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Preface

The seeds of this book have been planted in the far east, where I wrote lecture
notes for international schools in Tianjin, China in 2007, and in Bangkok, Thailand
in 2011. I then realized that an up-to-date text for beginning noncommutative
geometers on the applications of this rather new mathematical field to particle
physics was missing in the literature.

This made me decide to transform my notes into the form of a book. Besides the
given challenge inherent in such a project, this was not made easy because of
recent, rapid developments in the field, making it difficult to choose what to
include and to decide where to stop in my treatment. The current state of affairs is
at least touched upon in the final chapter of this book, where I discuss the latest
particle physics models in noncommutative geometry, and compare them to the
latest experimental findings. With this, I hope to have provided a path that starts
with the basic principles of noncommutative geometry and leads to the forefront of
research in noncommutative geometry and particle physics.

The intended audience consists of mathematicians with some knowledge of
particle physics, and of theoretical physicists with some mathematical background.
Concerning the level of this textbook, for mathematicians I assume prerequisites
on gauge theories at the level of, e.g., [1, 2], and recommend to first read the book
[3] to really appreciate the last few chapters of this book on particle physics/the
Standard Model. For physicists, I assume knowledge of some basic algebra,
Hilbert space, and operator theory (e.g., [4, Chap. 2]), and Riemannian geometry
(e.g., [5, 6]). This makes the book particularly suitable for a starting Ph.D. student,
after a Master’s degree in Mathematical/Theoretical Physics including the above
background.

I would like to thank the organizers and participants of the aforementioned
schools for their involvement and their feedback. This also applies to the MRI-
Masterclass in Utrecht in 2010 and the Conference on index theory in Bogotá in
2008, where Chap. 5 finds its roots. Much feedback on previous drafts was
gratefully received from students in my class on noncommutative geometry in
Nijmegen: Bas Jordans, Joey van der Leer, and Sander Uijlen. I thank my students
and co-authors Jord Boeijink, Thijs van den Broek, and Koen van den Dungen for
allowing me to transcribe part of our results in the present book form. Simon
Brain, Alan Carey, Roberta Iseppi, and Adam Rennie are gratefully acknowledged
for their feedback and suggested corrections. Strong motivation to writing this

v
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book was given to me by my co-author Matilde Marcolli. I thank Gerard Bäuerle,
Gianni Landi, and Klaas Landsman for having been my main tutors in writing, and
Klaas in particular for a careful final proofreading. I also thank Aldo Rampioni at
Springer for his help and guidance. I thank Alain Connes for his inspiration and
enthusiasm for the field, without whose work this book could of course not have
been written.

I am thankful to my family and friends for their continuous love and support.
My deepest gratitude goes to Mathilde for being my companion in life, and to
Daniël for making sure that the final stages of writing were frequently, and
happily, interrupted.

April 2014 Walter D. van Suijlekom
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Chapter 1
Introduction

Ever since the early days of noncommutative geometry it has become clear that this
field ofmathematics has close ties with physics, andwith gauge theories in particular.
In fact, non-abelian gauge theories, and even more prominently, the Standard Model
of particle physics, were a guiding principle in the formulation of noncommutative
manifolds in [1, 2].

For one thing, noncommuting operators appear naturally in quantum mechanics.
As a matter of fact, there is a rather direct path from experimentally measured atomic
spectra to Heisenberg’s matrix mechanics which is one of the motivating examples
of noncommutative geometry [3, Sect. I.1].

In the other direction, it turns out that themain technical device in noncommutative
geometry, a spectral triple, naturally gives rise to a gauge theory. This holds in full
generality, but the great potential of the noncommutative approach, at least in particle
physics, becomes really visible when specific examples are considered that in fact
correspond to familiar gauge theories arising in physics. This is crowned by the
derivation [4] of the full Standard Model of particle physics together with all its
subtleties, including theHiggs field, the spontaneous symmetry breakingmechanism,
neutrino mixing, see-saw mechanism, et cetera.

It is the goal of this book to explore this path, and, starting with the basics, to work
towards applications in particle physics, notably to the StandardModel of elementary
particles.

The first ingredient of a spectral triple is an involutive or ∗-algebra A of operators
in aHilbert spaceH, with the involution given by the hermitian adjoint of an operator.
This immediately gives rise to a gauge group G determined by the unitary elements
in A. In general, if A is noncommutative, then this group is non-abelian.

The gauge fields arise from a second, purely spectral data, in the guise of a self-
adjoint operator D in H, satisfying suitable conditions (cf. Definition 4.30 below).
The operator D is modeled on the Dirac operator on a Riemannian spin manifold
M , an elliptic first-order differential operator whose square coincides, up to a scalar
term, with the Laplacian.

W. D. van Suijlekom, Noncommutative Geometry and Particle Physics, 1
Mathematical Physics Studies, DOI: 10.1007/978-94-017-9162-5_1,
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2 1 Introduction

A key role will be played by the spectrum of D, assumed discrete; we will list
its eigenvalues (with multiplicities) as {λn}n∈Z. The gauge group G acts on D by
conjugation with a unitary operator, D �→ U DU∗. Unitarity guarantees invariance
of the spectrum under such a gauge transformation.

Hence a spectral invariant is in particular gauge invariant, and it is natural to
define the so-called spectral action as [5, 6]

∑

n∈Z
f

(
λn

γ

)
.

Here the function f is a suitable cutoff function that makes the outcome of the
sum finite, and γ is a real cutoff parameter. The spectral action is interpreted as an
action functional that describes the dynamics and interactions of the gauge fields
constituting D.

The fermionic fields that are associated to a spectral triple are simply vectors ψ

in the given Hilbert space, and their natural invariant is the fermionic action:

(
ψ, Dψ

)
.

The previous paragraphs sketch the derivation of a generalized gauge theory from
any spectral triple. When one restrict to a particular class of spectral triples, this
leads to ordinary gauge theory defined on a manifold M in terms of vector bundles
and connectionconnections. The idea is very simple, essentially dating back to [7]:
one considers the noncommutative space M × F given by the product of M with a
finite, noncommutative space F . The space F gives rise to the internal, gauge degrees
of freedom. In fact, it is described by a finite-dimensional algebra of matrices, for
which the gauge group becomes a matrix Lie group, such as SU (N ). The self-
adjoint operator DF is given by a hermitian matrix. Combined with the background
manifold M , these objects are turned into global ones: A consists of the sections of
a bundle of matrix algebras, and D is a combination of DF and the Dirac operator
on M (assumed to be a Riemannian spin manifold). The operator D is found to be
parametrized by gauge fields and scalar fields in suitable representations of the gauge
group G. The fermionic fields ψ are sections of a spinor bundle on which D acts as
a linear differential operator, minimally coupled to the gauge fields.

As we already said, the spectral action is manifestly gauge invariant, and for this
latter class of examples it describes a scalar gauge theory for the groupG. As a bonus,
it is minimally coupled to (Euclidean) gravity, in that the gravitational degrees of
freedom are present as a background field in the Dirac operator on M . Moreover, the
fermionic action then gives the usual coupling of the fermionic fields to the gauge,
scalar and gravitational fields.

In this respect, one of the great achievements of noncommutative geometry is the
derivation of the full Standard Model of particle physics from a noncommutative
space M × FSM [4]. In fact, from this geometric Ansatz one obtains the Standard
Model gauge fields, the scalar Higgs field, and the full fermionic content of the
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Standard Model. Moreover, the spectral and fermionic action on M × FSM give the
full Lagrangian of the Standard Model, including (amongst other benefits) both the
Higgs spontaneous symmetry breaking mechanism and minimal coupling to gravity.
In addition, the spectral action introduces relations between the coupling constants
and the masses of the StandardModel. This allows one to derive physical predictions
such as the Higgs mass, finally bringing us back to experiment.

This book is divided into two parts. Part 1 presents the mathematical basics of
noncommutative geometry and discusses the local index formula as a mathematical
application. As a stand alone, it may be used as a first introduction to noncommutative
geometry.

The second part starts in the same mathematical style, where in the first two
chapters we analyze the structure of a gauge theory associated to any spectral triple.
Comparable to a kaleidoscope, we then focus on a specific class of examples, and
within this class select the physically relevant models. In the last two chapters this
culminates in the derivation of the full Standard Model of particle physics. All these
examples heavily exploit the results from Part 1. Hence the reader who is already
somewhat familiar with noncommutative geometry, but is interested in the gauge-
theoretical aspects, may want to skip Part 1 and jump immediately to the second
part.

Let us quickly go through the contents of each of the chapters. Chapters2 and3
present a ‘light’ version of noncommutative geometry, restricting ourselves to finite
noncommutative spaces. In other words, we here only consider finite-dimensional
spectral triples and avoid technical complications that arise in the general case. Be-
sides the pedagogical advantage, these finite spaces will in fact turn out to be crucial
to the physical applications of the later chapters, where they describe the aforemen-
tioned internal space F .

Thus, in Chap.2 we start with finite discrete topological spaces and replace them
by matrix algebras. The question whether this procedure can be reversed leads nat-
urally to the notion of Morita equivalence between matrix algebras. The next step is
the translation of a metric structure into a symmetric matrix, motivating the defini-
tion of a finite spectral triple. We discuss Morita equivalence for spectral triples and
conclude with a diagrammatic classification of finite spectral triples.

In Chap.3 we enrich finite spectral triples with a real structure and discuss Morita
equivalences in this context. We give a classification of finite real spectral triples
based on Krajewski diagrams [8] and relate this to the classification of irreducible
geometries in [9].

Chapter4 introduces spectral triples in full generality. Starting with some back-
ground on Riemannian spin geometry, we motivate the general definition of a real
spectral triple by the Dirac operator on a compact Riemannian spin manifold.

As a first application of spectral triples, we present a proof of the local index
formula of Connes and Moscovici [10] in Chap.5, following Higson’s proof [11].

In the second part of this book we start to build gauge theories from real spectral
triples. Chap. 6 takes a very general approach and associates a gauge group and a
set of gauge fields to any real spectral triple. An intriguing localization result can be
formulated in terms of a bundle of C∗-algebras on a background topological space.

http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_3
http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_3
http://dx.doi.org/10.1007/978-94-017-9162-5_4
http://dx.doi.org/10.1007/978-94-017-9162-5_5
http://dx.doi.org/10.1007/978-94-017-9162-5_6
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The gauge group acts fiberwise on this bundle and the gauge fields appear as sections
thereof.

Maintaining the same level of generality, we introduce gauge invariant quantities
in Chap.7 , to wit the spectral action, the topological spectral action (which is closely
related to the above index), and the fermionic action [5, 6]. We discuss two possible
ways to expand the spectral action, either asymptotically in terms of the cutoff γ, or
perturbatively in terms of the gauge fields parametrizing D.

In Chap.8 we introduce the important class of examples alluded to before, i.e.
noncommutative spaces of the form M × F with F finite. Here, Chaps. 2 and3
prove their value in the description of F . Following [12] we analyze the structure of
the gauge group GF for this class of examples, and determine the gauge fields and
scalar fields as well as the corresponding gauge transformations. Using heat kernel
methods, we obtain an asymptotic expansion for the spectral action on M × F in
terms of local formulas (on M). We conclude that the spectral action describes the
dynamics and interactions of a scalar gauge theory for the group GF , minimally
coupled to gravity. This general form of the spectral action on M × F will be heavily
used in the remainder of this book.

As a first simple example we treat abelian gauge theory in Chap.9, for which the
gauge groupGF � U (1). Following [13] we describe how to obtain the Lagrangian
of electrodynamics from the spectral action.

The next step is the derivation of non-abelian Yang–Mills gauge theory from
noncommutative geometry, which we discuss in Chap.10. We obtain topologically
non-trivial gauge configurations byworking with algebra bundles, essentially replac-
ing the above direct product M × F by a fibered product [14].

Chapter11 contains the derivation of the Standard Model of particle physics from
a noncommutative manifold M × FSM , first obtained in [4]. We apply our results
from Chap.8 to obtain the Standard Model gauge group and gauge fields, and the
scalar Higgs field. Moreover, the computation of the spectral action can be applied to
this example and yields the full Lagrangian of the Standard Model, including Higgs
spontaneous symmetry breaking and minimally coupled to gravity. We also give a
detailed discussion on the fermionic action.

The phenomenology of the noncommutative Standard Model is discussed in
Chap.12. Indeed, the spectral action yields relations between the coupling constants
masses of the StandardModel, fromwhich physical predictions can be derived. Here,
we adopt the well-known renormalization group equations of the Standard Model to
run the couplings to the relevant energy scale. This gives the notorious prediction for
the Higgs mass at the order of 170GeV. As this is at odds with the experiments at the
Large Hadron Collider at CERN, we give a careful analysis of the hypotheses used
in the derivation of the StandardModel Lagrangian from noncommutative geometry.
We argue that if we drop some of these hypotheses, noncommutative geometry can
guide us to go beyond the Standard Model. In particular, we will discuss a recently
proposed model [15–17] that enlarges the particle content of the Standard Model by
a real scalar singlet. We conclude by showing that this noncommutative model is
indeed compatible with the experimentally measured mass.

http://dx.doi.org/10.1007/978-94-017-9162-5_7
http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_3
http://dx.doi.org/10.1007/978-94-017-9162-5_9
http://dx.doi.org/10.1007/978-94-017-9162-5_10
http://dx.doi.org/10.1007/978-94-017-9162-5_11
http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_12


1 Introduction 5

In order not to interrupt the text too much, I have chosen to collect background
information and references to the literature as ‘Notes’ at the end of each Chapter.
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Chapter 2
Finite Noncommutative Spaces

In this chapter (and the next) we consider only finite discrete topological spaces.
However, we will stretch their usual definition, which is perhaps geometrically not so
interesting, to include the more intriguing finite noncommutative spaces. Intuitively,
this means that each point has some internal structure, described by a particular non-
commutative algebra.With such a notion of finite noncommutative spaces, we search
for the appropriate notion ofmaps between, and (geo)metric structure on such spaces,
and arrive at a diagrammatic classification of such finite noncommutative geometric
spaces. Our exposition of the finite case already gives a good first impression of what
noncommutative geometry has in store, whilst having the advantage that it avoids
technical complications that might obscure such a first tour through noncommutative
geometry. The general case is subsequently treated in Chap.4.

2.1 Finite Spaces and Matrix Algebras

Consider a finite topological space X consisting of N points (equipped with the
discrete topology):

1• 2• · · · · · · N •

The first step towards a noncommutative geometrical description is to trade spaces
for their corresponding function algebras.

Definition 2.1 A (complex, unital) algebra is a vector space A (over C) with a
bilinear associative product A × A ∗ A denoted by (a, b) ∈∗ ab (and a unit 1
satisfying 1a = a1 = a for all a ∈ A).

A →-algebra (or, involutive algebra) is an algebra A together with a conjugate-
linear map (the involution) → : A ∗ A such that (ab)→ = b→a→ and (a→)→ = a for
all a, b ∈ A.

W. D. van Suijlekom, Noncommutative Geometry and Particle Physics, 9
Mathematical Physics Studies, DOI: 10.1007/978-94-017-9162-5_2,
© Springer Science+Business Media Dordrecht 2015
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10 2 Finite Noncommutative Spaces

In this book, we restrict to unital algebras, and simply refer to them as algebras.
In the present case, we consider the →-algebra C(X) of C-valued functions on the

above finite space X . It is equipped with a pointwise linear structure,

( f + g)(x) = f (x) + g(x), (λ f )(x) = λ( f (x)),

for any f, g ∈ C(X),λ ∈ C and for any point x ∈ X , and with pointwise multipli-
cation

f g(x) = f (x)g(x).

There is an involution given by complex conjugation at each point:

f →(x) = f (x).

The C in C(X) stands for continuous and, indeed, any C-valued function on a finite
space X with the discrete topology is automatically continuous.

The →-algebraC(X) has a rather simple structure: it is isomorphic to the →-algebra
C

N with each complex entry labeling the value the function takes at the corresponding
point, with the involution given by complex conjugation of each entry. A convenient
way to encode the algebra C(X) � C

N is in terms of diagonal N × N matrices,
representing a function f : X ∗ C as

f �

⎛

⎜⎜⎜⎜⎜⎝

f (1) 0 · · · 0

0 f (2) · · · 0

...
...

. . .
...

0 0 . . . f (N )

⎞

⎟⎟⎟⎟⎟⎠
.

Hence, pointwise multiplication then simply becomes matrix multiplication, and the
involution is given by hermitian conjugation.

If φ : X1 ∗ X2 is a map of finite discrete spaces, then there is a corresponding
map from C(X2) ∗ C(X1) given by pullback:

φ→ f = f ◦ φ ∈ C(X1); ( f ∈ C(X2)).

Note that the pullback φ→ is a →-homomorphism (or, →-algebra map) under the
pointwise product, in that

φ→( f g) = φ→( f )φ→(g), φ→( f̄ ) = φ→( f ), φ→(λ f + g) = λφ→( f ) + φ→(g).

For example, let X1 be the space consisting of three points, and X2 the space con-
sisting of two points. If a map φ : X1 ∗ X2 is defined according to the following
diagram,
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then

φ→ : C2 � C(X2) ∗ C
3 � C(X1)

is given by

(λ1,λ2) ∈∗ (λ1,λ2,λ2).

Exercise 2.1 Show that φ : X1 ∗ X2 is an injective (surjective) map of finite spaces
if and only if φ→ : C(X2) ∗ C(X1) is surjective (injective).

Definition 2.2 A (complex) matrix algebra A is a direct sum

A =
N⊕

i=1

Mni (C),

for some positive integers ni and N . The involution on A is given by hermitian
conjugation, and we simply refer to the →-algebra A with this involution as a matrix
algebra.

Hence, we have associated a matrix algebra C(X) to the finite space X , which
behaves naturally with respect to maps between topological spaces and →-algebras.
A natural question is whether this procedure can be inverted. In other words, given a
matrix algebra A, can we obtain a finite discrete space X such that A � C(X)? Since
C(X) is always commutative but matrix algebras need not be, we quickly arrive at
the conclusion that the answer is negative. This can be resolved in two ways:

(1) Restrict to commutative matrix algebras.
(2) Allow for more morphisms (and consequently, more isomorphisms) between

matrix algebras, e.g. by generalizing →-homomorphisms.

Before explaining each of these options, let us introduce some useful defini-
tions concerning representations of finite-dimensional →-algebras (which are not
necessarily commutative) which moreover extend in a straightforward manner to the
infinite-dimensional case (cf. Definitions 4.26 and 4.27). We first need the prototyp-
ical example of a →-algebra.
Example 2.3 Let H be an (finite-dimensional) inner product space, with inner prod-
uct (·, ·) ∗ C. We denote by L(H) the →-algebra of operators on H with product
given by composition and the involution is given by mapping an operator T to its
adjoint T →.

http://dx.doi.org/10.1007/978-94-017-9162-5_4
http://dx.doi.org/10.1007/978-94-017-9162-5_4
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Note that L(H) is a normed vector space: for T ∈ L(H) we set

‖T ‖2 = sup
h∈H

{(T h, T h) : (h, h) ≤ 1} .

Equivalently, ‖T ‖ is given by the square root of the largest eigenvalue of T →T .

Definition 2.4 A representation of a finite-dimensional →-algebra A is a pair (H,π)

where H is a (finite-dimensional, complex) inner product space and π is a →-algebra
map

π : A ∗ L(H).

A representation (H,π) is called irreducible if H ∼= 0 and the only subspaces in H
that are left invariant under the action of A are {0} or H .

We will also refer to a finite-dimensional inner product space as a finite-
dimensional Hilbert space.

Example 2.5 Consider A = Mn(C). The defining representation is givenby H = C
n

on which A acts by left matrix multiplication; hence it is irreducible. An example of
a reducible representation is H = C

n ⊕ C
n , with a ∈ Mn(C) acting in block-form:

a ∈ Mn(C) ∈∗
⎡

a 0
0 a

⎧
∈ L(Cn ⊕ C

n) � M2n(C)

which therefore decomposes as the direct sum of two copies of the defining repre-
sentation. See also Lemma 2.15 below.

Exercise 2.2 Given a representation (H,π) of a →-algebra A, the commutant π(A)′
of π(A) is defined as

π(A)′ =
⎨

T ∈ L(H) : π(a)T = T π(a) for all a ∈ A

⎩
.

(1) Show that π(A)′ is also a →-algebra.
(2) Show that a representation (H,π) of A is irreducible if and only if the commutant

π(A)′ of π(A) consists of multiples of the identity.

Definition 2.6 Two representations (H1,π1) and (H2,π2) of a →-algebra A are uni-
tarily equivalent if there exists a unitary map U : H1 ∗ H2 such that

π1(a) = U→π2(a)U.

Definition 2.7 The structure space Â of A is the set of all unitary equivalence classes
of irreducible representations ofA.

We end this section with an illustrative exercise on passing from representations
of a →-algebra to matrices over that →-algebra.
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Exercise 2.3 (1) If A is a unital →-algebra, show that the n × n-matrices Mn(A)

with entries in A form a unital →-algebra.
(2) Let π : A ∗ L(H) be a representation of a →-algebra A and set Hn =

H ⊕ · · · ⊕ H (n copies). Show that the following defines a representation
π̃ : Mn(A) ∗ L(Hn) of Mn(A):

π̃
⎫
(ai j )

⎬ = ⎫
π(ai j )

⎬ ; ((ai j ) ∈ Mn(A)).

(3) Let π̃ : Mn(A) ∗ L(Hn) be a representation of the →-algebra Mn(A). Show
that the following defines a representation π : A ∗ L(Hn) of the →-algebra A:

π(a) = π̃ (aIn)

where In is the identity in Mn(A).

2.1.1 Commutative Matrix Algebras

We now explain how option (1) on page 11 above resolves the question raised by
constructing a space from a commutative matrix algebra A. A natural candidate for
such a space is, of course, the structure space Â, which we now determine. Note
that any commutative matrix algebra is of the form A � C

N , for which by Exercise
2.2(2) any irreducible representation is given by a map of the form

πi : (λ1, . . . ,λN ) ∈ C
N ∈∗ λi ∈ C

for some i = 1, . . . , N . We conclude that Â � {1, . . . , N }.
We conclude that there is a duality between finite spaces and commutative matrix

algebras. This is nothing but a finite-dimensional version of Gelfand duality (see
Theorem 4.28 below) between compact Hausdorff topological spaces and unital
commutative C→-algebras. In fact, we will see later (Proposition 4.25) that any finite-
dimensional C→-algebra is a matrix algebra, which reduces Gelfand duality to the
present finite-dimensional duality.

2.1.2 Noncommutative Matrix Algebras

The above trade of finite discrete spaces for finite-dimensional commutative
→-algebras does not really make them any more interesting, for the →-algebra is al-
ways of the form C

N . Amore interesting perspective is given by the noncommutative
alternative, viz. option (2) on page 11.We thus aim for a duality between finite spaces
and equivalence classes of matrix algebras. These equivalence classes are described

http://dx.doi.org/10.1007/978-94-017-9162-5_4
http://dx.doi.org/10.1007/978-94-017-9162-5_4
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by a generalized notion of isomorphisms between matrix algebras, also known as
Morita equivalence.

Let us first recall the notion of an algebra (bi)module.

Definition 2.8 Let A, B be algebras (not necessarily matrix algebras). A left A-
module is a vector space E that carries a left representation of A, i.e. there is a
bilinear map A × E 
 (a, e) ∈∗ a · e ∈ E such that

(a1a2) · e = a1 · (a2 · e); (a1, a2 ∈ A, e ∈ E).

Similarly, a right B-module is a vector space F that carries a right representation of
B, i.e. there is a bilinear map F × B 
 ( f, b) ∈∗ f · b ∈ F such that

f · (b1b2) = ( f · b1) · b2; (b1, b2 ∈ B, f ∈ F).

Finally, an A − B-bimodule E is both a left A-module and a right B-module, with
mutually commuting actions:

a · (e · b) = (a · e) · b; (a ∈ A, b ∈ B, e ∈ E).

When no confusion can arise, we will also write ae instead of a · e to denote the
left module action.

There is a natural notion of (left) A-module homomorphism as a linear map
φ : E ∗ F that respect the representation of A:

φ(a · e) = a · φ(e); (a ∈ A, e ∈ E).

Similarly for right modules and bimodules.
We introduce the following notation:

• A E for a left A-module E ;
• FB for a right B-module F ;
• A EB for an A − B-bimodule E .

Exercise 2.4 Check that a representation π : A ∗ L(H) of a →-algebra A (cf.
Definition 2.4) turns H into a left A-module A H.

Exercise 2.5 Show that A is itself an A − A-bimodule A AA, with left and right
actions given by the product in A.

If E is a right A-module, and F is a left A-module, we can form the balanced
tensor product:

E ⊗A F := E ⊗ F/

⎭
∑

i

ei ai ⊗ fi − ei ⊗ ai fi : ai ∈ A, ei ∈ E, fi ∈ F

}
.
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In other words, the quotient imposes A-linearity of the tensor product, i.e. in E ⊗A F
we have

ea ⊗A f = e ⊗A a f ; (a ∈ A, e ∈ E, f ∈ F).

Definition 2.9 Let A, B be matrix algebras. A Hilbert bimodule for the pair (A, B)

is given by an A − B-bimodule E together with a B-valued inner product 〈·, ·〉E :
E × E ∗ B satisfying

〈e1, a · e2〉E = 〈a→ · e1, e2〉E ; (e1, e2 ∈ E, a ∈ A),

〈e1, e2 · b〉E = 〈e1, e2〉E b; 〈e1, e2〉→E = 〈e2, e1〉E ; (e1, e2 ∈ E, b ∈ B),

〈e, e〉E ≥ 0 with equality if and only if e = 0; (e ∈ E).

The set of Hilbert bimodules for (A, B) will be denoted by KK f (A, B).

In the following, we will also write 〈·, ·〉 instead of 〈·, ·〉E , unless confusion might
arise.

Exercise 2.6 Check that a representation π : A ∗ L(H) (cf. Definiton 2.4 and
Exercise 2.4) of a matrix algebra A turns H into a Hilbert bimodule for (A,C).

Exercise 2.7 Show that the A − A-bimodule given by A itself (cf. Exercise 2.5)
is an element in KK f (A, A) by establishing that the following formula defines an
A-valued inner product 〈·, ·〉A : A × A ∗ A:

〈a, a′〉A = a→a′; (a, a′ ∈ A).

Example 2.10 More generally, let φ : A ∗ B be a →-algebra homomorphism be-
tween matrix algebras A and B. From it, we can construct a Hilbert bimodule Eφ in
KK f (A, B) as follows. Let Eφ be B as a vector spacewith the natural right B-module
structure and inner product (cf. Exercise 2.7), but with A acting on the left via the
homomorphism φ:

a · b = φ(a)b; (a ∈ A, b ∈ Eφ).

Definition 2.11 The Kasparov product F ◦ E between Hilbert bimodules E ∈
KK f (A, B) and F ∈ KK f (B, C) is given by the balanced tensor product

F ◦ E := E ⊗B F; (E ∈ KK f (A, B), F ∈ KK f (B, C)),

so that F ◦ E ∈ KK f (A, C), with C-valued inner product given on elementary
tensors by

〈e1 ⊗ f1, e2 ⊗ f2〉E⊗B F = 〈 f1, 〈e1, e2〉E f2〉F , (2.1.1)

and extended linearly to all of E ⊗ F .
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Note that this product is associative up to isomorphism.

Exercise 2.8 Show that the association φ � Eφ from Example 2.10 is natural in
the sense that

(1) EidA � A ∈ KK f (A, A),
(2) for →-algebra homomorphisms φ : A ∗ B and ψ : B ∗ C we have an

isomorphism

Eψ ◦ Eφ ≡ Eφ ⊗B Eψ � Eψ◦φ ∈ KK f (A, C),

that is, as A − C-bimodules.

Exercise 2.9 In the above definition:

(1) Check that E ⊗B F is an A − C-bimodule.
(2) Check that 〈·, ·〉E⊗B F defines a C-valued inner product.
(3) Check that 〈a→(e1 ⊗ f1), e2 ⊗ f2〉E⊗B F = 〈e1 ⊗ f1, a(e2 ⊗ f2)〉E⊗B F .

Conclude that F ◦ E is indeed an element of KK f (A, C).

Let us consider the Kasparov product with the Hilbert bimodule for (A, A) given
by A itself (cf. Exercise 2.7). Then, since for E ∈ KK f (A, B) we have E ◦ A =
A⊗A E � E , the bimodule A AA is the identity element with respect to the Kasparov
product (up to isomorphism). This motivates the following definition.

Definition 2.12 Two matrix algebras A and B are called Morita equivalent if there
exist elements E ∈ KK f (A, B) and F ∈ KK f (B, A) such that

E ⊗B F � A, F ⊗A E � B,

where � denotes isomorphism as Hilbert bimodules.

If A and B are Morita equivalent, then the representation theories of both matrix
algebras are equivalent. More precisely, if A and B areMorita equivalent, then a right
A-module is sent to a right B-module by tensoring with − ⊗A E for an invertible
element E in KK f (A, B).

Example 2.13 As seen in Exercises 2.4 and 2.6, the vector space E = C
n is an

Mn(C)−C-bimodule; with the standardC-valued inner product it becomes a Hilbert
module for (Mn(C),C). Similarly, the vector space F = C

n is a C − Mn(C)-
bimodule by right matrix multiplication. An Mn(C)-valued inner product is given by

〈v1, v2〉 = v̄1v
t
2 ∈ Mn(C).

We determine the Kasparov products of these Hilbert bimodules as

E ⊗C F � Mn(C); F ⊗Mn(C) E � C.
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In other words, E ∈ KK f (Mn(C),C) and F ∈ KK f (C, Mn(C)) are each other’s
inverse with respect to the Kasparov product. We conclude that Mn(C) and C are
Morita equivalent.

This observation leads us to our first little result.

Theorem 2.14 Two matrix algebras are Morita equivalent if and only if their struc-
ture spaces are isomorphic as finite discrete spaces, i.e. have the same cardinality.

Proof Let A and B be Morita equivalent. Thus there exists Hilbert bimodules A EB

and B FA such that
E ⊗B F � A, F ⊗A E � B.

If [(πB, H)] ∈ B̂ then we can define a representation πA by setting

πA : A ∗ L(E ⊗B H); πA(a)(e ⊗ v) = ae ⊗ v. (2.1.2)

Vice versa, we construct πB : B ∗ L(F ⊗A W ) from [(πA, W )] ∈ Â by setting

πB(b)( f ⊗w) = b f ⊗w and these twomaps are one another’s inverse. Thus, Â � B̂
(see Exercise 2.10 below).

For the converse, we start with a basic result on irreducible representations of
Mn(C).

Lemma 2.15 The matrix algebra Mn(C) has a unique irreducible representation
(up to isomorphism) given by the defining representation on C

n.

Proof It is clear from Exercise 2.2 that Cn is an irreducible representation of A =
Mn(C). Suppose H is irreducible and of dimension K , and define a linear map

φ : A ⊕ · · · ⊕ A︸ ︷︷ ︸
K copies

∗ H→; φ(a1, . . . , aK ) ∗ e1 ◦ at
1 + · · · + eK ◦ at

K

in terms of a basis {e1, . . . eK } of the dual vector space H→. Here v ◦ a denotes
pre-composition of v ∈ H→ with a ∈ A, acting on H . This is a morphism of Mn(C)-
modules, provided amatrix a acts on the dual vector space H→ by sending v ∈∗ v◦at .
It is also surjective, so that the dual map φ→ : H ∗ (AK )→ is injective. Upon
identifying (AK )→ with AK as A-modules, and noting that A = Mn(C) � ⊕n

C
n

as A-modules, it follows that H is a submodule of AK � ⊕nK
C

n . By irreducibility
H � C

n . �

Now, if A, B are matrix algebras of the following form.

A =
N⊕

i=1

Mni (C), B =
M⊕

j=1

Mm j (C),

then Â � B̂ implies that N = M . Then, define
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E :=
N⊕

i=1

C
ni ⊗ C

mi ,

with A acting by block-diagonal matrices on the first tensor and B acting in a similar
way by right matrix multiplication on the second leg of the tensor product. Also, set

F :=
N⊕

i=1

C
mi ⊗ C

ni ,

with B now acting on the left and A on the right. Then, as above,

E ⊗B F �
N⊕

i=1

(Cni ⊗ C
mi ) ⊗Mmi (C) (Cmi ⊗ C

ni )

�
N⊕

i=1

C
ni ⊗

(
C

mi ⊗Mmi (C) C
mi

)
⊗ C

ni

�
N⊕

i=1

C
ni ⊗ C

ni � A,

and similarly we obtain F ⊗A E � B, as required.

Exercise 2.10 Fill in the gaps in the above proof:

(a) Show that the representation πA defined by (2.1.2) is irreducible if and only if
πB is.

(b) Show that the association of the class [πA] to [πB] through (2.1.2) is independent
of the choice of representatives πA and πB.

We conclude that there is a duality between finite spaces and Morita equivalence
classes of matrix algebras. By replacing →-homomorphisms A ∗ B by Hilbert bi-
modules for (A, B), we introduce a much richer structure at the level of morphisms
between matrix algebras. For example, any finite-dimensional inner product space
defines an element in KK f (C,C), whereas there is only one map from the cor-
responding structure space consisting of one point to itself. When combined with
Exercise 2.10 we conclude that Hilbert bimodules form a proper extension of the
→-morphisms between matrix algebras.

2.2 Noncommutative Geometric Finite Spaces

Consider again a finite space X , described as the structure space of a matrix algebra
A. We would like to introduce some geometry on X and, in particular, a notion of a
metric on X .
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Thus, the question we want to address is how we can (algebraically) describe
distances between the points in X , say, as embedded in a metric space. Recall that
a metric on a finite discrete space X is given by an array {di j }i, j∈X of real non-
negative entries, indexed by a pair of elements in X and requiring that di j = d ji ,
di j ≤ dik + dkj , and di j = 0 if and only if i = j :

1
d13

d12

3

d23

2

Example 2.16 If X is embedded in a metric space (e.g. Euclidean space), it can be
equipped with the induced metric.

Example 2.17 The discrete metric on the discrete space X is given by:

di j =
⎨
1 if i ∼= j
0 if i = j.

In the commutative case, we have the following remarkable result, which com-
pletely characterizes the metric on X in terms of linear algebraic data. It is the key
result towards a spectral description of finite geometric spaces.

Theorem 2.18 Let di j be a metric on the space X of N points, and set A = C
N

with elements a = (a(i))N
i=1, so that Â � X. Then there exists a representation π of

A on a finite-dimensional inner product space H and a symmetric operator D on H
such that

di j = sup
a∈A

{|a(i) − a( j)| : ‖[D,π(a)]‖ ≤ 1} . (2.2.1)

Proof We claim that this would follow from the equality

‖[D,π(a)]‖ = max
k ∼=l

⎨
1

dkl
|a(k) − a(l)|

⎩
. (→)

Indeed, if this holds, then

sup
a

{|a(i) − a( j)| : ‖[D, a]‖ ≤ 1} ≤ di j .

The reverse inequality follows by taking a ∈ A for fixed i, j to be a(k) = dik . Then,
we find |a(i) − a( j)| = di j , while ‖[D,π(a)]‖ ≤ 1 for this a follows from the
reverse triangle inequality for di j :

1

dkl
|a(k) − a(l)| = 1

dkl
|dik − dil | ≤ 1.



20 2 Finite Noncommutative Spaces

Weprove (→) by induction on N . If N = 2, then on H = C
2 wedefine a representation

π : A ∗ L(H) and a hermitian matrix D by

π(a) =
⎡

a(1) 0
0 a(2)

⎧
, D =

⎡
0 (d12)−1

(d12)−1 0

⎧
.

It follows that ‖[D, a]‖ = (d12)−1|a(1) − a(2)|.
Suppose then that (→) holds for N , with representation πN of CN on an inner

product space HN and symmetric operator DN ; we will show that it also holds for
N + 1. We define

HN+1 = HN ⊕
N⊕

i=1

Hi
N

with Hi
N := C

2. Imitating the above construction in the case N = 2, we define the
representation πN+1 by

πN+1(a(1), . . . , a(N + 1)) = πN (a(1), . . . , a(N ))

⊕
⎡

a(1) 0
0 a(N + 1)

⎧
⊕ · · · ⊕

⎡
a(N ) 0
0 a(N + 1)

⎧
,

and define the operator DN+1 by

DN+1 = DN ⊕
⎡

0 (d1(N+1))
−1

(d1(N+1))
−1 0

⎧

⊕ · · · ⊕
⎡

0 (dN (N+1))
−1

(dN (N+1))
−1 0

⎧
.

It follows by the induction hypothesis that (→) holds for N + 1. �

Exercise 2.11 Make the above proof explicit for the case N = 3. In other words,
compute the metric of (2.2.1) on the space of three points from the set of data A = C

3,
H = (C2)⊕3 with representation π : A ∗ L(H) given by

π(a(1), a(2), a(3)) =
⎡

a(1) 0
0 a(2)

⎧
⊕

⎡
a(1)

a(3)

⎧
⊕

⎡
a(2)

a(3)

⎧
,

and hermitian matrix

D =
⎡
0 x1
x1 0

⎧
⊕

⎡
0 x2
x2 0

⎧
⊕

⎡
0 x3
x3 0

⎧
,

with x1, x2, x3 ∈ R.
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Exercise 2.12 Compute the metric on the space of three points given by formula
(2.2.1) for the set of data A = C

3 acting in the defining representation on H = C
3,

and

D =
⎛

⎝
0 d−1 0

d−1 0 0
0 0 0

⎞

⎠ ,

for some non-zero d ∈ R.

Even though the above translation of the metric on X into algebraic data assumes
commutativity of A, the distance formula itself can be extended to the case of a
noncommutative matrix algebra A.

In fact, suppose we are given a →-algebra representation of A on an inner product
space, together with a symmetric operator D on H . Then we can define a metric on
the structure space Â by

di j = sup
a∈A

⎨
|Tra(i) − Tra( j)| : ‖[D, a]‖ ≤ 1

⎩
, (2.2.2)

where i labels the matrix algebra Mni (C) in the decomposition of A. This distance
formula is a special case of Connes’ distance formula (see Note 12 on page 72) on
the structure space of A.

Exercise 2.13 Show that the di j in (2.2.2) is a metric (actually, an extended metric,
taking values in [0,∞]) on Â by establishing that

di j = 0 ⇐⇒ i = j, di j = d ji , di j ≤ dik + dkj .

This suggests that the above structure consisting of a matrix algebra A, a
finite-dimensional representation space H , and a hermitian matrix D provides the
data needed to capture ametric structure on the finite space X = Â. In fact, in the case
that A is commutative, the above argument combined with our finite-dimensional
Gelfand duality of Sect. 2.1.1 is a reconstruction theorem. Indeed, we reconstruct a
given metric space (X, d) from the data (A, H, D) associated to it.

We arrive at the following definition, adapted to our finite-dimensional setting.

Definition 2.19 A finite spectral triple is a triple (A, H, D) consisting of a unital
→-algebra A represented faithfully on a finite-dimensional Hilbert space H , together
with a symmetric operator D : H ∗ H .

We do not demand that A is a matrix algebra, since this turns out to be automatic:

Lemma 2.20 If A is a unital →-algebra that acts faithfully on a finite-dimensional
Hilbert space, then A is a matrix algebra of the form

A �
N⊕

i=1

Mni (C).

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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Proof Since A acts faithfully on aHilbert space it is a→-subalgebra of amatrix algebra
L(H) = Mdim(H)(C); the only such subalgebras are themselves matrix algebras. �

Unless we want to distinguish different representations of A on H , the above
representation will usually be implicitly assumed, thus considering elements a ∈ A
as operators on H .

Example 2.21 Let A = Mn(C) act on H = C
n by matrix multiplication, with the

standard inner product. A symmetric operator on H is represented by a hermitian
n × n matrix.

We will loosely refer to D as a finite Dirac operator, as its infinite-dimensional
analogue on Riemannian spin manifolds is the usual Dirac operator (see Chap.4).
In the present case, we can use it to introduce a ‘differential geometric structure’ on
the finite space X that is related to the notion of divided difference. The latter is
given, for each pair of points i, j ∈ X , by

a(i) − a( j)

di j
.

Indeed, these divided differences appear precisely as the entries of the commutator
[D, a] for the operator D as in Theorem 2.18.

Exercise 2.14 Use the explicit form of D in Theorem 2.18 to confirm that the com-
mutator of D with a ∈ C(X) is expressed in terms of the above divided differences.

We will see later that in the continuum case, the commutator [D, ·] corresponds
to taking derivatives of functions on a manifold.

Definition 2.22 Let (A, H, D)be afinite spectral triple. The A-bimodule ofConnes’
differential one-forms is given by

λ1
D(A) :=

⎭
∑

k

ak[D, bk] : ak, bk ∈ A

}
.

Consequently, there is a map d : A ∗ λ1(A), given by d(·) = [D, ·].
Exercise 2.15 Verify that d is a derivation of a →-algebra, in that:

d(ab) = d(a)b + ad(b); d(a→) = −d(a)→.

Exercise 2.16 Verify that λ1
D(A) is an A-bimodule by rewriting the operator

a(ak[D, bk])b (a, b, ak, bk ∈ A) as
∑

k a′
k[D, b′

k] for some a′
k, b′

k ∈ A.

As a first little result—though with an actual application to matrix models in
physics—we compute Connes’ differential one-forms for the above Example 2.21.

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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Lemma 2.23 Let (A, H, D) = (Mn(C),Cn, D) be the finite spectral triple of
Example 2.21 with D a hermitian n × n matrix. If D is not a multiple of the identity,
then λ1

D(A) � Mn(C).

Proof We may assume that D is a diagonal matrix: D = ∑
i λi eii in terms of real

numbersλi (not all equal) and the standard basis {ei j } of Mn(C). For fixed i, j choose
k such that λk ∼= λ j . Then

⎡
1

λk − λ j
eik

⎧
[D, ek j ] = ei j .

Hence, since eik, ek j ∈ Mn(C), any basis vector ei j ∈ λ1
D(A). Since also λ1

D(A) ⊂
L(Cn) � Mn(C), the result follows. �

Exercise 2.17 Consider the following finite spectral triple:

⎡
A = C

2, H = C
2, D =

⎡
0 λ

λ̄ 0

⎧⎧
,

with λ ∼= 0. Show that the corresponding space of differential one-forms λ1
D(A) is

isomorphic to the vector space of all off-diagonal 2 × 2 matrices.

2.2.1 Morphisms Between Finite Spectral Triples

In a spectral triple (A, H, D) both the →-algebra A and a finite Dirac operator D act
on the inner product space H . Hence, the most natural notion of equivalence between
spectral triples is that of unitary equivalence.

Definition 2.24 Twofinite spectral triples (A1, H1, D1) and (A2, H2, D2) are called
unitarily equivalent if A1 = A2 and if there exists a unitary operator U : H1 ∗ H2
such that

Uπ1(a)U→ = π2(a); (a ∈ A1),

U D1U→ = D2.

Exercise 2.18 Show that unitary equivalence of spectral triples is an equivalence
relation.

Remark 2.25 A special type of unitary equivalence is given by the unitaries in the
matrix algebra A itself. Indeed, for any such unitary element u the spectral triples
(A, H, D) and (A, H, u Du→) are unitarily equivalent. Another way of writing u Du→
is D+u[D, u→], so that this type of unitary equivalence effectively adds a differential
one-form to D.
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Following the spirit of our extended notion of morphisms between algebras, we
might also deduce a notion of “equivalence” coming fromMorita equivalence of the
corresponding matrix algebras. Namely, given a Hilbert bimodule E in KK f (B, A),
we can try to construct a finite spectral triple on B starting from a finite spectral triple
on A. This transfer of metric structure is accomplished as follows. Let (A, H, D) be
a spectral triple; we construct a new spectral triple (B, H ′, D′). First, we define a
vector space

H ′ = E ⊗A H,

which inherits a left action of B from the B-module structure of E . Also, it is an
inner product space, with C-valued inner product given as in (2.1.1).

The naive choice of a symmetric operator D′ given by D′(e ⊗ ξ) = e ⊗ Dξ will
not do, because it does not respect the ideal defining the balanced tensor product
over A, being generated by elements of the form

ea ⊗ ξ − e ⊗ aξ; (e ∈ E, a ∈ A, ξ ∈ H).

A better definition is
D′(e ⊗ ξ) = e ⊗ Dξ + ∇(e)ξ, (2.2.3)

where ∇ : E ∗ E ⊗A λ1
D(A) is some map that satisfies the Leibniz rule

∇(ea) = ∇(e)a + e ⊗ [D, a]; (e ∈ E, a ∈ A). (2.2.4)

Indeed, this is precisely the property that is needed tomake D′ awell-defined operator
on the balanced tensor product E ⊗A H :

D′(ea ⊗ ξ − e ⊗ aξ) = ea ⊗ Dξ + ∇(ea)ξ − e ⊗ D(aξ) − ∇(e)aξ = 0.

A map ∇ : E ∗ E ⊗A λ1
D(A) that satisfies Eq. (2.2.4) is called a connection on

the right A-module E associated to the derivation d : a ∈∗ [D, a] (a ∈ A).

Theorem 2.26 If (A, H, D) is a finite spectral triple and E ∈ KK f (B, A), then
(in the above notation) (B, E ⊗A H, D′) is a finite spectral triple, provided that ∇
satisfies the compatibility condition

〈e1,∇e2〉E − 〈∇e1, e2〉E = d〈e1, e2〉E ; (e1, e2 ∈ E). (2.2.5)

Proof We only need to show that D′ is a symmetric operator. Indeed, for e1, e2 ∈ E
and ξ1, ξ2 ∈ H we compute
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〈e1 ⊗ ξ1, D′(e2 ⊗ ξ2)〉E⊗A H = 〈ξ1, 〈e1,∇e2〉Eξ2〉H + 〈ξ1, 〈e1, e2〉E Dξ2〉H

= 〈ξ1, 〈∇e1, e2〉Eξ2〉H + 〈ξ1, d〈e1, e2〉Eξ2〉H

+ 〈Dξ1, 〈e1, e2〉Eξ2〉H − 〈ξ1, [D, 〈e1, e2〉E ]ξ2〉H

= 〈D′(e1 ⊗ ξ1), e2 ⊗ ξ2〉E⊗A H ,

using the stated compatibility condition and the fact that D is symmetric. �

Theorem 2.26 is our finite-dimensional analogue of Theorem 6.15, to be obtained
below.

Exercise 2.19 Let ∇ and ∇′ be two connections on a right A-module E. Show that
their difference ∇ − ∇′ is a right A-linear map E ∗ E ⊗A λ1

D(A).

Exercise 2.20 In this exercise, we consider the case that B = A and also E = A.
Let (A, H, D) be a spectral triple, we determine (A, H ′, D′).

(1) Show that the derivation d(·) = [D, ·] : A ∗ A ⊗A λ1
D(A) = λ1

D(A) is a
connection on A considered a right A-module.

(2) Upon identifying A ⊗A H � H, what is the operator D′ of Eq. (2.2.3) when the
connection ∇ on A is given by d as in (1)?

(3) Use (1) and (2) of this exercise to show that any connection ∇ : A ∗ A ⊗A

λ1
D(A) is given by

∇ = d + ω,

with ω ∈ λ1
D(A).

(4) Upon identifying A ⊗A H � H, what is the operator D′ of Eq. (2.2.3) with the
connection on A given as ∇ = d + ω.

If we combine the above Exercise 2.20 with Lemma 2.23, we see that ∇ = d− D
is an example of a connection on MN (C) (as a module over itself and withω = −D),
since λ1

D(A) � MN (C). Hence, for this choice of connection the new finite spectral
triple as constructed in Theorem 2.26 is given by (MN (C),CN , D′ = 0). So, Morita
equivalence of algebras does not carry over to an equivalence relation on spectral
triples. Indeed, we now have λ1

D′(MN (C)) = 0, so that no non-zero D can be
generated from this spectral triple and the symmetry of this relation fails.

2.3 Classification of Finite Spectral Triples

Here we classify finite spectral triples on A modulo unitary equivalence, in terms of
so-called decorated graphs.

Definition 2.27 A graph is an ordered pair (γ(0), γ(1)) consisting of a set γ(0) of
vertices and a set γ(1) of pairs of vertices (called edges).

http://dx.doi.org/10.1007/978-94-017-9162-5_6
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n1 ni nj nN

Fig. 2.1 A node at ni indicates the presence of the summand C
ni ; the double node at n j indicates

the presence of the summand C
n j ⊕ C

n j in H

We allow edges of the form e = (v, v) for any vertex v, that is, we allow loops at
any vertex.

Consider then a finite spectral triple (A, H, D); let us determine the structure of
all three ingredients and construct a graph from it.
The algebra: We have already seen in Lemma 2.20 that

A �
N⊕

i=1

Mni (C),

for some n1, . . . , nN . The structure space of A is given by Â � {1, . . . , N } with
each integer i ∈ Â corresponding to the equivalence classes of the representation
of A on C

ni . If we label the latter equivalence class by ni we can also identify
Â � {n1, . . . , nN }.
The Hilbert space:Anyfinite-dimensional faithful representation H of such amatrix
algebra A is completely reducible (i.e. a direct sum of irreducible representations).

Exercise 2.21 Prove this result for any →-algebra by establishing that the comple-
ment W ⊥ of an A-submodule W ⊂ H is also an A-submodule of H.

Combining this with the proof of Lemma 2.15, we conclude that the finite-
dimensionalHilbert space representation H of A has a decomposition into irreducible
representations, which we write as

H �
N⊕

i=1

C
ni ⊗ Vi ,

with each Vi a vector space; we will refer to the dimension of Vi as the multiplicity
of the representation labeled by ni and to Vi itself as the multiplicity space. The
above isomorphism is given by a unitary map.

To begin the construction of our decorated graph, we indicate the presence of a
summand ni in H by drawing a node at position ni ∈ Â in a diagram based on the
structure space Â of the matrix algebra A (see Fig. 2.1 for an example). Multiple
nodes at the same position represent multiplicities of the representations in H .
The finite Dirac operator: Corresponding to the above decomposition of H we can
write D as a sum of matrices

Di j : Cni ⊗ Vi ∗ C
n j ⊗ Vj ,
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n1 ni nj nN

Fig. 2.2 The edges between the nodes ni and n j , and ni and nN represent non-zero operators
Di j : Cni ∗ C

n j ⊗ C
2 (multiplicity 2) and Di N : Cni ∗ C

nN , respectively. Their adjoints give
the operators D ji and DNi

restricted to these subspaces. The condition that D is symmetric implies that Di j =
D→

j i . In terms of the above diagrammatic representation of H , we express a non-zero
Di j and D ji as a (multiple) edge between the nodes ni and n j (see Fig. 2.2 for an
example).

Another way of putting this is as follows, in terms of decorated graphs.

Definition 2.28 A ψ-decorated graph is given by an ordered pair (γ,ψ) of a finite
graph γ and a finite set ψ of positive integers, with a labeling:

• of the vertices v ∈ γ(0) by elements n(v) ∈ ψ;
• of the edges e = (v1, v2) ∈ γ(1) by operators De : C

n(v1) ∗ C
n(v2) and its

conjugate-transpose D→
e : Cn(v2) ∗ C

n(v1) ,

so that n(γ(0)) = ψ.

The operators De between vertices that are labeled by ni and n j , respectively, add
up to the above Di j . Explicitly,

Di j =
∑

e = (v1, v2)

n(v1) = ni

n(v2) = n j

De,

so that also D→
i j = D ji . Thus we have proved the following result.

Theorem 2.29 There is a one-to-one correspondence between finite spectral triples
modulo unitary equivalence and ψ-decorated graphs, given by associating a finite
spectral triple (A, H, D) to a ψ-decorated graph (γ,ψ) in the following way:

A =
⊕

n∈ψ

Mn(C), H =
⊕

v∈γ(0)

C
n(v), D =

∑

e∈γ(1)

De + D→
e .

Example 2.30 The following ψ-decorated graph

De

n

corresponds to the spectral triple (Mn(C),Cn, D = De + D→
e ) of Example 2.21.
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Exercise 2.22 Draw the ψ-decorated graph corresponding to the spectral triple

⎛

⎝A = C
3, H = C

3, D =
⎛

⎝
0 λ 0
λ̄ 0 0
0 0 0

⎞

⎠

⎞

⎠ ; (λ ∼= 0).

Exercise 2.23 Use ψ-decorated graphs to classify all finite spectral triples (modulo
unitary equivalence) on the matrix algebra A = C ⊕ M2(C).

Exercise 2.24 Suppose that (A1, H1, D1) and (A2, H2, D2) are two finite spectral
triples. We consider their direct sum and tensor product and give the corresponding
ψ-decorated graphs.

(1) Show that (A1 ⊕ A2, H1 ⊕ H2, (D1, D2)) is a finite spectral triple.
(2) Describe the ψ-decorated graph of this direct sum spectral triple in terms of the

ψ-decorated graphs of the original spectral triples.
(3) Show that (A1 ⊗ A2, H1 ⊗ H2, D1 ⊗ 1 + 1 ⊗ D2) is a finite spectral triple.
(4) Describe the ψ-decorated graph of this tensor product spectral triple in terms

of the ψ-decorated graphs of the original spectral triples.

Notes

Section 2.1 Finite Spaces and Matrix Algebras

1. The notation KK f in Definition 2.9 is chosen to suggest a close connection
to Kasparov’s bivariant KK-theory [1], here restricted to the finite-dimensional
case. In fact, in the case of matrix algebras the notion of a Kasparov module for
a pair of C→-algebras (A, B) (cf. [2, Sect. 17.1] for a definition) coincides (up to
homotopy) with that of a Hilbert bimodule for (A, B) (cf. [3, Sect. IV.2.1] for a
definition).

2. Definition 2.12 agrees with the notion of equivalence between arbitrary rings
introduced by Morita [4]. Moreover, it is a special case of strong Morita equiv-
alence between C→-algebras as introduced by Rieffel [5].

3. Theorem 2.14 is a special case of a more general result on the structure spaces
of Morita equivalent C→-algebras (see e.g. [6, Sect. 3.3]).

Section 2.2 Noncommutative Geometric Finite Spaces

4. Theorem 2.18 can be found in [7].
5. The reconstruction theorem mentioned in the text before Definition 2.19 is a

special case, to wit the finite-dimensional case, of a result by Connes [8] on a
reconstruction of Riemannian (spin) manifolds from so-called spectral triples
(cf. Definition 4.30 and Note 13 on page 72 below).

6. A complete proof of Lemma 2.20 can be found in [9, Theorem 3.5.4].

http://dx.doi.org/10.1007/978-94-017-9162-5_4
http://dx.doi.org/10.1007/978-94-017-9162-5_4
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7. For a complete exposition on differential algebras, connections on modules,
et cetera, we refer to [10, Chap. 8] and [11] and references therein.

8. The failure of Morita equivalence to induce an equivalence between spectral
triples was noted in [12, Remark 1.143] (see also [13, Remark 5.1.2]). This sug-
gests that it is better to consider Hilbert bimodules as correspondences rather
than equivalences, as was already suggested by Connes and Skandalis in [14]
and also appeared in the applications of noncommutative geometry to number
theory (cf. [12, Chap. 4.3]) and quantization [15]. This forms the starting point
for a categorical description of (finite) spectral triples themselves. As objects
the category has finite spectral triples (A, H, D), and as morphisms it has pairs
(E,∇) as above. This category is the topic of [16, 17], working in the more
general setting of spectral triples, hence requiring much more analysis as com-
pared to our finite-dimensional case. The category of finite spectral triples plays
a crucial role in the noncommutative generalization of spin networks in [18].
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Chapter 3
Finite Real Noncommutative Spaces

In this chapter, we will enrich the finite noncommutative spaces as analyzed in the
previous chapter with a real structure. For one thing, this makes the definition of a
finite spectral triplemore symmetric by demanding the inner product space H to be an
A− A-bimodule, rather than just a left A-module. The implementation of this bimod-
ule structure by an anti-unitary operator has close ties with the Tomita–Takesaki the-
ory of VonNeumann algebras, as well as with physics through charge conjugation, as
will become clear in the applications in the later chapters of this book. Our exposition
includes a diagrammatic classification of finite real spectral triples for all so-called
KO-dimensions, and also identifies the irreducible finite geometries among them.

3.1 Finite Real Spectral Triples

First, the structure of a finite spectral triple can be enriched by introducing a
Z2-grading γ on H , i.e. γ∗ = γ, γ2 = 1, demanding that A is even and D is odd with
respect to this grading:

γ D = −D γ, γ a = a γ; (a ∈ A).

Next, there is a more symmetric refinement of the notion of finite spectral triple in
which H is an A–A-bimodule, rather than just a left A-module. Recall that an anti-
unitary operator is an invertible operator J : H → H that satisfies →Jλ1, Jλ2〉 =
→λ2, λ1〉 for all λ1, λ2 ∈ H .

Definition 3.1 A finite real spectral triple is given by a finite spectral triple
(A, H, D) and an anti-unitary operator J : H → H called real structure, such
that a◦ := Ja∗ J−1 is a right representation of A on H , i.e. (ab)◦ = b◦a◦. We also
require that

[a, b◦] = 0, [[D, a], b◦] = 0, (3.1.1)

W. D. van Suijlekom, Noncommutative Geometry and Particle Physics, 31
Mathematical Physics Studies, DOI: 10.1007/978-94-017-9162-5_3,
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Table 3.1 The KO-dimension k of a real spectral triple is determined by the signs {γ, γ′, γ′′}
appearing in J 2 = ψ, J D = ψ′ D J and J γ = ψ′′ γ J

k 0 1 2 3 4 5 6 7

ψ 1 1 −1 −1 −1 −1 1 1
ψ′ 1 −1 1 1 1 −1 1 1
ψ′′ 1 −1 1 −1

for all a, b ∈ A. Moreover, we demand that J , D and (in the even case) γ satisfy the
commutation relations:

J 2 = ψ, J D = ψ′ D J, J γ = ψ′′ γ J.

for numbers ψ, ψ′, ψ′′ ∈ {−1, 1}. These signs determine the KO-dimension k (modulo
8) of the finite real spectral triple (A, H, D; J, γ) defined according to Table 3.1.

The signs in Table3.1 are motivated by the classification of Clifford algebras, see
Sect. 4.1 below. The two conditions in (3.1.1) are called the commutant property,
and the first-order or order one condition, respectively. They imply that the left
action of an element in A and χ1

D(A) commutes with the right action of A. This is
equivalent to the commutation between the right action of A and χ1

D(A) with the
left action of A.

Remark 3.2 The so-called opposite algebra A◦ is defined to be equal to A as a vector
space but with opposite product ◦:

a ◦ b := ba.

Thus, a◦ = Ja∗ J−1 defines a left representation of A◦ on H : (a ◦ b)◦ = a◦b◦.

Example 3.3 Consider the matrix algebra MN (C), acting on the inner product space
H = MN (C) by left matrix multiplication, and with inner product given by the
Hilbert–Schmidt inner product:

→a, b〉 = Tr a∗b.

Define
γ(a) = a, J (a) = a∗; (a ∈ H).

Since D must be odd with respect to the grading γ, it vanishes identically.

Exercise 3.1 In the previous example, show that the right action of MN (C) on
H = MN (C) as defined by a ≤→ a◦ is given by right matrix multiplication.

The following exercises are inspired by Tomita–Takesaki theory of Von Neumann
algebras.

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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Exercise 3.2 Let A = ⎛
i Mni (C) be a matrix algebra, which is represented on a

vector space H = ⎛
i C

ni ∼ C
mi , i.e. is such that the irreducible representation ni

has multiplicity mi .

(1) Show that the commutant A′ of A is isomorphic to
⎛

i Mmi (C). As a conse-
quence, the double commutant coincides with A, that is to say A′′ ⊕ A.

We say that λ ∈ H is a cyclic vector for A if

Aλ := {aλ : a ∈ A} = H.

We call λ ∈ H a separating vector for A if

aλ = 0 =⇒ a = 0; (a ∈ A).

(2) Show that if λ is a separating vector for the action of A, it is cyclic for the
action of A′. (Hint: Assume λ is not cyclic for the action of A′ and try to derive
a contradiction).

Exercise 3.3 Suppose that (A, H, D = 0) is a finite spectral triple such that H
possesses a cyclic and separating vector λ for A.

(1) Show that the formula S(aλ) = a∗λ defines an anti-linear operator S : H → H.
(2) Show that S is invertible.
(3) Let J : H → H be the operator appearing in the polar decomposition S =

Jν1/2 of S with ν = S∗S. Show that J is an anti-unitary operator.

Conclude that (A, H, D = 0; J ) is a finite real spectral triple. Can you find such an
operator J in the case of Exercise 3.2?

3.1.1 Morphisms Between Finite Real Spectral Triples

We are now going to extend the notion of unitary equivalence (cf. Definition 2.24)
to finite real spectral triples.

Definition 3.4 We call two finite real spectral triples (A1, H1, D1; J1, γ1) and
(A2, H2, D2; J2, γ2) unitarily equivalent if A1 = A2 and if there exists a unitary
operator U : H1 → H2 such that

Uπ1(a)U∗ = π2(a); (a ∈ A1),

U D1U∗ = D2, U γ1 U∗ = γ2, U J1U∗ = J2.

Building on our discussion in Sect. 2.2.1, we can also extend Morita equivalence
to finite real spectral triples. Namely, given a Hilbert bimodule E for (B, A), we will
construct a finite real spectral triple (B, H ′, D′; J ′, γ′) on B, starting from a finite
real spectral triple (A, H, D; J, γ) on A.

http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_2
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Definition 3.5 Let E be a B − A-bimodule. The conjugate module E◦ is given by
the A − B-bimodule

E◦ = {ē : e ∈ E},

with a · ē · b = ¯b∗ · e · a∗ for any a ∈ A, b ∈ B.

This implies for any σ ∈ C that σe = σ̄ē, which explains the suggestive notation ē
for the elements of E◦. The bimodule E◦ is not quite a Hilbert bimodule for (A, B),
since we do not have a natural B-valued inner product. However, there is a A-valued
inner product on the left A-module E◦ given by

→ē1, ē2〉 = →e2, e1〉; (e1, e2 ∈ E).

As opposed to the inner product in Definition 2.9, this inner product is left A-linear:
→aē1, ē2〉 = a→ē1, ē2〉 for all a ∈ A, as can be easily checked.

Exercise 3.4 Show that E◦ is a Hilbert bimodule for (B◦, A◦).

Let us then start the construction of a finite real spectral triple on B by setting

H ′ := E ∼A H ∼A E◦.

There is a (C-valued) inner product on H ′ given by combining the A-valued inner
products on E , E◦ with the C-valued inner product on H , much as in 2.1.1. The
action of B on H ′ is given by

b(e1 ∼ λ ∼ ē2) = (be1) ∼ λ ∼ ē2, (3.1.2)

using just the B − A-bimodule structure of E . In addition, there is a right action of B
on H ′ defined by acting on the right on the component E◦. In fact, it is implemented
by the following anti-unitary,

J ′(e1 ∼ λ ∼ ē2) = e2 ∼ Jλ ∼ ē1,

i.e. b◦ = J ′b∗(J ′)−1 with b∗ ∈ B acting on H ′ according to (3.1.2).
Moreover, there is a finite Dirac operator given in terms of the connection ∇ :

E → E ∼A χ1
D(A) as in Sect. 2.2.1. First, we need the result of the following

exercise.

Exercise 3.5 Let ∇ : E → E ∼A χ1
D(A) be a right connection on E and consider

the following anti-linear map

τ : E ∼A χ1
D(A) → χ1

D(A) ∼A E◦;
e ∼ ω ≤→ −ω∗ ∼ ē.

http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_2
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Show that the map ∇ : E◦ → χ1
D(A) ∼A E◦ defined by ∇(ē) = τ ◦ ∇(e) is a left

connection, i.e. show that it satisfies the left Leibniz rule:

∇(aē) = [D, a] ∼ ē + a∇(ē).

The connections ∇ and ∇ give rise to a Dirac operator on E ∼A H ∼A E◦:

D′(e1 ∼ λ ∼ ē2) = (∇e1)λ ∼ ē2 + e1 ∼ Dλ ∼ ē2 + e1 ∼ λ(∇ ē2).

The right action of ω ∈ χ1
D(A) on λ ∈ H is then defined by λ ≤→ γ′ Jω∗ J−1λ .

Finally, for even spectral triples one defines a grading on E ∼A H ∼A E◦ by
γ′ = 1 ∼ γ ∼1.

Theorem 3.6 Suppose (A, H, D; J, γ) is a finite real spectral triple of
KO-dimension k, and let ∇ : E → E ∼A χ1

D(A) be a compatible connection (cf.
Eq. (2.2.5)). Then (B, H ′, D′; J ′, γ′) is a finite real spectral triple of KO-dimension
k.

Proof The only non-trivial thing to check is that the KO-dimension is preserved. In
fact, one readily checks that (J ′)2 = 1 ∼ J 2 ∼ 1 = γ and J ′ γ′ = γ′′ γ′ J ′. Also,

J ′ D′(e1 ∼ λ ∼ ē2) = J ′ ((∇e1)λ ∼ ē2 + e1 ∼ Dλ ∼ ē2 + e1 ∼ λ(τ∇e2))

= γ′D′(e2 ∼ Jλ ∼ ē1) ⊗ γ′ D′ J ′(e1 ∼ λ ∼ ē2),

where we have used J ′(e1 ∼ JωJ−1λ ∼ ē2) = e2 ∼ ωJλ ∼ ē1. �

3.2 Classification of Finite Real Spectral Triples

In this section, we classify all finite real spectral triples (A, H, D; J, γ) modulo
unitary equivalence using Krajewski diagrams. These play a similar role for finite
real spectral triples as Dynkin diagrams do for simple Lie algebras. Moreover, they
extend our �-decorated graphs of the previous chapter to the case of real spectral
triples.
The algebra: First, we already know from our classification of finite spectral triples
in Sect. 2.3 that

A ⊕
N⎜

i=1

Mni (C),

for some n1, . . . , nN . Thus, the structure space of A is again given by ⎝A =
{n1, . . . , nN } where ni denotes the irreducible representation of A on C

ni .

http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_2
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Fig. 3.1 A node at (ni , n◦
j )

indicates the presence of the
summand C

ni ∼ C
n j ◦ in H ;

the double node indicates the
presence of (Cni ∼ C

ni ◦) ⊕
(Cni ∼ C

ni ◦) in H

n1 ni nj nN

n1

ni

nj

nN

The Hilbert space: As before, the irreducible, faithful representations of A =⎛N
i=1 Mni (C) are given by corresponding direct sums:

N⎜

i=1

C
ni

on which A acts by left block-diagonal matrix multiplication.
Now, besides the representation of A, there should also be a representation of A◦ on

H which commutes with that of A. In other words, we are looking for the irreducible
representations of A ∼ A◦. If we denote the unique irreducible representation of
Mn(C)◦ by C

n◦, this implies that any irreducible representation of A ∼ A◦ is given
by a summand in

N⎜

i, j=1

C
ni ∼ C

n j ◦.

Consequently, any finite-dimensional Hilbert space representation of A has a decom-
position into irreducible representations

H =
N⎜

i, j=1

C
ni ∼ C

n j ◦ ∼ Vi j ,

with Vi j a vector space; we will refer to the dimension of Vi j as the multiplicity of
the representation C

ni ∼ C
n j ◦.

The integers ni and n◦
j form the grid of a diagram (cf. Figure3.1 for an example).
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Whenever there is a node at the coordinates (ni , n◦
j ), the representationC

ni ∼C
n j ◦

is present in the direct sum decomposition of H . Multiplicities are indicated by
multiple nodes.

Example 3.7 Consider the algebra A = C⊕ M2(C). The irreducible representations
of A are given by 1 and 2. The two diagrams

correspond to H1 = C ⊕ M2(C) and H2 = C ⊕ C
2, respectively. We have used the

fact that C2 ∼ C
2◦ ⊕ M2(C). The left action of A on H1 is given by the matrix

⎞
σ 0
0 a

⎟
,

with a ∈ M2(C) acting on M2(C) ⊂ H1 by left matrix multiplication. The right
action of A on H1 corresponds to the same matrix acting by right matrix multiplica-
tion.

On H2, the left action of A is given by matrix multiplication by the above matrix
on vectors in C ⊕ C

2. However, the right action of (σ, a) ∈ A is given by scalar
multiplication with σ on all of H2.

The real structure: Before turning to the finite Dirac operator D, we exploit the
presence of a real structure J : H → H in the diagrammatic approach started above.

Exercise 3.6 Let J be an anti-unitary operator on a finite-dimensional Hilbert
space. Show that J 2 is a unitary operator.

Lemma 3.8 Let J be an anti-unitary operator on a finite-dimensional Hilbert space
H with J 2 = ±1.

(1) If J 2 = 1 then there is an orthonormal basis {ek} of H such that Jek = ek .
(2) If J 2 = −1 then there is an orthonormal basis {ek, fk} of H such that Jek = fk

(and, consequently, J fk = −ek).

Proof (1) Take any v ∈ H and set

e1 :=
⎠

c(v + Jv) if Jv ≥= −v

iv if Jv = −v,

with c a normalization constant. Then J (v + Jv) = Jv + J 2v = v + Jv and
J (iv) = −i Jv = iv in the two respective cases, so that Je1 = e1.

Next, take a vector v′ that is orthogonal to e1. Then

(e1, Jv′) = (J 2v′, Je1) = (v′, Je1) = (v′, e1) = 0,
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so that also Jv′ ≡ e1. As before, we set

e2 :=
⎠

c(v′ + Jv′) if Jv′ ≥= −v′
iv′ if Jv′ = −v′,

which by the above is orthogonal to e1. Continuing in this way gives a basis {ek} for
H with Jek = ek .
(2) Take any v ∈ H and set e1 = cv with c a normalization constant. Then f1 = Je1
is orthogonal to e1, since

( f1, e1) = (Je1, e1) = −(Je1, J 2e1) = −(Je1, e1) = −( f1, e1).

Next, take another v′ ≡ e1, f1 and set e2 = c′v′. As before, f2 := Je2 is orthogonal
to e2, and also to e1 and f1:

(e1, f2) = (e1, Je2) = −(J 2e1, Je2) = −(e2, Je1) = −(e2, f1) = 0,

( f1, f2) = (Je1, Je2) = (e2, e1) = 0.

Continuing in this way gives a basis {ek, fk} for H with Jek = fk . �

Wewill nowapply these results to the anti-unitary operator givenby a real structure
on a spectral triple. Recall that in this case, J : H → H implements a right action
of A on H , via

a◦ = Ja∗ J−1

satisfying [a, b◦] = 0. Together with the block-form of A, this implies that

J (a∗
1 ⊕ · · · ⊕ a∗

N ) = (a◦
1 ⊕ · · · ⊕ a◦

N )J.

We conclude that the Krajewski diagram for a real spectral triple must be symmetric
along the diagonal, J mapping each subspace Cni ∼C

n j ◦ ∼ Vi j bijectively to Cn j ∼
C

ni ◦ ∼ Vji (see Fig. 3.2 below).

Proposition 3.9 Let J be a real structure on a finite real spectral triple (A, H, D; J ).

(1) If J 2 = 1 (KO-dimension 0,1,6,7) then there is an orthonormal basis {e(i j)
k }

(i, j = 1, . . . , N , k = 1, . . . , dim Vi j ) with e(i j)
k ∈ C

ni ∼ C
n j ◦ ∼ Vi j such that

Je(i j)
k = e( j i)

k ; (i, j = 1, . . . , N ; k = 1, . . . , dim Vi j ).

(2) If J 2 = −1 (KO-dimension 2,3,4,5) then there is an orthonormal basis
{e(i j)

k , f ( j i)
k } (i ∞ j = 1, . . . , N , k = 1, . . . , dim Vi j ) with e(i j)

k ∈ C
ni ∼C

n j ◦ ∼
Vi j , f ( j i)

k ∈ C
n j ∼ C

ni ◦ ∼ Vji and such that
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Je(i j)
k = f ( j i)

k ; (i ∞ j = 1, . . . , N ; k = 1, . . . , dim Vi j ).

Proof We imitate the proof Lemma 3.8.
(1) If i ≥= j , take v ∈ C

ni ∼ C
n j ◦ ∼ Vi j and set e(i j)

1 = cv. Then, by the above

observation, e( j i)
1 = Je(i j)

1 is an element in C
n j ∼ C

ni ◦ ∼ Vji . Next, take v′ ∈
C

ni ∼C
n j ◦ ∼ Vi j with v′ ≡ v and apply the same procedure to obtain e(i j)

2 and e( j i)
2 .

Continuing in this way gives an orthonormal basis {e(i j)
k } for Cni ∼C

n j ◦ ∼ Vi j , and

an orthonormal basis {e( j i)
k } for Cn j ∼ C

ni ◦ ∼ Vji which satisfy Je(i j)
k = e( j i)

k .
If i = j , then Lemma 3.8(1) applies directly to the anti-unitary operator given by

J restricted to C
ni ∼ C

ni ◦ ∼ Vii .
(2) can be proved along the same lines. �

Note that this result implies that in the case of KO-dimension 2, 3, 4 and 5, the
diagonal Cni ∼ C

ni ◦ ∼ Vii needs to have even multiplicity.

The finite Dirac operator: Corresponding to the above decomposition of H we
can write D as a sum of matrices

Di j,kl : Cni ∼ C
n j ◦ ∼ Vi j → C

nk ∼ C
nl◦ ∼ Vkl ,

restricted to these subspaces. The condition D∗ = D implies that Dkl,i j = D∗
i j,kl . In

terms of the above diagrammatic representation of H , we express a non-zero Di j,kl

as a line between the nodes (ni , n◦
j ) and (nk, n◦

l ). Instead of drawing directed lines,
we draw a single undirected line, capturing both Di j,kl and its adjoint Dkl,i j (see Fig.
3.3 below).

Lemma 3.10 The condition J D = ±D J and the order one condition given by
[[D, a], b◦] = 0 forces the lines in the diagram to run only vertically or horizontally
(or between the same node), thereby maintaining the diagonal symmetry between
the nodes in the diagram.

Proof The condition J D = ±D J easily translates into a commuting diagram:

C
ni ∼ C

n j ◦ ∼ Vi j
D

��

J
��

C
nk ∼ C

nl◦ ∼ Vkl

J
��

C
n j ∼ C

ni ◦ ∼ Vji ±D
�� Cnl ∼ C

nk◦ ∼ Vlk

thus relating Di j,kl to D ji,lk , maintaining the diagonal symmetry.
If we write the order one condition [[D, a], b◦] = 0 for diagonal elements a =

σ1In1 ⊕ · · · ⊕ σN InN ∈ A and b = μ1In1 ⊕ · · · ⊕ μN InN ∈ A with σi , μi ∈ C, we
compute

Di j,kl(σi − σk)(μ̄ j − μ̄l) = 0,

for all σi , μ j ∈ C. As a consequence, Di j,kl = 0 whenever i ≥= k or j ≥= l. �
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Grading: Finally, if there is a grading γ : H → H , then each node in the diagram
gets labeled by a plus or minus sign. The rules are that:

• D connects nodes with different signs;
• If the node (ni , n◦

j ) has sign ±, then the node (n j , n◦
i ) has sign ±γ′′, according to

J γ = γ′′ γ J .

Finally, we arrive at a diagrammatic classification of finite real spectral triples of
any KO-dimension.

Definition 3.11 A Krajewski diagram of KO-dimension k is given by an ordered
pair (φ,�) of a finite graph φ and a finite set � of positive integers with a labeling:

• of the vertices v ∈ φ(0) by elements ι(v) = (n(v), m(v)) ∈ � × �, where the
existence of an edge from v to v′ implies that either n(v) = n(v′), m(v) = m(v′),
or both;

• of the edges e = (v1, v2) ∈ φ(1) by non-zero operators:

De : Cn(v1) → C
n(v2) if m(v1) = m(v2);

De : Cm(v1) → C
m(v2) if n(v1) = n(v2),

and their adjoints D∗
e ,

together with an involutive graph automorphism j : φ → φ so that the following
conditions hold:

(1) every row or column in � × � has non-empty intersection with ι(φ);
(2) for each vertex v we have (n( j (v)) = m(v);
(3) for each edge e we have De = γ′D j (e);
(4) if the KO-dimension k is even, then the vertices are additionally labeled by ±1

and the edges only connect opposite signs. The signs at v and j (v) differ by a
factor γ, according to the table of Definition 3.1;

(5) if the K O-dimension is 2,3,4,5 then the inverse image under ι of the diagonal
elements in � × � contains an even number of vertices of φ.

Note that this definition allows for different vertices of φ to be labeled by the
same element in � × �; this accounts for the multiplicities appearing in Vi j that we
have encountered before.

This indeed gives rise to a diagram of the above type, by putting a node at position
(ni , n◦

j ) for each vertex carrying the label (ni , n j ) ∈ �×�. The notation n◦
j instead

of n j is just for a convenient diagrammatic exposition. The operators De between
vertices that are labeled by (ni , n j ) and (nk, nl), respectively, add up to the above
Di j,kl . Explicitly,

Di j,kl =
∑

e=(v1,v2)∈φ(1)

ι(v1)=(ni ,n j )

ι(v2)=(nk ,nl )

De,
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so that indeed D∗
i j,kl = Dkl,i j . Moreover, the only non-zero entries Di j,kl will appear

when i = k, or j = l, or both. Thus, we have shown

Theorem 3.12 There is a one-to-one correspondence between finite real spectral
triples of K O-dimension k modulo unitary equivalence and Krajewski diagrams of
KO-dimension k. Specifically, one associates a real spectral triple (A, H, D; J, γ)

to a Krajewski diagram in the following way:

A =
⎜

n∈�

Mn(C);

H =
⎜

v∈φ(0)

C
n(v) ∼ C

m(v)◦;

D =
∑

e∈φ(1)

De + D∗
e .

Moreover, the real structure J : H → H is given as in Proposition 3.9, with the
basis dictated by the graph automorphism j : φ → φ. Finally, a grading γ on H is
defined by setting γ to be ±1 on C

n(v) ∼ C
m(v)◦ ⊂ H according to the labeling by

±1 of the vertex v.

Example 3.13 Consider the case A = C ⊕ C. There are ten possible Krajewski
diagrams in KO-dimension 0 with multiplicities less than or equal to 1: in terms of
⎝A = {11, 12}, we have

�������	�������	

�������	 �������	

�������	�������	

�������	 �������	

�������	�������	

�������	 �������	

�������	�������	

�������	 �������	

�������	�������	

�������	

�������	�������	

�������	

�������	

�������	 �������	

�������	

�������	 �������	

�������	

�������	

�������	

�������	

where the diagonal vertices are labeled with a plus sign, and the off-diagonal vertices
with a minus sign.

Let us consider the last diagram in the top row in more detail and give the corre-
sponding spectral triple:

First, the inner product space is H = C
3, where we choose the middle copy of C to

correspond to the node on the diagonal. The edges indicate that there are non-zero
components of D that map between the first two copies of C in H and between the
second and third copy of C. In other words,
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D =
⎡

⎧
0 σ 0
σ̄ 0 μ

0 μ̄ 0

⎨

⎩

for some σ,μ ∈ Hom(C,C) ⊕ C that are the given labels on the two edges. In this
basis,

γ =
⎡

⎧
−1 0 0
0 1 0
0 0 −1

⎨

⎩ .

Finally, J is given by thematrix K composed with complex conjugation on H , where

K =
⎡

⎧
0 0 1
0 1 0
1 0 0

⎨

⎩ .

From this it is clear that we indeed have

D γ = − γ D; D J = J D; J γ = γ J.

Exercise 3.7 Use the ten Krajewski diagrams of the previous example to show that
on A = C⊕C a finite real spectral triple of K O-dimension 6 with dim H ∞ 4 must
have vanishing finite Dirac operator.

Example 3.14 Consider A = Mn(C) so that ⎝A = {n}. We then have a Krajewski
diagram

n
n◦ ◦

The node can be labeled only by either plus or minus one, the choice being irrelevant.
This means that H = C

n ∼ C
n◦ ⊕ Mn(C) with γ the trivial grading. The operator

J is a combination of complex conjugation and the flip on n ∼ n◦: this translates to
Mn(C) as taking the matrix adjoint. Moreover, since the single node has label ±1,
there are no non-zero Dirac operators. Hence, the finite real spectral triple of this
diagram corresponds to

(A = Mn(C), H = Mn(C), D = 0; J = (·)∗, γ = 1),

and was encountered already in Exercise 3.3.

3.3 Real Algebras and Krajewski Diagrams

Thus far, we have considered finite spectral triples on complex algebras. In practice,
it is useful to allow real ∗-algebras in Definition 2.19 as well.

http://dx.doi.org/10.1007/978-94-017-9162-5_2
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Definition 3.15 A real algebra is a vector space A overRwith a bilinear associative
product A × A → A denoted by (a, b) ≤→ ab and a unit 1 satisfying 1a = a1 = a
for all a ∈ A.

A real ∗-algebra (or, involutive algebra) is a real algebra A together with a real
linear map (the involution) ∗ : A → A such that (ab)∗ = b∗a∗ and (a∗)∗ = a for
all a, b ∈ A.

Example 3.16 A particularly interesting example in this context is given by H, the
real ∗-algebra of quaternions, defined as a real subalgebra of M2(C):

H =
⎠⎞

α β

−β̄ ᾱ

⎟
: α, β ∈ C

}
.

This is indeed closed under multiplication. As a matter of fact, H consists of those
matrices in M2(C) that commute with the operator I defined by

I

⎞
v1
v2

⎟
=

⎞−v2
v1

⎟
.

The involution is inherited from M2(C) and is given by hermitian conjugation.

Exercise 3.8 (1) Show that H is a real ∗-algebra which contains a real subalgebra
isomorphic to C.

(2) Show that H ∼R C ⊕ M2(C) as complex ∗-algebras.
(3) Show that Mk(H) is a real ∗-algebra for any integer k.
(4) Show that Mk(H) ∼R C ⊕ M2k(C) as complex ∗-algebras.

When considering Hilbert space representations of a real ∗-algebra, one must be
careful, because the Hilbert space will be assumed to be a complex space.

Definition 3.17 A representation of a finite-dimensional real ∗-algebra A is a pair
(H, π)where H is a (finite-dimensional, complex)Hilbert space andπ is a real-linear
∗-algebra map

π : A → L(H).

Also, although there is a great deal of similarity, we stress that the definition of
the real structure J in Definition 2.19 is not related to the algebra A being real or
complex.

Exercise 3.9 Show that there is a one-to-one correspondence between Hilbert space
representations of a real ∗-algebra A and complex representations of its complexifi-
cation A ∼RC. Conclude that the unique irreducible (Hilbert space) representation
of Mk(H) is given by C

2k .

Lemma 3.18 Suppose that a real ∗-algebra A is represented faithfully on a finite-
dimensional Hilbert space H through a real-linear ∗-algebra map π : A → L(H).
Then A is a matrix algebra:

http://dx.doi.org/10.1007/978-94-017-9162-5_2


44 3 Finite Real Noncommutative Spaces

A ⊕
N⎜

i=1

Mni (Fi ),

where Fi = R,C or H, depending on i .

Proof The representationπ allows to consider A as a real∗-subalgebra of Mdim H (C),
hence A+ i A can be considered a complex ∗-subalgebra of Mdim H (C). Thus A+ i A
is a matrix algebra, and wemay restrict to the case A+ i A = Mk(C) for some k ⇐ 1.
Note that A ⇒ i A is a two-sided ∗-ideal in Mk(C). As such, it must be either the
whole of Mk(C), or zero. In the first case, A + i A = A ⇒ i A so that A = Mk(C).
If A ⇒ i A = {0}, then we can uniquely write any element in Mk(C) as a + ib with
a, b ∈ A. Moreover, A is the fixed point algebra of the anti-linear automorphism α

of Mk(C) given by α(a + ib) = a − ib (a, b ∈ A). We can implement α by an anti-
linear isometry I on C

k such that α(x) = I x I −1 for all x ∈ Mk(C). Since α2 = 1,
the operator I 2 commutes with Mk(C) and is therefore proportional to a complex
scalar. Together with I 2 being an isometry, this implies that I 2 = ±1 and that A is
precisely the commutant of I . We now once again use Lemma 3.8 to conclude that

• If I 2 = 1, then there is a basis {ei } of Ck such that I ei = ei . Since a matrix in
Mk(C) that commutes with I must have real entries, this gives

A = Mk(R).

• If I 2 = −1, then there is a basis {ei , fi } of Ck such that I ei = fi (and thus k is
even). Since a matrix in Mk(C) that commutes with I must be a k/2× k/2-matrix
with quaternionic entries, we obtain

A = Mk/2(H). �

We now reconsider the diagrammatic classification of finite spectral triples, with
real ∗-algebras represented faithfully on a Hilbert space. In fact, as far as the decom-
position of H into irreducible representations is concerned, we can replace A by the
complex ∗-algebra

A + i A ⊕
N⎜

i=1

Mni (C).

Thus, the Krajewski diagrams in Definition 3.11 classify such finite real spectral
triples as well as long as we take the Fi for each i into account. That is, we enhance
the set � to be

� = {n1F1, . . . , nNFN },

reducing to the previously defined � when all Fi = C.
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Fig. 3.2 The presence of
the real structure J implies
a symmetry in the diagram
along the diagonal

n1 ni nj nN

n1

ni

nj

nN

Fig. 3.3 The lines between
two nodes represent a non-
zero Dii, j i : Cni ∼ C

n◦
i →

C
n j ∼ C

n◦
i , as well as its

adjoint D ji,i i : Cn j ∼ C
n◦

i →
C

ni ∼ C
n◦

i . The non-zero
components Dii,i j and Di j,i i
are related to ±Dii, j i and
±D ji,i i , respectively, accord-
ing to J D = ±D J

ni nj

ni

nj

3.4 Classification of Irreducible Geometries

We now classify irreducible finite real spectral triples of KO-dimension 6. This
leads to a remarkably concise list of spectral triples, based on the matrix algebras
MN (C) ⊕ MN (C) for some N .

Definition 3.19 A finite real spectral triple (A, H, D; J, γ) is called irreducible if
the triple (A, H, J ) is irreducible. More precisely, we demand that:

(1) The representations of A and J in H are irreducible;
(2) The action of A on H has a separating vector (cf. Exercise 3.2).

Theorem 3.20 Let (A, H, D; J, γ) be an irreducible finite real spectral triple of
KO-dimension 6. Then there exists a positive integer N such that A ⊕ MN (C) ⊕
MN (C).

Proof Let (A, H, D; J, γ) be an arbitrary finite real spectral triple, corresponding
to e.g. the Krajewski diagram of Fig. 3.2. Thus, as in Sect. 2.3 we have

http://dx.doi.org/10.1007/978-94-017-9162-5_2
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A =
N⎜

i=1

Mni (C), H =
N⎜

i, j=1

C
ni ∼ C

n j ◦ ∼ Vi j ,

with Vi j corresponding to the multiplicities as before. Now each C
ni ∼ C

n j is an
irreducible representation of A, but in order for H to support a real structure J :
H → H we need both C

ni ∼ C
n j and C

n j ∼ C
ni to be present in H . Moreover,

Lemma 3.8 with J 2 = 1 assures that already with multiplicities dim Vi j = 1 there
exists such a real structure. Hence, the irreducibility condition (1) above yields

H = C
ni ∼ C

n j ⊕ C
n j ∼ C

ni ,

for some i, j ∈ {1, . . . , N }. Or, as a Krajewski diagram:

ni n j

n◦
i ◦

n◦
j ◦

Then, let us consider condition (2) on the existence of a separating vector. Note
first that the representation of A in H is faithful only if A = Mni (C) ⊕ Mn j (C).
Second, the stronger condition of a separating vector λ then implies ni = n j , as it is
equivalent to A′λ = H for the commutant A′ of A in H (see Exercise 3.2). Namely,
since A′ = Mn j (C) ⊕ Mni (C) with dim A′ = n2

i + n2
j , and dim H = 2ni n j we find

the desired equality ni = n j . �

With the complex finite-dimensional algebras A given by MN (C) ⊕ MN (C),
the additional demand that H carries a symplectic structure I 2 = −1 yields real
algebras of which A is the complexification (as in the proof of Lemma 3.18). In view
of Exercise 3.8(4) we see that this requires N = 2k so that one naturally considers
triples (A, H, J ) for which A = Mk(H) ⊕ M2k(C) and H = C

2(2k)2 . The case
k = 2 will come back in the final Chap.11 as the relevant one to consider in particle
physics applications that go beyond the Standard Model.

Notes

Section 3.1 Finite Real Spectral Triples

1. The operator D in Definition 3.1 is a first-order differential operator on the
bimodule H in the sense of [1].

2. Exercises 3.2 and 3.3 develop Tomita–Takesaki theory for matrix algebras, con-
sidered as finite-dimensional Von Neumann algebras. For a complete treatment
of this theory for general Von Neumann algebras, we refer to e.g. [2].

http://dx.doi.org/10.1007/978-94-017-9162-5_11
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Section 3.2 Classification of Finite Real Spectral Triples

3. Krajewski’s work on the classification of all finite real spectral triples (A, H, D;
J, γ) modulo unitary equivalence (based on a suggestion in [3]) is published
in [4]. Similar results were obtained independently in [5]. We have extended
Krajewski’s work—which is in KO-dimension 0—to any KO-dimension.
The classification of finite real spectral triples (but without Krajewski diagrams)
is also the subject of [6]. The KO-dimension 6 case—which is of direct physical
interest as we will see below in Chap.11—was also handled in [7].

4. Lemma 3.8 is based on [8], where Wigner showed that anti-unitary operators on
finite-dimensional Hilbert spaces can be written in a normal form. His crucial
observation is that J 2 is unitary, allowing for a systematic study of a normal
form of J for each of the eigenvalues of J 2 (these eigenvalues form a discrete
subset of the complex numbers of modulus one). In our case of interest, J is a
real structure on a spectral triple (as in Definition 3.1), so that J 2 = ±1.

5. In the labelling of the nodes in a Krajewski diagram with ±-signs, it is impor-
tant whether or not we adopt the so-called orientation axiom [3]. In the finite-
dimensional case, this axiom demands that the grading γ can be implemented by
elements xi , yi ∈ A as γ = ⎫

i xi y◦
i . Hence, this is completely dictated by the

operator J and the representation of A. In terms of our diagrams, this translates
to the fact that the grading of a node only depends on the label (ni , n◦

j ). In this
book, we will not assume the orientation axiom.

Section 3.4 Classification of Irreducible Geometries

6. Finite irreducible geometries have been classified by Chamseddine and Connes
in [9], using different methods. We here confront their result with the above
approach to finite spectral triples using Krajewski diagrams and find that they
are compatible.
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Chapter 4
Noncommutative Riemannian
Spin Manifolds

We now extend our treatment of noncommutative geometric spaces from the finite
case to the continuum. This generalizes spinmanifolds to the noncommutativeworld.
The resulting spectral triples form the key technical device in noncommutative
geometry, and in the physical applications of Part 2 of this book in particular.

We start with a treatment of Clifford algebras, as a preparation for the
definition of a spin structure on a Riemannian manifold, and end with a definition of
its noncommutative generalization.

4.1 Clifford Algebras

Let V be a vector space over a field F (= R, C or H), equipped with a quadratic form
Q : V ∗ F, i.e.

Q(λv) = λ2Q(v); (λ ∈ F, v ∈ V ),

Q(v + w) + Q(v − w) = Q(v) + Q(w); (v,w ∈ V ).

Definition 4.1 For a quadratic form Q on V , the Clifford algebra Cl(V, Q) is the
algebra generated (overF) by the vectors v ∈ V andwith unit 1 subject to the relation

v2 = Q(v)1. (4.1.1)

Note that the Clifford algebra Cl(V, Q) is Z2-graded, with grading φ given by

φ(v1 · · · vk) = (−1)kv1 · · · vk,
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which is indeed compatible with relation (4.1.1). Accordingly, we decompose

Cl(V, Q) =: Cl0(V, Q) ⊕ Cl1(V, Q)

into an even and odd part.

Exercise 4.1 Show that in Cl(V, Q) we have

vw + wv = 2gQ(v,w),

where gQ is the pairing V × V ∗ F associated to Q, given by

gQ(v,w) = 1

2
(Q(v + w) − Q(v) − Q(w)) .

We also introduce the following convenient notation for the Clifford
algebras for the vector spaces R

n and C
n equipped with the standard quadratic form

Qn(x1, . . . , xn) = x21 + · · · x2n :

Cl+n := Cl(Rn, Qn);
Cl−n := Cl(Rn,−Qn);
Cln := Cl(Cn, Qn).

Both Cl+n and Cl−n are algebras over R generated by e1, . . . , en with relations

ei e j + e j ei = ±2πi j , (4.1.2)

for all i, j = 1, . . . , n. Moreover, the even part (Cl±n )0 of Cl±n consists of products
of an even number of ei ’s, and the odd part (Cl±n )1 of products of an odd number of
ei ’s.

The Clifford algebra Cln is the complexification of both Cl+n and Cl−n , and is
therefore generated over C by the same e1, . . . , en satisfying (4.1.2).

Exercise 4.2 (1) Check that Eq. (4.1.2) indeed corresponds to the defining relations
in Cl±n .

(2) Show that the elements ei1 · · · eir with 1 → i1 < i2 < · · · < ir → n form a basis
for Cl±n .

(3) Conclude that dimR Cl±n = 2n and, accordingly, dimC Cln = 2n.
(4) Find an isomorphism Cl(Cn, Qn) � Cl(Cn,−Qn) as Clifford algebras.

Proposition 4.2 The even part (Cl−n+1)
0 of Cl−n+1 is isomorphic to Cl−n .

Proof We construct a map λ : Cl−n ◦∗ (Cl−n+1)
0 given on generators by

λ(ei ) = en+1ei . (4.1.3)



4.1 Clifford Algebras 51

Indeed, for i, j = 1, . . . , n we have

λ(ei )λ(e j ) + λ(e j )λ(ei ) = ei e j + e j ei = −2πi j = λ(−2πi j ),

using ei er+1 = −er+1ei and er+1er+1 = −1. Thus, λ extends to a homomorphism
Cl−n ◦∗ (Cl−n+1)

0. Moreover, since λ sends basis vectors in Cl−n to basis vectors in
(Cl−n+1)

0 and the dimensions of Cl−n and (Cl−n+1)
0 coincide, it is an isomorphism. �

Exercise 4.3 Show that the same expression (4.1.3) induces an isomorphism from
Cl−n to the even part (Cl+n+1)

0 and conclude that (Cl+n+1)
0 � (Cl−n+1)

0.

Next, we compute the Clifford algebras Cl±n and Cln . We start with a recursion
relation:

Proposition 4.3 For any k ≥ 1 we have

Cl+k ≤R Cl−2 � Cl−k+2,

Cl−k ≤R Cl+2 � Cl+k+2 .

Proof The map λ : Cl−k+2 ∗ Cl+k ≤R Cl−2 given on generators by

λ(ei ) =
⎛
1 ≤ ei i = 1, 2
ei−2 ≤ e1e2 i = 3, . . . , n

⎜
.

extends to the desired isomorphism. �

Let us compute some of the Clifford algebras in lowest dimensions.

Proposition 4.4

Cl+1 � R ⊕ R, Cl−1 � C,

Cl+2 � M2(R), Cl−2 � H.

Proof The Clifford algebra Cl+1 is generated (over R) by 1 and e1 with relation
e21 = 1. We map Cl+1 linearly to the algebra R ⊕ R by sending

1 ◦∗ (1, 1), e1 ◦∗ (1,−1).

A dimension count shows that this map is a bijection.
The Clifford algebra Cl+2 is generated by 1, e1, e2 with relations

e21 = 1, e22 = 1, e1e2 = −e2e1.
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A bijective map Cl+2
∼∗ M2(R) is given on generators by

1 ◦∗
⎝
1 0
0 1

⎞
, e1 ◦∗

⎝
1 0
0 −1

⎞
, e2 ◦∗

⎝
0 1
1 0

⎞
.

We leave the remaining Cl−1 and Cl+2 as an illustrative exercise to the reader. �
Exercise 4.4 Show that Cl−1 � C and Cl−2 � H.

Combining the above two Propositions, we derive Table 4.1 for the Clifford alge-
bras Cl±n and Cln for n = 1, . . . , 8. For instance,

Cl+3 � Cl−1 ≤R Cl+2 � C ≤R M2(R) � M2(C)

and

Cl+4 � Cl−2 ≤R Cl+2 � H ≤R M2(R) � M2(H)

and so on. In particular, we have

Cl+n ≤Cl+4 � Cln+4

and

Cl+n+8 � Cl+n ≤Cl+8 .

With Cl+8 � M16(R) we conclude that Cl+k+8 is Morita equivalent to Cl+k (cf. The-
orem 2.14). Similarly, Cl−k+8 is Morita equivalent to Cl−k . Thus, in this sense Table
4.1 has periodicity eight and we have determined Cl±n for all n.

For the complex Clifford algebras, there is a periodicity of two:

Cln ≤C Cl2 � Cln+2,

so that with Cl2 � M2(C) we find that Cln is Morita equivalent to Cln+2.
The (semi)simple structure of Cln is further clarified by

Definition 4.5 The chirality operator ψn+1 in Cln is defined as the element

ψn+1 = (−i)me1 · · · en,

where n = 2m or n = 2m + 1, depending on whether n is even or odd.

Exercise 4.5 Show that

(1) if n = 2m is even, then ψn+1 generates the center of Cln,
(2) if n = 2m + 1 is odd, then ψn+1 lies in the odd part Cl12k+1, and the center of

Cln is generated by 1 and ψn+1.

http://dx.doi.org/10.1007/978-94-017-9162-5_2
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Table 4.1 Clifford algebras Cl±n and their complexifications Cln for n = 1, . . . , 8

n Cl+n Cl−n Cln

1 R ⊕ R C C ⊕ C

2 M2(R) H M2(C)

3 M2(C) H ⊕ H M2(C) ⊕ M2(C)

4 M2(H) M2(H) M4(C)

5 M2(H) ⊕ M2(H) M4(C) M4(C) ⊕ M4(C)

6 M4(H) M8(R) M8(C)

7 M8(C) M8(R) ⊕ M8(R) M8(C) ⊕ M8(C)

8 M16(R) M16(R) M16(C)

4.1.1 Representation Theory of Clifford Algebras

We determine the irreducible representations of the Clifford algebras Cl±n and Cln .
Let us start with the complex Clifford algebras.

Proposition 4.6 The irreducible representations of Cln are given as

C
2m ; (n = 2m),

C
2m

, C
2m ; (n = 2m + 1).

Proof Since theCln are matrix algebras we can invoke Lemma 2.15 to conclude that
in the even-dimensional case the irreducible representation of Cl2m � M2m (C) is
given by the defining representation C

2m
. In the odd-dimensional case we have

Cl2m+1 � M2m (C) ⊕ M2m (C),

so that the irreducible representations are given by two copies ofC
2m
, corresponding

to the two summands in this matrix algebra. �

For the real Clifford algebras Cl±n we would like to obtain the irreducible repre-
sentations from those just obtained for the complexification Cln � Cl±n ≤RC. As
Cl±n are matrix algebras over R and H, this leads us to the following possibilities:

(1) Restrict an (irreducible) representation of Cln to a real subspace, stable under
Cl±n ;

(2) Extend an (irreducible) representation of Cln to a quaternionic space, carrying
a representation of Cl±n .

This is very similar to our approach to real algebras in Sect. 3.3. In fact, wewill use an
anti-linear map J±

n on the representation space, furnishing it with a real ((J±
n )2 = 1)

or quaternionic structure ((J±
n )2 = −1) to select the real subalgebra Cl±n ⊕ Cln . For

the even-dimensional case we search for operators J±
2m such that on the irreducible

Cl2m-representations C
2m

we have

http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_3
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Cl±2m � ⎟
a ∈ Cl2m : [J±

2m, a] = 0
⎠
. (4.1.4)

The odd case is slightly more subtle, as only the even part (Cl±n )0 of Cl±n can be
recovered in this way:

(Cl±2m+1)
0 �

{
a ∈ Cl02m+1 : [J±

2m+1, a] = 0
⎡

. (4.1.5)

Proposition 4.7 For any m ≥ 1 there exist anti-linear operators J±
2m : C

2m ∗ C
2m

and J±
2m+1 : C

2m ∗ C
2m

such that the Eqs. (4.1.4) and (4.1.5) hold.

Proof From Proposition 4.2 and Exercise 4.3 we see that (Cl±2m+1)
0 � Cl−2m and

(Cl2m+1)
0 � Cl2m so that the odd case follows from the even case.

By periodicity we can further restrict to construct only J±
2m for m = 1, 2, 3, 4.

For m = 1 we select the real form Cl+2 � M2(R) in Cl2 � M2(C) as the commutant
of J+

2 with

J+
2 : C

2 ∗ C
2;

⎝
v1
v2

⎞
◦∗

⎝
v1
v2

⎞
.

Instead, as in Example 3.16, Cl−2 � H can be identified as a real subalgebra Cl2 �
M2(C) with the commutant of J−

2 , where

J−
2 : C

2 ∗ C
2;

⎝
v1
v2

⎞
◦∗

⎝−v2
v1

⎞
.

For m = 2 the sought-for operator J+
4 ≡ J−

4 on C
4 is given by J−

2 ⊕ J−
2 .

For m = 3 we set J+
6 = (J−

2 )⊕4 to select Cl+6 � M4(H) inside Cl6, and
J−
6 = (J+

2 )⊕4 to select Cl−6 � M8(R).
Finally, for m = 4 the operator J+

8 ≡ J−
8 := (J+

2 )⊕8 selects the two isomorphic
real forms Cl±8 ⊕ Cl8. �

The signs for the squares (J±
n )2 are listed in Table 4.2. The isomorphisms between

the odd- and even-dimensional cases are illustrated by the fact that

(J±
2m+1)

2 = (J−
2m)2.

with periodicity eight. We also indicated the commutation between J±
n and odd

elements in Cl±n and between J±
n and the chirality operator ψn+1. For the derivation

of the former note that for n even J±
n commutes with all elements in Cl±n , whereas

for n odd we follow the proof of Proposition 4.7:

http://dx.doi.org/10.1007/978-94-017-9162-5_3
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Table 4.2 The real and quaternionic structures on the irreducible representations of Cln that select
Cl±n via (4.1.4) for n even and (Cl±n )0 via (4.1.5) for n odd

n 1 2 3 4 5 6 7 8

(J+
n )2 = ±1 1 1 −1 −1 −1 −1 1 1

(J−
n )2 = ±1 1 −1 −1 −1 −1 1 1 1

J−
n x = (±1)x J−

n , x odd −1 1 1 1 −1 1 1 1
J−

n ψn+1 = (±1)ψn+1 J−
n −1 1 −1 1

For later reference, we also indicated the commutation or anti-commutation of J−
n with the chirality

operator ψn+1 defined in Definition 4.5 and odd elements in (Cl±n )1 ⊕ Cl±n

• n = 1: J−
1 is equal to J−

0 , which is given by J−
0 (z) = z̄ for z ∈ C, and (4.1.5)

selects (Cl−1 )0 � R in Cl−1 � C. Thus, the remaining part (Cl−1 )1 � iR so that
odd elements x ∈ (Cl−1 )1 anti-commute with J−

1 .
• n = 3: J−

3 is equal to J−
2 , which is given by the standard quaternionic structure

on C
2. It then follows that all of Cl−3 � H ⊕ H commutes with J−

3 .
• n = 5: in this case J−

5 is equal to J−
4 , which is two copies of J−

2 . This selects
(Cl−5 )0 � M2(H) in Cl−5 � M4(C). Again, the remaining part (Cl−5 )1 � i M2(H)

so that odd elements x ∈ (Cl−5 )0 anti-commute with J−
5 .

• n = 7: J−
7 is equal to J−

6 , which is given by component-wise complex conjugation
of vectors in C

8. It follows that all of Cl−7 � M8(R)⊕ M8(R) commutes with J−
6 .

Finally, in the even case n = 2m the (anti)-commutation between the chirality
operator ψn+1 and the anti-linear operator J−

n depends only on the power of the
factor im . Indeed, the even product of ei ’s in Definition 4.5 already commutes with
J−

n , so that the signs (−1)m for n = 2m follow from

J−
n im = (−i)m J−

n .

The last three rows of Table 4.2 give precisely the sign table that appears for real
spectral triples below, where n is the corresponding KO-dimension, and hence coin-
cide with Table 3.1 of Definition 3.1. We will now slowly move to the spin manifold
case, tracing KO-dimension back to its historical roots.

4.2 Riemannian Spin Geometry

We here give a concise introduction to Riemannian spin manifolds and work towards
a Dirac operator. For convenience, we restrict to compact manifolds.

http://dx.doi.org/10.1007/978-94-017-9162-5_3
http://dx.doi.org/10.1007/978-94-017-9162-5_3
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4.2.1 Spin Manifolds

The definition of Clifford algebras can be extended to Riemannian manifolds, as we
will now explain. First, for completeness we recall the definition of a Riemannian
metric on a manifold.

Definition 4.8 A Riemannian metric on a manifold M is a symmetric bilinear form
on vector fields γ(T M)

g : γ(T M) × γ(T M) ∗ C(M)

such that

(1) g(X, Y ) is a real function if X and Y are real vector fields;
(2) g is C(M)-bilinear:

g( f X, Y ) = g(X, f Y ) = f g(X, Y ); ( f ∈ C(M));

(3) g(X, X) ≥ 0 for all real vector fields X and g(X, X) = 0 if and only if X = 0.

The non-degeneracy condition (3) allows us to identify γ(T M) with
ψ1

dR(M) = γ(T ∗M).
A Riemannian metric g on M gives rise to a distance function on M , given as an

infimum of path lengths

dg(x, y) = inf
ψ

⎧
⎨

⎩

1∫

0

g(ψ̇(t), ψ̇(t))dt : ψ(0) = x, ψ(1) = y

⎫
⎬

⎭ . (4.2.1)

Moreover, the inner product that g defines on the fibers Tx M of the tangent bundle
allows us to define Clifford algebras at each point in M as follows. With the inner
product at x ∈ M given explicitly by gx (Xx , Yx ) := g(X, Y )|x we consider the
quadratic form on Tx M defined by

Qg(Xx ) = gx (Xx , Xx ).

We can then apply the construction of the Clifford algebra of the previous section to
each fiber of the tangent bundle. At each point x ∈ M this gives rise to Cl(Tx M, Qg)

and its complexification Cl(Tx M, Qg). When x varies, these Clifford algebras com-
bine to give a bundle of algebras.

Definition 4.9 The Clifford algebra bundle Cl+(T M) is the bundle of algebras
Cl(Tx M, Qg), with the transition functions inherited from T M . Namely, transition
functions on the tangent bundle are given for open U, V ⊕ M by tUV : U ⊗ V ∗
SO(n) where n = dim M . Their action on each fiber Tx M can be extended to
Cl(Tx M, Qx ) by



4.2 Riemannian Spin Geometry 57

v1v2 · · · vk ◦∗ tU V (v1) · · · tU V (vk); (v1, . . . , vk ∈ Tx M).

The algebra of continuous real-valued sections of Cl+(TM) will be denoted by
Cliff+(M) = γ(Cl+(TM)).

Similarly, replacing Qg by −Qg , we define Cliff−(M) as the space of sections
of Cl−(TM).

Finally, we define the complexified algebra

Cliff(M) := Cliff+(M) ≤R C,

consisting of continuous sections of the bundle of complexified algebras Cl(T M),
which is defined in a similar manner.

Let us determine local expressions for the algebra Cliff+(M). If {xμ}n
μ=1 are local

coordinates on a chart U of M , the algebra of sections of Cliff+(M)|U is generated
by ψμ with relations

ψμψξ + ψξψμ = 2gμξ, (4.2.2)

with gμξ = g(ωμ, ωξ). After choosing an orthonormal basis forγ(TM)|U with respect
to the metric g, at a point of U this relation reduces precisely to the relation (4.1.2).

Let us see if we can import more of the structure for Clifford algebras explored
so far to the setting of a Riemannian manifold. First, recall that

Cl2m ∼= Mm(C), Cl02m+1
∼= Mm(C).

Another way of phrasing this is to say that the (even parts of the) Clifford algebras
Cln are endomorphism algebras End(C2m

). The natural question that arises in the
setting of Riemannian manifolds is whether or not this holds for all fibers of the
Clifford algebra bundle, in which case it would extend to a global isomorphism of
algebra bundles.

Definition 4.10 ARiemannianmanifold is called spinc if there exists a vector bundle
S ∗ M such that there is an algebra bundle isomorphism

Cl(T M) � End(S) (M even-dimensional),

Cl(T M)0 � End(S) (M odd-dimensional).

The pair (M, S) is called a spinc structure on M .

If a spinc structure (M, S) existswe refer to S as the spinor bundle and the sections
inγ(S) as spinors. Using the metric and the action of Cliff+(M) by endomorphisms
on γ(S) we introduce the following notion.

Definition 4.11 Let (M, S) be a spinc structure on M . Clifford multiplication is
defined by the linear map
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c : ψ1
dR(M) × γ(S) ∗ γ(S);

(ω,ψ) ◦∗ ω# · ψ,

where ω# is the vector field in γ(T M) corresponding to the one-form ω ∈ ψ1
dR(M)

via themetric g. This vector field acts as an endomorphismonγ(S) via the embedding
γ(T M) χ∗ Cliff+(M) ⊕ γ End(S).

In local coordinates on U ⊕ M , we can write ω|U = ωμdxμ with ωμ ∈ C(U ) so
that Clifford multiplication can be written as

c(ω)ψ|U ≡ c(ω,ψ)|U = ωμ(ψμψ)|U ; (ψ ∈ γ(S)),

with ψμ = gμξψξ and ψξ as in (4.2.2) but now represented as endomorphisms on the
fibers of S. The appearance of ψμ comes from the identification of the basis covector
dxμ ∈ ψ1

dR(M)|U with the basis vector ωμ ∈ γ(T M)|U using the metric, which is
then embedded in Cliff+(M). That is, we have

dxμ
p = g(ωμ, ·)p

as (non-degenerate) maps from Tp M to C with p ∈ U ⊕ M .
Recall that if M is compact, then any vector bundle carries a continuously varying

inner product on its fibers,

〈·, ·〉 : γ(S) × γ(S) ∗ C(M).

Exercise 4.6 Use a partition of unity argument to show that any vector bundle on a
compact manifold M admits a continuously varying inner product on its fibers.

Definition 4.12 The Hilbert space of square-integrable spinors L2(S) is defined as
the completion of γ(S) in the norm corresponding to the inner product

(ψ1,ψ2) =
∫

M

〈ψ1,ψ2〉(x)
≥

gdx,

where
≥

gdx is the Riemannian volume form.

Recall that in the previous subsection we selected the real Clifford algebras Cl±n as
subalgebras in Cln that commute with a certain anti-linear operator J±

n . We now try
to select Cliff±(M) ⊕ Cliff(M), considered as endomorphisms on γ(S), through a
globally-defined operator JM : γ(S) ∗ γ(S), so that

(JMψ)(x) = J±
n (ψ(x)),
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for any sectionψ ∈ γ(S), where n = dim M . Such a global operator does not always
exist: this gives rise to the notion of a spin manifold. It is conventional to work with
J−

n to select Cliff−(M) ⊕ Cliff(M), making our sign Table 4.2 fit with the usual
definition of KO-dimension in noncommutative geometry.

Definition 4.13 A Riemannian spinc manifold is called spin if there exists an anti-
unitary operator JM : γ(S) ∗ γ(S) such that:

(1) JM commutes with the action of real-valued continuous functions on γ(S);
(2) JM commutes with Cliff−(M) (or with Cliff−(M)0 in the odd case).

We call the pair (S, JM ) a spin structure on M and refer to the operator JM as the
charge conjugation.

If the manifold M is even dimensional, we can define a grading

(ψMψ)(x) = ψn+1(ψ(x)); (ψ ∈ γ(S)).

Then, the sign rules of Table 4.2 for the square of J−
n and the (anti)-commutation of

J−
n with ψn+1 and odd elements in Cl−n hold in each fiber of γ(S). Hence, we find

that also globally

J 2
M = ε, JM x = ε≡x JM ; (x ∈ (Cliff−(M)))1, JMψM = ε≡≡ψM JM ,

with ε, ε≡, ε≡≡ ∈ {±1} being the signs in Table 4.2 with n = dim M modulo eight.
This will be crucial for our definition of a real spectral triple in the next section,
where these signs determine the KO-dimension of a noncommutative Riemannian
spin manifold.

4.2.2 Spin Connection and Dirac Operator

The presence of a spin structure on aRiemannianmanifold allows for the construction
of a first-order differential operator that up to a scalar term squares to the Laplacian
associated to g. This is the same operator that Dirac searched for (with success) in his
attempt to replace the Schrödinger equation by a more general covariant differential
equation in Minkowski space. The Dirac operator that we will describe below is
the analogue for Riemannian spin manifolds of Dirac’s operator on flat Minkowski
space. In order to allow for differentiation, we will restrict to smooth, rather than
continuous sections.

Definition 4.14 A connection on a vector bundle E ∗ M is given by a C-linear
map on the space of smooth sections:

∞ : γ⇐(E) ∗ ψ1
dR(M) ≤C⇐(M) γ⇐(E)
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that satisfies the Leibniz rule

∞( f η) = f ∞(η) + d f ≤ η; ( f ∈ C⇐(M), η ∈ γ⇐(E)).

The curvature ψE of ∞ is defined by the C⇐(M)-linear map

ψE := ∞2 : γ⇐(E) ∗ ψ2(M) ≤C⇐(M) γ⇐(E).

Finally, if 〈·, ·〉 is a smoothly varying (i.e. C⇐(M)-valued) inner product on γ⇐(E),
a connection is said to be hermitian, or compatible if

〈∞η, η≡〉 + 〈η,∞η≡〉 = d〈η, η≡〉; (η, η≡ ∈ γ⇐(E)).

Equivalently, when evaluated on a vector field X ∈ γ⇐(T M) a connection gives
rise to a map

∞X : γ⇐(E) ∗ γ⇐(E).

More precisely, the relation with the above definition is given by

∞X (η) := ∞(η)(X),

for all X ∈ γ⇐(T M) and η ∈ γ⇐(E). The corresponding curvature then becomes

ψE (X, Y ) = [∞X ,∞Y ] − ∞[X,Y ]; (X, Y ∈ γ⇐(T M)), (4.2.3)

i.e. it is a measure of the defect of ∞ to be a Lie algebra map.

Example 4.15 Consider the tangent bundle T M ∗ M on a Riemannian manifold
(M, g). A classical result is that there is a unique connection on T M that is compatible
with the inner product g on γ(T M), i.e.

〈∞X Y, Z〉 + 〈Y,∞X Z〉 = X (〈Y, Z〉)

and that is torsion-free, i.e.

∞X Y − ∞Y X = [X, Y ]; (X, Y ∈ γ⇐(T M)).

This connection is called the Levi–Civita connection and can be written in local
coordinates {xμ}n

μ=1 on a chart U ⊕ M as ∞(ωξ) = γκ
μξdxμ ≤ ωκ, or

∞ωμ(ωξ) = γκ
μξωκ.

The C⇐(U )-valued coefficients γκ
μξ are the so-called Christoffel symbols and

torsion-freeness corresponds to the symmetry γκ
μξ = γκ

ξμ.
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Recall also the definition of the Riemannian curvature tensor on (M, g) as the
curvature of the Levi–Civita connection, i.e.

R(X, Y ) = [∞X ,∞Y ] − ∞[X,Y ] ∈ γ(End T M),

which is indeed a C⇐(M)-linear map. Locally, we have for its components

Rμξκλ := g(ωμ, R(ωκ, ωλ)ωξ).

The contraction Rξλ := gμκ Rμξκλ is called the Ricci tensor, and the subsequent
contraction s := gξλ Rξλ ∈ C⇐(M) is the scalar curvature.

Similar results hold for the cotangent bundle, with the unique, compatible, torsion-
free connection thereon related to the above via the metric g.

Definition 4.16 If∞E is a connection on a vector bundle E , theLaplacian associated
to ∞E is the second order differential operator on E defined by

νE := −Trg(∞ ≤ 1 + 1 ≤ ∞E ) ⇒ ∞E : γ⇐(E) ∗ γ⇐(E),

where

∞ ≤ 1 + 1 ≤ ∞E : ψ1
dR(M) ≤C⇐(M) γ⇐(E)

∗ ψ1
dR(M) ≤C⇐(M) ψ1

dR(M) ≤C⇐(M) γ⇐(E)

is the combination of the Levi–Civita connection on the cotangent bundle with
the connection ∞E and Trg is the trace associated to g mapping ψ1

dR(M) ≤C⇐(M)

ψ1
dR(M) ∗ C⇐(M).

Locally, we find

νE = −gμξ(∞E
μ ∞E

ξ − γκ
μξ∞E

κ ).

If M is a Riemannian spinc manifold, then the above Levi–Civita connection can be
lifted to the spinor bundle. First, choose a local orthonormal basis for T M |U :

{E1, . . . , En} for γ(T M)|U : g(Ea, Eb) = πab.

The corresponding dual orthonormal basis of T ∗M |U is denoted by θa . We can then
write the Christoffel symbols in this basis, namely by

∞Ea =: γ̃b
μadxμ ≤ Eb

on vector fields, and on one-forms by

∞θa = −γ̃b
μadxμ ≤ θb.
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The local orthonormal basis for T M |U allows us to write Clifford relations for
(globally) fixed matrices ψa :

ψaψb + ψbψa = 2πab; (a, b = 1, . . . , n). (4.2.4)

Definition 4.17 Let M be a spinc manifold. The spin connection ∞S on the spinor
bundle S ∗ M is given as the lift of the Levi–Civita connection to the spinor bundle,
written locally as

∞S
μψ(x) =

⎝
ωμ − 1

4
γ̃b

μaψaψb

⎞
ψ(x).

Proposition 4.18 If M is a spin manifold and JM is the corresponding anti-unitary
operator on γ(S), then the spin connection commutes with JM .

Proof Observe that the product ψaψb = −(iψa)(iψb) is in the even part of the
Clifford algebra Cl−n , since

(iψa)(iψb) + (iψb)(iψa) = −2πab.

Since by definition the operator J−
n commutes with the even elements in Cl−n acting

fiberwise on the spinor bundle, the result follows. �

Definition 4.19 Let M be a spin manifold, with spin structure (S, JM ). The Dirac
operator DM is the composition of the spin connection on S with Clifford multipli-
cation of Definition 4.11:

DM : γ⇐(S)
∞S−∗ ψ1

dR(M) ≤C⇐(M) γ⇐(S)
−ic−∗ γ⇐(S).

In local coordinates, we have

DMψ(x) = −iψμ

⎝
ωμ − 1

4
γ̃b

μaψaψb

⎞
ψ(x).

The final result from this subsection forms the starting point for an operator-
algebraic formulation of noncommutative Riemannian spin manifolds.

Theorem 4.20 The operator DM is self-adjoint on L2(S) with compact resolvent
(i + D)−1, and has bounded commutators with elements in C⇐(M). In fact

[DM , f ] = −ic(d f ),

so that ⊂[DM , f ]⊂ = ⊂ f ⊂Lip is the Lipschitz (semi)-norm of f :
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⊂ f ⊂Lip = sup
x ∇=y

⎛
f (x) − f (y)

dg(x, y)

⎜
.

Proof See Note 7 on page 72. �

4.2.3 Lichnerowicz Formula

Let us come back to the original motivation of Dirac, which was to find an operator
whose square is the Laplacian. Up to a scalar this continues to hold for the Dirac
operator on a Riemannian spin manifold, a result that will turn out to be very useful
later on in our physical applications. For this reason we include it here with proof.

Theorem 4.21 Let (M, g) be a Riemannian spin manifold with Dirac operator DM .
Then

D2
M = νS + 1

4
s,

in terms of the Laplacian νS associated to the spin connection ∞S and the scalar
curvature s.

Proof We exploit the local expressions for DM , νS and s, as the above formula is
supposed to hold in each chart that trivializes S. With DM = −iψμ∞S

μ we compute

D2
M = −ψμ∞S

μψξ∞S
ξ = −ψμψξ∞S

μ∞S
ξ − ψμc(∞μdxκ)∞S

κ

= −ψμψξ(∞S
μ∞S

ξ − γκ
μξ∞S

κ ).

We then use the Clifford relations (4.2.2) to write ψμψξ = 1
2 [ψμ, ψξ] + gμξ , and

combine this with torsion freedom γκ
μξ = γκ

ξμ to obtain

D2
M = −gμξ(∞S

μ∞S
ξ − γκ

μξ∞S
κ ) − 1

2
[ψμ, ψξ]∞S

μ∞S
ξ ≡ νS − 1

2
ψμψξ RS(ωμ, ωξ),

in terms of the Laplacian for ∞S on S and the curvature RS thereof. The latter is
given by − 1

4 Rκλμξψ
κψλ, as one can easily compute from the explicit local form of

∞S in Definition 4.17. Thus,

D2
M = νS − 1

8
Rμξκλψμψξψκψλ.

Using the cyclic symmetry of the Riemann curvature tensor in the last three indices,
and the Clifford relations (4.2.2) we find that the second term on the right-hand side
is equal to 1

4 Rξλgξλ = 1
4 s, in terms of the scalar curvature defined in Example 4.15.

�
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4.3 Noncommutative Riemannian Spin Manifolds:
Spectral Triples

This section introduces the main technical device that generalizes Riemannian spin
geometry to the noncommutative world. The first step towards noncommutative
manifolds is to arrive at an algebraic characterization of topological spaces. This
is accomplished by Gelfand duality, giving a one-to-one correspondence between
compact Hausdorff topological spaces and commutative C∗-algebras. Let us recall
some definitions.

Definition 4.22 A C∗-algebra A is a (complex) ∗-algebra (Definition 2.1) that is
complete with respect to a multiplicative norm (i.e. ⊂ab⊂ → ⊂a⊂⊂b⊂ for all a, b ∈ A)
that satisfies the C∗-property:

⊂a∗a⊂ = ⊂a⊂2.

Example 4.23 The key example of a commutative C∗-algebra is the algebra C(X)

for a compact topological space X . Indeed, uniform continuity is captured by the
norm

⊂ f ⊂ = sup{| f (x)| : x ∈ X}

and involution defined by f ∗(x) = f (x). This indeed satisfies ⊂ f ∗ f ⊂ = ⊂ f ⊂2.
Example 4.24 Another key example where A is noncommutative is given by the ∗-
algebra of bounded operatorsB(H) on a Hilbert spaceH, equipped with the operator
norm.

The following result connects with the matrix algebras of Chap.2.

Proposition 4.25 If A is a finite-dimensional C∗-algebra, then it is isomorphic to a
matrix algebra:

A �
N⊕

i=1

Mni (C).

Proof See Note 9 on page 72. �

InChap.2wedefined the structure spaceof a∗-algebra A to consist of (equivalence
classes of) irreducible representations of A. Let us extend this definition to C∗-
algebras.

Definition 4.26 A representation of a C∗-algebra A is a pair (H,σ) where H is a
Hilbert space and σ is a ∗-algebra map

σ : A ∗ B(H).

http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_2
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A representation (H,σ) is irreducible if H ∇= 0 and the only closed subspaces inH
that are left invariant under the action of A are {0} and H.

Two representations (H1,σ1) and (H2,σ2) of a C∗-algebra A are unitarily equiv-
alent if there exists a unitary map U : H1 ∗ H2 such that

σ1(a) = U∗σ2(a)U.

Definition 4.27 The structure space Â of a C∗-algebra A is the set of all unitary
equivalence classes of irreducible representations of A.

In Chap.4 we considered the commutative matrix algebra C
N whose structure

space was the finite topological space consisting of N points. Let us sketch the
generalization to compact Hausdorff topological spaces, building towards Gelfand
duality. As a motivating example, we consider the C∗-algebra C(X) for a compact
Hausdorff topological space X (cf. Example 4.23). As this C∗-algebra is commu-
tative, a standard argument shows that any irreducible representation σ of C(X) is
one-dimensional. In fact, any such σ is equivalent to the evaluation map evx at some
point x of X , given by

evx : C(X) ∗ C;
f ◦∗ f (x).

Being a one-dimensional representation, evx is automatically an irreducible repre-
sentation. It follows that the structure space ofC(X) is given by the set of points of X .
But more is true, as the topology of X is also captured by the structure space. Namely,
since in the commutative case the irreducible representations are one-dimensional
σ : A ∗ C the structure space can be equipped with the weak ∗-topology. That is
to say, for a sequence {σn}n in Â, σn converges weakly to σ if σn(a) ∗ σ(a) for all
a ∈ A.

We state the main result, generalizing our finite-dimensional version of Sect. 2.1.1
to the infinite-dimensional setting.

Theorem 4.28 (Gelfand duality) The structure space Â of a commutative unital
C∗-algebra A is a compact Hausdorff topological space, and A � C( Â) via the
Gelfand transform

a ∈ A ◦∗ â ∈ Â; â(σ) = σ(a).

Moreover, for any compact Hausdorff topological space X we have

Ĉ(X) � X.

Proof See Note 10 on page 72. �

The next milestone which we need to reach noncommutative Riemannian
spin geometry is the translation of the Riemannian distance (4.2.1) on a compact
Riemannian spin manifold into functional analytic data. Indeed, we will give an

http://dx.doi.org/10.1007/978-94-017-9162-5_4
http://dx.doi.org/10.1007/978-94-017-9162-5_2
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Fig. 4.1 The translation of
the distance between points
x, y in M to a formulation in
terms of functions of slope
→ 1

x y

f

x y

alternative formula as a supremum over functions in C⇐(M). The translation from
points in M to functions on M is accomplished by imposing that the gradient of the
functions is less than 1 (see Fig. 4.1). This is a continuous analogue of Theorem 2.18.

Proposition 4.29 Let M be a Riemannian spinc-manifold with Dirac operator DM .
The following formula defines a distance between points in Ĉ(M) � M:

d(x, y) = sup
f ∈C⇐(M)

{| f (x) − f (y)| : ⊂[DM , f ] → 1} .

Moreover, this distance function d coincides with the Riemannian distance function
dg .

Proof First, note that the relation ⊂ f ⊂Lip = ⊂[DM , f ]⊂ → 1 (cf. Theorem 4.20)
already ensures that d(x, y) → dg(x, y). For the opposite inequality we fix y ∈ M
and consider the function fg,y(z) = dg(z, y). Then ⊂ fg,y⊂Lip → 1 and

d(x, y) ≥ | fg,y(x) − fg,y(y)| = dg(x, y),

as required. �

Thus, we have reconstructed the Riemannian distance on M from the algebra
C⇐(M) of functions on M and the Dirac operator DM , both acting in the Hilbert
space L2(S)of square-integrable operators.Note that the triple (C⇐(M), L2(S), DM )

consists of mere functional analytical, or ‘spectral’ objects, instead of geometrical.
Upon allowing for noncommutative algebras as well, we arrive at the following
spectral data required to describe a noncommutative Riemannian spin manifold.

Definition 4.30 A spectral triple (A,H, D) is given by a unital ∗-algebraA repre-
sented as bounded operators on a Hilbert space H and a self-adjoint operator D in
H such that the resolvent (i + D)−1 is a compact operator and [D, a] is bounded for
each a ∈ A.

A spectral triple is even if the Hilbert space H is endowed with a Z2-grading ψ
such that ψa = aψ and ψD = −Dψ.

A real structure of KO-dimension n ∈ Z/8Z on a spectral triple is an anti-linear
isometry J : H ∗ H such that

http://dx.doi.org/10.1007/978-94-017-9162-5_2
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Table 4.3 The KO-dimension n of a real spectral triple is determined by the signs {ε, ε≡, ε≡≡}
appearing in J 2 = ε, J D = ε≡ D J and Jψ = ε≡≡ψ J

n 0 1 2 3 4 5 6 7

ε 1 1 −1 −1 −1 −1 1 1
ε≡ 1 −1 1 1 1 −1 1 1
ε≡≡ 1 −1 1 −1

J 2 = ε, J D = ε≡ D J, Jψ = ε≡≡ψ J (even case),

where the numbers ε, ε≡, ε≡≡ ∈ {−1, 1} are given as a function of n modulo 8, as they
appear in Table 4.3.

Moreover, with b0 = Jb∗ J−1 we impose the commutant property and the order
one condition:

[a, b0] = 0, [[D, a], b0] = 0; (a, b ∈ A). (4.3.1)

A spectral triple with a real structure is called a real spectral triple.

Remark 4.31 The notation (A,H, D) is chosen to distinguish a general spectral
triple from the finite spectral triples considered inChaps. 2 and 3,whichwere denoted
as (A, H, D).

The basic example of a spectral triple is the canonical triple associated to a
compact Riemannian spin manifold:

• A = C⇐(M), the algebra of smooth functions on M ;
• H = L2(S), the Hilbert space of square integrable sections of a spinor bundle

S ∗ M ;
• D = DM , the Dirac operator associated to the Levi–Civita connection lifted to
the spinor bundle.

The real structure J is given by the charge conjugation JM of Definition 4.13. If
the manifold is even dimensional then there is a grading on H, defined just below
Definition 4.13. Since the signs in the above table coincide with those in Table 4.2,
the KO-dimension of the canonical triple coincides with the dimension of M .

Example 4.32 The tangent bundle of the circle S
1 is trivial and has one-dimensional

fibers, so that spinors are given by ordinary functions on S
1. Moreover, the Dirac

operator DS1 is given by −id/dt where t ∈ [0, 2σ), acting on C⇐(S1) (which
is a core for DS1 ). The eigenfunction of DS1 are the exponential function eint

with eigenvalues n ∈ Z. As such, (i + DS1)
−1 is a compact operator. Moreover

[DS1, f ] = d f/dt is bounded. Summarizing, we have the following spectral triple:

⎝
C⇐(S1), L2(S1),−i

d

dt

⎞
.

http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_3
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Note that the supremum norm of a function f ∈ C⇐(S1) coincides with the operator
norm of f considered as multiplication operator on L2(S1). A real structure is given
by complex conjugation on L2(S1), making the above a real spectral triple of KO-
dimension 1.

Example 4.33 Since the tangent bundle of the torusT
2 is trivial,wehaveCliff(T2) �

C(T2) ≤ Cl2. As a consequence, the spinor bundle is trivial, S = T
2 × C

2, and
L2(S) = L2(T2) ≤ C

2. The generators ψ1 and ψ2 are given by

ψ1 =
⎝
0 −i
i 0

⎞
, ψ2 =

⎝
0 1
1 0

⎞
,

which satisfy (4.2.4). The chirality operator is then given by

ψT2 = −iψ1ψ2 =
⎝−1 0

0 1

⎞
,

and the real structure JT2 that selects Cl−2 ⊕ Cl2 is

JT2

⎝
v1
v2

⎞
=

⎝−v2
v1

⎞
.

Finally, the Dirac operator on T
2 is

DT2 = −iψμωμ =
⎝

0 −ω1 − iω2
ω1 − iω2 0

⎞
.

The eigenspinors of DT2 are given by the vectors

φ±
n1,n2(t1, t2) := 1≥

2




ei(n1t1+n2t2)

± in1+n2√
n21+n22

ei(n1t1+n2t2)



 ; (n1, n2 ∈ Z),

with eigenvalues ±
√

n2
1 + n2

2. Again, this ensures that (i + DT2)−1 is a compact

operator. For the commutator with a function f ∈ C⇐(T2) we compute

[DT2 , f ] =
⎝

0 −ω1 f − iω2 f
ω1 f − iω2 f 0

⎞
,

which is bounded because ω1 f and ω2 f are bounded. The signs in the commutation
between JT2 , DT2 and ψT2 makes the following a spectral triple of KO-dimension 2:

(
C⇐(T2), L2(T2) ≤ C

2, DT2; JT2 , ψT2

)
.
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Other examples are given by finite spectral triples, discussed at length—and
classified—in Chap.2. Indeed, the compact resolvent condition is automatic in finite-
dimensional Hilbert spaces; similarly, any operator such as [D, a] is bounded as in
this case also D is a bounded operator.

Definition 2.24 encountered before in the context of finite spectral triples can be
translated verbatim to the general case:

Definition 4.34 Two spectral triples (A1,H1, D1) and (A2,H2, D2) are called uni-
tarily equivalent if A1 = A2 and if there exists a unitary operator U : H1 ∗ H2
such that

Uσ1(a)U∗ = σ2(a); (a ∈ A1),

U D1U∗ = D2,

where we have explicitly indicated the representations σi of Ai on Hi (i = 1, 2).

Corresponding to the direct product of manifolds, one can take the product of
spectral triples as follows (see also Exercise 2.24). Suppose that (A1,H1, D1; ψ1, J1)
and (A2,H2, D2; ψ2, J2) are even real spectral triples, then we define the product
spectral triple by

A = A1 ≤ A2;
H = H1 ≤ H2;
D = D1 ≤ 1 + ψ1 ≤ D2;
ψ = ψ1 ≤ ψ2;
J = J1 ≤ J2.

If (A2,H2, D2; J2) is odd, then we can still form the product when we leave out ψ.
Note that D2 = D2

1 ≤ 1 + 1 ≤ D2
2, since the cross-terms vanish due to the fact that

ψ1D1 = −D1ψ1.

Example 4.35 In the physical applications later in this book (Chap. 8 and afterwards)
we are mainly interested in almost-commutative manifolds which are defined as
products of a Riemannian spin manifold M with a finite noncommutative space F .
More precisely, we will consider

M × F := (C⇐(M), L2(S), DM ; JM , ψM ) ≤ (AF , HF , DF ; JF , ψF ),

with (AF , HF , DF ; JF , ψF ) as in Definition 2.19. Note that this can be identified
with:

M×F = (C⇐(M, AF ), L2(S≤(M×HF )), DM≤1+ψM≤DF ; JM≤JF , ψM≤ψF ),

in terms of the trivial vector bundle M × HF on M .

http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_2
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Returning to the general case, any spectral triple gives rise to a differential calculus.
This generalizes our previous Definition 2.22 for the finite-dimensional case. Again,
we focus only on differential one-forms, as this is sufficient for our applications to
gauge theory later on.

Definition 4.36 The A-bimodule of Connes’ differential one-forms is given by

ψ1
D(A) :=

{
∑

k

ak[D, bk] : ak, bk ∈ A
}

,

and the corresponding derivation d : A ∗ ψ1(A) is given by d = [D, ·].
Exercise 4.7 (1) In the case of a Riemannian spin manifold M, verify that we can

identify ψ1
DM

(C⇐(M)) � ψ1
dR(M), the usual De Rham differential one-forms.

(2) In the case of an almost-commutative manifold M × F, verify that we have

ψ1
DM ≤1+ψM ≤DF

(C⇐(M, AF )) � ψ1
dR(M, AF ) ⊕ C⇐(M,ψ1

DF
(AF )).

4.3.1 Commutative Subalgebra

In general, given a real spectral triple (A,H, D; J )we can construct a spectral triple
on some commutative subalgebra of A, derived from this data. Indeed, set

AJ := ⎟
a ∈ A : a J = Ja∗⎠ .

As we will see shortly, this is a complex subalgebra, contained in the center of A
(and hence commutative). Later, in Chap.8, this subalgebra will turn out to be very
useful in the description of the gauge group associated to any real spectral triple.

Proposition 4.37 Let (A,H, D; J ) be a real spectral triple. Then

(1) AJ defines an involutive commutative complex subalgebra of the center of A.
(2) (AJ ,H, D; J ) is a real spectral triple.
(3) Any a ∈ AJ commutes with the algebra generated by the sums

∑
j a j [D, b j ] ∈

ψ1
D(A) with a j , b j ∈ A.

Proof (1) If a ∈ AJ then also Ja∗ J−1 = (Ja J−1)∗ = a, since J is isometric.
Hence, AJ is involutive. Moreover, for all a ∈ AJ and b ∈ A we have [a, b] =
[Ja∗ J−1, b] = 0 by the commutant property (4.3.1). Thus,AJ is in the center ofA.

(2) SinceAJ is a subalgebra ofA, all conditions for a spectral triple are automat-
ically satisfied.

http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_8
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(3) This follows from the order-one condition (4.3.1):

[a, [D, b]] = [Ja∗ J−1, [D, b]] = 0,

for a ∈ AJ and b ∈ A. �

Example 4.38 In the case of a Riemannian spin manifold M with real structure JM

given by charge conjugation, one checks that

C⇐(M)JM = C⇐(M).

More generally, under suitable conditions on the triple (A,H, D; J ) the
spectral triple (AJ ,H, D) is a so-called commutative spin geometry. Then, Connes’
Reconstruction Theorem (cf. Note 13 on page 72) establishes the existence of a com-
pact Riemannian spin manifold M such that there is an isomorphism (AJ ,H, D) �
(C⇐(M), L2(S ≤ E), DE ). The spinor bundle S ∗ M is twisted by a vector bun-
dle E ∗ M and the twisted Dirac operator is of the form DE = DM + ρ with
ρ ∈ γ⇐(End(S ≤ E)).

Notes

Section 4.1 Clifford Algebras

1. In our treatment of Clifford algebras, we stay close to the seminal paper by
Atiyah, Bott and Shapiro [1], but also refer to the standard textbook [2] and the
book [3, Chap. 5]. We also take inspiration from the lecture notes [4, 5].

2. The definition of a quadratic form given here is equivalent with the usual def-
inition, which states that Q is a quadratic form if Q(v) = S(v, v) for some
symmetric bilinear form S (cf. Exercise 4.1). This is shown by Jordan and von
Neumann in [6].

3. The periodicity eight encountered for the real Clifford algebras Cl±k is closely
related to the eightfold periodicity ofKO-theory [7]. The periodicity two encoun-
tered for the complex Clifford algebras Cln is closely related to Bott periodicity
in K-theory [8].

Section 4.2 Riemannian Spin Geometry

4. A standard textbook on Riemannian geometry is [9]. For a complete treatment of
Riemannian spin manifolds we refer to e.g. [2, 10]. A noncommutative approach
to (commutative) spin geometry can be found in [3, Chap. 9] or [4, 11].

5. In Definition 4.10 a Riemannian manifold is said to be spinc if Cl(T M) �
End(S) (even case).Glancing back atChap.2we see thatCln isMorita equivalent
to C (n even). With Definition 6.9 of the next Chapter, we conclude that a
manifold is spinc precisely if Cliff(M) is Morita equivalent to C(M). This is
the algebraic approach to spinc manifolds laid out in [3, Sect. 9.2].

http://dx.doi.org/10.1007/978-94-017-9162-5_2
http://dx.doi.org/10.1007/978-94-017-9162-5_6
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6. Just as for theLevi–Civita connection on the tangent bundle, there is a uniqueness
result for the spin connection on spin manifolds, under the condition that ∞S

X
commutes with JM for real vector fields X and that

∞S(c(ω)ψ) = c(∞ω)ψ + c(ω)∞Sψ; (ω ∈ ψ1
dR(M),ψ ∈ γ⇐(S)),

where ∞ is the Levi–Civita connection on one-forms. See for example [3, The-
orem 9.8].

7. A proof of Theorem 4.20 can be found in [12, Sect. VI.1] (see also [3, Theorem
11.1]).

Section 4.3 Noncommutative Riemannian Spin Manifolds: Spectral Triples

8. A complete treatment of C∗-algebras, their representation theory and Gelfand
duality can be found in [13] or [14].

9. A proof of Lemma 4.25 can be found in [14, Theorem 11.2].
10. A proof of Theorem 4.28 can be found in e.g. [13, Theorem II.2.2.4] or [14,

Theorem 3.11].
11. Spectral triples were introduced by Connes in the early 1980s. See [12, Sect.

IV.2.π] (where they were called unbounded K -cycles) and [15].
12. The distance formula appearing in Proposition 4.29, as well as the proof of this

Proposition can be found in [12, Sect. VI.1]. Moreover, it extends to a distance
formula on the state space S(A) of aC∗-algebra A as follows. Recall that a linear
functional ω : A ∗ C is a state if it is positive ω(a∗a) > 0 for all non-zero
a ∈ A, and such that ω(1) = 1. One then defines a distance function on S(A)

by [15]

d(ω1,ω2) = sup
a∈A

{|ω1(a) − ω2(a)| : ⊂[D, a]⊂ → 1} .

It is noted in [16, 17] that this distance formula, in the case of locally compact
complete manifolds, is in fact a reformulation of the Wasserstein distance in the
theory of optimal transport. We also refer to [18–20].

13. Proposition 4.29 establishes that from the canonical triple on a Riemannian spin
manifold M one can reconstruct the Riemannian distance on M . As a matter
of fact, there is a reconstruction theorem for the smooth manifold structure of
M as well [21]. It states that if (A,H, D; J, ψ) is a real spectral triple with A
commutative, then under suitable conditions [22] there is a Riemannian spin
manifold (M, g) with spin structure (S, JM ) such that (A,H, D; J, ψ) is given
by (C⇐(M), L2(S), DM ; JM , ψM ) (see also the discussion in [3, Sect. 11.4]).

14. Real spectral triples as defined in Definition 4.30 are noncommutative gener-
alization of Riemannian spin manifolds. An immediate question that arises is
whether noncommutative generalizations of Riemannian spinc manifolds, or
even just Riemannian manifolds can be defined. In fact, building on the alge-
braic approach to defining spinc manifolds as in [3] (as also adopted above) the
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authors [23] introduce such noncommutative analogues. For earlier attempts,
refer to [24].

15. Products of spectral triples are described in detail in [25], and generalized to
include the odd case as well in [26].

16. The differential calculi that are associated to any spectral triple are explained in
[12, Sect. VI.1] (see also [27, Chap. 7]).

17. The definition of the commutative subalgebra AJ in Sect. 4.3.1 is quite sim-
ilar to the definition of a subalgebra of A defined in [28, Prop. 3.3] (cf. [29,
Prop. 1.125]), which is the real commutative subalgebra in the center ofA con-
sisting of elements for which a J = Ja. Following [30] we propose a similar
but different definition, since this subalgebra will turn out to be very useful for
the description of the gauge group associated to any real spectral triple.
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Chapter 5
The Local Index Formula in Noncommutative
Geometry

In this chapterwepresent a proof of theConnes–Moscovici index formula, expressing
the index of a (twisted) operator D in a spectral triple (A,H, D) by a local formula.
First, we illustrate the contents of this chapter in the context of two examples in the
odd and even case: the index on the circle and on the torus.

5.1 Local Index Formula on the Circle and on the Torus

5.1.1 The Winding Number on the Circle

Consider the canonical triple on the circle (Example 4.32):

⎛
C∗(S1), L2(S1), DS1 = −i

d

dt

⎜
.

The eigenfunctions of DS1 are given for any n ∈ Z by en(t) = eint , where t ∈ [0, 2π).
Indeed, DS1en = nen and {en}n∈Z forms an orthonormal basis for L2(S1).We denote
the projection onto the non-negative eigenspace of DS1 by P , i.e.

Pen =
⎝

en if n ≥ 0
0 otherwise

This is equivalent to defining P = (1 + F)/2, where F = DS1 |DS1 |−1 (defined to
be +1 on ker DS1 ). Concretely, F is the Hilbert transform:

F

⎞
⎟

n∈Z
ψnen(t)

⎠
= −

⎟

n<0

ψnen +
⎟

n≥0

ψnen,

with complex coefficients ψn (n ∈ Z).
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Let u be a unitary in C∗(S1), say u = em for some m ∈ Z. The index we are
interested in is given by the difference between the dimensions of the kernel and
cokernel of Pu P : P L2(S1) → P L2(S1):

index Pu P = dim ker Pu P − dim ker Pu∗ P.

Indeed, Im T ◦ = ker T ∗ for any bounded operator. We wish to write this index as a
local, integral expression. First, we check that the index is well defined by noting that
Pu P has finite-dimensional kernel and cokernel. In fact, the kernel of Pu P (with
u = em) consists of ψ = ∑

n≥0 ψnen ∈ P L2(S1) such that

P

⎡

⎧
⎟

n≥0

ψnem+n

⎨

⎩ = 0.

In other words, the kernel of Pu P consists of linear combinations of the vectors
e0, . . . , e−m+1 for m < 0. We conclude that dim ker Pu P = m if m < 0. If m > 0
then this dimension is zero, but in that case dim ker Pu∗ P = m. In both cases, and
also in the remaining case m = 0, for u = em we find that

index Pu P = −m.

Exercise 5.1 In this exercise we show that index Pu P is well defined for any unitary
u ∈ C∗(S1).

(1) Show that [F, em] is a compact operator for any m ∈ Z.
(2) Show that [F, f ] is a compact operator for any function f = ∑

n fnen ∈
C∗(S1) (convergence is in sup-norm).

(3) Atkinson’s Theorem states that an operator is Fredholm (i.e. has finite kernel
and cokernel) if it is invertible modulo compact operators. Use this to show that
Pu P is a Fredholm operator.

On the other hand, we can compute the following zeta function given by the trace
(taken for simplicity over the complement of ker DS1 ):

Tr
(

u∗[DS1, u]|DS1 |−2z−1
⎫

= m Tr |DS1 |−2z−1 = 2mζ(1 + 2z),

since [DS1, u] = mu for u = em . Here ζ(s) is thewell-knownRiemann zeta function.
Since ζ(s) has a pole at s = 1, we conclude that

index Pu P = −resz=0 Tr
(

u∗[DS1, u]|DS1 |−2z−1
⎫

.

This is a manifestation of the noncommutative index formula in the simple case of
the circle, expressing the winding number m (cf. Fig. 5.1) of the unitary u = em as
a ‘local’ expression. In fact,
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Fig. 5.1 The map em : t ∈
[0, 2π) �→ eimt windsm times
around the circle; this winding
number is (minus) the index
of the operator Pem P

resz=0 Tr
(

u∗[DS1, u]|DS1 |−2z−1
⎫

= 1

2πi

⎬

S1

u∗du,

as one can easily check. The right-hand side is indeed a local integral expression for
the (global) index of Pu P .

In this chapter, we generalize this formula to any (odd) spectral triple, translating
this locality to the appropriate algebraic notion, namely, in terms of cyclic cocycles.

Exercise 5.2 Prove the following index formula, for a unitary u = em, say, with
m < 0:

index Pu P = −1

4
Tr F[F, u∗][F, u].

5.1.2 The Winding Number on the Torus

The same winding number—now in one of the two circle directions—can also be
obtained as an index on the two-dimensional torus, as we will now explain.

Consider the even canonical triple on the 2-dimensional torus (Example 4.33):

⎛
C∗(T2), L2(T2) ≤ C

2, DT2 =
⎛

0 −∂1 − i∂2
∂1 − i∂2 0

⎜⎜
.

The eigenspinors of DT2 are given by the vectors

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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φ±
n1,n2(t1, t2) := 1∼

2

⎡

⎧
ei(n1t1+n2t2)

± in1+n2⎭
n21+n22

ei(n1t1+n2t2)

⎨

⎩ ; (n1, n2 ∈ Z),

with eigenvalues ±
⎭

n2
1 + n2

2.

Instead of unitaries, we now consider projections p ∈ C∗(T2) or rather, pro-
jections in matrix algebras with entries in C∗(T2). Indeed, there are no non-trivial
projections p in C(T2): a continuous function with the property p2 = p is automat-
ically 0 or 1. Thus, we consider the following class of projections in M2(C∗(T2)):

p =
⎛

f g + hU∗
g + hU 1 − f

⎜
, (5.1.1)

where f, g, h are real-valued (periodic) functions of the first variable t1, and U is a
unitary depending only on the second variable t2, sayU (t2) = em(t2). The projection
property p2 = p translates into the two conditions

gh = 0, g2 + h2 = f − f 2.

A possible solution of these relations is given by

0 ⊕ f ⊕ 1 such that f (0) = 1, f (π) = 0,

and then g = χ[0,π]
√

f − f 2 and h = χ[π,2π]
√

f − f 2, where χX is the indicator
function for the set X (see Fig. 5.2).

The Fredholm operator we would like to compute the index of is p(DT2 ≤ I2)p,
acting on the doubled spinor Hilbert space L2(S) ≤C

2 � L2(T2) ≤C
2 ≤C

2. This
doubling is due to the fact that we take a 2×2 matricial projection. To avoid notation
cluttery, we will simply write DT2 for DT2 ≤ I2.

The local index formula which we would like to illustrate on the torus is

index pDT2 p = −resz=0 Tr
(
γ

(
p − 1

2

) [DT2 , p][DT2 , p]|DT2 |−2−2z
⎫

,

where the trace is both over the matrix indices of p and over the spinor indices.

Proposition 5.1 With U (t2) = em(t2) and p of the above form, we have

resz=0 Tr
(
γ

(
p − 1

2

) [DT2 , p][DT2 , p]|DT2 |−2−2z
⎫

= m.

Proof We first prove the following formula, which holds for any F ∈ C∗(T2):

Tr F |DT2 |−2s = 2F(0, 0)ζE (s), (5.1.2)
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Fig. 5.2 Functions f, g, h that ensure that p in (5.1.1) is a projection

where the trace is over spinor indices, and where ζE is the Epstein zeta function,
defined by

ζE (s) =
⎟

n1,n2∈Z
(n2

1 + n2
2)

−s .

Equality (5.1.2) will be proved in Exercise 5.3. Since ζE has a pole at s = 1 with
residue π, we conclude that

resz=0 Tr F |D|−2−2z = 2πF(0, 0).

Returning to the claimed equality, we compute the trace over spinor indices:

Tr γ
(

p − 1
2

) [DT2 , p]2 = Tr(p − 1
2 )

⎛
0 −∂1 p − i∂2 p

∂1 p − i∂2 p 0

⎜2

= 2i(p − 1
2 ) (∂1 p∂2 p − ∂2 p∂1 p) .

Since g and h in (5.1.1) have disjoint support, g′h = 0, we have

∂1 p∂2 p = −∂2 p∂1 p = −im

⎛−hh′ f ′hU∗
f ′hU hh′

⎜
.

Hence, taking the remaining trace over the indices of the projection, we find
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Fig. 5.3 Winding twice around one of the circle directions on the torus. Let the range of the
projection p be v(t1, t2)s with s ∈ C and v(t1, t2) ∈ C

2 varies with (t1, t2) ∈ T
2. We have drawn

the real and imaginary parts of the first component v1(t1 = 3π/4, t2)s with 0 ⊕ t2 ⊕ 2π and
−1 ⊕ s ⊕ 1. The other component v2(t1 = 3π/4, t2) is constant

Tr 2i(p − 1
2 ) (∂1 p∂2 p − ∂2 p∂1 p) = 4m

(
−2 f hh′ + hh′ + 2 f ′h2

⎫
.

Inserting this back in (5.1.2) we see that we have to determine the value of−2 f hh′+
hh′ + 2 f ′h2 at 0 or, equivalently, integrate this expression over the circle. A series
of partial integrations yields

(
−2 f hh′ + hh′ + 2 f ′h2

⎫
(0) = 1

2π

⎬
−2 f hh′ + hh′ + 2 f ′h2 = 1

2π

⎬
3 f ′h2.

Inserting the explicit expression of h, we easily determine

⎬
f ′h2 =

2π⎬

π

( f − f 2) f ′ =
1⎬

0

(x − x2)dx = 1

6
.

Combining all coefficients, including the residue ofEpstein’s zeta function,wefinally
find

resz=0 Tr
(
γ

(
p − 1

2

) [DT2 , p]2|DT2 |−2−2z
⎫

= 4m
3

2π

1

6
π = m,

as required. �

Thus, we recover the winding number of the unitary U , winding m times around
one of the circle directions in T2, just as in the previous subsection. The case m = 2
is depicted in Fig. 5.3; it shows the winding of the range of p in C2 at t1 = 3π/4 and
with t2 varying from 0 to 2π.

The fact that the index of pDT2 p is also equal to (minus) this winding number is
highly non-trivial and much more difficult to prove. Therefore, already this simple
example illustrates the power of the Connes–Moscovici index formula, expressing
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the index by a local formula. We will now proceed and give a proof of the local index
formula for any spectral triple.

Exercise 5.3 ProveEq. (5.1.2) and show that for any function F ∈ C∗(T2) we have

Tr F |DT2 |−2s = ζE (s)

π

⎬

T2

F.

5.2 Hochschild and Cyclic Cohomology

We introduce cyclic cohomology, which can be seen as a noncommutative general-
ization of De Rham homology.

Definition 5.2 If A is an algebra, we define the space of n-cochains, denoted by
Cn(A), as the space of (n+1)-linear functionals onAwith the property that if a j = 1
for some j ≥ 1, then φ(a0, . . . , an) = 0. Define operators b : Cn(A) → Cn+1(A)

and B : Cn+1(A) → Cn(A) by

bφ(a0, a1, . . . , an+1) :=
n⎟

j=0

(−1) jφ(a0, . . . , a j a j+1, . . . , an+1)

+ (−1)n+1φ(an+1a0, a1, . . . , an),

Bφ(a0, a1, . . . , an) :=
n⎟

j=0

(−1)njφ(1, a j , a j+1, . . . , a j−1).

Exercise 5.4 Show that b2 = 0, B2 = 0, and bB + Bb = 0.

This means that a cochain which is in the image of b is also in the kernel of b, and
similarly for B. We say that b and B define complexes of cochains

· · · b �� Cn(A)
b �� Cn+1(A)

b �� · · ·

· · · Cn(A)
B�� Cn+1(A)

B�� · · ·B�� ,

where the maps have the (complex) defining property that composing them gives
zero: b ⊗ b = 0 = B ⊗ B. This property of b and B being a differential is a crucial
ingredient in cohomology, where so-called cohomology groups are defined as the
quotients of the kernel by the image of the differential. In our case, we have

Definition 5.3 The Hochschild cohomology of A is given by the quotients
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H Hn(A) = ker b : Cn(A) → Cn+1(A)

Im b : Cn−1(A) → Cn(A)
; (n ≥ 0).

Elements in ker b : Cn(A) → Cn+1(A) are called Hochschild n-cocycles, and
elements in Im b : Cn−1(A) → Cn(A) are called Hochschild n-coboundaries.

Exercise 5.5 (1) Characterize the cohomology group H H0(A) for any algebra A.
(2) Compute H Hn(C) for any n ≥ 0.
(3) Establish the following functorial property of H Hn: if ψ : A → B is an algebra

map, then there is a homomorphism of groups ψ∗ : H Hn(B) → H Hn(A).

Example 5.4 Let M be a compact n-dimensional manifold without boundary. The
following expression defines an n-cochain on A = C∗(M):

φ( f0, f1, . . . , fn) =
⎬

M

f0d f1 · · · d fn .

In fact, one can compute that bφ = 0 so that this is an n-cocycle which defines a
class in the Hochschild cohomology group H Hn(C∗(M)).

Exercise 5.6 Check that bφ = 0 in the above example.

Next, we turn our attention to the differential B, and its compatibility with b.
Namely, b and B define a so-called double complex:

...
...

...
...

· · · B �� C3(A)
B ��

b

��

C2(A)
B ��

b

��

C1(A)
B ��

b

��

C0(A)

b

��

· · · B �� C2(A)
B ��

b

��

C1(A)
B ��

b

��

C0(A)

b

��

· · · B �� C1(A)
B ��

b

��

C0(A)

b

��

· · · B �� C0(A)

b

��

The totalization of this double complex by definition consists of the even and odd
cochains:
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Cev(A) =
⊕

k

C2k(A);

Codd(A) =
⊕

k

C2k+1(A),

and these also form a complex, now with differential b + B:

· · · b+B�� Cev(A)
b+B �� Codd(A)

b+B �� Cev(A)
b+B �� · · ·

Definition 5.5 The periodic cyclic cohomology ofA is the cohomology of the total-
ization of this complex. That is, the even and odd cyclic cohomology groups are
given by

HC Pev(A) = ker b + B : Cev(A) → Codd(A)

Im b + B : Codd(A) → Cev(A)
,

HC Podd(A) = ker b + B : Codd(A) → Cev(A)

Im b + B : Cev(A) → Codd(A)
.

Elements in ker b + B are called (even or odd) (b, B)-cocycles, and elements in
Im b + B are called (even or odd) (b, B)-coboundaries.

Explicitly, an even (b, B)-cocycle is given by a sequence

(φ0,φ2,φ4, . . .),

where φ2k ∈ C2k(A), and
bφ2k + Bφ2k+2 = 0,

for all k ≥ 0. Note that only finitely many φ2k are non-zero.
Similarly, an odd (b, B)-cocycle is given by a sequence

(φ1,φ3,φ5, . . .),

where φ2k+1 ∈ C2k+1(A) and

bφ2k+1 + Bφ2k+3 = 0,

for all k ≥ 0, and also Bφ1 = 0. Again, only finitely many φ2k+1 are non-zero.
The following result allows us to evaluate an even (odd) (b, B)-cocycle on a

projection (unitary) in a given ∗-algebra A.

Proposition 5.6 Let A be a unital ∗-algebra.

• If φ = (φ1,φ3, . . .) is an odd (b, B)-cocycle for A, and u is an unitary in A, then
the quantity
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〈φ, u〉 := 1

λ( 12 )

∗⎟

k=0

(−1)k+1k!φ2k+1(u
∗, u, . . . , u∗, u)

only depends on the class of φ in HC Podd(A).
• If φ = (φ0,φ2, . . .) is an even (b, B)-cocycle for A, and p is an projection in A,

then the quantity

〈φ, p〉 := φ0(p) +
∗⎟

k=1

(−1)k (2k)!
k! φ2k(p − 1

2 , p, p, . . . , p)

only depends on the class of φ in HC Pev(A).

Proof We show that 〈(b + B)γ, u〉 = 0 for any even cochain (γ0,γ2, . . .) and that
〈(b + B)γ, e〉 = 0 for any odd cochain (γ1,γ3, . . .).

The former equation would follow from

(−1)k+1k!bγ2k(u
∗, u, . . . , u∗, u) + (−1)k(k − 1)!Bγ2k(u

∗, u, . . . , u∗, u) = 0,

for any k ≥ 0. Using the definition of b and B, we compute that indeed:

(−1)k+1k!
[
γ2k(1, u∗, u, . . . , u∗, u) + (−1)2k+1γ2k(1, u, u∗, . . . , u, u∗)

]

+ (−1)k(k − 1)! [kγ2k(1, u∗, u, . . . , u∗, u) − kγ2k(1, u, u∗, . . . , u, u∗)
] = 0.

The second claim would follow from

(−1)k+1 (2k + 2)!
(k + 1)! bγ2k+1(p − 1

2 , p, . . . , p) + (−1)k (2k)!
k! Bγ2k+1(p − 1

2 , p, . . . , p) = 0,

for any k ≥ 1, and indeed

−2bγ1(p − 1
2 , p, p) + Bγ1(p) = 0.

Let us start with the latter, for which we compute

−2
[
2γ1(p − 1

2 p, p) − γ1(p − 1
2 , p)

] + γ1(1, p) =
−2γ1(p, p) + 2γ1(p, p) − γ1(1, p) + γ1(1, p) = 0.

The same trick applies also to the first expression, for any k ≥ 1:

(−1)k+1 (2k + 2)!
(k + 1)!

[
2γ2k+1(p − 1

2 p, p, . . . , p) − γ2k+1(p − 1
2 , p, . . . , p)

]

+ (−1)k (2k)!
k!

[
(2k + 1)γ2k+1(1, p, . . . , p)

] = 0,



5.2 Hochschild and Cyclic Cohomology 85

which follows directly from the identity

1

2

(2k + 2)!
(k + 1)! − (2k + 1)

(2k)!
k! = 0. �

Exercise 5.7 Let φ ∈ Ck(A) be a b-cocycle (i.e. bφ = 0) that also satisfies the
following condition:

φ(a0, a1, . . . ak) = (−1)kφ(ak, a0, a1, . . . ak−1),

for all a0, a1, . . . ak ∈ A. Show that (0, . . . , 0,φ, 0, . . .) (with φ at the k’th position)
is a (b, B)-cocycle.

Exercise 5.8 In the example of the circle, show that the odd cochain (φ1, 0, . . .) on
C∗(S1) with (cf. Exercise 5.2)

φ1( f 0, f 1) = Tr F[F, f 0][F, f 1]; ( f 0, f 1 ∈ C∗(S1)),

is an odd (b, B)-cocycle.

5.3 Abstract Differential Calculus

Starting with a spectral triple, we now introduce a differential calculus. In the case of
the canonical triple of a spin manifold M , this will agree with the usual differential
calculus on M .

Let (A,H, D) be a spectral triple; we assume that D is invertible. We introduce
Sobolev spaces Hs as follows:

Hs := Dom |D|s; (s ∈ R).

These spaces are naturally normed by

≥ξ≥2s = ≥ξ≥2 + ≥|D|sξ≥2,

and are complete in this norm. Moreover, for s > t the inclusion Hs → Ht is
continuous.

Exercise 5.9 Prove this last statement.

Obviously H0 = H, while at the other extreme we have the intersection

H∗ :=
⋂

s≥0

Hs .
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Definition 5.7 For each r ∈ R we define operators of analytic order ⊕ r to be
operators in H∗ that extend to bounded operators from Hs to Hs−r for all s ≥ 0.
We denote the space of such operators by opr .

In order to find interesting differential operators coming from our spectral triple,
we introduce some smoothness conditions. The first is that the spectral triple is
finitely summable, i.e. there exists p so that |D|−p is a trace class operator.

Definition 5.8 A spectral triple (A,H, D) is called regular if A and [D,A] =
{[D, a] : a ∈ A} belong to the smooth domain of δ(·) = [|D|, ·]. That is, for each
k ≥ 0 the operators δk(a) and δk([D, a]) are bounded.

We will denote by B the algebra generated by δk(a), δk([D, a]) for all a ∈ A and
k ≥ 0.

Definition 5.9 Let (A,H, D) be a finitely-summable regular spectral triple. The
dimension spectrum Sd is the subset of {z ∈ C : ≡(z) ≥ 0} of singularities of the
analytic functions

ζb(z) = Tr b|D|−z; (b ∈ B).

We say the dimension spectrum is simple when the functions ζb have at most simple
poles.

In our treatment we restrict to finitely-summable, regular spectral triples with
simple dimension spectrum and for which there is a finite number of poles in Sd.

Lemma 5.10 The algebra B maps H∗ to itself.

Proof This follows by induction from the identity

≥T ξ≥2s = ≥T ξ≥2 + ≥|D|s T ξ≥2

= ≥T ≥2≥ξ≥2 +
(
≥|D|s−1δ(T )ξ≥ + ≥|D|s−1T |D|ξ≥

⎫2
,

for any operator T in the smooth domain of δ and any s ≥ 0. �

Wewill regard the elements inB as pseudodifferential operators of order 0, accord-
ing to the following definition.

Definition 5.11 A pseudodifferential operator of order k ∈ Z associated to a regular
spectral triple (A,H, D) is given by a finite sum:

bk |D|k + bk−1|D|k−1 + · · · ,

where bk, bk−1, · · · ∈ B. We denote the space of pseudodifferential operators of
order k by ψk(A,H, D), or simply ψk(A).

Lemma 5.12 The subspaces ψk(A) (k ∈ Z) furnish a Z-filtration on the algebra
ψ(A) of pseudodifferential operators.
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Proof This follows directly from the expression:

b1|D|k1 · b2|D|k2 =
k1⎟

j=0

⎛
k1
j

⎜
b1δ

j (b2)|D|k1+k2− j . �

On this algebra, the map δ(·) = [|D|, ·] acts as a derivation, preserving the
filtration. For any operator T inH we also define the following (iterated) derivation,

∞(T ) = [D2, T ]; T (k) := ∞k(T ).

Exercise 5.10 Prove that for any P ∈ ψ(A) we have

∞(P) = 2δ(P)|D|2 + δ2(P).

Conclude that ∞ : ψk(A) → ψk+1(A).

Proposition 5.13 Let P ∈ ψk(A). Then P : Hs+k → Hs is a continuous map.
Hence, such a P has analytic order ⊕ k and we have ψk(A) ⇐ opk .

Using this abstract pseudodifferential calculus, we now introduce the functionals
of relevance for the index formula.

Definition 5.14 Let (A,H, D; γ) be a regular spectral triple. For pseudodifferential
operators X0, X1, . . . X p ∈ ψ(A) and ≡(z) ⇒ 0 define

〈X0, X1, . . . , X p〉z =
(−1)p λ(z)

2πi
Tr

⎛⎬
λ−zγX0(λ − D2)−1X1(λ − D2)−1 · · · X p(λ − D2)−1dλ

⎜
.

Let us show that this expression is well defined, i.e. that the integral is actually
trace class. We first practice with this expression in a special case.

Exercise 5.11 Assume that X j ∈ ψk j (A) commutes with D for all j = 0, . . . , p.

(1) Use Cauchy’s integral formula to show that

〈X0, X1, . . . , X p〉z = λ(z + p)

p! Tr(γX0 · · · X p|D|−2z−2p).

(2) Show that this expression extends to a meromorphic function on C.

This exercise suggests that, in the general case, we move all terms (λ − D2)−1

in 〈X0, X1, . . . , X p〉z to the right. This we will do in the remainder of this section.
First, we need the following result.

Lemma 5.15 Let X ∈ ψq(A) and let n > 0. Then for any positive integer k, we
have
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(λ − D2)−n X = X (λ − D2)−n + nX (1)(λ − D2)−(n+1)

+ n(n + 1)

2
X (2)(λ − D2)−(n+2) + · · ·

+ n(n + 1) · · · (n + k)

k! X (k)(λ − D2)−(n+k) + Rk,

where the remainder Rk is of analytic order q − 2n − k − 1 or less.

Proof This follows by repeatedly applying the formula

(λ − D2)−1X = X (λ − D2)−1 + [(λ − D2)−1, X ]
= X (λ − D2)−1 + (λ − D2)−1[D2, X ](λ − D2)−1.

This yields an asymptotic expansion

(λ − D2)−1X ⊂
⎟

i≥0

X (i)(λ − D2)−1−i ,

so that for each m ∇ 0 every sufficiently large finite partial sum agrees with the
left-hand side up to an operator of analytic order m or less. Indeed, truncating the
above sum at i = k, we find that the remainder is

(λ − D2)−1X (k+1)(λ − D2)−1−k,

which is of analytic order −2 + (q + k + 1) − 2(k + 1) = q − k − 3 or less.
More generally for any positive integer n one has:

(λ − D2)−n X ⊂
⎟

k≥0

(−1)k
⎛−n

k

⎜
X (k)(λ − D2)−n−k .

Estimates similar to those above show that the remainder has the claimed analytic
order. �

Wenow arrive at the final result of this sectionwhichwill form themain ingredient
in the next section, where wewill introduce the (b, B)-cocycles relevant for the index
formula.

Proposition 5.16 The expression 〈X0, . . . , X p〉z in Definition 5.14 seen as a func-
tion of z extends meromorphically to C.

Proof We use Lemma 5.15 to bring all (λ − D2)−1 to the right. We first introduce
the combinatorial quantities:

c(k1, . . . , k j ) = (k1 + · · · + k j + j)!
k1! · · · k j !(k1 + 1) · · · (k1 + · · · k j + j)

,
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for non-negative integers k1, . . . , k j . These satisfy

c(k1, . . . , k j ) = c(k1, . . . , k j−1)
(k1 + · · · + k j−1 + j) · · · (k1 + · · · + k j + j − 1)

k j ! ,

while c(k1) = 1 for all k1.
From Lemma 5.15 we know that there is the following asymptotic expansion:

(λ − D2)−1X1 ⊂
⎟

k1≥0

c(k1)X1(k1)
(λ − D2)−k1 .

Then, in the subsequent step we find

(λ − D2)−1X1(λ − D2)−1X2 ⊂
⎟

k1≥0

c(k1)X1(k1)
(λ − D2)−(k1+2) X2

⊂
⎟

k1,k2≥0

c(k1, k2)X1(k1) X2(k2)
(λ − D2)−(k1+k2+2),

and finally

(λ − D2)−1X1 · · · (λ − D2)−1X p ⊂
⎟

k≥0

c(k)X1(k1)

· · · X p(kp)
(λ − D2)−(|k|+p),

where k = (k1, . . . , kp) is a multi-index and |k| = k1 + . . . + kp.
Multiplying this with γX0 and integrating as in Definition 5.14, this yields

(−1)p λ(z)

2πi

⎬
λ−zγX0(λ − D2)−1X1 · · · (λ − D2)−1X p(λ − D2)−1dλ

⊂
⎟

k≥0

c(k)γX0X1(k1) · · · X p(kp)
(−1)p λ(z)

2πi

⎬
λ−z(λ − D2)−(|k|+p+1)dλ

=
⎟

k≥0

c(k)γX0X1(k1) · · · X p(kp)
(−1)pλ(z)

⎛ −z

|k| + p

⎜
|D|−2(z+|k|+p),

where we have used the integral formula, valid for real λ0:

1

2πi

⎬
λ−z

(λ − λ0)N+1 dλ =
⎛−z

N

⎜
λ−(N+z)
0 . (5.3.1)

Finally, using the functional equation for the gamma function,

(−1)pλ(z)

⎛ −z

|k| + p

⎜
= (−1)|k| λ(z + p + |k|)

(|k| + p)! ,
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we obtain an asymptotic expansion

〈X0, . . . , X p〉z ⊂
⎟

k≥0

(−1)|k| λ(z + p + |k|)
(|k| + p)! c(k)

× Tr
(
γX0X1(k1) · · · X p(kp)|D|−2(z+|k|+p)

⎫
. (5.3.2)

As |k| becomes large the remainder in the truncated expansion on the right-hand side
becomes trace class. �

Exercise 5.12 Use Cauchy’s integral formula to prove Eq. (5.3.1).

5.4 Residues and the Local (b, B)-Cocycle

In this section we derive even and odd (b, B)-cocycles on a given algebra A from
the functionals 〈X0, X1, . . . , X p〉z defined in the previous section. First, we derive
some useful relations between them. We denote the Z2-grading of an operator X
by (−1)X , according to the grading γ on H. Moreover, for such an operator X we
denote the graded commutator by [D, X ] = DX − (−1)X X D. Note that with these
conventions we have

[D, [D, T ]] = [D2, T ] ⊥ ∞(T ),

for any even operator T .

Lemma 5.17 The meromorphic functions 〈X0, . . . , X p〉z satisfy the following func-
tional equations:

(a) 〈X0, . . . , X p〉z = (−1)X p 〈X p, X0, . . . , X p−1〉z;
(b) 〈X0, . . . , X p〉z+1 = ∑p

j=0〈X0, . . . , X j−1, 1, X j , . . . , X p〉z;

(c) 〈X0, . . . , [D2, X j ], . . . , X p〉z = 〈X0, . . . , X j−1X j , . . . , X p〉z

−〈X0, . . . , X j X j+1, . . . , X p〉z;
(d)

∑p
j=0(−1)X0···X j−1〈X0, . . . , [D, X j ], . . . , X p〉z = 0.

Proof (a) follows directly from the property of the trace in 〈X0, . . . , X p〉z , taking
into account the commutation of X p with the grading γ. For (b), note that the integral
of the following expression vanishes:

d

dλ

(
λ−z X0(λ − D2)−1 · · · X p(λ − D2)−1

⎫

= −zλ−z−1X0(λ − D2)−1 · · · X p(λ − D2)−1

−
p⎟

j=0

λ−z X0(λ − D2)−1 · · · X j (λ − D2)−1 · · · X p(λ − D2)−1.
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Equation (c) follows from

(λ − D2)−1[D2, X j ](λ − D2)−1 = (λ − D2)−1X j − X j (λ − D2)−1.

Finally, (d) is equivalent to

Tr γ

[
D,

⎬
λ−z X0(λ − D2)−1 · · · X p(λ − D2)−1dλ

]
= 0,

which is the supertrace of a (graded) commutator. �

Definition 5.18 For any p ≥ 0, define a (p + 1)-linear functional onA with values
in the meromorphic functions on C by

ψp(a
0, . . . , a p) = 〈a0, [D, a1], . . . , [D, a p]〉s− p

2
.

Proposition 5.19 The even (b, B)-cochain ψ = (ψ0, ψ2, . . .) is an (improper) even
(b, B)-cocycle in the sense that

bψ2k + Bψ2k+2 = 0.

Similarly, the odd (b, B)-cochain ψ = (ψ1, ψ3, . . .) is an (improper) odd (b, B)-
cocycle.

Proof It follows from the definition of B and a subsequent application of (a) and (b)
of Lemma 5.17 that

Bψ2k+2(a
0, . . . , a2k+1) =

2k+1⎟

j=0

(−1) j 〈1, [D, a j ], . . . , [D, a j−1]〉s−(k+1)

=
2k+1⎟

j=0

〈[D, a0], . . . , [D, a j−1], 1, [D, a j ],

. . . [D, a2k+1]〉s−(k+1)

= 〈[D, a0], . . . , [D, a2k+1]〉s−k .

Also, from the definition of b and the Leibniz rule

[D, a j a j+1] = a j [D, a j+1] + [D, a j ]a j+1

it follows that
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bψ2k(a
0, . . . , a2k+1) = 〈a0a1, [D, a2], . . . [D, a2k+1]〉s−k

− 〈a0, a1[D, a2], . . . [D, a2k+1]〉s−k

− 〈a0, [D, a1]a2, . . . [D, a2k+1]〉s−k

+ 〈a0, [D, a1], a2[D, a3], . . . [D, a2k+1]〉s−k

+ 〈a0, [D, a1], [D, a2]a3, . . . [D, a2k+1]〉s−k

− · · ·
− 〈a2k+1a0, [D, a1], . . . [D, a2k]〉s−k,

which, by Lemma 5.17(c), becomes

2k+1⎟

j=0

(−1) j−1〈a0, [D, a1], . . . , [D2, a j ], . . . , [D, a2k+1]〉s−k .

Combining these expressions for Bψ2k+2 and bψ2k and writing X0 = a0, and
X j = [D, a j ] for j ≥ 1, we obtain

Bψ2k+2(a
0, . . . , a2k+1)+ bψ2k(a

0, . . . , a2k+1)

=
2k+1⎟

j=0

(−1)X0···X j 〈X0, . . . , [D, X j ], . . . , X2k+1〉s−k,

which vanishes because of Lemma 5.17(d).

In the odd case, a similar argument shows that bψ2k−1 + Bψ2k+1 = 0. �

The above cocycles have been termed improper because all ψp might be non-
zero, on top of which (rather than in C) they take values in the field of meromorphic
functions on C. By taking residues of the meromorphic functions ψp we obtain a
proper even or odd (b, B)-cocycle. This is the residue cocycle that was introduced
by Connes and Moscovici.

Theorem 5.20 For any p ≥ 0 and all a0, . . . , a p ∈ A the following formulas define
an even or odd (b, B)-cocycle:

ress=0ψ0(a
0) = Tr γa0|D|−2s |s=0,

and

ress=0ψp(a
0, . . . , a p)

=
⎟

k≥0

cp,kress=0 Tr
(
γa0[D, a1](k1) · · · [D, a p](kp)|D|−p−2|k|−2s

⎫
,
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for p ≥ 1, where the constants cp,k are given in terms of the (non-negative) multi-
indices (k1, . . . , kp) by

cp,k := (−1)|k|

k!
λ(|k| + p

2 )

(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · · kp + p)
.

Proof We use the asymptotic expansion (5.3.2). Indeed, setting z = s − p
2 in that

expression and taking residues at s = 0 gives the desired expansion, with the coef-
ficients cp,k appearing because

cp,k ⊥ (−1)|k|λ(|k| + p

2
)

c(k)

(p + |k|)! . �

5.5 The Local Index Formula

Let (A,H, D)be a regular spectral triple, as above. The local index formula expresses
the index of twisted Dirac operators in terms of cocycles in the (b, B) bicomplex,
which are easier to compute. We are interested in the indices of the following two
Fredholm operators.

Suppose that (A,H, D) is even. If p ∈ A is a projection, then Dp = pDp is
a Fredholm operator on the Hilbert space H. This follows from the fact that Dp

is essentially a finite-dimensional extension of the Fredholm operator D. We are
interested in the index of this so-called twisted Dirac operator Dp.

In case that (A,H, D) is an odd spectral triple, we take a unitary u ∈ A and
define Du = Pu P , where P = 1

2 (1 + Sign D). Again, Du is a Fredholm operator
onH and we are interested in the index of Du .

Theorem 5.21 Let (A,H, D) be a regular spectral triple with simple and finite
dimension spectrum Sd and let ress=0ψ be the (even or odd) (b, B)-cocycle derived
previously.

• If (A,H, D) is even and p is a projection in A, then

index Dp = 〈ress=0ψ, p〉.

• If (A,H, D) is odd and u is a unitary in A, then

index Du = 〈ress=0ψ, u〉.

Remark 5.22 Sometimes a projection or a unitary is given in MN (A) instead of
A. The above result can be extended easily to this case, namely by constructing
a spectral triple on MN (A) and doing the index computation there. Indeed, it
would follow from Theorem 6.15 that if (A,H, D) is a spectral triple, then so is
(MN (A),H ≤ C

N , D ≤ IN ).

http://dx.doi.org/10.1007/978-94-017-9162-5_6
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Proof of Theorem 5.21 We will prove the even case in two steps (for the odd case
see Note 13 on page 97),

(1) the Atiyah–Bott formula for the index:

index Dp = ress=0λ(s)Tr γ|Dp|−2s .

(2) Change the representative of the class ress=0ψ in HC Pev(A) to reduce to the
case that D commutes with p, so that

〈ress=0ψ, p〉 = ress=0λ(s)Tr γ p|D|−2s .

For (1) let us first prove another well-known formula.

Lemma 5.23 (McKean–Singer formula) Let (A,H, D) be an even spectral triple.
Then

index D = Tr γe−t D2
.

Proof Since D is odd with respect to γ, its spectrum lies symmetrically around 0 in
R, including multiplicities. If we denote the λ-eigenspace inH byHλ we therefore
have dimHλ = dimH−λ for any non-zero eigenvalue λ. Including also the kernel
of D, we have

Tr γe−t D2 =
⎟

λ>0

(dimHλ − dimH−λ) e−tλ2 + TrH0 γ = Trker D γ,

which is nothing but the index of D. �

Note that the McKean–Singer formula tells us in particular that Tr γe−t D2
does

not depend on t . Using the integral formula of the gamma function, we can write:

Tr γ|D|−2s = 1

λ(s)

∗⎬

0

Tr γe−t D2
t s−1dt.

We analyze the behaviour of the right-hand side as s → 0. For this, we use

1

λ(s)
⊂ s, s → 0.

Thus, only the pole part of the above integral contributes to the zeta function evaluated
at s = 0. This is given by

1⎬

0

Tr γe−t D2
t s−1dt = 1

s
index D,
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where we have used the McKean–Singer formula. The remaining integral from 1 to
∗ gives an entire function of s, because by finite summability the eigenvalues of D
grow as j1/p for some p > 0. In other words,

index D = Tr γ|D|−2s |s=0,

which proves (1).
Let us then continue with (2). Consider the family of operators

Dt = D + t[p, [D, p]]; (t ∈ [0, 1]).

We have D0 = D and D1 = pDp+(1− p)D(1− p) so that [D1, p] = 0.Moreover,
index Dt depends continuously on t , and (being an integer) it is therefore constant in t .

Next,we consider a family of improper cocyclesψ t which are definedby replacing
D by Dt in Definition 5.18.

Lemma 5.24 The derivative of ψ t is an (improper) even cyclic coboundary, i.e.
there exists a cochain γt such that

d

dt
ψ t

p + Bγt
p+1 + bγt

p−1 = 0,

which is explicitly given by

γt
p(a

0, . . . , a p) =
p⎟

j=0

(−1) j−1〈a0, . . . [D, a j ], Ḋ, [D, a j+1], . . . [D, a p]〉s− p+1
2

,

with Ḋ = d
dt Dt ⊥ [p, [D, p]].

Proof Imitating the proof of Proposition 5.19 one can show the following identity
(see also Note 15 on page 97).

Bγt
2k+1(a

0, . . . , a2k)+ bγt
2k−1(a

0, . . . , a2k)

= −
2k⎟

j=0

〈a0, [D, a1], . . . [D, a j ], [D, Ḋ], . . . , [D, a2k]〉s−k

−
2k⎟

j=1

〈a0, [D, a1], . . . [Ḋ, a j ], , . . . , [D, a2k]〉s−k .

The fact that d
dt ψ

t coincides with the right-hand side follows from

d

dt
(λ − D2

t )−1 = (λ − D2
t )−1 (

DḊ + ḊD
)
(λ − D2

t )−1. �

Continuing the proof of the theorem, we integrate the resulting coboundary to obtain
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B

1⎬

0

γt
2k+1dt + b

1⎬

0

γt
2k−1dt = ψ0

2k − ψ1
2k .

In other words, ress=0ψ
0 and ress=0ψ

1 define the same class in even cyclic cohomol-
ogy HC Pev(A). So, with the help of Proposition 5.6, we can compute 〈ress=0ψ, p〉
using ψ1 instead of ψ0 ⊥ ψ, with the advantage that D1 commutes with p. Indeed,
this implies that

ψ1
2k(p − 1

2 , p, . . . , p) = 0,

for all k ≥ 1, so that

〈ress=0ψ
1, p〉 ⊥ ress=0ψ

1
0 (p) +

⎟

k≥1

(−1)k (2k)!
k! ress=0ψ

1
2k(p − 1

2 , p, . . . , p)

= ress=0ψ
1
0 (p)

= ress=0λ(s)Tr γ p|D1|−2s .

This completes the proof of Theorem 5.21, as by the Atiyah–Bott formula the latter
expression is the index of Dp. �

Notes

1. The local index formula was obtained by Connes and Moscovici in [1]. In our
proof of the local index formula, we closely follow Higson [2]. More general
proofs have been obtained in [3–5], see Note 12 of this Chapter.

Section 5.1 Local Index Formula on the Circle and on the Torus

2. The Theorem of Atkinson that appears in Exercise5.1 can be found in
[6, Proposition 3.3.11].

3. The index formula on the circle of Exercise 5.2 is a special case of [7, Theorem5].
4. In Sect. 5.1.2 we follow [8], where a class of projections on the torus was con-

structed, much inspired by the so-called Powers–Rieffel projections on the non-
commutative torus [9].

5. The zeta function ζE that appears in (5.1.2) is a special case of an Epstein zeta
function, introduced and analyzed in [10]. It turns out that ζE has a pole at
s = 1 with residue π. That (5.1.2) holds also follows from the general result
[1, Theorem I.2].
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Section 5.2 Hochschild and Cyclic Cohomology

6. In [7] Connes introduced cyclic cohomology as a noncommutative generaliza-
tion of De Rham homology, and showed that for the algebra C∗(M) cyclic
cohomology indeed reduces to De Rham homology. Besides the original article
there are many texts in which this is worked out in full detail (e.g. [11–14]).

7. Example 5.4 is a special case of the fact that H Hk(C∗(M)) � χk(M), the space
of De Rham k-currents. The latter are by definition continuous linear forms on
the space of De Rham differential k-formsχk

dR(M). This isomorphism is proved
in [7].

8. Proposition 5.6 was established in [11]. The statement can be slightly enhanced.
Namely, the quantities in Proposition 5.6 also only depend on the classes of u
and p in the (odd and even) K-theory of A. We refer to [11, Section IV.1.γ] for
more details.

9. Originally, Connes introduced cyclic cohomology by means of cocycles satis-
fying such a cyclic condition, explaining the terminology. It turns out that this
is equivalent to taking an even/odd cocycle in the (b, B)-bicomplex. For more
details we refer to [7, Theorem II.40] (or [11, Theorem III.1.29]).

Section 5.3 Abstract Differential Calculus

10. In our development of an abstract differential calculus we closely follow Connes
and Moscovici [1]. In the case of the canonical triple of a spin manifold M , this
will reproduce (part of) the usual differential calculus on M . We refer to [2] for
a more detailed treatment. Note that the hypothesis that D is invertible can be
removed, as described in [2, Sect. 6.1].

11. The notion of finite summability for spectral triples was introduced in
[11, Section IV.2.γ] (see also [12, Definition 10.8]).

12. Even thoughwe restrict to finitely-summable, regular spectral tripleswith simple
dimension spectrum and for which there is a finite number of poles in Sd, the
index formula can be proved in the presence of essential and infinitely many
singularities as well [3–5].

Section 5.5 The Local Index Formula

13. In our proof of Theorem 5.21 we follow Higson [2]. For the odd case, we refer to
the original paper by Connes and Moscovici [1] (see also the more general [3]).

14. The McKean–Singer formula is due to [15].
15. For more details on the ‘transgression formula’ that is essential in the proof of

Lemma 5.24 we refer to the discussion resulting in [12, Eq. 10.40].
16. It is noted in [1, Remark II.1] that if (A,H, D) is the canonical triple associated

to a Riemannian spin manifold M , then the local index formula of Connes and
Moscovici reduces to the celebrated Atiyah–Singer index theorem for the Dirac
operator [16, 17]. Namely, the operator Dp is then the Dirac operator with coef-
ficients in a vector bundle E → M . The latter is defined as a subbundle of the
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trivial bundle M × C
N using the projection p ∈ MN (C(M)): one sets the fiber

to be Ex = p(x)CN at each point x ∈ M . We then have

index Dp = (2πi)−
n
2

⎬

M
Â(R) ∧ ch(E),

where Â(R) is the Â-form of the Riemannian curvature of M and ch(E) is the
Chern character of the vector bundle E (cf. [18]). The proof exploits Getzler’s
symbol calculus [19–21], as in [22]. See also [23].
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Part II
Noncommutative Geometry

and Gauge Theories



Chapter 6
Gauge Theories from Noncommutative
Manifolds

In this Chapter we demonstrate how every noncommutative (Riemannian spin)
manifold, viz. every spectral triple, gives rise to a gauge theory in a generalized
sense. We derive so-called inner fluctuations via Morita equivalences and interpret
these as generalized gauge fields. This is quite similar to the construction in the finite
case in Chaps. 2 and 3. We then interpret our generalized gauge theory in terms of a
C∗-bundle on which the gauge group acts by vertical automorphisms.

6.1 ‘Inner’ Unitary Equivalences as the Gauge Group

In Chap.2 we already noticed the special role played by the unitary elements in
the matrix algebras, and how they give rise to equivalences of finite noncommuta-
tive spaces (cf. Remark 2.25). We now extend this to general real spectral triples
(A,H, D; J, λ).

Definition 6.1 A ∗-automorphism of a ∗-algebra A is a linear invertible map φ :
A ∈ A that satisfies

φ(ab) = φ(a)φ(b), φ(a∗) = φ(a)∗.

We denote the group of automorphisms of the ∗-algebra A by Aut(A).
An automorphism φ is called inner if it is of the form φ(a) = uau∗ for some

element u ∈ U(A) where

U(A) = {u ∈ A : uu∗ = u∗u = 1}

is the group of unitary elements inA. The group of inner automorphisms is denoted
by Inn(A).

The group of outer automorphisms of A is defined by the quotient

Out(A) := Aut(A)/ Inn(A).
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Note that Inn(A) is indeed a normal subgroup of Aut(A) since

π → φu → π−1(a) = π
⎛
uπ−1(a)u∗⎜ = π(u)aπ(u)∗ = φπ(u)(a),

for any π ∈ Aut(A).
An inner automorphism φu is completely determined by the unitary element

u ∈ U(A), but not in a unique manner. That is to say, the map ψ : U(A) ∈ Inn(A)

given by u �∈ φu is surjective, but not injective. The kernel is given by ker(ψ) =
{u ∈ U(A) | uau∗ = a, a ∈ A}. In other words, ker ψ = U(Z(A)) where Z(A) is
the center of A. We conclude that the group of inner automorphisms is given by the
quotient

Inn(A) ◦ U(A)/U(Z(A)). (6.1.1)

This can be summarized by the following exact sequences:

1 Inn(A) Aut(A) Out(A) 1,

1 U(Z(A)) U(A) Inn(A) 1.

Example 6.2 If A is a commutative ∗-algebra, then there are no non-trivial inner
automorphisms since Z(A) = A. Moreover, if A = C∞(X) with X a smooth
compact manifold, then Aut(A) ◦ Diff(X), the group of diffeomorphisms of X .
Explicitly, a diffeomorphism ψ : X ∈ X yields an automorphisms by pullback of a
function f :

ψ∗( f )(x) = f (ψ(x)); (x ∈ X).

Compare this with the discussion in the case of finite discrete topological spaces
in Sect. 6.2.1. More generally, there is a continuous version of the above group
isomorphism, relatingAut(C(X))one-to-one to homeomorphismsof X . This follows
from functoriality of Gelfand duality. Namely, the Gelfand transform in Theorem
4.28 naturally extends to homomorphisms between commutative unital C∗-algebras,
mapping these to homeomorphism between the corresponding structure spaces.

The fact that all automorphisms of C∞(X) come from a diffeomorphism of X
can be seen as follows. Consider a smooth family {φt }t∈[0,1] of automorphisms of
C∞(X) from φt=0 = id to φt=1 = φ. The derivative at t = 0 of this family,
φ̇ := dφt/dt |t=0, is a ∗-algebra derivation, since

φ̇( f1 f2) = d

dt
φt ( f1 f2)|t=0 = d

dt
φt ( f1)φt ( f2)|t=0 = φ̇( f1) f2 + f1φ̇( f2).

As such, φ̇ corresponds to a smooth vector field on X and the end point ψt=1 of the
flow ψt of this vector field is the sought-for diffeomorphism of X . Its pullback ψ∗

t=1
on smooth functions coincides with the automorphism φt=1 = φ.

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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Example 6.3 At the other extreme,we consider an examplewhere all automorphisms
are inner. LetA = MN (C) and let u be an element in the unitary group U (N ). Then
u acts as an automorphism on a ∈ MN (C) by sending a �∈ uau∗. If u = ξIN

is a multiple of the identity with ξ ∈ U (1), this action is trivial, hence the group
of automorphisms of A is the projective unitary group PU (N ) = U (N )/U (1), in
concordance with (6.1.1).

The fact that all automorphisms are inner follows from the following observation.
First, any ∗-algebra map φ : MN (C) ∈ MN (C) can be considered a representation
of A on C

N . As the unique irreducible representation space of MN (C) is given by
the defining representation (Lemma 2.15) we conclude that the representation φ is
unitarily equivalent to the defining representation on C

N . Hence, φ(a) = uau∗ with
u ∈ U (N ).

Exercise 6.1 Show that Aut(MN (C) ≤ MN (C)) ◦ (U (N ) × U (N )) � S2 with the
symmetric group S2 acting by permutation on the two copies of U (N ).

Inner automorphisms φu not only act on the ∗-algebra A, via the representation
ω : A ∈ B(H) they also act on the Hilbert spaceH present in the spectral triple. In
fact, with U = ω(u)Jω(u)J−1, the unitary u induces a unitary equivalence of real
spectral triples in the sense of Definition 3.4, as the following exercise shows.

Exercise 6.2 Use Definition 4.30 to establish the following transformation rules for
a unitary U = ω(u)Jω(u)J−1 with u ∈ U(A):

Uω(a)U∗ = ω → φu(a); (6.1.2)

Uλ = λU ;
U JU∗ = J.

We conclude that an inner automorphism φu of A induces a unitary equivalent
spectral triple (A,H, U DU∗; J, λ), where the action of the ∗-algebra is given by
ω → φu . Note that the grading and the real structure are left unchanged under these
‘inner’ unitary equivalences; only the operator D is affected by the unitary transfor-
mation. For the latter, we compute, using (4.3.1),

D �∈ U DU∗ = D + u[D, u∗] + ε∼ Ju[D, u∗]J−1, (6.1.3)

where as before we have suppressed the representation ω. We recognize the extra
terms as pure gauge fields udu∗ in the space of Connes’ differential one-forms
λ1

D(A) of Definition 4.36. This motivates the following definition

Definition 6.4 The gauge group G(A,H; J ) of the spectral triple is

G(A,H; J ) :=
⎝

U = u Ju J−1 | u ∈ U(A)
⎞

.
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Recall (from Sect. 4.3.1) the construction of a complex subalgebra AJ in the
center of A from a real spectral triple (A,H, D; J ), given by

AJ := {a ∈ A : a J = Ja∗}.

Proposition 6.5 There is a short exact sequence of groups

1 ∈ U(AJ ) ∈ U(A) ∈ G(A,H; J ) ∈ 1.

Moreover, there is a surjective map G(A,H; J ) ∈ Inn(A).

Proof Consider the map Ad : U(A) ∈ G(A,H; J ) given by u �∈ u Ju J−1. This
map Ad is a group homomorphism, since the commutation relation [u, Jv J−1] = 0
of (4.3.1) implies that

Ad(v)Ad(u) = v Jv J−1u Ju J−1 = vu Jvu J−1 = Ad(vu).

By definition Ad is surjective, and ker(Ad) = {u ∈ U(A) | u Ju J−1 = 1}. The
relation u Ju J−1 = 1 is equivalent to u J = Ju∗ which is the defining relation
of the commutative subalgebra AJ . This proves that ker(Ad) = U(AJ ). The map
G(A,H; J ) ∈ Inn(A) is given by (6.1.2), from which surjectivity readily follows.

Corollary 6.6 If U(AJ ) = U(Z(A)), then G(A,H; J ) ◦ Inn(A).

Proof This is immediate from the above Proposition and (6.1.1). �
We summarize this by the following sequence, which is exact in the horizontal

direction:

1 U(AJ) U(A) G(A,H;J) 1

1 U(Z(A)) U(A) Inn(A) 1

6.1.1 The Gauge Algebra

A completely analogous discussion applies to the definition of a gauge Lie algebra,
where instead of automorphisms we now take (inner and outer) derivations of A.
The following definition essentially gives the infinitesimal version of G(A,H; J ).

Definition 6.7 The gauge Lie algebra g(A,H; J ) of the spectral triple is

g(A,H; J ) :=
⎝

T = X + J X J−1 | X ∈ u(A)
⎞

,

where u(A) consists of the skew-hermitian elements in A.

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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One easily checks using the commutant property,

[T, T ∼] = [X, X ∼] + J [X, X ∼]J−1,

so that g(A,H; J ) is indeed a Lie algebra.

Proposition 6.8 There is a short exact sequence of Lie algebras

0 ∈ u(AJ ) ∈ u(A) ∈ g(A,H; J ) ∈ 0.

There are also inner derivations of A that are of the form a ∈ [X, a]; these
form a Lie subalgebra DerInn(A) of the Lie algebra of all derivations Der(A). If
u(AJ ) = u(Z(A)) then

g(A,H; J ) ◦ DerInn(A),

which essentially is the infinitesimal version of Corollary 6.6.

Exercise 6.3 Show that Der(MN (C)) ◦ su(N ) as Lie algebras.

6.2 Morita Self-Equivalences as Gauge Fields

We have seen that a non-abelian gauge group appears naturally when the unital
∗-algebraA in a real spectral triple is noncommutative. Moreover, noncommutative
algebras allow for a more general—and in fact more natural—notion of equivalence
than automorphic equivalence, namely Morita equivalence. We have already seen
this in Chap.2. Indeed, let us imitate the construction in Theorem 2.26 and Theorem
3.6 and see if we can lift Morita equivalence to the level of spectral triples in this
more general setting.

Let us first recall some of the basic definitions. We keep working in the setting of
unital algebras, which greatly simplifies matters (See Note 4 on page 118).

6.2.1 Morita Equivalence

Recall Definition 2.8 of algebra modules. For two right A-modules E and F we
denote the space of right A-module homomorphisms by HomA(E,F), i.e.

HomA(E,F) := {ψ : E ∈ F : ψ(ηa) = ψ(η)a for all η ∈ E, a ∈ A} . (6.2.1)

We also write EndA(E) := HomA(E, E) for the algebra of right A-module endo-
morphisms of E .

http://dx.doi.org/10.1007/978-94-017-9162-5_2
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Definition 6.9 Two unital algebras A and B are called Morita equivalent if there
exists a B − A-bimodule E and an A − B-bimodule F such that

E ⊕A F ◦ B, F ⊕B E ◦ A,

as B and A-bimodules, respectively.

Exercise 6.4 Taking inspiration from Exercise 2.9, show that Morita equivalence is
an equivalence relation.

Exercise 6.5 Define AN = A ≤ · · · ≤ A (N copies) as an A − MN (A)-bimodule.

(1) Show that AN ⊕A AN ◦ MN (A), as MN (A) − MN (A)-bimodules.
(2) Show that AN ⊕MN (A) AN ◦ A, so that MN (A) is Morita equivalent to A.

A convenient characterisation of Morita equivalent algebras is given by the con-
cept of endomorphism algebras of so-called finitely generated projective modules,
as we now explain.

Definition 6.10 A rightA-module is called finitely generated projective (or, briefly,
finite projective) if there is an idempotent p = p2 in MN (A) for some N such that
E ◦ pAN .

Lemma 6.11 A right A-module is finitely generated projective if and only if

EndA(E) ◦ E ⊕A HomA(E,A).

Proof First note that the right-hand side can be considered to be a two-sided ideal
in EndA(E). Namely, we consider an element η ⊕A ψ in E ⊕A HomA(E,A) as an
element in EndA(E) by mapping

ξ �∈ ηψ(ξ); (ξ ∈ E).

That this map is injective and that its image forms an ideal in EndA(E) is readily
checked. Hence, the above isomorphism is equivalent to the existence of an element
in E ⊕A HomA(E,A) that acts as the identity map idE on E .

Suppose that E is finite projective, E ◦ pAN for some idempotent p ∈ MN (A).
We identify two maps

ξ : E ∈ AN ,

η : AN ∈ E,

which are injective and surjective, respectively. These maps are related to the identi-
fication of E with a direct summand ofAN , via the obvious direct sum decomposition
AN = pAN ≤ (1 − p)AN . Namely, ξ identifies E with pAN ⊂ AN , whereas η
projectsAN onto the direct summand pAN and then identifies it with E . Let us write
ξk for the k’th component of ξmapping E toAN ; thus, ξk : E ∈ A is rightA-linear

http://dx.doi.org/10.1007/978-94-017-9162-5_2
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for any k = 1, . . . , N . We write ηk := η(ek) ∈ E , where {ek}N
k=1 is the standard

basis ofAN . The composition
⎟N

k=1 ηk ⊕ ξk then acts as the identity operator on E .
Conversely, suppose idE can be written as a finite sum

N⎠

k=1

ηk ⊕ ξk ∈ E ⊕A HomA(E,A). (6.2.2)

Reversing the construction in the previous paragraph, we are now going to define an
idempotent p ∈ MN (A) such that E ◦ pAN . Thus, we define maps

ξ : E ∈ AN ; η �∈ (ξ1(η), . . . ,ξN (η)) ,

η : AN ∈ E; (a1, . . . , aN ) �∈ η1a1 + · · · + ηN aN .

From their very definition, these maps satisfy η → ξ = idE , so that p = ξ → η is the
sought-for idempotent in MN (A). �

Exercise 6.6 In this exercise we are going to analyze the ambiguity due to the
balanced tensor product that appears in the decomposition (6.2.2) of idE .

(1) If E = A then idE = 1 ⊕ 1 ⊂ E ⊕A HomA(E,A) but also

idE = 1 ⊕ 1 + a ⊕ 1 + 1 ⊕ (−a),

for any a ∈ A. Show that the projection corresponding to the latter decomposi-
tion of idE is

p =


⎡
1 1 −a
a a −a2

1 1 −a

⎧

⎨ .

(2) Show that there is a similarity transformation S such that

SpS−1 =


⎡
1 0 0
0 0 0
0 0 0

⎧

⎨ .

Therefore, the projection corresponding to idE = 1 ⊕ 1 appears as the first
diagonal entry, and we can conclude that both decompositions give isomorphic
projective modules pA3 ◦ A.

(3) Extend this argument to any finite projective E to show that the construction of
a projection p from (6.2.2) is well defined.

Proposition 6.12 Two unital algebras A and B are Morita equivalent if and only if
B ◦ EndA(E), with E a finite projective A-module.
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Proof If B ◦ EndA(E) for some finite projective E , then F = HomA(E,A) is
the required A − B-bimodule implementing the desired Morita equivalence, with
bimodule structure given by

(a · ψ · b)(η) = aψ(b · η); (ψ ∈ HomA(E,A)). (6.2.3)

The propertyE⊕AF ◦ B follows fromLemma6.11, and the isomorphismF⊕BE ◦
A is implemented by the evaluation map, that is,

(ψ ⊕ η) ∈ HomA(E,A) ⊕B E �∈ ψ(η) ∈ A.

Conversely, suppose A and B are Morita equivalent. If B ◦ E ⊕A F , then B ◦
EndB(B) ◦ EndB(E ⊕A F), and there is an algebra map

EndA(E) ∈ EndB(E ⊕A F);
ψ �∈ ψ ⊕ 1F .

On the other hand, EndA(B ⊕B E) ◦ EndA(E), and there is an algebra map

EndB(B) ∈ EndA(B ⊕B E);
ψ∼ �∈ ψ∼ ⊕ 1E .

Identifying E ⊕A F ◦ B and F ⊕B E ◦ A, one readily checks that these two maps
are each other’s inverses. This shows that B ◦ EndA(E).

Finally, the fact that the right A-module E is finitely generated and projective
follows mutatis mutandis from the proof of Lemma 6.11, after realizing that the
isomorphism F ⊕B E ◦ A associates an element in HomA(E,A) to any element in
F . �

Exercise 6.7 Show that (6.2.3) is a well-defined A − B-bimodule structure on
HomA(E,A), i.e. show that it respects the right A-linearity of the map ψ : E ∈ A.

We conclude this subsection by specializing from algebras to ∗-algebras. The
above results on Morita equivalence still hold, with the additional requirement that
in the definition of finite projectivity the idempotent p ∈ MN (C) needs to be self-
adjoint: p∗ = p. In other words, p is an orthogonal projection.

As in Definition 3.25, we define the conjugate module E→ to a right A-module
E as

E→ = {ξ̄ : ξ ∈ E},

equipped with a left A action defined by aξ̄ = ξa∗ for any a ∈ A.

Proposition 6.13 If A is a ∗-algebra and E is a finite projective right A-module,
then we can identify HomA(E,A) as a left A-module with the conjugate module E→,

http://dx.doi.org/10.1007/978-94-017-9162-5_3
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Proof If E ◦ pAN then EndA(E) ◦ pMN (A)p, as one can easily show using
the maps ξ and η from the first part of the proof of Lemma 6.11. Hence E ⊕A
HomA(E,A) ◦ pMN (A)p. But also pAN ⊕A AN p ◦ pMN (A)p (cf. Exercise
6.5), so HomA(E,A) ◦ AN p as left A-modules. We now show that E→ ◦ AN p as
well.

For that, write ξ ∈ E ◦ pAN as a column vector:

ξ =



⎩⎩⎡

⎟N
j=1 p1 j a j

...⎟N
j=1 pN j a j

⎧

⎨ .

The corresponding element ξ̄ in E→ is identified with

⎫⎟N
j=1 a∗

j p j1 · · · ⎟N
j=1 a∗

j p j N

⎬
,

written as a row vector inAN p. Note that the relation between ξ and this row vector
is essentially given by the involution on AN , exploiting the self-adjointness of p,
that is, p∗

j i = pi j . Consequently, the element aξ̄ = ξa∗ is mapped to

a
⎫⎟N

j=1 a∗
j p j1 · · · ⎟N

j=1 a∗
j p j N

⎬
,

as required. �

Proposition 6.14 Let A be a ∗-algebra and E a finite projective right A-module.
Then there exists a hermitian structure on E , that is to say, there is a pairing 〈·, ·⊗E :
E × E ∈ A on E that satisfies (as in Definition 2.9)

〈η1, η2 · a⊗E = 〈η1, η2⊗Ea; (η1, η2 ∈ E, a ∈ A),

〈η1, η2⊗∗E = 〈η2, η1⊗E ; (η1, η2 ∈ E),

〈η, η⊗E ≥ 0, with equality if and only if η = 0; (η ∈ E).

Proof On AN we have a hermitian structure given by

〈η, ξ⊗ =
N⎠

j=1

η∗
j ξ j ,

which satisfies the above properties. By restriction to pAN we then obtain a hermitian
structure on E ◦ pAN . �

http://dx.doi.org/10.1007/978-94-017-9162-5_2
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6.2.2 Morita Equivalence and Spectral Triples

For a given spectral triple (A,H, D) and for a given finite projective rightA-module
E , we try to construct another spectral triple (B,H∼, D∼) where B = EndA(E). This
generalizes the finite-dimensional constructions of Chaps. 2 and 3. Naturally,

H∼ := E ⊕A H

carries an action of ψ ∈ B:

ψ(η ⊕ κ) = ψ(η) ⊕ κ; (η ∈ E,κ ∈ H).

Moreover, by finite projectivity of E , H∼ is a Hilbert space. Indeed, we have

H∼ ◦ pAN ⊕A H ◦ pHN ,

and since p is an orthogonal projection it has closed range.
However, the naive choice of an operator D∼ by D∼(η ⊕ κ) = η ⊕ Dκ will not

do, because it does not respect the ideal defining the tensor product over A, which
is generated by elements of the form

ηa ⊕ κ − η ⊕ aκ; (η ∈ E, a ∈ A,κ ∈ H).

A better definition is
D∼(η ⊕ κ) = η ⊕ Dκ + ∇(η)κ.

where ∇ : E ∈ E ⊕A λ1
D(A) is a connection associated to the derivation d : a �∈

[D, a] (a ∈ A). This means that ∇ is a linear map that satisfies the Leibniz rule:

∇(ηa) = (∇η)a + η ⊕A da; (η ∈ E, a ∈ A).

Exercise 6.8 (1) Let ∇ and ∇∼ be two connections on a right A-module E . Show
that their difference ∇ − ∇∼ is a right A-linear map E ∈ E ⊕A λ1

D(A).
(2) Show that the following map defines a connection on E = pAN :

∇ = p → d,

with d acting on each copy of A as the commutator [D, ·]. This connection is
referred to as the Grassmann connection on E .

Theorem 6.15 If (A,H, D) is a spectral triple and ∇ is a connection on a finite
projective right A-module E , then (B,H∼, D∼) is a spectral triple, provided that ∇
is a hermitian connection, i.e. provided that

〈η1,∇η2⊗E − 〈∇η1, η2⊗E = d〈η1, η2⊗E ; (η1, η2 ∈ E). (6.2.4)

http://dx.doi.org/10.1007/978-94-017-9162-5_2
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Proof Suppose E = pAN , so that B = EndA(E) ◦ pMN (A)p and E ⊕A H ◦
pHN . The boundedness of the action of B on E ⊕A H then follows directly from
the boundedness of the action of A on H. Similarly, for ψ ∈ B the commutator
[D,ψ] can be regarded as a matrix with entries of the form [D, a]with a ∈ A. These
commutators are all bounded, so that [D,ψ] is bounded. Let us prove compactness
of the resolvent. By Exercise 6.8 any connection can be written as∇ = p→[D, ·]+θ
for a right A-linear map θ : E ∈ E ⊕A λ1

D(A). Hence, after making the above
identifications we see that the operator ∇ ⊕1+1⊕ D coincides with pDp +θ. The
action of θ is as a bounded operator, which by (6.2.4) is self-adjoint. Moreover, it is
given by a matrix acting on pHN with entries in λ1

D(A). Since for any self-adjoint
operator T we have

(i + T + θ)−1 = (i + T )−1
⎫
1 − θ(i + T + θ)−1

⎬
,

with
⎛
1 − θ(i + T + θ)−1

⎜
bounded, compactness of the resolvent of pDp + θ

would follow from compactness of (i p + pDp)−1 (note that p is the identity on
the Hilbert space pHN ). The required compactness property is a consequence of the
identity

(i p + pDp)p(i + D)−1 p = p[i + D, p](i + D)−1 p + p.

Indeed, when multiplied on the left with (i p + pDp)−1 we find that on pHN :

(i p + pDp)−1 = p(i + D)−1 p − (i p + pDp)−1 p[D, p](i + D)−1 p,

which is compact since (i + D)−1 is compact by definition of a spectral triple. �

Analogously, for a given real spectral triple (A,H, D, J ) we define another real
spectral triple (B,H∼, D∼, J ∼) by setting

H∼ := E ⊕A H ⊕A E→.

Then, ψ ∈ B acts onH∼ by

ψ(η ⊕ κ ⊕ ξ̄) = ψ(η) ⊕ κ ⊕ ξ̄,

and the operator D∼ and J ∼ may be defined by

D∼(η ⊕ κ ⊕ ξ̄) = (∇η)κ ⊕ ξ̄ + η ⊕ Dκ ⊕ ξ̄ + η ⊕ κ(∇ξ),

J ∼(η ⊕ κ ⊕ ξ̄) = ξ ⊕ Jκ ⊕ η̄.

Finally, for even spectral triples one defines a grading λ∼ on E ⊕A H ⊕A E→ by
λ∼ = 1 ⊕ λ ⊕ 1. We have therefore proved:

Theorem 6.16 If (A,H, D; J, λ) is a real spectral triple and ∇ is a hermitian
connection, then (B,H∼, D∼; J ∼, λ∼) is a real spectral triple.
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We now focus on Morita self-equivalences, for which B = A and E = A so that
EndA(E) ◦ A. Let us look at connections

∇ : A ∈ λ1
D(A).

Clearly, by the Leibniz rule we must have ∇ = d+ θ (see also Exercise 6.8), where
θ = ∇(1) = ⎟

j a j [D, b j ] is a generic element in λ1
D(A) acting as a bounded

operator onH. Similarly, κ∇ā = (ε∼ Jda J−1 + ε∼ Jθa J−1)κ. SinceH∼ ◦ H, under
this identification we have,

D∼(κ) ≥ D∼(1 ⊕ κ ⊕ 1̄) = ∇(1)κ + κ∇(1̄) + Dκ = Dκ + θκ + ε∼ JθJ−1κ.

In other words, D is ‘innerly perturbed’ by the given Morita self-equivalence to

Dθ := D + θ + ε∼ JθJ−1,

where θ∗ = θ ∈ λ1
D(A) is called a gauge field, alternatively called an inner

fluctuation of the operator D, since it is the algebra A that—through Morita self-
equivalences—generates the field θ.

Proposition 6.17 A unitary equivalence of a real spectral triple (A,H, D; J ) as
implemented by U = u Ju J−1 with u ∈ U(A) (discussed before Definition 6.4) is a
special case of a Morita self-equivalence, arising by taking θ = u[D, u∗].
Proof This follows upon inserting θ = u[D, u∗] in the above formula for Dθ ,
yielding (6.1.3). �

In the same way there is an action of the unitary group U(A) on the new spectral
triple (A,H, Dθ) by unitary equivalences. Recall that U = u Ju J−1 acts on Dθ by
conjugation:

Dθ �∈ U DθU∗. (6.2.5)

This is equivalent to
θ �∈ uθu∗ + u[D, u∗],

which is the usual rule for a gauge transformation on a gauge field.

6.3 Localization

Recall (from Sect. 4.3.1) the construction of a complex subalgebra AJ in the center
of A from a real spectral triple (A,H, D; J ), given by

AJ := {a ∈ A : a J = Ja∗}.

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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As AJ is commutative, Gelfand duality (Theorem 4.28) ensures the existence of a
compact Hausdorff space such that AJ ⊂ C(X) as a dense ∗-subalgebra. Indeed,
the C∗-completion of AJ in B(H) is commutative and hence isomorphic to such a
C(X).We consider this space X to be the ‘background space’ onwhich (A,H, D; J )

describes a gauge theory, as we now work out in detail.
Heuristically speaking, the above gauge group G(A,H; J ) considers only trans-

formations that are ‘vertical’, or ‘purely noncommutative’ with respect to X , quo-
tienting out the unitary transformations of the commutative subalgebra AJ . Let us
make this precise by identifying a bundle B ∈ X of C∗-algebras such that:

• the space of continuous sections γ(X,B) forms a C∗-algebra isomorphic to A =
A, the C∗-completion of A;

• the gauge group acts as bundle automorphisms covering the identity.

Moreover, we search for a bundle of C∗-algebras of which the gauge fields θ ∈
λ1

D(A) are sections and on which the gauge group again acts by bundle automor-
phisms.

We avoid technical complications that might arise from working with dense sub-
algebras of C∗-algebras, and work with the C∗-algebras AJ and A themselves, as
completions of AJ and A, respectively. First, note that there is an inclusion map
C(X) ◦ AJ ψ∈ A. This means that A is a so-called C(X)-algebra, which by defin-
ition is a C∗-algebra A with a map from C(X) to the center of A. Indeed, it follows
from Proposition 4.37 that AJ is contained in the center of A.

In such a case A is the C∗-algebra of continuous sections of an upper semi-
continuous C∗-bundle over X . We will briefly sketch the setup (see Note 7 on
page 118). Recall that a function f : A ∈ C is upper semi-continuous at a0 ∈ A
if lim supa∈a0 ≡ f (a)≡ ∞ ≡ f (a0)≡.
Definition 6.18 An upper semi-continuous C∗-bundle over a compact topological
space X is a continuous, open, surjection ω : B ∈ X together with operations
and norms that turn each fiber Bx = ω−1(x) into a C∗-algebra, such that the map
a �∈ ≡a≡ is upper semi-continuous and all algebraic operations are continuous on
B.

A (continuous) sectionofB is a (continuous)map s : X ∈ B such thatω(s(x)) =
x .

A base for the topology on B is given by the following collection of open sets:

W (s,O, ε) := {b ∈ B : ω(b) ∈ O and ≡b − s(ω(b))≡ < ε}, (6.3.1)

indexed by continuous sections s ∈ γ(X,B), open subsets O ⊂ X and ε > 0.

Proposition 6.19 The space γ(X,B) of continuous sections forms a C∗-algebra
when it is equipped with the norm

≡s≡ := sup
x∈X

≡s(x)≡Bx .

http://dx.doi.org/10.1007/978-94-017-9162-5_4
http://dx.doi.org/10.1007/978-94-017-9162-5_4
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Proof See Note 7 on page 118. �

In our case, after identifying C(X) with AJ , we can define a closed two-sided ideal
in A by

Ix := { f a : a ∈ A, f ∈ C(X), f (x) = 0}− . (6.3.2)

We think of the quotient C∗-algebra Bx := A/Ix as the fiber of A over x and set

B :=
⎭

x∈X

Bx , (6.3.3)

with an obvious surjective map ω : B ∈ X . If a ∈ A, then we write a(x) for the
image a + Ix of a in Bx , and we think of a as a section of B. The fact that all
these sections are continuous and that elements in A can be obtained in this way is
guaranteed by the following result.

Theorem 6.20 The above map ω : B ∈ X with B as in (6.3.3) defines an upper
semi-continuous C∗-bundle over X. Moreover, there is a C(X)-linear isomorphism
of A onto γ(X,B).

Proof See Note 7 on page 118. �

Having obtained the C∗-algebra A as the space of sections of a C∗-bundle, we
are ready to analyze the action of the gauge group on A. Staying at the C∗-algebraic
level, we consider the continuous gauge group

G(A,H; J ) ◦ U(A)

U(AJ )
.

This contains the gauge group G(A,H; J ) of Definition 6.4 as a dense subgroup in
the topology induced by the C∗-norm on A. The next result realizes the gauge group
as a group of vertical bundle automorphisms of B.

Proposition 6.21 The action φ of G(A,H; J ) on A by inner C∗-algebra automor-
phisms induces an action φ̃ of G(A,H; J ) on B by continuous bundle automor-
phisms that cover the identity. In other words, for g ∈ G(A,H; J ) we have

ω(φ̃g(b)) = ω(b); (b ∈ B).

Moreover, under the identification of Theorem 6.20 the induced action φ̃∗ on γ(X,B)

given by
φ̃∗

g(s)(x) = φ̃g(s(x))

coincides with the action φ on A.

Proof The action φ induces an action on A/Ix = ω−1(x), since φg(Ix ) ⊂ Ix for all
g ∈ G(A,H; J ). We denote the corresponding action ofG(A,H; J ) onB by φ̃, so
that, indeed,
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ω(φ̃g(b)) = ω(b); (b ∈ ω−1(x)).

Let us also check continuity of this action. In terms of the base W (s,O, ε) of (6.3.1),
we find that

φ̃g(W (s,O, ε)) = W (φ̃∗
g(s),O, ε),

mapping open subsets one-to-one and onto open subsets.
For the second claim, it is enough to check that the action φ̃∗ on the section

s : x �∈ a + Ix ∈ Bx , defined by an element a ∈ A, corresponds to the action φ on
that a. In fact,

φ̃∗
g(s)(x) = φ̃g(s(x)) = φg(a + Ix ) = φg(a) + Ix ,

which completes the proof. �

At the infinitesimal level, the derivations in the gauge algebra g(A,H; J ) also
act vertically on the C∗-bundle B defined in (6.3.3), and the induced action on the
sections γ(X,B) agrees with the action of g(A,H; J ) on A.

6.3.1 Localization of Gauge Fields

Also the gauge fields θ that enter as inner fluctuations of D can be parametrized by
sections of some bundle of C∗-algebras. In order for this to be compatible with the
vertical action of the gauge group found above, we will write any connection in the
form,

∇ = d + θ0 + θ,

where d = [D, ·] and θ0,θ ∈ λ1
D(A). The action of a gauge transformation on ∇

then induces the following transformation:

θ0 �∈ uθ0u∗ + u[D, u∗]; θ �∈ uθu∗.

TheC∗-algebra generated byA and [D,A] is aC(X)-algebra, sinceC(X) ◦ AJ ,
which according to Proposition 4.37 commutes with both A and [D,A]. Thus, a
similar construction as in the previous subsection establishes the existence of an
upper semi-continuous C∗-bundle Bλ over X , explicitly given by

Bλ =
∏

x∈X

C∗(A, [D,A])/I ∼
x ,

where C∗(A, [D,A]) is the C∗-algebra generated by a and [D, b] for a, b ∈ A, and
I ∼
x is the two-sided ideal in C∗(A, [D,A]) generated by Ix that has been defined

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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before [see Eq. (6.3.2)]. Again, one can show that γ(X,Bλ) is isomorphic to this
C∗-algebra and establish the following result.

Proposition 6.22 Let ω : Bλ ∈ X be as above.

(1) The gauge field θ defines a continuous section of Bλ.
(2) The gauge group G(A,H; J ) acts fiberwise on this bundle, and the induced

action on γ(X,Bλ) agrees with the action on C∗(A, [D,A]).
Consequently, if we regard θ ∈ λ1

D(A) as a continuous section θ(x) of Bλ, an
element u Ju J−1 ∈ G(A,H; J ) acts as

θ(x) �∈ (uθu∗)(x) ≥ uθ(x)u∗.

Notes

Section 6.1 ‘Inner’ Unitary Equivalences as the Gauge Group

1. The interpretation of the inner automorphism group as the gauge group is pre-
sented in [1].

2. For a precise proof of the isomorphism between Aut(C(X)) and the group of
homeomorphisms of X , we refer to [2, Theorem II.2.2.6]. For a more detailed
treatment of the smooth analogue, we refer to [3, Sect. 1.3].

3. The gauge groupG(A,H; J ) introduced in Definition 6.4 (following [1, 4, 5]) is
a natural lift of the group of inner automorphisms of the algebra A, as is proved
in Proposition 6.5. Another approach to lifting Inn(A) to be represented onH is
by central extensions; this is described in [6].

Section 6.2 Morita Self-Equivalences as Gauge Fields

4. For unital algebras algebraic Morita equivalence [7] coincides with Rieffel’s
notion of strong Morita equivalence for C∗-algebras [8]. This is proved in [9]
and explains why we can safely work with algebraic tensor products. We also
refer for a more general treatment to e.g. [3, Sect. 4.5] and [10, Sect.A.3 and
A.4].

5. Besides Morita equivalence, also the more general notion of KK-equivalence can
be lifted to spectral triples, but this requires much more analysis [11–13].

6. Theorem 6.15 and Theorem 6.16 are due to Connes in [1].

Section 6.3 Localization

7. The notion of C(X)-algebra was introduced by Kasparov in [14]. Proposition
6.19 and Theorem 6.20 are proved in [15, 16] (see also Appendix C in [17]). Note
that the bundles are in general only upper semi-continuous, and not necessarily
continuous. For a discussion of this point, see [16].

8. Later, in Chaps. 8–11 we will work towards physical applications in which the
above C∗-bundle is a locally trivial (or, even a globally trivial) ∗-algebra bundle
with finite-dimensional fiber. The above generalized gauge theories then become
ordinary gauge theories, defined in terms of vector bundles and connections. It

http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_11
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would be interesting to study the gauge theories corresponding to the intermediate
cases, such as continuous trace C∗-algebras (cf. [18] for a definition), or the more
generalKK-fibrations thatwere introduced in [19]. First examples in this direction
are studied in [20].
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Chapter 7
Spectral Invariants

In the previous chapter we have identified the gauge group canonically associated
to any spectral triple and have derived the generalized gauge fields that carry an
action of that gauge group. In this chapter we take the next step and search for gauge
invariants of these gauge fields, to wit, the spectral action, the topological spectral
action and the fermionic action. We derive (asymptotic) expansions of the spectral
action.

7.1 Spectral Action Functional

The simplest spectral invariant associated to a spectral triple (A,H, D) is given
by the trace of some function of D. We also allow for inner fluctuations, and more
generally consider the operators Dλ = D + λ + φ∗ JλJ−1 with λ = λ∈ ∈ λ1

D(A).

Definition 7.1 Let f be a suitable positive and even function from R to R. The
spectral action is defined by

Sb[λ] := Tr f (Dλ/γ), (7.1.1)

where γ is a real cutoff parameter. The minimal condition on the function f is that
it makes f (Dλ/γ) a traceclass operator, requiring sufficiently rapid decay at ±→.

The subscript b refers to bosonic since in the later physical applications λ will
describe bosonic fields.

There is also a topological spectral action, which is defined in terms of the grading
π by

Stop[λ] = Tr π f (Dλ/γ). (7.1.2)

The term ‘topological’ will be justified below. First, we prove gauge invariance of
these functionals.

W. D. van Suijlekom, Noncommutative Geometry and Particle Physics, 121
Mathematical Physics Studies, DOI: 10.1007/978-94-017-9162-5_7,
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Theorem 7.2 The spectral action and the topological spectral action are gauge
invariant functionals of the gauge field λ ∈ λ1

D(A), assumed to transform under
Ad u = u Ju J−1 ∈ G(A,H; J ) as

λ �◦ uλu∈ + u[D, u∈].

Proof By (6.2.5) this is equivalent to Dλ �◦ U DλU∈ with U = u Ju J−1. Since
the eigenvalues of U DλU∈ coincide with those of Dλ and the (topological) spectral
action is defined on the spectrum of Dλ , the result follows. �

Another gauge invariant one can naturally associate to a spectral triple is of a
fermionic nature, as opposed to the above bosonic spectral action functional. This
invariant is given by combining the operator Dλ with a Grassmann vector in the
Hilbert space (cf. Appendix 9.A), as follows.

Definition 7.3 The fermionic action is defined by

S f [λ,ψ] = (J ψ̃, Dλψ̃)

with ψ̃ ∈ H+
cl where

H+
cl =

⎛
ψ̃ : ψ ∈ H+⎜

is the set of Grassmann variables in H in the +1-eigenspace of the grading π.

Theorem 7.4 The fermionic action is a gauge invariant functional of the gauge field
λ and the fermion field ψ, the latter transforming under Ad u ∈ G(A,H; J ) as

ψ �◦ u Ju J−1ψ.

Moreover, if the KO-dimension of (A,H, D; π, J ) is 2 modulo 8, then (ψ,ψ∗) �◦
〈Jψ, Dλψ∗≤ defines a skew-symmetric form on the +1-eigenspace of π in H.

Proof Again, Dλ �◦ UDλU∈ with U = u Ju J−1, whilst ψ �◦ Uψ. The claim then
follows from the observation UJ = JU.

Skew-symmetry follows from a small computation:

〈Jψ, Dψ∗≤ = −〈Jψ, J 2Dψ∗≤ = −〈JDψ∗,ψ≤ = −〈DJψ∗,ψ≤ = −〈Jψ∗, Dψ≤.

where we used Table 4.2 for DJ = JD in KO-dimension 2 modulo 8. �

The above skew-symmetry is in concordance with the Grassmann nature of fermi-
onic fields ψ̃, guaranteeing that S f as defined above is in fact non-zero.

http://dx.doi.org/10.1007/978-94-017-9162-5_6
http://dx.doi.org/10.1007/978-94-017-9162-5_9
http://dx.doi.org/10.1007/978-94-017-9162-5_4
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7.2 Expansions of the Spectral Action

We assume that f is given by a Laplace–Stieltjes transform:

f (x) =
⎝

t>0

e−t x2dμ(t),

with μ some measure onR+. Under this assumption, we can expand Sb in two ways:
either asymptotically, in powers of γ, or in powers of the gauge field λ. But first, let
us find an expression for the topological spectral action.

Proposition 7.5 Suppose f is of the above form. Then,

Stop[λ] = f (0) index Dλ.

Proof This follows from the McKean-Singer formula (Lemma 5.23):

index Dλ = Tr πe−t D2
λ/γ2

.

Since this expression is independent of γ and t , an integration over t yields

⎝

t>0

dμ(t) = f (0). �

7.2.1 Asymptotic Expansion

The asymptotic expansion of S can be derived from the existence of a heat kernel
expansion of the form

Tr e−t D2 =
⎞

ξ

tξcξ, (7.2.1)

as t ◦ 0. Note that this is written down here for the unperturbed operator D, but
similar expressions hold for any bounded perturbation of D, such as Dλ .

Lemma 7.6 If (A,H, D) is a regular spectral triple with simple dimension spectrum
(see Definition 5.9), then the heat kernel expansion (7.2.1) is valid as an asymptotic
expansion as t ◦ 0. Moreover, for ξ < 0 we have

resz=−2ξω1(z) = 2cξ

ψ(−ξ)
,

with ωb(z) = Tr b|D|−z .

http://dx.doi.org/10.1007/978-94-017-9162-5_5
http://dx.doi.org/10.1007/978-94-017-9162-5_5
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Proof This follows from the Mellin transform:

|D|−z = 1

ψ(z/2)

→⎝

0

e−t D2
t z/2−1 dt,

or, after inserting the heat kernel expansion,

Tr |D|−z = 1

ψ(z/2)

⎞

ξ

→⎝

0

cξtξ+z/2−1 dt

= 1

ψ(z/2)

⎞

ξ

1⎝

0

cξtξ+z/2−1 dt + holomorphic

=
⎞

ξ

cξ

ψ(z/2)(ξ + z/2)
+ holomorphic.

Taking residues at z = −2ξ on both sides gives the desired result. �
Using the Laplace–Stieltjes transform, we now derive an asymptotic expansion

of the spectral action in terms of the heat coefficients cξ.

Proposition 7.7 Under the above conditions, the spectral action is given asymptot-
ically (as γ ◦ →) by

Tr f (D/γ) =
⎞

β∈Sd
fβγβ 2

ψ(β/2)
c− 1

2β
+ f (0)c0 + O(γ−1), (7.2.2)

where fβ := ⎟
f (v)vβ−1dv and Sd is the dimension spectrum of (A,H, D).

Proof This follows directly after inserting the heat expansion in the Laplace–Stieltjes
transform:

Tr f (D/γ) =
⎞

ξ

⎝

t>0

tξγξcξ dμ(t). (7.2.3)

The terms with ξ > 0 are of order γ−1; if ξ < 0, then

tξ = 1

ψ(ξ)

⎝

v>0

e−tvv−ξ−1 dv.

Applying this to the integral (7.2.3) gives

γ−2ξcξ

⎝

t>0

tξ dμ(t) = γ−2ξcξ

⎝

t>0

⎝

v>0

e−tvv−ξ−1 dvdμ(t)
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= 2γ−2ξcξ

⎝

t>0

⎝

v>0

e−tv2v−2ξ−1 dvdμ(t)

= 2γ−2ξcξ

⎝

v>0

f (v)v−2ξ−1 dv ∼ 2γ−2ξcξ f−2ξ,

substituting v �◦ v2 in going to the second line. Since cξ = 0 unless −2ξ ∈ Sd, we
substitute β = −2ξ to obtain (7.2.2). �
Corollary 7.8 For the perturbed operator Dλ we have

Sb[λ] =
⎞

β∈Sd
fβγβresz=β Tr |Dλ|−z + f (0)Tr |Dλ|−z

⎠⎠
z=0 + O(γ−1).

7.2.2 Perturbative Expansion in the Gauge Field

Another approach to analyze Sb is given by expanding in λ, rather than in γ. We
first take a closer look at the heat operator e−t D2

and its perturbations.

Lemma 7.9 Let λ be a bounded operator and denote Dλ = D + λ. Then

e−t (Dλ)2 = e−t D2 − t

1⎝

0

ds e−st (Dλ)2 P(λ)e−(1−s)t D2
,

with P(λ) = Dλ + λD + λ2.

Proof Note that e−t D2
λ is the unique solution of the Cauchy problem

{
(dt + Dλ) u(t) = 0
u(0) = 1,

with dt = d/dt . Using the fundamental theorem of calculus, we find

dt

⎡

⎧e−t D2 −
t⎝

0

dt ∗e−(t−t ∗)D2
λ P(λ)e−t ∗ D2

⎨

⎩

= −D2
λ



⎫e−t D2 −
t⎝

0

dt ∗e−(t−t ∗)D2
λ P(λ)e−t ∗ D2

⎬

⎭ ,

showing that the bounded operator e−t D2 − ⎟ t
0 dt ∗e−(t−t ∗)D2

λ P(λ)e−t ∗ D2
also solves

the above Cauchy problem. �
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In what follows, we will repeatedly apply this Lemma to obtain a perturbative
expansion for e−t (Dλ)2 in powers ofλ in terms of multiple integrals of heat operators.
We introduce the following convenient notation, valid for operators X0, . . . Xn :

〈X0, . . . , Xn≤t,n := tn Tr
⎝

χn

X0e−s0t D2
X1e−s1t D2 · · · Xne−sn t D2

dns.

Here, the standard n-simplex χn is the set of all n-tuples (t1, . . . , tn) satisfying
0 ⊕ t1 ⊕ · · · ⊕ tn ⊕ 1. Equivalently, χn can be given as the set of n + 1-tuples
(s0, s1, . . . , sn) such that s0 + · · · + sn = 1 and 0 ⊕ si ⊕ 1 for any i = 0, . . . , n.
Indeed, we have s0 = t1, si = ti+1 − ti and sn = 1 − tn and, vice versa, tk =
s0 + s1 + · · · sk−1.

We recall the notion of Gâteaux derivatives.

Definition 7.10 The Gâteaux derivative of a map F : X ◦ Y (between locally
convex topological vector spaces) at x ∈ X is defined for h ∈ X by

F ∗(x)(h) = lim
u◦0

F(x + uh) − F(x)

u
.

In general, the map F ∗(x)(·) is not linear, in contrast with the Fréchet derivative.
However, if X and Y are Fréchet spaces, then the Gâteaux derivatives actually defines
a linear map F ∗(x)(·) for any x ∈ X . In this case, higher order derivatives are denoted
as F ∗∗, F ∗∗∗, et cetera, or more conveniently as F (k) for the k’th order derivative. The
latter will be understood as a bounded operator from X × · · · × X (k + 1 copies) to
Y , which is linear in the k last variables.

Theorem 7.11 (Taylor’s formula with integral remainder) For a Gâteaux k + 1-
differentiable map F : X ◦ Y between Fréchet spaces X and Y ,

F(x) = F(a) + F ∗(a)(x − a) + 1

2! F ∗∗(a)(x − a, x − a) + · · ·

+ 1

n! F (k)(a)(x − a, . . . , x − a) + Rk(x),

for x, a ∈ X, with remainder given by

Rk(x) = 1

k!
1⎝

0

F (k+1)(a + t (x − a))((1 − t)h, . . . , (1 − t)h, h)dt.

In view of this Theorem, we have the following asymptotic Taylor expansion
(around 0) in λ ∈ λ1

D(A) for the spectral action Sb[λ]:

Sb[λ] =
→⎞

n=0

1

n! S(n)
b (0)(λ, . . . ,λ), (7.2.4)
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provided we make the following

Assumption 1 For all ξ > 0,β > 0, π > 0 and 0 ⊕ φ < 1, there exist constants
Cξβπφ such that ⎝

t>0

Tr tξ|D|βe−t (φD2−β) |dμ(t)| < Cξβπφ.

Proposition 7.12 If n = 0, 1, . . . and λ ∈ λ1
D(A), then S(n)

b (0)(λ, . . . ,λ) exists,
and

S(n)
b (0)(λ, . . . ,λ) = n!

n⎞

k=0

(−1)k
⎞

ε1,...,εk

〈1, (1 − ε1){D,λ} + ε1λ
2, . . . ,

(1 − εk){D,λ} + εkλ
2≤t,k dμ(t),

where the sum is over multi-indices (ε1, . . . , εk) ∈ {0, 1}k such that∑k
i=1(1 + εi ) = n.

Proof We prove this by induction on n, the case n = 0 being trivial. By definition
of the Gâteaux derivative and using Lemma 7.9,

S(n+1)
b (0)(λ, . . . ,λ) = n!

n⎞

k=0

⎞

ε1,...,εk

[ k⎞

i=1

(−1)k+1〈1, (1 − ε1){D,λ} + ε1λ
2,

. . . , {D,λ}
i

, . . . , (1 − εk){D,λ} + εkλ
2≤t,k+1

+
k⎞

i=1

(−1)k〈1, (1 − ε1){D,λ} + ε1λ
2, . . . , 2(1 − εi )λ

2,

. . . , (1 − εk){D,λ} + εkλ
2≤t,k

]
dμ(t).

The first sum corresponds to a multi-index −◦ε ∗ = (ε1, . . . , εi−1, 0, εi , . . . , εk), the
second corresponds to −◦ε ∗ = (ε1, . . . , εi + 1, . . . , εk) if εi = 0, counted with a
factor of 2. In both cases, we compute that

∑
j (1 + ε∗

j ) = n + 1. In other words,
the induction step from n to n + 1 corresponds to inserting in a sequence of 0’s and
1’s (of, say, length k) either a zero at any of the k + 1 places, or replacing a 0 by a 1
(with the latter counted twice). In order to arrive at the right combinatorial coefficient
(n + 1)!, we have to show that any −◦ε ∗ satisfying

∑
i (1 + ε∗

i ) = n + 1 appears in
precisely n + 1 ways from −◦ε that satisfy

∑
i (1 + εi ) = n. If ε ∗ has length k, it

contains n + 1− k times 1 as an entry and, consequently, 2k − n − 1 a 0. This gives
(with the double counting for the 1’s) for the number of possible −◦ε :

2(n + 1 − k) + 2k − n − 1 = n + 1,

as claimed. This completes the proof. �
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Example 7.13

S(1)
b (0)(λ) =

⎝ (
− 〈1, {D,λ}≤t,1

)
dμ(t),

S(2)
b (0)(λ,λ) = 2

⎝ (
− 〈1,λ2≤t,1 + 〈1, {D,λ}, {D,λ}≤t,2

)
dμ(t),

S(3)
b (0)(λ,λ,λ) = 3!

⎝ (
〈1,λ2, {D,λ}≤t,2 + 〈1, {D,λ},λ2≤t,2

− 〈1, {D,λ}, {D,λ}, {D,λ}≤t,3

)
dμ(t).

7.2.2.1 Taylor Expansion of the Spectral Action

We fix a complete set of eigenvectors {ψn}n of D with eigenvalues λn ∈ R, respec-
tively, forming an orthonormal basis forH. We also write λmn := (ψm,λψn) for the
matrix coefficients ofλ with respect to this orthonormal basis. Recall fromAppendix
7.A the notion of divided difference f [x0, x1, . . . , xn] of a function f : R ◦ R.

Theorem 7.14 If f satisfies Assumption 1 and λ ∈ λ1
D(A), then

S(n)
b (0)(λ, . . . ,λ) = n!

⎞

i1,...,in

λin i1λi1i2 · · · λin−1in f [λi p ,λi1 , . . . ,λin ].

Proof Proposition 7.12 gives us an expression for S(n)
b in terms of the brackets 〈· · · ≤t .

For these we compute:

(−1)k〈1, (1 − ε1){D,λ} + ε1λ
2, . . . , (1 − εk){D,λ} + εkλ

2≤t,k dμ(t)

= (−1)k
⎞

i0=ik ,i1,...,ik

⎝

χk



⎫
k∏

j=1

(
(1 − ε j )(λi j−1 − λi j )λ + ε jλ

2
)

i j−1i j

⎬

⎭

× e
−(s0tλ2

i0
+···+sk tλ2

ik
)
dksdμ(t)

=
⎞

i0=ik ,i1,...,ik



⎫
k∏

j=1

(
(1 − ε j )(λi j−1 − λi j )λ + ε jλ

2
)

i j−1i j

⎬

⎭ g[λ2
i0 , . . . ,λ

2
ik
].

Glancing back at Proposition 7.19, we are finished if we establish a one-to-one
relation between the order index sets I = {0 = i0 < i1 < · · · < ik = n} such that
i j−1 − i j ⊕ 2 for all 1 ⊕ j ⊕ k and the multi-indices (ε1, . . . , εk) ∈ {0, 1}k such
that

∑k
i=1(1 + εi ) = n. If I is such an index set, we define a multi-index
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ε j =
{
0 if {i j − 1, i j } ⊂ I,
1 otherwise.

Indeed, i j = i j−1 + 1 + ε j , so that

k⎞

i=1

(1 + εi ) = i0 +
k⎞

i=1

(1 + εi ) = ik = n.

It is now clear that, vice versa, if ε is as above, we define

I = {0 = i0 < i1 < · · · < ik = n}

by i j = i j−1 + 1 + ε j , and starting with i0 = 0. �

Corollary 7.15 If n ≥ 0 and λ ∈ λ1
D(A), then

S(n)
b (0)(λ, . . . ,λ) = (n − 1)!

⎞

i1,...in

λi1i2 · · · λin i1 f ∗[λi1, . . . ,λin ].

Consequently,

Sb[λ] =
→⎞

n=0

1

n

⎞

i1,...in

λi1i2 · · · λin i1 f ∗[λi1 , . . . ,λin ].

An interesting consequence is the following.

Corollary 7.16 If n ≥ 0 and λ ∈ λ1
D(A) and if f ∗ has compact support, then

S(n)
b (0)(λ, . . . ,λ) = (n − 1)!

2ηi
Tr

∮
f ∗(z)λ(z − D)−1 · · · λ(z − D)−1,

where the contour integral encloses the intersection of the spectrum of D with supp f ∗.

Proof This follows directly fromCauchy’s formula for divided differences (SeeNote
13 on page 133):

g[x0, . . . xn] = 1

2ηi

∮
g(z)

(z − x0) · · · (z − xn)
dz,

with the contour enclosing the points xi . �
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7.A Divided Differences

We recall the definition of and some basic results on divided differences.

Definition 7.17 Let f : R ◦ R and let x0, x1, . . . xn be distinct points in R. The
divided difference of order n is defined by the recursive relations

f [x0] = f (x0),

f [x0, x1, . . . xn] = f [x1, . . . xn] − f [x0, x1, . . . xn−1]
xn − x0

.

On coinciding points we extend this definition as the usual derivative:

f [x0, . . . , x . . . , x . . . xn] := lim
u◦0

f [x0, . . . , x + u . . . , x . . . xn].

Finally, as a shorthand notation, for an index set I = {i1, . . . , in} we write

f [xI ] = f [xi1 , . . . , xin ].

Also note the following useful representation:

Proposition 7.18 For any x0, . . . , xn ∈ R,

f [x0, x1, . . . , xn] =
⎝

χn

f (n) (s0x0 + s1x1 + · · · + sn xn) dns.

Proof See Note 12 on page 133. �

Exercise 7.1 Prove Proposition 7.18 and show that it implies

n⎞

i=0

f [x0, . . . , xi , xi , . . . , xn] = f ∗[x0, x1, . . . , xn].

Proposition 7.19 For any x1, . . . xn ∈ R for f (x) = g(x2) we have,

f [x0, · · · , xn] =
⎞

I



⎫
∏

{i−1,i}⊂I

(xi + xi+1)

⎬

⎭ g[x2I ],

where the sum is over all ordered index sets I = {0 = i0 < i1 < · · · < ik = n} such
that i j − i j−1 ⊕ 2 for all 1 ⊕ j ⊕ k (i.e. there are no gaps in I of length greater
than 1).

Proof This follows from the chain rule for divided differences (see Note 13 on
page 133): if f = g ⊗ κ, then
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f [x0, . . . xn] =
n⎞

k=1

⎞

0=i0<i1<...<ik=n

g[κ(xi0), . . . ,κ(xik )]
k−1∏

j=0

κ[xi j , . . . , xi j+1 ].

For κ(x) = x2 we have κ[x, y] = x + y, κ[x, y, z] = 1 and all higher divided
differences are zero. Thus, if i j+1 − i j > 2 then κ[xi j , . . . , xi j+1 ] = 0. In the
remaining cases one has

κ[xi j , . . . , xi j+1 ] =
{

xi j + xi j+1 if i j+1 − i j = 1
1 if i j+1 − i j = 2,

and in the above summation this selects precisely the index sets I . �
Example 7.20 For the first few terms, we have

f [x0, x1] = (x0 + x1)g[x20 , x21 ],
f [x0, x1, x2] = (x0 + x1)(x1 + x2)g[x20 , x21 , x22 ] + g[x20 , x22 ],

f [x0, x1, x2, x3] = (x0 + x1)(x1 + x2)(x2 + x3)g[x20 , x21 , x22 , x23 ]
+ (x2 + x3)g[x20 , x22 , x23 ] + (x0 + x1)g[x20 , x21 , x23 ].

Notes

Section 7.1 Spectral Action Functional

1. The spectral action principle was introduced by Chamseddine and Connes in
[1, 2].

2. Note that we have put two restrictions on the fermions in the fermionic action
S f of Definition 7.3. The first is that we restrict ourselves to even vectors inH+,
instead of considering all vectors inH. The second restriction is that we do not
consider the inner product 〈J ψ̃∗, Dλψ̃≤ for two independent vectorsψ andψ∗, but
instead use the same vector ψ on both sides of the inner product. Each of these
restrictions reduces the number of degrees of freedom in the fermionic action by
a factor of 2, yielding a factor of 4 in total. It is precisely this approach that solves
the problem of fermion doubling pointed out in [3] (see also the discussion in
[4, Chap. 1, Sect. 16.3]). We shall discuss this in more detail in Chaps. 9 and 11,
where we calculate the fermionic action for electrodynamics and the Standard
Model, respectively.

Section 7.2 Expansions of the Spectral Action

3. For a complete treatment of the Laplace–Stieltjes transform, see [5].

4. Lemma 7.6 appeared as [4, Lemma 1.144].

http://dx.doi.org/10.1007/978-94-017-9162-5_9
http://dx.doi.org/10.1007/978-94-017-9162-5_11
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5. Corollary 7.8 is [4, Theorem 1.145]. An analysis of the term Tr |Dλ|−z
⎠⎠
z=0

therein, including a perturbative expansion in powers of λ has been obtained
in [6].

6. Section 7.2.2 is based on [7].

7. The notation 〈X0, . . . , Xn≤t,n should not be confused with the zeta functions
〈X0, . . . , Xn≤z introduced in Chap.5. However, they are related through the
formula

〈X0, . . . , Xn≤t,n = (−1)p

2ηi
Tr

⎝
e−tλ X0(λ − D2)−1X1 · · · An(λ − D2)−1dλ.

Multiplying this expression by t z−1 and integrating over t eventually yields
〈X0, . . . , Xn≤z . For details, we refer to [8, Appendix A].

8. For more details on Gâteaux derivatives, we refer to [9]. For instance, that the
Gâteaux derivative of a linear map F between Fréchet spaces is a linear map
F ∗(x)(·) for any x ∈ X is shown in [9, Theorem3.2.5].

9. The expansion in Eq.7.2.4 is asymptotic in the sense that the partial sums∑N
n=0

1
n! S(n)

b (0)(λ, . . . ,λ) canbe estimated to differ from Sb[λ]byO(‖λ‖N+1).
This is made precise in [7].

10. Theorem 7.14 was proved in [7]. A similar result was obtained in finite dimen-
sions in [10] and in a different setting in [11]. Corollary 7.16 was obtained at
first order for bounded operators [12].

11. There is a close connection between the spectral action, the Krein spectral shift
function [13, 14], as well as the spectral flow of Atiyah and Lusztig [15–17].
One way to see this is from Theorem 7.11, where we can control the asymptotic
expansion of the spectral action using the remainder terms Rk . In [11] these terms
are analyzed and related to a spectral shift formula [13, 14] (see also the book
[18] and the review [19], and references therein). In fact, under the assumption
that f has compact support, the first rest term Sb[λ] − S(0)

b (0) becomes

Tr f (D + λ) − Tr f (D) =
⎝

R

f (x)d(Tr ED+λ(x)) −
⎝

R

f (x)d(Tr ED(x)),

where ED+λ and ED are the spectral projections of D + λ and D, respectively.
After a partial integration, we then obtain [11][Theorem3.9]

(∈) Tr f (D + λ) − Tr f (D) =
⎝

R

f ∗(x)θ(x)dx,

http://dx.doi.org/10.1007/978-94-017-9162-5_5
http://dx.doi.org/10.1007/978-94-017-9162-5_7
http://dx.doi.org/10.1007/978-94-017-9162-5_3
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where
θ(x) = Tr (ED+λ(x) − ED(x))

is the so-called spectral shift function.Moreover, it turns out that the higher-order
rest terms are related to higher-order spectral shift functions [20, 21].
Let us also briefly describe the intriguing connection between the spectral shift
function and the local index formula of Chap.5. In fact, [22] (using a result
from [23, Appendix B]) relates the index of Pu P which appears in the odd
local index formula (Theorem 5.21) to the spectral flow sf({Dt }) of the family
Dt = (1 − t)D + tu Du∈ = D + tu[D, u∈] for 0 ⊕ t ⊕ 1. Roughly speaking,
the spectral flow of such a family of operators is given by the net number of
eigenvalues of Dt that pass through 0 in the positive direction when t runs from
0 to 1. One then has

index Pu P = sf({Dt }t∈[0,1]).

The connection between spectral flow and the spectral shift function was first
hinted at in [24] and has been worked out in [25, 26]. Essentially, these latter
papers build on the observation that the spectral flow from D0 − x to D1 − x for
any real number x is equal to the spectral shift function θ(x) defined above in
terms of the spectral projections of D0 and D1. Note that for a path connecting
D and the unitarily equivalent operator u Du∈ the spectral shift function is a
constant. In fact, since D and u Du∈ have identical spectrum, the left-hand side
of (∈) vanishes. Integration by parts on the right-hand side then ensures that θ is
constant (and in fact equal to the above index).
Eventually, a careful analysis of the spectral flow [27] (and [28] for the even
case) allows one to prove the local index formula in the much more general
setting of semi-finite spectral triples [22, 29–31].
Another encounter of spectral shift and spectral flow is in the computation of the
index of the operator d/dt + A(t) with A(t) a suitable family of perturbations
(t ∈ R). In fact, they were the operators studied by Atiyah, Patodi and Singer in
[15–17]. The index of d/dt + A(t) can be expressed in terms of the spectral flow
of A(t) under the assumptions that A(±→) is boundedly invertible, and that
A(t) has discrete spectrum for all t ∈ R. We refer to [32] for a careful historical
account, and the extension of this result to relatively trace class perturbations
A(t).

Appendix 7.A Divided Differences

12. Proposition 7.18 is due to Hermite [33].

13. The chain rule for divided differences is proved in [34]. For Cauchy’s formula
for divided differences, we refer to [35, Chap. I.1].

http://dx.doi.org/10.1007/978-94-017-9162-5_5
http://dx.doi.org/10.1007/978-94-017-9162-5_5


134 7 Spectral Invariants

References

1. Chamseddine, A.H., Connes, A.: Universal formula for noncommutative geometry actions:
unifications of gravity and the standard model. Phys. Rev. Lett. 77, 4868–4871 (1996)

2. Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186,
731–750 (1997)

3. Lizzi, F., Mangano, G., Miele, G., Sparano, G.: Fermion Hilbert space and fermion doubling in
the noncommutative geometry approach to gauge theories. Phys. Rev. D55, 6357–6366 (1997)

4. Connes, A., Marcolli, M.: Noncommutative Geometry. Quantum Fields and Motives. AMS,
Providence (2008)

5. Widder, D.V.: The Laplace Transform. Princeton Mathematical Series, vol. 6. Princeton Uni-
versity Press, Princeton (1941)

6. Connes, A., Chamseddine, A.H.: Inner fluctuations of the spectral action. J. Geom. Phys. 57,
1–21 (2006)

7. van Suijlekom, W.D.: Perturbations and operator trace functions. J. Funct. Anal. 260, 2483–
2496 (2011)

8. Higson, N.: The residue index theorem of Connes and Moscovici. In: Surveys in Noncommu-
tative Geometry, Vol. 6 of Clay Mathematics Proceedings, American Mathematical Society,
Providence, RI, pp. 71–126 (2006)

9. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. 7,
65–222 (1982)

10. Hansen, F.: Trace functions as Laplace transforms. J. Math. Phys. 47(11), 043504 (2006)
11. Skripka, A.: Asymptotic expansions for trace functionals. J. Funct. Anal. 266, 2845–2866

(2014)
12. Gilliam, D.S., Hohage, T., Ji, X., Ruymgaart, F.: The Fréchet derivative of an analytic function

of a bounded operator with some applications. Int. J. Math. Math. Sci. 17, Art. ID 239025
(2009)

13. Lifshits, I.: On a problem in perturbation theory (russian). Uspehi Matem. Nauk. 7, 171–180
(1952)

14. Krein, M.: On a trace formula in perturbation theory. Matem. Sbornik 33, 597–626 (1953)
15. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry I.

Math. Proc. Cambridge Philos. Soc. 77, 43–69 (1975)
16. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry II.

Math. Proc. Cambridge Philos. Soc. 78, 405–432 (1975)
17. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry III.

Math. Proc. Cambridge Philos. Soc. 79, 71–99 (1976)
18. Yafaev, D.R.:Mathematical Scattering Theory, vol. 105 of Translations ofMathematicalMono-

graphs. General Theory. AmericanMathematical Society, Providence (1992). (Translated from
the Russian by J.R Schulenberger)

19. Birman, M.S., Pushnitski, A.B.: Spectral Shift Function, Amazing and Multifaceted. Integr.
Eqn. Oper. Theory 30, 191–199 (1998). [Dedicated to the memory of Mark Grigorievich Krein
(1907–1989)]

20. Koplienko, L.S.: The trace formula for perturbations of nonnuclear type. Sibirsk. Mat. Zh. 25,
62–71 (1984)

21. Potapov, D., Skripka, A., Sukochev, F.: Spectral shift function of higher order. Invent. Math.
193, 501–538 (2013)

22. Carey, A., Phillips, J.: Unbounded Fredholm modules and spectral flow. Canad. J. Math. 50,
673–718 (1998)

23. Phillips, J., Raeburn, I.: An index theorem for Toeplitz operators with noncommutative symbol
space. J. Funct. Anal. 120, 239–263 (1994)

24. Müller, W.: Relative zeta functions, relative determinants and scattering theory. Commun.
Math. Phys. 192, 309–347 (1998)

25. Azamov, N.A., Carey, A.L., Sukochev, F.A.: The spectral shift function and spectral flow.
Commun. Math. Phys. 276, 51–91 (2007)



References 135

26. Azamov, N.A., Carey, A.L., Dodds, P.G., Sukochev, F.A.: Operator integrals, spectral shift,
and spectral flow. Canad. J. Math. 61, 241–263 (2009)

27. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von
Neumann algebras I. Spectral flow. Adv. Math. 202, 451–516 (2006)

28. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von
Neumann algebras II. The even case. Adv. Math. 202, 517–554 (2006)

29. Benameur, M.-T., Fack, T.: Type II non-commutative geometry. I. Dixmier trace in von Neu-
mann algebras. Adv. Math. 199, 29–87 (2006)

30. Carey, A.L., Phillips, J., Sukochev, F.A.: On unbounded p-summable Fredholm modules. Adv.
Math. 151, 140–163 (2000)

31. Carey, A., Phillips, J., Sukochev, F.: Spectral flow and Dixmier traces. Adv. Math. 173, 68–113
(2003)

32. Gesztesy, F., Latushkin, Y., Makarov, K.A., Sukochev, F., Tomilov, Y.: The index formula and
the spectral shift function for relatively trace class perturbations. Adv. Math. 227, 319–420
(2011)

33. Hermite, C.: Sur la formule d’interpolation de lagrange. J. Reine Angew. Math. 84, 70–79
(1878)

34. Floater, M.S., Lyche, T.: Two chain rules for divided differences and Faà di Bruno’s formula.
Math. Comp. 76, 867–877 (2007)

35. Donoghue Jr, W.F.: Monotone Matrix functions and Analytic Continuation. Die Grundlehren
der Mathematischen Wissenschaften, Band 207. Springer, New York (1974)



Chapter 8
Almost-Commutative Manifolds
and Gauge Theories

In this chapter we analyze the gauge theories corresponding (in the sense of Chap. 6)
to a special class of noncommutative manifolds, to wit almost-commutative, or AC
manifolds. We will see that this class leads to the usual gauge theories in physics.
After identifying the gauge group, the gauge fields and the scalar fields, we compute
the spectral action that yields the Lagrangian of physical interest.

8.1 Gauge Symmetries of AC Manifolds

We consider almost-commutative manifolds M × F that are the products of a Rie-
mannian spin manifold M with a finite noncommutative space F .

As such, these are reminiscent of the original Kaluza–Klein theories where one
considers the product M×S

1. The crucial difference is that the space F is finite so that
no extra dimensions appear,while it can have non-trivial (noncommutative) structure.

Definition 8.1 Let M be aRiemannian spinmanifoldwith canonical triple (C∗(M),

L2(S), DM ; JM , λM ), and let (AF , HF , DF ; JF , λF ) be a finite real spectral triple.
The almost-commutative manifold M × F is given by the real spectral triple:

M×F = (C∗(M, AF ), L2(S∈(M×HF )), DM ∈1+λM ∈DF ; JM ∈JF , λM ∈λF ).

Recall the definition of the gauge group of a real spectral triple (cf. Definition 6.4).
In the case of AC manifolds, it is given by

G(M × F) :=
{

u Ju J−1 : u ∈ C∗(M,U(AF ))
}

,

with J = JM ∈ JF . Here we have identified U(C∗(M, AF )) = C∗(M,U(AF )).
For the Lie algebra of the gauge group we have

g(M × F) :=
{

X + J X J−1 : X ∈ C∗(M, u(AF ))
}

.

W. D. van Suijlekom, Noncommutative Geometry and Particle Physics, 137
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In the same way, we also obtain the groups G(M) and G(F). For the canonical
triple on the spin manifold M , we have seen in Example 4.38 that C∗(M)JM =
C∗(M), which means that the group G(M) is just the trivial group. For the finite
space F , we obtain the local gauge group G(F). Let us have a closer look at the
structure of this local gauge group. We define two subsets of AF by

H(F) := U(
(AF )JF

)
, (8.1.1a)

h(F) := u
(
(AF )JF

)
. (8.1.1b)

Note that the group H(F) is the counterpart for the finite space F of the group
U(AJ ) in Proposition 6.5, and h(F) is its Lie algebra.

Proposition 8.2 Let M be simply connected. Then the gauge group G(M × F)

of an almost-commutative manifold is given by C∗(M,G(F)), where G(F) =
U(AF )/H(F) is the gauge group of the finite space. Consequently, the gauge Lie
algebra g(M × F) is given by C∗(M, g(F)), where g(F) = u(AF )/h(F).

Proof This follows from Propositions 6.5 and 6.8, combined with the fact that for
the algebra A = C∗(M, AF ) we have U(A) → C∗(M,U(AF )), while U(AJ ) =
C∗(M,H(F)). The quotient of the latter two groups is isomorphic toC∗(M,G(F))

if the following homomorphism

C∗(M,U(AF )) → C∗(M,U(AF )/H(F))

is surjective. This happens when M is simply connected, as in that case there exists
a global lift from U(AF )/H(F) to U(AF ) (see Note 4 on page 157). �

This is in concordance with the picture derived in Sect. 6.3, where the gauge
group acts fiberwise on a C◦-bundle. Namely, in the case of an almost-commutative
manifold we have a globally trivial C◦-bundle M × AF for whichA are the (smooth)
sections. SinceG(M × F) → C∗(M,G(F)), the gauge group is given by the space
of sections of the group bundle M × G(F), which then naturally acts fiberwise on
the C◦-bundle M × AF .

Combinedwith the outer automorphisms onC∗(M), we arrive at the full symme-
try group of an almost-commutative manifold M × F as a semi-direct product, where
the ‘internal symmetries’ are given by the gauge group G(M × F). Furthermore,
we also still have invariance under the group of diffeomorphisms Diff(M), as in
Example 6.2. There exists a group homomorphism φ : Diff(M) → Aut

(
G(M × F)

)

given by

φ(π)U := U ◦ π−1,

for π ∈ Diff(M) and U ∈ G(M × F). Hence, we can describe the full symmetry
group by the semi-direct product

G(M × F) � Diff(M).

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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8.1.1 Unimodularity

Suppose that AF is a complex unital ◦-algebra, conform Definition 2.1. This algebra
has a unit 1, and by complex linearity we see that C1 ≤ (AF )JF . Restricting to
unitary elements, we then find that U (1) is a subgroup of H(F). Because H(F) is
commutative, U (1) is then automatically a normal subgroup of H(F).

If, on the other hand, AF is a real algebra, we can only say that R1 ≤ (AF )JF .
Restricting to unitary (i.e. in this case orthogonal) elements, we then only obtain the
insight that {1,−1} is a normal subgroup of H(F).

Proposition 8.3 If AF is a complex algebra, the gauge group is isomorphic to

G(F) → SU(AF )/SH(F),

where

SU(AF ) := {g ∈ U(AF ) | det HF g = 1},
SH(F) := SU(AF ) ∼ H(F).

In this case the gauge algebra is

g(F) → su(AF )/sh(F),

with

su(AF ) := {X ∈ u(AF ) | TrHF X = 0},
sh(F) := su(AF ) ∼ hF .

Proof Elements of the quotientG(F) = U(AF )/H(F) are given by the equivalence
classes [u] for u ∈ U(AF ), subject to the equivalence relation [u] = [uh] for all
h ∈ H(F). Similarly, the quotient SU(AF )/SH(F) consists of classes [v] for v ∈
SU(AF ), with the equivalence relation [v] = [vg] for all g ∈ SH(F). We first show
that this quotient is well defined, i.e. that SH(F) is a normal subgroup of SU(AF ).
For this we need to check that vgv−1 ∈ SH(F) for all v ∈ SU(AF ) and g ∈ S
H(F). We already know that vgv−1 ∈ H(F), because H(F) is a normal subgroup of
U(AF ). We then also see that detHF (vgv−1) = detHF g = 1, so vgv−1 ∈ SH(F),
and the quotient SU(AF )/SH(F) is indeed well defined.

As to for the claimed isomorphism, consider the group homomorphism
ψ : U(AF ) → SU(AF )/SH(F) given by

ψ(u) = [ξu
−1u],

where ξu ∈ U (1) is an element in U (1) such that ξu
N = det u, where N is the

dimension of the finite-dimensional Hilbert space HF .

http://dx.doi.org/10.1007/978-94-017-9162-5_2
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Since U (1) is a subgroup of U(AF ) (because we assume AF to be a complex
algebra), we see that indeed ξu

−1u ∈ SU(AF ). Let us also check that ψ does not
depend on the choice of the N ’th root ξu of det u we take. Suppose ξ⊕

u is such that
ξ⊕

u
N = det u. We then must have ξu

−1ξ⊕
u ∈ μN , where μN is the multiplicative

group of the N ’th roots of unity. Since U (1) is a subgroup of H(F), we see that μN

is a subgroup of SH(F), so [ξu
−1u] = [ξ⊕

u
−1u], and hence the image of ψ is indeed

independent of the choice of ξu .
Next, since SU(AF ) ≤ U(AF ), the homomorphism ψ is clearly surjective. We

determine its kernel:

ker ψ =
{

u ∈ U(AF ) : ξ−1
u u ∈ H(F)

}
→ {u ∈ U(AF ) : u ∈ H(F)} ≡ H(F),

since ξu ∈ H(F). �

The significance of Proposition 8.3 is that in the case of a complex algebra with a
complex representation, equivalence classes of the quotient G(F) = U(AF )/H(F)

can always be represented (though not uniquely) by elements of SU(AF ). In that
sense, all elements g ∈ G(F) naturally satisfy the so-called unimodularity condi-
tion, i.e. they satisfy

det HF g = 1.

In the case of an algebra with a real representation, this is not true and it is natural
to impose the unimodularity condition for such representations by hand. We will
see later in Chap. 11 how this works in the derivation of the Standard Model from
noncommutative geometry.

Example 8.4 Define the so-called Yang–Mills finite spectral triple (cf. Exam-
ple 3.14)

FY M = (MN (C), MN (C), D = 0; JF = (·)◦, λF = 1).

One easily checks that the commutative subalgebra (AF )JF is given by CIN . The
groupH(F) of unitary elements of this subalgebra is then equal to the groupU (1)IN .
Note that in this case H(F) is equal to the subgroup U(Z(AF )) of U (N ) that com-
mutes with the algebra MN (C). We thus obtain that the gauge group is given by the
quotient G(FY M) = U (N )/U (1) =: PU (N ), which by Example 6.3 is equal to the
group of inner automorphisms of MN (C). As in Proposition 8.3, this group can also
be written as SU (N )/μN , where the multiplicative group μN of N th roots of unity is
the center of SU (N ). The Lie algebra g(FY M) consists of the traceless anti-hermitian
matrices, i.e. it is su(N ).

The almost-commutativemanifold M ×FY M will be referred to as theYang–Mills
manifold. By Proposition 8.2, in the simply connected case the global gauge group
G(M × FY M) is given by maps C∗(M, PU (N )), or, equivalently, by the space of
smooth sections of the trivial group bundle M × PU (N ).

http://dx.doi.org/10.1007/978-94-017-9162-5_11
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Exercise 8.1 In the context of the above example, check that indeed:

(1) the commutative subalgebra MN (C)JF → CIN ,
(2) SH(F) = μN , the multiplicative group of N ’th roots of unity.

Explain the difference with the case of MN (R).

8.2 Gauge Fields and Scalar Fields

Let us apply the discussion in Sect. 6.2 on Morita self-equivalences to the almost-
commutative manifold M × F and see what the corresponding gauge fields look
like. For convenience, we restrict ourselves to simply connected manifolds M of
dimension dim M = 4 and F of even KO-dimension so that ω⊕

F = 1 in Table 3.1;
this is sufficient for the physical applications later on.

Thus, we determineλ1
D(A) for almost-commutative manifolds, much as in Exer-

cise 4.7. The Dirac operator D = DM ∈ 1 + λM ∈ DF consists of two terms, and
hence we can also split the inner fluctuation ω = a[D, b] into two terms. The first
term is given by

a[DM ∈ 1, b] = −iλμ ∈ a∂μb =: λμ ∈ Aμ, (8.2.1)

where Aμ := −ia∂μb ∈ iA must be hermitian. The second term yields

a[λM ∈ DF , b] = λM ∈ a[DF , b] =: λM ∈ π, (8.2.2)

for hermitian π := a[DF , b]. Thus, the inner fluctuations of an even almost-
commutative manifold M × F take the form

ω = λμ ∈ Aμ + λM ∈ π, (8.2.3)

for certain hermitian operators Aμ ∈ iA and π ∈ γ
(
End(V )

)
, where V is the trivial

vector bundle V = M × HF .
The ‘fluctuated’Dirac operator is given by Dω = D+ω+ω⊕ JωJ−1 (cf. Sect. 6.2.2

above), for which we calculate

λμ ∈ Aμ + ω⊕ Jλμ ∈ Aμ J−1 = λμ ∈ (
Aμ − JF Aμ J−1

F

) =: λμ ∈ Bμ, (8.2.4)

which defines Bμ ∈ γ
(
End(V )

)
, and where we have used that JMλμ J−1

M = −λμ in
dimension 4. Note that if ∇E denotes the twisted connection on the tensor product
bundle E := S ∈ V , i.e.

∇E
μ = ∇S

μ ∈ 1 + i1 ∈ Bμ,

http://dx.doi.org/10.1007/978-94-017-9162-5_6
http://dx.doi.org/10.1007/978-94-017-9162-5_3
http://dx.doi.org/10.1007/978-94-017-9162-5_4
http://dx.doi.org/10.1007/978-94-017-9162-5_6
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we see that we can rewrite

DM ∈ 1 + λμ ∈ Bμ = −iλμ∇E
μ .

For the remainder of the fluctuated Dirac operator, we define ψ ∈ γ
(
End(E)

)
by

ψ := DF + π + JFπJ−1
F . (8.2.5)

The fluctuated Dirac operator of a real even AC-manifold then takes the form

Dω = DM ∈ 1 + λμ ∈ Bμ + λM ∈ ψ = −iλμ∇E
μ + λM ∈ ψ. (8.2.6)

In Sect. 8.1 we obtained the local gauge group G(F) with Lie algebra g(F). For
consistency we should now check that the gauge field Aμ arising from the inner
fluctuation indeed corresponds to this same gauge group.

The requirement that Aμ is hermitian is equivalent to (i Aμ)◦ = −i Aμ. Since Aμ

is of the form −ia∂μb for a, b ∈ A (see (8.2.1)), we see that i Aμ is an element of
the algebra A (also if A is only a real algebra). Thus we have Aμ(x) ∈ i u(AF ).

The only way in which Aμ appears in Dω is through the action of Aμ − JF Aμ J−1
F .

Ifwe take A⊕
μ = Aμ−aμ for someaμ ∈ ih(F) = i u

(
(AF )JF

)
(which commuteswith

JF ), we see that A⊕
μ − JF A⊕

μ J−1
F = Aμ − JF Aμ J−1

F . Therefore we may without
any loss of generality assume that Aμ(x) is an element of the quotient ig(F) =
i(u(AF )/h(F))). Since g(F) is the Lie algebra of the gauge group G(F), we have
therefore confirmed that

Aμ ∈ C∗(M, ig(F)) (8.2.7)

is indeed a gauge field for the local gauge group G(F). For the field Bμ found in
(8.2.6), we can also write

Bμ = ad(Aμ) := Aμ − JF Aμ J−1
F .

So, we conclude that Bμ is given by the adjoint action of a gauge field Aμ for the
gauge group G(F) with Lie algebra g(F).

If the finite noncommutative space F has a grading λF , the field π satisfies πλF =
−λFπ and the field ψ satisfies ψλF = −λFψ and ψJF = JFψ. These relations
follow directly from the definitions of π and ψ and the commutation relations for
DF according to Definition 3.1.

Using the cyclic property of the trace, it is easy to see that the traces of the fields
Bμ, π and ψ over the finite-dimensional Hilbert space HF vanish identically: for Bμ

we find

TrHF

(
Bμ

) = TrHF

(
Aμ − JF Aμ J−1

F

) = TrHF

(
Aμ − Aμ J−1

F JF
) = 0,

http://dx.doi.org/10.1007/978-94-017-9162-5_3
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whereas for the field π we find

TrHF

(
π
) = TrHF

(
a[DF , b]) = TrHF

([b, a]DF
)
.

Since the grading commuteswith the elements in the algebra and anti-commuteswith
the Dirac operator, it follows that this latter trace also vanishes. It then automatically
follows that ψ = DF + π + JFπJ−1

F is traceless too.

Example 8.5 For the Yang–Mills manifold M × FYM of Example 8.4 the inner
fluctuations take the form ω = λμ ∈ Aμ for some traceless hermitian field Aμ =
A◦

μ ∈ C∗(M, isu(N )). Since JF Aμ J−1
F m = m Aμ for m ∈ MN (C), we see that for

the field Bμ = Aμ − JF Aμ J−1
F we obtain the action

m ⊗→ Bμm = Aμm − m Aμ = [Aμ, m] = (ad Aμ)m.

Thus Aμ is a PU (N ) gauge field which acts on the fermions in L2(S) ∈ MN (C) in
the adjoint representation.

8.2.1 Gauge Transformations

Recall from Sect. 6.2 that an element U ∈ G(A,H; J ) acts on the inner fluctuations
as a gauge transformation. In fact, the rule Dω ⊗→ U DωU◦ with U = u Ju J−1 can
be implemented by

u : ω ⊗→ ωu := uωu◦ + u[D, u◦], (8.2.8)

so that U DωU◦ = Dωu . In physics, the resulting transformation on the inner fluctu-
ation ω ⊗→ ωu will be interpreted as a gauge transformation of the gauge field.

Note that for an element U = u Ju J−1 in the gauge group G(M × F), there is
an ambiguity in the corresponding transformation of ω. Namely, for u ∈ U(A) and
h ∈ U(AJ ), we can also write U = uh Juh J−1. Replacing u with uh using (4.3.1)
we then obtain

ωuh = uωu◦ + u[D, u◦] + h[D, h◦].

However, when considering the total inner fluctuation ωuh + Jωuh J−1, the extra
term h[D, h◦] cancels out:

h[D, h◦] + J h[D, h◦]J−1 = h[D, h◦] + [D, h]h◦ = [D, hh◦] = 0.

Hence the transformation of Dω = D + ω + JωJ−1 is well defined.
For an AC-manifold M × F , by (8.2.3) we have ω = λμ ∈ Aμ + λM ∈ π and

D = −iλμ∇S
μ ∈ 1 + λM ∈ DF , and, using [∇S

μ , u◦] = ∂μu◦, we thus obtain

http://dx.doi.org/10.1007/978-94-017-9162-5_6
http://dx.doi.org/10.1007/978-94-017-9162-5_4
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Aμ → u Aμu◦ − iu∂μu◦,
π → uπu◦ + u[DF , u◦]. (8.2.9)

The first equation is precisely the gauge transformation for a gauge field Aμ ∈
C∗(M, ig(F)), as desired. However, the transformation property of the field π is a
bit surprising. In the StandardModel, the Higgs field is in the defining representation
of the gauge group. The transformation forπderived above, on the other hand, is in the
adjoint representation. From the framework of noncommutative geometry this is no
surprise, since both bosonic fields Aμ and π are obtained from the inner fluctuations
of the Dirac operator, and are thereby expected to transform in a similar manner.
Fortunately, for particular choices of the finite space F , the adjoint transformation
property of π reduces to that of the defining representation. The key example of this
will be discussed in Chap.11, where we present the derivation of the StandardModel
from an almost-commutative manifold.

8.3 The Heat Expansion of the Spectral Action

In the remainder of this chapter we shall derive an explicit formula for the bosonic
Lagrangian of an almost-commutative manifold M × F from the spectral action of
Definition 7.1. We start by calculating a generalized Lichnerowicz formula for the
square of the fluctuated Dirac operator. Subsequently, we show how we can use this
formula to obtain an asymptotic expansion of the spectral action in the formof (7.2.1).
We explicitly calculate the coefficients in this heat kernel expansion, allowing for a
derivation of the general formof theLagrangian for an almost-commutativemanifold.

8.3.1 A Generalized Lichnerowicz Formula

Suppose we have a vector bundle E → M . We say that a second-order differential
operator H is a generalized Laplacian if it is of the form H = χE − F , where χE

is a Laplacian in the sense of Definition 4.16 and F ∈ γ(End(E)).
Our first task is to show that the fluctuated Dirac operator Dω on an almost-

commutative manifold squares to a generalized Laplacian, D2
ω = χE − F , and then

determine F . Before we prove this, let us first have a closer look at some explicit
formulas for the fluctuated Dirac operator. Recall from (8.2.6) that we can write

Dω = −iλμ∇E
μ + λM ∈ ψ

for the connection∇E
μ = ∇S

μ ∈1+1∈(∂μ+ i Bμ) on E = S∈V , and the scalar field
ψ ∈ γ(End(E)). Let us evaluate the relations between the connection, its curvature
and their adjoint actions. We define the operator Dμ as the adjoint action of the

http://dx.doi.org/10.1007/978-94-017-9162-5_11
http://dx.doi.org/10.1007/978-94-017-9162-5_7
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http://dx.doi.org/10.1007/978-94-017-9162-5_4
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connection ∇E
μ , i.e. Dμ = ad

(∇E
μ

)
. In other words, we have

Dμψ = [∇E
μ ,ψ] = ∂μψ + i[Bμ,ψ]. (8.3.1)

We define the curvature Fμν of the gauge field Bμ as usual by

Fμν := ∂μBν − ∂ν Bμ + i[Bμ, Bν]. (8.3.2)

Recall the curvature of the connection∇E from (4.2.3). Since in local coordinates
we have [∂μ, ∂ν] = 0, we find

λE
μν = ∇E

μ ∇E
ν − ∇E

ν ∇E
μ

= (∇S
μ ∈ 1 + i1 ∈ Bμ)(∇S

ν ∈ 1 + i1 ∈ Bν)

− (∇S
ν ∈ 1 + i1 ∈ Bν)(∇S

μ ∈ 1 + i1 ∈ Bμ)

= λS
μν ∈ 1 + i1 ∈ ∂μBν − i1 ∈ ∂ν Bμ − 1 ∈ [Bμ, Bν].

Inserting (8.3.2), we obtain the formula

λE
μν = [∇E

μ ,∇E
ν

] = λS
μν ∈ 1 + i1 ∈ Fμν . (8.3.3)

Next, let us have a look at the commutator
[
Dμ, Dν

]
. Using the definition of Dμ

and the Jacobi identity, we obtain

[Dμ, Dν]ψ = ad
(∇E

μ

)
ad

(∇E
ν

)
ψ − ad

(∇E
ν

)
ad

(∇E
μ

)
ψ

= [∇E
μ , [∇E

ν ,ψ]] − [∇E
ν , [∇E

μ ,ψ]]

= [[∇E
μ ,∇E

ν ],ψ]] = [
λE

μν,ψ
] = ad

(
λE

μν

)
ψ.

Since λS
μν commutes with ψ, we obtain the relation

[
Dμ, Dν

] = i ad
(
Fμν

)
.

Note that this relation simply reflects the fact that ad : g → End(g) is a Lie algebra
homomorphism.

In local coordinates, the Laplacian is given by

χE = −gμν
(
∇E

μ ∇E
ν − γη

μν∇E
η

)
.

We can then calculate the explicit formula

χE = − gμν
(
∇E

μ ∇E
ν − γη

μν∇E
η

)

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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=χS ∈ 1 − gμν
(

i(∇S
μ ∈ 1)(1 ∈ Bν) + i(1 ∈ Bμ)(∇S

ν ∈ 1)

− 1 ∈ BμBν − iγη
μν ∈ Bη

)

=χS ∈ 1 − 2i(1 ∈ Bμ)(∇S
μ ∈ 1) − igμν(1 ∈ ∂μBν)

+ 1 ∈ BμBμ + igμνγη
μν ∈ Bη. (8.3.4)

We are now ready to prove that the fluctuated Dirac operator Dω of an almost-
commutative manifold satisfies the following generalized Lichnerowicz formula or
Weitzenböck formula. First, for the canonical Dirac operator DM on a compact
Riemannian spin manifold M , recall the Lichnerowicz formula of Theorem 4.21:

D2
M = χS + 1

4
s, (8.3.5)

where χS is the Laplacian of the spin connection ∇S , and s is the scalar curvature
of M .

Proposition 8.6 The square of the fluctuated Dirac operator on an almost-
commutative manifold is a generalized Laplacian of the form

Dω
2 = χE − F,

where the endomorphism F is given by

F = −1

4
s ∈ 1 − 1 ∈ ψ2 + 1

2
iλμλν ∈ Fμν − iλMλμ ∈ Dμψ, (8.3.6)

in which Dμ and Fμν are defined in (8.3.1) and (8.3.2), respectively.

Proof Rewriting the formula for Dω , we have

Dω
2 = (

DM ∈ 1 + λμ ∈ Bμ + λM ∈ ψ
)2

= D2
M ∈ 1 + λμλν ∈ BμBν + 1 ∈ ψ2 + (DMλμ ∈ 1)(1 ∈ Bμ)

+ (1 ∈ Bμ)(λμ DM ∈ 1) + (DM ∈ 1)(λM ∈ ψ) + (λM ∈ ψ)(DM ∈ 1)

+ (λμ ∈ Bμ)(λM ∈ ψ) + (λM ∈ ψ)(λμ ∈ Bμ).

For the first term we use the Lichnerowicz formula of (8.3.5). We rewrite the second
term into

λμλν ∈ BμBν = 1

2
λμλν ∈ (

BμBν + Bν Bμ + [Bμ, Bν]
)

= 1 ∈ BμBμ + 1

2
λμλν ∈ [Bμ, Bν],

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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where we have used the Clifford relation (4.2.2) to obtain the second equality. For
the fourth and fifth terms we use the local formula DM = −iλν∇S

ν to obtain

(DMλμ ∈ 1)(1 ∈ Bμ) + (1 ∈ Bμ)(λμDM ∈ 1)

= −(iλν∇S
ν λμ ∈ 1)(1 ∈ Bμ) − (1 ∈ Bμ)(λμiλν∇S

ν ∈ 1).

Using the identity [∇S
ν , c(κ)] = c(∇νκ) for the spin connection, we find [∇S

ν ∈
1, (λμ ∈ 1)(1 ∈ Bμ)] = c

(∇ν(dxμ ∈ Bμ)
)
. We thus obtain

(DMλμ ∈ 1)(1 ∈ Bμ) + (1 ∈ Bμ)(λμ DM ∈ 1)

= − i(λν ∈ 1)c
(∇ν(dxμ ∈ Bμ)

)

− i(λνλμ ∈ 1)(1 ∈ Bμ)(∇S
ν ∈ 1) − i(1 ∈ Bμ)(λμλν∇S

ν ∈ 1)

= − i(λν ∈ 1)c
(
dxμ ∈ (∂ν Bμ) − γη

μνdxμ ∈ Bη

) − 2i(1 ∈ Bν)(∇S
ν ∈ 1)

= − i(λνλμ ∈ 1)
(
1 ∈ ∂ν Bμ − γη

μν ∈ Bη

)
− 2i(1 ∈ Bν)(∇S

ν ∈ 1)

= − i(λνλμ ∈ 1)(1 ∈ ∂ν Bμ) + igμνγη
μν ∈ Bη − 2i(1 ∈ Bν)(∇S

ν ∈ 1).

The sixth and seventh terms are rewritten into

(DM ∈ 1)(λM ∈ ψ) + (λM ∈ ψ)(DM ∈ 1) = −(λM ∈ 1)
[
DM ∈ 1, 1 ∈ ψ

]

= (λM ∈ 1)(iλμ ∈ ∂μψ) = iλMλμ ∈ ∂μψ.

The eighth and ninth terms are rewritten as

(λμ ∈ Bμ)(λM ∈ ψ) + (λM ∈ ψ)(λμ ∈ Bμ) = −λMλμ ∈ [Bμ,ψ].

Summing all these terms then yields the formula

Dω
2 = (χS + 1

4
s) ∈ 1 + (1 ∈ BμBμ) + 1

2
λμλν ∈ [Bμ, Bν]

+ 1 ∈ ψ2 − i(λνλμ ∈ 1)(1 ∈ ∂ν Bμ) + igμνγη
μν ∈ Bη

− 2i(1 ∈ Bν)(∇S
ν ∈ 1) + iλMλμ ∈ ∂μψ − λMλμ ∈ [Bμ,ψ].

Inserting the formula for χE from (8.3.4), we obtain

Dω
2 = χE + 1

4
s ∈ 1 + 1

2
λμλν ∈ [Bμ, Bν]

+ 1 ∈ ψ2 − i(λνλμ ∈ 1)(1 ∈ ∂ν Bμ) + igμν(1 ∈ ∂μBν)

+ iλMλμ ∈ ∂μψ − λMλμ ∈ [Bμ,ψ].

Using (8.3.2), we rewrite

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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−i(λνλμ ∈ 1)(1 ∈ ∂ν Bμ) + igμν(1 ∈ ∂μBν)

= −i(λνλμ ∈ 1)(1 ∈ ∂ν Bμ) + 1

2
i(λμλν + λνλμ) ∈ (∂μBν)

= −1

2
iλμλν ∈ (∂μBν) + 1

2
iλνλμ ∈ (∂μBν)

= −1

2
iλμλν ∈ Fμν − 1

2
λμλν ∈ [Bμ, Bν].

Using (8.3.1), we finally obtain

Dω
2 = χE + 1

4
s ∈ 1 + 1 ∈ ψ2 − 1

2
iλμλν ∈ Fμν + iλMλμ ∈ Dμψ,

from which we can read off formula (8.3.6) for F .

8.3.2 The Heat Expansion

Below, we present two important theorems (without proof) which we will need to
calculate the spectral action of almost-commutative manifolds. The first of these
theorems states that there exists a heat expansion for a generalized Laplacian. The
second theorem gives explicit formulas for the first three non-zero coefficients of
this expansion. Next, we will show how these theorems can be applied to obtain a
perturbative expansion of the spectral action for an almost-commutative manifold,
just as in Proposition 7.7.

Theorem 8.7 For a generalized Laplacian H = χE −F on E we have the following
asymptotic expansion as t → 0, known as the heat expansion:

Tr
(

e−t H
)

∼
∑

k≥0

t
k−n
2 ak(H), (8.3.7)

where n is the dimension of the manifold, the trace is taken over the Hilbert space
L2(E) and the coefficients of the expansion are given by

ak(H) :=
∫

M
ak(x, H)

≥
gd4x, (8.3.8)

where
≥

gd4x denotes the Riemannian volume form. The coefficients ak(x, H) are
called the Seeley-DeWitt coefficients.

Proof See Note 6 on page 157. �

Theorem 8.8 For a generalized Laplacian H = χE − F (as in Theorem 8.7), the
Seeley-DeWitt coefficients are given by

http://dx.doi.org/10.1007/978-94-017-9162-5_7
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a0(x, H) = (4θ)−
n
2 Tr(id),

a2(x, H) = (4θ)−
n
2 Tr

( s

6
+ F

)
,

a4(x, H) = (4θ)−
n
2

1

360
Tr

( − 12χs + 5s2 − 2Rμν Rμν + 2Rμνησ Rμνησ

+ 60s F + 180F2 − 60χF + 30λE
μν(λ

E )μν
)
,

where this time the traces are taken over the fibre Ex . Here s is the scalar curvature
of the Levi-Civita connection ∇, χ is the scalar Laplacian, and λE is the curvature
of the connection ∇E corresponding to χE . All ak(x, H) with odd k vanish.

Proof See Note 6 on page 157. �
We saw in Proposition 8.6 that the square of the fluctuated Dirac operator of an

almost-commutative manifold is a generalized Laplacian. Applying Theorem 8.7 to
Dω

2 in dimension n = 4 then yields the heat expansion:

Tr
(

e−t Dω
2
)

∼
∑

k≥0

t
k−4
2 ak(Dω

2), (8.3.9)

where the Seeley-DeWitt coefficients are given by Theorem 8.8. In the following
proposition, we use this heat expansion for Dω

2 to obtain an expansion of the spectral
action.

Proposition 8.9 For an almost-commutative manifold M × F with M of dimension
4, the spectral action given by (7.1.1) can be expanded asymptotically (asν → ∗) as

Tr

(
f
( Dω

ν

))
∼ a4(Dω

2) f (0) + 2
∑

0≡k<4
k even

f4−kν
4−kak(Dω

2)
1

γ
( 4−k

2

) + O(ν−1),

where f j = ∫ ∗
0 f (v)v j−1dv are the moments of the function f , j > 0.

Proof Our proof is based on Proposition 7.7. Let g be the function g(u2) = f (u),
so that its Laplace–Stieltjes transform

g(v) =
∗∫

0

e−svdμ(s).

We can then formally write

g(t Dω
2) =

∗∫

0

e−st Dω
2
dμ(s).

We now take the trace and use the heat expansion of Dω
2 to obtain

http://dx.doi.org/10.1007/978-94-017-9162-5_7
http://dx.doi.org/10.1007/978-94-017-9162-5_7
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Tr
(
g(t Dω

2)
) =

∗∫

0

Tr
(
e−st Dω

2)
dμ(s) ∼

∗∫

0

∑

k≥0

(st)
k−4
2 ak(Dω

2)dμ(s)

=
∑

k≥0

t
k−4
2 ak(Dω

2)

∗∫

0

s
k−4
2 dμ(s). (8.3.10)

The parameter t is considered to be a formal expansion parameter. From here on, we
will drop the terms with k > 4. The term with k = 4 equals

a4(Dω
2)

∗∫

0

s0dμ(s) = a4(Dω
2)g(0).

We can rewrite the terms with k < 4 using the definition of the γ-function as the
analytic continuation of

γ(z) =
∗∫

0

r z−1e−r dr, (8.3.11)

for z ∈ C with ∞(z) > 0, and by inserting r = sv, we see that (for k < 4) we have

γ
(4 − k

2

)
=

∗∫

0

(sv)
4−k
2 −1e−svd(sv) = s

4−k
2

∗∫

0

v
4−k
2 −1e−svdv.

From this, we obtain an expression for s
k−4
2 , which we insert into Eq. (8.3.10), and

then we perform the integration over s to obtain

Tr
(
g(t Dω

2)
) ∼ a4(Dω

2) f (0)

+
∑

0≡k<4

t
k−4
2 ak(Dω

2)
1

γ
( 4−k

2

)
∗∫

0

v
4−k
2 −1g(v)dv + O(ν−1).

Now we choose the function g such that g(u2) = f (u). We rewrite the integration
over v by substituting v = u2 and obtain

∗∫

0

v
4−k
2 −1g(v)dv =

∗∫

0

u4−k−2g(u2)d(u2) = 2

∗∫

0

u4−k−1 f (u)du,

which by definition equals 2 f4−k . Upon writing t = ν−2, we have modulo ν−1,
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Tr

(
f
( Dω

ν

))
= Tr

(
g(ν−2Dω

2)
)

∼ a4(Dω
2) f (0) + 2

∑

0≡k<4

f4−kν
4−kak(Dω

2)
1

γ
( 4−k

2

) + O(ν−1).

Using ak(Dω
2) = 0 for odd k, the claim follows.

8.4 The Spectral Action on AC Manifolds

In the previous section we obtained a perturbative expansion of the spectral action for
an almost-commutative manifold. We now explicitly calculate the coefficients in this
expansion, first for the canonical triple (yielding the (Euclidean) Einstein–Hilbert
action of General Relativity) for a four-dimensional Riemannian spin manifold M
and then for a general almost-commutative manifold M × F .

By Proposition 8.9 we have an asymptotic expansion as ν → ∗:

Tr

(
f
( Dω

ν

))
∼ 2 f4ν

4a0(Dω
2) + 2 f2ν

2a2(Dω
2) + f (0)a4(Dω

2) + O(ν−1).

(8.4.1)

Proposition 8.10 For the canonical triple (C∗(M), L2(S), DM ), the spectral
action is given by:

Tr

(
f
( DM

ν

))
∼

∫

M

LM (gμν)
≥

gd4x + O(ν−1), (8.4.2)

where the Lagrangian is defined by

LM (gμν) := f4ν4

2θ2 − f2ν2

24θ2 s + f (0)

16θ2

( 1

30
χs − 1

20
CμνησCμνησ + 11

360
R◦ R◦).

Here the Weyl tensor Cμνησ is given by the traceless part of the Riemann curvature
tensor, so that

CμνησCμνησ = Rμνησ Rμνησ − 2Rνσ Rνσ + 1

3
s2, (8.4.3)

and R◦ is related to the Pontryagin class:

R◦ R◦ = s2 − 4Rμν Rμν + Rμνησ Rμνησ. (8.4.4)

Proof We have n = 4, and Tr(id) = dim Sx = 4 where Sx is the fiber of S at some
x ∈ M . Inserting this into Theorem 8.8 gives
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a0(D2
M ) = 1

4θ2

∫

M

≥
gd4x .

From the Lichnerowicz formula (8.3.5) we see that F = − 1
4 s id, so

a2(D2
M ) = − 1

48θ2

∫

M

s
≥

gd4x .

Moreover,

5s2id + 60s F + 180F2 = 5

4
s2id.

Inserting this into a4(D2
M ) gives

a4(D2
M ) = 1

16θ2

1

360

∫

M

Tr
(
3χs id + 5

4
s2id − 2Rμν Rμν id

+ 2Rμνησ Rμνησid + 30λS
μνλ

Sμν)≥
gd4x .

The curvature λS of the spin connection is defined as in (4.2.3), and its components
areλS

μν = λS(∂μ, ∂ν). The spin curvatureλS is related to the Riemannian curvature
tensor by (see Note 7 on page 157),

λS
μν = 1

4
Rμνησληλσ. (8.4.5)

We use this as well as the trace identity

Tr(λμλνληλσ) = 4(gμνgησ − gμηgνσ + gμσgνη)

to calculate the last term of a4(D2
M ):

Tr(λS
μνλSμν

) = 1

16
Rμνησ Rμν

ξε Tr(ληλσλξλε)

= 1

4
Rμνησ Rμν

ξε (gησgξε − gηξgσε + gηεgσξ) = −1

2
Rμνησ Rμνησ,

(8.4.6)

where the first term in the second line vanishes because of the antisymmetry of Rμνησ

in η and σ, and the other two terms contribute equally. We thus obtain

a4(D2
M ) = 1

16θ2

1

360

∫

M

(
12χs + 5s2 − 8Rμν Rμν − 7Rμνησ Rμνησ

)≥
gd4x .

(8.4.7)

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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We rewrite this into amore convenient form, using (8.4.3) and (8.4.4), which together
yield:

− 1

20
CμνησCμνησ + 11

360
R◦ R◦

= − 1

20
Rμνησ Rμνησ + 1

10
Rνσ Rνσ − 1

60
s2

+ 11

360
Rμνησ Rμνησ − 44

360
Rνσ Rνσ + 11

360
s2

= 1

360

( − 7Rμνησ Rμνησ − 8Rνσ Rνσ + 5s2
)
.

Therefore, we may rewrite (8.4.7) so as to obtain

a4(D2
M ) = 1

16θ2

∫

M

( 1

30
χs − 1

20
CμνησCμνησ + 11

360
R◦ R◦)≥

gd4x .

Inserting the obtained formulas for a0(D2
M ), a2(D2

M ) and a4(D2
M ) into (8.4.1) proves

the proposition. �

Remark 8.11 In general, an expression of the form

as2 + bRνσ Rνσ + cRμνησ Rμνησ,

for certain constants a, b, c ∈ R, can always be rewritten in the form κs2 +
βCμνησCμνησ + λR◦ R◦, for new constants κ,β, λ ∈ R. One should note here
that the term s2 is not present in the spectral action of the canonical triple as calcu-
lated in Proposition 8.10. The only higher-order gravitational term that arises is the
conformal gravity term CμνησCμνησ .

Note that alternatively, using only (8.4.4), we could also have written

a4(D2
M ) = 1

16θ2

1

30

∫

M

(
χs + s2 − 3Rμν Rμν − 7

12
R◦ R◦)≥gd4x .

The integral over χs only yields a boundary term, so if the manifold M is compact
without boundary,we can discard the termwithχs. Furthermore, for a 4-dimensional
compact orientable manifold M without boundary, we have the formula

∫

M

R◦ R◦≥gdx = 8θ2ρ(M),

where ρ(M) is Euler characteristic. Hence the term with R◦ R◦ only yields a topo-
logical contribution to the action, which we will also disregard. From here on, we
will therefore consider the Lagrangian
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LM (gμν) = f4ν4

2θ2 − f2ν2

24θ2 s − f (0)

320θ2 CμνησCμνησ, (8.4.8)

or, which is the same,

LM (gμν) = f4ν4

2θ2 − f2ν2

24θ2 s + f (0)

480θ2

(
s2 − 3Rμν Rμν

)
. (8.4.9)

Proposition 8.12 The spectral action of the fluctuated Dirac operator of an almost-
commutative manifold with dim M = 4 is given by

Tr

(
f
( Dω

ν

))
∼

∫

M

L(gμν, Bμ,ψ)
≥

gd4x + O(ν−1),

where

L(gμν, Bμ,ψ) := NLM (gμν) + LB(Bμ) + Lπ(gμν, Bμ,ψ).

Here LM (gμν) is defined in Proposition 8.10, N is the dimension of the finite-
dimensional Hilbert space HF , and LB gives the kinetic term of the gauge field as

LB(Bμ) := f (0)

24θ2 Tr(Fμν Fμν),

and Lπ gives a scalar-field Lagrangian including its interactions plus a boundary
term as

Lπ(gμν, Bμ,ψ) := − 2 f2ν2

4θ2 Tr(ψ2) + f (0)

8θ2 Tr(ψ4) + f (0)

24θ2χ
(
Tr(ψ2)

)

(8.4.10)

+ f (0)

48θ2 s Tr(ψ2) + f (0)

8θ2 Tr
(
(Dμψ)(Dμψ)

)
.

Proof The proof is very similar to Proposition 8.10, but we now use the formula for
Dω

2 given by Proposition 8.6. The trace over the Hilbert space HF yields an overall
factor N := Tr(1HF ), so we have

a0(Dω
2) = Na0(D2

M ).

The square of the Dirac operator now contains three extra terms. The trace of λMλμ

vanishes, which follows from cyclicity of the trace and the fact that λMλμ = −λμλM .
Since Tr(λμλν) = 4gμν and Fμν is anti-symmetric, the trace of λμλν Fμν also van-
ishes. Thus we find that

a2(Dω
2) = Na2(D2

M ) − 1

4θ2

∫

M
Tr(ψ2)

≥
gd4x .



8.4 The Spectral Action on AC Manifolds 155

Furthermore we obtain several new terms from the formula for a4(Dω
2). First, we

calculate

1

360
Tr(60s F) = −1

6
s
(

Ns + 4 Tr(ψ2)
)

.

The next contribution arises from the trace over F2, which equals

F2 = 1

16
s2 ∈ 1 + 1 ∈ ψ4 − 1

4
λμλνληλσ ∈ Fμν Fησ

+ λμλν ∈ (Dμψ)(Dνψ) + 1

2
s ∈ ψ2 + traceless terms.

Taking the trace then yields

1

360
Tr(180F2) = N

8
s2 + 2 Tr(ψ4) + Tr(Fμν Fμν)

+ 2 Tr
(
(Dμψ)(Dμψ)

) + s Tr(ψ2).

Another contribution arises from −χF . Again, we can simply ignore the traceless
terms and obtain

1

360
Tr(−60χF) = 1

6
χ

(
Ns + 4 Tr(ψ2)

)
.

The final contribution comes from the term λE
μνλ

E μν
, where the curvature λE is

given by (8.3.3); we obtain

λE
μνλ

E μν = λS
μνλ

Sμν ∈ 1 − 1 ∈ Fμν Fμν + 2iλS
μν ∈ Fμν .

Using (8.4.5), by the anti-symmetry of Rησμν we find

Tr(λS
μν) = 1

4
Rησμν Tr(λ

ηλσ) = 1

4
Rησμνg

ησ = 0,

so the trace over the cross-terms in λE
μνλ

E μν
vanishes. From (8.4.6) we then obtain

1

360
Tr(30λE

μνλ
E μν

) = 1

12

(
− N

2
Rμνησ Rμνησ − 4 Tr(Fμν Fμν)

)
.

Gathering all terms, we obtain

a4(x, Dω
2) = 1

(4θ)2

1

360

(
− 48Nχs + 20Ns2 − 8N Rμν Rμν

+ 8N Rμνησ Rμνησ − 60s
(

Ns + 4 Tr(ψ2)
)
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+ 360

(
N

8
s2 + 2 Tr(ψ4) + Tr(Fμν Fμν)

+ 2 Tr
(
(Dμψ)(Dμψ)

) + s Tr(ψ2)

)

+ 60χ
(

Ns + 4 Tr(ψ2)
)

− 30

(
N

2
Rμνησ Rμνησ + 4 Tr(Fμν Fμν)

))

= 1

(4θ)2

1

360

(
12Nχs + 5Ns2 − 8N Rμν Rμν

− 7N Rμνησ Rμνησ + 120s Tr(ψ2)

+ 360

(
2 Tr(ψ4) + 2 Tr

(
(Dμψ)(Dμψ)

))

+ 240χ
(
Tr(ψ2)

)
+ 240 Tr(Fμν Fμν)

)
.

Comparing the first line of the second equality to (8.4.7), we see that

a4(x, Dω
2) = Na4(x, D2

M ) + 1

4θ2

(
1

12
s Tr(ψ2) + 1

2
Tr(ψ4)

+ 1

2
Tr

(
(Dμψ)(Dμψ)

) + 1

6
χ

(
Tr(ψ2)

)
+ 1

6
Tr(Fμν Fμν)

)
.

Inserting these Seeley-DeWitt coefficients into (8.4.1) proves the proposition. �

Note that the above Lagrangian is indeed gauge invariant. This is of course a
consequence of the manifest gauge invariance of the spectral action, which follows
from the invariance of the spectrum under unitary transformations.

Example 8.13 Let us return to the Yang–Mills manifold M × FYM of Examples
8.4 and 8.5. We have already seen that the inner fluctuations are parametrized by a
PU (N ) gauge field Aμ, which acts in the adjoint representation Bμ = ad Aμ on the
fermions. There is no scalar field π and ψ = DF = 0. We can insert these fields into
the result of Proposition 8.12. The dimension of the Hilbert space HF = MN (C) is
N 2. We then find that the Lagrangian of the Yang–Mills manifold is given by

L(gμν, Bμ) := N 2LM (gμν) + f (0)

24θ2LY M(Bμ).

Here LY M is the Yang–Mills Lagrangian given by

LY M(Bμ) := Tr(Fμν Fμν),

where Fμν denotes the curvature of Bμ.
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Notes

Section 8.1 Gauge Symmetries of AC Manifolds

1. Kaluza–Klein theories date back to [1, 2].
2. The name almost-commutative manifolds was coined in [3], suggesting that the

noncommutativity is mild since it is simply given by the matrix product in AF ,
pointwise on M . Almost-commutative manifolds essentially already appeared
in [4], and somewhat later in the work of Connes and Lott [5]. Around the same
time, a similar structure appeared in a series of papers byDubois-Violette, Kerner
and Madore [6–9], who studied the noncommutative differential geometry for
the algebra of functions tensored with a matrix algebra, and its relevance to
the description of gauge and scalar Higgs fields. almost-commutative manifolds
were later used by Chamseddine and Connes [10, 11], and by Chamseddine,
Connes and Marcolli in [12] to geometrically describe Yang–Mills theories and
the Standard Model of elementary particles, as we will see in the next chapters.
We here base our treatment on [13].

3. We can regard C∗(M, AF ) as the space of smooth sections of a globally trivial
◦-algebra bundle M × AF . The natural question whether the above definition
can be extended to the topologically non-trivial case is addressed in [14–16].
The special case of topologically non-trivial Yang–Mills theories is treated in
[17] and in the next Chapter.

4. In the proof of Proposition 8.2 we have exploited a lift of group bundles, which
exists if themanifold is simply connected.We refer to [16] for a careful discussion
on this point.

Section 8.3 The Heat Expansion of the Spectral Action

5. For more details on generalized Laplacians we refer to [18, Sect. 2.1].
6. Theorem 8.7 is proved by Gilkey in [19, Sect. 1.7]. Theorem 8.8 can be found

as [19, Theorem 4.8.16]. For a more physicist-friendly approach, we refer to
[20]. Note that the conventions used by Gilkey for the Riemannian curvature
R are such that gμηgνσ Rμνησ is negative for a sphere, in contrast to our own
conventions. Therefore we have replaced s = −R.

7. The relation (8.4.5) is derived in [21, p.395].
8. The derivation of Yang–Mills gauge theory from a noncommutative spin mani-

fold as in Example 8.13 is due to Chamseddine and Connes in [10, 11].
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Chapter 9
The Noncommutative Geometry
of Electrodynamics

In the previous chapters we have described the general framework for the descrip-
tion of gauge theories in terms of noncommutative manifolds. The present chapter
serves two purposes. First, we describe abelian gauge theories within the framework
of noncommutative geometry, which at first sight appears to be a contradictio in
terminis. Second, in Sect. 9.2 we show how this example can be modified to provide
a description of one of the simplest examples of a field theory in physics, namely
electrodynamics. Because of its simplicity, it helps in gaining an understanding of
the formulation of gauge theories in terms of almost-commutative manifolds, and as
such it provides a first stepping stone towards the derivation of the Standard Model
from noncommutative geometry in Chap.11.

9.1 The Two-Point Space

In this section we discuss one of the simplest finite noncommutative spaces, namely
the two-point space X = {x, y}. Recall from Chaps. 2 and 3 that such a space can be
described by an even finite real spectral triple:

FX := (C(X) = C
2, HF , DF ; JF , γF ). (9.1.1)

As we require the action of C(X) on the finite-dimensional Hilbert space HF to be
faithful, HF must at least be 2-dimensional. For now we restrict ourselves to the
simplest case, taking HF = C

2. We use the Z2-grading γF to decompose HF =
H+

F ∗ H−
F = C ∗ C into the two eigenspaces H±

F = {ψ ∈ HF | γFψ = ±ψ}. The
action of C(X) on HF respects this decomposition, whereas DF interchanges the
two subspaces H±

F , say

DF =
⎛
0 t
t̄ 0

⎜
,

for some t ∈ C.
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160 9 The Noncommutative Geometry of Electrodynamics

Proposition 9.1 The finite space FX of (9.1.1) can only have a real structure JF if
DF = 0. In that case, its KO-dimension is 0, 2 or 6.

Proof The diagonal representation of the algebra C∗C on C∗C gives rise to one
of the following two Krajewski diagrams (cf. Example3.13):

1 1
1◦

1◦

1 1
1◦

1◦

As a Dirac operator DF that fulfills the first-order condition 3.1.1 (for arbitrary JF )
should connect nodes either vertically or horizontally, we find that DF = 0.

The diagram on the left corresponds to KO-dimension 2 and 6, while the diagram
on the right corresponds to KO-dimension 0 and 4. KO-dimension 4 is ruled out
because of Lemma 3.8, combined with the fact that dim H±

F = 1, which does not
allow for a JF with J 2

F = −1.

9.1.1 The Product Space

Let M be a compact 4-dimensional Riemannian spin manifold. We now consider
the almost-commutative manifold M × FX given by the product of M with the even
finite space FX corresponding to the two-point space (9.1.1). Thus we consider the
almost-commutative manifold given by the data

M × FX :=
⎝

C∞(M,C2), L2(S) → C
2, DM → 1; JM → JF , γM → γF

⎞
,

where we still need to make a choice for JF . The algebra of this almost-commutative
manifold is given by C∞(M,C2) � C∞(M) ∗ C∞(M). By Gelfand duality
(Theorem4.28) this algebra corresponds to the space

N := M × X � M ◦ M,

which consists of the disjoint union of two copies of the space M , so we can write
C∞(N ) = C∞(M) ∗ C∞(M). We can also decompose the total Hilbert space as
H = L2(S) ∗ L2(S). For a, b ∈ C∞(M) and ψ,φ ∈ L2(S), an element (a, b) ∈
C∞(N ) then simply acts on (ψ,φ) ∈ H as (a, b)(ψ,φ) = (aψ, bφ).

Remark 9.2 Let us consider Connes’ distance formula (cf. Note 12 on page 72) on
M × FX . First, as in (2.2.2), on the structure space X of AF we may write a metric
by:

dDF (x, y) = sup {|a(x) − a(y)| : a ∈ AF , ‖[DF , a]‖ ≤ 1} .
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Note that now we only have two distinct points x and y in the space X , and we are
going calculate the distance between these points. An element a ∈ C

2 = C(X) is
specified by two complex numbers a(x) and a(y), so a small computation of the
commutator with DF gives

[DF , a] = (a(y) − a(x))

⎛
0 t
−t̄ 0

⎜
.

The norm of this commutator is given by |a(y)−a(x)| |t |, so ‖[DF , a]‖ ≤ 1 implies
|a(y) − a(x)| ≤ 1

|t | . We therefore obtain that the distance between the two points x
and y is given by

dDF (x, y) = 1

|t | .

If there is a real structure JF , we have t = 0 by Proposition9.1, so in that case the
distance between the two points becomes infinite.

Let p be a point in M , and write (p, x) and (p, y) for the two corresponding
points in N = M × X . A function a ∈ C∞(N ) is then determined by two functions
ax , ay ∈ C∞(M), given by ax (p) := a(p, x) and ay(p) := a(p, y). Now the
distance function on N is given by

dDM →1(n1, n2) = sup {|a(n1) − a(n2)| : a ∈ A, ‖[DM → 1, a]‖ ≤ 1} .

If n1 and n2 are points in the same copy of M , for instance, if n1 = (p, x) and
n2 = (q, x) for points p, q ∈ M , then their distance is determined by |ax (p)−ax (q)|,
for functions ax ∈ C∞(M) for which ‖[DM , ax ]‖ ≤ 1. Therefore, in this case we
recover the geodesic distance on M , i.e.

dDM →1(n1, n2) = dg(p, q).

However, if n1 and n2 lie in different copies of M , for instance if, n1 = (p, x) and
n2 = (q, y), then their distance is determined by |ax (p) − ay(q)| for two functions
ax , ay ∈ C∞(M), such that ‖[DM , ax ]‖ ≤ 1 and ‖[DM , ay]‖ ≤ 1. However, these
requirements yield no restriction on |ax (p) − ay(q)|, so in this case the distance
between n1 and n2 is infinite. We find that the space N is given by two disjoint
copies of M that are separated by an infinite distance.

It should be noted that the only way in which the distance between the two copies
of M could have been finite, is when the commutator [DF , a] would be nonzero.
This same commutator generates the scalar field φ of (8.2.2), hence finiteness of the
distance is related to the existence of scalar fields.

http://dx.doi.org/10.1007/978-94-017-9162-5_8
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9.1.2 U(1) Gauge Theory

Wedetermine the gauge theory that corresponds to the almost-commutativemanifold
M × FX . The gauge group G(A,H; J ) from Definition 6.4 is given by the quotient
U(A)/U(AJ ), so if we wish to obtain a nontrivial gauge group, we need to choose
J such that U(AJ ) ∼= U(A). Or, which in view of Example6.4 is the same, we
need to choose JF so that U((AF )JF ) ∼= U(AF ). Looking at the form of JF for the
different (even) KO-dimensions (see the proof of Proposition 9.1), we conclude that
we need KO-dimension 2 or 6. As we will see in the noncommutative description
of the Standard Model in Chap. 11, the correct signature for the internal space is
KO-dimension 6. Therefore, we choose to work in KO-dimension 6 as well. The
almost-commutative manifold M × FX then has KO-dimension 6 + 4 mod 8 = 2.
This also means that we can use Definition 7.3 to calculate the fermionic action.

Summarizing, we will consider the finite space FX given by the data

FX :=
⎛
C
2,C2, DF =

⎛
0 0
0 0

⎜
; JF =

⎛
0 C
C 0

⎜
, γF =

⎛
1 0
0 −1

⎜⎜
,

with C denoting complex conjugation, defining a real even finite space of KO-
dimension 6. In the classification of irreducible geometries of Theorem3.20, this
space corresponds to the first case.

Proposition 9.3 The gauge group G(F) of the two-point space is given by U (1).

Proof First, note that U(AF ) = U (1) × U (1). We now show that U((AF )JF ) ⊕
U(AF )∩ (AF )JF � U (1) so that the quotientG(F) � U (1) as claimed. Indeed, for
a ∈ C

2 to be in (AF )JF it has to satisfy JF a∗ JF = a. Since

JF a∗ J−1
F =

⎛
0 C
C 0

⎜ ⎛
ā1 0
0 ā2

⎜ ⎛
0 C
C 0

⎜
=

⎛
a2 0
0 a1

⎜
,

this is the case if and only if a1 = a2. Thus, (AF )JF � C, whose unitary elements
form the group U (1), contained in U(AF ) as the diagonal subgroup. �

In Proposition8.12 we calculated the spectral action of an almost-commutative
manifold. Before we can apply this to the two-point space, we need to find the exact
form of the field Bμ. Since we have (AF )JF � C, we find h(F) = u

⎟
(AF )JF

⎠ � iR.
From Proposition8.3 and (8.2.7) we then see that the gauge field

Aμ(x) ∈ igF = i
⎟
u(AF )/(iR)

⎠ = i su(AF ) � R

becomes traceless.
Let us also explicitly derive this U (1) gauge field. An arbitrary hermitian field

of the form Aμ = −ia∂μb would be given by two U (1) gauge fields X1
μ, X2

μ ∈
C∞(M,R). However, because Aμ only appears in the combination Aμ − JF Aμ J−1

F ,
we obtain

http://dx.doi.org/10.1007/978-94-017-9162-5_6
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Bμ = Aμ − JF Aμ J−1
F =

⎛
X1

μ 0
0 X2

μ

⎜
−

⎛
X2

μ 0
0 X1

μ

⎜
=:

⎛
Yμ 0
0 −Yμ

⎜
= Yμ → γF ,

where we have defined the U (1) gauge field

Yμ := X1
μ − X2

μ ∈ C∞(M,R) = C∞(M, i u(1)).

Thus, the fact thatwe only have the combination Aμ− JF Aμ J−1
F effectively identifies

the U (1) gauge fields on the two copies of M , so that Aμ is determined by only one
U (1) gauge field. This ensures that we can take the quotient of the Lie algebra u(AF )

with h(F). We can then write

Aμ = 1

2

⎛
Yμ 0
0 −Yμ

⎜
= 1

2
Yμ → γF ,

which yields the same result:

Bμ = Aμ − JF Aμ J−1
F = 2Aμ = Yμ → γF . (9.1.2)

We summarize:

Proposition 9.4 The inner fluctuations of the almost-commutative manifold M×FX

described above are parametrized by a U (1)-gauge field Yμ as

D ⊗→ D′ = D + γμYμ → γF .

The action of the gauge group G(M × FX ) � C∞(M, U (1)) on D′, as in (8.2.8), is
implemented by

Yμ ⊗→ Yμ − iu∂μu∗; (u ∈ G(M × FX )).

9.2 Electrodynamics

Inspired by the previous section, which shows that one can use the framework of
noncommutative geometry to describe a gauge theory with abelian gauge group
U (1), we proceed and try to describe the full theory of electrodynamics by an almost-
commutative manifold. Our approach provides a unified description of gravity and
electromagnetism, albeit at the classical level.

We have seen that the almost-commutative manifold M × FX describes a gauge
theorywith local gauge groupU (1), where the inner fluctuations of theDirac operator
provide theU (1) gauge field Yμ. There appear to be two problems if onewishes to use
this model for a description of (classical) electrodynamics. First, by Proposition9.1,
the finite Dirac operator DF must vanish. However, we want our electrons to be
massive, and for this purpose we need a finite Dirac operator that is non-zero.

http://dx.doi.org/10.1007/978-94-017-9162-5_8
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Second, the Euclidean action for a free Dirac field is of the form

S = −
∫

iψ̄(γμ∂μ − m)ψd4x, (9.2.1)

where the fieldsψ and ψ̄ must be considered independent variables. Thus, we require
that the fermionic action S f should also yield two independent Dirac spinors. Let
us write {e, ē} for the set of orthonormal basis vectors of HF , where e is the basis
element of H+

F and ē of H−
F . Note that on this basis, we have JF e = ē, JF ē = e,

γF e = e and γF ē = −ē. The total Hilbert space H is given by L2(S) → HF . Since
by means of γM we can also decompose L2(S) = L2(S)+ ∗ L2(S)−, we obtain that
the positive eigenspace H+ of γ = γM → γF is given by

H+ = L2(S)+ → H+
F ∗ L2(S)− → H−

F .

Consequently, an arbitrary vector ξ ∈ H+ can uniquely be written as

ξ = ψL → e + ψR → ē,

for two Weyl spinors ψL ∈ L2(S)+ and ψR ∈ L2(S)−. One should note here that ξ
is completely determined by only one Dirac spinor ψ := ψL + ψR , instead of the
required two independent spinors. Thus, the restrictions that are incorporated into
the fermionic action of Definition 7.3 in fact constrain the finite space FX too much.

9.2.1 The Finite Space

It turns out that both problems sketched above can be simply solved by doubling
our finite-dimensional Hilbert space. Essentially, we introduce multiplicities in the
Krajewski diagram that appeared in the proof of Proposition 9.1.

Thus, we start with the same algebra C∞(M,C2) that corresponds to the space
N = M × X � M ◦ M . The finite-dimensional Hilbert space will now be used to
describe four particles, namely both the left-handed and the right-handed electrons
and positrons. We choose the orthonormal basis {eR, eL , eR, eL} for HF = C

4, with
respect to the standard inner product. The subscript L denotes left-handed particles,
and the subscript R denotes right-handed particles, and we have γF eL = eL and
γF eR = −eR .

We choose JF such that it interchanges particles with their antiparticles, so
JF eR = eR and JF eL = eL . We again choose the real structure such that it has
KO-dimension 6, so we have J 2

F = 1 and JFγF = −γF JF . This last relation
implies that the element eR is left-handed, whereas eL is right-handed.

The grading γF decomposes the Hilbert space HF into H+
F ∗ H−

F , where the
bases of H+

F and H−
F are given by {eL , eR} and {eR, eL}, respectively. Alternatively,

http://dx.doi.org/10.1007/978-94-017-9162-5_7
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we can decompose the Hilbert space into He ∗ Hē, where He contains the electrons
{eR, eL}, and Hē contains the positrons {eR, eL}.

The elements a ∈ AF = C
2 now act as the following matrix with respect to the

basis {eR, eL , eR, eL}:

a =
⎛

a1
a2

⎜
→

⎡

⎧⎧⎨

a1 0 0 0
0 a1 0 0
0 0 a2 0
0 0 0 a2

⎩

⎫ . (9.2.2)

Note that this action commutes with the grading, as it should. We can also easily
check that [a, b0] = 0 for b0 := JF b∗ J−1

F , since both the left and the right action
are given by diagonal matrices. For now, we still take DF = 0, and hence the order
one condition is trivially satisfied. We have therefore obtained the following result:

Proposition 9.5 The data

⎛
C
2,C2, DF =

⎛
0 0
0 0

⎜
; JF =

⎛
0 C
C 0

⎜
, γF =

⎛
1 0
0 −1

⎜⎜

define a real even spectral triple of KO-dimension 6.

This can be summarized by the following Krajewski diagram, with two nodes (of
opposite grading) of multiplicity two:

1 1
1◦

1◦

9.2.2 A Non-trivial Finite Dirac Operator

Let us now consider the possibilities for adding a non-zero Dirac operator to the
finite space FED. From the above Krajewski diagram, it can be easily seen that the
only possible edges exist between the multiple vertices. That is, the only possible
Dirac operator depends on one complex parameter and is given by

DF =

⎡

⎧⎧⎨

0 d 0 0
d̄ 0 0 0
0 0 0 d̄
0 0 d 0

⎩

⎫ . (9.2.3)

From here on, we will consider the finite space FED given by

FED := (C2,C4, DF ; JF , γF ).
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9.2.3 The Almost-Commutative Manifold

Taking the product with the canonical triple, the almost-commutative manifold M ×
FED (of KO-dimension 2) under consideration is given by the spectral triple

M × FED := (9.2.4)
⎟
C∞(M,C2), L2(S) → C

4, DM → 1 + γM → DF ; JM → JF , γM → γF
⎠
.

As in Sect. 9.1, the algebra decomposes as

C∞(M,C2) = C∞(M) ∗ C∞(M),

and we now decompose the Hilbert space as

H = (L2(S) → He) ∗ (L2(S) → Hē).

The action of the algebra onH, given by (9.2.2), is then such that one component of
the algebra acts on the electron fields L2(S) → He, and the other component acts on
the positron fields L2(S) → Hē.

The derivation of the gauge group for FED is exactly the same as in Proposition9.3,
so again we have the finite gauge group G(F) � U (1). The field Bμ := Aμ −
JF Aμ J−1

F now takes the form

Bμ =

⎡

⎧⎧⎨

Yμ 0 0 0
0 Yμ 0 0
0 0 −Yμ 0
0 0 0 −Yμ

⎩

⎫ for Yμ(x) ∈ R. (9.2.5)

Thus, we again obtain a single U (1) gauge field Yμ, carrying an action of the gauge
group G(M × FED) � C∞(M, U (1)) (as in Proposition9.4).

As mentioned before, our space N consists of two copies of M and if DF = 0
the distance between these two copies is infinite (see Remark 9.2). This time we
have introduced a non-zero Dirac operator, but it commutes with the algebra, i.e.
[DF , a] = 0 for all a ∈ A. Therefore, the distance between the two copies of M is
still infinite.

To summarize, the U (1) gauge theory arises from the geometric space N =
M ◦ M as follows. On one copy of M , we have the vector bundle S → (M × He),
and on the other copy we have the vector bundle S → (M × Hē). The gauge fields
on each copy of M are identified with each other. The electrons e and positrons ē
are then both coupled to the same gauge field, and as such the gauge field provides
an interaction between electrons and positrons. For comparison with Kaluza–Klein
theories, note the different role that is played by the internal space.
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9.2.4 The Spectral Action

We are now ready to explicitly calculate the Lagrangian that corresponds to the
almost-commutative manifold M × FED, and we will show that this yields the usual
Lagrangian for electrodynamics (on a curved background manifold), as well as a
purely gravitational Lagrangian. It consists of the spectral action Sb of Definition7.1
and the fermionic action S f of Definition7.3, which we calculate separately (here
and in the next section).

The spectral action for an almost-commutative manifold has been calculated in
Proposition8.12, and we only need to insert the fields Bμ (given by (9.2.5)) and
λ = DF . We obtain the following result:

Proposition 9.6 The spectral action of the almost-commutative manifold M × FED

defined in (9.2.4) is given by

Tr

⎛
f
⎝ Dω

γ

⎞⎜
≥

∫

M

L(gμν, Yμ)
≡

gd4x + O(γ−1),

with Lagrangian

L(gμν, Yμ) := 4LM (gμν) + LY (Yμ) + Lφ(gμν, d).

Here LM (gμν) is defined in Proposition8.10; the term LY gives the kinetic term of
the U (1) gauge field Yμ as

LY (Yμ) := f (0)

6π2 YμνY μν,

where the curvature Yμν of the field Yμ is given by

Yμν := ∂μYν − ∂νYμ.

The scalar potentialLφ (ignoring the boundary term) gives two constant terms which
add to the cosmological constant, plus an extra contribution to the Einstein–Hilbert
action:

Lφ(gμν) := −2 f2γ2

π2 |d|2 + f (0)

2π2 |d|4 + f (0)

12π2 s|d|2,

where the constant d originates from (9.2.3).

Proof The trace over the Hilbert space C4 yields an overall factor N = 4. The field
Bμ is given by (9.2.5), and we obtain Tr(Fμν Fμν) = 4YμνY μν . Inserting this into
Proposition8.12 provides the Lagrangian LY . In addition, we have λ2 = DF

2 =
|d|2, and the scalar-field Lagrangian Lφ only yields extra numerical contributions to
the cosmological constant and the Einstein–Hilbert action.
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9.2.5 The Fermionic Action

We have written the set of basis vectors of HF as {eR, eL , eR, eL}, and the subspaces
H+

F and H−
F are spanned by {eL , eR} and {eR, eL}, respectively. The total Hilbert

space H is given by L2(S) → HF . Since we can also decompose

L2(S) = L2(S)+ ∗ L2(S)−

by means of γM , we obtain for the +1-eigenspace of γM → γF :

H+ = L2(S)+ → H+
F ∗ L2(S)− → H−

F .

A spinor ψ ∈ L2(S) can be decomposed as ψ = ψL + ψR . Each subspace H±
F is

now spanned by two basis vectors. A generic element of the tensor productof two
spaces consists of sums of tensor products, so an arbitrary vector ξ ∈ H+ can be
uniquely written as

ξ = χR → eR + χL → eL + ψL → eR + ψR → eL , (9.2.6)

for Weyl spinors χL ,ψL ∈ L2(S)+ and χR,ψR ∈ L2(S)−. Note that this vector
ξ ∈ H+ is now completely determined by two Dirac spinors χ := χL + χR and
ψ := ψL + ψR .

Proposition 9.7 The fermionic action of the almost-commutative manifold M × FED

defined in (9.2.4), is given by

S f = −i
⎟
JM χ̃, γμ(∞S

μ − iYμ)ψ̃
⎠ + (JM χ̃L , d̄ψ̃L) − (JM χ̃R, dψ̃R).

Proof The fluctuated Dirac operator is given by

Dω = DM → i + γμ → Bμ + γM → DF .

An arbitrary ξ ∈ H+ has the form of (9.2.6), from which we obtain the following
expressions:

Jξ = JMχR → eR + JMχL → eL + JMψL → eR + JMψR → eL ,

(DM → i)ξ = DMχR → eR + DMχL → eL + DMψL → eR + DMψR → eL ,

(γμ → Bμ)ξ = γμχR → YμeR + γμχL → YμeL − γμψL → YμeR − γμψR → YμeL ,

(γM → DF )ξ = γMχL → d̄eR + γMχR → deL + γMψR → deR + γMψL → d̄eL .

We decompose the fermionic action into the three terms

1

2
(J ξ̃, Dωξ̃) = 1

2
(J ξ̃, (DM → i)ξ̃) + 1

2
(J ξ̃, (γμ → Bμ)ξ̃) + 1

2
(J ξ̃, (γM → DF )ξ̃),
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and then continue to calculate each term separately. The first term is given by

1

2
(J ξ̃, (DM → 1)ξ̃) = 1

2
(JM χ̃R, DM ψ̃L) + 1

2
(JM χ̃L , DM ψ̃R)

+ 1

2
(JM ψ̃L , DM χ̃R) + 1

2
(JM ψ̃R, DM χ̃L).

Using the facts that DM changes the chirality of aWeyl spinor, and that the subspaces
L2(S)+ and L2(S)− are orthogonal, we can rewrite this term as

1

2
(J ξ̃, (DM → 1)ξ̃) = 1

2
(JM χ̃, DM ψ̃) + 1

2
(JM ψ̃, DM χ̃).

Using the symmetry of the form (JM χ̃, DM ψ̃), we obtain

1

2
(J ξ̃, (DM → 1)ξ̃) = (JM χ̃, DM ψ̃) = −i(JM χ̃, γμ∞S

μψ̃).

Note that the factor 1
2 has now disappeared from the result, which is the reason why

this factor had to be included in the definition of the fermionic action. The second
term is given by

1

2
(J ξ̃, (γμ → Bμ)ξ̃) = −1

2
(JM χ̃R, γμYμψ̃L) − 1

2
(JM χ̃L , γμYμψ̃R)

+ 1

2
(JM ψ̃L , γμYμχ̃R) + 1

2
(JM ψ̃R, γμYμχ̃L).

In a similar manner, we obtain

1

2
(J ξ̃, (γμ → Bμ)ξ̃) = −(JM χ̃, γμYμψ̃),

where we have used the anti-symmetry of the form (JM χ̃, γμYμψ̃). The third term
is given by

1

2
(J ξ̃, (γM → DF )ξ̃) =1

2
(JM χ̃R, dγM ψ̃R) + 1

2
(JM χ̃L , d̄γM ψ̃L)

+ 1

2
(JM ψ̃L , d̄γM χ̃L) + 1

2
(JM ψ̃R, dγM χ̃R).

The bilinear form (JM χ̃, γM ψ̃) is again symmetric in the Grassmann variables χ̃ and
ψ̃, but we now face the extra complication that two terms contain the parameter d,
while the other two terms contain d̄ . Therefore we are left with two distinct terms:

1

2
(J ξ̃, (γM → DF )ξ̃) = (JM χ̃L , d̄ψ̃L) − (JM χ̃R, dψ̃R). �
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Remark 9.8 It is interesting to note that the fermions acquire mass terms without
being coupled to a scalar field. However, it seems that we obtain a complex mass
parameter d, where we would desire a real parameter m. Simply requiring that our
result should reproduce (9.2.1), we will therefore choose d := −im, so that

(JM χ̃L , d̄ψ̃L) − (JM χ̃R, dψ̃R) = i
⎟
JM χ̃, mψ̃

⎠
.

The results obtained in this section can now be summarized into the following
theorem.

Theorem 9.9 The full Lagrangian of the almost-commutative manifold M × FED as
defined inEq. (9.2.4), can be written as the sum of a purely gravitational Lagrangian,

Lgrav(gμν) = 4LM (gμν) + Lφ(gμν),

and a Lagrangian for electrodynamics,

LED = −i
⎬
JM χ̃, (γμ(∞S

μ − iYμ) − m)ψ̃
⎭
+ f (0)

6π2 YμνY μν .

Proof The spectral action Sb and the fermionic action S f are given by Proposi-
tions9.6 and 9.7. This immediately yields Lgrav. To obtain LED, we need to rewrite
the fermionic action S f as the integral over a Lagrangian. The inner product (·, ·) on
the Hilbert space L2(S) is given by

(ξ,ψ) =
∫

M

⇐ξ,ψ⇒≡gd4x,

where the hermitian pairing ⇐·, ·⇒ is given by the pointwise inner product on the fibres.
Choosing d = −im as in Remark 9.8, we can then rewrite the fermionic action into

S f = −
∫

M

i
⎬
JM χ̃,

⎟
γμ(∞S

μ − iYμ) − m
⎠
ψ̃

⎭≡
gd4x . �

9.2.6 Fermionic Degrees of Freedom

To conclude this chapter, let us make a final remark on the fermionic degrees of
freedom in the Lagrangian derived above. We refer to Appendix 9.A for a short
introduction to Grassmann variables and Grassmann integration.

Asmentioned inNote 2 on p. 131, the number of degrees of freedomof the fermion
fields in the fermionic action is related to the restrictions that are incorporated into
the definition of the fermionic action. These restrictions make sure that in this case
we obtain two independent Dirac spinors in the fermionic action.

http://dx.doi.org/10.1007/978-94-017-9162-5_7
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In fact, in quantum field theory one would consider the functional integral of eS

over the fields. We hence consider the case that A is the antisymmetric bilinear form
onH+ given by

A(ξ, ζ) := (Jξ, Dωζ), for ξ, ζ ∈ H+,

and A′ is the bilinear form on L2(S) given by

A′(χ,ψ) := −i
⎝

JMχ,
⎟
γμ(∞S

μ − iYμ) − m
⎠
ψ

⎞
, for χ,ψ ∈ L2(S).

We have shown in Proposition9.7 that for ξ = χL → eL + χR → eR + ψR → eL +
ψL → eR , wherewe can define twoDirac spinors byχ := χL +χR andψ := ψL +ψR ,
we obtain

1

2
A(ξ, ξ) = A′(χ,ψ).

Using the Grassmann integrals of (9.A.1) and (9.A.2), we then obtain for the bilinear
forms A and A′ the equality

Pf(A) =
∫

e
1
2A(ξ̃,ξ̃) D[ξ̃] =

∫
eA

′(χ̃,ψ̃) D[ψ̃, χ̃] = det(A′).

9.A Grassmann Variables, Grassmann Integration
and Pfaffians

We will give a short introduction to Grassmann variables, and use those to find the
relation between the Pfaffian and the determinant of an antisymmetric matrix.

For a set of anti-commuting Grassmann variables θi , we have θiθ j = −θ jθi , and
in particular, θ2i = 0. On these Grassmann variables θ j , we define an integral by

∫
1dθ j = 0,

∫
θ j dθ j = 1.

If we have a Grassmann vector θ consisting of N components, we define the integral
over D[θ] as the integral over dθ1 · · · dθN . Suppose we have two Grassmann vectors
η and θ of N components. We then define the integration element as D[η, θ] =
dη1dθ1 · · · dηN dθN .

Consider the Grassmann integral over a function of the form eθT Aη for Grassmann
vectors θ and η of N components. The N × N -matrix A can be considered as a
bilinear form on these Grassmann vectors. In the case where θ and η are independent
variables, we find



172 9 The Noncommutative Geometry of Electrodynamics

∫
eθT Aη D[η, θ] = detA, (9.A.1)

where the determinant of A is given by the formula

det(A) = 1

N !
∑

σ,τ∈SN

(−1)|σ|+|τ |Aσ(1)τ (1) · · ·Aσ(N )τ (N ),

in which SN denotes the set of all permutations of {1, 2, . . . , N }. Now let us assume
that A is an antisymmetric N × N -matrix A for N = 2l. If we then take θ = η, we
find

∫
e
1
2 ηT Aη D[η] = Pf(A), (9.A.2)

where the Pfaffian of A is given by

Pf(A) = (−1)l

2l l!
∑

σ∈S2l

(−1)|σ|Aσ(1)σ(2) · · ·Aσ(2l−1)σ(2l).

Finally, using these Grassmann integrals, one can show that the determinant of a
2l × 2l skew-symmetric matrix A is the square of the Pfaffian:

detA = Pf(A)2.

So, by simply considering one instead of two independent Grassmann variables in the
Grassmann integral of eθT Aη , we are in effect taking the square root of a determinant.

Notes

Section 9.1 The Two-Point Space

1. The two-point space was first studied in [1, 2].
2. The need for KO-dimension 6 for the noncommutative description of the Stan-

dard Model has been observed independently by Barrett [3] and Connes [4].
3. In [5, Chap. 9] a proof is given for the claim that the inner fluctuation ω +

JωJ−1 vanishes for commutative algebras. The proof is based on the assumption
that the left and right action can be identified, i.e. a = a0, for a commutative
algebra. Though this holds in the case of the canonical triple describing a spin
manifold, it need not be true for arbitrary commutative algebras. Indeed, the
almost-commutative manifold M × FX provides a counter-example.
What we can say about a commutative algebra, is that there exist no non-trivial
inner automorphisms. Thus, it is an important insight that the gauge group
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G(A,H; J ) fromDefinition6.4 is larger than the group of inner automorphisms,
so that a commutative algebra may still lead to a non-trivial (necessarily abelian)
gauge group.

4. It is shown in [6] that one can also obtain abelian gauge theories from a one-point
space when one works with real algebras (cf. Sect. 3.3).

Section 9.2 Electrodynamics

5. Earlier attempts at a unified description of gravity and electromagnetism origi-
nate from the work of Kaluza [7] and Klein [8] in the 1920s. In their approach,
a new (compact) fifth dimension is added to the 4-dimensional spacetime M .
The additional components in the 5-dimensional metric tensor are then identified
with the electromagnetic gauge potential. Subsequently, it can be shown that the
Einstein equations of the 5-dimensional spacetime can be reduced to the Einstein
equations plus the Maxwell equations on 4-dimensional spacetime.

6. An interesting question that appears in the context of this Chapter is whether it
is possible to describe the abelian Higgs mechanism (see e.g. [9, Sect. 8.3]) by
an almost-commutative manifold. As already noticed, for M × FE D no scalar
fields λ are generated since AF commutes with DF . In terms of the Krajewski
diagram for M × FE D ,

1 1
1◦

1◦

it follows that a component that runs counterdiagonally fails on the first-order
condition (cf. Lemma3.10).One is therefore tempted to look at the generalization
of inner fluctuations to real spectral triples that do not necessarily satisfy the first-
order condition, as was proposed in [10]. This generalization is crucial in the
applications to Pati–Salam unification (see Note 13 on page 223), but also in
the present case one can show that non-zero off-diagonal components in (9.2.3)
then generate a scalar field for which the spectral action yields a spontaneous
breaking of the abelian gauge symmetry.

Appendix 9.A Grassmann Variables, Grassmann Integration and Pfaffians

7. For more details on Grassmann variables we refer to [11].
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Chapter 10
The Noncommutative Geometry of Yang–Mills
Fields

In this Chapter we generalize the noncommutative description of Yang–Mills theory
to topologically non-trivial gauge configurations.

10.1 Spectral Triple Obtained from an Algebra Bundle

Recall from Examples8.4 and 8.5 that topologically trivial Yang–Mills gauge theory
can be described by the almost-commutative manifold

M×FY M =
(

C∗(M) ∈ MN (C), L2(S) ∈ MN (C), DM ∈ 1; JM ∈ (·)∗, λM ∈ 1
)

.

In fact, the tensor product of C∗(M)with the matrix algebra MN (C) appearing here
is equivalent to restricting the gauge theory to be defined on a trivial vector bundle
Indeed, C∗(M) ∈ MN (C) is the algebra of smooth sections of the trivial algebra
bundle M × MN (C) on M . For the topologically non-trivial case, this suggests
considering an arbitrary ∗-algebra bundle with fiber MN (C). We work in a slightly
more general setting more general ∗-algebras are allowed.

Thus, letB be some locally trivial ∗-algebra bundle whose fibers are copies of a
fixed (finite-dimensional) ∗-algebra A. Furthermore, we require that for each x the
fiberBx is endowed with a faithful tracial state φx , such that for each s → λ∗(B) the
function x �◦ φx s(x) is smooth. The corresponding Hilbert–Schmidt inner product
in the fiberBx that is induced by φx is denoted by (·, ·)Bx . Consequently, theC∗(M)-
valued form

〈·, ·≤B : λ∗(B) × λ∗(B) ◦ C∗(M); 〈s, t≤B(x) = (s(x), t (x))Bx

is a hermitian structure on the C∗(M)-module λ∗(B), satisfying the conditions of
Proposition6.14.
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As in the previous chapters, we assume that M is a compact Riemannian spin
manifold on which S ◦ M is a spinor bundle and DM = −ic ∼ ⊕S is the Dirac
operator. Combining the inner product on spinors with the above hermitian structure
naturally induces the following inner product on λ∗(B ∈ S):

(π1, π2) :=
∫

M
(π1(x), π2(x))Bx ∈Sx

; (π1, π2 → λ∗(B ∈ S)), (10.1.1)

turning it into a pre-Hilbert space. Its completion with respect to the norm induced by
this inner product consists of all square-integrable sections ofB∈ S, and is denoted
by L2(B ∈ S).

Remark 10.1 Note that we can identify λ∗(B) ∈C∗(M) λ∗(S) with λ∗(B ∈ S)

as C∗(M)-modules. In what follows, we will use this identification without further
notice. The above inner product (10.1.1) can then be written as

(s1 ∈ ψ1, s2 ∈ ψ2) = (ψ1, 〈s1, s2≤Bψ2),

where 〈s1, s2≤B → C∗(M) acts on λ∗(S) by pointwise multiplication.

Theorem 10.2 In the above notation, let ⊕Bbe a hermitian connection (with respect
to the Hilbert–Schmidt inner product) on the ∗-algebra bundle B and let DB =
−iλμ(⊕B

μ ∈ 1 + 1 ∈ ⊕S
μ ) be the twisted Dirac operator on B ∈ S. Then

(λ∗(B), L2(B ∈ S), DB)

is a spectral triple.

Proof First, it is obvious that fiberwise multiplication of a → λ∗(B) onλ∗(B∈ S)

extends to a bounded operator on L2(B ∈ S), since

‖as ∈ ψ‖2 =
∫

M

(
ψ(x), (a(x)s(x), a(x)s(x))Bx

ψ(x)
)

Sx
dx

≤ sup
x→M

{‖a(x)‖2x }‖s ∈ ψ‖2.

Here ‖ · ‖x denotes the fiberwise operator C∗-norm. Since M is a compact manifold,
the compactness of the resolvent follows from ellipticity of the twistedDirac operator
DB. Moreover, the commutator [DB, a] is bounded for a → λ∗(B) since DB is a
first-order differential operator. More precisely, in local coordinates one computes

[DB, a](s ∈ ψ) = −i
(
ξμa + [ωB

μ , a]
)

s ∈ λμψ,

where ⊕B
μ = ξμ + ωB

μ . This operator is bounded on L2(B ∈ S), provided a is

differentiable and ωB
μ is smooth. �
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Next, we would like to extend our construction to arrive at a real spectral triple.
For this, we introduce an anti-linear operator on L2(B ∈ S) of the form

J (s ∈ ψ) = s∗ ∈ JMψ,

with JM charge conjugation on M as in Definition4.13. For this operator to be a
real structure on our spectral triple (λ∗(B), L2(B∈ S), DB), we need some extra
conditions on the connection ⊕B onB.

Definition 10.3 LetB be a ∗-algebra bundle over a manifold M . A ∗-algebra con-
nection ⊕ on B is a connection on B that satisfies

⊕(st) = s⊕t + (⊕s)t, (⊕s)∗ = ⊕s∗; (s, t → λ∗(B)).

If B is a Hermitian ∗-algebra bundle and ⊕ is also a hermitian connection, then ⊕
is called a hermitian ∗-algebra connection.
Lemma 10.4 Every locally trivial Hermitian ∗-algebra bundle B defined over a
compact space M admits a Hermitian ∗-algebra connection.

Proof Let {Ui } be a finite open covering of M such thatB is trivialized over Ui for
each i . Then on eachUi there exists aHermitian ∗-algebra connection⊕i , for instance
the trivial connection d on Ui . Now, let { fi } be a partition of unity subordinate to the
open covering {Ui } (note that all fi are real-valued). Then the linearmap⊕ defined by

(⊕s)(x) =
∑

i

fi (x)(⊕i s)(x); (x → M)

is a Hermitian ∗-algebra connection on λ∗(B). �

Remark 10.5 The fact that locally, i.e. on some trivializing neighborhood, the exte-
rior derivative d is a Hermitian ∗-algebra connection shows that on such a local chart
every Hermitian ∗-algebra connection is of the form

d + ωB,

where ωB is a real connection one-form with values in the real Lie algebra of ∗-
derivations of the fiber that are anti-hermitian with respect to the inner product on
the fiber. For instance, when the fiber is the ∗-algebra MN (C) endowed with the
Hilbert–Schmidt inner product, this Lie algebra is precisely ad(u(N )) ⊗= su(N ).

Theorem 10.6 In addition to the conditions of Theorem 10.2, suppose that ⊕B is a
Hermitian ∗-algebra connection and set λ = 1 ∈ λM as a self-adjoint operator on
L2(B ∈ S). Then

(λ∗(B), L2(B ∈ S), DB; J, λ)

is a real and even spectral triple whose K O-dimension is equal to the dimension of M.

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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Proof First of all, we check that J is anti-unitary:

(J (s ∈ ψ), J (t ∈ η)) = (
JMψ, 〈s∗, t∗≤JMη

) = (
JMψ, JM 〈s∗, t∗≤η)

= (〈s∗, t∗≤η,ψ
) = (〈s, t≤η,ψ) = (t ∈ η, s ∈ ψ) ,

where we used in the second step that JM f = f̄ JM for every f → C∗(M), in the
third step that JM is anti-unitary, and in the fourth step that 〈s, t≤ = 〈t∗, s∗≤ (by
definition of the hermitian structure as a fiberwise trace). Moreover, if J 2

M = ε it
follows that J 2 = ε.

We next establish D J = ε′ J D by a local calculation:

(J D − ε′ D J )(s ∈ ψ) = J
(
⊕B

μ s ∈ (−iλμψ) + s ∈ DMψ
)

− ε′ DB
(
s∗ ∈ JMψ

)

= (⊕B
μ s)∗ ∈ i JMλμψ + s∗ ∈ JM DMψ

− ε′⊕B
μ s∗ ∈ (−iλμ JMψ) − ε′s∗ ∈ DM JMψ

= i
(
(⊕B

μ s)∗ − ⊕B
μ s∗) ∈ JMλμψ = 0,

since JMλμ = −ε′λμ JM , and the last step follows from the definition of a ∗-algebra
connection, i.e. (⊕s)∗ = ⊕s∗ for all s → λ∗(B).

The commutant property follows easily:

[a, b0](s ∈ ψ) = a Jb∗ J−1(s ∈ ψ) − Jb∗ J−1a(s ∈ ψ)

= a J (b∗s∗ ∈ J ∗
Mψ) − Jb∗(s∗a∗ ∈ J ∗

Mψ)

= asb ∈ ψ − asb ∈ ψ = 0,

where a, b → λ∗(B) and s ∈ ψ → λ∗(B) ∈C∗(M) λ∗(S). Since [a, b0] = 0
on λ∗(B) ∈C∗(M) λ∗(S) ⊗= λ∗(B ∈ S), it is zero on the entire Hilbert space
L2(B∈ S). It remains to check the order one condition for the Dirac operator. First
note that

[[D, a], b0](s ∈ ψ) = −iλμ([[⊕μ, a], b0](s ∈ ψ)); (a, b, s → λ∗(B)).

This is zero because [[⊕, a], b0](s ∈ ψ) is zero:

([⊕μ, a]sb) ∈ ψ − Jb∗ J−1([⊕μ, a]s ∈ ψ)

= ⊕μ(asb) ∈ ψ − a⊕μ(sb) ∈ ψ − ⊕μ(as)b ∈ ψ + a(⊕μs)b ∈ ψ

= (
(⊕μa)sb + a(⊕μs)b + as(⊕μb) − a(⊕μs)b

− as(⊕μb) − (⊕μa)sb − a(⊕μs)b + a(⊕μs)b
) ∈ ψ,

= 0



10.1 Spectral Triple Obtained from an Algebra Bundle 179

using the defining property for⊕B to be a ∗-algebra connection. Thus, J fulfills all of
the necessary conditions for a real structure on the spectral triple (λ∗(B), L2(B∈
S), DB). The conditions on λ to be a grading operator for this spectral triple are
easily checked too. �

10.2 Yang–Mills Theory as a Noncommutative Manifold

The real spectral triple (λ∗(B), L2(B∈S), DB; J, λ) that we obtained in Theorem
10.6 will turn out to be the correct triple to describe a topologically non-trivial
PU (N )-gauge theory on the spin manifold M if the fibers of B are taken to be
isomorphic to the ∗-algebra MN (C). Moreover, this triple not only describes a non-
trivial PU (N )-gauge theory: every PU (N )-gauge theory on M is described by
such a triple. In this section we prove these claims by first showing how a principal
PU (N )-bundle can be constructed from this spectral triple. As in the topologically
trivial case (cf. Remark 8.13) the spectral action applied to this triple will give the
Einstein–Yang–Mills action, but now the gauge potential can be interpreted as a
connection one-form on the PU (N )-bundle P . In fact, the original algebra bundle
B will turn out to be an associated bundle of the principal bundle P . From now on,
then, the fibers of B are assumed to be MN (C).

10.2.1 From Algebra Bundles to Principal Bundles

In order to construct a principal PU (N )-bundle P out ofB, first of all note that since
all ∗-automorphisms of MN (C) are obtained by conjugation with a unitary element
u → MN (C) (see Example6.3), the transition functions of the bundle λ∗(B) take
their values in

Ad U (N ) ⊗= U (N )/Z(U (N )) ⊗= PU (N ).

Thus the bundleB provides us with an open covering {Ui } of M as well as transition
functions {gi j }with values in PU (N ). Using the reconstruction theorem for principal
bundles, we can then construct a principal PU (N )-bundle. By construction, the
bundle B is an associated bundle to P .

Furthermore, for the real spectral triple

(λ∗(B), L2(B ∈ S), DB; J, λ)

of Theorem 10.6, the hermitian connection ⊕B on the bundle B can locally be
written as⊕B = d +ωB, where ωB is a su(N )-valued one-form, (cf. Remark 10.5).
Moreover, the transformation rule forωB isωB

i = g−1
i j dgi j +g−1

i j ωB
j gi j , with gi j the

PU (N )-valued transition function of B. Comparing this expression with the usual
transformation property of a connection one-form, one concludes that the Hermitian

http://dx.doi.org/10.1007/978-94-017-9162-5_6
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∗-algebra connection ⊕B on B induces a connection one-form on the principal
bundle P constructed in the previous paragraph.

Conversely, given a PU (N )-gauge theory (P,ωP ) on some compact Riemannian
spin manifold, we can construct the locally trivial Hermitian ∗-algebra bundleB :=
P ×PU (N ) MN (C), where PU (N ) acts on MN (C) in the usual way. Moreover, the
connection ωP on P induces a Hermitian ∗-algebra connection onB. Following the
steps described in the previous paragraph, it is not difficult to see that the principal
bundle and connection obtained from the ensuing spectral triple,

(λ∗(B), L2(B ∈ S),−iλμ(⊕B
μ ∈ 1 + 1 ∈ ⊕S

μ ); J, λ),

coincide with (P,ωP ).

Proposition 10.7 Let (λ∗(B), L2(B∈ S), DB; J, λ) be as before with M simply
connected and B a locally trivial ∗-algebra bundle with fiber MN (C) and a faithful
smoothly-varying tracial state. Then:

(1) there exists a principal PU (N )-bundle P such that B is an associated bundle
of P, as well as a connection one-form ωP on P corresponding to ⊕B;

(2) the gauge group G(λ∗(B), L2(B ∈ S); J ) of this spectral triple (as in
Definition 6.4) is isomorphic to the space of smooth sections of the associated
group bundle Ad P := P ×PU (N ) PU (N ).

Every PU (N )-gauge theory (P,ωP ) on M is determined by such a spectral triple.

Proof The only statement left to prove is (2). If B = P ×PU (N ) MN (C), then
U(λ∗(B)) = λ∗(P ×PU (N ) U (N )). As a consequence,

G(λ∗(B), L2(B ∈ S); J ) � {u Ju J−1 : u → λ∗(P ×PU (N ) U (N ))}
� λ∗(P ×PU (N ) PU (N )),

where we argue as in the proof of Proposition8.2 (see also Note 4 on page 157). �

10.2.2 Inner Fluctuations and Spectral Action

In this section, we calculate the spectral action for the real spectral triple of Theorem
10.6 in the case that dim M = 4. We show that the spectral action applied to the
spectral triple (λ∗(B), L2(B ∈ S), DB; J, λ) produces the Einstein–Yang–Mills
action for a connection one-form on the PU (N )-bundle P . If B is a trivial algebra
bundle, this reduces to Example8.13. In fact, most of these local computations can
be adopted in this case as well, since locally the bundle B is trivial. Nevertheless,
for completeness we include the computations in the case at hand.

http://dx.doi.org/10.1007/978-94-017-9162-5_6
http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_8
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First of all, in Remark 10.5 we noticed that locally, i.e. on some local trivialization
U , the connection ⊕B is expressed as d + ωB, where ωB is an su(N )-valued one-
form that acts in the adjoint representation onλ∗(B). Therefore,ωBalready induces
a connection one-form on P . To get the full gauge potential we need to take the
fluctuations of the Dirac operator into account as well.

Recall from Sect. 6.2 that inner fluctuations of the Dirac operator are given by a
perturbation term of the form

ω =
∑

j

a j [D, b j ]; (a j , b j → λ(B)), (10.2.1)

with the additional condition that
∑

j a j [D, b j ] is a self-adjoint operator. Explicitly,
we have

ω =
∑

j

−iλμ ∼ (a j [⊕μ, b j ] ∈ 1).

Locally, on some trivializing neighborhood U , the expression in (10.2.1) can be
written as

ω = λμ Aμ,

where Aμ are the components of the one-form
∑

j a j [⊕, b j ] with values in λ∗(B).
Since ω is self-adjoint, the one-form Aμ can be considered a real one-form taking
values in the hermitian elements of λ∗(B).

Similarly, the expression ω + JωJ−1 is locally written as

λμ Aμ − λμ J Aμ J−1,

since in 4 dimensions λμ anti-commutes with J . Writing out the second term gives:

(λμ J Aμ J−1)(s ∈ ψ) = s Aμ ∈ λμψ; (s ∈ ψ → λ∗(B ∈ S)),

so that on this local patch, ω + JωJ−1 can be written as

λμadAμ.

Consequently,ω+JωJ−1 eliminates the iu(1)-part ofω, so thatω effectively satisfies
the unimodularity condition

Tr ω = 0.

Thus, iadAμ is a one-form on M with values in λ∗(adP) where adP = P ×PU (N )

su(N ).
The expression for D + ω + JωJ−1 on a local chart U is then given by

Dω = −iλμ(⊕B
μ ∈ 1 + 1 ∈ ⊕S

μ + iadAμ ∈ 1),

http://dx.doi.org/10.1007/978-94-017-9162-5_6
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where the connection ⊕B can be expressed on U as d + ωB for some unique
su(N )-valued one-form ωB on U . Thus, on U the fluctuated Dirac operator can be
rewritten as

Dω = −iλμ(1 ∈ ⊕S
μ + (ξμ + ωB

μ + iadAμ) ∈ 1).

We interpret (ωB
μ + iadAμ) as the full gauge potential on U , acting in the adjoint

representation on the spinors. The natural action of an element g in the group
G(λ∗(B), L2(B ∈ S); J ) � λ∗(AdP) by conjugation on Dω then induces the
familiar gauge transformation:

ωB
μ + iadAμ �◦ (g−1ωB

μ g + g−1(dg)) + g−1(iadAμ)g,

where the first two terms on the right-hand side are the transformation of ωB under
a change of local trivialization, and the last term is the transformation of iadAμ.
Therefore, sinceB is an associated bundle of P , it follows that ωB

μ + iadAμ induces
a su(N )-valued connection one-form on the principal PU (N )-bundle P that acts on
λ∗(B) in the adjoint representation.

Let us summarize what we have obtained so far.

Proposition 10.8 Let (λ∗(B), L2(B ∈ S), DB; J, λ) and let P be as before, so
that P ×PU (N ) MN (C) � B. Then, the inner fluctuations of DB are parametrized
by sections of λ∗(T ∗M ∈ adP) where adP = P ×PU (N ) su(N ). Moreover, the
action of G(λ∗(B), L2(B∈ S); J ) on the inner fluctuations of DB by conjugation
coincides with the adjoint action of λ∗(AdP) on λ∗(adP).

Let us now proceed to compute the spectral action for these inner fluctuations.
We apply the results of Sect. 8.3, using the following result.

Lemma 10.9 For the spectral triple (λ∗(B), L2(B ∈ S), DB; J, λ), the square
of the fluctuated Dirac operator is a generalized Laplacian of the form γE − F,
with E = B ∈ S (notation as in Theorem 8.7), and we have the following local
expressions for the corresponding curvature ψE

μν and the bundle endomorphism F:

F = −1

4
s ∈ IN2 + 1

2
iλμλν ∈ Fμν;

ψE
μν = ψS

μν ∈ IN2 + iI4 ∈ Fμν,

where Fμν is the curvature of the connection ⊕B
μ + iadAμ.

As before, this result allows us to compute the bosonic spectral action for the fluc-
tuated Dirac operator Dω , essentially reducing the computation in terms of a local
trivialization to the trivial case (cf. Example8.13), with the following result.

Theorem 10.10 For the spectral triple (λ∗(B), L2(B∈S), DB; J, λ), the spectral
action yields the Yang–Mills action for ⊕B + iadA minimally coupled to gravity:

http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_8
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Tr ( f (Dω/χ)) ⊗ f (0)

24η2

∫

M
TrFμν Fμν≥gdx + N 2

∫

M
LM (gμν)

≥
gdx,

asymptotically as χ ◦ ∗ and up to terms ≡ χ−2. The Lagrangian LM (gμν) is
given by (8.4.8).

10.2.3 Topological Spectral Action

A natural invariant in this topologically non-trivial context is the topological spectral
action, given in Eq. (7.1.2). With Proposition7.5 we find that, in general,

Stop[ω] = f (0) index Dω.

Hence, in the setting of Theorem 10.10, using the Atiyah–Singer index theorem (cf.
Note 16 on page 97), we find an extra contribution of the form

Stop[ω] = f (0)

(2ηi)n/2

∫

M
Â(M)ch(B),

in terms of the Â-form of M and the Chern character of the algebra bundle B.

Notes

1. For an exposition of Yang–Mills theory in terms of principal bundle and con-
nections, we refer to [1, Sect. 2.3] and [2].

2. This Chapter extends the noncommutative description of Yang–Mills gauge the-
ory of [3, 4] to the topologically non-trivial case; it is based on [5]. For a more
general treatment of topologically non-trivial almost-commutative geometries
we refer to [6–8].

Section 10.1 Spectral Triple Obtained from an Algebra Bundle

3. Our approach to locally trivial ∗-algebra bundles gains in substance with the
Serre–Swan Theorem, establishing a duality between vector bundles over a topo-
logical space X and finite projective modules over C(X) [9, 10]. A smooth ver-
sion was obtained in [11] (see also [12, Proposition4.2.1] or [13, Sect. 2.3]). The
fiberwise inner product gives rise to the hermitian structure found in Proposi-
tion6.14. A version of the Serre–Swan Theorem for ∗-algebra bundles has been
obtained in [5].

http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_7
http://dx.doi.org/10.1007/978-94-017-9162-5_7
http://dx.doi.org/10.1007/978-94-017-9162-5_5
http://dx.doi.org/10.1007/978-94-017-9162-5_6


184 10 The Noncommutative Geometry of Yang–Mills Fields

Section 10.2 Yang–Mills Theory as a Noncommutative Manifold

4. A special case of Proposition10.7 occurs when B is an endomorphism bundle.
It follows from a result by Dixmier and Douady in [14] (cf. [15]) that a bundle
B with continuously varying trace is an endomorphism bundle if and only if
the Dixmier–Douady class κ(λ(B)) → H3(Z) of the C∗-algebra of continuous
sectionsλ(B) of this bundle is equal to zero. Because theDixmier–Douady class
of the bundleB vanishes one can lift the PU (N )-valued transition functions gi j

to U (N )-valued functions μi j such that gi j = Ad μi j , and μi jμ jk = μik (see for
instance [15], Theorem4.85). One may therefore construct a principal U (N )-
bundle instead of a PU (N )-bundle, to whichB is associated if and only ifB is
an endomorphism bundle.
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Chapter 11
The Noncommutative Geometry
of the Standard Model

One of the major applications of noncommutative geometry to physics has been
the derivation of the Standard Model of particle physics from a suitable almost-
commutative manifold. In this Chapter we present this derivation, using the results
of Chap.8.

11.1 The Finite Space

Our starting point is the classification of irreducible finite geometries of KO-
dimension 6 fromSect. 3.4, based on thematrix algebra MN (C)∗MN (C) for N ∈ 1.
We have already seen in Chap.9 that N = 1 is the finite geometry corresponding to
electrodynamics. We now proceed and aim for the full Standard Model of particle
physics. Let us make the following two additional requirements on the irreducible
finite geometry (A, HF , DF ; JF , γF ):

(1) The finite-dimensional Hilbert space HF carries a symplectic structure I 2 = −1;
(2) the grading γF induces a non-trivial grading on A, by mapping

a �→ γF aγF ,

and selects an even subalgebra Aev ⊂ A consisting of elements that commute
with γF .

We have already seen in Sect. 3.4 that the first demand sets A = Mk(H) ∗ M2k(C),
represented on the Hilbert spaceC

2(2k)2 . The second requirement sets k ∈ 2; we will
take the simplest k = 2 so that HF = C

32. Indeed, this allows for a γF such that

Aev = HR ∗ HL ∗ M4(C),

where HR and HL are two copies (referred to as right and left) of the quaternions;
they are the diagonal of M2(H) ⊂ A. The Hilbert space can then be decomposed
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2R 2L 4

2◦
R

2◦
L

4◦

Fig. 11.1 The Krajewski diagram for the finite real spectral triple (Aev = HR ∗ HL ∗
M4(C), HF , DF ; JF , γF ). The dashed line corresponds to an ‘off-diagonal’ component of the
Dirac operator, thus failing on the first-order condition. The labels + and − represent the value of
the grading γF on the corresponding summands of HF

according to the defining representations of Aev,

HF = (C2
R ∗ C

2
L) ◦ C

4◦ ∗ C
4 ◦ (C2◦

R ∗ C
2◦
L ). (11.1.1)

According to this direct sum decomposition, we write

DF =
⎛

S T ≤
T S̄

⎜
(11.1.2)

where

S : (C2
R ∗ C

2
L) ◦ C

4◦ → (C2
R ∗ C

2
L) ◦ C

4◦,
T : (C2

R ∗ C
2
L) ◦ C

4◦ → C
4 ◦ (C2◦

R ∗ C
2◦
L ).

This gives rise to the Krajewski diagram of Fig. 11.1. We now make an additional
assumption,

(3) The off-diagonal components T and T ≤ of the Dirac operator in (11.1.2) are
non-zero.

In Fig. 11.1 such an off-diagonal component corresponds to the dashed line. As
this line runs neither vertically, horizontally, or between the same vertex, it follows
from Lemma 3.10 that the corresponding component of DF breaks the first-order
condition.

Proposition 11.1 Up to ≤-automorphisms of Aev, there is a unique ≤-subalgebra
AF ⊂ Aev of maximal dimension that allows T ∼= 0 in (11.1.2). It is given by

AF =
⎝⎛

qλ, q,

⎛
q 0
0 m

⎜⎜
: λ ⊕ C, q ⊕ HL , m ⊕ M3(C)

⎞
⊂ HR ∗ HL ∗ M4(C),

where λ �→ qλ is the embedding of C λ→ H, with

http://dx.doi.org/10.1007/978-94-017-9162-5_3
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Fig. 11.2 The Krajewski
diagram of the space FSM

describing the StandardModel
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qλ =
⎛

λ 0
0 λ̄

⎜
.

Consequently, AF � C ∗ H ∗ M3(C).

Proof Wegive a diagrammatic proof. FromFig. 11.1, we see that in order to fulfill the
first-order condition, we should bring the dashed line to run horizontally or vertically,
or to begin and start at the same node on the diagonal. We do so by considering the
Krajewski diagrams for subalgebras AF ⊂ Aev which are induced by Fig. 11.1. If T
is of rank 1, the only possibility is to bring the dashed line to the diagonal. In other
words, the subalgebra we are looking for should have a component that is embedded
diagonally in HR and M4(C). Such a component can only be C, and the resulting
subalgebra is embedded as

C ∗ M3(C) → HR ∗ M4(C);
(λ, m) �→

⎛⎛
λ 0
0 λ̄

⎜
,

⎛
λ 0
0 m

⎜⎜
.

This breaks the Krajewski diagram to the diagram of Fig. 11.2, where the dashed line
now connects the two vertices labeled by (1, 1◦). The other edges of Fig. 11.1 are
now torn apart to the resulting edges in Fig. 11.2.

If T has rank greater than 1, then a similar argument shows that one obtains a
subalgebra of smaller dimension than AF . 
⊗

In order to connect to the physics of the Standard Model, let us introduce an
orthonormal basis for HF that can be recognized as the fermionic particle content
of the Standard Model, and subsequently write the representation of AF in terms
of this basis. Starting with the Krajewski diagram of Fig. 11.2, we let the first three
nodes in the top row be represented by basis vectors {νR, eR, (νL , eL)} of the so-
called lepton space Hl , while the three nodes in the bottom row represent the basis
vectors {u R, dR, (uL , dL)} of the quark space Hq . Their reflections with respect to
the diagonal represent are the anti-lepton space Hl̄ and the anti-quark space Hq̄ ,
spanned by {νR, eR, (νL , eL)} and {u R, dR, (uL , dL)}, respectively. The three colors
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of the quarks are given by a tensor factor C
3 and when we take into account three

generations of fermions and anti-fermions by tripling the above finite-dimensional
Hilbert space we obtain

HF := ⎟
Hl ∗ Hl̄ ∗ Hq ∗ Hq̄

⎠∗3
.

Note that Hl = C
4, Hq = C

4 ◦ C
3, Hl̄ = C

4, and Hq̄ = C
4 ◦ C

3. An element
a = (λ, q, m) ⊕ AF acts on the space of leptons Hl as qλ ∗ q, and acts on the space
of quarks Hq as (qλ ∗ q) ◦ I3. That is,

a = (λ, q, m)
Hl−→



⎡⎡⎧

λ 0 0 0
0 λ̄ 0 0
0 0 α β

0 0 −β̄ ᾱ

⎨

⎩⎩ ,

a = (λ, q, m)
Hq−→



⎡⎡⎧

λ 0 0 0
0 λ̄ 0 0
0 0 α β

0 0 −β̄ ᾱ

⎨

⎩⎩ ◦ I3.

For the action of a on an anti-lepton l̄ ⊕ Hl̄ we have al̄ = λI4l̄, and on an anti-quark
q̄ ⊕ Hq̄ we have aq̄ = (I4 ◦ m)q̄ .

The Z2-grading γF is such that left-handed particles have eigenvalue +1 and
right-handed particles have eigenvalue −1. The anti-linear operator JF interchanges
particles with their anti-particles, so JF f = f̄ and JF f̄ = f , with f a lepton or
quark.

Finally, we write the Dirac operator of (11.1.2) in terms of the decomposition of
HF in particle (H∗3

l ∗ H∗3
q ) and anti-particles (H∗3

l̄
∗ H∗3

q̄ ). The operator S will
be chosen to be

Sl := S|H∗3
l

=



⎡⎡⎧

0 0 Y ≤
ν 0

0 0 0 Y ≤
e

Yν 0 0 0
0 Ye 0 0

⎨

⎩⎩ ,

Sq ◦ I3 := S|H∗3
q

=



⎡⎡⎧

0 0 Y ≤
u 0

0 0 0 Y ≤
d

Yu 0 0 0
0 Yd 0 0

⎨

⎩⎩ ◦ I3,

where Yν , Ye, Yu and Yd are 3 × 3 Yukawa mass matrices acting on the three
generations, and I3 acting on the three colors of the quarks. The symmetric operator
T only acts on the right-handed (anti)neutrinos, so it is given by T νR = YRνR , for
a certain 3 × 3 symmetric Majorana mass matrix YR , and T f = 0 for all other
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fermions f ∼= νR . Note that νR here stands for a vector with 3 components for the
number of generations.

Let us summarize what we have obtained so far.

Proposition 11.2 The data

FSM := (AF , HF , DF ; JF , γF )

as given above define a finite real even spectral triple of KO-dimension 6.

11.2 The Gauge Theory

11.2.1 The Gauge Group

We shall now describe the gauge theory corresponding to the almost-commutative
manifold M × FSM . In order to determine the gauge groupG(FSM) of Definition 6.4,
let us start by examining the subalgebra (AF )JF of the algebra AF of Proposition
11.1, as defined in Sect. 4.3.1. For an element a = (λ, q, m) ⊕ C ∗ H ∗ M3(C), the
relation a JF = JF a≤ now yields λ = λ̄ = α = ᾱ and β = 0, as well as m = λI3.
So, a ⊕ (AF )JF if and only if a = (x, x, x) for x ⊕ R. Hence we find

(AF )JF � R.

Next, let us consider the Lie algebra h(F) = u
⎟
(AF )JF

⎠
of (8.1.1b). Since u(AF )

consists of the anti-hermitian elements of AF , we obtain that the h(F) = u
⎟
(AF )JF

⎠

is given by the trivial subalgebra {0}.
Proposition 11.3 The local gauge group G(FSM) of the finite space FSM is given by

G(FSM) � ⎟
U (1) × SU (2) × U (3)

⎠
/{1,−1},

where {1,−1} is the diagonal normal subgroup in U (1) × SU (2) × U (3).

Proof The unitary elements of the algebra form the group U(AF ) � U (1)×U(H)×
U (3). Now, a quaternion q = q0I + iq1σ1 + iq2σ2 + iq3σ3 is unitary if and only
if |q|2 = q02 + q12 + q22 + q32 = 1. Using the embedding of H in M2(C), we
find |q|2 = det(q) = 1, and this yields the isomorphism U(H) � SU (2). Hence,
the unitary group U(AF ) is given by U (1) × SU (2) × U (3). By Proposition 8.2,
the gauge group is given by the quotient of the unitary group with the subgroup
H(F) = U⎟

(AF )JF

⎠
, which is the diagonal normal subgroup

{±(1, I2, I3)} ⊂ U (1) × SU (2) × U (3). 
⊗

http://dx.doi.org/10.1007/978-94-017-9162-5_6
http://dx.doi.org/10.1007/978-94-017-9162-5_4
http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_8
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The gauge group that we obtain here is not the gauge group of the StandardModel,
because (even ignoring the quotient with the finite group {1,−1}) we have a factor
U (3) instead of SU (3). Asmentioned in Proposition 8.3, the unimodularity condition
is only satisfied for complex algebras, but in our case, the algebra C ∗ H ∗ M3(C)

is only a real algebra. Therefore, the unimodularity condition is not automatically
satisfied. Instead, we shall require that the unimodularity condition is satisfied, so
for u = (λ, q, m) ⊕ U (1) × SU (2) × U (3) we impose

det|HF
(u) = 1 =⇒ ⎟

λ det m
⎠12 = 1.

For u ⊕ U (1) × SU (2) × U (3), we denote the corresponding element inG(FSM) by
U = u Ju J−1. We shall then consider the subgroup

SG(FSM) =
⎫

U = u Ju J−1 ⊕ G(FSM) | u = (λ, q, m),
⎟
λ det m

⎠12 = 1
⎬

.

The effect of the unimodularity condition is that the determinant of m ⊕ U (3) is
identified (modulo the multiplicative group μ12 of 12th roots of unity) with λ̄. In
other words, imposing the unimodularity condition provides us, modulo some finite
abelian group, with the gauge group U (1) × SU (2) × SU (3). This agrees with the
Standard Model, as even the group U (1) × SU (2) × SU (3) is actually not the true
gauge group of the Standard Model. Indeed, it contains a finite abelian subgroup
(isomorphic to) μ6 which acts trivially on all bosonic and fermionic particles in
the Standard Model. The group μ6 is embedded in U (1) × SU (2) × SU (3) by
λ �→ (λ,λ3,λ2). The true gauge group of the Standard Model is therefore given by

GSM := U (1) × SU (2) × SU (3)/μ6.

Proposition 11.4 The unimodular gauge group SG(FSM) is isomorphic to

SG(FSM) � GSM � μ12.

Proof Proposition 11.3 shows that SG(FSM) � SU(AF )/μ2, so we determine
SU(AF ). We do so in two steps:

SU(AF ) � G × SU (2) × SU (3)/μ3, (I)

where G = ⎭
(λ,μ) ⊕ U (1) × U (1) : (λμ3)12 = 1

}
, containing μ3 as the subgroup

{e} × μ3, and
G � μ12 × U (1). (II)

For (I), consider the map SU (3)

(λ,μ, q, m) ⊕ G × SU (2) × SU (3) �→ (λ, q,μm) ⊕ SU (AF ).

http://dx.doi.org/10.1007/978-94-017-9162-5_8
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We claim that this map is surjective and has kernel μ3. If (λ, q, m) ⊕ SU (AF ), then
there exists μ ⊕ U (1) such that μ3 = det m ⊕ U (1). Since (λμ3)12 = (λ det m)12 =
1, the element (λ,μ, q, m) lies in the pre-image of (λ, q, m). The kernel of the above
map consists of pairs (λ,μ, q, m) ⊕ G × SU (2) × SU (3) such that λ = 1, q = 1
and m = μ−1

I3. Since m ⊕ SU (3), this μ satisfies μ3 = 1. So we have established
(I).

For (II) we show that the following sequence is split-exact:

1 → U (1) → G → μ12 → 1,

where the group homomorphisms are given by λ ⊕ U (1) �→ (λ3,λ−1) ⊕ G and
(λ,μ) ⊕ G → λμ3 ⊕ μa . Exactness can be easily checked, and the splitting map is
given by λ ⊕ μ12 → (λ, 1) ⊕ G. In this abelian case, the corresponding action of
μ12 on U (1) is trivial so that the resulting semi-direct product is

G � U (1) � μ12 � U (1) × μ12. 
⊗

A similar argument shows that the gauge algebra of Definition 6.4 is

g(FSM) � u(1) ∗ su(2) ∗ u(3),

and the restriction to traceless matrices gives the gauge algebra of the Standard
Model:

sg(FSM) � u(1) ∗ su(2) ∗ su(3).

11.2.2 The Gauge and Scalar Fields

As we have seen in more generality in (8.2.7), the gauge field corresponding to FSM

takes values in g(FSM). We here confirm this result and derive the precise form of
the gauge field Aμ of (8.2.1), and also of the scalar field φ of (8.2.2).

Take two elements a = (λ, q, m) and b = (λ′, q ′, m′) of the algebra A =
C≥(C ∗ H ∗ M3(C)). According to the representation of AF on HF , the inner
fluctuations Aμ = −ia∂μb decompose as

γμ := −iλ∂μλ′

on νR ,
γ′

μ := −i λ̄∂μλ̄′

on eR ,
Qμ := −iq∂μq ′

on (νl , eL), and

http://dx.doi.org/10.1007/978-94-017-9162-5_6
http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_8
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V ′
μ := −im∂μm′

acting on Hq̄ ; on all other components of HF the gaugefield Aμ acts as zero. Imposing
the hermiticityγμ = γ≤

μ impliesγμ ⊕ R, and also automatically yieldsγ′
μ = −γμ.

Furthermore, Qμ = Q≤
μ implies that Qμ is a real-linear combination of the Pauli

matrices, which span i su(2). Finally, the condition that V ′
μ be hermitian yields V ′

μ ⊕
i u(3), so V ′

μ is a U (3) gauge field. As mentioned above, we need to impose the
unimodularity condition to obtain an SU (3) gauge field. Hence, we require that the
trace of the gauge field Aμ over HF vanishes, and we obtain

Tr|Hl̄

⎟
γμI4

⎠ + Tr|Hq̄

⎟
I4 ◦ V ′

μ

⎠ = 0 =⇒ Tr(V ′
μ) = −γμ.

Therefore, we can define a traceless SU (3) gauge field Vμ by V μ := −V ′
μ − 1

3γμ.
The gauge field Aμ is given by

Aμ

∣∣
Hl

=


⎧
γμ 0
0 −γμ

Qμ

⎨

 , Aμ

∣∣
Hq

=


⎧
γμ 0
0 −γμ

Qμ

⎨

 ◦ I3,

Aμ

∣∣
Hl̄

= γμI4, Aμ

∣∣
Hq̄

= −I4 ◦ (V μ + 1

3
γμ),

for some U (1) gauge field γμ, an SU (2) gauge field Qμ and an SU (3) gauge field
Vμ. The action of the field Bμ = Aμ − JF Aμ J−1

F on the fermions is then given by

Bμ

∣∣
Hl

=


⎧
0 0
0 −2γμ

Qμ − γμI2

⎨

 ,

Bμ

∣∣
Hq

=


⎧
4
3γμI3 + Vμ 0

0 − 2
3γμI3 + Vμ

(Qμ + 1
3γμI2) ◦ I3 + I2 ◦ Vμ

⎨

 .

(11.2.1)

Note that the coefficients in front of γμ in the above formulas are precisely the
well-known hypercharges of the corresponding particles, as given by the following
table:

Particle νR eR νL eL u R dR uL dL

Hypercharge 0 −2 −1 −1 4
3 − 2

3
1
3

1
3

Next, let us turn to the scalar field φ, which is given by
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φ|Hl
=

⎛
0 Y ≤
Y 0

⎜
, φ|Hq

=
⎛
0 X≤
X 0

⎜
◦ I3, φ|Hl̄

= 0, φ|Hq̄
= 0, (11.2.2)

where we now have, for complex fields φ1,φ2,

Y =
⎛

Yνφ1 −Yeφ̄2

Yνφ2 Yeφ̄1

⎜
, X =

⎛
Yuφ1 −Yd φ̄2

Yuφ2 Yd φ̄1

⎜
.

The scalar field ψ is then given by

ψ = DF +
⎛
φ 0
0 0

⎜
+ JF

⎛
φ 0
0 0

⎜
J ≤

F =
⎛

S + φ T ≤
T ¯(S + φ)

⎜
. (11.2.3)

Proposition 11.5 The action of the gauge group SG(M × FSM) on the fluctuated
Dirac operator

Dω = DM ◦ I + γμ ◦ Bμ + γM ◦ ψ

is implemented by

γμ �→ γμ − iλ∂μλ̄, Qμ �→ q Qμq≤ − iq∂μq≤, V μ �→ mV̄μm≤ − im∂μm≤,
⎛

φ1 + 1
φ2

⎜
�→ λ̄ q

⎛
φ1 + 1

φ2

⎜
,

for λ ⊕ C≥⎟
M, U (1)

⎠
, q ⊕ C≥⎟

M, SU (2)
⎠

and m ⊕ C≥⎟
M, SU (3)

⎠
.

Proof We simply insert the formulas for the fields obtained in (11.2.1) into the
transformations given by (8.2.9). Let us write

u = (λ, q, m) ⊕ C≥⎟
M, U (1) × SU (2) × SU (3)

⎠
.

The term uωu≤ replaces Qμ by q Qμq≤, and V μ by mV̄μm≤, respectively. We also
see that the term −iu∂μu≤ is given by −iλ∂μλ̄ on νR , u R and Hl̄ , by the expression
−i λ̄∂μλ = iλ∂μλ̄ on eR and dR , by−iq∂μq≤ on (νL , eL) and (uL , dL), and, finally,
by −im∂μm≤ on Hq̄ . We thus obtain the desired transformation rules for γμ, Qμ,
and V μ.

For the transformation of φ, we separately calculate uφu≤ and u[DF , u≤]. Since
φ = 0 on Hl̄ and Hq̄ , we may restrict our calculation of uφu≤ to Hl and Hq . On Hl

we find

uφu≤ =
⎛

qλ 0
0 q

⎜ ⎛
0 Y ≤
Y 0

⎜ ⎛
q≤
λ 0
0 q≤

⎜
=

⎛
0 qλY ≤q≤

qY q≤
λ 0

⎜
,

which is still hermitian. We then calculate

http://dx.doi.org/10.1007/978-94-017-9162-5_8
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qY q≤
λ =

⎛
α β

−β̄ ᾱ

⎜ ⎛
Yνφ1 −Yeφ̄2

Yνφ2 Yeφ̄1

⎜ ⎛
λ̄ 0
0 λ

⎜

=
⎛

λ̄Yν(αφ1 + βφ2) λYe(βφ̄1 − αφ̄2)

λ̄Yν(−β̄φ1 + ᾱφ2) λYe(ᾱφ̄1 + β̄φ̄2)

⎜
.

A similar computation on Hq gives the same transformation for the φ1 and φ2.
Next, let us calculate the second term u[DF , u≤]. The operator T in DF only acts

on νR , and therefore commutes with the algebra. Upon restricting to Hl̄ and Hq̄ ,
the operator S̄ commutes with the algebra. Hence, once again we may restrict our
calculation to Hl and Hq . The term u[S, u≤] is uSu≤ − S and we compute

uSu≤ =
⎛

0 qλY ≤
0 q≤

qY0q≤
λ 0

⎜
,

where Y0 =
⎛

Yν 0
0 Ye

⎜
on Hl and Y0 =

⎛
Yu 0
0 Yd

⎜
on Hq . We find that on Hl ,

qY0q≤
λ =

⎛
α β

−β̄ ᾱ

⎜ ⎛
Yν 0
0 Ye

⎜ ⎛
λ̄ 0
0 λ

⎜
=

⎛
λ̄Yνα λYeβ

−λ̄Yν β̄ λYeᾱ

⎜
,

and a similar expression holds on Hq after replacing Yν and Ye by Yu and Yd , respec-
tively.

Combining the two contributions to the transformation, we find that the transfor-
mation uφu≤ + u[S, u≤] maps

Y =
⎛

Yνφ1 −Yeφ̄2

Yνφ2 Yeφ̄1

⎜
�→ Y ′ =

⎛
Yνφ

′
1 −Yeφ̄

′
2

Yνφ
′
2 Yeφ̄

′
1

⎜
,

where we defined

φ′
1 := λ̄(αφ1 + βφ2 + α) − 1, φ′

2 := λ̄(−β̄φ1 + ᾱφ2 − β̄).

Rewriting this in terms of q completes the proof. 
⊗
Summarizing, the gauge fields derived from FSM take values in the Lie algebra

u(1) ∗ su(2) ∗ su(3) and transform according to the usual Standard Model gauge
transformations. The scalar field φ transforms as the Standard Model Higgs field in
the defining representation of SU (2), with hypercharge −1.

11.3 The Spectral Action

In this section we calculate the spectral action for the almost-commutative manifold
M × FSM and derive the bosonic part of the Lagrangian of the Standard Model. The
general form of this Lagrangian has already been calculated for almost-commutative
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manifolds in Sect. 8.12, sowe only need to insert the expressions (11.2.1) and (11.2.3)
for the fieldsψ and Bμ.We start with a few lemmas that capture the rather tedious cal-
culations that are needed to obtain the traces of Fμν Fμν , ψ2, ψ4 and (Dμψ)(Dμψ).

We denote the curvatures of the U (1), SU (2) and SU (3) gauge fields by

γμν := ∂μγν − ∂νγμ,

Qμν := ∂μQν − ∂ν Qμ + i[Qμ, Qν], (11.3.1)

Vμν := ∂μVν − ∂ν Vμ + i[Vμ, Vν].

Lemma 11.6 The trace of the square of the curvature of Bμ is given by

TrHF (Fμν Fμν) = 24
(10
3

γμνγ
μν + Tr(Qμν Qμν) + Tr(VμνV μν)

)
.

Proof Let us first consider the trace over the lepton sector. Using (11.2.1), we find
that the curvature Fμν of Bμ can be written as

Fμν

∣∣∣
Hl

=


⎧
0 0
0 −2γμν

Qμν − γμνI2

⎨

 ,

Fμν

∣∣∣
Hl̄

=


⎧
0 0
0 2γμν

γμνI2 − (Q̄)μν

⎨

 ,

where (Q̄)μν is the curvature of Q̄μ. The square of the curvature therefore becomes

Fμν Fμν
∣∣∣

Hl
=



⎧
0 0
0 4γμνγ

μν

Qμν Qμν + γμνγ
μν

I2 − 2γμν Qμν

⎨

 ,

Fμν Fμν
∣∣∣

Hl̄

=


⎧
0 0
0 4γμνγ

μν

(Q̄)μν(Q̄)μν + γμνγ
μν

I2 − 2γμν(Q̄)μν

⎨

 .

Since Qμν is traceless, the cross-term −2γμν Qμν drops out after taking the trace.
Note that since Qμ is hermitian we have Q̄μ = QT

μ , and this also holds for Q̄μν .
This implies that

Tr
⎟
(Qμν)(Qμν)

⎠ = Tr
⎟
(Qμν)

T (Qμν)T ⎠ = Tr
⎟
Qμν Qμν

⎠
.

Thus, with three generations we obtain

TrHl∗Hl̄
(Fμν Fμν) = 36γμνγ

μν + 6Tr(Qμν Qμν).

http://dx.doi.org/10.1007/978-94-017-9162-5_8
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For the quark sector, on Hq , we obtain the curvature

Fμν

∣∣
Hq

=


⎧
4
3γμνI3 + Vμν 0

0 − 2
3γμνI3 + Vμν

(Qμν + 1
3γμνI2) ◦ I3 + I2 ◦ Vμν

⎨

 ,

where we have defined the curvature of the SU (3) gauge field by

Vμν := ∂μVν − ∂ν Vμ + i[Vμ, Vν].

A similar expression can be derived on Hq̄ .
If we calculate the trace of the square of the curvature Fμν , the cross-terms again

vanish, so we obtain

Tr|Hq
(Fμν Fμν) =

⎛
16

3
+ 4

3
+ 1

3
+ 1

3

⎜
γμνγ

μν

+ 3Tr(Qμν Qμν) + 4Tr(Vμν V μν).

We multiply this by a factor of 2 to include the trace over the anti-quarks, and by
a factor of 3 for the number of generations. Adding the result to the trace over the
lepton sector, we finally obtain

Tr(Fμν Fμν) = 80γμνγ
μν + 24Tr(Qμν Qμν) + 24Tr(Vμν V μν). 
⊗

Lemma 11.7 The traces of ψ2 and ψ4 are given by

Tr
⎟
ψ2⎠ = 4a|H |2 + 2c,

Tr
⎟
ψ4⎠ = 4b|H |4 + 8e|H |2 + 2d,

where H denotes the complex doublet (φ1 + 1,φ2) and

a = Tr
⎟
Y ≤

ν Yν + Y ≤
e Ye + 3Y ≤

u Yu + 3Y ≤
d Yd

⎠
,

b = Tr
⎟
(Y ≤

ν Yν)
2 + (Y ≤

e Ye)
2 + 3(Y ≤

u Yu)2 + 3(Y ≤
d Yd)2

⎠
,

c = Tr
⎟
Y ≤

RYR
⎠
, (11.3.2)

d = Tr
⎟
(Y ≤

RYR)2
⎠
,

e = Tr
⎟
Y ≤

RYRY ≤
ν Yν

⎠
.

Proof The field ψ is given by (11.2.3), and its square equals

ψ2 =
(

(S + φ)2 + T ≤T (S + φ)T ≤ + T ≤(S + φ)

T (S + φ) + (S + φ)T (S + φ)
2 + T T ≤

)
.
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The square of the off-diagonal part yields T ≤T = T T ≤ = |YR |2 on νR and νR , and
zero on l ∼= νR, νR . On the lepton sector of the Hilbert space, the component S + φ
is given by

S + φ|Hl =
⎛

0 Y ≤ + Y ≤
0

Y + Y0 0

⎜
.

We then calculate

X := (Y + Y0)
≤(Y + Y0) = |H |2

⎛|Yν |2 0
0 |Ye|2

⎜
,

where we defined the complex doublet H := (φ1 + 1,φ2). Similarly, we define
X′ := (Y + Y0)(Y + Y0)

≤, and note that Tr(X) = Tr(X′) by the cyclic property of
the trace. Since X = X≤ and Tr(X) = Tr(XT ), we also have Tr(X̄) = Tr(X). Thus,
on the lepton sector we obtain

TrHl∗Hl̄

⎟
ψ2⎠ = Tr(X + X′ + X̄ + X̄′) + 2|YR |2

= 4Tr(X) + 2|YR |2 = 4(|Yν |2 + |Ye|2)|H |2 + 2|YR |2.

On the quark sector we similarly find

TrHq∗Hq̄

⎟
ψ2⎠ = 4 · 3(|Yν |2 + |Ye|2)|H |2,

leading to the stated formula for Tr(ψ2).
In order to find the trace of ψ4, we calculate

(X + T ≤T )2 = |H |4
⎛|Yν |4 0

0 |Ye|4
⎜

+ 2|H |2
⎛|YR |2|Yν |2 0

0 0

⎜
+

⎛|YR |4 0
0 0

⎜
.

We hence obtain

TrHl∗Hl̄

⎟
ψ4⎠ = Tr

⎟
4X2 + 4XT ≤T + 2(T ≤T )2

⎠ + 4|H |2|YR |2|Yν |2
= 4|H |4⎟|Yν |4 + |Ye|4

⎠ + 8|H |2|YR |2|Yν |2 + 2|YR |4.

On the quark sector, we obtain a similar result with Yν replaced by Yu and Ye by Yd ,
leaving out the YR , and including a factor of 3 for the trace in colour space. 
⊗
Lemma 11.8 The trace of (Dμψ)(Dμψ) is given by

Tr
⎟
(Dμψ)(Dμψ)

⎠ = 4a|Dμ H |2,

where H denotes the complex doublet (φ1 + 1,φ2), and the covariant derivative Dμ

on H is defined as
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DμH = ∂μH + i Qa
μσa H − iγμH.

Proof We need to calculate the commutator [Bμ,ψ]. We note that Bμ commutes
with the off-diagonal part of DF . It is therefore sufficient to calculate the commu-
tator [Bμ, S + φ] on Hl . We shall write Qμ = Q1

μσ1 + Q2
μσ2 + Q3

μσ3 as a linear
combination of Pauli matrices with real coefficients Qa

μ. By direct calculation on the
lepton sector, we then obtain

[Bμ, S + φ]|Hl =



⎡⎡⎧

0 0 −Ȳνχ̄1 −Ȳνχ̄2

0 0 −Ȳeχ2 Ȳeχ1
Yνχ1 Yeχ̄2 0 0
Yνχ2 −Yeχ̄1 0 0

⎨

⎩⎩ ,

where we defined the new doublet χ = (χ1,χ2) by

χ1 := (φ1 + 1)(Q3
μ − γμ) + φ2(Q1

μ − i Q2
μ),

χ2 := (φ1 + 1)(Q1
μ + i Q2

μ) + φ2(−Q3
μ − γμ).

We then obtain

Dμ(S + φ)|Hl = ∂μφ + i[Bμ, S + φ]

=



⎡⎡⎧

0 0 Ȳν(∂μφ̄1 − i χ̄1) Ȳν(∂μφ̄2 − i χ̄2)

0 0 −Ȳe(∂μφ2 + iχ2) Ȳe(∂μφ1 + iχ1)

Yν(∂μφ1 + iχ1) −Ye(∂μφ̄2 − i χ̄2) 0 0
Yν(∂μφ2 + iχ2) Ye(∂μφ̄1 − i χ̄1) 0 0

⎨

⎩⎩ .

As φ commutes with the gauge field Vμ, the corresponding formula for Dμ(S + φ)

on the quark sector is identical (after having tensored with I3 in colour space).
Since we want to calculate the trace of the square of Dμψ, it is sufficient to

determine only the terms on the diagonal of (Dμψ)(Dμψ). We find

TrHl∗Hq

(
(Dμ(S + φ))(Dμ(S + φ))

)
= 2a

(
|∂μφ1 + iχ1|2 + |∂μφ2 + iχ2|2

)
,

where we have used

a = Tr
⎟
Y ≤

ν Yν + Y ≤
e Ye + 3Y ≤

u Yu + 3Y ≤
d Yd

⎠

as in (11.3.2). The column vector H is given by the complex doublet (φ1 + 1,φ2).
We then note that ∂μφ + iχ is equal to the covariant derivative DμH , so that

TrHl∗Hq

(
(Dμ(S + φ))(Dμ(S + φ))

)
= 2a|DμH |2.
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The trace over Hl̄ ∗ Hq̄ yields exactly the same contribution, so we need to multiply
this by 2, which gives the desired result. 
⊗
Proposition 11.9 The spectral action of the almost-commutative manifold M × FSM

is given by

Tr

⎛
f
( Dω

γ

)⎜
≡

∫

M
L(gμν,γμ, Qμ, Vμ, H)

∞
gd4x + O(γ−1),

for the Lagrangian

L(gμν , γμ, Qμ, Vμ, H) := 96LM (gμν) + LA(γμ, Qμ, Vμ) + LH (gμν , γμ, Qμ, H),

where LM (gμν) is defined in Proposition 8.10, LA gives the kinetic terms of the
gauge fields as

LA(γμ, Qμ, Vμ) := f (0)

π2

(10
3

γμνγ
μν + Tr(Qμν Qμν) + Tr(Vμν V μν)

)
,

and the Higgs potential LH (ignoring the boundary term) equals

LH (gμν , γμ, Qμ, H) := b f (0)

2π2
|H |4 + −2a f2γ

2 + e f (0)

π2
|H |2

− c f2γ
2

π2
+ d f (0)

4π2
+ a f (0)

12π2
s|H |2 + c f (0)

24π2
s + a f (0)

2π2
|DμH |2.

Proof We use the general form of the spectral action of an almost-commutative
manifold as calculated in Proposition 8.12, and combine itwith the previousLemmas.
The gravitational Lagrangian LM obtains a factor 96 from the trace over HF . From
Lemma 11.6 we immediately find the term LA. Combining the formulas of Tr

⎟
ψ2

⎠

and Tr
⎟
ψ4

⎠
obtained in Lemma 11.7, we find the Higgs potential

− f2γ2

2π2 Tr(ψ2) + f (0)

8π2 Tr(ψ4)

= b f (0)

2π2 |H |4 + −2a f2γ2 + e f (0)

π2 |H |2 − c f2γ2

π2 + d f (0)

4π2 .

The coupling of the Higgs field to the scalar curvature s is given by

f (0)

48π2 sTr(ψ2) = a f (0)

12π2 s|H |2 + c f (0)

24π2 s,

where the second term yields a contribution to the Einstein-Hilbert term − f2γ2

3π2 s of
LM . Finally, the kinetic term of the Higgs field including minimal coupling to the
gauge fields is obtained from Lemma 11.8 as

http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_8
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f (0)

8π2 Tr
⎟
(Dμψ)(Dμψ)

⎠ = a f (0)

2π2 |DμH |2. 
⊗

11.3.1 Coupling Constants and Unification

In Proposition 11.9 we calculated the bosonic Lagrangian from the spectral action.
We now rescale the Higgs and gauge fields γμ, Qμ, Vμ in such a way that their
kinetic terms are properly normalized.

We start with the Higgs field, and require that its kinetic term is normalized as
usual, i.e.,

∫

M

1

2
|DμH |2∞gd4x .

This normalization is evidently achieved by rescaling the Higgs field as

H �→
√

π2

a f (0)
H. (11.3.3)

Next, write the non-abelian gauge fields as Qμ = Qa
μσa and Vμ = V i

μλi , for the
Gell-Mann matrices λi and real coefficients V i

μ. We introduce coupling constants
g1, g2 and g3 into the model by rescaling the gauge fields as

γμ = 1

2
g1Yμ, Qa

μ = 1

2
g2W a

μ , V i
μ = 1

2
g3Gi

μ.

Using the relations Tr(σaσb) = 2δab and Tr(λiλ j ) = 2δi j , we now find that the
Lagrangian LA of Proposition 11.9 can be written as

LA(Yμ, Wμ, Gμ) = f (0)

2π2

(5
3
g1

2YμνY μν + g2
2WμνW μν + g3

2GμνGμν
)
.

It is natural to require that these kinetic terms are properly normalized, and this
imposes the relations

f (0)

2π2 g3
2 = f (0)

2π2 g2
2 = 5 f (0)

6π2 g1
2 = 1

4
. (11.3.4)

The coupling constants are then related by

g3
2 = g2

2 = 5

3
g1

2,
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which is precisely the relation between the coupling constants at unification, common
to grand unified theories (GUT). We shall further discuss this in Sect. 12.2.

In terms of the rescaled fields, we obtain the following result:

Theorem 11.10 The spectral action (ignoring topological and boundary terms) of
the almost-commutative manifold M × FSM is given by

SB =
∫

M

⎛
48 f4γ4

π2 − c f2γ2

π2 + d f (0)

4π2 +
⎛

c f (0)

24π2 − 4 f2γ2

π2

⎜
s − 3 f (0)

10π2 (Cμνρσ)2

+ 1

4
YμνY μν + 1

4
W a

μνW μν,a + 1

4
Gi

μνGμν,i + bπ2

2a2 f (0)
|H |4

− 2a f2γ2 − e f (0)

a f (0)
|H |2 + 1

12
s|H |2 + 1

2
|DμH |2

⎜∞
gd4x,

where the covariant derivative DμH is given by

DμH = ∂μH + 1

2
ig2W a

μσa H − 1

2
ig1Yμ H. (11.3.5)

11.3.2 The Higgs Mechanism

Writing down a gauge theory with massive gauge bosons, one encounters the noto-
rious difficulty that the mass terms of these gauge bosons are not gauge invariant.
The Higgs field plays a central role in obtaining these mass terms within a gauge
theory. The celebrated Higgs mechanism provides a spontaneous breaking of the
gauge symmetry and thus generates mass terms. In this section we describe how the
Higgs mechanism breaks the U (1) × SU (2) symmetry and introduces mass terms
for some of the gauge bosons of the Standard Model.

In Theorem 11.10 we obtained the Higgs LagrangianLH . If we drop all the terms
that are independent of the Higgs field H , and also ignore the coupling of the Higgs
to the gravitational field, we obtain the Lagrangian

L(gμν, Yμ, W a
μ , H) := bπ2

2a2 f (0)
|H |4 − 2a f2γ2 − e f (0)

a f (0)
|H |2 + 1

2
|DμH |2.

(11.3.6)

We wish to find the value of H for which this Lagrangian obtains its minimum value.
Hence, we consider the Higgs potential

Lpot(H) := bπ2

2a2 f (0)
|H |4 − 2a f2γ2 − e f (0)

a f (0)
|H |2. (11.3.7)

http://dx.doi.org/10.1007/978-94-017-9162-5_12
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Fig. 11.3 The potential
Lpot (H) of (11.3.7) with
2a f2γ2 > e f (0)

If 2a f2γ2 < e f (0), the minimum of this potential is obtained at H = 0, and in this
case there will be no symmetry breaking. Indeed, the minimum H = 0 is symmetric
under the full symmetry group U (1) × SU (2).

We now assume that 2a f2γ2 > e f (0), so that the potential has the form depicted
in Fig. 11.3. The minimum of the Higgs potential is then reached if the field H
satisfies

|H |2 = 2a2 f2γ2 − ae f (0)

bπ2 , (11.3.8)

and none such minimum is invariant any more under U (1) × SU (2). The fields that
satisfy this relation are called the vacuum states of the Higgs field. We choose a
vacuum state (v, 0), where the vacuum expectation value v is a real parameter such
that v2 is given by the right-hand side of (11.3.8). From the transformation rule
of Proposition 11.5, we see that the vacuum state (v, 0) is still invariant under a
subgroup of U (1) × SU (2). This subgroup is isomorphic to U (1) and is given by

⎝⎛
λ, qλ =

⎛
λ 0
0 λ̄

⎜⎜
: λ ⊕ U (1)

⎞
⊂ U (1) × SU (2).

Let us simplify the expression for the Higgs potential. First, we note that the
potential only depends on the absolute value |H |. A transformation of the doublet
H by an element (λ, q) ⊕ U (1) × SU (2) is written as H �→ u H with u = λ̄q a
unitary matrix. Since a unitary transformation preserves absolute values, we see that
Lpot(u H) = Lpot(H) for any u ⊕ U (1) × SU (2). We can use this gauge freedom
to transform the Higgs field into a simpler form. Consider elements of SU (2) of the
form ⎛

α −β̄
β ᾱ

⎜
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such that |α|2 + |β|2 = 1. The doublet H can in general be written as (h1, h2), for
some h1, h2 ⊕ C. We then see that we may write

⎛
h1
h2

⎜
=

⎛
α −β̄
β ᾱ

⎜ ⎛ |H |
0

⎜
, α = h1

|H | , β = h2

|H | ,

which means that we may always use the gauge freedom to write the doublet H
in terms of one real parameter. Let us define a new real-valued field h by setting
h(x) := |H(x)| − v. We then obtain

H = u(x)

⎛
v + h(x)

0

⎜
, u(x) :=

⎛
α(x) − ¯β(x)

β(x) ¯α(x)

⎜
. (11.3.9)

Inserting this transformed Higgs field into the Higgs potential, we obtain the follow-
ing expression in terms of the real parameter v and the real field h(x):

Lpot(h) = b f (0)

2π2 (v + h)4 − 2a f2γ2 − e f (0)

π2 (v + h)2

= bπ2

2a2 f (0)
(h4 + 4vh3 + 6v2h2 + 4v3h + v4)

− 2a f2γ2 − e f (0)

a f (0)
(h2 + 2vh + v2).

Using (11.3.8), the value of v2 is given by

v2 = 2a2 f2γ2 − ae f (0)

bπ2 .

We then see that inLpot the terms linear in h cancel out. This is of course no surprise,
since the change of variables |H(x)| �→ v + h(x) means that at h(x) = 0 we are at
the minimum of the potential, where the first order derivative of the potential with
respect to h must vanish. We thus obtain the simplified expression

Lpot(h) = bπ2

2a2 f (0)

(
h4 + 4vh3 + 4v2h2 − v4

)
. (11.3.10)

We now observe that the field h(x) has acquired a mass term and has two self-
interactions given by h3 and h4. We also have another contribution to the cosmolog-
ical constant, given by −v4.
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11.3.2.1 Massive Gauge Bosons

Next, let us consider what this procedure entails for the remainder of the Higgs
Lagrangian LH . We first consider the kinetic term of H , including its minimal cou-
pling to the gauge fields, given by

Lmin(Yμ, W a
μ , H) := 1

2
|DμH |2.

The transformation of (11.3.9) is a gauge transformation, and to make sure thatLmin
is invariant under this transformation, we also need to transform the gauge fields. The
field Yμ is unaffected by the local SU (2)-transformation u(x). The transformation
of Wμ = W a

μσa is obtained from Proposition 11.5 and is given by

Wμ → uWμu≤ − 2i

g2
u∂μu≤.

One then easily checks that we obtain the transformation DμH �→ u DμH , so that
|DμH |2 is invariant under such transformations. So we can just insert the doublet
(v + h, 0) into (11.3.5) and obtain

DμH = ∂μ

⎛
v + h
0

⎜
+ 1

2
ig2W a

μσa
⎛

v + h
0

⎜
− 1

2
ig1Yμ

⎛
v + h
0

⎜

= ∂μ

⎛
h
0

⎜
+ 1

2
ig2W 1

μ

⎛
0

v + h

⎜
+ 1

2
ig2W 2

μ

⎛
0

i(v + h)

⎜

+ 1

2
ig2W 3

μ

⎛
v + h
0

⎜
− 1

2
ig1Yμ

⎛
v + h
0

⎜
.

We can then calculate its square as

|DμH |2 = (DμH)≤(DμH)

= (∂μh)(∂μh) + 1

4
g2

2(v + h)2(W μ,1W 1
μ + W μ,2W 2

μ + W μ,3W 3
μ)

+ 1

4
g1

2(v + h)2B
′μYμ − 1

2
g1g2(v + h)2B

′μW 3
μ .

Note that the last term yields a mixing of the gauge fields Yμ and W 3
μ , parametrized

by the electroweak mixing angle θw defined by

cw := cos θw = g2√
g12 + g22

, sw := sin θw = g1√
g12 + g22

.
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Note that the relation g2
2 = 3g12 for the coupling constants implies that we obtain

the values cos2 θw = 1
4 and sin2 θw = 3

4 at the electroweak unification scale γEW .
Let us now define new gauge fields by

Wμ := 1∞
2
(W 1

μ + iW 2
μ), W ≤

μ := 1∞
2
(W 1

μ − iW 2
μ),

Zμ := cwW 3
μ − swYμ, A′

μ := swW 3
μ + cwYμ, (11.3.11)

where we have added a prime to Aμ to distinguish the (photon) field from the general
form of the inner fluctuations in Eq. (8.2.1). We now show that the new fields Zμ and
A′

μ become mass eigenstates. The fields W 1
μ and W 2

μ were already mass eigenstates,
but the fields Wμ and W ≤

μ are chosen so that they obtain a definite charge. We can
write

W 1
μ = 1∞

2
(Wμ + W ≤

μ ), W 2
μ = −i∞

2
(Wμ − W ≤

μ ),

W 3
μ = sw A′

μ + cw Zμ, Yμ = cw A′
μ − sw Zμ,

and inserting this into the expression for |DμH |2 yields

1

2
|DμH |2 = 1

2
(∂μh)(∂μh) + 1

4
g2

2(v + h)2W μ≤Wμ + 1

8

g2
2

cw
2 (v + h)2ZμZμ.

(11.3.12)

Thus, we see that the fields Wμ, W ≤
μ and Zμ acquire a mass term (where Zμ has a

larger mass than Wμ, W ≤
μ ) and that the fields A′

μ aremassless. The (tree-level) masses
of the W -boson and Z -boson are evidently given by

MW = 1

2
vg2, MZ = 1

2
v

g2

cw

. (11.3.13)

11.4 The Fermionic Action

In order to obtain the full Lagrangian for the Standard Model, we also need to
calculate the fermionic action S f of Definition 7.3. First, let us have a closer look at
the fermionic particle fields and their interactions.

By an abuse of notation, let us write νλ, νλ, eλ, eλ, uλc, uλc, dλc, d
λc

for a set of
independent Dirac spinors. We then write a generic Grassmann vector ξ̃ ⊕ H+

cl as
follows:

http://dx.doi.org/10.1007/978-94-017-9162-5_8
http://dx.doi.org/10.1007/978-94-017-9162-5_7
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ξ̃ = νλ
L ◦ νλ

L + νλ
R ◦ νλ

R + νλ
R ◦ νλ

L + νλ
L ◦ νλ

R

+ eλ
L ◦ eλ

L + eλ
R ◦ eλ

R + eλ
R ◦ eλ

L + eλ
L ◦ eλ

R

+ uλc
L ◦ uλc

L + uλc
R ◦ uλc

R + uλc
R ◦ uλc

L + uλc
L ◦ uλc

R

+ dλc
L ◦ dλc

L + dλc
R ◦ dλc

R + d
λc
R ◦ dλc

L + d
λc
L ◦ dλc

R ,

where in each tensor product it should be clear that the first component is a Weyl
spinor, and the second component is a basis element of HF . Here λ = 1, 2, 3 labels
the generation of the fermions, and c = r, g, b labels the color index of the quarks.

Let us have a closer look at the gauge fields of the electroweak sector. For the
physical gauge fields of (11.3.11) we can write

Q1
μ + i Q2

μ = 1∞
2
g2Wμ, Q1

μ − i Q2
μ = 1∞

2
g2W ≤

μ ,

Q3
μ − γμ = g2

2cw

Zμ, γμ = 1

2
swg2A′

μ − 1

2

sw
2g2

cw

Zμ,

−Q3
μ − γμ = −swg2A′

μ + g2

2cw

(1 − 2cw
2)Zμ,

Q3
μ + 1

3
γμ = 2

3
swg2A′

μ − g2

6cw

(1 − 4cw
2)Zμ, (11.4.1)

−Q3
μ + 1

3
γμ = −1

3
swg2A′

μ − g2

6cw

(1 + 2cw
2)Zμ.

Here we have rescaled the Higgs field in (11.3.3), so we can write H =∞
a f (0)
π (φ1 + 1,φ2). We parametrize the Higgs field as

H = (v + h + iφ0, i
∞
2φ−),

where φ0 is real and φ− is complex. We write φ+ for the complex conjugate of φ−.
Thus, we can write

(φ1 + 1,φ2) = π∞
a f (0)

(v + h + iφ0, i
∞
2φ−). (11.4.2)

As inRemark 9.8, wewill need to impose a further restriction on themassmatrices
in DF , in order to obtain physical mass terms in the fermionic action. From here on,
we will require that the matrices Yx are anti-hermitian, for x = ν, e, u, d. We then
define the hermitian mass matrices mx by writing

Yx =: −i

∞
a f (0)

πv
mx . (11.4.3)

http://dx.doi.org/10.1007/978-94-017-9162-5_9
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Similarly, we also take YR to be anti-hermitian, and we introduce a hermitian (and
symmetric) Majorana mass matrix m R by writing

YR = −i m R . (11.4.4)

Theorem 11.11 The fermionic action of the almost-commutative manifold M × FSM

is given by

SF =
∫

M

⎟Lkin + Lg f + LH f + LR
⎠∞

gd4x,

where, suppressing all generation and color indices, the kinetic terms of the fermions
are given by

Lkin := − i⇐JM ν̄, γμ⇒S
μν⊂ − i⇐JM ē, γμ⇒S

μe⊂
− i⇐JM ū, γμ⇒S

μu⊂ − i⇐JM d̄, γμ⇒S
μd⊂,

the minimal coupling of the gauge fields to the fermions is given by

Lg f := swg2A′
μ

(
− ⇐JM ē, γμe⊂ + 2

3 ⇐JM ū, γμu⊂ − 1
3 ⇐JM d̄, γμd⊂

)

+ g2

4cw

Zμ

(
⇐JM ν̄, γμ(1 + γM )ν⊂ + ⇐JM ē, γμ(4sw

2 − 1 − γM )e⊂
+ ⇐JM ū, γμ(− 8

3 sw
2 + 1 + γM )u⊂

+ ⇐JM d̄, γμ( 43 sw
2 − 1 − γM )d⊂

)

+ g2

2
∞
2

Wμ

(
⇐JM ē, γμ(1 + γM )ν⊂ + ⇐JM d̄, γμ(1 + γM )u⊂

)

+ g2

2
∞
2

W ≤
μ

(
⇐JM ν̄, γμ(1 + γM )e⊂ + ⇐JM ū, γμ(1 + γM )d⊂

)

+ g3

2
Gi

μ

(
⇐JM ū, γμλi u⊂ + ⇐JM d̄, γμλi d⊂

)
,

the Yukawa couplings of the Higgs field to the fermions are given by

LH f := i

⎛
1 + h

v

⎜(
⇐JM ν̄, mνν⊂ + ⇐JM ē, mee⊂

+ ⇐JM ū, muu⊂ + ⇐JM d̄, mdd⊂
)

+ φ0

v

(
⇐JM ν̄, γM mνν⊂ − ⇐JM ē, γM mee⊂
+ ⇐JM ū, γM muu⊂ − ⇐JM d̄, γM mdd⊂

)
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+ φ−
∞
2v

(
⇐JM ē, me(1 + γM )ν⊂ − ⇐JM ē, mν(1 − γM )ν⊂

)

+ φ+
∞
2v

(
⇐JM ν̄, mν(1 + γM )e⊂ − ⇐JM ν̄, me(1 − γM )e⊂

)

+ φ−
∞
2v

(
⇐JM d̄, md(1 + γM )u⊂ − ⇐JM d̄, mu(1 − γM )u⊂

)

+ φ+
∞
2v

(
⇐JM ū, mu(1 + γM )d⊂ − ⇐JM ū, md(1 − γM )d⊂

)
,

and, finally, the Majorana masses of the right-handed neutrinos (and left-handed
anti-neutrinos) are given by

LR := i⇐JMνR, m RνR⊂ + i⇐JM ν̄L , m R ν̄L⊂.

Proof The proof is similar to Proposition 9.7, though the calculations are now a little
more complicated. From Definition 7.3 we know that the fermionic action is given
by SF = 1

2 (J ξ̃, Dωξ̃), where the fluctuated Dirac operator is given by

Dω = DM ◦ 1 + γμ ◦ Bμ + γM ◦ ψ.

We rewrite the inner product on H as (ξ,ψ) = ∫
M ⇐ξ,ψ⊂∞gd4x . As in Proposition

9.7, the expressions for J ξ̃ = (JM ◦ JF )ξ̃ and (DM ◦ 1)ξ̃ are obtained straight-
forwardly. Using the symmetry of the form (JM χ̃, DM ψ̃), and then we obtain the
kinetic terms as

1

2
⇐J ξ̃, (DM ◦ 1)ξ̃⊂ = ⇐JM ν̄λ, DMνλ⊂ + ⇐JM ēλ, DM eλ⊂

+ ⇐JM ūλc, DM uλc⊂ + ⇐JM d̄λc, DM dλc⊂.

The other two terms in the fluctuated Dirac operator yield more complicated expres-
sions. For the calculation of (γμ ◦ Bμ)ξ̃, we use (11.2.1) for the gauge field Bμ, and
insert the expressions of (11.4.1). As in Proposition 9.7, we then use the antisym-
metry of the form (JM χ̃, γμψ̃). For the coupling of the fermions to the gauge fields,
a direct calculation then yields

1

2
⇐J ξ̃, (γμ ◦ Bμ)ξ̃⊂

= swg2A′
μ

(
− ⇐JM ēλ, γμeλ⊂ + 2

3 ⇐JM ūλc, γμuλc⊂ − 1
3 ⇐JM d̄λc, γμdλc⊂

)

+ g2

4cw

Zμ

(
⇐JM ν̄λ, γμ(1 + γM )νλ⊂ + ⇐JM ēλ, γμ(4sw

2 − 1 − γM )eλ⊂
+ ⇐JM ūλc, γμ(− 8

3 sw
2 + 1 + γM )uλc⊂

+ ⇐JM d̄λc, γμ( 43 sw
2 − 1 − γM )dλc⊂

)

http://dx.doi.org/10.1007/978-94-017-9162-5_9
http://dx.doi.org/10.1007/978-94-017-9162-5_7
http://dx.doi.org/10.1007/978-94-017-9162-5_9
http://dx.doi.org/10.1007/978-94-017-9162-5_9
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+ g2

2
∞
2

Wμ

(
⇐JM ēλ, γμ(1 + γM )νλ⊂ + ⇐JM d̄λc, γμ(1 + γM )uλc⊂

)

+ g2

2
∞
2

W ≤
μ

(
⇐JM ν̄λ, γμ(1 + γM )eλ⊂ + ⇐JM ūλc, γμ(1 + γM )dλc⊂

)

+ g3

2
Gi

μλdc
i

(
⇐JM ūλd , γμuλc⊂ + ⇐JM d̄λd , γμdλc⊂

)
,

where in the weak interactions the projection operator 1
2 (1 + γM ) is used to select

only the left-handed spinors.
Next, we need to calculate 1

2 (J ξ̃, (γM ◦ ψ)ξ̃). The Higgs field is given by ψ =
DF + φ + JFφJ ≤

F , where φ is given by (11.2.2). Let us first focus on the four terms
involving only the Yukawa couplings for the neutrinos. Using the symmetry of the
form (JM χ̃, γM ψ̃), we obtain

1

2
⇐JM ν̄κ

R, γM Y κλ
ν (φ1 + 1)νλ

R⊂ + 1

2
⇐JMνκ

R, γM Y λκ
ν (φ1 + 1)ν̄λ

R⊂

+ 1

2
⇐JM ν̄κ

L , γM Ȳ λκ
ν (φ̄1 + 1)νλ

L⊂ + 1

2
⇐JMνκ

L , γM Ȳ κλ
ν (φ̄1 + 1)ν̄λ

L⊂
= ⇐JM ν̄κ

R, γM Y κλ
ν (φ1 + 1)νλ

R⊂ + ⇐JM ν̄κ
L , γM Ȳ λκ

ν (φ̄1 + 1)νλ
L⊂.

Using (11.4.2) and (11.4.3), and dropping the generation labels, we can now rewrite

⇐JM ν̄R, γM Yν(φ1 + 1)νR⊂ + ⇐JM ν̄L , γM Ȳν(φ̄1 + 1)νL⊂

= i

⎛
1 + h

v

⎜
⇐JM ν̄, mνν⊂ − φ0

v
⇐JM ν̄, γM mνν⊂.

For e, u, d we obtain similar terms, the only difference being that for e and d the
sign for φ0 is changed. We also find terms that mix neutrino’s and electrons; by the
symmetry of the form (JM χ̃, γM ψ̃), these are given by the four terms

∞
2

v

(
φ−⇐JM ēL , meνL⊂ + φ+⇐JM ν̄L , mνeL⊂

− φ−⇐JM ēR, mννR⊂ − φ+⇐JM ν̄R, meeR⊂
)
.

There are four similar terms with ν and e replaced by u and d, respectively. We
can use the projection operators 1

2 (1 ± γM ) to select left- or right-handed spinors.
Lastly, the off-diagonal part T in the finite Dirac operator DF yields the Majorana
mass terms for the right-handed neutrinos (and left-handed anti-neutrinos). Using
(11.4.4), these Majorana mass terms are given by

⇐JMνR, γM YRνR⊂ + ⇐JM ν̄L , γM ȲR ν̄L⊂ = i⇐JMνR, m RνR⊂ + i⇐JM ν̄L , m R ν̄L⊂.

Thus, we find that the mass terms of the fermions and their couplings to the Higgs
field are given by
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1

2
⇐J ξ̃, (γM ◦ ψ)ξ̃⊂

= i

⎛
1 + h

v

⎜ (
⇐JM ν̄, mνν⊂ + ⇐JM ē, mee⊂ + ⇐JM ū, muu⊂ + ⇐JM d̄, mdd⊂

)

+ φ0

v

(
⇐JM ν̄, γM mνν⊂ − ⇐JM ē, γM mee⊂ + ⇐JM ū, γM muu⊂ − ⇐JM d̄, γM mdd⊂

)

+ φ−
∞
2v

(
⇐JM ē, me(1 + γM )ν⊂ − ⇐JM ē, mν(1 − γM )ν⊂

)

+ φ+
∞
2v

(
⇐JM ν̄, mν(1 + γM )e⊂ − ⇐JM ν̄, me(1 − γM )e⊂

)

+ φ−
∞
2v

(
⇐JM d̄, md(1 + γM )u⊂ − ⇐JM d̄, mu(1 − γM )u⊂

)

+ φ+
∞
2v

(
⇐JM ū, mu(1 + γM )d⊂ − ⇐JM ū, md(1 − γM )d⊂

)

+ i⇐JMνR, m RνR⊂ + i⇐JM ν̄L , m R ν̄L⊂,

where we have suppressed all indices. 
⊗
In Theorems 11.10 and 11.11 we have calculated the action functional of Defi-

nitions 7.1 and 7.3 for the almost-commutative manifold M × FSM defined in this
Chapter. To summarize, we have geometrically derived:

(1) The full particle contents of the Standard Model, to wit,

• the W , Z bosons, photons, and gluons, corresponding to the U (1)× SU (2)×
SU (3) Standard Model gauge group.

• the Higgs boson.
• three generations of left and right-handed leptons and quarks.

(2) The dynamics and all interactions of the Standard Model, including

• self-interactions of the gauge bosons, and coupling to fermions
• masses for the fermions, including masses for the neutrinos, and coupling to
the Higgs field

• Higgs spontaneous symmetry breaking mechanism, giving masses to the W
and Z boson, and also to the Higgs boson itself.

(3) Minimal coupling to gravity.

In addition to the usual Standard Model, there are relations between the coupling
constants in the Lagrangian of Theorem 11.10. In the next Chapter, we will analyze
this in more detail and derive physical predictions from these relations.

http://dx.doi.org/10.1007/978-94-017-9162-5_7
http://dx.doi.org/10.1007/978-94-017-9162-5_7
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Notes

1. For an exposition of the Standard Model of particle physics, we refer to [1, 2].

Section 11.1 The Finite Space

2. The first description of the finite space FSM yielding the StandardModel (without
right-handed neutrinos though) was given by Connes in [3], based on [4, 5] (see
also the review [6]). As already mentioned in the Notes to Chap. 7, the spectral
action principlewas formulated in [7, 8]where it was also applied to the Standard
Model. Extensive computations on this model can be found in [9].
In [10] the noncommutative geometric formulation of the Standard Model got
in good shape, mainly because of the choice for the finite space to be of KO-
dimension 6 [11, 12]. This solved the problem of fermion doubling pointed out
in [13] (see also the discussion in [14, Chap. 1, Sect. 16.3]), and at the same time
allowed for the introduction of Majorana masses for right-handed neutrinos,
along with the seesaw mechanism. Here, we follow [15].
The derivation of theStandardModel algebra AF from the list of finite irreducible
geometries of Sect. 3.4 was first obtained in [16], This includes Proposition 11.1
of which we here give an alternative, diagrammatic proof.
The moduli space of Dirac operators DF of the form (11.1.2) was analyzed in
[10, Sect. 2.7] ( cf. [14, Sect. 1.13.5]) and in [17].

Section 11.2 The Gauge Theory

3. The condition of unimodularity was imposed in the context of the Standard
Model in [10, Sect. 2.5] (see also [14, Chap. 1, Sect. 13.3]). The derivation
of the hypercharges from the unimodularity condition is closely related to the
equivalence between unimodularity in the almost-commutative Standard Model
and anomaly cancellation for the usual Standard Model [18].

4. Proposition 11.4 agrees with [10, Proposition 2.16] (see also [14, Proposition
1.185]). For the derivation of the Standard Model gauge groupGSM , we refer to
[19].

Section 11.3 The Spectral Action

5. The coefficients a, b, c, d and e in Lemma 11.7 agree with those appearing in
[10] (see also [14, Chap. 1, Sect. 15.2]).

6. The Higgs mechanism is attributed to Englert, Brout and Higgs [20, 21].
7. The form of the Higgs field in (11.3.9) that is obtained after a suitable change of

basis is called unitary gauge and was introduced by Weinberg in [22, 23] (see
also [24, Chap.21]).

http://dx.doi.org/10.1007/978-94-017-9162-5_7
http://dx.doi.org/10.1007/978-94-017-9162-5_3


212 11 The Noncommutative Geometry of the Standard Model

References

1. Cottingham, W.N., Greenwood, D.A.: An Introduction to the Standard Model of Particle
Physics, 2nd edn. Cambridge University Press, Cambridge (2007)

2. Kane, G.L.: Modern Elementary Particle Physics. Perseus, Cambridge (1993)
3. Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry.

Commun. Math. Phys. 182, 155–176 (1996)
4. Connes, A.: Essay on physics and noncommutative geometry. In: The Interface of Mathemat-

ics and Particle Physics (Oxford, 1988), The Institute of Mathematics and its Applications
Conference Series, vol. 24, pp. 9–48. Oxford University Press, New York (1990)

5. Connes, A., Lott, J.: Particle models and noncommutative geometry. Nucl. Phys. Proc. Suppl.
18B, 29–47 (1991)

6. Martín, C.P., Gracia-Bondía, J.M., Várilly, J.C.: The standard model as a noncommutative
geometry: the low-energy regime. Phys. Rep. 294, 363–406 (1998)

7. Chamseddine, A.H., Connes, A.: Universal formula for noncommutative geometry actions:
unifications of gravity and the standard model. Phys. Rev. Lett. 77, 4868–4871 (1996)

8. Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186,
731–750 (1997)

9. Scheck, F., Upmeier, H., Werner, W. (eds.): Noncommutative geometry and the standard
model of elementary particle physics. Lecture Notes in Physics, vol. 596. Springer, Berlin
(2002) (Papers from the conference held in Hesselberg, March 14–19, 1999)

10. Chamseddine, A.H., Connes, A., Marcolli, M.: Gravity and the standard model with neutrino
mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)

11. Barrett, J.W.: A Lorentzian version of the non-commutative geometry of the standard model
of particle physics. J. Math. Phys. 48, 012303 (2007)

12. Connes, A.: Noncommutative geometry and the standard model with neutrino mixing. JHEP
0611, 081 (2006)

13. Lizzi, F., Mangano, G., Miele, G., Sparano, G.: Fermion Hilbert space and fermion doubling
in the noncommutative geometry approach to gauge theories. Phys. Rev. D55, 6357–6366
(1997)

14. Connes, A., Marcolli, M.: Noncommutative Geometry. Quantum Fields and Motives. AMS,
Providence (2008)

15. van den Dungen, K., van Suijlekom, W.D.: Particle physics from almost commutative space-
times. Rev. Math. Phys. 24, 1230004 (2012)

16. Chamseddine, A.H., Connes, A.: Why the standard model. J. Geom. Phys. 58, 38–47 (2008)
17. Ćaćić, B.:Moduli spaces of dirac operators for finite spectral triples. In:Marcolli,M., Parashar,

D. (eds.) QuantumGroups andNoncommutative Spaces: Perspectives onQuantumGeometry.
Vieweg Verlag, Wiesbaden (2010)

18. Alvarez, E., Gracia-Bondía, J.M., Martin, C.: Anomaly cancellation and the gauge group of
the standard model in NCG. Phys. Lett. B364, 33–40 (1995)

19. Baez, J., Huerta, J.: The algebra of grand unified theories. Bull. Amer. Math. Soc. (N.S.) 47,
483–552 (2010)

20. Englert, F., Brout, R.: Broken symmetry and the mass of gauge vector mesons. Phys. Rev.
Lett. 13, 321–323 (1964)

21. Higgs, P.W.: Broken symmetries and themasses of gauge bosons. Phys. Rev. Lett. 13, 508–509
(1964)

22. Weinberg, S.: Physical processes in a convergent theory of the weak and electromagnetic
interactions. Phys. Rev. Lett. 27, 1688–1691 (1971)

23. Weinberg, S.: General theory of broken local symmetries. Phys. Rev. D7, 1068–1082 (1973)
24. Weinberg, S.: The quantum theory of fields, vol. 2. Cambridge University Press, Cambridge

(1996)



Chapter 12
Phenomenology of the Noncommutative
Standard Model

In Theorems 11.10 and 11.11, we have derived the full Lagrangian for the Standard
Model from the almost-commutative manifold M × FSM. The coefficients in this
Lagrangian are given in terms of:

• the value f (0) and the moments f2 and f4 of the function f in the spectral action;
• the cut-off scale λ in the spectral action;
• the vacuum expectation value v of the Higgs field;
• the coefficients a, b, c, d, e of (11.3.2) that are determined by the mass matrices
in the finite Dirac operator DF .

One can find several relations among these coefficients in the Lagrangian, which we
shall derive in the following section. Inspired by the relation g3

2 = g2
2 = 5

3g1
2

obtained from (11.3.4), we will assume that these relations hold at the unification
scale. Subsequently,we use the renormalization group equations to obtain predictions
for the Standard Model at ‘lower’ (i.e. particle accelerator) energies.

12.1 Mass Relations

12.1.1 Fermion Masses

Recall from (11.4.3) that we defined the mass matrices mx of the fermions by rewrit-
ing the matrices Yx in the finite Dirac operator DF . Inserting the formula (11.4.3)
for Yx into the expression for a given by (11.3.2), we obtain

a = a f (0)

π2v2
Tr

⎛
m∗

νmν + m∗
eme + 3m∗

umu + 3m∗
dmd

⎜
,

which yields
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Tr
⎛
m∗

νmν + m∗
eme + 3m∗

umu + 3m∗
dmd

⎜ = π2v2

f (0)
.

From (11.3.13) we know that the mass of the W -boson is given by MW = 1
2vg2.

Using the normalization (11.3.4), expressing g2 in terms of f (0), we can then write

f (0) = π2v2

8MW
2 . (12.1.1)

Inserting this into the expression above, we obtain a relation between the fermion
mass matrices mx and the W -boson mass MW , viz.

Tr
⎛
m∗

νmν + m∗
eme + 3m∗

umu + 3m∗
dmd

⎜ = 2g2
2v2 = 8MW

2. (12.1.2)

If we assume that the mass of the top quark is much larger than all other fermion
masses, we may neglect the other fermion masses. In that case, the above relation
would yield the constraint

m top �
⎝
8

3
MW . (12.1.3)

12.1.2 The Higgs Mass

We obtain a mass mh for the Higgs boson h by writing the term proportional to h2

in (11.3.10) in the form

bπ2

2a2 f (0)
4v2h2 = 1

2
mh

2h2.

Thus, the Higgs mass is given by

mh = 2π
∈

bv

a
∈

f (0)
. (12.1.4)

Inserting (12.1.1) into this expression for the Higgs mass, we see that MW and mh

are related by

mh
2 = 32

b

a2 MW
2.

http://dx.doi.org/10.1007/978-94-017-9162-5_11
http://dx.doi.org/10.1007/978-94-017-9162-5_11
http://dx.doi.org/10.1007/978-94-017-9162-5_11
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Next, we introduce the quartic Higgs coupling constant λ by writing

bπ2

2a2 f (0)
h4 =: 1

24
λh4.

From (11.3.4) we then find

λ = 24
b

a2 g2
2, (12.1.5)

so that the (tree-level) Higgs mass can be expressed in terms of the mass MW of the
W -boson, the coupling constant g2 and the quartic Higgs coupling λ as

mh
2 = 4λMW

2

3g22
. (12.1.6)

12.1.3 The Seesaw Mechanism

Let us consider the mass terms for the neutrinos. The matrix DF described in
Sect. 11.1 provides the Dirac masses as well as the Majorana masses of the fermions.
After a rescaling as in (11.4.3), the mass matrix restricted to the subspace of HF with
basis {νL , νR, νL , νR} is given by

⎞

⎟⎟⎠

0 m∗
ν m∗

R 0
mν 0 0 0
m R 0 0 m̄∗

ν
0 0 m̄ν 0



⎡⎡⎧ .

Suppose we consider only one generation, so that mν and m R are just scalars. The
eigenvalues of the above mass matrix are then given by

±1

2
m R ± 1

2

⎨
m R

2 + 4mν
2.

If we assume that mν � m R , then these eigenvalues are approximated by ±m R and

±mν
2

m R
. This means that there is a heavy neutrino, for which the Dirac mass mν may

be neglected, so that its mass is given by the Majorana mass m R . However, there
is also a light neutrino, for which the Dirac and Majorana terms conspire to yield a

mass mν
2

m R
, which is in fact much smaller than the Dirac mass mν . This is called the

seesaw mechanism. Thus, even though the observed masses for these neutrinos may
be very small, they might still have large Dirac masses (or Yukawa couplings).

From (12.1.2) we obtained a relation between the masses of the top quark and the
W -boson by neglecting all other fermion masses. However, because of the seesaw

http://dx.doi.org/10.1007/978-94-017-9162-5_11
http://dx.doi.org/10.1007/978-94-017-9162-5_11
http://dx.doi.org/10.1007/978-94-017-9162-5_11
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mechanism it might be that one of the neutrinos has a Dirac mass of the same order
of magnitude as the top quark. In that case, it would not be justified to neglect all
other fermion masses, but instead we need to correct for such massive neutrinos.

Let us introduce a new parameter ρ (typically taken to be of order 1) for the ratio
between the Dirac mass mν for the tau-neutrino and the mass m top of the top quark
at unification scale, so we write mν = ρm top. Instead of (12.1.3), we then obtain the
restriction

m top �
⎩

8

3 + ρ2
MW . (12.1.7)

12.2 Renormalization Group Flow

In this section we evaluate the renormalization group equations (RGEs) for the Stan-
dardModel fromordinary energies up to the unification scale. For the validity of these
RGEs we need to assume the existence of a ‘big desert’ up to the grand unification
scale. This means that one assumes that:

• there exist no new particles (besides the known Standard Model particles) with a
mass below the unification scale;

• perturbative quantum field theory remains valid throughout the big desert.

Furthermore, we also ignore any gravitational contributions to the renormalization
group flow.

12.2.1 Coupling Constants

In (11.3.1) we introduced the coupling constants for the gauge fields, andwe obtained
the relation g3

2 = g2
2 = 5

3g1
2. This is precisely the relation between the coupling

constants at (grand) unification, common to grand unified theories (GUT). Thus, it
would be natural to assume that our model is defined at the scale λGU T . However, it
turns out that there is no scale at which the relation g3

2 = g2
2 = 5

3g1
2 holds exactly,

as we show below.
The renormalization group β-functions of the (minimal) standard model read

dgi

dt
= − 1

16π2 big
3
i ; b =

(
−41

6
,
19

6
, 7

⎫
,

where t = logμ. At first order, these equations are uncoupled from all other para-
meters of the Standard Model, and the solutions for the running coupling constants
gi (μ) at the energy scale μ are easily seen to satisfy

http://dx.doi.org/10.1007/978-94-017-9162-5_11
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gi (μ)−2 = gi (MZ )−2 + bi

8π2 log
μ

MZ
, (12.2.1)

where MZ is the experimental mass of the Z-boson:

MZ = 91.1876 ± 0.0021 GeV.

For later convenience, we also recall that the experimental mass of the W -boson is

MW = 80.399 ± 0.023 GeV. (12.2.2)

The experimental values of the coupling constants at the energy scale MZ are known
too, and are given by

g1(MZ ) = 0.3575 ± 0.0001,

g2(MZ ) = 0.6519 ± 0.0002,

g3(MZ ) = 1.220 ± 0.004.

Using these experimental values, we obtain the running of the coupling constants in
Fig. 12.1. As can be seen in this figure, the running coupling constants do not meet at
any single point, and hence they do not determine a unique unification scale λGU T .
In other words, the relation g3

2 = g2
2 = 5

3g1
2 cannot hold exactly at any energy

scale, unless we drop the big desert hypothesis. Nevertheless, in the remainder of this
section we assume that this relation holds at least approximately and we will come
back to this point in the next section. We consider the range for λGU T determined
by the triangle of the running coupling constants in Fig. 12.1. The scale λ12 at the

intersection of
⎬

5
3g1 and g2 determines the lowest value for λGU T , given by

λ12 = MZ exp

⎭
8π2( 35g1(MZ )−2 − g2(MZ )−2)

b2 − 3
5b1

)
= 1.03 × 1013 GeV. (12.2.3)

The highest value λ23 is given by the solution of g2 = g3, which yields

λ23 = MZ exp

(
8π2(g3(MZ )−2 − g2(MZ )−2)

b2 − b3

⎫
= 9.92 × 1016 GeV. (12.2.4)

We assume that the Lagrangian we have derived from the almost-commutative man-
ifold M × FSM is valid at some scale λGU T , which we take to be between λ12 and
λ23. All relations obtained in Fig. 12.1 are assumed to hold approximately at this
scale, and all predictions that will follow from these relations are therefore also only
approximate.
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Fig. 12.1 The running of the
gauge coupling constants
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12.2.2 Renormalization Group Equations

The running of the neutrino masses has been studied in a general setting for non-
degenerate seesaw scales. In what follows we consider the case where only the
tau-neutrino has a large Dirac mass mν , which cannot be neglected with respect to
the mass of the top-quark. In the remainder of this section we calculate the running of
the Yukawa couplings for the top-quark and the tau-neutrino, as well as the running
of the quartic Higgs coupling. Let us write ytop and yν for the Yukawa couplings of
the top quark and the tau-neutrino, defined by

m top = 1

2

∈
2ytopv, mν = 1

2

∈
2yνv, (12.2.5)

where v is the vacuum expectation value of the Higgs field.
Let m R be the Majorana mass for the right-handed tau-neutrino. By the

Appelquist–Carazzone decoupling theorem we can distinguish two energy domains:
E > m R and E < m R . We again neglect all fermion masses except for the top
quark and the tau neutrino. For high energies E > m R , the renormalization group
equations are given by

dytop
dt

= 1

16π2

(
9

2
y2top + y2ν − 17

12
g21 − 9

4
g22 − 8g23

⎫
ytop,

dyν

dt
= 1

16π2

(
3y2top + 5

2
y2ν − 3

4
g21 − 9

4
g22

⎫
yν, (12.2.6)

dλ

dt
= 1

16π2

(
4λ2 − (3g1

2 + 9g2
2)λ + 9

4
(g1

4 + 2g1
2g2

2 + 3g2
4)

+ 4(3y2top + yν
2)λ − 12(3y4top + yν

4)

⎫
.
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Below the threshold E = m R , the Yukawa coupling of the tau-neutrino drops out of
the RG equations and is replaced by an effective coupling

κ = 2
yν

2

m R
,

which provides an effective mass ml = 1
4κv2 for the light tau-neutrino. The renor-

malization group equations of ytop and λ for E < m R are then given by

dytop
dt

= 1

16π2

(
9

2
y2top − 17

12
g21 − 9

4
g22 − 8g23

⎫
ytop,

dλ

dt
= 1

16π2

(
4λ2 − (3g1

2 + 9g2
2)λ + 9

4
(g1

4 + 2g1
2g2

2 + 3g2
4) (12.2.7)

+ 12y2topλ − 36y4top

⎫
.

Finally, the equation for yν is replaced by an equation for the effective coupling κ
given by

dκ

dt
= 1

16π2

(
6y2top − 3g2

2 + λ

6

⎫
κ. (12.2.8)

12.2.3 Running Masses

The numerical solutions to the coupled differential equations of (12.2.6), (12.2.7)
and (12.2.8) for ytop, yν and λ depend on the choice of three input parameters:

• the scale λGU T at which our model is defined;
• the ratio ρ between the masses mν and m top;
• the Majorana mass m R that produces the threshold in the renormalization group
flow.

The scale λGU T is taken to be either λ12 = 1.03 × 1013 GeV or λ23 = 9.92 ×
1016 GeV, as given by (12.2.3) and (12.2.4), respectively. We now determine the
numerical solution to (12.2.6), (12.2.7) and (12.2.8) for a range of values for ρ and
m R . First, we need to start with the initial conditions of the running parameters at
the scale λGU T . Inserting the top-quark mass m top = 1

2

∈
2ytopv, the tau-neutrino

mass mν = ρm top, and the W -boson mass MW = 1
2g2v into (12.1.7), we obtain the

constraints

ytop(λGU T ) � 2⎨
3 + ρ2

g2(λGU T ), yν(λGU T ) � 2ρ⎨
3 + ρ2

g2(λGU T ),

where (12.2.1) yields the values g2(λ12) = 0.5444 and g2(λ23) = 0.5170.
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Furthermore, from (12.1.5) we obtain an expression for the quartic coupling λ at
λGU T . Approximating the coefficients a and b from (11.3.2) by a → (3 + ρ2)m2

top

and b → (3 + ρ4)m4
top, we obtain the boundary condition

λ(λGU T ) → 24
3 + ρ4

(3 + ρ2)2
g2(λGU T )2.

Using these boundary conditions, we can now numerically solve the RG equations of
(12.2.6) fromλGU T down tom R , which provides us with values for ytop(m R), yν(m R)

andλ(m R).At this point, theYukawacoupling yν is replacedby the effective coupling
κ with boundary condition

κ(m R) = 2
yν(m R)2

m R
.

Next, we numerically solve the RG equations of (12.2.7) and (12.2.8) down to MZ

to obtain the values for ytop, κ and λ at ‘low’ energy scales.
The running mass of the top quark at these energies is given by (12.2.5). We find

the running Higgs mass by inserting λ into (12.1.6). We shall evaluate these running
masses at their own energy scale. For instance, our predicted mass for the Higgs
boson is the solution for μ of the equation μ = ∈

λ(μ)/3v, in which we ignore the
running of the vacuum expectation value v.

The effective mass of the light neutrino is determined by the effective coupling κ,
and we choose to evaluate this mass at scale MZ . Thus, we calculate the masses by

m top(m top) = 1

2

∈
2ytop(m top)v,

ml(MZ ) = 1

4
κ(MZ )v2,

mh(mh) =
⎝

λ(mh)

3
v,

where, from the W -boson mass (12.2.2) we can insert the value v = 246.66± 0.15.
The results of this procedure for m top, ml and mh are given in Table12.1. In this table,
we have chosen the range of values for ρ and m R such that the mass of the top-quark
and the light tau-neutrino are in agreement with their experimental values

m top = 172.0 ± 0.9 ± 1.3 GeV, ml ≤ 2 eV.

For comparison, we have also included the simple case where we ignore the Yukawa
coupling of the tau-neutrino (by setting ρ = 0), in which case there is no threshold
at the Majorana mass scale either. As an example, we have plotted the running of
λ, ytop, yν and κ for the values of λGU T = λ23 = 9.92 × 1016 GeV, ρ = 1.2, and
m R = 3 × 1012 GeV in Figs. 12.2, 12.3, 12.4 and 12.5.

http://dx.doi.org/10.1007/978-94-017-9162-5_11
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Table 12.1 Numerical results for the masses m top of the top-quark, ml of the light tau-neutrino,
and mh of the Higgs boson, as a function of λGU T , ρ, and m R

λGU T (1013 GeV) 1.03 1.03 1.03 1.03 1.03 1.03 1.03
ρ 0 0.90 0.90 1.00 1.00 1.10 1.10
m R (1013 GeV) – 0.25 1.03 0.30 1.03 0.35 1.03

m top (GeV) 183.2 173.9 174.1 171.9 172.1 169.9 170.1
ml (eV) 0 2.084 0.5037 2.076 0.6030 2.080 0.7058
mh (GeV) 188.3 175.5 175.7 173.4 173.7 171.5 171.8

λGU T (1016 GeV) 9.92 9.92 9.92 9.92 9.92
ρ 0 1.10 1.10 1.20 1.20
m R (1013 GeV) – 0.30 2.0 0.35 9900
m top (GeV) 186.0 173.9 174.2 171.9 173.5
ml (eV) 0 1.939 0.2917 1.897 6.889 × 10−5

mh (GeV) 188.1 171.3 171.6 169.1 171.2

λGU T (1016 GeV) 9.92 9.92 9.92 9.92
ρ 1.30 1.30 1.35 1.35
m R (1013 GeV) 0.40 9900 100 9900
m top (GeV) 169.9 171.6 169.8 170.6
ml (eV) 1.866 7.818 × 10−5 8.056 × 10−3 8.286 × 10−5

mh (GeV) 167.1 169.3 167.4 168.4

Fig. 12.2 The running of the
quartic Higgs coupling λ for
λGU T = 9.92 × 1016 GeV,
ρ = 1.2, and m R = 3 ×
1012 GeV
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For the allowed range of values for ρ and m R that yield plausible results for m top

and ml , we see that the mass mh of the Higgs boson takes its value within the range

167 GeV ≤ mh ≤ 176 GeV.

The errors in this prediction, which result from the initial conditions (other than m top

and ml ) taken from experiment, as well as from ignoring higher-loop corrections to
the RGEs, are smaller than this range of possible values for the Higgs mass, and
therefore we may ignore these errors.
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Fig. 12.3 The running of the
top-quark Yukawa coupling
ytop for λGU T = 9.92 ×
1016 GeV, ρ = 1.2, and
m R = 3 × 1012 GeV
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Fig. 12.4 The running of
the tau-neutrino Yukawa
coupling yν for λGU T =
9.92 × 1016 GeV, ρ = 1.2,
and m R = 3 × 1012 GeV
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Fig. 12.5 The running of
the effective coupling κ for
λGU T = 9.92 × 1016 GeV,
ρ = 1.2, and m R = 3 ×
1012 GeV

2 4 6 8 10 12

1.5 10 13

1.6 10 13

1.7 10 13

1.8 10 13

1.9 10 13

2. 10 13

log10 GeVμ

12.3 Higgs Mass: Comparison to Experimental Results

It is time to confront the above predicted range of valueswith the discovery of aHiggs
bosonwith amassmh ◦ 125.5GeVat theATLASandCMSexperiments at theLarge
Hadron Collider at CERN. At first sight, this experimentally measured value seems
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to be at odds with the above prediction and seems to falsify the description of the
Standard Model as an almost-commutative manifold. However, let us consider more
closely the (main) hypotheses on which the above prediction is based, discussing
them one-by-one.

The almost-commutative manifold M × FSM : An essential input in the above
derivation is the replacement of the background manifold M by a noncommu-
tative space M × FSM . We motivated the structure of FSM by deriving it from a
list of finite irreducible geometries, along the way imposing several mathematical
constraints (cf. Sect. 11.1). The strength of this approach was that it allowed for a
derivation of all the particles and symmetries of the Standard Model from purely
geometrical data. Moreover, the spectral action resulted in the Lagrangian of the
Standard Model, including Higgs mechanism.

The incompatibility of the prediction of the Higgs mass with experiment might be
resolved by considering almost-commutative manifolds that go beyond the Stan-
dard Model by dropping some of the aforementioned mathematical constraints;
we will discuss a recently proposed possibility in the next Section.

Ultimately, one should also consider noncommutative manifolds that are not the
product of M with a finite space F (see Note 7 on page 228).

The spectral action: The bosonic Lagrangian was derived from the asymptotic
expansion of the spectral action Tr f (D/λ).

Adopting Wilson’s viewpoint on the renormalization group equation this
Lagrangian was considered the bare Lagrangian at the cutoff scale λ. The renor-
malization group equations then dictate the running of the renormalized, physical
parameters.

Alternatively, one can consider the spectral action for M × FSM in a perturbative
expansion in the fields, as in Sect. 7.2.2, leading to unexpected and an intriguing
behaviour for the propagation of particles at energies larger than the cutoffλ (see
Note 9 on page 228).

Yet another alternative is to considerλ as a regularization parameter, allowing for
an interpretation of the asymptotic expansion of Tr f (D/λ) as a higher-derivative
gauge theory. It turns out that conditions can be formulated on the Krajewski dia-
gram for F that guarantee the (super)renormalizability of the asymptotic expan-
sion of the spectral action for the corresponding almost-commutative manifold
M × F (see Note 9 on page 228).

Big desert: In our RGE-analysis of the couplings and masses we have assumed the
big desert up to the GUT-scale: no more elementary particles than those present
in the Standard Model exist at higher energies (and up to the GUT-scale). This is
a good working hypothesis, but is unlikely to be true. The main reason for this
is the mismatch of the running coupling constants at the GUT-scale (Fig. 12.1).
This indicates that new physics is expected to appear before this scale. As already
suggested, it might very well be that this new physics can be described by con-
sidering almost-commutative manifolds that go beyond the Standard Model. We
will discuss such a possibility in the next Section.

http://dx.doi.org/10.1007/978-94-017-9162-5_11
http://dx.doi.org/10.1007/978-94-017-9162-5_7
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Renormalization group equations: Weexploited renormalizationgroup techniques
to run couplings and masses down from the GUT-scale to ordinary energies. The
renormalization group equations were derived in a perturbative approach to quan-
tum field theory, which was supposed to be valid at all scales. Moreover, we have
adopted the one-loop beta-functions, somethingwhich can definitely be improved.
Even though this might lead to more accurate predictions, it is not expected to
resolve the incompatibility between the predicted range for mh and the experi-
mentally measured value.

Gravitational effects: In our analysis we have discarded all possible gravitational
effects on the running of the couplings constants. It might very well be that
gravitational correction terms alter the predicted values to a more realistic value.

12.4 Noncommutative Geometry Beyond the Standard Model

Let us then drop some of the above hypotheses, and demonstrate how a small correc-
tion of the space M × FSM gives an intriguing possibility to go beyond the Standard
Model, solving at the same time a problem with the stability of the Higgs vacuum
given the measured low mass mh .

Namely, in the definition of the finite Dirac operator DF of Eq.11.1.2, we can
replaceYR byYRσ, whereσ is a real scalar field on M . Strictly speaking, this brings us
out of the class of almost-commutativemanifolds M×F , since part of DF nowvaries
over M . Nevertheless, it fits perfectly into the more general class of topologically
non-trivial almost-commutative geometries. In fact, it is enough to consider the trivial
fiber bundle M × HF , for which an endomorphism DF (x) ∈ End(HF ) is allowed
to depend smoothly on x ∈ M .

The scalar fieldσ can also be seen as the relic of a spontaneous symmetry breaking
mechanism, similar to the Higgs field h in the electroweak sector of the Standard
Model. Starting point is the almost-commutative manifold M × FP S based on the
algebra M2(H) ≤ M4(C) with which we started Chap.11. The gauge group corre-
sponding to FP S is SU (2) × SU (2) × SU (4) and the corresponding model is called
Pati–Salam unification. It turns out that the spectral action for M × FP S yields
a spontaneous symmetry breaking mechanism that dynamically selects the algebra
AF ∼ M2(H) ≤ M4(C) of Proposition 11.1.

Let us then replace YR by YRσ and analyze the additional terms in the spectral
action. In Proposition 11.9 we insert a σ for every YR that appears, to arrive at

L⊕
H (gμν,λμ, Qμ, H,σ) :=b f (0)

2π2 |H |4 − 2a f2λ2

π2 |H |2 + e f (0)

π2 σ2|H |2

−c f2λ2

π2 σ2 + d f (0)

4π2 σ4 + a f (0)

2π2 |DμH |2

+ 1

4π2 f (0)c(∂μσ)2,

http://dx.doi.org/10.1007/978-94-017-9162-5_11
http://dx.doi.org/10.1007/978-94-017-9162-5_11
http://dx.doi.org/10.1007/978-94-017-9162-5_11
http://dx.doi.org/10.1007/978-94-017-9162-5_11
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where we ignored the coupling to the scalar curvature.
As before, we exploit the approximation that mtop, mν and m R are the dominant

mass terms. Moreover, as before we write mν = ρmtop. That is, the expressions for
a, b, c, d and e in (11.3.2) now become

a → m2
top(ρ

2 + 3),

b → m4
top(ρ

4 + 3),

c → m2
R,

d → m4
R,

e → ρ2m2
Rm2

top.

In a unitary gauge, where H =
(

h
0

⎫
, we arrive at the following potential:

Lpot(h,σ) = 1

24
λhh4 + 1

2
λhσh2σ2 + 1

4
λσσ4 − 4g22

π2 f2λ
2(h2 + σ2),

where we have defined coupling constants

λh = 24
ρ4 + 3

(ρ2 + 3)2
g22, λhσ = 8ρ2

ρ2 + 3
g22, λσ = 8g22 . (12.4.1)

This potential can be minimized, and if we replace h by v + h and σ by w + σ,
respectively, expanding around a minimum for the terms quadratic in the fields, we
obtain:

Lpot(v + h, w + σ)|quadratic = 1

6
v2λhv2 + 2vwλhσσh + w2λσσ2

= 1

2

⎛
h σ

⎜
M2

(
h
σ

⎫
,

where we have defined the mass matrix M by

M2 = 2

( 1
6λhv2 λhσvw

λhσvw λσw2

⎫
.

This mass matrix can be easily diagonalized, and if we make the natural assumption
that w is of the order of m R , while v is of the order of MW , so that v � w, we find
that the two eigenvalues are

http://dx.doi.org/10.1007/978-94-017-9162-5_11
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m2+ ∼ 2λσw2 + 2
λ2

hσ

λσ
v2,

m2− ∼ 2λhv2

⎭
1

6
− λ2

hσ

λhλσ

)
.

We can now determine the value of these two masses by running the scalar coupling
constants λh,λhσ and λσ down to ordinary energy scalar. The renormalization group
equations for these couplings are given by

dλh

dt
= 1

16π2

(
4λ2

h + 12λ2
hσ − (3g1

2 + 9g2
2)λh + 9

4
(g1

4 + 2g1
2g2

2 + 3g2
4)

+ 4(3y2top + yν
2)λh − 12(3y4top + yν

4)

⎫
,

dλhσ

dt
= 1

16π2

(
8λ2

hσ + 6λhσλσ + 2λhσλh

− 3

2

(
g21 + 3g22

)
λhσ + 2(3y2top + yν

2)λhσ

⎫
,

dλσ

dt
= 1

16π2

(
8λ2

hσ + 18λ2
σ

⎫
.

As before, at lower energy the coupling yν drops out of the RG equations and is
replaced by an effective coupling.

At one-loop, the other couplings obey the renormalization group equations of the
Standard Model, that is, they satisfy (12.2.6) and (12.2.7). As before, we can solve
these differential equations, with boundary conditions at λGU T given for the scalar
couplings by (12.4.1). The result varies with the chosen value for λGU T and the
parameter ρ. The mass of σ is essentially given by the largest eigenvalue m+ which
is of the order 1012 GeV for all values of λGU T and the parameter ρ. The allowed
mass range for the Higgs, i.e. for m−, is depicted in Fig. 12.6. The expected value
mh = 125.5 GeV is therefore compatible with the above noncommutative model.
Furthermore, this calculation implies that there is a relation (given by the red line in
the Figure) between the ratio mν/mtop and the unification scale λGU T .

We conclude that with noncommutative geometry we can proceed beyond the
Standard Model, enlarging the field content of the Standard Model by a real scalar
field with a mass of the order of 1012 GeV. At the time of writing of this book
(Spring 2014), this is completely compatible with experiment and also guarantees
stability of the Higgs vacuum at higher energy scales. Of course, the final word is to
experiment in the years to come.Whatwe can say at this point is that noncommutative
geometry provides a fascinating dialogue between abstractmathematics and concrete
measurements in experimental high-energy physics.
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Fig. 12.6 A contour plot
of the Higgs mass mh as
a function of ρ2 and t =
log(λGU T /MZ ). The red
line corresponds to mh =
125.5 GeV

Notes

1. In the first part of this Chapter, wemainly follow [1, Sect. 5] (see also [2, Chap. 1,
Sect. 17]). In Sect. 12.2 we have also incorporated the running of the neutrino
masses as in [3] (see also [4]).

Section 12.1 Mass Relations

2. Further details on the see-saw mechanism can be found in e.g. [5].

Section 12.2 Renormalization Group Flow

3. The renormalization group β-functions of the (minimal) standard model are
taken from [6–8] and [9]. We simplify the expressions by ignoring the 2-loop
contributions, and instead consider only the 1-loop approximation. The renor-
malization group β-functions are [6, Eq. (B.2)] or [9, Eq. (A.1)]).

4. The experimental masses of the Z and W -boson and the top quark, as well as the
experimental values of the coupling constants at the energy scale MZ are found
in [10].

5. In arriving at (12.2.6) we have followed the approach of [3] where two energy
domains are considered: E > m R and E < m R . The Appelquist–Carazzone
decoupling theorem is found in [11]. For the renormalization group equations,
we refer to [7, Eq. (B.4)], [12, Eq. (14) and (15)] and [8, Eq. (B.3)].

Section 12.3 Higgs Mass: Comparison to Experimental Results

6. The discovery of the Higgs boson at the ATLAS and CMS experiments is pub-
lished in [13, 14].
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7. The spectral action has also been computed for spectral triples that are not the
product of M with a finite space F , and which are further off the ‘commutative
shore’. These include the noncommutative torus [15], the Moyal plane [16, 17],
the quantum group SUq(2) [18] and the Podleś sphere S2

q [19].
8. The generalization of noncommutative geometry to non-associative geometry is

analyzed in [20, 21].
9. The bosonic Lagrangian derived from the spectral action was interpreted in [22]

à la Wilson [23] as the bare Lagrangian at the cutoff scale λ. A perturbative
expansion of the full spectral action was obtained in [24–26], leading to unex-
pected and an intriguing behaviour for the propagation of particles at energies
larger than the cutoffλ. Alternatively, the interpretation ofλ as a regularization
parameter has been worked out in [27–30], including the derivation of renormal-
izability conditions on the Krajewski diagrams.

10. Other searches beyond the Standard Model with noncommutative geometry
include [31–35], adopting a slightly different approach to almost-commutative
manifolds as we do (cf. Note 3 on page 118). The intersection between super-
symmetry and almost-commutative manifolds is analyzed in [36–40].

11. A possible approach to incorporate gravitational effects in the running of the
coupling constants is discussed in [41].

Section 12.4 Noncommutative Geometry Beyond the Standard Model

12. For stability bounds on the Higgs mass, we refer to [42].
13. The small correction to the space M × FSM was realized in [43] (and already

tacitly present in [44]) and we here confirm their conclusions. The class of topo-
logically non-trivial almost-commutative geometries has been worked out in
[45–47]. The spontaneous symmetry breaking of the noncommutative descrip-
tion of the Pati–Salam model [48] was analyzed in [49, 50], after generalizing
inner fluctuations to real spectral triples that do not necessarily satisfy the first-
order condition (4.3.1).

14. In [51] an alternative approach is considered, taking the ‘grand’ algebra M4(H)≤
M8(C) from the list of [52], but where now the condition of bounded commuta-
tors of D with the algebra is not satisfied.

15. The renormalization group equations for the couplings λh,λhσ,λσ have been
derived in [53].
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