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Preface

Topological defects play important roles in nature. They are found in fields as
diverse as cosmology, particle physics, superfluidity, liquid crystals, and metal-
lurgy, manifesting themselves as screw/edge dislocations in liquid crystals, mag-
netic flux tubes in superconductors, and vortices in superfluids, for example. They
can also be found in ferroic materials, i.e., materials with a spontaneous reversible
ordering, such as magnetic materials, ferroelectrics, and ferroelastic materials,
which have been studied for a long time and are used widely in sensors, actuators,
information technology, and other smart materials applications. Ferroic phases can
arise in more than one distinct orientation of the order parameter, thus spatial
variations in the orientations of the order parameter are accommodated through the
formation of discrete domain structures. Adjacent domains are separated by natu-
rally occurring planar topological defects called domain walls. Over the last few
years they have been intensively investigated with respect to their inherent func-
tional behavior in various studies involving ceramics, thin films, and single
crystalline material. The fact that the electronic conductivity of domain walls in
ferroelectrics and multiferroics can be utilized for nanoscale functional elements
and new concepts involving magnetic domain walls for memory and spintronic
applications have sparked wide interest and have led to the finding of unique
properties associated with such topological structures. The understanding of these
phenomena has progressed to a point where we can say that the physical properties
of topological structures such as domain walls can be completely different from
those of the parent bulk material phase.

Although domain walls are the commonly understood concept of ferroic order,
they are not the only way in which spatially varying order parameters can be
arranged. Alternatively, more complex patterns can develop in which the order
parameter changes in different ways as described, e.g., by the topological theory of
defects in ordered media by N.D. Mermin. When combined with local defects or
singularities, the number of possible geometrical patterns and textures that arise can
be manifold and include vortex structures and skyrmions. Which kind of ferroic
micro- or nanostructure developments depends critically on the relative magnitudes
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of various energies associated with exchange, spin–orbit interaction, crystallographic
anisotropy, and surfaces and interfaces in ferroic materials. Physical dimensions
of the specific material and its morphology are also important in determining the
exact nature of the ferroic patterns that develop in equilibrium, which include
flux-closure structures and other complex topological patterns such as periodic arrays
of magnetic skyrmions that can be observed, e.g., by magnetic force microscopy.

It is only within the last few years that experiments have focused on trying to
find and study such topological structures in ferroic materials. It is clear today that
these interesting structures can form in ferroelectrics and magnetic systems;
however, the study of their basic properties and the exploration of their potential for
future applications has only just begun. This book is an effort to capture some of the
interesting developments in this rapidly changing field of research. Tuning,
manipulating, and exploiting the physical properties of such topological structures
provides a new playground for condensed matter and functional materials research.
In addition, it offers a novel platform for future nanotechnology.

Sydney Jan Seidel
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Chapter 1
Generic Aspects of Skyrmion Lattices
in Chiral Magnets

Andreas Bauer and Christian Pfleiderer

Abstract Magnetic skyrmions are topologically non-trivial spin whirls that may not
be transformed continuously into topologically trivial states such as ferromagnetic
spin alignment. In recent years lattice structures composed of skyrmions have been
discovered in certain bulk chiral magnets with non-centrosymmetric crystal struc-
tures. The magnetic phase diagrams of these materials share remarkable similarities
despite great variations of the characteristic temperature, field, and length scales and
regardless whether the underlying electronic state is that of a metal, semiconductor,
or insulator.

1.1 Introduction and Outline

In 1961 British nuclear physicist Tony Skyrme proposed a theoretical model in which
neutrons and protons arise as topological solitons of pion fields, i.e., fermions are
derived from bosonic fields [1–3]. Representing the, perhaps, first example of what is
now broadly referred to as fractionalization, the implications of Skyrme’smodel only
began to be fully appreciated two decades later, when Witten and Adkins demon-
strated its relevance for real experiments [4]. Since the days of this early work many
different variants of Skyrme’s original notion have been worked out in entirely dif-
ferent fields of physics. These states and excitations are now rather generously called
skyrmions. Examples include areas as diverse as particle physics [4–8], the quantum
Hall state at half-filling [9–11], Bose-Einstein condensates [12–14], and liquid crys-
tals [15]. However, in recent years skyrmions are probably most actively investigated
in the area of solid state magnetism, where certain spin textures are referred to as
skyrmions. These magnetic textures display a non-trivial real-space topology, i.e.,
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2 A. Bauer and C. Pfleiderer

it is not possible to continuously transform them into conventional (topologically
trivial) forms of spin order such as ferromagnetism or antiferromagnetism.

While skyrmions were theoretically predicted to exist in non-centrosymmetric
magnetic materials with uniaxial anisotropy as early as 1989 [16, 17], it was despite
concerted efforts rather unexpected, when skyrmions in magnetic materials were
identified experimentally for the first time in the cubic transition metal compounds
MnSi [18] and Fe1−xCoxSi [19] in the form of a lattice structure . Since then sim-
ilar topologically non-trivial spin textures have been reported to exist for a rapidly
growing number of rather different bulk and thin film systems. The interest driving
this search for further materials stabilizing skyrmions is quite diverse, ranging from
fundamental questions on the possible break down of Fermi liquid theory [20–22]
all the way to new forms of spintronics applications [23]. From a practical point of
view the most important implication of the non-trivial topology is their emergent
electrodynamics leading to an exceptionally efficient coupling between the spin tex-
tures and spin currents [24, 25]. Further, the very detailed understanding of the spin
excitations achieved to date suggests strongly that tailored microwave devices may
be designed through the combination of different materials [26–30].

A precondition for further advances is a detailed understanding of the magnetic
phase diagramsof these compounds. In turn, this chapter provides a reviewof themost
extensively studied class of skyrmion materials to date, namely cubic chiral magnets
crystallizing in the space group P213. We begin in Sect. 1.2 with a brief introduction
to the basic properties of this class of compounds focusing on the salient properties
of the skyrmion lattice state. This is followed by an introduction to the Ginzburg-
Landaumodel of thesematerials in Sect. 1.3. Themain part of this chapter in Sect. 1.4
is dedicated to an account of the determination of magnetic phase diagrams based
on measurements of thermodynamic bulk properties. Despite great variations of the
characteristic temperature, field, and length scales between the different materials of
interest, the magnetic phase diagrams observed are remarkably similar. This brings
us to a summary of the main consequences that arise from the non-trivial topological
winding of skyrmions in Sect. 1.5, in particular their emergent electrodynamics.
The chapter closes in Sect. 1.6 with a brief account of topologically non-trivial spin
structures as recently discovered in other materials.

1.2 Skyrmion Lattice in Cubic Chiral Magnets

The helimagnetism of the materials reviewed in this chapter is homochiral with a
modulationwavelength that is large as compared to typical lattice constants. The latter
represents an important precondition for the description of the magnetic properties
in a continuum model and the characterization of the topological properties. Well-
known representatives are the (pseudo-)binary B20 transition metal monosilicides
and monogermanides MnSi, Mn1−xFexSi, Mn1−xCoxSi, Fe1−xCoxSi, FeGe, MnGe,
and mixtures thereof, as well as the insulator Cu2OSeO3. All of these compounds
crystallize in the space group P213, which lacks inversion symmetry such that two
crystalline enantiomers stabilize.
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Fig. 1.1 Spin structures of cubic chiral magnets. Typical magnetic phase diagram (center) and
schematic spin structures of the helical, the conical, the paramagnetic, and the field-polarized
state. In a phase pocket (red) in finite fields just below the helimagnetic ordering temperature,
Tc, a regular arrangement of topologically non-trivial spin whirls is observed, a so-called skyrmion
lattice. Schematic depictions by Markus Garst and from [31]

The long-wavelength helimagnetic order observed in these compounds originates
in a well-understood set of hierarchical energy scales, as already pointed out in
Landau-Lifshitz, Vol. VIII, Sect. 52, [32]. On the strongest scale exchange interac-
tions favor parallel spin alignment. On intermediate scales isotropic Dzyaloshinskii-
Moriya spin-orbit interactions arise due to the lack of inversion symmetry of the
crystal structure favoring perpendicular spin alignment [33–35]. In competition with
the stronger exchange a helical modulation is stabilized [36, 37]. The chirality of
the Dzyaloshinskii-Moriya interaction and thus of the helical modulation is fixed
by the enantiomer of the crystal structure [38, 39]. Finally, on the weakest energy
scale higher-order spin-orbit coupling terms, also referred to as crystal electric field
effects or cubic anisotropies, determine the propagation direction of the helical mod-
ulations [40].

The hierarchy of energy scales is directly reflected in a rather universal magnetic
phase diagram, as schematically depicted in Fig. 1.1. As summarized below, the same
phase diagram is observed regardless whether the materials are metals, semiconduc-
tors, and insulators (MnGe is perhaps the only exception as discussed in Sect. 1.6).
In particular, the phase diagram appears to be insensitive to the quantitative values
of the transition temperatures, transition fields, and helix wavelengths, which vary
by roughly two orders of magnitude between different compounds.

At sufficiently high temperatures the magnetic properties are characteristic of
exchange-enhanced paramagnetism with large fluctuating moments [41]. At low
temperatures and zero magnetic field multi-domain helical order is observed with
equal domain populations, where the helical propagation vector is determined by
weak cubic magnetic anisotropies, fourth-order in spin-orbit coupling. Under small
applied magnetic fields the domain population changes, until the helical state under-
goes a spin-flop transition at a transition field Hc1 [42]. The spin-flop phase is broadly
referred to as conical state, with a single-domain state of spin spirals propagating
along themagnetic field direction. The expression conical phase alludes to the notion,
that the spins tilt towards the field direction while twisting helically along to the field
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direction. When increasing the magnetic field further this conical angle closes and
a transition takes place to a field-polarized state above Hc2 [43]. We will return to a
more detailed discussion of the transitions at Hc1 and Hc2 below.

In recent years the perhaps largest scientific interest has been attracted by a small
phase pocket at intermediate fields just below the helimagnetic transition tempera-
ture, Tc. Historically this phase pocket has been referred to as A-phase. The existence
of the A-phase, first discovered in MnSi, had already been reported in the 1970s [44,
45]. However, the detailed microscopic spin structure was only identified in 2008
(publication in 2009), when small-angle neutron scattering established the first real-
ization of a skyrmion lattice in a bulk solid state system [18].

The skyrmion lattice consists of a regular hexagonal arrangement of spin whirls,
that may essentially be described by the phase-locked superposition of three helices
under 120◦ in a plane perpendicular to the appliedmagnetic field in combination with
a ferromagnetic component along the field. Of particular interest is the non-trivial
topology of this spin texture, meaning, it cannot be continuously transformed into
a topologically trivial state such as a paramagnet, ferromagnet, or helimagnet. The
associated winding number of the structure, �, is an integer and the integrated value
of the skyrmion density, φi , per magnetic unit cell, given by

φi = 1

8π
εi jkψ̂ · ∂ j ψ̂ × ∂kψ̂ (1.1)

where, εi jk is the antisymmetric unit tensor and ψ̂ = M(r)/M(r) is the orientation
of the local magnetization. Along the field direction the quasi two-dimensional spin
structure repeats itself, forming skyrmion lines as depicted in the right panel of
Fig. 1.1. Perhaps most intriguing, the interaction of each skyrmion with an electron
spin corresponds to one quantum of emergent flux and an emergent electrodynamics
presented in Sect. 1.5.

Experimentally, the existence of skyrmions was first recognized in the form of the
skyrmion lattice as observed in reciprocal space using small-angle neutron scattering
(SANS) in bulk samples [18, 19, 48–50]. Further detailed SANS studies on MnSi
revealed the presence of weak higher-order scattering, indicating a weak particle-
like character of the skyrmions. The evolution of this higher-order scattering as a
function of temperature and field proved the long-range crystalline nature of the
skyrmion lattice and, in particular, the phase-locked multi-Q nature of the modula-
tion at heart of the non-trivial topological winding [46]. These measurements were
soon followed-up by real-space imaging studies using Lorentz force transmission
electron microscopy (LF-TEM). This method is sensitive to in-plane components
of the magnetic moments. However, it may only be used to study thinned bulk
samples [26, 47, 51, 52], whereas magnetic force microscopy (MFM) allowed the
detection of the stray magnetic field above the surface of bulk samples [31]. As the
most recent achievement of real-space imaging, the spin arrangement in the skyrmion
lattice could even be reconstructed in three dimensions by means of electron holog-
raphy [53].
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Fig. 1.2 Helical and skyrmion lattice state as observed in reciprocal and real space. a–c Helical
state in zero magnetic field. d–f Skyrmion lattice state in finite field. Data from small angle neutron
scattering (SANS) [18, 46],magnetic forcemicroscopy (MFM) [31], andLorentz force transmission
electron microscopy (LF-TEM) [26, 47] are shown. The color-coded in-plane orientation in the LF-
TEM data was obtained by a transport-of-intensity (TIE) analysis

Typical data from SANS, MFM, and LF-TEM recorded on different chiral
magnets are shown for the helical and the skyrmion lattice state in
Fig. 1.2. In the helical state at zero magnetic field SANS experiments show intensity
maxima along the easy axes of the helical propagation vector q, typically either 〈100〉
or 〈111〉 [36, 40]. Real-space images reveal stripy patterns with q perpendicular to
the stripes [54]. The skyrmion lattice state in finite fields in SANS experiments, see
Fig. 1.2d, is characterized by a sixfold scattering pattern in a plane perpendicular to
the applied magnetic field that is only fully revealed if the magnetic field is applied
parallel to the neutron beam. In earlier experiments themagnetic field and the neutron
beam had been applied perpendicular to each other leading to erroneous interpre-
tations [42, 55–57]. Note that the wave vector in the skyrmion lattice has the same
absolute value as in the helical state, q = 2π /λh. Thus, due to the hexagonal pack-
ing of the skyrmions in real space, the distance between neighboring skyrmion cores
is a factor of 2/

√
3 ≈ 1.15 larger than the helix wavelength. In real-space images,

see Fig. 1.2e, f, a hexagonal lattice of objects is observed. The magnetic moments in
their cores are aligned antiparallel to the applied field, cf. blue color in Fig. 1.2e, i.e.,
the spin structure in the cubic chiral magnets in fact consists of anti-skyrmions.
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Interestingly, when the size of bulk samples along the field direction becomes
comparable to the helical modulation length, the skyrmion lattice extents over
increasingly larger parts of the magnetic phase diagram as demonstrated in LF-TEM
studies [51]. In contrast, the magnetic properties of epitaxially grown thin films of
the same chiral magnets, forming equal crystalline domain populations with both
chiralities in the same film, are still debated controversially [58–61]. Here, in addi-
tion to the effects resulting from the heterochirality and the reduced dimensionality,
strain arising from the lattice mismatch with the substrate needs to be taken into
account.

1.3 Theoretical Description

The thermodynamic properties of the cubic chiral magnets may be described
extremely well in the framework of a Ginzburg-Landau model of the free energy
density, see also chapter by Markus Garst. It is convenient to distinguish two con-
tributions, f = f0 + fcub, where the first term accounts for isotropic contributions
and the second term accounts for the effects of magnetic anisotropies. More specifi-
cally, f0 includes ferromagnetic exchange, the Dzyaloshinskii-Moriya interaction as
the highest-order (isotropic) spin-orbit coupling term, and the Zeeman term as the
response on an external magnetic field. It may be written as:

f0 = 1

2
ψ(r − J∇2)ψ + Dψ(∇ × ψ) + u

4! (ψ
2)2 − μ0μψ H (1.2)

We choose the three component order parameter field, ψ , with dimensionless units
yielding a magnetization density M = μψ with μ = μB/f.u., i.e., a single Bohr
magneton per formula unit (μB > 0). The parameter r tunes the distance to the
phase transition, J is the exchange stiffness and u the lowest order mode-coupling
parameter. The second term, Dψ(∇ × ψ), corresponds to theDzyaloshinskii-Moriya
interactionwith the coupling constant D. This term is justified by the lack of inversion
symmetry of the crystal structure. The last term describes the Zeeman coupling to
an applied magnetic field H . An ansatz for a single conical helix is:

ψ(r) = ψ0ψ̂0 + �hel ê
−eiQr + �∗

hel ê
+e−iQr (1.3)

Here,ψ0 is the amplitude of the homogeneous magnetization and�hel is the complex
amplitude of the helical order characterized by the pitch vector Q. The vectors
ê1 × ê2 = ê3 form a normalized dreibein where ê± = (ê1 ± iê2)/

√
2 and Q = Q ê3.

This brings us to the second term of the free energy density, fcub, which contains
spin-orbit coupling of second or higher order breaking the rotation symmetry of f0
already in zero field.
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fcub = Jcub
2

[
(∂xψx )

2 + (∂yψy)
2 + (∂zψz)

2
] + · · · (1.4)

This leading-order term of the cubic anisotropies, where Jcub 	 J , implies that the
easy axis of the helical propagation vector is either a 〈100〉 or a 〈111〉 direction as
explored by Bak and Jensen [40]. As the field is increased the Zeeman term gains
importance and finally overcomes the cubic anisotropies, stabilizing the conical state
with the propagation vector parallel to the magnetic field, in analogy to the spin-flop
transition of a conventional antiferromagnet. In order to account for more subtle
effects, further cubic anisotropies need to be considered consistent with the non-
centrosymmetric space group P213.

While the contributions in f0 and fcub are sufficient to describe the helical, the con-
ical, the field-polarized, and the paramagnetic ground states, specific issues require
consideration of the higher-order spin-orbit coupling terms mentioned above and
other contributions. For instance, for an universal account of the collective spin exci-
tations it is necessary to include dipolar interactions [29]. Moreover, just above the
paramagnetic-to-helimagnetic phase transition at Tc non-analytic corrections to the
free energy functional arise from strong interactions between isotropic chiral fluc-
tuations. These interactions suppress the correlation length and the second-order
mean-field transition resulting in a fluctuation-disordered regime just above Tc and a
fluctuation-induced first-order transition. The scenario relevant for cubic chiral mag-
nets was originally predicted by Brazovskii [62] and recently demonstrated in MnSi
by a study combining neutron scattering, susceptibility, and specific heat measure-
ments [63]. Depending on the strength of the interaction between the fluctuations,
for other chiral magnets an extended Bak-Jensen or a Wilson-Fischer scenario may
be relevant [64–66].

As a hidden agenda the fluctuation-induced first-order transition underscores that
the skyrmion lattice state is stabilized by thermal fluctuations, as depicted in Fig. 1.3a.
The leading-order correction arise from Gaussian fluctuations around the mean-
field spin configurations of the conical and the skyrmion lattice state, respectively.
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Fig. 1.3 Stabilization of the skyrmion lattice. a Theoretical magnetic phase diagram as obtained
from aGinzburg-Landau ansatz. The inset shows that thermal fluctuations already in Gaussian order
stabilize the skyrmion lattice at intermediate fields [18]. bMagnetic phase diagram as obtained from
Monte-Carlo simulations [67]
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Interestingly, both short-range and long-range fluctuations favor the skyrmion lattice
for intermediate magnetic fields [18]. Consistently, the skyrmion lattice forms rather
independently from the orientation of the underlying crystalline lattice, where the
cubic anisotropies only lead to a slightly anisotropic temperature and field range of
the skyrmion lattice phase pocket [68, 69] and determine the precise orientation of
the skyrmion lattice [18, 49].

Both the Brazovskii scenario and the stabilization of the skyrmion lattice by
thermal fluctuations have recently been corroborated by classical Monte Carlo sim-
ulations [67]. Here, a fully non-perturbative study of a three-dimensional lattice spin
model, i.e., going beyond Gaussian order, reproduced the thermodynamic signatures
associated with a Brazovskii-type fluctuation-induced first-order phase transition
and, as shown in Fig. 1.3b, the experimental magnetic phase diagram.

All of these recent advances compare and contrast with the seminal studies of Bog-
danov and coworkers, who anticipated the existence of skyrmions in non-centrosym-
metricmaterialswith a uniaxial anisotropy and in the presence of amagnetic field [16,
17]. In particular, based on mean-field calculations ignoring the importance of ther-
mal fluctuations, they concluded for cubic compounds that the skyrmion lattice
would be metastable. Moreover, recently they predicted more complex magnetic
phase diagrams comprising, besides the phases discussed so far, of meron textures
and skyrmion liquids [70, 71]. Putative evidence for such complex phase diagrams
has been reported in FeGe based on susceptibility [72, 73], specific heat [74], and
SANS data [50]. However, as illustrated in Sect. 1.4, all data reported to date for
all cubic chiral magnets are qualitatively extremely similar. Thus, when consistently
inferring the transition fields and temperatures by virtue of the very same conditions,
the magnetic phase diagrams of all compounds including FeGe are highly reminis-
cent of each other supporting strongly a rather universal scenario as described in the
following without evidence of these complexities.

1.4 Magnetic Phase Diagrams

In the following we focus on the determination of the magnetic phase diagrams of
cubic chiralmagnets based onmagnetization, ac susceptibility, and specific heat data,
where the conditions for determining the transition fields are confirmed by micro-
scopic probes, notably extensive neutron scattering. In the first part of this section
we present typical data, explain how transition fields or temperatures are defined,
and illustrate that demagnetization effects may lead to significant corrections. This
is followed in the second part by the presentation of magnetic phase diagrams of the
most-extensively studied stoichiometric compounds MnSi, FeGe, and Cu2OSeO3

as well as the magnetic and compositional phase diagrams of the most extensively
studied doped compounds, namely Mn1−xFexSi and Fe1−xCoxSi.
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1.4.1 Phase Transitions in the Susceptibility
and Specific Heat

The different magnetic states in the cubic chiral magnets and the phase transitions
between them give rise to distinct signatures in various physical properties. Exper-
imentally, the magnetic ac susceptibility and specific heat are easily accessible for
most compounds and allow the determination of a very detailed magnetic phase dia-
gram, based on feature-tracking. This provides the starting point for further studies
and motivated us to concentrate on these quantities in the following. As an overview,
we start with colormaps of the real and imaginary part of the ac susceptibility, Re χac

and Im χac, in Fig. 1.4a, b, where blue shading corresponds to low and red shading to
high values. As an example we show data for a cube-shaped single-crystal sample of
MnSi measured at an excitation frequency of 120Hz and an excitation amplitude of
0.5mT. The field was applied after zero-field cooling along an 〈100〉 axis, i.e., along
the hard direction for the helical propagation vector.

In Re χac the conical state is characterized by a plateau of high and rather con-
stant susceptibility (orange to red shading). The reduced value at low fields is asso-
ciated with the helical state. Just below the helimagnetic ordering temperature, Tc, a
plateau of reduced susceptibility in finite fields is characteristic for a single pocket of
skyrmion lattice state (light blue shading). Just above Tc an area of relatively large sus-
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Fig. 1.4 Typical magnetization, ac susceptibility, and specific heat data of MnSi. a Color map
of the real part of the ac susceptibility. We distinguish the following regimes; helical, conical,
skyrmion lattice (S), fluctuation-disordered (FD), paramagnetic (PM), and field-polarized (FP). A
field-induced tricritical point (TCP) is located at the high-field boundary of the FD regime. b Color
map of the imaginary part revealing considerable dissipation only between the conical and the
skyrmion lattice state. c–e Typical data of the magnetization, the susceptibility calculated from the
magnetization, dM/dH , as well as the real and imaginary part of the ac susceptibility as a function
of field. Note the definitions of the various transition fields. f Electronic contribution to the specific
heat as a function of temperature for several applied magnetic fields. Data has been offset for clarity
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ceptibility (green shading) is associated with the fluctuation-disordered (FD) regime
that emerges as a consequence of the Brazovskii-type phase transition from para-
magnetism to helimagnetism. At high temperatures or high fields, respectively, the
system is in a paramagnetic (PM) or field-polarized (FP) state with low susceptibility
(blue). A broad maximum observed in temperatures sweeps of Re χac (not shown)
marks the crossover between these two regimes [75]. Im χac only shows contributions
at the phase transitions and, in particular, between the skyrmion lattice and conical
state. Here, the finite dissipation suggests a regime of phase coexistence where the
nucleation process of topologically non-trivial skyrmions within the conical phase
and vice versa eventually triggers a first-order transition [31, 68, 76]. In contrast,
at the fluctuation-induced first-order transition between the skyrmion lattice and the
fluctuation-disordered regime as a function of temperature no significant contribution
to Im χac is observed.

In order to define the different transition fields and temperatures, it is instructive
to consider the typical field dependence of the magnetization, M , the susceptibility
calculated from the measured magnetization, dM/dH , and the measured ac suscep-
tibility for a temperature just below Tc as shown in Fig. 1.4c–e. Starting at H = 0,
i.e., in the helical state, with increasing field the material undergoes transitions to
the conical and the skyrmion lattice state before returning to the conical state and
finally reaching the field-polarized state above Hc2. Below Hc2 the magnetization
increases almost linearly as shown in Fig. 1.4c, where the changes of slope at the
different phase transitions are best resolved in the derivative dM/dH depicted as
open symbols in Fig. 1.4d. Here, we compare the measured ac susceptibility, Re χac,
with dM/dH which may be viewed as zero-frequency limit of Re χac.

At the transition between the helical and conical state and in the regimes between
the conical and the skyrmion lattice state dM/dH shows pronounced maxima that
are not tracked by Re χac. In the former case this discrepancy may be attributed to the
slow, complex, but well-understood reorientation of macroscopic helical domains.
In the latter case the discrepancy is accompanied by strong dissipation, which may
be inferred from Im χac in Fig. 1.4e and attributed to regimes of phase coexistence
between the conical and the skyrmion lattice state as expected for first-order phase
transitions. In these regimes both Re χac and Im χac show a pronounced dependence
on the excitation frequency with a characteristic frequency that increases with tem-
perature [68, 77].

We define the helical-to-conical transition at Hc1 as the maximum of dM/dH
that typically coincides with a point of inflection in Re χac. The low-field and high-
field boundary of the skyrmion lattice state, HA1 and HA2, may be fixed by max-
ima in dM/dH . The regimes of phase coexistence between the conical and the
skyrmion lattice state are characterized by dM/dH 
= Re χac and Im χac � 0, where
the corresponding boarders are labeled H±

A1 and H±
A2, respectively. For H < H−

A1 and
H > H+

A2 the constant susceptibility of the conical phase is observed, while in the
skyrmion lattice state for H+

A1 < H < H−
A2 the system displays a plateau of lower

susceptibility. The second-order transition from the conical to the field-polarized
state belonging to the XY universality class is finally indicated by a point of inflec-
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tion in both dM/dH and Re χac. Similar criteria may be used to extract transition
temperatures from data recorded as a function of temperature (not shown) [68].

Important related information on the nature of the phase transitions may be
extracted from measurements of the specific heat. Using a quasi-adiabatic large heat
pulse technique allows to determine transition temperatures with high precision [49,
76]. Figure1.4f shows the electronic contribution to the specific heat, i.e., after sub-
traction of the phononic contribution, divided by temperature, Cel/T , as a function
of temperature for different applied field values. In zero field a sharp symmetric
peak marks the onset of helimagnetic order at the fluctuation-induced first-order
transition at Tc. The peak resides on top of a broad shoulder that displays for small
fields a so-called Vollhardt invariance [78] at T2, i.e., an invariant crossing point
of the specific heat, ∂C/∂ H |T2

= 0, that coincides with a point of inflection in the
magnetic susceptibility, T ∂2M/∂T 2

∣
∣
T2

≈ T H∂2χ/∂T 2
∣
∣
T2

= 0 [75]. At intermedi-
ate fields two symmetric peaks, labeled TA1 and TA2, track the phase boundaries of the
skyrmion lattice state indicating two first-order transitions. In larger fields again one
anomaly, labeled Tc, is observed. Increasing the field further causes a change of the
shape of the anomaly from that of a slightly broadened symmetric delta peak to the
asymmetric lambda anomaly of a second-order transition at a field-induced tricriti-
cal point (TCP). This field-induced change from first to second order is expected in
the Brazovskii scenario, as the interactions between the chiral paramagnons become
quenched under increasing magnetic fields.

In the magnetic phase diagram, see Fig. 1.4a, b, the crossovers between the
fluctuation-disordered and the paramagnetic regime as well as between the para-
magnetic and the field-polarized regime as observed in temperature sweeps of the
susceptibility emanate from this TCP. An analysis of the entropy released at the
phase transitions (not shown) also corroborates the position of the TCP. It suggests
that the skyrmion lattice state possesses an entropy that is larger than the surrounding
conical state, consistent with a stabilization by thermal fluctuations [76]. The latter
is supported by the detailed shape of the phase boundary between the fluctuation-
disordered and the long-range ordered states, where the skyrmion lattice extents to
higher temperatures as compared to the conical state.

Following the detailed description of data recorded inMnSiwith themagnetic field
applied along 〈100〉, we now turn to Fig. 1.5 illustrating typical susceptibility data
as a function of field for different field directions and materials. Figure1.5a shows
data of MnSi for field applied along the major crystallographic axes after zero-field
cooling measured on two cubes, i.e., with unchanged demagnetization effects. In
general, the magnetic behavior is very isotropic. Changing the field direction only
influences the weakest energy scale in the system, the cubic anisotropies, and has two
well-understood consequences for the magnetic phase diagram. First, the helical-to-
conical transition field is smallest for the easy axis of the helical propagation vector
〈111〉 and largest for the hard axis 〈100〉. In addition, the transition is only second-
order if it is symmetry-breaking and otherwise represents a crossover. Second, the
extent of the skyrmion lattice in both temperature and field decreases as the conical
state is favored by the cubic anisotropies, i.e., in MnSi it is largest for field along
〈100〉 and smallest for 〈111〉. It is important to note, that even for field along the easy



12 A. Bauer and C. Pfleiderer

T

M H

〈 〉
〈 〉
〈 〉
〈 〉M

H

H

T

M
H

H

H 〈 〉H 〈 〉

M
H

H

x x

T
x

H 〈 〉

M
H

H

T

H 〈 〉

x x

M
H

H

T
x

(a) (b) (c) (d) (e)

Fig. 1.5 Typical field dependence of the susceptibility for a temperature crossing the skyrmion lat-
tice state. a Real and imaginary part of the ac susceptibility as well as susceptibility calculated from
the magnetization, dM/dH , for MnSi and fields along major crystallographic directions. Besides
well-understood anisotropies of the helical-to-conical transition and the extent of the skyrmion
lattice phase pocket, the magnetic properties of MnSi are essentially isotropic. b–e Susceptibility
for Mn1−xFexSi (x = 0.04), FeGe, Fe1−xCoxSi (x = 0.20), and Cu2OSeO3. Qualitatively very
similar behavior is observed. Data in panel (c) taken from [73]

axis of the helix the skyrmion lattice is observed for all chiral magnets questioning
a stabilization of the skyrmion lattice by cubic anisotropies only. In fact, for doped
compounds such as Fe1−xCoxSi or Mn1−xFexSi the anisotropies are usually less
pronounced or even completely suppressed, presumably due to the large amount of
chemical disorder present in the system [19, 75], and yet the skyrmion lattice state
represents nonetheless a well-defined stable phase.

Figure1.5b–e show typical susceptibility data for Mn1−xFexSi (x = 0.04), FeGe,
Fe1−xCoxSi (x = 0.20), and Cu2OSeO3 highlighting the universal aspects of differ-
ent cubic chiralmagnets. Despite the different temperature, field, length, andmoment
scales the susceptibilities of the different materials are qualitatively highly reminis-
cent. Omitting quantitative information on temperature, field, and susceptibility, even
an expert would struggle to distinguish data between the different materials.

It is finally essential to account for demagnetization effects, for instancewhen data
recorded on samples with different sample shapes are combined in a single magnetic
phase diagram. In general, the internal magnetic field, H int, is calculated as H int =
Hext − NM(Hext) with the externally applied magnetic field Hext and the 3 × 3
demagnetization matrix N that obeys tr {N} = 1 in SI units. While a proper treatment
of the dipolar interactions in the cubic chiral magnets requires to take several matrix
entries into account [29], in most cases consideration of the scalar equation Hint =
Hext − N M(Hext) is sufficient, in which for field along the z-direction the matrix
entry Nzz is referred to as N . Note that for the measured ac susceptibility, χ ext

ac ,
not only the field scale but also the absolute value of the susceptibility depends on
demagnetization effects via the applied excitation field H ext

ac .
From a practical point of view many samples are essentially rectangular prisms

for which effective demagnetization factors for fields applied along the edges may be
calculated following [79]. In addition, in the cubic chiral magnets the susceptibility
assumes essentially a constant value in the conical phase. Using the measured value,
χ ext
con, as a first approximation for the entire helimagnetically ordered part of the

magnetic phase diagram, i.e., for T < Tc and H < Hc2, the magnetization may be
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expressed as M(Hext) = χ ext
conHext = χ int

conHint. Hence, the internal and the externally
applied magnetic fields are related by:

Hint = Hext
(
1 − Nχ ext

con

) = Hext

1 + Nχ int
con

(1.5)

We note that the internal value of the constant susceptibility of the conical state, χ int
con,

is an important dimensionless measure for the effective strength of dipolar interac-
tions in the chiral magnets [29]. If the magnetic properties and a second quantity,
e.g., electrical resistivity, are determined on samples with differing demagnetization
factors, N1 and N2, the formula to calculate the internal field of the second sample
may be written as:

Hint,2 = Hext,2

(

1 − N2
χ ext
con,1

1 − χ ext
con,1(N1 − N2)

)

(1.6)

In the field-polarized state above Hc2 one may, again in first approximation, assume
the magnetization as saturated and thus M(Hext) = χ ext

conH ext
c2 = χ int

conH int
c2 leading to

a constant offset, Hint = Hext − Nχ ext
conH ext

c2 .
Despite the rather crude approximation given above, this treatment proves to be

sufficient to account for the most prominent effects of demagnetizing fields in the
chiral magnets such as the shift of transition fields. Additionally, a smearing of phase
transitions and very broad regimes of phase coexistence between the conical and the
skyrmion lattice state may be observed in samples with large and, in particular,
inhomogeneous demagnetization effects [68]. Such unfavorable sample shapes are,
for instance, thin platelets with their short edge along the field or irregular shapes
in general. Materials with a large absolute value of the susceptibility intensify the
issue.

1.4.2 Magnetic Phase Diagrams for Different Materials

Using the definitions for the transition fields and temperature given in the previous
subsection on susceptibility and specific heat data we have compiled magnetic and
compositional phase diagrams of various cubic chiral magnets as shown in Fig. 1.6.
Data extracted from measurements of the derivative of the magnetization, the ac
susceptibility, and the specific heat are shown as circles, squares, and diamonds,
respectively. Light and dark colors represent data from temperature and field sweeps,
respectively. Magnetic fields were applied after zero-field cooling. All field val-
ues are given on internal field scales, i.e., after correcting for demagnetization
effects. In general the magnetic phase diagrams of the cubic chiral magnets are
qualitatively extremely similar. We distinguish the following six regimes; helical,
conical, skyrmion lattice (S), fluctuation-disordered (FD), paramagnetic (PM), and
field-polarized (FP). In addition, we mark the regime of phase coexistence between
the conical and the skyrmion lattice state by a faint red shading. Solid and dashed lines
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Fig. 1.6 Magnetic phase diagrams of selected cubic chiral magnets. a MnSi. b, c Mn1−xFexSi.
Substitutional doping of MnSi with Fe leads to a suppression of the ordering temperature and
a decrease of the helix wavelength, λh. The magnetic phase diagram, as shown in the inset for
x = 0.04, stays qualitatively similar for x ≤ 0.10.dFeGe. Susceptibility data from [72, 73], specific
heat data from [74], and further information from [42, 80, 81] were analyzed in the same manner
as for all other compounds. e Fe0.8Co0.2Si. f, g Fe1−xCoxSi. As a function of cobalt content x
the characteristic temperature, field, and length scales may be varied over a large range. Values are
taken from [19, 82–87]. h Cu2OSeO3. In contrast to the other materials, this local-moment insulator
displays substantial magnetoelectric coupling. Still, the magnetic phase diagram is unchanged

indicate phase transitions and crossovers, respectively, while dotted lines represent
guides to the eye.

Figure1.6a reproduces the magnetic phase diagram ofMnSi for field along 〈100〉,
i.e., the hard axis for the helical propagation vector, as discussed in the previous
subsection. The inset shows the phase diagram across the entire parameter range
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of long-range helimagnetic order. We note that the helix wavelength, λh, in MnSi
increases from ∼165Å at Tc to ∼180Å at lowest temperatures [36, 57, 63].

Substitutional doping of iron at the manganese sites of MnSi results in a reduction
of the helimagnetic ordering temperature while the critical field values in the zero-
temperature limit change onlyweakly, cf. Fig. 1.6b, c. Themagnetic phase diagram is
qualitatively very similar to pureMnSi for x ≤ 0.10 as shown in the inset of Fig. 1.6b
for Mn1−xFexSi with x = 0.04. The most notable difference concerns the helical
state, which forms in Mn1−xFexSi only properly after zero-field cooling. In addition,
Hc1 becomes essentially isotropic and increases with decreasing temperature. These
effects, however, may be related to the increased amount of disorder present in the
system. The helix wavelength and hence also the skyrmion lattice constant decreases
by up to a factor of roughly 2 resulting in an increase of the skyrmion density by a
factor of 4 [48, 88].

The complex quantum critical behavior that emerges at high iron concentrations,
where static magnetic order is fully suppressed, is the topic of ongoing research
[65, 75]. Doping with iron, cobalt, and nickel leads to an essentially identical mod-
ification of the magnetic behavior if scaled by the number valance electrons per
formula unit [75, 89]. Doping with chromium, i.e., reducing the number of valance
electrons, leads to a suppression of Tc comparable to iron doping [90]. This behavior
is consistent with the notion that the main effects of chemical doping are due to a
rigid shift the Fermi level, as recently inferred from a combined study of ab initio
calculations and the electric transport properties in Mn1−xFexSi [88].

We now turn to FeGe which is rather similar to MnSi, however, with a transition
temperature near room temperature and λh = 700Å. Around 230K the easy direc-
tion of the helical pitch changes from 〈100〉 at high temperatures to 〈111〉 at low
temperatures, where a large thermal hysteresis of ∼35K is observed [81]. Recent
publications [50, 72–74] claimed putative experimental evidence for the formation
of a very complex magnetic phase diagram with multiple pockets and precursor phe-
nomena around the skyrmion lattice state. The authors concluded that these findings
prove that the skyrmion lattice is in fact not stabilized by thermal fluctuations but by
a combination of uniaxial anisotropies and a softened modulus of the magnetization.

In stark contrast, applying accurately the same definitions given in the previous
subsection to the data published in [72–74] provides the phase diagram shown in
Fig. 1.6d. This phase diagram strongly resembles that of the other cubic chiral mag-
nets. The broad regimes of phase coexistencemay be attributed to large demagnetiza-
tion effects as a consequence of the relatively large absolute value of the susceptibility
in FeGe and the shape of the samples used in these studies; we extract χ ext

con = 1.6 and
N ≈ 0.33 from [73] yielding χ int

con = 3.4. Most importantly, however, we observe no
signatures of additional phase pockets or mesophases. We finally note that a temper-
ature discrepancy of the maximum in the specific heat in [73, 74] indicates that care
has to be taken when combining data from different samples or measurement setups.

Figure1.6e–g are dedicated to Fe1−xCoxSi, a pseudo-binary B20 system that dis-
plays helimagnetism in a large composition range, 0.05 � x � 0.8 [82, 85, 91],
albeit the parent compounds FeSi and CoSi are a paramagnetic insulator [92] and a
diamagnetic metal [93], respectively. Starting from the strongly correlated insulator
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FeSi [94], an insulator-to-metal transition takes place around x ≈ 0.02 [84]. How-
ever, due to the comparatively high absolute value of the electrical resistivity and
an upturn at low temperatures helimagnetic Fe1−xCoxSi is typically referred to as a
strongly doped semiconductor [82, 86, 95].

Compared to the stoichiometric helimagnets, Fe1−xCoxSi offers the opportunity to
vary the characteristic parameters of the helimagnetism over a wide range by compo-
sitional tuning while the magnetic phase diagrams stays that of a typical cubic chiral
magnet, cf. Fig. 1.6e. As summarized in Fig. 1.6f, g, the helimagnetic transition tem-
perature reaches up to∼50K, the critical fields assume values up to∼150mT, and the
helix wavelength ranges from about 300Å to more than 2000Å. As for dopedMnSi,
a proper helical state is observed only after zero-field cooling. Fe1−xCoxSi displays
easy 〈100〉 axes that, especially for larger cobalt contents, are less pronounced than
for other cubic chiral helimagnets [87]. For x = 0.20 a helical pitch along 〈110〉 was
identified in [19]. The latter study also revealed the existence of a skyrmion lattice in
Fe1−xCoxSi that is sensitive to the field and temperature history. While the reversible
pocket of skyrmion lattice state is comparable to other systems, field cooling may
result in a metastable extension down to lowest temperatures allowing for concep-
tionally new types of experiments [31]. A similar behavior was later also discovered
in low-quality MnSi samples under applied pressure [96]. Moreover, depending on
the field direction, two Skyrmion lattice domains with different in-plane orientations
were observed leading to a twelvefold small-angle scattering pattern [97].

Figure1.6h finally shows the magnetic phase diagram of copper-oxo-selenite,
Cu2OSeO3. The crystalline structure of this compound is more complex than that of
the B20 transitionmetal systems, but also belongs to space group P213 [98].Magnet-
ically, on the strongest scale Cu2OSeO3 shows local-moment ferrimagnetic order of
the spin- 12 Cu

2+ ions. Here, the ferromagnetically aligned moments on the CuI sites
couple antiferromagnetically to the ions on the CuII sites leading to a 3:1 ratio [99]
with exchange constants JFM = −50K and JAFM = 65K [100]. No breaking of the
ferrimagnetic coupling is observed up to 55T [101]. The ferrimagnetism is superim-
posed by a long-wavelength helical modulation based on the Dzyaloshinskii-Moriya
interaction with λh = 620Å [26]. The resulting magnetic phase diagram is highly
reminiscent of the helimagnetic B20 compounds with an easy 〈100〉 for the helical
propagation vector and a delicate pinning within the skyrmion lattice state [49, 102].
A study using resonant soft x-ray diffraction further suggested that the CuI and CuII

sites may form individual but coupled skyrmion lattices that are rotated by a few
degree with respect to each other giving rise to a moiré pattern [103]. More recent
work reveals, however, that this conjecture may be wrong.

Cu2OSeO3, albeit being a non-polar insulator, possesses a magnetically induced
electrical polarization in finite fields and, in particular, within the skyrmion lattice
state [69]. The polarization resulting from this magnetoelectric coupling may be
described in a d-p hybridization model [104], where the covalency between copper
d and oxygen p orbitals is modulated according to the local magnetization direc-
tion via the spin-orbit interaction leading to a local electric dipole along the bond
direction [69]. Hence, though Cu2OSeO3 is actually a (heli-)ferrimagnetic magneto-
electric, it is often erroneously referred to as a multiferroic. The origin of this notion
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may be seen in the hitherto unique opportunity to manipulate a topologically non-
trivial entity of magnetoelectric nature using various external control parameters, see
for example [28, 105–108].

1.5 Emergent Electrodynamics

Aparticularly exciting consequence of the non-trivial topology of the skyrmions con-
cerns their coupling to spin currents. In the following we focus on the consequences
in metallic compounds and we refer to by Markus Garst for a more detailed account.
The spin structure of the skyrmion, as seen from the point of view of an electron tra-
versing it, gives rise to real-space Berry phases which may be expressed as emergent
magnetic and electric fields, Be

i = �

2 εi jkψ̂ · ∂ j ψ̂ × ∂kψ̂ and Ee
i = �ψ̂ · ∂i ψ̂ × ∂t ψ̂ ,

respectively, with ∂i = ∂/∂ri and ∂t = ∂/∂t [111]. As a consequence an additional
topological contribution to the Hall effect may be observed in the skyrmion lattice
state as illustrated in Fig. 1.7a [109].
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Fig. 1.7 Examples of the efficient coupling of spin currents to the skyrmion lattice. a Topological
Hall contribution, 
ρ

top
xy , in MnSi as a function of field [109]. b Topological Hall contribution,


ρ
top
xy , as a function of hydrostatic pressure in MnSi [96]. The intrinsic size (open symbols) may

only be observed after field-cooling down to the lowest temperatures. The inset shows the pressure-
temperature phase diagram of MnSi highlighting the extended regime of non-Fermi liquid (NFL)
behavior [22, 110]. c, d Anomalous Hall conductivity, σA

xy , and topological Hall constant, Rtop
yx , as a

function of themagneticmoment as varied, e.g., by iron or cobalt doping. First-principle calculations
and experimental data are in excellent agreement [88]. e Drift velocity of the skyrmion lattice, vd‖,
as a function of current density, j . Ultra-low current densities in the order of jc ∼ 106 A/m2 unpin
the skyrmion lattice [24, 111]
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Using the charge carrier spin polarization P and assuming the absence of spin-
flip scattering, while non-spin-flip scattering is captured by the normal Hall constant
R0, the topological Hall contribution may be estimated as 
ρ

top
xy = P R0Beff . The

effective emergent field, Beff , is topologically quantized in the sense that it is given
by the product of the emergent flux quantum that each skyrmion supports, φ0 = h/e,
and the skyrmion density φ. Thus, the sign of the topological Hall contribution
allows to distinguish, in principle, between skyrmions (� = +1) and anti-skyrmions
(� = −1), such as in MnSi, provided the normal Hall constant R0 is sufficient to
express the details of the band structure [109].

In real materials the electronic structure at the Fermi surface may contribute in
different ways and the spin polarization as well as the skyrmion lattice constant
may change as a function of temperature or field. In addition, processes such as
spin-flip scattering may cause a reduction compared to the intrinsic value of 
ρ

top
xy .

For instance, in MnSi the topological Hall contribution in the skyrmion lattice is
of the order of 4 n cm whereas an intrinsic topological Hall signal of the order of
50 n cm is expected for its emergent field of Beff = −13T [96]. Field-cooling the
skyrmion lattice down to low temperatures allows to reduce the finite temperature
effects, as it is for instance possible in high-pressure studies of MnSi. Here, as
shown in Fig. 1.7b, the intrinsic value of
ρ

top
xy could be inferred which in turn scales

with the charge carrier spin polarization that follows the reduced magnetic moment
mred = m(p)/m(p = 0).

At higher pressures where static helimagnetic order inMnSi is fully suppressed at
pc = 14.6kbar more complex behavior has been observed, cf. inset of Fig. 1.7b [110,
112, 113]. In particular, in a large pressure and field range the standard description
of the metallic state, namely the Fermi liquid (FL) theory, breaks down [20, 114]. In
addition, neutron scattering reveals so-called partial magnetic order in a pocket above
pc [21]. In combination with the lack of observable relaxation in muon data [115],
it has been concluded that the spin correlations of the partial order are dynamic
on a timescale between 10−10 s and 10−11 s. Finally, a clear connection between
the topological Hall effect in the skyrmion lattice at ambient pressure and a large
topological Hall signal that coincides with the non-Fermi liquid (NFL) regime above
pc empirically suggests that spin correlations with non-trivial topological character
drive the breakdown of Fermi liquid theory [22].

Calculations based on density functional theory allow to determine the sign and
themagnitude of the anomalous and the topological Hall effect and, in particular, how
they evolve when the spin polarization changes. Experimentally, the latter may be
realized by substitutional doping of Fe or Co into MnSi, where excellent agreement
between theory and experiment has been observed as shown in Fig. 1.7c, d [88]. These
results provide the quantitative microscopic underpinning that, while the anomalous
Hall effect is due to the reciprocal-space Berry curvature [116], the topological Hall
effect originates in real-space Berry phases. As a theoretical prediction that awaits
further confirmation even contributions arising frommixed phase-spaceBerry phases
have been proposed [96, 117].
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The efficient coupling of spin currents to the magnetic structure, together with the
exceptional long-range order of the skyrmion lattice [46] and the resulting very weak
collective pinning to defects, causes a sizeable response of the magnetic textures at
ultra-low current densities. Above an exceptionally low threshold current density
of the order of jc ∼ 106 A/m2 the skyrmion lattice unpins and begins to drift [24,
118]. Numerical simulations revealed that the skyrmion motion exhibits a universal
current-velocity relation that is (on the scale of the study) unaffected by impurities
and non-adiabatic effects [119]. Flexible shape-deformations of individual skyrmions
and the skyrmion lattice permit to avoid pinning centers.

Theoretically, the spin transfer torques in the cubic chiral magnets may be
accounted for in the framework of a Landau-Lifshitz-Gilbert equation using the
Thiele approach [120, 121]. Here, aMagnus force perpendicular to the current direc-
tion and a dissipative drag force along it are balanced by pinning forces, e.g., due
to defects. The Magnus force represents the effective Lorentz force arising from the
emergent magnetic field Be and leads to a certain angle between the current direc-
tion and the drift direction of the skyrmion lattice. According to Faraday’s law of
induction, a moving skyrmion, which supports exactly one quantum of emergent
magnetic flux, may then induce an emergent electric field Ee that inherits the topo-
logical quantization [122]. These electric fields have been observed directly [111]. A
scaling plot as depicted in Fig. 1.7e reveals a universal relation between the current
density, j , and the drift velocity of the skyrmion lattice, vd‖, where typical pinning
velocities are of the order of 0.1mm/s, i.e., the drift velocity of conduction electrons.

1.6 Conclusions and Outlook

Taken together, cubic chiral magnets with non-centrosymmetric space group P213
represent a class of materials that share a universal magnetic phase diagram. The
skyrmion lattice state occupies a single phase pocket and the entire magnetic phase
diagram is well accounted for by a Ginzburg-Landau approach including the effects
of thermal fluctuations. Depending on the specific material, key parameters such as
the transition temperatures, critical fields, or the helix wavelength may be varied by
two orders of magnitude. With compounds ranging from pure metals to magneto-
electric insulators, this material class provides well-understood model systems for
experiments, theory, and simulations. In recent studies, for instance, aspects were
addressed such as the topological unwinding at the transition to conventional heli-
magnetic order [31] or the collective excitations of the different spin structures [27,
129–131].

Current research activities on topologically non-trivial spin states, however,
are not restricted to cubic chiral magnets. In thin films or monolayers, where
the inversion symmetry is broken by the surface, skyrmions may be stabilized
by the Dzyaloshinskii-Moriya interaction as combined with four-spin exchange
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interactions [132, 133].Another route towards skyrmionic texturesmaybe long-range
magnetodipolar interactions [134]. In such systems, it was already demonstrated
that skyrmions may be created and annihilated individually using spin-polarized
currents of a scanning tunneling microscope [133] or laser pulses [136]. The cre-
ation, manipulation, and the dynamics of skyrmions in thin films, nanowires, and
patterned nanostructures offer great potential for future applications, see for instance
[23, 136–143]. The efficient gyromagnetic coupling, the topological stability, and
the small size of the skyrmions promise devices for ultra-dense information storage
and spintronics [25], while their unique collective excitations may be exploited for
the design of conceptually new microwave devices [28, 29, 144].

In parallel, topologically non-trivial spin states have been identified in a rapidly
growing number of bulk compounds suggesting that these complex magnetic struc-
tures may be in fact rather common. In Fig. 1.8 we summarize three recent exam-
ples. The first material, CoZn, crystallizes in the cubic space group P4132 or P4332,
depending on the handedness, and orders magnetically well above room tempera-
ture [145]. Doping manganese into the system, see Fig. 1.8a, reduces the transition
temperature. Figure1.8b shows themagnetic phase diagram of Co8Zn9Mn3 extracted
from the magnetic susceptibility. It is highly reminiscent to that of the cubic chiral
magnets including a pocket of skyrmion lattice state as identified by LF-TEM and
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Fig. 1.8 Topologically non-trivial spin structures in further bulk materials. a Part of the compo-
sitional phase diagram of the system Co10−xZn10−yMnx+y . Long-wavelength helimagnetic order
with transition temperatures exceeding room temperature has been reported [123].bColormapof the
susceptibility of Co8Zn9Mn3 revealing a skyrmion lattice state and corresponding real-space spin
structure in Co8Zn10Mn2 as obtained by LF-TEM [123]. The behavior is highly reminiscent of the
cubic chiral magnets. c Magnetic phase diagram of GaV4S8 exhibiting a Néel-type skyrmion lattice
and various types of ferroelectric order [30, 124]. d Magnetic phase diagram of MnGe [125–127]
giving rise to a simple cubic lattice of spin whirls as recently observed by LF-TEM [128]
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SANS measurements [123]. Hence, the material system Co10−xZn10−yMnx+y is not
only the first bulk compound with a space group other than P213 that exhibits a
skyrmion lattice state, but also the first compound stabilizing skyrmions above room
temperature.

Another important example is shown in Fig. 1.8c, which depicts the magnetic
phase diagram of the lacunar spinel GaV4S8. This system crystallizes in the cubic
space group F 4̄3m at room temperature. At TJT = 44K GaV4S8 shows a structural
phase transition [146] into the rhombohedral space group R3m driven by Jahn-Teller
orbital order and accompanied by an onset of ferroelectricity (FE). The structural
transition creates a multi-domain state with submicron-thick sheets of the four differ-
ent rhombohedral domains [30]. Below TC = 13K magnetic order sets in [147] and
as a function of temperature and field a rich magnetic phase diagram unfolds with
various magnetically ordered states of multiferroic nature [124]. This phase diagram
hosts a pocket of ferroelectric spin vortices forming a hexagonal skyrmion lattice
as identified by means of force microscopy and SANS [30]. However, in contrast to
the cubic chiral magnets or Co10−xZn10−yMnx+y where Bloch-type chiral skyrmions
are described in terms of spin helices, in GaV4S8 Néel-type non-chiral skyrmions
are addressed in form of a superposition of spin cycloids. Moreover, while in the
cubic chiral magnets the skyrmion lines are always essentially parallel to the applied
magnetic field, in GaV4S8 the vortex cores are confined along an 〈111〉 axis. In com-
bination with the multiferroic nature of this polar magnetic semiconductor new ways
of controlling and manipulating skyrmions may be possible.

Last but not least, we return to MnGe which is isostructural to the cubic chiral
magnets with a magnetic phase diagram that differs from the ones described so
far. In this compound, measurements of the topological Hall effect [125] and the
topological Nernst effect [127] as well as data from SANS [126] and LF-TEM [128]
consistently suggest the formation of a simple cubic lattice of spin whirls in zero
and finite field. The magnetic lattice vectors are oriented along the 〈100〉 axes of the
crystal lattice. The resulting magnetic phase diagram is depicted in Fig. 1.8c, where
the inset schematically shows the spin structure and the upper panel shows the in-
plane distribution of magnetic moments as obtained from LF-TEM. Compared to the
cubic chiral magnets the corresponding lattice period is relatively small and exhibits
a strong increase from 3nm at low temperatures to 6nm close to Tc = 170K. To
what extent this marks the starting point of a new generic understanding of complex
spin textures remains to be seen.
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Chapter 2
Topological Skyrmion Dynamics
in Chiral Magnets

Markus Garst

Abstract The cubic chiral magnets form topological skyrmion textures due to the
presence of the Dzyaloshinskii-Moriya interaction. We briefly review in this chapter
the dynamics of these magnetic textures and their interaction with magnon and elec-
tron currents, which is fundamentally influenced by their topological origin. In par-
ticular, the effective Thiele equation of motion of the skyrmion is governed by a
gyrotropic force that is proportional to its topological charge. Moreover, the continu-
ity equation associated with the conservation of topological charge can be interpreted
as theMaxwell-Faraday equation of an emergent electrodynamics.As a consequence,
magnons as well as electron excitations experience, for example, a topological Hall
effect as well as a skyrmion-flow Hall effect.

2.1 Introduction

Ferromagnets in a cubic crystal host that possesses a chiral, non-centrosymmetric
point group become unstable in the presence of a weak spin-orbit coupling, λSOC.
Instead of forming homogeneously polarized magnetic domains, the magnetization
instead tends to twist on long length scales inversely proportional to λSOC. This
twist of the magnetization is favored by the Dzyaloshinskii-Moriya interaction that
competes with the usual exchange interaction and gives rise to modulated chiral
magnetic textures like magnetic helices and chiral magnetic skyrmions, see Fig. 2.1.

Interestingly, in the limit of small spin-orbit coupling, λSOC, this competition is
captured within an effective low-energy theory that is specified by only a few para-
meters resulting in a universal description of magnetic phenomena. The combination
of weak λSOC and chiral but cubic crystal symmetry thus gives rise to a magnetic
universality. This probably applies to a whole class of chiral magnets with space
group P213 (B20) that encompasses the metals MnSi and FeGe, the semiconductor
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Fig. 2.1 Illustration of a amagnetic helix,b a single chiral skyrmion in a ferromagnetic background
and c a magnetic skyrmion crystal

Fe1−xCoxSi, and the insulator Cu2OSeO3, which indeed share a common magnetic
phase diagram irrespective of their electronic properties.

The material MnSi is especially well-studied and known to exhibit a hierarchy of
energy scales that reflect this universality [1] as discussed in Chap.1. The strongest
energy scale is the magnetic exchange that aligns the magnetic moment on short
length scaleswhile theweak spin-orbit coupling results at zeromagnetic field,H = 0,
in the formation of a magnetic helix. The weakest energy scale is associated with
the cubic anisotropies that align the helix with a crystallographic 〈111〉 direction. A
finite field H �= 0 competes with the cubic anisotropies and at a critical field Hc1 the
helix is oriented in the field direction so that Zeeman energy can be gained by canting
the magnetic moments towards the field resulting in a conical helix configuration.
Finally, at a second critical field Hc2 a transition into the fully field-polarized state
occurs, see the phase diagram in Fig. 1.1.

Themagnetic phase transitions in the cubic chiralmagnets that obtain as a function
of temperature T and field H attract attention since the early work of Bak and Jensen
[2]. At zero field, the transition as a function of T is weakly first-order [3, 4] with a
small latent heat [5]. The critical chiral paramagnons are strongly interacting and, in
fact, drive the transition first-order [6–8]. The formation of the long-ranged ordered
magnetic helix with pitch Q—a one-dimensional magnetic crystal with periodicity
2π/Q—can be viewed as a weak crystallization process [9] that is accompanied
with strongly interacting critical fluctuations. The resulting strong correlations of
critical paramagnons is reflected in a substantial renormalization of their correlation
length that is quantitatively described by Brazovskii theory [6, 10]. At finite field,
correlations of the magnetization involving a set of momentum vectors that form
equilateral triangles become important and eventually result in the formation of a
two-dimensional magnetic crystal in a small magnetic field range close to the critical
temperature. Here, the magnetization does not vary along the field direction Ĥ but
only within the plane perpendicular to Ĥ . It turns out that this magnetic crystal can
be identified as a lattice of chiral magnetic skyrmions [11–13].

http://dx.doi.org/10.1007/978-3-319-25301-5_1
http://dx.doi.org/10.1007/978-3-319-25301-5_1
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The importance of magnetic skyrmion configurations in the cubic chiral magnets
has been theoretically anticipated by Bogdanov and collaborators in early seminal
work [14–16]. The direction of the magnetization, that we denote by n̂ in the follow-
ing, covers the 2-sphere, S2, which is the order parameter space of the magnet. As the
second homotopy group π2(S2) = Z is non-trivial, there exist topological textures
in two spatial dimensions d = 2. The associated topological charge density within
the (x, y) plane reads

ρtop = 1

4π
n̂(∂x n̂ × ∂y n̂). (2.1)

The two-dimensional spatial integral over the charge density is quantized, for exam-
ple, if the unit vector n̂ on the boundary of the integration area points in a common
direction,

∫
dxdy ρtop = W ∈ Z, (2.2)

where W is the winding number of the texture. As the total topological charge in
the system is quantized, topologically non-trivial configurations can be counted. We
will identify a magnetic configuration with a finite winding number, in general, as
a skyrmion. In the absence of singularities of the n̂ field, i.e., hedgehog defects in
2 + 1 space-time, there exists a continuity equation for the topological charge,

∂tρtop + ∂α j topα = 0, (2.3)

with α = x, y. The topological charge current is defined by

j topα = 1

4π
ε0αβ n̂(∂β n̂ × ∂t n̂), (2.4)

with α,β = x, y and ε0αβ is the totally antisymmetric tensor with ε0xy = 1. The
conservation law (2.3) directly follows from the property n̂∂μn̂ = 0 valid for the unit
vector n̂ for all μ = x, y, t .

Within the skyrmion lattice phase of the cubic chiral magnets, the magnetization
varies only within the plane perpendicular to the field, which identifies an effective
two-dimensional system where skyrmion configurations can be defined according to
(2.2). Integrating the topological charge ρtop over a single primitive unit cell of the
two-dimensional magnetic crystal yields just unity (up to a sign) so that each unit
cell houses a single magnetic skyrmion, as will be discussed in more detail below. As
the magnetic configuration is translationally invariant along the field, each skyrmion
extends along the field direction giving rise, in fact, to skyrmion strings, see Fig. 1.1
for an illustration.

It is their finite topological charge (2.1) thatmakes the topic ofmagnetic skyrmions
so appealing, see also [17] for a recent review article. As will be explained in
the following subsections, the finite topological winding of skyrmions leads to

http://dx.doi.org/10.1007/978-3-319-25301-5_1
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various fascinating topological transport phenomena like a skew scattering of
magnons resulting in a magnon Hall effect, a spin-Magnus force that governs the
dynamics of skyrmion configurations, and an emergent electrodynamics for elec-
trons traversing the topological skyrmion texture that gives rise to a topological Hall
effect and a skyrmion-flow Hall effect.

2.2 Effective Theory of Cubic Chiral Magnets

Themagnetism in the cubic chiral magnets, in general, has different origins.Whereas
in the metallic systems the magnetization might be attributed to the magnetic
moments of the itinerant electrons, in the insulating compounds the magnetization
derives from localized spins. Nevertheless, the effective theory describing the mag-
netic properties of all these materials turn out to be the same in the limit of weak
spin-orbit coupling.

For the metallic systems, it is naturally to start from an effective Landau-Ginzburg
functional for the magnetization M = μφ with the magnetic moment density μ
and a dimensionless field φ. The free energy density functional f = f0 + fcubic +
fdipolar + · · · contains various contributions; the first term reads [1, 2]

f0 = J

2
(∇iφ j )

2 + Dφ(∇ × φ) + r

2
φ2 + u

4! (φ
2)2 − μ0μφH . (2.5)

It is the standard low-energy continuum φ4-model for ferromagnetism but supple-
mented by theDzyaloshinskii-Moriya interaction D. This interaction D requires lack
of inversion symmetry as it is linear in the gradient. Furthermore, it is attributed to
spin-orbit coupling, D ∼ λSOC, as it mixes the spatial indices of the gradient with
indices of the magnetization field. Note, however, that the Dzyaloshinskii-Moriya
interaction is still symmetric with respect to a combined rotation of real and spin
space due to the high symmetry of the cubic crystal class [14]. The sign of D defines
the chirality of the system, and it is directly related to the underlying chirality of the
atomic crystal. In the following, we assume without loss of generality that D > 0
favouring right-handed magnetic helices.

The term fcubic accounts for contributions that break the rotation symmetry due
to cubic anisotropies. A representative contribution reads [2, 18]

fcubic = Jcubic
2

[
(∂xφx )

2 + (∂yφy)
2 + (∂zφz)

2
]

+ · · · . (2.6)

The cubic anisotropies fcubic are important for the description of the transition at
the first critical field Hc1. In the following, however, the term fcubic will be of only
minor importance and not be further discussed. Finally, the term fdipolar contains the
dipolar interaction between the magnetic moments. These dipolar interactions are
important, for example, for the quantitative description of magnetic resonances [19].
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In thin films, they also give rise tomagnetic anisotropies that influences, in particular,
the stability of the skyrmion crystal phase [15]. In order to simplify the discussion,
we will however neglect them in the following.

As the Dzyaloshinskii-Moriya interaction is linear in the gradient the magneti-
zation can gain energy by allowing a spatial modulation. The competition with the
exchange energy J eventually result in modulated magnetic textures with typical
wavevectors Q ∼ D/J that are small in spin-orbit coupling Q ∼ λSOC. Importantly,
in the limit of small λSOC this competition is thus fully captured by the low-energy
continuum description (2.5) allowing to neglect higher order gradient terms like
(∇2φ)2.

Approximating φ(r) = φ n̂(r) with a constant amplitude φ, the free energy den-
sity functional f0 simplifies to f0 = L + rφ2

2 + uφ4

4! with the non-linear sigma model

L = ρs

2

[
(∇i n̂ j )

2 + 2Qn̂(∇ × n̂) − 2κ2n̂ Ĥ
]

(2.7)

where we introduced the stiffness ρs = Jφ2, the pitch length Q = D/J and
κ2 = μ0μH

Jφ
parametrizes the strenght of the applied magnetic field. The same contin-

uumdescription in terms of a unit vector n̂ also arises in the classical limit of localized
spins in the insulating cubic chiral magnets. Many of the interesting aspects of chiral
magnets are captured by the theory (2.7).

With the help of (2.7), the favouring ofmodulated textures can be easily illustrated.
For a magnetic field along the z-axis, Ĥ = ẑ, we use the parametrization for the
unit vector

n̂T = (sin θ cosϕ, sin θ sinϕ, cos θ) (2.8)

so that the Lagrangian can be written in the form

L = ρs

2

[
(∂iθ − Qêϕi )

2 + (sin θ∂iϕ − Qêθi )
2 − 2κ2 cos θ − 2Q2

]
(2.9)

where êT
ϕ = (− sinϕ, cosϕ, 0) and êT

θ = (− cos θ cosϕ,− cos θ sinϕ, sin θ) with
êϕ × êθ = n̂. Clearly, the system can gain energy of order ρs Q2 by allowing for a
finite gradient for the angles, ϕ or θ.

In particular, the conical phase obtains by setting ∂iθ = 0 and ∂iϕ = Qδi,z so that
(2.9) reduces to an effective potential for the polar angle θ

V(θ) = ρs Q2

2

[(
cos θ − κ2

Q2

)2

− 1 − κ4

Q4

]

(2.10)

As long asκ2 < Q2 the potential isminimized for an angle θ such that cos θ = κ2/Q2

which realizes the conical phase with energy −ρs Q2(1 + κ4/Q4)/2. For κ2 > Q2,
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on the other hand, the potential is minimized for θ = 0 and one obtains the fully
polarized phase with energy −ρsκ

2. The critical value

κ2
c2 = Q2 (2.11)

identifies the critical field μ0Hc2 = J Q2φ/μ separating the two phases.

2.3 Skyrmion Excitation of the Field-Polarized Phase

Interestingly, the theory (2.7) possesses stable soliton solutions in the background of
a field-polarized state n̂ = ẑ, see Fig. 2.1b. Introducing cylindrical coordinates

rT = (ρ cosχ, ρ sinχ, z), (2.12)

a vortex solution is generally obtained from a linear relation between the azymuthal
angle ϕ of the magnetization, see (2.8), and χ, i.e., ϕ = χ + ϕ0. The value of ϕ0

can often be chosen arbitrarily for vortex configurations, but not in the present
case. The Dzyaloshinskii-Moriya interaction with D > 0 is minimized by the choice
ϕ0 = π/2 that imposes its chirality onto the soliton solution. Furthermore, assuming
that the polar angle only depends on the radial distance, θ = θ(ρ), the Euler-Lagrange
equations deriving from (2.7) reduce to a differential equation for the function θ(ρ),

θ′′ + θ′

ρ
− sin θ cos θ

ρ2
+ 2Q sin2 θ

ρ
− κ2 sin θ = 0. (2.13)

In the limit of large distances the field-polarized state should be attained, while at
the origin the magnetization is assumed to point in the opposite direction, which
corresponds to the boundary conditions limρ→∞ θ(ρ) = 0 and θ(0) = π. The saddle
point equation (2.13) has been first derived and discussed by Bogdanov and Hubert
[15]. With the Ansatz for the soliton, the integrated topological charge density yields

W =
∫

dxdy ρtop

∣∣∣
ϕ=χ+π/2,

θ=θ(ρ)

=
∫ ∞

0
dρ

θ′ sin θ

2
= −1

2
cos θ|∞ρ=0 = −1. (2.14)

The last equality directly follows from the boundary conditions. The soliton solution
thus carries a negative unit of topological charge and can be identified as a skyrmion.

From the differential equation (2.13) follows the asymptotics for the solution

θ(ρ) ≈
{

π − c1κρ for ρ → 0
c2√
κρ

e−κρ for ρ → ∞ (2.15)

where the constants c1,2 however depend on the ratio κ/Q. The skyrmion is thus
exponentially confined and decays exponentially at large distances on the length
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Fig. 2.2 Energy εs of the
skyrmion excitation as a
function of magnetic field as
parametrized by κ2. Inset:
skyrmion profiles θ(ρ) for
two values of κ as indicated
by the colored dots [28]
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scale set by 1/κ. As the magnetic field, i.e., κ2 increases, the skyrmion size shrinks
in order to save magnetic energy. A numerical solution of the profile θ(ρ) for two
values of the κ is shown in the inset of Fig. 2.2. The main panel shows the skyrmion
energy εs , that is obtained by integrating (2.7) for the skyrmion solution over space,
with respect to the energy of the field-polarized phase. The skyrmion is an excitation
as long as its energy is positive, εs > 0, which requires κ2 > κ2

cr with [15]

κ2
cr ≈ 0.8Q2. (2.16)

For smaller values of κ2, it is energetically advantageous to accomodate many
skyrmions in the ground state so that the field-polarized state becomes unstable
with respect to the formation of a skyrmion lattice. For a strictly two-dimensional
system orthogonal to Ĥ the conical helix is prevented to develop by geometric con-
straints, and a skyrmion lattice is expected to materialize at zero temperature as
the magnetic field is decreased to smaller values. In thin films and bulk systems,
however, the situation is more complicated. Note that the conical-helix phase with a
pitch along the field direction is, according to (2.11), already energetically favoured
for κ2 ≤ κ2

c2 = Q2, and thus seems to preempt the skyrmion lattice instability at
κ2
cr. This is indeed true for bulk systems where the skyrmion lattice phase is not

observed at sufficiently low temperatures. Only for temperatures close to Tc(H = 0)
the strong correlations of the chiral paramagnons alluded to in the introduction lead
to a modification of the mean-field energetics, and stabilize a skyrmion lattice in a
finite temperature range in bulk chiral magnets [11]. In thin films, on the other hand,
the skyrmion strings profit energetically by twisting in addition along the z-direction
close to the boundary [20]. This boundary contribution stabilizes the skyrmion lattice
phase in thin films so that it occupies a much larger region of the phase diagram as
compared to bulk systems [21].

The skyrmion in the presence of theDzyaloshinskii-Moriya interaction D is chiral
and possesses the fixed phase differenceϕ − χ = π/2.Correspondingly the resulting
magnetic configuration is sometimes called a Bloch skyrmion as its profile resembles
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a Bloch domain wall. This Bloch character of the skyrmion has also qualitative
consequences. Due to the chirality, it possesses a finite toroidal moment defined by

�T =
∫

dxdy r × n̂
∣∣∣

ϕ=χ+π/2,
θ=θ(ρ)

= ẑ 2π
∫ ∞

0
dρρ2 sin θ(ρ) ≡ ẑ

κ3
T (κ2/Q2) (2.17)

where T is a dimensionless function that depends on the soliton solution θ(ρ). Tori-
odal moments have been discussed in the context of the magnetoelectric effect in
multiferroic materials [22], and insulating chiral magnets are thus promising candi-
dates for interesting magnetoelectric phenomena. A finite �T distinguishes the chiral
Bloch skyrmion, in particular, from non-chiral Néel skyrmions for which the cross
product r × n̂ vanishes for all r . The latter type of skyrmions were recently discov-
ered, for example, in a magnetic monolayer of Fe deposited on a surface of Ir(111)
[23–25].

2.3.1 Magnon Spectrum in the Presence of a Skyrmion

Thepresence of a skyrmionmodifies themagnon spectrum, i.e., the small-wavelength
excitations. The magnons not only scatter from the skyrmion but also form bound
states corresponding to internal excitation modes of the magnetic skyrmion config-
uration. The problem of magnon excitations in a strictly two-dimensional system
perpendicular to the applied field has been studied in [26–29], and the main results
are shortly reviewed in the following. A similar analysis has been carried out before
but for so-called precessional topological solitons in ferromagnets by Ivanov and
collaborators [30].

In order to study the magnon spectrum, the theory (2.7) has to be complemented
with a dynamical term,

Ldyn = s �A(n̂)∂t n̂, (2.18)

where s = �M/(gμB) is the two-dimensional spin-density with the magnetiza-
tion M = μφ and the spin-gauge field possesses the property εi jk∂ �A j/∂n̂i = n̂k .
It ensures that the Euler-Lagrange equation deriving from Ltot = Ldyn − Lpot with
the potential Lpot ≡ L just reproduce the Landau-Lifshitz equations

∂t n̂ = −γ n̂ × Beff , (2.19)

with the gyromagnetic ratio γ = gμB

�
> 0, and the effective magnetic field Beff =

− 1
M δS/δn̂ is determined by the functional derivative of S = ∫

d2rL with the
Lagrangian given in (2.7).

Fluctuations around the skyrmion solution n̂s ≡ ê3 can be parameterized with the
help of the magnon wavefunction ψ, i.e., n̂ = ê3

√
1 − 2|ψ|2 + ê+ψ + ê−ψ∗ where
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ê± = (ê1 ± i ê2)/
√
2 with the local orthogonal frame êαêβ = δαβ for α,β = 1, 2, 3.

Plugging this parametrization into the Landau-Lifshitz equation and expanding
in lowest order in ψ, one finds that the spinor �ψT = (ψ,ψ∗) obeys the bosonic
Bogoliubov-deGennes equations i�τ z∂t �ψ = H �ψ with the Hamiltonian [28]

H = εDM

Q2

[
(−1iτ z∇⊥ − �a)2 + 1v0 + τ xvx

]
, (2.20)

where τ z and τ x are Pauli matrices, and the energy scale is fixed by the second critical
field εDM = gμBρs Q2/M = gμ0μB Hc2. Here we consider only magnons confined
within the plane perpendicular to the field Ĥ = ẑ so that ∇⊥ = (∂x , ∂y). The vector
potential and the potential read explicitly,

�a =
(cos θ

ρ
− Q sin θ

)
χ̂, (2.21)

v0(ρ) = − sin2 θ

2ρ2
− Q sin(2θ)

2ρ
− Q2 sin2 θ + κ2 cos θ − Qθ′ − θ′2

2
(2.22)

vx (ρ) = sin2 θ

2ρ2
+ Q sin(2θ)

2ρ
− Qθ′ − θ′2

2
(2.23)

where χ̂T = (− sinχ, cosχ) and the soliton solution θ = θ(ρ).
In order to determine the spectrum of the Hamiltonian (2.20) one has to solve

a two-dimensional scattering problem. It is found that besides the magnon scatter-
ing states there exist three bound states with eigenenergies below the magnon gap
ε < εgap with εgap = εDMκ2/Q2, which can be labeled by the angular momentum
quantum number m = 0,−2,−3, see Fig. 2.3. The mode m = 0 corresponds to
the breathing mode with the skyrmion radius oscillating in time. While the m = 0
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Fig. 2.3 Left panel Magnon spectrum in the presence of a skyrmion excitation as a function of
magnetic field parametrized by κ2. Three bound magnon-skyrmion states are found with excitation
energies below the magnon continuum. The images represent snapshots of these bound excitation
modes. Right panel Differential scattering cross section for the scattering of magnons from the
skyrmion for three different energies [28]



38 M. Garst

mode exists also for higher magnetic fields as measured by the magnitude of κ2,
the quadrupolar mode m = −2 only materializes for smaller fields just before the
global instability at κ2

cr ≈ 0.8Q2, see (2.16). In the metastable regime for smaller
κ < κcr, the eigenenergy of this quadrupolarmode decreases and eventually vanishes
at κ = κbimeron with

κ2
bimeron ≈ 0.56Q2. (2.24)

The vanishing of this eigenenergy signals a local instability of the skyrmion with
respect to a quadrupolar deformation. Such a deformed skyrmion can also be inter-
preted as a bimeron [31]. Just before the local bimeron instability another mode with
angular momentum m = −3 appears within the metastable regime.

2.3.2 Magnon Skew and Rainbow Scattering

The resulting differential cross section for the magnon scattering states is shown
in Fig. 2.3 for three different energies ε > εgap. There are two interesting features:
(i) the magnons are scattered preferentially to negative angles χ, i.e., there is skew
scattering and (i i) there are multiple peaks that arise from interference of classical
trajectories, an effect which is known as rainbow scattering.

Both effects can be related to the vector potential �a in the Hamiltonian (2.20). As
themagnon traverses the skyrmion its local orthogonal frame êi follows themagnetic
texture and this geometric constraint eventually leads to the vector potential �a. It is
important to note that this frame rotates with angle ϕ = χ + π/2 even for large
distances ρ � 1/κ. The asymptotic scattering states, however, will be defined with
respect to a fixed laboratory orthogonal frame {x̂, ŷ, ẑ}. The transformation from one
reference frame to another corresponds to a gauge transformation under which the
vector potential transforms as [28]

�alab = �a − ∇χ =
(cos θ − 1

ρ
− Q sin θ

)
χ̂. (2.25)

As the magnetic skyrmion is exponentially confined, the polar angle θ and thus the
scattering vector potential �alab vanishes exponentially with increasing distance ρ. As
a result, the total effective magnetic flux deriving from �alab must vanish according to
Stoke’s theorem. However, the effective magnetic flux density ∇ × (��alab) = ẑ B(r)
is singular and reads

B(r) = −4π�δ(r) + Breg(|r|). (2.26)

Due to the boundary condition θ(0) = π, the vector potential diverges as �alab ∼
−2χ̂/ρ for small distances ρ → 0 that leads to the singular flux with strength−4π�.
As this singular part is quantized it does not influence physical properties. However,



2 Topological Skyrmion Dynamics in Chiral Magnets 39

there is an additional smooth regular part Breg(|r|), the integral of which exactly
cancels the singular part

∫
dxdy Breg(|r|) = 4π�.

It is this regular magnetic flux distribution Breg(|r|) that gives rise to an emergent
Lorentz force which acts on the magnons and results in skew scattering [27, 28]. Its
origin is topological as Breg(|r|) is related to the topological charge density ρtop of
the skyrmion,

Breg(ρ) = 4π�

(
− ρtop(ρ) − Q

4πρ
∂ρ(ρ sin θ)

)
(2.27)

where |r| = ρ is the radial distance in two spatial dimension. The second term inte-
grates to zero so that the total flux is just determined by the total winding number
(2.14) of the skyrmion texture. At high energy this topological Lorentz force in fact
governs the differential cross section [29]. As the flux distribution Breg(|r|) is rota-
tionally symmetric, the classical deflection angle �(b) will be an even function of
the impact parameter b in the high-energy limit. A high-energy magnon with impact
parameter |b| is thus deflected to the same side irrespective of the sign of b, i.e.,
whether it passes the skyrmion on the right- or left-hand side. As a result, there
exists for a given deflection angle � two classical trajectories that interfere leading
to oscillations in the differential cross section. A similar phenomenon occurs in the
theory of rainbow scattering.

2.3.3 Spin-Magnus Force and Magnon Pressure

As the theory (2.7) is translationally invariant, the skyrmion possesses two zero
modes corresponding to translations of the skyrmion origin R along the x and y-
directions. The origin of the skyrmionic soliton, n̂s(r − R), can be chosen arbitrarly
in a homogeneous system without any energy cost. From the dynamical term (2.18)
follows in zeroth order in themagnon excitations an effective theory for this skyrmion
coordinate

Leff = A(R)∂t R. (2.28)

It describes a massless particle in the presence of a vector potential that is given by
the spatial integral over the spin-gauge field

Ai (R) = −s
∫

d2r �A(n̂s(r − R))∂i n̂s(r − R). (2.29)

Importantly, the associated magnetic flux is non-zero and determined by the topo-
logical number

G = ∇R × A(R) = 4πsẑ
∫

dxdy ρtop = −4πsẑ. (2.30)
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As a result of the non-trivial topology, the skyrmion carries its own magnetic flux.
The vector G was introduce by Thiele [32] and is the so-called gyrocoupling vec-
tor. It leads to a spin-Magnus force, i.e., an effective Lorentz force in the equation
of motion for the skyrmion. Note that the corresponding emergent magnetic field,
|G| = 2s

�
(2π�) is very large. It amounts to a flux quantum 2π� per area of a spin-1/2.

How is the skyrmion affected by an incoming flux ofmagnons? In order to address
this question one considers the conservation law for the energy-momentum tensor of
the theory specified in (2.7) and (2.18). Integrating this conservation law over space
one finds the following effective equation of motion for the skyrmion coordinate [28]

G × Ṙ = F. (2.31)

It just corresponds to the Thiele equation of motion but in the presence of a force F,
where we have neglected, for simplicity, the Gilbert damping [32]. Importantly,
within this Thiele approximation the skyrmion is massless and behaves similar to the
guiding center of electrons in the lowest Landau level: Its velocity Ṙ is perpendicular
to the force F so that it moves along equipotential lines.

While scattering, a magnon transfers momentum to the skyrmion resulting in a
finite F. An explicitly calculation yields the following expression for a monochro-
matic magnon current Jε with energy ε = εDM(κ2 + k2)/Q2 along the x-direction
within the two-dimensional (x, y) plane [28]

F = Jεk

⎛

⎝
σ‖(ε)
σ⊥(ε)
0

⎞

⎠ . (2.32)

This momentum-transfer force is determined by the transport cross sections of the
skyrmion

(
σ‖(ε)
σ⊥(ε)

)
=

π∫

−π

dχ

(
1 − cosχ
− sinχ

)
dσ

dχ
, (2.33)

with the differential cross section dσ/dχ. Besides the longitudinal force along x there
is also a transversal force along y, as shown in Fig. 2.4, because dσ/dχ is not an even
function of χ in the presence of the magnon skew scattering so that σ⊥(ε) > 0. The
skyrmion reacts to the force F according to the equation of motion (2.31). The spin-
Magnus effect results in a finite skyrmion velocity that is perpendicular to the force
F so that eventually the velocity Ṙ possesses a component longitudinal to the applied
magnon current that, counterintuitively, points towards the magnon source [27]. The
resulting skyrmion Hall angle � in Fig. 2.4 is determined by the ratio of transport
scattering cross sections σ‖/σ⊥ [28].

This magnon pressure is at the origin of a series of interesting thermal spin-
transport phenomena predicted to occur in insulating chiral magnets [33–35]. A tem-
perature gradient induces magnons to flow from the hot to the cold region of the
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Fig. 2.4 Amagnon wave impinging on the skyrmion (represented by the circle) from the left-hand
side gives rise to amagnon pressure. The resulting reactive forceF leads to a finite skyrmion velocity
∂t R, that as a result of the spin-Magnus force has a longitudinal component pointing towards the
magnon source [28]

sample. In the presence of magnetic skyrmion configurations, magnons skew-scatter
and generate a thermal topological magnon Hall effect. In turn, the skyrmions expe-
rience the reactive counter-force giving rise to a characteristic skyrmion motion with
a velocity component towards the hot end of the sample. A unidirectional rotational
motion but of a skyrmion crystal induced by a thermal gradient has been already
experimentally observed by Mochizuki et al. [36].

2.4 Skyrmion Crystal

Wenow turn to the discussionof the two-dimensional skyrmion crystal, i.e., a periodic
arrangements of skyrmions in the plane perpendicular to the applied field. A descrip-
tion of such a modulated magnetic state in terms of the non-linear sigma model
(2.7) is involved [15, 16]. However, it can be rather simply described within the φ4-
model of (2.5). The prominent signatures of the skyrmion lattice in neutron scattering
experiments [11, 13] are six prominent magnetic Bragg peaks that form a hexagon.
A mean-field Ansatz that reflects this experimental observation is the superposition
of three magnetic helix solutions with pitches that add to zero, Q1 + Q2 + Q3 = 0,
which are orthogonal to the applied magnetic field direction Ĥ = ẑ, i.e., Qα ẑ = 0,

φmf
SkX(r) = φ0 ẑ +

∑

α=1,2,3

Re{φα(ê1α − i ê2α)eiQαr}. (2.34)

While the homogeneous component, φ0, is a real variable, the amplitudes φα are
complex. The vectors ê1α and ê2α for each α = 1, 2, 3 are orthogonal to each other
as well as to the pitch Qα = |Qα|(ê1α × ê2α).

The importance of sets of wavevectors that form equilateral triangles is well
known from crystallization problems [9]. Such sets of wavevectors are favored by
effective cubic interactions due to momentum conservation. In the present problem,
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an effective cubic interaction arises from the quartic interaction u of (2.5) after
replacing a single field by the homogeneous component φ0

u

4!
∑

q1,q2,q3

(φq1
φq2

)(φq3
φ−q1−q2−q3

) → uφ0

3!
∑

q1,q2,q3

(ẑφq1
)(φq2

φq3
)δq1+q2+q3,0

(2.35)

A magnetic crystal involving sets of momenta that form triangles can gain additional
energy from such a term, thus favouring two-dimensional triangular lattices or even
three-dimensional bcc lattices. Whereas three-dimensional chiral magnetic crystals
have been discussed theoretically in the literature [37, 38], they have not yet been
unambiguously identified experimentally. Possible evidence for a three-dimensional
magnetic crystal, however, has been recently presented by Tanigaki et al. [39] for
MnGe that possesses a comparatively short pitch length and thus a stronger spin-orbit
coupling λSOC.

Plugging the Ansatz (2.34) into the free energy (2.5) one obtains an effective
potential for φ0 and the amplitudes φα. Minimization then yields a mean-field solu-
tion for the two-dimensional skyrmion crystal, that in principle can be improved by
allowing for more variational parameters in the Ansatz of (2.34). In order to gain
maximal energy from the cubic vertex (2.35) the phases of the helix amplitudes
must fulfil the condition

∑
α=1,2,3 arg φα = π. A real space picture of the result-

ing magnetic configuration is shown in Fig. 2.1c. One recognizes that it amounts
to a triangular lattice where the magnetic configuration of each unit cell resembles
the single skyrmion solution of Fig. 2.1b. The mean-field configuration of (2.34) is
such that its length |φmf

SkX(r)| varies in space but always remains finite. This allows to
define uniquely the unit vector n̂(r) = φmf

SkX(r)/|φmf
SkX(r)|with the help of which one

can compute the topological charge (2.2) within the plane perpendicular to the field.
Importantly, one finds for each magnetic unit cell W = −1 so that each unit cell,
as far as its topological properties are concerned, indeed houses a single skyrmion.
This topological criterion allows to unambiguously identify the modulated magnetic
texture (2.34) as a skyrmion crystal.

While the mean-field Ansatz is very useful to describe the properties of the
skyrmion crystal, the resulting mean-field free energy turns out to be still larger
than the competing conical helix [11]. The simplified mean-field treatment is thus
insufficient to explain the thermodynamic stability of the skyrmion crystal in a bulk
material. In bulk materials the skyrmion crystal is only stable within a pocket in the
magnetic field and temperature phase diagram where fluctuations are known to be
strong. These fluctuations lead to a substantial modification of the mean-field phase
diagram, suppress the critical temperature and drive the transition from the para-
magnet to the conical helix phase first-order [6, 7]. It has been shown in [11] that
these fluctuations are also responsible for the stabilization of the two-dimensional
skyrmion crystal. The presence of a stable thermodynamic skyrmion crystal phase
in chiral magnets has been also demonstrated theoretically with Monte-Carlo simu-
lations [8].
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2.4.1 Excitations of the Skyrmion Crystal

The two-dimensional skyrmion crystal breaks the translational symmetries within
the plane perpendicular to the field so that one expects gapless Goldstone modes
in the magnon spectrum. The low-energy excitations are described by the displace-
ment vector u within the two-dimensional plane, that generalizes the description in
terms of a single coordinate R in case of a single skyrmion soliton in Sect. 2.3.3.
Correspondingly, it obeys an equation of motion whose dynamics is governed by the
spin-Magnus force similar to (2.31) [40, 41]

G × u̇(r, t) = − δE[u]
δu(r, t)

, (2.36)

with the gyrocoupling vector G that reflects the non-trivial topology of the skyrmion
crystal. The force is here determined by the functional derivative of the elastic energy
E[u] for the skyrmion crystal, that only depends on u via the strain field εi j =
1
2 (∂i u j + ∂ j ui ). Solving (2.36) for the low-energy magnon energies one obtains a
dispersion that, as a result of the spin-Magnus force, is quadratic in the in-plane
momentum, ωk ∝ k2 [40, 41], similar to the spinwaves in ferromagnets. This is
in contrast however to the usual phonons of atomic crystals that possess a linear
dispersion because their dynamics is instead governed by the inertia of atoms.

As the skyrmion crystal is periodic in the plane perpendicular to the field, the
magnon excitation energies ωnk form a band structure according to Bloch’s theorem
with band index n. Accordingly, there are plenty of excitation modes even at zero
momentum ωn0 that are labeled by n. While one of them vanishes due to the Gold-
stone theorem, the others have a finite excitation energy ωn0 > 0. Three of them can
be excited in a resonance experiment by the application of a weak ac magnetic field.
These magnetic resonances have been theoretically identified byMochizuki [42] and
are illustrated in Fig. 2.5. There is a single breathing mode that can be excited by an

Fig. 2.5 Illustration of the three excitation modes of the skyrmion crystal—a breathing mode and
two gyration modes—that can be excited by an homogeneous ac magnetic field [19]. The excitation
energy of these modes, 2π�/τ , is related to their time period τ ; the images show snapshots of the
magnetic configuration at various times t
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out-of-plane ac field and two gyration modes where the skyrmion core gyrates coun-
terclockwise or clockwise and that are excited by in-plane ac fields. These excitation
modes have been first observed in Cu2OSeO3 [43]. A comprehensive study of these
modes on three different materials, MnSi, Fe0.8Co0.2Si, and Cu2OSeO3, were per-
formed by Schwarze et al. [19] who also showed that the resonance frequencies can
be quantitatively explained by theory after taking into account dipolar interactions.

2.5 Spin-Transfer Torques on the Skyrmion Crystal

In themetallic chiralmagnets the itinerant electrons can exchange angularmomentum
with the magnetic texture via the spin-transfer torque, which has two consequences.
First, the magnetic texture experiences a force putting it into motion. Second, a
counter-force acts on the electrons that will deflect them from their path. The inter-
play of these two effects has interesting consequences and is at the origin of the
topological Hall and skyrmion-flow Hall effect that will be discussed below.

Let us however first discuss the spin-transfer torque that is exerted by a spin-
polarized electron current with effective spin velocity vs . It is described by the gen-
eralized Landau-Lifshitz-Gilbert equation [44–46]

(∂t + (vs∇))n̂ = −γ n̂ × Beff + n̂ × (α∂t + β(vs∇))n̂ (2.37)

where α and β are damping coefficients. Making an Ansatz of a drifting magnetic
texture n̂ = n̂(r − vd t) with the drift velocity vd , projecting (2.37) onto the trans-
lational mode and integrating over a magnetic unit cell of the skyrmion lattice one
obtains the Thiele equation [32]

G × (vs − vd) + D(βvs − αvd) = Fpinning. (2.38)

The gyrocoupling vector G and the dissipative tensor D are defined by two-
dimensional integrals over the magnetic unit cell [47, 48]

G = s
∫

unit cell

d2r n̂(∂x n̂ × ∂y n̂) = −4πsẑ, (2.39)

Di j = s
∫

unit cell

d2r (∂i n̂)(∂ j n̂). (2.40)

The gyrocoupling vector is determined by the non-trivial topology of the skyrmion
lattice and just possesses the same value as for a single skyrmion, see (2.30). In
lowest order in spin-orbit coupling, the dissipative tensor can be approximated to
be diagonal [47], Di j = DPi j with the projector onto the plane perpendicular to the
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field Pi j = δi j − ẑi ẑ j . The force Fpinning is here finite due to defects that explicitly
break the translational symmetry and pin the magnetic texture.

For a small spin velocity vs , the pinning force is effectively strong resulting in a
vanishing drift velocity vd = 0. At a critical threshold of the current, however, the
pinning forces are overcome so that the drift velocity becomes finite vd �= 0. This
depinning transition for the skyrmion lattice has been theoretically addressed in [49,
50]. For large vs the pinning force Fpinning can eventually be neglected and the Thiele
equation can be explicitly solved for the drift velocity [47, 51]

v‖
d = β

α
v‖

s + α − β

α3(D/4π)2 + α

(
v‖

s + αD

4π
ẑ × v‖

s

)
(2.41)

with v‖
d,s = Pvd,s . In the limit of small damping parametersα and β, the drift velocity

is approximately equal to the spin-current velocity v‖
d ≈ v‖

s which was explicitly
confirmed with the help of micromagnetic simulations [50]. This universal current
relation arises because the gyrocoupling force G in (2.38) dominates the dynamics
of the skyrmion texture in the limit of small damping.

2.5.1 Gradient in the Effective Spin-Transfer Torques

In the presence of a finite spin velocity vs the skyrmion texture experiences a dissi-
pative force due to D in the Thiele equation (2.38) that is longitudinal to vs as well
as a spin-Magnus force due to the gyrovector G that is transversal to vs as shown
by the green and red arrows, respectively, in Fig. 2.6. Each force is proportional to
the local spin-density denoted by s in (2.39) and (2.40). With the help of a thermal
or magnetic field gradient one can impose an effective gradient in the spin-density
across a macroscopic skyrmion crystal domain. The effective forces will correspond-
ingly vary across the sample as illustrated in Fig. 2.6, which results in a macroscopic
torque that might rotate the whole skyrmion crystal domain [48].

Such rotation of the skyrmion crystal due to spin-transfer torques has been exper-
imentally detected in the presence of a thermal gradient with the help of neutron
scattering by Jonietz et al. [52]. By applying a relatively small current density of

Fig. 2.6 Effective gradients
of the spin-density lead to an
imbalance of forces across a
skyrmion crystal domain
[48]. The resulting
macroscopic torques were
detected in [52] via a rotated
neutron scattering pattern of
the skyrmion crystal
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106 A/m2 the six-fold scattering pattern of the skyrmion lattice was observed to
rotate and the rotation angle could be unambiguously related to the orientation of the
thermal gradient. This was the first demonstration of a spin-transfer torque phenom-
enon in skyrmion crystals at current densities that are ultralow compared to the ones
usually applied in experiments on current-driven domain-wall motion. The origin of
this low critical current density of order jc ∼ 106 A/m2 is attributed to the peculiar
skyrmion dynamics and the elasticity of the skyrmion crystal. It is the spin-Magnus
force that allows the skyrmions to avoid and circumvent pinning potentials efficiently
[49, 50, 52].

2.6 Emergent Electrodynamics in Metallic Chiral Magnets

The spin-transfer forces on the magnetic skyrmions are balanced by counter-forces
that act on the electrons. Consider the Schrödinger equation of an electron described
by the spinor wavefunction ��T = (�↑, �↓) moving in a magnetic texture n̂(r, t)

i�∂t �� =
(

− �
2

2m
1∇2 + J n̂(r, t)�σ

)
��. (2.42)

The exchange interaction J > 0 favors the electron spin to align antiparallel with
the local magnetization field. It is convenient to introduce the local basis that obeys

�σ j �v ±(r, t) = ±n̂ j (r, t)�v ±(r, t), (2.43)

with j = x, y, z and �vα†(r, t)�vβ(r, t) = δαβ and
∑

α=±1 �vα(r, t)�vα†(r, t) = 1.
Expanding the spinor wavefunction

��(r, t) = ψ+(r, t)�v +(r, t) + ψ−(r, t)�v −(r, t) (2.44)

the expansion coefficients are found to obey the Schrödinger equation

(
δαβ i�∂t + eA0

αβ

)
ψβ = 1

2m

[
− i�δαβ∇ + e �Aαβ

][
− i�δβγ∇ + e �Aβγ

]
ψγ − αJψα,

(2.45)

with α,β = ±1 and the electron charge −e < 0. In this local basis the last term
describing the coupling to the magnetic texture is diagonal, i.e., space- and time-
independent but at the cost of emergent SU(2) gauge fields,

A0
αβ(r, t) = i�

e
�v α†(r, t)∂t �vβ(r, t) (2.46)

�A j
αβ(r, t) = − i�

e
�v α†(r, t)∂ j �vβ(r, t) (2.47)

with j = x, y, z.
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Thewavefunctionsψ+ andψ− describe electronic states that the exchange interac-
tion energetically separates by 2J while the off-diagonal components of the emergent
gauge fields, e.g. �A+−, induce transitions between those states. For magnetic textures
that are smooth in space and time these transitions can be treated perturbatively and
are neglected in zeroth order. In this adiabatic approximation, the wavefunctions ψα

are subject to effective U(1) gauge fields; the low-energy state ψ− that describes the
majority spins, for example, obeys

(
i�∂t + eA0

−−
)
ψ− ≈ 1

2m

[
− i�∇ + e �A−−

]2
ψ− − Jψ−. (2.48)

The associated emergent electric field and magnetic field are determined from the
standard relations

�Eemergent = −∇ A0
−− − ∂t �A−− (2.49)

�Bemergent = ∇ × �A−−. (2.50)

For a magnetic texture that does not vary along the z-direction, the non-vanishing
components of the fields read explicitly

�Eα
emergent = − �

2e
n̂(∂αn̂ × ∂t n̂) = 2π�

e
ε0αβ j topβ (2.51)

�Bz
emergent = − �

2e
n̂(∂x n̂ × ∂y n̂) = −2π�

e
ρtop (2.52)

with α,β = x, y. Importantly, the emergent fields are determined by the topological
charge and current densities of (2.1) and (2.4), respectively. Whereas the emergent
magnetic field is perpendicular to the x-y plane and is determined by the topological
charge density ρtop, the emergent electric field lies within the plane and is related to
the topological current �jtop.

In the absence of singular field configurations the topological charge density obeys
the conservation law (2.3), which can be expressed in terms of the emergent fields

∂t �Bemergent = −∇ × �Eemergent. (2.53)

It can be interpreted as the Maxwell-Faraday equation for the emergent electrody-
namics stating that a time-dependent emergent magnetic field is always accompanied
by a spatially-varying emergent electric field.

2.6.1 Topological Hall Effect

For the static magnetic skyrmion crystal the emergent magnetic flux per two-
dimensional magnetic unit cell just amounts to a single flux quantum,
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∫

unit cell

d2r �Bz
emergent = −2π�

e

∫

unit cell

d2r ρtop = 2π�

e
. (2.54)

In case ofMnSi, the size of themagnetic unit cell is approximately 314 nm2 so that the
emergent field for the majority spins corresponds on average to 〈 �Bz

emergent〉 ≈ −13
T [54]. It is negative because the itinerant charge carriers in MnSi derive from a
hole like Fermi surface, and unlike electrons they possess a positive charge. This
large field has physical consequences and, in fact, contributes to the Hall effect. As
the skyrmion crystal phase is entered as a function of magnetic field, an additional
contribution to the Hall effect is observed in experiments on MnSi [54–56], which
can be attributed to a finite emergent magnetic field �Bemergent. As this emergent field
is directly related to the non-trivial topology of the magnetic skyrmion texture, this
contribution is known as topological Hall effect [57].

A recent experimental study [58] has investigated the topological Hall effect in
MnSi as a function of pressure, magnetic field and temperature. The results suggest
that the topological Hall signal is related to the peculiar metallic properties of MnSi
at high pressures, where an unusual temperature dependence of the resistivity, δρ ∼
T 3/2, is observed that is at odds with Fermi-liquid theory. This hints at the exciting
possibility that topologically non-trivial magnetic textures are a necessary ingredient
for the sought-after explanation of the non-Fermi liquid behavior in MnSi at high-
pressures [59, 60].

In a semiclassical picture, the emergent gauge field (2.47) corresponds to a Berry
phase that the electron accumulates on its trajectory while adiabatically adjusting
its spin to the local magnetic texture, see Fig. 2.7. A full semiclassical analysis of
electron dynamics in the presence of a magnetic texture is however rather involved.
Besides the Berry phase in real space there exists also a Berry phase in momentum
space, that, in particular, gives rise to the anomalous Hall effect [61]. Moreover, the

Fig. 2.7 Left panel An electron adiabatically adjust its spin-orientation to the local magnetic
skyrmion texture thus accumulating a Berry phase [53]. Right panel Two skyrmion strings merge
into a single skyrmion string. The merging point is identified by a hedgehog defect, which can be
interpreted as a magnetic monopole within the emergent electrodynamics [65]
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combination of Berry phases in real and momentum space allows for the existence
of Berry curvatures in six-dimensional phase space as recently discussed in [62].

2.6.2 Skyrmion-Flow Hall Effect

In the above discussion of the topological Hall effect, we assumed that the electron
moves in a static magnetic skyrmion texture, i.e., we assumed the skyrmion crystal to
be pinned by defects. If the applied current densities, however, exceed the depinning
threshold the skyrmion texture will drift with a velocity vd determined by (2.41).
For a drifting magnetic texture, n̂(r − vd t), the topological current density of (2.4)
is given by the intuitive expression

jα
top

∣∣∣
n̂=n̂(r−vd t)

= ρtopvα
d , (2.55)

that is, the topological charge density times the drift velocity. This finite topological
current translates according to (2.51) to an emergent electric field

�Eemergent = −vd × �Bemergent (2.56)

that is simply related to the emergent magnetic field. The drift of the skyrmion texture
results in a drifting emergent magnetic field that in accordance with Faraday’s law
of induction (2.53) implies a finite emergent electric field. The Lorentz force on the
electron (e > 0) caused by the emergent fields then simplifies to

�Femergent = −e
( �Eemergent + v × �Bemergent

)
= −e(v − vd) × �Bemergent (2.57)

where v is the velocity of the electron. It is only the relative velocity, v − vd , of the
electron with respect to the moving texture that determines the emergent Lorentz
force. Above the depinning transition where vd �= 0, this Lorentz force is effectively
reduced as |v − vd | < |v|. As a consequence, one expects a reduction of the topo-
logical Hall effect when the skyrmion texture starts to flow with the electron liquid.
Such a reduction of the topological Hall signal above the critical current density was
experimentally demonstrated by Schulz et al. [63]. This skyrmion-flow Hall effect
is akin to the flux-flow Hall effect in type II superconductors [64].

2.6.3 Emergent Magnetic Monopoles

For textures that vary in three dimensional space the definition of the emergent
magnetic field (2.52) is generalized to
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�B j
emergent = �

4e
ε jkl n̂(∂k n̂ × ∂l n̂), (2.58)

with j, k, l = x, y, z. Similar to the topological conservation law (2.3) in 2 + 1
space-time, the conservation law for the topological charge in three spatial dimen-
sions then reads

∇ �Bemergent = ρmonopoles. (2.59)

It corresponds to Gauss’ law for the emergent magnetic field. The right hand side
vanishes for a non-singular field configuration, ρmonopoles = 0, i.e., in the absence of
hedgehog defects in three spatial dimensions. Such defects effectively correspond to
sources and sinks of the emergent magnetic field and can be interpreted as emergent
magnetic monopoles. Such monopoles are predicted to be important close to the
phase transition where the magnetic skyrmion crystal melts into a magnetic state
with a topologically trivial configuration [65], see Fig. 2.7. Experimental evidence for
such a hedgehog-mediated melting was provided by Milde et al. who studied the
magnetic texture on a surface of a bulk crystal of Fe0.5Co0.5Si by magnetic force
microscopy [65].

2.7 Discussion

The topological character of magnetic skyrmion configurations gives rise to a vari-
ety of qualitatively novel phenomena and, in particular, influences its dynamical
properties in a profound manner. The topological charge carried by the skyrmion, in
particular, leads to a finite gyrocoupling vector G in its Thiele equation of motion
which translates to a spin-Magnus force governing the skyrmion dynamics. The
non-trivial topology also characterizes the interaction of skyrmions with magnon
excitations as well as electronic degrees of freedom resulting in various topological
transport phenomena.

This short review on skyrmions in chiral magnets is not comprehensive and many
interesting aspects were only touched upon or not covered at all. For example, the
skyrmion might act under certain circumstances like a particle with a finite mass
where the mass generation is related to the excitation of its internal degrees of free-
dom [66, 67]. In insulating compounds skyrmions possess multiferroic properties
that allow for a manipulation of skyrmion crystals by electric fields [68] and give
rise to interesting microwave magnetoelectric effects [69]. The small critical charge
current densities jc ∼ 106 A/m2 that are required for spin-transfer torque effects
make skyrmion matter interesting for spintronic applications [70]. Their quantized
topological charge as well as their topological stability suggest to use skyrmions as
basic information units, i.e., bits in future memory devices, for which the controlled
creation and destruction of skyrmion configurations [71] and their controlled manip-
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ulation [72] is essential. Even skyrmion logic operations have been already discussed
in the literature [73].

The remarkable aspect is that this rich physics just arises from complementing an
ordinary ferromagnet with a weak Dzyaloshinskii-Moriya interaction �M(∇ × �M)

that twists the magnetization �M on long length scales. This additional interaction
albeit very weak gives rise to a plethora of non-perturbative effects and opens the
door for topological skyrmion physics. Despite the recent advances in this field there
remain many issues to be explored, and it is to be expected that magnetic skyrmion
matter will continue to fascinate us for a while.
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Chapter 3
Current-Driven Dynamics of Skyrmions

Masahito Mochizuki

Abstract Skyrmion was originally proposed in 1960s by Tony Skyrme as a
topological solution of the nonlinear sigma model to account for the stability of
hadrons in nuclear physics. Recently realization of skyrmions was indeed discov-
ered in ferromagnets with chiral crystal symmetry as nanometric vortex-like spin
textures with a quantized topological invariant. It has turned out that the magnetic
skyrmions show intriguing dynamical and transport phenomena through coupling to
the electric currents and/or the magnon currents. In this chapter, recent theoretical
studies on the current-driven dynamics of magnetic skyrmions are discussed.

3.1 Introduction

Nanometric magnetic whirls, called magnetic skyrmions, realized in ferromagnets
without inversion symmetry are recently attracting intensive research interest [1–
3]. Skyrmion was theoretically proposed by Tony Skyrme in 1960s to account for
stability of the hadrons in the particle physics as a topological solution of the non-
linear sigma model in three dimensions [4, 5]. The magnetic skyrmion is composed
of spins pointing in all directions to wrap a sphere like a hedgehog as shown in
Fig. 3.1a. The number of the wrapping over a sphere corresponds to a topological
invariant called skyrmion number. Realization of skyrmions was recently confirmed
experimentally in some two-dimensional condensed matter systems, e.g., quantum
Hall ferromagnets [6, 7], ferromagneticmonolayers [8, 9], and doped layered antifer-
romagnets [10]. In these systems, the skyrmions often appear as swirling structures
of the magnetizations as shown in Fig. 3.1b. This vortex-like texture corresponds to
a projection of the original hedgehog skyrmion onto the two-dimensional plane.
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(a)

(c) (d)

(e)

(b)

(f)

Mn
Si

Fig. 3.1 a Schematic figure of the original hedgehog type skyrmion proposed by Tony Skyrme
in 1960s whose magnetizations point in every direction to wrap a sphere. b Schematic figure
of a skyrmion recently discovered in chiral-lattice magnets, which corresponds to a projection
of the hedgehog type skyrmion onto the two-dimensioanl plane. Its magnetizations also point
every direction to wrap a sphere. c Schematic figure of the skyrmion crystal realized in the chiral-
lattice magnets under an external magnetic field, in which the skyrmions are hexagonally packed
to form a triangular lattice. d Schematic figure of the helical state realized in the chiral-lattice
magnets as a consequence of the competition between theDzyaloshinskii-Moriya interaction and the
ferromagnetic-exchange interaction, which comprises a successive alignment of the Bloch domain
walls. e, f Crystal structures of (e) the chiral-lattice metallic magnet MnSi and (f) the chiral-lattice
insulating magnet Cu2OSeO3, both of which belong to the cubic P213 point group
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Bogdanov and his collaborators theoretically predicted crystallization of such
vortex-like skyrmions into triangular lattice (so-called skyrmion crystal) as shown in
Fig. 3.1c in ferromagnetswithout inversion symmetry [11–13]. In 2009, the skyrmion
crystal was indeed discovered in the so-called A phase of metallic B20 compound
MnSi under an external magnetic field B by the small angle neutron scattering exper-
iment [14]. In each skyrmion constituting the skyrmion crystal, the magnetizations
point antiparallel to B at the vortex core, and rotate upon propagating in the radial
directions towards the periphery at which the magnetizations are parallel to B. Such
vortex-like skyrmions appear in the planes normal to B, and they are stacked ferro-
magnetically to form rod-like or tube-like structures in bulk samples. The skyrmion
is characterized by the skyrmion number Q, which is defined as,

∫
d2r

(
∂n̂
∂x

× ∂n̂
∂y

)
· n̂ = ±4π Q. (3.1)

Here the unit vector n̂ represents the direction of the local magnetization. The left-
hand side of this equation represents a sum of the solid angles spanned by three
neighboring magnetizations, and since the magnetizations in one skyrmion point
everywhere to wrap a sphere once, its value becomes +4π or −4π depending on
the sign of the magnetization at the skyrmion core, that is, Q = +1 (Q = −1) for
up (down) core magnetization.

Since the discovery in MnSi, the skyrmion-crystal phase has been discovered
successively in several metallic B20 compounds such as Fe1−xCoxSi, FeGe and
Mn1−xFexGe by the neutron-scattering experiments [15–19] and the microscopy
experiments [20–24]. In addition to the metallic compounds, the skyrmion-crystal
phase was discovered also in the insulating copper oxoselenite Cu2OSeO3 [25–28].
These compounds commonly have a chiral crystal structure with cubic P213 symme-
try (see Fig. 3.1e, f), and thereby have a finite net component of the Dzyaloshinskii-
Moriya interaction [29, 30]. The Dzyaloshinskii-Moriya interaction favors rotating
alignment of magnetizations, and thus strongly competes with the ferromagnetic-
exchange interaction which favors parallel (collinear) alignment of magnetizations.
As a result, the ground state of these chiral-lattice ferromagnets atB = 0 is the helical
state (so-called proper screw state), which comprises a successive alignment of the
Bloch domain walls. An increase in B at certain temperatures changes the helical
phase to the skyrmion-crystal phase and eventually to the field-polarized ferromag-
netic phase.

Figure3.2a, b display the experimentally obtained phase diagrams in plane of tem-
perature T and magnetic field B for bulk samples of MnSi [14] and Cu2OSeO3 [25],
respectively. Irrespective of the different origin of the magnetism between metal and
insulator, both compounds exhibit similar phase diagrams. The skyrmion-crystal
phase takes place only as a small pocket (so-called A phase) in the phase diagram
at finite T and B on the verge of the boundary between the paramagnetic and the
helical (longitudinal conical) phases.
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Fig. 3.2 Experimentally obtained T -B phase diagrams for a bulk sample of the metallic B20
compound MnSi [14], b bulk sample of the insulating oxoselenite Cu2OSeO3 [25], c thin-film
sample of MnSi [22], and d thin-film sample of Cu2OSeO3 [25]. In spite of the different origin
of the magnetism between the metallic and insulating magnets, both MnSi and Cu2OSeO3 exhibit
similar phase diagrams. For the bulk samples, the skyrmion-crystal phase (so-called A phase)
occupies only a tiny region at finite T and B inside the conical phase on the verge of the boundary
to the paramagnetic phase. In contrast, the skyrmion-crystal phase spreads over the wide T -B range
in the phase diagrams for thin-film samples. The enhanced stability of the skyrmion-crystal phase
is attributed to the destabilization of the longitudinal conical phase in thin-film samples (see text)

In 1980, Bak and Jensen proposed a continuum spin model to describe the mag-
netism in the chiral-lattice ferromagnets [31]:

H =
∫

d3r

[
J

2a
(∇M)2 + D

a2
M · (∇ × M) − 1

a3
B · M

+ A1

a3
(M4

x + M4
y + M4

z )

− A2

2a
[(∇x Mx )

2 + (∇y My)
2 + (∇z Mz)

2]
]

. (3.2)

In addition to the ferromagnetic-exchange interaction (the first term), the
Dzyaloshinskii-Moriya interaction (the second term), and the Zeeman coupling (the
third term), magnetic anisotropies allowed in the cubic crystal symmetry (the fourth
and the fifth terms) are considered. Starting from this continuum model, one obtains
a lattice spin model, that is, a classical Heisenberg model on the cubic lattice by
deviding the space into cubic meshes:



3 Current-Driven Dynamics of Skyrmions 59

H = −J
∑

i

mi · (mi+x̂ + mi+ŷ + mi+ẑ)

− D
∑

i

(mi × mi+x̂ · x̂ + mi × mi+ŷ · ŷ + mi × mi+ẑ · ẑ)

− B ·
∑

i

mi

+ A1

∑

i

[(mx
i )

4 + (my
i )

4 + (mz
i )

4]

− A2

∑

i

(mx
i mx

i+x̂ + my
i my

i+ŷ). (3.3)

As long as slowly varying spin structures such as skyrmion and helix are consid-
ered, one can neglect the complex background crystal structure, which justifies the
theoretical treatment based on a spin model on the simple cubic lattice.

The skyrmion-crystal phase has turned out to be rather unstable in the bulk sam-
ples. It was, however, found that it attains enhanced stability when the sample thick-
ness becomes thinner [21, 32–34]. Figure3.2c, d display the experimentally obtained
phase diagrams for thin-film samples ofMnSi [22] and Cu2OSeO3 [25], respectively.
One finds that the skyrmion-crystal phase spreads over a wide area in the phase dia-
gram, and is realized even at the lowest temperature. This can be understood as
follows. In the bulk samples, the longitudinal conical phase propagating parallel to
B with a uniform magnetization component due to the spin canting towards the B
direction is stabilized owing to the energy gains fromboth theDzyaloshinskii-Moriya
interaction and the Zeeman coupling, and the skyrmion-crystal state is usually higher
in energy than this conical state. However, when the sample thickness becomes com-
parable to or thinner than the conical periodicity, the conical state can no longer
benefit from the energy gain of the Dzyaloshinskii-Moriya interaction, and thus is
destabilized. Instead the skyrmion-crystal state attains the relative stability against
the conical state. It was argued that the uniaxial anisotropy, inhomogeneous chiral
modulations, and the dipolar interaction can also stabilize skyrmions in thin-film
samples [35–40].

The magnetic phases in a thin-film sample of the chiral-lattice ferromagnet have
been studied by analyzing the following classical Heisenberg model on the square
lattice using the Monte-Carlo technique [32]:

H = −J
∑

i

mi · (mi+x̂ + mi+ŷ)

− D
∑

i

(mi × mi+x̂ · x̂ + mi × mi+ŷ · ŷ)

− B ·
∑

i

mi (3.4)
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Fig. 3.3 a Magnetic phase diagram of the two-dimensional classical Heisenberg model given by
(3.4) at T = 0 as a function of the magnetic-field strength B. As B increases, the helical phase,
the skyrmion-crystal phase, and the field-polarized ferromagnetic phase emerge successively, which
reproduces the successive phase transitions in the experimental phase diagrams for thin-film samples
of MnSi and Cu2OSeO3 at low temperatures (see Fig. 3.2c, d). b–d Magnetization configurations in
(b) the helical phase, c the skyrmion-crystal phase, and d the field-polarized ferromagnetic phase,
respectively. e Individual skyrmion as a defect in the ferromagnetic background

Here the magnetic-anisotropy terms are neglected because they turn out to play only
minor roles as long as the realistically small coupling constants are considered. The
externalmagnetic fieldB = (0, 0, B) is applied perpendicular to the two-dimensional
plane. Figure3.3a shows the magnetic phase diagram of this model at T = 0 as a
function of the magnetic field B. One finds that three phases, the helical phase,
the skyrmion-crystal phase, and the ferromagnetic phase emerge successively as B
increases. In the experimental phase diagrams for thin-film samples in Fig. 3.2c, d,
one finds corresponding successive phase transitions along the vertical direction at
low temperatures. The T -B phase diagrams for bulk samples in Fig. 3.2a, b have also
been reproduced by the Monte-Carlo calculation of the spin model in three dimen-
sions given by (3.3) without the anisotropy terms [41]. In this study, the exchange
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interactions and the Dzyaloshinskii-Moriya interactions on further neighbor bonds
on the cubic lattice are taken into account to compensate artificial anisotropies due
to the coarse-grained cubic meshing.

It is worth mentioning that skyrmions in chiral-lattice ferromagnets emerge not
only in the crystallized form as observed in the skyrmion-crystal phase but also
as individual defects in the ferromagnetic state as shown in Fig. 3.3b [20]. Such a
skyrmion defect in the ferromagnetic background turns out to be considerably stable
because of the topological protection. Because of this robustness, the individual
skyrmions are expected for technical application to information carriers in the next-
generation magnetic storage devices.

The skyrmions have several advantageous properties for application to high-
density and low energy-consuming storage devices. One of the most important
properties is that one can drive their motion by applying electric currents via the
spin-transfer torque mechanism, and its threshold current density is extremely low
as compared to those for other noncollinear magnetic textures. In this article, we
review recent theoretical studies on the current-driven dynamics of the magnetic
skyrmions. We first discuss the electric-current driven dynamics of the skyrmion
crystal in Sect. 3.2 by focusing on the universal relation between the electric current
density and the drift velocity of skyrmions as well as the ultralow threshold current
density [42, 43]. It is argued that the following three features of skyrmions are key
to understanding these issues, that is, (1) nature as a particle, (2) nature as a vor-
tex, and (3) the finite topological number. In Sect. 3.3, the electric-current driven
dynamics of individual skyrmions in the ferromagnetic background for several kinds
of confined geometries. It is argued that the confinement and the boundary effect
dramatically change the electric-current driven dynamics of skyrmions, including
the steady-state current-velocity relation and transient phenomena, as well as the
creation and annihilation of the skyrmions [44]. In addition to the electric-current
driven motion, the magnon-current driven dynamics of skyrmions is also discussed
in Sect. 3.4. We discuss that irradiation of light or electron beam to a thin-film spec-
imen induces unidirectional rotations of skyrmion microcrystal through introducing
radial temperature gradient. It was uncovered that thermally activated magnons flow
in a diffusive way in the presence of temperature gradient, and topological Hall effect
of these magnon currents due to fictitious magnetic fields from the skyrmion spin
structures works as a driving force of this chiral rotation of skyrmions [45].

3.2 Electric-Current Driven Dynamics of Skyrmions
in Non-confined System

It iswell known that translationalmotion of ferromagnetic domainwalls can be driven
by applying the spin-polarized electric current via the spin-transfer torque effect
[46–48]. This phenomenon is attracting intensive research interest because of poten-
tial application to next-generation magnetic devices such as race-track memory [49].
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However its threshold current density jc to drive the motion is rather large (typically
1010–1012 A/m2), and hence the Joule heating has been a crucial issue. On the other
hand, it was found that the skyrmions in the metallic B20 compounds can also be
driven by the electric current [50–55]. Surprisingly its threshold current density jc
turned out to be five or six orders of magnitude smaller than that for the ferromag-
netic domain walls, that is, its typical value is 105–106 A/m2 [50, 51]. This extremely
small jc indicates that skyrmions are scarcely affected by impurity pinning, and is
advantageous for application to low energy-cost storage devices.

The effects of magnetic impurities on the electric-current driven motion of
skyrmions were theoretically studied [42] by numerically analyzing the Landau-
Lifshitz-Gilbert-Slonczewski equation;

dm
dt

= −γ m × Beff
r + α

m
m × dm

dt

+ pa3

2em
(j · ∇)m − pa3β

2em2
[m × (j · ∇)m] , (3.5)

with m(r) = −S(r)/�. Here the effective magnetic field Beff is given by,

Beff = − 1

γ �

∂H

∂m
. (3.6)

Thefirst and the second terms describe the gyrotropicmotion and theGilbert damping
of the magnetizationm where γ = gμB/�(>0) and α are the gyromagnetic ratio and
the Gilbert damping coefficient, respectively. The third and the fourth terms describe
the coupling between m and the spin-polarized electric current j where e(>0), p and
a are the elementary charge, the spin polarization of electric current, and the lattice
constant, respectively. The third termdepicts the coupling via the spin-transfer torque,
while the fourth via the non-adiabatic effect. The strength of the non-adiabatic effect
is represented by the parameter β.

For the Hamiltonian, the classical Heisenberg model given by (3.4) introduced in
Sect. 3.1 is employed, but this time the following impurity term is added:

Himp. = −A
∑

i∈I

m2
i z, (3.7)

where I denotes a set of the impurity positions. This term describes magnetic
anisotropy at randomly distributed impurity sites where A > 0 gives the easymagne-
tization axis parallel to z, while A < 0 gives the easy magnetization plane perpendic-
ular to z. Note that the model (3.4) reproduces successive emergence of the helical,
the skyrmion-crystal, and the ferromagnetic phases as a function of magnetic field B.
Since the helical state can be regarded as a sequence of Bloch walls in ferromagnets,
one can directly compare the electric-current driven motion of skyrmions and that
of magnetic domain walls on equal footing without changing any other parameters
except B.
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Fig. 3.4 a Simulated velocities v‖ of the electric-current driven motion for the helical state (HL)
and the skyrmion-crystal state (SkX) as functions of the electric current density j for several values
of β. In the simulations, the parameters are set to be J = 1 meV, D/J = −0.18, A/J = 0.2 · p =
0.2 · α = 0.04. Both the clean case without impurity (x = 0) and the dirty case with impurities
(x = 0.1%) are examined where x is the impurity concentration. Red and purple points and lines
are for the HL state, while blue and lightblue points and lines are for the SkX state. All the lines
for the SkX are overlapped within the accuracy of the simulations, indicating a universal current-
velocity relation insensitive to the nonadiabatic effect and the impurity pinning. In contrast, the
current-velocity relation for the HL state sensitively depends on both factors. The velocity becomes
faster as β becomes larger, and the threshold current density jc ∼ 1010–1011 A/m2 appears upon
the impurity doping. (Reproduced from [42].)

Figure3.4 displays simulated velocities v‖ (parallel to j) of spin textures as func-
tions of the electric current density j for the helical and the skyrmion-crystal phases
with different values of β (β = 0, 0.5α, α, and 2α). The impurity concentration is
fixed at x = 0 for the clean case and at x = 0.1% for the dirty case. The strength of
the magnetic anisotropy is fixed at A = 0.2J (>0), i.e., the easy-axis anisotropy. The
blue and lightblue data points are for the skyrmion-crystal phase, while the red and
purple data points are for the helical phase. Remarkably the current-velocity ( j-v‖)
relation for the skyrmion crystal is quite universal, and all the plots overlap within
the accuracy of the numerical simulations. They are independent of the nonadiabatic
effect β, the Gilbert damping α, and the impurities. As will be proven later, the j-v‖
characteristics of the skyrmion crystal nearly obeys the relation:

v‖ = pa3

2em
j. (3.8)

This equation indicates that the electric-current driven motion of skyrmions is insen-
sitive to the value of β and impurities, and thus the skyrmion is an ideal magnetic
texture for manipulation via the spin-transfer torque mechanism with a very low
current density.
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In contrast, the j-v‖ relation for the helical phase sensitively depends on all these
three factors, similarly to the case of a single ferromagnetic domain wall. The helical
structure cannot move when β = 0, prevented by the intrinsic pinning effect. With
a finite β, the j-v‖ characteristics in the clean case with x = 0 nearly obeys the
relation:

v‖ ∝ (β/α) j. (3.9)

In the presence of impurities, the pinning effect suppresses the velocity v‖, and a
finite threshold current density jc appears, whose order is 1010–1011 A/m2.

One of the reasons why the skyrmions are scarcely pinned by impurities are
their flexibility in shape and their particle-like nature. Figure3.5a, b display snap-
shots of the moving skyrmion crystal and the skyrmions during the electric-current
driven motion obtained by the numerical simulation. These figures show that not
only the skyrmion triangular lattice but also each skyrmion deform their shapes dur-
ing the motion, which enables them to move avoiding pinning centers (indicated by
green dots). Figure3.5c displays an example of trajectory of one moving skyrmion,
which shows that the skyrmion as a particle-like object winds its trajectory to avoid
impurities.

This peculiar motion is attributed to the fact that the X and Y coordinates of the
skyrmion core is canonical conjugate due to the spin Berry phase term. The center-
of-mass motion of a vortex-like skyrmion texture under the potential U obeys the
following equations of motion:

Ẋ = − a2

4πm�

∂U

∂Y
, (3.10)

Ẏ = a2

4πm�

∂U

∂ X
. (3.11)

These equations are derived from the Lagrangian for spin systems,

L = m�

a2

∫
d2r(cos θ − 1)φ̇ − U (r, B), (3.12)

where the first term is referred to as the Berry-phase term. Inserting the following
solutions of the skyrmion magnetization configuration,

φ = tan−1 y − Y

x − X
− π

2
, (3.13)

θ = f (r) =
{
0 r → ∞
π r = 0

(3.14)

the Lagrangian reads,

L = 4πm�

a2
(XẎ − Y Ẋ) − U (r, B). (3.15)
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Fig. 3.5 a Simulated snapshot of the skyrmion crystal deformed from their original triangular
lattice during the electric-current driven motion. b Magnified view of (a), which shows skyrmions
distorted from their original circular shape. c Example of a trajectory of one skyrmion in the moving
skyrmion crystal during the electric-current driven motion. The skyrmion moves avoiding impurity
sites indicated by green dots. d Another example of skyrmion trajectory. Since a skyrmion in the
moving skyrmion crystal is pushed by surrounding other skyrmions, the situation that the skyrmion
cannot avoid impurity sites sometimes happens. In such a case, the skyrmion rushes to the impurity
site so as to let its core run over the impurity site because the coremagnetization pointing downwards
is also energetically favorable for the magnetic anisotropy with an easy axis perpendicular to the
plane. e, f Simulated snapshots of the helical state during the electric-current driven motion. The
motion is intermittent, that is, sometimes pinned by impurities so that distorted significantly and slow
down as shown in (e), and sometimes depinned and moves quickly as shown in (f). (Reproduced
from [42].)
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Eventually one obtains (3.10) and (3.11) via the Euler-Lagrange equations. These
equations indicate that the skyrmions move in a direction perpendicular to the poten-
tial gradient, which enables them to move around a obstacle and to avoid being
trapped by impurities.

Figure3.5d shows another example of skyrmion trajectory, in which one finds that
the skyrmion does not avoid the impurity but rushes to it. Since a skyrmion in the
moving skyrmion crystal is pushed by surrounding other skyrmions, the situation
that the skyrmion cannot avoid impurity sites sometimes happens. In such a case, the
skyrmion winds its trajectory so as to let its core run over the impurity site because
the core magnetization pointing downwards is also energetically favorable for the
perpendicular easy-axis magnetic anisotropy.

Such kinds of motions are specific to skyrmions, and never happen for the helical
state and the ferromagnetic domain wall. Because a helix and domain walls are
line-shaped or planar-shaped objects, they cannot avoid passing over the impurity
sites. As a result, the electric-current driven motion of these spin textures become
strongly affected by the impurity pinning. In the presence of impurities, the motion
of helical state becomes intermittent. The helix is sometimes pinned by impurities so
that is distorted significantly and slow down as shown in Fig. 3.5e, and is sometimes
depinned and moves quickly as shown in Fig. 3.5f.

The topological nature of skyrmion is also of crucial importance for the universal
j-v relationwith small influence from the non-adiabatic effectβ, theGilbert damping
α, and impurities. This can be understood as follows. The center-of-mass motion of
a rigid spin texture is described by Thiele’s equation [56], which is derived from
the Landau-Lifshitz-Gilbert-Slonczewski equation by assuming that the spin texture
never deforms during its drift motion. The equation is given by [53, 54],

G × (vs − vd) + D(βvs − αvd) + Fpin − ∇U = 0, (3.16)

where vd is the drift velocity of the spin texture and vs = − pa3

2em j is the velocity of
the conduction electrons.The first term in the left-hand side describes the Magnus
force, while the second term denotes the dissipative force. The third term denotes
the phenomenological pinning force due to impurities [53, 54]:

Fpin ∼ −4πvpin f (vd/vpin)vd/|vd|. (3.17)

Here f is a scaling function and vpin is a velocity characterizing the pinning strength.
The last term represents a force due to the potential from the surrounding environ-
ment. The gyromagnetic coupling vector G = (0, 0,G ) is given by

G =
∫

unit cell
d2r

(
∂n̂
∂x

× ∂n̂
∂y

)
· n̂ = 4π Q, (3.18)

where Q(= ±1) is the skyrmion number, and n̂ = m(r)/m. On the other hand, the
components of dissipative force tensor D are given by,
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Di j =
∫

unit cell
d2r∂i n̂ · ∂ j n̂ =

{
D (i, j) = (x, x), (y, y),

0 otherwise.
(3.19)

Note that thefirst termof (3.16) contains the topological numberG . Crucial difference
between the skyrmion and the helix is the value of G . It is±4π for a single skyrmion,
but is zero for helix and domain wall. Because the values of α(∼10−2) and β(∼α)

are much smaller than unity, the second term of (3.16) is negligible if |G | = 4π ,
and the electric-current driven motion becomes governed by the first term. Then the
motion of skyrmions is well described by,

G × (vs − vd) ∼ −Fpin. (3.20)

In this equation, one finds that the skyrmion motion is not affected by the values
of β and α. On the other hand, when G = 0, the electric-current driven motion is
governed by the second term. Hence the motion of helix and ferromagnetic domain
wall is well described by,

D(βvs − αvd) ∼ −Fpin. (3.21)

This is the reason why the motion of helix strongly depends on β and α.
Although the numerical simulations show that individual skyrmions as well as

the skyrmion crystal are significantly distorted from their original shapes during
the motion, the simulation results are reproduced even quantitatively by Thiele’s
equation (3.16) derived assuming the rigid structure. In the absence of impurities
(Fpin = 0), the drift velocity vd is derived from (3.16) as,

vd = v‖ + v⊥, (3.22)

v‖ =
(

β

α
+ α − β

α3(D/G )2 + α

)
vs, (3.23)

v⊥ = (α − β)(D/G )

α2(D/G )2 + 1

(
ẑ × vs

)
. (3.24)

Here v‖ and v⊥ are components of vd parallel and perpendicular to vs, respectively.
In the case of skyrmions, α3(D/G )2 in the second term of (3.23) is negligible when
α is small enough, which gives,

v‖ = vs, (3.25)

for the current-driven motion of skyrmions in agreement with the β-insensitive
universal j-v‖ relation obtained in the numerical simulation for α = 0.04. Equa-
tion (3.23) also suggests that deviation from the universal relation should show up in
the extremely dissipative system with much larger α. On the other hand, in the case
of helix and domain wall with G = 0, the second term vanishes, which gives,
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v‖ = β

α
vs ∝ β

α
j. (3.26)

This relation is again in agreement with the numerical simulation.
In the presence of impurities with Fpin 
= 0, the Hall angle R = v⊥/v‖ gives

important information. Whereas R approaches an asymptotic value in the limit of
large j as expected from (3.23) and (3.24), it rapidly increases as j decreases due
to the impurity effect. In the limit of small j , the drift velocity vd almost vanishes

(vd =
√

v2‖ + v2⊥ ∼ 0), and then the scaling function f (vd/vpin) in (3.17) becomes

unity. In this case we can derive the explicit expression for vd, v‖ and v⊥ of skyrmion,

vd =
√

(αD A)2 + (α2D2 + G 2)
[
(β2D2 + G 2)v2s − A2

]

α2D2 + G 2
, (3.27)

v‖ = vs

(αD + A/vd)2 + G 2

[
(αD + A/vd)βD + G 2

]
, (3.28)

v⊥ = vs

(αD + A/vd)2 + G 2
[(αD + A/vd)G − βDG ] , (3.29)

where A ≡ 4πvpin. In the limit of α, β → 0, we obtain,

v⊥
vd

= R√
1 + R2

= jc
j
, (3.30)

which indicates that v⊥/vd is proportional to 1/j . More explicitly, solving (3.16)
in the limit of α, β → 0, we obtain

v2d =
(

pa3

2em

)2

( j2 − j2c ). (3.31)

3.3 Electric-Current Driven Dynamics of Skyrmions in
Confined Geometries

In order to use skyrmions as information carriers in magnetic storage devices, it is
essentially important to know their dynamics in nanometric structures and also to
create and annihilate them at will. In this section, we discuss results of the theo-
retical studies on the electric-current induced dynamics of individual skyrmions in
several kinds of two-dimensional constricted geometries with ferromagnetic back-
ground based on numerical simulations of the Landau-Lifshitz-Gilbert-Slonczewski
equation (3.5) with the classical Heisenberg model given by (3.4) [44].

First we argue that the electric-current driven motion of a skyrmion confined in a
narrow region is completely different from that in a non-confined plane because of the
presence of confining potentials from the boundaries. Figure 3.6 displays simulated
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Fig. 3.6 Simulated steady-state velocity of the electric-current induced motion of a skyrmion in a
finite-width channel as a function of the electric current density j for several values of β/α. For the
dirty case with impurity concentration of x = 0.1%, values averaged over eight different patterns
of impurity distributions are presented. The parameters used for the simulation are J = 1meV,
D/J = 0.18, B = 0.0278J , A = 0.2J , andα = 0.04. Inset shows a schematic figure of the channel
of width w. (Reproduced from [44].)

relations between the electric current density j and the drift velocity vd of a skyrmion
in the steady state after the transient time. The sample shape considered here is a
long stripline-shaped system along the x-direction, with nanometric width w along
the y-direction as shown in the inset of Fig. 3.6. Here the impurity concentration x
is fixed at x = 0 for the clean case and x = 0.1% for the dirty case.

In this figure, one finds that the j-v‖ relation depends strongly on α, β and the
impurity effect, in sharp contrast to the universal j-v‖ relation of skyrmions without
boundary effect as exemplified by (3.25) in Sect. 3.2. When the impurity effect is
absent or negligible, the j-v‖ relation of a skyrmion for the confined case is derived
from Thiele’s equation (3.16) as,

v‖ = β

α
vs. (3.32)

This relation is identical to that of the helical state or ferromagnetic domain walls
given in (3.26), which indicates strong dependence onα andβ. Note that whenβ = α

and x = 0, this j-v‖ characteristic becomes identical to the universal relation for the
skyrmion crystal in a non-confined space.
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Equation (3.32) is derived in the following way. The solution to (3.16) without
Fpin is given for the constant vs as,

vd = 1

α2D2 + G 2

⎛

⎝
−αD −G

G −αD

⎞

⎠

⎛

⎝
G vsy − βDvsx + ∂U

∂ X

−G vsx − βDvsy + ∂U
∂Y

⎞

⎠

= 1

α2D2 + G 2

⎛

⎝
(αβD2 + G 2)vsx − (α − β)DG vsy − αD ∂U

∂ X − G ∂U
∂Y

(α − β)DG vsx − (αβD2 + G 2)vsy + G ∂U
∂ X − αD ∂U

∂Y

⎞

⎠ .

(3.33)

In a simple long stripline-shaped system, we can set vsy = 0 and ∂U
∂ X = 0 in (3.33)

to obtain,

vd =
⎛

⎝
Ẋ

Ẏ

⎞

⎠ = 1

α2D2 + G 2

⎛

⎝
(αβD2 + G 2)vsx − G ∂U

∂Y

(α − β)DG vsx − αD ∂U
∂Y

⎞

⎠ . (3.34)

The y-component of (3.34) determines the Y coordinate in the equilibrium state, that
is, the Y coordinate in the limit of t → ∞ converges to a value that satisfies,

∂U

∂Y
= α − β

α
G vsx , (3.35)

as long as the skyrmion is confined in the system. Inserting this relation to the x-
component of (3.34), we obtain,

vdx = 1

α2D2 + G 2

(
αβD2 + β

α
G 2

)
vsx

 β

α
vsx . (3.36)

When the electric current velocity vsx (or the electric current density j) is so large that
(3.35) cannot be satisfied in the sample, the skyrmion disappears at the longitudinal
edge of the sample. The threshold current density jc to delete the skyrmion at the
longitudinal edge depends on the ratio β/α. From the simulation, its typical value is
evaluated as jc  4.0 × 1011 A/m2 when β/α = 2.

Next let us consider the skyrmionmotion at the junction of amagnetic stripline and
a nonmagnetic lead (see inset of Fig. 3.7a). Figure3.7a, b show two types of skyrmion
dynamics near the junction. For a small electric current density, the skyrmion bounces
and cannot reach the boundary because it cannot overcome a repulsive potential from
the boundary. In this bouncing process, the repulsive potential from the boundary
induces a motion transverse to the boundary because of the Magnus force, and even-
tually the skyrmion stops at a position slightly below the central line of the system.
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Fig. 3.7 Snapshots of magnetization configurations during the electric-current driven motion of a
skyrmion near the edge of the stripline-shaped sample of magnetic material with nonmagnetic leads
on both sides (see inset) for two different electric current densities a j = 1.0 × 1011 A/m2 and b
j = 3.0 × 1011 A/m2. The parameters used for the simulation are equivalent to those for Fig. 3.6,
and the clean case without impurities are considered. (Reproduced from [44].)

On the other hand, the larger electric current density enables a skyrmion to over-
come the potential barrier as shown in Fig. 3.7b. The electric current further pushes
the skyrmion to the sample edge, resulting in the annihilation of the skyrmion.

These kinds of behaviors can also be described by Thiele’s equation. Near the
vertical sample edge, one can set vsy = 0 in (3.33) to obtain,

⎛

⎝
Ẋ

Ẏ

⎞

⎠ = 1

α2D2 + G 2

⎛

⎝
(αβD2 + G 2)vsx − αD ∂U

∂ X − G ∂U
∂Y

(α − β)DG vsx + G ∂U
∂ X − αD ∂U

∂Y

⎞

⎠ .

When the current velocity vsx (or the electric current density j) is large enough,
the drift velocity of skyrmion vsx is always positive, and the skyrmion goes out
of the sample, resulting in annihilation of the skyrmion. On the other hand, if the
current velocity vsx is not large enough, bouncing of skyrmion occurs. The skyrmion
goes to the boundary and then returns with a small displacement in y-direction.
Eventually, the skyrmion stops at a stationary point (X0, Y0), which satisfies the
following equation:

⎧
⎪⎨

⎪⎩

∂U
∂ X = βDvsx

∂U
∂Y = G vsx

. (3.37)
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It should be also mentioned that in the collision and annihilation process, the
trajectory of the skyrmion is curved first downward and then upward because the
skyrmion is subject to repulsive and attractive potentials before and after it overcomes
the potential barrier, respectively.

The creation of skyrmions is recognized to be very difficult because of the topolog-
ical stability. Topological spin textures like skyrmion can never be created or annihi-
lated by continuous variation ofmagnetization configuration fromuniform ferromag-
netic state. This means that discontinuous flip of local magnetization is necessary for
its creation, which inevitably results in a large energy cost of the order of J although
a typical energy scale of skyrmion is D2/J = J (D/J )2 ∼ (10−4 − 10−2)J .

The simulation demonstrates the creation of skyrmions by applying an electric
current to a stripline-shaped sample with a rectangular notch structure. Snapshots
of the skyrmion creation process are shown in Fig. 3.8. Here the strength of the
external magnetic field is fixed at B = 0.0278J , which slightly exceeds the critical
field strength for the skyrmion-crystal-to-ferromagnetic transition, that is, the ground
state is ferromagnetic.

mz

+1-1 0

SampleLead Lead
wd

t=0.1889 ns

t=0.2860 ns t=0.3835 ns t=0.4810 ns

t=0 t=0.091 ns

Fig. 3.8 Snapshots of magnetization configurations during the process of skyrmion creation with
the electric current density of j = 3.6 × 1011 A/m2. The parameters used for the simulation are
equivalent to those for Fig. 3.6. Here the clean case without impurities are considered. (Reproduced
from [44].)
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Without electric current, the magnetizations around the notch have large in-plane
components due to the Dzyaloshinskii-Moriya interaction. The applied electric cur-
rent swells out the magnetization texture at the notch via the spin-transfer torque
to form a seed of skyrmion. Subsequently, magnetizations behind the seed become
twisted via the spin precession and point down due to the Dzyaloshinskii-Moriya
interaction, and eventually the skyrmion core is created. The unique direction of the
spin precession breaks the reflection symmetry, thereby leading to asymmetry with
respect to the sign of j. The skyrmion creation occurs only when the electric current
flows in a certain direction determined by the sign of B irrespective of the sign of
the Dzyaloshinskii-Moriya coupling.

The simulations find the following conditions for efficient creation of skyrmions:

• The most suitable angle of the notch corner is 90◦.
• Both the notch depth d and the sample width at the notch w − d (w is the width
of the stripline) should be comparable to or larger than the size of the skyrmion.

• The sharp edge of the notch corner is not necessarily needed, and the skyrmion
creation occurs even with a rounded notch if the curvature radius is comparable to
or larger than the size of the skyrmion.

3.4 Magnon-Current Driven Dynamics of Skyrmions

In this section, we discuss the magnon-current driven dynamics of skyrmions [45,
57–60]. Magnon currents couple to noncollinear spin textures such as skyrmions via
exchanging the spin-transfer torque. In the presence of temperature gradient, diffu-
sive flows of thermally activated magnons occur in magnets. Reacting force from the
diffusive magnon currents turns out to drive motion of skyrmions in a direction oppo-
site to themagnon flow [45, 57, 58]. An intriguing dynamical phenomenon related to
this effect has been discovered by the Lorentz transmission electronmicroscopy [45].
It was observed that micro-scale regions of skyrmion crystal in thin-film samples of
MnSi and Cu2OSeO3 show persistent rotations in a unique direction in the wide
range of temperature and magnetic field. In the Lorentz transmission electron micro-
scope experiments, a static magnetic field is applied in the perpendicular direction
from the top down (this direction is referred to as the negative z direction hereafter),
and one observes the persistent rotation in a clockwise fashion. This chiral rota-
tion of skyrmion microcrystal is observed both for metallic MnSi and for insulating
Cu2OSeO3, in spite of their distinct origins of the magnetism between metallic and
insulating magnets, as well as differences in skyrmion size, transition temperature,
and critical magnetic field, which indicates that this chiral rotation is a generic phe-
nomenon of the skyrmionic system. In the Lorentz microscope, an electron beam is
irradiated onto a thin-plate sample of magnet to observe the real-space distribution of
magnetizations. One might suspect a circular magnetic field induced by the electron
beam as a driving force of this rotation. However, this possibility can be excluded
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since estimated strength of the induced field is five orders of magnitudes smaller than
the geomagnetic field.

Then a question arises: why and how does this phenomenon occur? The electron
beam irradiated in the Lorentz microscope is expected to raise a temperature slightly
at the beam spot on the sample relative to the outside of the spot, which induces
a temperature gradient where the temperature gradually decreases from the center
of the beam spot to the periphery. This hypothesis was examined by numerical
simulations as a possible driving mechanism.

In the simulation, magnetic configuration of a skyrmion crystal confined in a
micrometric circular disk is first prepared by the Monte-Carlo thermalization, and
then a radial temperature gradient is introduced to this system as shown in Fig. 3.9b.
More concretely a linear temperature gradient with the highest temperature kB(T0 +
	T ) = 0.106 J and the lowest temperature kBT0 = 0.1 J at the center and the edge
of the disk, respectively. Thermally induced dynamics of this confined skyrmion
microcrystal is simulated by numerically solving the stochastic Landau-Lifshitz-
Gilbert equation using the Heun scheme. The equation is given by,

dmi

dt
= − 1

1 + α2

[
mi × (

Beff
i + ξfl

i (t)
) + α

m
mi × {

mi × (
Beff

i + ξfl
i (t)

)}]
.

(3.38)

Here Beff is the deterministic effective magnetic field calculated from the Hamil-
tonian as

Beff
i = − 1

γ �

∂H

∂mi
, (3.39)
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Fig. 3.9 a Skyrmion-crystal configuration confined in a circular disk prepared in order to investigate
the persistent chiral rotation of skyrmions by numerical simulations. b Radial temperature gradient
expected to be realized in the Lorentz transmission electron microscopy experiment where the disk
center has a high temperature of T0 + 	T , while the periphery has a low temperature of T0 with
a temperature difference of 	T (>0). In the simulations, a linear interpolation of temperatures
between the center and the edge is assumed. (Reproduced from [45].)
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while ξfl
i (t) is the Gaussian stochastic force. The latter describes the thermally fluc-

tuating environment acting on the magnetizations which satisfies the following rela-
tions;

〈
ξfl

i,β(t)
〉 = 0, (3.40)

〈
ξfl

i,β(t)ξfl
j,λ(s)

〉 = 2κiδi jδβλδ(t − s), (3.41)

where β and λ are the Cartesian coordinates x , y and z. Regarding (3.38) as
Langevin’s equation, one obtains a relation between κ (variance of the Gaussian
distribution) and local temperature Ti from the fluctuation-dissipation theorem as,

κi = αkBTi/m (3.42)

where α is the Gilbert-damping coefficient and m is the norm of the magnetization
vector.

The simulation reproduces the experimentally observed ratchet rotation of the
skyrmion crystal. Figure3.10 shows snapshots of the simulated real-space dynamics
of the skyrmion crystal. In this simulation, themagnetic field is applied in the negative
z direction in accord with the experimental situation, and one observes the persistent
rotation in the clockwise fashion in agreement with the experimental observation.
What’s important is this chiral rotation is driven purely by thermal fluctuations or the
temperature gradient, because no other motive force is considered in this simulation.

A theoretical analysis has uncovered that this phenomenon is induced by the
topological Hall effect of magnon currents (see Fig. 3.11a). At finite temperatures,
thermal fluctuations activate magnons. In the presence of temperature gradient, such
thermally activatedmagnons flow in the disk from its centerwith a higher temperature

Fig. 3.10 Snapshots of the
simulated dynamics of the
confined skyrmion crystal
with kBT0/J = 0.1 and
	T/J = 0.006 where the
time unit is �/J . The
parameters used are
J = 1 · m = 1 · D/J =
−0.27 · Bz/J = −0.03, and
α = 0.01. The static
magnetic field is applied to
the negative z direction, and
then one observes that the
skyrmion crystal is
persistently rotating in the
clockwise fashion.
(Reproduced from [45].)
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Fig. 3.11 a Schematic figure of the persistent unidirectional rotation of skyrmion microcrystal
driven by the topologicalmagnonHall effect in the presence of the temperature gradient.bSimulated
time profiles of the number of the rotations (or the rotation angle divided by 2π ) for four different sets
of signs of the Dzyaloshinskii-Moriya parameter D and the external magnetic field B = (0, 0, B).
Note that a positive (negative) slope of the plot indicates the counterclockwise (clockwise) rotation.
One finds that the rotation sense is reversed when one reverses the sign of B, whereas is unchanged
when one reverses the sign of D. (Reproduced from [45].)

to the edge with a lower temperature. This diffusive magnon currents flowing in the
radial direction become deflected by the fictitious magnetic field generated by the
topological skyrmion spin textures.When themagnetic field is applied in the negative
z direction, each skyrmion has a core magnetization pointing upwards, which gives a
skyrmion number Q = +1 and a negative quantum magnetic flux to each skyrmion.
Consequently the magnon currents are deflected in the counterclockwise direction.
Its reacting force acting on the skyrmions drives the rotation of the skyrmion crystal
in the opposite direction.

According to this mechanism, one expects that the rotation sense should be
changed upon the sign reversal of the external magnetic field, whereas it should not
upon the sign reversal of theDzyaloshinskii-Moriya parameter D or upon the reversal
of the crystal chirality. This is because the sign reversal of D does not change the sign
of the fictitious magnetic field from skyrmions, and thereby the deflection direction
of the magnon currents due to the topological magnon Hall effect is unchanged. This
prediction was indeed confirmed by numerical simulations as shown in Fig. 3.11b
and also by subsequent Lorentz microscope experiments.

The above finding opens a route tomanipulate and drive skyrmions via the reacting
force from thermally induced magnon currents by introducing temperature gradient.
In addition to the rotational motion under the radial temperature gradient shown
in Fig. 3.12a, one can realize translational motion of skyrmions by introducing the
linear temperature gradient in a stripline-shaped sample as shown in Fig. 3.12b.
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(b)

translational 
motion

(a)

rotational 
motion

electron beam or light

Fig. 3.12 a Schematic figure of the rotational motion of skyrmions in the presence of the radial
temperature gradient induced by the irradiation of an electron beam or a light. b Schematic figure
of the driving mechanism of translational motion of skyrmions in a stripline shaped sample with
a temperature gradient. Magnons activated thermally at the high-temperature side flow to the low-
temperature side. The reaction force from this diffusive magnon current acts on the skyrmion to
drive their motion in the opposite direction, that is, in the direction towards the high-temperature
side

3.5 Concluding Remarks

We have overviewed recent theoretical studies on the current-driven dynamics of
magnetic skyrmions. Three features of skyrmions, that is, the finite topological num-
ber, the vortex-like nature, and the particle-like nature have turned out to be key
ingredients for their peculiar dynamical properties. The ultralow threshold current
density to drive the motion makes skyrmions promising for future technical appli-
cation. In order to utilize skyrmions as information carriers, one needs to establish
efficient ways to write, delete, and read the skyrmion bits. Concerning the writing
process, several methods have been theoretically proposed in addition to the method
using the electric current and a notch discussed in Sect. 3.3 [61–64]. Also tech-
niques to fabricate thin films, nanowires and nanopatternings of skyrmionic mate-
rials should be developed [65–71]. In addition to the current-driven dynamics, the
skyrmions show a lot of intriguing phehomena, which have attracted research inter-
est. Peculiar collective modes and response dynamics under the ac electromagnetic
fields such as light and microwave were reported recently [72–78]. In particular,
the skyrmions in the insulating chiral-lattice magnet Cu2OSeO3 exhibit ferroelec-
tricity with magnetism-induced electric polarizations [25–27]. In this multiferroic
system, coupling between the electric polarization and the magnetization, so-called
magnetoelectric coupling enables us to control the skyrmion spin textures via appli-
cation of an electric field [79–83]. Furthermore one can activate coupled eigenmodes
of magnetizations and polarizations, so-called electromagnons , not only by the ac
magnetic-field component of microwave but also by the ac electric-field compo-
nent of microwave. It was theoretically predicted that interference between these
two activation channels causes unprecedentedly large diode effect on microwaves,



78 M. Mochizuki

or directional dichroism of microwaves [84]. This prediction was experimentally
confirmed soon after it was proposed [85]. This finding indicates that the skyrmions
possess high potential for application not only to storage and logic devices but also
to microwave devices. The critical behavior of the phase transitions [86–89], the
topological Hall effect [90–93], the emergent electromagnetic fields [54, 94–96],
and peculiar dynamics [97–99] are also issues of importance for the skyrmions and
the skyrmionic materials. It should also be mentioned that several types of topolog-
ical spin textures have been discovered or predicted successively in several kinds
of materials or systems [100–109]. Researches on the rich and dramatic skyrmion
dynamics have just started, and we wish that this article would draw attention to this
field and help to develop the research.
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Chapter 4
Functional Topologies in (Multi-) Ferroics:
The Ferroelastic Template

E.K.H. Salje, O. Aktas and X. Ding

Abstract Ferroelastic domain boundaries are templates for functional interfaces
with supercondunctivity, ferroelectricity and ferromagnetismconstraint to thedomain
boundary. The topologies of these functional interfaces are described for three,
two and one dimension(s), thus showing the basic topological approch to Domain
Boundary Engineering.

4.1 Introduction

Bulk ferroics are a well-known class of anisotropic, nonlinear solids that develop
a spontaneous order parameter below a symmetry-lowering transition point. These
materials typically result from modifications of a high-symmetry structure
(prototype). Ferroics are classified according to their primary order parameters,
which include strain ε (ferroelastic), polarization P (ferroelectric), and magneti-
zation M (ferromagnetic), where the term “ferro” designates the uniform alignment
of the spontaneous moments in neighboring unit cells. Ferri- and anti-ferro-phases
can also exist when the order parameter is locally rotated against a crystallographic
axis, or when the relevant wavevector (or wavevectors) associated with the structural
instability occur(s) at special points at the surface of the Brillouin zone. Incommen-
surable phase transitions require a complex order parameter with a repetition unit that
is not commensurate with the underlying crystal structure. In both of these cases, the
translation invariance of the order parameter (incommensurate or commensurate) is
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preserved throughout the crystal. Additionally, a novel class of ferroic materials has
been garnering increasing attention; these so-called multiferroics feature more than
one spontaneous primary order parameter, where the order parameters can be cou-
pled or remain independent depending on the desired application. There are classic
textbooks on ferroics [1–13], and numerous recent reviews on multiferroics [14–19].

These bulk ferroic properties have their equivalent in lower dimensional sub-
spaces, such as two-dimensional twin boundaries, one-dimensional Bloch lines and
vortex dots. A novel development in ferroic materials begun when it was understood
that these low-dimensional ferroic properties are not necessarily related to ferroic
bulk properties but that surfaces and interfaces may have ferroic (or superconduct-
ing) properties in a more constraint space while the bulk may even not be ferroic at
all. Much research has been dedicated to surfaces but any practical applications are
unlikely to be confined to surfaces because the total number or particles involved in
functionalities will simply be too small (unless the grain size becomes very small).
This problem can be overcome when we consider parallel twin boundaries where
the number of atoms inside the twin boundaries is much larger than in surface layers
and can reach 4% of the total number of atomes in the sample. This concentration
is large enough to think about applications such as memory devices, heat regulators
and elastic dampers [19]. In addition, templates such as twin boundaries are mobile
under fields, they can form tweed and domain glasses [20, 21]. One may then ask: is
it possible to arrange twin boundaries topologically in ways so that the macroscopic
use of the material as conductors, switches or heat regulators can be optimized?
The answer is affirmative and leads to the development of domain structures, with a
high degree of complexity. This field of research is part of ‘Domain Boundary Engi-
neering’ and has as aim to provide functional domain structures with an optimized
topology [14, 19, 28].

Let us illustrate this point with two examples. Consider a twinned martensite:
many medical applications require an elastic response which is both reversible and
also highly anisotropic [22–25]. This can be achieved by tailoring the twin domains
in specific arrays. Such devices are used to open arteries, often used for patients after
heart attacks. In another potential application onemakes use of twin boundaries being
superconducting [26–29]. If these twin boundaries are arranged in comb configura-
tions (see also Fig. 4.6) where they form needle arrays and touch an orthogonal wall,
the total system forms an array of Josephson junctions. Such devices would be ideal
for the detection of weak magnetic fields useful in astronomy or in brain surgery.

One of the first functional twin boundaries was discovered in tungsten oxide
(WO3) in 1998 [26] with the introduction of Na and oxygen vacancies in twin walls.
Through slight modifications of the walls by altering their chemical composition
(e.g. fromWO3 to • WO2.993 ), a metal–insulator transition is induced, which at low
temperature can lead to the appearance of superconductivity in twin walls (Fig. 4.1)
[26–29]. Although the changes are minor and analytically hard to detect, the chem-
ically modified walls become superconducting with a critical field Hc2 above 15T
and a superconducting transition temperature, Tc, initially near 3 K [26]. The sur-
rounding matrix remains insulating so that this arrangement of superconducting twin
boundaries with the formation of needle domains and domain junctions is potentially
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Fig. 4.1 Microstructure of WO3 with highly conducting twin walls and the collapse of piezoelec-
tricity in twin walls a topology, b conductivity, c piezoelectricity. Original data were published in
[29]

the key for engineering arrays of Josephson junctions and high-sensitivity magnetic
scanners. In addition, it has been suggested that surface layers, presumably similar
to the interfacial structures in WO3, may display superconductivity at temperatures
up to Tc = 91K(Na doping) and 120K(H doping) [30]. These are extreme values
of Tc, which have not been reproduced independently, while the highest recently
confirmed value of 13K has been directly observed by transport measurement.

The fact that a dopant will follow the trajectory of twin walls means that the
nano-patterning of the superconducting structure is possible via the patterning of
the twin boundaries and subsequent doping. Tungsten oxide, WO3, and its sub-
stoichiometric derivatives, WO3−x , are particularly well suited for this research
because they displaymetal–insulator transitionswhile remaining thermodynamically
highly stable compounds [30–35]. These compounds display a multitude of struc-
tural phase transitions—principally linked to shape changes of the WO6 octahedra
and their rotations within an octahedral network. The facility with which oxygen is
released under reducing conditions is mainly related to the low energy required to
transfer the valence state of localized surplus electrons on theW6+ sites toW5+ (rather
than the chemical bonding to oxygen). This tendency to form W5+ states near the
surface was directly confirmed by X-ray photoelectron spectroscopy and ultraviolet
photoelectron spectroscopy [36] and indirectly by scanning tunnel microscopy. The
W5+ states are not localized and form bi-polarons in the low-temperature phase [37,
38]. In addition to being superconducting,WO3 is also a well-known electrochromic,
solar cell, and catalytic material [39].

We now discuss the relevant topologies of the ferroelastic templates in increasing
order of complexity. First we use simple ferroelastic twin boundaries as templates
for the required functionality, we will then use domain walls inside domain walls as
a finer tool for such templates.

4.2 Wall Interesections with the Surface

Novak et al. [40] determined the strain profiles of twin walls when they intersect
the crystal surface. It was speculated that the twin wall would widen dramatically at
the surface so that the wall thicknesses near the surface, as measured by AFM, are



86 E.K.H. Salje et al.

Fig. 4.2 Distribution of the order parameter Q at the surface of the lattice (first 50 layers). Lines
represent constant Q, with Qo = 1 in the bulk. There are three lines in the middle of the twin domain
wall that are not labeled; they represent theQvalues of 0.40, 0.00, and−0.40 respectively. Notice the
steepness of the gradient of Q through the twin domain wall. The two structures represent sheared
twin atomic configurations in the bulk (far from the twin domain wall and surface intersection)

much wider than the bulk values. Fortunately, this assertion proved to be wrong, the
apparently wide twin walls were an artifact of the AFM method resulting from its
limited resolution. The surface near strain profiles are shown in Fig. 4.2 and cearly
show that the core of the twin wall remains sufficiently narrow to allow the extreme
pinning of dopant atoms from the gas phase [41].

When walls intersect the surface under a shallow angle, one finds additional wall
bending that was shown by Conti and Weikard [42] and, in a concrete example,
by Ishibashi et al. [43, 44]. The intersections become important when the domain
boundary concentration becomes large and overlapping domain walls may otherwise
exist in the surface [45, 46]. In particular the measurement of the strain profiles by
Raman spectroscopy relies on the fact that wall profiles are not much modified near
surfaces [47–49].

4.3 Bending of Domain Walls, Needle Domains and 90◦
Junctions

The internal structure of twin walls is largely determined by the short-range interac-
tion between atoms and the way that the atomic coordinates and occupancies reflect
the spatial variations in the thermodynamic order parameter of the ferroelastic or
co-elastic phase transition [1, 5]. The structural variations lead to elastic relaxations
of the crystal structure, producing long-range strain fields. The strain fields generated
by mesoscopic structures need not induce a macroscopic deformation of the sample
or a variation in the average lattice parameters. The latter would be expressed by
the macroscopic spontaneous strain of the sample and it is usually observed that dif-
ferent mesoscopic structures show almost the same macroscopic lattice parameters
and, thus, the same spontaneous strain. When atomic ordering takes place in one
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part of the crystal it inevitably pulls and pushes neighboring atoms and/or structural
units, i.e. it creates a local displacement field. This field then displaces other atoms
and hence propagates elastically to distant parts of the crystal via a knock-on effect.
The experimental observation of domain boundaries, such as twin walls, shows that
their strain profiles corresponds well to that predicted from classic theory of elastic
interactions, ignoring any additional short-range interactions and non-local effects
[1, 5, 50, 51].

Two energies determine the deviation of wall directions under weak bending:
the anisotropy energy Eanisotropy = U(dy/dx)2 and the bending energy Ebending =
S(d2y/dx2)2, where the wall trajectory is defined by the coordinates x in the wall
and the orthogonal direction y. The wall trajectories follow then from the solution
of the Euler Lagrange equations with these energy terms and appropriate boundary
conditions.

As example, a macroscopic sample is sheared if domain 1 is stabilized with
respect to domain 2. The wall moves if an appropriate constant fore is applied in
order to increase the size of domain 1. When the wall hits a defect, a point force is
superimposed on the uniform force field and the wall bends around the defect. For
thick walls in rather isotropic media, the wall profile is determined by the bending
energy with d4y/dx4 = 0 everywhere except at the locus of the point force (e.g. x =
h/2) [51]:

d4y/dx4 = Kδ(x − h/2).

The surface of the crystal is allowed to relax so that the boundary conditions are
y = 0 at x = 0 and x = h. The solution of the differential equation is a polynomial
of third order which is symmetrical with respect to x = h/2. No second-order terms
exist because of the condition that the wall is flat (y′′ = 0) without applied force. The
required solution is [51]

y = (1/h3)ymaxx(3h
2 − 4x2) for x < h/2

y = (1/h3)ymax(h − x)(−h2 + 8xh − 4x2) for x < h/2

where ymax = Kh3/48 is the maximum deviation of the wall centre from the surface.
Around the defect the wall is parabolically bent with a straighter shape farther away
from the pinning centre. As there is no elastic anisotropy energy present in this
example, the wall is never planar along the elastically soft direction but is bent
throughout the entire crystal.

Two pinning centres at the surface of the crystal excert point forces are at each
end of the wall whereas the rest of the wall is subject to a constant dragging force due
to the macroscopic shear of the sample. The differential equation which describes
the wall trajectory is [51]

d4y/dx4 = K[δ(x) + δ(x − h)]
y = (K/24)x(x3 − 2hx2 + h3)
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where h is again the thickness of the sample in the x direction. The total wall profile
is almost identical with that of a single pinning centre. In the case of surface pinning,
the wall simply rotates near the centres but does not curve. The maximum curvature
is again in the middle of the crystal because the two rotated parts of the wall have
to connect in a smooth manner. The important conclusion from the comparison of
the trajectories is that it is impossible to distinguish between the possible origins of
a bent contour from the experimental observation alone; the contour may be due to
one defect in the middle of the bend or several defects at the outside.

We can nowadd elastic drag to thewall. Thewall is againmoved by external forces
and hits a local defect. In contrast with the previous cases the wall is allowed to relax
along the y direction at great distance from the pinning centre. Such relaxation is
achieved by a macroscopic deformation of the sample. The restoring force of the
relaxation is elastic in nature and increases linearly with the wall displacement K =
Py. The trajectory is described by [51]

Sd4y/dx4 = −PyK′δ(x).

For an infinite crystal, the boundary conditions are y= 0 at x= ∞ and x= −∞, the
bending must be continuous at y = 0 in y, y ′ and y ′′. The solution of the differential
equation is [51]

y = ymaxexp(−β|x|)[cos(β|x|) + sin(β|x|)]with the characteristic length
λ = 1/β = (4S/P)1/4.

The new aspect of this solution, in contrast with the case discussed before, is that
there is an intrinsic length scale (λ) of the problemwhich allows thewall to bend back
to the original orientation of the unperturbed crystal far away from the needle tip.

Wenowdiscuss oneof themost common topologyof domainwalls in ferroelastics,
namely needle domains [51]. We consider Peierls forces which are a linear function
of the wall displacement y and simplify the anisotropy energy for small angles to
include only the quadratic term in the energy density E = U(dy/dx)2+ Py2. The
wall trajectory is then determined by the Euler–Lagrange equation with −2Py +
2U d2y/dx2 = 0. The solution is an exponential decay with y = ymax exp(−x/λ)

where ymax is the maximum deviation from the unperturbed wall at the needle tip.
The length scale λ is given by λ = (U/P)1/2, namely by the ratio of the anisotropy
energy to the Peierls energy. For large pinning forces the needle tip is short, whereas
for small pinning forces the tip becomes long and narrow. The profile is smooth and
shows a maximum bend near the shaft of the tip (Figs. 4.3 and 4.4). At the tip itself
the trajectory is linear. For the actual tip, the trajectory is described by P= 0 with the
boundary condition y = 0 at x >λ. With 2Ud2y/dx2 = 0 the solution becomes y =
ymax(1 − x/λ) for x <λ. The trajectory is hence linear over large areas of the needle
with exponential corrections near the shaft of the needle tip. Thewall profile is shown
in Fig. 4.3. Experimental observations confirm the detailed profile analysis [50].

In many cases ferroelastic walls (W and W′) intersect and form corners [1]. It
is customary to call these corner configurations ‘right-angled’ domains. This term
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Fig. 4.3 Needle domain with strong Peierls forces and high anisotropy energy

Fig. 4.4 Needle twins in KSCN (a) and BaTiO3 (b). The trajectories were fit with an exponential
function. The upper images show the true aspect ratio, the lower images show the y axis expanded
to demonstrate the curvature of the needle tip. The apparent asymmetry in the latter is due to the
non-linear expansion. Both axes have the same units (microns in a and nanometers in b)

is somewhat misleading, however, because the angle between the two walls is not
exactly π /2 but either π /2 +ω or π /2 −ω, where ω is the value of the spontaneous
strain of the sample ([1] for details). In materials with a small spontaneous strain
(10−3, say) the deviation of the angle from π /2 is too small to be seen in electron
microscopy or optical images while for most ferroelastics with spontaneous strains
of some 2% such deviations are clearly recognized. It was shown that this misfit of
the wall angle from π /2 is essential for the understanding of the shape of the corner
tip. Elastic strain energies of the bulk may lead to a rounding of the corner or may
make the corner bulge out. The role of the Peierls forces domaintes away from the
bent and the trajectories have to be asymptotically close to the original straight wall.
Using the projection of the length element on the axis we find the energy expression
which has to be minimized (Fig. 4.5):

δE = δ
{
4/πU sin2(2α + π/2)[(π/4)2 + α2]1/2 + Sα′2

}
dx = 0
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The Euler–Lagrange equation is

2S/Uα′′ = (δ/δα){(4/π)sin[2(2α + π/2)][(π/4)2 + α2]1/2}

with the boundary conditions α = −π /4 for x = −∞ and α = π /4 for x = ∞. The
solution near the corner can be found for small values of α in a series expansion in
α: 2S/Uα′′ = −Aα + Bα2 . . .with A, B > 0.

In fact, numerical comparison between the full equation and this series expansion
shows that for all α-values between −π /4 and π /4 the approximation is excellent.
Deviations are large outside this interval but the boundary conditions disallow suchα-
values anyway. The solution for the wall trajectory is then, to a good approximation,
α = (π /4) tanh(x/λ) where λ ∝ (S/U)1/2 is a measure for the bending radius of
the wall around the corner. Mesoscopic structures with a multitude of right-angled
walls, such as in tartan patterns, λ introduces again a length scale which is of the same
order of magnitude as the length scale of the wall bending near defects or in needle
domains if such bending is also determined by the same anisotropy energy and the
bending energy. The wall trajectory in Fig. 4.5a is obtained in the (x, y) coordinate
system by integration: y = λ ln[cosh(x/λ)], this shows the rounding of the corner.
Experimental trajectories are shown in Fig. 4.5b. These topologies of the twin walls
have been observed experimentally [50]. Note, however, that in most ferroelastic
materials several corners will appear in the pattern in order to minimize the non-
local elastic forces. These pattern then have a high degree of complexity where each
corner has still the same rounding effect but the numerical values of the bending
radius can change strongly.

4.4 Adaptive Structure

Energies of the twin boundaries are often in the range of 300 mJ/m2, which is not
dissimilar to surface energies. Much smaller wall energies have been observed, such
as in SrTiO3 with very high wall densities [52]. A key observation was made in
1991 by Carpenter [53] who found that the wall energy in anorthite (CaAl2Si2O8)

depends on the amount of cation ordering between Al and Si. This degree of order
is strongly dependent on the annealing temperature that determines the degree of
Al, Si order. He could then determine the wall energy as function of temperature
and found values between 600 mJm2 and 300 mJ/m2 with decreasing temperature
between 1675 and 1475K. Extrapolating to lower temperatures, the wall energy
became zero near 1275K and negative at lower temperatures. Negative wall energies
lead to incommensurate structure, which have indeed been found in anorthite. In
the context of topologies of ferroelastic domain structures, the key finding is that
the wall energy can be extremely small so that the nucleation and destruction of
wall requires little or no energy. It was argued by Viehland and Salje [21] that the
nucleation and movement of such low energy walls requires little energy itself so
that the walls become highly mobile and can hence adapt easily to any change of
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Fig. 4.5 a Bending of a
domain wall at a right-angled
corner [51]. b Images of
right angle twin walls and
the fitted wall trajectories.
(A) Gd2(MoO4)3, (B)
YBa2Cu3O7. Both axes have
the same units [50]

A

B

boundary conditions. These authors called such topologies ‘adaptive structures’.
They occur typically near morphotropic boundaries [54, 55] where the structural
state is a mix of a multitude of phases, many domain boundaries and the ability to
adapt to external forces easily [56]. Adaptive domain structures have been reviewed
in detail in [21]. Functional walls with low wall energies are hence expected to
adapt to prescribed domain configurations when the driving forces are correctly
chosen—although it may not always be possible to design these domain structures
in full detail because the scale of the topology may simply be too fine to be handled
with current technologies. When adaptive structures are formed in device materials
their response to external fields is more akin to that described by fluid dynamics
under stress (flow and creep) rather than to elastic responses. This has significant
consequences for device materials. The material properties can be optimized using
two different parameters, namely firstly the functionality of the domain wall and,
second, the position and shape of the domain wall, and hence, implicitly, the domain
boundary density [57, 58]. As an example, the domain boundary density can become
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extremely high near morphotropic boundaries in ferroelectric materials (such as in
PZT) where each domain becomes very small with many boundaries in between so
that it becomes difficult (or even meaningless) to distinguish between ‘bulk’ and
‘boundary’. Li et al. [59] have shown that this is particularly important when the
materials are used in electro-caloric or magneto-caloric heat conductors where the
thermal conductivity can be controlled electronically through the domain boundary
density and their topology (domain walls perpendicular to the heat flow). The key
parameter is again the wall density, which needs to be as high as possible in this case.
This is best achieved in adaptive structures whereby finite size effects can greatly
modify the densities [60, 61].

4.5 Wall Functionalities

Ferroelastic walls as topological templates for ferroelectric functionalities are char-
acterized by the strain order parameter, which dominates in the bulk of the uniform
solid and disappears inside twinwalls (Q). Functionalities are described by secondary
order parameters ( P) that may exist inside twin walls [1, 14, 19, 21, 42, 62–64] but
being suppressed in the bulk. The theoretical rationale for such exotic internal wall
structures is captured by the Houchmandazeh-Lajzerowicz-Salje [64] coupling term
HHLS ∼ Q2P2, which is always compatible with the crystal symmetry [14, 62, 64],
or via equivalent gradient coupling decribing flexoelectricity [61, 65–67]. A typi-
cal example where the twin walls are uniformly polartized is CaTiO3. Simulations
were first performed by Goncalves-Ferreira et al. [68]. These authors showed that
the Ti position inside the octahedral complexes is not located in the middle of the
wall octahedral if the octahedral is not tilted (as in the bulk) and slightly larger than
in the bulk. The predicted polar structure was then observed by extensive transmis-
sion electron microscopical investigations [69] and by high resolution studies of the
second harmonic emission of the walls [70] (Figs. 4.6 and 4.7).

Polar behaviour of twin walls in CaTiO3 can be further tested using resonant
piezoelectric spectroscopy (RPS) [71, 72]. RPS has been very recently introduced
as a modification of resonant ultrasound spectroscopy (RUS). Both techniques are
used to detect elastic resonances of a sample. RUS does this mechanically, i.e. by
generation of elastic waves in the sample by piezoelectric transducers in contact with
the sample. In RPS, on the other hand, an electric field is applied across two paral-
lel surfaces of the sample. If the sample is piezoelectric locally or globally, elastic
resonances are excited and can be detected by a second piezoelectric transducer (as
in the case of RUS). Figure4.8 shows the temperature evolution of an elastic reso-
nance peak collected by RPS between 10 and 310K. The squared frequency of this
peak reflects the temperature dependence of its associated effective elastic constant,
hardening with cooling and then saturating at lower temperatures. The appearance
of elastic resonances in the RPS spectra indicates the presence of collective oscilla-
tions of dipoles, leading to the piezoelectric response of the CaTiO3 single crystal
sample. Such collective behaviour can be attributed to domain walls [71]. The effect
of coherently vibrating defect dipoles cannot be completely ruled out as source of
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Fig. 4.6 Increasing complexity in twin walls from comb configurations to local strain fields and,
finally, to arrays of polar vectors in CaTiO3

Fig. 4.7 Detailed map of the
dipolar displacements of Ti
in CaTiO3

the piezoelectric response [72]. Nevertheless, such contribution may be small. Fur-
thermore, coherent defect-related piezoelectric coupling is expected to increase with
decreasing temperatures when correlations between defect dipoles increase. Consid-
ering that domain walls are pinned in CaTiO3 [69] and no evidence of ferroelectric
vortices have been obtained, one may conclude that the direction of the dipole oscil-
lations is probably perpendicular to the direction of dipoles inside the twin walls,
hence giving rise to the weak piezoelectric effect by dipolar tilts rather than dipole
inversions.
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Fig. 4.8 Resonant
piezoelectric spectra of a
single crystal CaTiO3
sample. An AC electric field
of 50 V/mm was applied to
obtain the spectra. The
spectra are vertically
translated so that the left axis
is labelled as temperature.
The right axis gives
amplitude (volts)

4.6 Vortices in Domain Walls

Vortex structures are well known to exist in bulk material [73]. Flicker vortex states,
where the lifetimeof each individual vortex is greatly reducedby thermal fluctuations,
were reported by Zhao et al. [61]. Despite the short lifetime of each vortex, these
authors reported that the vortex density of the sample remains constant and can be
modulated with weak electric fields. It is the local instability of the vortex state,
which makes it possible to easily switch vortices locally and also change the global
vortex density. These bulk effects are mirrored by domain wall vortices even if these
vortices do not exist in the bulk. The first clear indication of this effect came from
molecular dynamics studies [74]. These authors showed that the orientation of the
polar vectors in the wall could invert if the anisotropy energy is sufficiently small.
This case is encountered in SrTiO3 where the spontaneous strain is particularly small.
At low temperatures ferroelectric behavior was found experimentally [71, 75].

The simulated polar pattern in the domain walls is shown in Fig. 4.9, which shows
the rotation of the dipoles in the wall. The rotation leads to Bloch like states in the
wall where the dipole is oriented perpendicular to the wall. Interestingly, this result
is almost identical to previous analytical predictions [42, 64].

Usually polarity in twin walls is ferri-electric, whereas vortex excitations lead
to true ferroelectricity on a very local scale. As a result, in-plane electric fields can
selectively stabilize one of the vortex polarization states and enhance the ability of
the walls to move. This behavior can explain the well-known and uniquely high
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Fig. 4.9 Vortex structure of
Ti-displacements at an
inversion point inside a twin
wall in SrTiO3

Fig. 4.10 Slabs of SrTiO3
with domain boundaries.
Each domain boundary
contains a twin wall and a
polar vortex. Electric fields
will switch the vortex state
from left to right, which
relates to the electronic states
1 and 0. In addition, the
vortex can shift (shown for
the two 1 states) which offers
an additional degree of
freedom for memory
functionalities

mobility of twin boundaries in SrTiO3. For nanoscale ferroelectric memory devices,
one envisages a precisely controllable device, where a desired domain wall pattern is
manipulated by shifting the vortex position electrically. Molecular dynamics simu-
lations mimic this situation where a constant electric field acted as an external force
individually applied to the charged atoms or dipoles along the direction of the field.
To characterize the local response of the vortex polarization to the field, Zykova-
Timan and Salje gradually tuned the initial experimental input to the specifications
of the atomistic model (e.g. dielectric permittivity of SrTiO3, system size, etc.). The
application of high electric fields above 0.007V/A◦ along [-101] induced a rotation
of the Ti-dipoles near the twin boundary and in the bulk structure. Thus, the vortex
deformed and became unstable. In the range from −0.004 to 0.004 V/A◦ the twin
boundary stabilized and a spontaneous switchable polarization of the vortex, aligned
with the field, dominated over the initial state. Figure4.9 shows the microscopic
pattern of Ti local displacements inside the oxygen cage in a starting configuration,
obtained from steepest descent minimization at 20K and zero field. The initial dipole
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moment projected along the applied field axis is estimated as∼0.05 eA◦, which may
typically underestimate the dipole moment but nevertheless represents the physical
mechanism of vortex-induced ferroelectricity inside twin walls. Figure4.10 shows a
conjectured memory device where each domain boundary carries one or more vortex
states so that the mixing of these states produces a very high density of logical states.

4.7 Bloch Lines and Vortex Points

Vortices inside polar domain walls in ferroelastic materials can form ordered arrays
resemblingBloch-lines inmagnets. TheBloch lines are energetically degeneratewith
dipoles oriented perpendicular to the wall. By symmetry, these dipoles are oriented
at +90o or −90o relative to the wall dipoles (Fig. 4.9). These two states have the
same energy and can be inverted by modest applied electric fields, as argued above.
As the majority of wall dipoles are oriented inside the wall, perpendicular to the
Bloch line vortex, weak depolarization fields exist for the wall dipoles but not for
Bloch lines. The Block line density depends on the density of the twin walls and the
elastic anisotropy of the crystal structure. We estimate that distances between twin
boundaries are as small as 50nm and Bloch lines can form with very high densities.
The local dipole moment in the Bloch line is similar to the displacement of Ti in
BaTiO3. Switchable Bloch lines can be detected by their macroscopic dipolemoment
and can constitute the functional part of a memory device. The topological situation
is depicted in Fig. 4.11.

We depict the Bloch lines inside the twin plane (-101) in Fig. 4.11. We mark
the two possible dipole directions in [-101] as red and along [10-1] as blue. Two
switching processes can be envisaged in this geometry. The first is to apply a vertical
field along the dipole direction up down in Fig. 4.9. This field will move Bloch
lines by expanding or shrinking the larger domains. The macroscopic polarization in
this direction reflects directly the volume proportion of the up and down domains.

Fig. 4.11 Twin plane with
local dipole moments in the
up and down direction.
Bloch lines limit the domains
within the twin wall where
the dipole direction is either
out of the plane (red) or into
the plane (blue). Bloch
vortex points, were two
Bloch lines with different
polarity join, are indicated in
green
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Depending on the geometrical distribution of Bloch lines, we expect the changes of
the macroscopic polarization to be continuous or abrupt (the latter happens when
Bloch lines jam [57] similar to jamming of ferroelastic domains).

The second switching mechanism relates to fields perpendicular to the twin plane.
In this case there is little interaction with the dipoles in each subdomain besides some
weak dipole canting. The field couples directly with the dipoles which are orthogonal
to the twin plane (red and blue in Fig. 4.11). This may happen by switching dipoles
in segments of Bloch lines into the opposite directions. This local switching does not
involve the shift of Bloch points, as indicated are green segments in Fig. 4.11 and
is hence fast. Simulations of complex ferroelastic structures found switching times
only slightly longer than the phonon times [76, 77]. A much slower movement can
be envisaged when the Bloch points shift and thereby change the ratio of red and blue
domains inside the Bloch walls. This sliding of Bloch points is similar to the sliding
of kink excitations in ferroelastic materials and requires ca. 50 phonon times to pass a
diameter of 10nm [78]. The total bit density of such a Bloch-line ferroelectric vertex
memory can be very high: We estimate that distances between twin boundaries are
as small as 50nm and that Bloch lines can form with some with densities of 100
Bloch lines in an area of 100 × 100 nm2, giving a bit density of 1016/m2. This
may be compared with a maximum bit density of 1.0 Tbit/sq.in. (the unusual mixed
units favored in the magnetic memory industry), and it offers potentially one order
of magnitude higher density. The problems of access remain; however, these can
be addressed by nano-lithography with e-beam writing. A separate question is one
of write speed, but in the present case this is not limited by domain wall mobility,
which in the low-field regime is ca. 1 nm/s [79, 80]. Here only local polarization
switcheswith no transport; the situation is analogous to that of 90-degree ferroelectric
switching without conventional domain wall motion.

4.8 Conclusion

Ferroelastic twin walls are—in specific materials—templates for functional proper-
ties such as superconductivity, ferroelectricity, and magnetism. These properties can
be distributed homogeneously throughout the twin wall producing two-dimensional
device devices. Additional singularities of these dipolar arrays can lead to lower
dimensional subspaces, whichmay also contain ferroic functionalities. Examples are
Bloch lines of vortices inside walls which contain vectors perpendicular to the wall.
The two orientations, positive and negative, are symmetry-equivalent. Conjugated
fields can switch these vectors, either electric dipoles or spins, leading potentially
to a ferroic hysteresis. Vortices inside the twin walls will usually form Bloch lines
with positive and negative polarity. These Bloch lines represent one-dimensional
topological elements whereby each Bloch line is ferroic. When two Bloch lines meet
they form vortex points where the polar ferroic properties disappear and where large
strain fields are generated.
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Chapter 5
Charged Domain Walls in Ferroelectrics

Tomas Sluka, Petr Bednyakov, Petr Yudin, Arnaud Crassous
and Alexander Tagantsev

Abstract Charged Domain Walls (CDWs) in ferroelectrics are compositionally
homogeneous interfaces, some of which display metallic-like conductivity and can
be created, displaced and erased inside a monolith of nominally insulating materials.
Such CDWs are promising electronic elements for reconfigurable nanoelectronics.
This chapter introduces types of CDWs, their theoretically predicted and experimen-
tally observed properties, and methods of their artificial engineering.

5.1 Introduction

Charged DomainWalls (CDWs) are a subset of compositionally homogeneous inter-
faces in materials with the ferroelectric order parameter. Unlike electrically Neutral
Domain Walls (NDWs), which are more extensively studied, CDWs contain sub-
stantial amount of bound charge due to Head-to-head convergence or Tail-to-Tail
divergence of spontaneous polarization at the wall. The peculiar feature of CDWs,
predicted in theory already in 1970’s [1], is that it is possible to compensate the bound
charge with free electrons or holes. This makes CDWs the first example of a movable
electronically active homo-interfaces inside a monolith of nominally nonconducting
material. However, the presence of bound charge makes CDWs energetically costly
and unstable objects (with exceptions) which explains why they are rarely found
in ferroelectric crystals, ceramics and thin films. Although CDWs were occasion-
ally documented in the past [2–5] and their elevated conductivity was reported in
1970’s [6] signatures of free carrier gas-like conductivity of CDWswere not reported
until 2012 [7]. Indeed, electronically compensated CDWs were often assumed
as impossible for several reasons. CDWs in typical ferroelectrics cannot exist
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without almost complete compensation. It means that a CDW requires delivery or
prior presence of compensating charge during its formation. Dielectrics however
contain almost no free carriers and domain walls have mostly an option to avoid
charging—acquire a neutral configuration. Additionally, bound charge can be com-
pensated by mobile charged defects instead of free carriers.

The flood of research in 2000’s focused on oxide interfaces [8, 9] revived the
interest in electronically compensated CDWs as potential hardware reconfigurable
conducting paths. First direct observation ofCDWswith high resolution transmission
electron microscopy (TEM) was documented in ultra thin film of Pb(Zr0.2Ti0.8)O3

[10] and later in thin film of BiFeO3 [11, 12]. As of 2015, additional optical, elec-
tron and piezoresponse force microscopy (PFM) evidence of CDW is available
for Pb(Zr0.2Ti0.8)O3 [7, 13, 14], PbTiO3 [15] and BiFeO3 [12, 16–18] thin films,
BaTiO3 [19–21] and LiNbO3 [22–24] crystals, and also in crystals of improper fer-
roelectric manganites [25–27], hybrid improper ferroelectric (Ca,Sr)3Ti2O7 [28] and
in organic ferroelectrics [29].

Revived analytical models, phase field simulations and first principle calculations
detailed the electronic properties of CDWs and continued insisting on the possible
presence of highly conducting electron or hole gas at CDWs. First models dealt with
180◦ CDWs [30–33] which regularly appear e.g. during domain nucleation. Indeed,
the predicted metallic type conductance of CDWs was first experimentally observed
at transient domain walls of nucleating nanodomains in Pb(Zr0.2Ti0.8)O3 thin film
[7]. The mechanism of CDW stabilization by mechanical (ferroelastic) clamping
was later proposed [34] primarily as an explanation of enhanced electromechanical
response in BaTiO3 crystals [19] but, later, it was shown that an artificially engi-
neered positively charged CDWs display steady metallic-type conductivity which
exceeds the thermally activated bulk conductivity by up to nine orders of magnitude
[20]. It was suggested [7, 20] that the free electrons which compensate the positively
charged CDWs originate from shallow levels of oxygen vacancies. The ionised oxy-
gen vacancies, on the other hand, become attracted to the negatively charged CDWs
which appear non-conducting. Engineering of CDW patterns with controlled den-
sity was later developed in BaTiO3 crystals and mechanisms of charge compensation
were discussed [21]. Creation and nanometer scale manipulation with individual
stable CDWs was demonstrated in technologically more viable BiFeO3 thin films
[18]. Here, the CDWs with metallic-type conductivity were compensated by elec-
trons injected from an AFM tip. This work also suggested that CDWs might be
exploitable as a reconfigurable quasi-dopant in wide band-gap ferroelectrics. Sev-
eral other specific properties of CDWs such as their low mobility [35] and possibly
anomalously large thickness in the proximity of a phase transition of the parent mate-
rial [36] were theoretically predicted. Interestingly, nominally neutral DWs that are
partly charged due to film (Pb(Zr0.1Ti0.9)O3)/substrate (DyScO3 ) mechanical inter-
action also display a non-thermally activated conductivity in the range from room
temperature down to 4 K [37].

A specific category of fundamentally stable CDWs was found in improper
ferroelectric manganites where their elevated conductivity was documented
[26, 27]. Similarly, conductive CDWs were found in a hybrid improper ferroelectric
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(Ca,Sr)3Ti2O7 [28]. First principle calculation predicted a substantial bandgap
narrowing at CDW in ferroelectric halides [38].

This chapter introduces in detail the theoretically predicted and experimentally
observed properties of CDWs, and methods of their artificial engineering. Note,
that the term ferroelectric in the following text refers to proper ferroelectrics unless
introduced otherwise.

5.2 Classification of Charged Domain Walls

To define CDWs and to understand their uniqueness among Domain Walls (DWs)
let us start with a “naive picture” of ferroelectrics. Ferroelectric materials consist of
domains that are spontaneously polarized in one of their symmetry-permitted direc-
tions, i.e. different domain states have differently displaced ions from the centro-
symmetric position as illustrated with the example of the perovskite tetragonal unit
cell in Fig. 5.1a. The switchable part of the ionic displacements is described by the
vector of spontaneous polarization P and is exhibited by the appearance of polar-
ization charge at the polar surfaces of each domain as illustrated in Fig. 5.1b. If a
domain is terminated by the surface of the ferroelectric material, the polarization
charge is usually compensated with free electrons of an electrode, or by adsorbates
from the outer environment together with accumulated intrinsic mobile defects and
free carriers from the domain interior (illustrated by the full circles in Fig. 5.1).

However, when two domains border directly with each other they are separated
by a DW, i.e. typically 1–10 nm thick compositionally homogeneous and movable
transition region. As most ferroelectrics are wide band-gap materials they contain
only negligible amount of intrinsic free carriers (unless they are heavily doped) and
possibly slow charged defects which cannot rapidly compensate the polarization
charge. DWs are therefore forced by the electrostatic forces to acquire an orientation
which minimizes—ideally to zero—the total polarization charge at their location.
This occurs either when polarization projection to the DW plane is zero (like in the
case of anti-parallel 180◦ DW Fig.5.1c) or when polarization vector keeps Head-to-
Tail continuity across the DW, i.e. when the normal component of the polarization
with respect to DW does not change. The latter means that the polarization charge
“peeping” from one domain is almost perfectly compensated by the polarization
charge at the surface of the adjacent domain (Fig. 5.1d). The neutrality of a DW is
called the condition of electrostatic compatibility. It is met by the vast majority of
DWs in proper1 ferroelectrics which are, thus, called Neutral DomainWalls (NDW).

Violation of the condition of the electrostatic compatibility, when a DW deviates
from its neutral orientation, creates a nonzero net bound charge at the DW, which
is the result of converging or diverging spontaneous polarization. In mathematical

1Proper ferroelectrics are ferroic materials where polarization is the primary order parameter and
whose dielectric response follows the Curie-Weiss law. There exist also improper ferroelectrics,
which is discussed in Sect. 5.2.2, where polarization is a secondary order parameter and CDWs are
naturally locked objects.
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Fig. 5.1 Ferroelectric domains are spontaneously polarized in one of the symmetry-permitted
directions. a The example of two (out of six) domain states in a perovskite tetragonal unit cell.
b The purple vector of spontaneous polarization P represents the switchable part of the ionic
displacement which results in the appearance of the polarization charge (indicated by red + and
green −) on the polar surfaces of each domain. This charge is usually compensated by mobile
charged species collected from the outer environment (indicated by ⊕ and �). c Two antiparallel
domains separated by an electrically neutral 180◦ domain wall. d Two domains separated by neutral
non-180◦ ferroelastic domain wall where polarization charge is perfectly compensated. e Charged
Head-to-Head domain wall which produces depolarizing field E

terms the volume density of this bound charge, let us call it the polarization charge
ρP , is:

∇ · P = −ρP .

Note that in this chapter we assume the definition of dielectric displacement
D = ε0εbE + P where ε0 and εb are the vacuum and background permittivity [39],
respectively, E is the electric field and P is the ferroelectric part of polarization.

The more handy definition of surface density of polarization charge σP is the
change of the polarization components normal to the DW:

ΔP · n = −σP , (5.1)

whereΔP = P2 − P1 is difference between the polarizations of adjacent domains and
n is the DW normal as illustrated in Fig. 5.2a. The basic distinction between NDWs
(Fig. 5.2b) and CDWs (Fig. 5.2c) is therefore given the change of their polarization
component normal to the DW:
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Fig. 5.2 Basic classification of neutral and charged domain walls. a Graphical representation of
polarization charge produced by polarization divergence on a ferroelectric domain wall (DW). The
difference between normal components of polarization P1 · n and P2 · n, where n is DW normal
vector, represents the surface charge density σP which gives the basic distinction between neutral
and charged domain walls. b Ferroelastic and non-ferroelastic neutral domain walls. c, Ferroelastic
and non-ferroelastic charged domains

NDW: No change of normal polarization component ΔP · n = 0,

CDW: Change of normal polarization component ΔP · n �= 0;

Let us further distinguish between the ferroelastic and non-ferroelastic CDWs
(Fig. 5.2c). The spontaneous ionic displacement in proper ferroelectrics is a source
of spontaneous strain ewhich is usually identical inmutually 180◦ rotated domains (in
proper ferroelectrics which have no piezoelectric effect above TC [39]) but different
in all other combinations. Two domains create mechanically compatible stress-free
CDW when [40]:

(e(1)
i j − e(2)

i j )si s j = 0. (5.2)
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Fig. 5.3 Two domains with
different ferroelastic
spontaneous strains e(1) and
e(2) tend to create stress-free
ferroelastic domain wall in
the plane of vectors s which
satisfy condition (5.2). The
projections of both domains
to the “s-plane” have zero
lattice mismatch

e(1) e(2)

s

DW

Here s is any vector which lies in the plane of the CDW as illustrated in Fig. 5.3.
Superscripts indicate different ferroelectric domains. Equation (5.2) and other in this
chapter are expressed in the Einstein notation (i.e. excluding the symbol

∑
over

repeating indexes) which means that, in this particular case, the left side represents
a double summation for i and j going from 1 to 3. The condition (5.2) dictates
that two different ferroelastic domains must join at surfaces with zero mutual lat-
tice mismatch otherwise the system is penalized by increased elastic energy due to
tension/compression between the adjacent domains. While orientation of the non-
ferroelastic CDW (example in Fig. 5.4) is controlled almost solely by the electrostatic
forces, a ferroelastic CDW (example in Fig. 5.5) is strictly subjected to the mechan-
ical compatibility of adjacent domains. The condition of mechanical compatibility
therefore represents a very important factor in CDW stabilization.

mechanically compatible CDW: (e(1)
i j − e(2)

i j )si s j = 0,

mechanically incopatible CDW: (e(1)
i j − e(2)

i j )si s j �= 0.

Not all DWs are however ferroelastic. The non-ferroelastic DWs (like 180◦ DWs
in perovskites) always satisfy the mechanical compatibility condition and, there-
fore, such CDW cannot be mechanically stabilised. The DW ferroelasticity can be
identified as follows:

non-ferroelastic CDW: identical strain in adjacent domains Δe = 0,
ferroelastic CDW: different strain in adjacent domains Δe �= 0.

Another important classification of CDWs is based on their symmetry. CDWs can
be inclined (non-symmetric) or mirror symmetric with respect to the spontaneous
polarization (Fig. 5.2c). NDWs become CDWs when they are misaligned from their
neutral orientation by inhomogeneous electric or elastic fields, defect pinning or
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Fig. 5.4 High resolution
TEM image of a symmetric
non-ferroelastic
Head-to-Head charged
domain wall (indicated by
red line) in an ultra thin
Pb(Zr0.2Ti0.8)O3 film
sandwiched between
SrTiO3 layers [10]

1 nm

Ps

sCDW

II

I

Ps

Fig. 5.5 High resolution
TEM image of a symmetric
ferroelastic Tail-to-Tail
charged domain wall
(indicated by the red arrows)
in a BiFeO3 film (BFO) on
GdScO3 substrate (GSO)
[11]

GSO

BFO

sCDW

5 nm

Ps
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substrate clamping. Such CDWs are formed, at least temporarily, during each 180◦
polarization switching becauseDWs at a domain nucleus are inevitably inclined from
a neutral orientation (Fig. 5.6) [7, 13, 14]. The DW inclination can be stabilised by
a specific film/substrate clamping [37].

The symmetric CDWs represent the most intriguing category because they can
be stabilized without any external forces or defect pinning while they are strongly
charged. The importance of CDW stability will become clear when we will look at
ferroelectrics as ideal dielectrics and realize that theDWcharging is strictly penalized
or entirely prohibited due to depolarizing electric field.

5.2.1 Depolarizing Electric Field

The polarization charge ρP , like any charge, is a source of an electric field E (red
arrows in Fig. 5.1e) according to:

∇ · E = ρP

ε0εb
.

By applying the Gauss law on an infinite flat CDW plane (like in Fig. 5.2a) one
readily finds an expression for the electric field in terms of the surface charge density
σP :

E = σP

2ε0εb
,

The electric field produced by σP has always depolarizing direction with respect
to the spontaneous polarization and its value is often higher than the thermodynamic
coercive field, e.g. in typical perovskite ferroelectrics. For example, the polariza-
tion charge at symmetrical Head-to-Head CDW in materials like Pb(ZrxTi1−x )O3

or BaTiO3 is σP = 2Ps ∼ 101 µC/cm2 which produces a depolarizing field Edep =
σPs /(2ε0εb) ∼ 100 MV/cm while their thermodynamic coercive field is Ecrit ∼
10−1 MV/cm. Note that the Ecrit is a theoretical parameter while experimentally
measured coercive field is 10−3 − 10−2 MV/cm [39] which is orders of magnitude
lower than the estimated Edep.

An even more severe argument against the existence of CDWs comes from the
fact that, in the dielectric approximation, the depolarizing field induces a shift of the
Curie temperature T0 by

ΔT0 = C

εb
, (5.3)

where C is the Curie-Weiss constant. According to (5.3) in BaTiO3 (with C =
1.7 × 105 K and εb = 7) [39], T0 would be shifted by 24,000K which is impos-
sible. Similar estimates apply to other perovskite ferroelectrics. It means that the
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(a) (b) (c) (d)

(e) (f) (h)(g)
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Fig. 5.6 The basic types of CDWs are seen in a chronological TEM bright field image series
showing the evolution of a domain nucleus in Pb(Zr0.2Ti0.8)O3 film on SrRuO3 electrode and
DyScO3 substrate. The domain nucleus (blue) is created under an AFM tip biased gradually from
0→10→ 0 V. White arrows indicate the spontaneous polarization. a The virgin structure shows
a ∼ 50 nm thick narrow a-domain separated from the up polarized c-domain with ferroelastic
domain walls that are slightly inclined from their neutral orientation (note that the DWs are not
parallel due to the film/substrate mismatch). b–f The down oriented domain nucleus propagates
from the AFM tip into the original c-domain. The domain walls of the nucleus are non-ferroelastic,
and locally almost symmetrical at its front (f), but affected by defect pinning (the thin black arrows
indicate arguable pinning centers), and inclined from an antiparallel orientation on its sides. g
90◦ symmetrical ferroelastic CDW is created when nucleus reaches the a/c-domain boundary and
remains stable (h) [14]
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symmetric CDWs in common ferroelectrics can not exist unless they are almost
completely compensated. At the same time, dielectrics have practically zero free
carrier concentration.

Qualitatively different situation is found at the slightly inclined domain walls or in
materials with exceptionally small spontaneous polarization which produces depo-
larizing field smaller than the coercive field. Therefore, CDWs can be categorized
into additional two types:

Weakly CDW (wCDW): can exist without any charge compensation
Strongly CDW (sCDW): cannot exist uncompensated.

In this context special category must be dedicated to CDWs in improper, hybrid
improper and weak ferroelectrics.

5.2.2 Charged Domain Walls in Improper and Hybrid
Improper Ferroelectrics

Improper ferroelectrics like Gd2(MoO4)3, YMnO3, ErMnO3 or HoMnO3 are materi-
als where the spontaneous polarization is a secondary order parameter that is subor-
dinated to a nontrivial structural order parameter [25, 27, 41–43]. The spontaneous
polarization is therefore governed by different thermodynamic forces than in proper
ferroelectrics which implies two important effects on CDWs. First, the depolarizing
field does not induce any shift of the ferroelectric phase transition of an improper
ferroelectric. It leads only to a reduction of the spontaneous polarization modulus
which, consequently, reduces the depolarizing field [39, 44]. Second, the ferroelectric
DWs inmanganites are interlockedwith structural antiphase boundaries resulting in a
full spectrum of ferroelectric DW orientations ranging from neutral to fully charged,
Fig. 5.7, [25–27]. The manganites are relatively narrow band-gap materials (1.5–2
eV) with considerable intrinsic free carrier concentration at room temperature. The
introduced factors contribute to the regular existence of CDWs in these materials,
but also do not guarantee their electronic activity as they can exist entirely uncom-
pensated.

Similarly, stable conducting CDWs were reported in relatively narrow bandgap
so called hybrid improper ferroelectric (Ca,Sr)3Ti2O7 [28] shown in Fig. 5.8.

5.2.3 Charged Domain Walls in Weak Ferroelectrics

Weak ferroelectrics are proper ferroelectricswhich exhibit exceptionally small values
of the Curie-Weiss constants, in the range C ∼ 3–30 K, due to small soft-mode
effective charge [45, 46]. It is clear from (5.3) that for such small C , the presence of
bound charge at CDWs leads merely to a small reduction of the Curie temperature.
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Ps

1 µm

(a) (b)

(c)

Fig. 5.7 aTEMdarkfield images of the top and side views of vortex domains in hexagonal improper
ferroelectric HoMnO3. b A cartoon sketch of the 3D profile of a curved vortex in the boxed area
in (a). c Zoom-in cartoon of Head-to-Head and Tail-to-Tail charged domain walls [26]

Fig. 5.8 Domain structure
in a hybrid improper
ferroelectric: in-plane PFM
image of the (001) surface of
an oxygen-deficient
Ca2.46Sr0.54Ti2O7 crystal at
room temperature. The long
axis of the AFM cantilever is
oriented along the vertical
direction of the image. The
black and white arrows
indicate the local in-plane
component of the
polarization [28]

2 µmP
s

Thus, ferroelectricity in the domains adjacent to a CDW in a weak ferroelectric is
not suppressed, except in the close vicinity of the transition temperature. However,
the depolarizing field may still destabilize a CDW if its magnitude is higher than the
effective coercive field.

5.3 Charged Domain Wall Screening

As it was explained above, fundamental existence of so-called sCDWs in proper
ferroelectrics requires almost complete compensation of their polarization charge.
Typical ferroelectrics are nominally nonconducting materials, one may however find
several sources of compensating charge each associated with different phenomenon.
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First of all, real world ferroelectrics have wide, but finite, band-gap (for example
BiFeO3 : ∼2.7 eV, BaTiO3 : ∼3 eV, Pb(Zr,Ti)O3: ∼3.5 eV). The thermally activated
intrinsic free carrier concentration in such wide-band-gap materials is virtually zero,
but it does not mean that an electron (or hole) of any origin (interband excitation,
defect ionisation, injection from exterior etc.) can not occupy the available states in
conduction (electrons) or valence (holes) band if it is energetically favorable. Indeed,
such a favorable condition occurs when they compensate a bound charge [1, 30, 34].

Additionally, ferroelectrics usually contain also movable charged defects like the
oxygen vacancies Vö. The total charge density ρ can therefore be conveniently split
into components corresponding to different types of charge:

ρ = ρpolarization + ρfree + ρmobile dopants + ρimmobile dopants + ..., (5.4)

where ρpolarization is the volume density of the polarization charge, ρfree the free charge
(electrons and holes), ρmobile dopants the charge of mobile dopants and defects, and
ρimobile dopants the charge of immobile dopants and defects, etc. An analogical expres-
sion can be written for surface charge densities.

The mobile charge carriers ρfree and ρmobile dopants are attracted and therefore col-
lected by the polarization charge ρpolarization which locally reduces the total charge
densityρ and, thus, the depolarizing electric field. Let us therefore explore the screen-
ing scenarios in detail.

5.3.1 Electron-Hole Screening in the Thermodynamic
Equilibrium

The most intriguing option of sCDW compensation is the pure free electron or hole
screening as it results in a quasi 2D free electron/hole gas inside an insulating mate-
rial. First of all let us explore whether sCDWs screened solely by free carriers can
be stabilized at least in theoretical thermodynamic equilibrium. The early analytical
models [1, 30, 47, 48] dealt with one dimensional systems which show clearly the
possibility of free carrier compensation of polarization charge at sCDW. These mod-
els were however not fully self-consistent and dealt with one-dimensional system in
which a sCDW has only one degree of freedom of motion. It means, for example,
that it can not be destabilised by rotation to a neutral orientation like in multidi-
mensional models. A general mechanism of sCDW stabilization induced by a low
or a high electrode work-function was however proposed [47, 48]. Self-consistent
multidimensional models require a numerical solution such as those in phase field
simulations in [7, 31–33] for non-ferroelastic sCDW and in [20, 34] for ferroelastic
sCDWs. The non-ferroelastic case does not include any strong inherent stabiliza-
tion mechanism (except defect pinning or the suggested massive doping [33]), but
it shows [7] the presence of free carriers at sCDWs. The ferroelastic CDWs, on
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the other hand, can be entirely stabilized by mechanical compatibility condition as
proven in [18, 20, 21].

The following text introduces a self-consistent model of ferroelastic 90◦ sCDWs
in tetragonal perovskite. The readers interested only in the conclusions may skip the
model description to the last paragraphs of this section.

Ferroelectric domain structure is metastable in any local minimum of its
free energy. Model equations are therefore obtained by Lagrange principle from
Helmholtz free energy density [49]:

f [{Pi , Pi, j , ei j , Di }] = f (e)
bulk + fela + fes + fgrad + fele, (5.5)

where Pi is the ferroelectric part of polarization, Pi, j its derivatives (the subscript
‘, i’ represents the operator of spatial derivatives ∂/∂xi ), Di the electric displacement
and ei j = 1/2(ui, j + u j,i ) is the elastic strain where ui is a displacement vector.

The bulk free energy density

f (e)
bulk[{Pi }] =
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∑
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11
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∏
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is expressed for a zero strain as a six-order polynomial expansion [50],
where αi , α

(e)
i j , αi jk are parameters fitted to the single crystal properties. The remain-

ing contributions represent bilinear forms of densities of the elastic energy
fela[{ei j }] = 1/2ci jklei j ekl , where ci jkl is the elastic stiffness, electrostriction energy
fes[{Pi , ei j }] = −qi jklei j Pk Pl , where qi jkl are the electrostriction coefficients, gra-
dient energy fgrad[{Pi, j }] = 1/2Gi jkl Pi, j Pk,l , where Gi jkl are the gradient energy
coefficients, and electrostatic energy fele[{Pi , Di }] = 1/(2ε0εb)(Di − Pi )

2. Here it
is clear that Di = ε0εb Ei + Pi . The zero-strain coefficients α

(e)
i j can be expressed in

terms of usually introduced stress-free coefficients αi j as follows:

α
(e)
11 = α11 + 1
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44
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)
.

By using the Legendre transformation to the electric enthalpy

h[{Pi , Pi, j , ui, j , ϕ,i }] = f [{Pi , Pi, j , ei j , Di }] − Di Ei ,

where Ei = −ϕ,i is the electric field and ϕ the electric potential, and using Lagrange
principle, we can uniformly express the set of field equations which govern the
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kinetics of ferroelectrics:
(

∂h

∂ei j

)

, j

= 0, (5.7)

(
∂h

∂ Ei

)

,i

= q(p − n), (5.8)

1

Γ

∂ Pi

∂t
−

(
∂h

∂ Pi, j

)

, j

= − ∂h

∂ Pi
. (5.9)

Equation (5.7) defines the mechanical equilibrium while inertia is neglected. The
Poisson’s equation (5.8) represents theGauss’s law for the charge and the electric field
in a dielectric including a nonzero concentration of free electrons n andholes p. Equa-
tion (5.9) is the time dependent Landau-Ginzburg-Devonshire equation [51] which
governs the spatiotemporal evolution of the spontaneous polarization with kinetics
given by
damping Γ .

The coupling between the ferroelectric/ferroelastic systemwith its semiconductor
properties is introduced by considering a nonzero density of free carriers in the
electrostatic equation (5.8). The distribution of free carriers is governed by continuity
equations:

q
∂n

∂t
+ J (n)

i,i = q Rn, (5.10)

q
∂p

∂t
+ J (p)

i,i = q Rp, (5.11)

where electron and hole currents J (n)
i and J (p)

i , respectively, are given by the drift and
diffusion as follows: J (n)

i = μn(qnEi + kB T n,i ) and J (p)

i = μp(qpEi − kB T p,i ).
Hereμn andμp are the electron and hole mobilities, respectively. If we are interested
only in the stationary solution at the thermodynamic equilibrium we can introduce
the computationally convenient form of recombination rates Rn and Rp as follows:
Rn = −(n − n0)/τ and Rp = −(p − p0)/τ , where τ is the life-time constant and n0

and p0 are the electron and hole concentrations at the thermodynamic equilibrium:

n0 = N F1/2

(
− EC − EF − qϕ

kBT

)
,

p0 = N F1/2

(
− EF − EV + qϕ

kBT

)
.

Here F1/2 is the Fermi-Dirac integral. The density of states is given by the effective
mass approximation:

N 	 2

(
meffkBT

2π�2

) 3
2

,
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Fig. 5.9 a An electroded (110)c plate of tetragonal BaTiO3 . b A periodic structure of charged 90◦
domainwalls where bound polarization charge (+,−) induced by the divergence of polarization, P0,
is almost perfectly compensated by free charge (⊕, �) whereas the imperfection of compensation
creates built-in depolarizing field Edep. c Phase-field simulation-calculated band bending induced
byEdep. The bending causes the edges of the conduction EC or valence EV bands (solid black lines)
to approach the Fermi level EF (dashed black line) where high concentration of free electrons (red
line) or holes (blue line) are generated and become available for compensation of the bound charge.
The bandgap between the conduction and valence bands is assumed to be 3 eV. The competing band
bending and charge compensation are in equilibrium when conduction and valence bands cross the
Fermi level about 0.22 eV at Head-to-Head and Tail-to-Tail domain walls, respectively [34]

where meff is the effective mass of electrons or holes.
When a ferroelastic Head-to-Head and Tail-to-Tail polarization arrangement is

artificially introduced into the initial conditions of the problem given by (5.7)–(5.11),
the free carrier compensated CDWs are stabilized as shown for the case of 90◦ CDWs
in tetragonal BaTiO3 in Fig. 5.9.

Two intriguing features of the stable periodic sCDW structure may be seen in
Fig. 5.9, (i) the presence of the free carriers reaching concentrations of doped sil-
icon at CDWs and (ii) the band bending with constant potential change between
Head-to-Head and Tail-to-Tail sCDWs. This situation represents a self-maintaining
equilibrium due to the coupling of two mechanisms: (i) The non-thermally activated
free electrons (holes) can be present when the conduction bandEC (valence bandEV)



118 T. Sluka et al.

drops below (raise above) the Fermi level EF, which implies a potential difference
between the electron compensated Head-to-Head and hole compensated Tail-to-Tail
sCDWs and, (ii) the fact that the band bending is induced by uncompensated charge
at sCDWs. In other words, the CDWs on one hand require charge compensation
but, on the other hand, the sCDWs must remain partly (although almost completely)
uncompensated in order to maintain sufficient band bending for the stabilization of
free charge carriers.

The depolarizingfieldEdep induced by the sCDWs is drastically reduced compared
to the case with completely uncompensated sCDWs (estimated in Sect. 5.2.1) but it
is still present and it is determined by the domain size w and the bandgap energy EG

as:

Edep = EG/(qw). (5.12)

This depolarizing field may still exceed an electric field that switches polarization by
90◦ for domain size in the range of 10−6 m. Itwas suggested thatwhen the domain size
is approaching the critical limit the depolarizing field induces polarization rotation
that causes enhanced electromechanical response by mimicking the approach to a
phase transition [34].

5.3.1.1 Free Carriers at Charged Domain Walls by First Principle
Calculations

First-principle density functional theorywas used to calculate local density of states at
the Head-to-Head and Tail-to-Tail CDWs in improper ferroelectric YMnO3 [27]. The
results shown in Fig. 5.10 introduce qualitatively identical features of electronically
compensated CDWs as in the phase field calculated results for proper ferroelectric
in Fig. 5.9. In both cases, the Fermi level enters the conduction and valence bands
at the Head-to-Head and Tail-to-Tail CDWs, respectively, where electrons and holes
can occupy the available states.

Note, as discussed in Sect. 5.2.2, that the stabilization of CDWs in improper
ferroelectrics is provided by their interlocking with anti-phase boundaries. A few
nanometer spacing of CDWs might therefore be possible.

First-principle models of sCDWs in proper ferroelectrics suffer from additional
complications. The limited size of simulation domain (determining the computational
complexity) and use of periodic boundary conditions in standard simulation packages
results in the necessity to consider periodic domain structures with extremely small
CDW spacing. The CDWs period in proper ferroelectrics is however limited due to
the depolarizing field that may exceed the coercive fields, according to (5.12).
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Fig. 5.10 First-principle calculations of charged and uncharged ferroelectric domain walls in
improper ferroelectricYMnO3 show the potential profile (a) acrossCDWs and surrounding domains
(similar—but horizontally flipped—to electron energy profile in Fig. 5.9c), the simulation supercell
(b), and local density of states in the Tail-to-Tail (c) and the Head-to-Head (d) domain walls. The
black lines in the density-of-states plots indicate the sum of the local density of states, while the
blue and red lines show the oxygen and manganese contributions respectively. Note the shift up in
the energy of the bands from the Head-to-Head to the Tail-to-Tail configuration is caused by the
gradient in the electrostatic potential [27]

5.3.1.2 The Anomalously Thick Charged Domain Walls

The domain wall thickness is an important parameter which correlates with its intrin-
sic energy, mobility [39], and internal structure.

Unlike in ferromagnets, where DWs are typicaly 100nm thick DWs in ferro-
electrics are typically extremely thin, mostly <2 nm [39]. However sCDWs are
typically thicker: TEM observation of 180◦ sCDW in Pb(Zr,Ti)O3 revealed a thick-
ness of	7 nm [10]. Here we discuss phenomenological reasons for this and indicate
the case where sCDWs may be yet thicker, namely anomalously large thickness is
predicted to occur in 90◦ sCDW in morphotropic phase boundary (MPB) systems.

The simple Landau theory description for 180◦ sCDWs by Gureev et al. [30] is
built on the constitutive equation for polarization

E = αP + β1P3 − g
∂2P

∂x2
, (5.13)
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where x is the coordinate normal to the DW plane, E is the electric field, P is the
ferroelectric part of polarization, and g is the correlation energy term, and the Poisson
equation:

∇D = ρ f , (5.14)

where the electrical displacement is defined as

D = ε0εbE + P. (5.15)

Here, ρ f is the density of free charges. In equilibrium ρ f is a function of the electrical
potential ϕ = − ∫

E · dx only, i.e.

ρ f = ρ f (ϕ). (5.16)

We consider the case of electronic screening. The explicit form for (5.16) in such case
can be obtained from consideration of corresponding quantum-mechanical problem
[30].

From the Poisson’s equation, (5.14), the electric field E may be linked with the
polarization P . In the case of strong screening (ρ f 	 −ρP ), typical for the strongly
charged DWs in perovskite ferroelectrics, the approximation Dx 	 Px can be used
[30] for the electric displacement, (5.15). Its substitution to (5.14) yields

d P/dx 	 ρ f , (5.17)

which is consistent with ρP = −∇P, in the case where ρ f 	 −ρP . The derivative
of (5.17) with respect to x using (5.16) yields:

E = −dϕ

dx
= −

(
∂ρ f

∂ϕ

)−1 d2P

dx2
. (5.18)

When substituted into (5.13), (5.18) determines an additional effective correlation
energy term.2 Gureev et. al. [30] demonstrated that this additional correlation term
is—in case of ordinary perovskite ferroelectrics—typically two orders of magnitude
larger than the initial one: | E |
 g d2 P

dx2 . As a consequence, sCDWs are a few times
thicker than neutral DWs and an approximation can be applied where the initial
correlation terms are neglected. Under this approximation in [30] it has been shown
that (5.13) can be solved analytically for a number of limiting cases, where an
explicit analytical form for (5.16) is available. These cases correspond to the so-
called screening regimes where the electronic gas in the wall can be classified as
either degenerate or classical and the screening itself as either linear or non-linear.

2Note that in general case
(

∂ρ
∂ϕ

)−1
is a functional of P(x), [30].
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The sCDW half-width δ180 of the polarization profiles obtained for these screening
regimes can be covered with a generic formula:

δ180 = a

|α|b Pc
0

, (5.19)

where 1/2 ≤ b ≤ 1 and 0 ≤ c ≤ 1 while a is a material dependent but temperature
independent coefficient. The coefficients a, b, and c depend upon the screening
regime. In perovskite ferroelectrics interesting for applications a so-called nonlinear
regime of the bound charge screening takes place, and an approximationmay be used
where the electron gas becomes degenerate in the sCDW-region. For this regime
(hereafter nonlinear degenerate screening regime), (5.19) becomes:

δ
(ND)
180 =

(
9π4

�
6

q5m3|α|3P0

)1/5

. (5.20)

Here � = 1.05 · 10−34J·s is the Planck constant, m is the effective electron mass,
and q = 1.6 · 10−19 C is the elementary charge. For PbTiO3, using free electronmass
m = 9.1 · 1031 kg, P0 = 0.75C/m2 and |α| = 0.05, the domain-wall width (2δ(N D)

180 ),
(5.20), was calculated to be 5.4 nm which is in good agreement with observations in
[10].

The theory was further developed for 90◦ sCDW [36] where, in a simple approx-
imation neglecting elastic effects around the DW, the result for the DW width was
found to be equivalent to (5.19) for 180◦ sCDW within the substitution

α → αθ, β1 → 2β1θ, P0 → P0/
√
2. (5.21)

θ = 2(β2 − β1)

β2 + β1
. (5.22)

Applying substitution (5.21) to (5.19) one readily obtains an expression for the half-
width of 90◦ sCDWs:

δ90 = δ180θ
−b2c/2. (5.23)

The parameter θ from (5.22) tends to zero as themorphotropic boundary (β2 = β1) is
approachedwhile far away fromMPB it is of order of unity. This leads to considerable
difference between widths of 90◦ and 180◦ sCDWs near MPB. The thickness of
90◦ sCDW, scaling as |θ |−b, (1/2 ≤ b ≤ 1) as controlled by (5.23), diverges as one
approaches theMPB. For the nonlinear degenerate screening regime (5.23) becomes:

δ
(N D)
90 =

(
9
√
2π4

�
6

q5m3|αθ |3P0

)1/5

. (5.24)
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At the same time the thickness of 180◦ sCDW does not undergo considerable
changes near MPB.

The above analysis using a simple framework demonstrates the reasons for the
thickening of 90◦ charged domain walls near morphotropic boundary. In the consid-
ered approximation, the thickness of 90◦ sCDWgrowsunlimitedlywhen approaching
MPB. However, in realistic systems, this growth is expected to be limited because of
the anisotropy of Landau potential, given by higher-order polarization powers, not
vanishing at MPB, and because of constraints related to electromechanical coupling.

Quantitative description of the effect of 90◦ sCDW thickening near MPB with
these two factors included in the model was further done in [36]. The 90◦ sCDW
thickness was calculated numerically for the parameters of Pb(Zr1−xTix )O3, from
[52, 53], a 4-fold DW thickness growth from 5.4nm far from MPB to 22nm at the
MPB was predicted.

It was also found in [36] that in 90◦ sCDW polarization rotates with almost con-
stant modulus, like magnetisation in ferromagnetic Neel walls. The reason for the
unusual behaviour of polarization in 90◦ ferroelectric sCDWs, is the ease of polar-
ization rotation in the proximity of the MPB. The Landau potential for polarization
becomes nearly isotropic near the morphotropic boundary (within the approximation
of expansion up to 4th polarization power). Thus from the point of view of Landau
potential, the trajectory of the sCDW, where the polarization rotates with constant
modulus is optimal. The situation is, however, different in electrically neutral 90◦
DWs, where the polarization rotation is constrained by the depolarizing field and
occurs with simultaneous reduction of the polarization modulus. For an electrically
neutral 90◦ DW the polarization component normal to this wall remains constant in
first approximation, regardless of the Landau potential anisotropy (see e.g. [54]). In
contrast, in charged 90◦ domain walls, the electrostatic constraints are released due
to the availability of free charge carriers. The free charges redistribute and screen the
depolarizing field, enabling the polarization rotation.

The scenario described above forMPBmaterials may also be applied to tetragonal
BaTiO3 where polarization rotation becomes easy near transition to orthorhombic
phase and large dielectric susceptibility anisotropy is documented at room temper-
atures [55]. Using the parameters of BaTiO3, (given in [50]), it was calculated that
near the transition to the orthorhombic phase, sCDW thickness reaches 70 nm, which
is about 2.5 times larger than in the middle of the tetragonal phase.

In summary, sCDW in ferroelectrics are typically one order of magnitude thicker
than neutral DWs. This is due to the large effective correlation energy, resulting from
kinetic energy of the gas of screening electrons. In addition to this thickening effect, in
90◦ sCDWs, there exists thickness anomaly related to the ease of polarisation rotation.
The thickness anomaly is predicted for free-carrier compensated 90◦ sCDWs near
the MPB and for BaTiO3 at room temperature, near transition from tetragonal to
orthorhombic phase; in the both cases sCDW thicknesses of the order of 10–100nm
are expected. The internal structure of the anomalously thick ferroelectric domain
walls is analogical to Neel walls in ferromagnets.
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5.3.2 Combined Free Carrier and Defect Screening
in the Thermodynamic Equilibrium

Real world materials always contain a certain fraction of defects and dopants. We
should therefore investigate what happens when defects, especially the mobile ones,
participate on sCDW screening. It was calculated that a massive concentration of
fixed dopants (∼5 × 1023m−3) can theoretically stabilize one of the sCDWs [33],
e.g. donors stabilize Head-to-Head sCDWs. However a sCDW in somassively doped
materials becomes technologically less interesting due to associated substantial bulk
leakage. The bulk conductivity is mediated by doping impurities which provide
additional electron states usually inside the band-gap and shift the Fermi level towards
the conduction (in case of donors) or valence (in case of acceptors) bands. The Fermi
level in the proximity to the conduction or valence bands allows the presence of
thermally activated free electrons or holes, respectively. In other words the defect
states can be easily ionized, which provides bulk conduction and allows immediate
charge redistribution which compensates the polarization charge.

Very different situation occurswith smaller concentrations ofmobile dopants such
as the oxygen vacancies Vö in perovskites. Vö are relatively mobile defects (with
mobility ∼10−8 − 10−11 cm2V−1s−1 [56] and references therein) in perovskites due
to the fact that there are three oxygen ions in each complete unite cell consisting of
five atoms. Oxygen ions can therefore easily jump to the neighbouring Vö which
represents a virtual object migrating in the opposite direction analogically to holes.
Vö are effectively charged and can trap up to two electrons in relatively shallow levels
(e.g. 0.28–0.66 eV below the bottom of the conduction band in BaTiO3 [57]). In order
to maintain the total electrostatic neutrality, each Vö is associated either with oppo-
sitely charge cation defect (this occurs e.g. during processing of non-stoichiometric
compounds) or with free or trapped electrons [58]. In the latter, Vö are basically
mobile shallow electron traps from which the electrons can be easily liberated.

As described in [20] it was surprising that sCDWs formed slowly, but regularly
within several hours of frustrative poling (discussed below) and that only Head-
to-Head sCDWs displayed giant conductivity while Tail-to-Tail sCDWs remained
indistinguishable from the bulk. It was even contrary to the expectations because the
Pt electrodes used in this experiment should theoretically create ohmic contact with
the Tail-to-Tail sCDW and a large barrier with the Head-to-Head sCDWs.

It was therefore suggested that the sCDWs are compensated with the assistance of
positively charged Vö that are attracted to the Tail-to-Tail sCDWs and the electrons
that are liberated from Vö and are attracted by the Head-to-Head sCDWs. A phase
field simulation then showed, that the depolarizing field, which appears as soon as
the sCDWs start forming, separates electrons fromVö and, consequently, drags them
towards Head-to-Head and Tail-to-Tail sCDWs, respectively. Obviously, the much
more mobile electrons are able to compensate the Head-to-Head sCDWs orders of
magnitude faster than Vö compensate the Tail-to-Tail ones. It was shown in [21] that
Tail-to-Tail sCDWsmore often acquire a zig-zag shape with a smaller charge density
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and that the sCDW density is directly proportional to the initial Vö concentration
(provided by high temperature annealing in vacuum).

The model in Sect. 5.3.1 can therefore be upgraded in (5.8) by adding the volume
density of charged donors nD as follows:

(
∂h

∂ Ei

)

,i

= q(p − n) + nD, (5.25)

The concentration of ionised donors is obtained as nD = qz f (ϕ)ND, where z is
the donor valency and

f (ϕ) = 1 −
(
1 + 1

g
exp

(
ED − EF − qϕ

kBT

))−1

is the fraction of ionized donors with the donor level ED and the ground state degen-
eracy of the donor impurity level g [59].

The donor density ND evolves through diffusion,

∂ ND

∂t
− ∇ ·

(
βND∇

(
∂WD

∂ ND
+ qz f (ϕ)ϕ

))
= 0, (5.26)

where β is the donor mobility [56], and WD is the contribution to the free energy
due to defects which is assumed to be the usual free energy of mixing at small
concentrations [60].

Numerical solution of (5.7), (5.9)–(5.11) and (5.25) in the one dimensional case
gives a stable solution shown in Fig. 5.11 where charge carrier and defect densities
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Fig. 5.11 One dimensional phase field simulation of charge carrier and defect densities (left axis)
and electric potential ϕ (right axis) across the Head-to-Head and Tail-to-Tail domain walls. Com-
pensation of polarization charge at Head-to-Head wall requires accumulation of electrons, n, and
depletion of oxygen vacancies ND. The negligible remaining density of vacancies is not ionized
which lowers the charge carrier density, nD/q. The Head-to-Head sCDW accumulates holes p and
almost fully ionized oxygen vacancies ND. The electric potential ϕ forms a zig-zag profile across the
domain walls. The oxygen vacancies almost fully replace screening holes at the Tail-to-Tail domain
wall after 101 hours with initial defect concentration ND|t=0 = 1018 m3. It makes the Tail-to-Tail
walls significantly less conductive (details in Supplementary materials of [20])
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and electric potential ϕ (right axis) across the Head-to-Head and Tail-to-Tail sCDWs
are plotted. One can see that the polarization charge at the Head-to-Head wall is
compensated by accumulated electrons, n, and depletion of oxygen vacancies ND.
The Head-to-Head sCDW accumulates holes p and almost fully ionized oxygen
vacancies ND.

5.4 Charged Domain Wall Formation: Factors Controlling
the Formation Energy

The occurrence of sCDWs is controlled to a great extent by the formation energy of
the walls which, in turn, is sensitive to the details of the screeningmechanism and the
availability of charge exchange between the ferroelectric and its exterior (electrode
or/and ambient atmosphere). Both, electrons (holes) and charged ionic species can
participate in the bound charge screening at the sCDW.

5.4.1 Electrically Isolated Ferroelectric: Bipolar
Electron-Hole Screening

The screening of Head-to-Head and Tail-to-Tail sCDWs by electrons and holes,
respectively, was addressed in [1, 30]. In the case of electron-hole screening in
typical perovskite ferroelectrics, the main source of compensating free carriers is
electron transfer from the valence to the conduction band over the bandgap of the
ferroelectric. For a 180◦ wall with 2 PS bound charge per unit area, the screening
requires 2PS/q (q is the elementary electron charge) free carriers per unit area. Thus,
the formation energy of sCDW in non-linear regime can be evaluated as [30]:

WCDW ≈ 2PS Eg

q
,

where Eg is the bandgap. For a bandgapof about 3 eV,which is typical for perovskites,
the energies of sCDWs are some two-orders of magnitude larger than the energy
WNDW of neutral DWs, i.e. [30]:

WCDW
∼= 102WNDW, (5.27)
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while the energy of NDWs is, on the lines of Landau theory [61]:

WNDW
∼= 2tNDWUfer,

where Ufer is the gain of the energy density of the ferroelectric phase with respect to
the paraelectric one and tNDW is the half-width of the NDW.

The carrier concentration in the wall can be evaluated as

ρCDW = PS

qtCDW
,

where tCDW is the half-width of the sCDW. Taking PS = 0.3 C/m2 and tCDW = 10
nm, one finds ρCDW = 2 × 1026 m−3. Such a concentration vastly exceeds any real-
istic intrinsic equilibrium concentration of free carriers in nominally insulating fer-
roelectrics. Based on this fact, it was concluded in [30] that the participation of
equilibrium carriers in the screening can be neglected. An important feature of this
screening scenario is that sCDW formation is virtually insensitive to the equilibrium
free carrier concentration (and conductivity) in the single-domain material, be it a
pure or a moderately doped material.

5.4.2 Electrically Isolated Ferroelectric: Unipolar Screening

One may conceive an alternative screening scenario; [2] discussing formation of
a sCDW in a PbTiO3 crystal argued that the free charge needed for screening of a
single sCDW in a crystal can be collected from its volume.According to this scenario,
electron transfer across the bandgap is not needed. The realization of this scenario is
limited even when the amount of free carries in the crystal is sufficient for screening
of the bound charge of the wall. The point is that, for not too small crystals, the
needed amount of free carriers can be available only due to the presence of doping
impurities in the material. Once the free carriers concentrate at the walls, the space
charge of the ionized impurities in the bulk implies a very strong increase of the
energy of the system.

5.4.3 Electrically Isolated Ferroelectric: Screening with
Photon Generated Carriers

The energy of sCDW formation by electron transfer across the band-gap may be
large, but this energy can be naturally provided by externally supplied super-band-gap
photons which generate directly electron-hole pairs. In this scenario, sCDWs form
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once the required number of free carriers has been provided. In practice electron-hole
pairs can be provided by illumination with super-band-gap light.

5.4.4 Electrically Isolated Ferroelectric: Mixed Electron/ion
Screening

As pointed out above, screening of sCDW through the collection of free carriers in
equilibrium from adjacent domains leads to a very high sCDW formation energy
due to the space charge of the ionised impurities in the bulk of the crystal. However,
this energy is substantially reduced if the ionised impurities are mobile, i.e. if they
can be redistributed during the formation of the sCDW. In this case, the mobile
carriers have both polarities, and the situation resembles the electron-hole screening
discussed above. For example, in the case of an n-type material, the equilibrium
electrons in the conduction band can screen the positive bound charge while the
ionised donors can screen the negative bound charge. If the total amount of charge in
the crystal is large enough to neutralize the bound charge at the walls, such screening
mechanism is energetically more favourable than the pure electron-hole screening
since no energy penalty is paid for the electron transfer across the band-gap. In this
case, the sCDW formation energy, Wmix , can be evaluated as the energy associated
with the deviation of the polarization in the wall region from its spontaneous value
(c.f. the discussion from [30]), i.e.

Wmix
∼= 2tCDWUfer

∼= tCDW
tNDW

WNDW. (5.28)

For typical perovskite ferroelectrics, tCDW is expected to be one order ofmagnitude
larger than tNDW [30]. Thus, comparing the estimate of (5.28) with (5.27), we see
that in perovskite ferroelectrics, sCDW formation with mixed electron-ion screening
mechanism is more favourable energetically than bipolar electron-hole screening
in which a sCDW requires an additional treatment. Note that (5.28) is not valid
for ferroelectrics near rotational phase transition in which the formation energy of
anomalously thick sCDWs [36] (see Sect. 5.3.1.2) is even smaller.

An essential feature of this screening scenario is that, for given charge densities
of mobile carriers of both signs, ρ+ and ρ−, and the component of spontaneous
polarization normal to the walls, PN, the average domain width should exceed a
certain minimum value Lmin. Relation between these parameters can be found from
the condition that all mobile carriers of the material are used for the screening of
sCDWs:

PN = Lminmin[|ρ+|, ρ−],
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yielding

Lmin = PN

min[|ρ+|, ρ−] . (5.29)

Two more characteristic features of the mixed screening mechanism are
evident. First, it requires substantial redistribution of the ionized impurities, implying
a relatively slow sCWD formation. Second, a strong difference in the conduction of
Head-to-Head and Tail-to-Tail walls is expected. In view of their much higher elec-
tronic mobility, the walls screened by electronic carriers will exhibit substantially
higher conductivity than those screened by the significantly less mobile charged
defects. Experimental data on sCDWs in bulk crystals of BaTiO3 [20], strongly sug-
gest that it is the mixed screening mechanism which takes place in this system. Here,
Head-to-Head 90◦ sCDWs artificially created in the materials were found highly
conductive (109 times more than the domains) while Tail-to-Tail sCDWs did not
exhibit increased conductivity. This situation matches perfectly the typical n-type
conduction in a material in which oxygen vacancies (Vö) play the role of donors.
Since the mobility of the latter is much smaller than that of electrons, the Tail-to-
Tail walls screened with Vö do not exhibit considerable conductivity contrast with
respect to the domains themselves.

5.4.5 Screening of sCDW with Charge Provided
from External Source

Charge injection from the exterior of the ferroelectric material may reduce strongly
the formation energy of sCDW [1, 30, 62]. Depending on the band gap of the ferro-
electric and on the ferroelectric/metal work function difference, the energy penalty
associated with the carrier generation is necessarily reduced compared to the elec-
tron transfer over the band gap either for electrons or holes [1, 30, 62]. For certain
combination of these parameters, the energy penalty can be even negative, implying
negative formation energy of sCDW [47, 48]. Estimates show that in BaTiO3 with Pt
electrodes, Tail-to-Tail sCDWs should have negative formation energy, thus form-
ing spontaneously. Such a phenomenon has never been documented experimentally,
which can be explained by surface effects associated with surface states and sur-
face termination [30] not taken into account in the model. Mobile charged defects
like oxygen vacanciesVö due to oxygen loss from the sample may give similar
effects to those resulting from the electronic screening discussed above. The for-
mation of Head-to-Head and Tail-to-Tail configurations supported by purely ionic
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compensation has been documented for LiNbO3 and LiTaO3 crystals (see [63] and
references therein). In thin films, compensating free carriers can be injected from a
sharp tip of an AFM probe due to the tip-geometry related enhanced tunneling [18,
64].

5.5 Charged Domain Wall Engineering

Naturally occurring CDWs are extremely rare (except those in improper and hybrid
improper ferroelectrics) and randomly distributed objects which makes them incon-
venient for experimental investigation and any future development. The positioning
of inclined charged domain walls such as those appearing during domain nucleation
(Fig. 5.6) can be controlled into certain extent, but, on the other hand, these sCDWs
are mostly unstable. Therefore domain engineering method which would allow pre-
cise control of stable sCDW (their density or nanoscale manipulation) were sought
after.

The artificially engineered sCDW were created by so-called frustrative poling
[19–21]. An electric field, E , was applied to a (110)c (or (111)c) plate of tetragonal
BaTiO3 in a [110]c (or [111]c)-like direction. This leads to two (or three) equally
preferred ferroelectric-ferroelastic domain states (Fig. 5.12a) which can be separated
either by (110)c neutral domainwalls or (11̄0)c sCDW. The theoretical energy density
of sCDW is significantly larger than that of the neutral domain walls [30], but their
total energy in a thin plate sample can be smaller due to their smaller total surface. The
sCDW are stabilized by elastic compatibility of adjacent ferroelastic states, therefore
their density can be controlled by favorable poling history and boundary conditions
[19, 21].

The frustrated poling of BaTiO3 samples was applied during slow cooling over the
paraelectric-ferroelectric phase transition (Fig. 5.12a, b) which leads to formation of
planar sCDW and zig-zag partly charged domain walls, Fig. 5.12c, d.

The formation of sCDW with controlled periodicity was achieved by means of
frustrative poling in samples with predetermined Vö concentration (obtained with
high temperature annealing in vacuum) and by modification of electric field magni-
tude and poling history [21] (Fig. 5.13). The data-points in Fig. 5.13b, within their
error margins, are distributed along the line which is determined by the minimal
domain size as predicted by the electron/ion screening scenario, (5.29).

Deterministic nanoscale manipulation with sCDWs was first achieved in 45
nm La doped BiFeO3 epitaxial thin film deposited on 5 nm SrRuO3 electrode on
DyScO3 single-crystal substrate [18]. Here, the formation of sCDWs employs two
mechanisms (i) a tri-axial writing of domain states with an AFM tip which exploits
the out-of-plane poling field between the tip and the bottom electrode together with
the effective trailing field produced by the line-by-line scanning over the film surface
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Fig. 5.12 Illustration of the frustrative poling method. An electric field is applied parallel to the
[110]c or [111]c directions just above the ferroelectric phase transition. Two scenarios are then used:
a the phase transition is crossed by cooling or b induced by the electric field. The field/temperature
path is indicated by blue line (Ep1 poling electric fields, Ep2 zero field phase transition temperature,
T�

c E-field induced phase transition temperature, Tr room temperature, Ta temperature of annealing,
Td temperature at which the slow decrease of the electric field begun. Domain states and 90◦ domain
walls in tetragonal BaTiO3 obtained through frustrative poling. c Schematic views of domain states
and domain walls in a [110]c poled tetragonal BaTiO3 crystal observed from the [001]c direction:
neutral domain wall, planar Head-to-Head sCDW, zig-zag configuration of Head-to-Head CDW,
planar Tail-to-Tail sCDW, zig-zag configuration of Tail-to-Tail CDW. d Schematic views of domain
states and domainwalls in a [111]c poled tetragonal BaTiO3 crystal: three orientations of NDWs and
three orientations of sCDWs with Head-to-Head and Tail-to-Tail configurations are possible. Green
planes depict inclined NDWs while red and blue planes represent sCDWs which are perpendicular
to the surface. Black arrows denote the directions of spontaneous polarization [21]
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Fig. 5.13 Controlled sCDW period in (111)c BaTiO3 crystal plates with different Vö density. a
Optical micrographs of domain patterns with drawings of allowed orientations of domain walls:
CDW charged domain walls, NDW neutral domain walls; b Dependences of the domain size versus
charge density in single-domain material, red line determines the minimal domain size as a function
of the charge density in the single-domain material as predicted by the electron/ion screening
scenario according; the upper horizontal line is the limitation by the sample size; lower horizontal
line is given by the minimal domain size consistent with the stability of ferroelectricity in the
domains, evaluated with the results from [21, 34]

with an applied voltage (illustrated in Fig. 5.14) [18, 65] and (ii) the tip-geometry-
enhanced electron tunneling into the ferroelectric film that provides screening of the
polarization charge [18, 64] (illustrated in Fig. 5.15).

5.6 Charged Domain Wall Conductivity

As predicted by theory and explained above, electronically compensated sCDWs
should display a metallic-type conductivity due to the presence of a quasi-two-
dimensional electron or hole gas. The latter is less likely in oxides due to the pres-
ence of positively charged mobile Vö which can entirely replace screening holes.
The first evidence of non-thermally activated conductivity at CDWs was seen at
transient domain walls of nucleating nanodomains in Pb(Zr0.2Ti0.8)O3 thin film
[7]. Figure5.16a shows qualitatively different non-thermally activated temperature
dependence at nanodomains in comparison with domain interior (macrodomain)
and neutral domain walls. Figure5.16b illustrates the charging of domain walls at
a nanodomain. In this experiment, the magnitude of conductivity at nanodomains
temporarily exceeded the macrodomain conduction by three orders of magni-
tude [7].

As introduced above, the sCDWs were later stabilized by ferroelastic clamping
in BaTiO3 single crystals [20]. While the conduction between electrodes connected
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Fig. 5.14 Principle of controlled charged domain wall creation in a ferroelectric thin film. a Rep-
resentation of the four as-grown polarization states (indicated by arrows) in a La doped BiFeO3 (45
nm)/SrRuO3 (5 nm)//DyScO3 heterostructure. b The application of a tip-SrRuO3 electric field E
selects the two states pointing toward the tip. c, d The selection of only one of these two polar-
ization states is achieved with trailing field (indicated by red arrows) created by the tip trailing
motion (indicated by grey arrows). e Controlled switching of the original random domain structure
(center) to the selected monodomain states with opposite in-plane directions indicated by violet
and yellow colour. f Joining of the two mono-domain states creates Head-to-Head charged domain
wall (CDW) [18]
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Fig. 5.15 Schematic illustration of a BiFeO3 band diagram during the formation of a Head-to-Head
sCDW. The screening of the polarization charge is achieved by the tip-enhanced electron injection
from the tip to the BiFeO3 conduction band [18]
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Fig. 5.16 a Temperature-dependence of local current obtained from averages of 100 hysteretic
IV curves on Pb(Zr0.2Ti0.8)O3 nanodomains (blue, measured at 4.5 V), 50 resistive curves on
nanodomains (red, measured at 3.5 V), 100 non-hysteretic IV curves on macrodomains (green,
measured at 7 V) and one current image from the domain walls (measured at 2.6 V) at each
temperature. The non-thermally activated current at nananodomains indicate the presence of free
carriers due to polarization charge at the domain nucleus as illustrated in (b) [7]

by a Tail-to-Tail sCDW was almost identical to the conduction through the bulk,
the conduction between electrodes touching Head-to-Head sCDWwas reproducibly
and steadily (for >120 hours) 104 − 106 times higher, Fig. 5.17. Figure5.17b shows
room-temperature I-V curves of the bulk and the cases when a single Head-to-Head
or Tail-to-Tail domain wall is present between 200µm diameter top Pt electrode and
a full bottom Pt electrode. The steady difference between conductance measured
with and without the Head-to-Head sCDW is more than six orders of magnitude
(at V = 100 V across 200µm thick sample after >660 min) [20]. Assuming the
thickness of sCDW is ∼10−100 nm, its intrinsic conductivity is 108 − 1010 times
higher than the conductivity of the bulk.

Conductivity of sCDWs was measured in BiFeO3 thin films [18] where cur-
rent flowing through stable Head-to-Head sCDWs was more than three orders
of magnitude higher than current through the domain or neutral domain walls.
Figure5.18 shows PFM images of the BiFeO3 domain structure and correspond-
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Fig. 5.17 Conduction through charged domain walls in BaTiO3 . a Schematic diagram of (110)c
plate of BaTiO3 crystal with three types of charged domain walls: Head-to-Head (red), Tail-to-
Tail (blue) and zig-zag (black). The colored circles represent Pt cathodes at which the current
through the sample thickness was measured. b Semilogarithmic-scale room-temperature I-V char-
acteristics showing up to 105 times higher conduction through electrodes touching Head-to-Head
(H-H) charged domain walls compared to the bulk and Tail-to-Tail (T-T) domain walls. c Current-
temperature dependence shows switching of the metallic-type conductivity when a 90◦ Head-to-
Head (H-H) charged domain wall is created and annihilated at phase transitions. The domain walls
formed in tetragonal BaTiO3 cannot exist in the orthorhombic and paraelectric phases as illus-
trated in the cartoon. The charged domain wall is annihilated at both transitions from the tetragonal
phase. The annihilation at the transition to the paraelectric phase is permanent in this case. The
conductivity characteristic shows change from metallic-type temperature dependence and magni-
tude to thermally activated conduction typical for wide bandgap semiconductor bulk BaTiO3 . d
Linear-scale current-temperature dependence showing pronounced positive temperature coefficient
indicating thermally non-activated (i.e. metallic-type) conduction at domain walls as illustrated on
the right [20]

ing current maps collected at a tip-bottom electrode bias of 2.5 V. Conducting lines
can be clearly seen at Head-to-Head sCDWs.

Figure5.19 shows that, in this case, sCDWs exhibit non-thermally activate type
of conduction in current-temperature measurement, which clearly contrasts with the
thermally activated conductivity of 71◦ neutral domain walls.

The elevated conductivity was observed also at topologically protected CDWs
in single crystal of improper ferroelectrics ErMnO3 [27]. The Tail-to-Tail CDWs
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Fig. 5.18 Charged domain walls created in BiFeO3 thin film. a Vertical (large image) and lateral
(small image) PFM phase micrographs of six regions successively poled up with opposite trailing
field directions as indicated by the red arrows. b The corresponding PFM amplitude images. The
violet and yellow arrows denote the direction of the polarization in the six regions. The blue arrows
point at the position of the Head-to-Head sCDWs. c The current map collected at a tip-bottom
electrode bias of 2.5V on the CDWs array shows pronounced conduction at the Head-to-Head
sCDWs [18]
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Fig. 5.19 Metallic-like conductivity of charged domainwalls. Current versus temperature at VDC =
3 V on a Head-to-Head sCDW (red) compared with a 71◦ neutral domain wall (orange). The
metallic-type trend of the sCDW is opposite to the thermally activated trend at the neutral domain
wall pointing out the different mechanisms at the origin of their conduction—polarisation charge
as a quasi-dopant at the former and defect-assisted at the latter [18]

transported ∼ three times higher current than domains and Head-to-Head CDWs,
Fig. 5.20.

Similar behavior of CDWs was observed in a single crystal of oxygen-deficient
hybrid improper ferroelectric Ca2.46Sr0.54Ti2O7 [28]. One can see in Fig. 5.21 that
Head-to-Head CDWs conduct about one order of magnitude more than domains.

Interestingly, in all cases, except in improper ferroelectrics ErMnO3 where the
trend was exactly opposite [27], elevated conductivity was seen at Head-to-Head
CDWs while Tail-to-Tail CDWs displayed similar behavior as bulk or even smaller
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Fig. 5.20 Anisotropic electrical conductance of CDWs in improper ferroelectric ErMnO3. Local
conductance of the domain walls at the positions indicated in the conductivity map in the inset. The
arrows indicate orientation of spontaneous polarization [27]

+4.6 nA

0 nA
2 µm

Fig. 5.21 Conductivity of CDWs in oxygen-deficient hybrid improper ferroelectric
Ca2.46Sr0.54Ti2O7 crystal at room temperature. Conductive atomic force microscope (cAFM)
image of (001) surface with a voltage of Vtip = +5 V applied to the tip. Colour scale depicts
the magnitude of the measured cAFM current. The white arrows denote in-plane polarization
conponent [28]

conductivity. As explained earlier, this trend might be attributed to the electronic
compensation of polarization charge at Head-to-Head CDWs and defect compensa-
tion at Tail-to-Tail CDWs or to the contact barriers between probing electrode and
the ferroelectric discussed in e.g. in [20], but otherwise little studied.
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Chapter 6
Extended Defects in Nano-Ferroelectrics:
Vertex and Vortex Domains, Faceting,
and Cylinder Stress

James F. Scott

Abstract The rapid success of density functional theory (DFT) has created the
impression in the scientific community that most problems of interest involving fer-
roelectric and multiferroic structures can be solved via DFT. Unfortunately, this is
not the case: DFT invariably requires the assumption of periodic boundary condi-
tions, which can often be tantamount to throwing out the baby with the bath water.
Problems of vertex and vortex structures, of faceting, of preferential nucleation and
switching around the boundaries of nano-crystals (Bessel-function-like propagation)
and many other problems are intrinsically aperiodic, as well as being inherently time
dependent (nucleation and growth); some are both nonlinear and non-equilibrium
(kinetic rather than thermodynamic, for which the Landau free-energy approach is
also not optimum). In this chapter we examine some of those problems.

6.1 Introduction

The two most important things about ferroelectric oxides are that they generally are
not insulators. Often (as in the old USSR) the syllabus for physics students offered
options of semiconductor physics or ferroelectrics but not both. However, the popu-
lar perovskite oxides have bandgaps below those in wide-gap III-Vs such as GaN or
II-Vis such as ZnO (e.g., PbTiO3 is at ca. 2.87 eV [1]). When ferroelectric devices
were bulk ceramics mm thick, this was satisfactory, but devices made from 100-nm
thin films conduct, and it becomes necessary to understand their majority carriers,
effective masses, mobilities, and whether their conduction is space-charge-limited,
Schottky-limited, Poole-Frenkel, Fowler-Nordheim, etc [2]. The ferroelectrics liter-
ature is replete with serious errors that have delayed engineering progress. One group
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in Switzerland has published errors for themost popular PZT (lead zirconate-titanate)
material, asserting [3] that it is usually p-type and then later giving an electron effec-
tive mass of m* = 1.0 m(e) [4]. In fact PZT is usually n-type with m* = ca. 6 m(e);
BaTiO3 and SrTiO3 have m* = 5.1–6.5 m(e) [5]; this cannot be due to differences
between band masses and transport mobility masses, since Mahan has shown that
the band mass m* and transport mass m** are equal in these systems [6]. A second
huge error from both Belgium [7] and Yokohama [8, 9] was the claimed value of
the Schottky barriers for BST/Pt or PZT/Pt or strontium bismuth tantalate SBT/Pt;
these groups were in error by approximately 1.0 eV, giving 5 eV as the (erroneous)
bandgap in SBT; this error was corrected by the present author based upon correct
electron affinity measurements by Dixit et al. [10]. It is difficult to understand how
one can have $1 million in kit with 10 meV accuracy and get such numbers wrong by
1 eV. Finally the field has been plagued by the erroneous belief that ferroelectric films
much thinner than a micron would be unstable and useless because surface depolar-
ization fields would destabilize the polarization. This originated in IBM in the 1960s
[11], led to the decision by Rolf Landauer to terminate ferroelectric memory work
there, [12] was exacerbated in Japan [13] and in North Carolina, [14] and delayed
progress for three decades. In fact, ferroelectric thin film devices have progressed
despite these researchers, not because of them.

Six is bigger than three. The actual limit in film thickness for stable ferroelectricity
in most oxides is 2–3 nm, [15, 16] not a micron. This was first shown by Marty
Gregg’s group in Belfast [17]. That number is very important because ferroelectric
tunnel junctions can function up to ca. 6 nm thickness, even with direct tunnelling, as
shown beautifully by the work of Barthelemy, Bibes, Garcia et al. at Thales [16–18].
The fact that 6 is bigger than 3 implies that one can fabricate very good voltage-driven
tunnel junctions.

6.2 Definitions: Vertex, Vortex, and Kosterlitz-Thouless
Melting

One should be careful with definitions. In ferroelectrics some authors use the terms
“Vertex domains” and “Vortex domains” interchangeably. In my opinion this is very
unwise. Vortex domains require a non-zero polarization curl; whereas vertex domains
can be simple intersections with a resulting pure divergence of P nearby, as illustrated
in Mermin’s famous review article [18]. (Mermin also shows that the distinction
between vertex and vortex is NOT closely related to winding numbers, and that +1
winding numbers can involve a rotation-like curl or a pure divergence of P and do not
discriminate between the two in any way.) This view is different from that published
by Cheong [19].

Another point of interest is the possible occurrence of Kosterlitz-Thoulessmelting
and hexatic [2D] phases in ferroelectrics [20]. In my judgment, KT-melting has not
been shown, and there are theoretical reasons to believe that it requires a Potts model
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with n = 5 or greater, [21] whereas the systems studied thus far are describable
with either Potts models or clock models (vector Potts models) of n = 3 or 4 (recall
that a Potts model of n = 2 is just the standard Ising model). One should not be
misled by the lattice symmetry, especially if this exhibits a threefold or sixfold axis;
as shown below, faceting and domain shapes can exhibit symmetries higher than
the lattice symmetry. Although it is true that ferroelectric thin films often exhibit
hexagonal faceting and approximate two-dimensional system if very thin, hexagonal
is not hexatic, and these systems do not appear to exhibit KT-melting.

6.3 Basic Theory: Landau-Lifshitz-Kittel as Extended by
(a) Lukyanchuk; (b) Catalan, Schilling, Scott et al.

The basic theory of stripe domain structures and closure domain (vertex) struc-
tures was given by Landau and Lifshitz in 1935 [22] (two years before their more
famous paper on order parameters and free energies), and independently re-derived
and extended by Kittel in 1946 [23]. They derived from the balance of axial stress
and depolarization fields the simple relationship that the domain stripe width w is
proportional to the square root of the film thickness. This has been satisfied from
nm to mm thicknesses in a wide range of ferroelectrics and ferromagnets (Fig. 6.1).
However these authors did not calculate the proportionality constant. Much more
recently this was done independently by Lukyanchuk’s group at Amiens [24] and by
Catalan and Scott [25]. The resulting express in (6.1) gives an exact formula with
a dimensionless constant of order unity, by calculating the ratio of stripe width to
domain wall thickness. The latter is not easy to measure, because thermal motion
gives in most X-ray studies a misleading time-average that is spatially widened by
thermal excursions (similar to a Debye-Waller factor for ions). Note that (6.1) has
no adjustable parameters but does involve the anisotropy of the dielectric constant.
A graph of w versus d for several common ferroelectrics has been presented in the
review by Catalan et al. Note that these values of domain width w are the thermal
equilibrium values. If one tries to alter widths w, for example by periodic poling of
LiNbO3, there will always be a tendency to relax back to these equilibrium values
over time and use; this gives rise to degradation of periodically poled devices for
second harmonic generation or other nonlinear optics applications [26].

Catalan-Scott-Lukyanchuk expression for stripe domain widths was functions of
film thickness d and domain wall thickness δ:

w2/d δ = (2π 3/21 ζ (3)] [χ (y)/χ (z)]1/2 (6.1)

where ζ is the Riemann zeta function of argument 3 andχ is the susceptibility normal
or parallel to the polarization.



142 J.F. Scott

Fig. 6.1 Plot of stripe domain width versus film thickness for ferroelectrics of large lateral area,
showing agreement with the Landau-Lifshitz-Kittel Law from nm to mm. The other line is coercive
field versus thickness, showing agreement with the Kay-Dunn theory. Figure from Catalan et al.

6.4 Statics

(a) clock models compared with Potts models (Srolovitz); (b) comparison with
hexatic arrays and Kosterlitz-Thouless models; (c) Landau-Lifshitz-Kittel model;
(d) Roytburd model; (e) Arlt model.

Figure6.2 shows schematically two possible closure or vertex structures for fer-
roelectric domains (Srolovitz and Scott [27]). In one case (Potts model), the adjacent
pairs of threefold vertices are stable, and any fourfold coalescence will be unsta-
ble and short-lived; this is the experimental situation found by McQuaid et al. very
recently [28]. Parenthetically we note that the vertex-vertex trajectories observed by

Fig. 6.2 Closure domains and vertex structure in ferroelectrics of rectangular geometry. From
Schilling, Prosandeev et al.
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McQuaid closely follow the equipotential calculated by Francu for this geometry
due to stress. The threefold vertex-antivertex pairs were also studied (and created
by AFM tip voltages) by Ivry, Durkan et al. [29, 30]. In the second case (clock
model—vector Potts model)), the fourfold vertex is stable and the adjacent threefold
vertex-antivertex pairs will coalesce. This situation has not been observed in ferro-
electrics yet. Parenthetically we emphasized in the sections above that Kosterlitz-
Thouless hexatic structures and KT-melting requires Potts models higher than n= 4,
so that these vertex structures in ferroelectric thin films do NOT lead to Berezinsky-
Kosterlitz-Thouless (“BKT”) melting.

These considerations for ferroelectric domains all apply to ferroelastic twinning
as well, as shown in detail by Roytburd [31]. The most precise numerical application
of these models has been given by Arlt [32].

6.5 More statics

(a) Ising-like compared with Bloch- or Neel-like; (b) Off-centering (Schilling,
Prosandeev et al.); (c) Hoop stress (Scott); (d) Kolmogorov-Avrami-Ishibashi
theory; (e) Fitting of KAI theory by Scott and by Shur; (e) Topological-defect and
nucleation-limited (X. Du and I-Wei Chen; Tagantsev).

For several decades it was assumed that ferroelectric domain walls were Ising-
like and almost atomically thin (a few unit cells) with no curvature. However, rather
early Lajzerowicz [33] showed that ferroelectric domain walls were wide enough to
exhibit phase transitions within the walls at temperatures different from bulk. This
theoretical work was extended recently by Daraktchiev et al. [34, 35] and this year
by Iniguez et al. [36] and by Salje and Scott [37]. The best experimental studies are
reviewed by Catalan et al. and form the basis of what is now termed domain-wall
nano-electronics. This was stimulated by the photovoltaic studies of Seidel et al. [38].

One of the surprising studies of nanodomain structures is the off-centering of
vertex patters in rectangular nanocrystals, [39] reported by Schilling, Prosandeev
et al. (Fig. 6.2) The modelling of Prosandeev and Bellaiche shows that this can be
described as a geometrically driven phase transition.

The off-center vertex site loci have not been calculated but presumably are deter-
mined by surface polarization energies on the two inequivalent sides of the rectan-
gles. Their positions depend upon the aspect ratio of the rectangle, and the vertex loci
resemble those for field minima in the rectangular model calculation of Francu [40].

6.5.1 Hoop Stress

As discussed above, the Landau-Lifshitz-kittel Law for stripe domain width is based
upon the balance of axial stress and depolarization fields. If there were only axial
stress, materials would usually exhibit single-domain states. However, breaking up
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into narrow domains saves depolarization energy at the surfaces. But such domains
increase wall energy. In their calculations Landau and Kittel ignored “hoop stress”
(or cylinder stress), because they were modelling parallel-plate capacitors of infinite
lateral area. Of course, modern physics and device engineering emphasize nano-
crystals of small lateral size (the crystals studied by Scott and Kumar are only 8nm
in diameter). This finite size implies that “hoop stress” (or cylinder stress) is not
negligible. This is well known to architects and mechanical engineers. This is an
azimuthal or tangential stress the increases the circumference of a ring or disk.
The important thing is that it varies not as reciprocal area of the base, but as the
circumference. Putting this extra term in 1/r into the Landau free energy, together
with the original 1/r-squared stress term gives the result shown in Fig. 6.3 [41] and
(6.2) below

Uw2 = Bd − cw/[(d/w) − 1], (6.2)

For small r (nano-disks) the dependence of w upon d is linear (Fig. 6.3). This seems
to be confirmed in very new data from Lichtensteiger et al. [42] (Fig. 6.4).

6.5.2 KAI Theory

For some years the standard theory for nucleation and growth was the KAI theory
(Kolmogorov, Avrami, Ishibashi) [43, 44]. Originally designed for grain growth, this
model fit domain growth and switching extremely well. Particularly convenient is the
fact that there is a self-consistency check on themodel: For a given dimensionality the
product of the peak displacement current i(t) = dD/dt (approx. = dP/dt) multiplied
by the time t(peak) at which this occurs, gives a precise fraction of the spontaneous
polarization P(s) [45]. See (6.3a and 6.3b) below:

Fig. 6.3 Calculated stripe width versus film thickness including hoop stress, from (6.2), with B, c,
d set equal to unity. Figure courtesy of P. Zubko
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Fig. 6.4 a Measured dependence of stripe width versus grain diameter for K1/2Na1/2NbO3
[M. Eriksson, Ph.D. thesis, Stockholm]. b Lead titanate domain widths versus film thickness (Note
that 3a is versus grain size, not film thickness) showing apparent linear relationship in contrast with
Landau-Lifshitz-Kittel square root prediction Lichtensteiger et al. [42]

i(max) t(max)/Ps = constant = B (6.3a)

where the dimensionless constant is not freely adjustable but can be calculated for a
given dimensionality from the model and depends strongly on the dimensionality of
the domain growth (e.g., needle-like).

This equation is fitted simultaneously with

i(t) =(2PsAn/to)(t/to)
n−1Pexp[−(t/to)

n] (6.3b)

in Ishibashi’s theory. The latter gives the dimensionality of the domain growth n
(typically between 1.0 and 3.0) and scaled dimensionless time t/to= u. A is capacitor
area.

This works very well in KNO3, PZT, and some other ferroelectrics, [46] and the
dimension of the domains is found to be nearly 3.0 in some cases and as low as 1.0–
2.0 in others. Fits of (6.3b) for KNO3 give u= 1.79 and n= 1.63; for such values the
model of Ishibashi and Takagi predict the constant B = 0.68 in (6.3a); the measured
value is 0.67 + / − 0.08 for 300-nm thick films. The theory predicts needle-like
domain growth with dimension 1.6 + / − 0.2. But for very thin potassium nitrate
films, the dimensionality is found to be 3.1 + / − 0.2 (three-dimensional spherical-
growth is the rate-limiting step). The results are completely self-consistent. The
model has two cases: One with pre-existing nano-domains (“nuclei”), and the other,
without. There are a few unphysical assumptions made to make the model analyti-
cally tractable: notably, the domain wall speed v is assumed independent of domain
radius r; this is generally untrue, and v is typically 1/r, decreasing with growth.

A different model, based upon nucleation as the rate-limiting step, was developed
by Du and Chen [47, 48]. Jung et al. (Fig. 6.5) show that it gives a better fit to
most ferroelectrics than does the KAI theory, [49] although KAI is still used widely
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Fig. 6.5 Dependence of
coercive field Ec(f) for a
ferroelectric perovskite
oxide upon frequency of
applied electric field (Jung
et al.). The data exhibit a
divergence at the reciprocal
of the domain nucleation
time, in accord with the
theory of Du and Chen. The
fit to the KAI theory does not
satisfy that and gives no
frequency divergence at all

by Shur’s group, especially for LiNbO3 and LiTaO3 [50]. Note that the Du-Chen
model predicts a strong divergence of coercive field with the frequency f of the ac
applied voltage V. For BST Jung found that Ec(f) increases from 0.8 to 2.5V as
f goes from 50Hz to 100kHz. Even greater increases are known for the BaMF4
family of ferroelectrics, as shown in Japan [51]. This means that newly reported
ferroelectrics such as GaFeO3 or LaTaO4 should be tested for switching at 50Hz
or lower, not 100 kHz; by 100 kHz the coercive fields may surpass the breakdown
fields. The physical reason for this frequency divergence in coercive field is long
nucleation times: Jung showed in PMN-PT a nucleation time of ca. 500μs; hence as
f approaches 200 kHz there is insufficient time in each cycle to reverse polarization
domains, and Ec therefore becomes very large.

The work of Du and Chen was “rediscovered” by Tagantsev with very similar
conclusions and published without citations to the original work [52, 53].

6.5.3 Faceting

(a) Lukyanchuk, Gruverman et al.; (b) faceting oscillations (Scott and Kumar;
Ahluwalia, Ng et al.).

Faceting in nature is a very deep problem that transcends ferroelectric films.
However in the case of such films it is especially interesting: For very thin films
the aspect ratio is such that we might hope to approximate them as two-dimensional
systems. However, for such [2D] systems the perimeter is one-dimensional, and long-
range order is not thermodynamically stable in one dimension [54]. Thus faceting is
likely to be kinetically limited and non-equilibrium. It may also be nonlinear. So at
the outset we are faced with a nonlinear, non-equilibrium problem [55, 56].

Textbooks sometimes wax poetic on why snow-flakes have hexagonal symmetry
and state that it is obvious that this arises from the fundamental bond angles in mole-
cular water. This is not only not obvious, it is not true. Sometimes facets transcend
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the lattice atomic symmetry and produce square or pentagonal facets in materials
with rhombohedral or hexagonal lattice symmetry. We shall see why.

The easiest approach is to begin with Thiele’s 1971 theory of faceting in magnetic
bubble domains [57]. Under normal conditionsmagnetic bubble domains are circular
disks (or cylinders). However, with applied fields or stress they switch to elliptical
with a twofold axis. This is reversible and can be used to encode a “1” (elliptical”)
or a “zero” (circular) as the binary Boolean algebra in a magnetic bubble memory.
Although these were touted as “the memory of the future” when I was at Bell Labs in
1970, they failed because they are very slow (sequential access rather than random
access).

RecentlyLukyanchuk et al. have extendedThiele’s kinetic theory ofmagnetic bub-
ble domain faceting to ferroelectric films [58]. The important point is that the larger
susceptibility permits facets of 4, 5, 6, . . . to be accessed kinetically in a metastable
state. There are macroscopic analogies known in plastics. Illustrations are shown in
Fig. 6.6 from Gruverman. Even more surprising is the faceting oscillation from disks
to hexagons observed by Scott and Kumar [59] under HRTEM e-beam illumination
(Fig. 6.7). The hexagonal faceting has been very precisely simulated by Ahluwalia,

Fig. 6.6 Polygon faceting in
PVDF-TFE thin films.
Figure from Lukyanchuk
et al.
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Fig. 6.7 Faceting at edges of 8-nm nanodisk: Experiment (Scott and Kumar)

Ng et al. as arising from electrostatic charge injection from the e-beam (Fig. 6.8),
[60, 61] and the slow oscillation probably arises from piezoelectricity and mechan-
ical overshoot. Malozemoff has reported analagous overshoot effects in magnetic
domains and points out that in that case the very slow period is not a linear response
LC resonance (inductance L coming from charge injection, as shown by Jonscher
[62, 63]) but from a highly nonlinear non-equilibrium kinetic response.

Fig. 6.8 Faceting at edges of nanodisk in HRTEM beam due to charge injection: Model simulation
showing faceting with parallel domain polarization and more circular disk with normal domain
polarizations (Ahluwalia, Ng, et al.) The numbers Ne are the electron concentration per cubic meter
injected by the HRTEM beam
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It is believed that hexagonal facets are special in some way, and those have been
known since the days of the Schwartz-Hora Effect [64, 65]. They may relate to
Plateau’s Laws for soap bubble raft formation, which favor hexagonal geometries
[66]. It is most important to note in Fig. 6.7 that the stripe domains are primarily
aligned normal to the perimeter for the circular geometries, whereas they flop 90◦ to
realign parallel to the facets in the hexagonal geometries. This shows that the exterior
faceting is driven by domain wall rotation to minimize depolarization fields at the
edges.

6.5.4 Toroidal Domains (Ginzburg, Kopaev, et al.; Fiebig)

Back in the 1960s Soviet scientists including Zeldovich, [67] and especially Kopaev,
Gorbatsevich and Ginzburg, [68, 69] considered a special kind of previously undis-
covered domain—toroidal domains in which both time and space reversal were vio-
lated. Athough Zeldovichwas not a condensedmatter theorist, he was greatly interest
in symmetry-breaking, stimulated by the discovery of parity non-conservation in that
era. These toroidal domains were first measured by Fiebig, and good reviews exist on
the topic [70]. This completes the possible symmetries of domains in multiferroics:
Ferroelectric domains symmetric with regard to time inversion but antisymmetric
with regard to spatial inversion; ferromagnetic domains with space inversion sym-
metry but temporal asymmetry; and toroidal domains (Fig. 6.9 from Gorbatsevich)
with antisymmetric temporal and spatial symmetry.

Fig. 6.9 Schematic diagram of toroidal domain polarization. a From X. Fu; b From Gorbatsevich
et al.
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6.6 Dynamics:

6.6.1 Comparison with Magnetic Domains

Ferroelectric domains traditionally were considered to be nearly the same as magn-
ertic domains. Although they exhibit some static similarities, their dynamics are rad-
ically different: Magnetic domain wall motion satisfies the Landau-Lifshhitz-Gilbert
equations [71], which are first-order in time, so magnetic walls have no momentum
or inertia; when the magnetic field H is turned off, the spin precession stops, since
there is no “coasting” to a stop with first-order time-dependent differential equa-
tions. In contrast to this, ferroelectric walls follow Newton’s Second Law, which is
second-order in time, so that walls “coast” as much tens of microns after the applied
electric field E terminates. A second point of qualitative difference is that magnetic
walls can be supersonic (Democritov, Kreines et al., 1984) [72] whereas ferroelectric
walls cannot be; when the magnon spin wave velocity exceeds the acoustic phonon
speed, coherent emission of phonons at a Cerenkov-like “bow wave” angle results.
In comparison, supersonic ferroelectric domain walls would cause fracture of the
crystal from their shock waves, since real ionic motion is required. Early textbooks
sometimes inferred that ferroelectric walls were supersonic, simply because the peak
displacement current dD/dt was faster than the transit time d/v of a sound wave from
cathode to anode in a sample of thickness d; but this naively assumed that all domains
nucleated at an electrode surface, which is simply not true (as Ishibashi showed,
nucleation of reversed domains occurs throughout the interior of the dielectric).

A general theory of domain wall dynamics in multiferroics has been given only
very recently by Lukyanchuk, Sidorkin et al. [73]. It combines the limiting cases
of Newton’s Laws for ferroelectric walls and the Landau-Lifshitz-Gilbert Equation
for magnetic walls. However, the resulting equation is not trivial to fit experimental
data to.

Oneof the characteristics of domainwallmotion that has been elucidated relatively
recently is that wall motion can often be described with ballistic models and viscous
drag. This was initially demonstrated by Dawber and Scott [74] and subsequently
confirmed by Gruverman et al. [75] and by Baudry et al. [76].

6.6.2 Domain Wall Creep

Domain wall creep and creep exponents were first analyzed by Tybell and Paruch;
[77] much of their work was reproduced and confirmed (but not cited) in subsequent
work in Korea [78]. The typical creep velocities are 10−10 m/s at modest fields, and
the creep exponent is very nearly unity.

Under e-beam illumination (Scott and Kumar; Aluwahlia, Ng et al.) domain creep
controls faceting. Figure6.7. Simulation studies of Aghluwalia and Ng model this
in Fig. 6.8; and earlier experiments by Ganpule et al. [79] and by Gruverman et al.
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[80] illustrate some examples (however, the origin in the early work was not obvious
because the films were [111]-oriented with pseudo-sixfold symmetry). The earlier
work lacked atomic resolution provided by the recent HRTEM studies. The latter
show that the faceting is driven by HRTEM injected charge and not thermal heating,
and more importantly, that the internal ferroelectric domain wall alignment is pre-
dominantly normal to the perimeter in disks but parallel to the facets in hexagonally
faceted nano-crystals. Hence the faceting is driven by 90◦ realignment or flopping of
stripe domains. This arises from P.n depolarization fields at the perimeter, where n is
the unit vector orthogonal to the perimeter. One should keep inmind that HRTEMare
two-dimensional images of three-dimensional polarization patterns, so little infor-
mation exists concerning the out-of-plane components. It is quite possible that the
stripe domain reorientation occurs via out-of-plane rotation. The speed of the domain
wall reorientation in the experiments of Scott and Kumar is ca. 1 nm/s, comparable
to the creep velocities inferred by Paruch, Tybell et al.

Other very recent measurements include vertex-vertex collisions (McQuaid,
Gregg et al.) in real time [81]. In this case (Fig. 6.10) one vertex domain is driven
(probably by strain incurred from depolarization fields along the edges of the sam-
ple. The trajectory of the moving domain follows closely an equipotential surface
(Fancu). The true coalescence of adjacent threefold vertex structures to form one X-
shaped fourfold closure domain vertex does NOT occur, as explained by the model
of Srolovitz and Scott. Notable is the velocity v(x) of one vertex as a function of
distance x to the adjacent veretex:

V(x) = ax (6.4)

which gives rise to an exponential dependence of positionwith respect to time. This is
the exact result expected from the Standard Linear Model in mechanics, which arises
from an equivalent circuit model consisting of aMaxwell element and aKelvin-Voigt
element (i.e., springs and dashpots in both series and parallel), which is expected for
linear strain.

Fig. 6.10 Domain wall
vertex motion in real time
near an adjacent vertex,
satisfying (6.4). The
trajectory follows an
equipotential due to stress
(Francu), and the stress
arises at the edges, probably
due to depolarization fields
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Domain walls can also be injected (L. W. Chang, McQuaid, Gregg et al. [82];
Ivry, Durkan et al. [83]); as shown by Ivry et al., these are usually injected as nearby
vortex-antivortex pairs. These can be used to create multi-level memory elements
by offering specific quantized conduction trajectories in resistive RAMs (McQuaid
et al.). A related but more complex process involving domain wall injection is the
domainwall “ping-pong” process developed by Jiang, Hwang et al. inwhich domains
injected from a cathode have their travel to the anode synchronized with the applied
ac electric field; this permits the domains to be “volleyed” back and forth without
entering the dead layer of high loss near each electrode and thereby enhances the
dielectric constant by as much as x100 [84]. Such an enhancement in electric sus-
ceptibility would permit memory elements in FRAMs with much smaller size or
“footprints”.

6.6.3 Pinning

The pinning of domains is generally not by point defects, which are traditionally
treatedwell by theoreticalmodels, but via extended defects—arrays of oxygen vacan-
cies, screw dislocations, etc. (Ivry, Salje, Durkan et al.) [85]. Such defect dynamics
have been theoreticallymodeled and their exponents predicted (Levanyuk and Sigov;
Sigov et al. [86, 87]). Typically the exponents are numerically much larger than for
intrinsic models (specific heat exponent ca. 1.0; ultrasonic attenuation exponent ca.
1.5–3.0 or even larger,; and these are in very good agreement with those measured
experimentally in BaMnF4, oxygen-18 isotopic SrTiO3, PMN-PT, TSCC, and other
ferroelectrics (Fritz [88]; Bobnar et al. [89], Scott [90]; Scott, Pirc et al. [90]). Most
recently the exponent n describing thermal expansion at Tc was measured for a
second-order ferroelectric phase transition (Lashley et al. [91]; Scott [92]) and found
(Fig. 6.11) to be −1.51 + / − 0.02, in exact agreement with the Sigov prediction of
3/2 (Table6.1).

There are still experiments and theories that claim non-mean field (and non-
extrinsic) exponents for ferroelectrics. Notable are the theoretical work of Kornev
for PZT (I. Kornev [93]), and the experiments on PZT (Z-G Ye et al. [94]). The work
by Kleemann and Dec on strontium barium niobate (“SBN”—Sr0.61Ba0.39Nb2O6)

seems to be in error, [95–97] simply because these authors assumed the transition
to be second-order, whereas [98] it clearly is first-order (as admitted by Dec [99]).
Attempts to fit a first-order parameter temperature dependence curve near Tc to a
second-order model must always give an order parameter exponent much less than
1/2, but this is a simple artifact. Unrelated errors by Kleemann for 0–18 isotopic
SrTiO3 were due to a more serious mistake, [100] tantamount to dividing zero by
zero (Scott, Pirc, Blinc et al. [101]), which gave Kleemann a value of order parameter
exponent beta = 2.0. Unfortunately values of β > 2/3 appear to violate hyperscaling
(Scott [102], Fisher [103]), so Kleemann is simply wrong. It is worth pointing out
that the first clear demonstration that critical exponents near Tc in ferroelectrics were
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Fig. 6.11 a Thermal expansion near Tc in TSCC ferroelectrics (Lashley et al.). The fitted exponent
is−1.51 + / − 0.02, agreeing exactly with the defect model of−3/2 from Sigov et al. This material
is of special interest because under bromination to replace Cl-ions, its Curie temperature goes to
T = 0, a Quantum Critical point, b Phase diagram for TSCC:Br

Table 6.1 Topological defect-dominated exponents near Tc [t = reduced temperature (T-Tc)/Tc]

Exponent Topological defect model Material

Isothermal susceptibility γ 5/2 PMN-PT, BaMnF4
Specific heat α 1.0–1.5 KMnF3a, CsH2PO4

b, BaMnF4
Ultrasonic attenuation η 5/2 BaMnF4
Thermal expansion n −3/2 TSCC
aS. A. Kishaev, G. A. Smolensky, A. K. Tagantsev, Pis’ma Zh. Eksp. Teor. Fiz. 43, 445 (1986)
bE. D. Yakushkin, A. I. Baronov, and L. A. Shuvalov, Pis’ma Zh. Eksp. Teor. Fiz. 33, 27 (1981)
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of extrinsic origin were the data on tri-glycine sulphate (TGS) by Hilczer; she was
able to show that the divergences could be created or eliminated by irradiation [104].

Thus it would appear than in a number of ferroelectrics, unusual “critical” expo-
nents do not arise from fluctuations near Tc, but from defects and pinning effects
that are wholly extrinsic, due to topological defects. PZT remains an unexplained
puzzle, but that may relate to the fact that its local structure is complex, involving
not only none monoclinic phase (Noheda et al. [105]a), but two (Glazer et al., 2014
[105]b).

6.6.4 Pyroelectric Effects

Lane Martin’s group (Illinois, now Berkeley) have elucidated (2013) the effects
on piezoelectricity of stripe domains [106]; this was extended to vertex domain
contributions by the present author (Scott 2014) [107].

6.6.5 Domains Within Domains—Multiferroics

All of the discussions of domain wall dynamics above become far more com-
plex for multiferroics. Such systems exhibit domains within domains and walls
within walls: For recent theory and experiment readers are directed to: (a) Scott,
Salje et al. [108]; (b) Evans, Gregg et al. [109]; (c) Janovec and Privratska [110];
(d) Prague experiments by Anderson et al. [111]. Both ferroelastic domains (twins)
inside ferroelectric domains [109] in lead iron-tantalate-zirconate-titanate (PFTZT,
and ferroelectric nano-domains inside ferroelastic domains (twins) [110] have been
observed in several materials, including BaTiO3 [111].

The switching of P with applied H and of M with applied E is not equivalent or
symmetric (Evans et al.), and this is due to the geometry of one kind of domain being
nestled within another. Figure6.12. Gregg’s group [82] had previously illustrated
this nesting and self-similarity of domains.

6.7 Transport

Domain walls can provide very high electrical conduction in rather insulating mate-
rials. Initially shown by Seidel et al. (Fig. 6.13), [112] this has been measured in
different materials by Kalinin et al. [113], by Noheda et al. [114], and by Paruch
et al. [115], with very recent studies from Lausanne (McGilly, Stolichnov et al.
2014) [116]. A review of work up to 2013 is given by Catalan et al. It has not
yet been determined whether the electrical conductivity in such domain walls is
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Fig. 6.12 Switching of ferroelectric polarization domains with an applied magnetic field
(Evans et al.)

Fig. 6.13 Micrograph
showing electrical
conduction along domain
walls, from Seidel et al.

Shlovskii-type variable hopping with a V1/4 dependence (unlikely at T = 300K),
Mott hopping mechanisms with V1/2 dependence, or not hopping at all, but experi-
ments are underway at Warwick (Alexe et al.) to answer this important question.

6.8 Domain Wall Oscillation

Afinal question to touch on is the oscillation of domain walls. This was first analysed
by Sidorkin [117]; work in 2013 by Pakhmanov, Lukyanchuk et al. [118] extended
Sidorkin’s early work with considerable detail. It appears that oscillations occur far
from Tc at frequencies of order hundreds of GHz (some cm−1), but decrease to ca.



156 J.F. Scott

30 GHz near Tc. In 2014 this question was considered carefully by P B Littlewood
et al. [119], who showed a gap energy of order 30 cm−1; this is in close agreement
with that measured by Banys, Scott et al. in TSCC [120].

6.9 Summary

I have given a brief outline of ways in which topological defects influence ferroelec-
tric dynamics, together with suggestions where further work is merited. Topics not
discussed includeMott transitions in systems such asNdNiO3 nickelates [121], gated
injection of superconductivity in ferroelectric O-18 SrTiO3 [122], and domain wall
behaviour very near Quantum Critical points just above zero Kelvin [123]. These
and other unexplored topics merit the continued effort of the ferroics community.
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Chapter 7
Ferroelectric Domain Walls and their
Intersections in Phase-Field Simulations

J. Hlinka, V. Stepkova, P. Marton and P. Ondrejkovic

Abstract This chapter deals with phenomenological theoretical description of fer-
roelectric domain walls in perovskite ferroelectrics in the framework of Ginzburg-
Landau-Devonshire theory. Its first part focusesmostly on theBloch-like ferroelectric
walls in comparison with the more standard Ising-like domain wall profiles as well
as hypothetical Néel-like domain walls. Its second part is devoted to line defects
that occur at the intersection of ferroelectric domain walls. The overview of the var-
ious concepts and recent studies is illustrated by polarization profiles obtained using
phase-field simulations for the model ferroelectric perovskite crystal BaTiO3.

7.1 Introduction

Ferromagnetic and ferroelectric domain walls are often quoted as well known exam-
ples of topological defects. For example, recent papers suggested to exploit analo-
gies between the ferroelectric domain walls or their intersections and the topologi-
cal defects such as cosmic strings considered in modern cosmological theories [1].
The ferroelectric and ferromagnetic substances are indeed accessible for various
laboratory experiments and they are rather common materials in technology and
materials science since several decades. Consequently, the accumulated understand-
ing the problem of domain walls is enormous. In particular, systematic approach to
the classification of their symmetry is available for example in the Volume D of the
International Tables of Crystallography [2], and a broad coverage of the ferroelectric
domain wall research can be found for example within the Tagantsev, Cross and
Fousek’s monograph devoted to experimental and theoretical studies of domains in
ferroelectric crystals and thin films [3].

Here we shall focus on phenomenological modeling of ferroelectric domain wall
structures in the simplest ferroelectric perovskite crystals. Among others, perovskite
ferroelectrics are the key materials in the current ferroelectric epitaxial thin film
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research and considerable effort has been already put in the investigations of their
structure and transport properties by the forefront microscopy techniques such as
high-resolution electron microscopy or the atomic force microscopy techniques.

From the structural point of view, one of the most intriguing results of the past
decade is the prediction of so-called Bloch-like domain walls in BaTiO3 and PbTiO3

ferroelectrics. These predictionswere based onGinzburg-Landau-Devonshire (GLD)
theory [4, 5], but also ab-initio calculations [6, 7] as well as ab-initio based atomistic
modeling [7]. These results are now well understood and widely accepted, but as
far as we know, the experimental evidence is still missing. In this situation, it seems
worth reviewing the progress in theoretical studies of this problem. Perhaps even
more attention has been recently paid to the charged domain walls and electronic
properties of ferroelectric domain walls in general. These latter subjects have been
covered for example in the review paper by Catalan et al. [8] and so these subjects
are not included here.

It is worth stressing that the extremely narrow thickness of ferroelectric walls is
an advantage for microscopic modeling and it definitely promises to achieve smaller
domain sizes needed for miniaturization of future devices. On the other hand, this
narrow thickness is also the most essential bottleneck issue for probing their struc-
ture experimentally. In this situation, phenomenological theories allowing to predict
domainwalls properties are of a great importance. Themodeling of domainwall prop-
erties within the framework of the phenomenological GLD theory appears nowadays
as one of the most efficient tools for guiding the research in this area.

The aim of this chapter is to review the current state of the understanding domain
boundaries in BaTiO3 and similar defects of polarization fields in perovskite ferro-
electrics from the perspective of the GLD theory. Since the phase-field modeling
and the GLD theory are nowadays standard tools, we decided to avoid the techni-
cal details of the phase-field methods and refer the reader towards the information
provided e.g. in [9] and references therein and/or to the details given directly in the
original research publications.

The chapter is organized as follows. In Sect. 7.2 we introduce the concept of fer-
roelectric Bloch-like and Néel-like domain walls and possible definitions of these
domain walls are briefly discussed. Section7.3 is devoted to the phase transition
between Bloch-like and Ising-like domain walls and manifestation of this transition
in phase-field simulations. General comments on Ginzburg-Landau model used for
domain wall studies are given in Sect. 7.4. The importance of crystallographic orien-
tation of the domain walls is addressed in Sect. 7.5. Section7.6 contains a review of
possible issues related to ferroelastic domain walls in ferroelectric perovskites. Line
defects, occurring at the intersection of domain walls, are considered in Sect. 7.7.
Last section before general conclusions deals with polarization switching of closed-
circuit domain states in ferroelectric nanorods and with processes of field-induced
domain wall transformations.
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7.2 Bloch Versus Ising Versus Néel-like Domain Wall

Distinction between Bloch-like, Ising-like and Néel-like domain walls is usually
based on the comparisons with idealized profiles of boundaries separating domain
states with opposite polarization, i.e. 180-degree domainwalls. Such idealized exam-
ples assume a 180-degree domain wall parallel to the spontaneous polarization of
the adjacent domains. This is the most natural domain wall orientation, because the
spatially averaged charge density at the domainwall vanishes (i.e. such a domainwall
is electrically “neutral”) and a huge extra electrostatic energy penalty for uncompen-
sated charge density is avoided.

The idealized polarization profiles across the Bloch, Ising and Néel ferroelectric
domain walls are sketched in Fig. 7.1. The wall in which the polarization reversal is
achieved by polarization rotation within the plane of the domain wall is designated as
the Blochwall. This domainwall is chiral and it exists in two enantiomorphic variants
depicted in panels (a) and (b). In contrast, within the idealized Ising wall shown in
panel (c) the polarization remains strictly parallel or antiparallel to the spontaneous
polarization of the adjacent domains. Finally, the panel (d) shows the idealized Néel
wall in which the polarization reversal is achieved by polarization rotation within the
plane containing both the domain wall normal and the spontaneous polarization. The
ideal Néel wall also exists in two variants, because the rotation can be accomplished
by a clockwise and anticlockwise manner, but this wall is not chiral, as it has a mirror
symmetry.

The structure of neutral ferroelectric domain walls can be conveniently described
with the help of three auxiliary orthogonal unit vectors depicted in the bottom part
of Fig. 7.1b. The domain wall side vector s is normal to the domain wall and its sense
allows to distinguish opposite sides of the wall (by definition, the vector points from
the first to the second domain). The polarization reversal vector r defines the direction
of the polarization switched on by the translation of the wall along its normal s. In
case of neutral ferroelectric domain walls, r and s are always perpendicular and, in
combination with their cross-product t = r × s, they form a right-handed orthogonal
set {r,s,t}.

Fig. 7.1 Polarization
profiles of idealized Bloch
(a, b), Ising (c) and Néel-like
(d) domain walls. The inset
in the bottom part of
(b) indicates the auxiliary
orthogonal set of unit vectors
{r,s,t}, allowing to define
convenient
symmetry-adapted
coordinates described and
utilized in the text

(c)
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Within the phenomenological framework of Landau theory, domain walls are
identified with specific trajectories in the order parameter space. It is practical to
describe these trajectories in terms of polarization components parallel to the {r,s,t}
directions. The idealized Bloch wall can be described as polarization rotation in the
Pr − Pt plane, Néel wall is polarization rotation in the Pr − Ps plane, and idealized
Ising wall corresponds to a path restricted to the one-dimensional Pr subspace only.

Strictly speaking, none of these idealized forms of electrically neutral 180-degree
domain walls can be realized in real ferroelectric perovskites. Typically, Pt and Ps

components are drastically suppressedby electrostriction and electrostatic interaction
driven mechanisms, respectively. Thus, Pr components are prevailing and the 180-
degree ferroelectric domain walls appear to be closest to the Ising profile of Fig. 7.1c.
We shall discuss here the exceptional cases inwhich domainwall profiles do resemble
Bloch-like solution, but it is worth stressing that the ideal circular trajectories can
never be realized in perovskites since there will be always some perturbation by
the crystalline anisotropy. In some cases, the domain wall structure has a mirror
symmetry plane perpendicular to t and then Pt will vanish identically. On the other
hand, strictly speaking, the neutral 180-degree domain wall cannot have a mirror
symmetry plane perpendicular to s and so one can always expect some nonzero Ps

close to the neutral 180-degree domain wall. This actually implies that the ideal Ising
wall restricted to the one-dimensional Pr subspace is always just an approximation
to the real profile. As far as we know, all recent realistic microscopic calculations
of the 180-domain walls in perovskites indeed reveal some small Ps component in
agreement with this basic symmetry argument [10, 11].

In order to emphasize the difference between the ideal, single-component Ising
wall considered above, and the more realistic domain wall determined for example
from microscopic calculations, some authors described the latter one as a “mixed
Bloch-Ising-Néel” 180-domain wall [10]. In many cases, it is instructive to analyze
the departures from the ideal Ising wall by exploring the tilt of the polarization vector
out of the r direction and the variation of this tilt across the domain wall profile. The
maximal amplitudes of these tilt angles towards t and s directions, denoted as Bloch
angle φB and Néel angle φN, respectively, are then useful quantitative parameters for
detailed description of the non-ideal domain walls. Clearly, both angles vanish for
the ideal Ising wall while φB = π/2, φN = 0 for ideal Bloch wall and φN = π/2,
φB = 0 for ideal Néel wall.

However, we noticed that this designation “mixed Bloch-Ising-Néel” 180-domain
wall was also used in cases where the Bloch or Néel angles are few degrees or less
and when the domain wall visibly does have a natural center where the polarization
vector passes through zero. This could be misleading, because in this sense, all real
domain walls have a mixed character. In the present work, our classification of the
180-domain walls is based on a more fundamental difference between ideal Bloch
and Ising and Néel walls—in particular, their degeneracy and chirality.

More precisely, as long as there exists only a single, non-degenerate domain-wall
state (domain-wall profile) for the selected boundary conditions (adjacent domain
states and vector s), we shall simply consider such 180-domain wall as Ising-like
domain wall, irrespectively on Bloch or Néel angles and in agreement with the
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nomenclature of our earlier works [4, 5, 12, 13]. In this way, the non-degenerate
domain walls are sharply distinguished from another class of domain walls discussed
e.g. in [4, 12, 14], where a pair of degenerate, symmetry-related solutions exists
for fixed boundary conditions. If the two symmetry-related profiles for the fixed
boundary conditions form an enantiomorphic pair analogical to those of Fig. 7.1a
and b, it is natural to denote these walls as Bloch-like walls. In these cases, the
modulus of local polarization remains finite within the domain wall, and although
is far from being constant, it is still possible to describe the situation in terms of
polarization rotation. Obviously, one can analogically anticipate existence of achiral
degenerate Néel-like ferroelectric 180-domain walls, but the existence of these walls
in perovskite ferroelectrics was not analyzed yet and we shall thus not develop this
idea here either.

7.3 Bloch-Ising Phase Transition

The above stated fundamental difference between Bloch-like and Ising-like domain
walls implies possibility of a phase transition between these two cases. The con-
ditions for the existence of this transition are obviously more restrictive than the
conditions for the existence of ferroelecric Bloch-like domain walls themselves,
nevertheless, there have been already few hints about when such a phase transi-
tion might be expected to occur. Probably the first material-specific prediction of
Bloch-Ising domain wall transition has been reported for 180-degree domain wall of
rhombohedral BaTiO3 with s ‖ [2̄11] and r ‖ [111] [13]. The GLD modeling pre-
dicts for this domain wall rather robust Bloch character, which is maintained in the
entire temperature stability range of the rhombohedral ferroelectric phase. Therefore,
in order to induce the Bloch-Ising domain wall transition, an external pressure of
uniaxial symmetry was assumed. The obtained profiles of the Pr and Pt components
across the domain wall at T = 50K at different in-plane compressive pressure levels
are shown in Fig. 7.2. One can see sizable value of the Pt polarization component at
the ambient pressure, as well as its pronounced suppression upon approaching the

Fig. 7.2 Bloch-Ising
domain wall transition in
rhombohedral BaTiO3 from
simulations of [13]. The
GLD model parameters are
taken for 50K. The inset
indicates the orientation of
the applied pressure of
uniaxial symmetry
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Fig. 7.3 Order parameter of
the Bloch-Ising domain wall
transition in rhombohedral
BaTiO3. Order parameter is
the maximum of the Pt
component from the domain
wall profiles simulated in
[13]. Some of them are also
shown in Fig. 7.2
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critical pressure of about 1.9GPa. Although this level of stress is considerably high,
it almost does not change the magnitude of the spontaneous polarization within the
domain and it is still well comparable with stresses readily achievable in epitaxial
ferroelectric films.

Within the phase-field simulations, this stress-induced transition appears as a
second-order phase transition. As an order parameter, one can take the maximum
value of the Pt component. Indeed, the transition is associated with appearance of
the nonzero Pt component which is strictly absent in the Ising phase. Its pressure
dependence is shown in Fig. 7.3. One can clearly see that this component vanishes
continuously at the critical pressure value.

This transition can be also considered as a ferroelectric phase transition, with new
component of polarization emergingmostly within the domain wall. The transition is
therefore associatedwith divergence of the corresponding component of the dielectric
constant. This divergence has been also studied in phase-field simulations [15].

The new component of polarization breaks the m t mirror symmetry present in the
Ising domain wall. In the center of the Bloch wall, the polarization vector is parallel
or antiparallel to the vector t. If {r,s,t} is chosen consistently to the above introduced
convention (∂ Pr/∂s < 0 and t = r × s), then positive value of the Pt component of
the polarization within the center of the wall correspond to the right-handed variant
of the domain wall (the sense of the winding resemble to the usual right-handed
screw as in the ideal case shown in Fig. 7.1a) and vice versa. The line separating the
left-handed and right-handed regions plays the role of a ferroelectric domain wall
in the Bloch-Ising phase transition [16]. Summarizing, the signatures of the second-
order phase transition clearly justify the essential difference between Bloch-like and
Ising-like profiles.

After the phase-field modeling of the Bloch-Ising phase transition in BaTiO3

[13, 15], a similar Bloch-Ising phase transition has been also searched in other
materials. For example, the work of [14] explored possibilities of {211} oriented
Bloch-Isingdomainwall transition in rhombohedral PZT.Most remarkably, atomistic
molecular dynamics simulations have revealed a Bloch-like 180-degree domain wall
in tetragonal PbTiO3. In this last case, the transition could be reached at ambient
pressure, at around 330K [7]. From experimental point of view, the temperature-
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driven transition is obviously much more accessible. Hopefully, these findings will
encourage experimental efforts devoted to the detection of the Bloch-Ising phase
transition.

7.4 Predictive Value of Phase-Field Simulations

Let us stress that here and other places in this chapter, we often give quite precise
numbers for simulation conditions, in order to facilitate follow-up studies or com-
parisons among various results. But the precision of these numbers are only relevant
with respect to the selected model. When comparing to the actual experimental con-
ditions, the numerical values should be considered only as indicative ones, since
the model potential and Landau theory itself rely on important approximations and
there is obviously also a large uncertainty in the model parameters. For example, this
remark concerns the above predicted 1.9GPa value of the critical pressure needed
for achieving the Bloch-Ising phase transition in BaTiO3.

For the same reason (allowing comparisons) we tried to avoid updating our basic
GLD model parameters unless it was useful for demonstrating some dependence.
In 2009, however, we have used phase-field simulations for analysis of piezoelec-
tric properties of multidomain BaTiO3, and we have realized [17] that there was an
overlooked confusion about a factor of 2 in the papers we used as a source of elec-
trostriction tensor component q1212. Therefore, we have updated the value of q1212

but otherwise we have kept the same elastic constants as well as the same stress-free
Landau potential as before. Here in this chapter we use the results obtained either
with the former set of parameters model A (the basic set of parameters with the
former q1212) or the model B (the basic set of parameters with the updated q1212).
As this change does have a definite impact on some domain wall properties, the list
of references to our earlier phase-field results obtained with the model A and B are
listed in Table7.1. In this chapter, we of course use the better tuned model B, unless
stated differently.

Table 7.1 Usage of alternative sets of GLDmodel parameters in original papers devoted to domain
wall properties of BaTiO3

Model q1212 References

A 0.79 × 109 JmC−2 [4, 6, 9, 12, 18–20]

B 1.57 × 109 JmC−2 [13, 15, 17, 21–24]

Parameter sets denoted as model A and B have same stress-free Landau expansion and elastic
tensors, the only difference is the value of the q1212 electrostriction tensor component, updated in
the model B
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7.5 180-Degree Domain Walls with Different
Crystallographic Orientation

In general, properties of domain walls depend not only on the adjacent domain states,
but also on the crystallographic orientationof the domainwall. This dependence could
be quite pronounced even in case of neutral 180-degree domain walls. For example,
we can keep the same rhombohedral domain states with polarization parallel or
antiparallel to the r ‖ 〈111〉 direction as in Fig. 7.2 and let varying the orientation of
the domain wall normal s in the plane perpendicular to r.

Lets consider two cases, with s ‖ 〈11̄0〉 and s ‖ 〈21̄1̄〉, depicted in Fig. 7.4, both
having s · r = 0. Typical domain-wall profiles obtained for such domain-wall orien-
tations in rhombohedral BaTiO3 are shown in Figs. 7.5 and 7.6. These profiles are
calculated with the same conditions, in particular, same GLD potential as in [4, 6,
9, 12, 18–20], i.e. model A and the same temperature (T = 118K). At a first sight,
there is a clear difference between profiles of Figs. 7.5a and 7.6a, corresponding to
the domain wall orientations shown in Fig. 7.4a and b, respectively. Note that the
Bloch domain wall profiles are highly asymmetric in Fig. 7.5a and b, while those of
in Fig. 7.6a and b are symmetric. Moreover, one can see that the Pr component of the
Bloch-like profiles shown in Fig. 7.5a actually seems to drop down in two steps; in
other words, the domain wall appears to be composed of two nearby domain walls
in a small distance of the order of 2–3nm. This picture is a perfectly fair description
of the situation, the Bloch-like walls we observe can be indeed understood as bound
states of more elementary domain walls. For example, phase-field simulations indi-
cate that a sufficiently large external electric field with nonzero components along t
is capable to split such a domain wall in two well separated domain walls, which then
define a few nm thick slab that could be perfectly considered as an independent inter-
mediate ferroelectric domain [12]. On the top of it, the s ‖ 〈11̄0〉 domain orientation
allows also Ising-like singlet profile shown in Fig. 7.5c, which has somewhat higher
energy, while no coexisting Ising-like domainwall solutionswere found for s ‖ 〈11̄0〉
domain orientation, in agreement with second-order nature of the Bloch-Ising phase
transition discussed in the Sect. 7.3.

There is even more important difference between the s ‖ 〈11̄0〉 and s ‖ 〈21̄1̄〉 180-
degree domain walls if the phase-field simulation is made with model parameter set

x

z
y

(a) (b)

Fig. 7.4 Schematic illustration of possible periodic arrays of electrically neutral 180-degree ferro-
electric domain walls in rhombohedral phase of BaTiO3. White and grey areas correspond to the
domains with opposite polarization, edges of the cubes are parallel to the pseudocubic axes, the
illustrated cases (a) and (b) correspond to s ‖ 〈11̄0〉 and s ‖ 〈21̄1̄〉, respectively
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Fig. 7.5 Domain-wall profiles obtained for antiparallel ferroelectric walls with s ‖ 〈11̄0〉 orien-
tations. Calculation was carried out for rhombohedral BaTiO3 with GLD model of [18]. Panels
(a) and (b) show left-handed and right-handed Bloch walls, corresponding to the lowest energy
domain wall profile. Last panel (c) shows Ising-like domain wall with a metastable (locally stable
but higher-energy) singlet profile with a pronounced lateral transverse component Pt , sometimes
denoted as a bichiral domain wall
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Fig. 7.6 Domain-wall profiles obtained for antiparallel ferroelectric walls with s ‖ 〈21̄1̄〉 orien-
tation. Calculations were carried out for rhombohedral BaTiO3 with GLD model of [18]. Panels
(a) and (b) show left-handed and right-handed Bloch walls, corresponding to the lowest energy
domain wall profile
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B (the one with updated q1212 electrostriction coefficient). In this case, the s ‖ 〈21̄1̄〉
domain walls are almost identical with those shown in Fig. 7.6a and b, while in the
case of the s ‖ 〈11̄0〉 domain wall, no stable or metastable Bloch-like profiles were
found, (here only the Ising-like solution, similar to Fig. 7.5c, exists).

These phase-field simulations results are in full agreement with an earlier reported
independent study of [25], where the same domain wall was explored in the frame-
work of the model B as well as in a more complex model involving charge com-
pensation and flexoelectric coupling. In other words, the contemporary GLD theory
(with the experimentally more relevant value of the q1212) suggests that the character
of the antiparallel domain walls of rhombohedral BaTiO3 would change their char-
acter depending on the domain wall normal: the s ‖ 〈11̄0〉 is Ising-like, s ‖ 〈21̄1̄〉 is
Bloch-like.

The Ising-like profile of Fig. 7.5c is interesting also as an example of domain
wall profile with a sizable Bloch angle (φB

.= 40◦). This domain wall structure has a
chiral symmetry by itself, but reversing sign of Pt would generate an unstable profile
with a higher energy. Also, although the profile has a finite value of the Bloch angle,
there is no net polarization rotation accumulated when passing across this domain
wall. Indeed both Pt and Pr components are odd functions with a common center, so
that the polarization rotates in a way that the same angle winded on the one side of
the domain wall is un-winded again on the other side. For this reason, such domain
wall profiles are sometime called bichiral [26]. In comparison, Pt is strictly zero for
s ‖ 〈21̄1̄〉 rhombohedral 180-degree walls (for example, see 2.4GPa domain wall
profile in Fig. 7.2.). This completely vanishing Pt component is consequence of the
fact that in this case the m t plane coincides with a symmetry plane of the parent
phase structure. For other orientations between s ‖ 〈11̄0〉 and s ‖ 〈21̄1̄〉, the nonzero
Pt component will reappear. In this sense, the bichiral profile of Pt is a rather common
situation.

The simulations in Fig. 7.6a, b are also showing a weak, but after magnification
of the scale quite obvious nonzero Ps component. Such nonzero Ps component is
often very small but it is allowed by the common symmetry of all neutral domain
walls (as argued in Sect. 7.2). In the case of the wall profile shown in Fig. 7.5a
and b, this Ps component does not come out from our phase-field simulations. The
reason here is that the adopted GLD functional was not general enough to include
terms that would induce the weak Ps component in this domain wall geometry. It is
obvious that, for example, the explicit flexoelectric coupling would induce nonzero
contributions to the Ps component for both domain wall orientations. In fact, very
similar arguments were discussed in detail in [27], where a weak Ps component has
been demonstrated to appear in all arbitrarily oriented neutral antiparallel domain
walls of the tetragonal ferroelectric phase (unless the domain-wall normal happens
to coincide with a symmetry axis of the parent phase), but only if the standard GLD
expansion is complemented by the flexoelectric coupling.
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7.6 Electrically Neutral Ferroelastic Walls

Degenerate chiral domain-wall profiles are not restricted to 180-degree ferroelectric
domain walls. In fact, our interest in phase-field simulations of ferroelectric domain
walls in BaTiO3 has been largelymotivated by the fact that BaTiO3 perovskite crystal
allows a rich collection of distinct types of ferroelectricwalls including those between
domains with nonequal spontaneous strain tensor orientation with respect to the local
parent pseudocubic lattice coordinates (ferroelastic domain walls). Here we have
in mind the electrically neutral and mechanically compatible ferroelectric domain
walls of the rhombohedral, orthorhombic and tetragonal phases of bulk single crystal.
The temperature range of these ferroelectric phases and the temperature dependence
of the Landau energy of the stress-free BaTiO3 single crystal as calculated from
the GLD model are shown in Fig. 7.7. It is well known that with respect to the
parent paraelectric cubic phase, there are eight possible inequivalent rhombohedral
ferroelectric domains, twelve orthorhombic ferroelectric domains and six tetragonal
ferroelectric domains. Domain walls are intuitively understood as objects defining
the interfaces between different domains. As a rule, they have rather low curvature
at the atomic scale and so it is natural to study planar domain walls first. Type of
the planar domain wall is most often specified by the domain-wall normal s and an
ordered pair of domain states (e.g. assuming that s points from the first to the second
domain state). We have previously denoted different types (classes) of such walls by
a letter specifying the phase (R/O/T), the approximate value of the angle (in degrees)
by which the polarization rotates when passing from one domain to the other, and by
the orientation of the domain-wall normal (in pseudocubic setting)—for example,
O 120{110}.

Most often, the domain walls naturally try to reach orientations, in which they
become electrically neutral and mechanically compatible walls. For such domain
walls, right-handed orthogonal set {r,s,t} can be defined in the same way as above.
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Fig. 7.7 Temperature dependence of the absolute minimum of the Landau-energy density for the
stress-free BaTiO3 single crystal as calculated from the GLD theory (same for parameter sets of
model A and B). Insets show schematically the orientation of polarizatation vector of the represen-
tative domain state with respect to the unit cell of the cubic reference lattice
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Fig. 7.8 Nonequivalent
orientations of domain walls
encountered in a systematic
survey of orientations of
electrically neutral and
mechanically compatible
ferroelastic domain walls of
three ferroelectric phases of
BaTiO3

{100} {110}

{211} S-wall

Previously, we have closely analyzed all types of electrically neutral and mechan-
ically compatible ferroelastic domain walls of BaTiO3, and, in addition, we have
also analyzed electrically neutral non-ferroelastic (180-degree) ferroelectric domain
walls for few selected, high-symmetry orientations. Encountered domain wall orien-
tations in this survey are those shown in Fig. 7.8. Note that two of them, {100} and
{110}, coincide with symmetry planes of parent cubic phase and {211} plays a special
role as it contains both three-fold and two-fold symmetry axis of the parent cubic
phase. Finally, one of the compatible ferroelastic domain wall types in orthorhombic
phase requires consideration of a noncrystallographic orientation (so called S-wall)
with the domain-wall vector s depending on numerical values of spontaneous strain
tensor components at given temperature.

In particular, we have calculated numerically the profiles of these walls as varia-
tional solutions of the GLD functional by imposing the boundary condition ensuring
that very far from the domain wall the polarization and strain coincide with the
selected single domain spontaneous values and that there are no charges (divP = 0).

Resulting domain-wall profiles can be used to evaluate various basic domain wall
properties, such as their domain wall thickness or planar energy densities. Most
condensed quantitative information about the ferroelectric domain wall structure
is the associated path in the primary order-parameter space (space of polarization).
Such polarization paths are shown in Fig. 7.9. Only Pr and Pt components are shown,
since Ps is constant under divP = 0 condition. All the calculations are made with
the same potential, but in order to access different phases, we obviously selected
Landau potential parameters within the appropriate phase. Data shown in Fig.7.9
correspond to the model A at 298, 208, and 118K, as in [4].

Themethod of the calculation of polarization profiles can be formulated as search-
ing for the least action trajectories in an effective, s-dependent potential similar to
Landau potential, that can be called Euler-Lagrange potential [4, 18]. The equipo-
tential lines of the associated Euler-Lagrange potentials within the Ps = const order
parameter plane are also shown.

It is natural to identify the Bloch-like domain walls as those where two equiva-
lent trajectories exist. In Fig. 7.9, Bloch-like solutions were found as lowest energy
paths in 5 out of 12 cases (Bloch-like domain walls in Fig. 7.9 are those denoted
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Fig. 7.9 Domainwall paths andEuler-Lagrange potentials for electrically neutral andmechanically
compatible domainwalls of three ferroelectric phases of BaTiO3. Results are obtained for parameter
sets of the model A. All panels have same axes shown in the left bottom corner of the figure.
Equipotential contours are plotted at each 0.5 MJ/m3. All domain wall paths are lowest energy
solutions with prescribed boundary conditions perfectly compensated bound charge. In case of
Bloch-like domain walls, two energetically equivalent paths exist. They are indicated by the full
line and the dashed line, respectively

as O180{100}, O120{110}, R180{110}, R180{210}, R109{100}). It is clear from
Fig. 7.9, that the Bloch-like domain walls are favored when there is a symmetric
Euler-Lagrange potential landscape and additional minima in the potential. Never-
theless, the influence of the model parameters is quite subtle. For example, passing
from themodel A to themodel B is not changing the stress-free Landau potential, nor
the data shown in Fig. 7.7, but the Euler-Lagrange potentials do show a small change
and this small change can easily tip between Bloch and Ising-like profiles, as we
have seen it above. This is also apparent from the comparison of Figs. 7.9 and 7.10,
which show equivalent calculations but with the potential A and B, respectively.

7.7 Domain Wall Intersections

Properties of isolated domains and permissible domain walls are certainly the most
basic ingredients for understanding the domain-structure related phenomena. One
of the next possible steps in domain wall studies is to study line defects formed by
domain wall intersections or by domain wall junctions.
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Fig. 7.10 Same as in Fig. 7.9, but calculated for parameter sets of model B (updated value of the
q1212 parameter)

They are frequently encountered in experiments as well as in phase-field simula-
tions, but so far, relatively little attention has been payed to them. Typically, domain
wall intersections or domain wall junctions are formed in phase-field simulations
started from random noise polarization configuration, as in the examples shown in
Fig. 7.11.

Perhaps the most common line defects of this kind appear at the intersections of
ferroelastic and non-ferroelastic domain walls. In the tetragonal phase, such defect
lines are located at the junction of two 180-degree domain walls and two 90-degree
domainwalls.Many of such junctions are present for example in the domain structure
shown in the left panel of Fig. 7.11. In this case, two adjacent 180-degree domain
walls reach the junction at the (nominally) right angle, while the two ferroelas-
tic domain walls are located at a common plane that bisects this right angle. This
arrangement forms the principal motif of the characteristic “herringbone” domain
pattern structures of tetragonal ferroelectrics like PbTiO3 or BaTiO3. Let us stress
that such configuration allows to merge four different ferroelectric domain states,
that nevertheless belong to a pair of ferroelastic domain states only. This results in a
fully mechanically and electrostatically compatible state.

On the other hand, intersections of ferroelastic domainwalls force awhole quadru-
plet of ferroelastic domain states to coexist at a single line. Detailed analysis of [28]
shows that in general, within the rhombohedral, orthorhombic and tetragonal domain
species of BaTiO3-like ferroelectrics, formation of such line defects actually always
induces additional stresses. Nevertheless, the violation of mechanically compatibil-
ity is energetically less prohibitive in some particular cases within the orthorhombic
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Fig. 7.11 Phase-field simulations of ferroelectric domain structure using the GLD model A. Dif-
ferent colors indicate individual domains with polarization direction indicated by thick arrows.
Left panel shows simulation within tetragonal phase at 298K, Right panel shows simulation in
orthorhombic phase at 208K. Data displayed in the pictures show domain structure as naturally
evolved from the in-plane but random initial polarization distribution and under periodic mechan-
ically clamped boundary conditions. Edges of the 256 × 256 discrete simulation field are parallel
to the cubic directions of the parent phase, spatial step is 1nm. For simplicity, polarization was
restricted to in-plane components only. Further details related to these simulations are described
in [19]

phases [28] and also in phases with small spontaneous stresses. Indeed, the inter-
sections of orthorhombic ferroelastic domain walls have been sometimes observed
in experiments (see references quoted in [28]) as well as in phase-field simulations
[19] (as, for example, in the right part of Fig. 7.11). At the same time, we are not
aware of convincing examples of ferroelastic domain wall intersections in tetragonal
ferroelectric perovskites—there the elastic incompatibility is probably too limiting
condition, even though the domain structures with such incompatible ferroelastic
domain wall intersections could perhaps be one of the key elements responsible
for enhanced piezoelectric activity of domain-engineered BaTiO3 single crystals
[17, 21, 29].

Having these conditions in mind, we were looking for situations under which the
mechanically incompatible intersections of ferroelastic domain walls could occur in
BaTiO3 at ambient temperature. An interesting conceptual possibility exploiting the
impact of ferroelectric-paraelectric interfaces in a BaTiO3-SrTiO3 nanocomposite
has been reported in [23, 24]. A suitable nanocomposite geometry naturally favor-
ing an intersection of two ferroelastic domain walls within BaTiO3 is depicted in
Fig. 7.12a. Ferroelectric BaTiO3 is assumed to have a shape of a nanosized rod, which
is surrounded in a suitable dielectric material which provides insulating boundary
conditions and mechanical clamping. For example, this could be achieved if BaTiO3

nanorods are epitaxially embedded in a thin film of SrTiO3. Mechanical clamping in
this geometry is favoring a low-strain rhombohedral domain state of over the tetrag-
onal one, and if the axis of the nanorod is along the fourfold axis of the cubic parent
phase, the spontaneous polarization tends to form flux-closure arrangements with
polarization being tangential to theBaTiO3-SrTiO3 interfaces. For a sufficiently small
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Fig. 7.12 Schema of the BaTiO3-SrTiO3 heterostructure designed for stabilization of vortex-like
ferroelectric nanodomain pattern: (a) Brush-like arrangement of the BaTiO3 nanorods embedded
epitaxially in the 〈100〉 oriented SrTiO3 epitaxial film; (b) Energetically favorable location of two
intersecting ferroelastic domain walls in the natural domain state of 40nm nanorod, as obtained in
phase-field simulations [23]. Pseudocubic axes are shown in the bottom of each panel
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Fig. 7.13 Schema summarizing different spontaneously formed nanodomain arrangements in 40-
nm diameter BaTiO3 nanorods embedded in SrTiO3 matrix as obtained from phase-field simula-
tions. All images correspond to a top view of the structure displayed in Fig. 7.12. Relaxation started
from a completely random initial polarization state systematically leads to one of the configurations
depicted in the bottom part of the figure or equivalent ones. All final states can be described as
rhombohedral domain structures. The in-plane components are always arranged in a flux-closure
(vortex) manner, either clockwise (not shown) or anticlockwise, and the z-components of polar-
ization arranged in up-down-up-down sequence (a), up-up-down-down sequence (b), or all in the
same direction (c). In principle, a more complex higher energy state with six domains (d) could
also occur. Images were prepared using data from [23, 24]

diameter of the nanorod (of the order of 20nm), the optimum configuration is a state
with two intersecting ferroelastic domain walls arranged as shown in Fig. 7.12b. The
whole systemwas thoroughly investigated by phase-field simulations [23, 24].When
simulations are started from random polarization, there are several possible final
states encountered. Usually, domain walls do have the geometry of Fig. 7.12b, but
realized domain states would have one of the arrangements shown in the Fig. 7.13a-c
or equivalent ones [23, 24].

Let us stress that all domains there have nonzero out-of-plane polarization com-
ponents which is indicated in Fig. 7.13 by the enlarged or decreased size of the
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polarization arrow (suggesting viewing in a perspective). Consequently, these nan-
odomain states contain different kinds of ferroelastic domains. For example, the
asymmetric domain structure of Fig. 7.13b contains 71-degree wall perpendicular to
the y-axis and 109-degree wall perpendicular to the to x-axis, while there are only
109-degree walls in the S4(4̄) symmetry domain structure shown in Fig. 7.13c.

7.8 Polarization Switching Mediated by Bloch Wall

The net average polarizationwithin an individual domain quadruplet state as depicted
in Fig. 7.13 is either close to zero (Fig. 7.13a, b) or it is directed along the z-axis. The
quadruple domain state with zero average polarization (Fig. 7.13a, b) can be poled
by z-axis bias electric field into the Fig. 7.13c state. This electric field poling process
can be also studied by phase-field simulations. A typical hysteresis loop as obtained
from phase-field simulations of [23] is shown in Fig. 7.14.

The remanent average polarization 〈Pz〉 is comparable with bulk spontaneous
values. Smooth temperature dependence of 〈Pz〉 shown in Fig. 7.15a confirms that
domain quadruplet state is really robust arrangement and stable over the temperature
interval of about 400K. The magnitude of the in-plane polarization can be conve-
niently characterized by electric toroidal moment gN [31, 32]. This quantity has a
similar temperature dependence as 〈Pz〉, also with no additional anomaly in the entire
temperature range of the ferroelectric phase (Fig. 7.15).

Interestingly, the virgin switching process (starting at the domain quadruplet state
of Fig. 7.13b, with zero net polarization) proceeds through the transformation of a
109-degree Ising-like wall into a Bloch-like wall. With increasing electric field this
Bloch-like wall then disintegrates into a pair of 71-degree Ising-like domain walls.
This process is illustrated inFig. 7.16. Figure7.16a shows the initial statewith zeronet
polarization, identical to the state shown in Fig. 7.13b. Bottompanel shows Pr, Ps and
Pt polarization components traced along a trajectory crossing the 109-degree domain
wall (the trajectory being indicated in the top panel). The Pt component is small and

Fig. 7.14 Pz versus Ez
hysteresis loop from
simulations of switching
cycle driven by electric field
applied along the z-direction
to a 20-nm BaTiO3 nanorod
at room temperature.
Evolution of the domain
structure is described in [23]
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Fig. 7.15 Temperature dependence of the order parameters in the (a) non-polarized or anti-polar
(up-up-down-down) and (b) polarized (up-up-up-up) states of quadruplet domain configurations
within the 40nm BaTiO3 nanorod
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Fig. 7.16 Splitting of the domain wall in a virgin, macroscopical non-polar state of a clamped
ferroelectric nanorod by the out-of-plane oriented bias electric field. The initial state (a) at
E = 0MV/m contains two intersecting Ising-like domain walls, while in the state (b) at E =
2.5MV/m, one of them is split into two 71-degree domain walls. This polarization profile could be
also considered as an unstable Bloch-like 109-degree domain wall

passes through zero at the domainwall center.On theother hand, applied external field
(2.5 MV/m) induces a new polarization component within the 109-degree domain
wall. ResultingBloch-like domainwall broadens anddecomposes in two independent
71-degree domainwalls (Fig. 7.16b). At about 5MV/m, the additional curved domain
wall vanishes at the surface and the poled domain structure looks like the one of



7 Ferroelectric Domain Walls and their Intersections in Phase-Field Simulations 179

Fig. 7.13c. In the subsequent switching cycles, the switching of the Pz component
starts from the border and does not influence the in-plane vortex structure [23].

7.9 Conclusions

Topological defects of the spontaneous polarization field, such as ferroelectric
domain walls, their junctions, intersections etc., are interesting objects that could
be manipulated by electric fields, stresses as well as by built-in interface effects
at macroscopic or nanoscopic scales. Many of these topological defects are highly
mobile and can be responsible even for macroscopic physical properties of multido-
main materials. So far, phase-field simulations based on the GLD theory proved to
be a very efficient for studying their structure and properties.

Recently, it has been argued that certain domain walls in ferroelectric crystals
with a cubic parent phase may have a Bloch-like character, i.e., the polarization
varies smoothly across the domain wall and remains finite within the domain wall.
In real situations encountered so far, the modulus of the local polarization is far
from being constant, but it is still instructive to describe the situation in terms of
polarization rotation. In this chapterwehavemostly focusedon this subject.However,
the experimental evidence of this polarization rotation, typically confined within
1–2nm lengthscale, is currently the most challenging task in the field.
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Chapter 8
Topological Defects in Ferroic Materials

Anna N. Morozovska, Eugene A. Eliseev and Sergei V. Kalinin

Abstract Using Landau–Ginzburg–Devonshire theory we explore unusual
electronic, structural and polar properties of the topological defects inherent in fer-
roics, such as ferroelectric and ferroelastic domain walls, which can have rich and
tunable internal structure. Also we underline that the existence of 2D defects in ferro-
electrics is similar to the cross-tie defects in the ferromagnetic Bloch domain walls.
The seeding for the modulated phase can be a topological defect, such as a structural
domain wall.

8.1 Introduction

Materials with multiple coupled order parameters have emerged as one of the pri-
ority directions in condensed matter physics [1, 2] due to both intriguing physical
behaviours and a broad variety of novel physical applications they enable. The unique
physical properties of multiferroics originated from the complex interactions between
the structural, polar and magnetic long-range order parameters [3, 4]. For instance,
biquadratic coupling of the structural and polar order parameters, introduced by
Haun [5, 6], Salje et al. [7, 8], Balashova and Tagantsev [9], are responsible for
the unusual behaviour of the dielectric properties in ferroelastics—quantum para-
electrics. biquadratic and linear magnetoelectric couplings cause such intriguing
effects as giant magnetoelectric tunability of multiferroics [10, 11].
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The new and intriguing aspects of physics of multiferroics are related to the prop-
erties of topological defects, such as domain walls and interfaces, which are inherent
to the materials [12]. Here, strong gradients in primary order parameters fields can
lead to emergence of coupled behaviour. For instance, Daraktchiev et al. [13] consid-
ered the influence of biquadratic coupling between polarization and magnetization
on the structure of ferroelectric domain walls in multiferroics and the reason of mag-
netization appearance inside the domain wall in non-ferromagnetic phases. Using
ab initio calculations Dieguez et al. [14] have found that the behaviour of the struc-
tural order parameter at the domain walls of multiferroics determines their structure
and energetics.

In this regard, intriguing phenomena emerging in the nanoscale phase-separated
ferroics. Nanoscale phase separation ranging from giant magnetoresistive mangan-
ites [15–18], ferroelectric relaxors [19, 20] and morphotropic materials [21–23],
martensites [24, 25] and birelaxors [26] remain one of the active topic of research
in condensed matter physics. In many cases, significant uncertainties persist regard-
ing the true ground states for these systems including various topological defects
from single vortices to nano-domain textures [27]. Experiment [28] demonstrated
the presence the order parameters modulation originated from the flexo-type cou-
pling leading to the modulation instabilities at the structural domain boundaries.
Super-structural dynamic order and antiferroelectric-antiferrodistortive modulation
have been recently observed in antiferrodistortive incipient ferroelectrics [29].

For multiaxial ferroics with multicomponent order parameters, analysis of polar-
ization structure at the topological defects (e.g. at domain wall (DW), interfaces,
vortices) necessitates taking into account the coupling between the order parameter
components [6, 30, 31] mediated by stress accommodation or gradients coupling.
Situation is similar for ferromagnetic-ferroelectric, where local magnetic moment
is possible at the ferroelectric DW due to either biquadratic [32] or inhomogeneous
coupling [33, 34].

Despite the fact that attempts to describe polarization behavior in multicomponent
ferroics were performed since the early days of ferroelectricity [35–37], the progress
with understanding of its structure at the topological defects appeared very limited.
However it is expected that the existence of e.g. charged topological defects, such
as domain walls, in ferroelectric semiconductors should result in charge accumu-
lation or depletion on adjacent sides of the domain wall, and should thus lead to
enhanced conductivity at these sites [38]. Experimental verification of this predic-
tion occurred only recently, by Seidel et al. who used scanning probe microscopy
(SPM) methods to report room-temperature metallic conductivity of 180◦ and 109◦
domain walls in BiFeO3 [39, 40]. Farokhipoor et al. have shown that nominally
uncharged as-grown 71◦ domain walls in BiFeO3 can also exhibit enhanced con-
ductivity [41]. Nominally uncharged fabricated vortex structures in BiFeO3 show an
order of magnitude increase in conductivity over single domain regions [42]. Domain
walls conductance in ErMnO3 was reported by Meier et al. [43]. Domain walls act as
conducting channels and LiNbO3 [44]. Guyonnet et al. observed conductive domain
walls Pb(Zr,Ti)O3 [45]. Then Maksymovych et al. report about metallic conductivity
of 180◦ domain walls in Pb(Zr,Ti)O3 [46] To measure quantitatively the variability
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of the conductivity response at ferroelectric domain walls combined experimental
studies with current-AFM (c-AFM) and Piezoresponse Force Microscopy (PFM) are
successfully used [39, 42, 46–48].

Landau theory is a powerful method that has proven capable of predicting charged
domain walls’ static conductivity in ferroelectric-semiconductors. In 1969 [49], the
conductivity mechanism was for the first time described stemming from compensa-
tion of polarization charge discontinuity by mobile carriers in the material. Analyti-
cal Landau-type theory was further developed for charged walls in uniaxial [50, 51]
and multiaxial tetragonal ferroelectrics [52], nominally uncharged walls in rhom-
bohedral ferroelectrics [53], improper ferroelectrics [54] and twin walls in incipi-
ent ferroelectrics–ferroelastics [55]. Using continuum Landau-Ginzburg-Devonshire
(LGD) theory, Hlinka and Márton [56] calculated numerically the structure of twin
boundaries in tetragonal perovskite crystal BaTiO3. They found that the polarization
component normal to the domain wall plane demonstrates a weak deviation from con-
stant distribution. Then Marton et al. [57] considered Ising-Bloch-type 180◦ domain
walls in rhombohedral BaTiO3 for definite rotation angles. Lee et al. [58] reported
about mixed Ising-Bloch-Neel type in PbTiO3, LiNbO3 and thin strained films of
BaTiO3. Notice, that Authors [56–58] did not consider the impact of the flexoelectric
coupling on domain wall structure and energy.

Flexoelectric effect describes the coupling of polarization with strain gradient
and polarization gradient with the strain [59–61], and was predicted by Mashkevich
and Tolpygo [62]. Subsequently, a number of theoretical studies of the flexoelectric
effect in conventional [63–70] and incipient [71] ferroelectrics have been performed.
Experimental measurements of flexoelectric tensor components were recently carried
out by Ma and Cross [72–74] and Zubko et al. [75].

Eliseev et al. [52] and Morozovska et al. [53] consider the influence on the flexo-
electric effect on the 180◦ domain wall static conductivity in tetragonal Pb(Zr,Ti)O3

and rhombohedral BiFeO3. Yudin et al. [76] show that the flexoelectric coupling
induces a new polarization component with a structure qualitatively different from
the classical Bloch-wall structure in tetragonal BaTiO3. Eliseev et al. [77] study
the influence of the flexoelectric coupling on the domain wall structure, energy and
possible free carrier accumulation by the wall in rhombohedral phase of BaTiO3.

8.2 Thermodynamic Approach

One of the most often encountered 2D-topological defect, which polar properties are
relatively well-studied, are domain walls in ferroelectrics. So, let us consider nomi-
nally uncharged 180◦ domain wall in the bulk of n-type ferroelectric-semiconductor.
Within Landau-Ginzburg-Devonshire (LGD) theory, equations of state for polar-
ization components and elastic stresses can be derived from the minimization of
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the Gibbs free energy functional, which density for the m3m parent (paraelectric)
symmetry has the form [52]:

G = ai P2
i + ai j P2

i P2
j + ai jk P2

i P2
j P2

k + gi jkl

2

∂ Pi

∂x j

∂ Pk

∂xl
− Qi jklσi j Pk Pl

+ Fi jkl

2

(
σi j

∂ Pk

∂xl
− Pk

∂σi j

∂xl

)
− si jkl

2
σi j σkl − Pi Ei − ε0 εb

2
E2

i + e
(

N+
d + p − n

)
ϕ

(8.1)

Hereinafter Pi denotes electric polarization, ai , ai j and ai jk are LGD-expansion
coefficients of the 2nd, 4th and 6th order dielectric stiffness tensors correspondingly,
gradient coefficient are gi jkl , Fi jkm is the flexoelectric tensor; σi j are elastic stresses,
Qi jkl are 4th second rank electrostriction tensors coefficients, si j are elastic compli-
ances. Ek (r) = −∂ ϕ (r)/∂xk are depolarization electric field components, ϕ (r) is
the electric potential, εb background permittivity [78] and ε0 = 8.85 × 10−12 F/m
the dielectric permittivity of vacuum. The space charge density is e

(
N+

d + p − n
)
,

e = 1.6 × 10−19 C the electron charge, n (r) is the concentration of the electrons in
the conduction band; p (r) is the concentration of holes in the valence band; N+

d (r)
is the concentration of ionized donors. The latter term in (b) is the electrostatic
energy of free charges with density e

(
N+

d + p − n
)

in the electric field with poten-
tial ϕ. Electrostatic potential ϕ should be determined from the Poisson equation,
ε0 εb

∂2 ϕ

∂x2
i

= ∂ Pi
∂xi

− e
(

p − n + N+
d

)
. Hereinafter acceptors are regarded absent and

holes concentration is regarded negligibly small in comparison with the electrons,
which are improper carriers in n-type BaTiO3. Note, that space charge is absent in
the dielectric limit and Poisson equation becomes ε0 εb

∂2 ϕ

∂x2
i

= ∂ Pi
∂xi

.

Regarding that all physical quantities can depend only on the distance x̃1 from
the domain wall plane, x̃1 = 0, it make sense to define them in the coordinate
frame {x̃1, x̃2, x̃3} rotated with respect to the pseudo-cubic crystallographic axes
{x1, x2, x3}. All variables become dependent on the only variable x̃1.

Euler–Lagrange equations for polarization components and equations of state
elastic stresses were derived from the minimization of the free energy functional
δ G̃/δ P̃i = −Ẽi and δ G̃/δ σ̃i j = −ũi j , where ui j are elastic strains; symbol δ stands
for the variational derivative. Equations ∂G̃/∂ σ̃i j = −ũi j should be solved along
with mechanical equilibrium conditions ∂ σ̃1 j/∂ x̃1 = 0 and compatibility relation
ei1l e j1n

(
∂2ũln/∂ x̃2

1

) = 0. Evident form of elastic stresses and equations of state in
rotated coordinate frame are listed in [79]. After the substitution of the elastic stresses
in the equations of state δ G̃/δ P̃i = −Ẽi it becomes coupled and self-consistent
with the Poisson equation ε0 εb

∂2 ϕ

∂ x̃2
1

= ∂ P̃1
∂ x̃1

− e
(
N+

d + p − n
)

for the determination

of electrostatic potential ϕ. Corresponding boundary conditions are P̃3 (x̃1 = 0) = 0,
P̃3 (x̃1 → +∞) = +P̃S and P̃1,2 (x̃1 → ±∞) → 0, Ẽ1 (x̃1 → ±∞) → 0.

In order to account for the electron gas degeneration at the domain wall [50–52],
electron density n (x̃1) redistribution in conductive band can be estimated using the
effective mass approximation:
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n (x̃1) ≈
∫ ∞

0
d ε ·gn (ε) f (ε +EC − EF − e ϕ (x̃1)), (8.2)

where gn (ε) = √
2m3

n ε/
(
2π2

�
3
)

is density of states, mn is the effective mass;
f (x) = (1 + exp (x/kB T ))−1 is the Fermi-Dirac distribution function,
kB = 1.3807 × 10−23 J/K, T is the absolute temperature. EF is the Fermi level,
EC is the bottom of the conductive band defined with respect to the vacuum level.
Concentration of almost immobile ionized donors in the simple level approxima-
tion is

N+
d (x̃1) = N 0

d (1 − f (Ed − EF − e ϕ (x̃1))) . (8.3)

Concentration of donors is N 0
d , Ed

(
ũi j , P̃i

)
is the donor level position. For mobile

species Vegard strains should be included in expressions for N+
d [80]. Note that in

general case conduction band and donor level in (8.2) and (8.3) can be polariza-
tion and strain-dependent, since ferroelectric polarization changes the band structure

via polarization potential,
3∑

i=1

(
ζ

2 P̃2
i + λ

4 P̃4
i

)
[81–83]. Also deformation potential

�C
i j ũi j shifts the levels position [84, 85]. However, in the model case of the non-

degenerated simple band structure and effective mass approximation validity, the
shallow donor level and conductive band edge are shifted as a whole with the strain
[86] or polarization, so the differences EF − EC and Ed − EF become almost strain-
and polarization independent.

Fermi level position EF should be determined self-consistently from the electro-
neutrality condition N+

d0 − n0 = 0 valid in the single-domain region of ferroelec-
tric, where potential vanishes (ϕ → 0), strain tends to the spontaneous values uS

i j =
Qi jkl P S

k P S
l , equilibrium density of electrons n0 =

∞∫

0
d ε ·gn (ε) f (ε +EC − EF ) and

ionized donors N+
d0 = N 0

d f (EF − Ed). It is worth to underline that (8.2) and (8.3)
reduces to n ≈ n0 exp (e ϕ/kB T ) and N+

d ≈ N+
d0 exp (−e ϕ/kB T ) in the Boltzmann

approximation.
Results of numerical modeling for the domain wall energy, polarization vector

structure, electric potential and charge carriers redistribution across the domain wall
are discussed in the next sections using an example of classical ferroelectrics.

8.3 Domain Wall Vectorial Structure, Energy and Static
Conductivity in Multiaxial Ferroelectrics

Using LGD theory the analysis of the carriers’ accumulation by 180◦ domain wall
in uniaxial [51] and multiaxial [52, 53, 77] ferroelectric-semiconductors was per-
formed. Along with coupled LGD equations for the polarization components, the
Poisson equation for the electrostatic potential was solved. Spatial distributions of
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the ionized shallow donors (e.g. intrinsic oxygen vacancies or protons), free electrons
and holes were found self-consistently using the effective mass approximation for
their energy density of states. Performed theoretical analysis shows that several sce-
narios of the domain wall conduction are possible depending on the wall geometry
(tilt angle, domain shape and size), wall type (head-to-head or tail-to-tail), size effects
(stripe and cylindrical domains), the sign and value of the flexoelectric coupling coef-
ficient.

In particular the charge of carriers accumulated by uncharged domain wall is
determined by the sign of the flexoelectric coefficient: positive coefficient leads to
the accumulation of negative carriers (electrons or acceptors), negative coefficient
leads to the accumulation of positive carriers (holes, donors or vacancies) [52]. The
driving force of this intriguing phenomena for nominally uncharged walls is the
flexoelectric coupling, which being rather high for ferroelectric perovskites [72–75],
leads to the appearance of polarization components perpendicular to the wall plane
and its strong gradient across the wall. The polarization component perpendicular to
the wall plane leads to the appearance of the uncompensated bound charge at the wall.
The charge creates strong electric field which in turn leads to the accumulation of
free screening carriers across the wall. At the same time, the polarization component
parallel to the wall plane is indifferent to the presence of the flexoelectric coupling
and electrostriction coupling induces the narrowing of the domain wall.

The tilted wall is charged in both uniaxial and multi-axial ferroelectric-
semiconductors and hence the electric field of the bound charge attracts free car-
riers of definite sign and repels the carriers of the opposite sign from the wall region.
Carriers’ accumulation is highest when the wall plane is perpendicular to the spon-
taneous polarization direction at the wall (perpendicular domain wall); it decreases
with the bound charge decrease and reaches minimum for the parallel domain wall. In
numbers, carrier accumulation in tetragonal Pb(Zr,Ti)O3 leads to the strong increase
of the static conductivity across the domain walls, e.g. up to 3 orders of magnitude
for the perpendicular domain walls and up to 10–30 times increase for domain stripes
and cylindrical nanodomains for the typical range of flexoelectric coefficients [52]
(Fig. 8.1). But in contrast to thick domain stripes and thicker cylindrical domains,
in which the carrier accumulation (and so the static conductivity) sharply increases
at the domain walls only, nanodomains of radius less then 5–10 correlation length
appeared conducting entire their cross-section. Such conductive nanosized channels
may be promising for nanoelectronic concepts due to the possibility to control their
spatial location by nano-manipulation with the charged probe.

According to LGD and DFT studies Ising-Bloch-type and mixed Ising-Bloch-
Néel-type [58, 87] 180◦ walls can exist in a wide class of ferroelectric materials.
The structure, energetics, and carriers accumulation by the 180 domain wall was
investigated as functions of wall orientation on the example of BaTiO3 [77].

Polarization vector inside a domain wall (DW) in rhombohedral phase of BaTiO3

can have all three components. The component P3, parallel to the spontaneous polar-
ization ±PS in the domains, is regarded as the Ising-type; the component P2, parallel
to the wall plane, but perpendicular to Ising-type component, which vanishes far from
the wall, is regarded as Bloch-type component; and component P1, normal to the
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Fig. 8.1 One dimensional distribution of polarization in the vicinity of a single domain wall tilted
at angle θ (a), tilted (b) and parallel (c) domain stripes with half-period h; (d) cylindrical domain of
radius R. Arrows in plots b-d indicate the polarization direction in the center of domains. Dependence
of electronic (e) and ionic (f) conductivity on the domain wall tilt angle θ between the neighboring
head-to-head (h-t-h) and tail-to-tail (t-t-t) stripes and calculated for negative, zero, and positive
flexoelectric coupling coefficient F12 = (−0.5, 0, 0.5) × 10−10m3/C (solid, dotted and dashed
curves respectively). Other parameters corresponds to tetragonal Pb(Zr,Ti)O3 and room temperature.
(Adapted from [52])

wall, is regarded as Néel-type component (see Fig. 8.2a–c). Note that the Néel-type
component P1 is associated with the non-zero divergence of polarization vector and
hence should be considered jointly with associated depolarization fields.

Domain walls are shown to be of mixed Ising-Bloch-Néel type for all orientations.
Although the domain walls with {211} and {110} orientations are shown to have
sufficiently different structures, achiral and chiral (Fig. 8.2b, c), and the phase transi-
tion from achiral to chiral state can be achieved either by varying the wall orientation
at fixed temperature or by temperature change at constant orientation. The impact of
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inside achiral and chiral domain walls. Sketches of local band bending for achiral d and chiral e walls,
where the spatial regions with maximal (nmax) and minimal (nmin) electron density are indicated.
The concentration of holes is negligible and the conductivity is purely of n-type. (Adapted from [77])

the flexoelectric effect is that the Neel-component of polarization perpendicular to
the domain wall plane is nonzero for any wall orientation.

Further analyses of such walls electronic properties suggest detecting the struc-
tural phase change inside the domain walls by c-AFM contrast due to the correlation
of the domain wall structure and free charge accumulation, driven by depolarizing
field. The conductivity enhancement in the domain wall is caused by the potential
variation inside the wall. The potential well/hump leads to higher/lower electron
concentration in the DW due to the local band bending (see sketches in Fig. 8.2d,
e for chiral and achiral walls). Since P̃1 profile is anti-symmetric for achiral DW
(Fig. 8.2b), corresponding potential barrier ϕ (x̃1) is symmetric, while it can be asym-
metric for achiral DWs. Symmetric barriers accumulate electrons only (Fig. 8.2d).
Asymmetric potential barriers with double structure can attract the electrons in some
spatial regions and repulse them from the other regions (Fig. 8.2e).

Figure 8.3a, b illustrate the rotation anisotropy of the relative density n (x̃1)/n0.
Two sharp maxima and breaks on the figures correspond to the chiral-achiral phase
transitions occurred at definite critical angles αm

cr ≈ π/6 ± π/12 + mπ/3 (m is
integer). Without flexoelectric coupling c-AFM contrast is equal to unity for the
angles α = mπ/3 corresponding to the absence of the component P̃1 (see Fig. 8.3a).
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Flexoelectric coupling leads to nonzero perpendicular component P̃1 for all α and
thus to nonzero contrast; also it slightly shifts the critical angles and create the sym-
metric potential structure well-barrier-well around rotation angle π/3 (see Fig. 8.3b).
Strong asymmetry in the electron density distributions for angles α inside the range
π/6 ± π/12 and π/2 ± π/12 originated from the fact, that DWs have mainly tail-
to-tail structure with respect to P̃1 at π/6 ± π/12, and head-to-head structure at
π/2 ± π/12.

Let us underline that the most intriguing situation can appear in the point of the
wall chiral-achiral phase transition, i.e. at rotation angles around the critical ones, αcr .
The chiral-achiral phase transition can be revealed by local c-AFM measurements of
the cylindrical walls, since c-AFM contrast is regarded proportional to the relative
electron density n (x̃1)/n0.

The numerical analysis of resultant GLD energy predicts that the flexoelectric
coupling introduces additional angular anisotropy for the DW structure and energy.
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Namely, there are six energetically favorable wall orientations corresponding to min-
ima in {110}-planes, {211} orientations correspond to the maximal energy. The min-
ima are degenerated in the absence of flexoelectric coupling (Fig. 8.3c), the coupling
removes the degeneracy of maxima and split them into two triplets revealing the true
symmetry of the wall (Fig. 8.3d).

These effects originated from the fact that the modulation period of polarization
Neel component P̃1 for zero and nonzero flexoelectric coupling, since the latter
resulting in additional symmetry breaking between the maximal states [77]. The
energy minima at α = mπ/3 stay equivalent, while the energy maxima at α = π/6 +
mπ/3 for odd and even m become nonequivalent. This is seen from the different
width of the area of chiral wall absolute stability and different height of the energy
maximum. Note that the equivalence of the minima follows from the symmetry of
the problem, which contains axis of third order along [111] and mirror plane {110}.
For the maxima the situation is different since there is no mirror plane at {211} and
the only symmetry operation is the axis of third order.

8.4 Spatially-Modulated Structures Induced in the Vicinity
of Topological Defects by Flexo-Antiferrodistortive
Coupling in Ferroics

In its initial form the flexoelectric coupling between the polarization and strain gra-
dient is universal for macro and nanoscale objects [66, 67, 70, 88, 89]. Flexoelec-
tric and all other couplings from the Table 8.1 lead to the appearance of improper
ferroelectricity in multiferroics with the inhomogeneous spontaneous strain [60],
magnetization [33, 90], aniferromagnetic [34, 91] or antiferrodistortions. Below we
consider the flexo-antiferrodistortive coupling in ferroics, since antiferrodistortive
modes are virtually present in all the perovskites. We will illustrate that it can cause
incommensurate modulation in the vicinity of ferroelastic domain walls.

For multiferroics with the antiferrodistortive and polar long-range order para-
meters the conventional form of the bulk LGD Helmholtz free energy and Gibbs
potential densities are:

Fb [P, �, u] = Uu
LG D + Uu

Elastic + Uu
ξ [P, �] , Gb [P, �, σ] = Uσ

LG D + Uσ
Elastic + Uσ

ξ [P, �] ,

(8.4)
LGD-type expansions are

U m
LG D = am

i P2
i + am

ij P2
i P2

j + gm
ijkl

2

∂ Pi

∂x j

∂ Pk

∂xl
+ bm

i �2
i + bm

ij �2
i �

2
j − ηm

ijkl Pi Pj �k�l + vm
ijkl

2

∂�i

∂x j

∂�k

∂xl
.

(8.5a)
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Elastic energy is

U u
Elastic = −qijkluij Pk Pl + fijkl

2

(
∂ Pk

∂xl
uij − Pk

∂uij

∂xl

)
+ cijkl

2
ui j ukl − rijklui j�k�l

(8.5b)

U σ
Elastic = −Qijklσij Pk Pl + Fijkl

2

(
∂ Pk

∂xl
σij − Pk

∂σij

∂xl

)
− sijkl

2
σijσkl − Rijklσij�k�l

(8.5c)

Superscript m = u for elastic strain or σ stress. Polarization components are Pi (i =
1, 2, 3). �i is the components of the structural antiferrodistortive order parameter,
e.g. an axial tilt vector corresponding to the octahedral rotation angles [92]; ui j and
σi j are the strain and stress tensors correspondingly. The summation is performed
over all repeated indices. Coefficients ai (T ) and bi (T ) temperature dependence can
be fitted with Curie-Weiss law for ferroelectrics, or with Barrett law for improper
ferroelectrics. Gradients coefficients gi j and vi j are regarded positive for commen-
surate multiferroics. Below we will regard Fb [P,�, u] as �-P-u representation and
Gb [P,�,σ] as �-P-σ representation.

The flexo-antiferrodistortive coupling between the polarization gradient and tilt
components product should be included in the functional (8.4) in the form of Lifshitz
invariant [93]:

Uξ [P,�] = ξ
u,σ
i jkl

2

(

�i� j
∂ Pk

∂xl
− Pk

∂
(
�i� j

)

∂xl

)

(8.6)

It is well-known that Gibbs and Helmholtz energies are different, but the values
calculated from equations of state should be the same in both �-P-σ and �-P-u
representations. Starting from the variation of the functional in any of representa-
tions, Euler-Lagrange equations for the polarization and tilt as well as equations
of state for the elastic stress or strain can be derived. The equations of state give
the relation between the stress and strain. After the substitution of the relation into
the Euler-Lagrange equations, unambiguous relationship between the coefficients of
LGD expansion for mechanically clamped Fb [P,�, u] and free Gb [P,�,σ] sys-
tems can be established. They are listed in the Table 8.1.

Allowing for the flexoelectric coupling, one can see the gap when compare the
relations between the tensorial coefficients in different presentations, summarized
in the last row of the Table 8.1. Actually the flexo-antiferrodistortive coupling ξ σ

i jkl
between the tilt and polarization gradient, (8.6), is allowed by any symmetry. If one
starts from conventional �-P-σ representation with zero ξ σ

i jkl ≡ 0, then mandatory
come to nonzero values ξ u

i jkl ≡ Fi jmnrmnkl in �-P-σ representation, i.e. the novel
coupling tensor, which strength is proportional to the convolution of the flexoelectric
and rotostriction coupling tensors, appear due to the roto-flexo effect [94]. However,
the direct flexo-distortive coupling tensor are unknown and cannot be determined
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Table 8.1 Relations between the �-P-σ and �-P-u LGD expansion coefficients

LGD-expansion coefficient name Relationship

Linear inverse susceptibility (stiffness) au
i ≡ aσ

i ≡ ai , bu
i ≡ bσ

i ≡ bi

Nonlinear dielectric stiffness au
ijkl = aσ

ijkl + Qijmnqmnkl/2

Nonlinear tilt expansion coefficients bu
ijkl = bσ

ijkl + Rijmnrmnkl/2

Polarization gradient coefficient gu
ijkl = gσ

ijkl + Fijmn fmnkl

Tilt gradient coefficient vu
ijkl ≡ vσ

ijkl ≡ vijkl

Electrostriction tensor qijmn = Qijklcklmn

Rotostriction tensor rijmn = Rijklcklmn

Flexoelectric coupling tensor fijmn = Fijklcklmn

Elastic constants sijklcklmn = (
δim δjn + δin δjm

)
/2

Biquadratic coupling between the tilt and
polarization

ηu
ijkl = ησ

ijkl − Qijmnrmnkl

Flexo-antiferrodistortive coupling between the
tilt and polarization gradient

ξu
ijkl = ξσ

ijkl + Fijmnrmnkl

solely from the LGD-phenomenology. Using the classical example of ferroelastic
twin walls in antiferrodistortive quantum paraelectric SrTiO3 the coupling strength
can be estimated as the convolution of the flexoelectric and rotostriction coupling
tensors, it appears about (1 − 5) × 1020V/m2. Rigorously speaking, the coupling
tensor components should be either calculated from the first principles or deter-
mined experimentally. In general case the direct flexo-antiferrodistortive coupling
between the polarization gradient and tilt components product should be included
in the LGD-type functionals in the form of Lifshitz invariant. The relationship
ξ u

ijkl = ξ σ
ijkl + Fijmnrmnkl (see the last raw in the Table 8.1). Similarly the polarization

gradient terms χu
ijkl Pi Pj

∂ Pk
∂ x̃l

and χσ
ijkl Pi Pj

∂ Pk
∂ x̃l

are allowed by the symmetry. Corre-
sponding relationship is χu

ijkl = χσ
ijkl + Fijmnqmnkl.

The direct coupling strongly influences on the properties of the phase dia-
grams of the atiferrodistortive solid solutions, primary leading to the appear-
ance of the spatially modulated phases [93]. Incommensurate modulation appears
spontaneously when the coupling strength exceeds the critical value proportional
to the sum of inverse polar and structural correlation lengths (commensurate-
incommensurate phase transition). Note, that modulated phase appears and strongly
enlarges its stability region with the coupling strength increase in multiferroic solid
solution BiySm1−yFeO3 [28]. Further increase of the coupling strength can lead
to the antiferroelectric-antiferrodistortive phase indeed observed in multiferroics
BiySm1−yFeO3 [28] and EuTiO3 [29].

Emergence of spatially modulated polarization and tilt at the structural domain
walls of EuTiO3 are shown in the Fig. 8.4. The modulation is absent without the
flexo-antiferrodistortive coupling as well as when the coupling strength is smaller
that the critical value (see solid curves). It originates for the coupling strength higher
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Fig. 8.4 Tilt (a, c) and polarization (b, d) spatial modulation originated near EuTiO3 antiphase
boundary between the domains with opposite orientations of tilt vector calculated for different values
of flexoantiferrodistortive coupling coefficient. For orientation �k ⊥ �� (a, b) the value ξ12 = 0 and
3 × 1020 V/m2 (curves 1 and 2 respectively). For orientation �k ↑↑ �� (c, d) the value ξ11 = 0 and 2
×1020 V/m2 (curves 1 and 2 respectively). Temperature T = 200 K, scales for the tilt, polarization
and x-coordinate are �b, and Pb and L�0. (Adapted from [93])

then the critical value dependent on the modulation vector �k orientation with respect
to the tilt �� (compare dashed curves for �k ↑↑ �� and �k ⊥ ��). Finally the polarization
modulation amplitude increases and its period decreases with the coupling value
increase. Note, that in agreement with experimental observations [29] the spatial
modulation of polarization can acquire antiferroelectric features for the case �k ⊥ ��
and high values of ξ = 3 ×1020 V/m2 (Fig. 8.4b, d).

The proposed description could be helpful for understanding of the modulated
phases appearance around different topological defects in other antiferrodistortive
ferroics. A promising candidate could be a Eux SryBa1−x−yTiO3 solid solution [95].
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That say existence of a universal flexo-antiferrodistortive coupling as a necessary
complement to the well-known flexoelectric coupling, which influence are especially
significant in the spatial regions round topological defects.

8.5 Summary

Using LGD theory we explore some unusual electronic, structural and polar proper-
ties of the topological defects inherent in ferroics, such as ferroelectric and ferroelas-
tic domain walls, which can have reach and tunable internal structure. In particular
the domain walls with different (e.g. {211} and {110}) orientations are shown to have
different symmetry in rhombohedral ferroelectrics, achiral and chiral, the phase tran-
sition from achiral to chiral state occurs under varying the wall orientation at fixed
temperature or by temperature change at constant orientation. The existence of 2D
defects similar to the cross-tie defects in the ferromagnetic Bloch domain walls as a
consequence of such transition is expected.

Achiral-chiral phase transition in the wall is accompanied by the rapid change of
the wall current-AFM contrast (from several times to several orders higher than in
the single-domain region). In this context current-AFM appears to be promising tool
for the detection of structural phase transitions inside the domain walls.

Existence of a universal flexo-antiferrodistortive coupling as a necessary com-
plement to the well-known flexoelectric coupling. The coupling is universal for all
antiferrodistortive systems and can lead to the self-consistent formation of incom-
mensurate, spatially-modulated phases observed experimentally in multiferroics. The
seeding for the modulated phase can be a topological defect, such as a structural
domain wall.
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Chapter 9
Topological Defects in
Nanostructures—Chiral Domain
Walls and Skyrmions

Benjamin Krüger and Mathias Kläui

Abstract In this chapter, spin structures with particular topologies in confined
geometries are presented. Domain walls in nanowires exhibit a spin structure that
depends on the material and geometry while in discs Skyrmions can be stabilized
by different competing interactions. The topologies of these spin structures can be
characterized by a Skyrmion or Winding number that governs the dynamics and
stability.

9.1 Introduction to Topological Spin Structures
in Confined Geometries

In ferromagnetic materials different interaction energy terms compete with one other
and the resulting equilibrium spin structures minimize the appropriate thermody-
namic potential that includes all the contributing terms [1, 2]. The most obvious
energy term is the exchange interaction, which is of quantum mechanical origin.
It is a short range interaction that favors a parallel alignment of neighboring spins.
This is competing with the long range dipolar interaction of the stray field of the
magnetic moments. This stray field energy favours the minimization of surface or
bulk magnetic “charges” and leads in thin films to a preferential alignment of mag-
netization with the film plane. Additional energy terms include the anisotropy term
that favours certain magnetization directions and the Zeeman energy that favours
alignment of the magnetization with the magnetic field. There are different sources
of anisotropy: One exists similarly in bulk and patterned thin films and originates
from the spin-orbit coupling between the magnetic spin system and the crystalline
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lattice of the material. Another source of anisotropies is the symmetry breaking at
interfaces and surfaces. Details of the energy terms and the calculations can be found
in the literature [1–3].

The minimization of the sum of these energies leads in confined geometries to
the creation of generally inhomogeneous magnetization configurations [4]. These
configurations usually contain some areas with uniformmagnetization, the domains.
These regions are separated by domain walls in which the magnetic moments change
their orientation [4].

To characterize the topology of these spin structures, certain characteristic num-
bers have been introduced. For the thin film geometries that we are dealing with
in this chapter, one can introduce a topological charge, called Skyrmion number or
Skyrmion charge, which is given by [5]:

q = 1

4π

∫
d2r m

(
∂m
∂x

× ∂m
∂ y

)
(9.1)

where the z direction is the out-of-plane direction and m is a unit vector in the
direction of the magnetization. This charge counts how often the magnetization
field covers the unit sphere. Assuming a continuous vector field that is fixed at the
boundaries of the film, this charge is conserved. Hence, configurations with non-
vanishing Skyrmion charge cannot be transformed to a state with homogeneous
magnetization by continuous transformations. Due to the lattice structure of real
matter a transformation between configurations with different Skyrmion charges is
possible but often energetically costly and thus suppressed. This explains why the
Skyrmion charge is an important quantity that allows one to describe the topology
as this is usually conserved.

For domain walls, the winding number has been introduced in [6]. This number
counts how often the magnetization curls in-plane. The winding number can be split
into one part nedge that counts for defects that are located at the edges and another
that part nbulk containing bulk defects. These numbers then read

nedge + nbulk =
(
1 − 1

2π

∫
d S ∇θ

)
+ 1

2π

∫
d2r

(
∂2θ

∂x∂y
− ∂2θ

∂y∂x

)
= 1 (9.2)

with the in-plane angle θ. The line integral is the integration around the film element
while the area in the second integral is given by the film element. The second equality
in (9.2) can be derived from Stoke’s theorem. Here, it is worth noting that according
to Schwarz’ theorem nbulk is zero if θ is continuous, that is, there is no region with
complete out-of-plane magnetization.

As an example, we first discuss square-shaped thin-film elementswithout any bulk
anisotropy. For this geometry, depending on thematerials properties and dimensions,
different stable magnetic configurations are possible. The S-state, the C-state, and
the flower state (see Fig. 9.1) share their topology with a homogeneous magnetized
sample [4]. However, other stable magnetization configurations exist that possess
different topologies.
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Fig. 9.1 Different magnetization configurations that can be stable in ferromagnetic thin-film
elements. The S-state (a), C-state (b), and flower state (c) have the same topology as a homo-
geneous magnetization pattern. In contrast the vortex state (d) has a non-trivial topology. This state
cannot be transformed to a homogeneous magnetization by continuous transformations

The simplest example of such a configuration is the magnetic vortex, as shown
in Fig. 9.1d, that has a Skyrmion charge of 1/2. In a vortex state the magnetization
curls in the film plane around a center region. In this region, called vortex core,
the exchange interaction forces the magnetization to point out-of-plane. In these
states there can be two different senses of the curling of the in-plane magnetization.
This sense is called chirality of the vortex. In addition to the chirality there are
two different orientations of the out-of-plane magnetization in the vortex core. This
is normally referred to as the polarization of the vortex. Due to its symmetry and
spatial confinement, the magnetic vortex is a very suitable system for investigations
and makes the vortex one of the most extensively investigated magnetic states [7, 8].
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9.2 Topological Defects in Nanowires—Domain Walls

Domain walls, which constitute the boundary between domains, have been inten-
sively researched in the past, though with a focus on the domain wall types that
occur in the bulk or in continuous films. The most prominent examples are the Bloch
and the Néel wall types, which occur in continuous thin films. A thorough overview
of such domain walls in particular in the bulk can be found in the literature [9–12]. In
patterned magnetic structures, novel domain wall types emerge, when the wall spin
structures start to be dominated by the geometry rather than by the intrinsic mate-
rials properties. This is particularly true for soft magnetic materials (and to some
extent also for polycrystalline hard magnetic structures), where the effects of mag-
netocrystalline anisotropy and other material-dependent anisotropies are small and
the element shape can influence the domain wall spin structures. The lowest energy
state in soft magnetic nanostructures is a monodomain state, where the stray field
energy leads to an alignment of the magnetization with the edges of the structures,
in order to minimize the stray field. Thus, in elongated elements, such as wires, etc.,
the magnetization points along the long axis of the element and most often such a
(quasi-)monodomain state constitutes the lowest energymagnetization configuration
[4]. If such a structure is not in a monodomain state, say, for instance, two domains
with opposite direction exist (see Fig. 9.2a where in the “green” domain the magne-
tization is pointing right and in the “purple” domain the magnetization is pointing
left), a 180◦ head-to-head domain wall has to be present in between the domains
(interfaces between the green and the purple domains). The domain walls in such
soft magnetic materials have been described in detail in [13] and the topology has
been analyzed using the winding number concept in [6]. In particular it was found
that the domain walls are composite objects made of two or more elementary topo-
logical defects. Vortices have a winding number of n = ±1 and edge defects exhibit
winding numbers of n = ±1/2. Domain walls in the simplest case are composed
of two edge defects with opposite winding numbers. The creation and annihilation
of such defects is constrained by conservation of the topological charge (winding or
Skyrmion number). This description of the topology provides a basic understanding
of the complex switching processes observed in ferromagnetic nanostructures, such
as wires. Note that the Skyrmion charge of a vortex is q = 1/2 since there is only
positive or negative out-of-plane magnetization for vortices with positive or negative
polarization, respectively. This means that only the upper or lower hemisphere of the
unit sphere is covered by the magnetization vector field and therefore the winding
number and the Skyrmion charge yield different quantities for the same spin struc-
ture. However both numbers describe the topology equally well and are similarly
conserved quantities.

While such domain walls in soft magnetic materials have been discussed in great
detail [13], there are high anisotropy materials, in which the magnetization can point
perpendicularly to the plane (see Fig. 9.2b). In this case the domainwall is a transition
between the domain with the magnetization pointing up and the domain with the
magnetization pointing down. Here the possible domain walls types are shown in
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Fig. 9.2 a Schematic depiction of a multi-domain state in a wire made of a soft magnetic material
where the magnetization in the domains is pointing along the wire axis. b Schematic depiction of
a multi-domain state in a wire made of a high anisotropy material where the magnetization in the
domains is pointing perpendicularly to the wire axis. c Bloch domain wall and d Néel domain wall
spin structure

Fig. 9.2 c, d. In Fig. 9.2c aBlochwall is shown,where themagnetization in the domain
wall rotates perpendicularly to the wire edge. In the Néel domain wall in Fig. 9.2d,
the magnetization rotates along the wire. Here the important concept of domain
wall chirality can be introduced as there are two domain walls realizations that are
energetically degenerate if no symmetry breaking interaction term is introduced. For
the Bloch wall the magnetization can rotate either clockwise or counter-clockwise
(when looking along the wire) while for the Néel wall the magnetization can rotate
clockwise or counter-clockwise (when looking perpendicularly to the wire as shown
in Fig. 9.2c, d). In Fig. 9.2d a clockwise rotating Néel wall is visible when looking
from left to right.

A symmetry breaking interaction that favours one domain wall chirality is the
Dzyaloshinskii-Moriya interaction (DMI) (see [14] and references therein). TheDMI
interaction is resulting from bulk inversion asymmetry or structural inversion asym-
metry as in multilayer stacks where it is governed by the interface between a heavy
metal and a magnetic thin film layer [15, 16]. In this scenario the DMI results in
a preferential chirality of the domain walls. In particular for structural inversion
asymmetry, the resulting DMI favours Néel walls with a given chirality.
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9.3 Using Magnetic Domain Walls in Devices

Domain walls can be employed in a range of devices including novel memories, such
as the racetrack memory device [17] and a field driven domain wall memory device
based on chiral walls [18]. Furthermore domain walls have been suggested for logic
devices [19]. Finally first devices based on domain walls have made it to the market
like multi-turn sensors [20].

9.3.1 Operations for a Devices Based on Current Induced
DW Motion in Wires

We next discuss the operations that are necessary in order to realize any device based
on DWs. The key operations are the “writing”, i.e. the nucleation of domain walls
and domains and the “manipulation”, i.e. the displacement of the domain walls and
thereby the domains.

9.3.1.1 Nucleating Domain Walls Using Oersted Fields

There are different approaches to nucleating domains and domain walls. The sim-
plest is the conventional approach using Oersted fields generated by current passing
through striplines. As seen in Fig. 9.3a, b, this can be achieved by combining the
magnetic wires with a low resistivity and thus low heating and ohmic losses Oe field
line (stripline). Here Au is used in the geometry shown in Fig. 9.3.

To calculate the magnetic fields resulting from the current pulses, numerical inte-
gration of the current paths is carried out. Figure9.4a shows a small rectangle, whose

Fig. 9.3 a Scanning electron micrograph of a device that operates by domain wall motion. The
figure shows 20 nanowires of Ta/CoFeB/MgO with gold Oe lines (yellow region) across the wires.
The current path for the DW nucleation is indicated as a green arrow and the current path for DW
shifting as an orange arrow. b Device based on the same concept but including Hall crosses for
electrical detection. TheOe field lines are indicated in yellow, while themagnetic nanowire is shown
in blue (partly from [32])
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Fig. 9.4 a Simulation of a
homogeneous current
density (1012 A/m2) creating
a circular magnetic field. The
current density is
perpendicular to the cross
sectional area of a gold Oe
field line. The width and
thickness (height) of the
current line (small rectangle)
are 1.4 μm (W) × 150 nm
(H), which is the same as the
sample dimensions.
b Component of the
magnetic field, which is
perpendicular to the wire
plane, as a function of the
distance from the centre of
the Au Oe field line (0)

(a)

(b)

width and height is the same as in the experiment representing a cross sectional area
of a gold Oe field line (1.4 μm (width W) × 150 nm (thickness H)). For the simu-
lation of a local Oe field, we assume a fixed current density of 1× 1012 A/m2 being
perpendicular to the nanowire, which is a reasonable density that is compatible with
reliable operation based on our experimental results. In particular using these values,
we obtain 100% DW nucleation probability using this current density (details, see
further below). The arrows in Fig. 9.4a indicate the direction of the Oe field and the
color indicates the absolute value of the magnetic field. A line scan along the top of
the wire (a red line) shows the magnetic field component perpendicular to the wire
in Fig. 9.4b as a function of its position along the wire. A sufficient high magnetic
field for magnetization reversal is created in the surrounding of the gold Oe field
line. The resulting localized Oe field has field strengths going up from 5 to 90 mT for
distances from 10 μm from the gold Oe field line to the edge of the line. Therefore
a localized nucleation of a single domain wall in an out-of-plane magnetized wire is
possible for soft materials such as CoFeB based structures with low coercivity.

To gauge the scalability of this writing approach using the Oe field line, we
calculate the writing energy and the generated Oe fields for various dimensions
as shown in Fig. 9.5. Assuming a length of a gold Oe field line of 160 nm (for
applications, we assume a design rule of 32nm and the length is thus 5 times this
design rule), we can calculate the power necessary for writing a single bit. Figure9.5
shows the calculated resistance for a gold Oe line and the calculated energy for a
constant current density of 1× 1012 A/m2 as a function of the cross sectional area
of the gold line. The writing energy is a few pJ at j = 1× 1012 A/m2 and is reduced
as the cross sectional area of a gold Oe field line is reduced. The Oe fields that



206 B. Krüger and M. Kläui

Fig. 9.5 Calculated writing energy and resistance of a gold Oersted line as a function of the cross
sectional area. The necessary energy for a constant current density of 1× 1012A/m2 is in the few
pJ range

can be generated are up to 15 mT for 100nm wire width and 2 mT for a 20nm
wire width, which is compatible with future design rules that continuously scale to
smaller dimensions. This field is still sufficient to realize magnetization switching
in specially designed nanowires when a sufficiently low coercivity is achieved for a
tailored material.

Next we study this DW nucleation experimentally. As shown in Fig. 9.3, we can
either determine the necessary current densities by directly imaging the nucleated
domains and domain walls (device from Fig. 9.3a) or by electrically detecting the
walls (Fig. 9.3b) [21]. In the latter case, the DW is detected by the extraordinary Hall
effect (EHE) resistance that shows changes when the DW is pinned at the Hall cross
[22]. Figure9.6 shows the EHE hysteresis of a Ta/CoFeB/MgO multilayer nanowire
with and without a DW, and indicates schematically the resulting magnetization
configuration in the nanostructure. The black curve is the normal hysteresis of the
Ta/CoFeB/MgO nanowire without a DW, and the blue one shows the hysteresis of
Ta/CoFeB/MgO when a DW is nucleated using the Oe field. The coercivity changes
drastically from Hc ≈ 25 ∼ 30 mT (normal hysteresis loop without DW) to H DW

c ≈
13 mT in the case where a DW is nucleated. After nucleating the domain wall close
to the Oe field line, we see that the domain walls moves to the Hall cross at a
propagation field Hprop of 3 mT. It then takes 13 mT to move the DW across the
Hall cross to reverse the magnetization. The increased field of 25–30 mT without a
nucleated domain wall means, that the nucleation field for a DW is much higher than
the propagation field and even the field needed to push the domain wall across the
Hall cross, which allows us to unambiguously determine these fields.
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Fig. 9.6 Normalized EHE
hysteresis of Ta/CoFeB/MgO
nanowire with (blue) and
without (black) DW. The
coercivity is indicated Hc ≈
25–30 mT for a normal
hysteresis loop without DW,
and H DW

c ≈ 13 mT for
hysteresis loop with DW in
the nanowire. We find the
DW propagation field is
around 3 mT. We indicate the
magnetization direction is
up/down as red/sky blue in
the schematic depictions as
insets

The protocol for this measurement is that we first saturate the sample in one
direction with a negative field (here marked as down magnetization indicated in blue
in the schematic representations of the magnetization in Fig. 9.6). Then the current
pulse is injected through the gold Oe field line for DW nucleation at point (2) in
Fig. 9.6. The DW is nucleated in the nanowire using the local Oe field generated by
a current pulse with a current density of 8 × 1011 A/m2 and pulse length of 100
μs without any external field. Then there is a DW present the wire close to the Oe
field line (Fig. 9.6 (3)) and this DW is propagated to the Hall cross at 3 mT external
field. Figure9.6 (4) shows the DW at the Hall cross, and the hysteresis shows small
changes in the signal as the DWmoves in the Hall cross and then when the coercivity
field is H DW

c reached the DW moves completely across the Hall cross (Fig. 9.6 (5)),
and finally the samples is saturated in the up magnetization direction (Fig. 9.6 (6)).

Next we study this nucleation systematically. We determine the DW nucleation
probability, for two different current densities as a function of pulse length. All
measurements shown in Figs. 9.7 and 9.8were repeated 10 times. At a current density
of 5.64 × 1011 A/m2, only 10% of the time DW nucleation is achieved without any
external field. At a higher current density of 6.3 × 1011 A/m2, we can obtain 100%
DWnucleation probabilitywithout any external field as shown in Fig. 9.7b. Figure9.8
finally shows the DW nucleation probability for different current pulse widths from
1 ns to 10 ns. The DW nucleation probability increases with increasing the current
pulse width. In particular we can obtain 100% for pulse lengths down to 2 ns and
possibly lower (the limitation of the pulse shape due to the equipment used, did not
allow us to obtain results for 1 ns for higher current densities).
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Fig. 9.7 DW nucleation probability for an Au Oe field line on top of a Ta/CoFeB/MgO nanowire
using a 10 ns long pulse. a 10% probability for DW nucleation is found for a current density of
5.64 × 1011 A/m2. This is visualized by the number of traces, where one trace shows the lower
coercivity field resulting from the successful DW nucleation while the other traces show the higher
field if no DW is present. b 100% DW nucleation is possible at a current density of 6.3 × 1011

A/m2 without any external field a visible by all traces jumping at the lower field

Fig. 9.8 DW nucleation
probability for an Au Oe
field line on a
Ta/CoFeB/MgO nanowire
for various current pulse
widths. The DW nucleation
probability increase with
increasing the current pulse
width

9.3.1.2 Manipulating Magnetization by Spin Orbit Torques

Next the domain walls need to be displaced. Here we study current-induced domain
wall motion, which exhibits more favourable scaling than field-induced wall motion
[23]. Recently it was shown that more efficient current-induced domain wall motion
can be obtained in asymmetric magnetic multilayers due to novel spin orbit torques
compared to conventional spin transfer torques [23]. A first observation of spin-orbit
torque resulting in DW motion in a Pt/Co/AlOx nanowire was reported by Miron
et al. [24] as the presence of structure inversion asymmetry (SIA) gives rise to an
effective field (due to the Rashba effect [25] perpendicular to both the current flow
direction and the magnetic easy-axis, which makes it energetically easier to rotate
the magnetization inside the magnetic layer so that DWvelocities have been detected
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Fig. 9.9 Schematic of DW writing using SHE—induced torques. The magnetization in CoFeB is
locally switched by SHE in red region by current perpendicular to nanowire using cross shaped
Ta layer (a) or using two contacts under the Ta layer (b). The black and white arrows indicate the
magnetization direction in CoFeB

up to 400 m/s. Another possible origin for such spin-orbit torque was suggested by
Manchon [26], who suggested as the origin of the high DW velocity the spin Hall
effect (SHE) occurring in the SIA-stackwhen an electric current is injected through it.

To obtain efficient domain wall motion of multiple domain walls in the same
direction by spin orbit torques, chiral walls are needed. Therfore, recently the other
contribution necessary for the fast current-inducedDWmotion has been explored the-
oretically and experimentally: the DMI (see [15, 16, 27–29] and references therein).
It was realized that the spin orbit torques are not sufficient to move a domain wall
that is usually a Bloch wall but one needs Néel DWs all with the same chirality, so
that the SHE torque efficiency is maximized and synchronous motion is obtained.
This combination of SHE and DMI is thus the real trigger of the fast current-induced
DW motion in magnetic nanostructures with SIA.

Furthermore, switching of the magnetization by spin orbit torques has been
observed [30, 31]. Such switching can be used to reverse the magnetization and
thus also to “write” information by nucleating new domains and domain walls.

Figure9.9 shows twodifferent geometries to generate a spin current throughTaand
induce DWnucleation in the adjacent ferromagnetic layer. In order to investigate this
approach to initiate locally DW nucleation, we have used 1μmwide and 10μm long
wires as shown in Fig. 9.10.We havemeasured the combination of longitudinal fields
Hx along the wire and current to induce magnetization switching. The longitudinal
fields are used to lower the switching barrier by tilting the magnetization. Figure9.10
shows a typical result of magnetization switching at a current density of 4.02× 1011

A/m2 flowing in the wire with 100 ns pulse width and a longitudinal field of 200 Oe.
Furthermore we find that we can achieve switching even at zero external field due

to thermal fluctuations that lead to transient magnetization components along the
wire onto which the spin orbit torques act that lead to switching [31].
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Fig. 9.10 (From [31]) a Schematic of the experimental set-up for current pulse injection, including
an SEM micrograph of the Ta\CoFeB\MgO nanowires. The inset shows the shape of one of the
voltage pulses applied to the device, measured with the oscilloscope (across the 50 � internal
resistance).bDifferentialKerrmicroscopy imageof the initialized nanowireswith themagnetization
pointing down (−z) everywhere. c Differential Kerr microscopy image of the same nanowires in
(b), after their magnetization has been switched up (+z) by a current pulse in the presence of an
in-plane magnetic field collinear with the current-flow

9.3.1.3 Displacing Domain Walls Using Spin Orbit Torques

Having established the generation (writing) of domain walls, we next turn to shifting
(displacing) them. As discussed above, the combination of the spin orbit torques
and the DMI leads to efficient displacement of domain walls. We determine the
key properties, which is the strength of the DMI by measuring the DW velocity as a
function of an appliedmagnetic field along thewire axis (x-direction) for fixed current
densities (see Fig. 9.11). First of all, both types of DW (↑↓ and ↓↑) are nucleated
in the pre-saturated nanostructures by current-induced magnetization switching (see
Fig. 9.11a). Typical nucleation pulses used in the experiment have a current density
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Fig. 9.11 (From [32]): Effect of a longitudinal magnetic field on the current-induced DW motion.
a Differential Kerr microscopy image of nucleated magnetic domains in pre-saturated nanowires.
The magnetization in the reversed domains points in the +z direction (black areas). The green lines
indicate the position of the DWs. The red arrows describe the DWs magnetization configuration. b
Differential Kerr microscopy image of the domain walls moved due to current pulse injection (ja =
+3.6 × 1011 A/m2), when a longitudinal field is applied (μoHx = –35 mT). The dashed green lines
indicate the starting position of the DWs, while the solid orange lines indicate their final position.
The blue arrows show the DW motion. Down-up (DU, ↓↑) and up-down (UD, ↑↓) DWs move
in opposite direction. c Average velocity of ↓↑- and d ↑↓-DWs as a function of the longitudinal
field (μoHx), for two different current densities. Solid symbols refer to ja = 3.6× 1011 A/m2, while
empty symbols refer to ja = 2.8× 1011 A/m2. Squares refer to positive ja , while triangles refer to
negative ja . The solid (dashed) lines are the 1D-model fitting-curves for ja = ±3.6× 1011 A/m2

(ja = ±2.8× 1011 A/m2) (see text for details). e Average velocity of ↓↑-(empty symbols) and
↑↓-(solid symbols) domain walls as a function of μoHx, for a current density of ja = +3.6× 1011

A/m2 (squares), and ja = –3.6× 1011 A/m2 (triangles). Lines represent the 1D-model fitting-curves

j a ∼1012 A/m2 and a duration �t = 20 ns. Once the DWs are generated, they are
displaced by injecting a burst (n = 1–20) of 20 ns-long current pulses with lower
current densities (2.8− 3.6× 1011 A/m2), as shown in Fig. 9.11b. In order to calculate
the DW velocity, the full width at half maximum of the current pulse is used as the
time duration of a single pulse. For each combination of current-density and field-
amplitude, the measurement is repeated five times. The DW velocity as a function
of the longitudinal field μoHx is shown in Fig. 9.11c, d (symbols), respectively for
the ↓↑- and ↑↓-DWs. The graphs show that the DW velocity is strongly influenced
by the presence of the longitudinal field.

While at zero field the velocity of both types of DWs is the same, in the presence
of the field the two DWs move at different velocities. We observe a symmetric
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Fig. 9.12 Demonstration of domainwall writing and shifting. Initially thewire is uniformlymagne-
tized (a). A pair of domain walls is generated by an Oe field pulse (current pulse direction indicated)
(b). The two domain walls are shifted by a current pulse along the wire (c), and an opposite current
pulse along the Oe field line generates a second pair of domain walls thus “writing” a domain with
two domain walls in both wires (d), which is then shifted by a current pulse along the wires (e)

behavior of the DW velocity as a function of μoHx for the two types of DW, as
shown in Fig. 9.11e (solid symbols for the ↑↓-domain wall, empty symbols for the
↓↑-domain wall). The field at which the SOT is minimized, resulting in a stationary
DW, is the so-called DMI effective field μoHDMI = D/(MS�) [28], where D is the
DMI coefficient, and � is the DW width. Figure9.11c–e show that there is a range
of in-plane longitudinal fields μoHx where the DW remains stationary (with zero or
very small DW velocity compared to the velocities measured for larger longitudinal
fields). This zero motion field range is not reproduced by the standard SOT-DWM
model and was not discussed in some other experiments. In order to properly analyze
the experimental data a more accurate model is needed, where this “pinning” effect
is taken into account.

Since the reversal of the direction of the DW motion occurs for the low-velocity
field range, a more detailed analysis of this behavior follows. The DMI-field is
extracted by linearly fitting the experimental data in Fig. 9.11e, for both types of
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DW and for both positive and negative current. Considering only the high velocity
experimental data, the crossing of the two best fitting lines for the ↑↓-DW data
occurs at a longitudinal field value μoH↑↓

x = –8.5 ± 1.8 mT. While, for the ↓↑-DW
the crossing occurs at μH↓↑

x = +7.0 ± 1.5 mT. Assuming the amplitude of the DMI
field to be the average of the two fields (in absolute values) we obtain |μoHDMI| =
7.8±1.2mT.All the errors correspond to one standard deviation. Since theDWwidth
is � = 7 nm � = (A/Keff )1/2, where we use a strength of the exchange interaction of
A = 10−11 J/m and Keff is the effective anisotropy [28]), μH↑↓

x < 0 and μoHx
↓↑ >

0, and knowing that Ta-θSH has a negative sign [31] we obtain a DMI constant D =
+0.06 ± 0.01 mJ/m2.

9.3.1.4 Combined Operation of Writing and Shifting Domain Walls

Finally we combine the writing by the Oe field and the shifting to demonstrate the
operation of both together. As seen in Fig. 9.12, we can write and shift domain walls
thus demonstrating the functionality of a shift register memory device with domain
wall writing by Oe fields and domain wall displacement by spin orbit torques. Note
that in the last displacement (e), the bottom two walls reach the end of the wire and
thus stop (due to the reduced current density as the wire widens into the pad) leading
to a change in the domain length.

9.4 Topological Defects in Discs—Skyrmions

We next change the geometry from a wire to a disc. We use similar materials with out
of plane magnetization as discussed above for current-induced domain wall motion
of the Bloch or Néel walls in wires. If we however structure the films in discs, we
find under the right conditions bubble Skyrmion spin structures (Fig. 9.13b). These
structures gain their stability from the dipolar interaction of the magnetization in the
disk. Compared to a state with a homogeneous out-of-plane magnetization the state
containing a bubble has a much lower stray field outside the sample. The reduction
of the stray-field energy can be larger than the additional energy that emerges from
the domain wall that occurs in the bubble state. We start by comparing the dynamics
of the well-known vortex (Fig. 9.13a) with that of the bubble Skyrmion.

A magnetic field pulse, that is aligned parallel to the film plane displaces the
magnetic vortex core from its equilibrium position, since a domain parallel to the
field is energetically favored during the pulse. After the excitation, the core does not
move back to its original position on a straight line but performs a spiral gyration
as shown in Fig. 9.13c. The sense of this gyration depends on the polarization of
the vortex and has been experimentally observed using x-ray microscopy [33]. A
similar excitation can be achieved by sending an in-plane current pulse through the
film [34, 35].
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Analytically, the dynamics of the vortex can be described by the so called, Thiele
equation [38, 39]

0 = F + G × (Ẋ + u) + D(α Ẋ + ξu) (9.3)

where X is the position of the vortex core and u = PμB j/(e Ms) introduces the
action of a current density j [40]. Here P is the polarization of the current, Ms is the
saturation magnetization, e is the elementary charge, and μB is the Bohr magneton.
The constant G is the gyro vector which direction depends on the orientation of the
vortex core. The tensor D α describes the damping of the excitation. The strength of
the non-adiabatic spin torque ξ is a parameter that describes the interaction between
the current and the vortex core [41]. Using (9.3) it has been found that a vortex that is
excited by alternating in-plane fields or currents moves on an elliptic trajectory [36,
42]. The ratio of the two semi axis depends on the ratio of the frequency of the
excitation and the resonance frequency of the potential. In the case of a resonant
excitation the trajectory becomes circular.

Fig. 9.13 a and b Schematic representation of the magnetization of (a) a vortex state and (b) a
magnetic bubble Skyrmion. c Trajectory of a vortex in a Ni81Fe19 disc with a diameter of 200nm
and a thickness of 10 nm. The blue line denotes the trajectory of the maximum out-of-plane mag-
netization [36], that is, the center of the vortex core, during the application of the pulse. The red
one shows the free dynamics after the field is switched off. The dashed black line is a fit with the
analytical result in (9.3). d Trajectory of the center of mass of a bubble Skyrmion [37] in a FePt
disc with a diameter of 200nm and a thickness of 30 nm. The lines have the same meaning as in
(c). In the case of the bubble Skyrmion the analytical fit was performed using (9.4)
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It can be seen that the chirality and polarization both provide a binary state that can
be used to store data. Therefore, it is in principle possible to store two bits in a vortex
state. To change the polarization of a vortex, a very high static field perpendicular to
the film is necessary. However, it has been found that a vortex excited by an in-plane
field that is above a critical amplitude is able to change the orientation of the vortex
core as well [33]. Here, the critical fields are much smaller than for the perpendicular
field.

While vortices exist inmaterials without bulk anisotropy, there is a similar magne-
tization configuration, calledmagnetic bubble Skyrmion, that exists in materials with
an out-of-plane easy axis. In the bubble the magnetization points out-of-plane while
in the outer region the magnetization points in the opposite direction. Both domains
are separated by a domain wall. A view on (9.1) shows that a bubble Skyrmion pos-
sesses a Skyrmion charge of one as the magnetization covers a sphere once. This can
be seen by mapping the inner region of the bubble Skyrmion and the boundary of the
film to the north and south poles of the sphere, respectively. The domain wall then
moves to the equator, as shown in Fig. 9.14.

In contrast to a vortex, a bubble Skyrmion cannot be displaced by in-plane fields
since there is no domain with a magnetization that is parallel to such a field. A
homogeneous field that points perpendicular to the film causes the bubble to change
its size but would not cause any movement due to the rotational symmetry of the
system. This rotational symmetry can be broken by applying a gradient field. In this
case, the bubble moves in the direction where the field parallel to the magnetization
in the bubble Skyrmion increases.

From micromagnetic simulations it has been found that a bubble that is excited
by a short pulse of a gradient field, is displaced from its equilibrium position. But
in contrast to the vortex the bubble is not moving on a spiral trajectory but on a
more complex one [37]. This trajectory has been identified to be a hypocycloid [43].
The hypocyclodic trajectory of the bubble can be analytically explained by having
a closer look on the domain wall that is surrounding the bubble. One then finds that
the excitations of the bubble can be described by waves that travel along the domain
wall, where waves with the same wavelength that travel in different direction, that
is, clockwise or counter clockwise, show different velocities [43]. It can be seen that
the two modes for which the wavelength is exactly the circumference of the bubble
are similar to a displacement of the bubble. A superposition of these two waves then
resembles the hypocyclodic trajectory of the bubble.

From this observation it follows that (9.3) has to be extended by an additional term
that is proportional to the acceleration of the vortex core, introducing some inertia
of the bubble. The equation for the motion of the bubble Skyrmion reads [43]

0 = M Ẍ + F + G × (Ẍ + u) + D(α Ẋ + ξu) (9.4)

with the inertial mass M .
Such a trajectory has been found experimentally by x-ray holography [44, 45].

The advantage of this technique is that it is drift-free allowing a measurement of
the bubble position with a high accuracy. In the experiment [46] a multilayer film of
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Fig. 9.14 Schematic view of
the vector field from
Fig. 9.13b mapped on a
sphere. The field covers the
sphere once

CoB/Pt has been grownon a thin SiNmembrane to allow the photons to be transmitted
through the sample. The magnetic layer, that is CoB, grows amorphous, reducing
the pinning compared the pinning at crystalline imperfections in a pure Co film. The
CoB/Pt film is patterned to a disc element. This element is surrounded by a gold
microcoil as shown in Fig. 9.15a. The system is then excited by sending the current
pulse shown in Fig. 9.15b through the microcoil. The Oersted field then excites the
magnetic structure. As it can be seen in Fig. 9.15a there are two bubbles, however,
one of them turns out to be pinned. After the current pulse the bubble performs a
motion on a hypocyclodic trajectory. A part of this trajectory is shown in Fig. 9.15c.
From the shape of the trajectory the Skyrmion number is deduced to be 1 and we
extract the effective mass [46].

Currently, the focus of the research includes chiral Skyrmions that exist in systems
where DMI is present. In contrast to bubble Skyrmions that are stabilized by the
dipolar interaction, the chiral Skyrmion obtain its stability in thin films additionally
from the DMI. The DMI favors a continuous rotation of the magnetization with a
fixed sense of rotation. This results in the fact that Skyrmions with different senses
of the in-plane magnetization are not energetically degenerate. If the strength of the
DMI is large enough the Skyrmions with one sense of gyration become unstable.
Therefore, the sense of gyration is determined by a material parameter, that is, the
sign of the DMI, making the magnetization pattern chiral. In addition to the fixed
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Fig. 9.15 (From [46]) a Schematic depiction of the experimental setup. The CoB/Pt disc is sur-
rounded by a gold stripline that generates a field. b The shape of the bipolar current pulse. c
Measured positions of the bubble as a function of time (colour code depicts the time and is the same
as in (b)). The line is a fit with (9.4) to extract the Skyrmion properties

sense of rotation a strong DMI is also capable of decrease the size of a Skyrmion,
making these topological spin structures apt for novel devices, such as the proposed
Skyrmion racetrack [47].
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Chapter 10
Magnetic Solitons in Superlattices

Amalio Fernández-Pacheco, Rhodri Mansell, JiHyun Lee,
Dishant Mahendru, Alexander Welbourne, Shin-Liang Chin,
Reinoud Lavrijsen, Dorothee Petit and Russell P. Cowburn

10.1 Introduction

The injection and controlled motion of domain walls in nanowires has been exten-
sively investigated in the last few years by the spintronics community, due to the great
potential of these systems for storage and logic operations [1–7], as well as for the
interesting fundamental properties of thewalls [8–15].Byusing planar nanowires, the
result of lithography-patterned sputtered or evaporated films, a high level of control
can now be achieved in injecting walls into wires [16–18], and trapping them using
local alterations in the shape of the wires and other mechanisms [19–27]. Moreover,
it is now well understood that the type of domain wall present depends on the wire
size and material. [9, 12, 13, 28] and the torques present on the walls when applying
external magnetic fields, spin-polarized currents and spin currents [29–32]. As well
as their possible use in nanoelectronics, this technology is now proposed for bio-
sensing applications [33, 34], and multi-turn sensors based on NOT-gate nanowires
are currently used in the automotive industry [35].

Regarding a possible application of domain wall technology in nanoelectronics,
in spite of possessing great advantages with respect to commercial products, that is
they are non-volatile data storage devices, have high access speeds and do not have
mobile parts, their storage capacities are not high enough to compete against CMOS
counterparts, constituting a great limitation for this technology. As a possible solu-
tion, schemes based on stacking multiple planes of functional nanowires, separated
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(a)

(b)

(c)

Fig. 10.1 Three-dimensional spintronic nanostructures based on magnetic nanowires. a Stack of
planar NOT-gate nanowires, with information moving within planes [36]. b Vertical racetrack
memory proposed by IBM [6]. c Suspended nano-spiral grown by focused electron beam induced
deposition [37]

by non-magnetic spacers (Fig. 10.1a) [36], or the possibility to use vertical nanowires
instead of horizontal ones (Fig. 10.1b) [6], have been proposed. However, these have
not been implemented so far due to the great technical difficulty of fabricating these
systems with the same degree of control as can be achieved for planar nanowires. It
is clear that the possibility to create three-dimensional spintronic devices would be
extremely interesting, which could result in a real revolution within nanoelectronics.

Recently, our group has been investigating ways to achieve this goal. For
instance, we have developed new routes to pattern high aspect-ratio three dimen-
sional nanowires using advanced lithography techniques (see Fig. 10.1c). Moreover,
we have used a new concept to store and move information in the vertical direction,
based on magnetic solitons in superlattices, which is the focus of this chapter.

10.2 Magnetic Solitons in Superlattices

We recently proposed [38] a new concept for the storage and motion of informa-
tion along the vertical direction, based on magnetic solitons. This type of excita-
tion is present in superlattices as the one shown in Fig. 10.2, formed by alternating
magnetic/non-magnetic films. If the non-magnetic spacer is only a few nanometers
thick, and is chosen appropriately, neighboring magnetic layers will preferentially
align anti-parallel to each other due to Ruderman-Kittel-Kasuya-Yosida (RKKY)
antiferromagnetic interactions [39]. In the case studied here, consisting of nanometer-
thick magnetic layers with in-plane magnetization and uniaxial anisotropy, the sim-
plest way to describe such a system is based on a macrospin approximation: each
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Fig. 10.2 a Transmission electron microscopy image of a sputtered magnetic superlattice formed
by N CoFeB ferromagnetic layers and N − 1 Ru non-magnetic layers. b Scheme of the superlattice
under investigation
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Fig. 10.3 Macrospin approximation for an antiferromagnetic superlattice. a 1D linear chain of
spins with anti-parallel arrangement, where the anisotropy and coupling fields are indicated. b Two
possible anti-parallel ground states of the system at remanence, with � = +1 or −1. c Magnetic
soliton (marked in red) in the middle of the system. The spin angles represent in-plane rotations.
d The twist in a top forms a kink which can be topologically protected

layer is represented by a single spin and the superlattice by a linear 1D chain of spins,
as shown in Fig. 10.3a. The fundamental fields which characterize this system are the
coupling antiferromagnetic field HJ = |J |/Mst and the anisotropy field Hu = 2K/Ms,
where J is the coupling surface energy density (erg/cm2) between ferromagnetic lay-
ers, Ms is the saturation magnetization (emu/cm3) of the layers, t is their thickness
(cm) and K is the anisotropy energy density (erg/cm3).

In this case, as shown in Fig. 10.3b, the ground level of the system is degen-
erate: defining the parameter � = (−1)i−1 cos θi , with θi the angle formed by the
magnetization of layer i with respect to the easy axis, there are two ground states
corresponding to the two possible anti-parallel states (� = +1 or −1). Analogously
to a magnetic nanowire (Fig. 10.3c), when the two types of domains meet, a wall is
formed separating the two domains. This anti-ferromagnetic wall, with the spins
forming it marked in red in the figure, is a soliton or kink: an excitation with
respect to the ground state, which is mobile along the vertical direction, and may be
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topologically protected: the only way to get remove it is to switch all the spins above
(or below) it. Another way to think about it is by using a finite version of the Mobius
strip [40]: as schematically shown in Fig. 10.3d: considering the system as a top, a
topologically locked state is formed by twisting it: nomatter how the top is deformed,
it will retain the kink. The only way to remove it is by twisting the top back in the
contrary manner.

Figure10.3c shows two types of scenarios regarding the width of the soliton:
on the left, a sharp soliton formed only by two layers is present between both
antiferromagnetic domains, whereas on the right, this soliton is wider, being formed
by several spins. The width of a soliton will be related to the ratio between coupling
and anisotropy fields. It therefore means that on the left case Hu > HJ, whereas
HJ >Hu for the right one. This situation is analogous to a domain wall in a nanowire
[28]; however, whereas in the case of nanowires the width is fixed by the properties
of the material used, for a soliton in a superlattice the two coupling fields (especially
HJ) can be finely tuned, making it possible to control its width.

From what we have just described, and again following an analogy with domain
walls in magnetic nanowires, solitons in superlattices can be used as mobile data
carriers for spintronic shift registers; the major difference between both types of
systems is in their ability to transport information in the vertical direction: whereas
it is very complicated using domain walls in magnetic nanowires, due to the great
difficulty to grown vertical nanowires, solitons in superlattices do this easily, due to
the vertical nature of the multilayer stack.

After introducing the concept of solitons for 3D spintronics, the first questions to
answer are how we can inject solitons, and how can we move them in a controlled
manner within a superlattice. In the following section, we will explain in detail
the energetics of the system under consideration, as well as contextualize our work
regarding the injection of solitons within superlattices.

10.3 Soliton Injection Using the Surface
Spin-Flop Transition

Figure10.4 shows a superlattice formed by N antiferromagnetic-coupled ferromag-
netic layers. When a field H is applied along the easy axis (EA) direction, the total
energy per unit area (u) will be:

u = Ms

[
N∑

i=1

ti

(
1

2
Hui sin

2 θi − H cos θi

)
+

N−1∑

i=1

(
ti HJi cos(θi+1 − θi )

)
]

(10.1)

where the index i refers to the ferromagnetic layer number and θi is the angle formed
by the magnetization with the EA. The first term refers to the uniaxial anisotropy of
the system, the second to the Zeeman energy when an external field is applied, and
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Fig. 10.4 a Schematic of a ferrimagnetic superlattice formed by alternating CoFeB-Ru layers,
where the properties of one of the edge layers (the bottom one in this case) differ from the rest of
the system. b Magnetization arrangement of two neighbouring layers under an external magnetic
field applied along the easy axis direction. The angles of both layers with respect to that axis are
indicated
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Fig. 10.5 Schematic of the evolution of a linear chain of spins will well-defined anisotropy and
antiferromagnetic coupling under external magnetic fields along the easy axis, for chains with odd
and even number of layers

the third to the RKKY antiferromagnetic coupling, which depends on the relative
angle between first neighboring spins.

Taking this into account, it is well known [41, 42] that there exists an impor-
tant asymmetry in the behavior of the system under external magnetic fields, if the
number of layers constituting the superlattice is either even or odd, as shown in
Fig. 10.5. Starting from an antiparallel state at remanence, and under an external
positive magnetic field, the minimization of (10.1) gives a switching field for layer i:

Hswi =
√
2HJi Hui + H 2

ui (10.2)

If the number of layers is odd, as the two edge layers are already in the direction
of the applied field, the bulk spins are those which will switch, at the so-called bulk
spin-flop field:

HBSF =
√
4HJHu + H2

u (10.3)
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On the contrary, if the number of layers is even, one of the two edge layers will be
antiparallel to the field; in that case, that edge layer will switch independently before
the bulk layers at the surface spin-flop transition value:

HSSF =
√
2HJHu + H2

u (10.4)

After the surface layer transition, the bulk layers will switch at the bulk spin-flop
transition, which occurrs at higher field. Note that the factor of two between the
prefactors multiplying HJHu in (10.2) and (10.3) is due to the fact that a bulk layer
has twoneighboring layers and a surface layer only one. Importantly, in the field range
between HSSF and HBSF, the system is incommensurate: part of it is still antiparallel,
but at one edge the spins tend to be parallel to each other. We can therefore use the
surface spin-flop transition as a method to inject solitons (marked in red in Fig. 10.5)
at one edge of the superlattices. The concept presented here is not new. In fact there
is a large amount of literature devoted to this effect, including experimental and
theoretical works [41–52]. We will show in the next section the difference between
our work and previous one to control the injection and propagation of solitons.

We have used macrospin Monte Carlo simulations to study the behavior of super-
lattices with different properties under external magnetic fields. Figure10.6 shows
snapshots of these simulations for the following parameters: N = 16, t = 1nm, J/Ms

= 1 kOe nm, Hu = 250 Oe. These correspond to superlattices similar to those studied
by other authors [46, 51], where they investigated the behavior under field for large
number of identical layers and observed both experimentally and via simulations the
surface and bulk spin-flop transitions in these systems. The simulations shown here
reproduce these results, with both bulk and surface transitions indicated. After the
injection of a soliton at the bottom of the superlattice, when the field is increased
further, the soliton is moved towards the middle of the superlattice, until the bulk
spin-flop transition is reached, where the soliton is removed from the system. As in
this case HJ is substantially larger than Hu, the formed soliton is broad, extending
across several layers, which can be detrimental for applications where a large pack-
ing of data bits is required. Moreover, other evident problems for applications are
the lack of control of where the soliton is formed (a system with all layers identical
can end up in any of the two antiparallel states with equal probability, which defines
what edge layer is antiparallel to the field at remanence) and the impossibility of
propagating the nucleated soliton in a controlled manner using this field protocol.

In the system sketched in Fig. 10.4a we show the approach used here to solve these
problems: our superlattices are synthetic ferrimagnets, i.e. one of the edge layers, in
this case the bottom one, has different properties from the rest of the system: J is
constant along the full superlattice, but t1 and Hu1 are different from the rest. Calling
Hu and HJ the anisotropy and coupling fields for i > 1, Hu1 �= Hu and HJ1 = (t/t1) HJ.
This asymmetry in the system has a large influence in the nucleation and propagation
of solitons, as will be shown in following sections.
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Fig. 10.6 MacrospinMonte Carlo simulations for a N = 16 superlattice similar to the one studied in
[51]. Note that the magnetization of the layers is always in plane, due to the strong shape anisotropy
in thin films

10.4 CoFeB/Ru Ferrimagnetic Superlattices

In this section, we show experimental results for CoFeB/Ru sputtered superlattices,
which is the system that we have used for the injection and propagation of solitons.
Figure10.7a shows the hysteresis loop of 15nm-thick CoFeB single layers measured
by Kerr effect, with the field applied along the easy and hard axis. All samples
presented here are grown by magnetron sputtering on Ta seedlayers (2–4 nm), with a
Ta cap (4–5 nm). From these loops, we can infer the coercive field (Hc) and anisotropy
field (Hu) of the layer. As observed, both fields have a similar value, indicating a
negligible Brown’s paradox; therefore, the use of macrospin simulations based on a
Stoner-Wohlfarth analysis, as followed here, is in principle a good approximation.
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Fig. 10.7 a Easy and hard
axis loops for a 15nm-thick
CoFeB single layer, showing
a Stoner-Wohlfarth like
behaviour. b Evolution of
coercive and anisotropy
fields of CoFeB single layers
as a function of their
thickness
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Figure10.7b shows the evolution of coercivity and anisotropy with CoFeB thick-
ness. As observed, both fields are approximately constant for thick layers, and start
to decrease as the films become thinner, a typical effect observed in most transition
metals and their alloys [53]. We have exploited this dependence with thickness to
have two well-defined anisotropy fields in our CoFeB films forming ferrimagnetic
superlattices, since Hu (5nm) ≈ 20 Oe, and Hu (15nm) ≈ 40 Oe. Additionally, in
order to control the RKKY coupling between layers, we have grown a series of
bilayers, formed by two CoFeB layers separated by Ru, a non-magnetic interlayer
with large RKKY interactions [39]. Figure10.8a shows the experimental Kerr loop
(black dots) of a ferrimagnetic bilayer formed by two CoFeB layers with thicknesses
t1 = 15nm and t = 5nm (notation as indicated before, “1” index for bottom layer),
with the signal extracted from macrospin simulations superimposed (blue line) onto
the experimental data. The behavior of the bilayer under the applied magnetic field
is sketched by blue arrows. By making experimental data and simulations coincide,
we can extract the parameters of the bilayer, in this case: Hu1 = 40 Oe, Hu = 20 Oe,
J/Ms =−175 Oe nm. The inset shows the experimental loop when the field is applied
along the hard axis; the saturation field value of this loop can be used to extract the
bilayer parameters independently [54], and confirm the validity of those obtained
from the simulations.

We have varied the thickness of Ru for different bilayers, in a range around
the third antiferromagnetic peak, located at 3.4nm (see Fig. 10.8b). The maximum
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Fig. 10.8 aEasy axis experimental and simulation hysteresis Kerr loops for a ferrimagnetic bilayer,
formed by two CoFeB layers with t1 = 15nm and t = 5nm. The magnetic behaviour of the system
during the field cycle is indicated by blue arrows. The inset shows a hard-axis loop. b RKKY third
antiferromagnetic peak obtained by varying the interlayer Ru thickness around 3.5nm. Both energy
surface density and equivalent coupling field for a 5nm-thick layer are included
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Fig. 10.9 Kerr hysteresis loops with the field along the easy axis, for superlattices with odd number
of layers: N = 3 (a) and N = 5 (b)

corresponds to J = −22.6merg/cm2, equivalent to HJ1 = 12.5 Oe and HJ = 37.6 Oe,
respectively. Once the properties of the single layers and the coupling between them
have been fully characterized, the next objective is to grow ferrimagnetic superlattices
with N ≥ 3.

First, we investigated the behavior of ferrimagnetic superlattices with an odd
number of layers. Figure10.9 shows the cases of N = 3 (a) and N = 5 (b). As before,
macrospin simulations are superimposed onto the experimental loops, with simula-
tion parameters the same as those extracted from single layers and bilayers. The first
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thing to notice is that the remanent state consists of an antiparallel arrangement of
layers; this is caused by the parameters chosen, HJ > Hu. Secondly, this antiparallel
state is well-defined: in comparison with a symmetric system, where the two antipar-
allel states would be equivalent, here the system flops from the saturated state into a
one which is well defined (AP1): the bottom thick layer stays along the field direction
for longer than the others, which flop before, i.e. � = −1. Having a well-defined
antiparallel state at remanence is the first advantage of using ferrimagnetic superlat-
tices. We can also notice that the system transits from that antiparallel state (AP1) to
the other (AP2) as the field increases: that new state is energetically favorable under
non-zero magnetic fields, since the bottom layer flips to become aligned along the
field direction. After AP2, the system transits to a flopped state at HBSF, as expected
for an odd-number of layers system. Also notice that in a ferrimagnetic superlattice,
the spins corresponding to thicker films (the edge bottom layer in this case) flop less
than the thin ones, due to anisotropy and Zeeman energy contributions.

Several of the characteristics explained above also apply to systems with an
even number of layers. Figure10.10 shows the Kerr hysteresis loops for N = 4 and
N = 6. Again, a well-defined antiparallel state (AP) is present at remanence, with
the bottom layer aligned along the previously-applied saturating field, � = −1 for
negative saturating fields. After this state, and under positive fields, the bottom layer
switches independently of the rest at the surface spin-flop transition, in this case
HSSF ≈ 45 Oe. This value differs from the one in an equivalent system with same
properties for all layers, where the transition would be ≈ 50 Oe. More importantly,
according to simulations, as the field is increased, the magnetic configuration of the
system does not change until the bulk spin-flop transition at HBSF ≈ 65 Oe, contrary
to the case shown before in Fig. 10.6, where a soliton expanded towards the middle
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Fig. 10.10 Kerr hysteresis loops with the field along the easy axis, for superlattices with even
number of layers: N = 4 (a) and N = 6 (b)
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of the superlattice after being injected at one edge. The particular behavior described
here is due to the value chosen for HJ1/Hu1, which is about 4 times smaller than
HJ/Hu, keeping the soliton sharp and localized between layers 1 and 2 until the field
reaches the bulk spin-flop transition. In order to use solitons in superlattices asmobile
objects for possible data storage applications, a good control of the injection, direc-
tion of propagation and extension of that type of spin texture is required. According
to what we describe here, using superlattices with an even number of layers, and
with an edge layer different from the rest, is effective to inject sharp solitons in a
well-defined position. We will see in the next section how this is also essential to
controllably propagate them within superlattices using minor loops.

10.5 General Diagram for Injection and Propagation
of Solitons in Ferrimagnetic Superlattices

As described in the previous section, the use of ferrimagnetic superlattices where
one of the edge layers has different properties from the rest allows the creation of a
sharp soliton at that edge after the surface spin-flop transition. We discuss now, by
means of simulations, the behavior of the system under minor loops such as the one
sketched on the right side of Fig. 10.11, i.e. field sequences as follows:

• The initial state (I) is a well-defined AP state at remanence, � = −1, result of
coming from negative saturation.

• The field is increased until the system switches at a field HC (it may be HSSF, but
not necessarily).

• The final state (F) is the result of reducing the field, reaching a second remanent
state.

For simplicity, we focus our discussion in a system with N = 6. The addition of more
layers will be discussed later. The left part of Fig. 10.11 is a diagram generated by
macrospin Monte Carlo simulations where the behavior of an N = 6 superlattice is
studied under the type of minor loops described before. The properties of all layers
in the superlattice (except for the bottom edge layer), are those described before:

Fig. 10.11 Diagram
generated by macrospin
Monte Carlo simulations
showing three different
regions for the behaviour of
the system under minor field
loops. Adapted from [55]
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HJ = 37.6 Oe and Hu = 20 Oe. The axes in the diagram correspond to the ratios
between the anisotropy (Hu1/Hu, explored from 0.2 to 3) and thickness (t1/t, explored
from 0.8 to 4) of the edge layer with respect to all others of the superlattice; in other
words, we are evaluating howdifferent degrees of ferrimagnetism in the system affect
the injection and propagation of solitons under minor loops. Note that the diagram
is calculated for a fixed interaction energy density J = −22.6 merg/cm2, so HJ1 will
change when t1 is varied. As observed in that figure, the degree of ferrimagnetism
of the superlattice is an essential ingredient for its behavior under minor loops. This
had not been evaluated in previous works, which focused on systems with all layers
having identical properties (both ratios = 1).Whilst the use ofminor loopswas briefly
discussed in [52], here we extensively show how this type of field sequences can be
used to control the injection and propagation of solitons.

Three main regions are observed in the diagram: soliton-injection-and-propa-
gation (R1), edge-layer-switching (R2) and bulk spin-flop (R3). Simulation snapshots
for the different regions at different parts of the field cycle are shown in Fig. 10.12.
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Fig. 10.12 Simulation snapshots for the different regions of the diagram shown in Fig. 10.11
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Before describing in detail all of the regions, it is necessary to introduce an additional
switching field in order to fully understand the diagram, the field necessary to reverse
back layer 1 coming from positive saturation [56]:

HR = 2|HJ1| − Hu1√
1 + 2|HJ1|/Hu1

(10.5)

In regions R1 and R2-yellow, the first transition of the system under increasing
magnetic fields corresponds to layer 1 switching at its corresponding HSSF value.
As discussed in the previous section, layer 1 reverses separately from the rest of the
superlattice at that field, creating a sharp soliton at the bottom of the superlattice (sec-
ond image in Fig. 10.12a, b). The behavior of these two regions, equal for increasing
field, become different when decreasing it (third and fourth image in Fig. 10.12a, b):
in R1, the field necessary to propagate the soliton Hp is such as HP > HR , with the
contrary situation in R2; this means that when the field starts to decrease, a soliton
is propagated through the superlattice for R1, whereas in R2 layer 1 switches back,
ejecting the soliton downwards. As a result of an effective/non-effective propagation
of the injected soliton, the second remanent state (F) will be the contrary as the ini-
tial one in R1 (� = +1), whereas it will be the same in R2 (� = −1). As expected,
the snapshot corresponding to R1 (Fig. 10.12) show how the soliton broadens as is
propagated, due to the increase of HJ/Hu for layers above the first one. Interestingly,
R1 only exists for a critical ratio t1/t > 1.5. As t1/t increases from that value, the
area of R1 is increased to the detriment of R2, becoming the mode of operation
for lower Hu1/Hu ratios. It is therefore not necessary to have an edge layer with
larger anisotropy than the others, as long as it is significantly thicker: Zeeman energy
becomes dominant as t1 increases, blocking a possible downwards expulsion of the
soliton.

The case of R2-white is similar to R2-yellow: no soliton propagation is produced,
but the injected soliton at one edge of the system is expelled instead. In the white
case, however, t1/t < 1, whichmeans that the (I) state coming from negative saturation
will be the contrary AP as the one before: now the top edge layer is thicker than the
bottom one, whichmeans that will stay along the field for longer, defining a remanent
state with top (bottom) layer pointing left (right), i.e. � = +1. The behavior of the
superlattice for the rest of the field sequence is analogous to what it was described
before for its yellow counterpart (see Fig. 10.12c): the edge layer which switched at
HSSF is not anisotropic or thick enough to avoid the expulsion of the soliton, resulting
into the same (I) and (F) states,� = +1. In the last region of the diagram, R3, Hu1/Hu

becomes higher than before, resulting into HSSF > HBSF, due to the large anisotropy
of the bottom layer. Therefore, in this case, thewhole system transits directly from the
initial AP state to a flopped state at HBSF: no surface spin-flop transition is produced.
This means that for large anisotropies of layer 1, the surface spin-flop transition is
blocked, with an even number of layer system (N = 6) effectively behaving as a
superlattice with an odd number of layers.

The vertical line t1/t = 1 in the diagram requires special attention, since previous
worksmainly focusedon this type of system.Point (1,1) of the diagram,with all layers
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having equal properties, is located inside R2 region, where no effective propagation
of soliton occurs. Either of the two AP states (� = +1 or−1) is possible, but in both
cases the edge layer which switched at HSSF switches back when reducing the field.
By varying Hu1/Hu, the state initially present (I) is controlled: If Hu1/Hu < 1, the top
layer points left at (I), i.e. � = −1, and the top surface flops independently from
the other layers, whereas if 1 < Hu1/Hu < 1.5, (I) will be such as the bottom layer
points left, i.e. � = −1, and therefore it is the bottom layer which now switches
independently of the others under increasing fields. However, in both cases these
spin arrangements are always reversed when the field starts to decrease (R2). Still
along the same line of the diagram, if Hu1/Hu > 1.5, the layers directly transit into a
bulk-flopped state (R3).

The diagram shown here is a generalization of the surface-spin flop transition
for ferrimagnetic systems, which shows a rich behavior just by introducing a slight
asymmetry to the system. From it, we can conclude that the presence of a thicker
edge layer is essential for a successful nucleation and propagation of solitons using
the mechanisms explained here. As discussed in Sect. 10.3, in a superlattice with all
layers equal, and assuming that the nucleation of a soliton occurs via a surface spin-
flop transition at the bottom surface, if we require a soliton to propagate upwards, the
only option is to apply fields H such as HSSF < H � HBSF, resulting into the soliton
moving beyond the center of the stack. However, with H approaching to HBSF is the
soliton width substantially increases and the exact configuration of the superlattice
near a bulk-flopped state is very sensitive to small variations in layer properties.
On the contrary, the process shown here for region R1 is much more robust: the
soliton extension is well controlled, since the maximum field needed is HSSF, the
propagation direction is well defined, and it does not depend on the number of layers
of the superlattice, as long as it is even.

10.6 Experimental Realization for the Injection
and Propagation of Solitons in CoFeB/Ru
Ferrimagnetic Superlattices

After showing the general behavior of N = 6 ferrimagnetic superlattices using
macrospin Monte Carlo simulations, in this section we reproduce experimentally
the behavior described for the area R1 of the diagram, the part with soliton propa-
gation. For that, we carried out experiments in CoFeB/Ru superlattices as the one
previously described in Fig. 10.10, subjected to the same type of field cycle explained
in the previous section. These superlattices have N = 6, HJ = 37.6 Oe, t = 5nm,
Hu = 20 Oe, t1 = 15nm and Hu1 = 36 Oe, i.e. their properties are such as to be in the
R1 region.

Figure10.13 shows the Kerr signal obtained experimentally (a) and using sim-
ulations (b) for this superlattice. The black line is the signal along the negative-to-
positive major field cycle, and the blue line is the signal when a minor loop as the
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Fig. 10.13 Experimental (a) and simulated (b) Kerr signal in anN = 6CoFeB/Ru superlattice under
minor loops. The system, starting from negative saturation, goes from AP1 at first remanence, to
AP2 at the second, after injecting a soliton at HSSF. Simulations show how this occurs via the
propagation of a soliton upwards the system. Adapted from [55]

one previously explained is followed. A good agreement between experiments and
simulations is found: as shown in Fig. 10.12a, starting from negative saturation, the
system is brought to remanence (state I). As the bottom layer is 3 times thicker than
the others, AP1, of the two possible antiparallel states, is the one with the bottom
layer pointing left (� = −1). As the field is increased further, becoming positive,
the bottom layer switches at HSSF ≈ 25 Oe, creating a soliton at the bottom of the
superlattice. As the field starts to decrease, the thick bottom layer blocks the down-
wards expulsion of the soliton, leading to upwards propagation at HP ≈ +12 Oe. As
a result, the other antiparallel configuration AP2 (� = +1) is formed when the sec-
ond remanent state is reached (F). These experiments show therefore the successful
injection and propagation of solitons in superlattices using a modified surface-spin
flop mechanism in ferrimagnetic superlattices.

10.7 Influence of the Anisotropy/Coupling Ratio
and Number of Layers for Soliton Propagation

The results shown here, both experimentally and via simulations, correspond to
bulk coupling/anisotropy ratios |HJ |/Hu = 1.75. As described in Sect. 10.4, for this
ratio a wide R1 region is found for the formation of mobile solitons in the case
of superlattices with N = 6. However, previous literature has mainly focused on
antiferromagnetic superlattices with significantly larger ratios, typically larger than
10. It is therefore important to complement the diagram of Sect. 10.5 by perform-
ing simulations with larger ratios, to understand the importance of an appropriate
anisotropy/coupling value for the injection and motion of solitons. For the same dia-
gram shown in Fig. 10.11, and focusing on the point (Hu1/Hu = 1.5, t1/t = 3), we have
studied the behavior of the system with HJ/Hu progressively increasing. We observe
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Fig. 10.14 Simulation snapshots for an N = 14 superlattice with parameters such as those which
resulted in a behaviour in the R1 region for a N = 6 superlattice

that a good injection and propagation of solitons occurs as long as HJ/Hu < 2.25.
For higher ratios, a soliton nucleated at the bottom layer is not stable within the
system, being immediately expelled up the stack at HSSF; this result was expected,
in agreement with our initial discussion about the dependence of soliton width with
HJ/Hu ratio. A similar trend is expected for other points of the diagram, which makes
us conclude that the wide R2 region found for a specific coupling/anisotropy ratio in
Fig. 10.11 shrinks as this ratio increases. In any case, a good operation is conserved
for a significant range, as soon as it is not much larger than 1.

Another factor which influences the stability of solitons within superlattices is
the number of layers N. Figure10.14 shows the same system and field sequence as
described in Fig. 10.12a, but now with N = 14 layers instead of 6. We can observe
how, after the injection of a soliton at the bottom of the superlattice and propagation
when the field is decreased, the system ends up in a non-antiparallel remanent state
(F) where the soliton, instead of being fully ejected from the superlattice, resulting
in the second antiparallel state, stays in the middle. The complex energy potential
created by the edges of the superlattice is responsible of the difference observed
as a function of N. This result suggests that it should be possible to inject solitons
in superlattices which would be stable at remanence, just by using the mechanisms
here described. However, the evolution in properties of the superlattices, affecting
coupling and anisotropy as they are grown is major issue which prevents the creation
of extended systems. Furthermore, as the stack height increases Kerr signals become
very complex and so probing the state of the system is challenging, requiring more
complex techniques such as polarized neutron reflection [57].
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10.8 Conclusions and Outlook

In summary, we present here a new concept to move binary information along the
vertical direction, based onmagnetic solitons in antiferromagnetic superlattices. Soli-
tons are walls separating the two possible antiparallel states in a superlattice formed
by ferromagnetic layers coupled antiferromagnetically between them via RKKY
interactions. The main advantage of using these excitations is their intrinsic mobility
along the vertical (perpendicular to the thin film plane), in contrast to conventional
domain walls in planar nanowires, as well as the possibility to control their width by
tuning anisotropy of layers and exchange indirect coupling between them.

Moreover,we have shownhow it is possible to inject andmove solitons in superlat-
tices in a controlled manner using the surface spin-flop transition followed by minor
field cycles. For that, we have extended previous works, investigating ferrimagnetic
superlattices formed by an edge layer with different properties from the rest. Via
macrospin simulations, we have generalized the surface spin-flop transition to this
type of asymmetric superlattices, showing how the degree of ferrimagnetism of the
superlattice has a great importance for the injection and propagation of solitons. In
particular, we have identified a large area of the parameter spacewhere solitons can be
injected andmoved unidirectionally. The importance of a correct coupling/anisotropy
ratio for the controlled motion of solitons has also been discussed. Finally, we have
shown the first experiments for controlled injection and propagation of solitons in
superlattices.

The work presented in this chapter, part of it previously published in [55], is part
of the activity of our group on solitons. Additionally, and complementing this work,
we have shown how the injection mechanism presented here can be generalized to a
non-macrospin situation, where the real micromagnetic configuration of each layer
is considered, and the presence of collective effects during switching is present [57].
Also, we have managed to block the expulsion of broad solitons using appropriate
boundary conditions, creating helical states at remanence [57], which could have
applications in energy-storage spintronic devices [58]. Furthermore, we have shown
how it is possible to move solitons in superlattices synchronously with external
magnetic fields. In the case of broad solitons such as those shownhere, this is achieved
by using rotating magnetic fields and exploiting how the sense of rotation of the
magnetic field is coupled to the intrinsic chirality of the solitons, resulting into bi-
directional vertical shift registers [59]. In the case of sharp solitons, this is achieved
instead of by creating a ratchet energy profile for soliton propagation, by periodically
alternating the properties of the layers forming the superlattice; this results into
systems behaving as unidirectional vertical shift registers for data storage [60–62]
and logic [63] applications.
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