
secondary metabolites. On the contrary, higher amount of sucrose can retard the 
development of cultured cells [ 35 ] by causing a cessation of the cell cycle when 
nutrients are limited [ 57 ]. In cell cultures of  Coleus blumei , a high initial sucrose 
concentration (6 %) led to a higher biomass accumulation without an obvious lag 
phase [ 58 ]. Similar phenomenon was also observed in our current study with up to 
5 % sucrose without showing a lag phase. With the increasing initial sucrose 
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concentration up to 5 % (w/v), growth ratio increased signifi cantly. The increased 
biomass accumulation with 7 % sucrose was reported in root suspension cultures of 
 Echinacea angustifolia  [ 35 ] and with 5 % in  Panax ginseng  [ 46 ]. These results sug-
gest that initial sucrose concentration in the culture media is important for the 
growth of plant roots and its effect is dependent on the specifi c plant species.

   The trajectory of AQ, phenolics and fl avonoids content in adventitious roots of 
 M. citrifolia  was signifi cantly affected by the initial sucrose concentration. During 
4 weeks of culture period, it was observed that AQ, phenol and fl avonoid contents 
progressively increased after 3 weeks with 1 % sucrose followed by 7 %, 5 % and 
followed by 3 % sucrose. Higher sucrose concentration (9 %) or adventitious roots 
cultured in the absence of sucrose decreased the secondary metabolite contents [ 21 ]. 
Although, root dry weight increased at 5 % sucrose treated culture, the highest pro-
duction of AQ (251.89 mg L −1  DW), phenolics (165.14 mg L −1  DW) and fl avonoids 
(163.56 mg L −1  DW) were observed at 1 % sucrose treated culture (Table  9.5 ). The 
increased metabolite production at 1 % sucrose was accompanied with higher con-
tents of AQ, phenolics and fl avonoids in this treatment compared to others. 
Polysaccharide contents showed increasing trend with increasing sucrose concen-
tration in the culture media up to 7 %. Polysaccharide content was the greatest at 
7 % sucrose followed by 5 % sucrose, while higher sucrose concentration (9 %) 
decreased polysaccharide content and was comparable with 3 % sucrose treated 
culture [ 21 ]. Studies have shown that initial sucrose concentration can affect  in vitro  
secondary metabolite production and it varied with species to species. Zhong et al. 
[ 59 ] have found that 4.5 % sucrose is the best for the production of anthocyanin in 
suspended cultures of  Perilla frutescens  cells. It has been reported that an increase 
in initial sucrose concentration above the normal level (2–3 %) increased saponin 
and polysaccharide content in cell cultures of  Panax ginseng  [ 60 ]. Higher sucrose 
concentration (5 %) enhanced the accumulation of phenolics, fl avonoids and chlo-
rogenic acid also reported in root suspension cultures of  Echinacea angustifolia  
[ 35 ], and embryogenic cultures of  Eleutherococcus sessilifl orus  [ 32 ]. They con-
cluded that increased metabolite production might be due to elevated levels of 

   Table 9.5    Effects of sucrose concentration on secondary metabolite production in adventitious 
roots of  M. citrifolia  after 4 weeks of culture   

 Sucrose  concentration (%) 
 Yield of AQ 
(mg L −1  DW) 

 Yield of phenolics 
(mg L −1  DW) 

 Yield of fl avonoids 
(mg L −1  DW) 

 0  7.73f  10.52f  4.74e 
 1  251.89a  165.14a  163.56a 
 3  173.08d  115.90d  113.26c 
 5  213.55b  151.20b  139.94b 
 7  208.94c  135.39c  134.07b 
 9  114.64e  99.46e  74.67d 

  Mean separation within columns by Duncan’s multiple range test at 5 % level 
 Adventitious roots were cultured in quarter-strength MS medium supplemented with 5 mg L −1  IBA 
and 15 g L −1  inoculum size using 250 mL conical fl ask containing 100 mL liquid medium 
 Yield = Dry weight (g L −1 ) x content (mg g −1  DW)  
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osmotic stress. However, in our present study, lower sucrose concentration (1 %) 
activated AQ, phenolics and fl avonoids in terms of contents and production. In con-
trast, polysaccharide contents enhanced with higher (7 %) sucrose treatment [ 21 ].

   1, 1-Diphenyl-2-picrylhydrazyl (DPPH) activity is a proper indicator for investi-
gating the free radical scavenging activities of phenolic compounds [ 54 ]. The profi le 
of DPPH radical scavenging activity in roots of  M. citrifolia  showed a signifi cant 
variation with different concentrations of sucrose treatment. DPPH free radical scav-
enging activity observed relatively higher during the initial culture period (after 
1 week) and gradually decreased with the increasing culture time in all the treatments. 
In contrast, adventitious roots cultured in the medium without sucrose or lower initial 
sucrose concentration (1–3 %) induced higher DPPH radical scavenging activity up 
to 3 weeks when compared to all the sucrose treated cultures. After 3 weeks of cul-
ture, it was observed that DPPH activity was not infl uenced signifi cantly by the pres-
ence or absence of sucrose in the medium [ 21 ]. These results suggest that adventitious 
roots of  M. citrifolia  cultured at lower initial sucrose concentration or without sucrose 
induced DPPH radical scavenging activity during the initial culture period (1–2 week). 
Such elevated DPPH radical scavenging activities are considered benefi cial for bioac-
tive compound production during the later stage of culture period. 

 Sucrose, glucose and fructose are the most common sugars existing in all plants, 
and can be easily transported into plant cells, readily converted to each other and 
normally metabolized through glycolysis [ 61 ]. The hydrolysis of sucrose to glucose 
and fructose is a rapid process and occurred  via  external and internal invertases [ 62 ]. 
Sugar concentrations in the residual media were measured at 1 week intervals dur-
ing 4 weeks of culture period to determine changes of the pattern of soluble sugar 
content (sucrose, glucose and fructose). After 1 week of culture, sucrose concentra-
tions showed a sharp-drop and concentration was almost zero at the culture treated 
with 1 % sucrose (Fig.  9.6a ). Similarly, almost all the sucrose was exhausted from 
the media after 2, 3 and 4 weeks in the cultures which were initially supplemented 
with 3, 5 and 7 % sucrose, respectively. Whereas less than 1 % sucrose was detected 
after 4 weeks in the culture media which were supplemented initially with 9 % 
sucrose. The opposite phenomenon was observed in case of glucose and fructose. 
The concentration of glucose in the culture media progressively increased up to 
3 weeks of culture period thereafter decreased in all the treatments except in the 
cultures treated with 7 and 9 % sucrose (Fig.  9.6b ). The concentration of fructose 
increased obviously up to 4 weeks in all the treatments except in the culture initially 
supplemented with 3, 5 % sucrose (Fig.  9.6c ). Glucose and fructose, however, 
exhausted after 4 weeks from the culture media initially treated with 1 % sucrose. 
Although only sucrose was added in the culture medium, glucose and fructose were 
also detected [ 21 ]. These fi ndings suggest that extracellular hydrolysis of sucrose 
occurred, which leads to the formation of glucose and fructose. This hydrolysis 
might be due to invertase which might have been secreted from adventitious root 
tissue into the medium or on the surface of epidermal cells of the tissue [ 63 ,  64 ]. 
Thus, the assay results of soluble sugar content reveal that supplementation of 1 % 
sucrose as an initial carbon source is optimal for enhancing secondary metabolite 
production from adventitious roots of  M. citrifolia .
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9.2          Establishment of Adventitious Root Suspension Cultures 
in Airlift Bioreactors 

9.2.1     Optimization of Culture Conditions in Bioreactor 

 To determine the optimal aeration rate for biomass and bioactive compound pro-
duction, adventitious roots were cultured in 3 L BTBBs (Fig.  9.7 ) containing 
1.5 L of quarter-strength (0.25×) liquid MS medium supplemented with 5 mg L −1  
IBA, 15 g L −1  inoculum size, and 10 g L −1  sucrose [ 19 – 21 ]. Cultures were agitated 
at 0.05, 0.1, 0.2, or 0.3 vvm (air volume / culture volume / min), or with gradual 
increase in the aeration rate at 1-week intervals (steps of 0.05, 0.1, 0.2, and 
0.3 vvm). After the optimized aeration rate was determined, the effects of differ-
ent inoculum densities (5, 10, 15, 20, and 30 g L −1  fresh roots) and strengths of MS 
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medium (0.25×, 0.50×, 0.75×, 1.0×, and 1.5×) on biomass and bioactive com-
pound production were tested. All cultures were maintained at 23 ± 2 °C in the 
dark for 4 weeks.

      Effects of Air Supply on Biomass and Secondary Metabolite Production 

 Root FW and DW markedly decreased with increasing aeration rate (Table  9.6 ). The 
maximum root growth (4.59 g L −1  DW) was measured at an aeration rate of 
0.05 vvm, followed by 4.12 g L −1  DW for the 0.05–0.3 vvm series. In contrast, the 
accumulation of secondary metabolites (AQ, phenols, and fl avonoids) increased 
with increasing aeration rate. The highest concentrations of AQ (121.11 mg g −1  
DW), phenolics (57.78 mg g −1  DW), and fl avonoids (92.13 mg g −1  DW) were 
achieved at an aeration rate of 0.3 vvm (Table  9.6 ). In terms of productivity, the 
highest yields [content (mg g −1  DW) × dry weight (g L −1 )] of AQ (386.59 mg L −1  
DW) and phenolics (191.76 mg L −1  DW) were obtained at the 0.05 vvm aeration 
rate, while the highest yield of fl avonoids (281.45 mg L −1  DW) was obtained at the 
0.3 vvm aeration rate [ 65 ]. The accumulation of root or cell dry biomass and sec-
ondary metabolites varies with the plant species or explants used. For  Echinacea 
purpurea , an aeration rate of 0.1 vvm was optimal for enhancing adventitious root 
growth compared to a high aeration rate [ 66 ]. Similarly, cell growth of  Gymnema 
sylvestre  was also enhanced by a 0.1 vvm aeration rate compared to a 0.3 vvm aera-
tion rate [ 34 ]. In contrast, aeration of cell suspension cultures of  M. citrifolia  at 
0.3 vvm resulted in the most cell growth [ 13 ]. In bioreactor culture, a gradual 
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increase in aeration rate is often favourable for cell growth because of the high 
infl ow of air agitating the cells, thereby elevating the oxygen concentration in the 
culture, resulting in accelerated cell growth [ 24 ,  34 ]. In general, a high aeration rate 
is benefi cial for speeding up the transfer of oxygen into bioreactors, which improves 
both secondary metabolite accumulation and root growth [ 13 ,  24 ]. However, a high 
aeration rate is not always advantageous to the accumulation of metabolites in plant 
cultures. For example, high aeration rate (≥0.2 vvm) negatively affected the accu-
mulation of AQ and alkaloid in cell suspension cultures of  M. citrifolia  and  Scopolia 
parvifl ora , respectively [ 13 ,  67 ]. In the present study, high aeration rates (≥0.2 vvm) 
induced accumulation of AQ, phenolics, and fl avonoids in adventitious roots of  M. 
citrifolia , whereas a low aeration rate (0.05 vvm) enhanced root growth. The opti-
mal aeration rate was 0.05 vvm for increasing production of both root biomass and 
bioactive compounds in this study.

   PAL activity markedly increased with increasing aeration rate from 0.05 to 
0.3 vvm. Adventitious root cultures agitated with a 0.3 vvm aeration rate had sig-
nifi cantly higher PAL activity than other treatments, while much lower PAL activi-
ties were detected in adventitious roots cultured at low aeration rates (≤0.1 vvm). In 
addition, PAL activity showed a positive polynomial relationship with accumulation 
of phenolics ( R  2  = 0.8973) and fl avonoids ( R  2  = 0.9262; data not shown). This sug-
gests that over 89 % of the accumulation of phenolics and over 92 % of the accumu-
lation of fl avonoids was associated with PAL activity [ 65 ]. In concurrent with this 
study, increase in PAL activity in response to CO 2  and Cu stress and subsequent 
biosynthesis of phenolics and fl avonoids has been reported by Ali et al. [ 42 ,  43 ]. 
Moreover, the H 2 O 2  burst induced by shear stress plays an important role in induc-
ing the biosynthesis of phenolic compounds through upregulation of PAL activity 
[ 68 ]. The upregulation of PAL activity in the present study may be due to H 2 O 2  
generation, which occurs as a primary reaction in response to shear stress, and it 
plays a major role in controlling the fl ux into phenolics and fl avonoids. These results 
suggest that induction of PAL activity (the key enzyme of the phenylpropanoid 
pathway) by high aeration rate (≥0.2 vvm) not only triggers the accumulation 
of phenolic compounds but also induces a defense response in adventitious roots of 
 M. citrifolia  [ 65 ]. 

 The activities of several antioxidant enzymes (SOD, CAT, G-POD, and APX) 
were signifi cantly affected by aeration rate (Fig.  9.8a–d ). CAT activity markedly 
increased at the 0.3 vvm aeration rate (Fig.  9.8a ), while G-POD activity was highest 
at the 0.3 and 0.1 vvm aeration rates (Fig.  9.8b ). In contrast, SOD activity was high-
est at the 0.3 vvm aeration rate followed by the 0.1 and 0.05–0.3 vvm aeration rates 
(Fig.  9.8c ). APX activity was highest at the lowest aeration rate (0.05 vvm) 
(Fig.  9.8d ) [ 65 ]. Antioxidant enzymes are critical components in preventing oxida-
tive stress in plants. The activities of these enzymes are increased in plants exposed 
to stress conditions, and this elevated activity correlates with increased stress toler-
ance [ 43 ]. For instance, the stimulation of SOD activity is responsible for conver-
sion of O 2  −  to H 2 O 2  and subsequently induction of CAT, G-POD, and APX activities 
that mitigate the toxic effects of H 2 O 2 . Although CAT and G-POD activities were 
elevated at the highest aeration rate (0.3 vvm) (Fig.  9.8a–d ), the much lower APX 
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activity at this aeration rate indicates that the upregulated activities of CAT and 
G-POD were not suffi cient to cope with toxic H 2 O 2  accumulation. Therefore, higher 
levels of H 2 O 2  and MDA were observed in adventitious roots cultured at 0.3 vvm 
than in the other treatments (Fig.  9.8e, f ).

   ROS are highly cytotoxic and can react with the vital biomolecules such as lip-
ids, proteins, and nucleic acids, causing lipid peroxidation and DNA mutation [ 69 ]. 
MDA, a marker for lipid peroxidation or damage to plasmalemma and organelle 
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  Fig. 9.8    Activities of antioxidant enzymes CAT ( a ), G-POD ( b ), SOD ( c ), and APX ( d ), and 
contents of MDA ( e ) and H 2 O 2  ( f ), in adventitious roots of  M. citrifolia  as affected by air supply 
rate after 4 weeks of culture. Bars represent means ± S.E, n = 3       
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membranes increases with stress. Moreover, lipid peroxidation is linked to the 
 activities of antioxidant enzymes, which are responsible for enhancing tolerance to 
oxidative stresses in plants by decreasing the accumulation of H 2 O 2  and MDA [ 69 ]. 
The MDA content increased with increasing H 2 O 2  accumulation and reached its 
highest level when culture was aerated at 0.3 vvm (Fig.  9.8e–f ). The increase in 
MDA content at a high agitation rate, in parallel with the increase in H 2 O 2  level, 
indicated that the CAT and G-POD activities were not suffi cient to mitigate the 
harmful effects of H 2 O 2  in adventitious roots cultured at a high aeration rate 
(0.3 vvm). Consequently, peroxidation of lipids occurred, which negatively affects 
root growth in highly aerated cultures [ 65 ].  

   Effects of Inoculum Density on Biomass and Secondary 
Metabolite Production 

 Inoculum density signifi cantly affected the accumulation of root biomass of  M. 
citrifolia  during 4 weeks of culture. Root FW and DW increased with increasing 
inoculum density, while growth ratio decreased with the increasing inoculum den-
sity (Table  9.7 ). The maximum root FW (78.56 g L −1 ) and DW (5.17 g L −1 ) were 
measured at an inoculum density of 30 g L −1  (fresh root). The opposite phenomenon 
was observed in case of secondary metabolite accumulation. Higher (›10 g L −1 ) 
inoculum density inhibited accumulation of AQ, phenolics, and fl avonoids, while 
lower inoculum densities (5 and 10 g L −1 ) stimulated accumulation of secondary 
metabolites (Table  9.7 ). In addition, vitamin E levels were highest at an inoculum 
density of 5 g L −1 , while at higher inoculum densities (›10 g L −1  FW) vitamin E 
levels in adventitious roots did not differ signifi cantly among treatments [ 65 ]. The 
highest concentrations of AQ (123.14 mg g −1  DW) and fl avonoids (57.09 mg g −1  
DW) were obtained at an inoculum density of 10 g L −1 , whereas the maximum con-
centration of phenolics (56.84 mg g −1  DW) was detected at an inoculum density of 
5 g L −1  (Table  9.7 ). Considering productivity, the 15 g L −1  inoculum density was 
proven optimal for enhancing the yields of AQ (375.36 mg L −1  DW) and fl avonoids 
(159.44 mg L −1  DW; not signifi cantly different from the highest value) in adventi-
tious roots of  M. citrifolia  [ 65 ]. Inoculum density is an important factor affecting 
growth and bioactive compound production in a number of plant cell culture sys-
tems. For instance, high inoculum density stimulated root growth but inhibited bio-
synthesis of phenolics and fl avonoids in adventitious root suspension cultures of 
 Echinacea angustifolia  [ 35 ], eleutheroside B and E in  Eleutherococcus koreanum  
[ 24 ], and scopolamine in  Scopolia parvifl ora  [ 67 ]. In addition, the anthocyanin 
composition can be changed by cell inoculum size in strawberry suspension cul-
tures [ 70 ]. In  Panax notoginseng  cell suspension cultures, cell growth and biosyn-
thesis of saponin and polysaccharides were affected signifi cantly by inoculum size 
[ 71 ]. We therefore conjecture that disparity in cell inoculum size could lead to large 
differences in cell density during cultivation and a number of culture parameters, 
such as concentration of dissolved oxygen and dissolved gaseous metabolites, and 
even the related enzymatic activities could be altered by accumulated cell mass. 
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Directly or indirectly, these changes could further affect cell metabolism [ 71 ]. 
However, it is still unclear exactly how inoculum size affects the biosynthesis of 
secondary metabolites.

      Effects of Medium Salt Strength on Biomass and Secondary 
Metabolite Production 

 The root FW, DW and growth ratio and the levels of AQ, phenolics and fl avonoids 
were signifi cantly affected by MS salt strength. Root FW, DW and growth ratio 
increased up to 0.5× MS, thereafter decreasing with increasing salt strength of the 
culture medium (Table  9.8 ). Adventitious roots cultured at 0.5× MS showed maxi-
mum root FW (74.70 g L −1 ), DW (4.38 g L −1 ), and growth ratio (2.55). Root growth 
faced a strong challenge when cultured in 1.5× MS medium. Although 1.5× MS 
medium led to maximum concentrations of AQ (116.77 mg g −1  DW), phenolics 
(57.03 mg g −1  DW), and fl avonoids (53.43 mg g −1  DW) in adventitious roots, the 
maximum yields of AQ (451.47 mg L −1  DW), phenolics (240.05 mg L −1  DW), and 
fl avonoids (215.81 mg L −1  DW) were obtained with 0.5× MS medium [ 65 ]. This 
was mainly due to the increase in root DW combined with average metabolite levels 
in adventitious roots cultured in 0.5× MS medium.

   The results of this study are concurrent with those of Sivakumar et al. [ 10 ], in 
which 0.5× MS medium provided the highest ginsenoside yield in bioreactor cul-
tures of  Panax ginseng  adventitious roots, whereas 2.0× MS medium inhibited root 
growth, resulting in high ginsenoside content but low yield. The suitability of 0.5× 
MS medium for production of both root dry mass and secondary metabolites has 
also been reported for root suspension cultures of  Echinacea  [ 35 ] and  Hypericum 
perforatum  L. [ 72 ] due to suitable interactions among the nutrients that promote 
availability of ions to the roots. On the other hand, in case of  Echinacea angustifo-
lia  the greatest root dry weight and accumulation of total phenolics, total fl avo-
noids and total caffeic acid derivatives were obtained at quarter-strength MS 
medium [ 73 ]. These observations reveal that the requirement of medium salt 
strength for adventitious root suspension culture in bioreactor is species 
dependent. 

 Vitamin E is a fat-soluble antioxidant that stops the production of ROS when fat 
undergoes oxidation [ 74 ]. During this process, vitamin E protects cell membranes 
from oxidation by reacting with lipid radicals produced in the lipid peroxidation 
  chain reaction    s. This removes the free radical intermediates and prevents the oxida-
tion reaction from continuing. In the present study, the concentration of vitamin E 
was signifi cantly higher in roots grown on 0.5× MS medium than in other treat-
ments. This increase in vitamin E level at 0.5× MS decreased the MDA and H 2 O 2  
contents in adventitious roots [ 65 ]. Although higher strengths of MS salt (1× and 
1.5× MS) also produced relatively high vitamin E levels, the amounts may not have 
been suffi cient to protect the chain propagation step in lipid auto-oxidation, result-
ing in higher concentrations of H 2 O 2  and MDA in adventitious roots after 4 weeks 
of culture [ 65 ]. 
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 To understand the extent of membrane injury of cultured roots, we analyzed 
the concentrations of secondary metabolites in the residual media. Adventitious 
roots grown with higher strengths of MS salts (>0.75× MS) had higher concen-
trations of AQ, phenols, and flavonoids in the residual media than those grown 
in 0.5× MS [ 65 ]. Therefore, it can be conjectured that accumulation of H 2 O 2  in 
roots cultured at high salt strengths induced peroxidation of lipids, resulting in 
membrane injury and leakage of metabolites into the spent media [ 65 ]. These 
results clearly indicate that 0.5× MS medium has the optimum salt strength for 
root suspension cultures of  M. citrifolia  because it provides suitable growing 
conditions, through enhancement of vitamin E levels, which protects the chain 
propagation step in lipid auto-oxidation and acts as an effective free radical 
trap.    

9.3     Scale-Up of Cultures 

9.3.1     Growth Kinetics and Metabolites Production 
Pattern in Flask and Bioreactors 

 Bioreactor cultures are regarded as an effi cient method to enhance biomass as well 
as metabolites production in plant cell or organ cultures. To determine the exact 
stage at which maximum biomass and bioactive compound production occurred and 
to discern the changes occurred in the culture during the cultivation period, 15 g L −1  
(FW) roots were inoculated in shake fl ask (quarter-strength MS medium supple-
mented with 5 mg L −1  IBA and 10 g L −1  sucrose) [ 19 – 21 ] and in bioreactors (half- 
strength MS medium supplemented with 5 mg L −1  IBA and 10 g L −1  sucrose) [ 65 ] 
as a comparative study. The accumulation of root biomass (FW and DW) and growth 
ratio refl ected that after 1 week of lag-phase, the adventitious roots grew exponen-
tially from 1 to 4 weeks and then entered its stationary phase from 4 weeks onwards. 
After 5 weeks of cultivation, root biomass (FW and DW) and growth ratio reached 
its peak in both fl ask and bioreactors. A conspicuous declining phase of biomass 
accumulation was observed after 5 weeks in fl ask culture, whereas adventitious 
roots maintained its steady growth in bioreactors without showing conspicuous 
declining phase. 

 The accumulation of secondary metabolites (AQ, phenol, fl avonoids and poly-
saccharide) showed differential pattern during 6 weeks of culture cycle both in fl ask 
and bioreactors. In case of bioreactor, AQ and phenolics content rapidly increased 
from 1 to 2 weeks, then slightly decreased on week 3 and again increased its maxi-
mum peak on week 5, thereafter decreased [ 75 ]. On the contrary, the accumulation 
pattern of AQ and phenolics in fl ask culture slightly altered. AQ and phenolics con-
tent slightly decreased from 1 to 2 weeks, then it increased up to 5 weeks and again 
decreased. Flavonoids content, however increased for 6 weeks both in bioreactor 
and fl ask culture except on week 4 for bioreactor cultures, showing a decreasing 
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trend from 3 to 4 weeks. Flask culture initially accelerated polysaccharide content 
(0~1 week) then slightly decreased up to 4 weeks followed by an increased up to 
6 weeks, while bioreactor culture accelerated polysaccharide content and reached 
its maximum peak after 5 weeks [ 75 ]. However, bioreactor culture signifi cantly 
enhanced biomass accumulation (FW and DW), as well as metabolite (AQ, phenol, 
fl avonoids and polysaccharide) production compared to shake-fl ask culture, and 
5 weeks of culture period regarded as an optimal time for the production of both 
root biomass and secondary metabolites. 

 In root suspension cultures of  Echinacea purpurea , Jeong et al. [ 23 ] reported that 
the productivity of dry root mass was found to be higher in the bioreactor cultures 
than in the shake fl ask culture. A more than 1.5-fold increase in caftaric acid, 
cichoric acid, and more than fi vefold increase in chlorogenic acid in the bioreactor 
cultures than in the shake-fl ask cultures has been reported in this species [ 76 ]. In 
addition, Ahmed et al. [ 13 ] reported 1.5-fold increase in cell dry mass, as well as 
threefold AQ and fl avonoids and 1.5-fold increase in phenolics content of cell sus-
pension cultures of  M. citrifolia  in bioreactor cultures than in the fl ask cultures. In 
this study, a 1.3-fold increase in root fresh mass, 1.33, 1.5, 1.3, and 1.14-fold 
increase in AQ, phenolics, fl avonoids and polysaccharide contents respectively 
were achieved in the bioreactor cultures than in the fl ask cultures [ 75 ]. These results 
suggest that bioreactor culture is suitable for large-scale production of AQ, pheno-
lics, fl avonoids and polysaccharide of  M. citrifolia  adventitious roots for 5 weeks of 
culture period. 

 The soluble sugar (sucrose, glucose and fructose) content of spent medium 
was measured at weekly intervals during the culture period to discern the sugar 
uptake pattern of root suspension cultures of  M. citrifolia  in the fl ask and bioreac-
tor  cultures. As we added a very low concentration of sucrose (1 %) in the culture 
media for initial carbon source, after 1 week of culture sucrose was not detected 
in the spent medium instead glucose and fructose was observed. This result indi-
cates that all the sucrose converted to glucose and fructose. The concentrations of 
fructose in the culture media increased during the initial 3 weeks and then 
decreased sharply in fl ask culture compared to bioreactor culture. The higher 
fructose content in the bioreactor implies that lesser amount of glucose and fruc-
tose was consumed by the roots [ 75 ]. In cell suspension cultures of  M. elliptica , 
Abdullah et al. [ 5 ] observed a substantial amount of unutilized fructose in biore-
actors compared to shake fl asks. They fi nally concluded that this could be due to 
incomplete hydrolysis of sucrose and is attributed to insuffi cient invertase activi-
ties in the bioreactor. In addition, glucose concentration increased exponentially 
from 1 to 2 weeks followed by a rapid depletion from 2 to 3 weeks and slowly 
from 3 to 4 weeks. After a steady depletion from 4 to 5 weeks, again it rapidly 
depleted from the culture medium and was exhausted at the end of the culture 
period (6 weeks). Although, only sucrose was added in the culture medium extra-
cellular hydrolysis of sucrose was occurred, that led to the formation of glucose 
and fructose. The hydrolysis of sucrose in the culture media may have been 
induced by acid invertase that was secreted from the adventitious root tissue into 
the medium [ 23 ].  
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9.3.2     Elicitation 

 As an enhancement strategy, various elicitors such as chitosan and pectin, MeJa, 
SA, lactalbumin hydrolysate (LH) were added in the culture to elucidate their opti-
mal concentration and time of application. Adventitious root cultures treated with 
various combinations of chitosan and pectin or chitosan alone resulted in enhanced 
biosynthesis of secondary metabolites but inhibited root growth. The strong inhibi-
tion of root growth might be due to the lethal effect of elicitor as evidenced by 
36–79 % cell death was measured [ 22 ]. The optimum concentration of elicitor for 
enhancing metabolite biosynthesis was found at the concentration of 0.2 mg mL −1  
chitosan, in which highest accumulation of AQ, phenolics and fl avonoids were 
achieved (Table  9.9 ).

   Of the various elicitors tested (MeJa, SA, LH), the addition of 150 μM MeJa dur-
ing inoculation was found to be the most effective elicitor on AQ biosynthesis (two-
fold over control) but it strongly repressed the root growth [ 3 ]. To overcome 
detrimental effect of MeJa on root growth, two-stage culture system was adopted: 
addition of 150 μM MeJa in the culture after 4 weeks and harvested after 1 week of 
elicitation was shown to be effective for enhancing biosynthesis of AQ, phenolics and 
enzymatic antioxidant vitamin C without decreasing root growth (Table  9.10 ). Later, 
we were able to increase AQ (up to 22–41 %), phenolics (24 %) and fl avonoids (21–
35 %) content in adventitious roots harvested from 500 L BTBB compared to 3–20 L 
BTBB by applying 150 μM MeJa (Table  9.11 ) as two-stage culture system [ 3 ].

    In cell suspension cultures of  M. citrifolia , Komaraiah et al. [ 16 ] observed a syn-
ergistic effect by simultaneously applying 150 μM MeJa and controlled feeding of 
2 % sucrose, which increased the AQ production to 16.74 mg g −1  DW, which was 
more than fourfold over the cultures without MeJa treatment. We achieved 
148.35 mg g −1  DW of AQ in adventitious roots (cultured in 500 L BTBB) by appli-
cation of 150 μM MeJa after 5 weeks of culture (Table  9.11 ), which was 26-, 2.37-, 
12- and 24-fold of AQ content in fi eld grown madder roots, leaf of green house 
grown plant, leaf-originated cells and fruits of green house grown plants (Table  9.12 ), 

   Table 9.9    Effects of chitosan and pectin ratio on secondary metabolite content in adventitious 
roots of  M. citrifolia  after 4 weeks   

 Chitosan/Pectin 
(mg mL −1 )  AQ (mg g −1  DW) 

 Phenolics 
(mg g −1  DW)  Flavonoids (mg g −1  DW) 

 Control (no elicitor)  49.30 ± 0.420 g  24.19 ± 0.023 g  41.44 ± 0.170f 
 0.2/0  115.16 ± 0.242a  48.57 ± 0.187c  75.32 ± 0.124a 
 0.2/0.1  98.90 ± 0.182b  50.45 ± 0.564b  65.89 ± 0.047b 
 0.2/0.2  93.33 ± 0.113c  52.45 ± 0.049a  61.22 ± 0.084c 
 0.4/0.2  64.293 ± 0.197e  42.01 ± 0.024e  45.44 ± 0.508e 
 0.4/0.4  67.40 ± 0.219d  42.69 ± 0.187d  48.04 ± 0.299d 
 0.8/0.8  50.94 ± 0.151f  33.88 ± 0.199f  35.89 ± 0.057 g 

  Mean separation within columns by Duncan’s multiple range test at 5 % level. The various combi-
nations of chitosan and pectin were added in the culture during inoculation. Control = without 
chitosan and pectin  
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respectively [ 3 ]. These results corroborate the feasibility for commercial exploita-
tion of AQ from adventitious root cultures of  M. citrifolia  using large scale 
bioreactors.

9.3.3        Adventitious Roots in Large-Scale and 
Pilot-Scale Bioreactors 

 In order to scale-up, adventitious roots were cultured in half-strength MS medium 
supplemented with 5 mg L −1  IBA, 10 g L −1  sucrose and 15 g L −1  FW inoculum size 
(optimized culture condition in 3 L bioreactors). Adventitious roots cultured in 
large-scale bioreactors (3–20 L) showed enhancement in fresh and dry weights of 
roots compared to pilot-scale bioreactors (100–500 L). The maximum root fresh 
weight (127.92, 95.30 and 74 g −l ) and dry weight (9.60, 7.21 and 5.75 g L −1 ) were 
achieved at 5, 10 and 20 L bioreactors (Fig.  9.9 ), respectively [ 75 ]. Whereas, the 
accumulation of secondary metabolites (AQ, phenolics and fl avonoids) signifi cantly 
increased in pilot-scale bioreactors compared to large-scale bioreactors (Table  9.11 ). 
The highest accumulation of AQ (205.75 mg g −1  DW) and phenolics (90.26 mg g −1  
DW) was recorded in 500 L bioreactors, while the highest fl avonoids (93.34 mg g −1  
DW) and polysaccharide (153.23 mg g −1  DW) contents were observed at 100 L and 
5 L bioreactors, respectively [ 3 ].

   In general, growth and metabolite production are different phenomena. In case of 
pilot-scale bioreactors, higher accumulation of secondary metabolites compensates 
the reduction of root growth. It is worth noting that  M. citrifolia  adventitious roots 
are very much sensitive with changes in culture systems (shake-fl ask, large scale 
and pilot scale bioreactors), medium strategy (maintenance and production medium) 
and culture age. In case of production medium (optimized culture), higher 
 accumulation of secondary metabolites induced root senescence and cell death that 
reduce root growth in the subsequent subculture. Therefore, it is very diffi cult to 
maintain root viability, as well as stable culture for long time [ 3 ]. On the other hand, 

   Table 9.10    Growth, secondary metabolite content and antioxidant vitamin response of  M. citrifolia  
adventitious roots as affected by MeJa in 5 weeks of bioreactor culture   

 Treatments 
 FW 
(g L −1 ) 

 DW 
(g L −1 ) 

 AQ (mg 
g −1  DW) 

 Phenolics 
(mg g −1  
DW) 

 Flavonoids 
(mg g −1  
DW) 

 Vitamin 
C (μg g −1  
FW) 

 Vitamin E 
(μg g −1  
FW) 

 Control  138.96a  8.96a  83.36b  42.84b  61.14a  171.44b  224.30a 
 150 μM 
MeJa 

 142.32a  9.02a  110.15a  54.31a  59.98b  282.26a  191.71b 

  Mean separation within columns by Duncan’s multiple range tests at 5 % level 
 Adventitious root cultured in 5 L balloon type bubble bioreactor containing half-strength MS 
medium supplemented with 5 mg L −1  IBA with 10 g L −1  sucrose 
 15 g L −1  (FW) adventitious root used as initial inoculum size and 150 μM MeJa elicitor treated in 
the culture after 4 weeks and harvested after 1 week of elicitation. Control indicates no elicitor  
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adventitious roots of  M. citrifolia  cultured in maintenance medium (full strength 
MS medium supplemented with 5 mg L −1  IBA and 30 g L −1  sucrose) can overcome 
the mentioned problem due to lower metabolite accumulation and higher cell viabil-
ity. In addition, it has already been demonstrated that adventitious roots culture in 
shake-fl ask require low strength of MS salt (quarter-strength MS), while the nutri-
ent requirement increased in large-scale bioreactor culture (half-strength MS). 
Taken together, this could be the reason to decrease root growth in pilot-scale bio-
reactors. To overcome the problem, adventitious roots were cultured in full-strength 
MS medium supplemented with 5 mg L −1  IBA, 30 g L −1  sucrose and an inoculum 
size of 15 g L −1  FW in pilot-scale bioreactors (500 L). Root growth (FW and DW) 
signifi cantly increased in full-strength medium with 30 g L −1  sucrose compared to 
adventitious roots cultured with half-strength MS medium with 10 g L −1  sucrose in 
500 L bioreactors after 5 weeks of culture period [ 3 ]. Although root DW in 500 L 
bioreactor still lower than 20 L bioreactor, the yield of AQ (718.01 mg L −1  DW), 
phenolics (300.66 mg L −1  DW) and fl avonoids (445.67 mg L −1  DW) in 500 L biore-
actor is higher than that of 20 L bioreactor (671.08, 271.98 and 417.74 mg L −1  DW, 
respectively), showing 6.99, 10.54 and 6.69 % (AQ, phenolics and fl avonoids, 
respectively) yield over 20 L bioreactor [ 3 ].  

9.3.4     Comparative Study Between Mother Plant 
and Adventitious Roots of  M. citrifolia  

 The Accumulation of AQ, phenolics and flavonoids in different parts of mother 
plants, adventitious roots and cells of  M. citrifolia  were studied (Table  9.12 ). 
The highest accumulation of AQ (148.35 mg g −1  DW), phenolics (62.12 mg g −1  

  Fig. 9.9    Scale-up of  M. citrifolia  adventitious roots in large-scale and pilot-scale bioreactors       
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DW) and flavonoids (92.08 mg g −1  DW) was observed in adventitious roots 
treated with 150 μmol MeJa followed by leaves of green house grown mother 
plant (62.39, 33.08 and 16.68 mg g −1  DW AQ, phenolics and flavonoids, respec-
tively). The lowest accumulation of AQ, phenolics and flavonoids was observed 
in the cells (11.94, 30.27 and 5.34 mg g −1  DW) followed by fruits of green 
house grown plant (6.15, 20.70 and 5.62 mg g −1  DW) and followed by field-
grown madder roots (5.7, 6.93 and 9.28 mg g −1  DW). Adventitious roots cul-
tured in the optimized culture conditions and treated with 150 μmol MeJa 
resulted in 13-fold and 26-fold increase in AQ was observed compared to cells 
and madder roots (Table  9.12 ), respectively [ 3 ]. These results clearly indicate 
the feasibility of large-scale commercial application of  M. citrifolia  adventi-
tious roots in the field of biotechnology for the production of AQ, phenolics and 
flavonoids. 

 Rubiadin, a major constituent of AQ is highly valued in pharmaceutical indus-
try due to hepatoprotective [ 77 ], and antitumor activity [ 78 ], and also have been 
found to inhibit lipid peroxidation [ 79 ]. Rubiadin was identifi ed and purifi ed 
from MeJa treated adventitious roots of  M. citrifolia  harvested from pilot scale 
bioreactor. A reverse-phase HPLC assay method was also developed to quantify 
rubiadin content in adventitious roots. The HPLC assay of rubiadin was per-
formed by C-18 column using a gradient solvent system of methanol and water 
with a UV detector at 280 nm [ 80 ]. It is worth noting here that rubiadin was not 
detected in the various parts (leaf, stem, fruit) of fi eld grown plant of  M. citrifolia  
or very few amounts (0.02 %) in madder roots; whereas, copious amount of rubia-
din (≥0.58 %) was detected in adventitious roots compared to  ex-vitro  roots 
(Table  9.13 ). These results clearly indicate that adventitious root cultures of 
 M. citrifolia  using large scale bioreactors could be a useful tool for commercial 
production of AQ, rubiadin, phenolics and fl avonoids [ 3 ]. Therefore, we have 
initiated further works, and the commercial application of adventitious root cul-
ture of this valuable medicinal plant is now under trail with 1,000 L BTBBs in our 
laboratory.

  Table 9.13    Quantifi cation of 
rubiadin content in various 
plant parts of  M. citrifolia  by 
HPLC  

 Various plant parts  Rubiadin content (%) 

 Stem  Not detected 
 Leaf  Not detected 
 Fruit  Not detected 
  Ex-vitro  roots  0.02 
 Adventitious roots  0.58 

  Adventitious roots cultured in 500 L balloon type bubble 
bioreactor (BTBB) containing full-strength of MS 
medium supplemented with 5 mg L −1  IBA, 30 g L −1  
sucrose and 15 g L −1  of inoculum size with an aeration 
volume of 0.05 vvm for 5 weeks (150 μM MeJa elicited 
in the culture after 4 weeks and harvested after 1 week of 
elicitation)  
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9.4         Conclusions 

 In this study, an effi cient bioreactor technology is established through optimization 
of culturing conditions by employing an iterative series of experiments. The newly 
developed culture protocol is expected to be less prone to erratic metabolite produc-
tion than undifferentiated cells and to display a lower sensitivity to shear stress. 
Such optimization of culture protocol will be benefi cial for scaling up of adventi-
tious root cultures in commercial scale bioreactor for the production of AQ and 
rubiadin.     
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    Chapter 10   
 Production of Biomass and Bioactive 
Compounds in Adventitious Root Cultures 
of  Eleutherococcus koreanum  Nakai 

                Eun-Jung     Lee     ,     Sang-Hyun     Moh    , and     So-Young     Park    

    Abstract      Eleutherococcus koreanum  Nakai is an endemic medicinal plant grown 
in Jeju Island, South Korea. Extracts from this plant have traditionally been used in 
Korea as a tonic and for treating rheumatism, diabetes and hepatitis. These extracts 
contain many useful bioactive substances, particularly eleutherosides, chlorogenic 
acid and other phenolic compounds. The quality and quantity of major bioactive 
compounds from naturally grown plants are greatly affected by harvest time and 
environmental conditions. Therefore, determination of suitable growing and har-
vesting conditions is necessary to achieve reliable supply of  E. koreanum -based 
bioactive compounds for commercial use. To establish an effi cient method for the 
year-round production of bioactive compounds, adventitious roots of  E. koreanum  
were tested with various physical and chemical factors (inoculum density, aeration 
volume, salt strength, nitrogen source, and sucrose concentration) that affect root 
biomass and production of target bioactive compounds. Root biomass, concentra-
tions of fi ve target bioactive compounds (eleutherosides B and E, chlorogenic acid, 
total phenolics, and fl avonoids), physiological responses of the adventitious roots 
and other environmental conditions in the culture vessels were determined. In addi-
tion, responses of roots subjected to chemical elicitors (methyl jasmonate and sali-
cylic acid) were evaluated to determine a strategy for enhancing the fi nal production 
of bioactive compounds. Finally, we compared the contents of bioactive compounds 
and typical DNA histograms for the adventitious roots and naturally grown plants to 
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verify the competitive ability and genetic stability of cultured  E. koreanum  adventi-
tious roots. The development of  in vitro  culture protocol, which controls the quality 
and quantity of elicited bioactive compounds, will be benefi cial for the pilot-scale 
production of  E. koreanum -based bioactive compounds for commercial use.  

  Keywords     Adventitious roots   •   Bioactive compounds   •   Bioreactor culture   • 
  Eleutherosides   •    Eleutherococcus koreanum   

  Abbreviations 

   DPPH    2,2-diphenyl-1-picrylhydrazyl   
  DW    Dry weight   
  FW    Fresh weight   
  H 2 O 2     Hydrogen peroxide   
  HPLC    High-performance liquid chromatography   
  IBA    Indole-3-butyric acid   
  MJ    Methyl jasmonate   
  MS    Murashige and Skoog   
  PAL    Phenylalanine ammonia lyase   
  ROS    Reactive oxygen species   
  SA    Salicylic acid   
  TDZ    Thidiazuron; N-phenyl-N′-1,2,3,-thidiazol-5-ylurea   
  vvm    Air volume culture volume −1  min −1    

10.1           Introduction 

  Eleutherococcus koreanum  Nakai (Araliaceae) is an endemic medicinal plant grown 
in Jeju Island, located off the southern coast of South Korea. Extracts from this plant 
have traditionally been used in Korea as a tonic and for treating rheumatism, diabe-
tes and hepatitis [ 1 ]. The roots and stems of  E. koreanum  contain useful bioactive 
compounds such as eleutherosides, chlorogenic acid and other phenolic compounds. 
Among the various bioactive compounds in  E. koreanum , eleutherosides B and E 
are considered to be the major saponins and have strong stimulant and anti-stress 
effects [ 2 ]. Chlorogenic acid has been shown to have a protective effect against 
gastric ulcers and to stimulate the activity of eleutheroside E [ 3 ]. Interest in  E. 
koreanum -  based bioactive substances for use in pharmaceuticals, therapeutics, cos-
metics, food products and pigments is increasing, but the commercial supply of 
these compounds is insuffi cient [ 1 ,  4 ]. The propagation of  E. koreanum  by seed is 
diffi cult because germination of the zygotic embryos requires >18 months of strati-
fi cation [ 5 ] and the quantity and quality of bioactive compounds obtained from 
fi eld-grown plants is strongly affected by harvest time and environmental 
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conditions [ 6 ,  7 ]. Thus, a suitable method for the annual production of  E. koreanum -
based bioactive compounds is required for commercial purposes. 

 In recent years, plant biotechnology has enabled  in vitro  pilot-scale production of 
useful bioactive compounds from adventitious root, cell, embryo, and hairy root 
cultures, such as anthraquinones, echinacosides, ginsenosides, hypericin, rubiadin, 
and taxol [ 8 ,  9 ]. Among  in vitro  culture techniques, adventitious root culture is one 
of the most effi cient methods for producing large amounts of biomass and bioactive 
compounds because it easily enables the establishment of a pilot-scale production 
system using bioreactors. Furthermore, the quality of bioactive compounds obtained 
from adventitious roots is very similar to that of the parent plants [ 10 ]. In addition, 
the accumulation of bioactive compounds in adventitious roots can be increased by 
elicitation. 

 To establish a successful bioreactor culture using adventitious roots, many physi-
cal parameters (e.g., aeration volume, gas composition, inoculum density, light 
intensity and quality, and temperature) and chemical factors (e.g., natural product, 
nitrogen source, salt strength, and sugar content) must be optimized according to 
the plant materials, explant types, and target bioactive compounds. We have been 
working to develop a bioreactor-based  in vitro  protocol for adventitious root culture 
that can control the quality and quantity of bioactive compounds, for the pilot-scale 
production of  E. koreanum -based compounds for commercial use. This review 
focuses on the production of root biomass and bioactive compounds by optimizing 
 in vitro  culture conditions, and suggests strategies for enhancing the productivity of 
target bioactive compounds by chemical elicitation. Finally, we verify the competi-
tive ability and genetic stability of  E. koreanum  adventitious roots.  

10.2     Induction of Adventitious Roots and Adventitious Root 
Cultures in Airlift Bioreactors 

 Adventitious roots were directly induced from seed-derived plantlets [ 11 ]. Briefl y, 
mature seeds maintained at <5 °C for 2 years to break dormancy were sterilized 
with 2 % (w/v) sodium hypochlorite solution for 15 min, and then washed three 
times with distilled water. Zygotic embryos were isolated from the sterilized seeds 
and placed on half-strength Murashige and Skoog (MS) medium [ 12 ] for germina-
tion. After 2 months, adventitious roots were directly induced from plantlets  in vitro . 
Induced adventitious roots were maintained in half-strength MS medium 
(HN 4  + :NO 3  −  = 5:25) supplemented with 5 mg L −1  indole-3-butyric acid (IBA), 
0.01 mg L −1  thidiazuron (TDZ; N-phenyl- N ′-1,2,3,-thidiazol-5-ylurea), 30 g L −1  
sucrose, and 2.3 g L −1  gelrite at 22 ± 1 °C in dark conditions based on the experimen-
tal results (data not shown; [ 13 ]). Bioreactor cultures were initiated by inoculating 
with fresh adventitious roots (5.0 g L −1 ) and the aeration volume in the bioreactors 
was automatically adjusted to 0.1 vvm (air volume culture volume −1  min −1 ) using air 
fl ow meters. Adventitious roots were maintained in the bioreactors by subculturing 
to a fresh medium every 5 weeks (Fig.  10.1 ).
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  Fig. 10.1    ( a – d ) Culture procedure for producing  Eleutherococcus koreanum  adventitious roots. 
( a ) Proliferation of adventitious roots in petri dishes. ( b ) Proliferation of adventitious roots in 250- 
ml erlenmeyer shake fl asks. ( c ) Proliferation of adventitious roots in 3-L airlift bioreactors. 
( d ) Harvested fresh roots       
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10.3        Optimization of Physical Factors in Airlift 
Bioreactor Culture 

10.3.1     Effects of Inoculum Density on Biomass 
and Production of Bioactive Compounds 
from Adventitious Roots 

 To determine the parameters for enhancing the biomass productivity using 3-L air-
lift bioreactors over a 5-weeks period, fresh roots were inoculated at various initial 
densities ranging from 2.5 to 15.0 g L −1 . Fresh and dry weights increased with the 
increasing inoculum density, but the highest percentage dry weight was achieved 
using 5.0 g fresh roots L −1  (Table  10.1 ; [ 14 ]). In contrast, growth rate was negatively 
affected by increased inoculum density; the lowest inoculum density (2.5 g L −1 ) 
resulted in the highest growth rate (0.35 day −1 ). These results indicated that initial 
adventitious root densities >5.0 g L −1  resulted in low effi ciency of biomass produc-
tion in  E. koreanum  roots under the given experimental conditions. Wu et al. [ 15 ] 
and Min et al. [ 16 ] reported that a high initial inoculum density had a positive effect 
on biomass production and a negative effect on growth rate in adventitious root 
cultures of  Echinacea angustifolia  and  Scopolia parvifl ora , respectively.

   The accumulation of bioactive compounds in adventitious roots of  E. koreanum  
was strongly affected by the initial inoculum density (Table  10.2 ). The highest total 

   Table 10.2    Accumulation of bioactive compounds in adventitious roots of  Eleutherococcus 
koreanum  as affected by inoculum density after 5 weeks of culture   

 Inoculum 
density 
(g L −1 ) 

 Eleutheroside 
B (μg g −1  DW) 

 Eleutheroside 
E (μg g −1  DW) 

 Chlorogenic 
acid (mg g −1  
DW) 

 Total 
phenolics 
(mg g −1  
DW) 

 Total 
fl avonoids 
(mg g −1  
DW) 

 Total target 
compounds 
(mg g −1  
DW) 

 2.5  46.21  a a   108.53  a  2.69  a  9.95  a  4.60  a  17.40  a 
 5.0  27.59  b  106.61  a  2.42  a  10.06  a  4.91  a  17.53  a 
 7.5  26.42  b  108.89  a  2.71  a  9.12  b  4.03  b  15.99  b 
 10.0  15.95  c  87.47  b  2.64  a  9.38  b  4.16  b  16.28  b 
 15.0  6.71  d  89.65  b  0.99  b  8.26  c  3.41  c  12.76  c 

   a Mean separation within columns by Duncan’s multiple range test at  p  = 0.05  

   Table 10.1    Effects of inoculum density on biomass accumulation and growth rate in adventitious 
roots of  Eleutherococcus koreanum  after 5 weeks of culture   

 Inoculum density 
(g roots L −1 ) 

 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 ) 

 Percentage dry 
weight 

 Growth rate 
(day −1 ) 

 2.5  34.09  e a   4.64  d  13.61  0.35  a 
 5.0  46.65  d  6.73  c  14.43  0.25  b 
 7.5  50.90  c  7.02  bc  13.79  0.16  c 
 10.0  57.27  b  7.63  b  13.33  0.13  d 
 15.0  74.20  a  9.61  a  12.94  0.13  d 

   a Mean separation within columns by Duncan’s multiple range test at  p  = 0.05  
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content of the target compounds (17.53 mg g −1  DW) was obtained using 5.0 g roots 
L −1  and the contents of all bioactive compounds tended to decrease with increasing 
inoculum density. Wu et al. [ 15 ] reported that high initial inoculum densities resulted 
in low total phenol and fl avonoid contents in adventitious roots of  E. angustifolia , 
and Min et al. [ 16 ] also determined that high inoculum densities resulted in 
decreased production of bioactive compounds in roots.

   Initial inoculum density directly affects the gaseous environment in the cul-
ture vessel, which affects primary and secondary metabolic processes in the 
roots. During the culture period,  in vitro  plantlets consume O 2  and release CO 2 . 
Figure  10.2  shows the CO 2  and O 2  concentrations inside the bioreactor after 5 weeks 
of culture. CO 2  concentration increased signifi cantly with the increasing inoculum 
density (a minimum threefold increase when compared with the initial bioreactor 
CO 2  concentration at all inoculum densities). The greatest accumulation of CO 2  
(an approximately fi vefold increase over the initial concentration) occurred at the 
highest inoculum density (15.0 g L −1 ). High CO 2  concentrations probably caused 
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  Fig. 10.2    Effect of inoculum density on CO 2  and O 2  concentrations inside the bioreactors after 
5 weeks of culture.  Bars  represent means ± SE (n = 3)       
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root death and inhibited the accumulation of bioactive compounds. However, no 
signifi cant difference was observed in O 2  concentration initial inoculum density 
(2.5–15.0 g L −1 ) because fresh air was supplied to the bioreactor throughout the 
whole culture period. Thus, CO 2  accumulation inside bioreactors is an impor-
tant factor affecting primary and secondary metabolic processes in  E. koreanum  
 adventitious roots.

   These results indicate that an inoculum density of 5.0 g L −1  is optimal for the 
production of biomass and bioactive compounds in adventitious roots of  E. korea-
num  using 3-L airlift bioreactors for a 5-weeks culture period, as evidenced by high 
root biomass and production of the fi ve target bioactive compounds (i.e., eleuthero-
sides B and E, chlorogenic acid, total phenolics, and fl avonoids) and the absence of 
physiological disorders caused by high CO 2  concentrations.  

10.3.2     Effects of Aeration Volume on Biomass and Production 
of Bioactive Compounds from Adventitious Roots 

 Table  10.3  illustrates the effects of aeration volume (0.05–0.4 vvm) on biomass 
production of  E. koreanum  adventitious roots in 3-L airlift bioreactors over a 
5-weeks period. Although percentage of dry weight increased slightly with the 
increasing aeration volume, there were no signifi cant differences in biomass pro-
duction among the different aeration volumes, except between the lowest and high-
est volumes. Root death showed a pattern similar to that of biomass accumulation; 
it was higher at the lowest and highest aeration volumes and lowest at 0.1 vvm 
(30.67 day −1 ). Increase in aeration volume improved the oxygen transfer and mixing 
effi ciency between explants and the culture medium. The lowest aeration volume 
(0.05 vvm) resulted in stunted root growth and stimulated root senescence, and the 
highest aeration volume (0.4 vvm) inhibited biomass accumulation and increased 
root death, probably because of physiological damage from excessive agitation and 
shear stress. Fischer and Alfermann [ 17 ] reported that supply of high aeration vol-
umes at the initial  in vitro  culture stage exposed plantlets to excessive shear stress, 
which could directly induce metabolic damage. In contrast, poor aeration volumes 

   Table 10.3    Effects of aeration volume on biomass accumulation and root death in adventitious 
roots of  Eleutherococcus koreanum  after 5 weeks of culture   

 Aeration volume 
(vvm) 

 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 ) 

 Percentage dry 
weight 

 Root death 
(day −1 ) 

 0.05  44.21  b a   5.51  c  12.46  35.33  ab 
 0.1  47.13  a  5.99  ab  12.70  30.67  b 
 0.2  47.52  a  6.22  a  13.09  33.33  ab 
 0.4  43.74  b  5.81  bc  13.27  39.33  a 
 0.05–0.4  48.89  a  6.37  a  13.02  35.00  ab 

   a Mean separation within columns by Duncan’s multiple range test at  p  = 0.05  
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resulted in stunted growth and stimulated senescence because of low rates of oxy-
gen transfer and poor mixing ratios [ 18 ]. Each culture stage, culture method, explant 
type, and plant species requires a different aeration volume for primary and second-
ary metabolic processes and exhibits a different response to shear stress. In  E. kore-
anum  adventitious root cultures, the highest root biomass and lowest root death 
were achieved at 0.1 vvm. These results suggest that an aeration volume of 0.1 vvm 
is optimal for biomass production of  E. koreanum  adventitious roots and does not 
cause high shear stress that would induce physiological disorders (e.g., darkening of 
roots or inhibition of root elongation).

   Accumulation of bioactive compounds in adventitious roots of  E. koreanum  as 
affected by aeration is shown in Table  10.4 . No signifi cant differences were found 
in total content of the target compounds, except for between the lowest and highest 
aeration volumes. High aeration volumes signifi cantly inhibited the accumulation 
of eleutherosides B and E and chlorogenic acid in the roots. The highest content of 
the total target compounds was obtained at 0.1 vvm (18.88 mg g −1  DW). Min et al. 
[ 16 ] and Jeong et al. [ 19 ] also reported that optimization of aeration volume is an 
important factor for enhancing production of biomass and bioactive compounds in 
adventitious roots of  S. parvifl ora  and  Echinacea purpurea , respectively.

   The CO 2  and O 2  concentrations inside the bioreactor were strongly affected by 
the aeration volume after 5 weeks of culture (Fig.  10.3 ). The CO 2  concentration 
decreased signifi cantly with increasing aeration volume. CO 2  concentrations in bio-
reactors with poor aeration (0.05 vvm) were 5.2 times higher than those in the 
infl ow air, which probably inhibited respiratory function and affected root develop-
ment. In contrast, high aeration (0.4 vvm) corresponded to the lowest CO 2  concen-
tration inside the bioreactor after 5 weeks of culture. Excessive aeration may have 
induced stripping of essential gases such as CO 2  and ethylene, which are needed to 
stimulate the production of bioactive compounds [ 20 ,  21 ]. No signifi cant changes 
were observed in O 2  concentration among the different aeration treatments.

   The above aeration results indicate that an aeration volume of 0.1 vvm is optimal 
to prevent stripping of essential gaseous components and to supply adequate air for 
achieving maximum production of biomass and bioactive compounds in  E.  koreanum  

   Table 10.4    Accumulation of bioactive compounds in adventitious roots of  Eleutherococcus 
koreanum  as affected by aeration volume after 5 weeks of culture   

 Aeration 
volume 
(vvm) 

 Eleutheroside 
B (μg g −1  
DW) 

 Eleutheroside 
E (μg g −1  
DW) 

 Chlorogenic 
acid (mg g −1  
DW) 

 Total 
phenolics 
(mg g −1  
DW) 

 Total 
fl avonoids 
(mg g −1  
DW) 

 Total target 
compounds 
(mg g −1  
DW) 

 0.05  49.35  b a   106.88  a  3.02  a  9.09  a  5.34  a  17.60  ab 
 0.1  59.25  a  107.70  a  3.36  a  9.84  a  5.52  a  18.88  a 
 0.2  59.55  a  108.23  a  3.34  a  9.64  a  5.26  a  18.41  a 
 0.4  49.05  b  90.68  b  1.44  b  9.72  a  5.10  a  16.39  b 
 0.05–0.4  52.65  ab  98.78  a  2.96  a  9.58  a  5.20  a  17.89  a 

   a Mean separation within columns by Duncan’s multiple range test at  p  = 0.05  

E.-J. Lee et al.



231

adventitious roots. This was evidenced by the highest total production of the target 
bioactive compounds, the lowest rates of root death, and the absence of physiologi-
cal disorders caused by excessive agitation and high shear stress.   

10.4     Optimization of Chemical Factors in Airlift 
Bioreactor Culture 

10.4.1     Effects of Salt Strength on Biomass and Production 
of Bioactive Compounds from Adventitious Roots 

 Plantlets grown  in vitro  must be provided with mineral nutrients from the culture 
medium for their survival, growth, and development, and mineral requirements dif-
fer according to culture stage and method, explant type, and plant species [ 22 ]. 
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 Table  10.5  [ 23 ] illustrates the effects of different strengths of MS medium on 
 biomass production in adventitious roots of  E. koreanum . Biomass production was 
greater at low salt strengths (1/4, 1/2, and 3/4 MS) than that at high salt strengths 
(1 and 2 MS), and the highest fresh and dry weights were achieved at 1/2 MS after 
5 weeks of culture. In contrast, the highest percentage of dry weight was obtained at 
the highest salt strength; dry weight at 2 MS was >60 % lower than that at 1/2 MS. In 
addition, roots cultured at 2 MS were shorter, thicker, and less numerous compared 
to those cultured at other salt strengths, whereas roots cultured at 1/4 MS were 
long and numerous but were so thin that they could not be continually subcultured 
(data not shown). On the other hand, biomass accumulation in roots cultured at 
low salt strength (especially 1/4 MS) was inhibited because of insuffi cient essential 
minerals.

   The total mineral content in the culture medium directly affects water potential, 
which infl uences the ability of plantlets to take up minerals, water, and other com-
ponents from the culture medium [ 24 ]. Water potential decreased substantially with 
increasing strength of the MS medium; >1 MS retarded root growth by sharply 
decreasing water potential in the medium (Fig.  10.4 ). Low water potential caused 
dehydration that resulted in stunted primary and secondary metabolic processes 

   Table 10.5    Effects of strength of Murashige and Skoog (MS) medium on biomass accumulation 
in adventitious roots of  Eleutherococcus koreanum  after 5 weeks of culture   

 MS medium salt 
strength  Fresh weight (g L −1 )  Dry weight (g L −1 )  Percentage dry weight 

 1/4  39.51  ab a   4.95  ab  12.52 
 1/2  42.37  a  5.27  a  12.43 
 3/4  39.64  ab  4.99  ab  12.58 
 1  36.50  b  4.54  b  12.43 
 2  21.43  c  3.17  c  14.80 

   a Mean separation within columns by Duncan’s multiple range test at  p  = 0.05  
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such as cell elongation, biomass accumulation, and biosynthesis of secondary 
metabolites. Consistent with this observation, Baque et al. [ 25 ] reported that high- 
strength MS medium induced osmotic stress that inhibited biomass production in 
adventitious roots of  Morinda citrifolia  because of low water potential.

   The effects of MS medium on accumulation of bioactive compounds in adventi-
tious roots of  E. koreanum  are presented in Table  10.6 . The highest contents of 
eleutherosides B and E were obtained at 1/2 and 3/4 MS, whereas the other bioac-
tive compounds tended to decrease with the increasing MS strength, with the excep-
tion of 2 MS. Eleutherosides B and E (lignins), are synthesized by different 
metabolic pathways than are other bioactive compounds such as chlorogenic acid. 
Therefore, eleutherosides B and E may exhibit different patterns from that of other 
bioactive compounds, even in roots cultured in the same medium. Roots grown in 
2 MS showed the highest percentage of dry weight (i.e., contained the least water) 
when compared to other high salt strength treatments, thereby, possessed greater 
quantities of bioactive compounds. The highest root biomass and the greatest 
 accumulation of each bioactive compound were achieved at different MS strengths. 
To determine the optimum MS medium salt strength for production of biomass and 
the target bioactive compounds, total production of bioactive compounds in roots (L 
medium −1 ) was calculated based on dry weight after 5 weeks of culture. Total pro-
duction of target bioactive compounds decreased with increasing strength of the 
medium. However, the highest production of eleutherosides B and E was observed 
at 1/2 and 3/4 MS, respectively. Although the total production of the target bioactive 
compounds was higher at 1/4 MS (99.80 mg L −1 ) than at 1/2 MS (85.36 mg L −1 ), we 
propose 1/2 MS as the optimal strength for production of biomass and bioactive 
compounds in  E. koreanum  because eleutherosides B and E are the primary bioac-
tive compounds in genus  Eleutherococcus , and roots cultured at 1/4 MS were too 
thin to perform continual subculturing. In addition, the highest fresh and dry weights 
were achieved at 1/2 MS. Previous studies also proposed that optimal medium 
strength for production of biomass and bioactive compounds could differ. For 
instance, Yu et al. [ 26 ] reported the maximum biomass at 1 MS, while lower salt 
strengths (1/4 and 1/2 MS) were suitable for the production of phenolic compounds 
in adventitious root cultures of  Panax ginseng . Min et al. [ 16 ] also determined that 
1/2 MS was optimal for the  production of both biomass and bioactive compounds in 

   Table 10.6    Accumulation of bioactive compounds in adventitious roots of  Eleutherococcus 
koreanum  as affected by strength of Murashige and Skoog (MS) medium after 5 weeks of culture   

 MS 
medium 
salt 
strength 

 Eleutheroside 
B (μg g −1  DW) 

 Eleutheroside 
E (μg g −1  DW) 

 Chlorogenic 
acid (mg g −1  
DW) 

 Total 
phenolics 
(mg g −1  
DW) 

 Total 
fl avonoids 
(mg g −1  
DW) 

 Total target 
compounds 
(mg g −1  
DW) 

 1/4  36.65  c a   92.94  d  4.99  a  9.80  a  5.25  a  20.16  a 
 1/2  56.35  a  143.82  b  3.61  bc  8.32  c  4.07  b  16.20  b 
 3/4  56.82  a  165.42  a  3.26  c  7.46  d  3.33  c  14.27  c 
 1  49.01  b  148.81  b  2.53  d  7.02  d  2.72  d  12.46  d 
 2  47.43  b  130.73  c  3.70  b  9.27  b  3.70  bc  16.85  b 

   a Mean separation within columns by Duncan’s multiple range test at  p  = 0.05  
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 E. angustifolia  adventitious roots. These results suggest that the strength of the 
medium must be controlled by manufacturing the target bioactive compounds 
according to the required purposes.

   These results indicate that 1/2 MS is the optimal salt strength for producing bio-
mass and bioactive compounds and for preventing physiological disorders caused 
by high osmotic stress in  E. koreanum  adventitious roots, in 3-L airlift bioreactors 
for a 5-weeks culture period. Evidence for this conclusion included high root bio-
mass, high total production of target bioactive compounds in roots, and appropriate 
root morphology.  

10.4.2     Effects of Nitrogen Source on Biomass and Production 
of Bioactive Compounds from Adventitious Roots 

 MS medium, which is widely used for  in vitro  culture technology, contains higher 
amounts of nitrogen (60 mM) when compared with other  in vitro  culture media. The 
total nitrogen source and NH 4  + :NO 3  −  ratio affects the biomass and production of 
bioactive compounds [ 27 ,  28 ]. In general, low NH 4  + :NO 3  −  ratios are more optimal 
for  in vitro  plant culture. However, some species perform well when NH 4  +  is pro-
vided as the sole nitrogen source [ 15 ]. Therefore, to produce large amounts of bio-
mass and bioactive compounds using  in vitro  culture technology, the ratio of NH 4  +  
to NO 3  −  must be optimized according to the plant species, explant type, culture 
method, and target bioactive compounds. 

 Biomass production in adventitious roots of  E. koreanum  was strongly affected 
by the NH 4  + :NO 3  −  ratio at an initial total nitrogen content of 30 mM (data not shown; 
[ 4 ]). The greatest fresh and dry weights were obtained at NH 4  + :NO 3  −  = 5:25 and 
10:20 mM, respectively, and percentage dry weight decreased with the increasing 
NH 4  + :NO 3  −  ratio. High NH 4  +  concentration had a negative effect on root growth; 
root growth was strongly inhibited at NH 4  + :NO 3  −  > 15:15 mM, and dry weight at 
NH 4  + :NO 3  −  = 30:0 mM was 25 % of that achieved with the optimal NH 4  + :NO 3  −  ratio 
for high root biomass. Therefore, NO 3  −  was more essential than NH 4  +  for the bio-
mass production of adventitious roots in  E. koreanum  and the optimal NH 4  + :NO 3  −  
ratio was either 5:25 or 10:20 mM. The accumulation of bioactive compounds in  E. 
koreanum  adventitious roots was also affected by the NH 4  + :NO 3  −  ratio at an initial 
total nitrogen content of 30 mM (data not shown). The contents of chlorogenic acid, 
total phenolics, and fl avonoids in roots decreased sharply with the increasing 
NH 4  + :NO 3  −  ratio, whereas high concentrations of eleutherosides B and E were 
obtained at NH 4  + :NO 3  −  ratios from 10:20 to 20:10 mM after 5 weeks of culture. 

 The highest biomass and accumulation of each bioactive compound in roots were 
achieved at different NH 4  + :NO 3  −  ratios. Thus, to determine the optimal NH 4  + :NO 3  −  
ratio for production of biomass and the target bioactive compounds, total production 
of bioactive compounds in roots (L medium −1 ) was calculated based on dry weight 
after 5 weeks of culture (Table  10.7 ). The total production of the target bioactive 
compounds decreased signifi cantly with the increasing NH 4  + :NO 3  −  ratio, except for 
NH 4  + :NO 3  −  = 0:30. In addition, when NH 4  +  levels were higher than NO 3  −  levels 
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(NH 4  + :NO 3  −  ≥ 15:15), total production of the target compounds was approximately 
one-third lower than that obtained at NH 4  + :NO 3  −  = 5:25, the ratio that showed the 
highest production of bioactive compounds (154.30 mg L −1 ). Therefore, the optimal 
NH 4  + :NO 3  −  ratio for total production of the target bioactive compounds was 5:25, 
while production of eleutherosides B and E was slightly higher at NH 4  + :NO 3  −  = 10:20 
than 5:25. Consistent with this observation, the highest biomass of  P. ginseng  adven-
titious roots was obtained at NH 4  + :NO 3  −  = 7.19:18.50 mM, while production of total 
ginsenosides was highest when NO 3  −  was used as the sole nitrogen source [ 29 ]. Cui 
et al. [ 30 ] also reported that the optimal NH 4  + :NO 3  −  ratios for biomass and bioactive 
compound production differed and that patterns of accumulation of target bioactive 
compounds differed according to NH 4  + :NO 3  −  ratios in the growth medium. In 
 Eleutherococcus senticosus  cell culture, production of chlorogenic acid decreased 
with increasing NH 4  + :NO 3  −  ratio, whereas the highest production of eleutheroside E 
was obtained at NH 4  + :NO 3  −  = 1:1 [ 31 ]. Thus, the NH 4  + :NO 3  −  ratio in the medium 
must be optimized to achieve maximum production of biomass and bioactive com-
pounds according to the plant species, explant type, culture method, and target 
compounds.

   These results indicate that an NH 4  + :NO 3  −  ratio of 5:25 mM is optimal for produc-
tion of biomass and bioactive compounds in  E. koreanum  adventitious roots. This 
was evidenced by the highest root biomass and total production of the target bioac-
tive compounds in the roots per liter of medium obtained at this ratio.  

10.4.3     Effects of Carbon Source on Biomass and Production 
of Bioactive Compounds from Adventitious Roots 

  In vitro  plantlets require carbon sources from the culture medium for biological 
processes including survival, growth, development, and bioactive compound accu-
mulation. Sucrose is an essential substrate for carbon and energy metabolism and 

   Table 10.7    Total production of bioactive compounds in adventitious roots of  Eleutherococcus 
koreanum  (L medium −1 ) as affected by NH 4  + :NO 3  −  ratio at an initial total nitrogen content of 
30 mM, after 5 weeks of culture   

 NH 4  + :NO 3  −  
(mM) 

 Eleutheroside 
B (μg L −1 ) 

 Eleutheroside 
E (μg L −1 ) 

 Chlorogenic 
acid (mg L −1 ) 

 Total 
phenolics 
(mg L −1 ) 

 Total 
fl avonoids 
(mg L −1 ) 

 Total target 
compounds 
(mg  −1 ) 

 0:30  153.99  488.19  35.86  49.02  29.94  115.46 
 5:25  241.30  830.88  44.31  71.48  37.44  154.30 
 10:20  291.03  969.11  20.89  58.83  31.01  111.00 
 15:15  245.85  897.45  10.72  39.13  15.27  66.26 
 20:10  213.05  729.44  6.65  31.39  9.39  48.25 
 25:5  143.65  368.29  1.21  17.75  4.58  24.05 
 30:0  55.41  147.44  0.44  10.15  1.11  11.90 

  Value of total production = mean of dry weight (g L −1 ) × mean of each bioactive compound content 
(mg g −1  DW)  
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polymer biosynthesis in  in vitro  culture technology. Moreover, sucrose is the major 
transport carbohydrate in higher plants and sucrose levels in higher plants affect the 
impact of sucrose-specifi c signaling on development, gene transport, primary and 
secondary metabolism, and defense responses [ 32 ,  33 ]. 

 Table  10.8  illustrates the effects of different sucrose concentrations (1–9 %) on 
biomass production in adventitious roots of  E. koreanum . The greatest fresh and dry 
weights were obtained at 3 % sucrose and root growth was signifi cantly inhibited at 
≥5 % sucrose. In contrast, the highest percentage of dry weight was obtained at the 
highest sucrose concentration (>40 % higher at 9 % than that at 3 % sucrose; the 
latter was optimal for biomass production). Root morphology was also affected by 
initial sucrose concentration after 5 weeks of culture (data not shown). Roots cul-
tured in >5 % sucrose were shorter and thicker and had fewer new roots than those 
cultured under optimal conditions. In particular, roots cultured in 9 % sucrose 
became enlarged but did not produce new roots. Adventitious roots consume carbon 
sources (e.g., sucrose, glucose, and fructose) from the culture medium, and the abil-
ity to utilize these carbon sources is reduced above a certain concentration because 
of osmotic stress [ 30 ,  34 ]. Plant cell size is also affected by source-induced osmotic 
stress. In particular, cell size under high osmotic stress is smaller than that under 
optimal culture conditions because of dehydration [ 35 ]. Therefore, percentage dry 
weight increased substantially with the increasing sucrose concentration because of 
a decline in cell water content.

   High sucrose concentrations had a negative effect on water potential in the 
growth medium after 5 weeks of culture; water potential at >5 % sucrose decreased 
signifi cantly with the increasing sucrose concentration (Fig.  10.5 ). These results 
indicate that roots cultured in >5 % sucrose were exposed to high osmotic stress, 
which could directly stimulate the defense responses. Plants have two antioxidant 
systems (enzymatic and non-enzymatic scavenging systems) that provide protection 
by controlling the contents of reactive oxygen species (ROS), such as hydrogen 
peroxide (H 2 O 2 ), superoxide radical (O 2  − ), and hydroxyl radical (OH − ) [ 36 ].

   The H 2 O 2  content in roots increased signifi cantly with the increasing sucrose 
concentration, indicating elevated stress levels (Fig.  10.6a ). In particular, the H 2 O 2  
content in roots cultured in 5 % sucrose (the initial sucrose concentration that 
stunted root growth) was twofold higher than that in 3 % sucrose, which was the 
optimal sucrose concentration for biomass production. H 2 O 2  is a well-known 

   Table 10.8    Effects of sucrose concentration on biomass accumulation in adventitious roots of 
 Eleutherococcus koreanum  after 5 weeks of culture   

 Sucrose conc. (%)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Percentage dry weight 

 1  39.90  b a   3.88  c  9.71 
 3  46.13  a  6.01  a  13.02 
 5  25.64  c  4.15  b  16.17 
 7  16.63  d  2.99  d  17.95 
 9  11.89  e  2.18  e  18.35 

   a Mean separation within columns by Duncan’s multiple range test at  p  = 0.05  
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 substrate for inducing systemic acquired resistance [ 37 ], hypersensitivity resistance 
[ 38 ], senescence [ 39 ], and programmed cell death [ 40 ]. Therefore, the initial 5 % 
sucrose supply induced various defense mechanisms in  E. koreanum  adventitious 
roots as a result of sucrose-induced osmotic stress. After 5 weeks of culture, free 
proline content (Fig.  10.6b ) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity 
(Fig.  10.6c ) in roots showed a similar pattern as the H 2 O 2  content, with the highest 
values achieved at the highest sucrose concentration. Accumulation of free proline 
is a plant adaptation, suggesting that the plants were exposed to salinity or water- 
defi cit conditions [ 41 ], and DPPH activity is widely used to evaluate the antioxidant 
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activity of specifi c extracts [ 42 ]. Thus, the signifi cant increase in free proline con-
tent and DPPH activity in roots with the increasing sucrose concentrations indicated 
elevated stress levels. Our results are similar to those reported by Cui et al. [ 43 ], 
who studied the responses of  Hypericum perforatum  adventitious roots using vari-
ous sucrose treatments in suspension cultures. Similarly, free proline content in  M. 
citrifolia  adventitious roots was shown to increase signifi cantly with the increasing 
osmotic stress [ 44 ].

   The effect of sucrose concentration on the accumulation of bioactive compounds 
in  E. koreanum  adventitious roots is shown in Table  10.9 . The highest contents of the 
target bioactive compounds was achieved at 5 % sucrose, which was the initial 
sucrose concentration that stunted root growth because of sucrose-induced osmotic 
stress, as evidenced by decreased root biomass and low water potential in the 
medium. The accumulation of each bioactive compound was stimulated under 
higher sucrose concentrations (5 and 7 %) compared to that under lower concentra-
tions (1 and 3 %). In particular, the contents of chlorogenic acid, total phenolics, and 
fl avonoids were lowest in the roots cultured in 1 % sucrose, in which no eleuthero-
side B was detected. These results indicated that the lack of a sugar source is a 
 limiting factor for secondary metabolite synthesis in  E. koreanum  adventitious roots. 
The highest root biomass and accumulation of bioactive compounds were achieved 
at different sucrose concentrations. Thus, to determine the optimum sucrose 
 concentration for production of biomass and the target bioactive compounds, total 
production of bioactive compounds in roots (L medium −1 ) was calculated based on 
dry weight after 5 weeks of culture. The highest total production of the target com-
pounds was observed with 3 % sucrose (158 mg L −1 ), which was the optimal concen-
tration for high root biomass. Consistent with this observation, the highest production 
of biomass, total phenolics, and fl avonoids in adventitious roots of  H. perforatum  
occurred in treatments with 3 and 5 % sucrose, respectively [ 43 ]. Shohael et al. [ 34 ] 
also reported that the contents of chlorogenic acid, total phenolics, and fl avonoids in 
 Eleutherococcus sessilifl orus  embryos increased with increasing sucrose concentra-
tions, but the productivity of eleutherosides B, E, and E 1  increased with 7 % sucrose. 
Thus, they insisted that the initial sucrose concentration must be optimized for the 
plant species, explant type, culture method, and target compounds [ 34 ].

   Table 10.9    Accumulation of bioactive compounds in adventitious roots of  Eleutherococcus 
koreanum  as affected by sucrose concentration after 5 weeks of culture   

 Sucrose 
conc. 
(%) 

 Eleutheroside 
B (μg g −1  DW) 

 Eleutheroside 
E (μg g −1  DW) 

 Chlorogenic 
acid (mg g −1  
DW) 

 Total 
phenolics 
(mg g −1  
DW) 

 Total 
fl avonoids 
(mg g −1  
DW) 

 Total target 
compounds 
(mg g −1  
DW) 

 1  0.00  d a   125.69  d  2.32  e  7.93  c  3.90  d  14.28  e 
 3  46.20  b  143.28  c  7.95  b  12.15  b  6.01  c  26.30  b 
 5  57.90  a  212.76  a  8.98  a  13.24  a  7.52  a  30.00  a 
 7  52.00  ab  214.84  a  7.13  c  13.06  a  7.11  b  27.57  b 
 9  27.11  c  168.65  b  5.61  d  11.67  b  6.13  c  23.61  d 

   a Mean separation within columns by Duncan’s multiple range test at  p  = 0.05  
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   These results indicate that 3 % sucrose is the optimal concentration of sugar for 
the production of biomass and bioactive compounds, and for the prevention of phys-
iological disorders caused by high osmotic stress in  E. koreanum  adventitious roots. 
This was evidenced by the highest root biomass, high total production of the target 
bioactive compounds, and appropriate root morphology. Roots cultured in >5 % 
sucrose induced antioxidant system responses by controlling the contents of intra-
cellular ROS, especially H 2 O 2 ; these phenomena might increase free proline content 
and DPPH activity in roots.   

10.5     Elicitation Strategies for Enhancing Productivity 
of Bioactive Compounds in Adventitious Roots 

 Synthesis of bioactive compounds in plants is a common response to biotic and 
abiotic stress, and accumulation of these compounds in plant cells and organs can 
be stimulated by exposure to stressors. Various elicitation strategies have been 
developed to stimulate synthesis of bioactive compounds in plant cells, tissues and 
organs. Exogenous elicitors usually interact with plant membrane receptors and 
activate specifi c genes, resulting in stimulation of synthesis of bioactive com-
pounds [ 8 ,  45 ]. Among the various elicitors studied, methyl jasmonate (MJ) and 
salicylic acid (SA) are considered the most attractive in adventitious root culture 
for commercial purposes [ 46 ]. The addition of MJ and SA into liquid growth 
medium containing adventitious roots stimulates various signal-transduction path-
ways that catalyze the synthesis of several bioactive compounds in a range of plant 
species [ 47 ]. 

 To enhance production of the target bioactive compounds in  E. koreanum  adven-
titious roots, various concentrations (0–400 μmol) of MJ and SA were applied to the 
3-L airlift bioreactors for 1 week before harvest. After 6 weeks of culture, fresh and 
dry weights decreased with the increasing MJ and SA concentrations, but  percentage 
dry weight was not infl uenced by MJ or SA elicitation (Table  10.10 ). The highest 
fresh and dry weights were obtained in the control treatment; roots cultured without 
MJ and SA elicitation for 6 weeks, and those to which 50 μmol MJ was added, did 
not exhibit negative effects on biomass production. Root growth at high MJ concen-
trations was better than that at high SA concentrations; dry weight at 400 μmol SA 
was >64 % lower than that in the control treatment. In general, the addition of MJ 
and SA as chemical elicitors to culture media induces various defense mechanisms 
in plants. Therefore, excess concentrations of elicitors have a negative effect on 
biomass production; up to 100 μmol MJ and 50 μmol SA inhibited root growth in  E. 
koreanum , as evidenced by reduced fresh weight after 6 weeks of culture. Consistent 
with this observation, biomass production in  P. ginseng  adventitious roots [ 48 ], 
 S. parvifl ora  hairy roots [ 47 ], and  E. sessilifl orus  embryos [ 7 ] was signifi cantly 
reduced with increasing MJ and SA concentrations. In particular, biomass produc-
tion in adventitious roots of  P. ginseng  at high SA concentrations was lower than 
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that at similar MJ concentrations [ 48 ], and biomass production in  E. sessilifl orus  
embryos decreased sharply to 200 μmol MJ [ 7 ]. In general, exogenous MJ and SA 
in plants regulate plant developmental responses and induce production of ROS, 
resulting in decreased biomass and increased productivity of bioactive compounds 
[ 49 ]. However, these two signal transducers act in different ways. The concentration 
of MJ in plants usually increases with insect and/or animal invasion and wounding 
responses, while SA concentration is usually involved in systemic acquired resis-
tance to microbial pathogens [ 50 ]. Accordingly, the responses to root growth under 
SA elicitation were more inhibited than those under MJ elicitation in  E. koreanum .

   The effects of MJ and SA elicitation on accumulation of bioactive compounds 
are shown in Table  10.11 . The highest total content of the target bioactive  compounds 

   Table 10.10    Effect of methyl jasmonate (MJ) and salicylic acid (SA) elicitation on biomass 
accumulation in adventitious roots of  Eleutherococcus koreanum  for 1 week a    

 Type  Conc. (μmol)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Percentage dry weight 

 Control  56.44  a b   7.36  a  13.03 

 MJ  50  55.71  a  6.97  ab  12.52 
 100  51.56  b  6.53  bcd  12.66 
 200  50.48  b  6.32  cd  12.53 
 400  48.79  bc  6.03  d  12.36 

 SA  50  51.89  b  6.83  abc  13.16 
 100  51.62  b  6.77  bc  13.12 
 200  46.56  c  6.01  d  12.91 
 400  40.64  d  4.70  e  11.58 

   a    Adventitious roots were cultured for 5 weeks before MJ and SA elicitation 
  b Mean separation within columns by Duncan’s multiple range test at  p  = 0.05  

   Table 10.11    Accumulation of bioactive compounds in adventitious roots of  Eleutherococcus 
koreanum  subjected to methyl jasmonate (MJ) and salicylic acid (SA) elicitation for 1 week a    

 Type 
 Conc. 
(μmol) 

 Eleutheroside 
B (μg g −1  
DW) 

 Eleutheroside 
E (μg g −1  
DW) 

 Chlorogenic 
acid (mg g −1  
DW) 

 Total 
phenolics 
(mg g −1  
DW) 

 Total 
fl avonoids 
(mg g −1  
DW) 

 Total target 
compounds 
(mg g −1  
DW) 

 Cont.  37.51  e b   124.48  b  9.10  b  13.30  e  7.42  e  29.97  e 

 MJ  50  39.57  e  171.26  a  11.22  a  22.22  ab  9.95  ab  43.61  a 
 100  39.65  e  180.40  a  11.60  a  22.48  a  10.00  a  44.29  a 
 200  39.50  e  177.92  a  9.81  b  21.66  b  9.70  b  41.39  b 
 400  35.13  e  125.86  b  7.55  c  19.97  c  9.25  c  36.93  c 

 SA  50  65.64  d  134.56  b  9.66  b  14.68  d  7.98  d  32.52  d 
 100  138.53  c  129.75  b  9.19  b  13.64  e  7.51  e  30.62  e 
 200  293.12  b  101.46  c  6.35  d  10.85  f  5.30  f  22.89  f 
 400  495.68  a  62.59  d  3.11  e  9.37  g  4.76  g  17.80  g 

   a Adventitious roots were cultured for 5 weeks before MJ and SA elicitation 
  b Mean separation within columns by Duncan’s multiple range test at  p  = 0.05  
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in roots was obtained at 100 μmol MJ (44.29 mg g −1  DW); contents of  eleutheroside 
B, eleutheroside E, chlorogenic acid, total phenolics, total fl avonoids, and total tar-
get compounds at 100 μmol MJ were 5.70, 44.92, 27.47, 69.02, 34.77, and 47.48 % 
higher, respectively, than that of the control treatments. MJ elicitation strongly stim-
ulated accumulation of the target bioactive compounds but SA elicitation had a 
negative effect on their accumulation with the exception of eleutheroside B. Root 
eleutheroside B content increased sharply with the increasing SA, and was 12.21 % 
higher than that in the control treatments at 400 μmol SA. In general, the addition 
of MJ and SA to culture media stimulates the synthesis of bioactive compounds in 
adventitious roots. The different pathways of eleutheroside synthesis compared to 
those of other bioactive compounds [ 11 ] mean that eleutherosides may exhibit dis-
tinct patterns, including similar stress-signaling molecules. For example, the meta-
bolic synthesis pathway of eleutheroside B was sharply stimulated by SA elicitation 
but was not infl uenced by MJ elicitation. Previous studies showed that the produc-
tion of bioactive compounds in  P. ginseng  adventitious roots [ 48 ],  S. parvifl ora  
hairy roots [ 47 ], and  E. sessilifl orus  embryos [ 7 ] was enhanced by MJ and SA elici-
tation, but the optimal elicitor type and concentration differed for each plant spe-
cies, explant type, culture method, and target bioactive compound; the elicitor type 
and concentration must be optimized accordingly. The highest root biomass and 
accumulation of bioactive compounds were achieved at different MJ and SA con-
centrations. Thus, to determine the optimum elicitor type and concentration, total 
production of bioactive compounds in roots (L medium −1 ) was calculated based on 
dry weight after 6 weeks of culture. Total production of the target bioactive com-
pounds was increased by MJ elicitation compared to the control treatments. 
However, SA elicitation decreased the total production of the target compounds in 
roots with the exception of eleutheroside B, the contents of which were 744 % 
higher than that of the control at 400 μmol SA. The highest total production of the 
target compounds (304 mg L −1 ) was observed at 50 μmol MJ, and was 38 % higher 
than that in the control treatment (221 mg L −1 ). This elicitor type and concentration 
had no negative effects on biomass production after 6 weeks of culture.

   Phenylalanine ammonia-lyase (PAL) activity in  E. koreanum  adventitious roots 
subjected to MJ and SA elicitation for 1 week is shown in Fig.  10.7 . PAL activity in 
roots exhibited a similar pattern to that of bioactive compounds accumulated in the 
roots after 6 weeks of culture, and the highest PAL activity was obtained at 100 μmol 
MJ. PAL activity in roots at 100 μmol MJ was twofold higher than that in the control 
treatment and total accumulation of the target bioactive compounds in the roots at 
100 μmol MJ was 1.5-fold higher than that in the control treatment. Addition of 
>200 μmol SA sharply decreased PAL activity and resulted in lower accumulation 
of biomass and target compounds in roots. High SA concentrations may inhibit 
primary and secondary metabolic processes in roots compared to that of control 
treatment. Elicitation strategies can modulate plant defense mechanisms, which 
may stimulate various metabolite synthesis pathways and lead to accumulation of 
large quantities of useful bioactive compounds [ 51 ]. PAL is a key enzyme initiating 
the transition from primary metabolism to phenylpropanoid metabolism and 
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strongly stimulates the production of isofl avonoids and other phenolic compounds 
[ 32 ,  52 ]. Thus, enhanced PAL activity in plants can stimulate synthesis of bioactive 
compounds such as chlorogenic acid, total phenolics, and fl avonoids in  E. koreanum  
adventitious roots. There are several reports on the relationship between PAL activ-
ity and accumulation of bioactive compounds in  in vitro  explants. In  E. purpurea  
hairy root cultures used for the production of caffeic acid derivatives and anthocy-
anin [ 53 ],  Daucus carota  hairy root cultures used for the production of total pheno-
lics and fl avonoids [ 54 ], and  Lupinus luteus  embryo axis cultures used for 
isofl avonoid production [ 32 ], PAL activity in the explants was high when they con-
tained high concentrations of bioactive compounds. Wang et al. [ 52 ] confi rmed that 
exogenous elicitors can increase accumulation of target bioactive compounds and 
PAL activity in cells.

   These results indicate that the optimal elicitor type and concentration for enhanc-
ing total production of the target bioactive compounds was MJ elicitation at 50 μmol 
for 1 week, without harmful effects on biomass production in  E. koreanum  adventi-
tious roots. In addition, increased PAL activity in the roots can enhance the pro-
duction of phenolic compounds, especially chlorogenic acid, total phenolics, and 
fl avonoids.  
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  Fig. 10.7    Phenylalanine ammonia-lyase ( PAL ) activity in adventitious roots of  Eluetherococcus 
koreanum  subjected to methyl jasmonate ( MJ ) and salicylic acid ( SA ) elicitation for 1 week.  Bars  
represent means ± SE (n = 3)       
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10.6     Comparison of Contents of Bioactive Compounds 
and Typical DNA Histograms Between Adventitious 
Roots and Field-Grown Plants 

 To verify the competitive ability of  E. koreanum  adventitious roots, contents of 
the target bioactive compounds were compared in three types of adventitious roots 
and four types of fi eld-grown plants using high-performance liquid chromatography 
(HPLC). The following materials were analyzed: (1) adventitious roots without elici-
tation harvested after 6 weeks of culture; (2) adventitious roots subjected to 50 μmol 
MJ after 5 weeks of culture and harvested after 6 weeks of culture; (3) adventitious 
roots subjected to 50 μmol SA after 5 weeks of culture and harvested after 6 weeks 
of culture; (4) leaves of 3-years-old fi eld-grown parental plants harvested in late 
September; (5) stems of 3-years-old fi eld-grown parental plants harvested in late 
September; (6) thin roots (≤1 cm) of 3-years-old fi eld-grown parental plants har-
vested in late September; and (7) thick roots (≥1 cm) of 3-years-old fi eld- grown 
parental plants harvested in late September. The contents of bioactive compounds in 
adventitious roots and fi eld-grown plants are presented in Table  10.12 . The highest 
total content of the target bioactive compounds (DW basis) was achieved in adventi-
tious roots subjected to 50 μmol MJ for 1 week (43.6 ± 0.56 mg g −1  DW), which was 

   Table 10.12    Bioactive compound contents in adventitious roots (in vitro) and fi eld-grown (ex 
vitro)  Eleutherococcus koreanum    

 Plant 
source 

 Eleutheroside 
B (μg g −1  
DW) 

 Eleutheroside 
E (μg g −1  
DW) 

 Chlorogenic 
acid (mg g −1  
DW) 

 Total 
phenolics 
(mg g −1  DW) 

 Total 
fl avonoids 
(mg g −1  
DW) 

 Total target 
compounds 
(mg g −1  DW) 

  In vitro  a  
 AR-1  37.5 ± 3.66 b   124.5 ± 6.54  9.10 ± 0.04  13.30 ± 0.25  7.4 ± 0.05  30.0 ± 0.34 
 AR-2  39.6 ± 1.34  171.3 ± 7.19  11.2 ± 0.80  22.2 ± 0.30  10.0 ± 0.08  43.6 ± 0.56 
 AR-3  65.6 ± 3.67  134.6 ± 4.50  9.7 ± 0.12  14.7 ± 0.30  8.0 ± 0.04  32.5 ± 0.31 
  Ex vitro  c  
 Leaves  135.4 ± 1.80  157.6 ± 14.87  6.2 ± 0.33  14.6 ± 0.74  9.4 ± 0.28  30.5 ± 0.62 
 Stems  88.1 ± 0.30  55.9 ± 1.43  0.6 ± 0.02  0.8 ± 0.12  0.6 ± 0.04  2.1 ± 0.11 
 Thin 
roots 

 86.6 ± 0.35  64.3 ± 6.41  1.7 ± 0.13  3.4 ± 0.32  2.0 ± 0.03  7.2 ± 0.38 

 Thick 
roots 

 86.0 ± 1.24  77.1 ± 8.86  1.6 ± 0.06  3.2 ± 0.02  1.9 ± 0.13  6.8 ± 0.14 

   AR-1  Adventitious root without elicitation,  AR-2  Adventitious roots with 50 μmol MJ elicitation 
for 1 week before harvesting,  AR-3  Adventitious roots with 50 μmol SA elicitation for 1 week 
before harvesting 
  a Data were taken after 6 weeks of bioreactor culture 
  b Values are means ± standard error (n = 5) 
  c Data were taken in late September in the fi eld  
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the optimal elicitor type and concentration for biomass production. The contents of 
chlorogenic acid, total phenolics, and fl avonoids in adventitious roots subjected to 
MJ and SA were strongly enhanced compared to those in fi eld-grown plants, indi-
cating that the culture conditions provided a competitive edge for commercial sup-
ply of  E. koreanum -based bioactive compounds. Moreover, the content and quality 
of the bioactive compounds in the fi eld-grown plants were strongly affected by envi-
ronmental conditions and harvest time [ 6 ]. The highest concentration of bioactive 
compounds in fi eld-grown  E. koreanum  was observed in late September; and these 
plants were unable to produce a controlled, year-round supply of bioactive com-
pounds of adequate quality and quantity. However, using pilot- scale bioreactors, 
 in vitro   E. koreanum  adventitious root cultures could produce a controlled supply of 
bioactive compounds appropriate for industrial use year round. Consistent with this 
observation, Ali et al. [ 55 ] reported that the accumulation of saponin in adventitious 
roots of  P. ginseng  and  P. quinquefolius  subjected to 200 μmol MJ was fourfold 
higher compared to that of untreated native ginseng roots. In addition, Wang et al. 
[ 10 ] identifi ed ginsenoside composition in the native ginseng roots, adventitious 
roots, cells, and hairy roots using LC-MS and cluster analysis, and confi rmed that 
the ginsenoside quality of the adventitious roots was similar to that in the native 
roots. In addition, total saponin content in adventitious roots was much higher than 
that in other  in vitro  explants.

   The adventitious roots used in the present study were induced from  in vitro - 
grown plants and were continuously maintained in half-strength MS medium 
(HN 4  + :NO 3  −  = 5:25) supplemented with 5 mg L −1  IBA, 0.01 mg L −1  TDZ, and 30 g L −1  
sucrose over a 3-years period. To verify the genetic safety of  E. koreanum  adventi-
tious roots, ploidy levels of the adventitious roots and the 3-years-old fi eld- grown 
plants were analyzed: (1) adventitious root tips (1 cm) after 3 weeks of  culture, 
where the roots were undergoing an exponential growth phase and high rates of cell 
division; and (2) young leaves (0.5 × 0.5 cm) from a 3-years-old fi eld-grown parental 
plant. The peak locations of stained nuclei from the adventitious roots and fi eld-
grown plants on typical DNA histograms were identical (Fig.  10.8 ). In general, 
adventitious root culture is an attractive method for producing large quantities of 
biomass and bioactive compounds because of rapid biomass accumulation, similar 
quality of bioactive compounds compared to their natural counterparts, stable pro-
ductivity of bioactive compounds, and genetic stability compared to other plant tis-
sue-culture methods [ 15 ,  46 ].

   The present results indicate that adventitious root culture is an attractive method 
for year-round production of valuable  E. koreanum -based bioactive compounds 
and that this method enables control of the quality and quantity of target com-
pounds and verify genetic safety for industrial use. Adventitious roots subjected to 
50 μmol MJ for 1 week demonstrated a competitive edge for commercial use as 
evidenced by their high concentrations of the target bioactive compounds and the 
identical peak location on typical DNA histograms compared to 3-years-old fi eld-
grown plants.  
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10.7     Conclusions 

  In vitro  conditions strongly affect biomass and production of bioactive compounds 
in adventitious roots of  Eleutherococcus koreanum  Nakai cultured in 3-L airlift 
bioreactors. To establish an effi cient method for year-round production of 
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 E. koreanum - based  bioactive compounds, the adventitious roots were tested with 
various physical and chemical factors (inoculum density, aeration volume, salt 
strength, nitrogen source, and sucrose concentration). An inoculum density of 
5.0 g L −1  and aeration volume of 0.1 vvm were found to be optimal physical factors; 
half-strength MS medium, an NH 4  + :NO 3  −  ratio of 5:25 mM, and 3 % sucrose were 
found to be optimal chemical factors for producing large quantities of biomass and 
bioactive compounds. Evidences for this conclusion included growth parameters 
(high root biomass and low root death), strong accumulation of the fi ve target bioac-
tive compounds (eleutherosides B and E, chlorogenic acid, total phenolics, and fl a-
vonoids), and the absence of physiological root disorders. Moreover, the addition of 
50 μmol MJ for 1 week prior to harvest was an effective elicitation strategy for 
enhancing the fi nal productivity of the target compounds; under these conditions, 
roots produced 304 mg L −1 , which was 38 % higher than that produced in the control 
treatment. Adventitious roots subjected to 50 μmol MJ for 1 week had a competitive 
edge and were genetically safe for commercial use as evidenced by the large con-
centrations of the target bioactive compounds and DNA histogram peaks identical 
to those of 3-years-old fi eld-grown plants. 

 The development of such an  in vitro  culture protocol, which controls the quality 
and quantity of elicited bioactive compounds, will be benefi cial for pilot-scale pro-
duction of  E. koreanum -based bioactive compounds for industrial use.     

   References 

        1.    Kang JY, Jeong YH, Lim EH, Lee EJ, Chu HM, Jeong SJ (2005) Analysis of acanthoic acid 
and isomers in  Acanthopananx  species by gas chromatography. J Pharm Sci 20:41–46  

    2.    Slacanin I, Marston A, Hostettmann K (1991) The isolation of  Eleutherococcus senticosus  
constituents by centrifugal partition chromatography and their quantitative determination by 
high performance liquid chromatography. Phytochem Anal 2:137–142  

    3.    Fujikawa T, Yamaguchi A, Morita I, Takeda H, Nishibe S (1996) Protective effects of 
 Acanthopanax senticosus  Harms form Hokkaido and its components on gastric ulcer in 
restrained cold water stressed rats. Biol Pharm Bull 19:1227–1230  

     4.    Lee EJ, Paek KY (2012) Effect of nitrogen source on biomass and bioactive compound pro-
duction of in submerged cultures of  Eleutherococcus koreanum  Nakai adventitious roots. 
Biotechnol Prog 28:508–514  

    5.    Ko HJ, Song CK, Cho NK (2003) Growth of seedling and germination characteristics of 
 Acanthopanax koreanum  Nakai. Kor J Med Crop Sci 11:46–52  

     6.    Jwa CS, Yang YT, Koh JS (2000) Changes in free sugars, organic acids, free amino acids and 
minerals by harvest time and parts of  Acanthopanax koreanum . J Kor Soc Agric Chem 
Biotechnol 43:106–109  

       7.    Shohael AM, Murthy HN, Lee HL, Hahn EJ, Islam R, Paek KY (2008) Increased eleutheroside 
production in  Eleutherococcus senticosus  embryogenic suspension cultures with methyl jas-
monate treatment. Biochem Eng J 38:270–273  

     8.    Baque MA, Moh SH, Lee EJ, Zhong ZZ, Paek KY (2012) Production of biomass and useful 
compounds from adventitious roots of high-value added medicinal plants using bioreactor. 
Biotechnol Adv 30:1255–1267  

    9.    Sivakumar G, Medina-Bolivar F, Lay JO, Dolan MC, Condori J, Grubbs SK, Wright SM, 
Baque MA, Lee EJ, Paek KY (2011) Bioprocess and bioreactor: next generation technology 

E.-J. Lee et al.



247

for production of potential plant-based antidiabetic and antioxidant molecules. Curr Med 
Chem 18:79–90  

     10.    Wang J, Man S, Gao W, Zhang L, Huang L (2013) Cluster analysis of ginseng tissue cultures, 
dynamic change of growth, total saponins, and specifi c oxygen uptake rate in bioreactor and 
immuno-regulative effect of ginseng adventitious root. Ind Crops Prod 41:57–63  

     11.    Ahn JK, Park SY, Lee WY, Lee JJ (2005) Effects of growth regulators on adventitious root 
growth and eleutherosides and chlorogenic acid accumulation in air lift bioreactor cultures of 
 Eleutherococcus koreanum . Kor J Plant Biotechnol 32:57–61  

    12.    Murashige T, Skoog F (1962) A revise medium for rapid growth and bioassay with tobacco 
tissue culture. Physiol Plant 15:473–497  

    13.    Lee EJ, Kim MK, Paek KY (2010) Auxin and cytokinin affect biomass and bioactive com-
pound production from adventitious roots of  Eleutherococcus koreanum . Kor J Hort Sci 
Technol 28:678–684  

    14.    Lee EJ, Moh SH, Paek KY (2011) Infl uence of inoculum density and aeration volume on 
 biomass and bioactive compound production in bulb-type bubble bioreactor cultures of 
 Eleutherococcus koreanum  Nakai. Bioresour Technol 102:7165–7170  

       15.    Wu CH, Dewir YH, Hahn EJ, Paek KY (2006) Optimization of culturing conditions for the 
production of biomass and phenolics from adventitious roots of  Echinacea angustifolia . 
J Plant Biol 49:193–199  

       16.    Min JY, Jung HY, Kang SM, Kim YD, Kang YM, Park DJ, Prasad DT, Choi MS (2007) 
Production of tropane alkaloids by small-scale bubble column bioreactor cultures of  Scoplida 
parvifl ora  adventitious roots. BioresourTechnol 98:1748–1753  

    17.    Fischer U, Alfermann AW (1995) Cultivation of photoautotrophic plant cell suspension in the 
bioreactor: infl uence of culture conditions. J Biotechnol 41:19–28  

    18.    Meijer JJ, Hoopen HJG, Libbenga KR (1993) Effects of hydrodynamic stress on cultured plant 
cell: a literature survey. Enz Microb Technol 15:234–238  

    19.    Jeong JA, Wu CH, Murthy HN, Hahn EJ, Paek KY (2009) Application of airlift bioreactor 
system for the production of adventitious root biomass and caffeic acid derivatives of 
 Echinacea purpurea . Biotechnol Bioproc Eng 14:91–98  

    20.    Gao J, Lee JM (1992) Effect of oxygen supply on the suspension cultures of genetically modi-
fi ed tobacco cell. Biotechnol Prog 8:285–290  

    21.    Schlatmann JE, Fonck E, ten Hoopen HJG, Heijhen JJ (1993) The negligible role of carbon 
dioxide and ethylene in ajmalicine production by  Catharanthus roseus  cell suspensions. Plant 
Cell Rep 14:157–160  

    22.    Amirouche L, Stuchbury T, Matthews S (1985) Comparisons of cultivar performance on differ-
ent nutrient media in a routine method for potato micropropagation. Potato Res 28:469–478  

    23.    Lee EJ, Paek KY (2012) Enhanced productivity of biomass and bioactive compounds through 
bioreactor cultures of  Eleutherococcus koreanum  Nakai adventitious roots affected by medium 
salt strength. Ind Crops Prod 36:460–465  

    24.    Lan ML, Piao XC, Yang CS, Paek KY (2001) Effect of MS medium strength and nitrogen con-
centration on bulblet formation and growth of  Lilium  in vitro. Kor J Plant Tiss Cult 28:341–346  

    25.    Baque MA, Lee EJ, Paek KY (2010) Medium salt strength induced changes in growth, physi-
ology and secondary metabolite content in adventitious roots of  Morinda citrifolia : the role of 
antioxidant enzymes and phenylalanine ammonia lyase. Plant Cell Rep 29:685–694  

    26.    Yu KW, Hahn EJ, Paek KY (2000) Production of adventitious ginseng roots using bioreactors. 
Kor J Plant Tiss Cult 27:309–315  

    27.    Zhong JJ, Wang SJ (1998) Effects of nitrogen source on the production of ginseng saponin and 
polysaccharide by cell cultures of  Panax quinquefolium . Proc Biochem 33:671–675  

    28.    Murthy HN, Praveen N (2011) Infl uence of macro elements and nitrogen source on adventi-
tious root growth and withanolide-A production in  Withania somnifera  (L.) Dunal. Nat Prod 
Res 1:1–8  

    29.    Yu KW, Gao WY, Hahn EJ, Paek KY (2001) Effects of macro elements and nitrogen source on 
adventitious root growth and ginsenoside production in Ginseng ( Panax ginseng  C.A. Meyer). 
J Plant Biol 44:179–184  

10 Production of Biomass and Bioactive Compounds in Adventitious Root Cultures



248

     30.    Cui XH, Murthy HN, Wu CH, Paek KY (2010) Adventitious root suspension cultures of 
 Hypericum perforatum : effect of nitrogen source on production of biomass and secondary 
metabolites. In Vitro Cell Dev Biol 46:437–444  

    31.    Ahn JK, Lee WY, Park SY (2003) Effect of nitrogen source on the cell growth and production 
of secondary metabolites in bioreactor cultures of  Eleutherococcus senticosus . Kor J Plant 
Biotechnol 30:301–305  

      32.    Morkunas I, Marczak L, Stachowiak J, Stobiecki M (2005) Sucrose-induced lupine defense 
against  Fusarium oxysporum  sucrose-stimulated accumulation of isofl avonoids as a defense 
response of lupine to  Fusarium oxysporum . Plant Phyl Biochem 43:363–373  

    33.    Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. 
Phytochemistry 71:1610–1614  

      34.    Shohael AM, Chakrabarty D, Ali MB, Yu KW, Hahn EJ, Lee HL, Paek KY (2006) Enhancement 
of eleutherosides production in embryogenic cultures of  Eleutherococcus sessilifl orus  in 
response to sucrose-induced osmotic stress. Proc Biochem 41:512–518  

    35.    Zhang YH, Zhong JJ, Yu JT (1996) Enhancement of ginseng saponin production in suspension 
cultures of  Panax notoginseng : manipulation of medium sucrose. J Biotechnol 51:49–56  

    36.    Ahmed S, Nawata E, Hosokawa M, Domae Y, Sakuratani T (2002) Alterations in photosynthe-
sis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant 
Sci 163:117–123  

    37.    Li SW, Xue L, Xu S, Feng H, An L (2009) Hydrogen peroxide acts as signal molecule in the 
adventitious roots formation of mungbean seedlings. Env Exp Bot 65:63–71  

    38.    Melillo MT, Leonettil P, Bongiovanni M, Astagnone SP, Bleve ZT (2006) Modulation of reac-
tive oxygen species actives and H 2 O 2  during compatible and incompatible tomato-root-knot 
nematode interactions. New Physiol 170:501–512  

    39.    Hung KT, Hsu YT, Kao CH (2006) Hydrogen peroxide is involved in methyl jasmonate- 
induced senescence of rice leaves. Physiol Plant 127:293–303  

    40.    Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Suty L (2001) Hydrogen peroxide induces 
programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. 
J Exp Bot 52:1721–1730  

    41.    Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from 
stress: clues from transgenic plants. Plant Cell Environ 25:163–171  

    42.    Kim HK, Bang CS, Choi YM, Lee JS (2007) Antioxidant and antiproliferative activities of 
methanol extracts from leafy vegetables consumed in Korea. Food Sci Biotechnol 
16:802–806  

     43.    Cui XH, Murthy HM, Wu CH, Paek KY (2010) Sucrose induced osmotic stress affects bio-
mass, metabolite, and antioxidant levels in root suspension cultures of  Hypericum perforatum  
L. Plant Cell Tiss Organ Cult 103:7–14  

    44.    Baque MA, Elgirban A, Lee EJ, Paek KY (2012) Sucrose regulated enhanced induction of 
anthraquinone, phenolics, fl avonoids biosynthesis and activities of antioxidant enzymes in 
adventitious root suspension cultures of  Morinda citrifolia  (L.). Acta Phyl Plant 34:405–415  

    45.    Hu FX, Zhong JJ (2008) Jasmonic acid mediates gene transcription of ginsenoside biosynthe-
sis in cell cultures of  Panax notoginseng  treated with chemically synthesized 2-hydroxyethyl 
jasmonate. Proc Biochem 43:113–118  

     46.    Murthy HM, Hahn EJ, Paek KY (2008) Adventitious roots and secondary metabolism. Chin J 
Biotechnol 24:711–716  

      47.    Kang SM, Jung HY, Kang YM, Yun DJ, Bahk JD, Yang JK, Choi MS (2004) Effects of methyl 
jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT 
and H6H in adventitious root cultures of  Scopolia parvifl ora . Plant Sci 166:745–751  

      48.    Yu KW, Gao W, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation 
in adventitious root culture of  Panax ginseng  C.A. Meyer. Biochem Eng J 11:211–215  

    49.    Ali MB, Yu KY, Hahn EJ, Paek KY (2006) Methyl jasmonate and salicylic acid elicitation 
induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension 
culture  Panax ginseng  roots in bioreactors. Plant Cell Rep 25:613–620  

E.-J. Lee et al.



249

    50.    Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 
1:316–323  

    51.    Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of 
plant secondary metabolites. Biotechnol Adv 23:283–333  

     52.    Wang YD, Wu JC, Yuan YJ (2007) Salicylic acid-induced taxol production and isopentenyl 
pyrophosphate biosynthesis in suspension cultures of  Taxus chinensis  var.  mairei . Cell Biol Int 
31:1179–1183  

    53.    Abbasi BH, Tian CL, Murch SJ, Saxena PK, Liu CZ (2007) Light-enhanced caffeic acid bio-
synthesis in hair root cultures of  Echinacea purpurea . Plant Cell Rep 26:1367–1372  

    54.    Sircar D, Gardoso HG, Mukherjee C, Mitra A, Arnholdt-Schmitt B (2012) Alternative oxidase 
(AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of  Daucus 
carota  L. J Plant Physiol 169:657–663  

    55.    Ali MB, Yu KY, Hahn EJ, Paek KY (2005) Differential responses of anti-oxidants enzymes, 
lipoxygenase activity, ascorbate content and the production of saponins in tissue cultured root 
of mountain  Panax ginseng  C.A. Meyer and  Panax quinquefolius  L. in bioreactor subjected to 
methyl jasmonate stress. Plant Sci 169:83–92    

10 Production of Biomass and Bioactive Compounds in Adventitious Root Cultures



251© Springer Science+Business Media Dordrecht 2014 
K.-Y. Paek et al. (eds.), Production of Biomass and Bioactive Compounds Using 
Bioreactor Technology, DOI 10.1007/978-94-017-9223-3_11

    Chapter 11   
 Production of Adventitious Root Biomass 
and Bioactive Compounds from  Hypericum 
perforatum  L. Through Large Scale Bioreactor 
Cultures 

                Xi-Hua     Cui     ,     Hosakatte     Niranjana     Murthy    , and     Kee-Yoeup     Paek   

        X.-H.   Cui      (*) 
  Biotechnology Research Institute, 
Yanbian Academy of Agriculture Sciences ,   Yanji   133001 ,  China   
 e-mail: cuixihua80@hotmail.com   

    H.  N.   Murthy    •    K.-Y.   Paek    
  Research Center for the Development of Advanced Horticultural Technology , 
 Chungbuk National University ,   Cheongju   361-763 ,  Republic of Korea    

  Department of Botany ,  Karnatak University ,   Dharwad   580 003 ,  India    

    Abstract      Hypericum perforatum  L. (St. John’s wort) is a traditional medicinal 
plant with antidepressive and woundhealing properties. It contains a lot of con-
stituents with documented biological activity including phenolics, a broad range 
of fl avonoids, naphthodianthrones and phloroglucinols. In recent years plant cell, 
tissue and organ cultures have been developed as an important alternative sources 
for the production of high value secondary metabolites. The adventitious roots of 
 H. perforatum  are regarded as an effective means of biomass production due to 
their fast growth rates and stable metabolite productivity. To determine optimal 
culture conditions for the bioreactor culture of  H. perforatum  adventitious roots, 
experiments have been conducted on various chemical and physical parameters in 
fl asks and bioreactors. Adoption of elicitation methods have shown enhancement 
in the accumulation of total phenolics and fl avonoids. Based on these results, a 
large scale bioreactor system at the industrial level (100 and 500 L) was estab-
lished for the production of biomass and secondary metabolites from the adventi-
tious root cultures. To investigate the usefulness of the adventitious root cultures 
for the production of secondary metabolites, comparison of ploidy level and the 
contents of total phenolics and fl avonoids in adventitious roots and fi eld-grown 
plant was conducted. In addition, identifi cation of the major constituents in adven-
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titious roots (hypericin, hyperin, quercetin and chlorogenic acid) were  analyzed 
by Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass 
Spectrometry (LC-MS/MS). Moreover, 12 isolated phenolic compounds from 
root cultures were evaluated for anti-infl ammatory effects [Nuclear factor kappa B 
(NF-κB) inhibition and Peroxisome proliferator-activated receptor (PPAR) activa-
tion effects] and fi ve xanthones of them were also tested for antioxidant and anti-
cancer activities.  

  Keywords     Adventitious roots   •   Bioreactor cultures   •    Hypericum perforatum    • 
  Secondary metabolites  

  Abbreviations 

   ABTS    2, 2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)   
  B5    Gamborg   
  BA    N 6 -benzyladenine   
  BTBB    Balloon type bubble bioreactor   
  DCFDA    2′,7′-dichlorfl uorescein-diacetate   
  DPPH    1, 1-diphenyl-2-picrylhydrazyl   
  DW    Dry weight   
  EC    Electrical conductivity   
  ESI    Electrospray ionization   
  FW    Fresh weight   
  H 2 O 2     Hydrogen peroxide   
  HepG2    Human hepatocarcinoma   
  IAA    Indole-3-acetic acid   
  IBA    Indole butyric acid   
  LC    Liquid chromatography   
  LH    Lactoalbumin hydrolysate   
  MDA    Malondialdehyde   
  MJ    Methyl jasmonate   
  MS    Murashige and Skoog   
  MS/MS    Tandem mass spectrometry   
  NAA    1-naphthalene acetic acid   
  NF-κB    Nuclear factor kappa B   
  PGR    Plant growth regulator   
  PPAR    Peroxisome proliferator-activated receptor   
  ROS    Reactive oxygen species   
  SA    Salicylic acid   
  TDZ    Thidiazuron   
  TNF-α    Tumor necrosis factor alpha   
  vvm    Air volume · culture volume −1  · min −1    
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11.1           Introduction 

  Hypericum perforatum  L. (St. John’s wort) is an important traditional medicinal 
plant native to Europe that is grown worldwide for commercial purpose. It contains 
a large number of constituents with documented biological activity including phe-
nolics, a broad range of fl avonoids, naphthodianthrones, phloroglucinols and xan-
thones [ 1 ]. The herb of  H. perforatum  has been used in folk medicine as healing and 
anti-infl ammatory agent since antiquity. Now-a-days, it has gained international 
popularity as it is used for the treatment of depression and as a dietary supplement, 
especially in Europe and the United States [ 2 ]. The antidepressant activity is attrib-
uted to hypericin, hyperforin, adhyperforin, which are the characteristic constitu-
ents of  H. perforatum  [ 3 ,  4 ]. Additionally, a broad range of fl avonoids from this 
plant have also been shown to possess antidepressive activity but certainly act as 
co-effectors by improving pharmaceutical properties of other constituents such as 
hypericins [ 5 ,  6 ]. These bioactive compounds act by mutually expressing biological 
activities. Hence, the effi cacy of medical preparations of  H. perforatum  is based on 
the whole mixture of metabolites, rather than the presence of a single constituent. 

 For commercial production of  H. perforatum , fi eld-grown plant material has 
generally been used. However, fi eld production requires approximately 2 years and 
unfortunately, cultivars that are bred for increased secondary product accumulation 
are not necessarily disease resistant [ 7 ]. Moreover, the concentration of hypericin 
and pseudohypericin in  H. perforatum  extracts was not only very low (0.3 %), but 
also varied up to 50-fold in summer and winter grown plants [ 8 ]. Cell or organ cul-
tures have emerged as a valuable route for biosynthesizing phytochemicals, and 
bioreactor-based systems have been developed for the production of ginsenosides 
[ 9 ], phenolics [ 10 ] and alkaloids [ 11 ]. There are reports on a large-scale  in vitro  
growth system for the production of  H. perforatum  bioactive compounds using 
stem, but these techniques have limitations such as recalcitrance to liquid medium 
and the possibility of genetic variability in organ cultures [ 12 ]. In addition, cell 
suspension cultures of  H. perforatum  using fl asks were established to study the 
production of bioactive compounds, but low biomass resulted in the drop of produc-
tivity of secondary metabolites [ 13 ,  14 ]. The bioreactor culture of adventitious roots 
is an effective means of biomass production due to fast growth rates, stable metabo-
lite productivity and easy to scale up [ 15 ,  16 ]. In addition, compared to callus cul-
ture, adventitious roots are genetically stable and contain high secondary metabolites. 
In this review we present a protocol for  H. perforatum  adventitious root cultures for 
the production of bioactive compounds using bioreactor system. 

11.1.1     Induction of Adventitious Roots and Their Maintenance 

 Adventitious roots of  H. perforatum  were induced by using leaf explants 
(0.5 × 0.5 cm) on full-strength Murashige and Skoog (MS) medium supplemented 
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with Gamborg (B5) [ 17 ] vitamins, 3 % (w/v) sucrose, 0.5 mg L −1  indole-3-acetic 
acid (IAA), and 2.3 g L −1  gelrite. Adventitious roots were maintained in MS liquid 
medium supplemented with B5 vitamins, 3 % (w/v) sucrose and 1.0 mg L −1  indole 
butyric acid (IBA) in 250 mL shake fl asks (containing 70 mL of medium). Cultures 
were maintained in darkness at a temperature of 25 ± 1 °C on gyratory shakers at 
100 rpm and were subcultured once in every 3 weeks.  

11.1.2     Chemical and Physical Factors Affecting Adventitious 
Root Growth in Suspension Cultures 

    Effect of Plant Growth Regulators on the Adventitious Root Growth 
and Accumulation of Bioactive Compounds in Flask Culture 

 When adventitious root explants of  H. perforatum  were cultured in MS medium 
supplemented with various concentrations of auxins [IAA, IBA and 
1- naphthaleneacetic acid (NAA); 0.5, 1.0, 2.0, 3.0 mg L −1 ] over 2 weeks, lateral 
roots developed profusely in medium supplemented with IBA and IAA, whereas 
no lateral root development was observed in auxin-free medium (control) and in 
medium supplemented with NAA. Therefore, IBA and IAA were more effective 
for lateral root induction and root growth. In lower concentrations of IBA and IAA 
(0.5 mg L −1 ) the roots were slender and elongated but in higher concentrations 
(3 mg L −1 ), the lateral roots were shorter, thicker and numerous. As shown in 
Table  11.1 , the greatest response in terms of biomass production (3.75 g fl ask −1  
FW and 0.27 g fl ask −1  DW, respectively) and contents of phenolics and fl avonoids 
(33.39 and 15.87 mg g −1  DW, respectively) was observed on medium containing 
1 mg L −1  IBA. These responses were markedly suppressed when the medium was 
supplemented with >1 mg L −1  IBA. High auxin levels are often deleterious to sec-
ondary metabolite accumulation [ 18 ,  19 ]. Auxins are responsible for maintaining 
plant cell and tissue culture systems and are associated with the promotion of 
growth, callus proliferation, rooting and morphological diversity [ 20 ,  21 ]. Our 
experiments also demonstrated that the supplementation of the culture medium 
with NAA had a negative effect on the biomass and phenol and fl avonoid contents. 
The positive effects of IBA on adventitious root growth in the present study are in 
concurrent with the reports by Wu et al. [ 16 ] and Kim et al. [ 22 ]. Biomass and 
phenolics contents in roots grown in medium containing IBA were higher than in 
medium containing IAA. Moreover, after 2 weeks, adventitious root growth and 
elongation (>1 cm) in the medium containing 1 mg L −1  IBA was better than the 
adventitious roots grown on the medium supplemented with other PGRs and the 
roots were adapted to continuous culture. Therefore, 1 mg L −1  IBA proved to be 
the best for adventitious root culture and phenolics accumulation among the 
growth regulators tested.
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       Effect of Types and Concentrations of Cytokinins in Combination 
with 1 mg L −1  IBA on the Adventitious Root Growth and Accumulation 
of Bioactive Compounds in Flask Culture 

 When adventitious root explants of  H. perforatum  were cultured on MS medium 
supplemented with various concentrations of cytokinins combined with 1 mg L −1  
IBA over 2 weeks (Table  11.2 ), the addition of 0.1 mg L −1  kinetin increased the root 
biomass and phenolic contents compared to the control (1 mg L −1  IBA). Especially, 
the addition of 0.1 mg L −1  kinetin increased fresh weight (4.00 g fl ask −1 ) and dry 
weight (0.31 g fl ask −1 ) by 9.5 and 19.2 %, respectively, when compared with the 
control. Similarly, phenolics (34.12 mg g −1  DW) and fl avonoid contents (17.56 mg g −1  
DW) increased by 15.7 and 20.7 % respectively. Also, in the present investigation, 
adventitious roots grown in liquid culture had higher content of secondary metabo-
lites when compared to solid cultures. However, by the addition of N6-benzyladenine 
(BA), thidiazuron (TDZ) and >0.1 mg L −1  kinetin no adventitious roots were formed 
and only abnormal roots with thicker and elongated tips were observed. A combina-
tion of 0.1 mg L −1  kinetin and 1 mg L −1  IBA promoted root biomass, which may be 
due to the fact that adventitious root elongation nearly doubled when compared to 

   Table 11.1    Effect of different    types and concentrations of auxins on adventitious root growth of 
 H. perforatum  and productivity of phenolics and fl avonoids after 2 weeks of culture   

 Auxin (mg L −1 ) 
 FW 
(g fl ask −1 ) 

 DW 
(g fl ask −1 ) 

 Growth 
ratio 

 Total 
phenolics 
(mg g −1  DW) 

 Total fl avonoids 
(mg g −1  DW) 

 Control  0  0.92  d a   0.12  d a   2.00  24.61  b a   12.35  bc a  
 IBA  0.5  3.49  ab  0.26  ab  5.50  31.36  a  17.19  a 

 1.0  3.75  a  0.27  a  5.75  33.39  a  15.87  ab 
 2.0  3.13  abc  0.22  c  4.50  16.67  c  8.49  c 
 3.0  3.51  ab  0.23  bc  4.75  18.55  c  9.63  c 

 IAA  0.5  2.63  c  0.24  abc  5.00  27.15  b  14.41  ab 
 1.0  3.10  bc  0.24  abc  5.00  25.34  b  15.38  ab 
 2.0  3.30  ab  0.23  bc  4.75  24.05  b  14.17  ab 
 3.0  3.34  ab  0.21  c  4.25  16.18  c  8.69  c 

 NAA  0.5  0.98  d  0.06  e  0.50  3.86  d  1.11  d 
 1.0  1.03  d  0.06  e  0.50  2.74  d  0.50  d 
 2.0  0.99  d  0.05  e  0.25  2.70  d  0.54  d 
 3.0  0.94  d  0.06  e  0.50  2.79  d  0.69  d 

 Signifi cance 
 Auxin (A)  ***  ***  ***  *** 
 Concentration (B)  NS  NS  ***  ** 
 Interaction (A × B)  NS  NS  ***  * 

  NS, *, **, ***, Non-signifi cant at P ≤ 0.1, 0.01, 0.001, respectively 
  a Mean separation within columns by Duncan’s multiple range test at 5 % level  
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the control. There are also reports by Lee [ 23 ] and Narayan et al. [ 24 ] where a com-
bination of low cytokinin and high auxin levels increased biomass in cell cultures of 
 Eleutherococcus koreanum  and  Daucus carota  respectively.

       Effect of Inoculum Density on the Adventitious Root Growth 
and Accumulation of Bioactive Compounds in Flask Culture 

 Inoculum density is an important parameter affecting the performance of suspended 
plant cells, tissues and organ cultures [ 25 ]. Final weights of root biomass of  H. per-
foratum  increased with elevated inoculum density but the growth ratio greatly 
decreased (Table  11.3 ). The maximum phenolic and fl avonoid contents were 
obtained when 6 and 10 g L −1  FW of adventitious roots were used as inoculums. 
Moreover, when the inoculum density was lower than 6 g L −1  FW, only low numbers 
of lateral roots developed, whereas at inoculum densities of 8 and 10 g L −1  FW, high 
numbers of lateral roots developed resulting in growth ratio reductions of 31.8 and 
44 %, respectively. Therefore, an inoculum density of 6 g L −1  FW is suitable to 
generate optimum adventitious root biomass and accumulation of phenolics and 
fl avonoids during scale up cultivation.

   Table 11.2    Effect of different cytokinin treatments along-with 1 mg L −1  IBA on adventitious root 
growth of  H. perforatum  and productivity of phenolics and fl avonoids after 2 weeks of culture   

 Cytokinin 
(mg L −1 ) 

 Fresh wt. 
(g fl ask −1 ) 

 Dry wt. 
(g fl ask −1 ) 

 Growth 
ratio 

 Total 
phenolics 
(mg g −1  DW) 

 Total 
fl avonoids 
(mg g −1  DW) 

 Control 
(1 mg L −1  IBA) 

 3.65  f a   0.26  g a   5.50  29.48  b a   14.54  b a  

 Kinetin  0.1  4.00  ef  0.31  g  6.75  34.12  a  17.56  a 
 0.5  4.52  de  0.43  f  9.75  24.42  c  11.86  bc 
 1.0  4.77  cd  0.48  ef  11.00  22.08  cd  10.23  c 
 2.0  5.12  bc  0.52  cde  12.00  22.05  cd  10.34  c 

 BA  0.1  4.99  bcd  0.5  de  11.50  21.41  cd  11.55  bc 
 0.5  5.39  b  0.54  bcd  12.50  20.33  cd  10.20  c 
 1.0  5.49  b  0.55  bcd  12.75  19.55  cd  8.86  c 
 2.0  6.35  a  0.63  a  14.75  18.69  d  8.57  c 

 TDZ  0.01  6.25  a  0.59  ab  13.75  23.76  cd  11.22  bc 
 0.05  6.06  a  0.56  bcd  13.00  20.04  cd  8.53  c 
 0.1  6.12  a  0.56  bcd  13.00  22.41  cd  9.83  c 
 0.2  6.39  a  0.57  abc  13.25  23.06  cd  8.58  c 

 Signifi cance 
 Cytokinin(A)  ***  ***  ***  *** 
 Concentration(B)  ***  ***  **  *** 
 Interaction(A × B)  NS  **  *  NS 

  NS, *, **, ***, Non-signifi cant at P ≤ 0.1, 0.01, 0.001, respectively 
  a Mean separation within columns by Duncan’s multiple range test at 5 % level  
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       Effect of MS Salt Strength on the Adventitious Root Growth 
and Accumulation of Bioactive Compounds in  H. perforatum  During 
5 Weeks of Flask Culture 

 Modifi ed MS medium contains high mineral concentrations compared to other 
nutrient media [ 26 ]. In this study, adventitious roots were cultured in different 
strengths of MS medium (varied from 1/4, 1/2, 3/4, 1 to 2 MS) and harvested once 
in a week over a 5-week period. After 5 weeks, root growth (growth rate) at 1/2 MS, 
3/4 MS and 1 MS were better than those at 1/4 MS and 2 MS (Fig.  11.1a–c ). Higher 
salt strengths, especially 2 MS, inhibited root growth likely because of a low water 
potential which inhibited absorption of water and mineral nutrients from the 
medium. In contrast, at 1/4 MS, roots grew rapidly, but did not reach suffi ciently 
high biomass levels, likely due to a lack of nutrients. At 1/2 and 3/4 MS, the peak 
growth rate (0.830 and 0.826, respectively) occurred at 4 weeks, but at 1 MS, the 
peak growth rate was after 5 weeks and reached 0.681. During 5 th  week, the growth 
pattern of adventitious roots typically showed a lag phase of 1 week, and an expo-
nential phase from weeks 2 to 5 at 1 MS, but at 1/2 MS and 3/4 MS the exponential 
phase extended from week 2 to 4 and growth remained unchanged from week 4 
onwards. Therefore, 1 MS was not optimal for biomass production due to a long 
exponential phase.

   As shown in Fig.  11.1d–e , the accumulation of total phenolics and fl avonoids 
decreased with the elevated MS salt strengths and total phenols and fl avonoid con-
tents at low nutrient levels (1/4 and 1/2 MS) were much higher than those at high 
nutrient levels. Therefore, 1/2 MS is preferable for achieving desirable root growth 
and phenolics accumulation. A similar observation was also made by Yu et al. [ 15 ] 
who reported that the maximum biomass was obtained in 1 MS medium, whereas 
lower salt strengths (1/2 and 2/3 MS medium) were suitable for both root growth 
and ginsenoside productivity. In Echinacea adventitious root cultures, 1/2 MS was 
suitable for biomass and metabolites [ 16 ]. 

 Changes in the concentration of anions and cations in the medium were moni-
tored continuously during the culture cycle (Fig.  11.2 ). Overall, mineral nutrient 
decreased over the time and the depletion of nutrients increased with the strength of 
MS medium. NH 4  + , K + , NO 3  − , SO 4  2−  and HPO 4  −  were rapidly depleted from the 
medium and their uptake increased with MS salt strength.

   Table 11.3    Effect of inoculum density on adventitious root growth and productivity of phenolics 
and fl avonoids of  H. perforatum  after 2 weeks of culture   

 Inoculum density 
(g L −1  FW) 

 FW 
(g fl ask −1 ) 

 DW 
(g fl ask  ) 

 Growth 
ratio 

 Total phenolics 
(mg g −1  DW) 

 Total fl avonoids 
(mg g −1  DW) 

 2.0  3.03  d a   0.23  c  14.33  26.56  b  11.63  c 
 4.0  4.03  c  0.30  b  9.00  29.16  ab  13.45  b 
 6.0  4.15  bc  0.32  a  6.11  30.19  ab  13.98  ab 
 8.0  4.24  b  0.31  ab  4.17  27.86  b  13.00  b 
 10.0  4.38  a  0.33  a  3.40  33.44  a  15.98  a 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  
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   Preferential uptake of NH 4  +  at the beginning of cultivation was observed and the 
resulting acidifi cation might have indirectly promoted NO 3  −  uptake [ 27 – 29 ]. In 2 
MS, NH 4  +  uptake did not promote NO 3  −  uptake because the existing NH 4  +  supply 
made the uptake of NO 3  −  unnecessary. The absorption of other nutrients showed a 
similar pattern in all treatments. At 1/2 MS, the absorption of mineral nutrients was 
rapid during the exponential phase from weeks 2 to 4. HPO 4  −  was rapidly depleted 
from the medium and its concentration was near zero after 1 week, whereas NH 4  +  and 
SO 4  2−  and were nearly depleted within 2 weeks. Preferential uptake of NH 4  + , HPO 4  −  
and SO 4  2−  at the beginning of the culture has been observed for many species [ 30 ,  31 ].  

    Effect of Sucrose Concentration on the Adventitious Root Growth 
and Accumulation of Bioactive Compounds After 5 Weeks of Flask 
Culture 

 The results of accumulation of adventitious root biomass of  H. perforatum  cultured 
in the medium supplemented with different concentrations of sucrose [0, 1, 3, 5, 7 
and 9 % (w/v)] over 5 weeks is presented in Table  11.4 . The root biomass was opti-
mum at 3 % (w/v) sucrose, resulting in maximum fresh weight and dry weight as 
well as growth ratio. However, higher sucrose concentrations [5, 7 and 9 % (w/v)] 
reduced dry weight by 31.51, 40.18 and 52.13 %, respectively, as compared with the 
response of 3 % (w/v) sucrose. In addition, the percentage dry weight increased 
with the increasing concentration of sucrose; however, the growth ratio was the 
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highest with the medium supplemented with 3 % (w/v) sucrose. These results indi-
cate that higher sucrose concentration beyond 3 % (w/v) level inhibits root growth 
and this reduced root biomass accumulation might be due to the higher osmotic 
potential of cultured cells/organs. Similar observations of reduction in biomass with 
the increased osmotic stress are on record with cell suspension cultures of tobacco 
[ 32 ]. The accumulation of total phenols and fl avonoids were optimum with cultures 
supplemented with 3, 5 and 7 % (w/v) sucrose (Table  11.4 ). Similarly, higher level 
of chlorogenic acid was accumulated with adventitious roots cultivated in the 
medium supplemented with higher concentrations of [3, 5 and 7 % (w/v)] sucrose. 
These fi ndings demonstrate that higher initial sucrose concentration enhanced accu-
mulation of total phenolics, fl avonoids, and chlorogenic acid. This might be due to 
elevated levels of osmotic stress [ 16 ,  33 ].

   The analysis of residual sugar levels (sucrose, glucose and fructose) of the spent 
medium from 5-week-old cultures revealed that all the exogenous sucrose had been 
utilized by the adventitious roots with the cultures supplemented with 1 % (w/v) 
sucrose, whereas, less than 1 % glucose and fructose was remained with the cultures 
which were initially supplemented with 3 % (w/v) sucrose (Fig.  11.3 ). However, 

     Table 11.4    Effect of sucrose concentration on biomass and metabolite accumulation of  H. 
perforatum  adventitious roots after 5 weeks of culture   

 Sucrose 
conc. % 
(w/v) 

 FW 
(g fl ask −1 ) 

 DW 
(g fl ask −1 ) 

 % of 
DW 

 Growth 
ratio 

 Chlorogenic 
acid (mg g −1  
DW) 

 Total 
phenolics 
(mg g −1  DW) 

 Total 
fl avonoids 
(mg g −1  DW) 

 0  0.26  f a   0.01  f  3.85  –  0  d  0.18  c  1.12  c 
 1  4.77  b  0.27  e  5.66  6.20  0.18  b  44.39  b  30.05  b 
 3  8.52  a  0.92  a  10.80  23.53  0.11  c  51.42  a  39.12  a 
 5  4.12  c  0.63  b  15.29  15.80  0.17  b  55.25  a  42.61  a 
 7  3.17  d  0.55  c  17.35  13.67  0.22  a  51.90  a  39.54  a 
 9  2.49  e  0.44  d  17.67  10.73  0.22  a  46.80  b  32.61  b 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  
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higher levels of glucose and fructose were present in the cultures which were ini-
tially supplemented with higher concentration of sucrose [5, 7 and 9 % (w/v)]. Thus, 
supplementation of cultures with 3 % (w/v) sucrose was found suitable for the cul-
tivation of adventitious roots of  H. perforatum . Concentrations of 2–3 % (w/v) 
sucrose have frequently been reported as optimal for suspension cultures and higher 
concentrations of sucrose have been found to repress the growth [ 32 ].

   Sucrose acts as an osmotic agent that may introduce osmotic stress above certain 
concentration [ 34 ]. In the present study, the osmotic stress effect of sucrose was 
assessed by using the free radical scavenging compounds like 1, 1-diphenyl-2- 
picrylhydrazyl (DPPH) and 2, 2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) 
(ABTS). The DPPH scavenging activities were 92.63, 93.32 and 91.17 % 
(1 mg mL −1 ) with  H. perforatum  root extracts which have been cultivated in the 3, 5 
and 7 % (w/v) of sucrose respectively (Fig.  11.4a ). ABTS radical scavenging activi-
ties of the extracts were also showed similar effects (Fig.  11.4b ). The roots which 
were grown in the medium supplemented with higher levels of sucrose accumulated 
higher amounts of phenolics (Table  11.4 ). Such elevated levels of phenolics in the 
roots grown in the medium with higher levels of sucrose are obvious and are helpful 
in free radical scavenging.

   To verify the effect of osmotic stress on lipid peroxidation, the levels of hydrogen 
peroxide (H 2 O 2 ), malondialdehyde (MDA), and proline were determined in the 
adventitious roots. Formation of MDA was considered as a measure of lipid peroxi-
dation that was induced by the roots exposed to osmotic stress. This was confi rmed 
by the higher level of MDA in the adventitious roots treated with elevated sucrose 
(Fig.  11.4c ). Osmotic stress in plant cells produces sub-cellular damage that impairs 
electron transport system and leads to the production of reactive oxygen species 
(ROS) [ 35 ]. ROS imbalances the cellular redox systems and in favor of oxidized 
forms, inactivate enzymes cause lipid peroxidation and ultimately leading to poten-
tial damage to DNA [ 36 ]. The production of H 2 O 2  (Fig.  11.4d ) was lower in the 
adventitious roots grown in the medium supplemented with lower levels of sucrose 
[0 and 1 % (w/v)], whereas the adventitious roots grown in higher concentrations of 
sucrose [3, 5 and 7 % (w/v)] showed higher levels of H 2 O 2 . Thus, it is speculated 
that a cascade of events, including lipid peroxidation and accumulation of H 2 O 2  
contents may be involved in the induction of secondary metabolite accumulation. 
The above observations reveal that osmotic stress is a pre-requisite for secondary 
metabolite synthesis. 

 Proline accumulation is one of the adaptations of plants to salinity and water 
defi ciency [ 37 ]. In the present study, proline content in adventitious roots signifi -
cantly increased with elevated sucrose concentration indicating the elevated stress 
levels (Fig.  11.4e ). Such a phenomenon was also observed with  in vitro  culture of 
 Spathiphyllum cannifolium  shoots, where proline content increased with the ele-
vated salt strengths in MS medium [ 38 ]. Therefore, when sucrose concentration was 
higher than 3 % (w/v), the adventitious roots of  H. perforatum  were much affected 
by water defi cit stress. In this study, H 2 O 2  content, MDA content and proline content 
increased with elevated sucrose concentration. Therefore, water defi cit-stress might 
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be considered to be alleviated or prevented by increased non-enzymatic scavenging 
system, such as amino acid proline accumulation.  

    Effect of Ammonium/Nitrate Ratio on the Adventitious Root Growth 
and Accumulation of Bioactive Compounds After 5 Weeks of Flask 
Culture 

 The effect of the NH 4  + :NO 3  −  ratio on adventitious root biomass accumulation of  H. 
perforatum  was investigated after 5 weeks of culture by using a total initial nitrogen 
level of 30 mM (Table  11.5 ). In this study, nitrate, rather than ammonium, nitrogen 
was found to result in better root growth and higher accumulation of phenolics and 
fl avonoids. The optimum biomass of 9.96 g/fl ask FW and 1.08 g/fl ask DW were 
obtained when the NH 4  + :NO 3  −  ratio was 5:25. The highest phenolic and fl avonoid 
contents (40.41 and 34 mg g −1  DW) were also obtained under a NH 4  + :NO 3  −  ratio of 
5:25 (Table  11.5 ). As shown in Table  11.5 , chlorogenic acid was optimum when the 
NH 4  + :NO 3  −  ratio was either 15:15 or 20:10. These results suggest that the NH 4  + :NO 3  −  
ratio of 5:25 is suitable for not only optimum biomass production of adventitious 
roots but also for the optimum accumulation of phenolics and fl avonoids. It is a 
general observation that a lower NH 4  +  to NO 3  −  ratio is more favourable for plant tis-
sue and cell growth [ 39 ]. In  Panax notoginseng,  Zhang et al. [ 40 ] showed that the 
cell growth was negligible in a medium containing ammonium but no nitrate, and 
that of saponin production increased as the ratios of NH 4  + :NO 3  −  decreased. The 
present results are also in accordance with this report, the nitrogen of nitrate rather 
than of the ammonium found to be more essential for root growth and the accumula-
tion of phenolics and fl avonoids.

   The antioxidant potential of a methanolic extract, measured as the DPPH and 
ABTS radical scavenging activities of  H. perforatum  adventitious roots showed that 
antioxidant activity was higher in root extracts from the adventitious roots grown on 
higher concentrations of NO 3  −  nitrogen (15, 20 and 25 mM) (Fig.  11.5a, b ). Further, 
assessment of H 2 O 2  and MDA content of the root extracts revealed that cultures 

     Table 11.5    Effect of NH 4  + :NO 3  −  ratio in half-strength MS medium on biomass and metabolite 
accumulation of  H. perforatum  adventitious roots after 5 weeks of culture   

 Nitrogen 
source 
(NH 4  + :NO 3  − ) 

 FW 
(g fl ask −1 ) 

 DW 
(g fl ask −1 ) 

 Growth 
ratio 

 Chlorogenic 
acid 
(mg g −1  DW) 

 Total 
phenolics 
(mg g −1  DW) 

 Total 
fl avonoids 
(mg g −1  DW) 

 0:30  4.18  c a   0.73  c  18.47  0.11  b a   39.95  a  32.02  b 
 5:25  9.96  a  1.08  a  27.80  0.10  bc  40.41  a  34.00  a 
 10:20  8.60  b  0.88  b  22.47  0.13  ab  41.96  a  34.87  a 
 15:15  3.77  c  0.54  d  13.40  0.14  a  40.86  a  34.20  a 
 20:10  4.20  c  0.44  e  10.73  0.14  a  39.87  a  31.97  b 
 25:5  0.99  d  0.16  f  3.27  0.06  c  22.72  b  15.42  c 
 30:0  0.32  e  0.05  g  0.33  0.02  d  21.55  b  12.56  d 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  
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supplemented with higher levels of NO 3  −  nitrogen (15–30 mM) were under oxida-
tive stress, which boosted the levels of secondary metabolites in the adventitious 
roots (Fig.  11.5c, d ). These results indicate that adventitious roots experience 
 oxidative stress when NO 3  −  levels were higher than NH 4  +  levels or when NH 4  +  was 
provided as a sole nitrogen source. H 2 O 2  content under NH 4  +  stress may be allevi-
ated by the increased activities of scavenging enzymes. In concurrence to our obser-
vations, Nandwal et al. [ 41 ] reported that lipid peroxidation goes along with ethylene 
formation, which increases with elevated levels of NO 3  − . However, Wang et al. [ 42 ] 
and Nimptsch and Pfl ugmacher [ 43 ] found a reduced content of MDA under ammo-
nia stress and speculated that the increased antioxidant response alleviated or pre-
vented lipid peroxidation.

       Effect of Inoculum Density on Biomass and Metabolites Accumulation 
in Bioreactor Culture 

 The relationship of inoculum density of the cultured cells and organs with biomass 
and metabolite accumulation has been studied repeatedly [ 44 – 47 ]. For example, 
Moreno et al. [ 46 ] investigated the production of ajmalicine from  Catharanthus 
roseus  suspension cultures at cell inoculum densities of 100 and 400 g FW L −1  and 
reported sixfold higher ajmalicine content and a 2.5-fold higher total ajmalicine 
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content in the low density cultures (inoculum density of 100 g FW L −1 ). The effect 
of inoculum size on biomass and secondary metabolite accumulation determined in 
the present study are presented in Table  11.6 . Accumulation of biomass was 
achieved with 3 g L −1  FW inoculum. Increased inoculum densities (6.0–12.0 g L −1  
FW) were not benefi cial as they were responsible for the decrease in biomass 
(Table  11.6 ). The accumulation of bioactive compounds was optimum with an inoc-
ulum density of 3 and 6 g L −1  FW (Table  11.6 ). Therefore, inoculum size of 3 g L −1  
FW was suggested for bioreactor cultures as this inoculum size is responsible for 
both higher biomass and secondary metabolites. Figure  11.6a, b  shows DPPH and 
ABTS radical scavenging activities of adventitious roots cultivated using different 
inoculum size. DPPH activity and ABTS activities were correlated with metabo-
lites accumulation. H 2 O 2  and MDA levels in the adventitious roots cultivated using 
different inoculum density are presented in Fig.  11.6c, d . MDA content decreased 
with increased inoculum density (Fig.  11.6c ) and this might be due to increased 
antioxidant response of adventitious roots which might be due to accumulation of 
phenolics in the roots.

       The Effect of Aeration Volume on Biomass and Metabolite Accumulation 
in Bioreactor Culture 

 The air supply into bioreactor cultures play two important roles: one is to supply 
dissolved oxygen for metabolic activities, and the other is improvement in agita-
tion [ 48 ]. The factor that infl uences effective oxygen transfer in the plant cell cul-
tures must be carefully analyzed for the bioreactors design [ 11 ,  49 ]. The adventitious 
root growth of  H. perforatum  under fi ve models of aeration (0.05, 0.1, 0.2, or 0.3; 
or 0.05–0.3 vvm) over 5 weeks is presented in Table  11.7 . The aeration of the bio-
reactor cultures at 0.05 and 0.1 vvm was optimal for the biomass accumulation and 
growth ratio. However, when the bioreactor was operated with 0.2 and 0.3 vvm, 
turbulent fl ow was produced and it was responsible for lower biomass accumula-
tion and growth values (Table  11.7 ). The optimal production of chlorogenic acid, 
total phenolics and total fl avonoids, as well as enhanced root growth was achieved 

     Table 11.6    Effect of inoculum density on biomass and metabolite accumulation of  H. perforatum  
adventitious roots after 5 weeks of bioreactor culture   

 Inoculum 
density 
(g L −1  
FW)  FW (g L −1 ) 

 DW 
(g L −1 ) 

 Growth 
ratio 

 Chlorogenic 
acid 
(mg g −1 ) 

 Total 
phenolics 
(mg g −1  
DW) 

 Total 
fl avonoids 
(mg g −1  
DW) 

 Total 
polysaccha-
rides (mg g −1  
DW) 

 1.5  95.07  b a   13.83  b  85.42  0.65  b  55.14  b  38.04  b  65.92  c 
 3.0  110.45  ab  15.74  a  48.17  1.07  a  58.99  a  39.87  a  70.64  b 
 6.0  111.35  ab  15.66  a  23.46  1.08  a  60.47  a  43.41  a  72.49  ab 
 9.0  112.68  ab  15.59  a  15.15  0.95  ab  60.42  a  42.30  a  74.70  ab 
 12.0  124.11  a  16.11  a  11.53  1.07  a  59.12  a  40.13  a  75.83  a 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  
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at 0.1 vvm (Table  11.7 ). It has been reported that maintaining a constant, high aera-
tion volume throughout the culture period inhibited root growth due to sheer stress 
[ 21 ,  30 ]. However, Ahmed et al. [ 48 ] reported that cell growth of  Morinda citrifo-
lia  was positively affected by a high aeration volume (0.3 vvm), since it resulted in 
the highest growth rate. The reason for this might be the faster cell growth at the 
beginning of the culture period (Days 2–3) [ 21 ] compared with that of the adventi-
tious roots (Days 5–7) [ 30 ,  48 ]. The DPPH and ABTS radicals scavenging activities 
were also assessed and correlated with metabolites accumulation (Fig.  11.7a, b ). 
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Quantitation results of H 2 O 2  and MDA levels in the adventitious roots cultivated 
with different aeration volume are presented in Fig.  11.7c, d . This could be due to 
either removal of key volatiles such as carbon dioxide and ethylene from the cul-
tured medium or due to a direct oxygen toxicity resulting from a high level of dis-
solved oxygen [ 50 ,  51 ].

11.1.3          Growth Kinetics of Adventitious Roots 

 To determine the exact stage at which maximum biomass production occurs and to 
evaluate the accumulation of bioactive compounds, adventitious root biomass at a 
concentration of 3 g L −1  FW (0.25 g L −1  DW) was inoculated into the bioreactors. 
As shown in Fig.  11.8a , the adventitious root growth typically exhibited a lag phase 
from 0 to 1 week, an exponential phase from 1 to 5 weeks, stationary phase from 5 
to 6 weeks, and a declining phase thereafter. After 6 weeks of cultivation, the bio-
mass reached its peak (15.07 g L −1  DW), which was approximately 50 times higher 
than that of the dry weight (DW) of the initial inoculum. A similar pattern of growth 
behavior has been observed in  Echinacea purpurea  adventitious root cultures [ 31 ]. 
The specifi c growth rate ( μ ) of the  H. perforatum  adventitious roots was rapid dur-
ing the initial days, with the peak (0.218) occurring at 14th day, which gave a dou-
bling time (Td) of 3.18 days.

   Figure  11.8b  shows the electrical conductivity (EC) and hydrogen ion concentra-
tion (pH) of the medium during the course of the experiment. The conductivity of 
the culture medium decreased over time, which refl ects the increase in biomass 
accumulation. It has been reported that the conductivity values refl ect nutrient 
uptake by the cells; therefore, EC measurements have been used as an indirect 
method of biomass estimation [ 52 ]. As shown in Fig.  11.8c , linear correlations and 
a high calculated correlation coeffi cients ( r   2   0.93) were observed between cell mass 
and medium conductivity. In biotechnological processes, cells serve as “factories” 
that convert substrates into products. Hence, monitoring cell growth during the 

     Table 11.7    Effect of aeration volume on biomass and metabolite accumulation of  H. perforatum  
adventitious roots after 5 weeks of bioreactor culture   

 Aeration 
volume 
(vvm) 

 FW 
(g L −1 ) 

 DW 
(g L −1 ) 

 Growth 
ratio 

 Chlorogenic 
acid 
(mg g −1 ) 

 Total 
phenolics 
(mg g −1  
DW) 

 Total 
fl avonoids 
(mg g −1  
DW) 

 Total 
polysaccha-
rides 
(mg g −1  
DW) 

 0.05  104.21  a a   15.14  a  59.56  0.79  b  54.13  b  36.68  c  74.35  a 
 0.1  102.70  a  15.12  a  59.48  0.83  ab  56.22  a  39.07  abc  79.01  a 
 0.2  98.76  b  14.99  a  58.96  0.84  ab  56.23  a  39.46  ab  79.55  a 
 0.3  93.71  c  14.43  b  56.72  0.93  a  55.98  ab  40.96  a  74.29  a 
 0.05–0.3  104.17  a  15.28  a  60.12  0.79  b  56.39  a  38.01  bc  79.22  a 

   a Mean separation within columns by Duncan’s multiple range test at 5 % level  
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cultivation is essential (especially during large-scale). Timely information on the 
physiological status of plant cells allows more effective control and management of 
the biosynthetic processes. Therefore, a prompt measure can be obtained by exploit-
ing the known linear relationship between changes in medium conductivity and cell 
growth [ 53 ]. 

 The pH of the medium increased gradually to 5.6 after the second week and then 
remained steady (Fig.  11.8b ). In general, cell/organ cultures are effectively main-
tained and the nutrient uptake from the medium is accessible when the medium pH 

0

20

40

60

80

100

D
P

P
H

 a
ct

iv
ity

(%
) 

a

0

20

40

60

80

100

120

140

A
E

A
C

(m
g 

A
A

 e
qg

–1
) 

b

0

3

6

9

12

15

18

21

M
D

A
(n

m
ol

g–1
 F

W
) 

c

0

2

4

6

8

10

0.05 0.1 0.2 0.3 0.05–0.3

H
2O

2
(µ

m
ol

 g
–1

 F
W

)

Aeration volume (vvm)

d

  Fig. 11.7    Effect of aeration 
volume on DPPH activity 
( a ), total antioxidant activity 
(AEAC) ( b ), MDA content 
( c ) and H 2 O 2  content ( d ) of 
 H. perforatum  adventitious 
root extract after 5 weeks of 
culture. The tested 
concentration was 1 mg mL −1 , 
respectively. The  vertical 
bars  represent the standard 
error of three replicates       

 

X.-H. Cui et al.



269

is between 5.0 and 6.0 [ 31 ,  45 ]. Therefore, in the present study, the change of 
medium pH might had no effect on the nutrient uptake from the medium. 

 The residual sugar levels in the media were measured at weekly intervals during 
the culture period to determine the sugar uptake patterns of the adventitious roots 
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(Fig.  11.8d ). During the culture period, the entire carbon source for the culture 
medium was nearly exhausted. The sucrose concentration (3 %) rapidly decreased 
to zero after 1 week. In addition, even though only sucrose was added to the medium, 
monosaccharide utilization was noted over the cultivation period. Concentrations of 
glucose and fructose were increased signifi cantly during the fi rst week and then they 
gradually decreased. Sucrose apparently was being hydrolyzed to glucose and fruc-
tose likely by acid invertase that was secreted from the adventitious root tissue into 
the medium, as previously reported [ 54 ,  55 ]. 

 Total phenolics and fl avonoids production are shown in Fig.  11.9a . The accumu-
lation of total phenolics and fl avonoids increased linearly with time for the fi rst 6 
weeks, with the highest values being 61.1 and 45.7 mg g −1  DW, respectively. 
Chlorogenic acid, vitamin C, vitamin E and total polysaccharide accumulation in 
the  H. perforatum  adventitious root cultures are shown in Fig.  11.9b–e . The amount 
of chlorogenic acid (Fig.  11.9b ) was initially low, but increased gradually and an 
optimum concentration (0.9 mg g −1  DW) was observed after 7 weeks. The amount 
of vitamin C (Fig.  11.9c ) initially increased rapidly and reached its highest values 
of 0.7 mg g −1  FW at the end of the fourth week. The concentration of vitamin E 
(Fig.  11.9d ) also initially increased quickly and a maximum amount of 4.3 mg g −1  
FW was measured at the end of the fourth week. The amount of total polysaccha-
rides (Fig.  11.9e ) increased gradually, with the highest value of 71.9 mg g −1  DW at 
the end of the fourth week.

   Figure  11.10a  shows DPPH and ABTS radical scavenging activities of methano-
lic extracts of adventitious roots cultivated in bioreactors. The DPPH and AEAC 
activities were optimum with increase in accumulation of biomass and secondary 
metabolites when higher phenolics and fl avonoids, chlorogenic acid, vitamin C and 
vitamin E were present (Fig.  11.9a–d ). The amounts of H 2 O 2  and MDA levels in the 
adventitious roots cultured in bioreactors are presented in Fig.  11.10b, c . The H 2 O 2  
levels increased for 4 weeks. However, the MDA levels were highest after 6 weeks. 
These results indicated that lipid peroxidation occurred in  H. perforatum  adventi-
tious roots, probably as a consequence of the higher H 2 O 2  levels. H 2 O 2  in plants acts 
as a secondary messenger to signal subsequent defense reactions in plants [ 56 ]. 
Based on the present results, we speculate that accumulation of H 2 O 2  content in 
adventitious roots may be involved in the induction of secondary  metabolite 
accumulation.

11.1.4        Identifi cation and Quantitation of Hypericin, Quercetin 
and Hyperoside by Liquid Chromatography Coupled 
with Electrospray Ionization Tandem Mass 
Spectrometry (LC-ESI-MS/MS) 

 To identify quercetin and hyperoside in the adventitious roots of  H. perforatum , 
standards were analyzed by LC-MS/MS in electrospray ionization (ESI) negative 
mode. MS analyzed through ion scans revealed quercetin at m/z 300.92 and 
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hyperoside at m/z 463. Collision fragment ion (MS/MS) analysis of quercetin and 
hyperoside gave collision induced fragment ion spectra identical to those reported 
by Gadzovska et al. [ 57 ] and Tatsis et al. [ 58 ]. MS/MS data showed fragment ions 
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  Fig. 11.9    Changes of total 
phenolics and fl avonoids ( a ), 
chlorogenic acid ( b ), vitamin 
C ( c ), vitamin E ( d ) and total 
polysaccharide ( e ) contents in 
adventitious root of  H. 
perforatum  during 7 weeks of 
culture. The  vertical bars  
represent the standard error 
of three replicates       
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as follows: quercetin (m/z 178.92); hyperoside (m/z 301.00). Figure  11.11a, b  
shows the LC-MS/MS chromatogram of the standard and the extract from the 
adventitious roots of  H. perforatum  using ESI negative mode. In Fig.  11.11a , the 
standard of quercetin and hyperoside were detected at 19.53 and 17.27 min, respec-
tively. In the adventitious roots, quercetin and hyperoside were also detected the 
same retention time (Fig.  11.11b ).

   The quercetin and hyperoside contents of adventitious roots analyzed by LC-MS/
MS were 0.97–1.39 and 2.34–14.53 μg g −1  DW, respectively during 7 weeks of 
culture (Table  11.8 ). The quercetin content of adventitious roots remained steady 
during 7 weeks. However, the hyperoside content was low in the fi rst 2 weeks and 
then increased quickly in subsequent weeks. In addition, MS analysed through ion 
scans approved that hypericin ( m/z  503) were also present in adventitious roots 
(data not shown). These results indicated a clear identifi cation of hypericin, querce-
tin and hyperoside in the adventitious roots of  H. perforatum  and the possibility of 
the production of quercetin, hyperoside and chlorogenic acid in bioreactor culture 
of adventitious roots.
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   The quercetin and hyperoside contents of adventitious roots are very small when 
compared to the 2–4 % fl avonol glycosides concentrations of naturally grown plants 
[ 6 ]. It can be conjectured that the protected environment in which adventitious root 
are grown may be responsible for the low fl avonoid accumulation due to the lack of 
the stress, normally found in nature. Therefore, enhancement of fl avonoids using 
elicitors will be necessary.  

11.1.5     Elicitation 

 Elicitation is generally the most effective strategy to enhance the production of sec-
ondary metabolites in plant cell and tissue cultures. Stress signaling molecules like 
methyl jasmonate (MJ) or salicylic acid (SA) are frequently used in elicitation 
experiments with adventitious roots. However, the growth of adventitious roots is 
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  Fig. 11.11    LC–MS/MS chromatogram of quercetin and hyperoside standards ( a ) and adventitious 
root extract ( b ) from  H. perforatum  using ESI negative mode       

 Weeks 

 Compounds (μg g −1  DW) 

 Quercetin  Hyperoside 

 1  1.006  2.337 
 2  0.974  3.684 
 3  1.251  9.125 
 4  1.390  12.665 
 5  1.309  14.534 
 6  1.328  14.005 
 7  1.342  13.655 

  Table 11.8    Quantifi cation of quercetin 
and hyperoside by LC-ESI-MS/MS in 
the adventitious roots of  H. perforatum   
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inhibited by application of elicitor in adventitious root cultures. Therefore, a two- 
stage culture method to maximize both biomass and secondary metabolite accumu-
lation in  H. perforatum  can be adopted: the root biomass could be maximized on the 
medium determined to be optimal, cultured on the same medium until the highest 
biomass (without elicitor) is achieved and could be added with elicitors for the accu-
mulation of secondary metabolites. 

 Addition of MJ (0, 50, 100, 150, 200 μmol) to the culture of  H. perforatum  
before 1 week of harvest (5 weeks, 6 weeks) decreased the root dry mass but 
signifi cantly increased phenolics compounds production (total phenolics, total 
fl avonoids, and chlorogenic acid) compared to control. The maximum total pro-
duction of phenolic compounds (per 1 L medium) was obtained at 100 μmol MJ 
treatment after 5 weeks of addition. Similar to the present study, Kim [ 25 ] 
reported that the total ginsenoside content linearly increased with increasing con-
centration of MJ up to 150 μmol but the growth of root was inhibited by MJ 
concentration. 

 SA (0, 50, 100, 150, 200 μmol) and lactalbumin hydrolysate (LH; 0, 25, 50, 
100, 200 mg L −1 ) addition before 1 week of harvest of  H. perforatum  (6 weeks) 
had no effect on enhancement of phenolics compounds. However, SA and LH 
signifi cantly increased the accumulation of total polysaccharides without chang-
ing biomass. 50 μmol SA and 200 μmol LH resulted in the highest production of 
total polysaccharides but LH was more suitable for not causing reduction in 
phenolic compounds. Wang et al. [ 59 ,  60 ] reported that addition of 100 mg L −1  
LH signifi cantly enhanced ginsenoside and polysaccharide contents in  P. quin-
quefolium  cell cultures. Earlier studies reported that the treatment with SA 
increased H 2 O 2  level [ 23 ,  61 ] which possibly played a key role in providing the 
system acquired resistance [ 62 ,  63 ] in plants. In this study, SA did not induce 
phenolic compound  accumulation in adventitious root cultures of  H. perforatum  
may be due to low content of H 2 O 2  when compared with the control or may be 
due to insensitivity to SA.   

11.2     Scale-Up Production of Secondary Metabolites 
Through Adventitious Root Culture 

 Based the above results of 3 L bioreactor cultures, we cultivated industrial scale 
cultures of  H. perforatum  adventitious roots in 500 L air lift bioreactors (Fig.  11.12 ). 
We could able to achieve 6.3 kg dry biomass of adventitious roots and these roots 
possessed higher amounts of total phenolics (66.9 mg g −1  dry mass) and total fl avo-
noids (48.67 mg g −1  dry mass). The root growth pattern in the scale-up bioreactors 
was same as that of root growth pattern in small scale bioreactors. It can be regarded 
as one of the few successful plant cell/tissue culture scale-up examples for both 
biomass accumulation and secondary metabolite production.

X.-H. Cui et al.



275

11.3        Comparison of Characteristics Between Adventitious 
Roots and Mother Plants 

 To investigate the usefulness of the adventitious root culture of  H. perforatum  for the 
production of secondary metabolites, comparison of the bioactive compound accu-
mulation in adventitious roots ( harvested after 6 weeks of culture) and mother plants 
(transferred to greenhouse for 1 year) was conducted. The content of total polysac-
charide, chlorogenic acid, Vitamin C and E were higher in leaves of fi eld- grown 
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  Fig. 11.12    Schematic diagram of in vitro adventitious roots production in  H. perforatum  by 500 L 
bioreactor.  A  In vitro cultured  H. perforatum  plantlets,  B  Induction of adventitious roots from 
leaves on full-strength MS medium supplemented with B5 vitamins, 3 % (w/v) sucrose, 0.5 mg L −1  
IAA and 2.3 mg L −1  gelrite;  C  Induced adventitious roots were sub-cultured on the same medium 
for further proliferation and sub-cultured once in 4 weeks,  D  Adventitious roots were proliferated 
in 250-mL shake fl asks (containing 70 mL of medium) containing MS liquid medium supple-
mented with B5 vitamins, 3 % (w/v) sucrose and 1.0 mg L −1  IBA,  E  Adventitious root were main-
tained and sub-cultured on the same medium in 3 L BTBB and sub-cultured once in 4 weeks,  F  and 
 G  Adventitious root production in 500 L (drum and balloon type bioreactors) capacity airlift bio-
reactors cultures containing 500 L of 1/2MS medium supplemented with B5 vitamins, 3 % (w/v) 
sucrose, 1.0 mg L −1  IBA, 0.1 mg L −1  kinetin and 3 g L −1  inoculum,  H  Harvested adventitious roots 
from 500 L bioreactor after 6 weeks       
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plants compared with the adventitious roots. However, total phenolics and fl avonoids 
were much higher in adventitious roots compared with fi eld-grown plants. The 
ploidy levels of adventitious roots and the fi eld-grown plants were tested, resulted in 
two typical DNA histograms at the same retention time. The result confi rmed the 
genetic stability of the adventitious root in spite of long-term cultures  in vitro  (at least 
3 years). In view of the above, adventitious roots can serve as a continuous source for 
obtaining secondary metabolites for stable metabolites and genetic stability.  

11.4     Isolation of Phenolic Compounds from  H. perforatum  
Adventitious Root 

 Li et al. [ 64 ] reported a new compound, perforaphenonoside A (1), along with 11 
known compounds (2–12) isolated from a methanol extract of adventitious roots of 
 H. perforatum  (Fig.  11.13 ). Their chemical structures were elucidated using 

  Fig. 11.13    Structure of compounds 1–12 from  H. perforatum        
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chemical and physical methods as well as by comparing NMR and mass spectral 
data with previously reported data. Structures of compounds (1–12) were elucidated 
by comparing spectroscopic data to publish values and identifi ed as perforaphe-
nonoside A (1), acetylannulatophenonoside (2), 1,5,6-trihydroxy-3-methoxyxan-
thone (3), 1,3,5,6-tetrahydroxyxanthone (4), ferrxanthone (5), brasilixanthone B 
(6), neolancerin (7), (+)-catechin (8), (−)-epicatechin (9), hovetrichoside C (10), 
methyl 3-O-β-D- glucopyranosylcucurbate (11), and glucosyringic acid (12). Of 
these, compounds 2, 5–7, 10, and 11 were isolated from  H. perforatum  for the fi rst 
time.

11.5        Evaluation of Anti-infl ammatory Effects, Antioxidant 
and Cytotoxicity Activities of Isolated Compounds 

11.5.1     NF-κB Inhibition and PPAR Activation by Isolated 
Phenolic Compounds (1–12) from Adventitious Roots 

 Their inhibition of NF-κB and activation of PPAR was measured in human hepato-
carcinoma (HepG2) cells using a luciferase reporter system [ 64 ]. The results 
revealed that among the isolated compounds, 3, 6, 7 and 12 inhibited NF-κB activa-
tion stimulated by tumor necrosis factor alpha (TNFα) in a dose-dependent manner, 
with IC 50  values ranging from 0.85 to 8.10 μM (Table  11.9 ). Moreover, compounds 
1–3, 7, 11 and 12 activated the transcriptional activity of PPARs in a dose- dependent 
manner, with EC 50  values ranging from 7.3 to 58.7 μM (Table  11.10 ). The transac-
tivational effects of compounds 1–3, 7, 11 and 12 were evaluated on three individual 
PPAR subtypes (Table  11.11 ). Among them, compound 2 activated PPARα tran-
scriptional activity, with 153.97 % stimulation at 10 μM, while compounds 1, 2 and 
11 exhibited transcriptional activity of PPARγ with stimulation from 124.76 to 
126.91 % at 10 μM.

  Table 11.9    Inhibitory effects 
of compounds 1–12 from  H. 
perforatum  adventitious roots 
on the TNFα-induced NF-κB 
transcriptional activity  

 
 Compound  IC 50  (μM) 

 3  5.50 ± 2.62 
 6  8.10 ± 0.35 
 7  0.85 ± 0.07 
 12  0.93 ± 0.18 
    Sufasalazine a   0.9 ± 0.1 

  The values are mean ± SD (n = 3). Compounds 1, 2, 4, 5, and 
8–11 were inactive at tested concentrations (IC 50  > 10 μM) 
  a Positive control (10 µM)  
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  Table 11.10    PPARs 
transactivational activities of 
compounds 1–12 from  H. 
perforatum  adventitious roots  

 Compound  EC 50  (μM) 

 1  7.9 ± 0.8 
 2  58.7 ± 7.2 
 3  17.9 ± 1.8 
 4  >60 a  
 5  >60 
 6  >60 
 7  57.8 ± 6.9 
 8  >60 
 9  >60 
 10  >60 
 11  7.3 ± 0.7 
 12  27.0 ± 1.9 
 Sufasalazine  1.05 ± 0.15 

  EC 50 : the concentration of a tested compound that gave 
50 % of the maximal reporter activity 
 The values are mean ± SD (n = 3) 
  a A compound was considered inactive with EC 50  > 60 μM  

   Table 11.11    PPARα, γ, and β(δ) transactivational activities of compounds 1–3, 7, 11 and 12 from 
 H. perforatum  adventitious roots   

 Compound 
 Concentration 
(μM) 

 Stimulation (%) 

 Gal4/
PPARα-LBD 

 Gal4/PPAR 
γ-LBD 

 Gal4/PPAR 
β(δ)-LBD 

 1  0.1  109.06 ± 1.25  106.31 ± 2.96  107.12 ± 4.25 
 1  110.59 ± 1.38  106.89 ± 2.12  115.23 ± 1.68 
 10  115.20 ± 3.84  126.91 ± 1.23  122.52 ± 3.30 

 2  0.1  116.44 ± 2.33  100.57 ± 1.11  103.94 ± 4.73 
 1  142.13 ± 2.84  120.86 ± 2.32  100.71 ± 2.35 
 10  153.97 ± 1.92  124.76 ± 3.79  110.43 ± 1.64 

 3  0.1  100.16 ± 1.25  100.62 ± 2.48  100.59 ± 1.50 
 1  114.01 ± 1.43  101.31 ± 1.17  99.75 ± 1.38 
 10  117.59 ± 2.35  114.22 ± 2.99  99.88 ± 1.02 

 7  0.1  106.68 ± 1.78  100.72 ± 1.39  100.47 ± 1.39 
 1  118.13 ± 3.28  111.31 ± 3.79  101.86 ± 3.79 
 10  105.38 ± 1.32  104.70 ± 1.35  99.74 ± 1.35 

 11  0.1  100.79 ± 2.02  119.78 ± 1.19  111.42 ± 2.58 
 1  117.79 ± 1.47  124.83 ± 1.26  116.13 ± 1.09 
 10  111.17 ± 1.39  126.66 ± 1.93  122.06 ± 1.25 

 12  0.1  102.20 ± 1.46  103.77 ± 2.53  102.28 ± 2.53 
 1  100.42 ± 2.51  105.33 ± 0.89  112.53 ± 0.89 
 10  102.77 ± 1.28  101.66 ± 1.27  101.05 ± 1.27 

 Ciprofi brate  1  214.57 ± 1.57 
 Troglitazone  1  223.27 ± 2.33 
 L-165041  1  266.04 ± 3.01 

X.-H. Cui et al.



279

11.5.2          Antioxidant and Cytotoxic Activities by Xanthones 
from Adventitious Roots 

 Five xanthones, 1,3,5,6-tetrahydroxyxanthone, 1,5,6-trihydroxy-3- methoxyxanthone, 
ferrxanthone, brasilixanthone B and neolancerin were evaluated for antioxidant 
activities using the intracellular ROS radical scavenging 2′,7′-dichlorfl uorescein- 
diacetate (DCFDA) assay and for cytotoxic activity against the HL-60 human pro-
myelocytic leukemia cells [ 65 ]. Among them, 1,3,5,6- tetrahydroxyxanthone, 
1,5,6-trihydroxy-3-methoxyxanthone, ferrxanthone and brasilixanthone B exhibited 
scavenging activity with inhibition values of 27.4–33.2 % at 10 μM (Fig.  11.14 ); 
1,3,5,6-tetrahydroxyxanthone, 1,5,6-trihydroxy- 3-methoxyxanthone and brasilixan-
thone B reduced the viability of HL-60 cells signifi cantly, with IC 50  values of 31.5, 
28.9, and 27.7 μM respectively (Table  11.12 ).

11.6          Conclusions and Perspectives 

 A series of techniques for optimization of culture medium and physical conditions 
were conducted to establish effi cient  H. perforatum  adventitious root growth and 
phenolic compounds production in liquid media and in a 3-L balloon type bubble 
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  Fig. 11.14    Scavenging effect    of four compounds from  H. perforatum  adventitious roots on intracel-
lular ROS. Cells were treated with the samples at 1, 5, and 10 μM. After 30 min, 1 mM of H 2 O 2  was 
added to the plate. After an additional 30 min, DCF-DA was added and the intracellular ROS gener-
ated were detected by spectrofl uorometry. NAC was used as positive control ( Pos. ) at concentration 
of 2 mM.  Comp . compound.  Comp. 1  1,3,5,6-etrahydroxyxanthone,  Comp. 2  1,5,6- trihydroxy-3- 
methoxyxanthone,  Comp. 3  Ferrxanthone,  Comp. 4  Brasilixanthone B. Statistical signifi cance is 
indicated as *(P<0.05) and **(P<0.01) as determined by Dunnett’s multiple comparison test       
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bioreactor (BTBB). Such cultures are expected to be less prone to erratic metabolite 
production than cultures of undifferentiated cells and to exhibit lower sensitivity to 
shear stress than cell suspension cultures. We also established effective elicitation 
methods to increase phenolic compounds content. For commercialization of  H. per-
foratum  adventitious roots, large-scale cultures have been achieved using airlift bio-
reactors at the industrial level. The results of our study contribute to some crucial 
information for optimization and development of bioreactor technology for adventi-
tious root cultures of  H. perforatum  for the production of hypericin, quercetin, 
hyperoside and chlorogenic acid. In addition, isolated phenolic compounds (1–12) 
from root cultures of  H. perforatum  exhibited signifi cant anti-infl ammatory effects, 
antioxidant and anticancer activities. These results provide scientifi c support for the 
utilization of adventitious root cultures in functional food and nutraceuticals. In the 
light of current success, further research should be focused on establishment of 
effective elicitation methods to increase hypercin and fl avonoid contents. 
Furthermore, biosafety assessment of  H. perforatum  adventitious roots needs to be 
researched, which is very important for its applications.     
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    Chapter 12   
 Production of Withanolides from Cell 
and Organ Cultures of  Withania somnifera  
(L.) Dunal  

             Praveen     Nagella     and     Hosakatte     Niranjana     Murthy    

    Abstract      Withania somnifera  (L.) Dunal. (Indian ginseng) is one of the most 
important medicinal plants used as a crude drug for its preventive and therapeutic 
purposes. Among the diverse constituents of  Withania , withanolides are found to be 
the major components responsible for their biological and pharmacological actions. 
On the other hand, diffi culty in supplying the pure withanolides in suffi cient quan-
tity prevents the development of  Withania  for clinical medicines. Field cultivation 
of  Withania  is time consuming and it needs extensive efforts for quality control as 
the growth is susceptible to many environmental factors including soil, climate, 
pathogens and pests. To overcome these problems, cell and organ cultures have 
been widely explored for more rapid and effi cient production of  Withania  biomass 
and withanolides. Recently, cell and organ cultures of  W. somnifera  have been 
developed in laboratory scale with a view to establish large scale production using 
bioreactors. Various physical and chemical parameters affecting the biomass pro-
duction and withanolide accumulation have been investigated.  

  Keywords     Adventitious roots   •   Cell suspension culture   •   Hairy root culture   • 
  Secondary metabolites   •    Withania somnifera    •   Withanolides  
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  IAA    Indole-3-acetic acid   
  IBA    Indole-3-butyric acid   
  KN    Kinetin   
  MJ    Methyl jasmonate   
  MS medium    Murashige and Skoog medium   
  NAA    α- Naphthalene acetic acid   
  SA    Salicylic acid   

12.1           Introduction 

  Withania somnifera  (L.) Dunal, also known as ashwagandha, Indian ginseng and 
winter cherry is an important medicinal plant in Ayurvedic medicine of the tradi-
tional medicinal system of India [ 1 ,  2 ]. The roots and leaves of ashwagandha 
contain various alkaloids, viz., withanolides and withaferin. The withanolides are 
steroidal compounds, which resemble the active ginsenosides of Asian ginseng 
both in action and appearance. Studies show that the plant has been used as an 
antioxidant, adaptogen, aphrodisiac, liver tonic, anti-infl ammatory agent, antitu-
mor, astringent and more recently to treat ulcers, bacterial infection, venom toxins 
and senile dementia. Clinical trials and animal research support its use in treating 
anxiety, cognitive and neurological disorders, infl ammation, hyperlipidemia and 
Parkinson’s disease [ 1 ]. It has been used as a tonic and an antistress supplement. 
Pharmacological activities of ashwagandha include antiarthritic, antiaging, nerve 
tonic, cognitive function improvement in geriatric states, and recovery from neu-
rodegenerative disorders [ 3 ,  4 ]. Various alkaloids, withanolides and sitoindosides 
have been isolated from this plant. Of the various withanolides reported, witha-
ferin A and withanone are customary major withanolides of the plant, of which the 
amount of withanolide A is usually very low [ 5 ]. Recently, withanolide A has 
attracted interest due to its strong neuropharmacological properties of promoting 
outgrowth and synaptic reconstruction [ 6 ,  7 ]. Withanolide A is therefore impor-
tant compound for the therapeutic treatment of neurodegenerative diseases, like 
Alzheimer’s disease, Parkinson’s disease, convulsions, cognitive function 
 impairment [ 8 ]. 

 For commercial withanolide production, fi eld grown plant material has generally 
been used but the quality of these products may be highly affected by different envi-
ronmental conditions, pollutants and pests and pathogens like insects, fungi, bacte-
ria and viruses, which can result in a heavy loss in yield and alter the medicinal 
content of plant. Plant cell and organ cultures are promising technologies to obtain 
plant-specifi c valuable metabolites [ 9 ]. Cell and organ cultures have a higher rate of 
metabolism than fi eld grown plants because the initiation of cell and organ growth 
in culture leads to fast proliferation of cells/organs and to a condensed biosynthetic 
cycle. Further, plant cell/organ cultures are not limited by environmental, ecological 
and climatic conditions and cells/organs can thus proliferate at higher growth rates 
than whole plant in cultivation [ 10 ].  
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12.2     Induction of Callus, Adventitious Roots  
and Hairy Roots  

12.2.1     Induction of Callus 

 Callus was induced from leaf explants of  W. somnifera  cv. Jawahar on full strength 
MS [ 11 ] gelled (0.8 % agar, w/v) medium supplemented with 30 g L −1  sucrose (w/v) 
and 2.0 mg L −1  2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg L −1  kinetin (KN) 
[ 12 ]. Sivanandhan et al. [ 13 ] induced the callus from roots of 4-week old  in vitro  
grown seedlings and MS medium supplemented with 2 mg L −1  picloram.  

12.2.2     Induction of Adventitious Roots 

 Rani et al. [ 14 ] induced adventitious roots from leaf explants of  Withania  by dip 
method. The leaf explants were dipped in different concentrations of IBA for differ-
ent intervals of time and cultured the explants on the MS medium of different 
strengths. Adventitious roots were induced directly when leaf explants were cul-
tured on half strength MS medium supplemented with a combination of IBA and 
IAA at 9.85 and 2.85 μM respectively. Other auxin combinations resulted in the 
formation of callus along with adventitious root induction. The adventitious roots 
were cultured in a 2.5 L bubble column reactor with 1,000 mL of half strength MS 
medium with the same hormonal concentration for 6 weeks and the roots were har-
vested and analyzed for the withanolide production. A maximum yield of 10 mg g −1  
dry weight was obtained in the bubble column reactor [ 15 ]. Adventitious roots were 
also induced directly from the leaf explants by Praveen and Murthy [ 16 ]. They cul-
tured the leaf explants on full and half strength MS medium with various concentra-
tions of auxins (2, 4-D, NAA, IBA and IAA; at 0.1, 0.5, 1.0, 2.0, and 5.0 mg L −1 ) for 
the induction of adventitious roots. The explants cultured on full strength MS 
medium produced only callus in all the concentrations tested, which hindered the 
induction of roots. Explants cultured on half MS medium supplemented with IBA 
and IAA individually were able to induce the adventitious roots. On medium sup-
plemented with 0.5 mg L −1  IBA, explants developed maximum number of roots. 
Explants cultured on 2, 4-D and NAA medium were not potent in induction of 
adventitious roots (Table  12.1 ). The adventitious roots were maintained on half 
strength MS medium supplemented with 0.5 mg L −1  IBA concentration. Callus 
mediated induction of adventitious roots were induced from leaf, internode and 
cotyledonary explants by Sivanandhan et al. [ 17 ] that were cultured on MS medium 
supplemented with 2.0 mg L −1  2, 4-D and 0.2 mg L −1  KN. Four week old calli 
obtained from different explant sources were used as explants for the induction of 
adventitious roots. The calli were cultured separately on half strength MS medium 
supplemented with IBA, IAA, and NAA individually or in combinations of IBA/
IAA or IBA/NAA. Highest number of adventitious roots was obtained from leaf 
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derived callus explants when cultured on combination of IBA and IAA at 0.5 and 
0.1 mg L −1  concentrations. Further, the adventitious roots thus produced were main-
tained on the half strength MS medium supplemented with 0.5 mg L −1  IBA.

12.2.3        Induction of Hairy Roots 

 Transformed roots (=hairy roots) were induced by infecting the shoots of  Withania  
with  A. rhizogenes  strain LBA 9402 for the production of withanolide D [ 18 ]. Pawar 
and Maheshwari [ 19 ] used 15 days old  in vitro  plants for stem segments, hypocotyls 
and leaves from 2 months old  in vitro  plants as explants for the induction of hairy 
roots by infecting them with  A. rhizogenes  strain MTCC 2364 and MTCC 532. 
Only leaf explants responded to the infection with the  A. rhizogenes  and induced 
hairy roots while stem segments and hypocotyl explants became necrotic after 
infection with  A. rhizogenes . Kumar et al. [ 20 ] also induced hairy roots by infecting 
leaf explants with  A. rhizogenes  and the transformants were confi rmed by PCR 
using rol A gene specifi c primers. Further, these transgenics were confi rmed by 

   Table 12.1    Effect of different    auxins on adventitious root induction from leaf explants of  Withania 
somnifera  cultured for 4 weeks on half strength MS medium a    

 Auxins 
 Concentration 
(mg L −1 ) 

 Explants 
cultured 

 % of 
response 

 Nature of 
response 

 Mean no. of 
roots ± SE 

 2,4-D  0.1  12  72.22  Friable callus  – 
 0.5  12  83.33  Friable callus  – 
 1.0  12  83.33  Friable callus  – 
 2.0  12  91.66  Friable callus  – 
 5.0  12  86.11  Friable callus  – 

 NAA  0.1  12  69.44  Friable callus  – 
 0.5  12  69.44  Friable callus  – 
 1.0  12  81.66  Friable callus  – 
 2.0  12  83.33  Friable callus  – 
 5.0  12  80.55  Friable callus  – 

 IBA  0.1  12  91.66  Roots  6.41 ± 0.87de 
 0.5  12  100  Roots  17.50 ± 0.37a 
 1.0  12  91.66  Roots  13.75 ± 1.30b 
 2.0  12  91.66  Roots  9.83 ± 1.02c 
 5.0  12  83.33  Roots  6.50 ± 0.71de 

 IAA  0.1  12  100  Roots  4.91 ± 0.28ef 
 0.5  12  100  Roots  6.25 ± 0.30de 
 1.0  12  91.66  Roots  8.08 ± 0.82 cd 
 2.0  12  83.33  Roots  4.91 ± 0.71ef 
 5.0  12  83.33  Roots  3.16 ± 0.50f 

   a Data represents means ± SE of 12 replicates; each experiment was repeated twice. Mean separa-
tion within column by Duncan’s multiple range test at  P  < 0.05  
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southern blot analysis. Bandyopadhyay et al. [ 21 ] used leaf explants from the 
 in vitro  grown plantlets obtained through shoot tip meristem culture for the induc-
tion of hairy roots by infecting with two virulent wild-type agropine strains of 
 A. rhizogenes , LBA 9402 (pRi 1855) and A4 (pRi A4). The transgenic nature of the 
hairy roots was confi rmed by PCR using specifi c primers. Hairy roots were also 
induced by Murthy et al. [ 22 ] by infecting roots, stems, hypocotyls, cotyledons, 
cotyledonary nodes and leaf segments from  in vitro  raised seedlings with  A. rhizo-
genes  strain R1601. Only cotyledons and leaf explants responded to the infection 
and induced hairy roots with 3.33 and 40.3 % effi ciency respectively. The trans-
genic nature of hairy roots was confi rmed by PCR using  npt II and  rol B gene spe-
cifi c primers and transgenicity was also confi rmed by southern blot analysis. 
Sivanandhan et al. [ 23 ] induced hairy roots by infecting the leaf explants from 45 
day old  in vitro  seedlings with agropine type strain of  A. rhizogenes  R1000. Hairy 
roots induced by using  A. rhizogenes  stains R1601 and R1000 are found stable and 
could be used for optimization of cultural parameters for biomass and metabolite 
production.   

12.3     Establishment of Cell and Organ Suspension Cultures 

12.3.1     Effect of Growth Regulators on Biomass Accumulation 
and Withanolide Production 

 Proliferation of cells in the suspension cultures depends on the growth regulators 
supplemented to the culture medium. The type and concentration of auxin or the 
auxin/cytokinins ratio alters dramatically both the growth and the production of 
secondary compounds in cultured plant cells [ 24 ,  25 ]. For example, Nagella and 
Murthy [ 12 ] reported the variation in biomass accumulation and withanolide con-
tent with varied concentrations of auxins. They observed the maximum accumula-
tion of biomass and the highest production of withanolide in the medium 
supplemented with 2 mg L −1  2, 4-D. However, the highest accumulation of biomass 
and withanolide production was observed with the cultures supplemented with 
2 mg L −1  2, 4-D + 0.5 mg L −1  KN (Table  12.2 ). The combination of 2,4-D (1 mg L −1 ) 
and KN (0.2 mg L −1 ) has also been reported for the culturing of cell suspension and 
the production of withaferin A [ 26 ]. Sabir et al. [ 27 ] noticed that 2,4-D at 3 mg L −1  
and KN at 0.5 mg L −1  showing withanolide production. However, Sivanandhan et al. 
[ 13 ] observed that when root explants were cultured with 1 mg L −1  picloram, high-
est accumulation of biomass and withanolides were observed. Further, inclusion of 
0.5 mg L −1  KN along with 1 mg L −1  picloram proved to be the best suitable combi-
nation when compared with all other cytokinin concentrations for the maximum 
accumulation of biomass and withanolide production. The differences in withnolide 
synthesis might be due to the explant type, initiation of cell line, physical and chem-
ical conditions of the medium.
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12.3.2        Growth Kinetics of Biomass Accumulation 
and Withanolide Production 

 Growth kinetics of  W. somnifera  cell and adventitious root suspension and produc-
tion of withanolide is presented in the Figs.  12.1  and  12.2 . The biomass accumula-
tion and withanolide production of the cultured cells followed typical growth culture 
and reached their optimum within 4 weeks of time [ 12 ,  13 ]. Growth kinetic pattern 
of hairy roots also followed similar pattern [ 22 ]. However, Sivanandhan et al. 
[ 23 ,  37 ] reported that cultured cells and hairy roots took 36 days to reach their 

   Table 12.2     Withania somnifera  cell suspension culture: effect of 2.0 mg L −1  2, 4-dichlorophenoxy 
acetic acid (2, 4-D) in combination with different concentrations of cytokinins on biomass 
accumulation and withanolide A production a, b    

 Cytokinins 
 Concentration 
(mg L −1 ) 

 Dry weight 
(g L −1 ) 

 Withanolide A content 
(mg g −1  DW) 

 Benzylaminopurine (BAP)  0.1  5.48 ± 0.06d  1.36 ± 0.02d 
 0.5  5.76 ± 0.18d  1.42 ± 0.06d 
 1.0  6.51 ± 0.09c  1.82 ± 0.03b 
 2.0  6.69 ± 0.06c  1.63 ± 0.02c 

 Kinetin (KN)  0.1  7.17 ± 0.12b  1.78 ± 0.02b 
 0.5  10.79 ± 0.05a  2.26 ± 0.01a 
 1.0  6.74 ± 0.16c  1.81 ± 0.06b 
 2.0  6.66 ± 0.10c  1.78 ± 0.04b 

   a 0.5 g of cells were cultured in 50 mL of MS medium for 4 weeks 
  b Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  ≤ 0.05  
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optimal growth, whereas withanolide accumulation was highest after 40 days of 
culture. Such variation in growth kinetics and accumulation of secondary compound 
in the cultured cells might be due to genotype specifi city.

12.3.3         Effect of Inoculum Density on Biomass Accumulation 
and Withanolide Production 

 Plant suspensions are initiated using relatively high cell density as there is a mini-
mum inoculation density below which growth does not occur or is preceded by a lag 
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  Fig. 12.2    Time profi le of 
adventitious root growth 
( a ) and kinetics of 
production of withanolide A 
( b ) in fl ask scale cultures of 
adventitious root suspension 
cultures of  Withania 
somnifera.  The roots were 
cultured in 50 mL of MS 
medium supplemented with 
0.5 mg L −1  IBA. Data 
represents mean values ± SE 
of three replicates; each 
experiment was repeated 
twice. Means with common 
letters are not signifi cantly 
different at  P  < 0.05 
according to Duncan’s 
multiple range test (DMRT)       
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phase. Medium conditioning can be used to reduce the minimum inoculum density, 
however, the chemical basis of the conditioning effect has not been fully defi ned and 
it is primarily empirical [ 28 ]. Inoculum density ranging 2.5–20.0 g L −1  were tested 
by Nagella and Murthy [ 12 ,  16 ] for biomass and withanolide accumulation in cell 
and adventitious root cultures of  W. somnifera  and they reported that the inoculum 
density of 10.0 g L −1  was suitable for biomass growth and withanlide accumulation 
(Figs.  12.3  and  12.4 ). Increased inoculum density 20.0 g L −1  was not suitable for 
biomass growth and secondary metabolite accumulation. In the hairy root cultures, 
5 g L −1  inoculum favoured the maximum accumulation of biomass and withanolides 
contents [ 22 ]. These results reveal that inoculum density is a critical factor for both 
biomass growth and metabolite production, it might be species and cultivar specifi c 
and it should be worked out at the beginning of establishment of cell and organ 
suspension cultures.
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  Fig. 12.3     Withania somnifera  cell suspension culture: effects of inoculum densities on biomass 
accumulation and withanolide A production. Five hundred milligram cells were cultured in 50 mL 
of MS medium supplemented with 2.0 mg L −1  2, 4-D and 0.5 mg L −1  KN for 4 weeks. Data repre-
sents mean values ± SE of three replicates; each experiment was repeated twice. Mean values with 
common letters are not signifi cantly different at  P  ≤ 0.05 according to Duncan’s multiple range test 
(DMRT)       

 

P. Nagella and H.N. Murthy



293

12.3.4         Effect of Different Media on Biomass Accumulation 
and Withanolide Production 

 Various media such as MS, B5, NN and N6 media were tested for culturing of 
 W. somnifera  cells and adventitious roots by Nagella and Murthy [ 12 ,  16 ] and they 
have reported that MS medium was superior to other media i.e. Gamborg’s (B5; [ 29 ]), 
Nitsch and Nitsch (NN; [ 30 ]), Chu’s (N6; [ 31 ]) media for both biomass accumulation 
and withanolide production (Figs.  12.5  and  12.6 ). Murthy et al. [ 22 ] also reported that 
MS medium was optimal compared to other media like Chu’s (N6; [ 31 ]), Schenk and 
Hildebarndt (SH; [ 32 ]), Linsmaier and Skoog (LS; [ 33 ]) for the accumulation of bio-
mass in the hairy root cultures of  W. somnifera . These results confi rm the view of 
Ramachandra Rao and Ravishankar [ 10 ] that constituents of culture media are impor-
tant determinants of biomass growth and metabolite accumulation.
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  Fig. 12.4    Effect of different 
inoculum density on the 
biomass accumulation 
( a ) and withanolide- A 
production ( b ) by 
adventitious root suspension 
cultures of  Withania 
somnifera  after 4 weeks of 
culture in 50 mL of MS 
medium supplemented with 
0.5 mg L −1  IBA. Data 
represents mean values ± SE 
of three replicates; each 
experiment was repeated 
twice. Means with common 
letters are not signifi cantly 
different at  P  < 0.05 
according to Duncan’s 
multiple range test (DMRT)       
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  Fig. 12.5     Withania somnifera  cell suspension culture: effects of different media on biomass accu-
mulation and withanolide A production. Five hundred milligram of cells were cultured in 50 mL of 
medium supplemented with 2.0 mg L −1  2, 4-D and 0.5 mg L −1  KN for 4 weeks. Data represents mean 
values ± SE of three replicates; each experiment was repeated twice. Mean values with common let-
ters are not signifi cantly different at  P  ≤ 0.05 according to Duncan’s multiple range test (DMRT)       
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  Fig. 12.6    Effect of different 
media on the biomass 
accumulation ( a ) and 
withanolide-A production ( b ) 
by adventitious root 
suspension cultures of 
 Withania somnifera  after 4 
weeks of culture in 50 mL of 
medium supplemented with 
0.5 mg L −1  IBA. Data 
represents mean values ± SE 
of three replicates; each 
experiment was repeated 
twice. Means with common 
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12.3.5         Effect of Medium Salt Strength on Biomass 
Accumulation and Withanolide Production 

 The optimum nutrient concentration is a critical determinant in controlling the 
growth of cells/organs and the accumulation of secondary metabolites [ 10 ]. 
Different salt strengths (0.25, 0.5, 0.75, 1.0, 1.5 and 2.0×) of the MS medium were 
employed to determine the optimum growth of the biomass and metabolite pro-
duction. In cell suspension cultures, full salt strength (1.0×) MS medium favored 
the highest biomass accumulation and withanolide production (Fig.  12.7 ; [ 12 ]). In 
adventitious root cultures, half strength (0.5×) MS medium favored the maximum 
accumulation of biomass and withanolide production. Higher salt strengths (1.5 
and 2.0×) MS media were not suitable as they were responsible for the decrease in 
biomass and metabolite accumulation (Table  12.3 ; [ 16 ]). Such variations of utili-
zation of media might be due to the selection of different strains of cells and 
adventitious roots. Therefore, selections of cell/organ clone and selection of suit-
able medium and salt strengths are important for the establishment of cell and 
organ cultures.
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  Fig. 12.7     Withania somnifera  cell suspension culture: effects of medium strength on biomass 
accumulation and withanolide A production. Five hundred milligram of cells were cultured in 
50 mL of MS medium supplemented with 2.0 mg L −1  2,4-D and 0.5 mg L −1  KN for 4 weeks. Data 
represents mean values ± SE of three replicates; each experiment was repeated twice. Mean values 
with common letters are not signifi cantly different at  P  ≤ 0.05 according to Duncan’s multiple 
range test (DMRT)       
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12.3.6         Effect of Different Carbon Sources on Biomass 
Accumulation and Withanolide Production 

 Sugars have been recognized as molecules that act as energy sources and can also 
act as signaling molecules that affect growth, development and metabolism of cul-
tured cells [ 34 ]. Sucrose is a major carbon as well as energy source for plant cul-
tures and the utilization of carbon is correlated with the accumulation of biomass as 
well as metabolic status of cells and organs. To improve the biomass growth and 
metabolite production, various sugars such as sucrose, glucose, maltose, glu-
cose + fructose (1:1), fructose + sucrose (1:1) and sucrose + glucose (1:1) of carbon 
sources were tested by Nagella and Murthy [ 12 ] and they have reported 3 % (w/v) 
sucrose was superior for both biomass and withanolide A accumulation in  W. som-
nifera  cell suspension cultures (Table  12.4 ). Shivanandhan et al. [ 13 ] tested supple-
mentation of sucrose, glucose, maltose and fructose in range 1–6 % to MS medium 
and reported that 2 % sucrose best for biomass accumulation and 5 % sucrose 

   Table 12.3    Biomass growth and withanolide-A production of  Withania somnifera  adventitious 
roots as affected by MS medium salt strength. Cultures were maintained in 250 mL Erlenmeyer 
fl asks for 4 weeks a    

 Medium 
strength (g) 

 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 ) 

 Growth 
ratio 

 Withanolide A 
content (mg g −1  DW) 

 0.25  72.27 ± 1.09 cd  6.94 ± 0.07d  5.33  7.12 ± 0.01c 
 0.50  107.48 ± 1.13a  10.53 ± 0.04a  8.10  8.65 ± 0.02a 
 0.75  81.66 ± 1.13b  7.76 ± 0.08b  5.97  8.25 ± 0.04b 
 1.00  79.46 ± 0.92b  7.64 ± 0.06b  5.88  8.24 ± 0.02b 
 1.50  74.80 ± 0.40c  7.36 ± 0.08c  5.66  6.48 ± 0.03d 
 2.00  69.82 ± 0.37d  6.89 ± 0.07d  5.37  4.89 ± 0.02e 

   a Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  < 0.05  

   Table 12.4     Withania somnifera  cell suspension culture: effect of different carbohydrate sources 
on biomass accumulation and withanolide-A production a, b, c    

 Carbohydrate 
sources (3 %) 

 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 ) 

 Growth 
ratio 

 Withanolide-A 
content (mg g −1  DW) 

 Sucrose  115.63 ± 2.10a  10.47 ± 0.12a  9.52  2.95 ± 0.10a 
 Glucose  98.68 ± 0.56b  8.67 ± 0.06c  7.88  2.25 ± 0.02b 
 Fructose  84.48 ± 0.68 cd  7.36 ± 0.04ef  6.69  1.83 ± 0.01c 
 Maltose  82.53 ± 0.57d  7.06 ± 0.07f  6.42  1.70 ± 0.02d 
 Glucose + fructose (1:1)  90.48 ± 1.89c  7.85 ± 0.11d  7.14  1.85 ± 0.03c 
 Fructose + sucrose (1:1)  82.04 ± 5.27d  7.73 ± 0.20de  7.03  1.90 ± 0.08c 
 Sucrose + glucose (1:1)  103.01 ± 1.44b  9.32 ± 0.20b  8.47  2.18 ± 0.15b 

   a 0.5 g of cells were cultured in 50 mL of MS medium supplemented with 2.0 mg L −1  2,4-D and 
0.5 mg L −1  kinetin for 4 weeks 
  b Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  < 0.05 
  c Growth ratio is the quotient of the dry weight of harvested biomass (cells) and the dry weight of 
the inoculum  
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optimal secondary metabolite accumulation. Sucrose (3 %, w/v) was also ideal car-
bon source for the cultivation of adventitious/hairy roots of  W. somnifera,  which 
facilitated biomass and withanolide accumulation (Tables  12.5  and  12.6 ; [ 35 – 37 ]). 
Doma et al. [ 38 ] found that 4 % sucrose and 5 % glucose in the MS medium favored 
the hairy root growth and withanolide production when supplemented individually. 
Thus, sucrose is generally most preferred carbon source for culturing the cells and 
organs of  W. somnifera .

12.3.7          Effect of Sucrose Concentrations on Biomass 
Accumulation and Withanolide Production 

 It was reported that initial carbon source and its concentration is essential for cell 
and organ growth and secondary metabolite accumulation [ 10 ] and to improve cell 
growth and withanolide production, different types and concentrations of sugar were 
tested and Nagella and Murthy [ 12 ] found that the optimal sucrose concentration 

   Table 12.5    Biomass growth and withanolide A production of  Withania somnifera  adventitious 
roots as affected by different carbon sources in the MS medium. Cultures were grown in 250 mL 
conical fl asks containing 50 mL medium for 4 weeks   

 Carbon sources (3 %) 
 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 ) 

 Growth 
ratio 

 Withanolide A 
content (mg g −1  DW) 

 Sucrose  105.63 ± 2.10a  10.47 ± 0.12a  8.05  8.73 ± 0.04a 
 Glucose  88.68 ± 0.56c  8.67 ± 0.06c  6.67  7.94 ± 0.02c 
 Fructose  74.48 ± 0.68e  7.36 ± 0.04e  5.66  7.72 ± 0.02c 
 Maltose  72.53 ± 0.57e  7.06 ± 0.07e  5.43  7.53 ± 0.01d 
 Glucose + fructose (1:1)  80.48 ± 1.89d  7.85 ± 0.11d  6.04  7.24 ± 0.03e 
 Fructose + sucrose (1:1)  78.71 ± 1.71d  7.73 ± 0.20d  5.95  7.49 ± 0.02d 
 Sucrose + glucose (1:1)  100.68 ± 0.89b  9.99 ± 0.12b  7.68  8.38 ± 0.03b 

  Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  ≤ 0.05  

   Table 12.6    Biomass growth and withanolide A production of  Withania somnifera  hairy roots as 
affected by different carbon sources in the MS medium. Hairy roots (500 mg) were cultured in 
250 mL Erlenmeyer’s fl asks containing 50 mL of MS medium for 4 weeks   

 Carbohydrate 
sources (30 g L −1 )  Dry weight (g L −1 )  Growth ratio 

 Withanolide-A 
content (mg g −1  DW) 

 Sucrose  11.92 ± 0.12a  9.46  11.96 ± 0.34a 
 Fructose  8.20 ± 0.10d  6.51  9.43 ± 0.17d 
 Glucose  9.20 ± 0.17c  7.30  10.91 ± 0.23b 
 Maltose  7.77 ± 0.15e  6.17  9.90 ± 0.28c 
 Glucose + fructose (1:1)  8.37 ± 0.12d  6.64  8.55 ± 0.23e 
 Sucrose + glucose (1:1)  10.79 ± 0.05b  8.56  11.55 ± 0.40a 
 Fructose + sucrose (1:1)  9.17 ± 0.12c  7.28  9.30 ± 0.40d 

  Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  ≤ 0.05  
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for  Withania  cell growth was 4 %, above which cell growth was inhibited. However, 
accumulation of withanolide was optimum with cultures supplemented with 3 % 
sucrose (Fig.  12.8 ). Whereas, Sivanandhan et al. [ 13 ] reported that in cell suspen-
sion cultures of  Withania , 2 % sucrose concentration promoted the biomass accu-
mulation and with the increase in sucrose concentration there was decrease in the 
biomass and with 5 % sucrose concentration highest content of withanolide pro-
duction. In the adventitious root cultures of  Withania , 2 % sucrose concentration 
favored both the biomass accumulation and withanolide production (Table  12.7 ; 
[ 35 ]). Murthy et al. [ 22 ] reported that 4 % sucrose concentration was optimal for 
biomass accumulation in the hairy root cultures of  Withania . While, Praveen and 
Murthy [ 36 ] reported that 3 % sucrose concentration was optimal for the hairy root 
growth and 4 % sucrose favored the maximum accumulation of withanolide content 
(Fig.  12.9 ). Doma et al. [ 38 ] observed that at 4 % sucrose concentration the accumu-
lation of hairy root biomass was maximum and withaferin A content was highest. 
At 3 % sucrose concentration the production of withanolide A and withaferin A was 
almost at the same levels. Whereas at 5 % glucose concentration the production of 
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  Fig. 12.8     Withania somnifera  cell suspension culture: effects of different sucrose concentrations 
on biomass accumulation and withanolide A production. Five hundred milligram of cells were 
cultured in 50 mL of MS medium supplemented with 2.0 mg L −1  2, 4-D + 0.5 mg L −1  KN for 4 
weeks. Data represents mean values ± SE of three replicates; each experiment was repeated twice. 
Means with common letters are not signifi cantly different at  P  ≤ 0.05 according to Duncan’s mul-
tiple range test (DMRT)       
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withaferin A content was optimal. All these experimental evidences clearly dem-
onstrate that the effect of carbon and energy source is dependent on specifi c cell or 
organ lines and it should be worked out thoroughly and specifi c carbon source and 
its concentration should be established for attaining optimal results.

   Table 12.7    Biomass growth and withanolide A production of  Withania somnifera  adventitious 
roots as affected by different concentrations of sucrose in the MS medium. Cultures were grown in 
250 mL conical fl asks containing 50 mL medium for 4 weeks   

 Concentration 
of sucrose (%) 

 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 )  Growth ratio 

 Withanolide-A 
content (mg g −1  DW) 

 1  50.98 ± 1.25e  4.88 ± 0.07e  3.75  2.48 ± 0.03e 
 2  113.58 ± 2.97a  11.33 ± 0.19a  8.70  8.93 ± 0.01a 
 3  107.35 ± 1.12b  10.19 ± 0.16b  8.24  8.73 ± 0.02a 
 4  90.12 ± 0.75c  8.27 ± 0.07c  6.36  8.16 ± 0.03b 
 6  59.02 ± 2.16d  5.44 ± 0.19d  4.18  6.50 ± 0.02c 
 8  43.96 ± 2.41f  4.55 ± 0.25f  3.50  3.61 ± 0.03d 

  Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  ≤ 0.05  
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  Fig. 12.9     Withania somnifera  hairy root culture: effects of different sucrose concentrations on 
biomass accumulation and withanolide A production. Hairy roots (500 mg) were cultured in 
250 mL Erlenmeyer’s fl asks containing 50 mL of MS medium for 4 weeks. Data represents mean 
values ± SE of three replicates; each experiment was repeated twice. Means with common letters 
are not signifi cantly different at  P  ≤ 0.05 according to Duncan’s multiple range test (DMRT)       
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12.3.8          Effect of Agitation Speed on Biomass Accumulation 
and Withanolide Production 

 Agitation speed is one of the important parameters for a successful establishment of 
plant cell suspension cultures. A proper agitation speed promotes better growth and 
secondary metabolite synthesis by enhancing the transfer of nutrients from liquid 
and gaseous phases to cells and dispersion of air bubbles for effective oxygenation 
[ 39 ]. In the cell suspension cultures of  Withania , Sivanandhan et al. [ 13 ] found that 
the agitation speed of 120 rpm was found suitable for the maximum accumula-
tion of biomass and withanolides production. At higher rpm of 140–160, biomass 
accumulation and withanolides production were highly affected, whereas at lower 
rpm of 80–100, the cells aggregated into hard clumps at 80 rpm and resulted in cell 
death; at 100 rpm, the cells were loosely attached in the clump.  

12.3.9     Effect of Initial Medium pH on Biomass Accumulation 
and Withanolide Production 

 The hydrogen ion concentration (pH) of the culture medium one more factor which 
affects the biomass accumulation and metabolite production during  in vitro  cultur-
ing of plant cells and the concentration of hydrogen ions in the medium changes 
during the culture period [ 25 ,  40 ]. Different ranges of pH (4.0, 4.5, 5.0, 5.5, 5.8, 6.0, 
and 6.5) were employed to improve the biomass accumulation and metabolite pro-
duction. The highest accumulation of biomass was observed when the medium pH 
was set at 5.8 and the maximum withanolide production was recorded when the 
initial medium pH was 6.0 in the cell suspension cultures of  W. somnifera  (Fig.  12.10 ; 
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  Fig. 12.10     Withania somnifera  
cell suspension culture: effect 
of hydrogen ion concentration 
(pH) on biomass accumulation 
and withanolide A production. 
Five hundred milligram of cells 
were cultured in 50 mL of MS 
medium supplemented with 
2.0 mg L −1  2,4-D and 0.5 mg 
L −1  KN for 4 weeks. Data 
represents mean values ± SE of 
three replicates; each 
experiment was repeated twice. 
Means with common letters are 
not signifi cantly different at 
P ≤ 0.05 according to Duncan’s 
multiple range test (DMRT)       

 

P. Nagella and H.N. Murthy



301

[ 12 ]). In the adventitious root cultures of  W. somnifera , the highest accumulation of 
biomass was observed with the initial medium pH of 5.8, whereas maximum 
 production of withanolide was noticed with the medium pH of 5.5 followed by 5.8 
(Table  12.8 ; [ 35 ]). Whereas, in the hairy root cultures of  W. somnifera , the highest 
accumulation of biomass was observed when the medium pH was set at 5.8 and the 
maximum withanolide production was recorded when the initial medium pH was 
6.0 (Fig.  12.11 ; [ 36 ]).

   Table 12.8    Biomass growth and withanolide A production of  Withania somnifera  adventitious 
roots as affected by initial medium pH in the MS medium. Cultures were grown in 250 mL conical 
fl asks containing 50 mL medium for 4 weeks   

 Medium pH 
 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 )  Growth ratio 

 Withanolide-A 
content (mg g −1  DW) 

 4.0  55.83 ± 1.17 g  5.52 ± 0.07f  4.25  5.87 ± 0.02f 
 4.5  60.39 ± 0.52f  5.96 ± 0.03f  4.58  7.22 ± 0.01d 
 5.0  74.56 ± 0.80e  7.43 ± 0.16e  5.71  7.99 ± 0.02c 
 5.5  96.32 ± 3.01c  9.50 ± 0.26c  7.31  9.09 ± 0.02a 
 5.8  113.26 ± 0.66a  11.33 ± 0.09a  8.71  8.92 ± 0.02a 
 6.0  109.08 ± 1.05b  10.88 ± 0.07b  8.37  8.49 ± 0.02b 
 6.5  85.80 ± 1.05d  8.51 ± 0.07d  6.55  6.97 ± 0.04e 

  Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  ≤ 0.05  
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  Fig. 12.11     Withania somnifera  hairy root culture: effect of hydrogen ion concentration (pH) on 
biomass accumulation and withanolide A production. Hairy roots (500 mg) were cultured in 
250 mL Erlenmeyer’s fl asks containing 50 mL of MS medium supplemented with 3 % sucrose for 
4 weeks. Data represents mean values ± SE of three replicates; each experiment was repeated 
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12.3.10          Effect of Macroelements on Biomass Accumulation 
and Withanolide Production 

 Various nutrient factors especially macroelements and microelements play an 
important role in biomass accumulation, and secondary metabolite production in 
cell and organ suspension culture systems [ 41 ] and they should be worked out sys-
tematically for obtaining optimized results. The role of macroelements has been 
studied in cell and adventitious/hairy root cultures of  W. somnifera  and following 
are the results of such efforts.  

12.3.11     Effect of NH 4 NO 3  on Biomass Accumulation 
and Withanolide Production 

 The cells of  W. somnifera  cultured in the medium containing the lower concentra-
tion of NH 4 NO 3  (0.5× strength) accumulated the highest biomass (Table  12.9 ), 
while the highest production of withanolide content was recorded in the NH 4 NO 3  – 
free medium (Fig.  12.12 ; [ 42 ]). The medium supplemented with 0.5× strength of 
NH 4 NO 3  resulted in the maximum growth of adventitious roots and hairy root cul-
tures (Tables  12.10  and  12.11 ) and withanolide production of  W. somnifera  
(Figs.  12.13  and  12.14 ; [ 43 ,  44 ]).

       Table 12.9    Biomass growth of  Withania somnifera  cell suspension culture as affected by 
concentrations of macro elements in the MS medium. Cultures were grown in 250 mL conical 
fl asks containing 50 mL medium for 4 weeks a    

 Macro elements 
 Concentration 
(×times)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Growth ratio 

 NH 4 NO 3   0.0  128.00 ± 3.39b  12.47 ± 0.50b  11.34 
 0.5  147.81 ± 2.39a  14.02 ± 0.04a  12.74 
 1.0  111.06 ± 0.63d  10.24 ± 0.03cd  9.31 
 1.5  94.34 ± 1.66ef  8.70 ± 0.33fghi  7.91 
 2.0  87.10 ± 1.16fgh  8.13 ± 0.08hi  7.39 

 KNO 3   0.0  75.02 ± 0.56jk  7.09 ± 0.03jk  6.44 
 0.5  90.04 ± 0.69efg  8.68 ± 0.05fghi  7.89 
 1.0  107.81 ± 1.36d  9.88 ± 0.08de  8.98 
 1.5  118.04 ± 2.46c  11.05 ± 0.38c  10.04 
 2.0  143.75 ± 1.91a  14.33 ± 0.27a  13.03 

 CaCl 2   0.0  74.20 ± 1.50k  5.87 ± 0.11m  5.34 
 0.5  90.74 ± 2.26efg  6.80 ± 0.17k  6.18 
 1.0  121.50 ± 5.27c  10.18 ± 0.35cd  9.25 
 1.5  96.62 ± 1.35e  8.01 ± 0.10hi  7.28 
 2.0  84.50 ± 1.57gh  7.00 ± 0.12jk  6.36 
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 Macro elements 
 Concentration 
(×times)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Growth ratio 

 MgSO 4   0.0  75.75 ± 2.37ijk  6.54 ± 0.85kl  5.94 
 0.5  82.31 ± 1.84hi  8.28 ± 0.14ghi  7.53 
 1.0  91.04 ± 1.77efg  8.64 ± 0.09fghi  7.85 
 1.5  93.12 ± 0.78ef  8.94 ± 0.11fgh  8.13 
 2.0  82.40 ± 0.76hi  8.11 ± 0.02hi  7.37 

 KH 2 PO 4   0.0  73.24 ± 0.42k  6.97 ± 0.02jk  6.34 
 0.5  81.82 ± 0.26hij  7.79 ± 0.13ij  7.08 
 1.0  93.16 ± 1.12ef  7.88 ± 0.68ij  7.16 
 1.5  97.45 ± 0.67e  9.41 ± 0.26def  8.55 
 2.0  109.42 ± 2.46d  9.11 ± 0.23efg  8.28 

   a Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  ≤ 0.05  
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  Fig. 12.12    Withanolide A content in  Withania  cell suspension after 4 weeks of culture as affected 
by different concentrations of macro elements. Data represents mean values ± SE of three repli-
cates; each experiment was repeated twice. Means with common letters are not signifi cantly differ-
ent at  P  ≤ 0.05 according to Duncan’s multiple range test (DMRT)       
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      Table 12.10    Biomass growth of  Withania somnifera  adventitious roots as affected by 
concentrations of macro elements in the MS medium. Cultures were grown in 250 mL conical 
fl asks containing 50 mL medium for 4 weeks   

 Macro elements 
 Concentration 
(×times)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Growth ratio 

 NH 4 NO 3   0.0  117.62 ± 1.29b  11.66 ± 0.12b  8.97 
 0.5  127.52 ± 0.69a  12.45 ± 0.14a  9.58 
 1.0  104.87 ± 1.84de  10.29 ± 0.10e  7.91 
 1.5  78.04 ± 1.52h  7.68 ± 0.05i  5.91 
 2.0  63.62 ± 1.52j  6.31 ± 0.14jk  4.85 

 KNO 3   0.0  59.98 ± 0.87j  5.82 ± 0.08l  4.48 
 0.5  79.87 ± 0.51h  7.89 ± 0.02i  6.07 
 1.0  111.20 ± 1.90c  11.00 ± 0.09c  8.46 
 1.5  118.08 ± 0.84b  11.72 ± 0.05b  9.01 
 2.0  126.40 ± 1.43a  12.51 ± 0.13a  9.62 

 CaCl 2   0.0  61.13 ± 1.44j  6.04 ± 0.08kl  4.65 
 0.5  85.80 ± 0.81g  8.35 ± 0.05h  6.42 
 1.0  103.53 ± 2.14e  10.21 ± 0.20e  7.85 
 1.5  94.73 ± 0.26f  9.31 ± 0.04f  7.16 
 2.0  116.92 ± 1.15b  11.53 ± 0.13b  8.87 

 MgSO 4   0.0  67.91 ± 1.33i  6.55 ± 0.14j  5.04 
 0.5  85.85 ± 0.48g  8.36 ± 0.03h  6.43 
 1.0  107.46 ± 0.48d  10.59 ± 0.01d  8.15 
 1.5  126.92 ± 1.00a  12.48 ± 0.07a  9.60 
 2.0  87.63 ± 0.85g  8.84 ± 0.06g  6.80 

 KH 2 PO 4   0.0  62.13 ± 1.29j  6.02 ± 0.13kl  4.63 
 0.5  87.18 ± 0.86g  8.50 ± 0.06h  6.54 
 1.0  104.83 ± 1.18de  10.27 ± 0.15e  7.90 
 1.5  118.18 ± 0.38b  11.69 ± 0.04b  8.99 
 2.0  124.50 ± 0.76a  12.31 ± 0.07a  9.47 

  Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  ≤ 0.05  

      Table 12.11    Biomass growth of  Withania somnifera  hairy root cultures as affected by 
concentrations of macro elements in the MS medium. Cultures were grown in 250 mL Erlenmeyer’s 
fl asks containing 50 mL medium for 4 weeks a    

 Macro elements 
 Concentration 
(×times)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Growth rate 

 NH 4 NO 3   0.0  96.10 ± 1.30h  9.34 ± 0.07ij  7.41 
 0.5  127.65 ± 0.75d  12.74 ± 0.08d  10.11 
 1.0  118.23 ± 1.71f  11.70 ± 0.19g  9.29 
 1.5  88.30 ± 1.94jk  8.74 ± 0.16k  6.94 
 2.0  79.50 ± 1.20l  7.83 ± 0.06l  6.21 
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 Macro elements 
 Concentration 
(×times)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Growth rate 

 KNO 3   0.0  77.18 ± 0.67l  7.69 ± 0.10l  6.10 
 0.5  86.84 ± 1.13k  8.83 ± 0.02k  7.01 
 1.0  115.68 ± 0.62fg  11.54 ± 0.11g  9.16 
 1.5  124.07 ± 0.35e  12.34 ± 0.02ef  9.79 
 2.0  137.87 ± 0.75ab  13.69 ± 0.06a  10.86 

 CaCl 2   0.0  78.51 ± 1.76l  7.76 ± 0.18l  6.16 
 0.5  95.66 ± 0.68h  9.51 ± 0.09i  7.55 
 1.0  124.08 ± 1.63e  12.23 ± 0.13f  9.71 
 1.5  127.39 ± 1.27de  12.62 ± 0.12de  10.02 
 2.0  133.18 ± 1.14c  13.28 ± 0.11bc  10.54 

 MgSO 4   0.0  76.15 ± 0.47lm  7.48 ± 0.06l  5.94 
 0.5  91.25 ± 0.74ij  9.08 ± 0.03jk  7.21 
 1.0  118.04 ± 0.59f  11.70 ± 0.08g  9.29 
 1.5  134.85 ± 0.82bc  13.50 ± 0.18ab  10.71 
 2.0  118.35 ± 0.91f  11.71 ± 0.06g  9.29 

 KH 2 PO 4   0.0  73.24 ± 0.42m  6.97 ± 0.02m  5.53 
 0.5  91.82 ± 0.26i  8.93 ± 0.01k  7.09 
 1.0  113.16 ± 1.12g  10.75 ± 0.11h  8.53 
 1.5  117.45 ± 0.67f  11.41 ± 0.26g  9.06 
 2.0  139.42 ± 2.46a  13.11 ± 0.23c  10.40 

   a Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  ≤ 0.05  
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  Fig. 12.13    Withanolide 
A content in  Withania  
adventitious root culture 
after 4 weeks of culture 
as affected by different 
concentrations of macro 
elements. Data represents 
mean values ± SE of three 
replicates; each 
experiment was repeated 
twice. Means with 
common letters are not 
signifi cantly different at 
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Duncan’s multiple range 
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12.3.12             Effect of KNO 3  on Biomass Accumulation 
and Withanolide Production 

 In cell suspension, adventitious roots and hairy root cultures of  W. somnifera , high-
est accumulation of biomass (Tables  12.9 ,  12.10 , and  12.11 ) and withanolide con-
tent was observed in the MS medium supplemented with 2.0× KNO 3  (Figs.  12.12 , 
 12.13 , and  12.14 ; [ 42 – 44 ]).  

12.3.13     Effect of CaCl 2  on Biomass Accumulation 
and Withanolide Production 

 Nagella and Murthy [ 42 ] reported that in cell suspension cultures, 1.0× strength of 
CaCl 2  promoted the highest accumulation of biomass (Table  12.9 ) and 2.0× strength 
of CaCl 2  favored the maximum production of withanolide content (Fig.  12.12 ). In the 
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adventitious roots and hairy root cultures, among the different concentrations of CaCl 2  
tested, 2.0× strength of CaCl 2  favored both the root biomass accumulation (Tables  12.10  
and  12.11 ) and withanolide production (Figs.  12.13  and  12.14 ; [ 43 ,  44 ]).  

12.3.14     Effect of MgSO 4  on Biomass Accumulation 
and Withanolide Production 

 In the cell suspension cultures of  W. somnifera , of the MgSO 4  concentrations tested, 
the highest accumulation of biomass was recorded in the medium with 1.5× strength 
of MgSO 4  (Table  12.9 ) and the highest production of withanolide content was 
recorded in the medium supplemented with 1.0× strength of MgSO 4  (Fig.  12.12 ; 
[ 42 ]). Murthy and Praveen [ 43 ] reported that 1.5× strength of MgSO 4  was favorable 
for the biomass accumulation (Table  12.10 ) and withanolide production (Fig.  12.13 ) 
in the adventitious root cultures. In the hairy root cultures, 1.5× strength of MgSO 4  
favored the biomass accumulation (Table  12.11 ) whereas higher concentration of 
2.0× strength favored the withanolide production (Fig.  12.14 ; [ 44 ]).  

12.3.15     Effect of KH 2 PO 4  on Biomass Accumulation 
and Withanolide Production 

 Of the different concentration of KH 2 PO 4  tested in the cell and organ suspension 
cultures of  Withania , the highest accumulation of biomass and withanolide content 
was observed in the medium supplemented with higher concentration of 2.0× 
strength of KH 2 PO 4  (Tables  12.9 ,  12.10 , and  12.11 ; Figs.  12.12 ,  12.13 , and  12.14 ; 
[ 42 – 44 ]).  

12.3.16     Effect of Ammonium/Nitrate Ratios on Biomass 
Accumulation and Withanolide Production 

 Nitrogen concentration affects the level of proteinaceous or amino acid products in 
cell suspension cultures. The ratio of the ammonia/nitrate and overall levels of total 
nitrogen markedly affect the production of secondary plant products. Table  12.12  
and Fig.  12.15  illustrate the effects of ammonium/nitrate ratios in MS medium on 
the growth of cell suspension culture and accumulation of withanolides. Nitrate 
rather than ammonium was necessary for both cell growth and withanolide produc-
tion. A low concentration of ammonium (7.19 mM) with the moderate concentra-
tion of nitrate (18.80 mM) was favorable for the highest accumulation of biomass. 
Maximum withanolide yield was achieved at a ratio of 14.38 (mM) ammonium to 
37.60 (mM) nitrate followed by the ammonium free medium [ 42 ].
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   Table 12.12    Biomass growth of  Withania somnifera  cell suspension cultures as affected by NH 4  + /
NO 3  −  ratios in the MS medium. Cultures were grown in 250 mL conical fl asks containing 50 mL 
medium for 4 weeks a, b    

 NH 4  + /NO 3  −  ratios in MS medium 
(mM)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Growth ratio 

 0.00/18.80  100.12 ± 1.04b  8.47 ± 0.10b  7.70 
 7.19/18.80  110.45 ± 1.92a  9.29 ± 0.16a  8.44 
 14.38/18.80  107.42 ± 0.67a  9.13 ± 0.05a  8.28 
 21.57/18.80  86.89 ± 0.98c  6.54 ± 0.07cd  5.94 
 28.75/18.80  73.70 ± 1.29e  5.15 ± 0.08e  4.68 
 14.38/0.00  38.66 ± 1.24f  3.03 ± 0.11f  2.75 
 14.38/9.40  84.06 ± 1.07c  6.32 ± 0.06d  5.74 
 14.38/18.80  107.31 ± 1.10a  9.05 ± 0.02a  8.23 
 14.38/28.20  97.46 ± 0.74b  8.27 ± 0.08b  7.52 
 14.38/37.60  78.84 ± 0.70d  6.70 ± 0.22c  6.09 

   a NH 4  + /NO 3  − =NH 4 Cl/KNO 3  (mM/mM) 
  b Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  ≤ 0.05  
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  Fig. 12.15    Withanolide A content in cell suspension cultures after 4 weeks of culture as affected 
by different ratio of NH 4  + /NO 3  −  in the MS medium. Data represents mean values ± SE of three 
replicates; each experiment was repeated twice. Means with common letters are not signifi cantly 
different at P ≤ 0.05 according to Duncan’s multiple range test (DMRT)       
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    Generally, lower concentrations of ammonium to nitrate ratios are benefi cial to 
plant cell cultures [ 45 ]. Similar observations were also reported with adventitious 
and hairy root cultures where maximum root growth was achieved at an ammonium/
nitrate ratio of 14.38/37.60 mM (Tables  12.13  and  12.14 ) and the highest withanolide 
production was found with an ammonium/nitrate ratio of 0.00/18.80 mM (Figs.  12.16  
and  12.17 ). Root growth and withanolide productivity reached only one-third of the 
maximum values when ammonium was used as the sole nitrogen source [ 43 ,  44 ]. 
Based on these results, it can be suggested that the nitrate and ammonium ions have 
differential effects on secondary metabolism in plant cell and organ cultures.

   Table 12.13    Biomass growth of  Withania somnifera  adventitious roots as affected by NH 4  + /NO 3  −  
ratios in the MS medium. Cultures were grown in 250 mL conical fl asks containing 50 mL medium 
for 4 weeks a, b    

 NH 4  + /NO 3  −  ratios in MS medium 
(μM)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Growth ratio 

 0.00/18.80  100.12 ± 1.04e  9.47 ± 0.10d  7.28 
 7.19/18.80  130.45 ± 1.92b  12.29 ± 0.16b  9.45 
 14.38/18.80  117.42 ± 0.67d  11.23 ± 0.05c  8.53 
 21.57/18.80  82.56 ± 0.90f  8.24 ± 0.14e  6.34 
 28.75/18.80  74.09 ± 0.73g  7.15 ± 0.08f  5.50 
 14.38/0.00  36.32 ± 1.29h  3.56 ± 0.20g  2.74 
 14.38/9.40  75.73 ± 0.80g  7.48 ± 0.11f  5.75 
 14.38/18.80  117.31 ± 1.10d  11.05 ± 0.02c  8.50 
 14.38/28.20  125.46 ± 1.61c  12.27 ± 0.08b  9.44 
 14.38/37.60  145.84 ± 1.01a  14.49 ± 0.09a  11.15 

   a NH 4  + /NO 3  − =NH 4 Cl/KNO 3  (mM/mM) 
  b Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  ≤ 0.05  

   Table 12.14    Biomass growth of  Withania somnifera  hairy root cultures as affected by NH 4  + /NO 3  −  
ratios in the MS medium. Cultures were grown in 250 mL Erlenmeyer’s fl asks containing 50 mL 
medium for 4 weeks a, b    

 NH 4  + /NO 3  −  ratios in MS medium (μM)  Fresh weight (g L −1 )  Dry weight (g L −1 )  Growth 

 0.00/18.80  110.12 ± 1.04e  10.47 ± 0.10d  8.31 
 7.19/18.80  140.45 ± 1.92b  13.29 ± 0.16b  10.55 
 14.38/18.80  127.31 ± 1.10d  12.05 ± 0.20c  9.56 
 21.57/18.80  85.22 ± 0.65f  8.54 ± 0.07e  6.78 
 28.75/18.80  75.09 ± 0.58g  7.15 ± 0.08f  5.68 
 14.38/0.00  36.66 ± 1.21h  3.70 ± 0.22g  2.94 
 14.38/9.40  74.06 ± 1.07g  7.32 ± 0.06f  5.81 
 14.38/18.80  127.31 ± 1.10d  12.05 ± 0.20c  9.56 
 14.38/28.20  135.46 ± 1.61c  13.27 ± 0.08b  10.53 
 14.38/37.60  148.17 ± 0.19a  14.79 ± 0.06a  11.74 

   a NH 4  + /NO 3  − =NH 4 Cl/KNO 3  (mM/mM) 
  b Data represents mean values ± SE of three replicates; each experiment was repeated twice. Mean 
separation within column by Duncan’s multiple range test at  P  ≤ 0.05  
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12.4            Effect of Elicitors on Biomass Accumulation 
and Withanolide Production 

 Various attempts have been made to increase the biomass accumulation and witha-
nolide production  in vitro  cultures of  Withania . Baldi et al. [ 46 ] studied the effect of 
various abiotic (arachidonic acid, methyl jasmonate, calcium chloride and copper 
sulphate) and biotic elicitors ( Alternia alternate ,  Fusarium solani  and  Verticilium 
dahaliae ) on the production of withaferin A from transformed cell cultures and 
found 5.4 and 9.7 times higher production respectively with copper sulphate 
(100 μM) and the cell extract of  V. dahaliae  (5 % v/v). The dual elicitation strategy 
by the combined addition of these two elicitors resulted in 13.8 fold enhancement 
of withaferin A content in comparison to control cultures. The effect of various 
organic additives (L-glutamine, casein hydrolysate, adenine sulphate, coconut water 
and malt extract) and seaweed extracts ( Sargassum wightii  and  Gracilaria edulis ) 
were studies by Sivanandhan et al. [ 13 ] on the biomass accumulation and witha-
nolide production. Among the different organic additives supplemented in the cell 
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  Fig. 12.16    Withanolide-A content in adventitious root cultures after 4 weeks of culture as affected 
by different ratio of NH 4  + /NO 3  −  in the MS medium. Data represents mean values ± SE of three 
replicates; each experiment was repeated twice. Means with common letters are not signifi cantly 
different at  P  ≤ 0.05 according to Duncan’s multiple range test (DMRT)       
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suspension cultures, L-glutamine at 200 mg L −1  resulted in the highest accumulation 
of biomass and withanolides production followed by 150 mg L −1  casein hydroly-
sate. The supplementation of 40 and 50 % extract of  G. edulis  resulted in the highest 
accumulation of biomass and withanolide production compared to  S. wightii . 

 In the adventitious root cultures of  Withania , salicylic acid and methyl jasmonate 
at different concentrations and different exposure time were studied for the biomass 
accumulation and withanolide production and the results suggested that addition of 
30-day-old adventitious root cultures with 150 μM salicylic acid for 4 h elicitor 
exposure period and harvesting the adventitious roots at 40 days interval resulted in 
the highest production of withanolides compared to the methyl jasmonate treat-
ments [ 47 ]. In another study, Sivanandhan et al. [ 17 ] reported that chitosan at 
100 mg L −1  with 4 h exposure time stimulated the higher withanolides production at 
the end of 6 weeks of culture period when compared with different concentrations 
and exposure time of chitosan and aluminium chloride. 

 Various concentrations of methyl jasmonate and salicylic acid and specifi c expo-
sure times were studied for the production of withanolides from hairy root cultures. 
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Enhanced production of biomass and withanolides were achieved from 40 day old 
harvested hairy roots elicited with 150 μM SA for 4 h exposure time when com-
pared with other concentration of SA (0, 50, 100, 150, and 200 μM) or MJ (0, 5, 10, 
15 and 20 μM) with several exposure times (0, 2, 4, 6, and 8) [ 27 ]. Doma et al. [ 38 ] 
studied the effect of different elicitors viz., chitosan, jasmonic acid, acetyl salicylic 
acid, sodium nitroprusside and triadimefon at different concentrations on hairy root 
biomass accumulation and withanolides production and found that triadimefon at 
10 mg L −1  was optimal for the accumulation of hairy root biomass whereas 
100 mg L −1  triadimefon was found suitable for the withaferin A production and 
withanolide A was not detected in most of the treatments. Hairy roots elicited with 
1 mg L −1  acetyl salicylic acid improved both withaferin A and withanolide A 
production.  

12.5     Conclusions and Perspectives 

 Extensive research work has been carried out on  Withania  cell and organ cultures, 
such as optimization of culture medium, physical conditions and strategies to 
improve fl ask scale cultures. The work also included maximizing biomass yield and 
withanolides contents.  Withania  cell and organ cultures have been evolved as an 
alternative to fi eld grown plants and optimized biomass and metabolite production 
is possible by adopting optimized culture conditions including elicitation. 

 In addition to the production of  Withania  biomass and withanolides, other oppor-
tunities still exist for the utilization of cell and organ cultures for the production of 
valuable ingredients such as saponins, biophenols, alkaloids, acylsteryl glucosides 
and various ubiquitous compounds such as fatty acids, amino acids and vitamins. In 
the light of current success, future research should be focused on development of 
large scale and bioreactor culture processes such as continuous culture, process 
monitoring, modeling and control which may be useful for reducing the production 
cost and meeting the supply of the active constituents.     
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    Abstract      Eleutherococcus senticosus  (Rupr. & Maxim.) Maxim ( Acanthopanax 
senticosus ), popularly known as ‘Siberian ginseng’, is a woody medicinal plant 
which is used in traditional medicine as an adaptogen. It is marketed throughout the 
world as a health supplement. The major active ingredients are lignan glycosides 
called eleutherosides. Efforts have been made recently to produce bioactive com-
pounds from suspension cultures of somatic embryos. Bioreactor cultures have been 
established for the production of embryogenic biomass and bioactive compounds. 
In this review, we have presented bioreactor scale production of bioactive com-
pounds and explained various bioprocess strategies for the production of eleuthero-
side B, E, E1 and chlorogenic acid.  
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  Abbreviations 

   2 4-D    2, 4-Dichlorophenoxy acetic acid   
  C 2 H 4     Ethylene   
  CO 2     Carbon dioxide   
  DW    Dry weight   
  FW    Fresh weight   
  GA 3     Gibberellic acid   
  MJ    Methyl jasmonate   
  MS medium    Murashige and Skoog medium   
  O 2     Oxygen   
  vvm    Air volume per medium volume per minute   

13.1           Introduction 

  Eleutherococcus senticosus  (Rupr. & Maxim.) Maxim ( Acanthopanax senticosus ) 
is a woody medicinal plant popularly known as ‘Siberian ginseng.’ It is distributed 
in southeast Russia, Northeastern China, Korea and Japan [ 1 ,  2 ]. This plant is used in 
traditional Chinese medicine as an adaptogen and to strengthen spleen and 
 kidney [ 3 ]. It is popular in other parts of the world as an health supplement and 
recorded as a pharmacopeial species in monographs of European Pharmacopoeia 
and American Herbal Pharmacopoeia. The natural products isolated from 
 Eleutherococcus senticosus  have been shown to have various activities including 
antibacterial, anticancer, anti-infl ammatory, antigout, antihepatitis, antihyperglyce-
mic, antileishmanicidic, antioxidant, haemostatic, immuno-stimulatory, and hypo-
cholesterolemic effects [ 2 ]. The main chemical substances of  E. senticosus  are 
 eleutherosides and these are lignan glycosides (Fig.  13.1 ). Among various eleu-
therosides, eleutheroside B (synarin; a phenyl propanoid glycoside), eleutheroside 
E ((−) syringaresinol-di-O- β- d -glucoside) and eleutheroside E1 are known to be the 
main active principles of  E. senticosus  [ 4 ].

   Plant cell and organ cultures have emerged as useful techniques for the produc-
tion of bioactive compounds, and bioreactor based systems have been developed for 
the production of ginsenosides [ 5 ], phenolics [ 6 ] and alkaloids [ 7 ]. Somatic embryos 
have been induced in various species of  Eleutherococcus  and the bioreactor cultures 
of embryos were established [ 8 – 10 ]. In this review, summerize bioreactor culture of 
somatic embryos of  E. senticosus  for the production of bioactive compounds. 

13.1.1     Induction of Embryos and Establishment of Suspension 
Cultures in Shake Flasks 

 Embryogenic callus of  E. senticosus  was induced by using root explants on 
Murashige and Skoog (MS) [ 11 ] medium supplemented with 3 % (w/v) sucrose, 
1.0 mg L −1  2,4-dichlorophenoxy acetic acid (2,4-D) and 2.3 g L −1  gelrite [ 8 ]. 
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Embryogenic cells were maintained in MS liquid medium with 3 % (w/v) sucrose, 
1.0 mg L −1  2,4-dichlorophenoxy acetic acid (2,4-D) by sub-culturing in fresh 
medium in 250 mL shake fl asks (containing 100 mL of medium). Cultures were 
maintained in darkness at a temperature of 25 °C on gyratory shaker at 100 rpm and 
were subcultured once in every 3 weeks. 

 About 500 mg of embryogenic cell clumps were cultured in 250 mL shake 
fl asks containing 100 mL of MS medium with 30 g L −1  sucrose, without growth 
regulators for the embryo development and to study the growth kinetics of somatic 
embryos (Fig.  13.3a ). The cultures were maintained in darkness at a temperature of 
25 °C on gyratory shaker at 100 rpm for 63 days. A typical growth curve was 
observed during somatic embryo development and biomass accumulation with a 
lag-phase until 7 days, an exponential phase of growth from day 7 to day 35 and a 
stationary phase from day 35 till day 49 (Fig.  13.2a ). The biomass doubling time 
( td ) was 4.85 h (7 days) and the specifi c growth rate ( μ ) during the exponential 
phase was 0.022 day −1  (Table  13.1 ). The changes in the hydrogen ion concentration 
(pH) and electrical conductivity (EC) during culture is presented in Fig.  13.2b . The 
pH of the culture increased from 5.68 to 5.94 on day 7, after that the pH reached to 
6.13. The changes in the pH reveal the absorption of specifi c mineral elements by 
the developing embryos in the medium [ 12 ]. EC levels decreased gradually and this 
also refl ects the increase in biomass accumulation that occurred over the time 
lapse. This fi nding is similar to the results of studies conducted by Ryu et al. [ 13 ] 
and Taya et al. [ 14 ], who have correlated the conductivity parameters with the cell 
biomass.

13.2          Establishment of Bioreactors Cultures 

 Bioreactor based systems have been developed for the production of bioactive com-
pounds in many plants [ 8 ,  9 ,  15 ,  16 ] and various parameters such as inoculum size, 
medium components, effi cient oxygen transfer and mixing and other physico- 
chemical parameters have been investigated. We established bioreactor cultures with 
the objective of production of eleutherosides and chlorogenic acid. Ten grams of 
embryogenic cells were cultured in 3 L balloon type airlift bioreactors containing 2 L 
MS medium with 30 g L −1  sucrose and investigated growth regulators (Fig.  13.3b ). 
The volume of input air was adjusted to 0.1 vvm. All the bioreactors were maintained 
at 25 °C in dark. Complete embryo development was achieved after 30 days in this 
medium. We investigated various factors such as the effect of bioreactor type, aera-
tion volume, temperature, light, gaseous nutrients such as oxygen, carbon dioxide 
and ethylene on biomass and secondary metabolite accumulation.
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  Fig. 13.2    Changes in ( a ) fresh weight, dry weight, ( b ) pH, electrical conductivity ( EC ) of  E. sen-
ticosus  embryos during suspension cultures       
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13.2.1       The Effect of Bioreactor Type on Production 
of Biomass and Bioactive Compounds 

 To facilitate accumulation of biomass and bioactive compounds, selection of suit-
able bioreactors is essential [ 17 ,  18 ]. We have used balloon, bulb, cone and cylin-
der type bioreactors for culturing of  E. senticosus  somatic embryos and got highest 
biomass with balloon type bioreactors (Table  13.2 ). 102.3 g L −1  fresh biomass and 
11.3 g L −1  dry biomass was obtained in balloon type airlift bioreactors and the 
growth ratio was also optimum (17.0). Optimal amount of eleutheroside 

   Table 13.1    Specifi c growth rate ( μ ) and doubling time (T d ) of  E. senticosus  somatic embryos   

 Day  7  14  21  28  35  42  49  56  63 
  μ   0.142  0.071  0.048  0.036  0.029  0.023  0.020  0.018  0.016 
 T d  = 1n 2/μ max (day)  4.85 

a b

c

fed

  Fig. 13.3    Suspension cultures of somatic embryos of  Eleutherococcus senticosus : ( a ) Embryogenic 
cells in MS liquid medium supplemented with 30 g sucrose L −1  and 1.0 mg 2,4-dichlorophenoxy 
acetic acid L −1 . ( b ) Embryogenic suspension in 3 L capacity balloon-type airlift bioreactor con-
taining 2 L MS medium with 30 g sucrose L −1 . ( c ) Biomass harvested from 500 L balloon bioreac-
tor after 30 days of culture. ( d ) Embryogenic suspension in 20 L balloon type airlift bioreactor. ( e ) 
Embryogenic suspension in 500 L balloon-type airlift bioreactor. ( f ) Biomass harvested from 20 L 
balloon bioreactor after 30 days of culture       
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B (20.0 μg g −1  DW), eleutheroside E (47.2 μg g −1  DW), eleutheroside E1 
(34.4 μg g −1  DW) and chlorogenic acid (1.1 mg g −1  DW) were accumulated in 
embryos cultivated in balloon type bioreactors. The volumetric oxygen transfer 
coeffi cient ( k   L  a) is an important factor for biomass growth during bioreactor cul-
tures and the optimal  k   L  a values (6.98) of balloon type bioreactors might be 
responsible for enhanced accumulation of biomass and secondary metabolites. 
Since we got optimal results with balloon type airlift bioreactors further experi-
ments were carried out by using these bioreactors.

13.2.2        The Effect of Aeration Volume on Production 
of Biomass and Bioactive Compounds 

 In bioreactor cultures, the volumetric airfl ow rate is an important parameter that 
affects oxygen transfer, degree of turbulence and medium circulation [ 19 ]. 
Constant air supply of 0.05, 0.1, 0.2, 0.3 vvm and variable air supply of 
0.05/0.1/0.2/0.3 vvm (air supply were changed once in every 7 days over the cul-
ture period) were tested on biomass and metabolite accumulation and the results 
are presented in Table  13.3 . Maximum fresh and dry biomass accumulation was 
observed with the bioreactors supplemented with variable supply of air volumes 
over the culture period (Table  13.3 ). 25.7 μg g −1  DW of eleutheroside B, 52.5 μg g −1  
DW of eleutheroside E, 30.2 μg g −1  DW of eleutheroside E1 and 1.0 mg g −1  DW of 
chlorogenic acid were recorded with cultures supplemented with variable air vol-
ume over the culture period and such variable supply of aeration volume facilitates 
proper agitation and also it prevents setting of the embryogenic biomass at the 
bottom of bioreactors.

13.2.3        The Effect of Inoculum Density on Production 
of Biomass and Bioactive Compounds 

 Inoculum density/size is one of the factors that determine the accumulation of 
biomass and the productivity of bioactive compounds from  in vitro  cultures [ 19 , 
 20 ]. In this study, the inoculum density was found to have profound infl uence on 
growth, accumulation of biomass and the production of eleutherosides and chlo-
rogenic acid (Table  13.4 ). The maximum biomass was obtained (103.7 g L −1  FW 
and 11.5 g L −1  DW) when 5 g L −1  of embryogenic cells were fed into the bioreac-
tors. Optimal productivity of eleutherosides (21.2 μg g −1  DW of eleutheroside B, 
49.9 μg g −1  DW of eleutheroside E, 28.9 μg g −1  DW of eleutheroside E1) and 
 chlorogenic acid (1.2 mg g −1  DW) were also obtained when the inoculum den-
sity was 5 g L −1 .
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13.2.4        The Effect of Incubation Temperature 
on the Production of Biomass and Bioactive 
Compounds 

 It has been shown that the optimal temperature treatment of suspension cultures is 
necessary for the accumulation of biomass and secondary metabolites [ 21 ,  22 ]. In 
the present study, bioreactor cultures were maintained at four different temperature 
regimes i.e., 12, 18, 24 and 30 °C to verify their effect on accumulation of biomass 
and bioactive compounds. The accumulation of biomass was optimum with cultures 
incubated at 24 °C, 102.1 g L −1  fresh biomass and 11.10 g L −1  dry biomass was 
evident (Table  13.5 ). Production of eleutherosides B (21.2 μg g −1  DW), eleuthero-
side E1 (39.6 μg g −1  DW) and chlorogenic acid (1.0 mg g −1  DW) was also highest 
with cultures incubated at 24 °C. However, highest accumulation of eleutheroside E 
(43.1 μg g −1  DW) was recorded with the cultures incubated at temperature 12 °C.

13.2.5        The Effect of Oxygen, Carbon Dioxide and Ethylene 
on Production of Biomass and Bioactive Compounds 

 Oxygen is an important gaseous nutrient, which is available in the bioreactor cul-
tures as dissolved oxygen or in the form of bubbles with airlift bioreactors with the 
incoming air. Plant cells have lower metabolic rates than microbial cells and there-
fore require comparatively low oxygen supply. Further, oxygen requirement of the 
cultured cells and organ vary from species to species and it affects metabolic activ-
ity and energy supply. To facilitate enhanced oxygen supply the incoming air was 
supplemented with 30, 40 and 50 % oxygen and the results revealed that extra sup-
plementation of oxygen was not benefi cial for both biomass and metabolite accu-
mulation in embryogenic suspensions of  E. senticosus  (Table  13.6 ). However, the 
improvement of secondary metabolite accumulation in oxygen enrichment cultures 
was reported by Gao and Lee [ 23 ], Han and Zhong [ 24 ] and Thanh et al. [ 25 ].

   Table 13.5    The effect of temperature on biomass accumulation and secondary metabolite 
production of  E. senticosus  somatic embryos in bioreactor   

 Temp. 
(°C) 

 Biomass g L −1  

 Growth 
ratio a  

 Eleutherosides (μg g −1  DW)  Chlorogenic 
acid 
(mg g −1  DW)  FW  DW 

 % 
DW  B  E  E 1   Total 

 12  68.3 b b   5.1 c  7.4 d  8.6 c  ND c   43.1 a  12.7 b  55.8 b  0.5 b 
 18  78.0 b  8.4 b  10.7 a  12.3 b  15.9 b  26.9 b  11.7 b  54.5 b  1.0 a 
 24  102.1 a  11.10 a  10.8 b  16.6 a  21.2 a  42.0 a  39.6 a  102.8 a  1.0 a 
 30  48.3 c  4.6 c  9.6 c  7.8 c  ND  ND  ND  ND  ND 

   a Growth ratio is the quotient of the dry weight after culture and the dry weight of the inoculum size 
  b Mean separation within column by Duncan’s multiple range test at  p  ≤ 0.05 
  c Not detected  
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   Maurel and Preilleux [ 26 ] observed the increased growth of  Catharanthus 
roseus  cultures in carbon dioxide (CO 2 ) environment. Similarly, CO 2  enrichment 
was found to cause an enhancement of secondary metabolites in  Digitalis pur-
purea  [ 27 ] and  Panax ginseng  [ 28 ]. Experiments were conducted with embryo-
genic suspension cultures of  E. senticosus  with the supplementation of incoming 
air with 1, 2.5, 5.0, and 10.0 % CO 2  and results showed the supplementation of 
CO 2  was not benefi cial both for biomass and metabolite accumulation 
(Table  13.6 ). 

 Effect of ethylene was also studied by many researchers [ 29 ,  30 ] and reported 
the inhibition of growth and stimulation of secondary metabolite production. For 
example, Kim et al. [ 29 ] found stimulating effect of ethylene on production of 
alkaloids in cell suspensions of  Thalictrum rugosum. E. senticosus  embryogenic 
cultures were supplemented with 1.0, 2.5, 5.0 and 10.0 ppm of ethylene and 
results showed that inhibitory effect on biomass accumulation (Table  13.7 ). 
However, there was increment in accumulation of eleutheroside B (32.9 μg g −1  
DW), eleutheroside E (89.2 μg g −1  DW) and eleutheroside E1 (174.7 μg g −1  DW) 
with the supplementation of 2.5 ppm of ethylene. Increment in chlorogenic acid 
(1.9 mg g −1  DW) was documented with supplementation of 5.0 ppm of ethylene 
(Table  13.7 ).

13.2.6        The Effect of Light Quality on the Production 
of Biomass and Bioactive Compounds 

 Light is an important factor for the accumulation of cell biomass and the formation 
of secondary metabolites. The stimulatory effects of light on the productivity of 
secondary metabolites have shown in  Petroselinum hortense  [ 31 ],  Beta vlugaris  

    Table 13.6    Effect of oxygen and carbon dioxide on growth and total eleutherosides production in 
 E senticosus  somatic embryos in bioreactor   

 Name of 
the gases 

 Concentration 
used 

 Biomass (g L −1 )  Growth
ratio a  

 Total eleutherosides 
(μg g −1  DW)  FW  DW  % DW 

 O 2  (%)  Control  105.3 a b   10.2 a  9.7  15.2  97.8 
 30  101.1 ab  10.0 a  9.9  14.9  90.0 
 40  94.3 ab  9.7 a  10.3  14.5  74.8 
 50  89.2 b  9.9 a  11.1  14.7  67.9 

 CO 2  (%)  Control  105.6 a  10.6 b  10.0  19.0  89.6 
 1.0  84.7 b  10.5 b  12.4  18.8  69.1 
 2.5  84.6 b  11.3 a  13.4  20.4  49.6 
 5.0  79.3 d  10.7 ab  13.5  19.2  46.4 
 10.0  83.4 c  10.6 b  12.7  19.0  33.8 

   a Growth ratio is the quotient of the dry weight after culture and the dry weight of the inoculum size 
  b Mean separation within column by Duncan’s multiple range test at  p  ≤ 0.05  
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[ 32 ],  Perilla frutescens  [ 33 ],  Panax ginseng  [ 22 ]. On the other hand, light has an 
inhibitory effect on accumulation of secondary metabolites such as nicotine and 
shikonin [ 34 ]. In the current studies, cultures were incubated under fl uorescent, 
blue, red and blue plus far red lights and compared their impact on biomass growth 
and metabolite accumulation. The cultures which were incubated in dark were used 
as control and the results are presented in Table  13.8 . The experimental results 
showed the stimulatory effect of light on secondary metabolite accumulation, but 
the effect of light was not signifi cant on biomass accumulation. Cultures treated 
with red light were responsible for stimulating the accumulation of eleutheroside E 
(54.5 μg g −1  DW), eleutheroside E1 (50.4 μg g −1  DW), whereas cultures treated with 
blue light stimulated the accumulation of eleutheroside B (27.9 μg g −1  DW). 
Therefore, to enhance the accumulation of eleutherosides, it is suggested to illumi-
nate the cultures with red and blue lights at least on the fi nal week of culture period.

13.2.7        The Effect of Gibberellic Acid on the Production 
of Biomass and Bioactive Compounds 

 It was reported that amount of eleutherosides are in highest quantities in germinated 
embryos/young plantlets compared to that of matured somatic embryos of 
 Eleutherococcus koeanum  [ 9 ]. It is also known that gibberellic acid is the key phyto-
hormone, which controls the germination process of somatic embryos. Therefore, we 
treated the embryogenic cultures of  E. senticosus  with gibberellic acid (GA 3 ) in the 
last week of culture process. The effect of gibberellic acid on biomass accumulation 
and production of secondary metabolites is presented in Table  13.9 . Among the vari-
ous concentrations of GA 3  tested (0, 1, 2, 3, 4, 8 mg L −1 ), embryos which were treated 
with 4.0 mg L −1  accumulated highest biomass (121.9 g L −1  and 12.6 fresh and dry 
biomass) and growth ratio (22.7). This treatment was also superior for accumulation 
of secondary metabolites and the cultures accumulated 41.0 μg g −1  DW of eleuthero-
side B, 72.9 μg g −1  DW of eleutheroside E, 77.1 μg g −1  DW of eleutheroside E1 and 
2.1 mg g −1  DW of chlorogenic acid, thus 2.2, 2.4, 1.8 and 2.2 fold increment was 
evident.

13.2.8        Elicitation 

 The accumulation of secondary metabolites in plants is part of the immune response 
against the pathogenic attack. The accumulation of secondary compounds is trig-
gered and activated by the elicitors and signal compounds of plants’ defense system 
[ 35 ]. Therefore, the treatment of plant cells with biotic and/or abiotic elicitors has 
been useful strategy to enhance secondary metabolite production in cell or organ 
cultures. Methyl jasmonate (MJ) is the most frequently used elicitor and improved 
taxol production in  Taxus chinensis  [ 36 ], ginsenoside production in  Panax ginseng  

13 Production of Bioactive Compounds of Siberian Ginseng
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[ 15 ,  37 ,  38 ] cell and organ cultures. The growth and secondary metabolite accumu-
lation by the embryos of  E. senticosus , cultivated in bioreactor cultures are pre-
sented in Table  13.10 . The embryos in the untreated cultures reached 102.6 and 
11.3 g L −1  fresh and dry weight. The fresh and dry weight and growth ratio were 
decreased with the increasing concentration of MJ (Table  13.10 ). On the other hand, 
eleutheroside content was signifi cantly enhanced by the addition of MJ. Amount of 
total eleutherosides and chlorogenic acid increased with the increasing MJ concen-
tration and reached a maximum at 200 μM MJ representing 7.3 fold (649.9 μg g −1  
DW) and 3.9 fold (4.4 μg g −1  DW) increase over control respectively. There were 
1.4, 3.4 and 14.9 fold increments in eleutheroside B, E and E1 respectively when 
compared to control [ 39 ]. Eleutheroside E1 content was highest among the different 
eleutherosides produced by the suspended embryos. Similar to the present observa-
tions, differential accumulation of secondary metabolites have been reported during 
cell/organ cultures of  Panax ginseng  [ 15 ,  38 ].

    Table 13.10    Effect    of methyl jasmonate (MJ) on biomass accumulation and secondary metabolite 
production of  E. senticosus  somatic embryos in bioreactor b    

 MJ 
(Conc.) 
μM 

 Biomass g L −1  
 Growth 
ratio a  

 Eleutherosides (μg g −1  DW)  Chlorogenic 
acid (mg g −1  
DW)  FW  DW  % DW  B  E  E 1   Total 

 0  102.6 a b   11.3 a  11.0  20.3  25.5 c  28.6 e  34.5 f  88.7 f  1.1 e 
 50  103.1 a  10.6 b  10.2  19.0  26.7 c  89.0 c  119.9 e  235.7 e  2.0 d 
 100  104.6 a  10.1 b  9.6  18.0  27.9 c  93.9 b  150.0 d  271.9 d  2.3 c 
 150  102.5 a  9.5 c  9.2  16.9  32.7 b  89.0 c  315.5 b  437.2 b  4.0 b 
 200  99.2 b  9.2 c  9.3  16.5  33.0 b  99.4 a  517.5 a  649.9 a  4.4 a 
 300  88.8 c  7.5 d  8.5  13.3  37.4 a  90.9 c  238.1 c  366.4 c  2.4 c 
 400  18.3 d  2.9 e  15.9  4.4  31.5 b  85.2 d  159.5 d  276.3 d  1.3 e 

   a Growth ratio is the quotient of the dry weight after culture and the dry weight of the inoculum size 
  b Mean separation within column by Duncan’s multiple range test at  p  ≤ 0.05  

   Table 13.9    Effect of gibberellic acid on biomass accumulation and secondary metabolite 
production of  E. senticosus  somatic embryos in bioreactor b    

 GA 3  
(mg L −1 ) 

 Biomass g L −1  
 Growth 
ratio a  

 Eleutherosides (μg g −1  DW)  Chlorogenic 
acid (mg g −1  
DW)  FW  DW  % DW  B  E  E 1   Total 

 0.0  105.6 c  9.9 c  9.4  17.7  20.1 d  28.9 c  40.5 c  89.6 d  1.1 c 
 1.0  107.5 c  10.6 c  9.9  19.1  31.2 b  35.4 b  55.4 b  122.0 c  1.8 c 
 2.0  110.7 c  10.7 c  9.6  19.2  43.1 a  71.6 a  73.7 a  188.4 b  2.3 a 
 3.0  117.2 b  11.5 b  9.8  20.8  45.2 a  75.4 a  74.9 a  195.5 a  2.4 a 
 4.0  121.9 a  12.6 a  10.3  22.7  41.0 a  72.9 a  77.1 a  191.0 a  2.1 b 
 8.0  108.0 c  8.3 b  7.7  14.8  25.5 c  39.9 b  17.9 d  83.3 e  2.1 b 

   a Growth ratio is the quotient of the dry weight after culture and the dry weight of the inoculum size 
  b Mean separation within column by Duncan’s multiple range test at  p  ≤ 0.05  
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13.3         Cultivation of Somatic Embryos in Large 
Scale Cultures 

 Somatic embryos of  E. senticosus  were cultured in 20 L balloon type bioreactor 
(Fig.  13.3d ), 500 L drum type and balloon type bioreactors (Fig.  13.3e ) based on the 
results of 5 L cultures. The embryos were cultured in MS basal medium with 3 % 
(w/v) sucrose and without growth regulators. The cultures were established by 
using 3 g L −1  inoculum and aerated with 0.1 vvm. Optimal of 1.9 kg (Fig.  13.3f ) and 
216 g of fresh and dry biomass and 161.5 mg kg −1  DW total eleutherosides were 
obtained from 20 L balloon type airlift bioreactors. Large scale bioreactors were 
also effi cient in accumulation of biomass and secondary metabolites. Biomass of 
56.6 kg, 63.0 kg fresh weight (Fig.  13.3c ) and 5.3 and 5.7 kg dry weight of embryos 
could be achieved in 500 L balloon and drum bioreactors respectively (Table  13.11 ). 
163.6 and 158.8 mg kg −1  DW of total eleutherosides were accumulated in the bio-
mass obtained from 500 L balloon and drum bioreactors respectively. These results 
are promising and show the possibilities of culturing embryogenic biomass of  E. 
senticosus  for obtaining bioactive compounds.

13.4        Conclusion and Perspectives 

  Eleutherococcus senticosus  Rupr. & Maxim (Siberian ginseng) is important medici-
nal plant which yields bioactive compounds known as eleutherosides. These active 
components showed positive effects on cellular defense and physical strength in 
man [ 40 ] and it is one of the most popular ingredients of nutracetuicals/functional 
food. We have induced somatic embryos in  E. senticosus  and cultured them in airlift 
bioreactors and investigated chemical and physical parameters which infl uence the 
biomass and secondary metabolite accumulation. We have also developed elicita-
tion technology for enhanced accumulation of eleutherosides using methyl jasmo-
nate and established large scale bioreactor systems for cultivation of somatic 
embryos. 

 In addition to the production of Siberian ginseng embryogenic biomass and eleu-
therosides, there is still scope for exploring the possibilities of accumulation of 
other bioactive compounds. Improvement of bioprocess parameters such as medium 

   Table 13.11    Biomass and eleutheroside production from somatic embryos of  E. senticosus  in 
20 L and 500 L bioreactors   

 Bioreactor types 
and volume 

 Biomass production 

 Total eleutherosides 
(mg kg −1  DW) 

 Fresh weight 
(kg)  Dry weight  % dry weight 

 Balloon (20 L)  1.9 kg  216 g  11.1  161.5 
 Balloon (500 L)  56.6 kg  5.2 kg  9.1  163.6 
 Drum (500 L)  63.0 kg  5.7 kg  9.0  158.8 
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feeding, high density cultures, continuous cultures are still to be investigated. 
Establishing drying technology of embryogenic biomass and extraction procedures 
should be worked out. Evaluation of biosafety and effi cacy tests of bioactive ingre-
dients of embryogenic cultures is also the present need.     
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    Abstract     Plant cell and tissue culture technology has been considered as a  powerful 
tool for the clonal production of medicinal plants. Plant tissue culture is an excellent 
alternative to traditional methods of plantation, as it offers a controlled supply of 
biochemicals independent of plant availability. In the past decade, tremendous prog-
ress has been made in this area, and its importance has rapidly increased because of 
increased need for medicinal plant substances as sources of medicine and health 
food ingredients. Bioreactor culture system was applied for biomass and secondary 
metabolite production in medicinal plants. The bioreactor system has been also 
refi ned to enhance the effi ciency in terms of productivity and for cost reduction. For 
an effi cient large-scale bioreactor culture, a perpetual explant source that is stable 
and fast growing is important, and till now, fi ve types of culture materials have been 
commonly used: (1) hairy roots, (2) adventitious roots, (3) suspension cells, (4) 
somatic embryos and (5) multiple shoots. Majority of studies have been conducted 
on the cell and root cultures for biomass and secondary metabolite production for 
commercial purposes. In comparison, only limited studies have been conducted on 
somatic embryo and multiple shoot cultures as sources of medicinal compounds, 
even though it has been found that intact plants contain more pharmaceutical chemi-
cals than that of the cells or roots. This review provides an updated and comprehen-
sive overview of somatic embryo and multiple shoot induction in various medicinal 
plants for the production of biomass and secondary compounds. Future perspectives 
of biomass and bioactive compound production  via  somatic embryogenesis and 
shoot culture have been also discussed.  
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  Keywords     Somatic embryogenesis   •   Multiple shoots   •   Biomass   •   Antioxidant   • 
  Balloon-type bubble bioreactor  

  Abbreviations 

   2, 4-D    2, 4-Dichlorophenoxy acetic acid   
  ABA    Abscisic acid   
  APX    Ascorbate peroxidase   
  BTBB    Balloon-type bubble bioreactor   
  CAT    Catalase   
  CI    Continuous immersion   
  CIN    Continuous immersion with net   
  E&FC    Ebb and fl ood culture   
  EC    Embryogenic callus   
  GC-MS    Gas chromatography and mass spectroscopy   
  GPx    Glutathione peroxidase   
  GR    Glutathione reductase   
  HPLC    High performance liquid chromatography   
  IAA    Indole-3-acetic acid   
  IBA    Indole-3-butyric acid   
  IMA    Immersion culture with air supply   
  MDA    Malondialdehyde   
  MJ    Methyl jasmonate   
  MRC    Modifi ed raft culture   
  MS medium    Murashige and Skoog medium   
  NAA    α-Naphthalene acetic acid   
  RC    Raft culture   
  ROS    Reactive oxygen species   
  SOD    Superoxide dismutase   
  TDZ    Thiadiazuron ( N -phenyl- N′ -(1 2, 3-thiadiazol-yl))   
  TI    Temporary immersion   
  TIN    Temporary immersion with net   
  vvm    Air volume per medium volume per minute   

14.1           Introduction 

 Plants have been a major source of pharmacologically active substances for thou-
sands of years and the earliest drugs were plant extracts. It is estimated that approxi-
mately one quarter of all prescribed drugs contain plant extracts or active ingredients 
obtained from modeled on plant substances [ 1 ]. Recently, increased emphasis is on 
the research of bioactive products from plants with potential pharmacological 
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activity. The most popular analgesic, aspirin was originally derived from the species 
of  Salix  and  Spiraea.  It is well known that some of the most valuable anti-cancer 
agents such as paclitaxel and vinblastine are derived solely from plant sources, and 
some species of the genus  Swertia  are used for the industrial production of prepara-
tions used to treat acute viral hepatitis [ 2 ]. In nature, the consistent, year-round 
production of these plants is limited. Thus, there is a renewed interest in plant cell 
and tissue culture technology in the past decade. The large-scale culture of plant 
cells and tissues has been considered as a powerful tool for the mass production of 
overexploited and important medicinal plants, and at the same time, also as an alter-
native resource for biochemicals. Routien and Nickel [ 3 ] obtained the fi rst plant 
tissue culture patent; its potential for the production of secondary metabolites has 
been presented by many researchers [ 2 ]. 

 Since the main factor in the production cost of in vitro propagated plants is the 
high input of manual labour, a reduction of labour by automation is one of the prime 
aims of commercial tissue culture. Generally, liquid culture systems are more ame-
nable to automation, and thus result in faster growth and propagation, but these sys-
tems are often of limited use due to ensuing physiological abnormalities of the plants, 
especially hyperhydricity [ 4 ]. For an effi cient large-scale culture with reduced physi-
ological abnormalities in the plants, a bioreactor system has been used for the produc-
tion of horticultural and medicinal plants. This automated micropropagation system 
has been promoted as a possible method to reduce the costs and labour-intensive 
nature of clonal propagation [ 5 ]. For this, it is necessary to have a stable, fast-grow-
ing, perpetual explant source to secure the culture materials. For the production of 
biomass that contains active biomolecules, fi ve kinds of culture materials are gener-
ally used: (1) hairy roots, (2) adventitious roots, (3) cells, (4) somatic embryos, and 
(5) multiple shoots. Suspension cell cultures are widely used in large-scale produc-
tion of biomass and secondary metabolite, as it is easy to subculture and convenient 
for scale-up culture. However, it is found that in many plants, the biochemical con-
tents are comparatively low and sometimes fl uctuated, thus causing the productivity 
of suspension cell cultures to be unstable, even though the doubling time of suspen-
sion cells is shorter than that of other tissue and organ cultures. Compared to this, 
organs such as roots (hairy and adventitious roots) and shoots have been regarded as 
good materials for the productivity and reproducibility [ 6 ,  7 ] of biomass and second-
ary metabolites [ 8 ,  9 ]. 

 Along with organ cultures, somatic embryos are also regarded as a suitable 
source material for in vitro natural compound production. The embryos offer an 
excellent experimental system to study the physiological and biochemical aspects 
of embryo development. Somatic embryogenesis has numerous benefi ts, including 
rapid propagation and a high reproduction coeffi cient without the restriction of nat-
ural conditions. In terms of biomass production, embryogenic callus production is 
small during the maintenance and proliferation stages. However, after being trans-
ferred onto a hormone-free medium, biomass increases rapidly and usually pharma-
ceutical compounds also increase as the plants develop further [ 10 ]. Researchers 
have not focused solely on development, but they have also studied the regulation of 
metabolic pathways. Since 2000, high frequency propagation of somatic embryos 
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through bioreactor culture in various medicinal plants including  Panax ginseng  and 
 Eleutherococcus senticosus  [ 11 ,  14 ,  15 ] has been reported [ 5 ,  11 – 13 ]. This chapter 
focuses on the general methods of biomass and secondary metabolite production  via  
shoot and somatic embryo culture in bioreactors (Fig.  14.1 ). Some successful exam-
ples are described in detail.

14.2        Establishment of Culture System 

14.2.1     Induction of Multiple-Shoots and Embryogenic 
Cultures 

    Multiple-Shoot Induction 

    Since the fi rst  Begonia  bioreactor culture reported by Takayama and Misawa [ 16 ], the 
culture method has been proven applicable to many species and various explant types, 
including shoots, bulbs, microtubers, roots, and somatic embryos [ 5 ]. Among the 
explants, the shoots are suitable explants in terms of secondary metabolite accumula-
tion and biomass. In  Eleutherococcus koreanum , the shoots were found to contain 
more eleutheroside E than that of adventitious roots and somatic embryos [ 10 ]. As 
expected, shoot cultures produce similar secondary metabolites like that of plants. For 
large-scale cultures such as bioreactors, the initial shoot culture is usually initiated in 
solid medium gelled with agar or gelrite. Three main factors are needed for successful 

Plant growth

Plant production

Establishment of small-scale
culture system

Medicinal plant

Analysis of
pharmaceutical

properties

Sometic embryogenesis
Multiple-shoot

HPLC/GC

Induction of aseptic cultures

Selection of high
yield line

Cryopreser
-vation

Biomass & bioactive
compounds production

Seed culture of selected line
in bioreactor (3–20L)

Pilotscale bioreactor culture (500L<)

  Fig. 14.1    Scheme of biomass and bioactive compound production from medicinal plants  via  shoot 
and somatic embryogenesis using bioreactor system       
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multiple-shoot formation: (1) selection of responsive explants, (2) suitable basal 
medium and (3) optimum concentrations and combinations of auxins and cytokinins. 

 Numerous factors are reported to infl uence the success of the in vitro propagation 
of shoot cultures in various medicinal plants [ 17 – 19 ]. The effects of auxins and 
cytokinins on the shoot multiplication of various medicinal plants have been 
reported. Benjamin et al. [ 20 ] showed that 6-benzylaminopurine (BAP), at high 
concentrations (1.0–5.0 mg L −1 ) stimulates the development of the axillary shoots of 
 Atropa belladonna . Lal et al. [ 21 ] observed a rapid proliferation rate in  Picrorhiza 
kurroa  using kinetin at 1.0–5.0 mg L −1 . In  Nothapodytes , the highest shoot multipli-
cation was achieved on 2.2 μM thidiazuron-containing medium. Regeneration 
capacity and specifi c response for the exogenous hormones in plant tissue cultures 
is related to the physiological status of the plant and its endogenous hormone levels, 
and is known to be a species-specifi c characteristic [ 22 ]. Earlier, it was reported that 
the regeneration capacity varies even among the genotypes of a single species and 
the endogenous cytokinin/abscisic acid (ABA) ratio may have infl uence over the 
regeneration of  Kalopanax septemlobus  individuals [ 23 ].  

    Induction of Embryogenic Culture 

 Somatic embryogenesis is the process by which groups of somatic cells will pro-
duce the somatic embryos, which resemble the zygotic embryos of intact seeds and 
can grow into seedlings on suitable media. Plant regeneration  via  somatic embryo-
genesis from single cells that can be induced to produce an embryo, and eventually 
a complete plant has been demonstrated in many medicinal plant species. 
Supplementation of growth regulators was found to be essential for embryo induc-
tion and development in many species [ 24 – 26 ]. However, in some cases, chemical 
and physical stresses, for example, high sucrose concentration [ 27 ], high tempera-
ture [ 28 ] and heavy metal ions [ 29 ] have been reported as more important stimuli 
for somatic embryogenesis than exogenous growth regulators. 

 Growth regulators and nutrient components of the media have profoundly infl u-
enced the embryogenesis process in many plant species. So, a suitable media com-
position should be identifi ed in order to improve embryo induction, development, 
maturation and conversion. Medium composition is a key factor in successful 
embryo induction and subsequent plant regeneration. Sugar, a carbon source, also 
acts as an osmotic regulator in the medium during embryogenesis [ 27 ,  30 ]. Sucrose 
level played a major role in triggering embryogenesis in many plant species, includ-
ing  Cucumis sativus  [ 31 ].   

14.2.2     Multiple-Shoot Cultures in Bioreactors 

 Various researchers use bioreactors for large scale cultivation of medicinal plants 
 via  shoot multiplication and to increase multiplication effi ciency, micropropagation 
should be scaled-up. Bioreactor systems have been used for mass propagation of 
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horticultural plants such as the  Phalaenopsis  [ 32 ], oriental lily [ 33 ], cacao [ 34 ], cof-
fee [ 35 ], and chrysanthemum [ 36 ] and they have proved their potential for large- 
scale micropropagation (Fig.  14.2 ).

14.2.3        Embryogenic Cultures in Bioreactors 

 Somatic embryogenesis in liquid media is a powerful alternative to other biomass 
production techniques. Three important advancements have led to the scaling-up of 
somatic embryogenesis in medicinal plants: (1) liquid cultures for the multiplication 
of embryogenic cells and for the production of embryos, (2) temporary immersion 
systems for the culture and further development of embryos (beyond cotyledonary 
embryos), and (3) increase in the range of utilization of somatic embryos. Based on 
these improvements, many researchers have recently reported successful results in 
Siberian ginseng, coffee, and cacao [ 13 ,  34 ,  35 ,  37 ]. 

 In coffee, currently about 2.5–3.0 million cotyledonary embryos can be pro-
duced each year using bioreactor systems [ 35 ]. In addition to the production of 
plantlets, somatic embryos are useful for biomass and pharmaceutical compound 
production in medicinal plants. Our previous study on  Eleutherococcus koreanum  
revealed that somatic embryos contained greater amounts of bioactive compounds 
than adventitious roots or cells [ 10 ].  

14.2.4     Explant and Bioactive Compound Biosynthesis 

 Plant secondary metabolites (Fig.  14.3 ) have various functions throughout the life 
cycle of a plant. It is clear that those metabolites may play important roles in defense 
mechanisms and signaling in plants [ 38 ]. In the past decade, their importance has 

a b

c

de
a b c d e

  Fig. 14.2    Schematic diagram of bioreactor system for Chrysanthemum shoot production. ( a ) 
Shoot induction; ( b ) Single node stems; ( c ) Bioreactor culture; ( d ) Shoot multiplication in a biore-
actor; ( e ) Ex vitro rooting of cuttings (Adapted from Hahn and Paek [ 36 ])       
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increased rapidly as these molecules also determine important aspects of human 
food quality and have pharmaceutical effects. Thus, it is important to increase the 
production of these useful bioactive compounds and to exploit plant materials 
through the large-scale culture of medicinal plants. During the culture period of a 
medicinal plant, the contents of bioactive compounds change with the physiological 
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changes in the propagules such as their proliferation and development. As a result, 
it is important to know the relationship between bioactive compounds and plant 
development or tissue type in a bioreactor culture in order to determine the proper 
tissue (or explant) type and harvesting time. During the culture period of  Glycyrrhiza 
uralensis  cells in a bioreactor, the contents of triterpenoid saponins and fl avonoids 
showed a correlation with cell growth pattern, but Wang et al. [ 39 ] presumed that it 
might be caused due to the reduction of EC in the medium. Secondary metabolites 
often accumulate in special types of cells or organs, as their biosynthesis are often 
coupled with certain morphological differentiations [ 40 ].

   In  Eleutherococcus koreanum , HPLC analyses of the extracts of somatic 
embryos, embryo-derived plantlets, and adventitious roots harvested from the bio-
reactor culture confi rmed the presence of eleutherosides (Fig.  14.4 ). The HPLC 
data demonstrate that these secondary metabolites are produced in the embryos 
developed in vitro, plantlets and adventitious roots. The eleutheroside B and E con-
tent were 377 μg g −1  DW   and 588 μg g −1  DW in somatic embryos (torpedo stage); 
409 μg g −1  DW and 1,796 μg g −1  DW in in vitro plantlets; and 220 μg g −1  DW and 
68 μg g −1  DW in adventitious roots, respectively (Fig.  14.4 ). Greater eleutheroside 
B and E contents were detected in plantlets grown in vitro than in adventitious roots 
and embryos. This shows that in vitro-grown plantlet biomass can be conveniently 
used for the extraction of eleutherosides, and that may be useful not only for mass 
propagation of the endangered  E. koreanum  but also for securing a source of 
eleutherosides.

14.2.5        Bioreactor System for Organ Cultures 

 Bioreactor technology provides the potentiality for the economical and effi cient 
production of a large number of plants [ 5 ]. The most commonly used bioreactor 
system is immersion culture. However, this method is limited by oxygen supply, and 
aeration is a major concern in bioreactor design and scale-up for plant organ cul-
tures [ 41 ]. Temporary Immersion Systems (TIS), i.e. fl ooding of plant tissue at 
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regular time intervals open possibility of automating some in vitro cultures [ 42 ] and 
increase the biological effi ciency and productivity of propagated material [ 43 ]. The 
system supplies enough oxygen to the propagules throughout their cultivation [ 44 ]. 
This is one of benefi ts of using this system for shoot and somatic embryo cultures 
in bioreactors. Oxygen requirement of plant cells is relatively low for cell growth. 
Although suffi cient oxygen is essential for organ cultures, it may signifi cantly 
increase during metabolite synthesis [ 41 ]. Niemenak et al. [ 34 ] made a simple TIS 
(1-L scale) based on the “twin fl asks” type and this system was used by Escalona 
et al. [ 45 ] and Hempfl ing and Preil [ 46 ], for culturing of cacao somatic embryos. 

 Among bioreactor designs, the balloon-type bubble bioreactor has been used for 
cell and root cultures of many species including Siberian ginseng [ 47 ,  48 ] and 
 Panax ginseng  [ 5 ]. However, its round shape was considered unsuitable for plantlet 
growth. So, a modifi ed bioreactor for plant culture was designed by Paek et al. [ 5 ]. 
At fi rst, it was slightly modifi ed (Fig.  14.5 ) from its original balloon like shape 
(Fig.  14.5a ) ant the redesigned bioreactor increased the volume for plant growth and 
this system was used culture [ 36 ].

14.3         Biomass Production of Medicinal Plants in Bioreactors: 
Successful Examples 

14.3.1      Eleutherococcus koreanum  

  Eleutherococcus koreanum  Nakai (syn.  Acanthopanax koreanum  Nakai, Araliaceae) 
is a medicinal woody plant that grows in Jeju Island, located 50 miles off the south-
ernmost tip of the Korean Peninsula [ 49 ]. The species is currently considered to be 
an endangered species because of its excessive random harvest from their natural 
stands. Propagation of this species through seeds is diffi cult because it requires over 
18 months of stratifi cation for the germination of zygotic embryos [ 50 ]. The rooting 
of stem cuttings and division of roots are the main methods of propagation, but their 
effi ciency is low [ 51 ]. 

  Eleutherococcus  species contains eleutheroside as a major compound, and their 
roots and stems have traditionally been used to treat rheumatism, diabetes, and hep-
atitis [ 13 ,  52 – 55 ]. The  Eleutherococcus  family contains both saponins and lignans 
with a large number (over 200) of different molecules being detected as either 
 aglycones or glycosides. The main bioactive compounds appear to be eleutheroside 
B (syringin) and eleutheroside E (a syringaresinol diglucoside) (Fig.  14.6 ).

   Among those, eleutheroside E (liriodendrin) and B (syringin) were known to 
possess the most pronounced stimulant and anti-stress effects [ 55 ]. Eleutheroside E 
is reported to have a counteracting effect on stressed animals, androgenic effects on 
immature male mice, and to increase the RNA content of the seminal vesicles and 
the prostate [ 1 ]. Along with eleutherosides, acanthoic acid has an important phar-
macological activity. It was isolated from  E. koreanum  root, and it was revealed that 
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the compound had analgesic and anti-infl ammatory activities, without acting on the 
central nervous system, and showed inhibition of lipid peroxidation [ 53 ]. 

 We have previously developed a methodology for mass cultivation of the adven-
titious roots of  E. koreanum  for the production of eleutherosides [ 47 ]. During the 
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  Fig. 14.5    Layout of balloon-type bubble bioreactor ( a ) and redesigned bioreactor for organ cul-
ture ( b ). ( a ) Air inlet; ( b ) Air fl ow meter; ( c ) Timer; ( d ) Solenoid valve; ( e ) Membrane fi lter; ( f ) 
Medium reservoir; ( g ) Sampling port; ( h ) Supporter (net); ( i ) Air outlet (Adapted by Paek et al. [ 5 ])       
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mass cultivation of the adventitious roots in liquid medium, we observed the devel-
opment of somatic embryos on the adventitious roots. Here, we have reported plant-
let production  via  somatic embryogenesis from root cultures of  E. koreanum . 
Embryos and plantlets produced during the culture were also examined for their 
ability to accumulate eleutherosides. The eleutherosides were extracted and ana-
lyzed by using the protocol by Ahn et al. [ 56 ]. The eleutheroside fraction was ana-
lyzed using the Thermo Separation Products HPLC system equipped with a UV 
detector on a Spherisorb ODS column (GroB-Umstadt, Germany), with water and 
acetonitrile as the mobile phase. The ratio of water and acetonitrile for the initial 10, 
30, 40, 45, 46 and 50 min, were 95:5, 90:10, 60:40, 50:50, 45:55 and 95:5, respec-
tively. Flow rate of the mobile phase was 0.6 mL·min −1  and the eleutherosides were 
detected at 220 nm. Authentic eleutheroside B and E were purchased from Nakarai 
Inc. (Japan) and Sigma (USA) to compare with the accumulation pattern from the 
cultured plantlets. Total eleutheroside content was calculated as the sum of the eleu-
theroside fractions. 

    Plant Material 

 Seeds of  E. koreanum  were collected from the experimental forest of the Korean 
National Forest Research Institute. They were surface-sterilized and dissected to 
isolate the zygotic embryos. The embryos were placed on one half MS [ 57 ] medium 
for germination. After 2 months, roots were excised from the seedlings and cultured 
in 200 mL of MS medium containing 3.0 mg L −1  indolebutyric acid (IBA), 
0.01 mg L −1  thiadiazuron (TDZ:  N -phenyl- N′ -(1,2,3-thiadiazol-yl)urea; Sigma 
Chemical Co., St. Louis, MO), and 30 g L −1  sucrose in 500 mL Erlenmeyer fl asks 
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and kept on orbital shaker at 110 rpm. The adventitious roots were maintained in the 
same medium by subculturing at 4-week intervals.  

    Culture Establishment 

   Induction of Somatic Embryos from Root 

 In the absence of growth regulators, root segments cultured in one third, one half, 
full, and double strength MS media developed globular embryos directly on the root 
surface without callus mediation after 4 weeks of culture. Subsequently, these glob-
ular embryos developed into torpedo and cotyledonary embryos when left in the 
same medium for 2 more weeks. Root segments were proliferated along with the 
embryos. Histological examination showed the direct development of embryos on 
root surfaces without callus mediation. Embryos were matured and converted into 
plantlets on the same medium after 8 weeks of culture. The increase in the fresh 
mass of roots, fresh mass of embryos, and number of matured embryos per explant 
were compared with respect to the medium strength. Among the four media tested 
(one third, one half, full, and double strength), one third strength medium was found 
most suitable for embryogenesis since it produced the highest number of somatic 
embryos per explant. However, one half strength MS medium was found to be opti-
mal for the production of embryo biomass. This observation is concurrence with the 
previous report that a one half strength MS medium that had a lesser concentration 
of mineral ions, especially nitrates and ammonium was benefi cial for embryo for-
mation from the root segments of spinach [ 51 ]. The results of the present studies 
support this view, and one third strength MS medium was found suitable for embryo 
formation in  E. koreanum . 

 In a separate experiment, root segments were cultured in one half-strength MS 
medium supplemented with 0.5–2.0 mg L −1  2, 4-dichlorophenoxyacetic acid (2,4- 
D) and 0.01–1.0 mg L −1  TDZ to enhance the embryogenesis process. The results 
revealed that supplementation with 2, 4-D and TDZ was not benefi cial. The 
medium supplemented with 2, 4-D suppressed embryo formation. Embryos devel-
oped on the root explants in the medium supplemented with TDZ, but the fre-
quency of embryo formation was less when compared to the hormone-free 
medium. In the present study, root segment cultures of  E. koreanum  developed 
embryos in hormone- free medium, and the embryogenic response of these explants 
did not favour the hormone-supplemented medium. Similarly, successful direct 
embryogenesis was induced from the root segment cultures of  Lotus corniculatus  
[ 58 ] in hormone-free medium. 

 To verify the effect of sucrose concentration on embryogenesis, root segments 
were cultured in medium supplemented with 15–90 g L −1  sucrose. Higher sucrose 
concentrations were found to be benefi cial for promoting embryogenesis and 11.8 
mature embryos were recorded in the medium supplemented with 60 g L −1  sucrose. 
This medium also favoured an increase in the biomass of the roots, but the biomass 
of the embryos was lower than that of the medium supplemented with 30 g L −1  
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sucrose. The present studies of  E. koreanum  also confi rmed the importance of 
sucrose level in the medium on the induction and development of embryos. 

 In the present study, embryogenesis was induced from the root segments of 
 E. koreanum  in one third-strength MS, hormone-free medium supplemented with 
60 g L −1  sucrose. Since this medium has been found suitable for embryo induction, 
development, maturation, and germination, this makes the protocol simple and effi -
cient. Based on the above experiment, we attempted large-scale production of 
embryos and plantlets in the bioreactor system. Bioreactor systems were established 
containing 18 L of one third-strength MS, hormone-free medium supplemented 
with 60 g L −1  sucrose. The results revealed that the globular embryos were produced 
rapidly from the root segments and simultaneously they were developed into coty-
ledonary embryos. The embryos that developed from the roots passed through all 
stages of development and matured embryos were converted into plantlets in the 
same medium after 12 weeks of culture. The plantlets that were harvested from the 
bioreactor culture acclimatized very well after transplantation (Fig.  14.7 ). The total 
fresh biomass of adventitious roots, plantlets, and somatic embryos are presented in 
Table  14.1  and the bioreactor culture was found to be suitable for the highest bio-
mass accumulation. Similarly, bioreactor cultures were effi ciently utilized for mass 
propagation [ 30 ,  59 ] and biomass production [ 60 ] in many systems. The most 

a

c b

  Fig. 14.7    Plantlets production  via  somatic embryogenesis in a 20 L air lift bioreactor, ( a ) Embryo 
formation after 4 weeks of culture in one third MS medium containing 60 g L −1  sucrose, ( b ) 
Plantlets in bioreactor after 12 weeks of culture, ( c ) Plantlets grown on the peat moss and perlite 
mixture after 8 weeks of acclimatization (Adapted from Park et al. [ 10 ])       
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important fi nding of the current study was the development of a simple somatic 
embryo regeneration system for  E. koreanum  in hormone-free liquid medium. The 
current study demonstrated the potential of root explants of  E. koreanum  for both 
plantlet and phytochemical production.

14.3.2            Kalopanax septemlobus  

  Kalopanax septemlobus  Nakai (Syn.  Kalopanax pictus ; common name, castor ara-
lia) is a medicinal woody species of the family Araliaceae that is mainly distributed 
in northeast Asia, and has been used in furniture making and for important medici-
nal materials. Stem cortical tissues of  K. septemlobus  contain large amounts of 
chemical constituents such as the phenolic glycosides liriodendrin, syringin and 
hederagenin, glycosides of  Kalopanax  saponin as triterpene, and these stem cortical 
tissues are being used in traditional medicine [ 63 ,  64 ]. The main pharmacological 
effects of  K. septemlobus  are anti-rheumatic [ 11 ], anti-diabetic [ 64 ], and anti- 
infl ammatory [ 53 ]. It has also been shown to have neuritogenic activity, which is 
effective against Alzheimer’s and Parkinson’s diseases [ 54 ]. For medicinal purpose, 
the edible shoots are picked by farmers during early spring along with that of  Aralia 
elata ; the bark and stem of the trees are used for making soup during summer. 
Propagation of this tree has been achieved through seeds or stem cuttings, but with 
very low effi ciency [ 61 ]. Under natural conditions, this plant requires 2-year germi-
nation period and stem cutting is impractical for mass propagation of the species 
due to low effi ciency [ 61 ]. As an alternative way to propagate this species, somatic 
embryogenesis was achieved from the immature seeds of a 100-year-old plant [ 62 ]. 

    Plant Material 

 Young, expanding leaves of 3–5 cm in length were excised from each graft and used 
as explants. For surface disinfection, fi ve to ten leaves were placed into a 500 mL fl ask 
and washed by vigorous shaking in tap water containing a few drops of Tween 20® 
(Sigma, St. Louis, USA). Thereafter, the leaves were disinfected in 70 % ethanol for 
1 min, in 2 % (w/v) NaClO for 5 min, and rinsed fi ve times with sterile distilled water 
in aseptic conditions. Explants were fi nally immersed in sterilized distilled water for 
about 30 min. Leaf segments measuring approximately 5 mm 2  were prepared with a 

   Table 14.1    Plantlet production  via  somatic embryogenesis of  E. koreanum  cultured in 18 L of one 
third MS medium supplemented with 60 g L −1  sucrose in 20 L balloon-type air-lift bioreactors after 
12 weeks   

 Total 
biomass (g) 

 Biomass of 
adventitious roots (g) 

 Plantlets  Somatic embryos 

 Number  Biomass (g)  Number  Biomass (g) 

 840.5  123.0  1,446  55.7  3,774  163.2 

  Adapted from Park et al. [ 10 ]  
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surgical blade, with each explant segment possessing some leaf vein tissue. The 
explants were inoculated onto MS basal medium supplemented with 4.5 μM 2, 4-D 
and 3 % (w/v) sucrose (Sigma). The cultures were maintained at 25 ± 1 °C with a 16-h 
photoperiod provided by cool-white fl uorescent lamps (40 μmol·m −2 ·s −1 ). 

   Induction and Maintenance of Embryogenic Callus 

 White and pale yellow, friable embryogenic calli were induced after 8 weeks of cul-
ture from leaf segments. To stimulate proliferation, these calli were carefully selected 
under a microscope and subcultured onto MS medium supplemented with 4.5 μM 
2,4-D, 1.0 g L −1   l -glutamine, 5 % sucrose, and 0.5 % gellan gum. Further, they were 
subcultured onto fresh medium of the same type at 3-week intervals. For proliferation 
of calli, around 0.2 g embryogenic callus was transferred on new callus induction 
medium in petridish and fi ve plates were maintained for replication in each cell line.  

   Somatic Embryo Formation and Maturation 

 For the formation of somatic embryos, 10 mg of embryogenic callus (Fig.  14.8 ) was 
cultured on one half-strength MS medium containing 5 % sucrose, 5 % (w/v) 

a b c

d e

  Fig. 14.8    Somatic embryogenesis and plantlet production of  K. septemlobus . ( a ) Immature 
zygotic embryos producing a somatic embryo, ( b ) Embryogenic callus formed from zygotic 
embryos, ( c ) Somatic embryo development, ( d ,  e ) Conversion of embryos on one half-strength MS 
medium (Adapted from Moon et al. [ 62 ])       
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polyethylene glycol (PEG), 0.38 μM ABA, 0.2 % (w/v) activated charcoal (AC), 
and 5 g L −1  gelrite (Duchefa, The Netherland). Cultures were incubated in tissue 
culture room and maintained at 24 ± 1 °C under a 16-h photoperiod under cool white 
fl uorescent lamps at 35–40 μmol·m −2 ·s −1  photosynthetic photon fl ux (PPF).

        Culture Establishment 

 A suitable bioreactor system (Fig.  14.9 ) for the large-scale embryo-to-plantlet con-
version of  K. septemlobus  was established. In the temporary immersion with net 
(TIN) bioreactor, 85 % of the embryos successfully produced plantlets, whereas in 
the continuous immersion with net (CIN) bioreactor, a conversion rate of only 
29.3 % was obtained. Embryos cultured in the TIN bioreactor produced plantlets 
more vigorously in terms of fresh weight, height, root length, and quantity of roots 
and leaves. In the CIN bioreactor,  Kalopanax  plantlets showed high malondialde-
hyde (MDA) content and increased activities of reactive oxygen species (ROS)-
processing enzymes such as ascorbate peroxidase (APX) and glutathione reductase 
(GR), indicating the occurrence of oxidative stress. However, superoxide dismutase 
(SOD) and catalase (CAT) showed similar activities in plantlets growing in different 
bioreactors.  Kalopanax  plantlets grown in both TIN and CIN bioreactors were har-
vested and transferred to greenhouse for their acclimatization. Plantlets grown in 
the CIN bioreactor exhibited low survival rate (75.8 %) when compared to those 
grown in the TIN bioreactor (100 % survival; Figs.  14.10  and  14.11 ). MDA content 
decreased with the progression of acclimatization, indicating a decrease in oxidative 
stress. However, MDA level in the CIN-derived plantlets was higher than in the 
TIN-derived plantlets. In the TIN-derived plantlets, an increase in SOD and GR 
activities was observed after 1 week, though it decreased thereafter. CAT activity 

  Fig. 14.9    Bioreactor design for somatic embryo culture of  K. septemlobus . ( a ) Withdrawal phase 
( b ) Immersion phase       
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decreased while APX activity started to increase after 1 week of acclimatization. 
These results indicated that  Kalopanax  plantlets were able to overcome oxidative 
stress mainly through SOD activity. However, levels of antioxidant enzyme activi-
ties were higher in CIN-derived plantlets than TIN-derived plantlets.  Kalopanax  
plantlets obtained from the TIN bioreactor performed better during the 

1.0 3.0 5.0 10.0g L-1

medium

a b c d

  Fig. 14.10    Effect of inoculation density and culture methods of somatic embryos ( SEs ) on bio-
mass production. ( a ) SEs 1.0 g L −1  medium, ( b ) SEs 3.0 g L −1  medium, ( c ) SEs 5.0 g L −1  medium, 
( d ) SEs 10.0 g L −1  medium       

TIN + CIN TIN TI CIN

  Fig. 14.11    Effect of 
bioreactor culture system on 
somatic embryo conversion 
in  K. septemlobus . ( TI  
temporary immersion,  TIN  
temporary immersion with 
net,  CIN  continuous 
immersion with net, TIN + 
CIN) (Adapted from Kim 
et al. [ 44 ])       
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acclimatization phase and showed a higher survival rate than the material obtained 
from the CIN bioreactor or conventional culture systems.

14.3.3            Allium victorialis  var.  platyphyllum  Makino 

  Allium victorialis  var.  platyphyllum  Makino is a perennial herb belonging to 
Liliaceae family, which is distributed around Korea, Japan, and China. It is com-
monly considered as a broad-leaved species of wild onion (victory onion, Alpine 
leek, or caucas). The subspecies  platyphyllum  occurs widely in meadows and wood-
lands across the Amur River system in China and Russia, extending its range up to 
Japan, there it is an important cultural food source for the Ainu people. Unlike other 
 Allium  spp. such as garlic and onions, which have been studied extensively, research 
on  A. victorialis  var.  platyphyllum  is rare [ 65 ], and only reports on chemical com-
pounds [ 64 ,  66 ] and taxonomic classifi cation [ 67 ] exist. 

 Gitogenin 3- O -lycotetroside, an active constituent extracted from  Allium 
 victorialis ,  exerted certain cytotoxic activities against cancer cell lines. It seems that 
the disulfi des produced secondarily were the principle anti-tumor molecules [ 53 ]. 
Chung et al. [ 68 ] reported on the major essential oil composition of  A. victorialis  L. 
var.  platyphyllum , and its immunotoxicity effects. These analyses were carried out 
using gas chromatography and mass spectroscopy (GC-MS), which revealed the 
occurrence of essential oils in  A. victorialis  L. var.  platyphyllum  stems. The yield of 
essential oils from the stem of  A. victorialis  L. var . platyphyllum  was 1.45 %, and 
GC-MS analysis revealed that its major constituents were allyl methyl disulfi de 
(24.36 %), dimethyl trisulfi de (11.78 %), allyl  cis -1-propenyl disulfi de (9.17 %), 
dipropyl trisulfi de (7.22 %), and allyl methyl trisulfi de (4.13 %). The essential oils 
had a signifi cant toxic effect on early fourth-stage larvae of  Aedes aegypti  L. [ 68 ]. 
The methanol extraction from  A. victorialis  displayed both pro-oxidant and antioxi-
dant properties, but no anti-human immunodefi ciency virus (HIV) or anti- 
Helicobacter  pylori  activity [ 69 ]. The possibility of in vitro mass propagation,  via  
shoot and somatic embryogenesis of this valuable plant was reported by Lim et al. 
[ 66 ]. They obtained shoots formed directly from bulb explants of  A. victorialis . 
However, their work was performed only in a fl ask-scale level, and no further mass 
production system or cultures was investigated. 

    Plant Material 

 The bulbs of  Allium victorialis  var.  platyphyllum  were provided by the Korean 
National Arboretum in 2003. The bulbs were surface sterilized with 2 % sodium 
hypochlorite for 20 min and used to induce in vitro plants. The bulbs were cut to 
0.5 × 0.5-cm size and cultured on MS medium supplemented with BA 3.0 mg L −1  
and 1-naphthalene acetic acid (NAA) 0.1 mg L −1 . The cultures were maintained at 
25 ± 1 °C with a 16-h photoperiod provided by cool-white fl uorescent lamps 

S.-Y. Park and K.-Y. Paek



355

60–80 μmol·m −2 ·s −1 . After 4 weeks of culture, shoots were formed directly on the 
surface of bulb explants. Proliferated shoot clumps were excised to 10 × 10 mm in 
size and sub-cultured on the fresh medium of same composition at 4-week intervals. 
Enough materials (shoot clumps) were obtained for bioreactor cultures after approx-
imately 6 months of shoot clump culturing.  

    Culture Establishment 

   Multiple Shoot Formation and Bulblet Enlargement 

 Shoot clumps weighing approximately 0.1 g were cultured in MS medium contain-
ing BA (0–5.0 mg L −1 ) and thiadiazuron (0.1–2.0 mg L −1 ). A relatively high concen-
tration of BA (3.0–5.0 mg L −1 ) induced more vigorous multiple-shoots than the 
somatic embryos, while thiadiazuron treatment produced more somatic embryos 
than shoots at 1.0 mg L −1  (Figs   .  14.12  and  14.13 ).

    The effects of ABA and MJ on bulblet formation from the culture of  A. victoria-
lis  var.  platyphyllum  were studied. Shoot clumps were cultured on MS medium 
containing ABA (0, 0.01–2.0 mg L −1 ) and MJ (0.01–5.0 mg L −1 ). Low concentra-
tions of ABA (0.01 mg L −1 ) induced shoot proliferation without bulblet formation. 
However, bulblet formation did start on the medium containing MJ after approxi-
mately 4–6 weeks of culture. Furthermore, 1.0 mg L −1   MJ resulted in higher fre-
quency bulblet formation (100 %) than the control (46.1 %). Cortical cells of the 
bulblets enlarged on the medium with MJ and had a dense, protein-like substance in 
expanded and round cells when examined under the microscope. The data described 
here show that the formation and enlargement of  Allium victorialis  bulblets can be 
improved by the addition of an appropriate concentration of MJ.  

   Establishment of the Bioreactor Culture 

 A bioreactor was used for the mass production of biomass in  A. victorialis  var. 
 platyphyllum . An appropriate bioreactor culture system for shoot proliferation and 
bulb formation was investigated (Figs.  14.14 ,  14.15 , and  14.16 ; Tables  14.2  and 
 14.3 ) and the uptake of soluble carbohydrates in different culture systems was also 
analyzed throughout the entire culture period. Optimal results for multiple shoot 
formation were observed in raft culture (RC) and modifi ed raft culture (MRC; 
13–15 per explant; Table  14.2 ), in which the explants were placed on a sieve in 
contact with the liquid medium. MRC was a better method to avoid hyperhydricity 
by controlling the medium supply using a medium reservoir. For bulb formation, 
93.4 % of shoot clumps were formed into bulbs at the basal part, which were uni-
form in size when cultured with the ebb and fl ood culture (E&FC) system. Bulbs 
harvested from RC and MRC showed vigorous rooting, however, bulb growth was 
not uniform. With respect to biomass production, the immersion culture with air 
supply (IMA) was the best culture system, but bulbs were malformed without 
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  Fig. 14.12    Direct regeneration of Somatic embryo (Upper ‘ a ’) and shoots (lower ‘ b ’) from bulb 
segment of  A. victorialis  var.  platyphyllum.  ( a ) Globular embryo formation and development into 
bulblet, ( b ) Direct shoot formation from basal part of bulblet       
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  Fig. 14.14    Scheme    of 5 L balloon type air-lift bioreactors using for this study. ( a ) Raft culture 
( RC ); ( b ) Modifi ed raft culture with medium reservoir ( MRC ); ( c ) Ebb and fl ood culture ( E&FC ); 
( d ) Immersion culture with air supply ( IMA ) (( a ) Air fl ow meter, ( b ) Membrane fi lter, ( c ) Glass 
sparger, ( d ) Sampling port, ( e ) Medium reservoir, ( f ) Connector for medium exchange and sam-
pling, ( g ) Timer, ( h ) Net) (Adapted from Park et al. [ 43 ])        
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  Fig. 14.15    Shoot ( a – d ) and bulblet clumps ( e – h ) of  Allium victorialis  harvested from 5 L balloon 
type air-lift bioreactors after 8 weeks of culture. ( a ,  e)  Shoot and bulblet clump cultured on RC, 
( b ,  f ) Shoot and bulblet clump cultured on MRC, ( c ,  g ) Shoot and bulblet clump cultured on 
E&FC, ( d ,  h ) Shoot and bulblet clump cultured on IMA       

 

 

 

14 Bioreactor Culture of Shoots and Somatic Embryos of Medicinal Plants



358

showing roots. Shoot clumps did not grow properly without an air supply. Air sup-
ply was an important factor for growth when cultured with continuous immersion in 
the liquid medium. Depending upon different bioreactor culture systems, changes in 
concentration of sugar in the medium were measured during the culture period and 
in bulbs at the harvesting stage. The soluble carbohydrate content of the bulb cul-
tured with the E&FC system was the lowest, but the starch content was higher than 
that of the others, with the exception of the bulbs grown in IM. Sucrose, glucose, 

a b

c d

e f

  Fig. 14.16    Biomass production process of  A. victorialis  var.  platyphyllum   via  multiple shoot cul-
ture. ( a ,  b ) Shoot induction ( a ) and proliferation ( b ), ( c – e ) Shoot multiplication in liquid medium, 
( f ) Mass production in balloon-type bubble bioreactor       

    Table 14.2    Effect of bioreactor culture system on shoot proliferation in  Allium victorialis  after 
8 weeks of culture   

 Bioreactor system 
 Total fresh 
wt (g) 

 Plantlet wt 
(g) 

 No of shoots per 
explant 

 Leaf length 
(cm) 

 Raft culture (RC)  90.8  1.5a a   15.0a  8.7b 
 Modifi ed raft culture (MRC)  68.8  0.8b  13.1a  8.1b 
 Ebb and fl ood system 
(E&FS) 

 110.6  1.6a  9.4b  6.6b 

 Immersion culture with air 
(IMA) 

 122.7  1.6a  8.3b  13.0a 

   a Mean    separation within columns by Duncan’s multiple range test (P ≤ 0.05)  
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and fructose concentrations in the medium of the E&FC system decreased concur-
rently with bulb formation and growth. It is indicated that external sucrose is taken 
into the cell before it is hydrolyzed. Sucrose was maintained at a minimum of 6 % 
in the medium until harvest time under all culture systems; hence, it can be deduced 
that only 3 % of the sucrose was taken for plant growth, and the remaining sucrose 
was used to control the osmotic pressure of the medium.

14.3.4               Rosa rugosa  

 Rugosa rose ( Rosa rugosa  Thunb.; syn. rugosa rose, Japanese rose, or Ramanas 
rose) is a deciduous shrub belonging to the Rosaceae family. This species grows on 
the sea coast and in sand dunes in Eastern Asia, including Northeastern China, 
Korea, Japan and Southeastern Siberia.  Rosa rugosa  is one of the most important 
genetic resources for the breeding of roses ( R. hybrida ) because of its useful horti-
cultural traits such as disease resistance, cold hardiness and fl ower fragrance. In 
Asia, the rose has been used as a medicinal plant and food in tea [ 70 ]. It is also well 
known as a folk remedy for treating mastitis and diabetes mellitus. Several workers 
have systematically investigated the chemical components of the fl owers, fruits, 
leaves, roots, and galls of this plant. Specifi cally, the fl ower is known to be an astrin-
gent, stomachic, and is traditionally used as an agent for activating blood circulation 
to relieve blood stasis, aiding in menstrual regulation, and counteracting toxins. It 
has been shown that this native rose is a fairly good source of aromatics, phenolics, 
terpenoids, fatty acid derivatives, sugars and other polar compounds [ 71 ]. The posi-
tive effects of  R. rugosa  on lipid peroxidation, alanine transaminase (ALT), aspar-
tate transaminase (AST), glutathione, and protein oxidation levels was reported in 
carbon tetrachloride (CCl 4 )-treated male Wistar rats [ 77 ]. Ng et al. [ 78 ] reported that 
 R. rugosa  fl ower extract increases the activities of antioxidant enzymes and their 
gene expression and reduces lipid peroxidation. In that report, the activities of cata-
lase (CAT) and glutathione peroxidase (GPX) in 9-month-old senescence- accelerated 
mice (SAM mice) were lower than those in 6-month-old SAM mice [ 78 ]. 

   Table 14.3    Effect of bioreactor culture system on bulblet formation and enlargement in  Allium 
victorialis  after 8 weeks of culture   

 Bioreactor system 
 Total fresh 
wt (g) 

 Bulblet 
formation (%) 

 Fresh wt of 
bulblets (g) 

 Dry matter of 
bulblet (%) 

 Raft culture (RC)  69.3  59.6bc a   0.61c  32.7ab 
 Modifi ed raft culture 
(MRC) 

 82.2  77.0b  0.99b  35.7a 

 Ebb and fl ood culture 
(E&FC) 

 72.1  93.4a  0.74c  27.2b 

 Immersion culture with 
air (IMA) 

 137.5  46.7c  1.34a  33.1ab 

   a Mean separation within columns by Duncan’s multiple range test (P ≤ 0.05)  
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 In roses, embryogenic callus formation has been shown to occur from various 
explants, including the leaves, stems, fi laments, petioles, roots, zygotic embryos, 
and protoplasts [ 72 – 76 ] for stock material propagation in vitro and genetic manipu-
lation of the plant. 

    Plant Material 

 Mature seeds of the  Rosa rugosa  were collected from the natural habitat in 
Cheonnam (Fig.  14.20a ). They were soaked in 70 % ethanol for 1 min, rinsed with 
sterile deionized water, and placed into 2 % (v/v) sodium hypochlorite solution 
supplemented with three to four drops of Tween-20 for 20 min. The seeds were 
rinsed three times in sterile deionized water before removal of the zygotic embryos 
with a scalpel and forceps. Zygotic embryos were placed on full-length MS medium 
containing 3.0 mg L −1  2,4-D at 25 °C in the dark. After 8 weeks of culture, clumps 
of embryogenic calli and somatic embryos were isolated and subcultured on MS 
medium containing 10.0 mg L −1  2,4-D. The embryogenic callus clumps were prolif-
erated on the same fresh medium for embryogenic cultures. For shoot cultures, 
somatic embryos were transferred onto half strength MS medium without plant 
growth regulator, and developed plants from somatic embryos were used as culture 
material for multiple shoot formation.  

   Culture Establishment 

   Shoot Culture 

 Somatic embryo-derived plantlets were maintained on MS medium supplemented 
with 0.1 mg L −1  BA, 3 % (w/v) sucrose, and gelled with 2.5 g L −1  gelrite for 
6 months. First, 2-cm long shoot-tips were dissected from the plantlets, and 
placed on MS medium supplemented with a wide range of BA (0–3.0 mg L −1 ) or 
thiadiazuron (TDZ; 1.0–3.0 mg L −1 ), or in combination with IBA 0.5 mg L −1  con-
taining 3 % (w/v) sucrose to investigate the effect of cytokinins on multiple shoot 
formation. Later, multiplied shoots were transferred to a 3 L balloon-type bubble 
bioreactor (BTBB) to establish a scale-up culture for biomass production. Five 
types of bioreactor cultures were tested; (1) control (solid and liquid culture in 
fl ask), (2) continuous immersion BTBB (CI), (3) continuous immersion with net 
(CIN), (4) temporary immersion (TI), and (5) temporary immersion with net 
(TIN).  

   Multiple Shoot Cultures 

 The highest number of shoots was achieved in 1.0 mg L −1  BA treatment. However, 
the best biomass, in both fresh and dry weight, was in thiadiazuron in combination 
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with IBA (Fig.  14.17 ). When BA concentration was increased, the number of adven-
titious shoots also increased (data not shown), but the biomass did not decrease.

   The results obtained from biomass production using different culture systems are 
presented in Table  14.4 . Among the different culture systems used, the maximum 
biomass was recorded in continuous immersion (CI) in a BTBB bioreactor, fol-
lowed by continuous immersion with net (CIN), and liquid culture in a 300 mL 
conical fl ask (Fig.  14.18 ). Variable results were recorded with respect to the dry 
matter (%) and culture system. However, signifi cantly higher dry matter was 
recorded in temporary immersion (TI) bioreactor (16 %), followed by CI bioreactor 
culture (13 %). The highest dry weight of biomass was achieved in the CI bioreac-
tor, and it is evident that the cultures grew well directly in the liquid medium. The 
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  Fig. 14.17    Effect of different concentrations of plant growth regulators ( PGRs ) on multiple shoot 
formation from nodal culture in  R. rugosa  after 8 weeks of culture. ( a ) Fresh weight of explant, ( b ) 
Dry weight of explant ( B  BA,  T  TDZ,  I  IBA,  I + B  IBA 0.5 mg L −1  + BA 1.0 mg L −1 ,  I + T  IBA 
0.5 mg L −1  + TDZ 1.0 mg L −1 )       

    Table 14.4    Effect of culture methods of balloon-type bubble bioreactor system on biomass and 
bioactive compounds production in  R. rugosa  after 8 weeks of culture   

 Culture methods 

 Fresh 
weight 
(g L −1 ) 

 Dry 
weight 
(g L −1 ) 

 Dry 
matter 

 Total 
phenolics 
(mg g −1  DW) 

 Flavonoids 
(mg g −1  DW) 

 Solid culture (fl ask)  43.00c a   2.99c  6.95  56.55a  13.82a 
 Liquid culture (fl ask)  67.00b  7.76b  11.58  37.94b  8.52b 
 Continuous 
immersion (CI) 

 91.90a  12.10a  13.01  39.21b  13.28a 

 Continuous 
immersion with net 
(CIN) 

 61.00b  7.10b  11.63  39.04b  13.12a 

 Temporary 
immersion (TI) 

 44.10c  7.45b  16.89  23.61c  7.92bc 

 Temporary 
immersion with net 
(TIN) 

 14.50d  1.00c  6.89  25.68c  11.00ab 

   a Mean separation within columns by Duncan’s multiple range test ( P  ≤ 0.05)  
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only factors that made differences in biomass between the two culture methods 
were agitation method and air supplement. The CI bioreactor was provided with 
0.1 vvm aeration because of the large volume of the liquid medium.

    Aeration rate is one of the factors that may affect the growth of propagules/
explants in liquid cultures [ 59 ]. Plant tissue culture vessels with their caps or clo-
sures create boundaries between the internal microenvironment and the external 
environment of outside air [ 19 ]. They reported that the conical glass fl ask had the 
smallest air exchange rate while the bioreactor culture supplied enough aeration 
[ 19 ]. The type of vessel and culture system affects the gaseous composition inside 
the vessel as well as the dissolved O 2  content in the medium, and it affected cell and 
tissue growth. In the present study, the CI bioreactor with 0.1 vvm aeration showed 
maximum fresh and dry weight biomass production. In terms of bioactive com-
pounds, total phenolics were highest in plantlets grown in solid culture, while fl avo-
noid accumulation was high in the CI and CIN bioreactors (Table  14.4 ).  

   Somatic Embryo Culture 

 For embryogenic callus induction, immature seeds, leaves, and petals were placed 
on Murashige–Skoog (MS) medium supplemented with 3 % (w/v) sucrose, 0.3 % 
(w/v) gelrite, and plant growth regulators (PGRs): 2,4-dichlorophenoxyacetic acid 

a b

c

CI CIN TI TIN

  Fig. 14.18    Biomass production  via  balloon-type bubble bioreactor ( BTBB ) culture in  R. rugosa . 
( a ) Solid culture, ( b ) Liquid culture, ( c ) Four-types of BTBB system ( CI  continuous immersion, 
 CIN  continuous immersion with net,  TI  temporary immersion,  TIN  temporary immersion with net, 
 Scale bar  5 cm       
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(2,4-D; 0–10.0 mg L −1 ) alone or in combination (0.02–1.0 mg L −1 ) with thidiazuron 
(TDZ), kinetin, benzyladenine (BA), zeatin, and 2-isopentyladenine (2iP). For 
selection and proliferation of embryogenic calli, fi ve lines of embryogenic calli (H1, 
H-3, H-11, H-18, and H-31) were induced from immature seeds and used to inves-
tigate their embryogenic capacity by proliferation. The calli were proliferated on 
MS medium containing 3 % sucrose, 0.3 % gelrite, and 2,4-D (5.0 and 10.0 mg L −1 ). 

 After 4 weeks of culture, each explant showed different responses to the various 
concentrations of PGRs. The highest rate of embryogenic callus (28.5 %) was 
obtained when immature zygotic embryos were cultured on the medium containing 
1.0 mg L −1  2,4-D + 0.5 mg L −1  TDZ, while no embryogenic callus was produced 
when immature zygotic embryos were cultured on the medium containing 2.0 mg L −1  
2,4-D or 1.0 mg L −1  2,4-D + 0.5 mg L −1  kinetin. These results indicated that TDZ 
plays an important role in somatic embryogenesis in  R. rugosa  by regulating 
 endogenous hormone levels and cell division. Unlike immature embryos, leaves 
produced embryogenic calli after treatment with a high concentration of 2,4-D 
(5.0 mg L −1 , 1.3 %), whereas low concentrations of 2,4-D failed to induce embryo-
genic calli from leaf segments. Similarly, the highest induction rate of embryogenic 
calli was obtained with higher concentrations of 2,4-D. After treatment with 
10.0 mg L −1  2,4- D, a 14.06 % embryogenic callus formation was achieved. We pos-
tulate that the reason for the differences in the responses to 2,4-D concentration was 
because immature embryos contain pre-embryogenic determined cells, but leaves 
and petals induced-embryogenic determined cells. 

 Five selected embryogenic callus lines showed different characteristics in 
embryogenic callus and somatic embryo formation (Fig.  14.19 ). After 4 weeks of 
culture, all embryogenic callus lines showed embryogenic callus and heart, torpedo, 
and cotyledon stages of somatic embryos (Fig.  14.20 ). H-1 produced a higher rate 
of embryogenic callus formation after treatment with 10.0 mg L −1  2,4-D, while H-3 
and H-18 produced a higher rate of somatic embryo formation regardless of 2,4-D 
concentration. This indicated that the genotype infl uenced somatic embryogenesis 
because of the differences in endogenous hormonal level resulted in lower embryo-
genic capacity.
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  Fig. 14.19    Effect of 2,4-D concentrations on embryogenic callus proliferation from different cell 
lines (genotype) in  R. rugosa  after 4 weeks of culture. ( a ) MS medium containing 2,4-D 5.0 mg L −1 , 
( b ) MS medium containing 2,4-D 10.0 mg L −1  (Unpublished data)       
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14.4            Conclusions 

 Multiple-shoot and somatic embryo cultures are among the most valuable and 
underexploited sources for biomass and useful secondary metabolite production. 
They are easier to manipulate, and as shown in the above cases, long-term and large-
scale culture of multiple-shoots and somatic embryos is possible in bioreactors. 
Bioreactor technology provides the potentiality for producing economical and effi -
cient amount of biomass and bioactive compounds from medicinal plants. 
Furthermore, cultures may be more conducive to scale-up in a bioreactor, making 
secondary accumulation an acceptable biotechnological process for further applica-
tions such as enhancement in the production of pharmaceutical molecules, introduc-
tion of foreign genes into plant genomes to produce recombinant proteins, or 
over-expression of useful proteins.     
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    Abstract     Hairy roots (HRs) have been proven as a potential source of secondary 
metabolites and also, for the biotransformation of desirable metabolites. Recently, 
HRs have emerged as an effi cient  in vitro  model systems for screening the capabili-
ties of different plant species to tolerate, accumulate, and/or to remove environmen-
tal pollutants. HRs offer benefi ts of greater genotypic and phenotypic stability than 
the dedifferentiated cultures, thus providing a more reliable and a reproducible 
experimental system, and even for fl exibility of insertion of gene of interest to the 
HR gene construct for effi cient applications. Additionally, absence of soil matrix 
and microbes is the key advantage in HRs for precise removal of toxic products as 
well as for elucidating metabolic pathways for conversion of hazardous chemicals 
to non hazardous products. The feasibility of scale up of HRs in bioreactors offers 
an attractive avenue for industrial processes both for metabolite synthesis as well as 
for phytoremediation. The present review highlights current knowledge, recent 
progress, areas which need to be explored and future perspectives related to the 
application and improvement of the effi ciency of HRs for phytoremediation 
research.  

  Keywords     Hairy roots (HRs)   •   Inorganic pollutant   •   Organic pollutant   • 
  Phytoremediation  
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  Abbreviations 

   DDT    Dichloro diphenyl trichloroethane   
  DU    Depleted uranium   
  FTIR    Fourier transform infrared spectroscopy   
  GCMS    Gas chromatography–mass spectrometry   
  HMX    Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine   
  HPLC    High pressure liquid chromatography   
  HR    Hairy roots   
  PCBs    Polychlorinated biphenyls   
  PCR    Polymerase chain reaction   
  RDX    Hexahydro-1,3-5-trinitro-1,3-5-triazine   

15.1           Introduction 

 Hairy root (HR) cultures are preferred over plant cell/callus and suspension cultures 
due to their genetic/biochemical stability, hormone-autotrophy, multi-enzyme bio-
synthetic potential mimicking that of the parent plants and relatively low-cost cul-
tural requirements. 

 Infection of wounded plant parts with  Agrobacterium rhizogenes  and subsequent 
transfer of a DNA segment of root inducing (Ri) plasmid into the plant genome, 
result into hormonal imbalance leading to the formation of HRs. These HRs are also 
susceptible to genetic transformation, which help in gene transfer and can be char-
acterized in a system that may lead to minimum health damages or environmental 
concerns. 

 HR cultures have entered into an array of junctures of functional research from 
generation of high value secondary metabolites [ 1 ] and pharmaceutical lead com-
pounds by the process of chemical transformations aided through their inherent 
enzyme resources [ 2 ] to their use as an  in vitro  systems for phytoremediation 
research [ 3 ]. 

 HRs often produce valuable secondary metabolites for a long period of time, and 
many examples have been reported in the literature (Table  15.1 ). In some cases, 
changes in growth conditions (like medium composition, carbon source, pH, light/
dark, aeration, etc.) as well as the use of elicitors have been successfully employed 
to increase the HR growth from different plant species and also for the production 
or secretion of secondary metabolites [ 4 ,  5 ]. Cellular and molecular events induced 
by elicitors in HRs and the correlation with enhanced secondary metabolite synthe-
sis has been discussed in a recent review [ 6 ]. However, new approaches are directed 
on kinetic models for HR growth improvement [ 5 ]. In this aspect, Goel and co-
workers [ 6 ] proposed the combination of elicitation with  in silico  approaches to 
understand and identify the rate- limiting steps of biosynthetic pathways existing in 
HRs, in order to improve the productivity of different compounds, by using meta-
bolic engineering pathways.
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   It is well known that transgenic plants have been used widely for the expression 
of therapeutic proteins, such as vaccines, antibodies, and mammalian enzymes 
[ 14 ]. Similarly heterologous proteins for pharmaceutical and industrial use have 
been successfully expressed in HR based bioreactor systems. HRs have an enor-
mous potential because this system combines the advantages of plant-based or 
“green” technologies such as intrinsic biosafety, scalability, low production and 
downstream costs, and the existence of eukaryotic folding and assembling machin-
ery available in  in vitro  technology. Moreover, growth under controlled and opti-
mized conditions in confi ned bioreactors, continuous production, utilization of 
simple nutritional requirements, exclusion of transgene dissemination, reproduc-
ible product yield and easy regulatory compliance are the other advantages. A 
pioneering work of Wongsamuth and Doran [ 15 ] stated the fi rst application of HRs 
for the synthesis of a full length murine IgG monoclonal antibody. So far 15 
recombinant proteins including several antibodies, antigens, immunomodulators, 
reporter proteins, enzymes etc. have been successfully produced in HRs cultures 
(Table  15.2 ).

   Recent progress in plant biotechnology has enabled the employment of HRs in 
phytoremediation research for clear understanding of metabolic events involved in 
conversion of toxic chemicals to non toxic compounds. Among the plant  in vitro  
systems, HRs have been astutely and judiciously exploited by the researchers for the 
development of an easy and cost effective alternative for the removal of toxic 
metabolites (Table  15.3 ).

   Table 15.2    Applications of HRs for the production of recombinant proteins from different 
expression systems   

 Recombinant proteins  Expression systems  References 

 Murine IgG1   Nicotiana tabacum   [ 16 ] 
 Human IgG1 and IgG4   N. tabacum   [ 17 ] 
 Hepatitis B surface antigens (HBsAg)   Solanum tuberosum  (var. Kufri bahar)  [ 18 ] 
 Murine interlukin-12   N. tabacum  cv Xanthi  [ 19 ] 
 Human acetylcholinesterase   N. benthamiana   [ 20 ] 
 β-Glucuronidase (GUS)   N. tabacum   [ 21 ] 
 Ricin-B   N. tabacum  cv Xanthi  [ 22 ] 

   Table 15.1    Application of 
HRs in the production of 
secondary metabolites from 
different expression systems   

 Secondary metabolites  Expression systems  References 

 Withanolide A   Withania somnifera   [ 7 ] 
 Camptothecin   Ophiorrhiza alata  Craib  [ 8 ] 
 Glycyrrhizin   Glycyrrhiza infl ate   [ 9 ] 
 Dopa and dopamine   Beta vulgaris   [ 10 ] 
 Serpentine   Catharanthus roseus   [ 11 ] 
 Sesquiterpenes   Hyoscyamus albus   [ 12 ] 
 Purpurin   Rubia cordifolia   [ 13 ] 
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   One more advantage of using HRs for studying phytoremediation, is their capabil-
ity to produce large amount of exudates which contain enzymes and few metal chelat-
ing compounds that may decontaminate organic and inorganic pollutants [ 23 ,  24 ]. It 
is well known that HRs are able to metabolize per se hazardous compounds by com-
mon metabolic pathways. As roots are the fi rst organs to have contact with the soil 
pollutants, they have evolved specifi c mechanisms to deal with the stress created due 
to the pollutants. However, to study precisely the metabolic events occurred due to the 
soil pollutants, natural roots may not be an appropriate option. Hence, by using HRs 
metabolic pathways and enzymatic catalyzed reactions involved in pollutants detoxi-
fi cation can be  elucidated accurately. In addition, the mechanisms of uptake, transfor-
mation, conjugation, and compartmentation of pollutants in vacuoles and/or cell 
walls, which are important detoxifi cation sites in plants can be elucidated by HRs.  

15.2     Application of HRs in Phytoremediation 

15.2.1     Removal of Organic Pollutants 

    PCBs 

 Polychlorinated biphenyls (PCBs) chemicals have certain hazardous properties 
mainly dielectric fl uids, hydraulic fl uids, and other applications requiring stable, 
fi re-retardant materials. In this context, PCBs bioaccumulation can lead to 
reduced ability to control infection, increased rate of autoimmunity, cognitive and 
behavioral problems and hypothyroidism [ 25 ]. The HRs of black nightshade 
( Solanum nigrum ) have been demonstrated to metabolizes and remove PCBs from 
solutions spiked with PCB congeners [ 26 ,  27 ].  

   Table 15.3    Phytoremediation of various environmental pollutants by HR cultures   

 Plant species model  Pollutant  References 

 Black nightshade ( Solanum nigrum )  PCBs  [ 25 ] 
 Periwinkle ( Catharanthus roseus )  RDX and HMX  [ 29 ] 
 Rapeseed ( Brassica napus ); Sunfl ower ( Helianthus 
annuus ) 

 Phenol  [ 31 ,  33 ] 

 Sunfl ower ( H. annuus )  Tetracycline and 
oxytetracycline 

 [ 35 ] 

 Chicory ( Cichorium intybus ) and Indian mustard 
( Brassica juncea );  Chenopodium amaranticolor  

 DDT; Chlorpyrifos  [ 37 ,  38 ] 

 Marigold ( Tagetes patula ); Indian mustard 
( B. juncea ); Gooseberry ( Physalis minima ) 

 Reactive red 198; 
Methyl orange: 
Reactive black 8 

 [ 39 – 41 ] 

 Wild mustard ( Alyssum bertolonii ) and Alpine 
pennygrass ( Thlapsi caerulescens ) 

 Nickel; cadmium  [ 44 ,  46 ] 

   PCBs  polychlorinated biphenyls,  RDX  hexahydro-1,3-5-trinitro-1,3-5-triazine,  HMX  oxtahydro- 
1,3,5,7-tetranitro-1,3,5,7-tetrazocine,  DDT  dichloro-diphenyl-trichloroethane  
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    Explosives 

 Hexahydro-1,3-5-trinitro-1,3-5-triazine (RDX) and octahydro-1,3,5,7-tetranitro- 
1,3,5,7-tetrazocine (HMX) are the two most common pollutants found in military 
sites where explosives are commonly tested [ 28 ]. Bhadra et al. confi rmed that HRs 
of  Catharanthus roseus  have inherent capabilities to remove RDX and HMX from 
the medium [ 29 ].  

    Phenols 

 Phenols are commonly used in various agricultural applications. They are released 
from coal and petroleum refi ning activities, and they pose a threat to human health. 
HRs have been used to check plants for their ability to tolerate high levels of phe-
nols. In HRs of carrot ( Daucus carota ) and other plant species, the role of peroxi-
dase enzymes might be the key factor in the removal of phenol and chlorophenols 
from the culture medium [ 30 ]. Also, the inherent activity of peroxidases in HRs of 
rapeseed ( Brassica napus ), was associated with the effective removal of 2, 
4- dichlorophenol and phenol from the medium for several cycles and the removal 
process was aggravated by the addition of hydrogen peroxide [ 31 ]. The HRs of car-
rot, kangaroo apple ( Solanum aviculare ) and sweet potato ( Ipomoea batatas ) are 
able to incorporate and conjugate the phenolic compounds with polar cellular mate-
rials (possibly sugars and proteins) as well as with insoluble materials. Peroxidase 
isozymes involved within a species may show variation in substrate preference and 
catalytic effi ciency of phenol metabolism [ 32 ]. Another recent study pointed out 
phenol (100 mg L −1 ) removal in 144 h by hairy roots of  Helianthus annuus  L. [ 33 ].  

    Antibiotics 

 Environmental analytical studies show that trace concentrations of antibiotics occur 
in hospital and municipal wastewaters and in the nearby aquatic environments [ 34 ]. 
HRs of sunfl ower ( Helianthus annuus ) were effective in extracting and metaboliz-
ing antibiotics including tetracycline and oxytetracycline through a process that was 
thought to involve reactive oxygen intermediates [ 35 ].  

    Insecticides 

 There is a controversy regarding the continuous use of the insecticide DDT to com-
bat mosquitoes that spread malaria in developing countries [ 36 ]. Some studies sug-
gested that DDT might have detrimental effects on human health. HRs of chicory 
( Cichorium intybus ) and Indian mustard ( Brassica juncea ) have been used to study 
their potential in removing DDT from contaminated sites [ 37 ]. HRs of  Chenopodium 
amaranticolor  have been used to degrade Chlorpyrifos, a commonly used pesticide [ 38 ].  

15 Hairy Roots: Production of Metabolites to Environmental Restoration



374

    Dyes 

 HRs of  Tagetes patula  were able to remove a dye concentration up to 110 mg L −1  
and could be successively used at least for fi ve consecutive decolourization cycles 
[ 39 ]. The HR cultures of  Brassica juncea  L. have shown 92 % decolourization of 
Methyl orange within 4 days. The enzyme laccase was purifi ed and characterized 
from the decolourized samples which contributed to a better understanding of the 
enzymatic process involved in phytoremediation of textile dyes [ 40 ]. In a recent 
study, role of antioxidant enzymes of HRs of  Physalis minima  during degradation 
of Reactive Black 8 have been investigated [ 41 ].   

15.2.2     Removal of Inorganic Pollutants 

    Heavy Metals 

 Depleted uranium (DU) is an emerging environmental pollutant that is introduced into 
the environment primarily by military activity. Adult animals that were exposed to 
depleted uranium during development display persistent alterations in behaviour, and 
a variety of changes in brain chemistry and pose a radiologic hazard [ 42 ]. Eapen et al. 
have demonstrated that HRs of  Brassica juncea  and  Chenopodium amaranticolor  
could uptake 20–23 % and 13 % uranium, respectively from solutions of 5,000 μM 
within 10 days [ 43 ]. HRs have exhibited that they can be utilized as a source of select-
ing a range of plant species for their ability to extract and absorb metals [ 44 ]. A com-
parison between nickel tolerance of HRs and whole plants revealed that the 
translocation of nickel to shoots may not be required for nickel tolerance and hyperac-
cumulation in certain species of  Alyssum  [ 45 ,  47 ]. Boominathan and Doran have dem-
onstrated that HRs of alpine pennygrass ( Thlaspi caerulescens ) extracted cadmium 
and accumulated it in complexes with organic acids inside the cell walls [ 46 ].    

15.3     Transgenic Plants 

 Several examples of transgenic plants for phytoremediation have been reported. 
Bernejee et al. used an approach to express a mammalian cytochrome P450 enzyme 
in deadly nightshade ( Atropa belladonna ) and the transgenic plants were able to 
metabolize the environmental pollutant TCE [ 48 ]. Doty et al. were successful in 
transforming poplar ( Populus tremula  x  Populus alba ) with this mammalian enzyme 
to generate plants with a superior capacity to remove various organic pollutants from 
hydroponic solutions and air [ 49 ]. Over-expression of a tomato ( Lycopersicon escul-
entum )  tpx 1 gene encoding peroxidase in HR generated roots with enhanced capacity 
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of removing phenols from the medium [ 50 ]. These studies demonstrated that trans-
genic approaches may be adopted to produce plants with novel and improved phy-
toremediation capacity [ 51 ]. Therefore, in the near future the use of transgenic HR 
systems may become more common in testing the effi cacy of transgenes and the 
enzymes they encode for the removal of hazardous environmental pollutants. Though 
the generation of transgenic plants with enhanced phytoremediation capacity might 
seem as a feasible solution, public skepticism and reluctance to transgenic organisms 
might make this option less favourable for its application. The alternative is the selec-
tion of local plant species with enhanced phytoremediation capacity through HR 
screens which may be a more practical solution to remove contaminants from the 
environment.  

15.4     Case Study (Phytoremediation of Textile Azo Dye, 
Direct Blue 71 by HRs of Tagetes patula) 

15.4.1     Induction of HRs in Explants of   Tagetes 

 Different explants including cotyledonary leaf, hypocotyl and epicotyl of  in vitro  
grown seedlings of  Tagetes  were used for HR induction using  A. rhizogenes  
MTCC532. After 3 weeks, the cotyledonary leaf explants showed the maximum 
response (86.67 %) as well as the maximum root numbers (3.7 roots per explant). 
Similar variable response was also observed in  Taraxacum platycarpum  explants 
when infected with  Agrobacterium rhizogenes  (ATCC15834) [ 52 ]. The molecular 
confi rmation of transgenic nature of the roots of the infected explants was con-
fi rmed by PCR amplifi cation of  rol C gene from genomic DNA of HRs, using gene 
specifi c primers. The best medium for maximum growth of HRs was formulated on 
the basis of growth kinetics (Fig.  15.1 ).

15.4.2        Screening of Different Textile Azo Dyes  Tagetes  

 Among the 25 textile azo dyes tested for their decolourization by HRs of  Tagetes , 
more than 50 % decolourization was observed in 19 dyes after 6 days (Fig.  15.2 ). 
The maximum and minimum decolourization was obtained for Direct Blue 71 
(99 %) and Reactive Orange 4 (21.1 %), respectively. Direct Blue 71 (DB71) was 
used as model dye for rest of the study. The variation observed in decolourization 
effi ciency and the time required for decolourization, might be due to the molecu-
lar complexity of the dyes and the enzymes produced during decolourization 
[ 53 ].
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15.4.3        Effect of Different Parameters on 
Decolourization of DB71 

 When various pH conditions (1.8–7.8) were assessed, pH 4.8 and 5.8 was observed 
to be optimum pH for the maximum decolourization of DB71 (Fig.  15.3a ). There 
was no appreciable effect of temperature changes on decolourization of DB71 
(Fig.  15.3b ). It was also found that 30 g L −1  of biomass dosage was optimum 
(Fig.  15.3c ). HRs of  Tagetes  were able to decolourize DB71 ranging from 97 % 
(60 mg L −1 ) to 32 % (150 mg L −1 ) (Fig.  15.3d ). Considering these data, all further 
DB71 decolourization experiments were carried out at pH 5.8, temperature 
25 ± 2 °C, biomass dosage 30 g L −1  and initial dye concentration of 60 mg L −1 .
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15.4.4        Biosorption of DB71 by HRs 

    Percentage Adsorption of DB71 onto HRs 

 See Fig.  15.4a .

       Adsorption Isotherms 

 See Fig.  15.4b, c . 
 The Langmuir constants (Q max  = 76.92 mg g −1 , b = 0.041, R 2  = 0.979) and 

Freundlich constants (k = 3.236, 1/n = 0.803, R 2  = 0.967) were calculated. 
 The results obtained fi tted well in the linear forms of Langmuir and Freundlich 

adsorption isotherms (Fig.  15.4 ) which indicated that both monolayer adsorption 
and heterogeneous surfaces conditions exist under the experimental conditions 
used [ 54 ].   

15.4.5     Phytodegradation Analysis 

 Different analytical techniques like Ultraviolet-visible (UV-Vis) spectroscopy, 
HPLC, FTIR spectroscopy and GCMS were used to confi rm the degradation of 
DB71 by HRs of  Tagetes . 
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   UV-Vis Spectra During Decolourization of DB71 

 Absorption spectra of different days in 200–800 nm during decolourization DB71 
by HRs (Samples) were compared to the spectrum of untreated DB71 (Control) 
(Fig.  15.5 ).

      Determination of Differential Expression of Enzymes 
and Aromatic Amines Under DB71 Stress 

 Lignin peroxidase and azoreductase showed a gradual increase in their activities 
during the decolourization of DB71 by HRs. After 1 day of DB71 treatment, a sig-
nifi cant increase of sevenfold in the extracellular activity of lignin peroxidase was 
recorded when compared to control. 

 This was followed by a gradual increase in intracellular activities of lignin per-
oxidase and azoreductase. The maximum increase in lignin peroxidase and azore-
ductase was observed at tenfold and eightfold respectively when compared to the 
initial values after 14 days of treatment. In a recent study on decolourization of 
DB71 by  Brevibacterium  sp. UVS, the induction of tyrosinase, DCIP reductase, 
ribofl avin reductase and azoreductase has been reported [ 55 ]. The concentration of 
aromatic amines were determined in both intracellular and extracellular samples for 
21 days at regular intervals (Fig.  15.6 ). The maximum concentration of aromatic 
amine was observed on same days as for the maximum induction of enzymes.

      HPLC Analysis of Degraded Products of DB71 

 The eluent profi le of untreated DB71 showed the presence of a peak at 1.767 min 
(Fig.  15.7a ). The eluent profi le of DB71 treated with HRs of  Tagetes , showed three 
major peaks at 2.810, 3.631 and 3.763 min and four minor peaks (Fig.  15.7b ).
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      FTIR Spectrum of Degraded Products of DB71 

 The FTIR spectrum of DB71 (Fig.  15.8a ) showed the presence of a peak at 
1612.38 cm −1  which suggested the presence of azo bond. The occurrence of peak at 
1797.53 cm −1  indicated the presence of the substituted benzene rings. The presence of 
peaks at 1041.49 and 1134.07 cm −1  implied the presence of –SO 3 /C-N stretching. The 
FTIR spectrum of DB71 degraded by HRs (Fig.  15.8b ) showed a different spectral 
pattern. The presence of peak at 1026.06 cm −1  indicated the presence of –
SO 3 H. Occurrence of peaks at 3394.48 and 2923.88 cm −1  represented the presence of 
primary amine and O–H stretching, respectively. In particular, there was absence of 

a

b

  Fig. 15.8    FTIR spectra of DB71 and its degraded products. ( a ) FTIR spectrum of DB71. ( b ) FTIR 
spectrum of degraded products of DB71       
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the peak indicative of azo (-N = N) group which meant that there was removal of azo 
bond after decolourization of DB71. The absence of groups, –SO 3  (1041.49 cm −1 ) and 
C-N stretching (1134.07 cm −1 ) in sample confi rmed the phytodegradation of DB71.

      GCMS Analysis 

 The metabolites formed during the phytodegradation of DB71 were predicted by 
GC mass spectral data as sodium 3, 7-diamino-4-hydroxynaphthalene-2-sulfonate 
(mw 276, m/z 276) and naphthalene-2-sulfonic acid (mw 208, m/z 207). On the 
basis of enzymes induced, HPLC chromatograms, FTIR spectra and GC mass spec-
tral data, the probable phytodegradation pathway of DB71 was predicted (Fig.  15.9 ).

15.4.6         Phytotoxicity Studies of DB71 
and Its Degraded Products 

 The drastic morphological changes like stunted plumule and radicle were quite evi-
dent on the growth of seedlings obtained from seeds treated with DB71 (1,000 ppm). 
Seeds treated with degraded dye (DD) (1,000 ppm), the results were almost similar 
to the seeds grown in distilled water (D/W) (Table  15.4 ). Thus, phytotoxicity studies 
confi rmed the non toxicity of degraded DB71 as well as toxicity of DB71 with 
respect to  Phaseolus mungo  and  Triticum aestivum .

15.4.7        Reuse Effi ciency of HRs in DB71 Decolourization 

 HRs of  Tagetes  were able to effi ciently decolourize DB71 for eight repetitive con-
tinuous cycles (Fig.  15.10 ). In an earlier study, repeated decolourization (>70 %) of 
DB71 for six cycles by  Comamonas  sp. UVS has been reported [ 56 ].

   Hence, the approach of phytoremediation of textile dyes by hairy roots used in 
case study have proved the effi cacy of these hairy roots in remediation of dyes. 
Further, to implement this on commercial scale, a pilot study has to be carried out.   

15.5     Conclusions and Future Prospects 

 The fl exibility to induce HRs from many plant species by infecting them with 
 Agrobacterium rhizogenes  has facilitated a wide range of plants for phytoremedia-
tion studies. Depending upon the nature of the pollutant, a suitable plant can be 
selected for hairy root induction for detoxifi cation of a specifi c hazardous pollutant. 
However, it is a prerequisite to establish a reproducible protocol for growth and 

N.S. Desai et al.



383

development of hairy roots along with optimization of all the parameters necessary 
for scale up in a bioreactor. For these conceptual twin objectives, hairy roots stand 
out superior among other biological sources. Plants have an inherent potential to 
extract and metabolize contaminants and their cooperation with rhizospheric micro-
organisms enhance the removal of contaminants from the environment. As HRs are 
amenable to genetic transformation, transgenic approaches may be used to study 
candidate genes that affect the removal of contaminants. Genes from numerous 
microbial systems which have been demonstrated to detoxify the toxic molecules 
effectively can be isolated and cloned and such genes can be integrated into hairy 
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root gene construct for hyper remediation of pollutants. Remarkable advances in 
genomics and proteomics coupled with metabolic engineering will be of a great 
assistance to formulate a well designed strategy for the development of hairy roots 
for phytoremediation relevancies.     
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    Abstract      Lilium  is an important fl oricultural crop for bulb and cut fl ower produc-
tion. Culturing  Lilium  bulblets from bulbscales is one of the main methods for vege-
tative propagation; however, the traditional tissue culture requires numerous vessels 
and considerable labour. This study evaluates the effi ciency of using air-lift bioreac-
tor systems to produce  Lilium  bulblets from bulbscale segments. The factors that 
affect bulblet formation and enlargement  in vitro  and specifi c factors that affect bulb-
let production in air-lift bioreactor systems were investigated. A simple method to 
mass produce bulblets by using a one-step bioreactor culture is indicated, and a pilot-
scale bioreactor culture is introduced. The effects of storage temperature and dura-
tion on the carbohydrates and related enzymes of  in vitro –produced bulblets are 
determined during breaking of dormancy. A suitable bulblet size for culturing is 
determined after observing the emergence of cauline leaves from different sized 
bulblets that are produced in solid and bioreactor cultures. Finally, an effi cient method 
to mass produce high-quality  Lilium  bulblets is selected based on the production cost.  

  Keywords     Bioreactor   •   Bulblet enlargement   •   Bulblet formation   •   Bulblet size   • 
  Bulbscale segment   •   Immersion culture   •   Ebb and fl ood culture   •   Stem leaf  

  Abbreviations 

   BA    6-Benzyladenine   
  BTBB    Balloon-type bubble bioreactor   
  DIF    Difference   
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  LEDs    Light emitting diodes   
  MS    Murashige-Skoog   
  NAA    α-Naphthalene acetic acid   
  SPS    Sucrose phosphate synthase   
  SS    Sucrose synthase   

16.1           Introduction 

  Lilium  is an important fl oricultural crop for bulb and cut fl ower production. At pres-
ent, the vegetative propagation of lilies is realized by regenerating bulblets from 
excised  Lilium  bulbscales [ 1 – 8 ]. Bulblet culture is advantageous for the mass propa-
gation of  Lilium  propagules because bulblets can easily be handled, transported, 
stored and can be pathogen free, if the culture is started with a pathogen-free mate-
rial [ 9 ]. However, the commercial use of  Lilium  micropropagation is limited by high 
production costs that result from the high coagulant and labour costs in solid cul-
tures; hence, liquid culture systems have been developed [ 7 ,  10 ]. 

 The use of large-scale liquid culture and automation can eliminate the manual 
handling of the various stages of  in vitro  cultures and can decrease the production 
costs. Recent studies have used bioreactors to examine the mass propagation of 
plant tissues or organs (like plantlets, microtubers, protocorm like-bodies and rhi-
zomes) in various plant species [ 11 – 16 ]. For  Lilium , Son et al. [ 17 ] and Seon et al. 
[ 18 ] have studied the feasibility of using bioreactor systems for culturing  Lilium  
bulblets in liquid media. Lian et al. [ 9 ,  19 ,  20 ] have systematically investigated the 
factors that affect bulblet formation and enlargement in bioreactors and have estab-
lished a bioreactor culture system. Ahn et al. [ 21 ] used pilot bioreactor systems to 
produce  Lilium  bulblets. They introduced large-scale culture methods and provided 
solutions to existent problems. 

 The size of  in vitro –produced bulblets affects the emergence of cauline leaves. 
Generally, the size of  in vitro –produced bulblets must be suitable to allow the emer-
gence of cauline leaves. Studies that involved the direct fi eld planting of bulblets 
produced in solid media revealed a higher leaf emergence rate (90 %) in the large 
bulblets (3 g) during transplantation when compared to the smaller bulblets [ 22 ]. 
However, cauline leaves could exhibit a 90 % emergence rate from bioreactor- 
produced bulblets weighing >1.1 g [ 20 ]. Therefore, producing the bulblets of an 
appropriate size is important for solid and bioreactor cultures. 

 This chapter describes the medium factors [plant regulators, nitrogen concen-
tration, Murashige and Skoog (MS) [ 23 ] medium strength and sucrose] and 
microenvironmental factors (temperature and light) which affect the formation 
and growth of  Lilium  bulblets  in vitro . Then, we indicate the factors that affect 
bulblet production in air-lift bioreactor systems. A simple method to mass pro-
duce bulblets by using a one-step bioreactor culture is indicated, and a pilot-scale 
bioreactor culture is introduced. The effects of storage temperature and duration 
during breaking of dormancy on the carbohydrates and related enzymes of  in 
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vitro –produced bulblets are determined. A suitable bulblet size for culturing is 
determined after observing the emergence of cauline leaves from different sized 
bulblets that are produced in solid and bioreactor cultures. Finally, an effi cient 
method to mass produce high- quality  Lilium  bulblets is selected by calculating the 
production cost.  

16.2     Culture Medium 

 The optimal growth and morphogenesis of plant tissues may vary among different 
plants according to their nutritional requirements. A plant tissue culture medium 
generally contains macronutrients, micronutrients, vitamins, amino acids or nitro-
gen supplements, a carbon source, undefi ned organic supplements, growth regula-
tors and solidifying agents. The optimum concentration of each nutrient for 
achieving maximum growth rate varies among different plant species. For bulblet 
formation and enlargement, the suitable culture medium is slightly different among 
 Lilium  species, cultivars and hybrids. Therefore, culture medium components 
should be modulated to optimize  in vitro Lilium  culture systems. For large-scale 
production, the culture medium is generally screened in smaller vessels by using 
solid or liquid medium. Hence, factors (nitrogen, medium strength, plant growth 
regulators and sugar) that affect  Lilium  bulblet formation and enlargement should 
be verifi ed in advance. Moreover, the culture medium should be optimized for the 
subsequent large-scale bioreactor culture. 

16.2.1     MS Medium 

 Minerals are important components of the culture medium. MS medium is com-
monly used because most plant cultures favourably react to it. MS is a high salt 
containing medium with high levels of nitrogen, potassium and some micronutri-
ents [ 24 ]. However, this nutrient medium is not always optimal for the growth and 
development of explants  in vitro  because of its high salt content. 

 The strength of MS medium affects plant organogenesis during micropropaga-
tion [ 25 ,  26 ]. The fi tted MS strength differs among  Lilium  species, cultivars and 
hybrids. In  Lilium  bulblet production, bulblet formation is favoured when the 
strength of MS medium is increased to two fold in the bulbscale segment culture of 
 Lilium auratum  Lindl. [ 27 ]. However, the strength of MS medium does not affect 
bulblet formation in the Oriental hybrid ‘Casa Blanca’. By comparison, 1/2-strength 
MS medium supports the highest bulblet formation in the Asiatic hybrid, ‘Mona’ 
and the  longifl orum  hybrid, ‘Hinomoto’ [ 28 ]. For  Lilium  bulblet growth, many cul-
tivars or hybrids are promoted by 2-strength MS medium [ 27 ,  28 ]. 

 In addition, MS medium contains high amounts of nitrogen, with a high ratio of 
NO 3  − /NH 4  + . However, the plant growth is affected not only by nitrogen  concentration 
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but also by forms of nitrogen. We observed that the MS medium with a low nitrogen 
amount (30 mM) can effectively support  Lilium  bulblet formation in ‘Casa Blanca’, 
‘Mona’, and ‘Hinotomo’. The optimum bulblet growth was obtained at 120 mM 
nitrogen in ‘Casa Blanca’ and ‘Hinomoto’, whereas nitrogen concentration elicited 
no signifi cant effect on bulblet growth in ‘Mona’ [ 28 ].  

16.2.2     Plant Growth Regulators 

 Plant growth regulators are chemicals applied to plant tissue cultures to regulate 
culture growth. Different plant growth regulators affect different plant processes. 
Auxins and cytokinins are by far the most important for regulating growth and mor-
phogenesis in plant tissue and organ cultures; synthetic regulators have biological 
activities that equal or exceed those of their natural counterparts.  Lilium  bulblets 
easily form from the bulbscales of fi eld-cultivated bulbs or  in vitro –cultured bulb-
lets. This fi nding can be attributed to the good organogenesis ability or essential 
substances in bulbscales. 6-benzyl adenine (BA) generally promotes bulblet primor-
dium differentiation but inhibits bulblet development during  Lilium  bulbscale seg-
ment culture. Low auxin amounts are suffi cient for bulblet formation, whereas 
cytokinins do not elicit the same effect [ 29 ,  30 ]. A culture medium supplemented 
with a low amount of auxins or without any plant growth regulator promotes the 
enlargement of  Lilium  bulblets  in vitro  [ 31 ]. A culture medium supplemented with 
a low amount of auxins or without any plant growth regulator promotes the enlarge-
ment of  Lilium  bulblets  in vitro  [ 29 ]. In  Lilium  hybrids ‘Casa Blanca’, ‘Mona’, and 
‘Hinomoto’, a medium supplemented with a mixture of 0.3 mg L −1  α-naphthalene 
acetic acid (NAA) and 1.0 mg L −1  BA effectively and rapidly induces bulblet forma-
tion when compared with a medium supplemented with either BA or NAA and 
without any plant growth regulators. However, the bulblet formation rate does not 
vary among the cultivars after 8 weeks of culture in a medium with or without BA 
or NAA [ 32 ].  

16.2.3     Sugar 

 Most plant tissues require an exogenous source of carbohydrates because they do 
not effi ciently photosynthesize. The optimum sugar concentration may vary with 
the stages of differentiation in the culture. Sucrose is the principal carbon source in 
plant tissue culture; it is involved not only in metabolism-related organogenesis and 
respiration but also in osmoregulation [ 33 ]. During  Lilium  bulblet enlargement, 
sucrose is more crucial in regulating osmotic pressure than in being a carbon source 
in metabolism [ 34 ]. Low sucrose concentrations benefi t bulblet formation, whereas 
high sucrose concentrations promote bulblet enlargement. Takayama and Misawa 
[ 27 ] indicated that large  Lilium  bulblets can be obtained by increasing the sucrose 
concentration in the medium; they obtained the maximum bulblet biomass after 
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supplying the culture medium with 90 to 120 g L −1  of sucrose. However, they also 
found that high sucrose concentrations delay bulblet formation. Nevertheless, a high 
sucrose concentration (90 g L −1 ) should be added to the culture medium during 
long-term bulbscale segment culture (>4 weeks) to promote bulblet formation and 
enlargement because a low initial sucrose concentration (30 g L −1 ) will be depleted 
after 2–3 weeks of culture [ 18 ].   

16.3     Culture Environment 

 The maximum growth and development of cultures  in vitro  are determined by their 
genes. However, their actual rates are limited by microenvironmental factors, 
including temperature, light, humidity and carbon dioxide. Controlling these envi-
ronmental factors can promote the growth and development of cultures. Therefore, 
an appropriate microenvironment must be established to allow cultures to exhibit 
their hereditary characteristics in a highly effi cient and stable manner. 

16.3.1     Temperature 

 Air temperature is the most important environmental factor that affects  Lilium  bulb-
let formation and enlargement. Previous studies suggested that 25 °C is the opti-
mum temperature for the bulblet formation and growth of many  Lilium  species, 
cultivars and hybrids such as  Lilium rubellum  [ 10 ], ‘Casa Blanca’ and ‘Mona’ [ 35 ], 
and  Lilium longifl orum  ‘Ace’ and ‘Nellie White’ [ 36 ,  37 ]. Meanwhile, a high tem-
perature of 30 °C suppresses bulblet formation and growth by increasing the respi-
ration rather than the assimilation of sugar by bulblets. 

 The air temperature mentioned above remains constant throughout the day. 
However, the culture growth and morphology require the air temperature in culture 
vessels during the photoperiod at normal light intensities to be slightly higher than 
that during the dark period in many cases.  Lilium  bulblet formation and growth are 
also affected by day and night temperature differences (DIF). Lian et al. [ 35 ] deter-
mined that zero DIF and negative DIF (−7) promote the bulblet formation of ‘Casa 
Blanca’ and ‘Hinomoto’ but do not affect that of ‘Mona’. During the bulbing stage, 
bulblet growth is favourable at +7 DIF for ‘Casa Blanca’, at zero DIF for ‘Mona’, 
and at −7 DIF for ‘Hinomoto’.  

16.3.2     Light 

 Light (spectral quality, photon fl ux and photoperiod) is another environmental fac-
tor that affects the overall growth and development of cultures  in vitro  [ 38 ,  39 ]. The 
results of light experiments on  Lilium  bulblet formation vary among the various 
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research reports. Maesato et al. [ 40 ] stated that continuous illumination during cul-
ture stimulates the bulblet production of  Lilium japonicum.  By contrast, Stimart and 
Ascher [ 30 ] found that continuous darkness increases the size and number for 
 Lilium longifl orum  bulblets. In our study, we investigated the effect of light intensity 
on  Lilium  bulblet formation and growth  in vitro  and found that light promoted bulb-
let formation in ‘Casa Blanca’ and ‘Hinomoto’ but did not affect that in ‘Mona’. 
During the bulbing stage, light induced better bulblet growth of ‘Casa Blanca’ and 
‘Mona’ when compared with the darkness. Bulblet growth in ‘Hinomoto’ increased 
at high light intensity. We also examined the effects of lighting conditions on  Lilium  
‘Casa Blanca’ bulblet formation in an ebb and fl ood bioreactor culture system and 
found that the bulblet formation rate increased under 16 h illumination 
(30 μmol m −2  s −1 ) than under 24 h darkness. However, the number of bulblets formed 
per explant was not affected by lighting conditions. A similar response was observed 
by Varshney et al. [ 8 ] during the  in vitro  mass propagation of a  Lilium  Asiatic 
hybrid. Such variations in potential regeneration under different lighting conditions 
can be attributed to the physiological status of the material (cultivar, age, culture 
time, etc.). 

 Fluorescent tubes or lamps with spectral emission wavelengths ranging from 350 
to 750 nm are the principal light sources for maintaining tissue cultures [ 41 ]. 
Recently, light emitting diodes (LEDs) have arisen as an alternative light source for 
plant culture systems [ 42 – 45 ]. LED lighting systems have several unique advan-
tages including small size, durability, long operating lifetime, wavelength specifi c-
ity, relatively cool emitting surfaces, photon output, and the capacity to control 
spectral composition that is linear with the electrical input current. In addition, blue 
and red LEDs have been used to study photosynthesis [ 46 ], chlorophyll synthesis 
[ 47 ] and morphogenesis [ 48 ]. The formation of  Lilium  bulblets was better under 
LED treatments than under dark conditions. The number of bulblets increased under 
blue + red LEDs and fl uorescent lamps. Bulblet fresh weight was promoted by fl uo-
rescent lamp treatment in ‘Casa Blanca’ and ‘Hinomoto’. In ‘Mona’, LEDs and 
darkness did not affect bulblet formation, and bulblet fresh weight peaked after fl uo-
rescent lamp treatment.   

16.4     Bulblet Formation in Bioreactors 

 Studies have reported that bioreactors can be used to enlarge  in vitro –induced  Lilium  
bulblets [ 9 ,  17 – 20 ]. However, information on  Lilium  bulblet formation using biore-
actor systems is limited [ 9 ]. During the formation of  Lilium  bulblets from bulbscale 
segments in solid cultures, explant incisions gradually dry up with the time, after 
which bulblets start to regenerate. However, the most explants in liquid immersion 
culture systems are brown and swollen, and it is diffi cult to induce bulblets from the 
explants. Therefore, a special method to induce bulblet formation is needed for liquid 
bioreactor cultures. Accordingly, the present study introduces a new bioreactor cul-
ture method for bulblet formation and recognizes the factors affecting this system. 
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16.4.1     Culture Method 

 The morphology of microcultures in liquid media or in closed vessels is generally 
restricted because of excess ethylene production from the cultures at a high relative 
humidity. Hence, a viable and effi cient method of  Lilium  bulblet formation in bio-
reactors should be explored.  Lilium  bulblet formation varies in solid and liquid 
cultures. Thus, we have designed four experimental groups, namely, solid culture, 
agitated fl ask liquid culture, bioreactor immersion, and ebb and fl ood liquid cul-
ture. ‘Casa Blanca’ bulbscale segments (1 mm × 1 mm) were inoculated into four 
culture systems. The culture medium used was MS medium supplemented with 
0.3 mg L −1  of NAA, 1 mg L −1  of BA, and 30 g L −1  of sucrose. For the bioreactor 
culture, a 5 L balloon-type bubble bioreactor (BTBB) with 1 L of culture medium 
was used, and the air volume was adjusted to 0.1 vvm (air volume/culture volume, 
min). In the immersion-type system, the bulblets were submerged in liquid during 
the entire period. In the ebb and fl ood liquid culture, the bulblets were immersed 
into the medium for 0.3 h and then dried for 5.7 h using a timer and a solenoid 
valve. All cultures were maintained at 25 °C for a 16 h photoperiod (light intensity 
of 40 μmol m −2  s −1 ). After 4 weeks of culture, the bulblet formation was suffi cient 
in the solid culture, whereas no bulblet formation was observed in the agitated 
fl ask liquid culture and immersion-type bioreactor cultures. This result indicates 
that immersing the entire bulbscale segments into the liquid medium inhibits the 
bulblet formation. The ebb and fl ood bioreactor system, which works on the prin-
ciple of temporary immersion, facilitated a constant supply of nutrients and aera-
tion to the explants and promoted the formation of bulblets (Fig.  16.1 ). Although 
the percentage of bulblet formation was lower in the ebb and fl ood system (51.7 %) 
than in solid culture system, we harvested over 1,000 bulblets from the bioreactor 
system.

16.4.2        Temporary Immersion Cycles 

 The ebb and fl ood bioreactor culture method involves temporarily wetting the entire 
culture or plant tissue with nutrient medium, followed by draining the excess nutri-
ent medium under gravity. This method has been used to micropropagate many plant 
species [ 49 – 54 ]. Similar to other bioreactor culture types, the ebb and fl ood culture 
method of plant micropropagation is affected by many factors such as culture 
medium, aeration, inoculation density, temperature, and light intensity. The ebb and 
fl ood bioreactor culture is particularly infl uenced by the temporary immersion cycle. 

 Modulating the temporary immersion cycle can improve  Lilium  bulblet forma-
tion. We examined the effects of the number (4, 6 and 8 times per day for 30 min 
each) and duration (4 times per day for 15, 30, 60 or 120 min) of medium supply on 
bulblet formation during ebb and fl ood bioreactor culture. The highest percentage of 
bulblet formation (75.8 %) was observed when the medium was supplied 4 times 
per day for 15 min, with the effi ciency of bulblet formation nearly similar to that of 
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the solid culture. The percentage of bulblet formation and number of bulblets per 
bioreactor decreased when the medium was supplemented for more than 15 min. 
Immersion of the bulbscale segments in the liquid medium for a longer time inhib-
ited the bulblet formation (Fig.  16.2 ). This result may be related to the fact that by 
increasing the surface contact of the bulbscales with air stimulates the formation of 
bulblets during bioreactor culture.

16.4.3        Cytokinins and Auxins in Culture Medium 

 Cytokinin or auxin concentration can control the quantity and morphology of  Lilium  
bulblets being formed. Tufty and formless bulblets are often observed in culture media 
supplemented with high BA amounts; this fi nding proves again that BA promotes 
bulblet primordium differentiation but inhibits bulblet development [ 55 ]. The bulblets 

a b

  Fig. 16.1    Bulblet formation of  Lilium  ‘Casa Blanca’ in ebb and fl ood bioreactor system ( a ), initial 
inoculated bulbscale segments ( b ), right, bulblets formed from bulbscale segments after 4 weeks 
of culture       
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formed in culture media with low NAA amounts display visible morphology and 
proper development. We examined the effects of BA and NAA concentrations on bulb-
let formation and further development in the ebb and fl ood bioreactor system. ‘Casa 
Blanca’ bulblets were immersed into the medium 4 times per day for 15 min each. The 
culture medium was supplied with a mixture of 0.3 mg L −1  NAA and 1.0 mg L −1  BA 
or without any plant growth regulators. More bulblets were formed in the medium 
supplemented with 0.3 mg L −1  NAA and 1.0 mg L −1  BA than in the medium without 
plant growth regulators. However, numerous abnormal bulblets were observed when 
the bulblets that were formed in the medium supplemented with 0.3 mg L −1  NAA and 
1.0 mg L −1  BA were cultured in a medium with 90 g L −1  sucrose but without growth 
regulators for 8 weeks. Conversely, the bulblets that were initiated in the medium with-
out growth regulators showed no signs of abnormality even after 16 weeks of bulbing. 
The addition of growth regulators may cause morphological abnormalities and hyper-
hydricity [ 56 ]. On the basis of the results showing the lower survival rates of the abnor-
mal bulblets during transplantation, we recommend the use of medium without growth 
regulators for the formation of  Lilium  bulblets in bioreactors.   

16.5     Bulblet Enlargement in Bioreactors 

 Recently, the mass propagation of storage organs in bioreactors has been examined 
in several plant species, including lilies. Factors such as medium renewal, sucrose 
concentration and bioreactor type infl uence the growth of  Lilium  bulblets in biore-
actor cultures. We explored the optimum culture conditions during bioreactor cul-
ture to obtain the mass and high-quality  Lilium  bulblets. 

16.5.1     Bioreactor Culture Type 

 Bulblet development is affected by different bioreactor culture methods. We used 
two types of bioreactors (immersion and temporary immersion liquid culture using 
ebb and fl ood; Fig.  16.3 ) to culture ‘Casa Blanca’ bulblets. A total of 200  in vitro –
cultured bulblets each weighing 0.1 g were transferred to a 5 L BTBB containing 
4 L of MS liquid medium supplemented with 90 g L −1  of sucrose. The pH of the 
medium was adjusted to 5.8 before autoclaving at 121 °C and 1.2 kg cm −2  pressure 
for 40 min. The air volume was adjusted to 0.1 vvm. The bulblets in the immersion- 
type bioreactors were submerged into the liquid medium during the entire culture 
period. Meanwhile, the bulblets in the ebb and fl ood system were immersed into the 
medium for 60 min and then dried for 30 min using a timer and a solenoid valve. 
The bioreactors were maintained at 25 °C in the dark for 16 weeks before harvest-
ing. After 16 weeks of culture, the bulblets cultured under the ebb and fl ood system 
showed lower growth rates when compared with those cultured under the immer-
sion system (Fig.  16.4 ). The total number of large bulblets also increased in the 
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immersion-type bioreactor. This result indicates that the immersion system permits 
an effi cient nutrient uptake, whereas the ebb and fl ood system allows aeration but 
not the complete surface contact with the nutrient medium. Hyperhydricity is often 
presented in an immersion system, but it has never been reported in lily liquid cul-
ture for the bulblet enlargement. In addition, it is not present in our bioreactor cul-
ture system. Immersion culture systems can be easily assembled and they are 
simpler when compared with the ebb and fl ood system. Therefore, the former is 
suitable for  Lilium  bulblet enlargement.

16.5.2         Methods of Medium Supply in Immersion 
Bioreactor Culture 

 A long-term culture characterizes the  in vitro  bulblet enlargement of  Lilium . 
Approximately 0.1 g of bulblet inoculum must be subcultured at least 3 times for 
nearly half a year using the traditional solid medium to obtain approximately 3 g of 
bulblets. However, in bioreactors the entire culture period can be completed by 
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  Fig. 16.3    Schematic diagram of immersion ( a ) and ebb and fl ood ( b ) bioreactor system. ( a ) air 
inlet, ( b ) air fl ow meter, ( c ) membrane fi lter, ( d ) glass sparger, ( e ) solenoid valve, ( f ) timer, ( g ) sup-
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medium renewal, which avoids the need for subculture for  Lilium  bulblet produc-
tion. We examined the two methods of medium renewal, namely, medium exchange 
and medium addition. For medium exchange, 200 bulblets (0.1 g) were inoculated 
using the immersion bioreactor system fi lled with 1 L of MS medium supplemented 
with 30 g L −1  of sucrose at initial culture. After 2, 6 and 12 weeks of bioreactor 
culture, the old medium was replaced with 2, 3 and 4 L of fresh medium (MS + 90 g L −1  
sucrose). For medium addition, 1 L of MS medium supplemented with 30 g L −1  of 
sucrose was used when the bulblets were inoculated. An aliquot of 1 L fresh medium 
(MS + 90 g L −1  sucrose) was added after 2, 6 and 12 weeks of culture. Bulblet bio-
mass signifi cantly increased when the medium was replaced with fresh medium 
after 16 weeks of bioreactor culture (Table  16.1 ). The enhanced bulblet growth by 
the medium replacement method was due to an increase in number of large bulblets; 
95 bulblets heavier than 2.1 g were produced (i.e. nearly 50 % of inoculated explants 
produced bulblets ≥2.1 g). This result is nearly a 2.0-fold improvement compared 

ImmersionEbb&flood

  Fig. 16.4    Bulblet growth of  Lilium  Oriental hybrid ‘Casa Blanca’ in ebb and fl ood and immersion 
bioreactor system after 16 weeks of culture       

   Table 16.1    Effect    of culture method on bulblet growth and distribution of bulblet size in bulblet 
culture of  Lilium  Oriental hybrid ‘Casa Blanca’ after 16 weeks in bioreactor   

 Methods of 
medium supply 

 No. of different size bulblets/bioreactor  Bulblet weight (g/bioreactor) 

 ≤1.0 g  1.1–2.0 g  ≥2.1 g  Fresh  Dry 

 Addition  61.2 a a   94.6 a  45.4 b  291.5 b  92.0 b 
 Exchange  40.0 b  65.1 b  95.7 a  425.0 a  135.5 a 

   a Mean separation by Duncan’s multiple range test at  P  ≤ 0.05  
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with the medium addition method, which yielded 45 bulblets ≥2.1 g. On the basis 
of this experiment, we conclude that an appropriate medium supply is essential for 
enhancing the bulblet growth, which is a key criterion to achieve large sized 
bulblets.

16.5.3        Frequency of Medium Exchange 

 Well-grown bulblets can be obtained by the medium replacement method, but the 
frequency of medium replacement is also an important parameter to optimize the 
culture system. To determine the optimum number of medium replacement, we 
designed four medium replacement levels using a 5 L BTBB with MS liquid medium 
supplemented with 90 g L −1  of sucrose: 0 (4 L of medium was used without medium 
replacement during the entire period); 1 (2 L of medium was used upon inoculation 
of the bulblets and was replaced with 4 L of fresh medium after 8 weeks of culture); 
2 (1 L of medium during inoculation replaced with 2 and 4 L of medium after 4 and 
12 weeks of culture respectively); and 3 (1 L of medium during inoculation, replaced 
with 2, 3 and 4 L of medium after 4, 8 and 12 weeks of culture, respectively). After 
16 weeks of culture, minimal bulblet growth was observed in the no- replacement 
and one-time medium replacement conditions. Meanwhile, the rate of bulblet growth 
increased in the 2 and 3 medium replacement levels. The distribution of bulblet size 
also indicates a strong infl uence of medium replacement on individual bulblet growth. 
The highest number of large bulblets (≥2.1 g) was achieved after 16 weeks of culture 
in an immersion system with 2 or 3 times medium renewal (Table  16.2 ). This result 
indicates that 2 times medium replacement in the immersion culture system of BTBB 
is an appropriate method for obtaining abundant large sized  Lilium  bulblets.

16.5.4        Sugar in Culture Medium 

 In most bulbous plants, sucrose is converted into starch and is stored in bulbscales, 
which is the tissue responsible for storage. The available carbohydrates, particularly 
sucrose, in the medium are responsible for increasing the weight of bulblets. Apart 
from sucrose being a suitable carbon source for easy assimilation and conversion 
into starch to develop the bulblets, it also provides a favourable osmolarity for bulb-
let development [ 57 ]. We already mentioned the effects of sugar on  Lilium  bulblet 
culture and indicated that sugar critically affects the bulblet formation and enlarge-
ment  in vitro . To confi rm the infl uence of sugar on bulblet enlargement in bioreac-
tors, we cultured ‘Casa Blanca’ bulblets in a 5 L BTBB immersion culture system 
that contains 4 L of MS culture medium supplemented with different concentrations 
of sucrose alone (30, 60, and 90 g L −1 ) or in combination with mannitol (30 g L −1  
sucrose + 32 g L −1  mannitol, 60 g L −1  sucrose + 16 g L −1  mannitol). Most bulblets in 
the medium supplemented with 30 g L −1  of sucrose grew to a small to medium size 
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(≤2.1 g) after 16 weeks of culture; meanwhile, large bulblets were found in the 
medium supplemented with 90 g L −1  of sucrose. The medium supplemented with a 
mixture of sucrose and mannitol did not infl uence bulblet growth during bioreactor 
culture. This result agrees with the aforementioned fi nding in solid culture that high 
sucrose concentrations promote  Lilium  bulblet growth. Based on the fi ndings that 
the presence of large bulblets indicates a high survival rate during transplantation, 
we recommend using 90 g L −1  of sucrose for  Lilium  bulblet production during bio-
reactor culture.  

16.5.5     Inoculation Density 

 Inoculation density is a relevant physical parameter that infl uences the culture growth 
during micropropagation [ 58 ]. The ratio of explant number to media volume affects 
the proliferation rate [ 59 ]. Many studies have proven through micropropagation sys-
tems that the appropriate initial explant number depends on the plant species, organs 
and culture methods [ 60 – 62 ]. Plant micropropagation is used to obtain the maximum 
number of healthy cultures from a small inoculum quantity [ 63 ]. We inoculated 100, 
200, 300 and 400 bulblets (0.1 g) into a 5 L BTBB with 4 L of MS medium supple-
mented with 90 g L −1  of sucrose and then cultured them for 16 weeks. At densities of 
100 and 200, more number of larger bulblets (≥2.1 g) were produced than the smaller 
bulblets in the bioreactor. However, these two densities were inadvisable because of 
the limited total bulblet number in the bioreactor. The total number of bulblets larger 
than 2.1 g peaked at the inoculation density of 300 (Fig.  16.5 ). In practice, producing 
large  Lilium  bulblets  in vitro  is not advisable because it requires high labour and 
production costs. Therefore, cultivating  in vitro –produced bulblets in the fi eld to 
promote bulblet enlargement is an effi cient approach for the commercial production 
of high-quality  Lilium  bulblets.  Lilium  bulblets heavier than 3 g produced in solid 
medium [ 22 ] or 1.1 g produced in liquid medium [ 20 ] can form cauline leaves. 
Accordingly, bulblets of ≥1.1 g are considered as an appropriate size for bioreactor 
liquid cultures. Most bulblets were heavier than 1.1 g at the inoculation density of 

   Table 16.2    Effect of medium exchange numbers on bulblet growth and distribution of bulblet size 
in bulblet culture of  Lilium  Oriental hybrid ‘Casa Blanca’ after 16 weeks in bioreactor   

 No. of medium 
exchanges a  

 No. of different size bulblets/bioreactor  Bulblet weight (g/bioreactor) 

 ≤1.0 g  1.1–2.0 g  ≥2.1 g  Fresh  Dry 

 0  62.5 a b   126.1 a  4.6 c  224.0 b  68.0 b 
 1  45.5 b  113.9 a  40.5 b  276.5 b  86.5 b 
 2  14.7 c  55.5 b  129.5 a  529.0 a  170.0 a 
 3  15.1 c  50.5 b  136.5 a  578.5 a  186.5 a 

   a 0: No medium exchange, 1: exchanged medium after 8 weeks of culture, 2: exchanged medium after 
4 weeks and 12 weeks of culture, 3: exchanged medium after 4, 8 weeks and 12 weeks of culture 
  b Mean separation by Duncan’s multiple range test at  P  ≤ 0.05  
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300. Thus, we suggest that the inoculation density of 300 is suitable for  Lilium  bulb-
let production using a 5 L BTBB with a 4 L working volume.

16.5.6        Kinetics of Nutrient Uptake in Medium 

 The medium components dynamically changed in the bioreactor culture of  Lilium  
bulblets. We inoculated 200 ‘Casa Blanca’ bulblets (0.1 g) into a 5 L BTBB with 1 L 
of MS liquid medium supplemented with 30 g L −1  of sucrose at initial culture. After 
2, 6 and 12 weeks of bioreactor culture, the old medium was replaced with 2, 3 and 
4 L of fresh medium (MS + 90 g L −1  sucrose) respectively. The bioreactor was aer-
ated at 0.1 vvm. The medium samples were collected after every 2 weeks of bioreac-
tor culture, and the sugar, ion contents as well as the pH level were measured. 

 Glucose and fructose were determined in the culture medium, although only 
sucrose was added into the original medium. The presence of these sugars may be 
due to the invertase secretion from  Lilium  bulblets into the culture medium or onto 
the epidermal cell surface of the tissue, resulting in the hydrolysis of extracellular 
sucrose into glucose and fructose [ 64 ,  65 ]. The sucrose was rapidly hydrolyzed into 
glucose and fructose, and almost equal amounts of glucose and fructose were mea-
sured in the medium (Fig.  16.6 ). This result indicates equal utilization of these 
reducing sugars. We observed that a high sucrose concentration was maintained in 
the medium. This result proves that sucrose is not only a suitable carbon source for 
easy assimilation and conversion into starch but also it maintains a favourable 
osmolarity in bulblet development [ 57 ].
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   The kinetics of change in ion concentration showed three approaches in mineral 
absorption (Fig.  16.7 ): a rapid depletion of NH 4  +  and H 2 PO 4  − , a steady absorption 
rate for NO 3  −  and SO 4  2− ; and a slow consumption of K + , Mg 2+ , Ca 2+ , and Cl −  in the 
medium during bulblet growth. The depletion of a particular nutrient from the 
medium cannot be used as an indicator of imminent nutrient defi ciency. However, 
the availability of H 2 PO 4  −  and NH 4  +  is correlated with the bulblet growth.

   A rapid decrease in pH was also observed after the exchange with fresh medium 
during bulblet growth (Fig.  16.8 ). The acidic pH of the culture medium may be 
attributed to the rapid uptake of NH 4  + , which led to the effl ux of protons during 
NH 4  +  absorption. The apparent relationship between nitrogen absorption and pH 
change demonstrates depletion of ammonium in the medium. Based on these results, 
we speculate that the uniform availability of NH 4  +  and H 2 PO 4  −  ions as well as the 
high concentration of sucrose primarily functions in achieving optimum bulblet 
growth.

16.6         One-Step Bioreactor Culture 

 A separate method for bulblet formation and enlargement was described using the 
bioreactors that are mentioned in previous sections. The production cost can be 
reduced and the culture procedure can be simplifi ed by applying the one-step biore-
actor culture technique in  Lilium  bulblet production. One-step culture requires the 
completion of the two stages of bulblet formation and enlargement in a single bio-
reactor; this technique will become the most cost-effi cient method in the industrial 
production of  Lilium  bulblets although it has not been optimized at present. The 
one-step culture system (Fig.  16.9 ) and its procedures are given as follows:

   (1) Addition of medium: An aliquot of 6 L of the medium for bulblet enlargement 
(MS + 90 g L −1  sucrose) is added into a 5 L BTBB bioreactor through the bioreactor 
cap. Valve g3 is opened, the medium fl ows down to reservoir bottle d1 (the medium 
will be used for bulblet enlargement), and valve d3 is reclosed. Then, 1 L of the 
medium for bulblet formation (MS + 30 g L −1  sucrose) is added into the  bioreactor 
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through the bioreactor cap, and valve g2 is opened. (2) Ebb and fl ood culture for 
bulblet formation. ‘Casa Blanca’  in vitro –cultured bulblets (approximately 2 g) are 
randomly cut into 1 mm × 1 mm segments. Approximately 17 g of the total bulblets 
is inoculated into the bioreactor. The ebb and fl ood system is programmed to immerse 
the bulbscale segments into the medium 4 times per day for 15 min each. The biore-
actor is maintained at 25 °C in a 16 h photoperiod (light intensity of 30 μmol m −2  s −1 ). 
After 30 days of culture, each explant segment can form one to two bulblets with 
good morphology (Fig.  16.10a ). At this time, the ebb and fl ood culture can be 
stopped; meanwhile, valve g2 is reclosed after the medium in the bioreactor has 
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completely fl owed down to bottle d2. (3) Immersion culture for bulblet enlargement. 
Valve g3 is opened; then, the air that is forced to bottle d1 leads the medium 
(MS + 90 g L −1  sucrose) in bottle d1 to enter the bioreactor. Aeration is immediately 
stopped when the medium in the bioreactor measures 1 L (a scale mark is drawn in 
advance on the bioreactor), and valve g3 is simultaneously reclosed. Valve g1 is 
opened and the bioreactor is aerated at 0.1 vvm to begin the immersion culture for 
bulblet enlargement under dark conditions. After 4 weeks of bulblet enlargement 
culture, the old medium in the bioreactor is discarded to bottle d2, and 2 L of fresh 
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medium in bottle d1 is added to the bioreactor to complete the medium replacement. 
Meanwhile, the bulblets grow to approximately 0.3 g in the bioreactor (Fig.  16.10b ). 
The old medium is again replaced with 4 L of fresh medium after 8 weeks of bulblet 
enlargement culture. The culture will be maintained till 16th week for bulblet enlarge-
ment. Finally, bulblets (Figs.  16.10c, d ) weighing an average of 2 g are harvested.

16.7        Scale Up Bulblet Production in Bioreactors 

 Applying the optimized culture conditions in small bioreactors to scale up culture is 
the ultimate goal for the industrial production of plant propagules. Ahn et al. [ 21 ] 
conducted a 500 L horizontal pilot-scale bioreactor culture for the formation and 
enlargement of ‘Casa Blanca’ bulblets. They set up the bioreactor with the ebb and 
fl ood system in which the inocula were immersed into the medium 8 times per day 
for 30 min each. In this culture system, 47.2 % of bulbscale segments formed bulb-
lets, and the regenerated bulblets grew to an average of 1.5 g (12.9 mm diameter) 
after 20 weeks of culture for bulblet formation. This type of bioreactor system was 
also used for bulblet enlargement culture [ 21 ]. The inoculated bulblets (0.1 g) grew 
to an average of 2 g after 12 weeks of culture. However, several disadvantages were 
observed in the 500 L horizontal pilot-scale bioreactor with the ebb and fl ood 

a b

c d

  Fig. 16.10    One-step culture of  Lilium  ‘Casa Blanca’ bulblet in bioreactor ( a ), the formed bulblets 
after 4 weeks of ebb and fl ood culture in MS medium supplemented with 30 g L −1  sucrose ( b ), 
bulblet enlargement after 4 weeks of immersion culture in MS medium supplemented with 90 g L −1  
sucrose ( c ), further bulblet enlargement after 16 weeks of immersion culture in MS medium sup-
plemented with 90 g L −1  sucrose ( d ), the bulblets were taken from ( c )       
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system. The inoculated explants (bulbscale segments or bulblets) were not placed 
uniformly on the supporter in the ebb and fl ood system. So, the inocula get accumu-
lated in some areas of the supporter, and some areas were clear during the culture. 
This phenomenon may result in low bulblet formation rate and poor growth. 
Therefore, the design of an air sparger in the horizontal bioreactor is suggested to 
uniformly spray air into the bioreactor to avoid inoculum accumulation on the sup-
porter. Ahn et al. [ 21 ] used a 100 L balloon-type air-lift bioreactor with an immer-
sion system to produce bulblets. The inoculated  Lilium  bulblets (0.1 g) grew to an 
average of 3.3 g after 16 weeks of culture. These bulblets showed a favourable 
growth and a culture period that was evidently shorter than that in the 500 L hori-
zontal bioreactor with the ebb and fl ood system. However, harvesting bulblets with 
this culture system is diffi cult because the bioreactor-grown bulblets are tightly 
accumulated at the bottom of the bioreactor at the later culture period. Accordingly, 
a high pressure pump should be set up at the bottom part of the balloon-type biore-
actor for the vertical movement of the bulblets during immersion culture.  

16.8     Carbohydrates and Related Enzymes in Bulblets 
During the Breaking of Dormancy 

 Plant growth, development and physical activity are temporarily stopped during 
dormancy [ 66 ]. The dormancy of  Lilium  starts from around the formation of storage 
organs to the formation of vegetative organs (leaf or stem), although the beginning 
of dormancy varies between cultivars or hybrids of  Lilium . In general,  in vitro –pro-
duced  Lilium  bulblets exhibit dormancy. The degree of dormancy is infl uenced by 
sugar content in the culture medium; deep dormancy is exhibited by bulblets cul-
tured in media supplemented with high sugar concentrations. Culture period and 
temperature also affect bulblet dormancy.  In vitro –produced bulblets should be 
stored at low temperatures [ 37 ] or treated with gibberellin [ 67 ] before transplanta-
tion to break the dormancy. Furthermore, the enlargement of dormancy-breaking 
bulblets in the fi eld is closely associated with the size of  in vitro -cultured bulblets 
and the formation of bulblets by the cauline leaves. During transplantation, physi-
ological and biochemical changes in bulblets are noticeable and are affected by 
storage temperature and duration. We stored the  in vitro –produced bulblets at 4, 10 
and 25 °C for 9 weeks and then determined the changes in carbohydrates and asso-
ciated enzymes in the bulblets. Storage at 4 °C stimulated starch breakdown when 
compared with that of other temperatures. Starch content did not change at 25 °C 
during the storage period (Fig.  16.11 ). The activities of α- and β-amylase exhibited 
a tendency to change starch content, and high enzyme activities were observed at 
4 °C. The activity of β-amylase was considerably higher than that of α-amylase 
(Fig.  16.12 ). The activities of sucrose phosphate synthase (SPS) and sucrose syn-
thase (SS) increased with decreasing storage temperature. The activity of SS was 
higher than that of SPS. With the decrease in starch content and increment of sucrose 
content, the activity of SS was obtained after 5 weeks of storage. Glucose content 
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and α- and β-amylase activities increased after 7 weeks of storage at 4 °C. The con-
tents of starch and sucrose decreased and increased respectively with the decreasing 
storage temperature, which promoted bulblet emergence (Fig.  16.13 ).

16.9          Transplantation of Bulblets 

 In either traditional solid or liquid bioreactor cultures, the appropriate  Lilium  bulblet 
size is considered when bulblets can generate cauline leaves. Culturing of large bulb-
lets  in vitro  requires prolonged culture period, which increases the production cost. 
Bulbing in the fi eld is more cost effective than bulbing  in vitro . As described previ-
ously,  Lilium  bulblets cultured in media supplemented with high sucrose concentra-
tions are dormant; such media inhibit the emergence of leaves from these bulblets. 
After breaking the dormancy, bulblet emergence is infl uenced by factors such as bulb-
let size, physical culture conditions (solid or liquid culture), and environmental condi-
tions. To break the dormancy, the bulblets harvested from solid medium or bioreactors 
should be rinsed several times and maintained in a storage room at 4 °C under dark 
conditions for at least 8 weeks before soil transplantation. We classifi ed the harvested 
‘Casa Blanca’ bulblets from solid and bioreactor cultures into three groups (≤1 g, 
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1.1 g to 2 g, and ≥2.1 g) according to their sizes and then separately transplanted them 
into boxes that contain equal amounts of perlite and peat moss. These boxes were 
maintained in a growth room at 24 °C and a 16 h photoperiod under fl uorescent lights 
(30 μmol m −2  s −1 ). After bulblet transplantation, scale (Fig.  16.14a ) and cauline leaves 
(Fig.  16.14b ) formed from the bulblets at 1 week, the leaf emergence rate increased 
with the number of transplanting weeks, and all bulblets formed scale leaves at the 6th 
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week (Fig.  16.13 ). Although the scale leaves are easily formed, they often die soon 
after their emergence, which hinders further bulblet enlargement in soil. The emer-
gence of cauline leaves occurred after the emergence of scale leaves. Emergence was 
observed in only 64 % of the large bulblets (≥2.1 g) produced from solid cultures but 
in almost all bulblets (1.1 g) produced in the bioreactors at the 6th week after trans-
plantation (Fig.  16.15 ). As mentioned above, other reports stated that the emergence 
rate of cauline leaves can reach more than 90 % in large bulblets (3 g) produced in 
solid medium but can only reach 30 % in small bulblets (1.4 g) [ 22 ]. This result indi-
cates that the formation of cauline leaves is affected not only by bulblet size but also 
by culture methods. Scale leaf emergence is important for further bulblet enlargement 
in the fi eld because the formed cauline leaves can provide photosynthates to the 
underground parts and thus promote bulblet development.

16.10         Production Costs of Bulblets 

 The production costs of  Lilium  bulblets produced in solid and bioreactor culture 
systems are signifi cantly different. Solid culture has a high production cost. 
Bioreactor culture, which includes bulblet formation in solid medium and bulbing 
in bioreactors, has 50 % lower production cost when compared with the solid cul-
ture. The production cost in one-step culture (both stages of bulblet formation and 
bulbing in one bioreactor) was half of that in bioreactor culture (Table  16.3 ). We 
considered the one-step bioreactor culture to be the best approach for  Lilium  bulblet 
production in terms of production cost. However, this technique needs to be further 
developed because many abnormal bulblets were observed at the bulbing stage 

a b

  Fig. 16.14    Scale leaves ( a ) 
and stem leaves ( b ) formed 
from bioreactor-grown 
bulblets       
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when this approach was used. Consequently, bioreactor culture involving bulblet 
formation in solid media and bulbing in bioreactors is strongly suggested because it 
is well developed and cost effective.

16.11        Conclusion 

 Bulblet production using bioreactors is an effi cient approach to realize the industrial 
production of  Lilium  propagules. The bulblet formation and enlargement in bioreac-
tors are affected by numerous factors, including culture medium and microenviron-
ment. For bulblet enlargement in bioreactors, the immersion culture system is more 
favourable than the ebb and fl ood system. During long-term culture of bulblet growth 
in immersion bioreactors under dark conditions, the old medium should be replaced 
twice with fresh medium within the culture period to promote bulblet enlargement. 
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  Fig. 16.15    Leaf emergence of  Lilium  ‘Casa Blanca’ bulblet produced from solid and bioreactor 
culture as affected by bulblet size after transplanting       
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Sucrose, which is the carbon source in the culture medium is involved in increasing 
the weight of bulblets. Specifi cally, bulblet development needs a high sucrose con-
centration; a sucrose concentration of 90 g L −1  is considered to be appropriate. With 
regard to bulblet formation from bulbscale segments, the ebb and fl ood system must 
be applied because the explants cannot form bulblets in the immersion culture sys-
tem. In the ebb and fl ood system, the temporary immersion cycle is a specifi c infl u-
encing factor. For  Lilium  bulblet formation, the bulbscale segments must be 
immersed in the culture medium 4 times per day for 15 min each under 30 μmol m −2  s −1  
light intensity for a 16 h photoperiod. Supplementing the culture medium with BA 
and NAA results in the rapid production of  Lilium  bulblets (1 mg L −1  BA and 
0.3 mg L −1  NAA) with well-defi ned morphology and further enlargement. Moreover, 
the culture medium does not require supplementation with any plant growth regula-
tor or minimal amount of NAA. The one-step bioreactor culture method, wherein 
two stages of bulblet formation and enlargement are completed in one bioreactor, 
can be applied for  Lilium  bulblet production to reduce the cost and simplify the cul-
ture procedure. An average of 2 g of bulblets from bulbscale segments can be har-
vested from the one-step bioreactor culture system after 15 weeks of culture. Bulblet 
production using bioreactors is an effi cient approach to realize the industrial produc-
tion of  Lilium  propagules. However, problems should fi rst be addressed beforehand. 
These problems include the non-uniform explants on the supporter in the ebb and 
fl ood culture system of horizontal pilot bioreactors and the tightly accumulated bulb-
let growth at the bottom of balloon-type pilot bioreactors in the later culture period. 
Bioreactor-cultured bulblets heavier than 1.1 g can form cauline leaves. Thus, bulb-
lets should only be harvested when most of them weigh >1.1 g in the bioreactors. 
Bioreactor culture, which includes bulblet formation in solid medium and bulbing in 
bioreactors, is more well-developed and cost effective when compared with the solid 
cultures. These results suggest that bioreactor culture is an effi cient method for the 
mass production of high-quality  Lilium  bulblets.     

   Table 16.3    Effect of medium exchange numbers on bulblet growth and distribution of bulblet size 
in bulblet culture of  Lilium  Oriental hybrid ‘Casa Blanca’ after 16 weeks in bioreactor a    

 Method  Stage  Medium 

 Production cost b  

 Medium (US$)  Labor 
(US$) 

 Total 
(US$)  MS  Agar  Sucrose  Total 

 Solid culture 
 Bulblet 
formation 

 Solid  0.02  0.15  0.07  0.25  1.60 
 14.35 

 Bulbing  Solid  0.23  1.90  0.86  2.99  9.52 

 Bioreactor 
culture 

 Bulblet 
formation 

 Solid  0.02  0.15  0.07  0.25  1.60 
 8.36 

 Bulbing  Liquid  0.18  –  0.68  0.86  5.65 
 One-step 
bioreactor 
culture 

 Bulblet 
formation 

 Liquid  0.02  –  0.03  0.05  0.94 
 3.74 

 Bulbing  Liquid  0.18  –  0.68  0.86  1.88 

   a For producing 400 bulblets 
  b For the price in Korea (2002)  

M.-L. Lian et al.



413

  Acknowledgments   This work was supported by Korea Science and Engineering Foundation 
(KOSEF) through Research Center for the Development of Advanced Horticultural Technology at 
Chungbuk National University, Cheongju, 361–763, Korea and National Science Foundation of 
China (30860176).  

   References 

       1.      Allen TC (1974) Control of viruses in lilies. In: Allen TC (ed) Lilies and other Liliaceae. Royal 
Horticultural Society, London, pp 3–10  

   2.    Burun B, Sahin O (2013) Micropropagation of  Lilium Candidum  L.: a rare and native bulbous 
fl ower of Turkey. Bangladesh J Bot 42:185–187  

   3.    Hackett WP (1969) Aseptic multiplication of lily bulblets from bulb scales. Proc Int Plant 
Propag Soc 19:105–108  

   4.    Liu XM, Yang GC (2012) Adventitious shoot regeneration of oriental lily ( Lilium orientalis ) 
and genetic stability evaluation based on ISSR marker variation. In Vitro Cell Dev Biol Plant 
48:172–179  

   5.    Novak FJ, Petru E (1981) Tissue culture propagation of  Lilium  hybrids. Sci Hortic 14:191–199  
   6.    Robb SM (1957) The culture of excised tissue from bulb scale of  Lilium speciosum  Thunb. J 

Exp Bot 8:348–352  
    7.    Takayama S, Misawa M (1983) A scheme for mass propagation of  Lilium in vitro . Physiol 

Plant 48:121–125  
     8.    Varshney A, Dhawan V, Srivastava PS (2000) A protocol for  in vitro  mass propagation of asi-

atic hybrids of lily through liquid stationary culture. In Vitro Cell Dev Biol Plant 36:383–391  
       9.    Lian ML, Chakrabarty D, Paek KY (2003) Growth of  Lilium  oriental hybrid ‘Casablanca’ 

bulblet using bioreactor culture. Sci Hortic 97:41–48  
     10.    Niimi Y (1985) Factors affecting the regeneration and growth of bulblets in bulbscale cultures 

of  Lilium rubellum  Baker. J Jap Soc Hortic Sci 54:82–86  
    11.    Akita M, Ohta Y (1998) A simple method for mass propagation of potato ( Solanum tuberosum  

L.) using a bioreactor without forced aeration. Plant Cell Rep 18:284–287  
   12.    Sreedhar RV, Venkatachalam L, Thimmaraju R, Bhagyalakshmi N, Narayan MS, Ravishankar 

GA (2008) Direct organogenesis from leaf explants of  Stevia rebaudiana  and cultivation in 
bioreactor. Biol Plant 52:355–360  

   13.    Hanhineva K, Kokko H, Karenlampi S (2005) Shoot regeneration from leaf explants of fi ve 
strawberry ( Fragaria  ×  ananassa ) cultivars in temporary immersion bioreactor system. In 
Vitro Cell Dev Biol Plant 41:826–831  

   14.    Debnath SC (2008) Developing a scale-up system for the in vitro multiplication of thidiazuron- 
induced strawberry shoots using a bioreactor. Can J Plant Sci 88:737–746  

   15.    Sivakumar G, Kim SJ, Hahn EJ, Paek KY (2005) Optimizing environmental factors for large- 
scale multiplication of chrysanthemum ( Chrysanthemum grandifl orum ) in balloon-type biore-
actor culture. In Vitro Cell Dev Biol Plant 41:822–825  

    16.    Piao XC, Chakrabarty D, Hahn EJ, Paek KY (2003) A simple method for mass production of 
potato microtubers using a bioreactor system. Curr Sci 84:1129–1132  

     17.    Son SH, Choi SM, Yun SR, Kwon OW, Lee YH, Peak KY (1999) Large-scale culture of plant 
cell and tissue by bioreactor system. J Plant Biotechnol 1:1–7  

     18.    Seon JH, Kim YS, Son SH, Paek KY (2000) The fed-batch culture system using bioreactor for 
the bulblet production of oriental lilies. Acta Hortic 520:53–59  

    19.    Lian ML, Chakrabarty D, Paek KY (2002) Growth and uptake of sucrose and mineral ions by 
bulblets of  Lilium  oriental hybrid ‘Casablanca’ during bioreactor culture. J Hortic Sci 
Biotechnol 77:253–257  

       20.    Lian ML, Piao XC, Paek KY (2003) Propagation of bulblets in  Lilium  ‘Casablanca’ using 
bioreactor. Acta Hortic Sinica 30:479–481  

16 Mass Production of Lilium Bulblets in Bioreactors



414

       21.    Ahn JK, Kwon YJ, Lee WY, Noh EW (2002) Mass production of bulbs and bulblets from 
sliced bulb-scale segments of  Lilium  oriental hybrid ‘Casa Blanca’ using bioreactor system. J 
Kor Forest Soc 91:421–428  

      22.    Yae BW, Han BH, Goo DH (2001) Dormancy breaking and in vivo growth of in vitro bulblets 
in  Lilium  oriental hybrid ‘Casa Blanca’. J Kor Soc Hortic Sci 42:99–102  

    23.    Murashige T, Skoog F (1963) A revised medium for rapid growth and bioassays with tobacco 
tissue cultures. Physiol Plant 15:473–497  

    24.    Cohen D (1995) The culture medium. Acta Hortic 393:15–24  
    25.    Amirouche L, Stuchbury T, Matthews S (1985) Comparisons of cultivar performance on differ-

ent nutrient media in a routine method for potato micropropagation. Potato Res 28:469–478  
    26.    Hussey G, Stacey N (1981)  In vitro  propagation of potato ( Solanum tuberosum  L.). Ann Bot 

48:787–796  
      27.    Takayama S, Misawa M (1979) Differentiation in  Lilium  bulb scales grown  in vitro . Effect of 

various cultural conditions. Physiol Plant 46:184–190  
      28.    Lian ML, Piao CX, Yang CS, Paek KY (2001) Effect of MS medium strength and nitrogen con-

centration on bulblet formation and growth of  Lilium  in vitro. Kor J Plant Tiss Cult 28:341–346  
     29.    Van Aartrijk J, Blom-Barnhoorn GJ (1981) Growth regulator requirement for adventitious 

regeneration from  Lilium  bulbscale tissue  in vitro  in relation to duration of bulb storage and 
cultivar. Sci Hortic 14:261–268  

     30.    Stimart D, Ascher P (1978) Tissue culture of bulb scale sections for asexual propagation of 
 Lilium longifl orum  Thunb. J Am Soc Hortic Sci 103:182–184  

    31.    Kawarabayashi W, Asahira T (1989)  In vitro  multiplication of virus free bulbs of lilies. J Jap 
Soc Hortic Sci 58:195–209  

    32.   Lian ML (2001) Several factors affecting bulblet production in vitro and establishment of mass 
production system of  Lilium  hybrid using bioreactor. PhD thesis, Chungbuk National 
University, Cheongju  

    33.    Thorpe T, Meier D (1972) Starch metabolism, respiration, and shoot formation in tobacco cal-
lus culture s . Physiol Plant 27:365–369  

    34.    Niimi Y, Onozawa T (1979)  In vitro  bulblet formation from leaf segment of lilies, especially 
 Lilium rubellum  Barker. Sci Hortic 22:391–397  

     35.    Lian ML, Piao XC, Paek KY (2002) Effects of air temperature and DIF on the bulblet forma-
tion and growth of  Lilium  in vitro. J Kor Soc Hortic Sci 43:64–68  

    36.    Stimart D, Ascher P (1981) Developmental responses of  Lilium longifl orum  bulblets to con-
stant or alternation temperatures  in vitro . J Am Soc Hortic Sci 106:450–454  

     37.    Higgins W, Stimart D (1990) Infl uence of in vitro generation temperature and post- in vitro  cold 
storage duration on growth response of  Lilium longifl orum  bulblets. J Am Soc Hortic Sci 
115:930–933  

    38.    Murashige T (1974) Plant propagation through tissue cultures. Annu Rev Plant Physiol 
25:135–166  

    39.    Smith H (1982) Light quality, photoperception, and plant strategy. Annu Rev Plant Physiol 
33:481–518  

    40.    Maesato K, Sharada K, Fukui H, Hara T, Sarma KS (1994) In vitro bulblet regeneration from 
bulbscale explants of  Lilium japonicum  Thunb. Effect of plant growth regulators and culture 
environment. J Hortic Sci 69:289–298  

    41.    Economou AS, Read PE (1987) Light treatments to improve effi ciency of  in vitro  propagation 
systems. HortScience 22:751–754  

    42.    Bula RJ, Morrow RC, Tibbitts TW, Barta DJ, Ignatius RW, Martin TS (1991) Light-emitting 
diodes as a radiation source for plants. HortScience 26:203–205  

   43.    Jao RC, Lai CC, Fang W, Chang SF (2005) Effects of red light on the growth of  Zantedeschia  
plantlets in vitro and tuber formation using light-emitting diodes. HortScience 40:436–438  

   44.    Shin KS, Murthy HN, Heo JW, Hahn EJ, Paek KY (2008) The effect of light quality on the growth 
and development of  in vitro  cultured  Doritaenopsis  plants. Acta Physiol Plant 30:339–343  

    45.    Chang HS, Charkabarty D, Hahn EJ, Paek KY (2003) Micropropagation of calla lily 
( Zantedeschia albomaculata ) via  in vitro  shoot tip proliferation. In Vitro Cell Dev Biol Plant 
39:129–134  

M.-L. Lian et al.



415

    46.    Tennessen DJ, Singsaas EL, Sharkey TD (1994) Light emitting diodes as a light source for 
photosynthesis research. Photosynth Res 39:85–89  

    47.    Tripathy BC, Brown CS (1995) Root-shoot interaction in greening of wheat seedlings grown 
under red light. Plant Physiol 107:407–511  

    48.    Brown CS, Schuerger AC, Sager JC (1995) Growth and photomorphogenesis of pepper plants 
under red light-emitting diodes with supplemental blue or far-red lighting. J Am Soc Hortic Sci 
120:808–813  

    49.    Niemenak N, Noah AM, Omokolo DN (2013) Micropropagation of cocoyam ( Xanthosoma 
sagittifolium  L. Schott) in temporary immersion bioreactor. Plant Biotechnol Rep 7:383–390  

   50.    Martinez-Bonfi l BP, Valdez-Tapia R, Lopez-Laredo AR, Trejo-Tapia G (2012) Shoots culture 
of  Castilleja tenuifl ora  Benth. in a temporary immersion bioreactor as a potential source of 
bioactive compounds. In Vitro Cell Dev Biol Plant 48:436  

   51.    Zhao Y, Sun W, Wang Y, Saxena PK, Liu CZ (2012) Improved mass multiplication of  Rhodiola 
crenulata  shoots using temporary immersion bioreactor with forced ventilation. Appl Biochem 
Biotechnol 166:1480–1490  

   52.    Shaik S, Dewir YH, Singh N, Nicholas A (2010) Micropropagation and bioreactor studies of the 
medicinally important plant  Lessertia (Sutherlandia) frutescens  L. S Afr J Bot 76:180–186  

   53.    Snyman SJ, Meyer GM, Richards JR, Ramgareeb S, Banasiak M, Huckett B (2007) Use of the 
temporary immersion RITA® bioreactor system for micropropagation of sugarcane. S Afr J 
Bot 73:336–337  

    54.    Roels S, Noceda C, Escalona M, Sandoval J, Canal MJ, Rodriguez R, Debergh P (2006) The 
effect of headspace renewal in a temporary immersion bioreactor on plantain ( Musa  AAB) 
shoot proliferation and quality. Plant Cell Tiss Organ Cult 84:155–163  

    55.    Lee EM, Chung HJ, Lee YB (1995) Effects of growth regulators on shoot differentiation and 
bulblets formation in shoot-tip and bulb-scale culture of  Lilium longifl orum . Kor J Plant Tiss 
Cult 21:193–199  

    56.    Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice. Biol Plant 39:542  
     57.    Khuri S, Moorby J (1995) Investigation into the role of sucrose in potato cv. Estima microtuber 

production in vitro. Ann Bot 75:295–303  
    58.    Debabrata S, Ramesh C, Prakash SN (1999) Effect of inoculation density on potato micro-

propagation. Plant Cell Tiss Organ Cult 48:63–66  
    59.    McClelland MT, Smith MAL (1990) Vessel type, closure, and explant orientation Infl uence 

in vitro performance of fi ve woody species. HortScience 25:797–800  
    60.    Bhadra R, Shanks JV (1995) Statistical design of the effect of inoculum conditions on growth 

of hairy root cultures of  Catharanthus roseus . Biotechnol Tech 9:681–686  
   61.    Sarkar D, Chandra R, Naik PS (1997) Effect of inoculation density on potato micropropaga-

tion. Plant Cell Tiss Organ Cult 48:63–66  
    62.    Jeong CS, Murthy HN, Hahn EJ, Lee HL, Paek KY (2009) Inoculum size and auxin concentra-

tion infl uence the growth of adventitious roots and accumulation of ginsenosides in suspension 
cultures of ginseng ( Panax ginseng  C.A. Meyer). Acta Physiol Plant 31:219–222  

    63.    Gao R, Wu SQ, Piao XC, Park SY, Lian ML (2014) Micropropagation of  Cymbidium sinense  
using continuous and temporary airlift bioreactor systems. Acta Physiol Plant 36:117–124  

    64.    Kanabus J, Bressan R, Carpita N (1986) Carbon assimilation in carrot cells in liquid culture. 
Plant Physiol 82:363–368  

    65.    Daie A, Chin C, Pitcher L (1983) Differential rates of sucrose and hexose transport by aspara-
gus cell cultures. Plant Sci 53:101–107  

    66.    Juntilla O (1988) To be or not to be dormant: some comments on the new dormancy nomen-
clature. HortScience 23:805–806  

    67.    Paek KY, Shin SH (1983) Factors affecting regeneration ability and physiology of dormancy in 
the mature bulbil segments of  Lilium lanciforium in vitro . J Kor Soc Hort Sci Technol 
24:149–157    

16 Mass Production of Lilium Bulblets in Bioreactors



417© Springer Science+Business Media Dordrecht 2014 
K.-Y. Paek et al. (eds.), Production of Biomass and Bioactive Compounds Using 
Bioreactor Technology, DOI 10.1007/978-94-017-9223-3_17

    Chapter 17   
  In Vitro  Production of  Digitalis purpurea  
Biomass Using Temporary Immersion 
Cultures 

             Anika     Schumann     ,     Diana     Claus    , and     André     Gerth   

        A.   Schumann      (*) •    D.   Claus    •    A.   Gerth    
  Vita 34 AG ,   Deutscher Platz 5a ,  01403   Leipzig ,  Germany   
 e-mail: anika.schumann@vita34.de  

    Abstract     The annual turnover of the herbal active substances exceeds yearly 10 
billion Euros. The biotechnological production of these secondary metabolites leads 
year round supply of these compounds for the pharmaceutical use and it also helps 
to some extent to a conservation of natural resources in their countries of origin to 
avoid wild collections. Furthermore, the pharmaceutical production supports the 
product safety, constancy of price and quality of the secondary metabolites. During 
the past years, numerous different bioreactor types have been set up allowing a bio-
technological production of secondary compounds in plants and the temporary 
immersion system is one among them which is considered as the simplest method. 
In this article, we have discussed the production of  Digitalis purpurea  shoot bio-
mass using temporary immersion system.  
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  Temporary immersion system  
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17.1           Introduction 

 Production of bioactive compounds from  in vitro  cultivation of cell, organ or plant-
lets using bioreactor technology is an active fi eld of research during recent years. 
 In vitro  production of biomass and bioactive compounds to some extent help in the 
protection of valuable natural resources. In the pharmaceutical production of herbs 
in bioreactors imply for the product security, price stability and a constant quality 
of active substances. Commercial production of bioactive substances through tra-
ditional agriculture methods or by collection of plants from the wild has several 
limitations [ 1 ]. For example, the contents of the cardiotonic glycosides in fi eld 
grown plants (e.g.  Digitalis  sp.) are greatly affected by climatic and soil conditions 
[ 2 ], especially with respect to the biotic factors [ 3 ]. Large scale production of plant 
cells and tissues has been considered as an alternative technique for the production 
of phytochemicals when compared to the traditional methods of fi eld cultivation 
[ 3 ]. A well defi ned  in vitro  production system offers an advantage to result in 
higher yields and more consistent quality of the secondary products [ 4 ]. But, 
despite of the efforts made to produce plant active compounds from cell cultures, 
only a few industrial applications have been successfully established. Wilken et al. 
[ 5 ] made an effort to use  in vitro  organ cultures for the production of medicinally 
important compounds, as the production of secondary metabolites is generally 
higher in different tissue cultures. More than 200 different species of herbs and rare 
medicinal plants with traditional medicinal use were taken for  in vitro  culture. 
Root, shoot and cells were cultivated under different growth conditions in fully 
automated bioreactors with essential nutrients and gas exchange. Combining the 
bioreactor technology with a high throughput screening methods high yielding 
plants can be selected according to their biomass production and the contents of 
their active compounds. Advantages of  in vitro  production of medicinal plant raw 
material over fi eld cultivation or collection from natural stand is presented in 
Table  17.1 .

   Strategies based on  in vitro  culture methods (Fig.  17.1 ) have been extensively 
used to improve the production of plant specifi c secondary metabolites by culturing 
the cells or plant organs in liquid nutrient medium systems such as plant bioreactors 
[ 4 ,  6 – 8 ]. Bioreactors are usually designed for an intensive production of biomass 
and secondary compounds in culture and to afford a maximal opportunity for moni-
toring and controlling over the microenvironmental conditions [ 4 ]. For this purpose, 
several confi gurations of bioreactors for plant biomass production are used; one of 
such confi gurations is a temporary immersion system (TIS). This type of bioreactor 
technology is economical for the automation of the process for the production of  in 
vitro  plant tissues. It is also a representative and an attractive alternative for the 
production of secondary metabolites in plants due to the facilities found in TIS for 
the large scale culturing of plant organs [ 5 ,  9 – 11 ]. Numerous different types of bio-
reactors have been set up during the last few years to allow the production of plant 
material (e.g. plants organs such as shoot or roots) as demonstrated in Fig.  17.1  with 
different graduations.
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   Table 17.1    Advantages and limitations of  in vitro  methods for the production of medicinal plant 
raw material in comparison with the conventional methods   

 Sources of raw material  Advantage  Disadvantage 

 Wild collection/natural 
population 

 Favorable price of the drug  Possible risk of extinction of 
rare plants 
 Challenging acquisition of 
material depending on the 
plant species 
 High diversity of content of 
active substances 

 Agricultural production/
greenhouse production 

 Favorable price of the drug  Erratic quality and quantity of 
the active compounds  Predictable availability 
 Partially insuffi cient quality of 
the active substances 
 Production is limited by the 
season 
 Danger of crop failure due to 
the natural hazards 

 Biotechnological 
production ( in vitro  cell 
culture techniques, 
bioreactor production) 

 Controlled production  Higher costs of production 
 Independent of season, climate or 
weather 
 Increased compound content by 
modifi cation of culture conditions 
 Cheaper costs for quality control 

Phases of the In vitro Culture

Seeds/buds/explants

In vitro shoots and leaves

In vitro shoots (variations)

In vitro shoots (5 L & 10L TIS)

In vitro shoots In vitro roots In vitro callus Ex vitro plants

In vitro shoots, roots (1L TIS) In vitro roots (1L bioreactor, variations)

In vitro roots (10L airlift bioreactor)

In vitro roots In vitro callus Ex vitro shoot, leave, root

Starting material

Cultivation

Propagation

Production
by Large Scale/

Numbering up

Scale up – reactor

  Fig. 17.1    Different phases of  in vitro  culture for the production medicinal plant raw material       
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17.1.1       Bioreactor Cultures 

 Bioreactors are vessels for large-scale cell, tissue or organ culture in liquid media. 
Plant culture bioreactors may be of two types: those in which cultures are immersed 
temporarily in the medium, and those in which the cultures are submerged continu-
ously. Bioreactors provide more precise control over illumination, gaseous exchange, 
medium agitation, temperature and pH [ 12 ]. Bioreactors are used in the biotechno-
logical production of substances such as pharmaceuticals and health foods [ 13 ]. 

 The plant cells and organs in bioreactors can be cultured under aerobic condi-
tions. Commonly, these bioreactors are cylindrical, ranging in size from liters to 
cubic meters (1,000 L), and are often made of stainless steel. The parameters such 
as aeration and agitation are usually controlled in the bioreactors. Depending upon 
the type of cultures, probes such as pH, temperature and dissolved oxygen can be 
maintained or regulated in the bioreactor cultures.  

17.1.2     Parameters Infl uencing the Cell or Organ Growth 
in Bioreactors 

 Under optimal culture conditions, the growing cells or organs are able to perform 
their desired function with a 100 % success rate. Thereby, the environmental condi-
tions of the bioreactor are gas (e.g., composition of the air atmosphere, content of 
oxygen and carbon dioxide), fl ow rate, temperature, pH and dissolved oxygen lev-
els, and agitation speed or circulation rate. These parameters need to be monitored 
and controlled realizing an optimal growth of the cells in the bioreactor. 

 Figure  17.2  shows different parameters infl uencing on the growth of cells or 
organs in the bioreactors. Of prime importance is the aseptic environment of the 
bioreactor. Contamination by bacteria or fungi reduces the effi ciency of the 

Temperature

Lighting

Controlling

Interface

Gas application

Control parameters

Supply of
nutrient media

Measurement
parameters

Size

Kind of bioreactor
type

Design

Material property of
the culture vessel

  Fig. 17.2    Parameters which infl uence on the growth of bioreactor culture       
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 bioreactors. Furthermore, an optimal oxygen transfer in aerobic processes is perhaps 
the most diffi cult task for achieving the growth under controlled conditions as oxy-
gen is poorly soluble in water, and also is relatively scarce in the air composition 
(20.95 %), but oxygen is made available to the cultured cells through the agitation of 
medium which facilitates the availability of dissolved oxygen in the medium or addi-
tionally it can be supplemented through forced aeration. Agitation helps in the mix-
ing of nutritional components of the medium. Excessive agitation may cause shear 
stress to the cultured cells; therefore, the method of agitation should be thoroughly 
investigated and standardized for individual cell types. Furthermore, bioreactor vol-
umes range from small scale to large scale and most of the industrial manufacturers 
of bioreactors use vessels, sensors and a controlling system network altogether.

17.1.3        Temporary Immersion System (TIS) for Biomass 
Production 

 The biggest challenge for pharmaceutical application is the fl uctuation in quality 
and quantity of plant raw material and their metabolic profi le. As well, the potential 
risk of extinction of the natural populations in the wild is one of the major problems. 
For solving the aforementioned problem, the production of plants in closed systems 
is established. Therefore, the commercial laboratories need to produce a large num-
ber of plants with high quality at a low and cost effi cient manner. A large scale  in 
vitro  production of medicinal plants is often criticized due to the cost intensive labo-
ratory requirements. Thus, scaling up and the automation of production processes 
are the two factors necessary to reduce the production costs [ 14 ]. Therefore, using 
liquid nutrient medium either with temporary and/or by permanent immersion dur-
ing the routine micropropagation of well-chosen plants is considered to be ideally 
suited for automation as well as for the cost effi ciency [ 15 – 20 ]. Tisserat and 
Vandercook [ 21 ] fi rst implemented the idea of temporary immersion systems (TIS) 
in plant tissue culture by designing a system consisting of a large elevated culture 
chamber that was drained and then refi lled with fresh medium at certain intervals. 
Alvard et al. [ 15 ] applied this method to grow banana meristems by using a standard 
autoclavable fi ltration unit with two compartments. A similar apparatus was com-
mercialized, namely Recipient for Automated Temporary Immersion (RITA®, 
Vitropic, France). In all these cases, compressed air is made to overfl ow the plant 
material with a liquid nutrient medium for a short time (10–30 min) for two to four 
times a day. After stopping the air fl ow, the liquid medium returns to the bottom of 
the vessel by gravity. Whereas Teission and Alvard [ 22 ], Escalona et al. [ 23 ], 
Etienne and Berthouly [ 24 ], and Jimenez [ 25 ] used compressed air in TIS with two 
fl asks (Twin Flasks System: one fl ask for the plant material and the second fl ask for 
the liquid nutrient medium; both fl asks were connected by tubes with one another 
and also a tube was connected for the movement of compressed air; compressed air 
regulated the fl ow of the liquid medium inside the plant culture vessel and the return 
fl ow into the second fl ask). Other authors demonstrated that compressed air was 

17 In Vitro Production of Digitalis purpurea Biomass Using Temporary Immersion



422

more effective in providing an appropriate environment (e.g., gas exchange rate) 
combined with nutrient supply than immersion systems using only gravity without 
a gaseous exchange [ 20 ]. 

 In summary, bioreactors with temporary immersion systems represent an 
advanced technology for commercial mass propagation of plants. Furthermore, sev-
eral plant species are commercially propagated using this type of culture techniques 
with different regeneration pathways such as shoot, bulblet/tuber and embryo mul-
tiplication. Various modifi cations have been also carried out depending upon the 
methods or modes of plant propagation.  

17.1.4     Modifi ed Temporary Immersion Cultures for Large- 
Scale Biomass Production 

 Figure  17.3  shows different vessels used in the  in vitro  culture bioreactor technique. 
Ranging from small scale (volume: 250 mL) up to larger scale (volume: 10 L, pos-
sibly 40 L), they can be used for the production medicinal plant biomass. Besides 
the volume of bioreactor, the shape of culture vessels can be different according to 
the cultivated plant organ. In case of root culture, balloon or bulb shaped airlift bio-
reactors are the most suitable type for culturing.

   For the cultivation of plant organs such as shoots, bulblets and corms in bioreac-
tors a two bottle separated system has been used; one vessel meant for the plant organ 

Microcontainer (MC)

-Brick-shaped beaker with lid, polypropylene
-Volumetric capacity: 250 mL (Small MC) and mL (Big MC),
-Volume of nutrient medium: 30 mL (Small MC) and 60 mL (Big MC),

Small MC Big MC

Temporary Immerision System (TIS)

-1 L and 5 L glass vessels with lid and fixture,
-10 L balloon typed flasks from polycarbonate with screw cap,
-System for the culture of in vitro shoots consists of two
 vessels: one for the nutrient medium and one for the plants,
-For the cultivation of in vitro roots only one vessel is used,
-Immersion and gassing realised by a modular air pressure
 system

Airlift Bioreactor

-1 L separating funnel or glass bulbs, continuous
  gassing with glass tube
-10 L airlift bioreactor made of glass, bulb shaped with tube,
 gassing with glass sinter frit in the tube,

10 L TIS5 L TIS1 L TIS

1 L Separating
      Funnel

1 L Round-bottom
          Flask

10 L Airlift
Bioreactor

Cultivation Vessels

  Fig. 17.3    Presentation of different culture vessels used in the  in vitro  culture of tissues       
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and another vessel for the liquid nutrient medium (medium reservoir). The medium 
is transferred between the two culture vessels connected through tubes by using the 
compressed air. Another possibility for the transfer of the nutrient medium can be 
performed by gravity, for example, the advantage of such a chosen temporary immer-
sion system is the production of plant organs or plantlets without hyperhydricity. 
Moreover, it is possible to scale up the process as shown in Fig.  17.4 .

17.2         Production of Shoot Biomass of  Digitalis purpurea  
Using TIS 

17.2.1     Culture Procedure 

  Digitalis purpurea  cv. Berggold shoot cultures were initiated from nodal explants ini-
tially on Murashige and Skoog (MS) [ 26 ] semi-solid medium supplemented with 
1.0 mg L −1  thiamine-HCl, 1.0 mg L −1  6-benzylaminopurine (BAP), 0.1 mg L −1  indole 
acetic acid (IAA), 100 mg L −1  myo-inositol, 30 g L −1  sucrose and 8.0 g L −1  agar. All 
cultures were incubated under a 16 h photoperiod from cool white fl uorescent lamps at 
a photosynthetic photon fl ux density of 40 μmol m 2  s −1  at 24 °C ± 2 °C. Cultures were 
maintained by subculturing the shoots on fresh culture medium for every 28 days. 

  Fig. 17.4    Automation of an industrial applicable culture system for bioreactors       
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 A temporary immersion system was used for the large-scale shoot multiplication 
of  D. purpurea . TIS consisting of two glass vessels, 5 L capacity each, one culture 
vessel is used for culturing the shoots and the other as culture medium reservoir. 
Each TIS contained 3 L shoot multiplication liquid medium as described above and 
60 individual shoots were cultured per TIS [weighing about 5.0 g fresh weight (FW) 
per TIS]. The nutrient medium supply was controlled from medium reservoir vessel 
to culture vessel using a solenoid valve and a timer. Medium supply was pro-
grammed in such a way that the medium should enter the culture vessel from the 
reservoir 6 times in a day (once in every 4 h) and should stay there for 5 min each 
time and goes back to reservoir. Four TIS were inoculated per treatment and the 
experiment was repeated twice. 

 Dynamics of biomass production were monitored by weighing the cultures every 
week by measurement of total FW per TIS. Biomass accumulation was expressed 
and determined as fresh and dry weight (g) produced per TIS after a culture period 
of 28 days. Also, the length and the number of shoots produced per TIS were deter-
mined. Cardiac glycosides were isolated and quantifi ed by HPLC by using the 
methods described by Wichtl et al. [ 27 ]. 

 For investigation of the biomass productions as well as the synthesis of second-
ary metabolites different experiments were performed. To check the infl uence of 
light, two various sources of light were used: (a) fl uorescent light with a light 
intensity of 40 μmol m 2  s −1  and (b) white (blue plus red light emitting diodes) 
LEDs with a light intensity of 40 μmol m 2  s −1 . Furthermore, the infl uence of the 
application of the nutrient medium transfer was investigated: (a) transfer by com-
pressed air and (b) transfer by gravity. As well, the infl uence of the material of 
culture vessel was tested: (a) culture vessel with glass material and (b) the plastic 
disposable culture vessel.  

17.2.2     The Parameters Which Infl uence on the Biomass 
Production 

    Effect of Light Quality 

 A range of wavelengths of light responsible for photosynthesis is in the visible 
region and is also called white light and that ranges from 400 to 700 nm. The chlo-
rophyll a and b are photosynthetically active pigments especially absorbing the light 
in blue and red region. For investigating the effects of light quality, in  in vitro  growth 
conditions fl uorescent lamps with a white emission part were used. 

 The experimental results on effect of light quality showed that fl uorescent light 
was superior for shoot multiplication of  Digitalis purpurea  when compared to red- 
blue LEDs. As shown in Fig.  17.5 , a signifi cant decrease in the biomass production 
was observed using red-blue LEDs. Furthermore, a higher multiplication rate of 
shoots was identifi ed by applying white fl uorescent light (7.9-fold in contrast to 5.0- 
fold). As well, the maximum length of shoots was achieved under these conditions. 
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Regarding the net production of cardiotonic glycosides, their production was higher 
when white fl uorescent light was used.

       Effect of Light Intensity 

 Besides the quality of the light, the quantity of light is also a parameter that infl uences 
the growth of  in vitro  plant organs in bioreactors. As well, the angle of incident light 
on the surface of the bioreactor vessel is decisive. The reduction of the area of lighting 
by 50 % results in 13.3 % decrease in the biomass production. The multiplication rate, 
the maximum length of the  in vitro  shoots, the fresh weight and the dry weight of the 
 in vitro  shoots was signifi cantly reduced with reduced light intensity. Furthermore, 
the content of cardiotonic glycosides was reduced under the same conditions.  

    Effect of Type of Culture Vessel 

 The transmission of light through the bioreactor material is infl uenced by the type of 
material. Especially, the transmission of the ultraviolet region is important for the 
production of several secondary metabolites in plants. Thus, the material for the cul-
ture vessel with a wide range of transmission is desirable. The transmission area of 
glass as well as of PET (plastic disposable) opens up to the wavelength from 300 nm. 

 The rate of shoot multiplication, accumulation of biomass (Fig.  17.6 ) and cardiac 
glycoside were comparatively higher with cultures grown in glass vessel compared 
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to PET vessel. However, it was easy to handle PET vessels and since they are dis-
posable, cultivation of  Digitalis purpurea  shoots in PET vessels is recommended.

       Effect of Air Supply 

 Many investigations were performed to check the infl uence of the type for the transfer 
of the nutrient medium from reservoir vessel (storage for the nutrient supply) to cul-
ture vessel (culture vessel for the growth of plant material). In fi rst method, com-
pressed air was supplemented along with incoming medium to the culture vessel from 
the reservoir vessel, whereas in the second method medium was supplied to the cul-
ture vessel from the reservoir vessel without supplementation of the air. Experimental 
results showed that supplementation of compressed air showed higher multiplication 
rate as well as secondary metabolite production (32 % higher than control; Fig.  17.7 ).

17.3          Conclusion 

 Bioreactors are usually designed for an intensive production of biomass and second-
ary compounds in culture. The advantages of temporary immersion system (TIS) 
for  in vitro  cultivation of plants using liquid medium have been highlighted in this 
review. It has a number of advantages including several fold increase in multiplica-
tion rates, and the reduction in space, energy and labour. Biomass production of 
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 Digitalis purpurea  has been illustrated as case study. However, there are many dis-
advantages with liquid cultures including contamination, hyperhydricity and these 
problems can be minimized with tactful modifi cations of culture conditions.     
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    Chapter 18   
 Role of Nitric Oxide in Adventitious Root 
Development 

             Rajesh     Kumar     Tewari      and     Kee-Yoeup     Paek   

    Abstract     Nitric oxide (NO) is a gaseous free radical and a diffusible signalling 
molecule. NO infl uences plant growth and development. NO also affects the plant 
responses to various stresses. Treatments of NO producers (SNP, sodium nitroprus-
side; SNAP, S-Nitroso-N-acetylpenicillamine) and NO scavenger (PTIO, 2-phenyl- 
4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide) revealed that NO is involved in the 
induction of new rootlets. Severe decline in the number of new rootlets by PTIO 
treatment indicates that NO acts downstream of auxin action in the process of root 
development. NO producers (SNP and SNAP) activated NADPH oxidase-like activ-
ity, resulting in a greater superoxide anion generation and a higher number of new 
rootlets from the adventitious root explants. A severe inhibition of NADPH oxidase- 
like activity and decline in root biomass of SNP and SNAP treated root explants in 
the presence of the NADPH oxidase inhibitor (diphenyl iodonium, DPI), further 
supports the involvement of NADPH oxidase-like activity in adventitious root 
development. The number of rootlets induced per explant and NADPH oxidase-like 
activity were related to NO content present in adventitious root of  Panax ginseng . 
NO and superoxide anion generation at the site of root emergence strongly suggest 
the key roles of NO and ROS in root development.  
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  Abbreviations 

   DAF-2DA    4,5-diaminofl uorescein diacetate   
  DPI    Diphenyl iodonium   
  NO    Nitric oxide   
  PTIO    2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide   
  SNAP    S-Nitroso-N-acetylpenicillamine   
  SNP    Sodium nitroprusside   
  ROS    Reactive oxygen species   

18.1           Introduction 

 Nitric oxide (NO), a biologically active diatomic, diffusive, water and lipid soluble 
gaseous free radical has been implicated as an effective regulator in cellular signal-
ling even at a nanomolar concentration (1.0 nmol L −1 ). The discovery of NO as an 
essential regulator in biology came in the mid-1980s from three main fi ndings: the 
identifi cation of NO as an endothelial relaxing factor in the vascular system, as a 
key cytotoxic agent of the immune system and as a signalling molecule in the ner-
vous system [ 1 ,  2 ]. 

18.1.1     NO Is an Ubiquitous Signalling Molecule 

 NO is an interesting signalling molecule having homeostatic properties for the 
coordination and synchronization of cellular metabolism [ 3 ]. NO contributes in 
the broad spectrum of pathophysiological and developmental processes of living 
organisms [ 3 ]. NO simultaneously acts on several biochemical aspects through the 
modulation of the cellular redox status and cytosolic calcium ion (Ca 2+ ) concentra-
tions. It has been demonstrated that the NO and reactive oxygen species (ROS) can 
considerably impact on the plant growth and development [ 4 ,  5 ]. NO and ROS can 
interact with each other and these interactions can be cytotoxic (result in cellular 
death) or cytoprotective depending on its concentrations and the cellular milieu [ 6 ]. 
The cytotoxic effects of elevated NO are caused by its reactivity as a radical with 
molecular oxygen, ROS and various transitional metal ions. The interaction of NO 
with iron- containing proteins can lead to inhibition of enzymes such as the cyto-
chrome c oxidase of mitochondrion [ 7 ]. Now it has been accepted widely that NO 
protects plant cells against oxidative stress by scavenging Fenton active iron and 
thus avoids the generation of one of the most deleterious ROS, the hydroxyl radical 
(OH ̇ ) [ 6 ]. High concentration of NO can either be benefi cial (for example, it acti-
vates defence responses or together with ROS, it directly kills the pathogen) or det-
rimental to the plant cell if its generation exceeds beyond the required limit [ 8 ]. NO 
protects plant cells from photooxidative damage [ 9 ] and retards cell death induced 
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by phytohormones, abscisic acid [ 10 ], gibberellins [ 11 ] and cytokinin, 6-benzyl 
aminopurine [ 12 ]. Therefore, NO has been proposed to have both antioxidant and 
prooxidant effects [ 8 ,  13 ].  

18.1.2     Spatial Sites of NO Generation in Plant Tissues 
and Cells 

 There are reports of NO generation in various plant species and their organs – root, 
stem, and leaf of pea [ 14 ,  15 ];  Arabidopsis  leaves and roots [ 16 ,  17 ]; maize leaves 
and roots [ 18 – 20 ];  Panax ginseng  adventitious roots under Cu-toxicity [ 21 ] and sal-
icylic acid treatment [ 22 ]; sunfl ower hypocotyls [ 23 ]; and senescing Phalaenopsis 
fl ower tepals [ 24 ]. Moreover, NO generation in the vascular tissues of pea leaves, 
xylem and phloem [ 14 ] and in differentiating xylem of  Zinnia elegans  [ 25 ] had 
also been observed. It seems that NO plays a key role in cell differentiation and 
organogenesis in plants. NO also accumulated in cryptogenin-treated leaf epidermis 
and chloroplasts [ 26 ] and chitosan-treated stomatal guard cells [ 27 ]. In plant cells, 
NO is generated both in the apoplast (the space outside of the plasma membrane 
including cell wall) [ 28 ] and symplast (space inside the plasma membrane including 
cellular organelles) [ 29 ]. NO generation in various subcellular compartments such 
as rapeseed leaves cytoplasm [ 29 ], pea leaves peroxisomes [ 14 ], barley root mito-
chondria in the presence of nitrite and NADH [ 30 ,  31 ], soybean leaf chloroplasts 
in the presence of arginine, NaNO 2  and GSNO [ 32 ], rapeseed leaves mesophyll 
 chloroplasts [ 33 ] and soybean cotyledon chloroplasts [ 34 ] have also been reported.  

18.1.3     NO Regulates Various Physiological and Developmental 
Processes 

 NO is a biological mediator that plays a central role in key physiological pro-
cesses such as neurotransmission, immunological and infl ammatory responses 
and relaxation of vascular smooth muscle [ 35 ] in animal system. In plants, NO is 
involved in seed germination [ 36 ] and induction of lateral roots in tomato [ 37 ] and 
adventitious roots in  Panax ginseng  [ 38 ]. It delays senescence [ 39 ,  40 ], regulates 
stomatal movement [ 41 ] modulates the infl ux of extracellular Ca 2+  and actin fi la-
ment organization during cell wall construction in  Pinus bungeana  pollen tubes 
[ 42 ], and directs targeted (oriented) pollen tube growth towards ovules in  Lilium 
logifl orum  [ 43 ] and  Arabidopsis thaliana  [ 44 ]. It has been reported that NO medi-
ates cytokinin functions in cell proliferation and meristem maintenance in 
 Arabidopsis thaliana  [ 45 ]. NO also participates in cell wall lignifi cation by modu-
lating activities of basic peroxidases [ 46 ]. Nonetheless, exogenous application of 
NO also down-regulates xanthine oxidase-mediated generation of superoxide 
anion in Phalaenopsis fl owers [ 24 ].  
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18.1.4     Nitric Oxide Induces Biosynthesis of Phenolics 
and Ginsenosides 

 It has been reported that NO plays a crucial role in the accumulation/synthesis of 
secondary metabolites after elicitation with a chemical, methyl jasmonate [ 47 ]; 
physical, ultrasound [ 48 ]; or microbial [ 49 ] elicitors in cell suspension culture. 
Exogenous application of NO producer (SNP), induced synthesis of phenolics, fl a-
vonoids, and caffeic acid derivatives in  Echinacea purpurea  adventitious roots [ 50 ]. 
NO is also involved in the biosynthesis of ginsenosides in  Panax ginseng  adventi-
tious roots [ 49 ,  51 ]. Moreover, Salicylic acid applied to  Panax ginseng  adventitious 
roots also induced an accumulation of ginsenosides in a NO-dependent manner that 
was mediated by the associated increase in superoxide anion radical [ 22 ].   

18.2     Adventitious Root Development in  Panax Ginseng  

 Ginseng ( Panax ginseng  C. A. Meyer; family Araliaceae), a classical herb widely 
used in East Asia, provides resistance against stress and exhaustion. Ginseng has 
been practiced as a healing medicine and health tonic since ancient time [ 52 ]. In 
 Panax ginseng , the active ingredients are believed to be the glycosylated triterpene 
saponins, which are also known as ginsenosides [ 52 ]. The leading source of ginsen-
osides is roots of  Panax ginseng  where it accumulates in signifi cantly large quanti-
ties when compared to other plant parts. Field cultivation of  Panax ginseng  is a 
time-consuming and a labour-intensive process [ 53 ,  52 ] and therefore, in recent 
years a new approach of cultivation of cell and adventitious roots in bioreactors, 
have been developed [ 52 ]. Adventitious root cultures demonstrated the ability of 
higher accumulation of biomass and desired compounds at levels comparable to 
naturally grown roots [ 53 ,  54 ]. In brief, adventitious root cultures were generated 
from 4-year-old  Panax ginseng  through callus culture as described by Yu et al. [ 55 ]. 
Working under sterile conditions, the selected roots were proliferated further in 5 L 
airlift balloon type bioreactors containing 4 L of 3/4 strength Murashige and Skoog 
(MS) liquid, or maintained in Petri dishes containing 3/4 MS solid medium [ 56 ] 
supplemented with 5.0 mg L −1  IBA, 0.1 mg L −1  kinetin and 5 % sucrose for 4 weeks. 
These cultured roots were used as explants for various studies about the role of NO 
in adventitious root development described in this manuscript. 

18.2.1     Exogenous Application of NO Releasing Compounds 
Enhances Endogenous NO Levels in Adventitious Roots 

  In situ  localization of NO using 4,5-diaminofl uorescein diacetate (DAF-2DA), 
a NO specifi c dye, revealed that exogenous application of NO releasing compounds 
such as sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) 
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enhanced endogenous NO level which was refl ected as an elevated nitrite concen-
tration (Fig.  18.1a, b ) and intense DAF-2 T fl uorescence (Fig.  18.1c ) in the adventi-
tious roots of  Panax ginseng . Both intensity of NO specifi c DAF-2 T fl uorescence 
(Fig.  18.1c ) and nitrite levels (Fig.  18.1a, b ) were decreased on incorporation of NO 
scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), in the 
growth medium. These observations suggested that the application of NO releasing 
compound indeed enhanced internal NO level in adventitious roots of  Panax 
ginseng .

18.2.2        NO Is Involved in the Proliferation 
of Adventitious Roots  

  Panax ginseng  root explants cultured on MS medium supplied with graded concen-
trations of a NO releasing compound, SNP, produced an increased number of root-
lets (Fig.  18.2a ). Moreover, adventitious root explants cultured on MS medium in 
the presence of another NO releasing compound, SNAP, were also proliferated well 
and generated an increased number of rootlets (Fig.  18.2b, c ). Proliferation of 
adventitious rootlets was inhibited when a NO scavenger, PTIO was incorporated in 
the growth medium with the SNP and SNAP (Fig.  18.2b, c ). An individual treatment 
of PTIO also inhibited root proliferation (Fig.  18.2b, c ). PTIO-treated root explants, 
however, elongated well but they developed a very few adventitious rootlets 
(Fig.  18.2b, c ). Mechanism of PTIO-induced explant elongation is currently 
unknown. Induction of increased numbers of adventitious rootlets along with 
enhanced biomass in the presence of NO releasing compounds, SNP and SNAP and 
an inhibition in number of rootlets in the presence of NO scavenger, PTIO suggests 
a key role of NO in adventitious root development [ 38 ,  51 ]. The involvement of NO 

a b c

  Fig. 18.1    Effects of graded supply of NO producers ( SNP ) on NO (nitrite) levels in the adventi-
tious roots ( a ), comparative effect of various NO producers (100 μM SNP and 100 μM SNAP) in 
the absence and presence of NO scavengers (100 μM PTIO) on NO (nitrite) levels ( b ), and  in situ  
localization of NO by DAF-2DA assay in the adventitious roots of  Panax ginseng  ( c ), scale 
bar = 200 μm. Adventitious root explants were grown in 3/4 MS medium containing 5 mg L −1  IBA, 
5 % sucrose for 4 weeks. Data are mean ± SE (n = 6). Bar with different letters are statistically 
signifi cant by Fisher LSD methods (P ≤ 0.05)       
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in promoting the root elongation has previously been observed in maize plants by 
Gouvea et al. [ 57 ]. Moreover, carbon monoxide, alkamide (N-isobutyl decanamide) 
and N-acyl-homoserine-lactone (N-3-oxo-decanoyl- l -homoserine-lactone) also 
induced lateral roots in a NO dependent manner [ 58 – 60 ]. NO is also involved in 
phosphorus defi ciency- and iron defi ciency- induced [ 61 ,  62 ] cluster-root develop-
ment in lupin. It appears from our studies with  Panax ginseng  [ 51 ,  38 ,  63 ] and those 
reported for other plant species that NO plays a fundamental role in the adventitious 
root growth and development in  Panax ginseng  or the lateral root growth and devel-
opment in tomato [ 37 ,  64 ,  65 ].

18.2.3        NO Acts Downstream to Auxin Induced Root 
Proliferation 

 Auxin has been known for a long time to be the main plant hormone involved in 
lateral root development. We demonstrated that despite the presence of auxin in the 
growth medium, a number of rootlets were declined tremendously to a level lower 
than control in the presence of PTIO (Fig.  18.2b ). This observation suggests that 
NO elicitation modulates cell division and it act downstream of auxin action in the 
process of root induction. Pagnussat et al. [ 66 ] also reported that NO acts down-
stream of auxin action leading to the accumulation of cGMP, which modulates 
expression of cell cycle regulatory genes [ 65 ]. NO mediates the induction of the 
 CYCD3 ; 1  gene and the repression of the cyclin-dependent kinase (CDK) inhibitor, 
 KRP2  gene, at the beginning of lateral root primordium formation [ 65 ]. Lombardo 
et al. [ 67 ] demonstrated that NO is involved in the auxin-signalling cascade leading 
to root hair formation in lettuce and  Arabidopsis thaliana . NO synthase inhibitor, 

a b c

  Fig. 18.2    Effects    of graded (0, 25, 50 100 μM) supply of NO producers ( SNP ) on root prolifera-
tion ( a ), comparative effect of various NO producers (100 μM SNP and 100 μM SNAP) in the 
absence and presence of NO scavengers (100 μM PTIO) on adventitious root proliferation ( b ,  c ). 
Adventitious root explants were grown in 3/4 MS medium containing 5 mg L −1  IBA, 5 % sucrose 
and 2.2 g L −1  gelrite for 4 weeks. Data are mean ± SE (n = 20 counted explant for root number). Bar 
with different letters are statistically signifi cant by Fisher LSD methods (P ≤ 0.05)       
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100 μM Nω-nitro- l -arginine methyl ester ( l -NAME), did not show any effect on 
the development of rootlets. It seems that NOA1/NOS1 [ 68 ] is not involved in the 
synthesis of NO in  Panax ginseng  [ 38 ]. However, many studies indicate existence 
 l -NAME inhibitory NO synthase-like activity in plants but the concentrations of 
NO synthase inhibitors ( l -NAME or  l -NNA) used in such studies [ 69 ,  61 ] are 
quite high (1–10 mM) and therefore, it might have induced secondary inhibitory 
effect. NO has probably been synthesized either by coordinating activity of the 
root- specifi c plasma membrane-bound enzymes, nitrate reductase and nitrite: NO 
reductase [ 70 ] or by non-enzymatic sources in the adventitious roots of  Panax 
ginseng .  

18.2.4     Nitric Oxide-Induced Superoxide Anion Generation is 
Related to Adventitious Root Development 

 Superoxide anion has previously been implicated in the root elongation of maize 
plants [ 71 ], and root hair [ 72 ] and pollen tube growth [ 73 ]. Increased superoxide 
anion generation (Fig.  18.3a–d ) along with an increase in the NADPH oxidase-like 
activity (Fig.  18.4a–d ) in the roots treated with NO producers (SNP and SNAP) and 

a c

b d

  Fig. 18.3    Effects of graded (0, 25, 50 100 μM) supply of NO producers ( SNP ) on  in situ  superox-
ide anion localization ( a ), superoxide levels ( b ), and comparative effect of various NO producers 
(100 μM SNP and 100 μM SNAP) in the absence and presence of NO scavengers (100 μM PTIO) 
on  in situ  superoxide anion localization ( c ) and superoxide anion levels ( d ) in adventitious roots of 
 Panax ginseng . Adventitious root explants were grown in 3/4 MS medium containing 5 mg L −1  
IBA and 5 % sucrose for 4 weeks. Data are mean ± SE (n = 6). Bar with different letters are statisti-
cally signifi cant by Fisher LSD methods (P ≤ 0.05)       
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its reversion on incorporation of NO scavenger, PTIO, suggests that superoxide 
anion is indeed involved in NO-induced adventitious root development in  Panax 
ginseng . Involvement NADPH oxidase-like activity and superoxide anion in the 
adventitious root growth was investigated further by treating adventitious root cul-
ture with an NADPH oxidase inhibitor, 50 μM diphenyl iodonium (DPI), in combi-
nation with 100 μM SNP and 100 μM SNAP. A severe slowdown in the growth 
(Fig.  18.5a ) along with decreased NADPH oxidase-like activity (Fig.  18.5b ) and 
concomitant suppressed level of superoxide anion generation (Fig.  18.5c ) were 
observed in the adventitious roots of  Panax ginseng  treated with DPI.  Arabidopsis  
mutant defective in root hair development,  rhd2 , which had previously been defi ned 
as  Arabidopsis thaliana  respiratory burst oxidase homolog C ( Atrboh C ), could not 
produce suffi cient superoxide anion and uptake Ca 2+  ion required for root hair 
development [ 74 ], also support involvement superoxide anion in root organogene-
sis. Thus enhanced NADPH oxidase-like activity-mediated superoxide anion gen-
eration appears to be responsible for an enhanced cell division and enhanced root 
proliferation by exogenous application of NO producers, SNP and SNAP. Abolishment 
of root growth and superoxide anion generation by DPI, an NADPH oxidase inhibi-
tor, further suggests a vital role of superoxide anion in adventitious root develop-
ment in  Panax ginseng .

a c

b d

  Fig. 18.4    Effects of graded (0, 25, 50 100 μM) supply of NO producers ( SNP ) on in gel NADPH 
oxidase-like activity ( a ) and spectrometric assay of NADPH oxidase-like activity ( b ), and com-
parative effect of various NO producers (100 μM SNP and 100 μM SNAP) in the absence and 
presence of NO scavengers (100 μM PTIO) on  in gel  ( c ) and spectrophotometric assay of NADPH 
oxidase-like activity ( d ) in adventitious roots of  Panax ginseng . Adventitious root explants were 
grown in 3/4 MS medium containing 5 mg L −1  IBA and 5 % sucrose for 4 weeks. Data are 
mean ± SE (n = 6). Bar with different letters are statistically signifi cant by Fisher LSD methods 
(P ≤ 0.05)       
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18.2.5          Relationship of Root Growth with Superoxide Anion, 
NADPH Oxidase-Like Activity and NO Content 

 To have an insight into up-regulation in root proliferation in the NO-treated adventi-
tious roots, we have drawn relationships among the some important parameters. We 
observed a correlation between superoxide anion content (r = 0.96), NADPH oxi-
dase activity (r = 0.87), NO (nitrite) content (r = 0.80) with root number induced per 
explants (Fig.  18.6a–c ). Moreover, a correlation exists between NADPH oxidase–
like activity and NO (nitrite) content (r = 0.95) (Fig.  18.6d ). These strong correla-
tions in NO (nitrite) levels, NADPH oxidase-like activity, superoxide anion and 
numbers of adventitious root induced in  Panax ginseng  root explants strongly sug-
gests an involvement of NO-induced superoxide anion in root proliferation. Notable 
inhibition of NADPH oxidase-like activity along with decreased root biomass by 
DPI treatment further support our hypothesis that the NO-induced NADPH oxidase- 
like activity-dependent superoxide anion generation is benefi cial for the adventi-
tious root growth.

18.3         Conclusions and Future Research Directions 

 In conclusion, our studies with  Panax ginseng  root explants on exogenous applica-
tion of NO producers (SNP and SNAP) and NADPH oxidase inhibitor (DPI) 
revealed that NO is involved in adventitious root proliferation. Exogenous applica-
tion of NO producers (SNP and SNAP) activated superoxide anion generation by 
inducing NADPH oxidase-like activity in adventitious root which concomitantly 
result adventitious root proliferation in  Panax ginseng  (Fig.  18.7 ). There are ten 

a b c

  Fig. 18.5    Adventitious root growth ( a ) NADPH oxidase-like activity ( b ) and superoxide anion ( c ) 
in the adventitious roots of  Panax ginseng  grown in liquid suspension of 3/4 MS medium contain-
ing 5 mg L −1  IBA, 5 % sucrose for 3 weeks and subjected to the treatment of SNP and SNAP in the 
absence and presence DPI (NADPH oxidase inhibitor) or DPI alone for 1 week. Concentration 
applied for SNP and SNAP was 100 μM. Concentration of DPI was 50 μM. The data presented are 
mean ± SE (n = 6). Bar with different letters are statistically signifi cant by Fisher LSD methods 
(P ≤ 0.05)       
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genes of respiratory burst oxidase homologs (RBOH A-J) which encode different 
NADPH oxidases in  Arabidopsis thaliana  [ 75 ]. These genes have been reported to 
express in different tissues in response to different environmental stimuli [ 75 ]. The 
specifi c NO-induced RBOH gene involved in superoxide anion generation in  Panax 
ginseng  adventitious root is still unknown. Moreover, the underlying downstream 
regulatory events of NADPH oxidase-dependent superoxide anion in root develop-
ment in  Panax ginseng  are also unknown. Therefore, further genetic and molecular 
investigations are required to unravel underlying signalling events involved in the 
process of adventitious root development.

a b

c d

  Fig. 18.6    Relationships between NADPH oxidase-like activity and root number ( a ), superoxide 
anion and root number ( b ), nitric oxide (nitrite) concentration and root number ( c ) and NADPH 
oxidase-like activity and nitric oxide (nitrite) concentration ( d ) in the adventitious roots of  Panax 
ginseng        
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    Chapter 19   
 Melatonin Rich Plants: Production, 
Signifi cance in Agriculture and Human Health 

             Vikramjit     Bajwa    ,        Susan     J.     Murch    , and     Praveen     K.     Saxena    

    Abstract     Melatonin ( N -acetyl-5-methoxytryptamine) has many therapeutic bene-
fi ts for humans such as regulation of sleep cycle, aging, depression, and cancer. 
Melatonin was fi rst discovered in fruits and vegetables in the mid-1990s. Since then, 
Melatonin has been recognized in large number of species including medicinal 
plants such as St. John’s wort, feverfew and  Echinacea . The melatonin content var-
ies from plant to plant due to genetic and environmental factors; therefore there is a 
need to have integrated system (such as bioreactors) for large-scale propagation of 
the high melatonin containing elite plant germplasm under controlled environmen-
tal conditions. Recently, major advances have been made to understand the melato-
nin biosynthetic pathway in plants. Melatonin performs important roles in plants 
working as a growth regulator as well as environmental stress protector. The 
enhancement of endogenous melatonin levels in plants is benefi cial in both agricul-
ture as well as in human health.  

  Keywords     Bioactive molecules   •   Medicinal plants   •   Melatonin  

19.1         Introduction 

 Melatonin, often referred to as ‘hormone of darkness’, is secreted by the pineal gland 
at night in humans and in most diurnal mammals. In animals, the circadian rhythm 
of melatonin production is regulated by the light-dark cycle. Therefore, the nocturnal 
circulating melatonin levels are higher in animals when compared to the diurnal 
melatonin levels [ 1 ]. Melatonin regulates sleep-wake cycle and other cyclical body 
activities and is therefore, considered to be the body’s chronological pacemaker or 

        V.   Bajwa     •     P.  K.   Saxena      (*) 
  Gosling Research Institute for Plant Preservation (GRIPP), Department of Plant Agriculture , 
 University of Guelph ,   Guelph ,  ON   N1G 2W1 ,  Canada   
 e-mail: psaxena@uoguelph.ca   

    S.  J.   Murch    
  Department of Chemistry ,  University of British Columbia ,   Kelowna ,  BC   V1V 1V7 ,  Canada    

mailto:psaxena@uoguelph.ca


446

‘Zeitgeber’ [ 2 ]. The secretion of melatonin in animals is regulated by Suprachiasmatic 
nucleus (SCN) in response to the light/dark cycle [ 3 ]. Melatonin was fi rst isolated 
from the bovine pineal gland [ 4 ] and in 1959 it was identifi ed in humans [ 5 ]. Later, 
melatonin was also identifi ed in other parts of the central nervous system, retina, 
the gastrointestinal tract, skin, bone marrow and in lymphocytes [ 2 ,  6 – 8 ]. Detectable 
quantities of melatonin are not exclusively present in blood but also in other body 
fl uids such as cerebrospinal fl uid, bile, fl uid of the anterior chamber of eye, and 
ovarian follicle fl uid [ 9 ,  10 ]. The presence of melatonin in various organs and body 
fl uids of mammals heralds the diverse actions of the melatonin in the body [ 11 ]. 
Melatonin, discovered in plants in mid-1990s, is a relatively new compound for 
plant biologists. Melatonin is an indole amine and is structurally related to another 
well-known plant hormone indole-3-acetic acid (IAA). High amounts of melatonin 
have been identifi ed in medicinal plants and common beverages [ 12 – 14 ] 
(Tables  19.1  and  19.2 ), indicating the importance of phytomelatonin for therapeutic 
purposes [ 14 ].

    In plants, melatonin is derived from L-tryptophan [ 25 ]. The biosynthesis of 
melatonin involves a multi-step biosynthetic pathway in which L-tryptophan is 
fi rst converted into serotonin  via  two enzymatic steps; in the fi rst step, L-tryptophan 
is converted into tryptamine and in the second step, tryptamine is converted into 

       Table 19.1    High melatonin containing medicinal plants   

 Common name (plant part) 
 Scientifi c 
name 

 Detection 
method 

 Melatonin 
content 
(ng g −1 )  References 

 Feverfew (fresh green leaf)   Tanacetum) 
parthenium  

 HPLC-ECD  2,450  [ 12 ] 

 Feverfew (fresh golden 
leaf) 

  Tanacetum 
parthenium  

 HPLC-ECD  1,920 

 Feverfew (freeze-dried 
green leaf) 

  Tanacetum 
parthenium  

 HPLC-ECD  2,190 

 Feverfew (freeze-dried 
golden leaf) 

  Tanacetum 
parthenium  

 HPLC-ECD  1,610 

 Feverfew (oven-dried green 
leaf) 

  Tanacetum 
parthenium  

 HPLC-ECD  1,690 

 Feverfew (oven-dried 
golden leaf) 

  Tanacetum 
parthenium  

 HPLC-ECD  1,370 

 St John’s wort (fl owers)   Hypericum 
perforatum  

 HPLC-ECD  4,390 

 St John’s wort (leaves)   Hypericum 
perforatum  

 HPLC-ECD  1,750 

 Huang-qin (herbal powder 
derived from fl owers, seeds, 
leaves, roots, and stems) 

  Scutellaria 
biacalensis  

 HPLC-ECD  7,110 
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serotonin [ 26 ,  27 ]. Serotonin is then converted into melatonin through the last two 
 biosynthetic reactions in which serotonin is fi rst acetylated to N-acetyl serotonin 
followed by conversion of N-acetyl serotonin into melatonin in the fi nal reaction 
[ 28 ,  29 ]. In recent years, four genes namely tryptophan decarboxylase ( TDC ), 
 tryptamine 5-hydroxylase ( T5H ), serotonin N-acetyl transferase ( SNAT ) and 
N-acetyl serotonin methyl transferase ( ASMT ) encoding consecutive enzymes 
required for melatonin biosynthesis have been identifi ed, cloned and characterized 
in rice [ 26 ,  28 – 30 ] (Fig.  19.1 ).

Table 19.1 (continued)

 Common name (plant part) 
 Scientifi c 
name 

 Detection 
method 

 Melatonin 
content 
(ng g −1 )  References 

 Chantui (herbal powder 
derived from fl owers, seeds, 
leaves, roots, and stems) 

  Periostracum 
cicadae  

 HPLC-FD 
on-line with MS 

 3,771  [ 14 ] 

 Diding (herbal powder 
derived from fl owers, seeds, 
leaves, roots, and stems) 

  Viola philipica   HPLC-FD 
on-line with MS 

 2,368 

 Gouteng (herbal powder 
derived from fl owers, seeds, 
leaves, roots, and stems) 

  Uncaria 
rhynchophylla  

 HPLC-FD 
on-line with MS 

 2,460 

 Shiya tea-leaf   Babreum 
coscluea  

 HPLC-FD 
on-line with MS 

 2,120 

 Sangye (herbal powder 
derived from fl owers, seeds, 
leaves, roots, and stems) 

  Morus alba   HPLC-FD 
on-line with MS 

 1,510 

 Huangbo (herbal powder 
derived from fl owers, seeds, 
leaves, roots, and stems) 

  Phellodendron 
amurense  

 HPLC-FD 
on-line with MS 

 1,235 

 Sangbaipi (herbal powder 
derived from fl owers, seeds, 
leaves, roots, and stems) 

  Mori Albae   HPLC-FD 
on-line with MS 

 1,110 

 Yinyanghuo (herbal powder 
derived from fl owers, seeds, 
leaves, roots, and stems) 

  Epimedium 
brevicornum  
Maxim 

 HPLC-FD 
on-line with MS 

 1,105 

 Huanglian (herbal powder 
derived from fl owers, seeds, 
leaves, roots, and stems) 

  Coptis 
chinensis  
Franch 

 HPLC-FD 
on-line with MS 

 1,008 

 Dahuang (herbal powder 
derived from fl owers, seeds, 
leaves, roots, and stems) 

  Rheum 
palmatum  L. 

 HPLC-FD 
on-line with MS 

 1,078 
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   More and more new studies are presenting the important physiological roles of 
melatonin in plants either as a growth regulator or as an environmental stress 
 alleviator. This review discusses the importance of phytomelatonin as a therapeutic 
and as a physiologically important compound in plants, and methods for selection 

   Table 19.2    High melatonin content in common edible plants and beverages   

 Edible plant or 
beverage  Scientifi c name 

 Melatonin 
content (ng g −1 ) 
(FW or DW of 
tissue) 

 Detection 
method  References 

 Cabbage   Brassica oleracea 
capitata  

 0.1 FW  RIA, HPLC-FD 
and LC-MS 

 [ 15 ] 

 Chinese cabbage   Brassica rapa   0.1 FW 
 White radish   Raphanus sativus   0.7 FW 
 Rice seed   Oryza sativa   1.0 FW 
 Barley seed   Hordeum vulgare   0.4 FW 
 Sweet corn   Zea mays   1.4 FW 
 Oat seeds   Avena sativa   1.8 FW 
 Ginger   Zingiber offi cinale 

Ros.  
 0.6 FW 

 White mustard   Brassica hirta   189 DW  RIA, 
HPLC-ECD 

 [ 16 ] 
 Black mustard   Brassica nigra   129 DW 
 Wolf berry   Lycium barbarum   103 DW 
 Fenugreek   Trigonella 

foenum-graecum  
 43 DW 

 Almond   Prunus amygdalus   39 DW 
 Sunfl ower   Helianthus annuus   29 DW 
 Fennel   Foeniculum vulgare   28 DW 
 Alfalfa   Medicago sativum   16 DW 

 15 DW 
 Green cardamom   Elettaria 

cardamomum  
 12 DW 

 Flax   Linum usitatissimum   7 DW 
 Walnut   Juglans regia   3.5 DW  HPLC  [ 17 ] 
 Wine grapes   Vitis vinifera   >100 μg g  −1   UPLC-MS/MS  [ 18 ] 
 Grapevine   Vitis vinifera   3–18 FW  UPLC-MS/MS  [ 19 ] 
 Tomato fruit   Solanum 

lycopersicum  
 4.1–114.5 FW  HPLC-MS/MS  [ 20 ] 

 Strawberry   Fragaria × ananassa  
Duch .  

 1.4–11.2 FW 

 Pomegranate   Punica granatum   0.5–5.5 FW  HPLC-MS/MS  [ 21 ] 
 Pineapple   Ananas comosus   0.3 FW  [ 22 ] 
 Coffee beans 
(robusta) 

  Coffee canephora   5,800–8,000 DW  HPLC/ESI-MS  [ 23 ] 

 Coffee beans 
(arabica) 

  Coffee arabica   6,800–9,600 DW 

 Sweet cherries   Prunus avium   8–120 FW  HPLC  [ 24 ] 
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and propagation of melatonin rich medicinal plants. The potentiality to improve 
crop yield and stress tolerance through genetic manipulation of melatonin biosyn-
thesis are also discussed.  

19.2     Therapeutic Benefi ts of Melatonin 

 Melatonin regulates the normal circadian rhythm in animals; therefore, it is regu-
larly used to treat jet lag, sleep and certain chronic neurological disorders. Melatonin 
has been helpful in treatment of sleep disorders and chronic insomnias such as 
Angelman Syndrome and Age-related insomnia [ 31 – 33 ]. Melatonin treatment is 
helpful in treating sleep disorders by advancing sleep onset time, reducing sleep 
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latency time, increasing total sleep time and reducing the number of night wakes 
[ 32 ]. Two to ten milligrams of melatonin was helpful in the treatment of sleep 
 disorder of blind and neurologically disabled children without any side-effects [ 34 ]. 
Melatonin reduced sleep latency in children with developmental disabilities [ 35 ]. 

 Therapeutic melatonin treatment is helpful in several circadian rhythm associ-
ated neurological disabilities, psychiatric and cognitive impairments such as 
 seasonal affective disorder, bipolar disorder, unipolar depression, bulimia, anorexia, 
schizophrenia, panic disorder, obsessive compulsive disorder and cognitive disor-
ders, dementia, epilepsy, attention defi cit hyperactive disorder (ADHD) and other 
learning disabilities [ 2 ,  6 ,  36 – 40 ]. 

 Melatonin not only controls circadian rhythm but also serves other important 
functions such as a powerful free radical scavenger making it an endogenous antioxi-
dant that can scavenge a number of reactive oxygen (ROS) and nitrogen species [ 41 ]. 
The free radical scavenging capacity of melatonin and its metabolites, N1-acetyl- 5-
methoxykynuramine (AMK) and N1-acetyl-N2-formyl-5- methoxykynuramine 
(AFMK) are well established [ 42 – 45 ]. Melatonin has both lipophilic and hydrophilic 
antioxidant property, making it a broad-spectrum antioxidant [ 46 ]. Melatonin plays 
a signifi cant role in regulating the activity and expression of enzymes such as gluta-
thione peroxidase, superoxide dismutase and catalase, that act as the fi rst line of 
defense against free radicals in organisms [ 47 ]. Recently melatonin has been identi-
fi ed as a scavenger of ROS produced in the ovarian follicle, and therefore contributes 
to oocyte maturation, embryo development and luteinization of granulosa cells, 
making a case for melatonin as a new cure for the treatment of infertile women [ 48 ]. 
A large number of publications on the anticancer effects of melatonin suggest its use 
for the treatment and prevention of oncological diseases [ 49 ]. Melatonin also has 
immunomodulatory/immune-enhancing properties, and therefore, is helpful in treat-
ing patients with compromised immune system [ 50 – 55 ]. Melatonin levels decrease 
with age and certain medical conditions such as coronary artery diseases and neuro-
degenerative disorders like Alzheimer’s disease [ 56 – 59 ]. Thus, the therapeutic ben-
efi ts of melatonin are pleiotropic including the treatment of insomnia, depression, 
cancers, and heart disease, as well as neuroprotectant, anti- ageing and immunos-
timulatory [ 31 ,  49 ,  50 ,  60 – 62 ].  

19.3     Melatonin, a Bioactive Molecule in Medicinal Plants 

 Approximately four decades after the fi rst report of melatonin isolation from the 
bovine pineal gland in 1958, melatonin was fi rst detected in vegetables in 1995 
using radioimmunoassay (RIA), high pressure liquid chromatography-fl uorescence 
detection (HPLC-FD) and HPLC-mass spectrometry (MS) [ 15 ,  63 ,  64 ]. High levels 
of melatonin, several orders of magnitude higher than those detected in animal 
blood, have been found in medicinal plants, feverfew ( Tanacetum parthenium ), St 
John’s Wort ( Hypericum perforatum ), and Huang-qin ( Scutellaria biacalensis ) 
(Table  19.1 ) [ 12 ]. Higher levels of melatonin in plants can be explained based on 

V. Bajwa et al.



451

the hypothesis that in eukaryotes, mitochondrion and chloroplast are the original 
sites of melatonin biosynthesis, and since plants contain both mitochondrion and 
chloroplast they have more number of sites to produce melatonin compared to 
mammals [ 65 ]. The higher levels of melatonin in plants may serve an important 
protective role by reducing oxidative damage to macromolecules such as lipids, 
proteins and DNA [ 16 ]. 

 Chen et al. [ 14 ] identifi ed melatonin in more than 100 commonly used Chinese 
medicinal herbs using HPLC-MS [ 14 ]. Melatonin levels in a number of these herbs 
was well above 1,000 ng g −1  compared to the normal average physiological plasma 
levels of melatonin of 10–60 pg mL −1  in humans (Table  19.1 ). The presence of high 
levels of melatonin virtually in all these herbs traditionally used to treat diseases 
provides important information regarding melatonin as one of the crucial bioactive 
constituents in medicinal plants [ 14 ]. Very high levels of melatonin have been 
reported in two popular beverages, coffee and tea, with seeds of freshly harvested 
 Coffea canephora  containing 115 ± 6 μg melatonin g −1  fresh weight as analyzed by 
HPLC and LC-MS-ESI and Chinese Longjing tea (green) containing melatonin 
2.12 μg g −1  fresh weight (Table  19.1 ) [ 14 ,  23 ]. Serum melatonin levels and total 
antioxidant capacity of serum increases signifi cantly after feeding subjects with 
melatonin-rich food stuff, indicating phytomelatonin may be an important protect-
ing agent against oxidative damage in animals [ 15 ,  17 ,  66 ,  67 ]. In one of such stud-
ies done on rats, the authors concluded that walnuts contain melatonin and eating 
walnuts can increase the melatonin levels of the blood to levels where it could pro-
tect the animals against cardiovascular damage and cancer initiation and growth 
[ 17 ]. In two separate studies, consumption of melatonin containing vegetables 
raised urinary 6-sulfatoxymelatonin (aMT6-s) levels giving an indication that phy-
tomelatonin may be a good source, providing health benefi ts associated with mela-
tonin consumption [ 68 ,  69 ]. In a recent study done on healthy volunteers, dietary 
intake of melatonin from tropical fruit enhanced the urinary aMT6-s, with most 
signifi cant increase in the aMT6-s concentrations observed with the consumption of 
pineapple (266 %) and banana (180 %) [ 70 ]. In animal studies, dietary intake of 
5 μg day −1  of dietary melatonin for 3 weeks elevated amplitude and duration of 
nocturnal melatonin levels in tumor-bearing rats. The dietary melatonin uptake 
resulted in growth prevention in rat hepatome 7288 CTC in these rats [ 71 ]. The 
increased levels of melatonin in animals fed with plant foods containing melatonin 
as well as the ability of melatonin to readily cross both the placenta and blood-brain 
barrier and get into cells indicates its imminent signifi cance in affecting biological 
functions in animals [ 15 ,  17 ,  67 ]. 

 Leaf material, fl owers, products, preparations and beverages of medicinal plants 
have suffi cient melatonin and the consumption of these plants may be a good alter-
native to synthetic melatonin supplements such as tablets, pills, capsules, liquids 
etc. (Table  19.1 ). Medicinal plants such as St. John’s wort and other plant species 
with high melatonin have been used for the treatment of neurological disorders and 
depression for a long time, giving a possibility that consumption of plants with high 
melatonin may have benefi cial psychoactive effects in humans [ 12 ,  72 – 74 ]. Dietary 
melatonin from medicinal plants could be a potential medicinal component 
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 important in protecting animals against oxidative damage [ 67 ]. Although melatonin 
is not the sole active ingredient in many medicinal plants it is found in considerably 
high levels in many medicinal plants and foods [ 12 ,  14 ,  75 ]. The effi cacy of medici-
nal plant products is usually due to the combined effect of several different medici-
nally active phytochemicals or secondary metabolites [ 76 ]. The use of medicinal 
plants to treat human ailments have been tested for over thousands of years with 
minimum side-effects, providing best example for the use of medicinal plants as a 
rich source of phytomelatonin over the synthetic melatonin supplements.  

19.4     Integrated Systems for Selection and Propagation 
of Melatonin Rich Medicinal Plants 

 The effi cacy of plant-based medicinal products typically cannot be attributed to a 
single phytochemical, and there is a complex infl uence of the genetic make-up of 
the plant population used as well as the environmental conditions in which the 
plants are grown. It is therefore very diffi cult to produce plant products with unifor-
mity and consistency in each of the active constituents of the medicinal plants [ 76 ]. 
The variability in the end product could be attributed to : (a) lack of genetic unifor-
mity among the same species of medicinal plants, (b) fl uctuating environmental 
conditions (including abiotic and biotic stresses) during the growth of the plants, (c) 
complex interaction among these factors (genetic × environment) infl uencing com-
position of medicinal plants, (d) contamination with biological and environmental 
pollutants, (e) adulteration with misidentifi ed species, and (f) degradation of medic-
inal metabolites during harvesting, processing and handling [ 25 ,  76 – 78 ]. The prob-
lems associated with the variable genetic makeup and fl uctuating growing conditions 
of the medicinal plants could be overcome by integrating  in vitro  plant propagation 
with the controlled environmental conditions. The superiority of this integrated pro-
duction system employing large-scale clonal propagation through  in vitro  tech-
niques combined with controlled environmental conditions in green house have 
been demonstrated in St. John’s wort [ 72 ]. 

  In vitro  techniques provide a practical method for producing a large number of 
uniform plant materials. Some of the examples where  in vitro  plant multiplication is 
used to multiply medicinal plants rich in melatonin include – Huang-qin ( Scutellaria 
baicalensis ) [ 79 ], St. John’s wort cv. ‘New Stem’ [ 80 ] and St. John’s wort cv. 
‘Anthos’ [ 73 ]. The propagation of various medicinal plant species in sterile con-
trolled environments indicates a clear possibility of improving plant based medici-
nal products using  in vitro  clonal propagation techniques [ 25 ]. The genetic stability 
of melatonin rich medicinal plant such as Huang-qin has been evaluated using fl ow 
cytometry analysis with morphological and chemical profi ling, indicating high level 
of genetic stability in  in vitro  cultures for a period of over 6 years [ 81 ]. 

 Medicinal plants either grown in controlled environmental conditions or propa-
gated  in vitro  using bioreactors with objective of production of medicinal plant bio-
mass containing higher amounts of melatonin content. A range of bioreactors such 
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as modifi ed air-lift, bubble column bioreactors, together with temporary immersion 
systems are available for the propagation of whole plants or isolated organs like 
shoots, bud-clusters and somatic embryos [ 82 ]. The use of bioreactor system has 
been described for the large scale propagation of  Anoectochilus , apple, 
Chrysanthemum, garlic, ginseng, grape,  Lilium ,  Phalaenopsis , potato, St. John’s 
Wort and  Echinacea purpurea  [ 80 ,  83 – 86 ]. The use of bioreactors can also be help-
ful to test the effect of melatonin on the production of secondary metabolites, bio-
mass accumulation and accumulation of enzymatic and non-enzymatic antioxidants 
in the medicinal and non-medicinal plants. Factors infl uencing the levels of second-
ary metabolites under controlled environment conditions include – temperature, 
humidity, light intensity, the supply of water, minerals, and CO 2  infl uence on the 
growth of the plant and secondary metabolite production [ 87 ]. The infl uence of 
physiological stage of plant on variation in melatonin levels in fl oral tissues of St. 
John’s wort plantlets using hydroponic systems in the greenhouse has also been 
reported [ 88 ]. 

 The effectiveness of this integrated system of combining propagation  in vitro  and 
in greenhouse could be further improved by selecting and developing elite varieties 
with higher amounts of medicinally active phytochemicals with the stability in their 
performance. Some attempts have been made to improve upon the chemical compo-
sition of the medicinal plants with melatonin. A melatonin-rich line of St John’s 
wort was successfully developed using  in vitro  mutagenesis [ 72 ]. Several lines of St 
John’s wort with different melatonin concentration ranging from 1 to 30 μg g −1  were 
isolated following mutagenesis and a stable melatonin-rich germplasm line 
 containing >12-fold (1,200 %) melatonin content when compared with the wild-
type plant was selected for multiplication of this elite germplasm [ 72 ]. This exam-
ple indicates that naturally existing elite plant germplasm with high melatonin 
content or high melatonin germplasm generated through mutagenesis can be 
selected by quantifying the melatonin content of various lines through the analyses 
of the source material by liquid chromatography-mass spectrometry (LC/MS). The 
selected elite germplasm lines with high melatonin content can be clonally propa-
gated  in vitro , in greenhouses, and under different controlled environmental condi-
tions including bioreactors to see the effect of environment on melatonin production 
and overall growth of plants.  

19.5     Biosynthesis of Melatonin in Plants 

 The fi rst investigation to identify melatonin biosynthetic pathway in plants was 
executed in St John’s wort plants using radiolabel  14 C-tryptophan as an isotope 
tracer. A number of metabolites of melatonin biosynthetic pathway including 
 14 C-tryptamine,  14 C-5-hydroxytryptophan,  14 C-serotonin and  14 C-melatonin as well 
as most highly characterized metabolite of tryptophan, the plant hormone indole 
acetic acid (IAA) were recovered. This study revealed that similar to diurnal ani-
mals, plant melatonin and serotonin are biosynthesized from L-tryptophan [ 25 ]. 
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In plants, L-tryptophan is a precursor of numerous primary and secondary metabo-
lites such as IAA, indole glucosinolates and melatonin [ 28 ,  89 ]. 

 Recent studies have shown that plants utilize a slightly different melatonin bio-
synthetic pathway when compared to animals. In diurnal animals, melatonin is bio-
synthesized from L-tryptophan  via  multistep metabolic pathway in which tryptophan 
is fi rst converted to serotonin (5-hydroxytryptamine, 5-HT) by two enzymes, the 
fi rst enzyme, tryptophan hydroxylase converts Trp to 5-hydroxytryptophan (5-HTP) 
and second enzyme, an aromatic amino acid decarboxylase gives 5-HT. Serotonin 
is further acetylated by aryl alkyl amine N-acetyl transferase (AANAT) to N-acetyl 
serotonin (NAS) followed by methylation catalyzed by hydroxyl indole-O-methyl 
transferase (HIOMT) to produce melatonin [ 90 ,  91 ] (Fig.  19.1 ). Serotonin is gener-
ally present in high levels and is not a rate limiting factor for melatonin biosynthesis 
[ 92 ]. The daily rhythm in melatonin production from serotonin is generally coupled 
to the activity of AANAT in animals [ 93 ]. In plants, the order of reactions for sero-
tonin production from tryptophan seems to be reverse when compared to animals 
with hydroxylation reaction occurring before carboxylation in plants [ 94 ] (Fig.  19.1 ). 
However, Park et al. [ 30 ] showed that similar to animals, a hydroxylation reaction 
can occur before decarboxylation in rice as well, albeit at a low reaction rate. The 
plant genome also seems to lack the homolog for  AANAT,  however, another enzyme 
 SNAT  has been identifi ed in rice and is encoded by a member of GCN5-related 
N-acetyl tryptamine ( GNAT ) super family. The mRNA expression studies show that 
 SNAT  is constitutively expressed whereas  ASMT  expression is inducible, suggesting 
that ASMT is the rate-limiting enzyme controlling the melatonin production in 
plants rather than AANAT as in animals [ 28 – 30 ,  95 ]. 

 The pathways of melatonin biosynthesis seems to be complex in plants, therefore, 
more  in vivo  studies are necessary to identify melatonin biosynthetic pathway 
mutants in plants and to characterize orthologs for the biosynthetic pathway genes in 
higher plants. The  sekiguchi  mutant rice lacking functional tryptamine 5- hydroxylase 
(T5H) activity has been utilized to understand the serotonin and melatonin synthesis 
pathway in plants [ 27 ,  30 ]. However, identifi cation of more mutants lacking melato-
nin in plants such as rice and  Arabidopsis  could be a signifi cant advancement in our 
understanding of the biosynthetic pathway and role of melatonin in plants.  

19.6     Role of Melatonin in Higher Plants 

 Melatonin has been hypothesized to play multiple roles in plants including a regula-
tor of the circadian rhythm, regulator of reproductive development, protector against 
abiotic and biotic stresses like cold, heat, drought, salinity and diseases, and modu-
lator of various growth and developmental activities in plants such as root and shoot 
development and increase in biomass (Table  19.3 ). However, only a limited number 
of studies have been conducted to determine the physiological function of melato-
nin in plants. Some of the studied physiological roles of melatonin are discussed 
below.
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19.6.1       Circadian Rhythm Oscillations and Reproductive 
Development 

 Few experimental studies have been performed to test if melatonin acts as a chemi-
cal signal of darkness in plants, similar to its role in animals. The photoperiodic 
modulation in mammals and birds is a function of the duration and timing of the 
melatonin signal [ 120 ]. An oscillating behavior of melatonin was observed in the 
short-day plant  Chenopodium rubrum  L. with increase in the levels of melatonin 
observed 4–6 h after darkness in 12 h light: 12 h dark cycle and after 2 h in 16 h 
light: 8 h dark cycle, indicating that plants have a diurnal trend of melatonin produc-
tion similar to animals. However, these results indicated that timing rather than the 
duration of photoperiod determined the levels of melatonin [ 96 ]. In another study 
conducted on  Pharbitis nil  and tomatoes ( Solanum lycopersicum ) no signifi cant dif-
ference in the melatonin levels was observed with respect to light/dark cycle. This 
study gave in conclusive results regarding the circadian rhythm of melatonin pro-
duction as observed previously in  Chenopodium rubrum , indicating that photoperi-
odic change in melatonin levels might be species dependent in plants [ 121 ]. 
Although the role of melatonin has been implicated, evidence is still lacking to 
describe any defi nitive role of melatonin in regulating the circadian rhythms, plant 
light/dark responses [ 105 ]. 

 Melatonin and its agonists (2-I-melatonin, 6-Cl-melatonin, CGP 52608) and 
5-hydroxytryptamine also affected fl owering in  Chenopodium rubrum , as their 
application decreased fl owering of plants in 12 h light: 12 h dark cycle. This effect 
of melatonin was observed only if melatonin was applied before the dark period or 
during the fi rst half of the dark period, indicating that melatonin affects some early 
steps of the fl oral development [ 122 ]. In a study on  Datura metel , the highest levels 
of melatonin were detected in immature buds and developing ovules with the levels 

   Table 19.3    Important biological roles of melatonin in higher plants   

 Reported biological role  References 

 Circadian rhythm oscillations and reproductive 
development 

 [ 74 ,  96 – 98 ] 

 Root biomass enhancement  [ 99 – 104 ] 
 Chlorophyll protection and photosynthesis induction  [ 77 ,  104 – 107 ] 
 Salinity stress tolerance  [ 108 – 111 ] 
 Cold and cryopreservation stress tolerance  [ 78 ,  112 – 115 ] 
 Water stress and drought tolerance  [ 106 ] 
 Light and high temperature stress tolerance  [ 116 ] 
 UV-B radiation stress tolerance  [ 117 ] 
 Herbicide-induced oxidative stress  [ 107 ] 
 Chemical agent stress tolerance  [ 77 ] 
 Delaying in dark-induced senescence  [ 77 ,  106 ,  118 ] 
 Biotic stress tolerance (apple blotch)  [ 119 ] 
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decreasing as the fl ower buds and the fruit matured, indicating that melatonin might 
play an important role in protecting the reproductive tissues during fl ower and seed 
formation [ 74 ]. The presence of high levels of melatonin in seeds may be required 
to prevent oxidative damage, particularly to highly vulnerable germ tissue [ 16 ]. 
Recently, Park et al. [ 123 ] observed that melatonin synthesis was induced in pani-
cles of rice during the reproductive stages, whereas no induction was observed in 
fl ag leaves [ 123 ]. Together, these results indicate an important role of melatonin in 
regulating circadian rhythm and reproductive development in plants. However, 
studies have to be carried out to understand the mechanism of regulation of these 
important processes in plants.  

19.6.2     Enhancement of Root Biomass, Chlorophyll Protection 
and Photosynthetic Induction 

 There are a number of studies that reported the enhancement of plant biomass, espe-
cially root biomass by melatonin. The increase in root biomass and altered architec-
ture are mainly related to the growth regulating property of melatonin in plants 
similar to IAA. Murch et al. [ 124 ] showed that melatonin and serotonin, a trypto-
phan derivative and a precursor of melatonin, play an important role in plant mor-
phogenesis [ 25 ]. In St. John’s wort plants, higher endogenous levels of melatonin 
were associated with  de novo  root formation, whereas higher serotonin levels cor-
responded to increase in the shoot formation on the explants, indicating that changes 
in endogenous concentrations of serotonin and melatonin accompany plant mor-
phogenesis  in vitro  [ 124 ]. A potential role of melatonin as a growth regulator in 
plants is hypothesized [ 99 ]. Melatonin (0.1 μM) application stimulated root growth 
in young (2-days old) and etiolated  Brassica juncea  seedlings, however, the higher 
concentration of melatonin (100 μM) inhibited root growth and the older seedlings 
(4-days old) were less responsive to the stimulatory and inhibitory effects of mela-
tonin on root growth. The application of lower levels of melatonin (0.1 μM) was 
also shown to increase the levels of free indole 3-acetic acid (IAA) in the roots of 
 Brassica juncea  seedlings [ 100 ]. Similar to IAA, melatonin promoted vegetative 
growth in etiolated lupin ( Lupinus albus ) hypocotyls [ 125 ]. Both melatonin and 
IAA were also shown to promote lateral and adventitious roots in the etiolated 
hypocotyls of lupin [ 101 ]. In a study on  Arabidopsis thaliana  plants, the application 
of melatonin modulated root architecture by increasing the production of lateral and 
adventitious roots without affecting primary root morphology. These changes in 
root architecture elicited by melatonin were believed to be independent of auxin 
signaling, as melatonin application had no effect on activity of auxin-responsive 
marker constructs,  DR5:uidA, BA3:uidA  and  HS::AXR3NT-GUS  [ 102 ]. In another 
study, transgenic rice plants overexpressing sheep serotonin N-acetyltransferase 
with enhanced melatonin levels showed increased seminal root growth (higher sem-
inal root length and root weight) compared with the wild-type plants. Treatment of 
wild-type rice with 0.5 and 1 μM melatonin also promoted seminal root growth 
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under continuous light [ 103 ]. The RNA-sequence analysis of the cucumber seed-
lings primed with melatonin and grown in saline conditions, showed higher expres-
sion level of peroxidase-related genes and some transcription factors in the melatonin 
treated tissue when compared to the control. The authors suggested that increase in 
the lateral root formation in the melatonin treated plants was probably due to the 
ROS scavenging activity of melatonin that is independent of auxin-related activity. 
Serotonin also stimulated lateral root development in  Arabidopsis thaliana  at con-
centrations ranging from 10 to 160 μM putatively by acting as a natural auxin inhib-
itor in the plants [ 126 ]. Sarropoulou et al. [ 104 ] discovered that cherry rootstock 
plants PHL-C ( Prunus avium  L. ×  Prunus cerasus  L.) from shoot tip explants cul-
tured in MS medium containing low levels of melatonin showed enhanced root 
regeneration, photosynthetic pigments, biomass, total carbohydrate and proline 
content [ 104 ]. Application of 1 μM melatonin to the explants increased the root 
length of the plants by 2.5 times and the fresh weight of the roots was four times 
higher than the control plants. However, the higher concentrations of melatonin had 
a negative effect on root biomass, reducing the total number of roots, the fresh 
weight and rooting percentage [ 104 ]. The lower concentrations of melatonin were 
also effective in increasing the photosynthetic pigments, carbohydrate levels and 
proline content in the plants. Based on this study, the optimum melatonin level to 
increase biomass production of cherry plants is between 0.05 and 1 μM [ 104 ]. Due 
to its high antioxidant activity, melatonin has a potential to prevent chlorophyll 
degradation in plants. There have been a few studies to support the role of melatonin 
as a protector of chlorophyll and other pigments in plants and thereby enhancing the 
photosynthetic capacity. 

 As an antioxidant, melatonin certainly has the capability of protecting against the 
degradation of chlorophyll, resulting from the oxidative damage in the plant cell. 
The ROS species generated by oxidative stresses such as high light, cold and hot 
temperatures can lead to chlorophyll degradation and reduction in the photosyn-
thetic activity [ 127 ]. The protection of chlorophyll degradation is crucial for the 
survival, growth and development of the plant. First evidence of the chlorophyll 
protective role of melatonin came from Arnao and Hernandez-Ruiz [ 77 ], where the 
authors showed that barley leaves incubated in 1 mM melatonin for 48 h contained 
twice as much chlorophyll content when compared to the untreated control plants 
[ 77 ]. Melatonin has been shown to be important in protecting photosystem II against 
the oxidative damage in  Chara australis  and  Malus hupehensis , and thereby helped 
to maintain better function of PSII, suggesting that melatonin protects chlorophyll 
and possibly photosynthetic proteins as well [ 105 ,  106 ]. 

 These studies provide evidence for melatonin being an important compound in 
plants for regulating plant morphogenesis, especially root architecture. Due to its 
important role in  de novo  root regeneration, it should be tested in  in vitro  studies in 
some diffi cult to root plant species. Exogenously applied melatonin has been shown 
to increase the root biomass in several species as described above; therefore, its use 
as a bioactive compound to enhance root biomass in various bioreactor systems 
should be tested. Several studies on medicinal and recalcitrant plants can play a 
signifi cant role in establishing the role of melatonin as an important regulator of 
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plant morphogenesis and as an enhancer of biomass and secondary metabolite pro-
duction in different plant species. Also, studies at molecular level are required to 
understand the mechanism through which melatonin induces root regeneration and 
biomass accumulation in higher plants.  

19.6.3     Abiotic and Biotic Stress Tolerance 

 The role of melatonin as a protector of various environmental stresses has been 
proposed in several studies. Melatonin has been hypothesized to have a role in 
reducing abiotic and biotic stresses including salinity, light, high temperature stress, 
cold and cryopreservation stress, water stress and drought, UV-B radiation, stress 
from chemical agents such as sodium chloride, zinc sulfate and hydrogen peroxi-
dase [ 77 ,  106 ,  108 ,  113 – 116 ,  119 ,  128 ,  129 ]. Severe environmental stress imposed 
on plants lead to oxidative stress, which occur due to the generation of ROS in the 
stressed plants and tissues. If the ROS are not scavenged properly it can lead to 
irreversible damage to the plant tissue resulting in physiological incompetence and 
eventually cell death [ 130 ]. Melatonin can scavenge ROS generated in the plant tis-
sue exposed to the environmental stress, thereby reducing damage to the tissues by 
acting as a cyto-protective agent. A large number of studies conducted over the past 
decade have shown that the primary role of melatonin in the plant is to work as an 
antioxidant and protect it from different types of environmental stresses. The role of 
melatonin in attenuating environmental stresses that affect plant growth and devel-
opment and biomass production may be very useful for the production of bioactive 
compounds in bioreactors. 

 Tan et al. [ 131 ] made an observation that the plants subjected to cold stress 
 contained signifi cantly higher concentrations of melatonin, suggesting that melato-
nin might be involved in environmental stress tolerance in plants [ 131 ]. Lei et al. 
[ 78 ] showed that exogenous application of melatonin to carrot suspension cells 
attenuated cold-induced apoptosis [ 78 ]. They also observed an increase in the mela-
tonin levels in St John’s wort and  Aloe vera  plants that were transferred from room 
temperature to 4 °C. The authors suggested that the protective effect of melatonin 
against cold stress might be related to induction of polyamines [ 78 ]. Melatonin 
treatment also improved the survival and recovery of cryopreserved  Rhodiola  callus 
and cryopreserved American elm ( Ulmus americana ) shoot tips [ 113 ,  114 ]. More 
recently, exogenous melatonin treatment was shown to alleviate cold stress damage 
to  Arabidopsis  plants [ 115 ]. Many important cold acclimation genes including the 
C-repeat-binding factors (CBFs)/Drought Response Element Binding factors 
(DREBs),  COR15a , a cold-responsive gene,  CAMTA1 , a transcription factor 
involved in freezing and drought-stress tolerance and transcription activators of 
reactive oxygen species (ROS)-related antioxidant genes,  ZAT10  and  ZAT12  were 
up-regulated by melatonin following cold treatment [ 115 ]. 

 Melatonin has also been hypothesized to play a role in salinity tolerance in 
plants. The salinity stress causes hyper-osmolarity which leads to the change in ion 
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homeostasis and as a result secondary stresses such as oxidative damage occur to 
the tissue [ 132 ]. In  Malus hupehensis  melatonin treatment reduced salt stress dam-
age by preventing chlorophyll damage and photosynthetic activity decline, gener-
ally caused by salt stress. Melatonin reduced the oxidative stress from salinity by 
directly scavenging H 2 O 2 , activation of the antioxidant enzymes, ascorbate peroxi-
dase, catalase, and peroxidase and possibly  via  up-regulation of the expression of 
ion-channel genes,  MdNHX1  and  MdAKT1  [ 108 ]. Melatonin pre-treatment increased 
lateral root primodia in cucumber ( Cucumis sativus  L) plants compared to the con-
trol plants grown in saline growth conditions [ 109 ]. Endogenous melatonin levels 
increased in the barley roots exposed to different chemical stresses including salin-
ity (NaCl) stress [ 77 ]. In another study, to determine the change in the endogenous 
levels of melatonin in lupin plant tissues exposed to different stresses, it was found 
that salinity stress resulted in the most pronounced change in endogenous melatonin 
levels [ 111 ]. 

 In recent years many studies have shown the importance of melatonin in the 
alleviation of various plant stresses. Melatonin has been linked to physiological 
delay in dark-induced senescence in apple and barley observed through physiologi-
cal and molecular analysis [ 106 ,  110 ,  118 ]. In cucumber ( Cucumis sativus ), melato-
nin application promoted water-stress tolerance, lateral root formation, and seed 
germination rate [ 128 ]. Melatonin played a signifi cant role in the germination pro-
cess of negatively photoblastic and the thermosensitive  Phacelia tanacetifolia  seeds 
by reversing the inhibitory effect of light and high temperature [ 116 ]. Melatonin 
treatment was also helpful in providing resistance against the biotic stress caused by 
Marssonina apple blotch disease to apple trees [ 119 ]. The apple plants pre-treated 
with melatonin showed less severe symptoms of the apple blotch compared to the 
non-treated plant, indicating the importance of melatonin as a promising cultivation 
strategy to protect plants against this pathogen [ 119 ]. 

 The antioxidant capacity of melatonin is the most probable reason for its role in 
the mitigation of the environmental stress damage to plants. In animals, the antioxi-
dant and cyto-protective role of melatonin is well established [ 2 ,  41 ,  47 ,  133 – 138 ]. 
Similar antioxidant and cell protective role of melatonin is emerging in plants also; 
however, more evidence is necessary especially at the biochemical and molecular 
levels to better understand the protective mechanisms of melatonin in plants.   

19.7     Melatonin as a Biotechnological Target to Increase 
Crop Yield and Environmental Stress Tolerance 

 Melatonin is a naturally occurring plant compound that is medicinally important 
and has been shown to attenuate several abiotic and biotic environmental stresses 
and enhance plant growth and development. Therefore, the genetic manipulation to 
enhance melatonin biosynthesis offers a unique opportunity to increase crop yields 
by enhancing biomass and protecting plants from environmental stresses. Genetic 
transformation can also be utilized to increase melatonin levels of medicinal and 
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non-medicinal food plants, thereby, adding value to crop plants. Modulating endog-
enous levels of melatonin by direct manipulation of genes involved in melatonin 
biosynthesis could increase crop yield and plant performance in a uniform and pre-
dictable manner, thereby providing economic advantages to growers around the 
world. 

 Genetic transformation to increase medicinal and nutritional components in 
plants is widely used for plant improvement. Genetic manipulation has been applied 
to obtain biofortifi ed crops such as provitamin A rich rice (golden rice), tomato, 
potato and maize; folate rich tomato and rice; and iron rich rice [ 139 – 145 ]. Genetic 
engineering methods have also been used to improve the secondary metabolite 
yields in culture systems such as  Catharanthus roseus  [ 146 ]. Therefore, these meth-
ods can likely be used to increase melatonin content in plant culture systems for 
medicinal and physiological benefi ts. 

 In order to increase the melatonin content in plants, Okazaki et al. transformed 
Micro-Tom tomato plants with a cDNA-coded  AANAT , a rate limiting enzyme in 
melatonin biosynthesis, from  Chlamydomonas reinhardtii . The resulting trans-
formed plants were shown to contain higher levels of melatonin. This study demon-
strated that the gene transfer can be used to increase melatonin levels in food plants, 
thereby increasing their medicinal value [ 147 ]. These melatonin-rich plants will be 
useful to elucidate the physiological role of melatonin in plants. In a very recent 
study, Wang et al. introduced sheep  AANAT  and  HIOMT  genes  via  genetic transfor-
mation into Micro-Tom tomato. These transgenic plants contained higher melatonin 
levels but reduced IAA levels, resulting in loss of ‘apical dominance’ in the trans-
genic plants. The authors also reported increased drought tolerance in  HIOMT  lines 
as a putative effect of higher melatonin levels in the plants [ 148 ]. In another study 
by Zhang et al., transgenic tobacco ( Nicotiana sylvestris ) plants expressing two 
melatonin synthetase genes, human  AANAT  gene and human  HIOMT  were obtained 
[ 117 ]. Higher levels of melatonin were present in transgenic plants when compared 
to the non-transgenic control plants. The authors also observed that less DNA dam-
age caused by ultra-violet (UV)-B radiation was present in protoplasts isolated from 
transgenic plants producing more melatonin when compared to the non-transgenic 
plants, indicating that the enhanced melatonin production in crop plants such as 
tobacco can be useful in preventing them against the damage caused by environ-
mental stresses such as UV-B damage. 

 The impact of melatonin-rich transgenic (MRT) rice plants expressing sheep 
serotonin  N -acetyl transferase on providing resistance to herbicide-induced oxida-
tive stress was observed by Park et al. [ 107 ]. The MRT rice plants showed a resistant 
phenotype, high chlorophyll levels, and low malondialdehyde and hydrogen perox-
ide contents when exposed to the singlet-oxygen-generating herbicide butafenacil 
(0.1 μM) whereas the control plants necrotized under the same conditions. This 
study is the fi rst report showing that the melatonin gain-of-function rice mutants 
have a practical advantage in scavenging ROS, and therefore, has potential to be 
used as a strategy for coping with environmental stresses in plants [ 107 ]. In a sepa-
rate study, transgenic rice seedlings producing higher melatonin by ectopic overex-
pression of human  SNAT  showed better cold resistance, indicating that melatonin 
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plays an important role in cold resistance in plants [ 112 ]. These studies provide 
suffi cient evidence that biotechnological approaches to enhance melatonin produc-
tion have a practical advantage for increasing resistance of plants against environ-
mental stresses. Therefore, genetic manipulation to increase melatonin production 
can be a practical strategy toward generating high-yielding transgenic plants. All 
the above studies have used melatonin biosynthesis genes from animals; therefore, 
the acceptance of such plants for agricultural use may be very low at least in the near 
future. In the further research, non-transgenic approaches for higher melatonin pro-
duction should also be explored. The plant genes from melatonin rich medicinal 
plants should be used for genetically modifying crops for higher melatonin produc-
tion. The use of plant genes might also be benefi cial in enhancing the concentration 
of melatonin in plants, as plants generally have higher endogenous melatonin levels 
compared to mammals. For example,  SNAT  and  ASMT  from higher melatonin pro-
ducing plant such as St. John’s wort might be much more benefi cial in increasing 
the melatonin levels in lower melatonin producing plant such as tobacco. Therefore, 
it is essential to clone and characterize melatonin biosynthesis genes from high 
melatonin producing medicinal plants such as feverfew, St John’s wort, and Huang- 
qin and other herbs and food crops including tea and coffee.  

19.8     Conclusions and Future Directions 

 Melatonin was fi rst identifi ed as a key hormone that regulates circadian rhythm in 
animals. Later, a number of therapeutic uses other than regulating sleep/wake cycle 
were recognized in animals and humans. Further research established melatonin as 
a powerful antioxidant that has benefi cial effects in the treatment/prevention of neu-
rological and sleep disorders, cancers, immunological disorders etc. In plants, mela-
tonin is detected in medicinal plants, beverages, fruits and vegetables. Animal 
studies with dietary intake of phytomelatonin increased melatonin levels in body 
fl uids indicating that phytomelatonin is bioavailable and can be a good source for 
human consumption. In this context, the selection of melatonin rich plants and their 
large scale multiplication in integrated controlled environment systems has tremen-
dous potential for novel natural health products. The production of melatonin rich 
cells, tissues and organ in large-scale bioreactors as a source of phytomelatonin for 
developing formulations to treat specifi c health conditions will be of a special 
interest. 

 In addition to a huge potential of phytomelatonin as a therapeutic, melatonin and 
related compounds can be important tools for increasing the yields of crops through 
their action as a growth regulator and environmental stress protector. Several studies 
in the past decade have shown the relevance of melatonin as a growth regulator and 
as an environmental stress protector alleviating biotic and abiotic stress in plants 
and increasing overall agricultural productivity. However, a great deal of work 
remains to be established to understand the molecular mechanisms of melatonin 
biosynthesis and its multiple modes of action to fully explore the potential of this 
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unique metabolite. New systems to investigate the effects of endogenous and exog-
enously applied melatonin as well as mutants with altered biosynthesis and/or func-
tion will be very useful for research on melatonin mediated responses in plants and 
their use in agriculture.     
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    Abstract     Plant cell and organ cultures have emerged as a potential source of sec-
ondary metabolites which are used as pharmaceuticals, agrochemicals, fl avours, 
fragrances, colouring agents, pesticides and food additives. Various strategies 
have been developed over past decades for biomass accumulation and synthesis of 
valuable compounds. Biosynthesis of secondary metabolites are generally not 
directly associated with cell growth. For the enhanced production of secondary 
metabolites, selection of high-yielding cell or organ clones, optimization of 
medium and physical factors which regulate the growth and accumulation of bio-
mass are usually done at fi rst, then in the secondary metabolite production stage, 
various strategies such as elicitation, precursor feeding, replenishment of nutrients 
are conducted. Permeabilization and immobilization are also proved to be impor-
tant for the biosynthesis of secondary metabolites in some cases. By these strate-
gies, it is possible to produce enormous biomass with improved accumulation of 
secondary metabolites.  
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  Abbreviations 

   2, 4-D    2, 4-dichlorophenoxy acetic acid   
  2-iP    2-isopentenyladenine   
  ABA    Abscisic acid   
  B5    Gamborg’s medium   
  BA    Benzyladenine   
  DMSO    Dimethylsulfoxide   
  DW    Dry weight   
  FW    Fresh weight   
  GA    Gibberellic acid   
  IAA    Indole-3-acetic acid   
  IBA    Indole-3-butyric acid   
  LS    Linsmaier and Skoog medium   
  MS    Murashige and Skoog medium   
  PUFAs    Polyunsaturated fatty acids   
  SH    Schenk and Hildebrandt medium   

20.1           Introduction 

 Secondary metabolites are a diverse group of organic compounds that are generally 
produced by plants to interact with biotic environment and for the establishment of 
defense mechanism [ 1 ]. Most secondary metabolites such as terpenes, phenolics and 
alkaloids which are classifi ed based on their biosynthetic origin and chemical struc-
tures, show different biological activities and many of them have been used as phar-
maceuticals, agrochemicals, fl avours, fragrances, colours and food additives [ 2 ]. 
Secondary metabolite production is traditionally produced through fi eld cultivation 
of plants, but this conventional approach suffers various disadvantages such as low 
yields, instability of their contents due to geographical, seasonal and environmental 
variations, occupation of large amount of lands, and heavy use of labors. Therefore, 
plant cell and organ cultures have emerged as an attractive alternative to whole plant 
cultivation for production of secondary metabolites [ 2 ]. However, there are still 
drawbacks in the production of metabolites through cell and organ cultures due to 
the instability of cell lines, low yields, slow growth and scale-up problems [ 3 ]. An 
important requirement in secondary metabolite synthesis is to understand the meta-
bolic pathways and the enzymology of product formation as proposed by Dornenburg 
and Knorr [ 4 ], but unfortunately the knowledge of plant metabolic pathways is still 
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very limited. In spite of all these odds, cell and organ cultures have enormous poten-
tialities for the production of industrially useful secondary compounds. Various 
strategies like strain improvement, optimization of medium and culture environ-
ments, elicitation for the accumulation of secondary compounds, nutrient and pre-
cursor feeding, permeabilization, immobilization and biotransformation methods 
have been developed over the years for high biomass accumulation and effi cient 
synthesis of secondary compounds (Table  20.1 ). Biomass accumulation and biosyn-
thesis of metabolites through cell and organ cultures may be looked at as a two step 
process in many cases: (1) involvement of cultured cells and organs in growth, mul-
tiplication and accumulation of biomass at the initial stage, and (2) biosynthesis of 
metabolites from the accumulated cells in the later stage. In the earlier reports, accu-
mulation of biomass and production of secondary metabolite events were dealt 
simultaneously, however, it is possible to achieve both higher biomass accumulation 
and enhanced metabolite production by following a two step process, i.e. focusing 
on the accumulation of biomass strategy in the fi rst step, and applying strategies for 
metabolite biosynthesis stimulation in the second step of the cultivation. The experi-
mental strategies for the production of secondary metabolites by plant cell and organ 
cultures with suitable examples are summarized in this article.

  Table 20.1    Strategies to 
enhance the production of 
secondary metabolites in 
plant cell and organ cultures  

 Stage 1 – Biomass accumulation 
   1. Selection of effi cient cell lines or clones 
   2. Medium optimization 
   (a) Selection of suitable medium and salt strength 
   (b) Carbohydrate source and concentration 
   (c) Nitrate levels 
   (d) Phosphate levels 
   (e) Growth regulator levels 
   3. Inoculum size 
   4. Optimization of the cultural environment 
   (a) Temperature 
   (b) Illumination 
   (c) Quality of light or combination of lights 
   (d) Medium pH 
   (e) Aeration and agitation 
 State 2 – Accumulation of bioactive compounds 
   5. Elicitation 
   6. Nutrient feeding 
   7. Precursor feeding 
   8. Permeabilization 
   9. Immobilization 
  10. Two phase system 
  11. Biotransformation 
  12. Organ cultures 
  13. Large-scale cultures 
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20.2        Selection of Cell Lines and Clones 

 Initiation of cell and organ cultures begins with the choice of a parent plant with 
high content of the desired product for callus or organ induction to obtain high- 
yielding cell/organ lines. Secondary metabolite accumulation in plants is specifi c to 
its genotype. For example, the concentration of bacoside A (a triterpenoid saponin) 
varies among different genotypes ranging from 3.53 to 18.36 mg g −1  DW (Table  20.2 ) 
[ 5 ]. Similarly, the amount of camptothecin (a quinoline alkaloid) varies among 
the different species ( Camptotheca  spp.,  Ervatamia  spp.,  Ophiorrhiza  spp., 
 Nothapodytes  spp.) and even in different organs of the plant (0.03–0.4 % DW) [ 6 ]. 
Bacoside A is a nootropic and camptothecin is an anticancerous drug. A choice for 
suitable genotype and a suitable organ is essential for callus or organ induction to 
raise the cell or organ cultures for the production of these compounds.

   Isolation and selection of cell and organ lines for growth (i.e. for higher biomass 
accumulation) as well as for accumulation of metabolites are most important. Earlier, 
selection of cell lines was carried out by visual screening if the product of interest 
would be a pigment. In  Euphorbia milli  and  Daucus carota , enhanced anthocyanin 
production by clonal selection and visual screening has been reported [ 7 ,  8 ]. 

   Table 20.2    Bacoside A concentration in  Bacopa monnieri  from different locations of Karnataka, 
India   

 Sl. No.  Accession no.  Location  Concentration of bacoside (mg g −1  DW) 

 1.  Bm1  Bangalore  6.55 ± 0.52 
 2.  Bm2  Belgaum  18.36 ± 1.65 
 3.  Bm3  Belgaum  5.19 ± 0.34 
 4.  Bm4  Belgaum  3.59 ± 0.41 
 5.  Bm5  Belgaum  7.81 ± 0.55 
 6.  Bm6  Belgaum  5.46 ± 0.42 
 7.  Bm7  Dharwad  3.53 ± 0.49 
 8.  Bm8  Dharwad  6.43 ± 0.36 
 9.  Bm9  Dharwad  5.70 ± 0.24 
 10.  Bm10  Gadag  6.83 ± 0.42 
 11.  Bm11  Haveri  10.56 ± 0.82 
 12.  Bm12  Haveri  6.90 ± 0.43 
 13.  Bm13  Haveri  6.67 ± 0.38 
 14.  Bm14  Kolar  8.52 ± 0.62 
 15.  Bm15  Mysore  7.24 ± 0.47 
 16.  Bm16  Shimoga  5.53 ± 0.26 
 17.  Bm17  Shimoga  7.93 ± 0.35 
 18.  Bm18  Shimoga  9.42 ± 0.77 
 19.  Bm19  Uttara Kannada  6.63 ± 0.34 
 20.  Bm20  Uttara Kannada  10.82 ± 0.86 
 21.  Bm21  Uttara Kannada  5.04 ± 0.31 
 22.  Bm22  Uttara Kannada  4.84 ± 0.18 
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However, selection made by analysis of growth of cell lines or root clones (adventi-
tious or hairy roots) in suspension cultures followed by quantifi cation of the desired 
product is considered to be superior to visual selection techniques. The growth 
kinetic analysis method is also followed in some cases. In  Orthosiphon stamineus  
two cell lines were selected and identifi ed which produced higher amount rosmarinic 
acid through cell suspension culture [ 9 ]. Quantifi cation of metabolites by high pres-
sure liquid chromatography and radioimmuno-assay are also followed for screening 
high yielding cell lines [ 10 ,  11 ].  

20.3     Medium Optimization 

 A number of chemical and physical factors infl uence biomass accumulation and 
synthesis of secondary metabolites in plant cell and organ cultures. Medium com-
position is a basic and critical factor affecting the cell physiology and metabolism. 
Some of the key factors are choice of culture medium, suitable salt strength of the 
medium, sugar levels, nitrate levels, phosphate levels and growth regulator levels in 
the medium [ 2 ,  4 ,  12 ,  13 ]. 

20.3.1     Infl uence of Nutrient Medium and Salt Strength 

 Various types of media formulations were tested and utilized earlier for the estab-
lishment of cell and organ suspension cultures for the production of secondary 
metabolites. Murashige and Skoog (MS) [ 14 ], Gamborg’s (B5) [ 15 ], Schenk and 
Hildebrandt (SH) [ 16 ], Linsmaier and Skoog (LS) [ 17 ] media are widely used. The 
B5 medium of Gamborg et al. [ 15 ] was initially used for callus and suspension cul-
tures. This medium differs from MS medium in having much lower amounts of 
nitrates in the form ammonia hence, suitable for certain cell cultures. The appropri-
ate concentration of medium constituents (salt strength) is crucial for the growth of 
isolated cells and organs. In ginseng adventitious root cultures, maximum biomass 
and growth rate were obtained in 0.75 strength MS medium and ginsenoside content 
and yield were higher in 0.5 salt strength MS medium [ 18 ]. The full strength MS 
medium was suitable for both biomass and gymnemic acid accumulation (Fig.  20.1 ) 
in cell suspension cultures of  Gymnema sylvestre  [ 19 ]. Among the 0.25, 0.5, 0.75, 
1.0, 1.5 and 2.0 strength MS medium tested, full strength (1.0) medium was found 
better for biomass accumulation and withanolide A production in  Withania som-
nifera  cell suspension cultures [ 20 ]. Interestingly, some medium salts like calcium 
chloride and sodium chloride could be working as signal inducers to stimulate sec-
ondary metabolism. The inducing effects of calcium ion and sodium ion on the 
intracellular calcium signaling pathway were well demonstrated in higher plant and 
mushroom cell cultures for production of bioactive secondary metabolites like gin-
seng saponin and ganoderic acid [ 21 ,  22 ].
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20.3.2        Infl uence of Carbon Source and Concentration 

 Plant cell cultures are usually grown heterotrophically using simple sugars such 
as glucose, fructose, maltose, sucrose and their combinations as an energy and 
carbon source. Among the various sugars tested, sucrose was found to be an ideal 
carbohydrate source for the biomass accumulation (11.56 g L −1  DW) and the high-
est production of gymnemic acid content (9.95 mg g −1  DW) (Table  20.3 ) [ 19 ]. 
Wang and Weathers [ 23 ] tested the effect of sugars on production of artemisinin 
in hairy root cultures of  Artemisia annua  and found a maximum production of 
artemisinin when hairy roots were grown in the medium supplemented with glu-
cose, whereas the level of artemisinin produced in the medium supplemented with 
fructose was twice that in the medium supplemented with sucrose. Similarly, con-
centration of carbohydrate supplemented to the medium greatly affects the bio-
mass and metabolite production. For example, of the various levels of sucrose 
(1–8 % w/v) tested in  Gymnema sylvestre  cell cultures, 3 % sucrose in the medium 
favoured the accumulation of biomass (Fig.  20.2 ), whereas the highest amount of 
gymnemic acid (10.1 mg g −1  DW) was accumulated in the medium supplemented 
with 4 % sucrose. In  Ginkgo biloba  cell cultures, 3 % sucrose was good for bio-
mass accumulation whereas higher concentration of 5 and 7 % sucrose favoured 
the production of ginkgolides and bilobalides [ 24 ]. In  Bacopa monnieri  shoot 
cultures, 2 % sucrose was found optimal in the tested range (0–6 %, w/v) for bio-
mass accumulation and sucrose-free medium accumulated maximum amount of 
bacoside-A [ 25 ]. The initial sucrose concentration (i.e. 20, 30, 40 and 60 g L −1 ) 
had a signifi cant effect on the production of ginseng saponin in suspension 
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  Fig. 20.1    Effect of medium strengths on biomass accumulation and gymnemic acid production in 
cell suspension cultures of  Gymnema sylvestre . Five hundred mg of cells were cultured in 50 mL 
of MS medium supplemented with 2.0 mg L −1  2,4-D + 0.1 mg L −1  KN and 30 g L −1  sucrose for 4 
weeks. Data represents mean values ± SE of three replicates; each experiment was repeated twice. 
Means with common letters are not signifi cantly different at  P  ≤ 0.05 according to Duncan’s mul-
tiple range test       
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cultures of  Panax notoginseng  [ 26 ]. A high sugar level was favorable to the syn-
thesis of ginseng saponin, may be due to the high osmotic pressure which was 
caused by high sugar concentration [ 27 ]. But, the cell growth was reduced at an 
initial sucrose concentration of 60 g L −1 , the maximum production of crude gin-
seng saponins (0.86 g L −1 ) was achieved at an initial sucrose concentration of 
40 g L −1  [ 26 ]. The osmotic stress created by sucrose alone or with other osmotic 
agents was found to regulate anthocyanin production in  Vitis vinifera  cell 

   Table 20.3    Effect    of different carbohydrate sources on biomass accumulation and gymnemic acid 
production in  Gymnema sylvestre  cell suspension culture   

 Carbohydrate 
source (3 %) 

 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 ) 

 Growth 
ratio 

 Gymnemic acid content 
(mg g −1  dry weight) 

 Sucrose  125.67 a  11.56 a  10.16  9.95 a 
 Glucose  118.00 a  10.66 a  9.69  8.56 d 
 Fructose  100.91 b  9.23 b  8.39  6.58 f 
 Maltose  86.50 c  7.68 c  6.98  6.99 e 
 Glucose + fructose (1:1)  100.90 b  9.07 b  8.24  8.72 c 
 Fructose + sucrose (1:1)  94.25 c  8.36 c  7.60  9.26 b 
 Sucrose + glucose (1:1)  117.22 a  10.66 a  9.69  9.24 b 

  Cultures were grown in 250 mL conical fl aks containing 50 mL of MS medium supplemented with 
2.0 mg L −1  2, 4-D + 0.1 mg L −1  KN for 4 weeks. Mean values with common letter within each 
column are not signifi cantly different at  P  ≤0.05 according Duncan’s multiple range test  
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  Fig. 20.2    Effect of different sucrose concentrations on the biomass accumulation and gymnemic 
acid production in cell suspension cultures of  G. sylvestre.  Five hundred mg of cells were cultured 
in 50 mL of MS medium supplemented with 2.0 mg L −1  2,4-D + 0.1 mg L −1  KN for 4 weeks. Data 
represents mean values ± SE of three replicates; each experiment was repeated twice. Means with 
common letters are not signifi cantly different at  P  ≤ 0.05 according to Duncan’s multiple range test       
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suspension cultures [ 28 ]. A dual role of sucrose as a carbon source and an osmotic 
agent was observed in  Solanum melongena  [ 29 ]. Recently, sugars have been rec-
ognized as signaling molecules that affect growth, development and metabolism 
of cultured cells [ 23 ]. Therefore, the selection of a suitable carbohydrate source at 
appropriate concentration is a key criterion for secondary metabolite production 
in cell and organ cultures.

20.3.3         Infl uence of Nitrogen Source 

 The growth and metabolite accumulation in cell and organ suspension cultures was 
found to be infl uenced by a suitable nitrogen source and its concentration. The plant 
tissue culture media such as MS, LS, SH, and B5 contain both nitrate and ammonium 
as source of nitrogen. However, nitrogen present in the ammonium/nitrate and overall 
levels of total nitrogen have markedly affected both biomass accumulation and pro-
duction of secondary plant products. In the shoot cultures of  Bacopa monnieri , the 
effect of macro elements was tested by varying the levels of NH 4 NO 3 , KNO 3 , CaCl 2 , 
MgSO 4  and KH 2 PO 4  in the MS medium each at 0.05, 1.0, 1.5 and 2.0 strengths and 
optimum number of shoots (99.33 shoots explant −1 ), biomass (0.150 g DW) and the 
highest production of bacoside A (17.9 mg g −1  DW) were obtained with 2× strength 
NH 4 NO 3  [ 30 ]. The effect of nitrogen supplements like NH4 + /NO3 − : 0.00/18.80, 
7.19/18.80, 14.38/18.80, 21.57/18.80, 28.75/18.80, 14.38/0.00, 14.38/9.40, 
14.38/18.80, 14.38/28.20 and 14.38/37.60 (mM mM -1 ) when tested they found that 
shoot biomass and bacoside A content were optimum when the NO3 −  concentra-
tion was higher than that of NH4 +  (ratio of 14.38/37.60 mM; Fig.  20.3 ). In another 
report, reduced level of NH4 +  and increased levels of NO3 −  promoted the production 
of gymnemic acid and withanolide A [ 31 ,  32 ,  33 ]. Reduced levels of total nitrogen 
improved the production of capsaicin in  Capcicum frutescens , and anthraquinones in 
 Morinda citrifolia  [ 34 ,  35 ]. However, complete elimination of nitrate in cultures of 
 Chrysanthemum cinerariaefolium  induced a twofold increase in pyrethrin accumula-
tion in the second phase of culture [ 36 ]. The effects of the nitrate to ammonium ratio 
on the cell growth, the production of ginseng saponin and polysaccharide as well as 
consumption of major nutrients by suspension cultures of  Panax notoginseng  cells 
were investigated at total nitrogen of 60 mM in a 250-mL Erlenmeyer fl ask [ 37 ]. The 
biosynthesis of saponin was more susceptible to the ratio of NO 3  − /NH 4  +  than that of 
polysaccharides. Ammonium was unfavorable for saponin formation. The relation-
ship between initial nitrate concentration (including both intracellular and medium 
nitrate) and specifi c cell growth rate based on active biomass could be described by 
Monod equation. The maximum production of crude saponin and polysaccharide was 
0.85 and 1.59 g L −1 , respectively, with initial nitrate concentration of 60 mM.
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20.3.4        Infl uence of Phosphate Levels 

 The phosphate concentration in the medium shows an excitatory effect on the pro-
duction of secondary metabolites in plant cell and organ cultures. An increased 
phosphate level has been shown to stimulate synthesis of digitoxin in  Digitalis pur-
purea  [ 38 ]. Liu and Zhong [ 39 ] have reported that the highest saponin production at 
an initial phosphate concentration of 1.04 mM in  Panax ginseng  and 1.25 mM 
 Panax quinquefolium  respectively. Twice the phosphate levels of standard MS 
medium (1.25 mM) has proved better for the production of rosamarinic acid from 
 Lavandula vera  suspension cultures [ 31 ], gymnemic acid production from  Gymnema 
sylvestre  cell cultures [ 40 ] and solamargine production by  Solanum paludosum  mul-
tiple shoot cultures [ 41 ]. On the other hand, there are a number of reports showing 
that phosphate limitation could improve the production of metabolites, caffeine 
content in cell suspension cultures of  Coffea arabica  increased under phosphate 
limitations [ 42 ]. In grape cell suspensions, Dedaldechamp et al. [ 43 ] have reported 
enhancement of anthocyanin synthesis in response to phosphate deprivation.  

30

25

20

15

10

5

0

0.
00

/1
8.

80

7.
19

/1
8.

80

14
.3

8/
18

.8
0

21
.5

7/
18

.8
0

28
.7

5/
18

.8
0

14
.3

8/
0.

00

14
.3

8/
9.

40

14
.3

8/
18

.8
0

14
.3

8/
28

.2
0

14
.3

8/
37

.6
0

Concentration of NH4
+/NO3

– ratio (mM)

B
ac

os
id

e 
A

 c
on

te
nt

 (
m

g 
g–1

D
W

)

e

c

d
f

g

i
h

d

b

a

  Fig. 20.3    Bacoside A content in  Bacopa monnieri  adventitious shoot culture after 8 weeks of 
cultivation as affected by different ratio of NH 4  + /NO 3  −  in the MS medium. Data represents mean 
values ± SE of three replicates; each experiment was repeated twice. Means with common letters 
are not signifi cantly different at  P  ≤ 0.05 according to Duncan’s multiple range test       
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20.3.5     Infl uence of Growth Regulator Levels 

 Growth regulators affect the growth and metabolite accumulation signifi cantly because 
cell, adventitious root or shoot cultures generally need exogenous supply of growth 
regulators for growth, proliferation of biomass and metabolite accumulation. Whereas, 
hairy root cultures are genetically transformed roots which are produced by using 
 Agrobacterium rhizogenes  and they have the ability to grow without the addition of 
plant growth regulators [ 44 ]. However, a few recent reports showed that exogenous 
application of growth regulators also infl uence the growth and metabolite accumula-
tion in hairy root cultures [ 45 ,  46 ]. In general, type of plant growth regulator and its 
concentration are crucial factors in cell and organ growth, proliferation and metabolite 
accumulation [ 47 ]. The type and concentration of auxin or cytokinin or the auxin/
cytokinin ratio alter dramatically both the growth and the product formation in cul-
tured cells [ 48 ]. Among auxins, indole acetic acid (IAA) and naphthalene acetic acid 
(NAA) have shown triggering effect on the production of anthocyanins in suspension 
cultures of populus and carrot, nicotine in tobacco, and anthraquinones in noni [ 34 , 
 49 ,  50 ]. 2, 4-Dichlorophenoxyacetic acid (2, 4-D) has also shown a stimulatory effect 
on the accumulation of carotenoids in carrot [ 51 ] and anthocyanin in oxalis [ 52 ]. In 
suspension cultures of  Panax quinquefolium  strain Q91625, the highest content of 
crude ginsenoside saponins, i.e. 10.9 % by dry weight, was reached under a combina-
tion of the growth regulators of 2.5 mg L −1  indole-3-butyric acid (IBA) and 0.1 mg L −1  
kinetin without addition of 2,4-D [ 53 ]. Among cytokinins, benzyladenine (BA) addi-
tion has improved the production of saponins in ginseng and addition of kinetin stimu-
lated the production of anthocyanin in slender golden weed, but inhibited the 
production of anthocyanins in populus [ 49 ,  51 ]. 2-Isopentenyladenine (2-iP) inhibited 
root growth, however, stimulated artemisinin production in  Artemisia annua  [ 46 ]. 

 The effect of gibberellins (GA) was specifi c to species and culture time. For 
example, Vanhala et al. [ 45 ] observed that addition of GA 3  decreased the accumula-
tion of hyoscyamine in henbane. In contrast, GA 3  stimulated production of artemis-
inin in  Artemisia annua  and coumarin content in  Cichorium intybus  [ 54 ,  55 ]. 
Ethylene stimulated artemisinin production in plantlet cultures of  A. annua  [ 56 ] and 
it enhanced the growth of hairy roots of  Hyoscyamus muticus  [ 57 ]. A little is known 
about the effects of exogenous abscisic acid (ABA) on cell and organ cultures. 
Usually ABA inhibits growth and accumulation of secondary metabolites. ABA 
inhibited hyoscyamine accumulation in hairy root culture of  H. muticus  [ 45 ] with 
no adverse effect on biomass. In  Lotus corniculatus , ABA application stimulated 
growth, but inhibited the accumulation of tannin [ 58 ].   

20.4     The Infl uence of Inoculum Size/Density 

 Inoculum size/density is an important factor for plant cell and organ suspension 
cultures, which can infl uence the growth, biomass accumulation and metabolite 
formation [ 59 ,  60 ]. There is a critical minimum inoculum size below which cell 
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growth will normally fail, while a suitable level of inoculum density could interest-
ingly promote not only the cell growth but also the secondary metabolite biosynthe-
sis. There are many reports on the infl uence of inoculum size/density of the cultured 
cells on biomass and metabolite accumulation [ 61 – 64 ]. In suspension cultures of 
 Perilla frutescens , maximum cell density of 38.3 g DW L −1  was obtained at an ele-
vated inoculum size of 50 g wet cells L −1  and anthocyanin production was enhanced 
23-fold [ 65 ]. In cell suspension cultures of  Gymnema sylvestre , the various quanti-
ties of inoculums (2.5, 5.0, 10.0 and 20.0 g L −1 ) were tested, optimum density of 
biomass (11.25 g L −1 ) as well as gymnemic acid (9.95 mg g −1  DW) was achieved 
with 10.0 g L −1  inoculum (Fig.  20.4 ). A higher (20.0 g L −1 ) and lower (2.5 g L −1 ) 
inoculum was not suitable for biomass and gymnemic acid accumulation. Another 
effect of inoculum size/density was at the induction of enzymes involved in the 
general phenylpropanoid metabolism when cells were transferred to a fresh medium. 
This is called ‘transfer effect’ or ‘dilution effect’. Hahlbrock and Wellmann [ 66 ] 
have reported that the phenylalanine ammonia-lyase induced by transfer to fresh 
medium, decreased with increased inoculum size signifying that inoculum density 
may affect secondary metabolism. Morphology of the roots is another factor which 
infl uences biomass growth and synthesis of secondary compounds [ 67 ,  68 ] in the 
root suspension cultures. The adventitious root inoculum which was chopped (1–3 
or 4–6 mm) or un-chopped, were responsible for lower yield of dry weight as well 
as ginsenosides. The root inoculum chopped to 7–10 mm was responsible for higher 
yield of 10 g L −1  DW and they also possessed highest content of ginsenosides of 
5.5 mg g −1  DW [ 68 ].
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  Fig. 20.4    Effect of inoculum density on the biomass and gymnemic acid accumulation in cell 
suspension cultures of  G. sylvestre . Five hundred mg of cells were cultured in 50 mL of MS 
medium supplemented with 2.0 mg L −1  2,4-D + 0.1 mg L −1  KN for 4 weeks. Data represents mean 
 values ± SE of three replicates; each experiment was repeated twice. Means with common letters 
are not  signifi cantly different at  P  ≤ 0.05 according to Duncan’s multiple range test       
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20.5        Optimization of Culture Environment 

 Conditions of culture environment such as light, temperature, medium pH, and 
gases have been examined for their effects on biomass and secondary metabolite 
accumulation in cell and organ cultures. 

20.5.1     Infl uence of Temperature 

 Since the early development of plant biotechnology, temperature effect has been 
investigated in cell and organ cultures and a temperature range of 17–25 °C is nor-
mally used for the maintenance of cultured cells and organs. However, each plant 
species may show better growth and metabolism under different temperature 
regimes. Morris [ 69 ] studied  Catharanthus roseus  cell line C87 and found maxi-
mum growth rate at 35 °C, maximum dry weight yield (0.47 g g −1 ) was observed at 
25 °C. Scragg et al. [ 70 ] investigated  Catharanthus roseus  cell line ID1 at 20, 25 
and 30 °C but maximum biomass yield of 0.65 g g −1  at 25 °C. Courtois and Guern 
[ 71 ] found an optimum temperature of 16 °C for production of ajmalicine. Morris 
[ 69 ] reported that an optimum temperature of 25 °C for serpentine production and 
20 °C for ajmalicine production. Toivonen et al. [ 72 ] estimated an optimum tem-
perature of 25 °C for production of alkaloid from cell suspension cultures of 
 Catharanthus roseus . Shohael et al. [ 73 ] studied the effect of low temperature (12 
and 16 °C) and higher (30 °C) temperature, and reported that low and high tempera-
tures cause signifi cant decrease in biomass and reduction of phenolics and fl avo-
noids, while low temperatures boost the accumulation of eleutheroside E in somatic 
embryos of  Eleutherococcus senticosus  and they correlated the increased accumula-
tion of eleutheroside E for the oxidative stress. Yu et al. [ 74 ] studied the growth of 
hairy roots of ginseng under differential temperatures such as 13/20, 20/13, 25/25, 
and 30 °C/25 °C for 16/8 day and night cycles; got highest hairy root biomass with 
the cultures incubated at 20 °C/13 °C (Table  20.4 ). However, total ginsenosides was 
optimum (10.5 mg g −1  DW; Table  20.4 ) with the cultures incubated at 25 °C/25 °C 
and ginsenoside production was also highest (133.4 mg L −1 ) at this temperature.

    Table 20.4    Effect of incubation temperature (with 16 h/8 h/night cycles) on growth and 
ginsenoside production of ginseng hairy roots cultivated in bioreactors for 4 weeks   

 Growth 

 Biomass 

 Growth ratio 
 Ginsenoside 
(mg g −1  DW) 

 Ginsenoside 
(mg L −1 )  FW (g)  DW (g) 

 13/20  431 ± 1.0  28 ± 1.0  19.7  4.5 ± 0.1  31.5 ± 1.5 
 20/13  892 ± 0.9  65 ± 0.8  45.8  8.2 ± 0.1  133.9 ± 0.9 
 25/25  889 ± 0.6  51 ± 0.7  35.9  10.5 ± 0.1  133.4 ± 1.2 
 30/25  764 ± 0.8  64 ± 0.9  45.1  6.4 ± 0.1  71.6 ± 0.5 

  Values within each column represent the mean of three replicates ± S.E.  
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20.5.2        Infl uence of Light Intensity and Quality 

 Light may be used as an energy source or just as an elicitor which affects the growth 
and accumulation of secondary metabolites in cultured cells and organs. Zhong et al. 
[ 75 ] demonstrated the effects of light quality, intensity, and irradiation period on the 
cell growth and anthocyanin pigment production by suspended culture of  Perilla 
frutescens , and fi nally they optimized and successfully scaled-up the cell culture 
process from shake fl asks to bioreactors based on the key factor of light irradiation. 
Chan et al. [ 76 ] also investigated the effects of different light intensity and irradiance 
(continuous radiance and continuous darkness) on cell biomass yield and anthocy-
anin production in cultures of  Melastoma malabathricum . Moderate light intensity 
(300–600 l×) induced higher accumulation of anthocyanins, the cultures exposed to 
continuous darkness for 10-days showed the lowest pigment content, while the cul-
tures exposed to continuous irradiance for 10-days showed the highest pigment con-
tent. The stimulatory effect of light on the formation of secondary compounds has 
been reported including fl avonoids in  Petroselinum hortense  [ 77 ], anthocyanins in 
 Centaurea cyanus  [ 78 ], betalains in red beet [ 79 ], artemisinin in  Artemisia annua  
[ 80 ]. On the contrary, light has an inhibitory effect on the accumulation of secondary 
metabolites such as nicotine and shikonin in  Lithospermum erythrorhizon  [ 81 ], 
monoterpenes in  Citrus limon  [ 82 ]. In some species, such as  Fragaria ananassa  
[ 83 ]; and sweet potato [ 84 ], cell cultures have been reported to produce anthocyanin 
in the dark. Yu et al. [ 74 ] have studied the effect of fl uorescent light, metal halide 
light, blue light, red light and blue plus red light on biomass growth and synthesis of 
ginsenosides in ginseng hairy root cultures and reported that hairy root growth was 
stimulated by red light than dark (Table  20.5 ). Fluorescent irradiation enhanced the 
accumulation of ginsenosides (5.3 mg g −1  DW). They also noticed differential accu-
mulation of Rb and Rg group of ginsenosides in dark grown and light grown cul-
tures, Rb group ginsenosides were highest in the cultures grown in dark (4.5 mg g −1  
DW; Table  20.5 ) and Rg group of ginsenosides were optimal in the cultures grown 
in light (5.3 mg g −1  DW). These results suggest that manipulation of secondary 
metabolite accumulation is possible by manipulating light and dark regimes.

    Table 20.5    Effect light quality on growth and ginsenoside production in ginseng hairy roots 
cultivated in bioreactors for 4 weeks   

 Light 
sources 

 Biomass  Growth 
ratio 

 Ginsenoside (mg g −1  DW)  Ginsenoside 
production (mg L −1 )  FW (g)  DW (g)  Rg  Rb 

 Dark  270 ± 1.0  24 ± 0.6  11.4  2.8 ± 0.1  4.5 ± 0.2  27.8 ± 1.0 
 FL  226 ± 0.8  21 ± 0.6  10.1  5.3 ± 0.1  3.7 ± 0.1  30.2 ± 0.9 
 MH  193 ± 1.1  19 ± 0.3  8.9  3.5 ± 0.4  3.4 ± 0.3  23.3 ± 0.2 
 B  236 ± 0.2  24 ± 0.9  11.3  3.8 ± 0.4  3.9 ± 0.5  26.6 ± 0.4 
 R  284 ± 0.9  25 ± 1.0  11.6  3.1 ± 0.8  4.1 ± 0.7  20.9 ± 0.4 
 B + R  183 ± 0.9  21 ± 0.9  10.1  3.4 ± 0.1  2.9 ± 0.2  24.2 ± 0.7 

  Values within each column represent the mean of three replicates ± S.E. 
  FL  fl uorescent light,  MH  metal halide light,  B  blue light,  R  red light,  B + R  blue plus red light  
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20.5.3        Infl uence of Hydrogen Ion Concentration 

 The medium pH is usually adjusted between 5 and 6 before autoclaving and extremes 
of pH are avoided. The concentration of hydrogen ions in the medium changes dur-
ing the course of culture due to nutrient uptake or due to the accumulation of metab-
olites in cultures. For example, decrease of medium pH due to ammonium 
assimilation and increase due to nitrate uptake was reported by McDonold and 
Jackman [ 85 ]. In  Withania somnifera  hairy root cultures, initial pH of the medium 
which was set at 5.8 was favourable for the accumulation of biomass (12. 1 g L −1  
DW) and medium pH of 6.0 favoured the accumulation of withanolide A in the roots 
(13.84 mg g −1  DW; Fig.  20.5 ) [ 86 ]. In hairy root cultures of  Tagetes patula,  medium 
pH of 5.7 was suitable for growth and accumulation of thiophene [ 87 ]. In hairy root 
cultures of  Panax ginseng , the medium pH set at 6.0 and 6.5 favoured both biomass 
accumulation and ginsenoside production [ 88 ]. The strategy of alteration of medium 
pH which results in the release of secondary products into the culture medium by 
changing the membrane permeability of the cells was reported in many culture sys-
tems [ 89 ,  90 ]. For example, betalains normally accumulate in roots of  Beta vulgaris , 
but are released into the medium at pH 5.5 [ 90 ]. Up to 50 % of the total pigment was 
released at the time of exposure and roots continued to grow and accumulate beta-
lains at later stage. When the roots were exposed to pH 2 for 20–30 min, they failed 
to grow, suggesting that low pH causes lysis of mature-pigment cells. A short expo-
sure (10 min) to pH 2 followed by return to standard growth medium (pH 5.5) was 
benefi cial for continuous release of pigments in the medium.
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  Fig. 20.5     Withania somnifera  hairy root cultures: effect of pH on biomass accumulation and with-
anolide A production. Hairy roots (500 mg) were cultured in 250 mL Erlenmeyer fl asks containing 
50 ml of MS medium supplemented with 3 % sucrose for 4 weeks. Data represents mean values of 
three replicates. Means values with common letters are not signifi cantly different at  P  ≤ 0.05 
according to Duncan’s multiple range test       
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20.5.4        Infl uence of Agitation and Aeration 

 Agitation is one of the important criteria which should be controlled in fl ask-scale to 
large-scale bioreactor cultures. The mixing of cultures promotes better growth by 
enhancing the mass transfer and uptake of nutrients from liquid and gaseous phases 
by cells/organs and the dispersion of air bubbles for effective oxygenation. Although 
plant cells have higher tensile strength in comparison to microbial cells, their shear 
sensitivity to hydrodynamic stresses restricts the use of high agitation speed for effi -
cient mixing. The high shear rate and shear time that accompanies good mixing reduce 
the mean aggregate size, but also have an adverse effect on cell viability. Plant cells 
are therefore, often grown in stirred tank bioreactors at very low agitation speeds. 
Shifting from cell cultures to organ cultures such as adventitious or hairy root, shoot 
and embryo cultures for the production of secondary metabolites may be advanta-
geous to overcome rheological problems [ 91 ,  92 ]. Many bioprocess techniques have 
been worked out by chemical engineers to overcome shear sensitivity, oxygen supply 
and mixing problems for the cultivation of plant cells in bioreactors [ 93 – 97 ]. 

 Aeration is another important factor which should be controlled in bioreactor 
cultures for culture process optimization [ 93 ,  96 ,  97 ]. Aeration of plant cell cul-
tures fulfi lls three main functions: maintenance of aerobic conditions, desorption 
of volatile products and removal of metabolic heat by mixing and air fl ow [ 97 ]. 
Oxygen requirement of plant cells is comparatively lower than that of microbial 
cells due to their low respiratory rates. However, oxygen supply has been shown 
signifi cantly affecting the secondary metabolite production in cell cultures [ 93 ,  98 , 
 99 ]. The effects of oxygen supply within the range of 20.8 %, 30, 40 and 50 % was 
studied by Thanh et al. [ 100 ] with ginseng cell cultures and a 40 % oxygen supply 
was found to be benefi cial for the production of both cell biomass and spawning 
yield respectively (Fig.  20.6 ). In some cases, high oxygen concentration was even 
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  Fig. 20.6    Kinetics of ginseng saponin production by bioreactor-cultivated  Panax ginseng  cells       
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toxic to the metabolic activities of cells and may strip nutrients such as carbon 
dioxide from the culture broth [ 97 ]. Carbon dioxide is often considered as an 
essential nutrient in plant cell culture and has a positive effect on growth. The 
effects of carbon dioxide supply at 0.03, 1.0, 2.5 and 5.0 % in ginseng cell cultures 
was analyzed by Thanh et al. [ 101 ] and on improvement in biomass accumulation 
with 1 % carbon dioxide supply was observed. However, supplementation of car-
bon dioxide was not benefi cial for saponin accumulation (Fig.  20.7 ). The benefi -
cial effect of carbon dioxide on secondary metabolite production has been 
demonstrated in cell cultures of  Thalictrum minus  [ 102 ],  T. rugosum  [ 103 ], 
and  Stizoloibum hassjoo  [ 104 ].
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production of saponins ( c ) of  Panax ginseng  cells cultivated in balloon type bubble bioreactors 
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20.6          Elicitation 

 Secondary metabolites are synthesized and accumulated in plant cells in response to 
a varied kind of stresses like biotic stresses such as a pathogen or insect attack and 
abiotic stresses like temperature, salinity, water stress, radiation stress, heavy metal 
and mineral stresses [ 105 ]. These varied stress conditions are generally designated as 
‘elicitors’ [ 4 ] and elicitation has been widely used to enhance the production of sec-
ondary metabolites in plant cell and organ cultures [ 4 ,  105 ]. Elicitors of fungal, bacte-
rial or yeast origin, viz. polysaccharides, glycoproteins, inactivated enzymes, purifi ed 
crudlan, xanthan and chitosan salts and heavy metals are reported for the enhanced 
production of various secondary metabolites. Signaling molecules like methyl jasmo-
nate and salicylic acid are also widely used for increased accumulation of secondary 
metabolites in cell and organ cultures [ 106 – 110 ]. Elicitor concentration, duration of 
exposure and age or stage of culture for elicitor treatment is also important for the 
successful production of secondary metabolites. Yu et al. [ 106 ] have studied the 
effect of jasmonic acid (0, 1.0, 2.0, 5.0 and 10.0 mg L −1 ) on ginseng adventitious root 
cultures and increase in concentration of jasmonic acid resulted in a decrease in both 
fresh and dry biomass (Table  20.6 ). Whereas, ginsenoside content increased with 
higher concentrations up to 5.2-fold (Table  20.7 ). Decrease in biomass was tackled 

   Table 20.6    Effect of jasmonic acid on growth of ginseng adventitious roots after 5 weeks of fl ask 
culture   

 Jasmonic acid (mg L −1 ) 

 Biomass 

 Growth ratio  Fresh weight (g)  Dry weight (g) 

 0.0  16.15 ± 0.03  1.47 ± 0.07  4.08 
 1.0  12.48 ± 1.03  1.02 ± 0.07  2.83 
 2.0  8.52 ± 0.15  0.89 ± 0.01  2.47 
 5.0  6.33 ± 0.77  0.59 ± 0.07  1.64 
 10.0  4.67 ± 0.09  0.41 ± 0.01  1.13 

  Values within the columns represent the mean of three replicates ± S.E  

   Table 20.7    Effect of jasmonic acid on the biosynthesis of ginsenosides after 5 weeks of culture   

 Jasmonic 
acid 
(mg L −1 ) 

 Ginsenoside content (mg g −1  DW) 

 Rb/Rg 
 Ginsenoside 
production (mg L −1 )  Rb  Rg  Total 

 0.0  7.49 ± 0.89 c  3.92 ± 0.34 c  11.42 ± 0.55 c  1.95 ± 0.39 c  167.58 ± 8.04 c 
 1.0  13.29 ± 0.49 d  2.83 ± 0.02 d  16.09 ± 0.46 d  4.68 ± 0.21 d  164.12 ± 4.69 c 
 2.0  24.29 ± 0.94  c  4.46 ± 0.25 b  28.69 ± 1.16 c  5.45 ± 0.16 c  255.39 ± 9.32 a 
 5.0  34.69 ± 0.89 b  4.15 ± 0.26 

bc 
 38.82 ± 1.34 b  8.43 ± 0.71 b  229.04 ± 7.91 b 

 10.0  54.29 ± 1.04 a  5.53 ± 0.14 a  59.87 ± 0.90 a  9.83 ± 0.43 a  245.47 ± 3.69 a 

  Mean values of three replicates are represented with standard error  
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by following two step strategies i.e. by growing the adventitious roots in cultures for 
25 days without elicitor and then by adding jasmonic acid (2 mg L −1 ) and later there 
was increase in total ginsenosides and Rb group of ginsenosides by 5 and 5.6-fold 
respectively (Fig.  20.8 ). Hence, by following two step strategies it was possible to 
achieve both biomass growth and ginsenoside accumulation. Similarly, jasmonates 
have been used to elicit accumulation of paclitaxol in cell cultures of various  Taxus  
species [ 111 ,  112 ], saikosaponins in root cultures of  Bupleurum falcatum  [ 113 ], eleu-
therosides in embryo cultures of  Eleutherococcus senticosus  [ 114 ].

     Zhong and his co-workers have successfully developed a couple of new elicitors 
by chemical structure modifi cation of traditional methyl jasmonate [ 115 – 117 ]. The 
novel chemically synthesized hydroxyl-containing jasmonates are more powerful 
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than methyl jasmonate in inducing taxoid biosynthesis [ 115 ], and a new strategy of 
repeated elicitation plus sucrose feeding greatly enhanced the taxoid production 
titer to nearly 1 g L −1  in cell cultivation of  Taxus chinensis  [ 116 ]. The dynamic 
responses of defense signals and biosynthetic gene transcription to the new elicitor 
addition were also elucidated in the plant cell cultures [ 117 ]. Recently, polyunsatu-
rated fatty acids (PUFAs) are known to possess biological activities in tissue cul-
tures. For instance, exogenous PUFAs increased accumulation of secondary 
metabolites in suspension cultures of  Lycopersicon esculentum ,  Tinospora cordifo-
lia ,  Erythrina cristagalli  and  Eschscholzia californiaca  [ 118 ]. In addition, elicita-
tion with α-linolenic acid enhanced the activity of lipoxynase, the key enzyme of 
oxilipin biosynthesis [ 119 ]. When linoleic and α-linolenic acid were used as elici-
tors at a concentration ranging from 0 to 20 μM L −1  in adventitious root cultures of 
 Panax ginseng , it was found that the effect of linoleic and α-linolenic acid was 
concentration dependent. In the cultures, linoleic acid signifi cantly reduced root 
biomass growth and α-linolenic acid promoted biomass growth (Table  20.8 ) [ 120 ]. 
The content of protopanaxadiol and protopanaxatriol ginsenosides was elevated 
with the addition of α-linolenic acid (Fig.  20.9 ). Similarly, in the cell cultures of 
 Agrostis tenuis ,  Rauvolfi a serpentina  and  Nicotiana tabacum , addition of α-linolenic 
acid induced accumulation of jasmonic acid and was accountable for biosynthesis 
of pentacyclic oxylipins [ 118 ].

   Table 20.8    The effect of linoleic and α-linolenic fatty acids on biomass production of  Panax 
ginseng  adventitious roots   

 Fatty acid concentration 
(μ mol L −1 ) 

 Biomass 

 Growth ratio 
 Fresh weight 
(g L −1 ) 

 Dry weight 
(g L −1 )  % dry weight 

 Control 
 0.0  134.3 ± 0.3 c  9.9 ± 0.3 cd  7.4 ± 0.2 abc  18.2 ± 0.6 cd 
 Linoleic acid (18:2) ± 
 1.0  128.5 ± 1.2 d  9.6 ± 0.1 de  7.4 ± 0.1 abc  18.1 ± 0.1 cde 
 2.5  125.5 ± 1.2 d  8.8 ± 0.3 de  7.0 ± 0.2 dc  16.6 ± 0.7 de 
 5.0  120.7 ± 0.3 ef  8.8 ± 0.1 de  7.3 ± 0.1 bc  16.6 ± 0.7 de 
 10.0  120.8 ± 0.6 ef  8.7 ± 0.1 de  7.2 ± 0.1 bc  16.6 ± 0.1 de 
 20.0  120.1 ± 2.0 f  8.6 ± 0.1 e  7.1 ± 0.1 c  16.2 ± 0.1 e 
 α-Linolenic fatty acid (C18:3) 
 1.0  136.9 ± 0.3 c  11.2 ± 0.3 ab  8.2 ± 0.2 a  21.4 ± 0.6 ab 
 2.5  150.3 ± 1.6 a  11.9 ± 0.6 a  8.0 ± 0.5 ab  22.9 ± 1.1 a 
 5.0  145.2 ± 3.2 b  11.1 ± 0.9 ab  7.7 ± 0.5 abc  21.6 ± 1.9 ab 
 10.0  145.7 ± 0.3 b  11.6 ± 0.1 ab  7.9 ± 0.1 abc  22.1 ± 0.7 ab 
 20.0  138.9 ± 1.0 c  10.4 ± 0.1 c  7.5 ± 0.1 abc  19.9 ± 0.1 bc 
 Signifi cance (ANOVA) 
 Elicitor (E)  ***  ***  ***  *** 
 Elicitor concen. (EC)  **  **  **  ** 
 E × EC  **  *  –  – 

  Adventitious roots were cultured in 5 l balloon-type bioreactors containing 4 L MS liquid medium 
supplemented with 5 mg L −1  IBA and 5 % sucrose. Filter sterilized elicitors were added to culture 
medium on day 40. Roots were harvested and assayed at day 47. Mean values of three replicates 
are with ANOVA, at P≤0.05  
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20.7         Nutrient Feeding 

 Medium or nutrient feeding strategy is one among the various approaches used to 
enhance the production of secondary metabolites after optimizing the basic chemi-
cal and physical parameters for the cultivation of cells/organs in large-scale [ 93 , 
 121 ]. For instance, various nutrients of culture medium were exhausted by the end 
of 40 days of culture during ginseng adventitious root cultures (Fig.  20.10 ); with the 
objective of meeting the nutrient requirements of ginseng adventitious root cultures, 
and enhancing the biomass as well as ginsenosides production, Jeong et al. [ 121 ] 
replenished the cultures with 0.75 and 1.0 strength media after 10 and 20 days of 
cultivation. The cultures replenished with fresh medium (1.0-strength MS medium 
after 20 days of culture) showed a 27.45 % increase in dry biomass (28.66 g L −1  with 
replenishment treatment) and 8.25 % increase in ginsenoside content (4.93 gm g −1  
DW; Table  20.9 ). The similar positive effect of media exchange strategy has been 
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  Fig. 20.10     Panax ginseng  adventitious root cultures: concentrations of residual sugar ( circles , 
sugars;  rhombuses , glucose;  triangles , fructose;  inverted triangles , electrical conductivity)       

   Table 20.9    Effect of medium replenishment on ginsenoside production following 50 days of 
culturing on ginseng adventitious roots in 5 L balloon type bubble bioreactor containing 4 L of 1.5 
strength MS medium   

 Medium strength and replenishment schedule  Dry weight (g L −1 ) 
 Ginsenoside content 
(mg g −1  DW) 

 Control  16.32 ± 0.54  4.17 ± 0.14 
 Replenishment after 10 days 
 0.75 MS  23.49 ± 0.79  4.01 ± 0.16 
 1.0 MS  24.72 ± 0.51  4.27 ± 0.21 
 Replenishment after 20 days 
 0.75 MS  24.03 ± 0.50  4.94 ± 0.17 
 1.0 MS  28.66 ± 0.70  4.92 ± 0.15 

  Each value within the columns represents mean of three replicates ± S.E.  
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reported in adventitious root cultures of  Echinacea purpurea  [ 122 ], cell cultures of 
 Lithospermum erythrorhizon  [ 123 ] and cell suspension cultures of  Taxus chinensis  
[ 124 ]. Based on the investigation on initial sucrose effect on the cell growth and 
ginseng saponin biosynthesis, a sugar feeding strategy was formulated to enhance 
the saponin accumulation by  P. notoginseng  cells [ 26 ]. The highest production of 
crude saponins of 1.77 g L −1  (on day 26) was obtained by intermittent sugar feeding 
during cultivation; the production and productivity of ginseng saponin increased 
2.3- and 2.1-fold compared with those of control, respectively.

    A major disadvantage of batch processes is that signifi cant amount of time is 
taken up for system and media sterilization, fi lling and emptying and cleaning the 
system. Thus, to improve the cost effectiveness of culturing plant cells, various 
operational modes including fed-batch, repeated fed-batch, semi-continuous and 
continuous cultivation have been developed by biochemical engineers and informa-
tion on these aspects are well documented [ 93 ,  97 ]. The fed-batch operation involves 
the addition of one or more nutrients continuously or intermittently to the initial 
medium after the initiation of cultivation or at the stage of the batch process. 
Continuous cultivation includes variants without feedback control (e.g. in chemo-
stats, where the substrate is fed at a constant rate) and with feedback control (e.g. in 
trubidostats, where the turbidity of the culture is kept constant by adjusting the rate 
at which substrate is fed, and auxostats, where the pH or dissolved oxygen of the 
medium is maintained at the set value). Perfusion cultivation is carried out by con-
tinuously feeding fresh medium to the bioreactor and constantly removing the cell- 
free medium while retaining the biomass in the reactor.  

20.8     Precursor Feeding 

 Many plant cell cultures are also used to convert precursors into products by utiliz-
ing enzyme systems present in them. The addition of loganin, tryptophan and trypt-
amine enhanced the production of secologanin [ 125 ] and indole alkaloids [ 126 ] by 
 Catharanthus roseus  suspension cultures. Similarly, phenylalanine feeding 
improved accumulation of paclitaxel in  Taxus cuspidata  [ 127 ], and cholesterol feed-
ing infl uenced the production of conessine in  Holarrhena antidysenterica  [ 128 ] cell 
cultures. For effective precursor feeding, factors such as the concentration of the 
precursor and the time of addition should be considered when applying it to the cell 
culture medium.  

20.9     Permeabilization 

 Plant secondary metabolites formed by plant cell cultures are usually stored in the 
vacuoles and it is, therefore, desirable to extract the products into the culture medium 
such that the purifi cation procedure may become easier and continuous recovery 
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and production of the product may be conducted. Removal of secondary metabo-
lites from the vacuoles of the cells would also reduce the possible product inhibition 
thus increasing the productivity. Many attempts have been made to permeabilize the 
plant cell membranes in a reversible manner with organic solvents. Organic solvents 
such as isopropanol, dimethylsulfoxide (DMSO) and polysaccharides like chitoson 
have been used as permeabilizing agents [ 129 – 131 ]. Hexadecane, decanol and dibu-
tylphthanlate are used for paclitaxol permeabilizaiton in  Taxus chinensis  [ 124 ]. 
However, when various chemicals are used as pemeabilizing agents they affect the 
cell viability. Therefore, selection of chemical agent with due consideration to its 
effect on cell growth may lead to substantial release of secondary metabolites. Other 
permeabilization methods such as electric fi eld stress [ 132 ] and ultrasound methods 
[ 133 ] have also been used for recovery of secondary metabolites.  

20.10     Immobilization 

 Immobilization of plant cells with a suitable matrix has been followed to overcome 
the problems of low shear resistance and the tendency for cell aggregation [ 4 ]. The 
advantages of immobilization include: (1) the extended viability of cells in station-
ary stage, enabling maintenance of biomass over a prolonged time period; (2) sim-
plifi ed downstream processing (if products are secretory); (3) high cell density 
within relatively small bioreactors showing reduced cost and risk of contamination 
(4) reduced shear stress (5) increased product accumulation (6) fl ow-through reac-
tors to enable greater fl ow rates and (7) minimization of fl uid viscosity which in cell 
suspensions causes mixing and aeration problems [ 134 ]. There are two major meth-
ods for cell immobilization: (a) gel entrapment and (b) surface immobilization. The 
widely used technique for immobilization involves the entrapment of cells in a spe-
cifi c gel or combination of gels, which polymerize around the cells. Calcium algi-
nate is more widely used matrix, other than this, agar, agarose, gelatin, carrageenan 
and polyacrylamide have also been used [ 2 ,  4 ,  135 ]. The matrix used for cell entrap-
ment should be non toxic to cells, should show good polymerization activity and it 
should be cheaper. Immobilization in  Morinda citrifolia ,  Digitalis purpurea  and 
 Catharanthus roseus  cultures was fi rst reported by Brodelius et al. [ 136 ]. Surface 
immobilization is another method which takes advantage of the propensity of cul-
tured plant cells to adhere to inert surfaces immersed in the liquid. DiCosmo et al. 
[ 137 ] have reviewed the work on plant cell adsorption to surfaces and immobiliza-
tion on glass fi bers. The surface immobilization of cultured cells in  Catharathus 
roseus ,  Nicotiana tabacum  and  Glycine max  has been reported for the production of 
metabolites [ 138 ,  139 ]. 

 Some of the reports which showed dramatic effects of immobilization of cells for 
secondary metabolite production in plant cell cultures are: 100-fold increment in 
capsaicin production from immobilized cells with foam and gel [ 33 ,  140 ], 13 and 
3.4-fold increment in methylxanthin and ajmalicine accumulation from gel immo-
bilized cells of  Coffea arabica  and  Catharanthus roseus  respectively [ 138 ,  141 ]. 
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Search for new biological and synthetic polymers is an extended research now and 
some immobilization strategies have been identifi ed to increase bioproduction of 
secondary metabolites in plant cells [ 142 ].  

20.11     Selective Adsorption of Plant Metabolites/
Two-Phase Systems 

 A low accumulation level of secondary metabolites in cell cultures in a number of 
instances may not be due to lack of key biosynthetic enzymes but rather due to 
feedback inhibition, enzymatic or non-enzymatic degradation of the product in the 
medium or volatility of compounds produced. In such cases, it is necessary to 
develop a separation technique which can concentrate the product. For  in situ  prod-
uct separation of plant cell cultures, liquid-solid culture systems (‘two-phase sys-
tems’) for plant cells consisting of an aqueous nutrient phase and solid polar 
adsorbents have been preferred because many plant cells are expected to be of a 
polar character and bind weakly in the lipophilic phase of liquid-liquid systems. The 
removal and sequestering of the product in a non-biological compartment may 
increase total production of secondary compounds [ 143 ]. Polycarboxylic ester 
resin, neutral polymeric resin – XAD-7 could absorb berberine, a secondary metab-
olite from immobilized (alginate trapped)  Thalictrum rugosum  cells [ 144 ]. The 
advantages of adsorbents are that they can be used in bioreactor operation and allow 
easy separation of adsorbents from cells for the repeated use of cells and adsorbents 
[ 144 ,  145 ]. 

 Activated charcoal, RP-8 (lipophilic carrier), Zeolith, XAD-2, XAD-4, XAD-7 
(XAD is a neutral resin and ion exchanger), polyethelene glycol, β-cyclodextrin, 
polydimethylsiloxan, wofatite have been tested and used successfully for separation 
of secondary metabolites in cell suspension cultures of several systems [ 4 ]. Among 
all these, Ambrilte XAD-7 was effi ciently used for adsorption and overproduction 
of paclitaxol from suspension cultures of  Taxus  [ 146 ], anthraquinones from suspen-
sion cultures of  Rubia akane  [ 147 ], and triptolide from adventitious root cultures of 
 Tripterygium wilfordi  [ 148 ].  

20.12     Biotransformation 

 Biotransformation is a process of regio-selective and stereospecifi c chemical trans-
formation that is catalyzed by the biological systems or entrapped enzymes or per-
meabilized cells [ 149 ,  150 ]. Biotransformation is another strategy followed for the 
production of high value metabolites using plant cell and organ cultures. Reactions 
carried out by such cultures include hydroxylation, glycosylation, glucosylation, 
oxidoreduction, hydrogenation, hydrolysis, methylations, acetylations, isomeriza-
tion and esterifi cation of various substrates [ 149 ]. 

H.N. Murthy et al.



495

 Even though, plant cell cultures have high biochemical potential for the produc-
tion of specifi c secondary metabolites, sometimes their desired products are not 
accumulated due to certain metabolic reasons. However, such cultures may retain an 
ability to transform exogenous substrates into products of interest. The chemical 
compounds, which can undergo biotransformation mediated by plant enzymes, are 
varied in nature which includes aromatic, steroid, alkaloid, coumarin, terpenoid, 
lignin and other molecular species. It is not always necessary for the compounds to 
be natural intermediates of plant metabolism but even substrate may be of synthetic 
origin. Plant cell cultures and enzymes have the potential to transform cheap and 
plentiful substances, such as industrial byproducts, intro rate and expensive prod-
ucts. For example, podophyllotoxin, a precursor of a semisynthetic anticancer drug 
is generally extracted from its source plant  Podophyllum  species. Kutnye [ 151 ] 
demonstrated that a cell line of  P. paltaum , active in the biosynthesis of podophyl-
lotoxin, was able to maintain repeated biotransformation of butanolide to the podo-
phyllotoxin analogue. Ramachandra Rao and Ravishankar [ 152 ] used freely 
suspended and immobilized cells of  Capsicum frutescens  for conversion of proto-
catechuic aldehyde and caffeic acids to vanillin and capcinin. Li et al. [ 153 ] used 
ginseng cultured cells and roots for bioconversion of paeonol into its glycosides that 
have the radical scavenging effects.  

20.13     Organ Cultures as a Source of Secondary Metabolites 

 Production of secondary metabolites by cell suspension culture is not always satis-
factory, and organ cultures such as root, embryo and shoot culture methods have 
been developed in various plant species as an alternative for the production of sec-
ondary metabolites [ 44 ,  91 ,  92 ,  154 ]. Shoot cultures have been established in many 
medicinal plants which can accumulate secondary metabolites higher than that of 
natural plants. For example, shoot cultures were established in  Bacopa monnieri  for 
the production of bacoside A and regenerated shoots possessed threefold higher 
bacoside A than fi eld grown plants [ 155 ]. Similarly, the shoots of  Nothapodytes nim-
moniana  which were regenerated in the semisolid and liquid medium had several 
fold higher camptothecin compared to the mother plants (Fig.  20.11 ) [ 156 ]. Hairy 
roots can be obtained by transformation with  Agrobacterium rhizogenes , which can 
grow with or without the supplementation of growth hormones, and have a growth 
rate, which is similar to cell suspension cultures [ 44 ]. Also these hairy root cultures 
are good producers of secondary metabolites, for example the terpenoid compound 
withanolide A was produced in optimum quantity in hairy root cultures [ 157 ]. The 
hairy roots were having high multiplication capability and contained withanolide A 
2.7-fold higher than non-transformed roots (Table  20.10 ). Natural adventitious roots 
are induced in many medicinal plants and are cultivated in fl ask scale to bioreactors 
for the production various bioactive compounds [ 91 ,  92 ]. Adventitious root cultures 
of  Morinda citrifolia  grown in bioreactors showed several fold increment in anthra-
quinone content compared to fi eld grown or plants grown in greenhouse [ 92 ].
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20.14         Scale-Up of Plant Cell and Organ Cultures 

 Plant cells show unique characteristics such as less stability in productivity, higher 
shear sensitivity, slow growth rate and low oxygen requirements. A wide variety of 
bioreactor designs have been tested and used for plant cell cultures. Stirred tank 
reactors, airlift reactors and bubble column reactors for cultivation of plant cells are 
simply extensions of microbial culture systems with some modifi cations [ 154 ], 
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  Fig. 20.11    Camptothecin content in plants regenerated on MS semisolid and liquid medium sup-
plemented with or without cytokinins and control plants.  Bars  represent mean ± S.E. Mean values 
marked with  different letters  are signifi cantly different ( P  ≤ 0.05) according to Duncan’s multiple 
range test       

   Table 20.10    Growth and withanolide content of transformed root lines in MS-based liquid 
medium after 28 days of culture   

 Hairy root lines  Doubling time (d)  Dry weight (mg)  Withanolide A (μg g −1  DW) 

 Control (non 
transformed roots) 

 60.0  120 ± 1.4 c  57.9 ± 1.9 c 

 Line 1  8.9  580 ± 2.1 a  148.0 ± 2.6 b 
 Line 2  13.9  520 ± 2.6 ab  155.6 ± 1.8 a 
 Line 3  9.8  600 ± 3.0 a  157.4 ± 2.0 a 
 Line 4  14.6  480 ± 3.5 b  146.5 ± 1.5 b 

  Values represent mean ± S.E.;  n  = 5 throughout. Values followed by different letters are signifi -
cantly different ( P  ≤ 0.05 Duncan’s multiple range test)  
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and the world’s largest plant cell culture facility which was established in Germany 
(up to 75,000 L) is based on stirred tank models [ 97 ]. Centrifugal impeller bioreactor 
based on the principle of a centrifugal pump has been developed by Wang and Zhong 
[ 94 ,  95 ] especially for shear sensitive systems, such as culturing plant cells with high 
shear sensitivity. Successful scale-up of  Azadirachta indica  suspension cultures was 
developed in stirred tank reactors equipped with centrifugal impeller for the produc-
tion of azadirachtin [ 158 ]. Scale-up of high-density cultivation of  Panax notogin-
seng  cells in a novel centrifugal impeller bioreactor (CIB) was demonstrated, in 
which initial k L a was identifi ed to be a key factor affecting cell growth and produc-
tion of ginseng saponin and polysaccharide [ 159 ]. Based on initial k L a level, the CIB 
high-cell-density cultivation process was successfully scaled up from 3 to 30 L in 
laboratory. A maximum dry cell weight (DW) and production titer of ginseng sapo-
nin and polysaccharide in a 30-L CIB reached 25.5, 1.7, and 2.9 g L −1  (on day 15) at 
an initial k L a value of 28.7 h −1 , respectively. Furthermore, by adopting a fed-batch 
cultivation strategy, a maximum DW and concentrations of total saponin and poly-
saccharide in the 30-L CIB were enhanced to 30.3, 2.1, and 3.5 g L −1 , respectively. 
The work suggests that the CIB may have great potential in large-scale high- density 
plant cell cultures for effi cient production of useful secondary metabolites [ 159 ]. 

 Mechanically driven ‘wave reactors’ have been recently developed for high 
shear-stress sensitive plant cells by Ebil and Ebil [ 160 ] and absence of air bubbles 
and wall growth as well as reduced foaming seems to make these reactors suitable 
for cultivating plant cell and organs [ 161 ]. Another reactor called ‘slug bubble 
reactor’ consists of vertical, fl exible plastic cylinder in which aeration is achieved 
 via  the generation of large cylindrical bubbles, which move from the bottom to the 
top of reactors again for useful for cultivation of plant cells which are high-stress 
sensitive [ 162 ]. 

 Dornenburg and Knorr [ 4 ] summarized the advantage and disadvantages of few 
standard bioreactor systems and airlift bioreactors seemed to be ideal for some plant 
cell cultures which are not highly shear sensitive. Further, airlift bioreactors which 
spread the air from the base of the reactor through sparger are suitable for cultiva-
tion of hairy roots and adventitious roots of various medicinal plants. They are also 
suitable for scale-up and pilot scale cultivation. Inoculation of 500 g fresh weight 
adventitious roots of ginseng into 500 L balloon type bubble bioreactors can pro-
duce 74.8 kg of root biomass after 8 weeks of culture. The saponin content obtained 
in small-scale (20 L) to pilot scale (500 L) bioreactors was 1 % based on dry weight 
[ 163 ]. These experimental results have led to the establishment of pilot and plant 
scale bioreactors (up to 10,000 L; Fig.  20.12 ) for obtaining ginseng adventitious 
root biomass and production of ginsenosides for commercial exploitation.

   During the scale-up of plant cell and organ cultures, oxygen supply is generally 
very important as mentioned above. Partial pressure of oxygen may also be critical 
for secondary metabolite production as shown in high density cell cultures of  Panax 
notoginseng  [ 164 ]. Furthermore, minor gas composition like ethylene and carbon 
dioxide was identifi ed as a key factor for scaling-up the suspension culture of  Taxus 
chinensis  for production of taxane diterpene [ 165 ]. Other important scale-up factors 
include shear force and mixing time, as demonstrated in suspension cultures of 
 Perilla frutescens  [ 166 ] and  Taxus chinensis  [ 167 ], respectively.  
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20.15     Conclusions and Perspectives 

 Plant cell and organ cultures are promising techniques for the production of valuable 
secondary metabolites which have pharmaceutical, nutriceuticals and industrial 
importance. This technology is even more attractive with advanced biotechnology 
approaches such as signal transduction engineering for highly induced biosynthesis 
of specifi c targeted products among various heterogeneous metabolites with similar 
chemical structures but very different bioactivities [ 168 – 170 ]. The recent develop-
ments in plant tissue culture techniques and bio-processing have shown promising 
results to improve biomass growth and the productivity by several folds. Optimization 
of medium ingredients and culture environmental factors are the basic approaches 
which should be dealt with individual plant species at fl ask scale level in the fi rst 
stage. Various other parameters such as inoculum density, agitation/aeration, elicita-
tion, nutrient feeding, precursor feeding, permealization, and immobilization should 
be worked out in small scale bioreactor cultures. Care should be taken for the selec-
tion of bioreactor types and application of bioprocess parameters at this stage. 
Adoption of organ culture techniques and scale-up process can lead to signifi cant 
enhancement in productivity of secondary metabolites. Proper understanding and 
rigorous analysis of these strategies (Fig.  20.13 ) would pave the way towards suc-
cessful commercialization of plant cell bioprocesses.

  Fig. 20.12    Large-scale (10,000 L) bioreactors developed for cultivating adventitious roots of 
ginseng       
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Selection of superior genotype/s

Selection of suitable plant parts or explants

Induction of callus or shoots or adventitious roots or hairy roots

Selection of cell lines or clones

Establishment of small scale bioreactor cultures
Optimization of inoculum density, agitation, aeration and gaseous

environment (O2, CO2, C2H4)

Screening of biomass and metabolite production

Establishment of large scale bioreactor cultures

Downstream prcessing

Biosafety tests

Products

Production of secondary metabolite Regular/ constant checking of
stability of cell or organ lines. medium parameters, culture environment

Standardization of elicitation, nutrient feeding, precursor feeding,
permeabilization, immobilization

Induction of suspension cultures- flask scale
Medium optimization

Suitable medium, medium strength, sugar levels, nitrate levels.
plant growth regulator levels

Optimization of culture environments
Temperature, illumination, light quality, medium pH

  Fig. 20.13    Flow chart of general strategies followed for production of secondary metabolites from 
plant cell and organ cultures       
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    Chapter 21   
 Metabolic Engineering of Selected Secondary 
Metabolites 

             Jutta     Ludwig-Müller    

    Abstract     The demand for the production of valuable secondary metabolites is 
increasing rapidly. While many metabolites can be directly extracted from intact 
plants, others are routinely produced using cell or organ cultures. The latter, also 
called Hairy roots when generated through the transformation with the bacterium 
 Agrobacterium rhizogenes , are also amenable to molecular modifi cations. Similar 
to intact plants metabolic pathways can be altered by introducing homologous or 
foreign genes. The better the knowledge of a given pathway, the more effi cient will 
be the genetic alteration. Some of the general requirements for metabolic engineer-
ing of secondary metabolites will be discussed together with methodological con-
siderations, especially the analysis of secondary metabolites and also the 
transformation methods. In addition, some examples for successful establishment 
of transgenic plants for metabolite production will be described. Finally, some alter-
native plant production systems will be discussed.  

  Keywords     Genetic engineering   •   Hairy roots   •   Metabolite analysis   •   Metabolite 
production   •   Transformation  
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  GMO    Genetically modifi ed organism   
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  HCA    Hierarchical cluster analysis   
  HPLC    High performance liquid chromatography   
  IEE    Intercistronic expression element   
  IR    Infrared   
  JA    Jasmonic acid   
  JA-Ile    JA-Isoleucine   
  LC    Liquid chromatography   
  MEP    Methylerythritol-phosphate   
  miRNA    microRNA   
  MS    Mass spectrometry   
  MVA    Mevalonate   
  NMR    Nuclear magnetic resonance   
  PA    Pyrrolizidine alkaloid   
  PCA    Principal component analysis   
  PLS-DA    Partial least squares discriminant analysis   
  QTL    Quantitative Trait Loci   
  RISC    RNA-induced silencing complex   
  SCF     S KP,  C UL,  F -box   
  TALEN    Transcription activator-like effector nuclease   
  Ti    Tumor-inducing   
  ZNF    Zinc fi nger nuclease   

21.1           Introduction 

 Bioactive compounds are used by mankind for many different purposes and the 
requirement for compounds with better or even novel properties is increasing con-
tinuously. A need for biotechnological production of secondary metabolites with 
interesting properties is therefore obvious [ 1 ]. Thus, the genetic manipulation of 
medicinal plants has received a lot of attention over the last decade (reviewed in 
[ 2 ]). The exploitation of natural compounds of plants can be traced back generally 
to their medicinal use (i.e. pilocarpin, scopolamine), but also secondary metabo-
lites are used in food as fl avours or spice components as well as in cosmetics 
industry as aroma compounds and antioxidants. Examples are the spice capsaicin 
from peppers, which has also antimicrobial activity, vanillin from vanilla, but also 
the isothiocyanates released from the glucosinolates upon tissue disruption. 
Finally, there are coloured substances (i.e. betanidine, indigo, shikonin) that 
receive much attention in food industry and as natural dyes in other applications. 
In addition, their use in agriculture as biopesticides has received attention [ 3 ]. 
Among the pharmaceuticals, which have been released in the last 30 years, over 
25 % were derived from plant metabolites and roughly 50 % of the “top chemicals” 
were generated from plant secondary metabolism [ 3 ]. The FDA gave approvement 
for clinical application of seven novel plant compounds, which include taxol/
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paclitaxel ( Taxus brevifolia ), vinblastine and vincristine ( Catharanthus roseus ), 
topotecan and irinotecan ( Camptotheca acuminata ) and etoposide and teniposide 
( Podophyllum peltatum ) [ 2 ]. 

 Plants are considered as the organisms of choice for the production of metabo-
lites relying in their synthesis on complex pathways [ 4 ]. The realisation of such 
complex biosynthetic pathways in microbes is very diffi cult, because of missing 
intermediates and potential problems with protein folding and modifi cations. Yeasts 
can be seen as alternative, but there reactions which need different plant compart-
ments cannot be imitated. In addition, antimicrobial compounds pose a problem for 
the production also in eukaryotic microbes. 

 Also, many plants with benefi cial properties are either diffi cult to cultivate and/
or they are in the list of endangered species [ 2 ]. Therefore, their harvest is diffi cult 
or sometimes even prohibited and regulations have been implemented for harvest-
ing these plants. This implies that novel methods for cultivation of such species are 
needed to ensure the production of benefi cial compounds from medicinal plants. 
Laboratory cultures have also the advantage that gene alterations by molecular bio-
logical methods are possible to change pathways in favour of a desired metabolite 
[ 5 ,  6 ]. Therefore, plant cell or organ cultures have been established in the last decade 
for the production of bioactive metabolites (see Chaps.   6    ,   7    , and   8    ; this book). These 
contribute to a high quality production of compounds, because of the controlled 
environment of the cultures. In addition, large-scale bioreactors for plant cultures 
are also available nowadays (see Chaps.   1    ,   2    , and   3    ; this book). Under these con-
trolled conditions the induction of secondary metabolites by elicitors is a feasible 
and easy to perform method. Elicitors could be stress signaling compounds or they 
may be changes in culture conditions like oxygen depletion [ 7 ].  

21.2     General Aspects of Metabolic Engineering 

 In previous sections of this book the use of cell (Part II) and organ cultures (for 
example shoot, embryo and adventitious root cultures; Part III) is described in 
detail. Firstly, the most suitable plant organ for the generation of the cell or organ 
culture has to be selected for non-genetically modifi ed organ or cell cultures. To this 
end the metabolite pattern of the respective organs has to be analyzed, but also intact 
plants as sources have to be considered (Fig.  21.1 ).

   To identify or quantify a compound of interest, the metabolite has to be extracted 
from the plant tissues. The chemical properties of the substances are of high impor-
tance to devise a purifi cation scheme [ 8 ]. Important issues to be taken into account 
are: (1) It has to be defi ned whether a compound that is already known, should be 
extracted and quantifi ed (targeted approach), or whether a broad range of unknown 
(bioactive) compounds should be identifi ed (untargeted approach). The latter exper-
imental approach is often coined to metabolomics. (2) For individual compounds it 
has to be determined which properties are already known and whether standard 
compounds are available or need to be synthesized. (3) The purity of the compound 
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is important for identifi cation, but also for bioactivity assays, so, in this case the 
metabolite needs to be further purifi ed by chromatographic methods. (4) Is identifi -
cation and quantifi cation the only purpose, so the sample does not need to be recy-
cled, but if should be subjected to further assays for bioactivity, the sample needs to 
be recovered. (5) The amount of sample required after purifi cation might be critical, 
because if tests for bioactivity have to be carried out a larger amount of sample is 
needed (see Sect.  21.2.1 ). 

 After the identifi cation of suitable plant materials, transformation methods have 
to be employed (see Sect.  21.2.2 ). For transformations, either  Agrobacterium - 
mediated  or biolistic (for plastids transformation) methods are used. Once a trans-
formation protocol has been selected, the genetic engineering steps are to be carried 
out (see Sect.  21.2.3 ). First, suitable gene(s) for a pathway need to be identifi ed (see 
“Metabolic Genes” in Sect.  21.2.3 ). These may be metabolic genes or the genes 
encoding for either transcription factors (see “Transcriptional Control” in 
Sect.  21.2.3 ) or transporters (see “Transport” in Sect.  21.2.3 ). Here, many  precautions 

precursor

intermediate 1

intermediate 2

intermediate 1’

intermediate 2’

competing pathway
X

X co-suppression

selection of plant material

intactplants cellcultures hairyroots

modification of precursor

transformation method

metabolite analysis

engineering of pathway

desired metabolite

modified metabolite

unwanted metabolite

transcriptional control

transport

inhibition of pathwayincreased gene expression

toxic metabolite

  Fig. 21.1    Summary of planning a metabolic engineering experiment, starting with plant material, 
metabolite analysis (see also Fig.  21.2 ) and transformation (see also Figs.  21.3  and  21.4 ). Various 
possibilities to infl uence the biosynthetic fl uxes for a given metabolite using metabolic engineer-
ing. On the  left  side ( black ) the increases of individual steps in a pathway are shown, on the  right  
side ( grey ) the possibilities to decrease a metabolite (toxic metabolite) or pathway (competing 
pathway,  bold cross ). The heterologous expression of genes encoding enzymes leading to modifi -
cations of precursors or intermediates of a pathway are also indicated. The  bold arrow  shows that 
increases in mRNA might lead to a reduction ( bold cross ) by co-suppression. Increased expression 
of a heterologous gene with the same function ( second arrow ) might be the solution here       
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have to be taken into account, for example that the strong overexpression of homol-
ogous genes does not result in a co-suppression phenomenon (Fig.  21.1 ; [ 9 ]). In 
addition, especially when genes should be expressed in a heterologous organism, it 
can be advantageous to adopt the codon usage of the foreign gene to the organism, 
in which it will be transformed since codon usage differs signifi cantly between 
organisms (e.g. [ 10 ]). 

21.2.1      Analysis of Secondary Metabolites 

 After it has been established for which application the extraction protocol will be 
used (Table  21.1 ), the fi rst decisions to be made concern the extraction solvent 
(Fig.  21.2 ; [ 8 ]). It is important to know whether the extracted compound is polar or 
nonpolar. Further, different pH values will result in differentiated extracts according 
to molecular properties of the compounds. After evaporation of organic solvents the 
remaining aqueous phases can be extracted using organic solvents with different 
polarities. The extract may contain many molecules other than the desired one, 
which will either be analyzed using a nontargeted approach or have to be further 
enriched by chromatographic methods (Fig.  21.2 ). Different chromatographic tech-
niques are available encompassing size fractionation and separation according to 
their charges/polarity or affi nity chromatography [ 8 ]. For affi nity chromatography 
more information has to be gathered about the compound. In this case, ligands 
which can bind to the molecule of interest are attached to a suitable resin and will 
retain ideally only one compound.

    The analytical methods employed for the identifi cation and quantifi cation of sec-
ondary metabolites are thin layer chromatography, high performance liquid chro-
matography, gas chromatography, mass spectrometry, NMR-spectroscopy, 
IR-spectroscopy and spectrophotometry (Fig.  21.2 ). Some methods can be  combined 

      Table 21.1    Applications and outcomes for secondary metabolite analysis (see also Fig.  21.1 )   

 Application  Respective outcome 

 Quality control of medicinal 
plants 

 Quality control results  Global metabolite 
correlations 

 Activity-related compounds in 
medicinal plants 

 Identifi cation of novel (bioactive) 
compounds 

 Chemotaxonomy 
 Interaction with other organisms  Reprogramming plants against 

stressors  Abiotic stress response 
 QTL analysis  Identifi cation of QTLs for 

breeding 
 Evaluation of GMO  Biosafety 
 Identifi cation of metabolic genes  Identifi cation of genes involved 

in metabolism 

   GMO  genetically modifi ed organisms,  QTL  quantitative trait loci  
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i.e. gas or liquid chromatography with mass spectrometry as the detector. Some 
techniques also enable the quantifi cation of metabolites in addition to the identifi ca-
tion of a compound, but in that case a reference substance should be available. If a 
mass spectrometer is used as a detector for either liquid or gas chromatography, then 
identifi cation  via  the mass spectrum is possible. The quantifi cation can also be 
achieved if reference compounds available are labelled with heavy isotopes [ 11 ]. 
They are assumed to behave like the natural compounds and if added prior to extrac-
tion, they can be used to determine the effi ciency of the extraction procedure i.e. 
recovery of a specifi c compound. The accurate identifi cation of a compound is 
sometimes not possible by mass spectrometry but can often be achieved using 
NMR- or IR-spectroscopy [ 12 ]. 

 Metabolomics, a term used for the mostly unbiased parallel analysis of as many 
compounds as possible, has gained importance in the identifi cation of novel metabo-
lites and also in biotechnology [ 13 ]. This approach can give an insight into the 
changing metabolic pattern under various conditions during the development, but 
also changing environmental conditions under abiotic and biotic stress situations, 
and thus help to identify novel compounds. Using modern biotechnological 
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  Fig. 21.2    Some aspects for the use of different analytical procedures in biotechnology. For pos-
sible applications and resulting outcomes of such a protocol see also Table  21.1 . In the middle the 
main steps are shown and the possible branches by  thin arrows . For some features, i.e. purifi cation, 
analysis, statistics etc. in the boxes examples are shown, which are connected to the respective 
feature by  grey arrows . The  dashed arrows  indicate that preferably for targeted profi ling an addi-
tional step is needed, whereas for untargeted approaches direct analysis of the sample is possible. 
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approaches, plants with different biological properties can be compared to fi nd addi-
tional bioactive substances in medicinal plants. Other applications are quality con-
trol of medicinal plants, identifi cation of Quantitative Trait Loci (QTLs), 
chemotaxonomy, evaluation of GMOs and identifi cation of metabolic genes 
(Table  21.1 ; [ 13 ]). 

 The choice whether targeted or untargeted approaches are chosen determines the 
suitable solvent(s) used for extraction (Fig.  21.2 ). However, it should be noted that 
the perfect universal solvent for all applications does not exist. The following step 
determines the intensity, reliability and potentiality for identifi cation of novel com-
pounds, the analytical techniques to be used for the analysis of the compounds. While 
the pioneering metabolomics work was carried out using gas chromatography- mass 
spectrometry (GC-MS), this method is complemented or replaced by other tech-
niques such as liquid chromatography-mass spectrometry (LC-MS), nuclear mag-
netic resonance spectroscopy (NMR), or combinations of the aforementioned [ 12 ]. 

 The identifi cation of individual compounds within gas or liquid chromatograms 
relies on deconvolution software, which is needed to separate peaks from each other 
and databases, either open source internet based ones or commercial ones (reviewed 
in [ 13 ]). Finally, the large datasets need to be evaluated. For this purpose various 
statistical methods are in use, of which some are described in the following 
(Fig.  21.2 ). A commonly used method in metabolomics is the principal component 
analysis (PCA), a multivariate analysis method. The PCA method basically pro-
vides an overview of the datasets by clustering each sample and highlighting the 
differences in a given sample set and between the samples [ 13 ]. Other statistical 
analytical methods have been used to analyze such metabolomic datasets, for exam-
ple hierarchical cluster analysis (HCA), partial least squares discriminant analysis 
(PLS-DA) and batch-learning self-organizing map analysis (BL-SOM) [ 13 ]. The 
outcome of such an experiment could then be identifi cation of QTLs, reprogram-
ming metabolism against stress, global metabolite correlations, identifi cation of 
genes involved in metabolism, identifi cation of novel (bioactive) compounds, and 
quality control of results (Table  21.1 ).  

21.2.2      Transformation Methods 

 The transformation of plants with either foreign genes or homologous genes under 
the control of a strong promoter relies always on the selection of a suitable method. 
In case of hairy root generation, the transformation is achieved by using a soil borne 
bacterium,  Agrobacterium rhizogenes . This bacterium naturally transforms its hosts 
by stably integrating the  rol  genes, which lead to the hairy root phenotype. This hap-
pens also in nature, but the phenomenon is explored for the production of secondary 
metabolites. Therefore, the addition of genes encoding for the desired proteins from 
a given pathway together with a suitable promoter has been used for metabolic 
engineering of these organ cultures. This has been used mainly for the enhancement 
or modifi cation of metabolites as described above (e.g. [ 5 ,  6 ]). 

21 Metabolic Engineering of Selected Secondary Metabolites



516

 The fi rst part of the characterization of new cell cultures or hairy root lines is the 
verifi cation of transformation at the genetic level. This includes selection of 
transgene- containing lines, detection of the inserted construct  via  PCR and, in case 
of hairy roots, to prove the insertion of the transfer DNA [ 14 ]. A common selection 
marker uses hygromycin resistance. Suitable concentrations of the antibiotics may 
vary in different plant species, which makes it reasonable to investigate an effective 
lethal dose for untransformed cell lines or hairy roots generated with a wild type of 
 Agrobacterium  before the selection experiments. Alternatively, individual lines can 
be investigated for the integration of the transgene by PCR methods. This can be 
used together with a protocol needed for the verifi cation of integration events of the 
 rol  genes as well as confi rmation that bacteria are not present any more. Grabkowska 
et al. [ 15 ] established primer sequences for the detection of  rol B and  rol C. These 
primer pairs can be used in a multiplex PCR, in some plant backgrounds even 
together with the  vir G primers [ 16 ]. If cell lines or hairy roots contain additional 
transgenes, the integration has to be shown. Most important for this aim are specifi c 
insert primers that bind to the transgene. Additionally, other parts of the construct, 
for example the selection marker, can be analyzed. 

 A biolistic transformation method by particle gun predominantly used for plastid 
engineering (see below) relies on an entirely physical DNA delivery process, and 
therefore is not limited with respect to the size of the transforming DNA (reviewed 
in [ 17 ]). However, the coating of the gold particles used as microprojectiles with the 
transforming DNA involves especially vigorous vortexing, which poses a relatively 
harsh mechanical treatment to the DNA, but it is necessary to keep the particles in 
suspension and prevent them from aggregation. Thus, the transformation of the 
plastid genome with very large DNA molecules has to be expected to occur with 
considerably less effi ciency, because of the increased risk of mechanical shearing 
during particle coating with large DNA molecules [ 17 ]. 

 Why is the transformation of intact plants probably less suitable for the produc-
tion of secondary metabolites? The variation in secondary materials extracted from 
naturally grown plants is very high due to unfavorable environmental conditions, 
such as biotic and abiotic stresses, seasonal changes, but also the limitation of the 
plant material itself, if it is a protected species or does not contain reasonable 
amounts of the metabolite. Intact plants are routinely transformed with a close rela-
tive of  A. rhizogenes , namely  Agrobacterium tumefaciens . In nature, the phyto-
pathogenic bacteria cause tumors on their hosts by stable transformation with genes 
encoding enzymes for plant hormone (auxin and cytokinin) biosynthesis. The onco-
genic hormone biosynthetic genes in the T-DNA of  Agrobacterium  have been 
removed to enable technologically useful plant transformation. They were replaced 
by multiple cloning sites where genes of interest as well as dominant selectable 
markers can be integrated. These “disarmed”  A. tumefaciens  are used to introduce 
transgenes into plants that can be transformed by using these bacteria. However, it 
is possible to use the same strategy for hairy root generation by using a desired 
transgene in addition to the tumor-inducing genes. This should result in a stably 
transformed tumor harboring desired transgenes. These tumors should, in theory be 
grown like other cell cultures, may be even without or at least with reduced levels of 
growth hormones in the medium. However, the problem may arise due to the use of 
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huge Ti-plasmids. Even for the use of disarmed plasmids, a so-called binary vector 
system has been generated to circumvent handling these large plasmids [ 18 ], espe-
cially when the gene to be inserted into the plasmid for transformation is also big. 

 Similarly, the plasmids from  A. rhizogenes  used for hairy root induction (see 
above) are very large, posing sometimes equally the problem that large plasmids are 
diffi cult to transform. A different strategy for hairy root induction was introduced 
by Zang et al. [ 19 ], who used the binary vector system of  A. tumefaciens  in which 
they introduced the complete set of  rol  genes from  A. rhizogenes . The transforma-
tion with  A. tumefaciens  yielded hairy roots in Chinese cabbage, so this might be an 
alternative to substitute  A. rhizogenes  with the (smaller)  rol  carrying binary vector 
systems. 

 Nevertheless, alternative transformation methods using plastid transformation 
might be successful so that the disadvantages of the metabolite production in intact 
plants can be overcome. Plastids (chloroplasts) harbor a small gene-dense genome 
that is amenable to genetic manipulation by transformation (reviewed in [ 17 ]). Due 
to the large prokaryotic genome structure and gene expression machinery, the high 
transgene expression levels attainable in transgenic chloroplasts, and the very low 
production costs in plant systems, the chloroplast transformation has been increas-
ingly used to produce metabolites. Clearly, the advantages lie mainly in the high 
copy number of transgenes that can be achieved. Also, plastids possess a highly 
effi cient homologous recombination machinery facilitating the targeted integration 
of DNA [ 17 ]. Further advantages are that different selection markers can be used 
than for nuclear transformation, the absence of epigenetic gene silencing (co- 
suppression; see above) and the predominantly maternal inheritance of plastid DNA 
[ 20 ,  21 ]. The latter greatly reduces the probability of transgene escape  via  pollen 
fl ow. Finally, the plastids, due to their evolutionary origin, are capable to express 
(even large) polycistronic messages (Fig.  21.3 ).

   This method has been used to generate intact plants with high alpha-tocopherol 
levels [ 22 ]. First, the authors used plastid transformation in the model plant tobacco 
to test single-gene expression constructs for their effects on the fl ux through tocochro-
manol biosynthesis. The individual overexpression of the three key plastid-localized 
enzymes specifi c to tocopherol bio synthesis [ 23 ] yielded only stronger tocopherol 
accumulation in case of one enzyme [ 22 ]. Further overexpression of these genes 
encoding the three key, and probably rate-limiting enzymes of alpha-tocopherol bio-
synthetic pathway from  Synechocystis  in an operon-like manner in plastids of tobacco 
( Nicotiana tabacum ) unexpectedly resulted only in moderate increases in alpha- 
tocopherol. This problem could be overcome by inserting short fragments of RNA, 
so-called intercistronic expression elements (IEE) in the construct within the indi-
vidual transcripts. Indeed, such constructs showed a much higher accumulation of 
a-tocopherol [ 22 ]. Additionally, the transplastomic plants with high tocopherol levels 
were much less affected by oxidative stress. 

 However, there are also limitations for the application of this method in a more 
general way. Even though in recent years a toolbox for plastid transformation has 
been established, the method is more or less confi ned to one higher plant species, 
 Nicotiana tabacum  [ 24 – 26 ]. In some cases, the production of secondary metabolites 
in a species producing toxic compounds, i.e. the alkaloid nicotine, might not be 
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feasible. Also, the routine method used for DNA delivery into plastids is by particle 
gun, which is not always accessible to every laboratory. Further advantages and 
disadvantages of plastid transformation are discussed in detail in a review [ 17 ]. 

 Other aspects of transformation protocols, such as markers for further selection 
of transgenes will not be discussed here.  

21.2.3            Examples for Metabolic Engineering 

 In the following step, the decision for the establishment of cell or organ cultures has 
to be made. Alternatively, depending on the method used for transformation (see 
below), intact plant material can be used. Cell cultures are dependent on the con-
tinuous addition of plant hormones, while the so-called hairy roots are hormone 
autonomous and therefore cheaper to cultivate (see Chap.   2    ; this book). Besides 
hairy roots, other organ cultures are also used to produce effi ciently selected 

a b

Polycistronic mRNA

Protein synthesis Cleavage

  Fig. 21.3    Model representing the modular design of synthetic plastid operons for large-scale 
metabolic engineering in chloroplasts [ 22 ,  24 ]. ( a ) The case where translation of the polycistronic 
message is hampered because of missing intermediary parts (intercistronic expression element; 
IEE) is shown here. A construct with (from left) promoter, and three genes each with 5′ and 3′ end 
is shown. The result is only one protein type, which is encoded by the fi rst part of the operon. ( b ) 
Here the three genes are separated by the IEE elements (shown in different patterns), which are 
later cleaved ( arrows ), resulting in three separate messages, which are then all translated, resulting 
in three different proteins (Adapted from [ 17 ])       

 

J. Ludwig-Müller

http://dx.doi.org/10.1007/978-94-017-9223-3_2


519

secondary metabolites (see Part III, this book). The hairy roots can be induced by 
using the soil bacterium  Agrobacterium rhizogenes  from a variety of different plant 
tissues, for example from leaves, fl owers, and also from roots. This phytopatho-
genic bacterium transforms plant roots with its tumor-inducing DNA (T-DNA), 
located on the Ti-plasmid, in nature to yield the hairy root symptoms [ 27 ]. The 
genes transformed into the host genome are termed  rol  genes. In addition to these 
 rol  genes, the bacterium can be transformed by other genes taken from plants or 
other organisms to change the metabolic pathways or profi les in a desired manner. 
The resulting organ cultures are also termed hairy roots, similar to the naturally 
occurring root disease. Such cultures are used now-a-days often for secondary 
metabolite production, either transformed with wild type of bacteria or with geneti-
cally modifi ed ones. Already genetically optimized cell or organ cultures have to be 
adapted to cultivation conditions in bioreactors and this leads sometimes to stress 
situations due to possible depletion of nutrients or shearing forces in the reactor (see 
Part I; this book). The cultivation can also use to introduce deliberately stress fac-
tors, which can increase the synthesis of the product and also use elicitors, plant 
signalling molecules for biotic stresses [ 7 ]. 

    Metabolic Genes 

 Since the plants do not leave the laboratory during cultivation in a bioreactor, there 
is no (legal) confl ict with these genetic modifi cations. Detailed knowledge on the 
biosynthetic pathways, transport between compartments and their (transcriptional) 
regulation are necessary for targeted alterations. Many metabolites are now-a-days 
produced by cell and organ cultures. 

 Which factors can infl uence the outcome of the production of secondary metabo-
lites by a given biosynthetic pathway? The best results can be obtained by using 
simple changes in pathways where only one enzyme or transcription factor is acti-
vated. For example, the synthesis of the alkaloid scopolamine  via  hyoscyamine and 
an intermediate is catalyzed in a two-step reaction by the same enzyme [ 28 ]. To 
modify complex biosynthetic pathways many things have to be taken into account 
to ensure that the desired metabolite can be produced. Among these are: (1) identi-
fi cation of the step determining the rate of production, (2) availability of precursors, 
(3) limitation of cofactors, (4) competing pathways using the same precursor or 
intermediates, (5) inhibition by fi nal product, (6) transport over cellular compart-
ments and (7) transcription factors [ 6 ,  29 ]. 

 An attempt should be made to determine the critical step for the overall momen-
tum of the pathway (compiled in [ 29 ]). This step is an ideal candidate for metabolic 
engineering. Despite a number of success reports the concept that single gene 
manipulations alter effi ciently whole pathways and thus product formation, has to 
be revisited [ 30 ]. Some data have shown that the manipulation of such a single 
“bottleneck” or “rate limiting step” gene was not as effective as anticipated by 
experimental data on gene expression or fl ux data using labeled compounds. This 
observation suggests that in many pathways such individual key enzymes do not 
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exist. Therefore, over-expression of the gene for one enzyme in the pathway might 
render subsequent reactions more limiting. Nevertheless, to keep the approaches for 
metabolic engineering simple, transformation with single genes encoding metabolic 
enzymes is still feasible. 

 If genes for the pathway are not known, then an alternative could be, to use 
genes from other organisms to alter the metabolite pattern. If at least parts of the 
pathway need to be identifi ed, methods of transcript and metabolite analysis (see 
above) may be applied. Even if a pathway is known at the genetic level, it needs 
confi rmation by metabolic studies. Here, labeled precursors can be used to follow 
the fate of the precursor or selected intermediates of the pathway. This method is 
also useful to determine the fl ux rates for competing or to determine alternative 
pathways (e.g. [ 31 ]). 

 Changes can be generally achieved by overexpressing gene(s) encoding proteins 
responsible for limiting steps (Fig.  21.1 ). By increasing the fl ux from a precursor for 
a desired metabolite, the second undesired metabolite is not synthesized and there-
fore production of the desired product should be enhanced. However, when homolo-
gous genes are used, it has to be guaranteed that there is no co-suppression effect [ 9 ] 
reducing the expression of the transgene and the original gene itself. In the example 
shown here one intermediate would not be made any more, leading to the accumula-
tion of another intermediate or the precursor. This in turn could lead to the undesired 
accumulation of an undesired compound. In principle, any of the metabolic steps 
leading to the synthesis of an intermediate in the pathway could be targeted with 
modifi cations, but to achieve optimum results the bottleneck of the pathway should 
be altered (Fig.  21.1 ). 

 There are experimental data available on modifi cations and/or overexpression of a 
pathway to generate a specifi c metabolite leading to the – unexpected – identifi cation 
of novel compounds also. This was described for the metabolic engineering of carot-
enoids in rice callus, where a novel carotenoid, 4-keto-α-carotene was identifi ed [ 32 ]. 
The engineered carotenoid pathway in rice callus was extended further by including 
a bacterial ketolase gene, which is able to form astaxanthin. This carotenoid is of a 
high value, but not a typical plant carotenoid. The novel carotenoid did not fi t into the 
pathway leading to astaxanthin, so the authors postulated that this carotenoid may be 
formed from α-carotene  via  combined reactions of the heterologous gene products 
and endogenous rice enzymes [ 32 ]. Therefore, the evaluation of not only the expected 
end-product could be suggested for novel experimental systems. 

 So-called metabolons are emerging as structures where proteins from a specifi c 
biosynthetic pathway are organized as multi-enzyme assemblies that are in very 
close proximity to each other and in which the proteins catalyze sequential reac-
tions, as shown for fl avonoid biosynthesis [ 33 ]. The term “metabolic channeling” 
describes the idea that the intermediates between enzymatic reactions are not freely 
available, but are channeled through these large complexes [ 34 ]. For metabolic 
engineering these large complexes could be an advantage, because all proteins 
occur in the same subcellular compartment, making transport a lesser issue (see 
“Transport” in Sect.  21.2.3 ). However, the stoichiometry within such complexes 
might be a problem when only one gene is overexpressed and the reaction might be 
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imbalanced. Therefore, the absence of metabolons in many dedifferentiated tissues 
possibly resulted in the failure to detect the accumulation of desired metabolites in 
cell cultures [ 34 ]. 

 The availability of precursors is also dependent on the number of biosynthetic 
pathways competing for a substrate. For example tryptophan is a precursor for a 
wealth of different secondary metabolites, but also for protein synthesis and the 
synthesis of the plant hormone indole-3-acetic acid [ 35 ]. Therefore, overexpression 
of tryptophan decarboxylase could lead to a reduction of other indole metabolites 
like indole glucosinolates. For laboratory cultures this is of no importance, but in the 
fi eld, such plants could be less tolerant to various biotic stress factors [ 36 ,  37 ]. Also, 
the inhibition of an enzymatic reaction by the product or an intermediate could also 
constitute a problem (Fig.  21.1 ). In this case, even when the transgene is highly 
expressed, no product would be accumulating. This is also the case, when an essen-
tial cofactor is not present, but such a compound could be added to the culture, if not 
too expensive, or also engineered together with the gene for the biosynthetic enzyme. 

 In addition, bacterial genes can be used to alter the metabolite spectra of hairy 
roots (Fig.  21.1 ).  Catharanthus roseus , the producer of the anticancer drugs, vin-
blastine and vincristine has been successfully transformed using bacterial trypto-
phan halogenase genes, resulting in the accumulation of halogenated terpene indole 
alkaloids. In general, the introduction of a halogen (halogenation) is important to 
biological activity [ 38 ] and bioavailability [ 39 ,  40 ] of such compounds. Chlorinated 
natural products, which are predominantly produced by terrestrial organisms, con-
stitute the majority of halogenated products [ 39 ]. Transfer of two of these haloge-
nases, PyrH [ 41 ] and RebH [ 42 ], which chlorinate the indole ring of tryptophan at 
positions fi ve and seven respectively, yielded a different spectrum of halogenated 
indole alkaloids. This could be achieved because the chlorinated tryptophan variants 
were accepted by the enzyme tryptophan decarboxylase catalyzing the conversion 
to tryptamine and in this case to chlorinated tryptamine analogs [ 43 ]. Such 
approaches can also be exploited to discover novel bioactive compounds and/or to 
improve the biological value of already known natural compounds. 

 In addition to changes in pathway fl uxes, the molecular properties of plant enzymes 
can be altered to modulate pathways. The genes are mutagenized in a way that is likely 
to modulate the activity of the encoded protein by, for example, altering the substrate-
binding domain [ 44 ]. This can be done only with proteins, whose structure is known 
in detail. The enzymatic properties can be fi rst tested by gene expression in microor-
ganisms and if the desired mutant enzyme has been produced, then it is transformed 
into the plant. An alternative is to switch complete domains with important properties 
between enzymes. These proteins with novel structural elements could have com-
pletely new enzymatic properties. For example, the main biosynthetic pathway is pref-
erentially catalyzed compared to side pathways. This has been shown to work for three 
genes encoding all dioxygenases in opium poppy ( Papaver somniferum ) morphine 
biosynthesis, where after combinations of various parts of the resulting protein novel 
mutant proteins were created, of which one had the desired property [ 45 ]. 

 An alternative to the up regulation of the major pathway is the suppression of side 
pathways (Fig.  21.1 ) using techniques like antisense or RNA interference techniques. 
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This would result in the availability of more precursors for the main pathway.  C. 
roseus  produces vinblastine and vincristine  via  dimerization of the monoterpenoid 
indole alkaloids, vindoline and catharanthine (reviewed in [ 46 ]). Tryptophan decar-
boxylase was determined to be a key enzyme for the pathway. Next to several 
approaches to increase the metabolic fl ux through this pathway (reviewed in [ 47 ]), 
Runguphan et al. [ 48 ] have silenced tryptamine biosynthesis in hairy roots of  C. roseus  
to produce an unnatural alkaloid metabolite spectrum. For this, tryptamine analogs, 
which can be used by the respective enzymes as substrates, were added during the 
cultivation process to the organ cultures and indeed novel alkaloids could be extracted. 

 In addition, such a strategy can be used to reduce toxic metabolites from other-
wise benefi cial plant materials (Fig.  21.1 ). In some cases not only the increase in 
active compound production is the most important aspect in generation of cells or 
tissues for metabolite production, but also a decrease in toxic by-products is neces-
sary. Examples for such metabolites are pyrrolizidine alkaloids (PA), which occur 
in many medicinal plant species within the families of Asteraceae, Boraginaceae 
and Fabaceae [ 49 ,  50 ]. After ingestion, these alkaloids are metabolized and form 
toxic derivatives, which can harm human liver, capillaries and lung (reviewed in 
[ 50 ]). In addition, mutagenic and probably carcinogenic effects have been shown 
for these PA metabolites [ 51 ]. It is clear that the use of such plants in pharmacology 
or medicine requires complex cleaning processes and is often limited to a given 
maximum dose per year or to external application. Since the extract of a whole plant 
is more effective than the isolated main bioactive compound, the toxicity problem 
cannot be avoided by chemical synthesis. The choice of the knock down strategy 
depends on the target enzyme and possible off targets. Use of short hairpin RNAs, 
for example, is a well tested and a common method [ 52 ]. More recent and poten-
tially more specifi c is the development of artifi cial microRNAs [ 53 ]. Both are post- 
transcriptional silencing methods, which do not eliminate the target gene but inhibit 
enzyme synthesis by mRNA degradation or translation inhibition. The principle of 
miRNA generation is shown in Fig.  21.4a . To reach silencing near to 100 %, careful 
planning of the construct as well as a strong promoter is necessary. Targeted knock 
out methods based on sequence-specifi c nucleases (zinc-fi nger nucleases and  t ran-
scription  a ctivator- l ike  e ffector  n ucleases; TALEN) for plants evolved during the 
last few years [ 54 ] and should be considered in future experiments. These nucleases 
enable targeted DNA sequence modifi cations by creating double-strand breaks in 
the genomic loci to be altered. The nucleases typically bind to a small number of 
nucleotides and the recognition sites can be engineered to recognize specifi c target 
sequences (Fig.  21.4b ). With TAL effectors virtually any DNA sequence can be 
targeted [ 55 ]. The repair of the breaks, through either homologous recombination 
or, more often in higher plants, non homologous end joining, can be controlled to 
achieve the desired sequence modifi cation (reviewed in [ 54 ]).

   If the desired metabolites should be produced in several cell or organ systems, 
the choice of the production system can also be an option to reduce or exclude 
unwanted metabolites. Some complex substances are produced only in certain cell 
types and by that way excluded from systems that do not contain these cells. Huizing 
et al. [ 56 ] found that callus of  Symphytum offi cinale , which was cultivated for 2 
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months did not produce PA any more. Regenerated plants again produced the typi-
cal alkaloid patterns.  

    Transcriptional Control 

 Transcriptional regulation is another option to determine the fate of a given meta-
bolic pathway. Several families of transcription factors have been shown to partici-
pate in controlling the biosynthesis and accumulation of secondary metabolites 
(reviewed in [ 57 ]). Some genes are regulated only by one, others by two or even 
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  Fig. 21.4    Two possible mechanisms to reduce unwanted transcription products. ( a ) The genera-
tion of microRNAs is taking place in the plant to regulate mRNA levels post-transcriptionally. The 
design of artifi cial miRNAs allows the same process to reduce unwanted side products or toxic 
compounds in metabolic engineering. The miRNA is generated from a precursor which is encoded 
in the genome. After transcription, the miRNA folds in a way that a loop structure is cleaved by the 
enzyme DCL (dicer-like). Only the miRNA, which is complementary to the target mRNA is 
retained; the so-called miRNA* is degraded. Finally, the double-stranded RNA molecule is cleaved 
in the RISC (RNA-induced silencing complex), where the protein AGO (argonaute) plays an 
important role. ( b ) The use of nucleases to induce double stranded DNA breaks ( DSB ). Two nucle-
ases are shown here, one is the zinc fi nger nuclease ( ZFN ), the other the transcription activator-like 
effector nucleases ( TALEN ). Both bind to DNA with specifi c recognition motifs, which can be 
genetically engineered. The nuclease generates breaks, which are then repaired by either homolo-
gous recombination (mechanism not shown here), or in plants more often by non homologous end 
joining. In both methods often mistakes are found, which result in mutations. The DNA is not 
transcribed correctly any more (Adapted from [ 54 ])       
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three different transcription factors, depending on the signal(s) to which they 
respond. In other cases, only a few transcription factors control a complete pathway, 
and in such a case maybe overexpression of one transcription factor may lead to the 
production of a desired metabolite. The overexpression of a gene encoding a maize 
transcription factor in other plants is a good example for this kind of manipulation 
[ 58 ]. The transcription factor controls many steps in anthocyanin biosynthesis, so, 
various tissues of the resulting transgenic plants are colored. 

 Many transcription factors, which are involved in the control of secondary 
metabolite synthesis, are also controlled by signalling molecules such as jasmonic 
acid (JA). JA and salicylic acid (SA) are important signaling molecules in plant 
defense reactions against microbes and herbivores. Jasmonates can regulate many 
transcription factors, for example the MYB family, AP/ERF family and WRKY 
family [ 59 ,  60 ]. This implies that JA can regulate the synthesis of a wide spectrum 
of secondary metabolites. Among them are quite different structures such as gluco-
sinolates and camalexin in  Arabidopsis , fl avonoids and anthocyanidins in many 
plant species, terpene indole alkaloids in  C. roseus , nicotine in tobacco and artemis-
inin in  Artemisia . Therefore, JA is often used to elicit the synthesis of secondary 
metabolites in biotechnology. The role of jasmonate has been confi rmed in the regu-
lation of terpene indole alkaloids, where it was shown to increase the levels of the 
transcription factor family ORCA 2 and 3 (octadecanoid-derivate responsive 
 Catharanthus  AP2-domain protein). Thereby the transcription of several genes 
involved in the terpene indole alkaloid pathway is enhanced [ 61 ,  62 ]. 

 In case of the JA response, proteinaceous inhibitors of jasmonic acid-induced 
transcription have to be degraded before gene activation is possible. In this case not 
jasmonic acid itself, but especially its conjugate with the amino acid leucine is trig-
gering this process [ 63 ]. Under non-inducing conditions a transcriptional repressor 
(JAZ) binds to the promoter of jasmonate-inducible genes [ 64 ]. This prevents tran-
scriptional activation by the MYC transcription factors. To degrade the repressor, the 
amino acid conjugate of jasmonic acid with isoleucine is needed as a signal. Binding 
of the jasmonate conjugate together with the repressor protein to a receptor (COI1), 
which is an F-box protein, targets the repressor to proteolytic degradation in the 26S 
proteasome (reviewed in [ 65 ]). For this, the target protein has to be ubiquitinated, 
because only proteins with a polyubiquitin tail are recognized by the proteasome. 
Ubiquitination is achieved in the SCF-complex (SCF stands for SKP, CUL, F-box), 
composed of the JA-receptor itself (the F-box protein), the ubiquitin ligase and other 
adaptor proteins (Fig.  21.5 ). Once the repressor is degraded, the MYC-type tran-
scription factor can activate the transcription of the jasmonate- inducible gene(s). 
Since these processes have been elucidated in the recent years, one might fi nd inter-
esting targets for genetic engineering also the signal  transduction components.

   JA plays a major role in the transcriptional control of taxane synthesis in  Taxus  
species. It was shown that JA can induce transcripts of eleven genes encoding biosyn-
thetic enzymes in the pathway [ 66 ]. Furthermore, this study provided an important 
fi nding namely that upon elicitation with the methyl ester of JA one of the two alter-
native branches of the taxane pathway was favored at the expense of the other and this 
in turn provided some insights into why unelicited cell lines failed to produce taxol.  
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    Transport 

 A major problem is the transport of intermediates between organelles, because the 
transporters would also need to be increased. Therefore, metabolic pathways occur-
ring in only one compartment are easier to manipulate. A modifi cation of compart-
mented pathways might be possible by adding signal sequences to the heterologously 
expressed genes. Alternatively, the synthesis of metabolites in the culture medium 
could be attempted by adding secretion sequences to the protein(s). The secretion of 
the protein or reaction product ensures easy purifi cation of the product from the 
culture supernatant. Since the molecular transport mechanisms of secondary metab-
olites [ 67 ] are less well understood than other aspects, i.e. biosynthesis or transcrip-
tional control, it is diffi cult to engineer this part of a compartmented pathway. 
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  Fig. 21.5    Synthesis and possible transcriptional control of taxanes. One rate-limiting enzyme 
taxane synthase, which was used in experiments to increase synthesis, is indicated. Only an over-
view of the general pathway is shown here. Based on information from [ 71 ]. As an example for 
gene induction by jasmonate ( JA ) the current knowledge on JA-induced signal transduction is 
shown, which could also most likely induce transcripts encoding enzymes involved in taxane syn-
thesis. Jasmonate ( JA )-induced proteolytic degradation of transcriptional repressors ( JAZ ) has to 
happen to make gene activation possible. The F-box protein COI1 is part of the SCF-complex and 
the receptor for the isoleucine conjugate of JA (JA-Ile). The active JA-Ile is synthesized by mem-
bers of the GH3 protein family. Another part of the SCF-complex (SCF: Skip, Cullin, F-box) has 
ubiquitin ligase activity, thereby polyubiquitinating the JAZ repressor proteins. These are targeted 
for proteolysis. Once the repressor is degraded in the 26S proteasome of the cell, the transcrip-
tional activation of a transcriptional cascade  via  MYC transcription factors can take place       
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However, recently the engineering of glucosinolate transport has been reported [ 68 ], 
so that these techniques may become available also for intermediates. In some cases 
also long distance transport of molecules plays a role in the availability of 
precursors.  

    Examples for Successful Pathway Alterations 

 Pioneering work on pathway alterations using hairy roots and transformation 
approaches, which have been described here, has already been carried out for more 
than 30 years. For example Hamill et al. [ 69 ] were able to overexpress an ornithine 
decarboxylase from yeast in  Nicotiana rustica , which resulted in enhanced produc-
tion of nicotine. Many successful examples using this technique were to follow. 

 In the case of  Taxus baccata , which is used for the production of taxanes, the 
reasonable concentration within the natural plant material of the bioactive com-
pound is too low for commercial use [ 70 ], so, for the current demand alternative 
methods are needed. Till now, a complete chemical synthesis is not an alternative 
for taxol production, due to the complex structure of taxol that needs a lengthy and 
expensive synthetic routes. The genes and enzymes for the synthesis of this power-
ful anticancer drugs have been identifi ed and characterized [ 71 ]. There are many 
steps involved in the universal diterpenoid progenitor geranylgeranyl diphosphate 
derived from the plastidial methyl erythritol phosphate pathway for isoprenoid pre-
cursor supply [ 72 ], selected steps are shown in the biosynthesis scheme in Fig.  21.5 . 
The complexity of the pathway to taxanes makes one to realize that the genetic 
engineering is a challenge. Despite the challenges arising from the biosynthetic 
pathway, recent efforts have allowed to increase paclitaxel production in cell cul-
tures by selecting for high biosynthesis lines and improving culture conditions 
(reviewed in [ 73 ]). Furthermore, now-a-days molecular approaches are used to 
improve the plant material producing taxanes (reviewed in [ 74 ]). It was possible to 
determine some genes that control the main fl ux limiting steps in taxane biosynthe-
sis. It was also demonstrated using transcriptomic profi ling, that some elicitors (i.e. 
JA; Fig.  21.5 ) induce a dramatic reprogramming of gene expression in  Taxus  cell 
cultures [ 75 ], which likely accounts for the enhanced production of taxol and related 
taxanes. Among the upregulated genes were those for taxadiene synthase (marked 
in Fig.  21.5 ), several intermediate hydroxylation steps, one acetylation step and sev-
eral genes involved in the fi nal biosynthetic steps, for example baccatin III-3-amino- 
13-phenylpropanoyl transferase and 3′ N -benzoyl transferase. Taxadiene synthase is 
viewed as the fi rst committing enzyme in the biosynthesis pathway [ 76 ]. Based on 
this information it is possible in the future to change the production levels by using 
metabolic engineering. 

  C. roseus  produces the bisindole alkaloids vinblastine and vincristine, which are 
used as anticancer drugs (Fig.  21.6 ). Therefore, various modifi cations of these inter-
esting metabolites have been genetically engineered in this species (reviewed in 
[ 47 ]). The biosynthesis of terpenes can proceed  via  two different pathways, one is 
termed mevalonate (MVA) pathway, the other methylerythritol-phosphate (MEP) 
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pathway [ 77 ]. Names are derived from the major metabolites produced in the path-
ways. The MVA pathway is located in the cytosol, the MEP pathway in the plastids. 
Both can occur in the plant at the same time, but some organisms use only one 
pathway for the synthesis of terpenes. In the cytosol the sesqui- and triterpenes are 
synthesised, whereas the plastid is responsible for the synthesis of the mono-, di- 
and tetraterpene structures. Coupled to the endoplasmic reticulum oxidation steps 
are catalyzed by cytochrome P450-dependent monooxygenases. Terpenes can be 
made also in non-green plastids. It is assumed that these two pathways interact with 
each other. The terpene moiety of terpene indole alkaloids is synthesised predomi-
nantly  via  the MEP pathway in the plastids. The biosynthesis of these metabolites 
begins with the generation of indole and terpene precursors by the shikimate and 
MEP pathways. It is therefore clear that the pathway for terpene indole alkaloids is 
especially highly compartmented. Therefore, numerous transporters are also 
involved (see “Transport” in Sect.  21.2.3 ).
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  Fig. 21.6    General scheme for the two pathways of terpene synthesis with the general subcellular 
compartments where synthesis steps are taking place and compartmentation of terpene indole alka-
loid biosynthesis in  Catharanthus roseus . The compartments plastids, cytosol, vacuole and endo-
plasmic reticulum ( ER ) participate in the biosynthetic steps.     : Putative transporters needed; 
 solid arrows : single enzymatic reaction step;  dashed arrows : several reaction steps;  MDHT  
11-methoxy-2,16-dihydro-16-hydroxy-tabersonine,  G10H  geraniol-10-hydroxylase,  NMT  
S-adenosyl-methionine hydroxytabersonine- N -methyltransferase,  DAT  acetyl-coenzyme A 
deacetylvindoline 17- O -acetyltransferase,  OHT  2-oxoglutarate-dependent dioxygenase,  POX  per-
oxidase,  SSßG  strictosidine-ß-glycosidase,  SSS  strictosidine synthase (Adapted from [ 116 ])       
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   A key enzyme for the pathway is tryptophan decarboxylase (see above), which 
has been used many times as a target for genetic engineering, but several upstream 
enzymes can also be used.  C. roseus  hairy root cultures expressing genes encoding 
anthranilate synthase and/or tryptophan decarboxylase have been generated with 
enhanced fl uxes through the tryptophan branch of the terpene indole alkaloid path-
way and enhanced levels of tryptamine and serpentine as a result. Additional treat-
ment of anthranilate overexpressing cultures with terpenoid precursors resulted in 
an elevation of various compounds including catharanthine, ajmalicine, lochneri-
cine, and tabersonine. Tabersonine is a direct precursor for the pharmacologically 
important molecules vinblastine and vincristine, and therefore its increase could 
result in better production rates. On the contrary, increased synthesis of side prod-
ucts such as lochnericine could result in lower concentration of the precursors for 
the desired compounds. Increasing the expression of the gene encoding strictosidine 
synthase, an enzyme that catalyzes another rate-limiting step for terpene indole 
alkaloid biosynthesis in the second branch – the terpene moiety – of the pathway, 
also enhances the synthesis of downstream metabolites, and their production is fur-
ther enhanced if one or both precursors loganin and tryptamine are added. 
Overexpression of other genes from the pathway also alters metabolite composition 
(reviewed in [ 47 ]). 

 A third example is the engineering of glucosinolases. Glucosinolates are bioac-
tive metabolites mainly of the crucifer family [ 78 ]. They are derived from aliphatic 
(methionine), aromatic (tyrosine and phenylalanine) or indolic (tryptophan) precur-
sors [ 79 ]. Their increase can often be stimulated by elicitation with either chemical 
or biological agents, such as fungi or insects [ 80 ,  81 ]. The production of glucosino-
lates in hairy root cultures would be attractive, but here it was shown that in many 
cases the pattern differed signifi cantly from the mother plant [ 82 ] and the desired 
classes were either totally absent or present only in low amounts [ 83 ]. Nevertheless, 
induction of specifi c pathways by methods described in this chapter could also lead 
to the increased production of selected glucosinolates (GSL). In intact plants, it was 
possible to engineer the glucosinolate pathway in various studies (reviewed in [ 84 ]). 
The aim is to improve the glucosinolate levels for either plant protection against 
pests and/or benefi cial health effects for human nutrition. The major studies have 
been carried out with the model plant  Arabidopsis thaliana , but also with some 
other Brassicaceae members, identifying many genes for biosynthetic enzymes, but 
also transcription factors. Therefore, the genes from  Arabidopsis  have been used in 
many cases for metabolic engineering. For example, Zang et al. [ 85 ] reported the 
transformation of Chinese cabbage with genes encoding enzymes for the synthesis 
of aliphatic GSL from  Arabidopsis . Albeit an accumulation of aliphatic GSL was 
observed, the patterns were not changed [ 85 ]. On the contrary,  Arabidopsis  does not 
possess aromatic glucosinolates, so, it was possibly to engineer genes from  Sorghum 
bicolor  into  Arabidopsis , which indeed resulted in the production of a benzyl-GSL 
[ 86 ]. A different chemotype was generated when a gene  from Manihot esculenta  
was expressed in  Arabidopsis . The resulting enzymatic activity led to the synthesis 
of valine and isoleucine derived GSL [ 87 ]. In addition, strong homologous 
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 overexpression of biosynthetic genes from  Arabidopsis  led to the accumulation of 
atypic GSL normally not present in this plant [ 88 ]. Finally, it was possible to turn a 
non-GSL synthesizing plant  Nicotiana tabacum  into a GSL producer by expressing 
a polycistronic message with three genes for GSL biosynthetic enzymes from a 
single promoter [ 89 ]. Upon precursor feeding the transgenic plants accumulated the 
expected benzyl-GSL, demonstrating that the proteins were synthesised and active 
[ 89 ]. Furthermore, GSL patterns could also be engineered by overexpressing genes 
for transcription factors (see “Transcriptional Control” in Sect.  21.2.3 ).    

21.3     Alternative Plant Systems in Biotechnology 

 As discussed above, intact plants, cell cultures and especially hairy root cultures 
have all their distinct advantages. However, for certain aspects of biotechnology, 
alternative plant systems need to be investigated. In terms of cultivation procedures 
there are alternative systems to hairy roots or cell cultures now available. While 
algae constitute good systems for some products (Chap.   6    , this book), moss plants/
cultures have received a lot of attention over the last decade [ 90 ]. 

21.3.1     Green Algae 

 Several products from green algae, which are used today, consists of secondary 
metabolites which are extracted from the algal biomass (reviewed in [ 91 ]). Next to 
hydrogen production [ 92 ] and biofuels [ 93 ], the best known examples for secondary 
metabolites produced in microalgae are the carotenoids astaxanthin and β-carotene. 
Several microalgae are currently used in bioreactors, e.g. for the production of 
carotenoids (see Chap.   4    ; this book). Many species of green algae are able to pro-
duce other valuable metabolites such as antioxidants, polyunsaturated fatty acids, 
vitamins, anticancer and antiviral drugs [ 91 ]. Many of these compounds are second-
ary metabolites which are produced under stress conditions, but other compounds 
are produced under optimum growth conditions, making the prediction for cultiva-
tion yet diffi cult. An important organism used in biotechnology is  Chlamydomonas 
reinhardtii . For  C. reinhardtii  highly effi cient transformation systems are available 
[ 94 ]. The two most commonly used involve either glass bead-assisted transforma-
tion or biolistic methods [ 95 ]. In addition, transformation of  C. reinhardtii  using  A. 
tumefaciens  is possible [ 96 ]. Similarly to higher plants (see above), effi cient plastid 
transformation is possible (reviewed in [ 97 ]). Another model system is  Chlorella  
sp., which has been used for the production of lipids, even though the green alga is 
a major producer for hydrogen [ 98 ]. Also for this organism several transformation 
methods are available, among them electroporation [ 99 ],  A. tumefaciens  [ 100 ] and 
biolistic transformations [ 101 ].  
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21.3.2     Mosses 

 The moss  Physcomitrella patens  has been used as a model organism for lower land 
plants, mainly due to its mostly smaller gene copy number, alternative biosynthetic 
pathways and last but not least for its high rate of homologous recombination 
(reviewed in [ 102 ]). Like in plastids (see above) this enables a targeted integration, 
which was initially used for the targeted gene knockout (e.g. [ 103 ,  104 ]). Now other 
transformation systems for this organism have also been recently developed [ 105 ]. 
An  in vitro  cultivation system for  P. patens  is established basically for all stages of 
the moss life cycle, but most reports rely on  in vitro  propagation of protonema in 
photobioreactors [ 90 ]. The moss is suitable for the production of many complex 
biopharmaceuticals, especially glycosylated proteins, because such proteins can be 
produced safely in various photobioreactors of different sizes without the need for 
animal-derived medium compounds [ 106 ]. 

 More than 400 novel secondary metabolites were isolated from bryophytes dur-
ing the last decades and structurally elucidated [ 107 ]. These compounds encompass 
the chemical classes of fl avonoids, bifl avonoids, terpenes and terpenoids. These 
metabolites most likely are necessary for protection of moss plants in the environ-
ment, as for higher plants. In addition, the outer tissues are less well protected in 
comparison to tracheophytes, therefore a large amount of defense chemicals is most 
likely needed (reviewed in [ 108 ]). Furthermore, most bryophytes grow on forest 
ground in a close connection to biodegrading microbes. Therefore, a protection 
against pathogens like fungi or bacteria is essential for survival in this habitat [ 108 ]. 
Antimicrobial and fungicidal activities have been detected in moss extracts. Based 
on the existence of such antimicrobial chemicals present in mosses, a commercial 
product was developed and is sold as a natural pesticide [ 109 ]. However, due to the 
risk of allergic reactions bryophyte extracts were not recommended for scientifi c 
medicinal use so far [ 109 ]. 

 Also, moss plants emit volatiles into their environment to interact with other 
organisms. Sporophytes of some mosses can be fertilized by insects and the moss 
plants  Ceratodon purpureus  and  Bryum argentum  attract these by volatiles [ 110 ]. 
This data demonstrate the ability of moss to synthesize a wide range of compounds 
to adapt in their ecological habitat. 

 Indicative of its secondary metabolism,  P. patens  possesses a large gene family 
of polyphenoloxidases, comprising of 13 members [ 111 ]. In addition, it releases 
large amounts of the diterpene 16-hydroxykaurane [ 112 ]. Metabolic profi ling of 
moss can result in the identifi cation of novel compounds [ 113 ]. Even though  P. 
patens  produces a large amount of interesting secondary metabolites, its use in bio-
technology comes from the ability to produce human glycoproteins in bioreactors 
[ 114 ]. Since heterologous protein production is not the focus of this chapter, the 
topic will not be touched. 

 Moss cultures might be suitable in cases where other organisms, also higher 
plants, are inhibited in growth by the metabolite of interest. For the production of 
taxol (see above) it was possible to express the gene for taxadiene synthase (see also 
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Fig.  21.5 ) from  Taxus brevifolius  in  P. patens  [ 115 ]. The authors observed that in 
stable moss transformants, taxa-4(5),11(12)-diene was produced up to 0.05 % fresh 
weight of tissue, without signifi cantly affecting the amounts of other endogenous 
diterpenoids. Unlike higher plants that had been genetically modifi ed to produce 
taxa-4(5),11(12)-diene, transgenic  P. patens  did not exhibit growth inhibition due to 
alteration of diterpenoid metabolic pools [ 115 ]. 

 Clearly the interest in the exploitation of alternative organisms for the biotechno-
logical production of secondary metabolites will enhance the possible spectrum that 
can be produced in the future.   

21.4     Conclusion 

 Successful metabolic engineering is always dependent on critical experimental 
evaluation in the beginning, such as choice of plant material, transformation meth-
ods, the ability to detect the product(s) in question and the identifi cation of suitable 
genes and strategies for transformation (Fig.  21.1 ). In the future also the potential of 
sequencing techniques to be used for non-model plants with interesting medicinal 
components will increase the possibilities for metabolic engineering further.     
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    Chapter 22   
 Theoretical Basis of Plant Cell and Tissue 
Culture for Production of Biomass 
and Bioactive Compounds 

             Arturo     Lopez-Villalobos     ,     Edward     C.     Yeung    , and     Trevor     A.     Thorpe   

    Abstract     Plant tissue culture is an important biotechnological tool, which involves 
biochemical and genetic manipulations to onset specifi c gene programming, which 
determines an optimal cell differentiation state for the production of bioactive com-
pounds. Indeed, not only the metabolism but also the morphogenetic processes are 
modifi ed in plant cells to drive the synthesis and accumulation of economically 
valuable compounds. In this chapter, we provide an overview of the current molecu-
lar approaches to control the expression of specifi c genes encoding putative heter-
ologous and native enzymes as well as transcription factors to enhance the metabolic 
fl ow of specifi c pathways in order that notable bioactive compounds can be accumu-
lated in plant cells at acceptable commercial levels. Such methods vary from single-
gene plant transformations to the emerging multi-gene transformation (gene 
stacking) technologies embraced by private companies focusing primarily in the 
metabolic engineering of secondary metabolism. The virtues and potential of these 
molecular methods in their application to tissue culture systems are presented. 
Additionally, the importance of subcellular targeting of proteins, notably biosyn-
thetic enzymes and pharmaceutical antibodies, for enhancing their activity and sta-
bility is also discussed. Finally, the progress in two emerging approaches for the 
production of bioactive molecules, the manipulation of cell differentiation and cell 
immortalization are expounded in this article. Thus, we present the molecular basis 
to control both cell differentiation and cell immortalization in plant tissue culture 
systems as novel avenues to control and perpetuate the gene programming which in 
turn creates and regulates cellular microenvironments for the optimal biosynthesis 
of valuable compounds. Consequently, our objective is to present how basic 
approaches, including the manipulation of gene expression, are amalgamated to 
other molecular strategies of higher hierarchy, particularly the manipulation of cell 
differentiation and immortalization for the synthesis of bioactive molecules in plant 
tissue culture platforms.  
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22.1         Introduction 

 Plants being sessile organisms have to create a fl exible life style in order that they 
can survive on land. The relative ease for plant cells to regenerate and the produc-
tion of secondary metabolites as defense compounds can be regarded as a basic 
mechanism of plant survival on land. The theoretical basis for plant tissue culture 
was fi rst proposed by Gottlieb Haberlandt in his address to the German Academy of 
Science in 1902 on his experiments on the culture of single cells [ 1 ]. Even though 
his experiments were unsuccessful, nevertheless he predicted that one could suc-
cessfully cultivate artifi cial embryos from vegetative cells. Haberlandt’s vision was 
subsequently proven by the work of White, Gautheret and others. The early fi ndings 
set the stage for the dramatic increase in the use of  in vitro  cultures in the subsequent 
decades. Details on the early pioneering events in plant tissue culture could be found 
in White [ 2 ], Bhojwani and Razdan [ 3 ], and Gautheret [ 4 ] and the general history of 
plant tissue culture is summarized in the reviews by Vasil [ 5 ] and Thorpe [ 1 ]. 

 Higher plants produce a large number of diverse organic chemicals, which are of 
pharmaceutical and industrial interest. Theoretically, plant tissue culture has the 
potential to produce an infi nitive range of bioactive compounds, once the high pro-
ducing tissue or cell lines are selected and the culture conditions are optimized. The 
fi rst attempt at the large-scale culture of plant cells for the production of pharmaceu-
ticals took place in the 1950s at the Charles Pfi zer Co. The failure of this effort 
limited research in this area in the United States, but work elsewhere in Germany 
and Japan in particular, led to the development, so that by 1978 the industrial appli-
cation of cell cultures was considered feasible [ 6 ]. Furthermore, by 1987, there were 
30 cell culture systems that were better producers of secondary metabolites than the 
respective plants [ 7 ]. Unfortunately, many of the economically important plant 
products are either not formed in suffi ciently large quantities or not at all by the 
plant cell cultures. The production of unique products is usually a trait of differenti-
ated cells. In a culture system, as cells can be at different stages of the cell cycle, 
production of unique metabolite is not a priority for cell growth. Hence, in order to 
“commend” the cell culture to produce specifi c metabolites of interest, one needs to 
understand properties of the culture system and the use of different strategies to 
elicit a product. The review by Yeoman and Yeoman [ 8 ] provides a useful overview 
for the production of secondary metabolites. In recent years, new strategies such as 
cell immobilization and elicitation coupled to a bioreactor technology have been 
developed. Currently, plant cell and tissue culture has successfully driven the large- 
scale production of several drugs, for instance shikonin, ajmalicine, rosmarinic 
acid, digoxin, ginsenosides and paclitaxel (reviewed by El Meskaoui [ 9 ]). 

 In order to fully realize the potential of any plant tissue culture system a number 
of research works have been undertaken to defi ne the most infl uential factors 
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 controlling the accumulation of bioactive compounds, notably secondary metabo-
lites and recombinant proteins, in plant tissues. In these tasks, recent discoveries have 
enhanced our knowledge on the involved molecular mechanisms as well as on the 
plant structure requirements [ 10 – 12 ]. Thus, in intact plants, secondary metabolites 
and probably other bioactive compounds are synthesized from an assembly of con-
secutive enzymes regulated by a pool of transcription factors, which are proteins 
responsible for activation of gene expression. More importantly, these components 
are produced through intricate networks which constitute complex systems with 
highly specialized developmental and spatial controls at the cellular, tissue, organ 
and whole plant levels. In these networks, transcription factors are the actual linkers 
between specifi c abiotic and biotic environmental stimuli and developmental pro-
grammes to activate genes involved in the synthesis of the bioactive compounds [ 10 ]. 
In contrast, disruption of networks often occurs in plant tissue cultures, as a particu-
lar tissue or specifi c cells are usually excised from various parts of a plant for  in vitro  
culture. Failure in the production of the desired bioactive compounds then occurs in 
many cases when two or more enzymes are required for the synthesis, and they are 
naturally confi ned to different plant organs. If enzymes retain organ specifi city  in 
vitro , the synthesis of the bioactive substances is blocked at intermediate stages 
resulting in low or no accumulation of targeted compounds [ 13 ]. In other cases of 
arrested accumulation of bioactive compounds, if specifi c environmental stimuli or a 
determined cell differentiation conditions are absent, then that will most likely result 
in failure of specifi c gene expression necessary for the production of bioactive com-
pounds. All these fi ndings explain to some extent, the causes for the failure in the 
production of specifi c bioactive compounds in plant tissue culture. Moreover the 
experimental fi ndings also provide useful insights of the limiting factors involved 
and suggest new strategies that should be developed to overcome such hurdles. 

 In this chapter, we summarize recent fi ndings and provide a theoretical basis for 
plant cell and tissue culture for the production of biomass and bioactive compounds. 
We primarily focus on the main strategies that are being applied to plant tissue cul-
ture to facilitate the production of bioactive compounds, especially on the molecular 
biology and other advanced techniques involved in the control of gene expression, 
cell differentiation and fi nally, cell immortalization, as an additional cell property to 
enhance the yields and productivity of the culture systems. These new approaches 
and technologies promise the generation of bioactive compounds from  in vitro  cul-
ture systems.  

22.2     Manipulation of Gene Expression to Enhance 
the Production of Bioactive Compounds 

 The advent of molecular biology techniques applied to reverse genetics has 
revealed the pathways for the synthesis of many bioactive compounds, as well as 
provided an insight on their regulatory molecular mechanisms. These studies make 
use of knockout mutants or transgenic lines derived from gene silencing platforms 
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[i.e. antisense RNA (asRNA) and RNA interference (RNAi)] to defi ne primarily 
the rate- limiting enzymes for a given metabolic pathway [ 14 ]. Following the char-
acterization of these enzyme-encoding genes as well as the manipulation of their 
expression, through various overexpression or post transcriptional gene silencing 
(PTGS) techniques has led to the accumulation of many types of bioactive com-
pounds in plant tissue cultures [ 15 – 17 ]. Alternatively, an increased synthesis of 
bioactive compounds has been pursued through the overexpression of the genes 
encoding key transcription factors responsible for the activation of a group encod-
ing genes involved in such metabolic pathways [ 18 – 21 ]. In other cases, for instance 
secondary metabolites, the manipulation of a group of genes involved in a specifi c 
metabolic pathway has been more advantageous for the synthesis of such sub-
stances than those approaches in which the expression of a single gene is con-
trolled [ 22 – 24 ]. Furthermore, in many bioactive compounds, especially 
recombinant proteins, the targeting of these compounds into subcellular compart-
ments is as important as the levels of gene expression for the reason that their 
functionality and stability can be manipulated. Therefore, many targeting strate-
gies have been developed to direct the biosynthesis and accumulation of the bioac-
tive molecules to optimal subcellular environments. Here, we are highlighting the 
progresses in the main genetic strategies used to enhance the production of bioac-
tive compounds in  in vitro  cultured plant tissues through the manipulation of gene 
expression and compound- subcellular targeting [ 25 – 28 ]. We are presenting key 
examples to illustrate the progresses of the molecular biology-based platforms 
without attempting to achieve a comprehensive review. 

22.2.1     Manipulation of Enzymes: Single Rate-Limiting 
Enzymes Versus a Group of Enzymes 

 The starting point for metabolic engineering is to elucidate the rate-limiting phases 
of the biosynthetic pathway. Many methods have been applied to dissect these criti-
cal metabolic steps but the genetic approaches, including mutant selection, RNAi 
mediated-gene silencing and gene overexpression through gene engineering have 
been most effective [ 23 ]. These genetic modifi cations result in transgenics or mutant 
plants in which the contents of intermediate metabolites are measured to re-assure 
that the modifi ed gene encodes the most rate-limiting enzyme of the pathway. 
Therefore, it is not surprising to fi nd a number of research works in which the 
manipulation of only a single gene, encoding the ‘bottleneck’ intermediate, was 
suffi cient to shift the entire metabolic pathway and to drive high accumulation of a 
specifi c bioactive compound in plant tissues [ 15 ,  29 ]. 

 By applying this strategy, numerous active compounds, including lipids, proteins 
and carbohydrates have been achieved in the whole intact plant, but the success in 
 in vitro  cultured plant cells and tissues is limited to a few cases, mainly to secondary 
metabolites [ 9 ,  23 ,  26 ,  30 ]. One of the fi rst reports is that the three to fourfold 
increase of artemisinin in  Artemisia annua  root hairy cultures when the farnesyl 
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diphosphate synthase (FPPS) gene from cotton was overexpressed by using the 
CaMV 35S promoter after  Agrobacterium rhizogenes -mediated transformation. 
Such an outcome was possible due to the fact that FPPS produces the precursor 
farnesyl diphosphate which is critical for tepernoid biosynthesis, including artemis-
inin [ 31 ]. Another economically important secondary metabolite in which its bio-
synthesis was increased in hairy root culture by gene engineering is the tropane 
alkaloid scopolamine. Scopolamine is naturally synthesized in many genera of the 
Solanaceae, for instance  Hyoscyamus ,  Atropa ,  Duboisia ,  Scopolia  and  Datura , and 
the enzyme putrescine  N -methyltransferase (PMT) catalyzes the fi rst committed 
step, as it produces the metabolite precursor  N -methylputrescine. Similar to the pre-
vious example, the constitutive overexpression of the PMT gene from  Nicotiana 
tabacum  in hairy root cultures of many Solanaceae species resulted in more than a 
sixfold increase of scopolamine [ 29 ,  32 ]. However, in many hairy root cultures of 
the species  Hysoscyamus niger, Atropa belladonna and Duboisia hybrid  the over 
expression of the PMT tobacco gene had no effect on alkaloid accumulation. These 
studies demonstrated that the effects of the PMT overexpression are suffi cient to 
increase scopolamine levels in plant cultures, but its action is species-dependent. 
The failure of PMT in some plant species may be due to the presence of other down-
stream steps in addition to PMT that would have been more critical for scopolamine 
biosynthesis [ 24 ,  33 ,  34 ]. This fi nding therefore shows that single-gene manipula-
tion is not suffi cient in some cases to enhance the levels of a particular economically 
valuable compound. 

 Instead of overexpressing a gene to enhance a metabolic pathway, the blocking 
of the fl ow of a ‘bottleneck’ intermediate or precursor to a competitive pathway may 
result in a more effective means for inducing the accumulation of certain bioactive 
compounds. Under this genetic approach, this blockage is conducted by any plat-
form of gene silencing in which typically the gene encoding the receiver enzyme 
responsible for the entrance of such a precursor into the alternative pathway is 
down-regulated. This strategy has been applied by some research groups in attempt-
ing to enhance the biosynthesis of morphinan alkaloids by blocking the metabolic 
fl ow of (S)-reticuline into the benzophenanthridine alkaloids, such as sanguinarine, 
chelirubine, and macarpine. By silencing the genes encoding the berberine bridge 
enzyme (BBE) in California poppy hairy root and cell cultures, the content of the 
benzophenanthridine alkaloids was successfully reduced, but still the contents of 
morphinan alkaloids were unmodifi ed [ 15 – 17 ]. To overcome this problem, research 
is still going on to detect what other metabolic steps are critical to increase the mor-
phinan alkaloid biosynthesis in hairy root cultures, although the over expression of 
the gene encoding salutaridinol 7- O -acetyltransferase ( SalAT ; [ 35 ]) together with 
the silencing of BBE gene can be a feasible approach. 

 The previous example illustrates that single-gene manipulations are sometimes 
not suffi cient to promote the accumulation of the fi nal desirable product, even 
though they are highly effective in driving the accumulation of certain metabolite 
intermediates in a particular branch within the pathway. Therefore, manipulation of 
bioactive compounds appears to be a rather complicated task in terms of the com-
plexity of the processes involved in the metabolic pathways. In this view,  researchers 
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have tried to address this scientifi c problem in order to pursue a more effective way 
of metabolic engineering. Recent advances on these investigations have shed light 
on the complexity of the metabolic pathways revealing the presence of multiple 
crucial steps which are controlled by the coordinated interaction of numerous genes 
on the same or interconnected pathways under a harmonized regulation [ 22 ,  23 ]. 
Under this conception, the improvement in biosynthesis of economically important 
compounds appear to be even more challenging, and researchers have to come up 
with new strategies in which the manipulation of multiple genes is necessary to 
achieve a more effective way in the control of the metabolic processes. The simple 
version of this approach is the co-expression of two genes that are believed to 
encode enzymes of the most rate-limiting steps of the pathway. A successful exam-
ple of this strategy is the enhancement of the biosynthesis of scopolamine by the 
simultaneous constitutive overexpression of the genes encoding the upstream rate-
limiting enzyme PMT and the downstream enzyme hyoscyamine 6 β-hydroxylase 
(H6H) in transgenic henbane ( Hyoscyamus niger ) hairy root cultures. Indeed, these 
two-gene derived transgenic cultures produced the highest reported contents 
(411 mg L −1 ) for scopolamine through the engineering of a plant whereas the con-
tents of scopolamine in cultures harboring a single-gene were very reduced [ 24 ]. 

 In the light of the successes with multi-gene transformants in intact plants and 
tissue cultures [ 22 ], metabolic engineers started to develop more sophisticated plat-
forms to integrate numerous genes into the genome. Further encouragement for the 
application of such techniques came from the discovery that many genes, mainly 
those involved in the synthesis of secondary metabolites, are assembled in biosyn-
thetic gene clusters for performing multistep specialized metabolism in plants, as 
well as in other organisms [ 36 ]. In fact, these gene clusters are activated as single 
transcriptional units in an operon fashion in order that all genes are synchronously 
expressed and intermediate toxic metabolites cannot be accumulated in plant cells. 
This genetic mechanism undoubtedly guarantees the synthesis of the end products 
and simultaneously avoids the cell death, as it would likely occur if each gene would 
independently be transcribed [ 36 – 38 ]. The logical strategy for metabolic engineer-
ing to mimic the natural occurrence of gene clusters would be the transfer and inte-
gration of a large number of genes. This method is commonly known as “gene 
stacking” and has been currently embraced by many biotechnological companies 
(i.e., Mosanto, Chromatin Inc.™, Agrisoma, etc.) which are employing many plat-
forms, including sequential transformations, large conventional vectors with many 
expression gene cassettes, virus-mediated gene transfer, transformation-competent 
artifi cial chromosomes, plant artifi cial chromosome-assisted gene transfer and 
transformation with new forms of bacterial artifi cial chromosome (BAC) vectors, 
termed binary-BAC vector, capable of transfer large DNA fragments into plant 
genomes [ 22 ,  39 – 41 ]. The application of such technologies in plant tissue culture 
for the production of bioactive compounds is still in its infancy, but a proof-of- 
concept experiment with BY2-tobacco cells and rice protoplasts have showed its 
feasibility. In this novel protocol, large DNA fragments (i.e. 100 kb) are transferred 
and cloned into BAC vectors which are subsequently trapped in bioactive beads that 
carry the plasmid DNA into the cell for integrated transformation [ 42 ]. Undoubtedly, 
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the fl ourishing of the gene stacking techniques would enable that many pathways 
which require the transfer of polycistronic genes, for instance the gene clusters for 
synthesis of noscapine or benzoxazinones [ 43 ,  44 ], can be easily engineered for a 
more effi cient production of these compounds. However, for the multiple-gene con-
struction of metabolic pathways of bioactive compounds in heterologous plant cell 
cultures, elimination of endogenous enzyme activities may be crucial to drive 
metabolite synthesis towards the desired end product [ 45 ]. 

 Independently on using either single-gene or multi-gene modifi cations,  metabolic 
engineers also need to defi ne the type of gene expression, i.e. constitutive or induc-
ible, required to achieve the expected levels of the desired bioactive compound. Due 
to the complexity of metabolic processes, there is still no available method which 
can assist researchers to decide what type of expression would be the most suitable 
for their particular purposes. Instead, the selection of constitutive or inducible pro-
moters for metabolic engineering is a trial-and-error task and needs to be tailored by 
time and energy-consuming experiments. Currently, the CaMV 35S promoter has 
been the fi rst option for the constitutive expression of a variety of genes and 
researchers have successfully produced many recombinant proteins (i.e. human 
serum albumin, human granulocyte-macrophage colony stimulating factor, Human 
mAb against HBsAg, etc.; extensively reviewed by Huang and McDonald [ 11 ]) and 
secondary metabolites (i.e. scopolamine and artemisinin as previously detailed) in 
many types of plant cultures. However, reports have also showed that sometimes the 
constitutive expression of an enzyme encoding gene generates constantly a fi nal 
product or intermediate metabolites which are toxic for the plant cells. Therefore 
modulation of the accumulated quantities of these toxic compounds in plant  cultures 
is indispensable for maintaining both the levels of the bioactive compound and via-
bility of the cultures. In these cases, the use of an inducible promoter to direct the 
transgene expression has been proven to be a feasible approach. For example, by 
employing a glucocorticoid-inducible promoter to regulate the expression of the 
 TRYPTOPHAN DECARBOXYLASE  ( TDC ) gene, the content of the monoterpenein-
dole alkaloid serpentine was increased as much as 129 % in  Catharanthus roseus  
hairy root cultures. The cells may be more competent to detoxify their intermediates 
[ 10 ] leading to the enhanced production of serpentine. The same benefi ts were 
obtained by using many chemically inducible, metabolically inducible and 
 physically (i.e. light and temperature) inducible promoters for the expression of 
genes encoding the pharmaceutical antibodies and proteins in many cell suspension 
systems (extensively reviewed by Huang and McDonald [ 11 ]). 

 This section discussed signifi cant progresses made in the production of bioactive 
compounds in plant tissue culture through the constitutive or inducible expression 
of genes encoding key enzymes of certain metabolic pathways. The emerging high- 
throughput molecular techniques such as genomics, transcriptomics and metabolo-
mics, will undoubtedly allow researchers in the near future to obtain better 
understanding of the components and control switches of the metabolic pathways 
involved in the synthesis of bioactive compounds in  in vitro  culture environments. 
It can be anticipated that the new genes would surely be discovered and with the 
advent of novel tools for chemical synthesis and assembly of genes into artifi cial 
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chromosomes would allow the stacking of undefi ned number of genes [ 10 ,  12 ,  46 ]. 
Currently, metabolic engineering has started depending more on the gene stacking 
techniques. However, the effi ciency in gene expression needs to be enhanced in 
order that expected levels of bioactive compounds can meet the expectations of 
large-scale commercial productions.  

22.2.2     Manipulation of the Expression of Key Transcription 
Factors Regulating the Activation of Biosynthetic Genes 

 Although the core strategy of metabolic engineering is the control of genes encoding 
biosynthetic enzymes, currently, an alternative genetic approach based on the manip-
ulation of key transcription factors is rapidly emerging for the production of some 
bioactive compounds. Transcription factors are specifi c DNA sequence binding pro-
teins which interact with the promoter regions of the genes to regulate the rate of 
mRNA synthesis [ 47 ]. Hence, it was not surprising to discover that the expression of 
many genes from a specifi c pathway are regulated by a common transcription factor 
which dictates the accumulation of mRNAs in the same type of tissue and develop-
mental stage to guarantee the synthesis of an end-product. Indeed, current research 
has unveiled that many genes involved in the synthesis of specifi c branches of second-
ary metabolism and lipid biosynthesis are regulated by mutual transcription factors 
[ 19 ,  48 ]. Therefore transcription factors have become a powerful tool for engineering 
the metabolic pathways. Unfortunately, the use of transcription factors for the produc-
tion of bioactive compounds in plant tissue culture has been restricted to secondary 
metabolites, with very few successful examples reported in the literature [ 19 ,  47 ,  49 ]. 
One among these secondary metabolites is the terpenoid indole alkaloids (TIAs) 
which include ajmalicine, catharanthine, serpentine, and vincoline. Studies with TIA 
synthesizing genes in hairy root cultures of  Catharanthus roseus  demonstrated that 
ORCA (Octadecanoid-Responsive CatharanthusAP2/ERF-domain) transcription fac-
tors are regulated by jasmonic acid (JA) and affect tremendously the activation of 
several TIA biosynthesis genes, including  ANTHRANILATE SYNTHASE (AS), 
STRICTOSIDINE SYNTHASE (STR), TRYPTOPHAN DECARBOXYLASE (TDC), 
DESACETOXYVINDOLINE 4-HYDROXYLASE (D4H), D -1- DEOXYXYLULOSE 
- 5-PHOSPHATE SYNTHASE (DXS) AND CYTOCHROME N P450-REDUCTASE  
( CPR ; [ 49 ,  50 ]). Two ORCA transcription factors (ORCA2 and ORCA3) have been 
identifi ed and act reluctantly in the transcription of the above TIA genes by binding 
the JA-cis-element and elicitor-responsive element (JERE). Under an excess supply 
of the TIA precursor (i.e. liganin) the overexpression of  ORCA3  in  C. roseus  cells 
promoted the accumulation of many TIAs [ 18 ,  19 ]. It appears that ORCA3 is a key 
transcription factor to enhance TIA accumulation in plant cells, but its expression 
alone is still not suffi cient to achieve high levels of TIAS. Recent fi ndings suggest that 
other transcription factors for instance the repressor family of transcription factor 
IIIA-type, zinc fi nger proteins (i.e. ZCT1, ZCT2 and ZCT3) and the WRKY 
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transcriptional activator CrWRKY also affect TIA biosynthesis as assessed by gene 
overexpression studies in hairy root cultures [ 19 ,  51 ,  52 ]. 

 In another study working with cultured maize cells, it was demonstrated that 
anthocyanin biosynthesis can also be engineered using transcription factors. In this 
case, the ectopic expression of appropriate transcription factors can shift the abun-
dance of metabolites to certain branches of the metabolic pathway. Thus, the over-
expression of the transcription factor C1, a c-MYC type activator, and the R 
transcription factor, a c-MYB type activator, drove the accumulation of two cyani-
din derivatives whilst high contents of 3-deoxy fl avonoids, a secondary metabolite 
with insecticide properties were accumulated in transgene cells containing the P 
transcription factor, which is also a c-MYB type activator [ 20 ,  21 ]. This study illus-
trates that metabolic engineering can be advantageous for the production of antho-
cyanin with pharmaceutical, notably anti-carcinogenic or insecticide properties. 

 In conclusion, the coordinate transcriptional control of gene expression  via  
manipulation of transcription factors is emerging as a major tool for metabolic engi-
neering of plant tissue culture for the production of bioactive compounds. The best 
attribute of this alternative approach is that the expression of many biosynthetic 
genes can be altered by changing the expression of a single gene encoding a key 
transcription. In this context, the metabolic engineering through the manipulation of 
a large number of biosynthetic genes, i.e. gene stacking may not be necessary. 
Furthermore, with the advent of sophisticated tools for promoter analysis and the 
designing of artifi cial promoters and synthetic transcription factors, the metabolic 
engineering based on transcriptional manipulation appears with unlimited horizon 
for improvements.   

22.3     Genetic Strategies for the Manipulation of Subcellular 
Targeting of Bioactive Compounds 

 Manipulation of genes encoding rate-limiting enzymes or key transcription factors 
appears to be a crucial strategy for metabolic engineering, however, it can easily fail 
if subcellular targeting for these proteins is not properly controlled. This is because 
protein synthesis and stability depend on specifi c redox potential, pH, presence of 
molecular chaperones to assist protein folding, and the appropriate enzymes needed 
for further processing such as glycosyltranferases and proteolytic enzymes. These 
conditions vary greatly between organelles. Therefore proteins are synthesized and 
stored differentially amongst the cell compartments in accordance to their intrinsic 
structural and functional characteristics. Thus, either by keeping the native peptide 
signals or by fusing a specifi c protein tag signal to the protein of interest, bioactive 
proteins can effectively target the suitable subcellular compartment to meet optimal 
conditions for biosynthesis, stability or enzyme activity [ 25 ,  26 ]. 

 Therefore, various organelles have been targeted for the expression of valuable 
recombinant proteins or enzymes in plant cells. Among them, the endoplasmic 
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reticulum (ER), a component of the secretory pathway, has been the preferred sub-
cellular compartment to express and accumulate recombinant pharmaceutical pro-
teins in plants due to its advantageous intrinsic molecular and physiochemical 
characteristics [ 53 – 56 ]. ER appears to generate a favourable niche for biosynthesis 
of many proteins which requires the formation of disulfi de bonds between peptide 
chains for their proper folding. These bonds do not form in the cytosol due to the 
prevalence of high reducing conditions that maintains cysteine residues in their 
reduced state (−SH). In contrast, the ER is an oxidizing environment that facilitates 
disulfi de bond (S-S) formation, chemical reaction that is also catalyzed by the 
enzyme protein disulfi de isomerase which is located in the ER lumen as well [ 57 ]. 
Additionally, the ER also hosts a large collection of molecular chaperones which 
constitute the quality control machinery that promote the proper folding of a large 
collection of proteins within the plant cells [ 53 ]. Proper protein folding avoids deg-
radation within the ER lumen and therefore large quantities of functional proteins 
can be accumulated [ 58 ]. One can argue that such quantities of proteins can be 
harmful for the ER but this compartment can also tolerate unusually high accumula-
tion of peptides without compromising cell growth and development [ 54 ,  59 ]. 
Naturally occurring resident proteins make use of this mechanism for their retention 
in the ER without causing cell toxicity and such a pathway has been exploited in the 
accumulation of immunoglobulins, vaccines, and diagnostics in intact transgenic 
plants [ 54 ]. This ER-localized protein expression system is currently gaining 
grounds to produce valuable recombinant proteins in plant tissue culture. The suc-
cessful production of phytase, an enzyme used as feed additive to enhance phospho-
rus uptake in domestic animals in  Medicago truncatula  cell suspension cultures [ 56 , 
 60 ] is a good example. 

 The mechanism by which recombinant proteins are targeted to the ER is well 
established. A N-terminus signal is added to the recombinant protein to drive it to 
the secretory pathway in which the ER is the fi rst cell compartment in the route. 
This leading secretory signal (SSP) sequence encompasses about 20 amino acids, 
including a stretch of hydrophobic residues which is recognized by the ER co- 
translational complex, particularly by a peptide-RNA complex named signal recog-
nition particle. This SSP is removed co-translationally while the nascent polypeptide 
is emerged by a signal peptidase located in the ER lumen [ 58 ,  59 ]. Once the SSP 
signal is lost, the recombinant protein will fl ow throughout the secretory pathway, 
unless an ER-retention signal is added to the peptide at its C-terminus. In plants and, 
in general, eukaryotes, the C-terminus that confers ER residence is the tetrapeptide 
K/HDEL which is recognized by a receptor located in the Golgi complex. Upon 
binding, the receptor retrieves the recombinant protein to the ER. Therefore, this 
mechanism has a retrieval rather than retention nature and it is very effi cient, unless 
the system is extremely oversaturated by proteins due to a molecularly induced gene 
over-expression [ 54 ,  56 ]. Beside this latter orthodox signal, other ER-retention sig-
nals have also been successfully employed for the accumulation of recombinant 
proteins in the ER. For instance, a N-terminal ER-retention signal derived from the 
soybean vegetative storage protein  vspA ( VSPαS) directed effi ciently the targeting 
of the recombinant hepatitis B surface antigen (rHBsAg) to the ER of  Nicotiana 
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tabacum  cells cultured in suspension. In this case, the rHBs Ag was highly accumu-
lated in the ER as it was kept fused to the VSPαS signal peptide. This is due to the 
fact that the endogenous signal peptidases were not capable of removing the 
ER-signal retention signal. The activity of the VSPαS-rHBsAg fusion protein as 
antigen was surprisingly effective when tested in mice. This work proves that plant 
cell cultures can be used as biofactories for the production of pharmaceuticals in the 
near future [ 61 ]. 

 It is important to note that one of the main drawbacks of ER-targeting of pharma-
ceutical proteins is the attachment of glycans to their peptide chains (i.e. glycosyl-
ation) and this can subsequently induce adverse immunogenic reactions in patients 
when they enter to the circulatory system [ 62 ]. Protein glycosylation, particularly 
 N -glycosylation, initiates in the ER and continues in the endomembrane system of 
the secretory pathway by the function of many glycosidases and glycosyltransfer-
ases [ 54 ,  59 ,  63 ]. One approach to avoid the ER-derived immunogenic reactions 
includes precisely the targeting of the bioactive proteins to other cell organelles of 
the secretory pathway in which the protein attached-glycans can be processed to 
attain a profi le similar to that observed in human proteins [ 53 ,  54 ] An interesting 
example of this organelle-controlled glycosylation is observed in the production of 
the recombinant human  β -glucocerebrosidase (GCase) in carrot suspension cultures 
to generate an enzyme replacement therapy for the treatment of Gaucher disease, a 
rare genetic lysosomal storage disorder [ 27 ]. The activity of GCase depends on 
glycan chains with terminal mannoses in order that macrophage mannose receptors 
can internalize the enzyme and subsequently perform its function. Therefore, an 
organelle, the vacuole, which is known to possess enzyme activity to expose man-
noses from the glycan complex [ 64 ] was targeted in order that an active recombi-
nant GCase could be generated. To direct the  N -glycosylation to a vacuolar-type 
glycan profi le, a number of modifi cations were made in the native human GCase 
gene sequence: (1) the DNA fragment encoding the GCase signal peptide was 
replaced by that of the  Arabidopsis thaliana  basic endochitinase gene to direct the 
nascent GCase to the ER and facilitates its co-translation and translocation and (2) 
a DNA fragment from the gene tobacco chitinase A, encoding the sequence 
DLLVDTM, was added to the 3′ terminus of the GCase gene to generate a storage 
vacuole targeting signal in the C-terminus of the GCase recombinant protein [ 27 ]. 
The analysis of the glycan structure contained in the carrot cell-derived GCase dem-
onstrated indeed the success of the above molecular strategy as 90 % of the glycan 
were rich in mannose with a main core (Man3GlcNAc2) of two  N -acetylglucosamine 
(GlcNAc) residues and a β1–4-linked mannose attached to two additional exposed 
mannose residues in α 1–3 and α 1–6 linkages. Other additional residues included a 
( β 1-2) xylose attached to the bisecting mannose and a ( α 1-3)-fucose attached to the 
reducing GlcNAc, which suggested the passage of the GCase through the Golgi 
complex. More interestingly, this glycan structure was similar to an animal derived- 
GCase (i.e. GCase produced in CHO cells) following an exoglycosidase digestion, 
a post-production procedure to expose mannose sugars [ 27 ,  28 ]. Consequently, 
these results showed that production of GCase in carrot suspension cultures is more 
advantageous over animal derived-GCase regarding its effectiveness and production 
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cost. These attributes are currently exploited by the company which created this 
platform, Protalix Biotherapeutics, and a commercial formulation of the enzyme, 
named ELELYSO™ is currently being marketed in many countries around the 
globe. 

 In other bioactive compounds, for instance secondary metabolites, the subcellu-
lar targeting of the biosynthetic enzymes also play a paramount role in obtaining 
high accumulation of specifi c economically valuable metabolites in plant cells. 
Indeed, the fl ow of the collection of intermediate metabolites can occur properly 
during biosynthesis only if the native subcellular compartmentalization of enzymes 
is considered for protein targeting. This is because subcellular compartmentaliza-
tion of enzymes is necessary for the sequestering of toxic intermediate metabolites 
that occurs immediately after their biosynthesis, avoiding cell autotoxicity [ 45 ]. 
Cell compartmentalization of biosynthetic enzymes also enables better control of 
the metabolic fl ux by reducing extra regulatory level and negative feedback. More 
importantly, the microenvironments hosted by the cell organelles provide specifi c 
requirements to the enzymes to achieve an optimal activity and stability [ 10 ,  65 ]. 
Therefore, it is not surprising to learn that vast efforts have been invested to eluci-
date the subcellular localization of the biosynthetic enzymes involved in the produc-
tion of secondary metabolites (extensively reviewed by Staniek et al. [ 45 ] and 
Ziegler and Facchini [ 66 ]). This knowledge has been proven to be advantageous to 
increase the content of target secondary metabolites in plant cultures without sacri-
fi cing cell growth and, ultimately, the biomass. An example for this is the chloro-
plast targeting of bacterial lysine decarboxylase enzyme in tobacco hairy root 
cultures. Lysine decarboxylase is natively localized in the chloroplast and repre-
sents a rate-limiting enzyme for the synthesis of the precursor (i.e. cadaverine) of 
the end product anabasine, a nicotine analogue. The over-expression of the bacterial 
lysine decarboxylase in the plant cells produced higher contents of both alkaloids 
but the fusion of the gene with the rubisco small subunit transit peptide which drove 
the enzyme to the chloroplast enhanced even more such accumulation [ 67 ,  68 ]. 
Undoubtedly, this outcome demonstrates the relevance of directing foreign biosyn-
thetic enzyme to the proper subcellular compartment in the biosynthesis of second-
ary metabolites. 

 Subcellular targeting of heterologous enzymes involved in different plant sys-
tems poses more challenges. An example for this is the enzyme amorpha-4, 11-diene 
synthase derived from  Artemisia annua  that generated only minute amounts of 
amorpha-4, 11-diene, the precursor of the antimalarial drug artermisin, when 
expressed in tobacco cells [ 69 ]. In other cases, the artifi cial targeting of biosynthetic 
enzymes overpasses the activity of enzymes with natural targeting, for instance the 
activity of sesquiterpene synthase with mitochondrial targeting surpassed the activ-
ity of this enzyme that was naturally expressed in the cytosol [ 70 ]. Clearly, these 
fi ndings suggest that there are many other factors that mask the effectiveness of the 
subcellular targeting of heterologous enzymes. In planta, secondary metabolism is 
limited to specialized cells such as laticifers and glandular trichomes [ 66 ] and key 
transcription factors effectively regulate many of the biosynthetic enzymes within 
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these cells [ 71 ]. Transcription factors may also play an important role in controlling 
cell differentiation [ 72 ]. Consequently, the effi cacy of subcellular targeting of bio-
synthetic enzymes can be substantially enhanced in plant culture systems if a joint 
molecular strategy can be established to regulate the expression of transcription 
factors encoding biosynthetic enzymes and genetic mechanism involved in cell 
differentiation.  

22.4     Manipulation of Mechanisms Governing Cell 
Differentiation in Cell and Organ Culture 

 Bioactive compounds are differentially synthesized in either undifferentiated or 
differentiated cells. However, the molecular mechanisms that determine which 
state of differentiation is optimal for a given compound are not known and cannot 
be predicted. For example, artemisinin requires a degree of differentiation for its 
synthesis as differentiated shoot and hairy root cultures to accumulate high quan-
tities, whilst calluses and cell suspension cultures show low or no accumulation 
[ 73 ,  74 ]. In contrast, high yields of anthraquinones, another secondary metabo-
lite, can be obtained only from dedifferentiated cell cultures of  Morinda citrifo-
lia.  In fact, this work was the fi rst report of the use of undifferentiated cultures 
for the production of bioactive compounds and set the foundation for the bioreac-
tor culture technique by which many bioactive compounds are currently being 
produced [ 75 ]. 

 Despite its relevance in bioactive compound production, the manipulation of the 
differentiation state of plant cells is still in its infancy. At present, most of the strate-
gies rely on the selection of a specifi c type of plant cells which possess a defi ned 
differentiation state that appears to be optimal for the production of a particular 
bioactive compound. This strategy is perfectly illustrated by the use of innately 
undifferentiated cambial meristematic cells (CMCs) from  Taxus cuspidata , for the 
production of paclitaxel (Taxol), an economically important anticancer drug [ 76 ]. 
The attributes of this culture system are that the cambial meristematic cells bypass 
the negative effects of the dedifferentiation step, therefore, their activity for produc-
ing paclitaxel is stable for long periods under a low auxin regime (i.e. 1 mg L −1  
picloram for establishment of cell suspension culture and 2 mg L −1  1-naphthalene 
acetic acid for bioreactor subculturing). Additionally, CMCs are more resistant to 
shear stress and the media and culture condition requirements are less complex [ 23 , 
 76 ]. Unfortunately, the molecular mechanisms that regulate and maintain the undif-
ferentiated meristematic state of  T. cuspidata  cells are still not well understood, but 
the use of a combination of deep sequencing technologies (i.e. massively parallel 
pyrosequencing and digital gene expression tag profi ling) revealed that two kinase 
receptors which are conspicuously located in CMCs may play a major role: (1) a 
leucine-rich repeat (LRR) receptor-like kinase (RLK) encoded by the  PHLOEM 
INTERCALATED WITH XYLEM  ( PXY ) gene and (2) histidine kinase receptor 

22 Theoretical Basis of Plant Cell and Tissue



550

homolog to that encoded by the  WOODEN LEG  ( WOL ) gene in  Arabidopsis . The 
latter is a cytokinin receptor that affects vascular morphogenesis in interaction with 
many transcription factors and other proteins involved in the signaling pathway of 
this hormone. Therefore, giving the potential of such a plant culture system, future 
studies will be required to defi ne the function of such receptors as well as other 
transcription factors; for instance homeodomain leucine zipper class III proteins, 
involved in the determination of cambial cells and their relation with the production 
of paclitaxel and its analogs [ 77 ]. 

 Unlike undifferentiated plant cell cultures, the establishment and maintenance of 
differentiated cell cultures face more hurdles due to specifi c culture conditions (i.e. 
hormonal balance) are required to switch on and maintain defi ned gene programmes. 
Positional information of cells within an organ is also diffi cult to duplicate in  in 
vitro  systems, in order that cells can acquire a specifi c differentiation state [ 78 – 80 ]. 
However, manipulation of the differentiation state of cells in plant tissue platforms 
is still being attempted in view of the benefi ts that it can provide to the production 
of bioactive compounds. Instead of starting from undifferentiated cells following 
the control of culture conditions to onset a specifi c cell differentiation state, cell 
transdifferentiation, a lineage gene reprogramming to transform directly a differen-
tiated cell to another type of differentiated cell, appears as a more effective method 
to manipulate cell differentiation [ 80 ,  81 ]. Transdifferentiation of plant cell  in vitro  
cultures has been demonstrated more than three decades ago with the direct trans-
differentiation of single mesophyll cells into tracheary elements, mainly in response 
to the auxin regime [ 82 ]. Unfortunately, the application of this discovery has not 
been explored yet in the production of bioactive compounds. In  Nicotiana sylves-
tris,  nicotine biosynthesis may be increased by transdifferentiation of tracheary ele-
ments from suspension mesophyll cells due to the presence of putrescine 
 N -methyltransferase (PMT) which is responsible for the fi rst step in its biosynthesis. 
And this enzyme is located only in tracheary elements [ 83 ]. Clearly, the feasibility 
of this culture system needs to be demonstrated with formal experimentation, as 
treachery elements are not the only cells that participate in the biosynthesis of this 
pyridine alkaloid [ 66 ]. 

 The manipulation of cell differentiation for the production of bioactive com-
pounds may appear as an utopic approach; however, the achievement of successful 
results with transcription factor driven-cell differentiation of maize cells in the 
accumulation of anthocyanins demonstrated that such strategy is entirely feasible 
[ 20 ,  21 ]. Indeed, the ectopic expression of the R and C1 genes encoding the c-MYC 
and c-MYB transcription factors, respectively, drove the differentiation of maize 
cell suspension culture to a state in which multi lamellar bodies and small vesicles 
in which anthocyanin accumulates before fusion with the vacuole, are formed in 
the cytosol. More than 400 genes were up-regulated by these two transcription fac-
tors, including a gene encoding a glutathione  S -transferase (GST) that may be 
involved in vacuolar uptake of the produced pigments. Furthermore, it seems that 
all the above genes were associated with cell differentiation and may be responsi-
ble for all changes in the ultrastructural organization of cells. More importantly, 
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such transcription factor dependent-cell differentiation was accompanied by the 
coordinate up-regulation of many genes that encode enzymes responsible for the 
metabolization of coumaroyl-CoA into anthocyanins, the end economically valu-
able product [ 20 ,  72 ]. It is evident that transcription factors become a valuable 
molecular instrument to drive simultaneously both cell differentiation and expres-
sion of genes involved in the biosynthesis of bioactive compounds. Therefore, they 
may become the major orchestrators to manipulate metabolic pathways in which 
the activity of biosynthetic enzymes need to be coordinated to specifi c microenvi-
ronments which are hosted by different types of differentiated cells. In this con-
text, complex metabolic pathways, for example monoterpenoidindole alkaloid 
metabolism, may be effi ciently engineered with two or three transcription factors 
by regulating fi rstly cell differentiation in hope that the generated microenviron-
ments would later induce the expression of the genes that encode the enzymes 
involved in the pathway in question. For example, monoterpenoidindole alkaloid 
metabolism occurs naturally in epidermal cells, mesophyll cells, laticifers and 
idioblasts [ 66 ]. Thus, hypothetically we can drive cell differentiation to artifi cially 
promote the formation of epidermal cells, mesophyll cells, laticifers and idioblasts 
by expressing the genes encoding  AtDEK1 ,  TaWRKY71-1, HbEREBP1  and 
 CrTF12 , respectively [ 84 – 87 ]. Sequential activation of the expression of each gene 
by different inducible promoters during culture may result in mimicking the stages 
of biosynthesis and metabolite traffi cking as occur  in planta . High levels of end 
products may result from the ability of the transcription factors to coordinate the 
expression of enzyme biosynthetic genes under a proper cell differentiation state 
(Fig.  22.1 ).

   Although differentiated cell cultures offer many constraints in their application 
for the production of bioactive compounds, a collection of cells with different 
state of differentiation packed together as an organ represents the most successful 
plant tissue platform available at present for the production of secondary metabo-
lites. This is the case of the hairy root culture in which the natural gene pro-
grammes of roots are modifi ed in response to two newly introduced set of genes, 
 aux and  rol  genes, by the bacteria  Agrobacterium rhizogenes.  The new gene pro-
gramming, mainly driven by  rol  genes, led to changes in cell differentiation state 
and physiological processes that result in an increased secondary metabolism [ 88 , 
 89 ]. Within the  rol  genes, therol B, a tyrosine-phosphatase which increases auxin 
perception, has a major role in changing cell differentiation state to generate a 
mix population of differentiated cells of various nature. This is because the  rol  B 
protein can stimulate root programming and, simultaneously, activate many meri-
stem inducing-genes (i.e.  ORF13 ) to generate meristem-like cells that can later 
differentiate into various types of organ-specifi c cells [ 90 – 92 ]. The mechanism by 
which  rol  genes orchestrate both cell differentiation and secondary metabolism is 
still unknown, but it seems the increased secondary metabolism is due to the 
activity of some  rol  B activated-transcription factors that inhibit repressors of 
secondary metabolism which plant cells normally use to promote metabolic 
homeostasis [ 88 ].  
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  Fig. 22.1     Natural and artifi cially-induced cell differentiation   in vitro   for the synthesis of 
monoterpenoidindole alkaloids (MIAs). Natural cell differentiation  ( a ) generates four types of 
cells for MIA biosynthesis: (1) epidermal cells are responsible for the synthesis of the major pre-
cursor of MIAs, strictosidine, which is subsequently metabolized into 16-methoxytabersonine by 
various enzymes, (2) mesophyll cells conduct the biosynthesis of many MIA intermediates, poten-
tially 16-Methoxy-2,3-dihydro-3-hydroxytabersonine, and fi nally (3) laticifers or (4) idioblasts 
culminates the biosynthesis of MIAs, notably vinblastine, from deacetylvindoline.  Artifi cially- 
induced cell differentiation   in vitro  ( b ) can hypothetically fuel MIA biosynthesis by the creation 
of epidermal cells, mesophyll cells, laticifers and idioblasts by a sequential induced expression of 
genes encoding  AtDEK1 ,  TaWRKY71-1, HbEREBP1  and  CrTF12  transcription factors, respec-
tively. All these key transcription factors are responsible for cell specifi cation of the above types of 
cells, respectively. Therefore, we hypothesize that cell differentiation can be manipulated in a 
timely fashion to mimic the sequential function that the four types of differentiated cells perform in 
the biosynthesis of MIAs. The likelihood of success would be signifi cantly increased if the source 
of plant cells (i.e. mesophyll cells) for the establishment of cultures are derived from a species that 
innately is competent for MIA biosynthesis, such as  Catharanthus roseus.  In our proposed tissue 
culture system, the  AtDEK1  gene is regulated by sucrose starvation inducible rice amylase 
RAmy3D promoter, the  TaWRKY71-1  gene by the light inducible promoter of ribulose-1,5- 
bisphosphate carboxylase/oxygenase small subunit (rbcS3B) from tomato,  HbEREBP1  by the 
ABA inducible promoter of the  SalT  gene from rice and  CrTF12  by the methyl jasmonate inducible 
promoter of the potato cathepsin D inhibitor (CDI). Consequently, epidermal cell differentiation 
(epidermal phase) can be induced by the removal of sucrose in the medium of the  C. roseus  cell 
cultures, whilst mesophyll cell differentiation (mesophyll phase) is achieved upon the exposure of 
the generated epidermal cells to light. Subsequently, the laticifer and idioblast phases are generated 
by the supplementation of ABA and methyl jasmonates, respectively. In this tissue culture model 
we are assuming that the various induced cell differentiation states would be suffi cient to create the 
cellular microenvironments to activate genes encoding all enzymes involved in MIA biosynthesis 
to produce the end product vinblastine at high levels (Adapted from Refs. [ 11 ,  45 ,  82 – 85 ])         
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Transform ation of mesophyll cell cultures of
Catharantlms roseus with the four transcription factors
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Fig. 22.1 (continued)
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22.5     Manipulation of Immortalization of Specifi cally 
Differentiated Cell Cultures 

 The vision of creating immortalized plant cells for the production of bioactive com-
pounds has been embraced for some decades due to its potential benefi ts [ 93 ]. This 
is because immortalized cells not only can divide indefi nitely but also can keep a 
programme of genes that set the cells to a specifi c degree of cell differentiation, and 
this in turn directs them to perform specifi c physiological and metabolic tasks [ 94 , 
 95 ]. Such a condition could be optimal for the production of a particular active 
compound, therefore it would be advantageous to generate immortalized cell lines 
from a population of differentiated or undifferentiated cells. Consequently, immor-
talized cell systems would be able to produce high yields of bioactive compounds in 
a sustainable fashion. Additionally, the production cost would also be drastically 
diminished for the reason that the unproductive exponential growth required to cre-
ate an economically feasible biomass volume is no longer required and practices 
involved in the preparation of culture media with different composition for each 
stage are also eliminated [ 76 ]. 

 The mechanisms which regulate cell immortality in animals are fairly well 
understood and, thus, it can be stated that immortalized cells are generated upon a 
disruption on the cell-cycle checkpoint pathways (i.e. suppression of the cell cycle 
controllers p53, p16, pRb), hyperactivation of telomerase enzyme, up-regulation of 
some oncogenes and oncoproteins leading to a higher rate of cell division, or acqui-
sition of epigenetic modifi cations, such as DNA methylation in CpG islands [ 94 ,  96 , 
 97 ]. Unfortunately for plant cells, the mechanisms that regulate immortality are still 
obscure [ 94 ,  98 ,  99 ], although many reports suggest that plant cells share similar 
pathways to animal cells. In fact, the vast knowledge accrued in immortalization of 
animal cells is currently propelling the dissecting of pathways occurring in plant 
cells. In this view, recent reports have pointed out that plant cells, like their animal 
counterpart, undertakes characteristic epigenetic changes that occur in both euchro-
matin (i.e. a form of DNA rich in gene concentration under active transcription) and 
heterochromatin (i.e. a tightly packed form of DNA with high gene silencing) to 
achieve immortalization. Indeed, an increased DNA methylation is present in 
euchromatin resulting in gene silencing, reminiscent to immortalized animal cell 
lines and cancer cells. In contrast, in the heterochromatin portion, transposable ele-
ments, major mutagenic factors, become highly activated after DNA demethylation 
[ 93 ]. It is evident that better understanding of the mechanisms that regulate plant 
epigenetics would provide the foundations to establish tissue culture techniques to 
induce immortalization in plant cells, as those routinely employed for immortaliza-
tion of animal cells [ 94 ]. 

 Currently, the creation of immortalized plant cells is through empirical knowl-
edge rather than from the application of solid scientifi c principles. Thus, immortal-
ized cell cultures have been generated spontaneously from callus in few plant 
species after a differentiated cell state, committed to a developmental gene program, 
is changed to dedifferentiated state in response to varying concentrations of the two 
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major plant hormones, cytokinin and auxin [ 100 ]. Thus, immortalized cell 
 suspensions are derived from dedifferentiated cells and divide continuously. So that 
they can be maintained indefi nitely without any cell differentiation changes, if spe-
cifi c culture conditions are provided [ 93 ]. 

 Another more practical approach has been undertaken to generate immortal-
ized plant cells for production of bioactive compounds. Lee and coworkers [ 76 ], 
for example, isolated cambial meristematic cells (CMCs) of  Taxus cuspidata  to 
produce paclitaxel (detailed in the previous section). They exploited the natural 
intrinsic immortalizing properties of CMCs by considering the fact that cambial 
cells represent the secondary growth meristem which possess stem cell identity 
that enable them to divide indefi nitely and more importantly, the same gene pro-
gramming is maintained following cell divisions. Indeed, the results of this report 
show that CMCs are able to sustain high levels of production of paclitaxel for a 
culture period longer than 4 months. Although the author suggested that two plant 
receptors may be responsible for the cambial cell identity of the CMCs, the role 
of other transcription factors, for instance orthologs to the typically procambial 
specifying factors MONOPTEROS and homeodomain leucine zipper class III 
AtHB8 [ 101 ] ,  in plant cell immortalization needs to be addressed in future 
research works. 

 A certain degree of immortalization is also present in hairy root culture which is 
generated by the effects of the  rol  genes through the regulation of both programmed 
cell death and cell meristem identity. Apoptosis is inhibited through the rolB protein 
that enhances the expression of antioxidant genes encoding cytosolic ascorbate per-
oxidase, catalase, and superoxide dismutase that in turn cause a reduction on the 
levels of reactive oxygen species [ 102 ]. On the other hand, the same gene confers 
meristem activity of root cells by reactivating many meristem inducing-genes, as 
described in the previous section of this review [ 91 ,  92 ]. Other genes, including 
 rolC  and meristem specifying genes, act synergistically to keep ROS homeostasis 
and promote cell-division dependent immortalization [ 102 ]. Consequently, it can be 
envisioned that more progress can be achieved in the production of bioactive com-
pounds in hairy root culture system, if the expression of the genes that confers cell 
immortalization is further studied. 

 Currently, the use of immortalized cells, particularly in the version of  in vitro  
propagated- meristematic stem cells, becomes more relevant in virtue of their newly 
discovered pharmaceutical properties, specifi cally the benefi cial properties for the 
regeneration of skin and hair [ 103 ]. Although the state-of-art research has achieved 
signifi cant progress in unraveling the gene programs that specify identity of stem 
cells, precise information is lacking to defi ne the roles of biomolecules (i.e. tran-
scription factors and other proteins, vitamins, essential fatty acids and bioactive 
compounds that provide defense against free radicals) have in human tissue regen-
eration. Therefore, the development of techniques to artifi cially induce plant cell 
immortalization and the determination of specifi c plant factors which may have 
dermal regenerative properties represent a priority research avenue in the near future 
in the production of bioactive compounds through the utilization of plant tissue 
culture platforms.  

22 Theoretical Basis of Plant Cell and Tissue



556

22.6     Conclusions and Future Perspectives 

 In this overview, we show that manipulation of the expression of a single gene, 
which affects the most rate-limiting step, can be effective in the metabolic engi-
neering of many compounds, notably secondary metabolites. However, many met-
abolic pathways possess more than one crucial step. Therefore, the modifi cation of 
plant metabolism with multiple genes is necessary. This strategy is further justifi ed 
when metabolic pathways are regulated by polycistronic genes and, therefore, the 
effective synthesis of an end product requires the application of advanced tech-
nologies, for instance “gene stacking”. In these cases, such strategies enable the 
simultaneous expression of multiple genes and, consequently, avoids the accumu-
lation of toxic intermediate metabolites which otherwise may result in cell auto-
toxicity. However, the manipulation of gene expression can easily fail if the 
subcellular targeting is not considered. This is because each biosynthetic enzyme 
and, in general, any protein requires specifi c micro-environmental conditions, gen-
erally provided by their native compartmentalization, for proper folding and func-
tioning. Furthermore, the creation of such subcellular microenvironments is 
determined by the cell differentiation state. Therefore, the manipulation of gene 
programming to modulate the degree of cell differentiation is emerging as a pow-
erful molecular tool for the production of bioactive compounds. In this avenue, the 
selection and  in vitro  propagation of plant cells with specifi c differentiation state 
appears as more effi cient approach for the production of bioactive compounds, 
although the application of transdifferentiation technique and the manipulation of 
key transcription factors also represent promising methods that may become 
important in the near future for the modulation of plant cell differentiation. Finally, 
manipulation of cell immortalization has come into sight as an effective approach 
to perpetuate specifi c cell differentiation states which are optimal for the produc-
tion of economically valuable compounds and consequently more signifi cant 
progress can be obtained when we gain better understanding of the mechanism 
that regulate such a cell process. 

 In perspective, manipulation of cell immortalization is an emerging strategy to 
enhance the effi cacy of plant culture systems for the production of pharmaceutical 
compounds. In fact, many private companies have keenly embraced this technology 
for further application in regenerative medicine, in which the use of plant-derived 
stem cells has assisted to overcome ethical issues with animal stem cells. Much 
progress in plant cell immortalization is likely to be achieved in the near future 
when key genes, orthologs to animal cells, are discovered in plant cells following 
the manipulation of their expression with the available repertoire of molecular 
methods. Furthermore, with the advent of the newly devised molecular methods to 
control cell differentiation in plant tissue culture systems, it would be possible to 
generate immortalized cells with specifi c differentiation states for the optimal syn-
thesis of bioactive compounds. The emerging technologies for the designing and 
synthesis of artifi cial genes, transcription factors and promoters have transformed 
metabolic and protein engineering allowing the expression of multiple genes under 
the proper subcellular compartment which provides the suitable microenvironment 
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for protein function and stability. In all these emerging biotechnological methods, 
transcription factor appears as major orchestrators for the manipulation of cell dif-
ferentiation and cell immortalization together with the modulation of the expression 
of genes encoding biosynthetic enzymes or recombinant proteins.     
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    Chapter 23   
 Isoprenoid Production  via  Plant Cell Cultures: 
Biosynthesis, Accumulation and Scaling-Up 
to Bioreactors 

             Alexander     M.     Nosov     ,     Elena     V.     Popova    , and     Dmitry     V.     Kochkin   

    Abstract     Plant cell culture is traditionally viewed as a unique artifi cially created 
biological system representing a heterogenous population of dedifferentiated cells. 
This system undergoes a continuous process of autoselection based on the intensity 
and stability of cell proliferation. We discuss here the details of formation and regu-
lation of isoprenoid biosynthesis in plant cell  in vitro  based on literature survey and 
our research. Obviously, secondary metabolism differs in cell culture compared to 
the plant  per se , because in cell culture metabolites are synthesized and compart-
mentalized within a single heterotrophic cell with sparse or underdeveloped vacu-
oles and plastids. For example, in plant cell cultures isoprenoid biosynthesis  via  
MVA pathway was found to be more active than  via  plastid-localized MEP pathway. 
Also, it was hypothesized that cell cultures preferably produce metabolites, which 
promote cell proliferation and growth. Indeed, cell cultures of  Dioscorea deltoidea  
produced mainly furostanol glycosides, which promoted cell division. Triterpene 
glycosides (ginsenosides) in the cell cultures of various  Panax  species are repre-
sented mainly by Rg- and Rb-groups. Rb ginsenosides are predominantly found as 
malonyl-esters that may infl uence their intracellular localization. 

 Despite the difference in the isoprenoid composition in plant and cell culture 
the latter became an attractive source of phytochemicals as an alternative to plant 
harvesting. We provide in this chapter the guidelines to biotechnological production 
of plant isoprenoids using plant cell cultures and discuss the optimal methods of 
bioreactor- based cultivation and cryopreservation of plant cell collections.  
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23.1         Introduction 

 Secondary metabolism plays an important role in plant’s life. Out of complete 
genome sequence 15–25 % genes encode enzymes and protein factors involved in 
biosynthesis of a broad range of so called “secondary products” [ 1 ]. These include 
over 40,000 isoprenoids – or terpenoids, − that play diverse physiological roles in 
both primary and secondary metabolism [ 2 ]. 

 Photosynthesis, respiration, cell organization, compartmentalization and ontogen-
esis are the common examples of isoprenoid action in primary metabolism [ 3 ]. Indeed, 
carotenoid pigments serve as effective light harvesters and anti-oxidation agents [ 4 ]. 
Sterols are essential components of cell membranes modulating its properties [ 5 ]. 
Side chains of chlorophylls, ubi- and plastoquinones are derived from terpenoids. 
Phytohormones such as gibberellins, brassinosteroids, abscisic acid and strigolac-
tones as well as cytokinin side chains are of isoprenoid origin [ 1 ,  3 ]. 

 As secondary metabolites isoprenoids are involved in plant – environment inter-
action including defense against biotic and abiotic stresses, attraction of pollinators 
etc., suggesting that their physiological functions are even more diverse and compli-
cated [ 6 ]. Isoprenoids are the active components in many medicinal plants that have 
been used for centuries in traditional medicine all over the world. At present they 
attract commercial interest as potential pharmaceuticals and nutraceuticals [ 1 ,  7 ]. In 
this chapter, we review in detail the major differences in isoprenoid composition 
and biosynthesis in  in vitro  plant cell cultures when compared to intact plants and 
discuss recent advances and challenges of their biotechnological production in bio-
reactors for pharmacological use. 

23.1.1        Introduction to Isoprenoids 

  Monoterpenes and sesquiterpenes  ( C   10   and  C   15  ) is a large family of organic 
molecules of either 10 or 15 carbon atoms respectively. They are divided into 
two classes: aliphatic terpenes such as citral from lemons and cyclic terpenes with 
one or two carbon rings such as menthol, carvacrol, and camphor. In nature 
mono- and sesquiterpenes are found as highly volatile and strongly scented liquids. 
They contribute to the scent, fl avor and color of plant essential oils and often show 
pharmaceutical activity. For example, a sub-group called sesquiterpene lactones 
includes compounds with a bitter taste and is currently being tested on cardio-
modulating, anti-bacterial (aucubin) and anti-cancer (arglabin) activities [ 1 ,  3 ]. 
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  Diterpenoids   (C   20   )  are the staple components of plant resins from pine, 
spruce, fi r and cedar. Diterpenoids can be classifi ed as linear, bicyclic, tricyclic 
and tetracyclic diterpenoids depending on their carbon skeletal core. Resin 
acids, or diterpenoid acids, have the same structure being composed of three 
hexacarbon rings. Diterpenoids of  ent -kaurene type have skeleton with four 
rings. Some diterpenoids have a unique structure such as paclitaxel from yew 
( Taxus spp .) [ 1 ,  3 ]. Diterpenoids have been known for centuries for their antimi-
crobial qualities. Paclitaxel, or taxol, has become one of the major cytostatic 
anticancer agents of plant origin. Steviol glycosides produced in  Stevia  leaves is 
up to 300 times sweeter than sucrose and is extensively used to replace sugar in 
the diet of patients with diabetes [ 8 ]. 

  Triterpenoids   (C   30   )  are derivatives of triterpene molecules and are divided into 
the following groups:

    (i)     Steroidal glycosides (SG)  are glycosides based on C27 steroid-type aglycones 
with a modifi able side chain, transformed into one (furostanol glycosides) or 
two (spirostanol glycosides) heterocyclic rings. SG are wide-spread: they have 
been found at least in 15 plant families including Dioscoreaceae, Liliaceae, 
Solanaceae, Leguminosae, Costaceae and others. These substances have a 
broad spectrum of pharmacological activities from anticancer to immune- 
modulating and sex-stimulating. It is important to note that furostanol and spi-
rostanol type glycosides often show different, even opposite pharmacological 
activities [ 9 ].   

   (ii)     Triterpene glycosides (TG)  are found in over 30 higher plant families and con-
tribute to unique pharmacological activities of ginseng, aralia, astragalus and 
glycyrrhiza. Similar to steroid glycosides, TGs are classifi ed based on carbon 
skeleton of their aglycons. Ginseng glycosides (ginsenosides) found exclu-
sively in  Panax  species are derivatives of two types of tetracyclic aglycons: 
protopanaxadiols and protopanaxatriols. Pentacyclic compounds are repre-
sented by derivatives of ursan, oleanan, lupan and gopan. Glycosides of olea-
nolic and ursolic acids contribute to biological activities of glycyrrhiza and 
polyscias [ 10 ,  11 ].   

   (iii)     Cardiac glycosides  are detected in 13 plant families. Glycoside producing 
plants include digitalis, lily-of-the-valley, adonis and strofant. Over 400 car-
diotonic glycosides have been identifi ed so far. Most common are cardenolides 
and bufadienolides with additional butenolide or pentadienolide rings, respec-
tively. Cardiac glycosides demonstrate strong heart-beat-modulating and 
heart-stimulating activity and are irreplaceable with any available synthetic 
medicines [ 12 ].   

   (iv)     Phytoecdysteroids  are polyhydroxylated steroids found in over 400 plant spe-
cies from Compositae, Caryophyllaceae and Labiatae families. High phytoec-
dysteroid content, over 1 % dry weight, was reported in  Serratula spp., Ajuga 
spp., Rhapontucum spp.  Their environmental function is to protect the plants 
against insect attack. In humans phytoecdysteroids show well-documented 
adaptogenic, psychoactive drugs    and anti-cancer activities [ 13 ].    
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   Tetraterpenoids  (C40) in plants are represented mainly by carotenoids: carotenes 
and xanthophylls. While only 20–30 tetraterpenoids play a role in primary metabolism 
of the vast majority – over 700 compounds, − are involved in secondary metabolism. 
They generally function as lipophilic pigments localized in plastids, mainly chro-
moplasts. Carotenoids demonstrated high and various physiological activities in 
humans. For example, lycopene and lutein have been recently registered as oncop-
reventive agents [ 4 ]. 

 The chemical structures of tri- and diterpenoids discussed in this chapter are 
shown in Figs.  23.1  and  23.2  respectively.

23.1.2         Brief Overview of the Isoprenoid Biosynthesis 
in Plants 

 All diversity of isoprenoid structures arises from two isomeric fi ve-carbon (C5) 
precursors – dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate 
(IDP) [ 16 ]. Assembly of two, three or four C5 units by prenyl transferases (PT) 
yields geranyl diphosphate (GDP; C10), farnesyl diphosphate (FDP; C15) and 
geranylgeranyl diphosphate (GGDP; C20), respectively [ 17 ]. Pairwise condensa-
tion of FDPs or GGDPs produces squalene (C30) or phytoene (C40), respectively. 
GDP, FDP, GGDP, squalene and phytoene are the substrates for a large family of 
terpenoid synthases (TPS) [ 18 ,  19 ], and the immediate precursors of all monoter-
penoids, sesquiterpenoids, diterpenoids, triterpenoids and tetraterpenoids, respec-
tively. TPS catalyze enzyme-specifi c isomerizations, various rearrangements and 
cyclizations yielding the vast pool of cyclic and acyclic terpenoid carbon skeletons 
found in plants. Many plant TPSs are promiscuous, forming multiple products 
from a single substrate [ 20 ,  21 ]. Subsequent modifi cations of the basic parent skel-
etons synthesized by TPS generate numerous different isoprenoids produced by 
plants. These secondary modifi cations commonly include oxidation, reduction, 
isomerization and conjugation that change functional properties of terpenoid 
molecules. 

 All living organisms can be classifi ed based on the metabolic pathway used to 
produce the precursors of isoprenoid biosynthesis. The mevalonate pathway (MVA) 
is common in archaea, some bacteria, fungi and animals. The non-mevalonate path-
way, or 2- C -methyl-D-erythritol 4-phosphate pathway (MEP), was discovered in 
other bacteria and some algae. It is remarkable that plants use both MVA and MEP 
pathways that occur in the cytosol and plastids, respectively. Prenyl transferases and 
terpenoid synthases have been also found in both cytosol and plastids. In general 
mono-, di- and tetraterpenoids are preferentially formed in plastids from the precur-
sors of the MEP pathway, while the majority of sesqui- and triterpenoids is synthe-
sized in the cytosol using precursors from the MVA pathway. It is important to note 
that the division by biosynthetic origin is not complete, as there is exchange of IPP 
units between the pathways [ 22 – 24 ]. 

 Since the formation of plant isoprenoids involves several sub-cellular, tissue and 
organ compartments [ 25 ], it requires intra- and possibly intercellular transport of 
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a

c

b

  Fig. 23.1    ( a – c ) Chemical structures of triterpenoids discussed in this chapter (Modifi ed from 
Vasil’eva and Paseshnichenko [ 9 ] ( a ,  b ) and Smolenskaya et al. [ 14 ] ( c )). ( a ) Spirostanol steroidal 
glycosides and aglycon (diosgenin). ( b ) Furoostanol steroidal glycosides. ( c ) Dammarane-type 
triterpene glycosides – ginsenosides.  Ara(pyr)  arabinopyranose,  Ara(fur)  arabinofuranose, 
 Glc  glucopyranose,  Rha  rhamnopyranose       
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  Fig. 23.2    ( a – b ) Chemical structures of diterpenoids discussed in this chapter. ( a ) Paclitaxel. 
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intermediates, e.g. P450 enzymes involved in the modifi cation of mono-, sesqui-, 
di- and triterpenoids are associated with the endoplasmic reticulum whereas fi nal 
products are stored usually in vacuole or periplasmatic space of cells.  

23.1.3     In Vitro Culture of Undifferentiated Plant Cells 
as a Biological System with Unique Secondary 
Metabolism 

  In vitro  culture of somatic plant cells is a unique artifi cially created biological system 
representing a heterogeneous population of dedifferentiated cells. This system 
undergoes a continuous process of auto-selection, which depends on the intensity 
and stability of cell proliferation [ 26 ]. Both the physiological and genetic studies 
demonstrated a prominent difference between the cell in such an artifi cial population 
and in plant [ 7 ,  26 ,  27 ]:

•    Cells in culture are truly dedifferentiated while in plant they perform specifi c and 
predetermined functions;  

•   Cells in culture are free from the organism control. Without the precise “directives” 
from plant signaling system cell development is switched to autoselection based 
on the intensive and stable proliferation;  

•   Cells in culture are heterogenic morphologically, physiologically, biochemically 
and genetically heterogenic. This heterogeneity enables fl exibility required for 
the adaptation of proliferating population to  in vitro  conditions.    

 Figure  23.3  shows microphotographs of cells in suspension cultures obtained 
from various medicinal plants at the Department of cell biology and biotechnology, 
Timiryazev Institute of Plant Physiology (Moscow, Russia) as further discussed 
further in this chapter.

   As a result of these unique cell characteristics secondary metabolism in the cell 
culture undergoes signifi cant changes when compared to intact plant (Table  23.1 ).

    In vivo  biosynthesis of secondary metabolites is regulated by the plant signalling 
system and is not crucial for the survival of the individual cells [ 28 ]. In contrast, the 
auto-selection process in the dedifferentiated cell culture results in preferable pro-
duction of metabolites that promote intensive and stable proliferation. Thus, biosyn-
thetic pathways leading to the formation of secondary metabolites in cell culture is 
suppressed or arrested in the due course of the repetitive subcultures. Consequently, 
cell cultures that demonstrate active biosynthesis and accumulation of secondary 
products may be highly exclusive. However, there are a few basic principles that may 
enable intensive production of secondary metabolites in cultures  in vitro  cultures:

    Principle 1 . Cell cultures produce secondary metabolites that promote cell prolif-
eration. Hundreds of different isoprenoid molecules are involved in plant stress 
response and adaptation mechanisms and some of them may benefi t cell prolif-
eration ability [ 3 ]. Between them one can found isoprenoids with remarkable 
antioxidative, osmoprotective, growth-stimulating and other activities inherited 
from their stress-defense function in the intact plant.  
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   Principle 2.  Recently it has been hypothesized that some secondary metabolites 
perform additional functions beside their main ecological role [ 29 ]. For example, 
on one hand, alkaloids protect plants from herbivore; on the other hand, they may 
be involved in nitrogen accumulation and storage similar to steroidal glycosides 
in dioscorea, which serve as sugar reserves. These additional functions may 
favour accumulation of such metabolites in the cell culture.  

a b

c d

  Fig. 23.3    ( a – d ) Photographs of dedifferentiated cells of  Dioscorea deltoidea  ( a ),  Panax ginseng  
( b ),  Polyscias fi licifolia  ( c ) and  Taxus baccata  ( d ), grown as suspension cultures at the Department 
of Cell Biology and Biotechnology, Timiryazev Institute of Plant Physiology (Moscow, Russia) 
and discussed in this chapter       
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   Principle 3 . Production of secondary metabolites in plant cell cultures can be 
enhanced by the following physiological and biotechnological methods [ 7 ,  30 ]:

    (a)    Elicitation and/or short-term stress are the most common used techniques. 
The latter can be only effective if the target metabolite is a part of the 
inducible defence system. Other approaches include manipulating the plant 
growth regulators in culture medium, balancing medium nutrient composi-
tion and optimization of physical environment such as gas composition, 
light quality, etc.   

   (b)    Due to high heterogeneity of cell population classical selection aimed at 
cells with abnormally elevated production of target secondary metabolites 
have been proved successful.   

   (c)    A dramatic shift in cell metabolism caused by mutagenesis, reaction chain 
inhibitors, etc. followed by selection of cells with elevated metabolite 
production.   

   (d)    Metabolic engineering, i.e. overexpression or silencing of genes encoding 
key enzymes of the specifi c metabolic pathways.    

     The vast majority of biotechnological studies utilising plant cell cultures for the pro-
duction of bioactive organic compounds are focused on the effective methodology of 
increasing the content of target metabolites in dry cell biomass [ 7 ,  31 ]. This research 
can be signifi cantly intensifi ed by systematic and detailed investigation of factors 
affecting the formation of certain groups of secondary metabolites in plant cell cul-
tures  in vitro.  

 Below we discuss a systematic analysis of factors that infl uence the production 
of two main isoprenoid groups, di- and triterpenoids synthesised through different 

   Table 23.1    Major differences in the production of secondary metabolites from cultured plant cells 
when compared to intact plant   

 Factors affecting 
secondary metabolite 
production 

  In vitro  culture 
of undifferentiated cells  Intact plant 

 Cell differentiation and 
proliferation 

 Secondary metabolites are 
synthesized in continuously 
proliferating un-differentiated 
cells 

 Secondary metabolites are 
synthesized in differentiated 
non-proliferating cells 

 Cell ultrastructure  Scarcity of vacuoles and 
plastids in the population of 
meristem-like and/or 
parenchyma-like heterotrophic 
cells 

 Intense intracellular 
compartmentalization, so 
numerous organelles available 
for plastid- associated 
biosynthesis and storage of 
secondary metabolites 

 Cell compartmentalization 
and tissue-specifi city 

 Both biosynthesis and 
accumulation of secondary 
metabolites are limited to 
either a single cell or 10–30 
cell aggregates, or sequestrated 
to the culture medium 

 Biosynthesis of secondary 
metabolites is tissue-specifi c. 
Secondary products can be 
transported and stored in 
different organs 
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pathways (MVA and MEP-associated) in cultures of dedifferentiated cells obtained 
from various medicinal plant species. Some of the data summarised here have been 
obtained in the course of 50 years of intensive research in authors’ laboratories and 
is presented in English for the fi rst time.   

23.2     Steroid Glycosides in Plant Cell Cultures 

23.2.1     Overview of Steroid Glycosides 

 Steroidal glycosides (SG) is a large group of organic compounds with C27 agly-
cones composed of cyclopentanoperhydrophenanthrene structure (rings A, D, C and D) 
and a modifi ed side chain at C-17 position. Steroidal glycosides are classifi ed into 
three groups based on the structure of their aglycones: (1) Spirostanе-type, with a 
hexacyclic ABCDEF-ring system, (2) Furostane-type having pentacyclic ABCDE- 
ring system with the sixth open F ring and the least frequent, (3) Pregnane-type, a 
tetracyclic ABCD-ring system [ 32 ]. In spirostanol and pregnane-type glycosides a 
single carbohydrate chain is attached to a C-3 atom while furostanol glycosides 
carry two carbohydrate fragments at C-3 and C-26 positions. The additional glucose 
at C-26 position in furostanol glycosides dramatically changes their biochemical 
properties and physiological activities compared to other SG types. Furostanol gly-
cosides are hydrophilic substances with pronounced immunostimulating activity 
and were proved effective in the treatments of patients with sex disorders. Spirostanol 
glycosides are hydrophobic molecules with well-known antimicrobial, anti-fungal, 
cytotoxic and anti-tumor activity [ 33 ,  34 ]. 

 In plant cells, steroidal glycosides are synthesised from cholesterol in a series of 
oxidation reactions yielding furostanol structure, followed by glycosylation of 
hydroxyl groups at C-26 and C-3 carbon atoms [ 35 ,  36 ]. Interestingly, 25-S and 
25-R epimers are formed at early stages of a biosynthetic pathway with no evidence 
for their subsequent epimerization. All steps of SG biosynthesis are performed in 
the cytosol in the association with endoplasmic reticulum. Furostanol-type SG are 
synthesised in leaves, some in acylated forms. The newly formed furostanol glyco-
sides are transported through phloem to different organs, especially to storage, like 
tubers, to be further converted into spirostanol glycosides in the one-step reaction 
catalysed by the furostanol glycoside specifi c 26-O-β-glucosidase (F26G) [ 37 ]. 
Spirostanol glycosides can be accumulated in tubers at high quantities, up to 8 % 
dry weigh. Several studies suggested that furostanol glycosides could be also trans-
ported from leaf mesophyll to stem and leaf epidermis and stored in idioblasts that 
makes them unavailable for mesophyll-localized specifi c β-glycosidase [ 38 ,  39 ]. 

 Spirostanol glycosides in underground organs and furostanol glycosides in the 
upper parts of plant have been shown to carry out protective function in constitutive 
and semi-inducible plant defence systems, respectively. Furostanol-type glycosides 
can be considered as non-toxic transport and storage form of SG within the semi- 
inducible plant defence system. Under pathogen attack the disruption of cell 
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 membranes occurs, so, most furostanol glycosides are converted into spirostanol 
glycosides caused by mixing with F26G [ 39 ]. Spirostanol glycosides are the active 
and extremely toxic forms of SG and play an important role in constitutive defence 
mechanism as a “chemical weapon” against the invasive pathogens in storage 
organs. Non-toxic furostanol glycosides have lots of “positive” properties, such as 
antioxidant and membrane stabilisation and may show important side-functions in 
cell metabolism.  

23.2.2     Steroid Glycosides (SG) in Cultures of Undifferentiated 
Plant Cells 

 First studies of SG in dedifferentiated cultures  in vitro  were presumably focused on 
their highly valuable aglycones. For decades diosgenin – an aglycone of many SG 
– was an irreplaceable substrate for pharmacological synthesis of steroid hormones 
such as cortisone, pregnenolone and progesterone [ 40 ]. Tubers of tropical vine, 
 Dioscorea deltoidea  Wall. were found to be the best natural source of this com-
pound because, they accumulate diosgenin-based glycosides only. Soon after exten-
sive harvesting of  Dioscorea deltoidea  plants in their natural habitats brought the 
species nearly to extinction and thus promoted the research on cell cultures as an 
alternative source of diosgenin for pharmacological industry [ 41 ]. However in the 
late 1990s, the interest declined caused by a discovery of economically effective 
production of steroid hormones by the microbial strains utilizing  β -sitosterol, a 
cheap and available waste product of timber industry. In the twenty-fi rst century 
research interest to SG production in plant cell cultures was refocused on the pro-
duction of steroidal glycosides  per se . SG are commonly used by both Western and 
traditional medicine to treat hypotension (“Diosponin”, “Polysponin”), for strength-
ening (“Tribestan”), as immunomodulators and adaptogens as well as sex- 
stimulating drugs. Therefore standardization of SG-containing substrates for 
pharmacological industry is urgently required and is particularly important because 
plant material normally contains glycosides of both furostanol- and spirostanol-type 
that may produce alternative, if not the opposite, physiological effects in humans. 

 In 1970s–1980s SG and their aglycones have been discovered in cell cultures 
obtained from various plants including  Dioscorea  spp.:  D. deltoidea, D. tokoro, 
D. nipponica, D. composita  and  D. spiculifl ora  [ 42 – 45 ], other genera like  Solanum  
spp. [ 46 ,  47 ];  Yucca  spp.,  Agava  spp. [ 43 ],  Licopersiсon  spp. [ 43 ] and specis 
 Trigonella foenum-graecum  [ 48 ],  Momordica charantia  [ 49 ] and  Costus speciosus  
[ 50 ]. In the majority of studies SG content was estimated by content of their 
aglycones. 

 Cell cultures differ from intact plants by both quality and quantity of the pro-
duced SG. For example, gitogenin and manogenin were the main SG aglycones 
found in  Yucca glauca  cell culture while sarsapogenin, neotigogenin, gitogenin, 
marcogenin, tigogenin and smilagenin in intact plant [ 51 ]. Also fractions of various 
glycosides shifted in cell cultures compared to intact plant. For example, solasodine, 
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a steroidal pseudoalkaloid, was the major aglycone in  Solanum laciniatum  plants 
with diosgenin being a minor component. By contrast, cell culture of  S. laciniatum  
produced diosgenin as a major compound, while solasodine content was reduced 
nearly to zero [ 52 ]. 

 The effect of medium composition including various combinations of growth 
regulators, carbohydrate sources, the nitrate and ammonium ratios, phosphate con-
tent, etc., on SG content has been thoroughly investigated in plant cell cultures 
[ 53 – 57 ]. Some authors also suggested that cell differentiation status and morpho-
genesis changed SG production by plant cell cultures [ 58 ]. However despite the 
remarkable research interest no common pattern of SG formation in cell cultures in 
response to growth conditions has been found. We assume, based on the literature 
available for the last 40 years and our experience that regulation of SG biosynthesis 
in undifferentiated cell cultures is likely to be species- and compound-specifi c. 
Below, we describe a systematic approach to step-by-step improvement of dios-
genin production in  Dioscorea deltoidea  cell culture. It was based on optimization 
of culture conditions and enabled the up-scaling of the process from the laboratory 
to semi-industrial bioreactors.  

23.2.3     Steroid Glycosides in  Dioscorea deltoidea  Cell Cultures 

 The fi rst cell cultures of  D. deltoidea  were obtained independently by Staba (USA) 
and Butenko (the former USSR) in late 1960s and was followed by detailed analysis 
of cell growth characteristics and optimization of culture media [ 27 ,  57 ,  59 ]. 
Interestingly, in both callus and suspension cultures, sucrose uptake from medium 
resulted in noticeable starch accumulation in protoplasts [ 60 ]. Cultivation of  D. 
deltoidea  suspension cell cultures in fl asks and bioreactors was successful [ 61 ,  62 ]. 
Kaul and Staba were the fi rst to demonstrate the ability of  D. deltoidea  cell cultures 
to produce diosgenin [ 59 ]. According to their records, diosgenin was synthesized 
intensively by undifferentiated cells while only trace amounts of the compound 
have been detected in rhizogenous, i.e. differentiated, tissues [ 59 ,  63 ]. Soon after, 
the fi rst  in vitro -produced steroidal glycoside (furostanol-type compound without 
its carbohydrate chain) was purifi ed from hydrolyzed cell biomass of  D. deltoidea . 

 Among pre-screened  Dioscorea  species cell cultures derived from  D. deltoidea  
demonstrated the highest diosgenin production [ 44 ]. Diosgenin content varied from 
3 to 30 mg · g −1  dry weight equivalent to 10–100 mg · g −1  dry weight SG content, 
respectively [ 54 ,  60 ]. Some data showed that diosgenin accumulation in cell culture 
occurred at the later phases of growth cycle [ 60 ,  61 ,  64 ]. On the contrary, Drapeau 
[ 42 ] reported diosgenin content to remain constant during the cultivation cycle. 

 Intensive research has been focused on the effect of the environment on dios-
genin content in  D. deltoidea  cell culture. The ratio and concentration of ammonia 
and nitrate in culture medium were proved to be important [ 61 ]. Dioscorea cells 
were able to utilize various carbohydrate sources including sucrose, glucose, galac-
tose, lactose and starch. However, the highest diosgenin content was observed at 
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4–5 % sucrose [ 65 ]. Manipulation of growth regulators in culture medium signifi -
cantly altered the diosgenin production. It was maximized in presence of 2,4-D 
alone or in combination with IAA [ 54 ]. Supplement of diosgenin precursors such as 
mevalonic acid and cholesterol into the culture medium also improved diosgenin 
production [ 54 ]. 

 Tal et al. [ 62 ] applied a biphasic cultivation to stimulate diosgenin biosynthesis 
in  Dioscorea deltoidea  cell culture. Increasing phosphate and sucrose concentration 
in culture medium at the exponential growth phase resulted in eight times increase 
in diosgenin content by the end of cultivation cycle from 0.4 % initial content. 
However, the overall productivity of the cell culture remained below 15 mg · L −1  
medium [ 66 ]. 

 Another approach leading to high diosgenin production in  Dioscorea  cell 
cultures was based on chemical mutagenesis followed by classical selection of 
cells by their proliferation intensity [ 67 ]. Ionizing radiation as mutagenic factor 
was found less effective. Below, we review the main growth characteristics of the 
selected  D. deltoidea  cell strains with elevated diosgenin and steroidal glycosides 
production.  

23.2.4     Growth and Biosynthetic Abilities of the Selected 
Strains of  Dioscorea deltoidea  Plant Cell Culture 

 The initial cell line D-1 was obtained from  Dioscorea deltoidea  tuber in 1968. New 
strains were obtained as a result of exposure of D-1 cells to different concentrations 
of NMM ( N -nitroso- N -methylurea) followed by cell selection by growth intensity 
[ 67 ]. The most promising strains resulted from 0.5; 1.0 and 8.0 mM · h −1  NMM 
treatments were named as DM-0.5, DM-1 and DM-8 respectively. Interestingly, line 
DM-8 was prototrophic and showed intensive proliferation on the medium without 
growth regulators. 

    Cytogenetic and Growth Parameters of the Selected 
 D. deltoidea  Cell Strains 

 After 5–7 days of culture chromosome number varied from 8 to 68 for D-1 strain, 
from 10 to 63 for strain DM-0.5, from 10 to 84 for strain DM-1 and from 9 to 80 
for strain DM-8 compared to 20 chromosomes (at 2N = 2C) in cells of intact plant. 
Thirty to forty percent cells in strains D-1 and DM-0.5 were diploid and triploid 
while 45–50 % cells in strain DM-8 were diploid. The ploidy of the strains appeared 
stable under standard conditions, but was altered by changes in composition of 
culture medium. For example, after eight cycles of subculture in vitamin-free 
medium 30–40 % cells of strain DM-0.5 became polyploid while 40–45 % cells 
of strain DM-8 – haploid. When both cultures were transferred back to vitamin-
containing medium their ploidy levels retained to the initial values [ 68 ]. These data 
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illustrate the fl exibility of undifferentiated cell cultures and their high adaptability 
based on heterogeneity of the cells in population as well as the stability in constant 
cultivation conditions. 

 In all strains, except DM-8, 70–80 % cells formed aggregates of less than 20 cells. 
In prototrophic strain DM-8 60 % cells formed aggregates of over 20 cells [ 69 ]. 

 Proliferation activity was different between strains. For example, in DM-0.5 
strain fraction of proliferating cells (assessed by  3 H-thymidine accumulation) 
reached 80 % on the forth day of subculture, while in strain D-1 it remained below 
65 % by the end of subculture cycle [ 70 ]. Both strains demonstrated two peaks of 
mitotic activity on the second to third and sixth to seventh day, but the mitotic index 
(MI) of DM-0.5 was 25–30 % higher than that of D-1 strain [ 27 ]. 

 Remarkably, strain DM-0.5 retained the intensive proliferation ability for over 
30 years of repeated subculture. 

 Further analysis revealed signifi cant differences in the duration of mitotic cycles 
between the initial strain D-1 (26–28 h) and the mutant strain DM-0.5 (24–25 h). 
Mitotic cycle of DM-0.5 strain was shorter than D-1 due to shortened S and G2 
phases (Fig.  23.5 ). However, the duration of actual mitosis was shorter in D-1 
strain [ 70 ]. 

 Under batch-cultivation in fl asks and bioreactors all strains exhibited classical 
S-shape time-response curve of dry and fresh weight accumulation and cell count. 
All strains showed comparable duration of growth phases including the lag-phase 
from 0 to 6–7 days depending on the inoculum size, 4–6 days in the exponential 
phase and 1–3 days in the slow growth phase. The total absence of the stationary 
growth phase in all strains could be a special feature of  Dioscorea  cell culture. 
Increase in sucrose concentration in culture medium resulted in prolonged exponen-
tial growth up to 10–12 days. 

 The main growth characteristics of individual strains of  Dioscorea deltoidea  
plant cell culture are summarised in Table  23.2  (according to [ 27 ,  71 ,  72 ]).

       Steroidal Glycoside Content in Different Strains 
of  Dioscorea deltoidea  Cell Culture 

 Analysis of steroidal glycosides in cultivated cells of  D. deltoidea  demonstrated that 
in all strains overwhelming majority was represented by furostanol forms. Table  23.3  
shows how production of SG varied between strains. Note that spirostanol-type 
glycosides content was less than 3 % of total SG.

   To explain near absence of spirostanol-type glycosides in  D. deltoidea  cell lines, 
the additional experiments were performed such as water extraction enabling auto- 
fermentation of each strain were performed. During the procedure, the lyophilized 
cell biomass was extracted with water at 26 °C for 3 h, thus allowing endogenous 
β-glycosidases to remain active and convert furostanol glycosides to spirostanol 
forms. As a control, an extraction with 70 % methanol was performed, which 
resulted in the inactivation of all types of β-glycosidases. Table  23.4  shows how the 
content of furostanol glycosides was affected by the selective extraction.
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   According to the data reported in Table  23.4  the low content of spirostanol glyco-
sides in DM-0.5 strain could be a result of low or inactive β-glycosidase in this strain. 
In contrast, water extraction of DM-1, D-1 and DM-8 strains resulted in 70–85 % loss 
of furostanol glycosides caused presumably by high β-glycosidase activity. Thus, total 
absence of spirostanol glycosides in those strains could be due to intracellular isolation 
of the enzyme and furostanol glycosides in different compartments. 

 Analysis of individual SG in all cell strains using RP-HPLC-UV, GS-MS after 
acid hydrolysis and IR spectroscopy showed that protodioscin and deltoside 
(aglycone diosgenin, 25R-confi guration) and their 25-S-isomers (aglycone yamo-
genin, 25-S-confi guration) were detected as major compounds. Interestingly, 
25-S-isomers were not found in  D. deltoidea  intact plants, but have been detected in 
other  Dioscorea  species [ 9 ]. 

 Quantitative analysis of SG content by UV–VIS spectrophotometry, HPLC and 
GC after acid hydrolysis showed similar results with less than 20 % difference 

   Table 23.2    Growth characteristics of the selected  Dioscorea deltoidea  strains grown in fl asks   

 Strain 

 Maximum dry 
mass accumulation, 
 М  (g L −1 ) 

 Growth 
index,  I  

 Specifi c 
growth 
rate,  μ  
(day −1 ) 

 Economic 
coeffi cient 
on sucrose,  Y  

 Productivity 
on biomass, 
 P  (g L −1  day) 

 Doubling 
time, τ 
(days) 

 D-1  11.2  8.4  0.18  0.30  0.55  3.9 
 DM- 0.5  11.9  8.4  0.20  0.33  0.66  3.5 
 DM- 1   11.7  7.2  0.17  0.32  0.63  4.1 
 DM- 8   10.9  6.8  0.16  0.35  0.60  4.3 

  Average of 15 replicates. Coeffi cient of variation (CV) ≤ 25 %  

   Table 23.3    Content of furostanol-type and spirostanol-type glycosides in  Dioscorea deltoidea  
strains [ 73 ]   

 Strain 

 Glycoside content (% dry weight)  Spirostanol glycosides 
(% of total)  Furostanol-type  Spirostanol-type 

 D-1  9.3  0.07  0.8 
 DM-0.5  3.2  0.06  1.9 
 DM-1  2.0  0.04  2.0 
 DM-8  2.1  0.06  2.9 

    Table 23.4    Effect of extraction method on content of furostanol-type glycosides in strains of 
 Dioscorea deltoidea  cell culture [ 73 ]   

 Strain 

 Olygofurostanoside content (% dry weight) 

 Extraction 
loss (%) 

 Extraction with 70 % 
methanol 

 Extraction with water 
(autofermentation) 

 DM-0.5  7.8  7.8  0 
 DM-1  3.5  1.2  70 
 D-1  0.92  0.15  85 
 DM-8  1.7  0.24  85 
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between the methods. Table  23.5  shows SG content in the selected strains at the 
early-stationary phase of growth (14–18 days of culture).

   Highest furostanol glycoside content, about 12 % dry weight, was recorded in 
DM-0.5 strain followed by 7, 4 and 2 % in DM-1, DM-8 and D-1, respectively. 
Ratio of 25-R and 25-S isoforms remained constant and specifi c for each strain. The 
content of SG in DM-0.5 strain was higher than in tubers of  D. deltoidea  plants. 

 It is important that furostanol glycoside content remained constant at the initial 
stages of culture cycle, but increased 1.5–2 folds in transition from the exponential 
to the stationary phase suggesting the continuous synthesis of SG in cell cultures  in 
vitro  cell cultures [ 74 ]. 

 In each strain SG content and accumulation pattern remained stable for 40 years 
of maintenance by periodic subcultures. Figure  23.4  shows HPLC profi les of differ-
ent strains of  D. deltoidea  cell suspension culture maintained in fl ask in the year 
1991 and DM-0.5 strain cultivated in 630 L bioreactor after 20-year interval.

       Intracellular Localization of Steroid Ginsenosides 
in  Dioscorea deltoidea  Cell Cultures 

 Information on intracellular localization of SG can help to increase the productivity 
of cell cultures. In the fi rst series of experiments SG content was compared between 
cells and protoplasts isolated from the same culture to reveal possible SG localization 
in the cell wall and/or in the periplasmic space. The results showed that over 50 % of 
total SG accumulated in periplasmic space. In 7-days-old culture, only 7.5 mg · g −1  
glycosides of total 35 mg · g −1  SG were found in protoplasts. With the ageing of cul-
ture SG content in protoplasts increased to 20 mg · g −1  compared to 50 mg · g −1  in 
periplasmic space, presumably caused by their accumulation in vacuoles [ 73 ]. 

 SGs are electron-dense substances and electronic microscopy indicated their 
intracellular localization. Fixation with glutaraldehyde followed by osmium tetrox-
ide staining was used to prevent SG elution from cells. Electronic microphotographs 
prepared by this method showed localization of electron-dense substances, which 
were likely to be SG, in vacuoles, cell walls and inter-cellular spaces. In contrast, 
other fi xations resulted in SG elution from cells and absence of electron-dense com-
pounds in the microphotographs. It is important that distribution of electron-dense 

   Table 23.5    Content of furostanol-type glycosides in strains of  Dioscorea deltoidea  cell cultures, 
mg · g −1  dry weight [ 73 ]   

 Strain 
 Total 
content 

 25R-confi guration  25S-confi guration  25S to 25R 
ratio (%)  Protodioscin  Deltoside  S-Protodioscin  S-Deltoside 

 D-1  14.2  4.2  1.8  5.5  2.7  58 
 DM- 0.5  92.3  54.3  27.1  7.2  3.7  12 
 DM-1  57.6  31.2  20.9  3.4  2.1  9 
 DM-8  29.2  9.1  10.2  5.0  4.9  34 

  Average of 15 replicates. CV ≤ 35 %  
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  Fig. 23.4    ( a – b ) RP-HPLC-UV chromatograms of saponins from  Dioscorea deltoidea  cell suspen-
sion cultures. ( a ) Different strains of  D. deltoidea  cell suspension culture, chromatographic 
 analysis made in 1991 [ 73 ]. ( b )  D. deltoidea  cell suspension culture strain DM-0.5, chromato-
graphic analysis made in 2007.  1  25( S )-deltoside,  2  25( R )-deltoside,  3  25( S )-protodioscin,  4  
25( R )-protodioscin       
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compounds between cell compartments was specifi c for every cell strain. For exam-
ple, in modest glycoside producers D-1 and DM-8, SGs were detected mainly in 
vacuoles and cell walls, respectively [ 75 ].  

    Optimization of Culture Medium for Steroidal Glycoside 
Production in  Dioscorea deltoidea  Cell Cultures 

 Optimization of culture medium on biomass and SG production in  Dioscorea del-
toidea  cell suspension was based on variation in IAA, NAA and 2,4-D concentra-
tion, source of carbohydrate and composition of mineral elements. Without growth 
regulators cell growth was totally arrested at the beginning of the second subculture. 
Supplementation of auxins into culture medium was essential for the cell growth. 
Among all auxins studied, addition of 2,4-D to the culture medium was most effec-
tive and resulted in 1.5–2.0-fold increase in SG production. The exact mechanism 
of phytohormone effect on SG biosynthesis in cell suspension remains unknown. 
The pronounced benefi cial effect of 2,4-D may be due to its high ability to intensify 
the proliferation and dedifferentiation of cultured cells [ 74 ,  76 ,  77 ]. 

 Biomass accumulation in cell culture increased with the increase in sucrose con-
centration in the medium from 3 to 5 %, while specifi c growth rate and sucrose 
uptake remained unaffected. However at the end of subculture cycle decrease in SG 
production was recorded for cell suspension in sucrose-enriched medium. 
Interestingly, in sucrose-enriched medium the portion of 25-S glycoside to total SG 
increased by 50 %, as well as deltoside to protodioscin ratio. Thus, the increase in 
sucrose concentration from 3 to 6 % caused a remarkable shift in S-shaped growth 
curve due to the prolonged exponential phase, elevated accumulation of dry bio-
mass and reduction in SG content; at the same time culture productivity calculated 
as total SG production remained unchanged [ 78 ]. 

 Threefold increase in phosphate in culture medium did not bring any signifi cant 
changes in productivity of DM-0.5 cell line, and phosphate uptake of 0.4–0.5 mM · day −1  
was similar to cell culture in standard medium. In contrast to phosphate, nitrogen 
source affected both cell growth and production of steroidal glycosides. At the standard 
NH 4  +  to NO 3  −  ratio (20:40 mM) nitrogen uptake did not exceed 50 % of total nitrogen 
content. However, the decrease of both ammonium and nitrate by 50 % resulted in total 
arrest of culture growth. Decrease only in NО 3  −  concentration by 50 % (NH 4  + /
NO 3  −  = 1:1, 20:20 mM) enabled stable cell growth but resulted in decline of SG produc-
tion by 4–5 %. At the end the ratio of NH 4  + /NO 3  −  was optimized as 1:3 in equivalent of 
40 mM total nitrogen [ 78 ]. Therefore, optimization of nitrogen source and concentra-
tion had the most prominent impact on SG production in  D. deltoidea  cell culture.  

    Effect of Cultivation Mode on Steroidal Glycoside Production 

 To investigate the effect of cultivation mode (callus or suspension culture) on SG 
production 10–12 callus cell lines were obtained from all  D. deltoidea  strains [ 79 ]. 
Table  23.6  summarises the results of SG biochemical analysis in all callus lines of 
different strains.
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   Furostanol glycosides varied within the following limits: 0.4–1.0 % DW for D-1 
strain, 0.6–3.3 % DW for DM-0.5, 1.2–4.2 % DW for DM-1 and 0.2–1.4 % DW for 
DM-8. Therefore, total SG production in  D. deltoidea  callus cultured on agar medium 
was three to ten times lower than that in suspensions in liquid medium. The most sig-
nifi cant loss in SG content was recorded for DM-0.5 strain, which has been proved the 
most productive in suspension cultures. Pattern of biosynthetic productivity of the cell 
lines cultured on solid medium resembled those of suspension cultures: DM-1 and 
DM-0.5 strains produced three to four times higher amount of SG than D-1 and DM-8 
strains. However, DM-1 cell culture on solid medium was more productive based on 
SG content of DM-0.5; opposite relations were observed for these lines in suspension. 

 Protodioscin to deltoside ratio was slightly shifted in callus culture when 
compared to suspensions. For instance, deltoside became a major glycoside in D-1 
strain. The 25-S-glycosides fraction was not detected in DM-0.5 strain but its con-
tent increased up to 25 % in DM-1 strain. 

 Therefore, culture mode affected the SG content in all strains resulting in signifi -
cant decrease in SG in callus culture when compared to suspension. Also biomass 
productivity appeared to be two to three times lower on solid medium than in liquid 
medium, possibly caused by shorter subculture cycle. 

 Hence we describe below the experiments which show changes in the cell growth 
related to SG production.  

    Effect of Cultivation Regime on Growth and Biosynthetic Characteristics 
of  Dioscorea deltoidea  Suspension Cell Cultures 

 According to the available literature both growth and biosynthetic traits of cell cul-
tures could be strongly affected by bioreactor mode of operation such as batch, 
fed-batch and continuous (chemostat, turbidostate and auxostat). This effect is yet 
to be understood. In our study both D-1 and DM-0.5 strains retained their main 
growth characteristics when cultured in MF-107 bioreactor (New Brunswick, USA) 
operated as chemostat. However, maximal dilution rate ( D ), which equalled maxi-
mal specifi c growth rate ( μ ) of a strain, was higher for DM-0.5 compared to D-1: at 
 D  = 0.22 day −1  cells of D-1 were gradually eluted from the bioreactor, while DM-0.5 
strain retained its growth characteristics [ 80 ]. 

   Table 23.6    Content of furostanol glycosides in  Dioscorea deltoidea  strains cultured on agar 
medium (“on-top” cultivation), mg g −1  dry weight (summary for all cell lines)   

 Strain 
 Total 
content 

 25R-confi guration  25S-confi guration 

 Proto- 
dioscin  

 Delto-
side 

 Protodioscin to 
deltoside ratio 

 S-proto-
dioscin  S-deltoside 

 Percent of 
S-confi guration 

 D-1  5.5  1.1  1.4  0.8  1.7  1.3  54 
 DM- 
0.5 

 21.8  13.1  8.7  1.5  0  0  0 

 DM- 1   28.4  13.5  7.5  1.8  4.8  2.6  26 
 DM- 8   6.8  2.3  2.8  0.8  1.1  0.6  25 

  Mean values, СV ≤ 40 %  
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 The productivity of DM-0.5 and D-1 strains under the chemostat conditions was 
2.3 and 1.8 g · L −1  medium per day, respectively, that is two to three times higher 
than their productivity under the batch conditions. Both strains fully retained their 
ability to biosynthesise SG under the chemostat conditions. The highest content of 
furostanol glycosides in DM-0.5 strain was 6 % DW which was lower than under 
the batch conditions. On the contrary, SG production in D-1 strain cultured under 
chemostat regime with a low dilution rate was higher than that under the batch 
regime. The proportion of individual SG such as protodioscin, deltoside and their 
25-S-isoforms under chemostat regime remained unchanged when compared to the 
batch cultivation. Thus, we can conclude that chemostat regime is preferable for 
DM-0.5 and D-1 strains of  D. deltoidea  when SG productivity is considered: after 
strain-specifi c alterations in chemostat regime individual SG content was 1.4–1.6-
times higher than that under the batch conditions, possibly due to more intensive 
cell growth under chemostat conditions [ 80 ]. 

 In contrast to microbial cells dedifferentiated plant cells cultured under chemo-
stat regime showed a higher productivity than it was expected based on mathemati-
cal models and it was assumed that it may be due to a remarkable change in cell 
population structure described below. However, the long-term cultivation of plant 
cell culture in chemostat in a standard medium using high dilution rate is impossi-
ble. Dramatic decrease in cell viability has been recorded for both strains after 
30–40 days in chemostat with dilution rate D = 0.20–0.22 day −1 , that was followed 
by the reduction of growth intensity and subsequent death of the entire population. 

 Similar to  D. deltoidea  strains the complete loss of viability was reported in 
tobacco cells after 2 weeks in chemostat. However, it was shown that it was possible 
to extend duration of cultivation in chemostat up to 70 days by increasing the con-
centrations of all components of the medium [ 81 ]. 

 Our experiments revealed the key role of phosphate in this process. Cell suspen-
sion of D-1 strain was cultured in fl asks under semi-continuous regime using 
MS-medium with standard (1.25 mM) and elevated (2.94 mM) phosphate concen-
tration. When cultured in phosphate-enriched medium, the cell suspension showed 
stable growth for 200 days at specifi c growth rate (μ) above 0.3 day −1 . On the con-
trary, in the standard MS medium specifi c growth rate as high as μ = 0.23 day −1 , 
could be maintained only for 40 days, which was equal to 50 cell generations. After 
this period within several days cell viability was completely lost. Transfer of cell 
culture to standard medium after 130 days in phosphate-enriched medium caused 
nearly immediate death of the entire population [ 82 ]. 

 The main reason behind the observed instability of cell proliferation and viability 
under continuous cultivation regime was a dramatic change in the population struc-
ture. At a high dilution rate the percentage of intensively dividing cells in the popu-
lation increased because of rapid elution of cells which stopped growing or which 
showed slower growth ( μ < D ). This inevitably resulted in depletion of culture het-
erogeneity which underpins the population fl exibility and stable growth. The rap-
idly growing and dividing cells that remained in the population were very sensitive 
and fragile and were unable to survive for long. 

A.M. Nosov et al.



583

 This observation was supported by the results of further experiments with long- 
term cultivated (over 100 days) D-1 and DM-0.5 strains. These experiments were 
performed in bioreactors designed to switch between batch and chemostat mode at 
different dilution rates [ 83 ]. It was shown that a step-wise switch from the continuous 
to batch mode induced signifi cant changes in cell culture (Fig.  23.5 ). In particular, 

Strain D–1 Strain DM–0,5

  Fig. 23.5    Mitotic index, distribution of cells with different ploidy and duration of mitotic cycle 
phases in  D. deltoidea  suspension cell culture strains D-1 and DM-0.5 during long-term cultivation 
in “batch – continuous” regime.  Upper Square brackets  indicate chemostat regime with dilution 
rate D. n, 2n, 3n, 4n – ploidy of cells       
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a specifi c growth rate under the batch regime increased due to accumulation of inten-
sively proliferating cells during previous chemostat phase. This was associated with 
three to fi vefold increase in mitotic index in chemostat culture compared to batch. 
The highest recorded mitotic index for D-1 and DM-0.5 strains under chemostat 
condition was 6 and 16 %, respectively. Interestingly, mitotic index correlated with 
the relative phase duration of mitotic cycle: in D-1 strain actual mitosis lasted for 6 % 
of the cell cycle, in DM-0.5 – 16 %. Assuming that in chemostat culture cell division 
was not synchronised, equality of mitotic index to the length of mitotic phase indi-
cated that all cells in the population were constantly dividing. As a result, there were 
no cells in the population which “rested” in between the division circles. This change 
in cell “ cell behaviour” explained the difference of cell cycle parameters in experi-
ment compared to the mathematically modelled ones based on classical chemostat 
theory. Interestingly, sharp increases in mitotic index were followed by deep 
decreases down to 1–2 %, confi rming our statement that the intensively growing cell 
population is very unstable. Possibly, cells in cell culture require a rest- period 
between divisions to produce stable and viable population.

   The most dramatic change occurred in cell population under chemostat condi-
tions was the change in ploidy level. In both strains, the proportion of haploid cells 
increased from 1 to 2 % at the beginning of chemostat conditions to 45–50 % at the 
end (~100 days). We suggested two possible reasons for that increase. First, it could 
be due to the lack of phosphate for DNA synthesis and second, that intensive divi-
sion of cells with a minimal DNA content led to their accumulation in population. 
It is known that haploid cells are the most sensitive to culture conditions, thus their 
accumulation may result in signifi cant decrease in culture viability. 

 Also changes in SG content in cell population under chemostat conditions were 
likely brought about by changes in cell population. After 30 days in chemostat at 
 D  = 0.14 days −1  furostanol glycosides content in D-1 strain decreased from 1.7 to 
1.2 %, but then increased back to 2.7 % [ 83 ]. 

 Thus, cell culture in continuous mode bioreactors is a powerful tool to study the 
unique properties of the cell  in vitro  including biosynthesis of secondary metabo-
lites, because it allows regulation of cell physiology and population structure. For 
example, our results suggested that a “rest period” between mitotic cycles is neces-
sary for stable cell proliferation and culture growth. Accumulation of intensively 
proliferating cells caused a deterioration of population heterogeneity, which made it 
vulnerable in chemostat conditions and led to entire loss of cell viability within a 
few subculture cycles. 

 Unfortunately, we have to conclude that chemostat regime despite its higher pro-
ductivity compared to other culture regimes was not a suitable tool for industrial 
production of cell biomass. 

 In general, we found that quantitative and qualitative content of SG in  D. deltoi-
dea  cell cultures under different culture conditions were strain-specifi c and differed 
from those in intact plants.

    1.    Predominant biosynthesis of furostanol-type SG in cell culture was not affected 
by the presence or changes in activity of endogenous β-glucosidase, but in a 
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mutant DM-0.5 strain, which showed the highest SG production, the activity of 
this enzyme was undetectable.   

   2.    Cell cultures of  D. deltoidea  were able to produce glycosides with S-confi guration 
of C-25 carbon atom in their aglycone (yamogenin). These compounds were not 
found in intact  D. deltoidea  plants, but they have been detected in other  Dioscorea  
species   

   3.    All tested cell lines showed similar HPLC profi les of SG, with protodioscin and 
deltoside found to be the major SG in  D. deltoidea  cell cultures. It is a perfect 
example for totipotency of plant cells, because in intact plants protodioscin accu-
mulated is seen in leaves and deltoside in tubers, while in cell culture both these 
SG are co-accumulated.   

   4.    In  in vitro  plant cells SG were accumulated in periplasmic space and vacuoles 
and the accumulation in vacuoles increased with the ageing of culture.   

   5.    SG content in cell cultures remained stable. The most productive DM-0.5 strain 
retained the ability to produce SG at the level of 5–12 % during 40 years of 
observation without any “rejuvenating” treatments.   

   6.    Optimization of culture medium by adjusting the concentrations of growth regu-
lators and mineral nutrition had almost no effect on SG content in  D. deltoidea  
cell culture. The maximal increase in SG production due to medium composition 
was 1.5-fold. On the contrary, change of auxin type and bioreactor culture regime 
improved SG production suggesting a strong physiological correlation between 
SG biosynthesis and cell proliferation.    

  In intact plants SG play a role in protection from stress, so their biosynthesis and 
function is regulated at the organismal level. Therefore one can expect that SG bio-
synthesis in cell cultures  in vitro  will be reduced or even stopped. Unexpectedly it 
remained stable for over 40 years in  D. deltoidea  cell lines. Based on this funding 
we hypothesize that furostanol-type SG may act alternatively as potential antioxi-
dants and membrane stabilizing agents in dedifferentiated cell population when 
compared in intact plants, so their biosynthesis is retained to support the culture 
growth (see “ Principle 1 ” in Sect.  23.1 ).    

23.3     Triterpene Glycosides (TG) in Plant Cell Cultures 

23.3.1     Overview of Triterpene Glycosides 

 Tritepenoids are a large group of isoprenoid compounds synthesized from 
2,3- oxidosqualene, the common precursor of triterpenoids and steroids. Intact 
plants contain free triterpenoids, triterpenoid esters of different organic acids and 
glycosides. The latter can be acylated at different positions of the aglycone and/or 
carbohydrate chains [ 11 ]. Among all triterpenoids triterpene glycosides form the 
largest group. Apart from aglycone the carbohydrate chains contribute to their vast 
structural diversity. More than ten different classes of triterpenoids serve as 
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aglycones in TG. Those from the oleanane, ursane, lupane and dammarane classes 
are the most widespread in higher plants [ 10 ]. 

 Similar to SG formation, biosynthesis of triterpenoids and their glycosides is 
accomplished  via  a few homotypic stages as following: oxidosqualene cycliza-
tion, introduction of a limited number of oxygene-based function groups and 
attachment of one or more carbohydrate moieties [ 84 ]. For instance, the biosyn-
thesis of the ginsenoside Rb 1  includes six sequential steps catalyzed by different 
enzymes [ 85 ]. 

 All enzymes of TG biosynthesis are localized near ER membrane, alongside 
with the enzymes catalyzing the biosynthetic pathways of their common precursor, 
squalene [ 11 ]. Several reports suggested that individual stages of TG biosynthesis 
are combined to form metabolic complexes, or metabolomes, which facilitate both 
spatial and temporal regulation of TG formation [ 86 ]. Moreover, as demonstrated 
for some TG the genes coding the enzymes of TG biosynthesis are organized in 
clusters within a single chromosome, so they could be expressed in a coordinated 
manner [ 87 ,  88 ]. 

 Functions of triterpenoids in plants are yet to be elucidated though there is a 
wealth of evidence pointing out the participation of triterpenoids in ecological phys-
iology of plants, in particular, in the defense system [ 11 ,  84 ].  

23.3.2     TG in Cell Cultures of Different Plant Species 

 Investigation of TG in plant cell cultures started in the middle of the last century. 
A considerable amount of information about biosynthesis of these compounds in 
callus and suspension cultures of different plant species was obtained (Table  23.7 ). 
The majority of TG found in plant cells cultured  in vitro  belong to the most wide-
spread oleanane and dammarane classes. Together with the glycosides free TG 
aglycones, including oleanolic, ursolic and betulinic acids and their derivatives, 
were found [ 89 ,  90 ].

      Qualitative Composition 

 Qualitative composition of TG in cultured cells and intact plants differed signifi -
cantly. Also novel compounds lacking in the intact plants could be biosynthesized 
in the cell culture. For example, the callus cultures of  Akebia quinata  and  A. trifo-
liata  (Lardizabalaceae) were shown to accumulate rare 30-noroleanane-type glyco-
sides which are not found in the intact plants [ 92 ,  109 ]. Furthermore the ratios of 
different glycoside groups were often altered when compared to the source plants. 
For example, it was found that the  in vitro  cells of  Glycyrrhiza glabra  (Fabaceae) 
were incapable of accumulation of glycyrrhizin, the main TG of the licorice tubers 
[ 97 ]. At the same time, these cultures accumulated substantial amount of soyasapo-
nins, which in the intact plant were biosynthesized as a minor component of TG 
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mixtures only in the underground organs and at certain stages of the ontogenesis. 
Later studies employing highly sensitive methods such as competitive ISA and 
HPLC/MS showed that several licorice species were able to biosynthesize glycyr-
rhizin in callus [ 98 ] and suspension [ 110 ]. 

 There are also examples of variation in qualitative composition of free triterpe-
noids in plants and their corresponding cell cultures. Cell culture of  Taraxacum 
offi cinale  (Asteraceae) synthesized α- and β-amyrin derivatives found only in the 
intact plants, but lacked taraxasterol – an essential component of intact plant lacti-
fi er [ 111 ]. A similar example was reported for  Euphorbia characias  (Euphorbiaceae) 
cell culture [ 112 ], as well as  Eucalyptus perriniana  (Myrtaceae). The latter biosyn-
thesized novel and unique triterpenoids, e.g. C-23-hydroxylated oleananes and 
ursanes [ 113 ]. Changes in tissue specifi city of certain reactions in the triterpenoid 
biosynthesis were also detected (e.g. cell cultures of certain Actinidiaceae species 
exclusively produced С-24-ОН oleananes and ursanes whereas the intact plants 

   Table 23.7    Triterpene glycosides (TG) in plant cell cultures obtained from different plant species   

 Species  Cell culture type  TG found  References 

  Aesculus 
hippocastanum  

 Callus  Escin  [ 91 ] 

  Akebia quinata   Callus  Glycosides of 30-noroleanolic acid 
and 30-norhederagenin 

 [ 92 ] 
  A. trifoliata  
  Bacopa monnieri   Callus and 

suspension 
 Bacosides  [ 93 ] 

  Bupleurum falcatum   Callus and 
suspension 

 Saikosaponins  [ 94 ] 

  Calendula offi cinalis   Suspension  Glucosides and glucuronides of 
oleanolic acid 

 [ 95 ] 

  Centella asiatica   Callus and 
suspension 

 Asiaticoside, madecassoside  [ 96 ] 

  Glycyrrhiza glabra   Callus and 
suspension 

 Soyasaponins I and II, glycyrrhizin  [ 97 ] 
  G. uralensis   [ 98 ] 
  Gymnema sylvestre   Suspension  Gymnemic acid  [ 99 ] 
  Gypsophila paniculata   Suspension  Gypsogenin-3- О -glucuronide  [ 100 ] 
  Medicago sativa   Callus and 

suspension 
 Glycosides of syasapogenol B and 
medicagenic acid 

 [ 101 ] 
  M. truncatula  
  Panax ginseng   Callus and 

suspension 
 Ginsenosides  [ 102 ] 

  P. notoginseng   [ 103 ] 
  P. japonicus   [ 104 ] 
  Phytolacca americana   Callus  Phytolaccosides A, B, D  [ 105 ] 
  Polygala amarella   Callus  Polygalasaponin XXVIII and other 

presenegenin glycosides 
 [ 106 ] 

  Primula veris   Callus and 
suspension 

 Primula acid I  [ 107 ] 

  Stauntonia hexaphylla   Callus  Glycosides of 30-noroleanolic acid 
and 30-norhederagenin 

 [ 108 ] 
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often contained mixtures of С-23/С-24-hydroxylated derivatives of these com-
pounds [ 89 ,  90 ]).  

    Quantitative Composition 

 The TG content in cell cultures could vary signifi cantly. Usually TG content is 
considerably lower in cells cultured  in vitro  compared to intact plants [ 98 ,  107 , 
 110 ]. Often the ability to synthesize TG declined or even disappeared after pro-
longed cultivation  in vitro  cultivation [ 107 ], though exceptions exist. An example 
of such case could be observed with  Centella asiatica  (Apiaceae) suspension cul-
ture, which accumulated asiaticoside in higher amounts than in callus and intact 
plant [ 114 ,  115 ]. 

 The maximum TG content in plant cell cultures was observed at the end of 
the exponential/beginning of the stationary phase of the cultivation cycle [ 98 , 
 107 ,  110 ]. Similar pattern was reported for many free triterpenoids [ 111 ]. 
However, there are some exceptions, for example, marigold suspension culture 
featured two maxima of the accumulation of oleanane-type glycosides: in the 
beginning of exponential and in the middle-to-the-end of stationary growth 
phase [ 116 ]. 

 Culture medium composition, namely specifi c phytohormones and their ratio, 
affected quantitative composition of TG in cell cultures [ 117 ]. The same was shown 
for the precursors of the TG biosynthesis [ 95 ], elicitors [ 99 ,  118 ] and stress hor-
mones [ 117 ,  119 ]. Interestingly, the rate of biosynthesis of various triterpenoids by 
the same cell culture could vary signifi cantly depending on additives to the cultiva-
tion medium. For instance, the addition of yeast extract to the cell-suspension cul-
ture of  G. glabra  led to the increase in betuliniс acid formation and suppression of 
biosynthesis of soyasaponin, whereas methyl jasmonate had the opposite effect. It 
is possible these changes occurred due to the differences in regulation of biosynthe-
sis of different triterpenoid groups [ 97 ]. 

 Unfortunately, it was impossible so far to generalize on the pattern of TG forma-
tion in plant cell cultures  in vitro . The reason is the scarcity and fragmentation of the 
knowledge. The only exception is the ginseng cell cultures, in which TG formation 
has been systematically studied for over 40 years.   

23.3.3     Triterpene Glycosides in Ginseng Cell Cultures 

 The legendary ginseng is a representative of the relic genus  Panax  from Araliaceae 
family of higher plants [ 120 ]. Due to its unique therapeutic properties (adaptogenic, 
anti-infl ammatory, immunomodulatory, neuroprotective, antitumor, etc.) ginseng 
became one of the most studied medicinal plants in the world [ 85 ]. 

 Investigation of ginseng from the phytochemical standpoint lasted for more 
than 150 years. Different classes of secondary metabolites were isolated from 
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 Panax  spp.: polyacetylenes [ 85 ], sesquiterpenoids [ 121 ], unusual amino acids 
[ 122 ], alkaloids [ 123 ], etc., albeit the most typical of ginseng are the TGs of dam-
marane series – ginsenosides [ 124 ]. There is a large body of conclusive evidence 
supporting the crucial role of ginsenosides in majority of ginseng therapeutic 
effects [ 85 ,  124 ]. 

 The ginsenosides are traditionally divided into two major classes [ 125 ]: 
 glycosides of 20 (S)-protopanaxadiol (the Rb ginsenoside group: Rb 1 , Rc, Rb 2  and 
Rd) and glycosides of 20 (S)-protopanaxatriol (the Rg ginsenoside group: Rg 1 , Re 
and Rf). 

 The aglycones of these ginsenosides differ by a single hydroxyl group at the 
sixth carbon atom. The pronounced dissimilarity of the ginsenosides Rg- and 
Rb-groups in terms of their physicochemical and biological properties stemmed 
from this hydroxylation. In particular, C-6 hydroxylation with subsequent glycosyl-
ation at this position renders the ginsenosides of Rg-group, which are more polar 
and less toxic in comparison with the ginsenosides from Rb-group [ 126 ,  127 ]. 
These two groups of ginsenosides also differ signifi cantly in exerting their biologi-
cal activity, in most cases, the opposite effect. For example, most of the Rg-group 
ginsenosides show hypertensive and stimulatory effects on central nervous system. 
By contrast, glycosides from the Rb-group demonstrate sedative and hypotensive 
effects [ 128 ]. 

 Till date, more than 300 different ginsenosides are isolated from different gin-
seng species [ 124 ]. Seven of those (Rg 1 , Re, Rf, Rb 1 , Rc, Rb 2  and Rd) were fi rst 
obtained from the roots of  Panax ginseng  and are considered as major ginsenosides 
[ 129 ] .  Among the oleanane-type glycosides the ginsenoside R 0  is the most wide-
spread among different ginseng species [ 85 ,  125 ]. 

    Physiological Characteristics of Cell Cultures 
of Different Ginseng Species 

 The fi rst callus culture of  P. ginseng  cells was obtained in 1950s from the root of a 
4-year-old plant from a plantation at South Sakhalin, USSR [ 130 ]. The fi rst suspen-
sion cell culture from  P. ginseng  was derived from the callus of a cambial origin in 
1970 [ 131 ]. 

 After that, numerous callus and suspension culture lines have been obtained from 
various ginseng species, for example,  P. quinquefolius  [ 132 ]   ,  P. japonicus  [ 104 ], 
 P. japonicus  var.  repens  [ 133 ],  P. notoginseng  [ 103 ],  P. vietnamensis  [ 134 ] and 
 P. sikkimensis  [ 135 ]. 

 A vigorous and intensive growth was the basic characteristic of ginseng cell 
cultures regardless the origin. The optimum cultivation cycle for callus and suspen-
sion cultures was 26–30 and 14–21 days respectively, growth index varied from 5 to 
12 and specifi c growth rate at the exponential growth phase varied from 0.12 to 
0.23 days −1  [ 136 ]. 

 Study of ultrastructure of suspension cells showed that in the beginning of the 
stationary phase  P. ginseng  cells had the structural features of secretory cells, which 
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effuse lipophilic compounds to the vacuole. These features included (i) well- 
developed smooth ER, (ii) plastidial reticular sheath, (iii) osmiophylic depositions 
in nuclear and plastid envelopes, membranal structures and tonoplast [ 137 ]. The 
osmiophylic matter was deposited in vacuoles as a layer or globules and suggested 
to be of isoprenoid origin. 

 Ginseng cell cultures were found to be more sensitive to temperature than other 
plant species. For a number of  P. ginseng  cell strains increasing the temperature 
from its optimum by 2.5–4 °C resulted in 30 % decline in culture growth [ 138 ].  

    Ginsenoside Content in Different Ginseng Cell Cultures 

 The total ginsenoside content and its changes induced by culturing  in vitro  dis-
played the same relationship as are described above for the cell cultures of other 
species and TG groups [ 132 ,  139 – 142 ]. 

 Regarding the ratio of the two major ginsenoside groups ginseng cell cultures  in 
vitro  were often characterized by predominance of 20 (S)-protopanaxatriol-type 
ginsenosides (Rg-group) (Fig.  23.6 ). Accumulation of the 20 (S)-protopanaxadiol-
type ginsenosides (Rb-group) was sometimes unstable. Moreover there are indica-
tions of a considerable decrease of the ginsenoside diversity during long-term 
cultivation of  P. ginseng  mainly at the expense of Rb-group [ 143 ,  144 ].

   Studies of ginseng cell cultures  in vitro  were focused on the effect of various 
cultivation conditions and stimuli on qualitative and quantitative composition of 
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ginsenosides. The chemical stimuli include: variation in cultivation media composition 
[ 103 ,  145 ,  146 ], addition of precursors and inhibitors of the isoprenoid biosynthesis 
pathway [ 147 ,  148 ] and plant stress hormones and different elicitors [ 149 – 151 ]. 
Among the physical stimuli the effects of aeration [ 152 ,  153 ], light [ 154 ] and ultra-
sound [ 155 ] on the ginsenoside composition were described. The majority of the 
stimuli studied, however, showed no or insignifi cant effect on culture growth and 
ginsenoside production. Substantial effects were reported for treatments with certain 
phytohormone combinations, jasmonates and elicitors [ 141 ,  146 ,  147 ]. 

 It is diffi cult to generalize the patterns of TG biosynthesis and accumulation in 
plant cell culture  in vitro  based on published data, because obtained information 
comes from different cell lines and strains cultivated in various media and condi-
tions. However, there are a few long-term systemic studies of a particular ginseng 
culture. Cell cultures of  P. ginseng  and  P. japonicus  var.  repens , discussed below, 
serve as an example of such thorough study.  

    Comparison of Growth and Biosynthesis of Ginsenosides 
in  P. ginseng  and  P. japonicus  var.  repens  Cell Cultures 

 A comparative study of growth and ginsenoside production in the suspension cell 
cultures of  P. ginseng  C.A. Mey. and  P. japonicus  C.A. Mey. var.  repens  Maxim. 
obtained in 1998 was carried out in the authors’ laboratories [ 133 ,  143 ]. Cell culture 
of  P. japonicus  var.  repens  was obtained from the radix of a 2-year intact plant har-
vested in Primorsky Krai, Russia; cell culture of  P. ginseng  was obtained from the 
lateral roots of a 6-year plant from a plantation belonging to ‘Ginseng and Tobacco 
Company’, South Korea. Importantly the standard cultivation media (MS with 
White vitamins) differed in hormone composition:  P. ginseng  was grown on 2,4-D 
and BAP, but  P. japonicus  var.  repens  on NAA and kinetin. 

   Growth and Physiology of the Cultures 

 The growth index and maximum mitotic index of the  P. japonicus  var.  repens  cell 
culture were found to be 1.5–1.8 folds higher than that of  P. ginseng  (6–7 and 3.5 %, 
respectively). The peak of mitotic activity was observed on the fi fth to sixth day of 
cultivation in both the species. The number of viable cells was similar in both the 
cultures ranging between 87 and 90 %. Cell suspension of  P. japonicus  var.  repens  
was moderately aggregated: cell clusters consisted of 10–50 cells. In the beginning 
of subculture cycle the culture contained both meristem- and parenchyma-like cells 
in equal proportions. At the end of cultivation cycle the proportion of parenchyma- 
like cells increased twofolds and elongated cells also appeared [ 14 ]. Cell suspension 
of  P. ginseng  contained small aggregates (90 % of aggregates were comprised of 
5–20 cells). Majority of cells (80–90 %) in the culture were small meristem-like 
cells. The fraction of parenchyma-like and elongated cells was insignifi cant; the 
ratio of cell types remained constant during the cultivation period [ 156 ]. 
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 Thus the suspension cultures of the two  Panax  species differed signifi cantly in growth 
pattern and cytophysiological characteristics. These differences are likely to be caused 
by species-specifi c factors and/or different hormonal composition of the media.  

   Dammarane Ginsenoside Content 

 The cell cultures of  P. ginseng  and  P. japonicus  var.  repens  differed signifi cantly in 
total ginsenoside content. Overall biosynthetic capacity of the  P. japonicus  var. 
 repens  suspension culture was considerably higher when compared to  P. ginseng : 
the average ginsenoside content in the  P. japonicus  var.  repens  and  P. ginseng  cell 
cultures was 3.1 and 0.04 % dry weight, respectively [ 143 ,  157 ]. In both the species 
compounds from 20 (S)-protopanaxatriol group dominated: their content was fi ve to 
eight times higher than 20 (S)-protopanaxadiol group [ 133 ,  140 ,  143 ]. Similar data 
was obtained from cell cultures of other ginseng species (Fig.  23.6 ). It is also impor-
tant to note that biosynthesis of ginsenosides in the  P. ginseng  cell suspension was 
not stable neither quantitative nor qualitative: sometimes 20 (S)-protopanaxadiol- 
type ginsenosides were nearly absent [ 143 ]. 

 The effect of culture conditions, predominantly the hormone composition was 
studied for both the ginseng species. 

 The replacement of 2,4-D to α-NAA in the  P. ginseng  cell culture led to 1.5–2 
fold decline in the growth rate within three-to-four cultivation cycles and increase 
in cell aggregation [ 156 ]. In  P. japonicus  var.  repens  cell culture the replacement of 
α-NAA by 2,4-D did not affect the culture growth [ 14 ,  157 ]. The increase in total 
auxins content of the medium (2,4-D and α-NAA added at 2 mg · L −1  each) resulted 
in low aggregation in the culture [ 158 ]. 

 Use of α-NAA instead of 2,4-D during six to seven cultivation cycles enhanced 
ginsenoside accumulation in  P. ginseng  cell culture from 0.1–0.3 to 6–8 % dry 
weight. The increase occurred gradually: from 0.04 to 0.5 % during the fi rst cycle 
and two to threefold in each of the following cycles. It is likely that such accelera-
tion of ginsenoside production in the cell culture of  P. ginseng  was brought about by 
α-NAA induced cell differentiation. These processes were manifested by the 
increase in (i) the proportion of cell aggregates, (ii) cell volume; (iii) number of the 
cells with doubled nuclear DNA [ 14 ,  156 ,  157 ]. The recorded changes in cell dif-
ferentiation pattern were accompanied by altered culture growth rate. 

 In the  P. japonicus  var.  repens  cell culture the replacement of α-NAA (the usual 
source of auxins for this culture) with 2,4-D did not lead to signifi cant changes in 
ginsenoside production. Despite of the decline in cell aggregation, which was 
induced by replacement of α-NAA by 2,4-D, high level of ginsenoside accumula-
tion (ca. 3 % of dry weight) was retained for six subculture cycles [ 14 ,  157 ]. 

 Even more pronounced effect was observed when  P. japonicus  var.  repens  cell 
culture was grown in 10-L aerated bioreactor in semi-continuous mode. In the 
medium containing 2,4-D and α-NAA a decline in ginsenoside content from 3 to 
0.5 % was observed at the end of the third cultivation cycle and to 0.3 % at the end 
of the sixth cultivation cycle. At the same time, in the culture grown on the medium 
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supplemented with α-NAA high ginsenoside production was retained (at least 
1–2 % dry weight) [ 140 ,  158 ].  

   Malonyl-Ginsenosides in Ginseng Cell Cultures 

 In the past, ginsenosides of 20 (S)-protopanaxatriol-type have been considered to 
prevail in ginseng cell cultures. This conclusion was based fully on the detection of 
seven neutral ginsenosides, Rg 1 , Re, Rf (the Rg-group) and Rb 1 , Rc, Rb 2 , Rd (the 
Rb-group), for which the commercial pure standards are available [ 129 ]. At the 
same time, the intact plant usually contains not only the free dammarane glycosides 
but also their esters with different aliphatic acids such as crotonic, acetic or malonic 
acid. The malonyl derivatives of ginsenosides are the most widespread. Several 
studies applied modern methods of extraction and analyses and revealed that over 
50 % of total dammarane glycosides in fresh roots of  P. ginseng  and  P. quinquefo-
lium  were comprised of malonylated ginsenosides [ 159 ,  160 ]. Thus, the method 
based on free ginsenoside content was considered to be bias and prone to errors. 

 The biosynthetic pathway leading to acylated, in particular, malonylated, forms 
of ginsenosides in cell cultures remains almost unknown. The transformed hairy 
root cultures of  P. ginseng  were shown to contain signifi cant amounts of malonyl 
derivatives of the Rb-group ginsenosides [ 161 ,  162 ] though the malonyl-glycosides 
were not quantifi ed. There are some data suggesting that malonylated derivatives of 
ginsenosides can be formed in the cell cultures of  P. ginseng  [ 163 ,  164 ]. 

 Considerable amounts of malonyl-ginsenosides Rb 1  (identifi cation was based on 
 1 H- and  13 C-NMR data) and Rc, Rb 2  and Rd (RP-HPLC-MS identifi cation) were 
found in the cell cultures of  P. japonicus  var.  repens  [ 165 ,  166 ]. 

 Variation in the content and composition of the individual ginsenosides bio-
synthesized in the course of 21-days growth cycle of the cell-suspension culture 
of  P. japonicus  var.  repens  in fl asks was studied by RP-HPLC-UV analysis [ 166 ]. 
Seven ginsenosides were identifi ed: Rg 1 , R 0 , malonyl-Rb 1 , Rb 1 , Rc, Rb 2  and Rd. 
The total amount of ginsenosides usually varied from 30 to 40 mg · g −1  dry weight, 
while the three ginsenosides namely Rg 1  (Rg-type), R 0  (oleanane-type) and malo-
nyl-Rb 1  (Rb-type) accounted for 80–95 % of the total ginsenoside content. 
Ginsenosides Rb 1 , Rc, Rb 2  and Rd (all of Rb-group) were detected at very low 
levels below 15 % of the total ginsenoside content. These results suggest that in 
cell suspension culture three ginsenosides (Rg 1 , R 0 , and malonyl-Rb 1 ) are the 
major storage products originating from the ginsenoside biosynthetic pathway. 
This fi nding is supported by the ginsenoside profi ling data recorded over a 4-year 
cultivation period (Fig.  23.7 ).

   While the total amount of the ginsenosides varied over a wide range (5.0–
49.4 mg g −1  dry weight), the ratios of the major groups remained nearly constant: 
Rg 1 , R 0 , and malonyl-Rb 1  accounted for 75–93 % of the total ginsenoside content 
[ 166 ]. These fi ndings suggested that both neutral and malonylated ginsenosides 
should be analyzed to determine actual ginsenoside content in cell-suspension 
culture. 
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 It is well known that secondary metabolic pathways are spatially associated with 
the compartmentalization of intermediates and end products [ 29 ,  167 ]. Thus, we 
suggested a tight coordination between ginsenoside accumulation in cell culture of 
 P. japonicus  var.  repens  and their sequestration into metabolically inactive cellular 
storage compartment such as the vacuole [ 168 ]. This suggestion also takes into 
account that the triterpene glycosides are a plausible substrate of various glycosi-
dases that produce toxic progenins and aglycones [ 11 ,  84 ]. For example, the Rb-type 
ginsenosides might undergo non-specifi c enzymatic cleavage because the 
 β -glycosidic bond at the third position of triterpenic aglycones is a common struc-
tural motif in nature [ 169 ,  170 ]. Our studies showed that Rb-type ginsenosides (par-
ticularly Rb 1 ) in suspension cell culture of  P. japonicus  var.  repens  were represented 
mainly by their malonylated forms. The malonylation of various glycosides is a 
common phenomenon in the plant kingdom [ 171 ]. Malonylated glycosides of phy-
tohormones [ 172 ], chlorophyll catabolites [ 173 ], products of xenobiotic detoxifi ca-
tion [ 174 ,  175 ] and several classes of secondary metabolites [ 171 ,  176 ,  177 ] have 
been found in different plant species. This modifi cation may alter the molecular 
properties of parental glycosides in several ways but mainly by preventing the enzy-
matic degradation of the glucoconjugates and targeting them to specifi c compart-
ments, such as the vacuole [ 178 – 180 ]. We can speculate that the malonylation of the 
Rb-type ginsenosides is involved in the regulation of their hydrolysis and cellular 
compartmentalization in  P. japonicus  var.  repens  cell-suspension culture. 

 On the contrary to the Rb-type ginsenosides, esterifi cation of Rg-type ginsen-
osides (particularly malonylation) was not typical [ 124 ,  181 ]. Therefore, we suggest 
that the specifi c glycosylation of the Rg-type ginsenosides (attachment of one of the 

  Fig. 23.7    Variations 
in the amounts of the major 
groups of ginsenosides 
in  P. japonicus  var.  repens  
cell-suspension culture 
during 4 years of monitoring 
(21 independent growing 
cycles) [ 166 ]. PPT = Rg 1 ; 
PPD = Rb 1  + Rc + Rb 2  + Rd. 
Analysis was made 
on day 21 of a subculture       
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sugar chains to the  α -hydroxyl group at the C-6 position of the dammarane-type 
aglycone) made them resistant to non-specifi c glycosyl hydrolases [ 124 ,  170 ], 
enabling accumulation of ginsenoside Rg 1  without signifi cant disturbance in the 
metabolic activity of  P. japonicus  var.  repens  cells  in vitro .  

   Oleanolic Acid Glycoside Content 

 Accumulation of the signifi cant amounts of ginsenoside R 0  is observed in suspen-
sion cell culture of  P. japonicus  var.  repens . This fi nding is consistent with the litera-
ture reports [ 104 ,  120 ,  125 ] emphasizing the predominance of oleanolic acid 
glycosides as a characteristic trait of this species. Structurally, ginsenoside R 0  
belongs to a widespread family of glycosides – glucuronide oleanane-type triter-
pene carboxylic acid 3,28-bidesmoside, GOTCAB in plant kingdom. These glyco-
sides are characterized by the presence of glucuronic acid residue attached to the 
hydroxyl at the third position of the aglycone [ 182 ]. This structural motif is 
extremely resistant to non-specifi c hydrolysis [ 120 ]. Attachment of glucuronic acid 
can play a role in the distribution of metabolites between the cell compartments, for 
example, molecules tagged with glucuronic moiety are usually targeted to the vacu-
ole [ 183 ,  184 ]. Similar mechanism could be involved in the formation of the ginsen-
oside R 0  of the  P. japonicus  var.  repens  cell cultures as well as intact plants of other 
ginseng species.  

   General Characteristics of TG Accumulation in Ginseng Cell Culture 

 Summary of TG biosynthesis and accumulation in plant cell cultures, and their 
differences from SG in general:

    1.    High ginsenoside content is not necessarily found in every ginseng cell strain. 
A decline in ginsenoside content occurred sometimes during prolonged cultiva-
tion or as a result of change in cultivation medium. However it is possible to 
obtain strains with robustly high TG content. Optimization of hormonal concen-
tration in culture medium, treatment with stress hormones (e.g. jasmonates) and 
elicitors often resulted in a considerable improvement of TG production.   

   2.    In many cases alteration in ginsenoside groups in comparison to the intact plants 
was recorded: in cell culture the protopanaxatriol-type ginsenosides (Rg-group) 
were often prevailing over the protopanaxadiol-type ginsenosides (Rb-group). 
The diversity of the glycosides declined in certain strains.   

   3.    In cell culture of  P. japonicus  var.  repens  protopanaxadiol-type glycosides were 
mainly represented by their malonylated derivatives. This could be explained by 
(i) necessity of their compartmentalization (vacuole targeting), (ii) lower stabil-
ity (due to glycosylation at the third C-3-position of dammarane), and (iii) higher 
toxicity in comparison with protopanaxatriol-type glycosides.     

 In general we can conclude that ginsenosides do not play a signifi cant role in 
proliferation of de-differentiated  in vitro  ginseng cell and/or population. Therefore 
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biosynthesis and accumulation of these compounds is often unstable in cell culture 
and depends heavily on the cultivation conditions (medium composition, signal 
molecules, stress, etc.) and physiological state of the population (stages of growth 
and differentiation). 

 On the contrary high ginsenoside content observed in certain cell cultures for a 
long time (e.g. 15 years at the level of 0.5–5 % of dry weight in the case of  P. japoni-
cus  var.  repens  cell cultures) suggests that ginsenosides are essential for cell growth 
 in vitro . From this standpoint ginsenosides with different structural groups are not 
equal. The predominance of the Rg-group ginsenosides frequently observed  in vitro  
could suggest they either play a special role in cells  in vitro  or, at least, do not affect 
their metabolism. Low and unsteady content of neutral Rb-group ginsenosides indi-
cates less signifi cant, if any, role of these compounds in the cell growth  in vitro . 
Another possible reason is high toxicity of the Rb-group ginsenosides and/or prod-
ucts of their hydrolysis for vigorously proliferating cells, because carbohydrate 
moiety at C-3 position of the aglycone of Rb-group can be cleaved off, unlike the 
carbohydrate chain at С-6 of Rg-group, by non-specifi c β-glycosidases resulting in 
the formation of the toxic prosapogenins. Malonylation of the Rb-group alters their 
properties and targets them to the vacuole. The same is probably true for glucuro-
nide derivatives of oleanolic acid. 

 Thus, we suggest that ginsenoside biosynthesis in cell culture is closely associ-
ated with their compartmentalization which depends on the molecule structure. 
In particular, the accumulation of the 20 (S)-protopanaxadiol-type ginsenosides 
depends on malonylation, which likely targets them to the vacuole. This fi nding 
provides a new understanding of the ginsenoside accumulation and may help with 
the rational optimisation of their production in various ginseng cell cultures.   

    Triterpene Glycosides in the Cell Culture of  Polyscias  

 Apart from different ginseng species other representatives of Araliaceae family 
were introduced to the  in vitro  culture. Recent studies described the  in vitro  cell 
cultures of different members of the genus  Polyscias . These plants are broadly used 
in traditional medicine in South-East Asia. For example,  Polyscias fi licifolia  is 
included in the offi cial Vietnamese pharmacopoeia as an anti-fatigue and cardiac 
drug [ 185 ].  P. fi licifolia , a relative of  P. fruticosa  is also used for its anti-fatigue, 
roborant, immune-modifying and anti-dizziness effects [ 186 ], but  P. fruticosa  is not 
as much studied as  P. fi licifolia . 

 Triterpene glycosides are the essential secondary metabolites of the genus 
 Polyscias  as well as the other representatives of Araliaceae family. Till date, compo-
sition of triterpene glycosides was studied only in 6 out of 130 members of  Polyscias : 
 P. scutellaria, P. fruticosa, P. amplifolia, P. guilfoylei, P. fulva  and  P. dichroostachya  
[ 187 – 190 ]. All studied species contain triterpene glycosides of the oleanane series. 

 Studies on cell and tissue culture of  Polyscias  species were initiated in the USSR 
in the beginning of 1970s. First callus cultures of  P. fi licifolia  and  P. balfouriana  
were obtained in 1971–1975 [ 191 ]. Preliminary phytochemical analysis of the 
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 P. fi licifolia  callus cultures revealed the presence of signifi cant amounts of starch, 
free amino acids, reducing sugars, sitosterol and triterpene saponins [ 192 ]. The 
maximum content of the ‘saponin fraction’ (5.8 %) was recorded on the 5th and 
25th day of subculture cycle that corresponded with the peaks of mitotic activity 
[ 192 ]. It should be emphasized that exact structure of the discovered glycosides was 
not determined; i.e. only ‘total glycoside fraction’ (‘saponin fraction’) was studied 
in these works. 

 At the end of last century the strain BFT-001-95 of  Polyscias fi licifolia  callus 
and suspension culture was obtained. These cultures were grown in different sys-
tems and under different conditions: in fl asks (batch mode) and in laboratory-
scale bioreactors (continuous and semi-continuous modes). The up-scaled 
cultivation of  P. fi licifolia  cell suspension was performed in the industrial 630 L 
bioreactor [ 193 ,  194 ]. The analysis of biological activities of the  P. fi licifolia  cell 
culture biomass obtained under diverse cultivation conditions was also per-
formed [ 195 ]. 

 Now the cell culture of  P. fi licifolia  is used in production of bioactive food 
additive “Vitagamal” [ 193 ,  194 ]. The authors related bioactivity of the  P. fi licifo-
lia  cell cultures to the presence of the triterpene glycosides from the oleanane 
series in its biomass. The potential presence of triterpene glycosides in the bio-
mass of this suspension culture was studied after nearly 20 years the cell culture 
was induced. The attempt to fi nd triterpene glycosides or aglycones (of oleanolic 
acid in particular) in the biomass was unsuccessful [ 196 ]. This suggested that high 
biological activity of  P. fi licifolia  cell biomass could be related to other com-
pounds such as polyacetylenes. In 2005, a new line of  P. fi licifolia  and – for the 
fi rst time – callus and suspension culture of  P. fruticosa  [ 186 ] were obtained. The 
new line of  P. fi licifolia  suspension cell culture contained almost complete spec-
trum of oleanolic acid glycosides typical for intact plants. It should be pointed out 
that this suspension cell cultures was obtained directly from leaves bypassing the 
stage of callus culture [ 186 ]. 

 Triterpene glycosides of oleanolic acid were also found in the suspension cell 
culture of  P. fruticosa  [ 197 ,  198 ]. Chromatographic (TLC and HPLC) analyses 
revealed that the major triterpene glycosides of  P. fruticosa  suspension cells are 
identical to those isolated from leaves of  P. fi licifolia . The major components in the 
 P. fruticosa  cell cultures were polyscioside Е, 28 -О - β - d -glucopyranosyl ester of 
3- О - β - d    -glucopyranosyl-(1 → 4)- β - d -glucuronopyranoside of oleanolic acid 
(named Pol 3) and ladyginoside A. 

 To reveal the patterns of individual triterpene glycoside formation in the cell 
culture of  P. fruticosa  changes in the content of these compounds were studied dur-
ing a cultivation cycle in fl asks. It was found that the total glycoside content 
increased during the whole cultivation cycle. The maximum glycoside content 
(0.5 % of dry weight) was recorded in the end of exponential growth phase (14 days). 
Same was observed for suspension cell culture of  Cyclocarya paliurus  
(Juglandaceae), in which the highest accumulation of triterpene acids (oleanolic and 
ursolic) took place between the end of exponential and the beginning of stationary 
phase of the culture growth [ 199 ]. 
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 All found glycosides (polyscioside A, Pol 3, polyscioside Е and ladyginoside A) 
were present in  P. fruticosa  cell culture during the whole cultivation cycle. The 
major components were polyscioside Е and ladyginoside A comprising, respec-
tively, 10–40 and 40–70 % of the total glycosides depending on cultivation period. 
Of special interest is the fi nding of signifi cant amounts of monodesmoside lady-
ginoside A, the most hydrophobic of the glycosides. Its accumulation sustained over 
the whole cultivation cycle. It is well known that accumulation of monodesmosides 
is not usually observed in leaves and roots of intact Araliaceae plants, which synthe-
size saponins of oleanane series [ 120 ]. Thus, the biosynthesis of monodesmoside 
might be unique for  P. fruticosa  and/or can be the result of tissue culture conditions. 
Additional research is needed to confi rm this suggestion. 

 In general we can conclude that the pattern of triterpene glycoside formation by 
cell culture strains of two  Panax  and two  Polyscias  species implements the second 
strategy described under “ Principle 2 ” of Sect.  23.1 .    

23.4     Diterpenoids in Plant Cell Cultures 

23.4.1     Taxoids in Cell Cultures of Taxus spp. 

 Taxol, or paclitaxel, a complex diterpenoid from the bark of yew tree ( Taxus  spp.) is 
probably the most promising anti-tumor agent of plant origin. Its biological activity 
is attributed to the unique effect of stabilizing cell microtubules [ 200 ]. The ever-
green trees and shrubs of  Taxus spp.  are the main natural source of taxan diterpe-
noids, a group of active molecules of the same pentamethyl tricyclopentadecan 
structure. However, slow growth of the majority of yew species and relatively low 
paclitaxel content in the bark and leaves of the plants (0.01 and 0.035 %, respec-
tively) made paclitaxel production from natural sources both time-consuming and 
economically ineffective [ 201 ]. Hence it is important to fi nd the alternative sources 
of taxol for pharmacological industry. 

 Since 1997 the Atlantic Forestry Centre of Canadian Forest Service has been 
engaged in a program for developing ecologically sustainable harvesting protocols 
of yews in natural stands converting elite cultivars of the wild species into a commer-
cially reared crop [ 202 ]. Similarly the Yewcare Company began to plant  T. chinensis  
in the nature reserve of Da Huan Mountain in the province of Yunan (China) in 2004. 
This Taxus plantation covers now more than 30 km 2  and is the largest yew tree pro-
vider in the world (  http://www.yewcare.com/index.ph    .) Another alternative source is 
semi-synthetic production of taxol, which utilises intermediates such as baccatin III 
and 10-deacetylbaccatin III, found in needles of  Taxus . BMS, a leading global sup-
plier of taxol, has a farm of 30 billion yews to supply the bark and needles necessary 
for the extraction of intermediates [ 203 ]. In 2007, Indena developed and patented a 
protocol of taxol semisynthesis based on 10-deacetylbaccatin III, which is extracted 
from  T. baccata  trees cultivated in the company plantations (  www.Indena.com    ). 
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 Another possible alternative and environmentally sustainable source of taxol and 
analogue compounds is plant cell culture. At present it is possibly the most actively 
developing area of biotechnology [ 204 ]. The fi rst report on callus induction and 
proliferation from gametophytes of  T. baccata  was published in 1973 by Rohr 
[ 205 ]. Further studies have been primarily focused on optimization of culture 
 conditions for better cell growth and taxol production. Within the past 40 years a 
number of independent research groups performed a broad screening of treatments 
to increase taxol production in the cell cultures. Different strategies have been 
applied such as optimization of culture conditions, selection of high-producing cell 
lines and addition of elicitors and precursors (for the latest reviews [ 206 ,  207 ]). 
Based on the developed cell lines commercial production of taxoids has been estab-
lished in many countries. At present Python Biotech is the largest producer of pacli-
taxel  via  plant tissue culture employing a large-scale bioreactor with a capacity of 
up to 75,000 L [ 208 ]. Another company, Korean Samyang Genex, uses Taxus plant 
cell cultures to produce paclitaxel under the brand name of Genexol® (  http://www.
genex.co.kr/Eng/    ). 

 On account of a large volume of information available, in this chapter we present 
a brief overview of the main principles underlying taxoid biosynthesis and its regu-
lation in yew cell cultures  in vitro .

    1.    Cell cultures, both callus and suspension, have been obtained so far:  Taxus bac-
cata, T. brevifolia, T. cuspidata, T. canadensis, T. media, T. wallichiana, T. 
andreanae and T. mairei.  These cultures were reported to be slow growing, 
which is common feature of cultures of coniferous origin. However, their 
growth could be speeded-up by optimizing the composition of culture medium 
or selection methods.   

   2.    The vast majority of cell cultures produced negligible amounts of taxoids, 
0.0001–0.01 % dry weight, or no detectable taxoids.   

   3.    Taxoid content in cell cultures exponentially increased under certain treatments. 
The following treatments were found to be the most effective:

    (a)    Selection of the most productive cell lines;   
   (b)    Two-step cultivation. At fi rst, culture conditions should be optimized to 

increase biomass production. In the second step, taxol accumulation should 
be stimulated by changing osmotic potential and growth regulator composi-
tion in culture medium.   

   (c)    Application of elicitors and stress-related hormones to induce taxoid pro-
duction. Jasmonates (JA and MeJA) were found to be the most effective.   

   (d)    Paclitaxel is normally accumulated in vacuoles and apoplast of cultured 
cells. In contrast to triterpenoids, considerable amounts of paclitaxel have 
been detected in culture medium, presumably caused by its diffusion from 
apoplast. As a result the amount of paclitaxel in cells could vary from 30 to 
100 % depending on the diffusion rate which is found to be species-specifi c 
and dependent on culture conditions.   

   (e)    In gel cell immobilization with or without subsequent MeJA treatment.       
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   4.    Metabolic engineering targeting the genes encoding taxadiene synthase, 
10-deacetylbaccatin III-10-O-acetyltransferase (dbat) and 3-N-debenzoyl-2-
deoxytaxol- N-benzoyltransferase (dbtnbt) has been reported. So far this method 
had no signifi cant effect on the taxoid production.    

  Based on the information discussed above and available literature we assumed 
that the major principles of taxoid production in cultured plant cells differed from 
those of triterpenoids:

    1.    Different pathways of biosynthesis. Taxoids are diterpenoid molecules of com-
plex structure, and the fi rst stages of their biosynthesis can be performed  via  
plastid-localized MEP-pathway. To support this idea Eisenreich et al. [ 209 ] 
showed that IPP involved in the biosynthesis of the taxane ring was formed  via  
the MEP pathway. However, other studies [ 28 ] demonstrated the involvement of 
the cytosolic pathway. A recent study of  T. baccata  cell cultures showed that 
while taxol biosynthesis was blocked by the addition of fosmidomycin, an inhib-
itor of the plastid pathway, it was also reduced by mevinolin, an inhibitor of the 
cytosolic pathway, indicating that both pathways could be involved [ 210 ]. Thus, 
plastids play an important role in taxoid biosynthesis, although their number in 
cultured cells is scarce.   

   2.    Complexity of biosynthesis localization. While the fi rst steps of taxol biosynthe-
sis are likely to be performed in plastids, a number of the following stages might 
occur in different compartments of cytosol. For instance, the enzyme cytochrome 
P450 taxadiene-5-hydroxylase (T5-H), which catalyses hydroxylation at the C-5 
position of the taxane ring, is a protein of 56 kDa with an N-terminal of mem-
brane translocation sequence targeting it to the endoplasmic reticulum. A key 
enzyme of the following stage, a specifi c taxadiene-5α-ol-O-acetyl transferase 
(TDAT), is a protein of 50 kDa that bears no N-terminal organellar targeting 
information [ 25 ]. Final products such as paclitaxel and baccatin III are then 
transported to vacuoles and/or periplasmic space involving yet unknown 
mechanisms.   

   3.    Fork-branched biosynthesis. Paclitaxel formation involves 19 steps catalyzed by 
specifi c enzymes. One of the intermediate products, taxa-4(20),11(12)-dien-
5- ol, which serves as a substrate for TDAT, can be also involved in a side reaction 
catalyzed by Cyt P450-dependent hydroxylase, taxadiene-13α-hydroxylase, 
yielding taxa-4(20),11(12)-dien-5-13-diol [ 204 ]. It was found that this alterna-
tive step is especially active in cell cultures elicited with methyl jasmonate [ 211 ]. 
This fact shows that taxol biosynthesis is not a linear pathway and includes 
branch points, which can lead to other taxoids.   

   4.    Properties of the biosynthate. Taxoids are hydrophobic and toxic molecules. 
Paclitaxel was involved in apoptosis of  Taxus cuspidata  cell suspension [ 212 ]. 
Correlation between paclitaxel accumulation and increase in number of dead 
cells was reported for cell cultures of other  Taxus  species [ 213 ,  214 ].      
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23.4.2     Steviol Glycoside Formation in Cell Culture 
of Stevia spp. 

 Steviol glycosides (StG) are the group of molecules incorporating steviol, the tetra-
cyclic diterpenoid of  ent -kaurane type, as an aglycone. Many compounds of this 
group are 100–400 times sweeter than sucrose, but low in calories, non-toxic, non- 
mutagenic and are hardly assimilated by human body [ 8 ]. Due to their hypoglyce-
mic effect StG are very promising as sweeteners in the diet of patients with 
dysfunctions of carbohydrate metabolism, especially for those with diabetes [ 8 ]. 

 Steviol glycosides are found in large amounts in leaves of  Stevia rebaudiana  
Bertoni, Asteraceae, a perennial shrub native to Northeast Paraguay. Three other 
species: the Mexican  Stevia phlebophylla  A. Gray, the Chinese blackberry  Rubus 
suavissimus  S. Lee (Rosaceae) and the Japanese perennial  Angelica keiskei  (Miq.) 
Koidz. (Apiaceae) also contain steviol glycosides. Thirty four steviol glycosides 
have been identifi ed in  S. rebaudiana  together with other eight oxidized steviols, 
including isomers and glycosides. 

  Stevia  cell cultures were obtained by several research teams [ 215 – 220 ]. Most of 
these cultures demonstrated stable and intensive growth but lacked StG production. The 
only exception was reported 30 years ago: the callus culture originated from leaf blade 
showed steviol content as high as 16 % dry weight after 70 days of cultivation [ 216 ]. 

 Apart from  S. rebaudiana,  callus cultures of  R. suavissimus  were also obtained 
with modest rubusoside content, which was promoted by blue light after 28 days in 
the dark [ 8 ]. However, neither blue nor red or white light promoted StG formation 
in  Stevia rebaudiana  cell cultures .  

 It was shown that StG content of cultivated  Stevia  plants is fi ve to ten times lower 
than that of intact plants [ 8 ,  221 ,  222 ]. 

 Compared to the other cell cultures obtained from, for example,  Taxus spp. , the 
literature considering StG formation in cell cultures is rather scarce and fragmented. 
Therefore it is diffi cult to generalize on the patterns of StG formation in cells cul-
tured  in vitro . 

 In authors’ laboratories StG formation was studied in 12  S. rebaudiana  geno-
types originated from Russia, Brazil, Paraguay and Japan. These genotypes had 
ploidy level from 2n to 5n. Cell cultures were induced from all genotypes and ana-
lyzed on StG production. StG content declined in a range from ‘outdoor plants 
(30–80 mg g −1  dry weight) to greenhouse plants (15–25 mg g −1  dry weight) and 
fi nally plants grown  in vitro  (1–6 mg g −1  dry weight) [ 15 ,  223 ,  224 ]. 

 More than 20 callus and suspension lines were obtained from the plants of most 
productive genotypes and their growth and biosynthetic profi les have been investi-
gated. Both genotype and explant type were found to infl uence profoundly the mor-
phological and physiological traits of the callus cultures. The ability to produce 
small amounts of StG (steviol, rebaudioside В, stevioside) was detected in the callus 
cultures derived from only one genotype. However, even in this cell line, the ability 
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to produce StG was lost completely after 2-year cultivation. Other callus cultures 
contained StG only in trace amounts [ 15 ,  223 ,  224 ]. 

 Growth characteristics of callus cultures sustained upon transition to submerged 
cultivation, i.e. suspension culture. Although in suspension cultures higher StG for-
mation compared to callus cultures was recorded, yet StG content remained very 
low (20–120 μg g −1  dry weight; productivity of 0.1–0.8 mg L −1 ). The major glyco-
side in all cultures was stevioside. Rebaudoside А was absent in some strains. 
Rebaudiosides С and В and steviolbioside were found only in trace amounts. 
Optimization of the cultivation conditions on carbohydrate sources including sub-
stitution of sucrose to fructose, glucose, maltose, galactose, arabinose, raffi nose, 
rhamnose and sorbitol and changes in sucrose content from 2 to 5 % did not acceler-
ate StG formation. Optimization of mineral salt concentration was turned to be 
similarly ineffi cient [ 15 ,  223 ,  224 ]. 

 Thus, heterotrophic cell cultures of  Stevia rebaudiana  lacked StG completely or 
produced lower StG amount when compared to intact plants or plants cultured  in 
vitro ; the diversity of StG also decreased. 

 Since StG are synthesized  via  МЕР pathway and predominantly localized in 
leaves an effort has been made to obtain mixotrophic cell cultures. Cultivation of 
callus cultures under illumination (2,000 lx) for several cycles led to the formation 
of numerous chloroplasts. Light effected callus cultures differently: some cultures 
intensifi ed growth, some did not show any change. Fortunately in several cultures, 
in which growth was promoted by light, StG accumulation was also enhanced with 
its content reaching 30–60 μg g −1  dry weight. The composition of StG was strain- 
dependent with stevioside and rebaudioside А and С being the major components 
[ 15 ,  223 ,  224 ]. 

 Organogenesis (gemmogenesis) was induced in several mixotroph callus cul-
tures, and appearance of morphogenic structure and shoot formation led to a consid-
erable intensifi cation of StG biosynthesis. The de-differentiated cells of morphogenic 
callus contained 70–90 μg · g dry weight StG whereas shoots formed from callus 
contained tenfold higher amount up to 0.6 mg · g −1  StG. The latter was 30 % of StG 
content of the donor plants  in vitro  [ 222 ,  224 ]. The content of StG in cultured cells 
and different organs of  S. rebaudiana  is summarized in Table  23.8 .

   We conclude that effective production of StG in heterotrophic cell cultures was 
not achieved  via  any tested biotechnological method. Chloroplast formation and/or 
organogenesis were prerequisite for acceleration of StG biosynthesis. StG produc-
tion increases as the plant development progresses (compared to greenhouse and  in 
vitro  plants). 

 Analysis of the patterns of StG formation in cell cultures demonstrates the fol-
lowing tendencies:

    1.     Production of the target compound depends not only on the presence of the 
organelles (plastids), but also on their specialization (must be chloroplasts). In 
plants StG are synthesized only in green leaves, but not in roots and other hetero-
trophic organs/tissues because only leaves contain suffi cient amount of chloro-
plasts and certain enzymes for StG formation [ 8 ].   
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   2.     StG and gibberellins in plant leaves are formed from the same precursor. There 
are evidences [ 8 ] suggesting that switching biosynthesis from gibberellins to 
StG is not due to competition for substrate but leaf development stage. In par-
ticular, the enzymes catalyzing StG biosynthesis are vigorously worked in 
senescing leaves and the enzymes of gibberellin biosynthesis in young leaves. 
Therefore, temporal ‘separation’ plays an important role in the regulation of StG 
biosynthesis.   

   3.     Localization of StG biosynthetic stages could be even more complex, than that 
of taxoids. It could involve not only cellular compartments, but also specialized 
morphological structures. There are indications that special leaf glandules are 
involved in StG formation and storage.     

 In general we assume that formation of StG in cell cultures of  S. rebaudiana , 
similar to taxoid formation, proceeds as outlined in  Principle 3  of Sect.  23.1 . Still 
this case is more diffi cult since no signifi cant StG production have been achieved in 
de-differentiated cells so far. Formation of morphological structures proved to be 
necessary for the fully functional StG biosynthesis pathway.   

23.5     Biotechnological Aspects of Isoprenoid 
Production from Plant Cell Cultures 

 The industrial use of plant cell culture presumes cultivation in large bioreactors up 
to 75,000 L [ 208 ], that imposes a number of prerequisites [ 225 ,  226 ] to support the 
highest possible culture growth and accumulation of a target compound. 

   Table 23.8    Steviol glycoside (StG) content of  S. rebaudiana  plants and  in vitro  cultures (mg · g −1  
dry weight) (CV < 30 %) (According to [ 15 ,  223 ,  224 ])   

 Culture  Sample  Stevioside 
 Rebaudioside 
A 

 Rebaudioside 
C  Total StG 

 Intact plants (2  n )  Leaves  24.9  12.0  4.6  41.5 
 Stalks  4.5  2.6  0.4  7.5 

 Plants  in vitro  (2  n )  Leaves  3.3  1.91  0.7  5.9 
 Stalks  0.8  0.6  0.1  1.5 

 Etiolated shoots  in 
vitro  (2  n ) 

 Shoots  0.28  0.18  0.07  0.5 

 Green morphogenic 
callus a  

 Shoots  0.39  0.11  0.05  0.6 
 Cells  0.07  0.02  0  0.09 

 Mixotrophic a  callus  Cells  (0.03)  0.02  (0.02)  0.05 
 Heterotrophic a  cell 
suspension 

 Cells  0.09  (0.01)  0  0.09 

 Heterotrophic a  callus  Cells  Traces  0  0  Traces 

   a Data obtained from several cell cultures; compounds, which were not always present are taken in 

brackets  
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 The following traits of plant cell culture should be considered when large-scale 
cultivation is sought [ 7 ,  30 ,  227 ]: 

•  Sensitivity of large cells with vacuole(s) to shear stress caused by mechanical 
stirring which is thought to be related to fragility of cell walls.

•    Rapid increase in sedimentation rate due to cell aggregation and increase in cell 
suspension viscosity at the end of cultivation cycle often require optimization of 
stirring process.  

•   Foamy and highly adhesive above culture broth (so-called ‘meringue’ 
formation).  

•   High importance of aseptic environment, because antibiotics cannot be used and 
extended batch cycle (ranges from 5 to 20 days to 6 months) under continuous or 
semi-continuous cultivation.    

 According to recent reports [ 31 ,  228 ], the adverse effects of shear stress caused 
by stirring are considerably overestimated in the case of plant cell cultures. 

 Many of the diffi culties that in the past hindered the industrial cultivation of plant 
cells in bioreactors are successfully resolved [ 7 ,  30 ,  227 ]. Up-scaling is now tech-
nological rather than scientifi c task. Use of plant cell cultures for industrial produc-
tion of secondary metabolites has been reviewed, but only a few examples of 
successful commercial process could be found [ 7 ]. Obviously, the main reasons are 
high cost and demanding technological requirements. To increase the effi ciency cell 
lines with elevated productivity are required as well as innovative methods of bio-
mass production. 

 Productivity of the cell cultures can be increased by optimization of cultivation 
conditions. Continuous cultivation in bioreactors is a powerful tool to burst biomass 
production. Unfortunately, it proved to be unsuitable for commercial cultivation of 
plant cells. 

 An attractive alternative is semi-continuous cultivation. This method was imple-
mented in our laboratory using bioreactors with the working volumes ranging from 
15 to 550 L and equipped with different stirring systems. 

 Regardless of the bioreactor capacity the new medium was supplied at the slow- 
down stage with simultaneous off take of culture. The suspension was diluted with 
fresh medium to the level which allowed bypassing a lag phase (2.0–4.0 g dry 
weight per L). The optimal starting density was different for different cultures. The 
growth curves for the fi nal bioreactor (630 L) are shown in Fig.  23.8 . It was shown 
that plant suspension cultures of  D. deltoidea, Polyscias fi licifolia  and  Рanax japon-
icus  retained satisfactory growth and biosynthetic characteristics upon transition to 
prolonged semi-continuous cultivation in bioreactor. Thus, we concluded that the 
proposed up-scale scheme is suitable for industrial cultivation.

   It is also important that the scheme is universal and may be optimized for differ-
ent cultures within two or three steps. For this optimization it is necessary to deter-
mine the minimal inoculum amount for different cultures to eliminate the lag phase 
and achieve optimal cycle duration. The biomass should be harvested at the very 
end of the exponential phase. 
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 During such up-scaling both DM-0.5 strain of  D. deltoidea  and  Р. japonicus  cell 
culture retained the capability of sustained production of furostanol glycosides and 
ginsenosides, respectively, in the amount suffi cient for the industrial production. 

 Generally, the effi ciency of biomass production increased by 15–20 % under 
semi-continuous cultivation due to the absence of lag phase and the technical 
 maintenance in-between-cycles. Hence, semi-continuous mode shall be considered 
as optimal for the industrial production of plant cell culture biomass.  

23.6     Cryopreservation of Plant Cell Cultures with Enhanced 
Isoprenoid Production 

 Storage of cell cultures at cryogenic temperatures, below −130 °C, eliminates 
 repetitive subcultures thus reducing the risks of culture loss caused by contamina-
tion or technical errors. It also decreases the rate of genetic and epigenetic varia-
tions, prevents the loss of regeneration potential and changes in secondary metabolite 
profi le [ 229 ,  230 ]. 

 Building on the classical works of Quatrano [ 231 ] and Latta [ 232 ], successful 
cryopreservation has been reported for cell cultures of various medicinal plants 
which can be potentially used for the production of valuable secondary metabolites. 
This includes  Digitalis spp . [ 233 ,  234 ],  Rhaponticum carthamoides  [ 235 ],  Artemisia 
annua  [ 236 ], Ginkgo  biloba  [ 237 ,  238 ], and many others (for the most recent 
reviews see [ 229 ,  239 – 241 ]). 

 The majority of cryopreservation protocols resulted from the empirical 
approaches [ 242 ] or have been modifi ed from those applied to cultured animal cells 
[ 242 ,  243 ]. A classical method of slow, or programmed, freezing was the most 
applicable so far. With  Panax ginseng  cells suspension, this method resulted in 
34–51 % recovery after cryopreservation depending on preliminary treatment [ 131 , 
 244 ,  245 ]. Preculture of  P. ginseng  cells in medium with high sucrose concentra-
tions combined with 3-weeks cold-hardening improved their survival after cryo-
preservation when compared to the cells grown under standard conditions, 
assumably due to alteration in intracellular sugar content [ 131 ,  245 ]. Another suc-
cessful protocol involved pretreatment of  P. ginseng  cell culture on medium supple-
mented with 20 % sucrose while the temperature of cultivation was gradually 
reduced from 25 to 4 ºC. This pretreatment resulted in 40 % post-freeze cell viabil-
ity [ 244 ]. The maximal regrowth of  P. ginseng  cells after cryopreservation was 
achieved using 20 % sucrose as a cryoprotector [ 131 ,  244 ]. Combination of 10 % 
glycerol and 10 % sucrose was found to be less effective [ 245 ]. Suspension cultures 
of  P. ginseng  and  P. quinquefolius  have been cryopreserved by programmed freez-
ing using glycerol and sucrose as cryoprotectors [ 243 ]. Maximum post- 
cryopreservation viability of 55 % was observed for  P. quinquefolius  cells 
cryoprotected with a combination of 15 % glycerol and 10 % sucrose while pretreat-
ment with 20 % sucrose was detrimental for post-thaw survival. Cell culture of 
 Polyscias fi licifolia  cryopreserved by the same method regenerated at the rate of 
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45 % [ 193 ]. Interestingly, variation in temperature and the way of cryoprotector 
treatment (at once or with gradual increase of concentration) showed no signifi cant 
differences in cell viability after cryopreservation. 

 Maximum viability of 40 % has been reported in  Taxus chinensis  cell culture 
cryopreserved by slow freezing method using a mixture of 0.5 M DMSO and 0.5 M 
glycerol [ 246 ]. Successful cryopreservation of  Dioscorea deltoidea  cell suspension 
 via  slow freezing method was accomplished following preculture with 0.02 M 
asparagine and 0.05 M alanine which induced accumulation of cells with high 
osmotic- and cryotolerance in the population [ 131 ,  247 ]. Slow-freezing method 
using 7 % DMSO as cryoprotector was the most effective for cryopreservation of 
two  D. deltoidea  cell lines [ 68 ]. The authors also showed that haploid and polyploid 
cells of  D. deltoidea  were more sensitive to cryopreservation-induced injuries than 
di- and triploid cells [ 68 ]. Cells of both  P. ginseng  and  D. deltoidea  were found to 
be more susceptible to cryopreservation at the beginning of the exponential growth 
phase [ 246 ]. 

 Alternative approach to cell cryopreservation was reported by Joshi and Teng 
[ 248 ]. In their study, cells of  Panax ginseng  were exposed to gradually increasing 
the concentration of glycerol and sucrose followed by direct immersion in liquid 
nitrogen. The highest viability after cryopreservation achieved by this method was 
86.5 %. 

 Cryopreservation procedure normally involves pretreatment of plant cells with 
osmotically active and/or toxic chemicals which cause plasmolysis and induce 
severe and often unrecoverable damages in cell protoplasts. Therefore, the retention 
of main growth and biosynthetic traits as well as cytological and genetic stability of 
cell cultures regenerated after cryopreservation should be carefully assessed. It is 
important that cryopreservation had no effect on ginsenoside profi le of  Panax gin-
seng  cell cultures [ 244 ,  249 ]. Moreover, cultures regenerated after cryopreservation 
demonstrated higher maximum growth, biomass productivity and yield when com-
pared to non-frozen cells [ 248 ]. In contrast, lower accumulation of dry cell weight 
was recorded for cryopreserved  Taxus chinensis  cell culture when compared with 
the untreated control in the course of 40-day cultivation, however, paclitaxel pro-
duction was retained at the same level [ 246 ]. Diosgenine, sitosterol and stigmaster-
ols content remained unchanged after cryopreservation of  Dioscorea deltoidea  cell 
cultures [ 131 ]. The same profi les of the relative DNA content have been recorded 
for cell cultures of  Ginkgo biloba  in the course of 24-month cultivation followed by 
cryopreservation [ 237 ]. 

 Cell culture of  Polyscias fi licifolia  showed 25–40 % survival after 5 years of 
cryogenic storage [ 193 ]. This survival was suffi cient for regeneration of cell culture 
following a few consequent steps such as proliferation of callus on solid medium, 
multiplication of cell suspension in fl asks and fi nally biomass production in semi- 
continuous mode bioreactors of different volumes, 15 up to 550 L. The main growth 
and biosynthetic traits of the regenerated culture were retained at levels comparable 
to those of the initial cell culture (before cryopreservation), regardless of bioreactor 
volume and type [ 193 ]. It is worth to be noticed that the regenerated culture retained 
the ability for being up-scaled to bioreactors of industrial volume. The same cell 
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line which has been maintained for 5 years by means of repetitive subcultures 
showed twofold decrease in productivity when compared to initial cell line and the 
culture regenerated after 5-year cryogenic storage. To our knowledge, this is the fi rst 
report of bioreactor cultivation of undifferentiated plant cells after long- term 
cryopreservation.  

23.7     Conclusions 

23.7.1     Cell Cultures In Vitro as a Source of Secondary 
Metabolites and Associated Problems 

 Formation of secondary metabolites and, in particular, isoprenoids, in cell cultures 
 in vitro  differs signifi cantly from that in intact plant. The difference resulted from 
cell dedifferentiation and continuous proliferation and also selection mechanisms 
being active in cell population. Physiological roles of secondary metabolites in 
intact plant suggest that their substantial accumulation in cell  in vitro  expected to be 
exceptional rather than common. Nevertheless, intense biosynthesis of a number of 
secondary metabolites by cells  in vitro  was reported due to (i) the diversity of func-
tions of secondary metabolites and variety in their effects; (ii) variability of plant 
cells and their adaptability to  in vitro  conditions and (iii) array of methods available 
for culture manipulation and stimulation of metabolite production. 

 Study of secondary metabolism in plant cell cultures are of both fundamental and 
practical importance. Till date, induction and selection of cell lines with enhanced 
production of a target metabolite was based on empirical approach, such as optimi-
zation of culture conditions and various methods of increasing culture productivity. 
A profound analysis of the formation of secondary metabolites in cell cultures can 
make optimization process more effi cient and predictable. Since the majority of 
secondary metabolites are not crucial for vigorous cell growth their biosynthesis in 
dedifferentiated cell cultures may be inhibited following a peculiar “hierarchies of 
arrests” which can be of chemical, biochemical and physiological origin and are 
summarized below:

    1.     Hierarchy of chemical arrests depends on possible toxic/benefi cial effect of 
compounds and can be visualized as follows: toxic → neutral → benefi cial effect 
on cell growth → stimulation of cell growth and proliferation. Other properties of 
the compound such as hydrophobicity/hydrophilicity, presence of functional 
groups, etc. are also important.   

   2.     Hierarchy of biochemical arrests depends on the length and complexity of the 
biosynthetic pathway. Metabolites with short and unbranched biosynthetic path-
way may be easier to obtain than molecules yielded from several unrelated 
reactions.   

   3.     Hierarchy of physiological arrests depends on compartmentalization and 
 temporal organization of biosynthesis. The most desirable yet the rarest option is 
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co- localization of both synthesis and storage in one compartment in a single cell. 
More often biosynthesis and storage occur in two different compartments. The 
worst case scenario is localization of biosynthesis in different compartments and 
at a certain stage of plants ontogenesis.     

 Depending on the position of a target compound in the hierarchy it is possible to 
predict its probable formation in plant cell culture and even optimal methods of 
treatment to increase its production. In the worst case scenario (a compound is 
toxic, biosynthesized in several compartments at a certain stage of morphogenesis) 
biosynthesis in cultures  in vitro  has not been achieved, e.g. alkaloids of morphine or 
dimeric indole types. Among isoprenoids diterpenoids including steviol glycosides 
have the most complicated biosynthesis. Furostanol glycosides have the 
simplest one. 

 To stimulate production of “diffi cult” compounds in plant cell cultures it is help-
ful to fi nd its precursors and choose the most favorable candidate for the semi- 
synthesis of a fi nal product, e.g. baccatine III for taxoids and vincamine and 
catharanthine for dimeric indole alkaloids. Also formation of such compounds in 
cell cultures could be achieved by mutagenesis and selection of the most productive 
cells/lines  in vitro .  

23.7.2     Population Engineering Versus Metabolic Engineering 

 At present two methodologies of secondary metabolite production are widely dis-
cussed in the literature: the traditional ‘empirical’ and the new ‘rationalized’ 
approaches. The traditional approach is based on the ‘black box’ strategy. It involves 
all manipulations described above: cell selection, optimization of the medium com-
position, elicitation, use of the biosynthesis precursors, cell immobilization, etc. 

 The ‘rationalized’ approach is based on changes in cell metabolism  via  the meth-
ods of molecular biology. During the last decade a considerable progress has been 
made in the study of genes and enzymes involved in secondary metabolism result-
ing in obtaining the corresponding cDNA [ 250 ,  251 ]. Also the role of transcription 
factors, promoter and enhancer regions in the regulation of the genes involved in 
secondary metabolism was revealed [ 252 ,  253 ]. Thus, the novel strategy is based on 
overexpression or silencing of certain genes involved in biosynthesis/regulation of 
production of secondary metabolites. Similar approaches are employed, apart from 
regulation of plant cell culture productivity, to intact plants, plant organ cultures, 
and, recently, to microbial cultures producing plant-specifi c compounds [ 31 ]. 

 It is accepted that the ‘rationalized’ approach is more effi cient and it should 
eventually replace the ‘empirical’ approach. 

 However, eukaryotic cell, especially plant cell has an array of countermeasures 
enabling the silencing of foreign genes and segregation of their products. Thus, the 
immediate success of the molecular approach is questionable, especially if we also 
take into account the imperfection of the current gene engineering methods and, 
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most importantly, vast complexity of the problem. It is not enough to obtain the 
expression of a single gene as such. One has to construct a pipeline of a dozen or 
more genes including the supply of substrate as well as translocation and compart-
mentalization of the product, ensuring the temporal coherence of the whole process. 
It is also not clear whether it is enough to achieve the expression of the biosynthesis 
pathway genes and/or the regulatory genes and/or transporter genes? 

 It is also important to note that at present the traditional approach becomes less 
empirical due to profound knowledge on cell life  in vitro  and peculiarities of the 
secondary metabolism in such cells. It can be designated as knowledge-based ‘pop-
ulation engineering’ that harnesses the control over the living and developing of 
population of somatic cells  in vitro . The goals of ‘population engineering’ include 
creation of new cell populations or conditioning the existing populations to facili-
tate the production of a target compound. We demonstrated that it is possible to 
achieve this goal using high variability and adaptability of plant cell populations  in 
vitro  and a vast array of stimuli affecting these populations in this chapter. Further 
research is needed to choose the more effi cient of the two approaches though we 
think that the optimal solution is a ‘smart’ combination of both.      

  Acknowledgement   We would like to thank Dr Uliana Bashtanova, TTP LabTech, UK for manu-
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    Abstract     Ginsenosides are a type of glycosylated triterpenes produced as  secondary 
metabolites by  Panax ginseng  (ginseng). The ginsenosides contain many physi-
ologically and pharmacologically active ones, which possess cardio-protective, 
immunomodulatory, antifatigue, hepato-protective and anti-tumor properties. Field 
cultivation of the ginseng plant is a traditional production system to obtain the gin-
seng bioactive components like ginsenosides, but it is a time-consuming and labour- 
intensive process. It takes 5–7 years to attain maturity and to reach the harvesting 
stage, during which a close attention is needed as growth is subjected to several con-
ditions such as soil, climate, pathogens and pests. The use of cell and organ culture 
has been sought as a potential alternative for effi cient production of  secondary com-
pounds from ginseng, and various bioprocessing techniques have been developed 
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over the past decades. Powerful strategies for adventitious root culture of ginseng 
have been developed for biomass and ginsenoside accumulation in large- scale bio-
reactors. The present status and the art of production of ginseng adventitious roots 
and ginsenosides from bioreactor cultures are described in this chapter.  

  Keywords     Adventitious root cultures   •   Bioreactor cultures   •   Ginseng   • 
  Ginsenosides      •   Secondary metabolites   •   Scale-up   •   Terpenes  

  Abbreviations 

   2, 4 – D    2, 4-Dichlorophenoxy acetic acid   
  DW    Dry weight   
  FW    Fresh weight   
  IBA    Indole-3-butyric acid   
  MJ    Methyl jasmonate   
  MS    Murashige and Skoog medium   
  NAA    α-naphthalene acetic acid   
  NO    Nitric oxide   
  PUFAs    Polyunsaturated fatty acids   
  SA    Salicylic acid   
  TCMGRs    Tissue culture mountain ginseng adventitious roots   
  WPM    Woody plant medium   

24.1           Introduction 

  Panax ginseng  C. A. Meyer (Araliaceae), commonly known as ginseng is one of the 
most important medicinal plants, which is widely used in oriental countries such as 
China, Japan and Korea as a tonic and as an adaptogenic agent. It is also popular in 
rest of the world especially in North America and Europe as nutraceutical or as func-
tional food. ‘ Panax ’ is derived from a Greek word ‘Panacea’, which means cure-all 
diseases. It is used for longevity as well as for improving the physical strength and 
resistance. The principal ingredients of ginseng are triterpenoid saponins, known as 
ginsenosides. Ginsenosides are divided into three groups based on their structure 
i.e., Rb group (protopanaxadiols including Rb1, Rb2, Rc and Rd, etc.), the Rg group 
(protopanaxatriols including Rg1, Re, Rf, and Rg2, etc.) and the Ro group (Olenolic 
acid) (Fig.  24.1 ) [ 1 ]. Other than saponins, ginseng roots also contain biophenols, 
polyacetylenes, sesquiterpernes, polysaccharides, peptidoglycans, fatty acids and 
vitamins. Pharmacological effects of ginseng have been demonstrated in cancer, 
diabetes mellitus and in disorders related to cardiovascular system, immune system 
and central nervous system, including anti-stress and anti- oxidant activities [ 1 ]. Due 
to its entire pharmacological effects ginseng has become a popular tonic and health 
food in oriental as well as Western countries. Recently, the products of ginseng have 
also been used in cosmetic industry and in health beverage preparations.
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   Ginseng plants collected from their natural habitats are highly expensive and 
become scarce commodity. Ginseng is also cultivated in the fi elds; however, it usually 
takes 5–7 years from seedling to the fi nal harvesting stage of the roots, during which 
a close attention is needed as growth is subjected to several conditions such as soil, 
climate, pathogens and pests. In addition, the plant has fallen short of supply for a 
long period. Current advances in plant biotechnology have made it possible to culture 
plant cells for the production of metabolites. Ginsenoside production by ginseng cell 
culture has been successful [ 2 – 5 ]. However, the large-scale cultures of plant cells with 
the objective of commercial production of useful secondary metabolites have been 
hampered due to the poor productivity and instability of plant cell cultures [ 6 ,  7 ]. In 
this respect, differentiated organ cultures are seemed to be more promising than undif-
ferentiated cell cultures for the production of useful secondary metabolites [ 8 ]. In 
addition, genetically transformed hairy root culture was recommended for its merit on 
rapid growing characteristics [ 9 – 11 ], total extracts obtained from hairy root cultures, 
however, contained opine-like compounds, which has been known to harm potentially 
the mammalian cells [ 12 ]. Therefore, ginseng adventitious root culture is an excellent 
alternative since the root growth is fast and the ginsenoside production is stable with-
out potential dangers [ 13 ]. Adventitious root cultures have been successfully induced 
and cultured for the production of secondary metabolites in several other plants [ 14 , 
 15 ]. There are various reports on ginseng adventitious root cultures focusing on the 
increase of biomass growth and ginsenoside productivity by the manipulation of cul-
ture medium and culture environment. It is also possible to boost the productivity of 
ginsenosides by applying various strategies such as elicitation, application of suitable 
bioreactor and bioprocess technologies. This review demonstrates the art of produc-
tion of ginseng adventitious roots and ginsenosides by bioreactor cultures.  

24.2     Induction of Adventitious Roots and Establishment 
of Suspension Cultures 

 Adventitious roots were induced from 100 years old mountain ginseng ( Panax gin-
seng  C. A. Meyer) on Murahige and Skoog (MS) [ 16 ] medium supplemented with 
growth regulators [ 17 ,  18 ]. Root segments developed callus on MS medium supple-
mented with 4.53 μM 2, 4-D and 0.46 μM kinetin and 3 % sucrose. Adventitious 
roots were induced from calli masses on MS medium supplemented with 19.68 μM 
IBA and 3 % sucrose. Furuya et al. [ 19 ] found that 2, 4-D was essential for callus 
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  Fig. 24.1    Structure of protopanaxadiol, protopanaxatriol and oleanane ginsenosides       
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induction as well as growth, whereas IBA was found most suitable auxin for adven-
titious root induction. The adventitious roots were cultured in MS liquid medium 
supplemented with 19.68 μM IBA and 3 % sucrose in 400 ml conical fl asks contain-
ing 100 ml of medium until they reached certain biomass. Finally the roots were 
transferred to 5 L airlift bioreactors containing 3 L of MS medium with 19.68 μM 
IBA and 3 % sucrose maintained once in 6 weeks.  

24.3     Optimization of Medium and Other Culture Conditions 

 Optimization of culture medium and other culture conditions is very much essential 
for obtaining the enhanced results during cell and organ cultures. The optimization 
of medium, the salt strength, growth regulator type, combination and concentration, 
the type and concentration of carbohydrate, the nitrogen source and concentration, 
the physical conditions such as light and temperature, agitation and aeration should 
be standardized. These parameters have been brought in line effi ciently in the 
ginseng adventitious root cultures. 

24.3.1     The Effect of Medium Salt Strength 

 Different salt strengths of MS medium were tested and results showed that the maxi-
mum biomass and growth was obtained in 0.75 salt strength MS medium (Table  24.1 ) 
and 0.5 salt strength MS medium resulted in higher ginsenoside content. The adventi-
tious root growth was relatively slow in 2.0 salt strength medium, which affected bio-
mass accumulation and overall ginsenoside productivity. However, Son et al. [ 17 ] 
selected Woody plant medium (WPM) [ 20 ] for biomass growth and metabolite produc-
tivity. Such variations might be due to the selection of different strains of adventitious 
roots. Therefore, selection of adventitious root clone and selection of suitable medium 
and salt strength is important during the establishment of cell or organ cultures.

   Table 24.1    Effects of salt    strength on the growth of ginseng adventitious roots and ginsenoside 
production. The data were collected after 5 weeks of culture in a 5 L balloon type bubble bioreactor 
containing 3 L MS medium a    

 MS 
medium 
(salt 
strength) 

 Biomass  Ginsenosides 
 Ginsenoside 
yield 
(mg L −1 )  FW (g) a   DW (g) 

 Rg (mg g −1  
DW)  Rb  Total 

 0.50  366.8 ± 2.22  31.92 ± 0.02  3.05  6.97  10.02 ± 0.77  106.61 
 0.75  425.6 ± 1.19  34.16 ± 0.03  2.96  5.68  8.64 ± 0.84  98.38 
 1.00  400.4 ± 4.33  33.32 ± 0.03  2.38  4.12  6.50 ± 0.07  72.19 
 1.50  330.4 ± 2.13  26.32 ± 0.07  2.96  5.12  8.08 ± 1.15  70.89 
 2.00  215.6 ± 3.26  15.96 ± 0.08  3.22  7.35  10.57 ± 0.24  56.23 

   a Mean values of three replicates with standard error  
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24.3.2        The Effect of Macro and Micro Nutrients 

 The effect of macronutrients at 0.0, 0.5, 1.0, 1.5 and 2.0 strengths of MS medium 
were tested on the accumulation of adventitious root biomass and ginsenosides by 
Sivakumar et al. [ 21 ]. It was found that highest ginsenoside content of 10.96 mg g −1  
DW was obtained when the medium was deprived of NH 4  +  ions (Table     24.2 ). Half 
strength KNO 3  in the MS medium was suitable for biomass increase, while 2.0 fold 
concentrations was responsible for ginsenoside accumulation (9.25 mg g −1  DW). 
0.5-strength MgSO 4  was favourable for increase in root growth and 2.0-strength 
was favourable for ginsenoside production. In case of CaCl 2  1.0 strengths were 
favourable for adventitious root growth and 2.0-strength was suitable for ginsen-
oside accumulation. The results indicated that NH 4  +  inhibited ginsenoside accumu-
lation, while higher concentrations of K + , Mg 2+ , and Ca 2+  increased ginsenoside 
production.

      Table 24.2    Effects of macronutrients on the growth of ginseng adventitious roots and ginsenoside 
production. The data were collected after 5 weeks of culture in a 5 L balloon type bubble bioreactor 
containing 3 L MS medium a    

 Concentrations 
of macronutrients 

 Biomass  Growth 
ratio b  

 Ginsenosides 
(mg g −1  DW) 

 Ginsenoside yield 
(mg L −1  DW)  FW (g)  DW (g) 

 NH 4 NO 3   0.0  238.6b  23.4c  22.28  10.96 ± 1.12  85.48 
 0.5  297.6a  32.0a  30.47  8.62 ± 0.04  91.95 
 1.0  274.6a  32.6a  31.05  7.12 ± 0.06  77.37 
 1.5  228.6b  27.2a  25.90  6.32 ± 0.18  57.30 
 2.0  227.6b  25.2b  24.00  5.65 ± 0.34  47.46 

 KNO 3   0.0  106.6d  10.6b  10.9  4.24 ± 0.28  14.98 
 0.5  263.6b  28.8bc  27.43  8.36 ± 1.12  80.25 
 1.0  326.6a  30.8a  29.33  7.04 ± 0.06  72.28 
 1.5  254.6b  29.6ab  28.19  8.15 ± 0.22  80.41 
 2.0  202.4c  26.8c  25.52  9.25 ± 0.64  82.63 

 MgSO 4   0.0  228.0c  22.8b  21.72  5.56 ± 0.42  42.26 
 0.5  312.0ab  30.6a  29.14  6.93 ± 0.03  70.69 
 1.0  315.0ab  32.0a  30.48  7.47 ± 0.19  79.68 
 1.5  331.2a  32.0a  30.48  7.72 ± 0.22  82.35 
 2.0  308.2b  31.8a  30.29  8.89 ± 1.13  94.23 

 CaCl 2   0.0  247.1c  25.0b  23.81  7.26 ± 0.64  60.50 
 0.5  317.0b  30.8a  29.33  7.47 ± 1.12  76.69 
 1.0  345.0a  32.0a  30.48  7.60 ± 0.72  81.07 
 1.5  363.0a  31.8a  30.29  8.27 ± 0.12  87.66 
 2.0  365.0a  30.8a  29.33  8.91 ± 0.35  91.47 

   a Mean separation within column by Duncan’s multiple range test at  P  ≤ 0.05 
  b The growth ratio was determined by the increase in the dry weight after 5 weeks of culture. 
The values are the quotients of the dry weight after 5 weeks of culture and the dry weight of the 
inocula  
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   The effects of micronutrients on the growth of adventitious roots are shown in 
Table  24.3 . Most of the micronutrients such as CoCl 2 , CuSO 4 , KI, ZnSO 4  at fi ve or 
tenfold higher concentrations in the MS medium inhibited the growth of adventi-
tious roots. MnSO 4  increased the growth of adventitious roots at a fi vefold concen-
tration of the normal medium but decreased the growth at a tenfold higher 
concentration. CuSO 4  at tenfold, MnSO 4  at fi vefold, and ZnSO 4  at tenfold higher 
concentrations improved the accumulation of ginsenosides. However, KI and CoCl 2  
inhibited both the adventitious root growth and ginsenoside synthesis at fi ve and 
tenfold higher concentrations. Thus, the concentration of KI and CoCl 2  should be 
kept at lower levels in the ginseng adventitious root cultures.

24.3.3        The Effect of Ammonium/Nitrate Ratio 

 The effect of ammonium/nitrate ratio (NH 4  + /NO 3  −  – 0.0: 18.5; 7.19: 18.5; 14.38: 
18.5; 21.57: 18.5; 28.75: 18.5; 14.38: 0.0; 14.38: 9.4; 14.38: 18.8; 14.38: 26.2; 
14.38:37.6 mM) on biomass growth and ginsenoside accumulation has been worked 
out by Sivakumar et al. [ 21 ] and results suggested that nitrate played an important 
role in biomass increase and ginsenoside production rather than ammonium. A low 
ammonium concentration combined with a high nitrate concentration was favour-
able for root growth, showing the largest amount of root biomass at an ammonium/
nitrate ratio of 7.19/18.5. Maximum ginsenoside yield was achieved at a ratio of 0 
(mM) ammonium to 18.5 (mM) nitrate. Similar experimental observations were 
reported with cell cultures of  Panax ginseng  and  P. notoginseng  [ 22 ,  23 ] where MS 

   Table 24.3    Effect of micronutrients on the growth of ginseng adventitious roots and ginsenoside 
production. The data were collected after 5 weeks of culture in a 5 L balloon type bubble bioreactor 
containing 3 L MS medium a    

 Concentrations of 
macronutrients 

 Biomass  Growth 
ratio b  

 Ginsenosides 
(mg g −1  DW) 

 Ginsenoside yield 
(mg L −1  DW)  FW (g)  DW (g) 

 Control  1.0  294.4ab  31.08ab  30.3  1,015 ± 0.07  107.5 
 CoCl 2   5.0  237.4c  22.0d  20.9  9.78 ± 0.27  71.7 

 10.0  148.6e  14.8f  14.1  9.95 ± 0.12  49.1 
 CuSO 4   5.0  310.0a  31.0ab  29.5  0.05 ± 0.05  102.8 

 10.0  302.8ab  30.0b  28.6  12.42 ± 1.12  124.2 
 KI  5.0  203.8d  24.4c  23.2  6.52 ± 0.52  53.0 

 10.0  143.4e  17.0e  16.2  65.36 ± 0.21  31.3 
 MnSO 4   5.0  309.0a  32.8a  31.2  11.93 ± 0.23  130.4 

 10.0  297.6ab  30.4b  29.0  10.88 ± 0.35  110.3 
 ZnSO 4   5.0  287.4b  31.0ab  29.5  9.15 ± 0.22  94.6 

 10.0  12.6f  12.4g  11.8  11.66 ± 0.15  48.2 

   a Mean separation within column by Duncan’s multiple range test at  P  ≤ 0.05 
  b The growth ratio was determined by the increase in the dry weight after 5 weeks of culture. 
The values are the quotients of the dry weight after 5 weeks of culture and the dry weight of the 
 inocula  
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medium with altered nitrogen concentration was followed for the cultivation of 
 ginseng cells and adventitious roots.  

24.3.4     The Effect of Carbohydrate Source 

 Carbohydrates are important carbon and energy source for plant cell and organ cul-
tures and it has been demonstrated that initial sucrose concentration can affect the 
culture parameters such as growth and yield of secondary metabolites [ 24 ]. Infl uence 
of sucrose at a range of 1–9 % was tested on biomass growth and accumulation of 
ginsenosides in adventitious root cultures [ 21 ] and the results showed that 5 % 
sucrose is suitable for biomass as well as ginsenoside accumulation. Fresh and dry 
biomass of adventitious roots decreased with the sucrose concentration higher than 
5 %. Therefore, 5 % initial sucrose concentration is generally used for cultivation of 
the adventitious roots in bioreactors.  

24.3.5     The Effect of Growth Regulators 

 Plant growth regulators are one of the key factors infl uencing the biomass growth and 
secondary metabolite production. The effect of two exogenous auxins (IBA: 5, 12, 
25, 37, and 49 μM and NAA: 5, 11, 16, 25 and 27 μM) were tested by Jeong et al. 
[ 25 ] for multiplication of adventitious roots and they have reported the profuse devel-
opment of lateral roots from the inoculated roots in the medium supplemented with 
IBA and NAA whereas development of lateral roots was not observed in auxin free 
medium. Roots formed on IBA containing medium were slender and elongated, 
whereas lateral roots formed on NAA supplemented medium were shorter and 
thicker. Among the different concentrations of IBA tested, 25 μM was found best and 
in this medium each root explant developed 31.4 lateral roots which are accountable 
for highest root biomass after 40 days of culture (10.2 g L −1  dry weight; Table  24.4 ).

24.3.6        The Effect of Inoculum Density 

 There are many reports regarding the effect of inoculum density on biomass and 
metabolite accumulation [ 26 – 29 ]. There is a critical minimum inoculum size below 
which cell or root growth will normally fail. With ginseng adventitious roots, vari-
ous densities of inoculum were tested i.e., 2.5, 5.0, 7.5 and 10.0 g L −1 , and the 
results showed that 5 g L −1  was suitable for biomass accumulation (10.5 g L −1 ) and 
ginsenoside productivity (5.4 mg g −1  DW; Table  24.5 ) [ 25 ]. The length of inoculum 
is also reported to be critical factor for biomass and metabolites accumulation [ 30 , 
 31 ]. The inocula of ginseng adventitious roots chopped to 1–3, 4–6 or 7–10 mm or 
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unchopped were used for initiation of cultures and results showed that the adventi-
tious roots chopped to 7–10 mm produced a better yield of biomass (10.0 g L −1 ) and 
ginsenoside (5.5 mg g −1  DW; Table  24.6 ).

24.3.7         The Effect of Bioreactor Type, 
Aeration Rate and Sparger Type 

 Various types of airlift bioreactors viz. cylinder bioreactor, balloon type bioreactor, 
cone type bioreactor and bulb type bioreactor were tested for adventitious root 
growth and ginsenoside accumulation by Kim et al. [ 32 ] (Table  24.7 ) and they 
reported that bulb type bubble bioreactors were suitable for biomass accumulation 
(41.92 g DW) as the oxygen transfer capacity (K L a) was optimum with bulb type 

   Table 24.4    The effect of 
auxins on number of 
lateral root development, 
biomass and ginsenoside 
content during ginseng 
adventitious root culture      

 Auxins 
 Concentration 
(μM) 

 Number of 
lateral roots 

 Biomass 
(g L −1 , DW) 

 Ginsenoside 
(mg g −1  DW) 

 Control  0  0  3.7 j  2.7 g 
 IBA  5  6.3 ± 0.5  7.0 I  3.5 e 

 12  11.0 ± 0.6  9.0 f  3.8 de 
 25  31.4 ± 1.0  10.2 a  5.5 a 
 37  30.5 ± 1.0  10.1 b  4.8 bc 
 49  30.0 ± 1.0  9.7 d  3.0 f 

 NAA  5  5.2 ± 0.4  7.6 h  3.8 de 
 11  18.0 ± 0.7  8.4 g  4.5 c 
 16  15.2 ± 0.7  9.4 e  4.9 b 
 25  13.8 ± 0.7  10.1 b  4.7 bc 
 27  13.7 ± 0.5  10.0 c  3.9 d 

  Adventitious roots were cultured in MS liquid medium for 40 days  

   Table 24.5    The effect of inoculum size on biomass and ginsenoside content during ginseng 
adventitious root suspension culture for 40 days   

 Inoculum size (g L −1 )  Biomass (g L −1  DW)  Ginsenoside (mg g −1  DW) 

 2.5  7.1 d  5.1 d 
 5.0  10.5 a  5.4 a 
 7.5  10.3 b  5.2 c 
 10.0  9.7 c  5.3 b 

  Mean separation within column by Duncan’s multiple range test at  P  ≤ 0.05  

   Table 24.6    The effect of root length on biomass and ginsenoside content during ginseng 
adventitious root suspension culture for 40 days   

 Length of the roots (mm)  Biomass (g L −1  DW)  Ginsenoside (mg g −1  DW) 

 1–3  7.1 d  5.1 d 
 4–6  8.9 b  5.1 b 
 7–10  10.0 a  5.5 a 
 Un-chopped roots  8.4 c  4.1 c 

  Mean separation within column by Duncan’s multiple range test at  P  ≤ 0.05  
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reactors, whereas in cylinder type bioreactors the biomass accumulation was least 
(38.55 g DW; Table  24.8 ). Biosynthesis of ginsenosides was not greatly affected the 
types of bioreactors. Balloon type bubble bioreactors have been selected for further 
use because of better oxygen transfer, biomass and metabolite accumulation. With 
balloon type bubble reactors Kim et al. [ 33 ] have tested the effect of aeration rate 
i.e., 0.05, 0.1, 0.2, 0.3 vvm constant air supply and the amount of air supply was 
increased from 0.05 to 0.3 vvm at 10-days interval on ginseng adventitious root 
growth and metabolite accumulation (Table  24.9 ). They found that both the root 
growth and the ginsenoside accumulation were optimum when the aeration rate was 
increased gradually at 10-days interval in proportion to root growth. Kim et al. [ 33 ] 
also tested the effect of sparger pore size (15, 30 and 60 μm; Table  24.10 ) and diam-
eter of sparger (1.5, 3.0, 5.0 and 8.0 cm; Table  24.11 ) on the adventitious root growth 
and ginsenoside accumulation and they reported the better root growth (175.9 g 
DW) with the cultures aerated with sparger of 15 μm pore size. Further, their results 
revealed that sparger of 8.0 cm diameter and a pore size of 15 μm was suitable for 
aeration in balloon type bubble bioreactor because the conditions were responsible 
for production of optimum adventitious root biomass (191.9 g DW) and ginsen-
osides (4.9 mg g −1  DW). These results suggest that selection of suitable bioreactor 
and modes of aeration are very much critical for cell and organ cultivation.

24.3.8            The Effect of Oxygen, Carbon Dioxide and Ethylene 

 Biomass growth and accumulation of metabolites in cultures is reported to be 
infl uenced by gaseous composition including oxygen, carbon dioxide and ethyl-
ene [ 34 ,  35 ] Natural atmospheric sterilized air (N 2 -78 %; O 2 - 20.8 %; Ar-0.9 %; 

   Table 24.7    Confi guration of various airlift bioreactors and culture conditions used for ginseng 
adventitious root culture   

 Confi guration  Cylinder type  Balloon type  Cone type  Bulb type 

 Diameter of bioreactor (cm)  18  22  22  22 
 Length of bioreactor (cm)  30  30  32  25 
 Diameter of bubble column (cm)  –  6  –  6 
 Length of bubble column (cm)  –  5  –  5 
 Medium volume (L)  4  4  4  4 
 Air fl ow rate (vvm)  0.1  0.1  0.1  0.1 
 Inoculum size (g FW/bioreactor)  20  20  20  20 

   Table 24.8    Effects of bioreactor on initial oxygen transfer coeffi cient (K L a) and growth of ginseng 
adventitious roots cultured in MS medium supplemented with 2.0 mg L −1  NAA, 5 % sucrose for 40 days   

 Bioreactor types  Initial K L a (h −1 )  Fresh weight (g)  Dry weight (g) 

 Cylinder  5.24  533.6 b  38.55 c 
 Bulb  6.98  560.7 a  41.92 a 
 Balloon  5.49  556.7 a  40.22 b 
 Cone  5.69  558.8 a  41.52 a 

   a Mean separation within column by Duncan’s multiple range test at  P  ≤ 0.05  
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   Table 24.10    The effect of pore size    of the sparger of bulb type balloon bioreactors on the 
adventitious root biomass growth and ginsenoside productivity after 40 days of culture a,   b,   e    

 Pore size of 
sparger (μm) 

 Growth of adventitious roots 

 Total ginsenosides 
(mg g −1  DW) 

 Ginsenoside productivity 
(mg L −1  day −1 ) c  

 Biomass (g 
DW) 

 Growth rate 
(fold) 

 15  175.9 ± 5.6 d   25.1  3.9 ± 0.3  1.1 
 30  175.1 ± 4.5  25.0  4.5 ± 0.2  1.3 
 60  171.9 ± 4.7  24.6  4.9 ± 0.2  1.4 

   a Adventitious roots (7 g DW) were cultured in MS medium supplemented with 2.0 mg L −1  NAA, 
5 % sucrose 
  b  vvm  volume of gas per volume of aerated liquid per minute 
  c Ginsenoside productivity (mg L −1  per day) = total ginsenoside content (mg g −1  DW) × dry weight 
of harvested root (g DW) per volume of culture medium (L) per culture day (d) 
  d Mean values from three replicates with standard deviations 
  e Aeration rate increased at every 10 days intervals (0.05–0.3 vvm)  

   Table 24.9    The effect of aeration rate of bulb type balloon bioreactors on the adventitious root 
biomass growth and ginsenoside productivity after 40 days of culture a    

 Aeration rate 
(vvm) b  

 Growth of adventitious roots 

 Total ginsenosides 
(mg g −1  DW) 

 Ginsenoside 
 productivity 
(mg L −1  day −1 ) c   Biomass (g DW) 

 Growth rate 
(fold) 

 0.05  149.1 ± 8.2 d   21.3  3.7 ± 0.1  0.9 
 0.1  173.6 ± 7.5  24.8  3.9 ± 0.1  1.1 
 0.2  163.1 ± 9.8  23.3  3.7 ± 0.2  1.0 
 0.3  151.6 ± 8.4  21.7  4.1 ± 0.2  1.0 
 0.5/0.1/0.2/0.3 e   17.58 ± 8.3  25.1  4.3 ± 0.1  1.2 

   a Adventitious roots (7 g DW) were cultured in MS medium supplemented with 2.0 mg L −1  NAA, 
5 % sucrose 
  b  vvm  volume of gas per volume of aerated liquid per minute 
  c Ginsenoside productivity (mg L −1  per day) = total ginsenoside content (mg g −1  DW) × dry weight 
of harvested root (g DW) per volume of culture medium (L) per culture day (d) 
  d Mean values from 3 replicates with standard deviations 
  e Aeration rate increased at every 10 days intervals 0.05–0.3 vvm  

   Table 24.11    The effect of diameter of sparger of bulb type balloon bioreactors on the adventitious 
root biomass growth and ginsenoside productivity after 40 days of culture a,   b,   e    

 Diameter of 
sparger (cm) 

 Growth of adventitious 
roots 

 Total ginsenosides 
(mg g −1  DW) 

 Ginsenoside productiv-
ity (mg L −1  day −1 ) c  

 Biomass (g 
DW) 

 Growth rate 
(fold) 

 1.5  175.1 ± 4.3 d   25.0  4.1 ± 0.2  1.2 
 3.0  175.9 ± 3.7  25.1  4.0 ± 0.2  1.2 
 5.0  181.4 ± 4.1  25.9  3.9 ± 0.2  1.2 
 8.0  191.9 ± 4.4  27.4  4.9 ± 0.1  1.6 

   a Adventitious roots (7 g DW) were cultured in MS medium supplemented with 2.0 mg L −1  NAA, 
5 % sucrose 
  b  vvm  volume of gas per volume of aerated liquid (min −1 ) per minute 
  c Ginsenoside productivity (mg L −1  per day) = total ginsenoside content (mg g −1  DW) × dry weight 
of harvested root (g DW) per volume of culture medium (L) per culture day (d) 
  d Mean values from three replicates with standard deviations 
  e Aeration rate increased at every 10 days intervals 0.05–0.3 vvm  
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CO 2 - 0.03 %; Ne-, He-) was enriched with pure oxygen (30 and 40 %) or carbon 
dioxide (2.5 and 5 %) or ethylene (20 and 20 ppm) to promote the ginseng adventi-
tious root growth and accumulation of metabolites by Jeong et al. [ 36 ] and only 
supplementation of 40 % O 2  enhanced the accumulation of root biomass and pro-
duction of ginsenosides, whereas, enhanced levels of CO 2  and C 2 H 5  were unfavour-
able for the cultures which lead to low accumulation of ginsenosides. Ali et al. [ 37 ] 
reported that the supplementation of higher O 2  levels (above 40 %) induced oxida-
tive stress in the adventitious roots of ginseng as indicated by increased levels of 
H 2 O 2  content, lipoxynase activity and higher activities of antioxidant enzymes. Ali 
et al. [ 38 ] studied the effect of CO 2  (1, 2.5 and 5 %) enrichment on the antioxidant 
activity and total phenolics in adventitious roots of ginseng. The total phenolics and 
fl avonoids increased over culture duration indicating that these compounds play an 
important role in protecting the plant from CO 2  toxicity.  

24.3.9     The Effect of Light and Temperature 

 Bioprocess optimization and scale-up of suspension cultures require an  understanding 
of physical parameters for the production of biomass and secondary metabolites [ 39 ]. 
Light and temperature are the two physical parameters which infl uence the cell and 
organ cultures and it is observed that optimal temperature and light treatments on 
suspension cultures is necessary for the accumulation of biomass and production of 
metabolites [ 40 – 43 ]. Incubation of cultures at 20 °C was most suitable for ginseng 
adventitious root biomass and ginsenoside accumulation among 10, 15, 20, 25 and 
30 °C temperature regimes tested [ 13 ]. Reports are also on records that light condi-
tions stimulate the biomass growth of ginseng cells and accumulation of ginsenosides 
[ 44 ]. Yu et al. [ 18 ] tested the effect of light quality (red, blue and blue plus red lights) 
and light intensity (photon fl ux) on ginseng adventitious root cultures and reported no 
positive effect of these factors. Therefore, ginseng adventitious root bioreactor 
 cultures are kept in dark and maintained at constant ambient temperature of 20 °C.  

24.3.10     The Effect of Polyploid Induction 

 Polyploidy is responsible for increase in cell size, a characteristic that leads to a 
larger vegetative and reproductive organs. Polyploids are also responsible for 
improved secondary metabolite production [ 45 ]. Polyploids have been induced in 
 Chamomilla recutita  [ 46 ],  Petunia  [ 47 ] and  Salvia miltiorrhiza  [ 48 ] which produced 
more secondary metabolites compared to their diploid counterparts. Octoploid 
adventitious root lines were induced in ginseng to enhance the biomass and ginsen-
oside content using colchicine by Kim et al. [ 49 ]. They reported that there was 
improvement in dry biomass accumulation with octoploid lines compared to tetra-
ploid lines (Table  24.12 ). The total and Rb-group ginsenosides in the octoploid 
roots were lower (3.3 and 1.1 mg g −1  DW respectively) than that of tertaploid roots 
(3.7 and 1.9 mg g −1  DW, respectively), however, Rg-group and Rg1 ginsenosides 
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increased by 2 % and 22 % respectively. Hence, octoploid ginseng adventitious root 
lines are specifi cally maintained for production of Rg1 ginsenosides (Table  24.13 ).

24.4          Elicitation 

 Various types of biotic and abiotic elicitors such as fungal, bacterial and yeast poly-
saccharides, glycoproteins, xanthan, chitoson, heavy metals, UV radiation, methyl 
jasmonante and salicylic acid are known to provoke metabolic pathways for enhanc-
ing the accumulation of secondary metabolites. Therefore, such elicitors are used in 
cell and organ cultures for over production of bioactive compounds. 

24.4.1     The Effect of Methyl Jasmonate and Salicylic Acid 

 Jasmonates and salicylic acid are signaling molecules which are used as elicitors to 
trigger the secondary metabolism in plant cell and organ cultures. Kim [ 50 ] tested the 
effi cacy of various jasmonates for elicitation of ginsenoside synthesis in ginseng 
adventitious root cultures and found methyl epi-jasmonate and methyl jasmonate (MJ) 
as useful elicitors (Table  24.14 ). Sevenfold increments in accumulation of ginsen-
osides with 100 μM MJ treatments compared to control was observed. However, MJ 
treatments (50, 100, 150 μM) has led to decrease in biomass accumulation. Therefore, 
two step strategy has been adopted by Yu et al. [ 51 ] and Kim et al. [ 52 ] by culturing 
adventitious roots for initial 40 days in elicitor free medium and by adding 100 μM MJ 
during last ten days of culture. Ali et al. [ 53 ,  54 ] have treated ginseng adventitious root 
cultures with MJ and salicylic acid (SA) and reported the accumulation of reactive 
oxygen species and lipid peroxidation in the roots which are responsible for signal 
transduction of metabolic pathway. They have also reported the accumulation of anti-
oxidant enzymes ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide 
dismutase enzyme which are responsible for overcoming oxidative stress in the gin-
seng roots. Tewari and Paek [ 55 ] demonstrated that the involvement of nitric oxide 
(NO) mediation in salicylic acid induced accumulation of ginsenosides.

   Treatment of ginseng adventitious roots with copper (5, 10, 25, 50 μM) showed 
the accumulation of Cu in the roots and resulted in growth inhibition [ 56 ]. However, 
ginsenoside synthesis was triggered by Cu at 5 and 25 μM but decreased with higher 

   Table 24.12    Growth and proliferation of tetraploid (4×) and octoploid (8×) adventitious roots of 
ginseng after 40 days of culture in MS medium supplemented with 2 mg L −1  NAA and 5 % sucrose   

 Adventitious root 
lines 

 FW (mg/
vessel) 

 DW (mg/
vessel) 

 DW/FW 
(%)  Number of lateral/root explants 

 4×  106.5 ± 3.9  11.7 ± 0.84  10.9  11.9 ± 0.77 
 8×  164.8 ± 11.5  13.8 ± 0.69  8.4  4.4 ± 0.61 

  Data are mean values with standard deviations from 30 adventitious roots  
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Cu treatment of 50 μM. The increase in the ginsenoside content with Cu treatments 
is attributed to oxidative stress as evidenced by the accumulation of malondialdeyde, 
reactive oxygen species and hydrogen peroxide. 

 Tewari et al. [ 57 ] tested effect of nitric oxide (NO) elicitation on adventitious 
root growth, ginsenoside accumulation and antioxidant defense responses. They 
treated the adventitious roots with 100 μM sodium nitroprusside (SNP). SNP treated 
root showed enhanced NADPH oxidase (NOX) activity, which is subsequently pro-
moted the root growth and ginsenoside accumulation. They also observed inhibition 
of NOX activity and decline in dry weight of SNP elicitated adventitious roots in the 
presence of NOX inhibitor (diphenyl iodonium, DPI), which supports involvement 
of NOX in root growth. 

 Among the methyl jasmonate, salicylic acid, nitric oxide and copper stress treat-
ments, methyl jasmonate mediated elicitation seems to be highly benefi cial for over 
production of ginsenosides in the ginseng adventitious cultures. As demonstrated in 
cell cultures of  Panax notoginseng , new synthetic elicitors like 2-hydroxyethyl jas-
monate had higher inducing activity than conventional jasmonates towards gene 
expression and ginsenoside biosynthesis [ 58 – 60 ].  

24.4.2     The Effect of Organic Germanium 

 A wide variety of elicitors have been employed to alter cell metabolism in order to 
enhance the production of secondary metabolites in plant cell and organ cultures. 

   Table 24.14    Effect of various jasmonates on the concentration of ginsenosides in adventitious 
roots of ginseng   

 Jasmonates  Concentration (μM)  Ginsenosdie content (mg g −1  DW) a  

 Control  –  6.9f 
 Methyl dihydro jasmonate  50  11.12e 

 100  11.55e 
 150  13.90b 

 Methyl epi-jasmonate  50  44.55b 
 100  64.20a 
 150  59.70a 

 Methyl-epi-dihydro jasmonate  50  14.15e 
 100  18.30de 
 150  30.30c 

 Jasmonic acid  50  26.80cd 
 100  15.50e 
 150  16.55e 

 Methyl jasmonate  50  47.45b 
 100  51.50b 
 150  49.85b 

   a Mean separation within columns by Duncan’s multiple range test at  P  ≤ 0.05  
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Organic germanium, a dietary supplement, was used as an elicitor to enhance the 
biomass accumulation and ginsenoside production by Yu et al. [ 61 ]. When adventi-
tious root cultures were supplemented with organic germanium at 0, 10, 30, 60, 90, 
120 or 150 mg L −1  concentrations and it was observed that 60 mg L −1  organic ger-
manium enhanced both fresh (565 g) and dry (44 g) biomass accumulation 
(Table  24.15 ). Table  24.16  presents detailed changes in contents of the different 
ginsenosides. The contents of Rb and Rg group of ginsenosides were more than the 
contents found in control treatment. Improvement in the accumulation of pro-
topanaxadiol (Rb, 0.9- fold increments) as well as protopanaxatriol (Rg, 0.3-fold 
increment) was reported suggesting that it is possible for the production of value 
added biopharmaceuticals using germanium as an elicitor.

24.4.3         The Effect of Polyunsaturated Fatty Acids 

 Different polyunsaturated fatty acids (PUFAs) were used as elicitors to enhance bio-
mass accumulation and ginsenoside production in ginseng adventitious root cultures 
by Dewir et al. [ 62 ] and the adventitious root cultures were treated with oleic and 
linolenic acid at 0, 1, 5, 10 or 50 μmol L −1  on the 40 th  day of culture and roots were 
harvested on day 47. They observed that except that of 1 μmol L −1  linolenic acid, all 
PUFAs concentrations signifi cantly decreased biomass  production in terms of fresh 

   Table 24.15    Effect of organic germanium on growth of ginseng adventitious roots a    

 Organic 
germanium 
(mg L −1 ) 

 Biomass 
 Growth yield 
(L −1 ) 

 Germanium 
accumulation 
(μg g −1  DW) 

 Germanium 
production 
(μg g −1  DW)  FW (g L −1 )  DW (g L −1 ) 

 0  470 ± 2  39 ± 1  9.8  –  – 
 10  497 ± 2  41 ± 2  10.3  180 ± 0  50 ± 1 
 30  561 ± 3  43 ± 3  10.8  674 ± 6  208 ± 3 
 60  565 ± 6  44 ± 2  11.1  1,243 ± 5  395 ± 6 
 90  410 ± 5  34 ± 1  8.5  1,745 ± 9  427 ± 8 
 120  292 ± 4  25 ± 1  6.2  2,215 ± 25  393 ± 10 
 150  190 ± 3  17 ± 1  4.1  2,801 ± 18  334 ± 5 

   a Each value represents mean ± SE of three replicates  

   Table 24.16    Effect of organic germanium on the content of individual ginsenosides a    

 Treatment 

 Ginsenoside content (mg g −1  DW) 

 Rg1  Re  Rf  Rb1  Rb2  Rc  Rd  Total b   Rb:Rg c  

 Control  0.7 ± 0.2  1.1 ± 0.3  0.5 ± 0.1  0.4 ± 0.1  0.2 ± 0  0.3 ± 0.1  0.7 ± 0.2  3.9 ± 0.3  1.5 

 Organic Ge 
(60 mg L −1 ) 

 1.1 ± 0.1  1.1 ± 0.1  0.6 ± 0.1  0.5 ± 0  0.4 ± 0.1  0.4 ± 0.1  0.9 ± 0.1  5.0 ± 0.15  1.2 

   a Each value represents mean ± SE of three replicates 
  b Total content = (Rg1 + Re + Rf + Rb1 + Rb2 + Rc + Rd) 
  c Rb:Rg = (Rb1 + Rb2 + Rc + Rd)/(Rg1 + Re + Rf)  
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and dry biomass, percentage of dry biomass and growth ratio (Table  24.17 ). Cultures 
supplemented with 1 μmol L −1  linolenic acid showed enhancement in ginsenoside 
accumulation, without the decrease in adventitious root biomass (Fig.  24.2 ). Linolenic 
acid enhanced the biosynthesis of both protopanaxatriols (2.95 ± 0.048 mg g −1  
DW) and protopanaxadiols (5.66 ± 0.043 mg g −1  DW) compared to that of control 
(1.41 ± 0.02 and 1.58 ± 0.006 mg g −1  DW respectively). Improvement of ginsenoside 
accumulation in ginseng adventitious root cultures with the treatment of linoleic and 
linolenic fatty acid is also reported by Wu et al. [ 63 ].

24.5          The Effect of Precursor (Squalene) Feeding 
and Medium Replenishment Strategies 

 Various strategies such as feeding the cell and organ cultures with biogenic precur-
sor (precursor of biosynthetic pathways) or with fresh nutrient medium (fed-batch 
cultures) have been followed [ 64 – 70 ] to improve the productivity of biomass and 
secondary metabolites. The ginseng adventitious root cultures were fed with bio-
genic precursor squalene (100, 200, 300, 400 and 500 μM) by Sivakumar et al. [ 71 ] 
and they reported that the cultures which were fed with 300 μM of squalene 
improved the growth adventitious roots. They also reported the increase in the pro-
duction of Rg group of ginsenosides i.e., 0.96, 0.09, 1.91 mg g −1  DW of Rg1, Rg2 
and Re ginsenosides respectively, when compared to control (0.22, 0.02 and 
0.86 mg g −1  DW of Rg1, Rg2 and Re) with squalene fed cultures. The medium 
replenishment method was employed by Jeong et al. [ 72 ] to enhance 25.5 % increase 

   Table 24.17    Effect of PUFAs elicitation on biomass production of  P. ginseng  roots   

 PUFAs conc. (μ mol L −1 ) a  

 Biomass production (g/3 L bioreactor) 

 FW  DW  % of DW  Growth ratio 

 Control  0  369.39a b   26.95a  7.30a  29.28a 
 Oleic acid  1  357.90b  23.61b  6.60b  25.53b 

 5  360.91b  23.95b  6.64b  25.91b 
 10  355.29b  23.31b  6.56b  25.29b 
 50  311.62c  19.87d  6.38c  21.33d 

 Linolenic acid  1  370.52a  27.71a  7.48a  30.13a 
 5  305.45c  22.41c  7.34a  24.18c 
 10  295.59d  22.00  7.37a  23.72c 
 50  361.75b  24.08  6.66b  26.06b 

 Signifi cance c  
 Elicitor type (ET)  ***  ***  ***  *** 
 Elicitor conn. (EC)  ***  ***  ***  *** 
 ETx EC  ***  ***  ***  *** 

   a Elicitors were added on the 40th day of culture and roots were harvested on day 47 
  b Mean separation within columns by Duncan’s multiple range test at 5 % level 
  c ***Signifi cant at  P  ≤ 0.001  
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in dry biomass (28.7 g L −1 ) and 8.3 % increase in ginsenoside contents (4.92 mg g −1  
DW) in culture. These results clearly suggest that precursor feeding and medium 
replenishment are useful strategies for improvement of secondary metabolites.  

24.6     Scale-Up 

 After optimization of all the chemical and physical parameters for the cultivation of 
ginseng adventitious roots in small-scale bioreactors (5 L), scale-up of the process 
was carried out in 20 L (Fig.  24.3a ), 500 L (Fig.  24.3b, c ) and 10, 000 L (Fig.  24.3d ) 
by CBN Biotech Company, South Korea. Cultures were established using MS 
medium with 5 mg L −1  IBA and 50 g L −1  sucrose. Suitable inoculum size has been 
worked out as 50 kg per for 10,000 L bioreactor (Table  24.18 ) [ 73 ], the root growth 
pattern was as same as that of small scale cultures and 850 kg of fresh (Fig.  24.3e, f ) 
and 85.4 kg dry biomass (Fig.  24.3g ) could be produced in each batch.
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a

e f g

b c d

  Fig. 24.3    Bioreactor cultures of ginseng adventitious roots ( a ) 20 L airlift bioreactors, ( b ) 500 L 
balloon type airlift bioreactor, ( c ) 500 L horizontal drum type bioreactor, ( d ) 10,000 L airlift pilot 
scale bioreactors, ( e ) ginseng adventitious root biomass, ( f ) harvested ginseng adventitious root 
biomass, ( g ) drying of adventitious roots       

    Comparative analysis of ginsenosides in cultivated ginseng (which needs 
 minimum 4 year for cultivation and harvesting), red ginseng (needs minimum 6 
years for cultivation in fi eld and then it is steam processed), mountain ginseng 
(~100 years old wild ginseng collected from mountains in Republic of Korea), 
adventitious root lines induced from mountain ginseng and callus and hairy roots 
induced from mountain ginseng revealed the differential accumulation of pro-
topanaxatriol, protopanaxadiol in these raw materials (Table  24.19 ). It was also 
observed that adventitious root line #4 elicitated with 100 μM methyl jasmonate was 
superior in accumulation of ginsenoside showing an accumulation of 2.81 mg g −1  
DW triol and 29.66 mg g −1  DW diol and total 32.46 total ginsenosides after 45 days 
cultivation in bioreactors. Thus, overall three fold increment in accumulation was 
evident with adventitious root biomass cultivated in bioreactors.

24.7        Economic Feasibility of the Production of Secondary 
Metabolites from Cell and Organ Cultures 

 The economic feasibility of secondary metabolite production from cell and organ cul-
tures varies with the plant species, type of culture employed for large-scale cultivation, 

   Table 24.18    Plant scale (10,000 L) bioreactor culture: effect of inoculum density on accumulation 
of biomass and ginsenosides   

 Inoculum density (Kg)  FW (Kg)  DW (Kg) 

 Ginsenosides (mg g −1  DW) 

 Rg-group  Rb-group  Total 

 50  850  85.4  6.11  20.45  26.56 
 100  1,100  119.2  3.92  18.98  22.90 
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   Table 24.19    Comparison of ginsenoside contents in various types of ginseng   

 Various types of ginseng 

 Ginsenosides (mg g −1  DW) 

 Triol  Diol 
 Ratio of 
D/T  Total a  

 Cultivated ginseng (4 years needed for 
harvesting) 

 5.25 ± 0.15  6.10 ± 0.40  1.16  11.35 ± 0.55 

 Red ginseng (6 years for harvesting and 
processing of roots) 

 4.94 ± 0.20  9.09 ± 0.90  1.83  14.04 ± 1.09 

 Mountain ginseng (~100 years old)  6.61 ± 0.34  7.57 ± 0.24  1.10  14.19 ± 1.20 
 Adventitious root line #1  2.75 ± 0.70  1.86 ± 0.30  0.73  4.61 ± 0.98 b  
 Adventitious root line #2  3.41 ± 0.0  2.57 ± 0.04  0.75  5.98 ± 0.04 b  
 Adventitious root line #3  3.34 ± 0.80  14.74 ± 1.05  4.41  18.09 ± 1.03 b  
 Adventitious root line #4  2.81 ± 0.33  29.66 ± 2.30  10.56  32.46 ± 2.28 b  
 Callus (from mountain Ginseng)  0.31 ± 0.04  2.54 ± 0.31  8.45  2.85 ± 0.26 
 Hairy roots (from mountain ginseng)  3.56 ± 0.22  6.26 ± 0.41  1.75  9.83 ± 1.05 

   a Mean values of three replicates with standard error 
  b All adventitious root lines were induced from 100 years old mountain ginseng and are cultured in 
bioreactors using MS medium and after elicitation with 100 μM methyl jasmonate  

the kind of bioreactor/s, the method/mode of operation, biomass yield and value of 
the end product. The cost of production of ginseng adventitious root raw material 
is illustrated here. In this article, the bioreactor production of ginseng adventitious 
roots with that of fi eld cultivated ginseng is manifested (Table  24.20 ). The average 
yield of Korean ginseng ( Panax ginseng  C. A. Meyer) roots from fi eld cultivation in 
Republic of Korea is 523 kg per 0.1 ha and cost of production is estimated to be 35 
US$ (Table  24.20 ) [ 74 ]. The cost of expenditure for fi eld cultivation includes seedbed 
preparation, custom seeding, manure, pesticides, fumigation, fertilizer, shade cloth 
(ginseng is shade loving plant, should be grown under 70–80 % shade and the cost of 
cloth used for shading will vary depending on the material used) and labour. Whereas, 
the biomass yield of ginseng adventitious roots cultivated in four 10,000 L bioreac-
tors for 45 days and operated for 7–8 cycles in 1 year (established by CBN Biotech, 
Cheongju, Republic of Korea) is about 30,000 kg (30 t). The cost of production of 
ginseng adventitious roots is 47 US$ per kg. The analysis of cost of expenditure is 
as follows: Chemicals – 13 %, labor – 26 %, electricity/gas/water – 6 %, operation 

    Table 24.20    The cost of production of ginseng adventitious roots compared with fi eld cultivated 
ginseng   

 Item  Field cultivated ginseng 
 Adventitious roots obtained 
from bioreactor cultivation 

 Yield (kg/0.1 ha)  523 a   30,000 b  
 Production cost (US $/
kg) 

 35  47 

   a After 5 years of fi eld cultivation (fresh root biomass). Data from 2012 Ginseng statistical year-
book, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea 
  b Ginseng adventitious roots were cultured in four 10,000 L bioreactors for 45 days and bioreactors 
were operated for 7–8 cycles per year  
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cost – 11 % and depreciation of machinery – 44 %. So, the quantum of biomass 
produced by bioreactor cultivation shows that there is an ample scope for commer-
cial application of the plant cell and organ cultures for the production of secondary 
metabolites when compared to fi eld cultivation.

24.8        Downstream Processing for Biomass and Ginsenosides 

 Drying is the most common and fundamental method for post-harvest preservation 
of medicinal plant raw material because it allows quick conservation of bioactive 
ingredients. In case of mass production, the use of technical drying is indispensable. 
Drying technology for ginseng raw material has been developed by Kim et al. [ 75 ] 
and roots were dried by forced air drying at 50 °C for 10 h (Fig.  24.3g ). The dried 
roots possessed 1.5 mg g −1  DW protopanaxatriols, 15.9 mg g −1  DW protopanaxadi-
ols and 17.4 mg g −1  DW total ginsenosides. They also tested the far infrared and 
freeze drying methods and these methods were inferior to forced air dying method. 
Therefore, forced air drying method is usually followed for drying the ginseng 
adventitious roots. Kim et al. [ 76 ] developed heat refl ux method for extraction of 
ginsenosides by using fresh; air dried and powdered adventitious roots of ginseng. 
They tested four extraction variables such as nature and concentration of solvent, 
extraction temperature (water, 10, 30, 50, 70 and 100 % ethanol) and duration (2, 4, 
6 and 8 h) and reported that powdered root material, extraction with 70 % ethanol 
for 6 h at 80 °C were suitable for extraction of ginsenosides. Ultrasonic and micro-
wave extraction methods were also tested by them and reported that heat refl ux 
extraction and heat refl ux extraction was found superior to the ultrasonic and micro-
wave extraction.  

24.9     Safety and Toxicological Evaluation 

 Bio-safety and toxicological evaluation was carried out by Sivakumar et al. [ 77 ] 
using tissue cultured mountain ginseng adventitious roots (TCMGRs) produced 
jointly by Research center for the development of advanced horticultural technology 
and CBN biotech company, Cheongju, Republic Korea. They observed that the 
reverse mutation, chromosomal aberration and micronucleus tests did not show 
much signifi cant mutagenicity of TCMGRs. Furthermore, 13 weeks of repeated 
dose toxicity of TCMGR oral doses from 300 to 900 mg kg −1  did not show any mor-
tality or signifi cant changes in the general behavior and gross appearance of internal 
organs of experimental rats and Beagle dogs. Histo-pathological examinations of 
various organs and heamatological tests revealed no difference between the control 
and the treated experimental animals. These results confi rm the bio-safety of tissue 
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cultured mountain ginseng adventitious roots and based on such evaluation The 
Korean Food and Drug Administration (KFDA), ISO (9001/2000) and United State 
of America Food and Drug Administration have approved (2030950, dt. 06/07/2002) 
commercial production of ginseng adventitious roots and their products.  

24.10     Effi cacy Tests of Ginseng Adventitious Roots 

 Continuous evaluation of therapeutic effects of ginseng adventitious roots is in 
progress. Recently Park et al. [ 78 ] evaluated ginseng adventitious root as a fertility 
agent and the effect of ginseng adventitious roots on spermatogenesis was studied 
using male rats. The ginseng adventitious root powder was administered orally to 
7-week-old rats over a 6-week period. The number of sperms in the testis and epi-
didymis was signifi cantly higher than the control. There were no signifi cant differ-
ences in the weights of the heart, spleen, liver, kidney, brain, testes, and epididymis. 
They induced oligospermia by administering 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin 
(TCDD) to the rats in order to estimate the feasibility of using ginseng adventitious 
root powder as treatment for infertility caused by spermatogenic disorders. After 
exposing the rats to TCDD, the ginsenoside treated (obtained from ginseng adventi-
tious roots) rats showed improvement in the body weight, sperm number and testis 
morphology and these results reveal that the therapeutic effect of ginseng adventi-
tious roots on spermatogenic disorders. The anti-platelet activity of ginseng adven-
titious roots was studied by Jeon et al. [ 79 ] and they used 70 % ethanol extract of 
tissue cultured mountain ginseng adventitious roots (TCMGRs), Korean red gin-
seng (KRG) and  Panax ginseng  (PG) on agonist-induced platelet aggregation and 
activation in human whole blood. The IC 50  values for TCMGRs, KRG and PG were 
1.159, 3.695 and 4.978 mg ml −1  for collagen-induced aggregation, 0.820, 2.030 and 
4.473 mg mL −1  for arachidonic acid-induced aggregation, and 1.070, 2.617 and 
2.954 mg mL −1  for ADP-induced aggregation respectively and these results show 
that ginseng adventitious roots have potent anti-platelet activity. Lee et al. [ 80 ] also 
showed  in vitro  anti-platelet activity of ethyl acetate extract of ginseng adventitious 
roots. These reported results demonstrate that ginseng adventitious roots and their 
products have wide therapeutic potential for blood fl ow disorders. A recent fi nding 
has demonstrated that ginseng adventitious roots aid in the prevention of erectile 
dysfunction [ 81 ,  82 ] symptoms of hyperlipidemia [ 83 ], and has anti-fi brotic and 
anti-oxidant activity [ 84 ,  85 ]. In addition, ginseng adventitious roots stimulate 
immune cells and inhibit multiplication of cancer cells [ 86 ]. 

 After successful evaluation of bio-safety, toxicological, therapeutic evaluation 
various ginseng products such as ginseng powder, syrup, tonic, wine, soap and gin-
seng based cosmetics are available in Korean market (Fig.  24.4 ). Now ginseng 
health products have also gained the status of functional food and these products are 
also promoted by Korean commercial organizations.
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24.11        Conclusions and Perspectives 

 The  Panax ginseng  is one of the traditional folk medicinal plants which have been used 
for many therapeutic purposes in oriental countries. Ginsenosides are active ingredi-
ents of ginseng, a group of saponins with triterpenoid dammarane structure (Fig.  24.1 ). 
Pharmacological effects of ginseng have been demonstrated in cancer, diabetes melli-
tus, cardio-vascular system, immune system, and central nervous system including 
anti-stress and anti-oxidant activity [ 1 ]. Cultivation of ginseng takes 5–7 years and a 
close attention is needed since growth is subjected to several conditions such as soil, 
climate, pathogens and pests. Therefore, biotechnological means of production of gin-
senosides have become research focus, and cell and organ culture techniques have 
been developed by various groups in past decades. Production of ginsenosides through 
cell culture is successful, but a high fl uctuation of ginsenoside content in ginseng cell 
cultures has been a big problem for commercialization. Production of ginsenosides 
through transformed hairy root cultures is possible, however, presence of opine like 
compounds brought various health concerns [ 12 ]. Therefore, ginseng adventitious root 
culture is looked at as an excellent alternative since the growth is fast, ginsenoside 
production is stable without potential dangers [ 13 ]. Large scale adventitious root cul-
ture has been established using bioreactors and various chemical and physical param-
eters of biomass accumulation have been optimized. Productivity of ginsenosides has 
been also improved over the years by following elicitation technology. Scale up tech-
niques, processing and extraction of ginsenosides from adventitious root biomass have 
been also well established. Bio- safety, toxicological evaluations are carried out time to 
time to make ginseng adventitious root biomass as popular raw material for 
 pharmaceutical and nutraceutical industries. 

a

d e f

b c

  Fig. 24.4    Ginseng based product made out of ginseng adventitious roots. ( a ) Ginseng based cos-
metics, ( b ) Ginseng wine, ( c ) Ginseng soap, ( d ) Ginseng syrup, ( e ) and ( d ) Ginseng tonic       

 

H.N. Murthy et al.



647

 There is still a room for further enhancement of the productivity of ginsenoside 
with the ginseng adventitious root cultures. There is a necessity for the development 
in downstream processing of desired products. Metabolic engineering of secondary 
metabolites and signal transduction engineering have the potentiality to increase the 
productivity and to improve the product composition [ 87 ,  88 ] and there is a need for 
research efforts to be focused on these lines.     
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    Abstract     Plants are valuable source of a wide range of secondary metabolites, 
which are used as pharmaceuticals, fl avors, fragrances, coloring agents and food 
additives. Various bioactive compounds are produced these days through plant cell, 
tissue and organ cultures (PCTOC) and the diverse products which are derived from 
PCTOC are available in the market as pharmaceuticals and food ingredients. Even 
though PCTOC products are of  in vitro  origin, they possess many components other 
than targeted compounds, and sometimes these components may be toxic, thus 
making the biosafety evaluations necessary for the PCTOC raw materials/products. 
Currently, well framed biosafety evaluation methods/procedures are not available 
for PCTOC raw materials/products. In this chapter, we have discussed various 
methods proposed by scientists and we have put forward a general criterion for 
evaluation of PCTOC products. We have also discussed two specifi c examples 
namely, tissue cultured mountain ginseng adventitious roots (TCMGARs) and tis-
sue cultured  Echinacea purpurea  adventitious roots (TCEPARs) to illustrate the 
various steps involved in the process of safety evaluation.  

  Keywords     Adventitious roots   •   Biosafety   •   Blood chemistry   •   Echinacea   • 
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mailto:nmurthy60@yahoo.co.in
mailto:paekky@chungbuk.ac.kr


656

  Abbreviations 

   DSHEA    Dietary Supplement Health and Education Act   
  FDA    Food and Drug Administration of United States of America   
  FFDCA    Federal, Food, Drug and Cosmetic Act   
  FEMA    Expert Panel of the Flavor and Extract Manufacturers Association of 

United States   
  GRAS    Generally recognized as safe   
  KFDA    Korean Food and Drug Administration   
  PCTOC    Plant cell, tissue and organ culture   
  TCEPARs    Tissue cultured  Echinacea purpurea  adventitious roots   
  TCMGARs    Tissue cultured mountain ginseng adventitious roots   

25.1           Introduction 

 Plant cell, tissue and organ cultures (PCTOC) have been used to produce a wide 
range of phytochemicals, including fl avors, colorants, essential oils, sweeteners, 
antioxidants and nutraceuticals [ 1 ,  2 ]. In recent years, various strategies have been 
developed for the improvement of biomass and phytochemical production. For the 
large-scale cultivation of plant cell and organs, bioreactor technologies have also 
been employed and this book includes few reviews based on these aspects. 

 Various natural and synthetic phytohormones are used in the culture medium 
for modifi cation of the morphogenetic events to promote growth of the cell/organs 
and for accumulation of metabolites. Diverse chemicals are also used as elici-
tors to boost the production of bioactive compounds. Biomass produced through 
PCTOC is used as a raw material for procuring food and medicinal ingredients. 
These ingredients are often extracted from raw materials without going through 
stringent purifi cation. Raw material produced in PCTOC may contain a mixture 
of many components including toxic byproducts. This has raised concern among 
food and pharmaceutical industry about the biosafety and effi cacy of PCTOC raw 
material and ingredients therein. This has prompted considerations from regulatory 
agencies around the world to look at the safety of PCTOC products. A most com-
mon approach followed by many regulatory agencies for the safety evaluation of 
PCTOC-derived products was based on substantial equivalence, that is, if the food/
medicinal ingredients derived from cultures are substantially equivalent to their 
whole plant counterparts [ 3 ]. However, when the PCTOC products are commer-
cialized, biosafety regulations come into force. In this review, we have discussed 
the precautionary measures to be taken for the initiation of cultures till harvesting 
of the PCTOC raw materials and subsequent methods of biosafety evaluation of 
PCTOC raw materials.  
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25.2     Safety Considerations for Plant Cell 
and Tissue Culture Processes 

 Fu [ 3 ] elaborated the safety considerations for PCTOC manufacturing process in 
four main steps namely cell line development, scale up process, production and 
purifi cation. Several types of cultures have been used for the production of food and 
pharmaceutical ingredients including cell suspension cultures, transformed shoot 
cultures and hairy root cultures. In recent years, embryo and adventitious root cul-
tures have also been used for the production of food ingredients [ 2 ,  4 ,  5 ]. Organ 
cultures are preferred more as they are comparatively more stable than the cell cul-
tures in terms of genetic stability [ 2 ,  6 ]. Following are the safety measures to be 
taken during the production of PCTOC products:

    1.    Selection of suitable plant material – which includes a careful selection of source 
material, providing information on Latin name (genus, species and authority), 
common name/s, parts used, chemotype, and geographic origin of the plant 
material.   

   2.    PCTOC method for production of raw material – which include selection of suit-
able explants for the induction of callus, cell and organ lines.   

   3.    Maintenance of uniform optimized chemical and physical parameters- which is 
essential for maintaining the consistency of batch-to-batch production   

   4.    Assessment of genetic stability of cultured cells and organs – which can be car-
ried out preferably through molecular biology techniques such as random ampli-
fi ed polymorphic DNA (RAPD) analysis or any such type of refi ned techniques   

   5.    Analysis of target phytochemicals- which can be carried out by using refi ned 
quantitative techniques such as high pressure liquid chromatography (HPLC), 
gas chromatography (GC) analysis at least by batch by batch basis.    

  For biomass production, Large-scale bioreactor cultures are used nowadays and 
the transfer of cultures from shake fl asks to bioreactors results in the reduction of 
productivity [ 6 ,  7 ]. The decrease or shift in the production can be attributed to dif-
ferent physical conditions such as degree of mixing, shear stress, and gas phase 
composition. Therefore, all these parameters should be assessed thoroughly for 
small-scale bioreactors before shifting to large-scale bioreactors. Bioreactor design 
and selection, and regulation of bioprocess parameters are also equally important 
for obtaining proper yield and maintaining the quality of the product [ 8 ]. 

 Techniques that have been used to increase the product yields during the produc-
tion stage of a cell or organ culture include changes in medium composition, addi-
tion of inducers or precursors, elicitation, and in situ product removal. In the 
bioreactor cultivation of ginseng adventitious roots, methyl jasmonate has been 
used as an elicitor to obtain fi ve to six fold increment in the accumulation of ginsen-
osides [ 2 ,  9 ]. Various types of chemical and physical elicitors have been tested and 
used successfully for increased accumulation of bioactive compounds in PCTOC  
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[ 10 ,  11 ]. Care should be taken to avoid toxic elicitors such as heavy metals, deter-
gents, xenobiochemicals, fungicides, herbicides and other harmful chemicals to 
maintain the biosafety of the products. However, the elicitors of biological origin 
and even safe physical elicitors can also be used for the enhancement in the product 
accumulation. 

  In situ  product removal techniques have been followed in the second phase of 
PCTOC cultures with an objective to remove the products from cultured cells and 
organs. By the application of in situ product removal the recovery of product can be 
made easier and it often leads to increased productivity. For example, Buitelaar 
et al. [ 12 ] studied the effect of an organic phase in cell growth and thiophene pro-
duction in  Tagetes petula  hairy root cultures. They observed a signifi cant improve-
ment in thiophenes productivity (1–70 %) with the addition of hexadecane to the 
cultures. However, the composition of the thiophenes inside the cells was different 
from the secreted patterns. Further, such experiments can even lead to the accumu-
lation of toxic substances in the cultures. Therefore, such protocols can be imple-
mented after in-depth positive experimental evidences. Selection of suitable 
processing and purifi cation procedures have been also suggested by Fu [ 3 ] to avoid 
the accumulation of toxins or undesirable compounds.  

25.3     Basic Guidelines for Bio-safety and Toxicological 
Evaluation of PCTOC Raw Materials/Products 

 Various measures/criteria have been suggested in the past for biosafety evaluation 
of PCTOC end products depending upon their nature. These biosafety evaluation 
methods differ in different countries depending on the type of products and their 
use. For example, if the PCTOC end product is a food fl avor ingredient, FEMA 
(Expert Panel of the Flavour and Extract Manufacturers Association of United 
States) safety model should be applied in United States of America as proposed by 
Hallagan et al. [ 18 ]. The FEMA expert panel applies fi ve specifi c criteria in its 
evaluation of fl avor ingredients.

    1.    Exposure to the substance in specifi c food, the total amount in the diet, the total 
poundage   

   2.    Natural occurrence of food   
   3.    Chemical identity (including purity and method of preparation) and specifi c 

chemical structure   
   4.    Metabolic and pharmacokinetic characteristics   
   5.    Animal toxicity.    

Whereas in Europe, Council of Europe (CE) and European Union (EU) regulations 
will apply for bio-safety evaluation of fl avorings produced by PCTOC [ 13 ]. It 
involves  general information  such as precise botanical name in Latin together with 
the common name of the original plant species and part(s) of the plant used;  process 
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used  if the PCTOC differs signifi cantly from the control plant;  toxicological infor-
mation  including  in vitro mutagenicity tests  in bacteria, a test for chromosome dam-
age  in vitro  and a 90-days study in a rodent species. 

 If PCTOC fi nal product is food and dietary supplement then Food and Drug 
Administration (FDA) implies Federal, Food, Drug, and Cosmetic Act (FFDCA), 
and product should be declared generally recognized as safe (GRAS) by qualifi ed 
experts [ 14 ]. If the PCTOC products do not fall under GRAS then Dietary 
Supplement Health and Education Act (DSHEA) regulations will be applied for the 
approval. The requirements for the approval of PCTOC products under DSHEA are: 
(1) Identifi cation of the ingredients and the manufacturing process; (2) intended 
technical effect and used levels in food and (3) Safety studies data are needed. 
Regulations for the approval of PCTOC products in Canada and Japan are reviewed 
by McIntyre [ 15 ] and Ushiyama [ 16 ] respectively and they vary from the regula-
tions of USA or European Union. 

 As the regulations of bio-safety approval of PCTOC products vary among differ-
ent countries; here, general criteria of bio-safety approval for PCTOC products 
based on assessment of all the existing guidelines are projected. These criteria are 
prepared based on the guidance tool prepared by Kroes and Walker [ 17 ] and bio- 
safety considerations proposed for PCTOC product by Fu [ 3 ], Hallagan et al. [ 18 ], 
Gry [ 13 ], Beru [ 14 ], McIntyre [ 15 ] and Ushiyama [ 16 ] with some modifi cations and 
they are open for comprehensive discussion and adoption.

    1.    Information on botanical source – such as family, genus, species of source plant, 
and its relevant variety and chemotype, common name, parts used and geo-
graphic origin.   

   2.    Method of production of raw materials through PCTOC –

    (i)    Parts used for induction of cells (callus) and organ (adventitious roots/hairy 
roots/embryos/shoots); cell or organ lines used for  in vitro  culture.   

   (ii)    The parameters optimized for  in vitro  cultivation such as medium, salt 
strength, type and concentrations of growth regulators, medium pH, tem-
perature, photoperiod, light intensity and quality.   

   (iii)    Type of culture vessel (bioreactor) used, agitation, aeration, mode of opera-
tion, reactor conditions during the growth and production cycles.   

   (iv)    Elicitation methodology used; type and concentration of elicitor, time of 
addition and duration of exposure.   

   (v)    Type of biomass (cells, adventitious roots, hairy roots, embryos or shoots) 
or harvesting of bioactive ingredients from the medium, method of harvest-
ing/procuring the ingredients.       

   3.    Method of processing the PCTOC raised raw material – drying methods, pro-
cessing methods, storage conditions.   

   4.    Bio-safety evaluation/toxicology tests –

    (i)    Physical, chemical and biological analysis of raw material or product and 
its nutritional facts.   
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   (ii)    Assessment of  in vitro  evaluation of raw material or product by  in vitro  
mutagenicity tests in bacteria (e.g., Ames test) and in mammalian cells 
(e.g., chromosomal aberration test with Chinese hamster lung cells).   

   (iii)    Assessment of  in vivo  evaluation of raw material or products by animal 
studies (e.g., study on rodent species, hematology, blood chemistry, abso-
lute/relative organ weight, necropsy examination of organ or by histopatho-
logical examination).       

   5.       Effi cacy tests such as antioxidant assay, anti-diabetic, anti-cancerous, hepato- 
protective tests depending upon the usage of product.   

   6.    Approval from competent authorities for commercialization (e.g., FDA in United 
States of America; KFDA in Korean Food and Drug Administration in South 
Korea etc.).   

   7.    The safety assessment of PCTOC raw material or ingredients produced by genet-
ically modifi ed organs such as hairy roots, shooty teratomas need thorough toxi-
cological evaluation based on the recommendations proposed by Hallagan et al. 
[ 18 ] or even more stringent guidelines as proposed by Sims [ 19 ].    

25.4       Case Studies on Biosafety and Toxicological Evaluation 
of PCTOC Raw Materials/Products 

 Herein, the two successful examples of PCTOC raw materials that have been approved 
by FDA and KFDA for commercialization are discussed. They are Tissue cultured 
mountain ginseng adventitious roots ( Panax ginseng  C. A. Meyer; abbreviated as 
TCMGARs) and Tissue cultured  Echinacea purpurea  adventitious roots ( Echinacea 
purpurea  (L.) Moench.; abbreviated as TCEPARs). The various steps involved in the 
process of bio-safety evaluation are emphasized in the light of these two examples. 

25.4.1     Ginseng 

  Panax ginseng  C. A. Meyer (ginseng), a well-known medicinal plant, has been used 
as a tonic and medicine in oriental countries. The principal bioactive constituents of 
ginseng are the ginsenosides, a group of glycosylated triterpenes also known as sapo-
nins. The physiological and pharmacological effects of ginsenosides include cardio-
protection, immunomodulation, antifatigue and hepato-protection. Wild ginseng is a 
scarce and rare commodity. Field cultivation of the ginseng plant is a time- consuming 
and labor-intensive process and it take 5–7 years from seedling to fi nal harvesting 
stage, during which a close attention is needed since growth is subjected to several 
conditions such as soil, climate, pathogens and pests. The use of cell and organ cul-
ture processes has been sought as a potential alternative for an effi cient production of 
ginseng raw materials. TCMGARs were induced from 100 years old wild mountain 
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 Panax ginseng  C. A. Meyer collected from Keum Province in Republic of Korea and 
TCMGARs biomass was produced in 10,000 L bioreactor cultures over 48 days. 
TCMGARs contain higher concentrations of gisensosides [ 20 ], biophenols [ 21 ] and 
antioxidants [ 22 ] when compared to fi eld cultivated ginseng. 

    Biosafety Evaluation of TCMGARs 

 The chemical analysis of TCMGARs was carried out by RCH Pharmaceutical and 
Cosmetic Analytical Laboratories, Rancho Dominguez, California (FDA I.D. Code 
2030950) and data is presented in Table  25.1 . TCMGARs possessed carbohydrates, 
proteins, fat, vitamin A, vitamin C, sodium and, calcium and free from heavy met-
als, pesticides and insecticides.  In vitro  reverse mutation test with  Salmonella 
typhimurium  and  Escherichia coli  strains revealed that the base-pair substitution 
type and frame shift mutations are on par with control (Tables  25.2  and  25.3 ). The 
chromosomal aberration test using mammalian Chinese hamster lung cells (CHL) 
did not reveal any abnormalities associated with the TCMGARs powder (at dosages 
up to 600 μg mL −1 ; Table  25.4 ). Micronucleus test using mammalian polychromatic 
erythrocyte cells did not differ signifi cantly from the control group (Table  25.5 ). 
A repeated dose toxicity test of 13-weeks duration of TCMGARs powder (up to 
900 mg kg −1 ; Fig.  25.1 ) did not cause death of rats, absolute body weight (Table  25.6 ), 
urine analysis data (Table  25.7 ), hematology (Tables  25.8  and  25.9 ), blood chemis-
try (Tables  25.10  and  25.11 ), absolute organ weight (Tables  25.12  and  25.13 ) and 
histopathological fi ndings (Tables  25.14  and  25.15 ) revealed that there were no dif-
ferences between the control and the treated rats. These results confi rm that 
TCMGARs are safe and nontoxic at an average dietary consumption level.

25.4.2                        Echinacea 

  Echinacea purpurea  (L.) Moench (Purple cone fl ower) is one of the top selling 
medicinal plants widely used to alleviate colds, sore throats and other upper respi-
ratory infections. Various Echinacea products available in the market and are used 
to stimulate immune system, and their immunostimulating properties are attrib-
uted to the bioactive phytochemicals including caffeic acid derivatives, alkamides, 
polysaccharides, and glycoproteins. Among these phytochemicals, caffeic acid 
derivatives, especially cichoric acid possesses many bioactive functions including 
 anti-hyaluronidase activity, protection of collagen from free radical degradation, 
antiviral activity, inhibition of human immunodefi ciency virus type-1 integrase 
and replication, promoting phagocyte activity  in vitro  and  in vivo  and a high free 
radical scavenging property [ 23 ,  24 ].  In vitro  adventitious roots were induced in 
 Echinacea purpurea  and cultured in large-scale bioreactors to meet the market 
demand [ 25 ,  26 ]. The amounts of bioactive compounds were higher in TCEPARs 
when compared to natural plants [ 25 ,  26 ]. 
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    Biosafety Evaluation of TCEPARs 

 The chemical, biological, physical and toxicological analysis of TCEPARs was car-
ried out by Microbac Laboratories, Inc. California, USA (FDA I. D. 2030513) and 
TCEPARs contained fat, carbohydrates, proteins, vitamin A, Vitamin C, sodium 

     Table 25.1    Chemical    
constituents of ginseng 
adventitious roots  

 Parameters  Units 

 pH  5.62 pH units 
 Calories  353 Cal/100 g 
 Calories of fat  5.006 Cal/100 g 
 Fat  0.54 g/100 g 
 Saturated fatty acid  56.7 g/100 g fat 
 Cholesterol  0.54 mg/100 g 
 Carbohydrates  58.8 g/100 g 
 Total dietary fi ber  28.1 g/100 g 
 Total sugars  3.61 g/100 g 
 Moisture  1.19 g/100 g 
 Total ash  11.7 g/100 g 
 Protein  27.8 g/100 g 
 Vitamin A  20.0 IU/100 g 
 Vitamin C  39.6 mg/100 g 
 Sodium  107 mg/100 g 
 Calcium  464 mg/100 g 
 Iron  11.9 mg/100 g 

  The above analysis is carried out by US FDA (FDA I.D. 2030950 
dated 06/07/2002)  

   Table 25.2     In vitro  reverse mutation tests on  Salmonella typhimurium  and  Escherichia coli  
without S-9 mix treated with ginseng adventitious roots   

 Dose (μg/
plate) 

 Number of revertants/plate (mean ± S.D.  n  = 3) 

 Base pair substitution type  Frame shift type 

 TA100  TA1535  WP2 uvr A −   TA98  TA 1357 

 0  116 ± 6  9 ± 3  34 ± 4  45 ± 2  8 ± 1 
 312.5  117 ± 17  10 ± 1  28 ± 3  51 ± 7  6 ± 2 
 625  120 ± 8  10 ± 2  29 ± 5  49 ± 8  7 ± 1 
 1,250  107 ± 12  12 ± 2  30 ± 9  50 ± 3  8 ± 2 
 2,500  123 ± 10  10 ± 1  24 ± 3  48 ± 3  8 ± 1 
 5,000  106 ± 12  11 ± 2  27 ± 5  42 ± 4  7 ± 1 
 Positive cont.  489 ± 25  242 ± 10  265 ± 5  417 ± 15  286 ± 14 
  Strain    Positive control    Concentration  (μg/plate) 
 TA100  2-aminoanthracane (2-AA)  0.01 
 TA 1535  2-aminoanthracane (2-AA)  1.0 
 WP2 uvr A −   2-aminoanthracane (2-AA)  0.01 
 TA 98  2-aminoanthracane (2-AA)  0.1 
 TA 1537  2-aminoanthracane (2-AA)  80 
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   Table 25.3     In vitro  reverse mutation tests on  Salmonella typhimurium  and  Escherichia coli  with 
S-9 mix treated with ginseng adventitious roots   

 Dose (μg/
plate) 

 Number of revertants/plate (mean ± S.D.  n  = 3) 

 Base pair substitution type  Frame shift type 

 TA100  TA1535  WP2 uvr A −   TA98  TA 1357 

 0  116 ± 6  13 ± 2  34 ± 3  45 ± 2  8 ± 1 
 312.5  109 ± 10  10 ± 1  36 ± 4  51 ± 7  6 ± 2 
 625  111 ± 9  13 ± 2  25 ± 6  45 ± 3  9 ± 3 
 1,250  129 ± 12  9 ± 2  31 ± 0  49 ± 5  6 ± 1 
 2,500  104 ± 6  9 ± 2  28 ± 6  44 ± 4  7 ± 0 
 5,000  124 ± 6  12 ± 1  25 ± 5  50 ± 3  9 ± 1 
 Positive cont.  484 ± 26  246 ± 6  286 ± 11  436 ± 7  282 ± 15 
  Strain    Positive control    Concentration  (µg plate −1 ) 
 TA100  2-aminofl urene (AF-2)  1.0 
 TA 1535  2-aminofl urene (AF-2)  1.0 
 WP2 uvr A −   2-aminofl urene (AF-2)  10 
 TA 98  2-aminofl urene (AF-2)  0.5 
 TA 1537  2-aminoanthracane (2-AA)  2.0 

   Table 25.4    Chromosome aberration tests on Chinese Hamster Lung (CHL) cultured cells treated 
with ginseng adventitious roots   

 S-9 mix  Test item a  
 Dose (µg/
plate) 

 Chromosome aberration/100 metaphase cells 
(mean with ± S.D.) 

 S-9 mix (−) 
6 + 18 h 

 CMC  0  1.5 ± 0.7 
 TCMGARs  150  1.5 ± 0.0 

 300  1.0 ± 0.4 
 600  0.5 ± 0.2 

 MMC  0.05  26.5 ± 2.1 
 S-9 mix (+) 
6 + 18 h 

 CMC  0  1.0 ± 0.0 
 TCMGARs  150  1.5 ± 0.7 

 300  2.0 ± 0.0 
 600  1.0 ± 0.0 

 B[a]P  20  28.5 ± 0.7 
 S-9 mix (−) 
24 + 0 h 

 CMC  0  0.5 ± 0.2 
 TCMGARs  150  1.0 ± 0.0 

 300  1.5 ± 0.7 
 600  1.0 ± 0.0 

 MMC  0.05  36.0 ± 2.8 
 S-9 mix (−) 
24 + 0 h 

 CMC  0  0.0 ± 0.0 
 TCMGARs  150  1.0 ± 0.0 

 300  1.0 ± 0.4 
 600  0.5 ± 0.2 

 MMC  0.05  27.2 ± 2.1 

   a  CMC  carboxymethylcellulose sodium salt,  MMC  mitomycin C,  B(a)P  benzo(a)pyrene  
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   Table 25.5    Micronucleus test on male ICR mice treated with ginseng adventitious root powder   

 Test items  Groups 
 Dose 
(mg kg −1)   Route 

 Animal 
number 

 Sampling 
time (h) 

 PCE/
(PCE + NCE) a  
(Mean ± S.D.) 

 MNPCE a /
1,000PCE 
(Mean ± S.D.) 

 Saline  G1  0  PO  6  48  0.483 ± 0.021  0.83 ± 0.41 
 TCMGARs  G2  500  PO  6  48  0.492 ± 0.016  0.67 ± 0.26 

 G3  1000  PO  6  48  0.485 ± 0.019  0.75 ± 0.42 
 G4  2,000  PO  6  48  0.495 ± 0.014  0.92 ± 0.38 

 MMC  G5  2  IP  6  24  0.493 ± 0.006  84.50 ± 6.86 b  

   a  MNPCE  micronucleated polychromatic erythrocyte,  PCE  polychromaticerythrocyte,  NCE  non-
chromatic erythrocyte,  MMC  mitomycin C 
  b Signifi cance  P  < 0.01 by Chi-square test  

  Fig. 25.1    Toxicological evaluation of ginseng adventitious root extract on Spargue Dawley rats       

   Table 25.6    Changes in body weight of rats after a 13-week repeated dose toxicity with a 4-week 
recovery period after ginseng adventitious root powder treatments   

 TCMGARs powder 
treatments (mg kg −1 ) 

 Body weight (g)  Weight gain 
at week 13  Day 0  Weak 13  Weak 17 

 Male  Control  177.6 ± 4.6  470.7 ± 4.7  468.7 ± 2.4  293.1 ± 4.1 
 300  176.2 ± 6.2  436.8 ± 4.9  –  260.6 ± 5.0 
 600  174.7 ± 4.2  446.9 ± 4.2  –  272.2 ± 4.2 
 900  180.3 ± 3.1  454.7 ± 3.6  454.1 ± 4.2  274.2 ± 3.9 

 Female  Control  138.4 ± 5.5  267.9 ± 2.9  258.1 ± 3.0  129.5 ± 3.1 
 300  141.5 ± 5.1  269.8 ± 2.5  –  128.3 ± 3.4 
 600  139.9 ± 3.1  277.8 ± 2.1  –  137.9 ± 3.1 
 900  140.0 ± 5.8  276.7 ± 2.3  268.2 ± 2.0  136.7 ± 3.1 
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   Table 25.7    Urine analysis of a 4-week recovery period for male and female rats   

 Sex  Male  Female 

 Dose (mg kg −1 )  0  900  0  900 
 Number of animals  6  6  6  6 
 Weight (g)  4.6 ± 1.5  4.8 ± 1.8  3.0 ± 1.2  3.1 ± 1.3 
 Colour  Yellow  6  6  6  6 

 Dark yellow 
 Light yellow 
 Light orange 
 Dark orange 

 Specifi c gravity  1,000  1 
 1,005  2 
 1,010  2  3 
 1,015  1  1  1 
 1,020  2  2 
 1,025  1  2 
 1,030  1 

 pH  5  1  1 
 6  1  3  2 
 7  2  3  1  2 
 8  2  2  1 
 9  1  1 

 Leukocyte (Leuko mL −1 )  0  4  5  6  6 
 10–25 
 75  2  1 
 500 

 Nitrate  −  6  6  6  6 
 + 

 Protein (mg dL −1 )  0  1  2  4  5 
 30  4  4  2  1 
 100  1 
 500 

 Glucose (mg dL −1 )  0  6  6  6  6 
 50 
 100 
 300 
 1,000 

 Ketone  0  6  6  6  6 
 5 
 15 
 40 
 80 

 Urobilinogen (mg dL −1 )  0  6  6  6  6 
 1 
 4 
 8 
 14 

(continued)
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and calcium (Table  25.16 ). However, TCEPARs were devoid of microbes, heavy 
metals, pesticides and other harmful chemicals. Mutagenicity and toxicological 
analysis was carried out by Biotoxtech, South Korea,  in vitro  reverse mutations tests 
were carried out using  Salmonella typhimurium  and  Escherichia coli  strains and the 
results showed TCEPARs are safe and are not mutagenic (Tables  25.17  and  25.18 ). 
 In vitro  chromosomal mutation tests using CHL cells treated with TCEPARs also 
showed that the samples are safe (Table  25.19 ). Four-week toxicological studies of 
TCEPARs on Spargue Dawley rats revealed that TCEPARs were not toxic (Fig.  25.2 ) 
and experimental rats showed normal food consumption (Table  25.20 ), gain in body 
weight over the period of treatment (Table  25.21 ). Hematological parameters 
(Table  25.22 ), blood chemistry (Table  25.23 ), gain in absolute weight and relative 
organ weights (Tables  25.24  and  25.25 ), necropsy observations with respect to 
abdominal cavity, adrenal, brain, cranial cavity, oesophagus, heart, intestine, kidney, 
liver, lung, lymph nodes, mammary glands, ovary, pancreas, pituitary, prostrate, 
salivary gland, seminal vesicle, skin, spleen, stomach, testis, thoracic cavity, thy-
mus, thyroid, trachea, urinary bladder, uterus and vagina (Table  25.26 ) showed non- 
toxicity of TCEPARs.

25.5                     Effi cacy of PCTOC Products 

 Effi cacy tests were carried out with TCMGARs by many workers and TCMGAR 
extract aid the prevention of spermatogenic disorder [ 27 ], erectile dysfunction [ 28 ], 
inhibition of platelet aggregation in human blood [ 29 ,  33 ], treatment of hyperlipid-
emia [ 30 ]. TCMGARs extract exhibited anti-fi brotic activity [ 31 ], anti-oxidant 
activity [ 30 ,  32 ], augmentation of peripheral blood fl ow [ 33 ] and inhibition of 
L-DOPA oxide activity of tyrosinase (skin whitening activity). In addition, 

Table 25.7 (continued)

 Sex  Male  Female 

 Bilirubin  0  6  6  6  6 
 + 
 ++ 
 +++ 

 Blood (Ery mL –1 )  0  6  6  6  6 
 5–10 
 50 
 250 

 Hemoglobin (Ery mL –1 )  0  6  6  6  6 
 10 
 50 
 250 

  Values are expressed as Mean ± S.D.  
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TCMGARs extract also showed stimulation of immune cells and inhibition of can-
cer cell proliferation. All these reports suggest the effi cacy of TCMGARs as 
reported for natural ginseng roots [ 34 ]. Based on various bio-safety and effi cacy 
evaluations CBN biotech, South Korea was fi rst to obtain KFDA approval for mar-
keting the TCMGARs and various products such as ginseng syrup, ginseng tablets, 
ginseng soap, ginseng liquor and many more products in the market.  

25.6     Conclusion and Perspectives 

 Plants are valuable source of a wide range of secondary metabolites, which are used 
as pharmaceuticals, fl avors, fragrances, coloring agents and food additives. Herbal 
industry could not able to meet the increased market demand due to insuffi ciency of 
natural resources, varying seasonality, low amount of bioactive components in the 
available resources. Plant cell, tissue and organ cultures have become alternative for 

   Table 25.14    Histopathological fi ndings on male and female rats treated with ginseng adventitious 
roots   

 Sex  Male  Female 

 Dose (mg kg −1)   0  900  0  900 
 Number of animals  10  10  10  10 
 Organs  Findings 
 Liver  Microgranuloma, mild  1  1 

 Vacuolization of hepatocytes  2 
 Kidney  Cell infi ltration, cortex, focal, mild 

 Right  1  1  1 
 Left  1 
 Simple tubule hyperplasia of proximal tubule  1 
 Right  1 
 Left 
 Proteinaceous cast, medulla  1 
 Right  1 
 Left  1  1  1 
 Bilateral  1  1 
 Hyaline droplet in proximal tubule 
 Left  1 

 Lung  Infl ammation, mild 
 Bronchi, alveolar septa, left  1  1  1  1 

 Spleen  Hemosiderin pigmentation 
 Small intestine  Congestion in lamina propria, mild 

 Duodenum, jejunum, ileum  1  1 
 Jejunum  1 

 Seminal vesicle  Atrophy of epithelium, left  1  1 

  The rats were treated for a period of 13 weeks with repeated toxicity doses  
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   Table 25.15    Histopathological fi ndings on male and female rats after 4-weeks recovery period   

 Sex  Male  Female 

 Dose (mg kg −1)   0  900  0  900 
 Number of animals  10  10  10  10 
 Organs  Findings 
 Liver  Microgranuloma, mild  1  1 

 Vacuolization of hepatocytes  1  1 
 Kidney  Cell infi ltration, cortex, focal, mild 

 Right 
 Left 
 Simple tubule hyperplasia of proximal tubule 
 Right 
 Left 
 Proteinaceous cast, medulla 
 Right 
 Left  1 
 Bilateral  1  1 
 Hyaline droplet in proximal tubule 
 Left 

 Lung  Infl ammation, mild 
 Bronchi, alveolar septa, left  1  1 

 Spleen  Hemosiderin pigmentation 
 Small intestine  Congestion in lamina propria, mild 

 Duodenum, jejunum, ileum 
 Jejunum 

 Seminal vesicle  Atrophy of epithelium, left 

  Table 25.16    Chemical 
analysis of tissue cultured 
 Echinacea purpurea  
adventitious roots a   

 Parameters  Results 

 Calories  345 cal/100 g 
 Fat  13 cal/100 g 
 Saturated fatty acid  0.71 g/100 g 
 Cholesterol  <1 mg/100 g 
 Carbohydrates  57.9 g/100 g 
 Total dietary fi ber  28.1 g/100 g 
 Total sugars  4.87 g/100 g 
 Moisture  7.03 g/100 g 
 Total ash  8.45 g/100 g 
 Protein  25.2 g/100 g 
 Vitamin A  <76 IU/100 g 
 Vitamin C  8.43 mg/100 g 
 Sodium  7.84 mg/100 g 
 Calcium  186 mg/100 g 
 Iron  ND b  

   a Analysis was carried out by US FDA laboratory under the I. D. 
2030513 dated 11/04/2007 
  b Not detected  
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   Table 25.17     In vitro  reverse mutation tests on  S. typhimurium  and  E. coli  without S-9 mix treated 
with tissue cultured  Echinacea purpurea  adventitious roots powder   

 Dose (μg/
plate) 

 Number of revertants/plate (Mean ± S.D.,  n  = 3) 

 Base-pair substitution type  Frame-shift type 

 TA100  TA1535 
 WP2 uvr A 
(pKM101)  TA98  TA1537 

 0  109 ± 12  19 ± 3  108 ± 8  27 ± 7  10 ± 4 
 312.5  106 ± 6  18 ± 4  113 ± 11  28 ± 9  9 ± 1 
 625  99 ± 7  15 ± 3  118 ± 10  24 ± 4  12 ± 1 
 1,250  122 ± 7  10 ± 1  120 ± 4  24 ± 2  10 ± 2 
 2,500  131 ± 14  12 ± 3  116 ± 6  23 ± 1  11 ± 5 
 5,000  128 ± 18  16 ± 3  116 ± 6  26 ± 7  8 ± 0 
 Positive 
control 

 411 ± 18  410 ± 17  423 ± 16  531 ± 46  447 ± 9 

  Strain    Positive control    Concentration (μg/plate)  
 TA100  Sodium azide (SA)  1.5 
 TA1535  Sodium azide (SA)  1.5 
 WP uvr A (Pkm101)  4-Nitroquinoline 1-oxide 

(4-NAO) 
 5.0 

 TA98  2-Nitrofl uorene (2-NF)  5.0 
 TA1537  9-Aminoacridine (9-AA)  80.0 

   Table 25.18     In vitro  reverse mutation test of tissue cultured  Echinacea purpurea  adventitious 
roots powder treated  S. typhimurium  and  E. coli  with S-9 mix   

 Dose (μg/plate) 

 Number of revertants/plate (Mean ± S.D.,  n  = 3) 

 Base-pair substitution type  Frame-shift type 

 TA100  TA1535 
 WP2 uvr A 
(pKM101)  TA98  TA1537 

 0  122 ± 17  16 ± 2  107 ± 4  26 ± 9  12 ± 1 
 312.5  118 ± 13  12 ± 3  106 ± 6  27 ± 3  12 ± 4 
 625  126 ± 12  14 ± 1  101 ± 3  28 ± 5  13 ± 3 
 1,250  118 ± 5  13 ± 2  113 ± 17  28 ± 6  11 ± 3 
 2,500  123 ± 8  16 ± 4  114 ± 5  21 ± 9  12 ± 4 
 5,000  111 ± 12  13 ± 2  107 ± 4  27 ± 3  14 ± 2 
 Positive control  473 ± 12  183 ± 18  527 ± 20  422 ± 25  123 ± 11 
  Strain    Positive control    Concentration (μg/plate)  
 TA100  2-Aminoanthracane (2-AA)  1.0 
 TA1535  2-Aminoanthracane (2-AA)  2.0 
 WP uvr A (Pkm101)  2-Aminoanthracane (2-AA)  2.0 
 TA98  2-Aminoanthracane (2-AA)  1.0 
 TA1537  2-Aminoanthracane (2-AA)  2.0 
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the production of various high value secondary metabolites. Biomass produced 
through PCTOC is used as a raw material for procuring food and medicinal ingredi-
ents. These ingredients are often extracted from raw materials without going through 
stringent purifi cation. Food and pharmaceutical ingredients derived from PCTOC 

   Table 25.19     In vitro  chromosome aberration test in CHL/IU cells treated with tissue cultured 
 Echinacea purpurea  adventitious roots powder   

 S9 mix/
time  Test item a  

 Dose 
(μg mL −1)  

 No. of 
cell 
scored 

 Percentage of 
cells involved in 
chromosomal 
aberrations 

 Chromosome 
aberration cells/100 
metaphase cells (%) 
(Mean ± S.D.) 

 S9 mix 
(−)/6 + 18 h 

 Water for injection  0  100  1  1.5 ± 0.7 
 100  2 

 Tissue cultured  E. 
purpurea  
adventitious roots 
extract 

 275  100  2  1.0 ± 0.4 
 100  0 

 550  100  0  2.0 ± 0.8 
 100  4 

 1,100  100  2  1.0 ± 0.4 
 100  0 

 MMC  0.05  100  22  24.5 ± 3.5 
 100  27 

 S9 mix 
(+)/6 + 18 h 

 Water for injection  0  100  2  2.5 ± 0.7 
 100  3 

 Tissue cultured  E. 
purpurea  
adventitious roots 
extract 

 275  100  1  1.5 ± 0.7 
 100  2 

 550  100  3  3.5 ± 0.7 
 100  4 

 1,100  100  0  1.0 ± 0.4 
 100  2 

 B[a]P  20  100  24  24.5 ± 0.7 
 100  25 

 S9 mix 
(−)/24 + 0 h 

 Water for injection  0  100  0  1.0 ± 0.4 
 100  2 

 Tissue cultured  E. 
purpurea  
adventitious roots 
extract 

 275  100  0  1.5 ± 1.1 
 100  3 

 550  100  0  0.5 ± 0.7 
 100  1 

 1,100  100  3  1.5 ± 1.1 
 100  0 

 MMC  0.05  100  27  26.5 ± 0.7 
 100  26 

   a  MMC  mictomycin C,  B[a]P  benzo[a]pyrene  
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  Fig. 25.2    Toxicological evaluation of  Echinacea purpurea  adventitious root extract on Spargue 
Dawley rats       

needs to be evaluated for their bio-safety and depending on the type of product and 
its use, products of PCTOC fall under number of biosafety schemes [ 3 ,  13 – 16 ,  18 ]. 
Since, common criteria/regulations were not available; we have framed basic guide-
lines for bio-safety and toxicological evaluation of PCTOC products based on the 
schemes proposed by Fu [ 3 ], Hallagan et al. [ 18 ], Gry [ 13 ], Beru [ 14 ], McIntyre 
[ 15 ], Ushiyama [ 16 ]. 

 Even though, several PCTOC experimental trials are carried out for the last three 
to four decades, there are a very few favorable outcomes of the production of 
PCTOC raw material/product on commercial scale. Our research institute is 
involved in research on Ginseng and Echinacea and has developed large-scale plant 
bioreactors (10,000 L) for the production of Ginseng and Echinacea adventitious 
roots. The bio-safety of TCMGARs and TCEPARs through  in vitro  mutagenicity 
tests using bacteria and mammalian system has been assessed by us [ 20 ] and even 
evaluation of TCMGARs and TCEPARs through repeated dose toxicity test on 
rodents was carried out to prove their bio-safety. Effi cacy tests of TCMGARs have 
been conducted and based on such bio-safety and effi cacy tests the KFDA clearance 
has been gained for marketing of TCMGARs.     
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   Table 25.20    Toxicological studies of tissue cultured adventitious roots of  Echinacea purpurea : 
food consumption of 4-week dose range studies in Sprague Dawley rats   

 Group/dose (mg kg −1)  

 Food consumption in g/animal/day 

 Week 

 0  1  2  3  4 

  Male  
 G1 0  Mean  23.90  27.15  29.00  28.45  28.39 

 S.D.  1.60  2.54  4.14  3.31  2.38 
 N  5  5  5  5  5 

 G2 500  Mean  22.84  25.77  27.00  27.31  27.08 
 S.D.  1.90  2.95  0.85  3.07  0.69 
 N  5  5  5  5  5 

 G3 1000  Mean  23.97  28.22  29.34  29.31  29.73 
 S.D.  2.68  3.43  3.67  3.18  3.53 
 N  5  5  5  5  5 

 G4 2000  Mean  23.32  27.02  28.91  28.96  27.52 
 S.D.  1.64  2.43  1.15  3.61  2.91 
 N  5  5  5  5  5 

  Female  
 G1 0  Mean  17.07  18.68  19.88  18.75  21.44 

 S.D.  1.53  1.26  1.36  3.68  2.15 
 N  5  5  5  5  5 

 G2 500  Mean  16.86  18.28  21.60  21.66  20.72 
 S.D.  0.92  1.30  2.29  1.74  3.37 
 N  5  5  5  5  5 

 G3 1000  Mean  17.57  18.56  18.77  18.09  22.23 
 S.D.  2.32  0.88  1.87  2.43  1.34 
 N  5  5  5  5  5 

 G4 2000  Mean  18.77  19.55  20.91  21.53  21.18 
 S.D.  0.89  0.67  2.35  1.63  1.43 
 N  5  5  5  5  5 

H.N. Murthy and K.-Y. Paek



681

   Table 25.21    Toxicological studies of tissue cultured adventitious roots of  Echinacea purpurea : 
changes in body weight of 4-week dose range studies in Sprague Dawley rats with repeated oral 
dose toxicity study   

 Group/dose 
(mg kg −1)  

 Body weight (g) 

 Days of treatment 

 0  3  7  10  14  17  21  24  27 

  Male  
 G1 0  Mean  188.0  213.8  245.6  267.7  295.2  315.2  337.9  354.6  370.4 

 S.D.  9.7  11.8  14.2  20.1  24.5  26.4  32.8  34.7  35.9 
 N  5  5  5  5  5  5  5  5  5 

 G2 
500 

 Mean  187.3  214.4  248.7  271.2  297.3  314.9  336.9  355.3  370.2 
 S.D.  9.4  12.1  16.0  18.4  20.6  21.1  23.9  27.0  28.5 
 N  5  5  5  5  5  5  5  5  5 

 G3 
1000 

 Mean  189.4  218.9  255.8  281.3  311.6  334.1  357.6  376.1  394.0 
 S.D.  9.8  11.4  15.0  18.9  24.2  25.6  32.4  36.0  36.1 
 N  5  5  5  5  5  5  5  5  5 

 G4 
2000 

 Mean  189.1  217.0  250.5  274.5  302.5  322.6  343.8  359.5  375.4 
 S.D.  6.5  8.8  11.6  14.7  16.6  20.3  19.8  21.6  23.4 
 N  5  5  5  5  5  5  5  5  5 

  Female  
 G1 0  Mean  147.5  160.0  172.4  184.4  197.4  204.5  213.5  227.0  235.2 

 S.D.  7.3  6.8  4.7  4.0  4.1  2.4  3.2  1.2  3.6 
 N  5  5  5  5  5  5  5  5  5 

 G2 
500 

 Mean  146.5  160.6  177.2  192.1  205.2  214.2  224.5  228.8  239.9 
 S.D.  9.5  14.3  12.0  10.7  11.6  12.7  13.5  11.2  17.8 
 N  5  5  5  5  5  5  5  5  5 

 G3 
1000 

 Mean  148.2  156.0  172.9  182.1  194.9  201.8  209.8  221.5  228.6 
 S.D.  11.1  9.6  9.6  11.0  10.9  11.1  13.3  12.3  14.4 
 N  5  5  5  5  5  5  5  5  5 

 G4 
2000 

 Mean  151.3  162.4  179.1  189.7  201.1  217.3  228.4  237.1  245.7 
 S.D.  10.9  11.5  9.5  8.4  10.9  13.9  15.2  13.6  15.7 
 N  5  5  5  5  5  5  5  5  5 
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   Table 25.22    Toxicological studies of tissue cultured adventitious roots of  Echinacea purpurea  on Sprague Dawley rats: 

hematological parameters a    

 Group/dose 

(mg kg −1)  

 RBC 

(×10 6  

cells μL −1)  

 HGB 

(g dL −1)  

 HCT 

(%) 

 MCV 

(f l) 

 MCH 

(pg) 

 MCHC 

(g dL −1)  

 WBC 

(×10 3  

cells μL −1)  

 PLT (×10 3  

cells μL −1)  

  Male  

 G1 0  Mean  7.70  15.9  44.5  57.7  20.5  35.7  8.56  1,247 

 S.D.  0.03  0.5  1.3  1.7  0.7  0.3  1.89  154 

 N  5  5  5  5  5  5  5  5 

 G2 500  Mean  7.88  15.8  44.1  55.9  20.0  35.9  7.53  1,216 

 S.D.  0.22  0.4  0.4  1.7  0.6  0.5  1.41  143 

 N  5  5  5  5  5  5  5  5 

 G3 

1000 

 Mean  7.67  15.4  43.3  56.6  20.2  35.7  7.96  1,238 

 S.D.  0.54  0.6  1.6  2.3  0.7  0.3  1.64  113 

 N  5  5  5  5  5  5  5  5 

 G4 

2000 

 Mean  7.83  16.2  45.0  57.6  20.7  35.9  7.73  1,240 

 S.D.  0.29  0.4  1.2  1.8  0.7  0.2  1.76  105 

 N  5  5  5  5  5  5  5  5 

  Female  

 G1 0  Mean  7.68  15.4  42.8  55.8  20.0  35.9  4.53  1,270 

 S.D.  0.21  0.4  1.1  0.9  0.4  0.6  0.76  28 

 N  5  5  5  5  5  5  5  5 

 G2 500  Mean  7.82  15.6  43.5  55.8  20.0  35.8  6.31  1,166 

 S.D.  0.42  0.5  1.2  1.9  0.6  0.2  1.63  93 

 N  5  5  5  5  5  5  5  5 

 G3 

1000 

 Mean  7.58  15.5  42.5  56.7  20.5  36.5  5.69  1,300 

 S.D.  0.32  0.3  0.9  1.5  0.6  0.4  2.05  56 

 N  5  5  5  5  5  5  5  5 

 G4 

2000 

 Mean  7.75  15.4  42.6  55.0  19.9  36.3  6.05  1,332 

 S.D.  0.35  0.5  1.4  1.8  0.9  0.6  1.47  106 

 N  5  5  5  5  5  5  5  5 

   a Findings of 4-week dose range test  
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   Table 25.23    Toxicological studies of tissue cultured adventitious roots of  Echinacea purpurea  on Sprague Dawley rats: 
blood chemistry a    

 Group/dose 

(mg kg −1)  

 ALT 

(U L −1 ) 

 AST 

(U L −1)  

 ALP 

(U L −1)  

 Glu 

(mg dL −1)  

 BUN 

(mg 

dL −1)  

 Crea 

(mg dL −1)  

 T-Chol 

(mg dL −1)  

 TP 

(g dL −1)  

 Alb 

(g dL −1)  

 A/G 

ratio 

  Male  

 G1 0  Mean  32.8  130.5  425.6  118.47  13.58  0.39  81.47  5.9  2.5  0.75 

 S.D.  3.7  33.6  42.8  15.26  1.34  0.11  9.27  0.3  0.1  0.08 

 N  5  5  5  5  5  5  5  5  5  5 

 G2 

500 

 Mean  29.4  130.1  428.1  111.64  12.77  0.46  61.81  5.8  2.4  0.70 

 S.D.  3.0  35.6  71.3  10.31  1.29  0.08  11.87  0.1  0.0  0.04 

 N  5  5  5  5  5  5  5  5  5  5 

 G3 

1000 

 Mean  30.0  154.5  400.2  115.08  13.15  0.41  79.41  6.0  2.5  0.70 

 S.D.  4.9  13.4  51.2  8.02  0.59  0.03  13.58  0.1  0.0  0.03 

 N  5  5  5  5  5  5  5  5  5  5 

 G4 

2000 

 Mean  28.5  165.9  448.3  114.7  14.18  0.47  68.79  5.9  2.4  0.69 

 S.D.  3.4  18.2  70.8  4.25  1.39  0.13  15.94  0.1  0.1  0.03 

 N  5  5  5  5  5  5  5  5  5  5 

  Female  

 G1 0  Mean  27.3  146.3  281.7  107.94  15.72  0.57  77.78  6.5  2.9  0.82 

 S.D.  3.1  15.3  42.3  9.09  2.78  0.03  11.24  0.3  0.2  0.07 

 N  5  5  5  5  5  5  5  5  5  5 

 G2 

500 

 Mean  25.3  134.9  260.2  111.27  15.21  0.44  103.27  6.6  3.0  0.83 

 S.D.  3.0  38.5  33.7  14.82  2.22  0.10  0.10  0.4  0.2  0.06 

 N  5  5  5  5  5  5  5  5  5  5 

 G3 

1000 

 Mean  26.4  131.3  303.1  112.48  15.73  0.47  81.15  6.2  2.7  0.79 

 S.D.  2.2  33.2  88.9  8.98  1.71  0.07  11.24  0.3  0.2  0.07 

 N  5  5  5  5  5  5  5  5  5  5 

 G4 

2000 

 Mean  26.9  131.8  276.4  104.27  17.04  0.52  71.83  6.3  2.9  0.85 

 S.D.  3.0  45.6  43.1  9.34  3.62  0.14  21.50  0.3  0.1  0.09 

 N  5  5  5  5  5  5  5  5  5  5 

   a Findings of 4-week dose range test  
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   Table 25.24    Toxicological studies of tissue cultured adventitious roots of  Echinacea purpurea  on 
Sprague Dawley rats: absolute organ weight a    

 Group/dose (mg kg −1)  

 Organ weight (g) 

 B.W.  Brain  Heart  Liver  Spleen 

 Kidney 

 Lt  Rt 

  Male  
 G1 0  Mean  344.86  1.81  1.17  9.79  0.69  1.16  1.18 

 S.D.  31.93  0.06  0.05  1.25  0.10  0.09  0.09 
 N  5  5  5  5  5  5  5 

 G2 500  Mean  344.38  1.89  1.14  9.31  0.74  1.20  1.22 
 S.D.  29.07  0.11  0.09  0.66  0.10  0.11  0.06 
 N  5  5  5  5  5  5  5 

 G3 1000  Mean  363.24  1.89  1.18  10.76  0.72  1.31  1.29 
 S.D.  38.86  0.02  0.06  1.64  0.04  0.17  0.14 
 N  5  5  5  5  5  5  5 

 G4 2000  Mean  350.02  1.85  1.11  10.27  0.69  1.27  125 
 S.D.  22.85  0.07  0.07  1.04  0.07  0.08  0.14 
 N  5  5  5  5  5  5  5 

  Female  
 G1 0  Mean  215.63  1.75  0.82  5.88  0.41  0.75  0.76 

 S.D.  1.83  0.10  0.06  0.06  0.18  0.04  0.03 
 N  5  5  5  5  5  5  5 

 G2 500  Mean  222.82  1.80  0.83  6.69  0.46  0.80  0.83 
 S.D.  12.83  0.11  0.05  0.75  0.08  0.07  0.06 
 N  5  5  5  5  5  5  5 

 G3 1000  Mean  213.36  1.77  0.79  6.02  0.47  0.78  0.80 
 S.D.  12.04  0.12  0.05  0.36  0.05  0.09  0.07 
 N  5  5  5  5  5  5  5 

 G4 2000  Mean  228.17  1.77  0.82  6.58  0.49  0.81  0.83 
 S.D.  14.57  0.09  0.02  0.60  0.04  0.08  0.09 
 N  5  5  5  5  5  5  5 

   a Findings of 4-week dose range test  
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   Table 25.25    Toxicological studies of tissue cultured adventitious roots of  Echinacea purpurea  on 
Sprague Dawley rats: relative organ weights a    

 Group/dose (mg kg −1)  

 g/100 g body weight 

 B.W.  Brain  Heart  Liver  Spleen 

 Kidney 

 Lt.  Rt 

  Male  
 G1 0  Mean  344.86  0.53  0.34  2.83  0.20  0.34  0.34 

 S.D.  31.93  0.04  0.02  0.12  0.02  0.03  0.03 
 N  5  5  5  5  5  5  5 

 G2 500  Mean  344.38  0.55  0.33  2.71  0.22  0.35  0.36 
 S.D.  29.07  0.04  0.01  0.19  0.01  0.04  0.03 
 N  5  5  5  5  5  5  5 

 G3 1000  Mean  363.24  0.52  0.33  2.95  0.20  0.36  0.36 
 S.D.  38.86  0.05  0.03  0.19  0.02  0.03  0.02 
 N  5  5  5  5  5  5  5 

 G4 2000  Mean  350.02  0.53  0.32  2.93  0.20  0.36  0.36 
 S.D.  22.85  0.02  0.02  0.19  0.02  0.02  0.02 
 N  5  5  5  5  5  5  5 

  Female  
 G1 0  Mean  215.63  0.81  0.38  2.73  0.19  0.35  0.35 

 S.D.  1.83  0.05  0.03  0.09  0.02  0.02  0.01 
 N  5  5  5  5  5  5  5 

 G2 500  Mean  222.82  0.81  0.37  3.00  0.21  0.36  0.37 
 S.D.  12.83  0.06  0.02  0.21  0.03  0.02  0.02 
 N  5  5  5  5  5  5  5 

 G3 1000  Mean  213.36  0.83  0.37  2.82  0.22  0.36  0.37 
 S.D.  12.04  0.05  0.03  0.11  0.02  0.03  0.02 
 N  5  5  5  5  5  5  5 

 G4 2000  Mean  228.17  0.78  0.36  2.88  0.21  0.36  0.37 
 S.D.  14.57  0.03  0.02  0.18  0.01  0.02  0.03 
 N  5  5  5  5  5  5  5 

   a Findings of 4-week dose range test  
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   Table 25.26    Toxicological    studies of tissue cultured adventitious roots of  Echinacea purpurea : 
necropsy fi ndings of 4-week dose range toxicity study in Sprague Dawley rats (group summary)   

 Organs 

 Sex  Male  Female 

 Group  G1  G2  G1  G2 

 Dose (mg kg −1)   0  5,000  0  5,000 

 No. of animals examined  5  5  5  5 

 Abdominal cavity  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Adrenal  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Brain  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Cranial cavity  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Esophagus  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Epididymis  Number examined  5  5 
 No remarkable results  5  5 
 Remarkable variants  0  0 

 External fi ndings  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Heart  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Intestine  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Kidney  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Liver  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Lung  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Lymphnode, 
mediastinal 

 Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 
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Table 25.26 (continued)

 Organs 

 Sex  Male  Female 

 Group  G1  G2  G1  G2 

 Dose (mg kg −1)   0  5,000  0  5,000 

 No. of animals examined  5  5  5  5 

 Lymphnode, 
mesenteric 

 Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Lymphnode, 
submandibular 

 Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Mammary gland  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Ovary  Number examined  5  5 
 No remarkable results  5  5 
 Remarkable variants  0  0 

 Pancreas  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Pitutary  Number examined  5  5 
 No remarkable results  5  5 
 Remarkable variants  0  0 

 Prostrate  Number examined  5  5 
 No remarkable results  5  5 
 Remarkable variants  0  0 

 Salivary gland, 
submandibular 

 Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Seminal vesicle  Number examined  5  5 
 No remarkable results  5  5 
 Remarkable variants  0  0 

 Skin  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Spleen  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Stomach  Number examined  5  5  5  5 
 No remarkable results  5  5  5  5 
 Remarkable variants  0  0  0  0 

 Testis  Number examined  5  5 
 No remarkable results  5  5 
 Remarkable variants  0  0 

(continued)
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    Abstract     Large-scale liquid cultures and automation have proven the potential to 
resolve manual handling of  in vitro  cultures at various stages and decreases produc-
tion cost. However, hyperhydricity is a major problem during  in vitro  culture of 
many crops in liquid culture systems. The environment inside culture vessel nor-
mally used in plant micropropagation is characterized by high humidity, limited 
gaseous exchange between the internal atmosphere of the culture vessel and its 
 surrounding environment, and the accumulation of ethylene, conditions that may 
induce physiological disorders. Hyperhydricity is a disorder of tissue-cultured 
plants where leaves become translucent and stems swollen, distorted and brittle. 
Although numerous hypotheses have been put forward to explain hyperhydricity but 
there is still a lack of knowledge about the nature of signals responsible for hyper-
hydricity and the metabolic processes which are affected by its development. The 
concept of stress in relation to hyperhydricity is not completely established. 
Therefore, it remains diffi cult to assume that hyperhydric tissues are stressed. 
Previous studies argued that abnormal morphology observed in hyperhydricity 
could be attributed to changes occurring at cellular level due to the modifi cations of 
membrane composition or DNA content. In order to understand stress and morpho-
logical responses in hyperhydric tissues, in the present article, we are reviewing 
different biochemical and physiological mechanisms of hyperhydricity in several 
plant species.  

  Keywords     Bioreactor   •   Hyperhydricity   •   Reactive oxygen species   •   Tissue culture  
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  Abbreviations 

   ABA    Abscisic acid   
  APX    Ascorbate peroxidase (EC 1.11.1.11)   
  BTBB    Bottom-type bubble bioreactor   
  CAT    Catalase   
  DHAR    Dehydroascorbate reductase (EC 1.8.5.1)   
  GA3    Gibberellic acid   
  GR    Glutathione reductase (EC 1.6.4.2)   
  HS    Hyperhydric shoot   
  LOX    Lipoxygenase (EC 1.13.11.12)   
  MDA    Malondialdehyde   
  MDHAR    Monodehydroascorbate reductase (EC 1.6.5.4)   
  PEG    Polyethylene glycol   
  PMEs    Pectin methylesterases   
  POX    Peroxidase (EC 1.11.1.7)   
  ROS    Reactive oxygen species   
  SOD    Superoxide dismutase (EC 1.15.1.1)   

26.1           Introduction 

 Liquid culture systems offer many potential advantages over solid cultures like 
faster growth rates, rapid uptake of nutrients by tissues, dilution of exuded growth 
inhibitors i.e., phenolics released by explants thus minimizing negative effect on 
growth [ 1 – 4 ]. About ten times increase in shoot number of  Acacia nilotica  in liquid 
culture compare with gelled culture was achieved [ 5 ]. Automated bioreactors for 
large-scale production of micropropagated plants are important for the micropropa-
gation industry [ 6 ]. Bioreactors are self-contained, sterile environments that capital-
ize on liquid nutrient or liquid/air infl ow and outfl ow systems, designed for intensive 
culture and control over micro-environmental conditions such as aeration, agitation, 
dissolved oxygen, etc. [ 6 ] (Fig.  26.1a ). Liquid culture systems using bioreactors 
have proven their potential for large-scale micropropagation in many plant species 
i.e., oriental lily, chrysanthemum, apple,  Euphorbia millii, Spathiphyllum cannifo-
lium  potato and strawberry by Lian et al. [ 7 ]; Chakrabarty et al. [ 8 ]; Dewir et al. [ 9 , 
 10 ]; Piao et al. [ 11 ], and Debnath [ 12 ], respectively. However, hyperhydricity is a 
major problem during  in vitro  culture of many crops in liquid culture systems. It 
affects shoot multiplication, growth and development impeding the successful 
transfer of micropropagated plants to  in vivo  conditions. Losses up to 30 % have 
been reported in strawberry bioreactor culture [ 12 ].

   Hyperhydricity is a disorder of tissue-cultured plants where leaves become 
 translucent and stems swollen, distorted and brittle [ 13 ]. The environment inside 
culture vessel normally used in plant micropropagation is characterized by high 
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relative humidity, limited gaseous exchange between the internal atmosphere of 
the culture vessels and its surrounding environment, and the accumulation of eth-
ylene, conditions that may induce physiological disorders. Although numerous 
hypotheses have been put forward to explain hyperhydricity, but there is still a lack 
of knowledge about the nature of signals and metabolic processes responsible for 
hyperhydricity. The concept of stress in relation to hyperhydricity is not com-
pletely established. Therefore, it remains diffi cult to assure that hyperhydric shoots 
(HS) are stressed. Previous studies argued that abnormal morphology observed in 
hyperhydricity could be attributed to changes occurring at cellular level due to the 
modifi cations of membrane composition or DNA content. In the present article, we 

a b

c

d

  Fig. 26.1    ( a ) Apple plantlets in an immersion air-lift BTBB after 30 days of culture; ( b ) hyperhy-
dric shoots of apple cultured in an immersion air-lift BTBB; ( c ) apple plantlets in an ebb and fl ood 
air-lift column type bioreactor after 30 days of culture with forced aeration ( arrow ); ( d )  in vitro  
propagated normal apple shoots cultured in an ebb and fl ood air-lift column type bioreactor after 
30 days of culture with forced aeration       
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are reviewing different biochemical and physiological mechanisms of hyperhy-
dricity in several plant species.  

26.2     Morphological, Anatomical and Ultrastructural 
Features 

 Leaves of hyperhydric shoots are thick, translucent, wrinkled and/or curled and 
brittle. The low dry weight percentage of the hyperhydric leaves indicate that these 
leaves have chlorophyll defi ciency and contain more water as compared to normal 
leaves. The excessive water accumulation in plant tissue, the most characteristic 
symptom of hyperhydricity, can generate aeration stress, which depletes oxygen 
levels in the cells. The anatomy of hyperhydric leaves is also altered, several types 
of abnormal structures have been defi ned, such as a reduced number of palisade cell 
layers, irregular stomata, chloroplast degeneration and the presence of a thin or no 
cuticle [ 13 – 20 ]. In hyperhydric apple leaves, the pattern of epidermal layer is irreg-
ular with several abnormal and malformed structures. Stomata from normal leaves 
have kidney shaped guard cells, the cell wall bordering the stomatal pore is thick-
ened, well defi ned and form ridges with a protruding elliptical pore. The stomata 
from hyperhydric shoots are somewhat abnormal; they are widely open and ele-
vated. We have also observed abnormal stomata in hyperhydric apple leaves that 
showed irregular guard cells that are more frequently elongated than round and 
resulted from a deformed cell plate during the division of primary stomata mother 
cells [ 13 ]. 

 Large starch grains are also visible in the guard cells of hyperhydric leaves. It has 
been reported that the guard cells of hyperhydric plants were larger in size than 
those of normal plants due to a greater water absorption leading to turgidity and 
probably to changes in cell-wall structure [ 21 ]. The cell wall bordering the stomata 
pore in guard cells from hyperhydric leaves protruded and appeared to be torn in 
several places, resulting in some cases in guard-cell deformation. These deforma-
tions may result from structural changes in the guard cells followed by changes in 
cell-wall composition. Similar results were reported by Miguens et al. [ 22 ] and 
Olmos and Hellin [ 16 ] for hyperhydric  Datura insignis  and carnation plants, respec-
tively. They also reported that the stomata density was signifi cantly greater in nor-
mal than in hyperhydric leaves. The stomata in hyperhydric leaves do not close in 
response to different signals such as darkness, ABA or Ca ++  due to modifi cations in 
wall elasticity of the guard cells [ 23 ]. 

 Anatomical studies demonstrated that hyperhydric leaves only have an unorga-
nized spongy mesophyll as previously described by several workers. Entire ultra-
structure of hyperhydric leaf cells of apple is altered with extremely poor, sparse 
and disorganized cytoplasm. The chloroplasts of hyperhydric plants are very few in 
number and contain large starch grains. Sometimes one starch grain occupies the 
whole plastid. Most of the chloroplasts have hypertrophied stroma and the inter-
granal sacs undergo abnormal compression and expansion so that, frequently, the 
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whole structure of chloroplasts is deteriorated. In severe hyperhydric leaf, chloro-
plasts and other subcellular organelles largely disappeared from the cell [ 13 ]. 
Similar observation was reported by Olmos and Hellin [ 16 ] for hyperhydric carna-
tion plants .  In the hyperhydric pepper plants, the chloroplasts exhibited thylakoid 
disorganization, low grana number, an accumulation of large starch grains and a low 
accumulation or absence of plastoglobules. Although the structure of mitochondria 
and peroxisomes did not change in hyperhydric plants, the number of peroxisomes 
did increase. 

 Likewise, several anatomical features were observed in hyperhydric organs such 
as hypertrophy of cortical and pith parenchyma, enlargement of intercellular spaces, 
decreased lignifi cation of vascular system [ 24 ] and a reduced and/or abnormal vas-
cular system [ 25 ]. Picoli et al. [ 19 ] have found that the vascular system in hyperhy-
dric plants is reduced. However, it is still unknown whether the vascular system in 
hyperhydric leaves is also reduced in its function. Decreased lignifi cation has been 
attributed to the lessening of enzyme activities, as reported for  Prunus a v ium  [ 26 ] 
and oregano [ 27 ]. 

 Saher et al. [ 28 ] reported that the total pectins of hyperhydric leaves of three 
carnation varieties were signifi cantly reduced in comparison with controls. Pectins 
represent about 35 % of the dry weight of dicot cell walls and are highly heteroge-
neous group of polymers that includes homogalacturonans and ramnogalactorunans 
I and II. They contribute both to cell adhesion,  via  their gel-like properties, and to 
cell wall architecture or cell wall mechanical strength. The degree of esterifi cation 
of pectins is generally thought to be regulated by the activity of cell wall pectin 
methylesterases (PMEs). Those group of researcher also reported that the PME 
activity of hyperhydric leaves was higher (4–10 times) compared to control and sug-
gested that the different PME activities could regulate some of the structural changes 
related to hyperhydricity in micropropagated carnation plants.  

26.3     Physiological State of Hyperhydric Plants 

 To our knowledge, there is lack of information concerning the physiological state of 
hyperhydric plants. The morphological abnormalities of hyperhydric plants have 
shown to be concomitant to their biochemical and physiological characteristics. 

26.3.1     Chlorophyll Content 

 Chlorophyll (a, b) and carotenoid contents were signifi cantly lower in hyperhydric 
leaves, which may be due to a reduction in the number of chloroplasts in leaves of 
hyperhydric apple shoots [ 13 ]. It was previously reported that oxidative stress 
induced a reduction of the number of chloroplasts [ 29 ], and ultrastructural analysis 
of hyperhydric cells also showed that chloroplasts are affected with thylakoids.  
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26.3.2     Photosynthetic and Energetic Capacities 

 A slight drop of photochemical process yield in hyperhydric shoots suggested that 
a decrease of pigment content and not a dysfunction of the photosynthetic appara-
tus were responsible for the lower photosynthetic capacity observed in hyperhydric 
 Prunus  shoots [ 30 ]. However, we measured chlorophyll fl uorescence to determine 
if there is damage to light reaction systems in photosynthetic machinery during 
hyperhydricity in apple. The inferior intensity of chlorophyll fl uorescence transient 
observed in hyperhydric shoots, suggesting a substantial collapse of photosynthe-
sis in hyperhydric shoots [ 13 ]. Reductions of quantum yield of electron transfer 
(ΦPSII) paralleling to a decrease  F  v / F  m  in hyperhydric leaves were likely associ-
ated with a down-regulation of PSII during steady-state photosynthesis. This sug-
gests additional irreversible damage, perhaps due to a loss of integrity of the 
thylakoid membrane as observed in TEM photomicrograph [ 13 ]. Greater accumu-
lation of non-QB-reducing centers in the hyperhydric leaves inevitably leads to an 
increase in the fraction of reducing state of QA, thus resulting in a lower photo-
chemical quenching factor (qP) as observed during photoinhibition. This increased 
fraction of reducing state of QA suggests that these plants were subjected to a 
higher pressure of excess excitation energy, which could potentially increase the 
probability of generating reactive radicals which can damage membrane compo-
nents of PSII. 

 Franck et al. [ 30 ] also reported that there is a general decrease of reduced and 
oxidized pyridine nucleotides was in hyperhydric shoots as compared to normal 
shoots but the ratios of the pyridine nucleotides were not altered. These researchers 
consider that hyperhydric tissues exhibit a typically stress-induced change of physi-
ological state. According to them, the metabolism of hyperhydric tissues can be 
considered as a temporary state of lower differentiation or a juvenile state with a 
suffi cient activity for their survival and protection. Other major sources of NADPH 
and NADH are, respectively, oxidative pentose phosphate (OPP) and glycolysis. In 
hyperhydric shoots, the low activity of some enzymes involved in glycolysis (hexo-
kinase, hexose phosphate isomerase, glycerol-3- phosphate dehydrogenase, phos-
phofructokinase) and OPP (6-phosphogluconate dehydrogenase, glucose-6- phosphate 
dehydrogenase) suggests a general decrease of activity of these pathways.  

26.3.3     Abnormal DNA Content 

 An abnormal DNA content was systematically associated with severe hyperhydric-
ity symptoms in grass pea ( Lathyrus sativus ), which hampered the regeneration of 
rooted, fertile plants [ 31 ]. They also suggested that the hyperhydric responses 
observed were more strongly linked to the presence of auxin in the medium and the 
hormonal balance between auxins and cytokinins than to the cytokinin level and 
auxins already have been reported to induce cytogenetic modifi cations in tissue 
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cultures of grain legumes [ 32 ] and could be responsible for the abnormal DNA 
content observed in hyperhydric tissues.  

26.3.4     Cell Wall Properties and Composition 

 Cell wall properties and composition can be considered one of the most important 
factors controlling the development of the anomalous morphology in hyperhydric 
tissues. Less lignin, associated with low lignin biosynthesis and decreased lignifi ca-
tion of the vascular system, has been frequently considered one of the possible 
causes of hyperhydricity [ 33 ]. Different workers have shown modifi cations in the 
cell wall constituents mainly cellulose and lignin [ 28 ,  34 – 36 ] and their mechanical 
properties [ 34 ,  37 ]. Hypolignifi cation in vascular tissues as consequence of a reduc-
tion in cellulose and lignin biosynthesis can alter the mechanical properties of the 
cell wall. These could lead to reduced cell turgor pressure, changes in the water 
potential, increased water uptake and as a fi nal result to hyperhydration of tissues.  

26.3.5     Polyamine Levels 

 The changes in polyamine levels and patterns were studied in response to hyperhydric 
carnation plants  in vitro  [ 38 ]. Hyperhydric carnation leaves showed high POD activ-
ity, high MDA content and low lignifi cation suggesting oxidative damage. The most 
predominant fraction of polyamine corresponded to free polymine in hyperhydric 
leaves as well as in non-hyperhydric leaves. Regarding individual amines, hyperhy-
dricity brought about an almost complex depletion of free 1, 3- diaminopropane, a rise 
in conjugated form of the amine and a great reduction in bound spermidine in relation 
to non-hyperhydric leaves. A high percentage up to 80 % of reverted shoots was 
obtained by lowering the relative humidity inside the culture jars of hyperhydric car-
nation shoots through bottom cooling. Reversion of hyperhydricity was associated 
with changes in polyamine patterns. Thus, compared with both non-hyperhydric and 
hyperhydric leaves, reverted plants showed a drastic reduction in free polyamine, and 
a major increase in conjugated diamines (especially important in the case of cadaver-
ine, Cad). The polyamine profi le in non-hyperhydric and hyperhydric plants could 
indicate stress condition and a more suitable physiological situation in reverted plants.  

26.3.6     Hypoxia Stress and Lipid Peroxidation 

  In vitro  plants are exposed to different stressing conditions. Among them are inju-
ries caused during explantation, high osmoticity of the culture medium (high sucrose 
and ammonium contents), high relative humidity and gas accumulation in the 
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atmosphere of the jar, and high levels of growth regulators [ 39 – 41 ]. It was sug-
gested that there may be two kinds of hyperhydricity, one resulting from the passive 
diffusion of water into tissues, the other from an active phenomenon relating to a 
disturbance in metabolic processes [ 42 ]. Different workers have previously observed 
that hyperhydric tissues accumulate water in the apoplast creating a water layer 
around the cells. The excessive water accumulation in plant tissue, the most charac-
teristic symptom of hyperhydricity, can generate aeration stress which depletes oxy-
gen levels and limit its diffusion in the cells [ 13 ,  20 ,  43 – 49 ]. It has been observed 
that hypoxia can induce the generation of H 2 O 2  to toxic levels [ 50 ]. Therefore, it has 
been proposed that hyperhydric tissues can be under a hypoxia stress [ 36 ,  51 ]. This 
hypoxia stress could affect drastically the metabolism of the shoot, affecting energy 
availability and consequently the respiratory process of the cells. Under these con-
ditions of aeration stress, oxidative injury has been observed by the rise in lipid 
peroxidation in plant tissues [ 52 ]. Lipid peroxidation, determined by accumulation 
of MDA, is a generally accepted indicator of membrane damage under oxidative 
stress conditions. Supporting this fact, Le Dily et al. [ 53 ] have described lipid per-
oxidation in membranes of hyperhydric fully habituated callus of  Beta  v ulgaris  as a 
consequence of an oxidative stress. Foyer et al. [ 54 ] observed a higher rate of solute 
leakage in hyperhydric leaves compared to controls, indicating marked membrane 
deterioration. The imposition of stress results in the elevation of activated oxygen 
levels and causes changes in the redox balance through the oxidation of metaboli-
cally active compounds, leading to lipid peroxidation and degradation. Lipid per-
oxidation may have two origins: enzymatic, due to lipoxygenase (LOX) activity, or 
autocatalytic, due to activated oxygen species [ 44 ]. It has been reported that LOX 
(EC 1.13.11.12), which is often associated to lipid peroxidation, was activated in 
hyperhydric shoots compared to normal shoots in  Prunus  and  Euphorbia  by Franck 
et al. [ 44 ] and Dewir et al. [ 55 ], respectively. LOX, which is activated in hyperhy-
dric shoots, plays a role in the elimination of damaged plastids and degradation of 
chloroplast membrane [ 56 ]. Some products derived from the LOX pathway can 
have messenger functions in signal transduction pathway [ 57 ] or have, as hydroper-
oxides, a harmful effect on cell differentiation [ 58 ]. The mechanism involved in 
lipid peroxidation during hypoxia is not clear although it is known that various cel-
lular activities can generate H 2 O 2  in plants. Saher et al. [ 59 ] found induction of the 
oxidative pentose phosphate and fermentative pathways in carnation hyperhydric 
leaves. According to their opinion, hypoxia stress was the main factor affecting 
metabolism of hyperhydric leaves.  

26.3.7     Reactive Oxygen Species (ROS) and Antioxidant 
Enzyme Activities 

 Plant survival in the face of the potentially cytotoxic effects of the activated oxygen 
species depends on the presence of reduced molecules and antioxidant enzymes 
[ 54 ]. Recent evidence suggests that oxidative stress, involving the superoxide (O2*  − ) 
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and hydroxyl (.OH) free radicals as well as hydrogen peroxide (H 2 O 2 ), is an impor-
tant damaging factor in hyperhydricity induction for  in vitro  culture tissues [ 36 ,  44 , 
 60 – 62 ]. The most important sources of ROS are chloroplasts, mitochondria, peroxi-
somes, and the cytosol [ 63 ]. In chloroplasts, one of the sources of ROS production 
is direct electron fl ow to oxygen (Mehler reaction). Moreover, during photorespira-
tion H 2 O 2  generation occurs at the step of glyoxylate formation from glycolate [ 64 ]. 
In mitochondria, ROS production occurs mainly at two sites of the electron trans-
port chain: NAD(P)H dehydrogenases and the cytochrome  bc 1 complex [ 65 ]. 
Although ROS are inevitable byproducts of aerobic metabolism, a rise in the levels 
of these molecules may be responsible for many of the observed metabolic changes 
in hyperhydric tissues such as lipid peroxidation and consequently membrane inju-
ries, protein degradation, enzyme inactivation, damage of DNA. Therefore their 
production and removal must be controlled [ 66 ,  67 ]. These substances are generally 
eliminated through a cooperative mediation of the so- called defense enzymes and 
antioxidants. 

 The major antioxidant species in shoots are ascorbate, reduced gluthatione, 
a-tocopherol, carotenoids and fl avonoids. The defense enzymes include superoxide 
dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reduc-
tase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate 
reductase (DHAR) [ 68 ,  69 ]. SODs are distributed in all cellular compartments, 
FeSOD in chloroplasts, MnSOD in mitochondria and peroxisomes, and Cu/ZnSOD 
in cytosol and chloroplasts. SODs, which are considered the fi rst line of defense 
[ 68 ], catalyze dismutation of superoxide radical O 2  ̇   ⎯  to H 2 O 2  and O 2  at the site of its 
production. APX, MDHAR, DHAR and GR form so-called ascorbate-glutathione 
cycle which converts H 2 O 2  to water and recycle ascorbate and glutathione. CAT also 
uses H 2 O 2  as a substrate in peroxisomes. PODs catalyse various reactions where 
H 2 O 2  is used as one of their substrates including cell wall lignifi cations [ 70 ]. 

 Several studies have been conducted in order to address the relationship between 
hyperhydricity and oxidative stress [ 13 ,  55 ]. The time course of H 2 O 2  generation 
in hyperhydric tissues of carnation microshoots confi rmed narrow connection 
between hyperhydricity and oxidative stress in this species [ 71 ]. In hyperhydric 
carnation leaves, increased MDA content and total POX activity was also observed 
[ 36 ,  71 ]. However, this increase in POX activity was due to increase in the activity 
of basic isoforms while activity of acidic isoforms and in consequence lignifi cation 
was reduced [ 36 ]. It has been proposed that shoots which are unable to induce their 
antioxidant defenses (enzymes and soluble reductants) against activated forms of 
oxygen will become hyperhydric [ 44 ,  71 ]. According to their opinion, hyperhydric 
tissues exhibit a typically stress-induced change of physiological state. 

 An oxidative stress characterized by markedly increased content of MDA and 
activity of lipoxygenase (LOX) were found in hyperhydric shoots of  Euphorbia mil-
lii . At the same time, these plantlets reduced oxidative stress by increased activities 
of SOD, POX and CAT. The activities of enzymes of ascorbate-glutathione cycle 
(APX, GR, MDHAR and DHAR) were also increased indicating a crucial role of 
elimination of H 2 O 2  from plant cells [ 55 ]. Increased SOD and CAT activities in 
hyperhydric tobacco leaves were observed by Piqueras et al. [ 62 ]. Similarly, higher 
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activities of SOD, CAT, APX and GR were found in hyperhydric leaves than in 
healthy leaves of apple regenerants grown in bioreactor [ 13 ]. Hyperhydric tissues are 
able to activate their enzymatic defense system in order to reduce oxidative stress. In 
contrast, a hyperhydricity in liquid-cultured  Narcissus  induced by growth retardant 
ancymidol was connected with decreased activities of APX and CAT and increased 
initiation of meristematic centers [ 60 ]. In hyperhydric shoots of  Prunus avium , H 2 O 2  
was accumulated due to increased SOD activity and decreased activities of POX, 
APX, CAT, DHAR, MDHAR and GR [ 61 ]. Using bottom cooling to prevent hyper-
hydricity in micropropagated  Dianthus  decreased H 2 O 2  production, lipid peroxida-
tion (MDA content), and SOD and CAT activities [ 59 ]. Addition of rare earth 
elements La, Ce and Nd into medium reduced hyperhydricity in  Lepidium meyeni  
shoots and enhanced activities of POD, CAT, APX, SOD, MDHAR, and GR [ 72 ].   

26.4     Hyperhydricity in Large Scale  In Vitro  Multiplication 

 Large scale  in vitro  culture using suitable liquid media under controlled conditions 
in bioreactors is an effi cient method for shoot multiplication, production of several 
pharmaceutical products, therapeutic proteins, and drugs etc. Despite many promis-
ing approaches, liquid culture is trickier than growing on agar solidifi ed media. 
Hyperhydricity is a major diffi culty related to the use of liquid media in bioreactors 
(Table  26.1 ; Fig.  26.1a ). Hyperhydricity is characterized by several morphological 
and physiological abnormalities including a fl at, waterlogged-tissue appearance, 
abnormal shoot growth more specifi cally in the leaves [ 85 ] (Fig.  26.1b ). Submerged 
plant tissues with the liquid medium, either whole or partial, give rise to hyperhy-
dricity [ 86 – 88 ]. Moreover, Albarran et al. [ 76 ] pointed that hyperhydricity increases 
with increasing immersion frequency. Oxidative stresses expressed by submerged 
tissues give rise to elevated concentrations of reactive oxygen species (ROS) due to 
change in anti-oxidant enzymes activity. ROS can affect normal growth and physiol-
ogy of plants which ultimately give rise to plant malformation and malfunctions. 
Shoot buds and meristem culture for the organogenic pathway has proved effective 
as another propagation system for bioreactors and to overcome hyperhydricity, pro-
viding a biomass with limited leaf elongation [ 89 ]. Likewise, bioreactors with tem-
porary immersion system have also been designed to limit hyperhydricity, based on 
a principle similar to that of mist bioreactors, prefer contact between the plants and 
the liquid medium temporarily rather than permanent contact [ 90 ]. It has been 
reported that apple shoots produced in temporary immersion bioreactor showed 
higher photosynthetic rate, maximum quantum yield of photosystem-II and slow but 
steady rate of nutrient absorption, indicating the occurrence of higher photomixotro-
phic metabolism [ 91 ]. The authors also reported that hyperhydricity was reduced by 
11 % in temporary immersion bioreactor as compared continuous immersion biore-
actor [ 8 ]. Improved morphological and physiological indicators in  Dioscorea alata  
plants cultured in temporary immersion system has been demonstrated [ 92 ]. As we 
have mentioned, leaves and sometime shoots are highly susceptible organs to 
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hyperhydricity in bioreactors. To overcome such limitations, alternative approaches 
such as multiplication of embryogenic tissue and  sensus strict  embryogenesis (glob-
ular, heart, torpedo/cotyledon stages) steps should be used as these parts compara-
tively less exposed to hyperhydricity. However, these alternative approaches 
overcome hyperhydricity up to certain extent. Further modifi cations and develop-
ment are therefore still required for better downstream processing and yield.

26.5        The Control of Hyperhydricity 

 Methods employed to combat hyperhydricity in gelled cultures have included modi-
fi cations to the growth medium, such as increasing carbohydrate levels [ 93 ], modi-
fying the concentration of gelling agents [ 86 ], and adding Bacto-peptone fractions 
[ 94 ] or agar hydrolysates [ 95 ,  96 ]. Although these modifi cations can often alleviate 
symptoms they can also cause a simultaneous decrease in multiplication rates [ 97 ]. 
Therefore the addition of a supplement to the medium that would reduce the occur-
rence, or delay the onset of hyperhydricity, but without detrimentally affecting the 
multiplication of a culture would be most desirable in a commercial, clonal 

   Table 26.1    Hyperhydricity in plants propagated in liquid cultures   

 Name of species  Type of culture  References 

  Amelanchier grandifl ora 
‘Princess Diana’ (Service berry)  

 Shoots in temporary immersion 
(5 min/30 min) 

 Krueger et al. [ 73 ] 

  Apple rootstock M.9 EMLA   Nodal explant in bioreactor (liquid)  Chakrabarty et al. [ 8 ] 
  Begonia × tuberhybrida Voss   Shoots in liquid and solid (gellan gum)  Nakano et al. [ 74 ] 
  Camellia sinensis (L.)   Nodal explants in liquid  Sandal et al. [ 75 ] 
  Coffea arabica   Embryos in liquid (bioreactor)  Albarran et al. [ 76 ] 
  Coffea arabica, C. canephora   Microcuttings in 1 L bioreactor with 

2 compartment (RITA) 
 Berthouly et al. [ 77 ] 

  Cucumis melo L.   Embryos in liquid  Kennedy et al. [ 78 ] 
  Digitalis minor L.   Shoot apices in liquid  Sales et al. [ 79 ] 
  Dioscorea japonica Thunb.   Shoots in solid (agar, gellan gum) 

and liquid 
 Kadota and Niimi [ 1 ] 

  Eucalyptus  spp  Axillary shoots liquid  Whitehouse et al. [ 80 ] 
  Euphorbia millii   Shoots in bioreactor (liquid)  Dewir et al. [ 10 ] 
  Fragaria × ananassa Duch   Shoots in temporary immersion 

bioreactor 
 Debnath [ 12 ] 

  Malus pumila cv M26   Shoots in liquid  Marga et al. [ 81 ] 
  Mangifera indica   Somatic embryo in liquid  Monsalud et al. [ 82 ] 
  Narcissus tazetta   Shoot in liquid  Chen and Ziv [ 60 ] 
  Origanum vulgare L.   Shoots in solid (agar)  Komali et al. [ 37 ] 
  Rubus chamaemorus L   Shoots in plastic airlift bioreactor  Debnath [ 83 ] 
  Zantedeschia aethiopica L. cv. 
Spreng  

 Rhizome-bud explants in liquid  Ebrahim [ 84 ] 
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propagation programme. Nairn et al. [ 95 ] suggested that a constituent of agar, iden-
tifi ed as being an agaroid-type xylogalactan bearing pyruvate and sulphate side 
chains, rather than the physical properties of the gel, were responsible for hydric 
control of micropropagated shoots of  Pinus radiata . The anti-hyperhydric effect of 
EM2 (A0807, Sigma-Aldrich, Poole, Dorset, U.K.) has been reported for  Fragaria 
ananassa  [ 98 ],  Pyrus communis  L. [ 97 ] and  Eucalyptus  hybrids [ 80 ]. Gelcarin 
GP812 (Austratec Ltd, Victoria, Australia) is a commercially available, purifi ed 
form of iota-carrageenan, which is extracted from the cell walls of red algae 
( Eucheuma spinosum ). It is reported to be effective in reducing hyperhydricity in 
plants that would normally display symptoms [ 99 ]. 

 In liquid cultures, bioreactors have evolved considerably and numerous models 
have been proposed to reduce and/or prevent hyperhydricity. Temporary immersion 
bioreactors have been designed to limit hyperhydricity because it possible to adjust 
the time spent by the plant material immersed in the liquid nutrient medium. 
Albarran et al. [ 76 ] observed that increasing the frequency for short immersions 
(1 min) in 1 L RITA bioreactors prevented hyperhydricity, stimulated somatic 
embryo formation and quality in  C. arabia . Longer immersion duration (15 min 
immersions applied 2 or 6 times per day) led to hyperhydric embryo frequencies of 
64 and 90 % respectively [ 100 ]. It is likely that each plant species as well as each 
culture step require adaptation of the immersion length and frequency to obtain 
optimum results. For the organogenic pathway, culturing clusters of buds and meri-
stems has been shown to be an alternative propagation system for bioreactors and to 
overcome hyperhydricity, providing a biomass with limited leaf elongation [ 89 ]. 
The embryogenic tissue multiplication and  sensus stricto  embryogenesis (globular, 
heart, torpedo/cotyledon stages) steps can be carried out in conventional bioreactors 
as this material is less exposed to hyperhydricity [ 100 ]. Increased ventilation and/or 
gas supply may control hyperhydricity [ 8 ] (Fig.  26.1c, d ). Evaporation of the culture 
medium is a major problem in airlift type bioreactors. To overcome this problem, 
addition of a sterile water column or condenser could be helpful. This can also 
extend the cultivation period [ 101 ]. To overcome the problems encountered during 
the use of air lift and bubble column bioreactors, the bottom-type bubble bioreactor 
(BTBB) was designed, in which foaming was drastically reduced by the use of cell 
lifting devices or tube(s) at vessel bottom. In addition, there was the provision of gas 
recycling system which allowed the examination of different gases in the medium 
[ 102 ]. It has been observed that CO 2  enrichment in a bioreactor culture vessel dur-
ing the growth phase of shoots of sweet potato, potato and Chrysanthemum and 
Chinese fox glove enhanced the growth and production of healthy plantlets [ 103 ].     
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