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Preface

If I have seen further it is by standing on the shoulders of giants.
Isaac Newton
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(KIT). The topic regarding the toroidal multipole moments was originally suggested by my su-
pervisor, Professor Carsten Rockstuhl, who had just started to establish a new working group
at KIT at the end of 2013. Pointing out some inconsistencies in various derivations and descrip-
tions of the electromagnetic multipole expansion, he motivated me to dig into the depth of the
theory of electrodynamics and to find out what’s really going on in the multipole expansion.
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justified in general. Condensing these insights then lead to a master thesis which was approved
by the supervisors, Prof. Carsten Rockstuhl and Prof. Martin Wegener, and later on also by
Springer Spektrum, resulting in their decision to publish it as a book.

At this point, I want to take the chance to express my cordial thanks to several people without
them my master thesis and therefore this book would not have been possible. First of all, I
would like to thank Prof. Dr. Carsten Rockstuhl for giving me the possibility to work on such an
interesting and rewarding topic and for being a great mentor regarding all aspects of research. I
would also like to thank Dr. Ivan Fernandez-Corbaton, who did a great job as advisor with his
analytical skills and extensive knowledge of literature.

Furthermore, I would like to thank: Dr. Christoph Menzel for fruitful discussions and proofread-
ing the thesis; Iris Schwenk for providing me a nice template for the layout of the thesis; Dr. An-
dreas Poenicke for his support regarding computer problems; Clemens Baretzky for creating the
images; my half-brother Philipp for proofreading the thesis; and my roommates Dr. Giuseppe
Toscano and Alexander Kwiatkowski for sharing the office with me and helping me with all
kinds of problems. I am grateful to Springer Spektrum for publishing my master thesis, and I
want to thank my contact persons there, Nicole Schweitzer and Marta Schmidt. Last but not
least I would like to thank my parents for their support during my education.

Heidelberg, Stefan Nanz
November 2015
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1 Introduction and Overview

The analysis of electromagnetic radiation is an important resource to investigate the properties
of materials. Often, unknown materials are irradiated by a suitable light source, e.g. a laser, and
the scattered electric and magnetic fields are used to obtain information about the materials.
This requires to link the properties of the incident to the scattered radiation. This asks to
solve Maxwell’s equations with spatially distributed materials whose properties are introduced
on phenomenological grounds. A prototypical example for such approach is ellipsometry. When
designing e.g. antennas, the opposite is of relevance: An incident and scattered electromagnetic
field is given and the structure, which produces this field, shall be constructed.

The latter problem also applies in the context of metamaterials. Metamaterials are made from
small scattering objects. If their optical response is dominated not just by an electric dipole
moment but also by higher order electromagnetic multipole moments, material properties not
available in nature can be reached. This is possible, since on phenomenological grounds natural
materials at optical frequencies usually are considered as an ensemble of polarizable entities
with a scattering response that corresponds to an electric dipole. This only allows to observe a
dispersion in the optical permittivity

Now, by composing metamaterials from strongly scattering unit-cells, also called meta-atoms
[1], other material properties are allowed to be dispersive. The key is to make meta-atoms suf-
ficiently small and to arrange them sufficiently densely in space, such that light will experience
a homogeneous medium with properties derived from the scattering response of the individual
meta-atom. For example, if their scattering response is dominated by a magnetic dipole moment,
a dispersive permeability can be observed. If their scattering response is dominated by an elec-
tromagnetic coupling, a strong optical activity can be observed. Studying the light propagation
in metamaterials and the scattering response from individual meta-atoms is a major challenge
for contemporary theoretical optics.

From the many interesting properties meta-atoms may exhibit, we discuss in this thesis the
toroidal multipole moments. Toroidal moments are a third multipole family besides the electric
and magnetic moments. They have several properties which attract the interest of research.
It has been shown [2] that current distributions, which cause toroidal moments, violate New-
ton’s third law. With toroidal moments it is possible to generate non-zero vector potentials
without electromagnetic fields [3], hereby realizing non-radiating charge-current distributions
[4, 5]. Also, a negative index of refraction can be caused by toroidal moments [6]. Though the
experimental possibility to realize materials with such properties is quite new, there has been
a theoretical interest for such characteristics for long time. Although being considered in the
context of electrodynamics usually as exotic, the properties of toroidal moments came again in

S. Nanz, Toroidal Multipole Moments in Classical Electrodynamics, BestMasters,
DOI 10.1007/978-3-658-12549-3_1, © Springer Fachmedien Wiesbaden 2016



2 Introduction and Overview

the focus of interest with the advent of metamaterials. Particularly the similar field distribution
of electric and toroidal moments has been a fascination, but also a source of confusion in the
contemporary literature. Disentangling the contributions of electric and toroidal multipole mo-
ments is therefore important and may also shed new light on supposedly well-known systems.
For example, dielectric spheres [7] and nanowires [8] have recently been reported to have not-
negligible toroidal moments. It is, therefore, the purpose of this thesis to understand
the origin of toroidal multipole moments from first principles in the context of a
multipole expansion.

For many decades, such toroidal multipole moments were neglected in the treatises of multipole
expansion. It is worth noting that in standard textbooks no toroidal moments are mentioned
[9–11], maybe because of their insignificance in experiments at the time when the books were
written, or maybe the authors were not aware of them. In most cases, the toroidal moments
are treated as a part of the electric multipole moments. This is often an appropriate approach,
because the toroidal moments are extremely weak in natural materials and the fields of toroidal
moments are similar to those of electric moments. However, in meta-atoms their contribution
can get as strong as that of the electric multipole moments. It is then not sufficient anymore to
just attribute the toroidal multipole contributions to the electric contributions. This would e.g.
leave unexplained vanishing electromagnetic fields due to destructive interference of the fields of
electric and toroidal moments. Also, when considering time inversion, the fields show different
behavior, meaning that the sum of both fields changes also. This could not be explained with just
electric multipole moments, because they do not change under time inversion. One also wishes to
have multipole moments that behave well under rotations, meaning that the angular momentum
properties remain invariant. This is not the case when the toroidal multipole moments are mixed
up with the electric and magnetic multipole moments. For all reasons we wish to clearly state
there is a necessity to correctly distinguish the toroidial moments from the electric and magnetic
multipole moments.

To enable such distinction, we will investigate in this thesis several approaches to study the
emergence of toroidal moments from the basic equations of electrodynamics within the frequently
used formalism of multipole expansions. Already in the 1970s and 1980s [12], but also in recent
years [13], there were a few publications on quite elaborate and cumbersome formalisms how
the toroidal moments can be deduced from general representations of the charge and current
densities. However, this is not the focus of this thesis. It is more dedicated to formulate the
standard electrodynamic multipole expansion in a way so that on the one side the derivations
from textbooks are used, but on the other side the toroidal moments are included. We will
show that the usual Cartesian Taylor expansion has a few disadvantages regarding the proper
definition of multipole moments, and outline other methods how the multipole moment tensors,
including the toroidal ones, can be defined consistently.
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Structure of the Thesis

After this introduction in chapter one, we start in chapter two with a brief history of the research
about toroidal moments. Furthermore, reasons are given why toroidal moments are needed
besides the standard electric and magnetic moments for a complete description of arbitrary
charge-current distributions. For this sake, we will discuss several prototypical charge-current
distributions and symmetry properties of multipole moments. Also, we give a brief delimitation
of toroidal moments and anapoles because they are often mixed up in literature.

In chapter three we introduce the most important equations necessary to perform the electrody-
namic multipole expansion. These are Maxwell’s equations, the continuity equation and wave
equations as well as their solutions. The useful formalism of potentials will also be outlined,
introducing the scalar and vector potential and the Debye potentials. We will also clarify our
notation and symbols.

In chapter four we present at first briefly the standard way of doing the multipole expansion in
Cartesian coordinates based on the potentials. We discuss advantages and disadvantages of the
Taylor series and define the multipole moment tensors in two ways. One way ignores the exis-
tence of toroidal moments and contains multipole moment tensors without definite properties
under parity and rotations. Hereafter, we show how from those inconvenient and inconsistent
tensors the correct physical multipole moment tensors, including the toroidal ones, can be de-
rived and how this can be motivated from an exact decomposition of the vector potential into
tensors with distinct symmetry properties. Additionally, we discuss a method of how arbitrary
multipole moment tensors can be calculated and how the vector potential can be expressed with
these tensors. In the last part of the chapter, the multipole expansion is performed in spherical
coordinates. We compare this with the expansion in Cartesian coordinates and show how the
toroidal multipole moment tensors emerge from a decomposition of the current density in mo-
mentum space. This derivation will raise the question if the toroidal moments are a full degree
of freedom of a given system, or if they are always related to the electric dipole moments.

In chapter five we perform the multipole expansion based on a decomposition of the electromag-
netic field. We will see that with this decomposition, it is not possible to distinguish between
electric and toroidal moments. In a second approach, we will additionally use the charge and
current distributions to express the expansion coefficients in the field decomposition. We will
show that even with the sources, the electric and toroidal moments are still mixed up, but can
be disentangled in the long-wavelength limit.

In chapter six we will outline how the transformation between the different multipole moments
can be done. We will give transformation formulae to express the Cartesian multipole moments
with the spherical moments. We will then discuss the fields of toroidal moments, both in the
far field approximation and in the exact form. We will also show how a non-radiating current
distribution can be generated using electric and toroidal dipoles.
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In chapter seven, finally, a summary of the thesis is given, together with an outlook to possible
future experimental realizations. We outline remaining open questions which could not be
answered as part of this work.

Notation

The most used symbols are listed with a short definition in the appendix. Basically we use
Einstein summation convention, however, in many cases, the summation symbol is denoted
redundantly for clarity. A scalar product is always indicated through a dot “·”. The imaginary
unit is written as i, the index variable as i. ε is the Levi-Civita symbol, ε the scalar permittivity.
e is Euler’s number, the superscript e at tensors indicates the electric origin of these quantities.
Tensors are denoted with majuscules and a hat, tensor entries with majuscules and subscripts
and operators with majuscules in calligraphic style. ϕ is the electric scalar potential, whereas φ

is the polar angle in spherical coordinates. t is the ordinary time and τ is the retarded time.

We further distinguish between “multipoles” and “multipole moments” in the following sense:
A multipole is a term in the multipole expansion of the vector or scalar potential or of the fields.
A multipole moment is a numeric, in general tensorial quantity, which is characterized through
the charge or current distribution. A multipole consists of a multipole moment and a coordinate
dependent factor. We use “multipole moment” and “multipole moment tensor” as synonyms,
but in the first case, the emphasis is on the physical aspect, whereas in the latter case, the
emphasis is on the mathematical aspect.



2 Why another Multipole Family?

This chapter serves as a phenomenological motivation for introducing toroidal moments. With
this, it lays the ground on which we will unfold the mathematical details in the following chapters.
We start with a short overview regarding the research efforts concerning toroidal moments in the
last decades. This past research already provides a considerable understanding of the toroidal
moments, but also of the concept of multipole expansion in general. A discussion of several
prototypical charge and current distributions that possess specific electromagnetic multipole
moments is done in the following. Hereafter, we consider symmetry arguments and fundamental
physical concepts to support the idea that there exist three multipole families, i.e. electric,
magnetic, and toroidal multipoles. In the last section we discuss the distinction between the
toroidal moment and the anapole.

2.1 A Brief History of Toroidal Moments

Toroidal moments have not been examined for a long time in the theory of electromagnetic
multipole expansion. In 1957, Zel’dovich discussed parity violation of elementary particles and
postulated that spin-1/2 Dirac particles must have an “anapole” [14]. In the late 1960s and
early 1970s, Dubovik et al. [15] connected the quantum description of the anapole to classical
electrodynamics by introducing the “polar toroidal multipole moments”. The term “toroidal”
stems from current distributions in the shape of a circular coil that were first shown to have
a toroidal moment. “Polar” indicates that the polar toroidal moment transforms under parity
as a polar vector. Dubovik et al. showed that the toroidal moments form, like the electric
and magnetic multipoles, a family of multipole moments and managed to express the toroidal
moments in the language of the classical multipole expansion [12]. Already at that time it
was pointed out that for symmetry reasons a fourth multipole family potentially could exist.
They were called “axial toroidal moments”, because the dipole moment, which belongs to this
family, transforms under parity like an axial vector. We will outline this later, but it is worth
emphasizing that a distinction is made here between axial and polar toroidal moments. However,
we do not encounter the axial toroidal moments due to the non-existence of magnetic charges and
currents [16]. In 1986 [17], Dubovik et al. discussed the existence of such axial toroidal moments
in continuous media and related it to phenomenons like phase-transitions and non-linear optical
effects.

Toroidal moments were not acknowledged outside the Soviet Union as being an important part
of the multipole expansion until the 1990s and remained neglected from a big part of the research
community even in the 1990s and early 2000s. In 1988, Bladel [18] discussed several current

S. Nanz, Toroidal Multipole Moments in Classical Electrodynamics, BestMasters,
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6 2 Why another Multipole Family?

distributions that required the concept of toroidal moments for their understanding. He pointed
out that another term, besides the well-known electric and magnetic multipole moments, is
necessary to properly describe an arbitrary current distribution. He was probably not aware of
toroidal moments, since he neither referred to the papers of Dubovik et al. nor mentioned that
this term belongs to another multipole family. In their 2005 published book [10], the authors
Raab and Lange discuss the difference between fields originating from different definitions of the
multipole moment tensors, but do not mention a connection to the third multipole family.

In the 1990s, Afanasiev et al. published a series of papers where they analyzed in detail the
fields of toroidal moments [19] and discussed specific current distributions which produce time-
dependent toroidal moments [20]. In 2000, Dubovik et al. [21] discussed the properties of
continuous media with toroidal moments, introducing the so-called “toroidization”, an analogon
to polarization and magnetization, which characterizes the effect of a toroidal multipole field.

However, despite this increasing theoretical understanding of toroidal moments, experimental
evidence was scarce. The toroidal moments only came into consciousness of the research com-
munity with the advent of metamaterials. They are composed out of basic unit cells, called
meta-atoms. For meta-atoms with a strong electric dipolar response, strong dispersion in the
permittivity is observed. A meta-atom with a strong magnetic dipolar response causes a strong
dispersion in the effective permeability. Extrapolating from these insights, it should be possible
to identify meta-atoms that have a strong toroidal moment.

Basically with the possibility to design meta-atoms with high toroidal dipole radiation, it became
necessary to take this contribution into account. In 2002 [22], Radescu and Vaman published a
detailed analysis of radiation properties of arbitrary charge-current distributions including the
toroidal moments. In the same year, Vrejoiu [23] proposed an algorithm which makes it possible
to calculate the toroidal moments from the usual Cartesian multipole expansion.

In the early 2000s, Zheludev, Fedotov et al. began working on various properties of toroidal
metamaterials. They carried out lots of simulations and analytic calculations, which improved
the understanding of the properties of toroidal moments. In 2007, they calculated the anapole
moment of nanocrystals [24]. Turning to possible applications of toroidal moments, they showed
in 2009 that a torus-shaped structure provides optical activity [25]. In 2013 and 2014, they
analyzed non-radiating structures [26] and transmission and reflection properties of thin layers
of metamaterials consisting of toroidal dipoles [27]. Most recently, toroidal moments have been
found in dielectric nanoparticles [7] and nanowires [8]. In 2010, Kaelberer et al. carried out an
experiment measuring toroidal dipoles in a metamaterial slab consisting of split-ring resonators
[28].

In the following we provide a condensed summary from the insights of this past research to
understand on the grounds of basic considerations regarding charge-current distributions the
origin of toroidal multipole moments.
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2.2 Characterization of General Charge and Current
Distributions

Every multipole moment is associated with a specific charge-current distribution. An arbitrary
source distribution can be expressed through a sum of terms, called “multipole expansion”. Each
term is a “multipole” and consists of a numeric weight factor, called “moment” or “multipole
moment”, and a functional dependency of the coordinates. Moments are tensorial quantities and
enumerated as exponentiation with the base two, thus, the n-th term in the sum is a 2n-pole.
[29]. Each of the multipoles has a different radiation pattern. It turns out that all radiation
fields can be classified by using the symmetries of spatial inversion and time reversal. This will
be analyzed in the next section.

To illustrate this concept of fundamental charge and current distributions, we discuss now the
sources of the four dipoles, i.e. the electric, magnetic, polar toroidal and axial toroidal dipole.
They are illustrated in Fig. 2.1. The simplest radiating configuration is given by two opposite
and separated charges, Fig. 2.1a. This configuration generates the electric dipole moment �p.
Inverting this configuration reverses the direction of the electric dipole moment. This means
that the electric dipole moment is antisymmetric under parity transformation. Inverting the
time does not change anything for the dipole, because by convention, the electric charge does
not change sign under time inversion [9, p. 271].

Another basic current configuration is the circular current, pictured in Fig. 2.1b. This current
distribution is divergence-free, as all current lines are closed. Such a configuration causes a
magnetic dipole moment �m that is perpendicular to the plane in which the current flows. The
direction of �m depends on the direction in which the current flows. If the current direction
(or equivalently the time) in Fig. 2.1b is reversed, the magnetic dipole moment would point
downwards. This means that the magnetic dipole moment is antisymmetric under time inversion.
Inverting the space changes nothing for the magnetic dipole moment, since the inversion of the
spatial coordinates and of the current direction compensate each other.

The current configuration, which produces a polar toroidal dipole �t, is pictured in Fig. 2.1c. It
consists of circular currents which are symmetrically arranged on the surface of a torus. Often,
one finds also pictures which show a coil bent into a ring [6]. Like the circular current before,
the divergence of this current distribution is zero. Inverting the directions of the current will
invert the direction of the toroidal dipole. This can be achieved by inverting the time or the
spatial coordinates. Thus, the polar toroidal dipole moment is antisymmetric under both space
and time inversion.

The charge configuration in Fig. 2.1d that shall illustrate the axial toroidal dipole moment �g

will be discussed in the next section.
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�p

−

+

(a) Electric dipole moment �p
between a negative
and a positive charge.

�m

�j

(b) Circular current �j inducing
a magnetic dipole moment �m.

�t

�j

(c) Circular currents �j on a
torus inducing polar toroidal
dipole moment �t.

�g

�p

(d) Circular arranged electric
dipoles �p inducing axial
toroidal dipole moment �g.

Figure 2.1: The four principle charge-current configurations generating dipoles. After [28], [27]
and [16].

2.3 Necessity for Three Multipole Families

In this section, we want to motivate why there is a necessity for three multipole families. His-
torically, for decades only two families were considered, namely the electric moments and the
magnetic moments. This seemed sufficient, as the electric multipole moments were attributed to
static electric charges, whereas the magnetic multipole moments were explained through moving
electric charges. If we want to discuss what is missing in this picture, it is most instructive to
discuss the symmetry properties of the electric and magnetic multipole families first and then
to generalize this.

We will now consider the two discrete symmetries of parity and time inversion on the base of
equations. As pointed out in the last section, the electric dipole moment behaves under spatial
inversion like a polar vector, thus it holds [9, p. 271]

P�p = −�p .
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Here we used the parity operator P, which is defined as such that it inverts spatial coordinates,

P�r := −�r . (2.1)

The magnetic dipole moment behaves under spatial inversion like a pseudovector, meaning that
it remains invariant,

P �m = �m .

Now we turn to the time inversion. The time reversal operator T is defined through

T t := −t , (2.2)

meaning that it changes the sign of the time variables. The electric dipole is the result of
separated charges, and it holds [9, p. 271]

T �p = �p .

Electric currents, as time derivatives of charges, change sign under time inversion [9, p. 271].
Hence, for the magnetic dipole moment caused by currents, it holds

T �m = −�m ,

as it was made obvious in the last section.

Summarizing, �p is even under time reversal, but odd under spatial inversion. �m is odd under
time reversal, but even under spatial inversion. The limitation to electric and magnetic moments
thus misses a dipole moment which is odd under both time and spatial inversion, and another
dipole moment, which is even under both transformations. We will illustrate this observation in
the following table [16]:

Table 2.1: Behavior of the four dipoles under space and time inversion.

T
P + −

+ �g �p

− �m �t
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The “+” indicates even and the “−” odd behavior under the corresponding transformation. We
introduced the dipole moments �g and �t; we will call �g the “axial toroidal dipole moment”, and its
multipole family “axial toroidal moments”. The �t is the “(polar) toroidal dipole moment”, but
in this thesis, we will from now on always refer to it only as “toroidal dipole moment”. It is the
lowest order of the (polar) toroidal multipole moment family. Toroidal moments interact only
with time-dependent external electromagnetic fields [6], whereas electric and magnetic moments
interact also with static external fields.

Following this table, one would expect that four multipole families are present in electrodynamic
multipole expansions. An example of a charge distribution [16] generating an axial toroidal
dipole moment is pictured in Fig. 2.1d. However, it has been argued [16, 17] that such a
charge distribution is not stable in Maxwell-Lorentz electrodynamics. Therefore, axial toroidal
multipole moments usually are considered as not possible in microscopic charge-current systems.
For continuous media, the situation is different. There, axial toroidal moments can be generated
e.g. by spin currents [30]. Also, such moments are suggested to appear in microscopic crystals
with a specfic lattice structure [24]. Since we are discussing metamaterials rather than continuous
media in this thesis, we will only consider (polar) toroidal moments in the following.

The previous reasoning was made for dipole moments only. One has to be careful when going
to higher orders than the dipolar order. For example, the relation when applying the parity
transformation to an arbitrary n-th order electric multipole moment tensor P̂ (n) is

PP̂ (n) = (−1)nP̂ (n) .

For arbitrary n-th poles, we have the following transformation rules [31, p. 227 and p. 257]:

Table 2.2: Behavior of the four general n-th pole moments under space and time inversion.

T
P (−1)n+1 (−1)n

+1 Ĝ(n) P̂ (n)

−1 M̂ (n) T̂ (n)

From the table it follows that n-th poles of the same order of electric and toroidal kind give
the same fields that are not distinguishable with spatial manipulations of the experiment, since
they share the same parity. But with respect to time it should be in principle possible to
decide whether a charge-current distribution is characterized by an electric or toroidal n-th pole
moment. However, no experiment has been carried out so far which provides such distinction.
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2.4 Distinction between Toroidal Moment and Anapole

In literature, there is sometimes a confusion between the toroidal moment and the anapole
[32]. The anapole is important in the theory of weak interaction where it was first postulated
[14]. However, since we are interested in metamaterials rather than in particle physics, we focus
here on the anapole description in classical electrodynamics. An anapole is in this context a
charge-current distribution that neither radiates nor interacts with external fields [6].

An anapole can be realized in classical electrodynamics by a suitable combination of an electric
and a toroidal dipole. Compared to the field of an electric dipole moment, the field of a toroidal
dipole moment is scaled with the wave number k and has a phase-shift of π/2 relative to the
field of the electric dipole [26]. Thus, by designing a charge-current configuration where the
electric and toroidal dipoles point in the same direction and where the toroidal dipole exceeds
the electric by a factor of k, the two fields annihilate each other exactly. In this configuration,
however, the vector potential is non-zero, enabling Aharonov-Bohm like effects [19].

Because it does not radiate, the anapole is not a “moment” like the other multipole moments.
This is the origin of the name “anapole” (from Greek ’ana’, ’without’, thus meaning ’without
poles’). Nevertheless, the anapole is very often improperly denoted as “anapole moment” (e.g. in
[32]). Because ideal non-radiating charge-current configurations are not possible [4], describing
a structure as “non-radiating” refers only to the first orders of multipole moments. This is the
reason why the anapole is usually only related with the toroidal dipole, not with higher toroidal
moments.



3 Basic Equations and Notations

This chapter is dedicated to introduce the most important equations needed for the main part
of the thesis. One of the basic tasks of electrodynamics is to find the electric and magnetic fields
for given charge and current distributions. For this sake, Maxwell’s equations are used, a system
of partial inhomogeneous differential equations. To simplify the solution of these equations, the
potential formalism is usually applied, including the scalar potential, the vector potential, and
the Debye potentials. Furthermore, we will point out normalizations, symbols as well as sign
and unit conventions used in this thesis.

3.1 Maxwell’s Equations

Maxwell’s equations are solved for given initial or boundary conditions. In differential form they
are explicitly given as [9, p. 238]

�∇ · �E(�r, t) = 1
ε0

ρ(�r, t) , (3.1)

�∇ · �B(�r, t) = 0 , (3.2)

�∇ × �E(�r, t) = − ∂

∂t
�B(�r, t) , (3.3)

�∇ × �B(�r, t) = μ0�j(�r, t) + μ0ε0
∂

∂t
�E(�r, t) . (3.4)

Equation (3.3) is also called Faraday’s law and Eq. (3.4) is Maxwell’s version of Ampere’s law.
Eq. (3.1) is Gauss’s law and Eq. (3.2) is Gauss’s law for magnetism.

�E(�r, t) indicates the electric field, �B(�r, t) the magnetic field, �j(�r, t) the electric current density
and ρ(�r, t) the electric charge density. All quantities are given in SI units and evaluated at point
�r and time t. ε0 is the vacuum permittivity and μ0 the vacuum permeability. They are related
via ε0μ0 = 1/c2, where c is the speed of light in vacuum. Note the difference in the meaning of
density: The current density is given as current per area, whereas the charge density has the
units of charge per volume.

The above set of differential equations has to be completed with the continuity equation [9,
p. 238],

ρ̇(�r, t) + �∇ ·�j(�r, t) = 0 , (3.5)

which relates the charge density of the system to the current which is flowing out of the system.
In our systems, (3.5) is always fulfilled, but in the general case, the right side of the equation
can have a non-zero value due to e.g. external fields and sources. The dot on top of ρ is the
short notation of the time derivative ∂/∂t. We will mainly use the dot in this thesis.

S. Nanz, Toroidal Multipole Moments in Classical Electrodynamics, BestMasters,
DOI 10.1007/978-3-658-12549-3_3, © Springer Fachmedien Wiesbaden 2016
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3.2 Wave Equation and Helmholtz Equation

Maxwell’s equations describe the electromagnetic field, but it is not directly obvious that they
also include an equation for describing an electromagnetic wave. This task is accomplished
when Faraday’s law (3.3) and Maxwell’s version of Ampere’s law (3.4) are combined, which
yields two wave equations for the propagation of the electric and the magnetic field, respectively
[9, p. 246]:

Δ �E(�r, t) − 1
c2

∂2

∂t2
�E(�r, t) = μ0

∂

∂t
�j(�r, t) + 1

ε0
�∇ρ(�r, t) , (3.6)

Δ �B(�r, t) − 1
c2

∂2

∂t2
�B(�r, t) = −μ0 �∇ ×�j(�r, t) . (3.7)

Since every time-dependent function can be represented as a decomposition into Fourier compo-
nents [9, p. 407], we will use, where useful, harmonic time dependence e−iωt, by just considering
one term of the representation

�j(�r, t) = 1√
2π

∫
e−iωt�̃j(�r, ω) dω . (3.8)

Of course, the same decomposition is made for the charge density and all quantities derived from
this, e.g. electric and magnetic fields. The sign of the argument of the exponential function is
arbitrary, we use the minus sign in this thesis. Regarding the prefactor we choose the convention
of symmetric prefactors 1/

√
2π for direct and inverse transformation. To keep notation clear,

we will omit the tilde from now on at quantities given in the frequency domain; by means of
the arguments, it is clear in which domain the quantity is given. To indicate that ω is more a
parameter than a variable when considering only one term in the Fourier series, we also use the
notation �jω(�r) instead of �j(�r, ω).

Because of Maxwell’s equations, the change of the electromagnetic field in space and time is not
independent. Both parts are connected through the dispersion relation

k2(ω) = ω2

c2 ε(ω)μ(ω) , (3.9)

where k is the absolute value of the wave vector and ε(ω) and μ(ω) are the permittivity and
permeability in the frequency domain. For our purposes, it will be sufficient to assume ε(ω) =
μ(ω) = 1, so that k = ω/c. Following this, we assume that �B = μ0 �H throughout the thesis.
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Using the Fourier decomposition of type (3.8) in Eqs. (3.6) and (3.7), we arrive at the vector
Helmholtz equations [9, p. 243]

[Δ + k2] �E(�r, ω) = −iωμ0�j(�r, ω) + 1
ε0

�∇ρ(�r, ω) , (3.10)

[Δ + k2] �B(�r, ω) = −μ0 �∇ ×�j(�r, ω) . (3.11)

Like in the case of the current, Eq. (3.8), the fields �E(�r, ω) and �B(�r, ω) are different from the
�E(�r, t) and �B(�r, t) in Eqs. (3.6) and (3.7), but to keep notation clear we will stick to the notation
�E and �B throughout the thesis. We will also omit the arguments in many cases. From context,
it should become clear if the fields are in the frequency or in the time domain.

The homogeneous Helmholtz equations for spatial regimes without sources are

[Δ + k2] �E(�r, ω) = 0 , (3.12)

[Δ + k2] �B(�r, ω) = 0 . (3.13)

We will use them in chapter 5 to derive the Debye potentials and vector functions into which
the fields �E and �B will be decomposed to simplify calculations.

3.3 Potentials

To determine the fields �E and �B in a simpler way than solving Eqs. (3.6) and (3.7), usually
potentials are introduced. Sometimes it is easier to deal with them than with the fields. For the
calculations in this thesis, we will only use the so-called “Lorenz gauge”, because it has some
advantages to be outlined in the following.

We start with discussing the electric and vector potential usually used. Hereafter, several other
potentials which are used in this thesis are introduced.

3.3.1 Scalar and Vector Potential

Because of �∇ · B = 0, �B can be represented through the curl of a vector field [9, p. 180],

�B = �∇ × �A . (3.14)

�A is called the vector potential, sometimes improperly also denoted as “magnetic vector po-
tential” [33, 34]. However, the latter name is only appropriate in the static case, where the
vector potential only causes the magnetic field and has contributions only from the magnetic
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multipoles. In the dynamic case, �A contains contributions from all three multipole families and
it also contributes to the electric field. We will therefore refer to �A only as “vector potential”
throughout the thesis.

With (3.14), Faraday’s law (3.3) becomes

�∇ ×
(

�E + ∂ �A

∂t

)
= 0 .

A field which has a vanishing curl can be expressed through the gradient of a scalar function,

�E + ∂ �A

∂t
= −�∇ϕ . (3.15)

ϕ is the electric scalar potential. We included the minus sign on the right side for convention [9,
p. 30]. Following the textbooks [35, p. 9], we will usually call ϕ just “scalar potential”, although
we introduce some other scalar potentials in the next section.

The introduction of the two potentials reduces the originally six unknown quantities (three
components of the electric and magnetic field, respectively) to four quantities (three components
of �A plus one of the scalar quantity ϕ). However, from the knowledge of the current �j and hence
the vector potential �A, anything else can be calculated, even if one has no information about ρ

and the scalar potential ϕ [36]. Keeping this in mind, in this thesis we will mainly discuss the
vector potential. We will refer to the scalar potential only if we want to point out important
differences to the calculations of the vector potential or to illustrate an aspect at a simple
example.

From definition (3.14) it follows that the vector potential is only defined up to the gradient of
an arbitrary scalar potential. Thus, the vector potential can be redefined without changing the
magnetic fields,

�A → �A + �∇χ ,

where χ is an arbitrary function of �r and t. Doing only this substitution would however change
the electric field. To avoid this, one has to make the corresponding substitution for ϕ,

ϕ → ϕ − ∂χ

∂t
.

So both �A and ϕ have the freedom of gauge. This fact can be exploited to simplify equations
using a gauge suitable for the considered problem. Plugging in the fields expressed by the
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potentials yields equations for �A and ϕ:

Δϕ + ∂

∂t
(�∇ · �A) = − 1

ε0
ρ , (3.16)

Δ �A − 1
c2

∂2 �A

∂t
− �∇

(
�∇ · �A + 1

c2
∂ϕ

∂t

)
= −μ0�j . (3.17)

These four differential equations are, like Maxwell’s equations, coupled, but can be decoupled
by choosing the Lorenz gauge in free space, which is given by

�∇ · �A + 1
c2

∂ϕ

∂t
= 0 . (3.18)

We added “in free space”, because some authors define the general Lorenz gauge with an addi-
tional term arising in continuous media [11, p. 240]. The Lorenz gauge has the advantage that
the structure of the general solution for both potentials is, disregarding the different sources and
numeric prefactors, exactly the same. So practically, numerical or analytical approximations
need to be done only for one of the potentials and can then be applied to the other by using the
fact that a solution of the scalar Helmholtz equation is also a solution of the vector Helmholtz
equation [9, p. 429]. Additionally, in the Lorenz gauge every potential depends only on one kind
of sources: The scalar potential depends only on static charges, whereas the vector potential
depends only on currents, or, more general, on charges which change with time. These aspects
simplify the calculations. However, one has to pay the price that the potentials do not have a
direct physical meaning and are, if anything, only indirectly measurable.

The Lorenz gauge leads to

Δϕ − 1
c2

∂2ϕ

∂t2 = − 1
ε0

ρ , (3.19)

Δ �A − 1
c2

∂2 �A

∂t2 = −μ0�j . (3.20)

Equations (3.19) and (3.20) are solved by the retarded potentials

ϕ(�r, t) = 1
4πε0

∫
ρ(�r ′, t − |�r−�r ′|

c )
|�r − �r ′| d3r′ , (3.21)

�A(�r, t) = μ0
4π

∫ �j(�r ′, t − |�r−�r ′|
c )

|�r − �r ′| d3r′ . (3.22)

The retarded time ensures that the cause is always before the effect, so that causality is preserved.
This implies here that the effect of a change of the sources results in a change in the fields, which
is the later the larger the distance is from the source to the point where the potential shall be
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�T

�S

Figure 3.1: Toroidal vector �T and poloidal vector �S. After [40].

evaluated. The speed at which the source change is transmitted to the evaluation point is the
speed of light c.

The Lorenz gauge is the gauge we will use throughout this thesis. Hence, Eqs. (3.21) and (3.22)
are the starting points for the multipole expansions based on the potentials in chapter 4.

3.3.2 Debye Potentials

The Debye potentials allow the calculation of the electromagnetic fields from three scalar poten-
tials. By using the fundamental decomposition of a differentiable vector field into a divergence-
free and a curl-free part [37, p. 733], also called Helmholtz decomposition [38], we can write

�F = �∇ξ + �∇ × �V .

The first term represents the curl-free part of �F , also called the longitudinal part; the second term
accounts for the divergence-free part of �F , also called the transverse part. In three dimensions,
the four unknown components of �V and ξ can be reduced to three components by expressing
the transverse part with two scalars by using the toroidal-poloidal decomposition [39]

�∇ × �V = �S + �T = −i(�r × �∇)ψ − i�∇ × (�r × �∇)ζ .

The vectors �S and �T are pictured in Fig. 3.1. The prefactor −i was included per convention, so
that we can write the terms with the orbital angular momentum operator

L = −i(�r × �∇) (3.23)

in a shorter way:
−i(�r × �∇)ψ − i�∇ × (�r × �∇)ζ ≡ Lψ + �∇ × Lζ .
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�S is also called “poloidal vector”, �T is sometimes denoted as “toroidal vector” [41]. These
notions should not be confused with the toroidal moments. Toroidal currents induce toroidal
electric fields and poloidal magnetic fields, and vice versa. In this sense, the term “toroidal
electric field” has some ambiguity in its meaning: Either it corresponds to a toroidal current
distribution and thus to a magnetic moment; or it is the effect of a toroidal moment, which
would imply a poloidal current in the system. For the “toroidal magnetic field”, the analogous
confusion can arise. Because of this ambiguity, we will not use the term “toroidal field” in this
thesis.

All in all, we get for a differentiable vector field the decomposition

�F = �∇ξ + Lψ + �∇ × Lζ . (3.24)

Hence, �F is expressed through one longitudinal and two linearly independent transverse parts.
This decomposition of �F is both complete and unambiguous [39]. The scalar functions ξ, ψ and
ζ are the so-called Debye potentials. They are determined as solutions of the scalar Helmholtz
equation [42, p. 84]

[Δ + k2]f(�r, ω) = 0 , (3.25)

where f is one of the Debye potentials. In the special case of a rectangular coordinate system,
every component of �E and �B satisfies the Helmholtz equation (3.25) directly [42, p. 59]. Because
the term “scalar potential” is reserved for the electric scalar potential, we will refer to the Debye
scalar potentials always as “Debye potentials”.



4 Multipole Expansion of the Potentials

The integral representations of the scalar and vector potential, Eqs. (3.21) and (3.22), turn out
to be unpractical for concrete calculations. Numerically, they can be evaluated for arbitrary
source distributions, but such computations do not provide the insights to discuss the physical
peculiarities of a particular source distribution. The relevant physics can best be made obvious by
expanding a source distribution in a sum of specific contributions. Each of these contributions
shall have a clear physical meaning. In this regard, the multipole expansion is a means of
abstraction and provides a language to discuss the properties of source distributions. Performing
a multipole expansion is in essence the approximation of the potentials or the fields of a source
that is characterized by a specific charge or current distribution on a sphere enclosing the entire
source, see Fig. 4.1.

In this chapter, we discuss several possibilities to perform the multipole expansion on the level
of the potentials. The frequently used Taylor expansion in Cartesian coordinates is summarized
in the first section. We show that this approach yields tensorial expressions which need to be
converted into the multipole moment tensors using cumbersome formulae. To avoid this intricate
procedure, we then demonstrate an alternative Cartesian expansion, which is based on the desire
that the physically appropriate multipole tensors are fully symmetric and traceless. Hereby, an
algorithm is outlined which enables to calculate toroidal multipole moments for arbitrary orders.
The last section deals with the multipole expansion in spherical coordinates in the momentum
space, not in the ordinary real space. This calculation is a possibility to calculate the vector
potential of arbitrary multipole moments, and furthermore, this approach will suggest that the
toroidal moments are in general not independent of the electric multipole moments.

Generally, we will discuss the dynamic case. If needed, one can simply take the limit ω → 0
to describe the static case as well. It can be shown that taking this limit always provides the
correct result, namely the time-independent fields. [43, p. 703 et seq.]

4.1 Multipole Expansion in Cartesian Coordinates

This section shows briefly how the multipole expansion is usually done in textbooks. From this
multipole expansion electric and magnetic moments will emerge, but no toroidal moments. We
will show that this approach to the multipole expansion has some deficiencies. Particularly,
the multipole moment tensors in this expansion are not traceless. This is undesirable,
because non-traceless tensors have no definite properties under rotations, and the toroidal
moments are hidden in such non-traceless tensors. Furthermore, the contribution of a
certain expansion order will not just cause multipoles in the same order. More specifically, the

S. Nanz, Toroidal Multipole Moments in Classical Electrodynamics, BestMasters,
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R0

Figure 4.1: Two-dimensional scheme of the multipole expansion. A radiating object (the box in
the middle of the circle) is enclosed into an imaginary sphere, on whose surface the potentials
and fields (indicated by the wavy lines) are determined. For the Cartesian expansion, it is
assumed that the radius R0 of this sphere is much larger that the source itself.

dipole moments of electric and magnetic kind will be distributed into two expansion orders.
Because this holds for all higher moments, too, the expansion gets quite messy, especially when
toroidal moments and another quantity, the so-called “mean-square radii”, are considered as
well. We will show a possibility how the toroidal moments can be deduced from this expansion,
but this will turn out to be quite cumbersome and not applicable for arbitrary high orders.

For the Taylor series we expand the potentials by using the parameter |�r ′|/|�r| � 1. The idea
is to truncate this generally infinity expansion after a few terms. The resulting approximation
of the potential is the better the smaller the extent of the source, |�r ′|, is in comparison to the
distance |�r| to the point where the potential shall be evaluated. The larger the source is, the
more terms we have to take into account in our approximation. Furthermore, the Cartesian
Taylor expansion is performed in the long-wavelength limit, meaning that the extent of the
source is much smaller than the wavelength, |�r ′| � λ [9, p. 408], where λ is the wavelength of
the incident electromagnetic wave and related to the wave number through λ = 2π/k . Whenever
we will talk about “small sources”, these assumptions are made.

4.1.1 Expanding the Scalar Potential

First, we want to expand the scalar potential, Eq. (3.21). We take advantage of the fact that
the Taylor series of a product can be written as a Cauchy product of the two separate Taylor
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series,

∞∑
n=0

�r ′n

n!
�∇n

�r ′
ρ (�r ′, t − |�r−�r ′|/c)

|�r − �r ′|

∣∣∣∣
�r ′=0

=
∞∑

n=0

n∑
k=0

1
n!

�∇n
�r ′ρ

(
�r ′, t − |�r − �r ′|

c

) ∣∣∣∣
�r ′=0

· 1
(n − k)!

�∇n−k
�r ′

1
|�r − �r ′|

∣∣∣∣
�r ′=0

�r ′n. (4.1)

Note that because we expand not directly in �r ′, but in the small parameter |�r ′|/|�r|, the Taylor
series affects only the retarded time t − |�r−�r ′|/c. The explicit spatial dependence �r ′ of ρ just
remains and is not expanded. The notation �∇n serves as an abbreviation, it holds

�∇n = �e1 ⊗ �e2 ⊗ ... ⊗ �en
∂

∂r1

∂

∂r2
...

∂

∂rn
(4.2)

for coordinates ri, where ri = x, y, z and ⊗ denotes the matrix product of two vectors. So the
result of this n-fold derivative is a tensor of rank n. The index of �∇ indicates the variable on
which it is applied; if no index is given, it acts on �r.

For order n, the second factor in Eq. (4.1) can be simplified to

�∇n
�r ′

1
|�r − �r ′|

∣∣∣∣
�r ′=0

= (−�∇)n
�u

1
|�u|

∣∣∣∣
�u=�r

= (−�∇)n 1
r

. (4.3)

The expansion of the charge density ρ yields

∞∑
n=0

�r ′n

n!
�∇n

�r ′ρ

(
�r ′, t − |�r − �r ′|

c

) ∣∣∣∣
�r ′=0

= ρ(�r ′, τ) + ri

cr
ρ̇(�r ′, τ)

+
[
ρ̇(�r ′, τ)rirj − r2δij

2cr3 + ρ̈(�r ′, τ) rirj

2c2r2

]
+ ... . (4.4)

For brevity, we introduced the retarded time τ = t − r
c . The dot means derivative with respect

to τ . Using Eqs. (4.1), (4.3) and (4.4), the Taylor expansion for the scalar potential, truncated
after n = 2, is [10, p. 15 et seq.]

ϕ(�r, t) = 1
4πε0

{1
r

∫
ρ(�r ′, τ) d3r′ + 1

r3
∑

i

ri

∫
r′

i

(
ρ(�r ′, τ) + r

c
ρ̇(�r ′, τ)

)
d3r′

+ 1
2
∑
ij

∫ (3rirj − r2δij

r5

(
ρ(�r ′, τ) + r

c
ρ̇(�r ′, τ)

)
+ rirj

c2r3 ρ̈(�r ′, τ)
)

r′
ir

′
j d3r′

+ ...

}
. (4.5)
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This expansion looks rather messy, but by introducing some definitions for multipole moments,
the notation can be clarified. We define now the following well-known tensors for the lowest
orders by their components:

Electric monopole moment
q(τ) =

∫
ρ(�r ′, τ) d3r′ , (4.6)

electric dipole moment
pi(τ) =

∫
r′

iρ(�r ′, τ) d3r′ , (4.7)

primitive electric quadrupole moment

Q̃
(e)
ij (τ) =

∫
r′

ir
′
jρ(�r ′, τ) d3r′ . (4.8)

The components of the electric multipole moment tensor of order n may be represented as [23]

P̃
(n)
i1...in

(τ) =
∫

r′
i1r′

i2 ....r′
in

ρ(�r ′, τ) d3r′ =
∫

ρ(�r ′, τ)
n∏

m=1
r′

im
d3r′ . (4.9)

This form is sometimes called “primitive” moment [10, p. 4]. From the second order on, we note
these moments with a tilde because it is not the suitable form to represent the electric multipole
moments. However, in some textbooks the multipole moment tensors are defined in this way
[10, p. 2 et seq.] [11, p. 18]. We will come back to this issue shortly. The monopole and dipole
moments are the same for the different definitions, so the tilde is omitted.

Plugging the newly defined tensors into the expansion (4.5), we obtain the clearer terms [23]

ϕ(�r, t) = 1
4πε0

{1
r

q(τ) + 1
r3

(
�r · �p(τ) + r

c
�r · �̇p(τ)

)

+ 3rirj − r2δij

2r5

(
Q̃

(e)
ij (τ) + r

c
˙̃Q(e)

ij (τ)
)

+ rirj

2c2r3
¨̃Q(e)

ij (τ) + . . .

}

= 1
4πε0

∞∑
n

(−1)n

n!
�∇n
[1

r
ˆ̃P (n)(τ)

]
. (4.10)

�∇ acts also on ˆ̃P (n)(τ) since the retarded time τ contains a spatial dependence. For the static
case, meaning that all derivatives with respect to τ are zero, this equation simplifies to

ϕ(�r) = 1
4πε0

(
q

r
+ �p · �r

r3 + 3
2r5 �r · ˆ̃Q(e)�r − 1

2r3 Tr ˆ̃Q(e) + . . .

)

= 1
4πε0

∞∑
n

(−1)n

n!
ˆ̃P (n) �∇n 1

r
. (4.11)
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4.1.2 Expanding the Vector Potential

Equivalent to expanding the scalar potential, this can be done with the vector potential (3.22)
as well. Truncation after the second order yields in full analogy

�A(�r, t) = �A(0)(�r, t) + �A(1)(�r, t) + �A(2)(�r, t) + ... (4.12)

with

�A(0)(�r, t) = μ0
4π

1
r

∫
�j(�r ′, τ) d3r′ , (4.13)

�A(1)(�r, t) = μ0
4π

1
r3
∑

i

ri

∫
r′

i

(
�j(�r ′, τ) + r

c
�̇j(�r ′, τ)

)
d3r′ , (4.14)

�A(2)(�r, t) = μ0
4π

1
2
∑
ij

∫ (3rirj − r2δij

r5

(
�j(�r ′, τ) + r

c
�̇j(�r ′, τ)

)
+ rirj

c2r3
�̈j(�r ′, τ)

)
r′

ir
′
j d3r′ . (4.15)

Now the question arises how we should define the multipole moment tensors. Of course, one
could define the tensors directly in the order of their appearance in the expansion, similar to
the definitions in the scalar potential. However, usually the terms are first manipulated using
the continuity equation (3.5) and Gauss’s theorem [9, p. 410]. Only after such manipulation
the magnetic and electric multipole moment tensors are completely independent in every order.
Then, from the multipole expansion of the vector potential in a specific order, an explicit con-
tribution can be seen from the electric and magnetic multipole moment. For the zeroth order
term (4.13), this procedure yields

�A(0)(�r, t) = μ0
4π

1
r

∫
�j(�r ′, τ) d3r′ = − μ0

4π

1
r

∫
�r ′ (�∇�r ′ ·�j(�r ′, τ)

)
d3r′

= μ0
4π

1
r

∫
�r ′ρ̇(�r ′, τ) d3r′ = μ0

4π

1
r

�̇p (τ) , (4.16)

where in the first step, we integrated by parts. So we see that electric multipole moments
contribute to the expansion of the vector potential. The lowest order term is the electric dipole
moment. Because no magnetic monopoles have been observed, a magnetic charge or current
is not contained in Maxwell’s equations and thus no monopole term is present in the vector
potential. We omit the derivations for the first and second order terms here because we later
do this for the general case of arbitrary order. Our definitions for the magnetic dipole and
quadrupole moment are then:

Magnetic dipole moment

mi(τ) = 1
2

∫ (
�r ′ ×�j(�r, τ)

)
i
d3r′ , (4.17)
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primitive magnetic quadrupole moment

Q̃
(m)
ij (τ) = 2

3

∫
r′

i

(
�r ′ ×�j(�r ′, τ)

)
j

d3r′ , (4.18)

and for arbitrary order n the primitive magnetic multipole moment tensor reads [23]

M̃
(n)
i1...in

(τ) = n

n + 1

∫ (
�r ′ ×�j(�r ′, τ)

)
in

n−1∏
m=1

r′
im

d3r′ . (4.19)

Like the electric multipole moment tensor ˆ̃P (n), the magnetic multipole moment tensor ˆ̃M (n)

is not traceless. An important difference is that ˆ̃M (n) is not fully symmetric in general when
exchanging two arbitrary indices, because e.g.

M̃
(3)
i1i2i3 = 3

4

∫ (
�r ′ ×�j(�r ′, τ)

)
i1

r′
i2r′

i3 d3r′ �= 3
4

∫ (
�r ′ ×�j(�r ′, τ)

)
i2

r′
i1r′

i3 d3r′ = M̃
(3)
i2i1i3 . (4.20)

Contrary, ˆ̃P (n) is, as can be seen directly from Eq. (4.9), fully symmetric. As before, the tilde
indicates that the definition of the primitive electric multipole moments is not the best choice
to define the magnetic moments. The magnetic dipole moment is, like in the electric case, the
same for all definitions, so the tilde can be omitted.

With the above definitions of primitive moments, the terms in the expansion (4.12) of the vector
potential will take the following form [10, p. 17]:

�A(0)(�r, t) = μ0
4π

1
r

�̇p , (4.21)

�A(1)(�r, t) = μ0
4π

1
r3

[1
2

˙̃Q(e)
ij rj − εijkrjmk + r

2c
¨̃Q(e)

ij rj − r

c
εijkrjṁk

]
�ei , (4.22)

�A(2)(�r, t) = μ0
4π

{3rirk − r2δjk
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(m)
lk

)
+ r

c

(1
3

¨̃O(e)
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...
Õ

(e)
ijk − εijl

¨̃Q(m)
lk

)}
�ei . (4.23)

It is possible to continue Eq. (4.12) to arbitrary high orders, but there only primitive moments
will appear and no toroidal moments at all, as we will show now. In fully analogy to the
expansion of the scalar potential, Eq. (4.11), we are allowed to write for the vector potential
[23]

�A(�r, t) = μ0
4π

∞∑
n=0

(−1)n

n!

[
n+1∏
m=2

∂im

] [
1
r

∫ n+1∏
m=2

r′
im

ji1

(
�r ′, τ

)
d3r′
]

�ei1 . (4.24)
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For arbitrary n the following identity holds to express the last term:

∫
∇i

[
n∏

m=1
rimji

]
d3r =

∫ ⎡⎢⎢⎣nji1

n∏
m=2

rim − ρ̇
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rim +
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k=2

εi1ikl(�r ×�j)l

n∏
m=2
m�=k

rim

⎤
⎥⎥⎦d3r . (4.25)

The proof of this identity is lengthy and can be found in the appendix. Using Gauss’s theorem
[10, p. 211], it follows that the overall expression vanishes.

∫
∇i

[
n∏

m=1
rimji

]
d3r =

∫ n∏
m=1

rim
�j · d�S = 0 . (4.26)

Hence, we can solve Eq. (4.25) for the first term on the right side:

∫
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We now plug in this identity for n → n + 1 in Eq. (4.24) and simplify. This yields
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. (4.27)

Thus, we recovered the primitive multipole moment tensors of order n, (4.9) and (4.19), as parts
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of an exact representation of the vector potential.

The representation (4.27) has a few pleasant properties: First, it shows that the vector potential
in every order n can be written as a sum of the primitive magnetic n-th pole and the time
derivative of the primitive electric n-th pole moment. Second, this form makes it easy to calculate
an arbitrary order n of �A just by calculating the tensors ˆ̃P (n) and ˆ̃M (n). It is also possible to
express the n-th gradient of 1/r in a closed form [44].

Equation (4.27) contains no toroidal moments. Hence, the goal is now to bring it into a form in
which the correct electric and magnetic multipole moment tensors and also the toroidal moments
appear.

4.1.3 Tensorial Decomposition of the Vector Potential

In this section, we discuss a possibility to derive the toroidal dipole moment. This method is
only applicable up to the second order term of the expansion (4.12) of the vector potential. For
arbitrary high orders, we refer to the next section.

We exploit the fact that the physical appropriate tensors are symmetric and traceless. The
property of symmetry ensures definite properties under parity transformation. The demand for
tracelessness is connected with definite properties under rotations. Because the multipole expan-
sion is, as mentioned, the approximation of the potential on a spherical surface, the functions
which are contained in this expansion can be characterized by their properties regarding the
transformations in the rotation group SO(3). These transformations are spatial rotations and
the properties under such rotations can be classified with the total angular momentum value j.
All dipole moments shall transform as a vector (meaning j = 1), all quadrupole moments shall
transform as a tensor of rank 2 (meaning j = 2), and so on.

However, the trace of a multipole moment tensor is a scalar with respect to rotations. This
would mix the properties under rotations when rotating non-traceless multipole moment tensors
that contain different values of j. Also, a state with total angular momentum j = 0 is unphysical
and does not occur in the fields. Mixing of angular momentum properties would make rotations
hard to handle in calculations. Therefore, a multipole moment tensor should contain only
contributions from one total angular momentum value j. Tensors that contain only one
total angular momentum value are denoted as “irreducible” tensors. Tensors which have mixed
properties under SO(3) (i.e. more than one j) are denoted as “reducible” tensors [45]. Irreducible
tensors are traceless. Our goal is therefore to decompose the reducible primitive mul-
tipole moment tensors appearing in the expansion of the vector potential (4.27) into
irreducible tensors.

Traceless tensors have less independent entries than non-traceless tensors. This means that the
primitive multipole moment tensors are overdetermined regarding the complete description of a
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given potential. We show this as follows: The electric multipole moment tensor of order j has
N = 3j entries, but because the tensor is fully symmetric, only

Nsym(j) = 1
2(j + 1)(j + 2)

entries are independent [46]. We now impose tracelessness, meaning that it holds

∑
k

∑
iα,iβ

T
(j)
i1i2i3...ij

δiαkδiβk = 0

for an traceless tensor T̂ , an arbitrary choice of iα and iβ out of the set of indices i1....ij . This
reduces the number of independent entries further.

The number of equations which limit the degrees of freedom for the entries of a tensor can be
calculated as follows: A tensor of rank two has exactly one trace, this yields one equation to
restrict the degrees of freedom of the tensor’s entries. For a tensor of rank three there are three
possibilities to calculate the trace, and for a tensor of rank j, there are

Nt(j) =
j−1∑
k=1

k = 1
2j(j − 1)

traces. Thus, the number of independent entries of a symmetric and traceless rank-j-tensor is
[47]

Nsym-trl(j) = Nsym(j) − Nt(j)

= 1
2(j + 1)(j + 2) − 1

2j(j − 1)

= 2j + 1 . (4.28)

Thus, we expect 2j + 1 independent entries for a tensor of rank j. This is consistent with the
number of values to which the projection of the orbital angular momentum onto the z-axis is
restricted for a given angular momentum eigenvalue j. It is always possible to choose a traceless
representation for a multipole moment tensor; for a given non-traceless tensor, the trace can
simply be subtracted and added to a multipole moment tensor of lower rank [46]. Accordingly,
it is necessary to start detracing a tensor from the highest order considered, and to subsequently
detrace the tensors going from higher to lower orders [23].

To define the multipole moment tensors in a traceless form, we consider the first order term of
the Taylor series of the vector potential, Eq. (4.14),

�A(1)(�r, t) = μ0
4π

1
r3
∑

i

ri

∫
r′

i

(
�j(�r ′, τ) + r

c
�̇j(�r ′, τ)

)
d3r′ .
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To shorten the notation, we suppress the arguments of �j and reduce the expression to the basic
tensor which is contained in both terms,

Tij =
∫

r′
i jj d3r′ . (4.29)

The symmetry properties of this tensor are unknown in general. The idea is now to express this
tensor as a sum of tensors with known symmetry properties. Every tensor of rank two can be
decomposed into a symmetric and an antisymmetric part [37, p. 287]. The symmetric part can
further be decomposed into a symmetric traceless tensor and the trace. So we have the general
decomposition [48]

T̂ = T̂ (a) + T̂ (st) + T̂ (t) . (4.30)

T̂ (a) is the antisymmetric part, T̂ (st) the symmetric traceless part and T̂ (t) contains the trace.
T̂ (st) is also called “natural representation” of the tensor T̂ [49]. The components of these tensors
are defined according to

T
(a)
ij = 1

2(Tij − Tji) , (4.31)

T
(t)
ij = δij Tr T̂ (4.32)

and

T
(st)
ij = 1

2(Tij + Tji) − δij Tr T̂ . (4.33)

These three tensors are the irreducible tensors constituting the second order of the expansion of
the vector potential. Obviously, the fully symmetric traceless tensor behaves under exchange of
two indices like

T
(st)
ij = T

(st)
ji ,

the antisymmetric tensor like
T

(a)
ij = −T

(a)
ji .

These symmetry properties are related to the parity properties of the multipole moments dis-
cussed in section 2.2. The symmetric traceless part will yield the electric quadrupole tensor,
which is, following Tab. 2.2, even under parity, whereas the antisymmetric part will yield the
symmetric magnetic dipole moment times the fully antisymmetric Levi-Civita tensor.

To manipulate the tensor in Eq. (4.29), we use the continuity equation (3.5) to perform manip-
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ulations like in Eq. (4.16). The antisymmetric tensor is

T
(a)
ij = 1

2

∫ (
r′

ijj − r′
jji

)
d3r′ = 1

2εnij

∫
εnmpr′

mjp d3r′

= 1
2εnij

∫
(�r ′ ×�j)n d3r′ = −εjinmn . (4.34)

�m is the magnetic dipole moment defined in Eq. (4.17). The symmetric traceless part is

T
(st)
ij = 1

2

∫ (
r′

ijj + r′
jji − 1

3r′
mjmδij

)
d3r′ = 1

2

∫ (
r′

jr′
i∂mjm − 1

3r′
nr′

n∂mjmδij

)
d3r′

= 1
2

∫ (
r′

ir
′
j − 1

3r′2δij

)
ρ̇ d3r′ = 1

2Q̇
(e)
ij ; (4.35)

Q
(e)
ij (τ) =

∫ (
r′

ir
′
j − 1

3r′2δij

)
ρ(�r ′, τ) d3r′ (4.36)

is the traceless electric quadrupole moment. This form, but with a different normalization, can
be found in standard textbooks [9, p. 414]. We denote it without the tilde to distinguish it from
the primitive quadrupole moment (4.8).

Finally, the trace is

T
(t)
ij = 1

3δij

∫
r′

jjj d3r′ = 1
3δij

∫ 1
2r′

jr′
j∂mjm d3r′

= 1
6δij

∫
r′2ρ̇ d3r′ = 1

6 ṙ(2)
q δij . (4.37)

Here we defined the mean-square radius of the charge distribution,

r(2)
q (τ) =

∫
(r′)2ρ(�r ′, τ) d3r′ . (4.38)

In general, the charge mean-square radius of order n is given as [16]

r(2n)
q =

∫
(r′)2nρ(�r ′, τ) d3r′ . (4.39)

Using this explicit decomposition of T̂ , we can write �A(1)(�r, t) as follows:

�A(1)(�r, t) = μ0
4π

1
r3

[1
2

˙̂
Q(e)(τ) · �r + r

2c
¨̂
Q(e)(τ) · �r + �m(τ) × �r + r

c
�̇m(τ) × �r

+ 1
6

(
ṙ(2)

q (τ) + r

c
r̈(2)

q (τ)
)

�r

]
. (4.40)
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So we see that the mean-square radius r
(2)
q (τ) does not affect the magnetic field [10, p. 27]

because �∇ × f(r) �r = 0 holds for every differentiable function f(r) that only depends on the
absolute value of �r. r

(2)
q (τ) does also not change the electric field, because using Eq. (3.15) both

mean-square radii from the scalar potential (not shown here) and vector potential cancel each
other. Mean-square radii of the charge distribution occur e.g. in a sphercial capacitor. In such
a system, all multipole moments are zero, but the charge mean-square radii have finite values
[16].

Because normally, one is only interested in the physical observable fields, the electric mean-
square radii (i.e. mean-square radii of the electric multipole moments) for exactly this reason
are usually omitted in textbooks [9, p. 413 et seq.]. Hence, the electric mean-square radii can be
viewed as a gauge artifact, which can be removed by a different choice of �A and ϕ. Therefore,
it does not matter in the first order of the vector potential if the primitive or the traceless
multipole moment tensors are used. In higher orders, this is not true. There, it makes a
difference in the fields if one uses the primitive or the traceless multipole moment
tensors [10, p. 28]. We will discuss this in chapter 6. This difference is caused by the toroidal
moments, but also by mean-square radii of the magnetic and toroidal multipole moments. In
contrast to almost all electric mean-square radii (the order n = 0 of r

(2n)
q corresponds to the

normal radiating multipole moments), the magnetic and toroidal mean-square radii radiate and
therefore have to be considered for the radiation field [22].

All in all, we found in the first order of the vector potential a contribution from the electric
quadrupole moment and the magnetic dipole moment together with the first mean-square radius
of the charge distribution. This is in some sense undesirable, it would be better if in the order n

only n-th poles of all three multipole families appear. This is not the case because the Cartesian
Taylor expansion relies on the parameter r′/r, and the magnetic multipoles are always one order
higher with respect to this parameter than the electric multipoles. Taking the toroidal moments
into account, they appear even one order higher, with the lowest moment, the toroidal dipole,
appearing in the second order, together with the electric octupole and the magnetic quadrupole.
To show this, we consider the second order term, Eq. (4.15), in the expansion of the vector
potential,

A
(2)
i (�r, t) = μ0

4π

1
2
∑
jk

∫ (3rjrk − r2δjk

r5

(
ji(�r ′, τ) + r

c
j̇i(�r ′, τ)

)
+ rjrk

c2r3 j̈i(�r ′, τ)
)

r′
jr′

k d3r′ .

(4.41)

In principle, the idea to decompose this tensor in several symmetric and antisymmetric parts
is the same as before, but because of the higher rank, the formulae to calculate the individual
constituent tensors are much lengthier [50]. We only give here the result of the decomposition,
the calculation can be found in the appendix.
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�A(2)(�r, t) = μ0
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(4.42)

The following quantities have been defined:

Electric octupole moment

O
(e)
ijk(τ) =

∫ (
r′

ir
′
jr′

k − 1
5r′2(r′

iδjk + r′
jδik + r′

kδij)
)

ρ(�r ′, τ) d3r′ , (4.43)

magnetic quadrupole moment

Q
(m)
ij (τ) = 1

3

∫ [
(�j(�r ′, τ) × �r ′)ir

′
j + (�j(�r ′, τ) × �r ′)jr′

i

]
d3r′ , (4.44)

toroidal dipole moment

ti(τ) = 1
10

∫ [
r′

i(�r ′ ·�j(�r ′, τ)) − 2(r′)2ji(�r ′, τ)
]

d3r′ , (4.45)

mean-square radius of the electric dipole moment

�r
(2)
�p (τ) =

∫
(r′)2 �r ′ρ(�r ′, τ) d3r′ . (4.46)

Thus, we encounter in this decomposition contributions from the traceless electric octupole
moment and the traceless symmetric magnetic quadrupole moment. Additionally, we find the
toroidal dipole moment and another mean-square radius, this time the one belonging to the
electric dipole moment. As mentioned before, this mean mean-square radius does also not
contribute to the fields. The definition of the toroidal dipole moment �t in this derivation is a
bit artificial, as it was chosen as the simplest transverse vector and with the constraint that also
the mean-square radius of the electric dipole has to occur in this order of the expansion [16].

The following table illustrates in which orders n the different multipole moments arise from a
Taylor expansion with subsequent decomposition of the tensors:

The left column gives the type of the multipole moment (electric, magnetic, or toroidal). We
see that to get the three dipoles �p, �m, and �t, we need to calculate three orders of the vector
potential.
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Table 4.1: Overview of the multipole moments emerging in different orders of �A

type
n 0 1 2

el. �p Q̂(e) Ô(e)

mag. - �m Q̂(m)

tor. - - �t

The demonstrated way to decompose the terms of the vector potential expansion is not feasible
in practice for arbitrary high orders [9, p. 415]. Already for the third order, it is necessary to
decompose a fourth rank tensor, and the formulae needed for this fill several pages [47]. For the
fourth and all higher orders, no formulae for the general case have been derived. So we need to
look for other possibilities to derive the toroidal moments and to express the vector potential
with its fundamental symmetric constituents.

We can summarize that the Cartesian Taylor expansion has several inconveniences: We have
the limitation that the sources are confined to a small spatial region compared to the distance
where the potential shall be evaluated. Furthermore, the results are only valid in the long-
wavelength limit and the emerging tensors have no definite properties under rotations and parity.
Furthermore, the n-th poles do not appear in the same order n: The electric n-th pole always
appears in the same order as the magnetic (n − 1)-th pole, and the toroidal n-th pole appears
in the same order as the electric (n + 2)-th pole. Last but not least, a decomposition of the
Cartesian vector potential in terms of irreducible tensors is not doable in practice for arbitrary
high orders.

To resolve or completely avoid these problems, there are two possibilities: One of them uses the
Cartesian coordinates and is based on the idea that physical useful multipole moments behave
properly under parity and rotations and therefore, following the above discussion, have to be
symmetric and traceless. Still, this comes with the restriction of spatially confined sources, but
the problems of non-traceless tensors are solved. The other approach uses spherical coordinates
and a decomposition of the current density in momentum space. With this, it is possible to
calculate the multipole moments on the base of angular momentum eigenstates.

At first, we will discuss at first the algorithm which exploits the demand of symmetry and
tracelessness of the multipole tensors. Hereafter, the expansion in spherical coordinates and
momentum space is analyzed.
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4.2 Cartesian Traceless Expansion including Toroidal Moments

The primitive moments of order n contain irreducible parts which do not transform as a tensor of
rank n. In the last section, we showed for the first and second order term of the vector potential,
how the toroidal moments can be defined by decomposing the vector potential. In this section
we discuss an algorithm first proposed in [23] how the vector potential can be expressed with
electric, magnetic and toroidal multipole moments in arbitrary orders.

4.2.1 From Primitive Moments to Traceless Moments

The essential idea which is outlined in this section is the following: We are going to take
the two primitive multipole moment tensors ˆ̃P and ˆ̃M and manipulate them in a way that
three new tensors emerge from the calculation: the traceless electric and magnetic multipole
moment tensors as well as the toroidal multipole moment tensor. These three new tensors
will, unlike the two former primitive tensors, represent distinct physical symmetry
properties of the multipole field. More specifically, they will fulfill the properties outlined
in section 2.2. This procedure was first proposed in 2002 [23] and refined in 2005 [51].

To construct the traceless multipole moments, we will use an operator which takes the trace
out of a tensor with arbitrary rank n [52]. It is self-evident to call this operator “detracing
operator” D. There is one restriction to the tensors on which D can be applied: They have to
be totally symmetric, i.e. symmetric in exchanging an arbitrary pair of indices. This applies for
the electric multipole moment tensor (4.9), but not for the magnetic multipole moment tensor
(4.19). Actually, ˆ̃M contains contributions which behave under a parity transformation like
electric multipole moments. We will remove these parts from ˆ̃M by symmetrizing it. These
parts with the same parity as the electric multipole moments will later be attributed to the
toroidal multipole moments.

One important feature of this transformation is that it cannot be done for every order separately
in the dynamic case. This is only possible in the static case, but then, no toroidal moments are
present and the procedure to detrace the tensors is both trivial and unnecessary.

Furthermore, one has to decide up to which order N the traceless tensors, including the toroidal
moments, shall be derived, and then consider all terms of the vector potential (4.27) until the
order N = n + 2, where the sum index n enumerates the order of the Taylor expansion. This is
due to the fact that the physical fields �E and �B up to the order n are required not to change
when performing this transformation, meaning that the sums

∑
l≤n

�E (l) and
∑
l≤n

�B (l)
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remain invariant. The requirement not to alter these sums by detracing the tensors in a certain
order leads to the necessity to add compensation terms in a different, lower order.

The calculation of the symmetric part of the primitive magnetic multipole moment tensor ˆ̃M is
a generalization of Eq. (4.31) for the case of arbitrary tensor rank,

M̃
(s)
i1...in

= M̃i1...in
− 1

n

n−1∑
p=1

[M̃i1...ip−1ip+1...in−1ipin
− M̃i1...ip−1ip+1...in−1inip ] . (4.47)

Using the identity [10, p. 211]

εijkεimn = δjmδkn − δjnδkm ,

we rewrite Eq. (4.47) as

M̃
(s)
i1...in

= M̃i1...in
− 1

n

n−1∑
p=1

εipinqÑi1...ip−1ip+1...in−1q . (4.48)

For abbreviation, we introduced the tensor ˆ̃N , defined by its components [23]

Ñi1...in(τ) =
∑
ps

εinpsM̃i1...in−1ps(τ)

=
∑
ps

n + 1
n + 2εinps

∫
r′

i1 ...r′
in−1r′

p

[
�r ′ ×�j(�r ′, τ)

]
s

d3r′

= n + 1
n + 2

∫
r′

i1 ...r′
in−1

[
�r ′ ×

(
�r ′ ×�j(�r ′, τ)

)]
in

d3r′ . (4.49)

The tilde indicates that this tensor is not fully symmetric and, like the magnetic multipole mo-
ment tensor, needs to be symmetrized. ˆ̃N is that part of ˆ̃M which has the opposite parity when
compared to the physical relevant magnetic moments described in chapter 2. For example,

ˆ̃N (1)(τ) = 2
3

�N(τ) =
∫

�r ′ ×
[
�r ′ ×�j(�r ′, τ)

]
d3r′

and thus
P �N(τ) = 2

3

∫
(−�r ′) ×

[
− �r ′ × (−�j(�r ′, τ))

]
d3r′ = − �N(τ) ,

and in general
PN̂ (n) = (−1)nN̂ (n).

We used the notation without the tilde to indicate that N̂ is the symmetrized version of ˆ̃N by
making use of the symmetrizing relation (4.47). Contrary, it holds P �m = �m and in general
PM̂ (n) = (−1)n+1M̂ (n). This means that �N (and in general all N̂ (n)) has the same parity as
the electric and toroidal multipole moments. Because we directly have, using the behavior of
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the electric current under time inversion,

T �N = 2
3

∫
�r ′ ×

[
�r ′ × (−�j(�r ′, τ))

]
d3r′ = − �N(τ) ,

and in general T N̂ = −N̂ , the parity under time inversion is the same as for toroidal moments.
We will see later that the toroidal dipole moment will be composed partially from �N . This
vector was actually the term Van Bladel discussed in 1988 [18] without referring to toroidal
multipole moments. For some considerations, even nowadays only such a term is denoted as
toroidal dipole moment [53].

Now that we have the fully symmetric tensors ˆ̃P and ˆ̃M (s), we can go on and detrace them. The
detracing operator D(n) is defined for a totally symmetric tensor T̂ (n) through

D(n)T̂ = T̂ (st) . (4.50)

D(n) projects out of a general totally symmetric rank-n-tensor exactly this part which transforms
as a tensor with total angular momentum j = n. Because it also holds D(n)D(n) = D(n), D(n) is
a projector [52]. The entries of T̂ (st) are given by

T
(st)
i1...in

= Ti1...in −
∑
D(i)

δi1i2Λ[T̂ (n)]i3i4...in (4.51)

with the tensorial functional Λ̂ that takes as argument a totally symmetric tensor of rank n and
yields as result a tensor of rank n − 2,

Λ[T̂ (n)]i3...in =
�n/2	∑
m=1

(−1)m−1(2n − 1 − 2m)!!)
(2n − 1)!! m

∑
D(i)

δi3i4....i2m−1i2mT n;m
i2m+1...n

. (4.52)

	n/2
 is the integer value equal to or rounded down from n/2. !! is the double factorial and
defined for odd n as n!! = n · (n − 2) · (n − 4) · ... · 1. The superscript n is the rank of the
tensor which is to be detraced, and the superscript m is the number of contractions. For one
contraction, two arbitrary indices are set equal and then those components are summed up. In
this sense, a contraction is the general case of a trace. The result of one contraction is a tensor
of rank n − 2. δi3i4....i2m−1i2m is a delta function with two of the indices that appear on the left
side of the equation. These two indices are shuffled with in the sum

∑
D(i). It is the sum of all

permutations regarding the indices of a tensor,

∑
D(i)

Ti1...in = 1
n

[Ti1...in + Tin...i1 + Ti1in...i2 + ... + Ti1...inin−1 ] .

The tensor Λ contains the traces of T̂ in a form that it transforms as a tensor of rank n − 2.
So for n = 3, Λ is as a vector. The parity of Λ regarding spatial and time inversions will be
the same as the tensor from which the traces are calculated. Thus, when calculating e.g. the
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traces of the electric multipole moment, Λ will have the same behavior as the electric multipole
moments.

As it was already mentioned, for the static case this whole machinery of operators and tensor
analysis is not adequate to treat the multipole moments. Details are given in [23]. We therefore
go straight to the dynamic case and apply the formulae.

4.2.2 Overview and Examples of the Algorithm

As a recursion procedure, we have to do the following steps to obtain the three multipolar
contributions up to and including order n [23]:

1. Detracing the primitive electric multipole moment tensor of order N = n+2 to a symmetric
traceless one using Eqs. (4.50)–(4.52).

2. Symmetrizing and detracing the magnetic multipole moment tensor of order n + 1 to a
symmetric traceless one using first Eq. (4.47) and then Eqs. (4.50)–(4.52).

Then, the lower orders are modified to not change the fields and both steps are repeated for
n → n − 1. This is repeated until n = 0 is reached. The first step creates additional terms in
the order n, the second in the orders n and n − 1. The primitive electric tensor of order n is
changed as

P̂ (n) → ˆ̃P (n) + 1
c2

[
n

(n + 2)2
˙̂

N (n) − n

2(n + 2)
¨̂Λ(n)[ ˆ̃P (n+2)]

]
=: ˆ̃P (n) + 1

c2
˙̂

T (n) (4.53)

and additionally, the primitive magnetic multipole moment tensor of order n−1 is changed as

M̂ (n−1) → ˆ̃M (n−1) + n − 1
2c2(n + 1)

¨̂Λ(n−1)[ ˆ̃M (s,n+1)] . (4.54)

The quantity ˆ̃M (s,n+1) is the symmetrized primitive magnetic multipole moment tensor, defined
in Eq. (4.47), of order n + 1.

In Eq. (4.53) the toroidal multipole moment tensor of order n was defined as [54]

T̂ (n)(τ) = n

(n + 2)2 N̂ (n) − n

2(n + 2)
˙̂Λ(n)[ ˆ̃P (n+2)] . (4.55)

In this expression for the toroidal multipole moment two terms contribute: One term with
the tensor N̂ , that has, as shown above, the same parity and time inversion symmetry as we
attributed to the toroidal moments in section 2.2. The second term contains the tensor Λ̂. As
we discussed above, Λ̂ has the same space and time inversion symmetry as the electric multipole
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moments, but because it appears with a time derivative in the formula of T̂ (n), the time inversion
symmetry of ˙̂Λ is the opposite of the electric parity. Thus, we have indeed found with T̂ (n) a
multipole moment tensor which has the symmetry properties of the toroidal moments.

We now illustrate how the toroidal dipole and quadrupole moment can be derived using this
algorithm. The toroidal dipole moment appears, like all three dipoles, in the first order of the
Cartesian traceless expansion (not to be confused with the Taylor expansion in section 4.1, where
it appears only in the third order). Thus, we have n = 1 and have to start the detracing of
the primitive electric multipole moment tensor at order N = 3 and the symmetrization of the
primitive magnetic multipole moment tensor at order N = 2 [54].

Step 1: Detracing the electric octupole tensor Ô(e) using (4.52) yields

Λi[Ô(e)] = 1
5

∫
(r′)2r′

iρ(�r ′, τ) d3r′ .

Step 2: For n = 1, Eq. (4.49) yields

Ni = 2
3

∫
[�r × (�r ×�j)]i d3r .

Now we can use Eq. (4.61) for n = 1,

�t = 1
4

�N − 1
6

�̇Λ[Ô(e)]

= 1
6

∫ [
(�r × (�r ×�j)

]
d3r − 1

30

∫
�r 2 �r ρ̇ d3r

= 1
10

∫ [
(�r ·�j)�r − 2r2�j] d3r , (4.56)

where we again used the continuity equation (3.5) and Gauss’s theorem (4.26). The same
procedure is now shown for the toroidal quadrupole moment, meaning that we have to go one
order higher in the detracing process.

Step 1: Detracing the electric hexadecapole tensor Ĥ(e) yields

Λij [Ĥ(e)] = 1
7

∫
r2rirjρ(�r) d3r − 1

70

∫
r4ρ(�r) d3r δij .

Step 2: The tensor ˆ̃N yields for n = 2

Ñij = 3
4

∫
ri[�r × (�r ×�j)]j d3r .
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Now we can use Eq. (4.61) for n = 2,

Q
(t)
ij = 1

9

(
Ñij + Ñji

)
− 1

4

(
Λ̇ij − 1

3Λ̇kkδij

)

= 1
12

(∫
ri(rj(�r ·�j) − jjr2) d3r +

∫
rj(ri(�r ·�j) − jir

2) d3r

)

− 1
28

(∫
r2rirj ρ̇(�r) d3r − 1

3

∫
r4ρ̇(�r) d3rδij

)

= 1
42

∫ [
4rirj(�r ·�j) − 5r2[rijj + rjji] + 2r2(�r ·�j)δij

]
d3r (4.57)

Using the traceless moments instead of the primitive ones and relation (4.53), Eq. (4.27) takes
the form

�A(�r, t) = μ0
4π

∞∑
n=1

(−1)n−1

n!
�∇n−1 ·

[
�∇ × 1

r
M̂ (n)(τ) + 1

r
˙̂

P (n)(τ) + 1
r

1
c2

¨̂
T (n)(τ)

]
, (4.58)

with the symmetric and traceless multipole tensors [23]

P̂ (n)(τ) = (−1)n

(2n − 1)!!

∫
ρ(�r ′, τ)(r′)2n+1 �∇n 1

r′ d3r′ , (4.59)

M̂ (n)(τ) = (−1)n+1

(n + 1)(2n − 1)!!

∫ n∑
k=1

(r′)2n+1
(
�j(�r ′, τ) × �∇

)
ik

n∏
m=1
m�=k

∂im

1
r′ d3r′ �ei1 ⊗ · · · ⊗ �ein ,

(4.60)

T̂ (n)(τ) = n

(n + 2)2 N̂ (n) − n

2(n + 2)
˙̂Λ(n) . (4.61)

This representation of �A now actually contains the physical multipole moment tensors including
the toroidal one. Now in every order n, there exist three n-th pole terms. Because of the
additional curl of the magnetic multipole moment tensor, they do not appear in the same order
when the vector potential is expanded with respect to r′/r. The formula for the T̂ (n) is not in
a closed form, since one needs to use the electric multipole tensors to calculate Λ̂. It would be
nice if a closed formula could be found.

However, the various mean-square radii do not appear directly in this equation. For the mean-
square radii of the electric multipole moments, this does not matter, since they do not contribute
to the radiation field. But the mean-square radii of the magnetic and toroidal multipole mo-
ments do contribute, and therefore have to appear in the vector potential. When performing
the detracing process for higher multipole moments than presented here, they will appear as
additional terms to compensate the changes done while detracing and symmetrizing. But since
we are only interested in the toroidal moments here, this procedure is not outlined in detail.

Summarizing, we showed how the toroidal moments can be deduced from the Cartesian multi-
pole expansion by requiring definite properties of the electric and magnetic multipole moments.
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However, this somehow complicated algorithm is only necessary because the Taylor expan-
sion, which was used as a starting point, is not an adequate approach to perform the
multipole expansion. The toroidal moment is in the above procedure from a mathematical
point of view only a compensation term to leave the fields invariant when the primitive tensors
are symmetrized and detraced. In the next section, we will discuss how the canonical, spherical
base can be used to get the three multipole moment families in a more direct and natural way.

4.3 Multipole Expansion in Spherical Coordinates

Besides the expansion in Cartesian coordinates, one can expand the vector potential in spherical
coordinates. This is based on expressing the vector potential with spherical harmonics Ylm(θ, φ)
and the spherical Bessel functions jl(kr). A big advantage of the expansion in spherical coor-
dinates is that there is no need for approximations. In Cartesian coordinates, we assumed a
small source and the long-wavelength limit. This naturally limits the reliability of the calculated
quantities to situations where the assumed conditions are justified. In contrast, the expansion
in spherical coordinates is exact for every multipole order.

A further advantage is that the spherical multipole moments are directly traceless and symmetric
and do not need to be symmetrized and detraced. We can transform them into Cartesian
coordinates and vice versa by using transformation equations that will be discussed in chapter
6.

Starting with Eq. (3.22) in the Lorenz gauge and assuming the Fourier decomposition (3.8) of
the current, we arrive at

�Aω(�r) = μ0
4π

∫
�jω(�r ′)e ik|�r−�r ′|

|�r − �r ′| d3r′ .

We also used the dispersion relation in free space k = ω/c, so that the value of k is fixed through
the fact that we only consider one term of the Fourier decomposition (3.8).

We assume that the evaluation point of the potential at point �r is in the exterior of the source,
so that |�r| > |�r ′|. Then, the Green’s function in this integral, expressed with spherical Bessel
functions, spherical Hankel functions and spherical harmonics, is [9, p. 428]

e ik|�r−�r ′|

|�r − �r ′| = 4πik
∞∑

l=0
jl(kr′) h

(1)
l (kr)

l∑
m=−l

Ylm(θ, φ)Y ∗
lm(θ′, φ′) . (4.62)
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Explicit expressions of the functions Ylm and jl for low l are listed in the appendix. The indices
l and m correspond to eigenvalues of the angular momentum operator L, Eq. (3.23), with [55]

L |l m〉 = l(l + 1) |l m〉 , (4.63)

Lz |l m〉 = m |l m〉 . (4.64)

Before discussing the dynamic case, we want to sketch the static case and identify similarities
and differences between the expansion of the scalar and the vector potential.

4.3.1 The Static Case

In the static case, the expansion of the vector potential differs significantly from the expansion
of the scalar potential when defining the multipole moments. For comparison, we will first show
the expansion of the scalar potential, Eq. (3.21), in the static case. Therefore, we have to take
the limit k → 0 in Eq. (4.62), which is equivalent to assume kr′ → 0, since r′ was anyway
considered as small.

4πik
∞∑

l=0
jl(kr′ → 0) h

(1)
l (kr → 0)

l∑
m=−l

Ylm(θ, φ)Y ∗
lm(θ′, φ′)

= −4πk
∞∑

l=0
jl(kr′ → 0) nl(kr → 0)

l∑
m=−l

Ylm(θ, φ)Y ∗
lm(θ′, φ′)

= 4πk lim
k→0

∞∑
l=0

(kr′)l

(2l + 1)!!
(2l − 1)!!
(kr)l+1

l∑
m=−l

Ylm(θ, φ)Y ∗
lm(θ′, φ′)

= 4π
∞∑

l=0

1
2l + 1

r′l

rl+1

l∑
m=−l

Ylm(θ, φ)Y ∗
lm(θ′, φ′) . (4.65)

We used the approximation formulae for small arguments of the spherical Bessel and Hankel
functions [9, p. 427], canceling the dependency of k. Using this, the static scalar potential ϕ

becomes

ϕ(�r) = 1
4πε0

∫
ρ(�r ′)

|�r − �r ′| d3r′

= 1
ε0

∞∑
l=0

1
2l + 1

1
rl+1

l∑
m=−l

Ylm(θ, φ)
∫

r′lY ∗
lm(θ′, φ′)ρ(�r ′) d3r′

= 1
4πε0

∞∑
l=0

l∑
m=−l

√
4π

2l + 1Ylm(θ, φ)Qlm

rl+1 . (4.66)

In the last step we introduced the spherical electric multipole moment of order l [56, p. 99],

Qlm =
√

4π

2l + 1

∫
r′lY ∗

lm(θ′, φ′)ρ(�r ′) d3r′ . (4.67)
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This definition is made with a numeric prefactor so that for l = 0 the total charge and hence
the Cartesian monopole moment is recovered:

Q00 =
√

4π

∫
Y ∗

00(θ′, φ′)ρ(�r ′) d3r′

=
√

4π

∫ 1√
4π

ρ(�r ′) d3r′

= q . (4.68)

For every index l, we get 2l+1 independent terms (m = −l, −l+1, ..., −1, 0, 1, ..., l−1, l). This
fits with the calculation in section 4.1.3, where we derived the number of independent entries of
a traceless and symmetric Cartesian tensor and got the same result. It follows from this that the
spherical multipole moments are already traceless, they do not need to be detraced. Because of
the properties of the angular momentum eigenvalues l and m, the spherical multipole tensors
are also symmetric.

We postpone the discussion of higher order multipole moments and the systematic conversion
into Cartesian moments to chapter 6.

One could now speculate that the procedure for the static vector potential is analogous. However,
this turns out to be wrong. By performing the same expansion for the vector potential as done
for the scalar potential, we arrive at

�A(�r) = μ0
4π

∫ �j(�r ′)
|�r − �r ′| d3r′

= μ0

∞∑
l=0

1
2l + 1

1
rl+1

l∑
m=−l

Ylm(θ, φ)
∫

r′lY ∗
lm(θ′, φ′)�j(�r ′) d3r′

= μ0
4π

∞∑
l=0

√
4π

2l + 1

l∑
m=−l

Ylm(θ, φ)
�Jlm

rl+1 , (4.69)

where we defined the quantity

�Jlm =
√

4π

2l + 1

∫
r′lY ∗

lm(θ′, φ′)�j(�r ′) d3r′ .

It is important to realize that this expansion is not a useful representation of the vector poten-
tial, since no individual term in Eq. (4.69) represents the vector potential of a specific current
distribution [57]. This is due to the fact that the individual terms in Eq. (4.69) do not fulfill
the properties of gauge invariance imposed on the total �A(�r). The index l, which appears here,
does not characterize a distinct angular momentum, but each term contains a superposition of
several angular momentum eigenvalues. In contrast, every term in the expansion (4.10) of the
scalar potential represents a specific charge distribution [57]. Thus, the quantity �Jlm is not a
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useful definition for a spherical multipole moment. The proper way how multipole moments can
be defined is shown in the next section for the general dynamic case.

4.3.2 Momentum Space Formalism for the Vector Potential

We now discuss the general case for arbitrary k at the example of the vector potential.1 Instead of
the ansatz (4.69), we will decompose the current density into one longitudinal and two transverse
parts.

Following Eq. (3.8), we express the current density as a Fourier series in frequency space and
consider every term separately, indicated by the subscript ω at �j and �A. Using representation
(4.62), the vector potential is

�Aω(�r) = μ0ik
∞∑

l=0

l∑
n=−l

h
(1)
l (kr)Yln(θ, φ)

∫
�jω(�r ′)jl(kr′) Y ∗

ln(θ′, φ′) d3r′ . (4.70)

We renamed the index m to n, because we will need m later for the decomposition of the current
density.

We now express �j through another Fourier series, this time in momentum space,

�jω(�r ′) = 1√
2π

∫
�̃jω(�κ) e i�κ·�r ′ d3κ . (4.71)

We will, as for the Fourier transformation into the frequency domain, omit the tilde on �j from
now on. It real space, one usually is confronted with the problem of radial integrals that tend
to diverge in many cases, which enforces to limit the integration to a small spatial region. We
will face this problem in the next chapter. In momentum space, however, this problem does not
occur, since the integration over r can, as we will see, be performed by using a delta function.
It is important to note that, because we only consider the vector potential �Aω(�r) at one distinct
frequency ω, the value for k is fixed. Contrary, κ can take all values.

Similar to expansion (4.62), we represent the exponential function e i�κ·�r as a sum of spherical
harmonics and spherical Bessel functions [9, p. 471],

e i�κ·�r = 4π
∞∑

l′=0
il′jl′(κr)

l′∑
m′=−l′

Y ∗
l′m′(θκ, φκ)Yl′m′(θ, φ) . (4.72)

θ and φ are the angles of �r, θκ and φκ characterize the angles of the vector �κ.

Now we insert Eqs. (4.71) and (4.72) into Eq. (4.70) to obtain

1The following approach in momentum space is based on personal communication with Ivan Fernandez-Corbaton.
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�Aω(�r) = 4π√
2π

μ0ik
∞∑

l=0

l∑
n=−l

h
(1)
l (kr)Yln(θ, φ)

∫
d3r′jl(kr′)Y ∗

ln(θ′, φ′)

·
∫

d3κ�jω(�κ)
∑

l′
il′jl′(κr′)

l′∑
m′=−l′

Y ∗
l′m′(θκ, φκ)Yl′m′(θ′, φ′) . (4.73)

To simplify this lengthy expression, we firstly use the orthonormality of the spherical harmonics
[9, p. 108], ∫

Y ∗
ln(θ′, φ′)Yl′m′(θ′, φ′) dΩ′ = δll′δnm′ .

With this, the integration over θ′ and φ′ provides only non-zero values for l = l′ and n = m′.
This yields

�Aω(�r) = 4π√
2π

μ0ik
∞∑

l=0

l∑
n=−l

h
(1)
l (kr)Yln(θ, φ)

·
∫

r′2 dr′jl(kr′)
∫

d3κ�jω(�κ) iljl(κr′)Y ∗
ln(θκ, φκ) . (4.74)

Now we handle the integration over r′ by using the closure relation [58]
∫ ∞

0
r2jl(kr)jl(κr) dr = π

2
1
k

1√
κk

δ(k − κ) ,

which is valid for k, κ ∈ R. This yields

�Aω(�r) = 4π√
2π

μ0ik
∞∑

l=0

l∑
n=−l

h
(1)
l (kr)Yln(θ, φ)

∫
d3κ�jω(�κ) il Y ∗

ln(θκ, φκ)π

2
1
k

1√
κk

δ(k − κ) . (4.75)

Finally we perform the integration over κ and we arrive at

�Aω(�r) = 2π2
√

2π
μ0k

∞∑
l=0

l∑
n=−l

il+1h
(1)
l (kr)Yln(θ, φ)

∫
dΩκ

�jω(|�κ| = k, Ωκ) Y ∗
ln(θκ, φκ) . (4.76)

For the same reason as in Eq. (4.69), we will not define the integral in this equation as multipole
moment. Instead, we will decompose the current density in the next section into its longitudinal
and transverse fields and analyze those parts separately.
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4.3.3 Decomposing the Current Density: Multipole Moments as Momentum
Integrals

We have left only Fourier components of �jω in the expression of �A which fulfill the condition
κ = k. It can be shown [4] that a pure longitudinal current density with this property produces
no radiation field. Thus, we can focus our discussion on the transverse part. To do this, we
write �jω as a sum of three terms,

�jω(θκ, φκ) =
∞∑

j=0

j∑
m=−j

c̃jm
�Wjm +

∞∑
j=1

j∑
m=−j

(b̃jm
�Xjm + ãjm

�Zjm) . (4.77)

This is basically the Helmholtz decomposition (3.24). The first term represents the longitudinal
part of the current, the second and third term are the two transverse parts, which generate
the radiation field. The transverse parts have no term for l = 0, so the sum starts at l = 1.
The prefactors ãjm, b̃jm and c̃jm can be calculated from the sources or from the fields. We
will calculate them in the following using the current in momentum space, whereas in the next
chapter, we will use both the fields itself and the sources in real space. The tilde is added to
distinguish these expansion coefficients from the ones used in the next chapter. The indices l

and m belong to the angular momentum of the current distribution in momentum space. Fields
with different l are subject to different symmetry properties regarding rotations, whereas m is
the eigenvalue of Lz and measures the projection of a state with total orbital angular momentum
quantum number l onto the z-axis [35, p. 53]. Such a separation of the current into longitudinal
and transverse parts is not Lorentz-invariant [59], however, since we are in the non-relativistic
limit, there is no problem doing this decomposition.

We define the functions �Wjm, �Xjm and �Zjm by using the spherical harmonics as follows [9, p. 431]:

�Wjm(θκ, φκ) = Yjm(θκ, φκ) �n , (4.78)

�Xjm(θκ, φκ) = 1√
j(j + 1)

LκYjm , (4.79)

�Zjm(θκ, φκ) = �n × �Xjm , (4.80)

where �n is a unit vector in direction of �κ, �n = �κ/κ, and Lκ is the orbital angular momentum
operator in momentum space, defined as

Lκ = −i(�k × �∇κ) .

The three functions �Wjm, �Xjm and �Zjm are pictured in Fig. 4.2. By definition �W , �X and �Z

fulfill
�κ × �W = �κ · �X = �κ · �Z = 0 ,
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�W

�X

�Z

�κ

Figure 4.2: The functions �W , �X, and �Z, in which the current density (wavy line) is decomposed.
The functions �X and �Z are located on the surface of a sphere and form a right angle, and �W
is parallel to �κ and perpendicular to �X and �Z and also to the surface of the sphere.

where �κ× is the momentum space analogon to the real space operator �∇× and �κ· is the analogon
to �∇·. �W is the longitudinal part of �j, and �W and �Z are the transverse parts. As we will show,
�Z accounts for the electric parity, whereas �X contains the contributions from the magnetic
multipole moments. Furthermore, the three functions form an orthonormal system. It holds [9,
p. 472]

∫
�Wlm · �Xlm dΩ = 0 ,∫
�Xlm · �Zlm dΩ = 0 ,∫
�Zlm · �Wlm dΩ = 0 , (4.81)

and
∫

�Wjm · �Wj′m′ dΩκ =
∫

�Xjm · �Xj′m′ dΩκ =
∫

�Zjm · �Zj′m′ dΩκ = δjj′δmm′ . (4.82)

Effectively, the vector potential consists now for given indices l and j of three terms, one for each
field type (electric, magnetic and longitudinal type). In real space, those terms are sometimes
called “elementary vector potentials” [2]. Each of these elementary vector potentials belongs to
a specific current distribution. This is the correct way to expand the vector potential we were
referring to at the end of the last section.

To derive the multipole moments in momentum space, we consider in this section from now
on only the transverse part, since the longitudinal part in each case does not contribute to the
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radiation field.

�j⊥ =
∑
jm

(b̃jm
�Xjm + ãjm

�Zjm) . (4.83)

We now investigate the explicit expressions for the vector potential caused by some distinct
indices:
j = 1, l = 0: Electric dipole term

�A10(�r, ω) = 2π2
√

2π
μ0kih(1)

0 (kr)Y00(θ, φ)
∫

dΩκ

1∑
m=−1

ã1m
�Z1m Y ∗

00(θκ, φκ)

= 2π2
√

2π
μ0kih(1)

0 (kr)Y00(θ, φ)
∫

dΩκ

1∑
m=−1

ã1m�n × 1√
2

LκY1m Y ∗
00

= − iμ0ω

4π

e ikr

r
�p(k) (4.84)

with the electric dipole moment

�p(k) = 4π2
√

6ω

⎛
⎜⎜⎝

(ã11 − ã1−1)
i (ã11 + ã1−1)

−
√

2ã10

⎞
⎟⎟⎠ .

This definition of �p(�k) was chosen as such that the vector potential coincides with the corre-
sponding expression in Jackson [9, p. 410]. However, this �p(k) is not the same quantity as defined
in Eq. (4.7). The latter equations holds only for small kr, whereas the here defined quantity is
valid for all values of kr.

j = 1, l = 1: Magnetic dipole term

�A11(�r, ω) = 2π2
√

2π
μ0k

∞∑
l=0

1∑
n=−1

i2h
(1)
l (kr)Y1n(θ, φ)

∫
dΩκ

1∑
m=−1

b̃1m
�X1m Y ∗

1m(θκ, φκ) (4.85)

= 2π2
√

2π
μ0k

∞∑
l=0

1∑
n=−1

i2h
(1)
l (kr)Y1n(θ, φ)

∫
dΩκ

1∑
m=−1

b̃1m
1√
2

LκY1m Y ∗
1m (4.86)

= ikμ0
4π

e ikr

r2

(
1 − 1

ikr

)
�r × �m(k) (4.87)
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with the magnetic dipole moment

�m(k) =
√

6π2

k

⎛
⎜⎜⎝
(
b̃11 − b̃1−1

)
i
(
b̃1−1 + b̃11

)
−

√
2 b̃10

⎞
⎟⎟⎠ .

Like for the electric dipole, we defined �m to fit the vector potential with Jackson’s expression
[9, p. 413], and like before, this definition of �m(k) is the general form of Eq. (4.17), valid for all
values of kr.

j = 1, l = 2: Toroidal dipole term

�A12(�r, ω) = 2π2
√

2π
μ0k

2∑
n=−2

i2+1h
(1)
2 (kr)Yln(θ, φ)

∫
dΩκ

1∑
m=−1

a1m
�Z1mY ∗

2m(θκ, φκ) . (4.88)

= 2π2
√

2π
μ0k

2∑
m=−2

i2+1h
(1)
2 (kr)Ylm(θ, φ)

∫
dΩκ

1∑
m=−1

ã1m�n × 1√
2

LκY1m Y ∗
2m (4.89)

= μ0
4π

3 − 3ikr − k2r2

r5 (�r(�r · �t(k)) − r2�t(k)) e ikr (4.90)

with the toroidal dipole

�t(k) = 2π2

i
√

6k2

⎛
⎜⎜⎝

(ã11 − ã1−1)
i (ã1−1 + ã11)

−
√

2ã10

⎞
⎟⎟⎠ .

Like before, this definition for the toroidal moment �t(k) is not the one defined in Eq. (4.45),
but is valid for all values of kr. It was defined so that the expression of �Aω matches the anal-
ogous expression found in literature [26] up to a gauge difference. Comparing to the literature
expression, it holds

�Alit − �Aω = �∇χ

with
�∇χ = e ikr

r5

[
2k2r2�r(�r · �t ) + (3�r(�r · �t ) − r2�t )(2ikr − 2)

]
.

These terms can also be found in Eq. (4.42), if the equation is Fourier transformed into the
frequency domain.

This result suggests that the electric and toroidal dipole moments are directly proportional
to each other. This would implicate that by measuring one of the two moments, the other
moment would also be known. Hence, the toroidal moments seem to be an artefact
of the Cartesian Taylor expansion, where they only appear because the multipole tensors
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are demanded to fulfill definite properties under parity and rotations. The fundamental
character which is normally attributed to toroidal moments seems therefore to be
questionable, at least in the context of electrodynamics.

For higher values of j and l, higher multipole moments can be defined. Table 4.2 provides an
overview over the multipole moments which appear in various combinations of l and j for the
transverse part of �jω. The dependence on k is suppressed. Such multipole moments depending
on the wave vector k are also called “multipole form factors”. Their long-wavelength limit k → 0
yields the usually considered multipole moments [16].

Table 4.2: Emergence of the various multipole moments for different combinations of j and l.

j
l 0 1 2 3

0 0 0 0 0
1 �p �m �t 0
2 0 Q̂(e) Q̂(m) Q̂(t)

3 0 0 Ô(e) Ô(m)

This chapter showed that it is possible to calculate the multipoles and hence the multipole
moments based on general considerations regarding the properties of the multipole tensors.
For both the Cartesian and the spherical derivations, the underlying reasoning was to have
tensors with definite properties. These properties concern proper transformation behavior under
parity and rotations. From the spherical expansion, it is more straightforward to calculate the
multipole moments because they are a priori traceless and symmetric. Contrary, in the Cartesian
expansion, cumbersome transformations have to be performed until the tensors have the desired
properties.

Both derivations have something in common: The toroidal moments do not appear as funda-
mental physical quantities. In the Cartesian expansion, they look like a mathematical necessity
to compensate the detracing and symmetrizing manipulations and to leave the fields unchanged.
In the spherical expansion, the toroidal dipole moment is just proportional to the electric dipole
moment. We will show in the next chapter that this connection between the electric and the
toroidal moments is also there when the multipole expansion is done on the level of the fields.
Both multipole moments can only be disentangled when the same approximation is done like in
the Cartesian Taylor expansion, namely the long-wavelength approximation.



5 Direct Multipole Expansion of
Electromagnetic Fields

So far, we used the scalar and vector potential to perform the multipole expansion. In this
chapter, we will show that it is also possible to perform a multipole expansion by starting directly
on the level of fields. This has the advantage that the problem of the choice of gauge does not
exist, since electric and magnetic fields are experimentally accessible quantities. However, in
general it is not possible to reconstruct the sources unambiguously from the fields [60]. The
reconstruction is only unambiguous if solely the transverse parts of the currents and of the
fields are considered. This is justified here, because radiation fields only contain transverse
contributions.

At first, we will decompose the electric field into its orthonormal angular momentum eigenstates
with expansion coefficients to be determined. We will then discuss possibilities to perform the
multipole expansion of the fields by using this decomposition. On the one hand, we will use
only the fields to calculate the expansion coefficients. This will be done by projecting the total
field onto the expansion terms separately, since the base functions are chosen as orthonormal.
We will see that by only using this projection method, we cannot distinguish between electric
and toroidal moments.

On the other hand, we will express the expansion coefficients with the charge and current
densities. For this purpose, we project the fields onto a spherical surface and use the Helmholtz
equation to express the projection integral with the source densities. This will also yield no
clear separation between the electric and toroidal moments in the exact expression, but in the
long-wavelength limit, this distinction will become clear.

5.1 Decomposition of the Fields

The electromagnetic field has one longitudinal and two transverse components. It is therefore
useful to decompose the �E- and �B-fields, like the current in previous chapter, into a series of
multipolar harmonic fields with complex expansion coefficients [1]. Each of these harmonic fields
then will describe one of the longitudinal or transverse components. Our prefactor convention
is the same as in [9].

We start with the decomposition of the electric field that reads as

�E(�r, ω) = Z0

∞∑
l=0

l∑
m=−l

clm
�Llm(�r, ω) + Z0

∞∑
l=1

l∑
m=−l

[
blm

�Mlm(�r, ω) + i
k

alm
�Nlm(�r, ω)

]
. (5.1)

S. Nanz, Toroidal Multipole Moments in Classical Electrodynamics, BestMasters,
DOI 10.1007/978-3-658-12549-3_5, © Springer Fachmedien Wiesbaden 2016
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The first term represents the longitudinal part of the electric field. It is related to the Coulomb
field and only relevant for the near field. The discussion of this contribution can be found in
section 5.4. The second and the third terms are the transverse part which belong to the radiation
field [42, p. 83 et seq.]. The expansion coefficients alm, blm, and clm are related to the coefficients
ãlm, b̃lm, and c̃lm used in the previous chapter. One can show that with a suitable normalization,
they are actually the same [61]. The sum indices l and m have the same meaning regarding the
angular momentum as the indices j and m in the previous chapter. For the longitudinal term,
the sum starts at l = 0, whereas for the transverse terms, there is no l = 0 contribution, so the
sum starts at l = 1. In the following, we drop the arguments of the functions �E, �L, �M and �N

to keep notation clear.

The so-called Hansen multipole harmonic fields [36] [62, p. 217] �L, �M and �N that appear in
the equation above can be defined in many different ways [42, p. 87]. For example, they can be
expressed trough the functions �W (θκ, φκ), �X(θκ, φκ) and �Z(θκ, φκ), which we used in chapter 4
to express the current density in momentum space [63]. It holds, up to normalization factors,

�Mlm(�r) =
∫

�Xlm(θκ, φκ) e i�κ·�r dΩκ

and analogously for �N and �L. However, we will not use this relation. Instead, we follow [9,
p. 431 et seq.] and define �L, �M and �N as follows:

�Llm = 1
k

�∇jl(kr)Ylm(θ, φ) , (5.2)

�Mlm = h
(1)
l (kr) �Xlm , (5.3)

and

�Nlm = i
k

�∇ × �M = i
k

�∇ × h
(1)
l (kr) �Xlm . (5.4)

We incorporated the natural boundary condition that requires the transverse waves to vanish
at infinity by using the Hankel function of first kind and degree l, h

(1)
l (kr) [9, p. 440]. In the

longitudinal part, we use the spherical Bessel function jl(kr) to avoid a divergence at the origin.
The function �Xlm was defined in Eq. (4.79).

It is worth noting that Eq. (5.1) can also be derived by using the decomposition (3.24) of a
general vector field into three Debye potentials. We mention this only for completeness and
to justify Eq. (5.1). Expansion of the Debye potentials ξ, ψ, and ζ into a series of spherical
harmonics and Hankel functions yields, e.g. for ξ,

ξ =
∞∑

l=0

l∑
m=−l

clmh
(1)
l (kr)Ylm(θ, φ) .
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Plugging these expansions into Eq. (3.24), we get, up to some arbitrary prefactors, Eq. (5.1).

Per definition �L, �M and �N fulfill

�∇ × �L = �∇ · �M = �∇ · �N = 0

and form, regarding the angular integration, an orthogonal system of functions. Following
section 4.3.3, it holds for all l, l′, m, m′

∫
�Mlm · �Nl′m′ dΩ = 0 ,∫
�Mlm · �Ll′m′ dΩ = 0 ,∫
�Nlm · �Ll′m′ dΩ = 0 . (5.5)

Furthermore, based on the normalization of the angular part of �M , the same normalization
holds for the angular part of �N :
∫

�N∗
lm · �Nl′m′ d3r = 1

k2

∫
(�∇ × �Mlm)∗ · (�∇ × �Ml′m′) d3r

= 1
k2

(∫
�∇[ �M∗

lm × (�∇ × �Ml′m′)] d3r +
∫

�M∗
lm · �∇ × �∇ × �Ml′m′ d3r

)

= 1
k2

(∮
[ �M∗

lm × (�∇ × �Ml′m′)] d�S +
∫

�M∗
lm · [�∇�∇ · �Ml′m′ − Δ �Ml′m′ ] d3r

)

= − 1
k2

∫
�M∗

lm · Δ �Ml′m′ d3r

=
∫

�M∗
lm · �Ml′m′ d3r

= δll′δmm′

∫
r2h

(1)
l (kr)h(1)

l′ (kr) dr . (5.6)

In the second and third line we used the identities �∇ · ( �A × �B) = �B(�∇ · �A) − �A(�∇ · �B) and
�∇ × �∇ × �A = �∇�∇ · �A − Δ �A valid for differentiable vector fields �A and �B. For the third line
Gauss’s theorem was applied, for the fourth line it was used that the surface integral in infinity
of the functions �M and �N vanishes as well as the divergence of �M , and for the last line we used
the Helmholtz equation (3.12).
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�L is also normalized in the angular variables,
∫

�L∗
lm · �Ll′m′ d3r = 1

k2

∫
∂njl(kr)Ylm(θ, φ) · ∂njl′(kr)Yl′m′(θ, φ) d3r

= − 1
k2

∫
jl(kr)Ylm(θ, φ) Δjl′(kr)Yl′m′(θ, φ) d3r

=
∫

jl(kr)Ylm(θ, φ)jl′(kr)Yl′m′(θ, φ) d3r

= δll′δmm′

∫
r2jl(kr)jl′(kr) dr . (5.7)

In the second line we integrated by parts and in the fourth line we used the Helmholtz equation.

So we showed that �L, �M and �N form a complete base of the three dimensional vector space, and
so they can be used to expand the electromagnetic field. The decomposition of the transverse
part is

�E⊥ = Z0
∑
lm

[ i
k

alm
�∇ × h

(1)
l (kr) �Xlm + blmh

(1)
l (kr) �Xlm

]
,

For completeness, the corresponding magnetic field, calculated via the Maxwell equation (3.3),
is given by

�H =
∑
lm

[
almh

(1)
l (kr) �Xlm − i

k
blm

�∇ × h
(1)
l (kr) �Xlm

]
.

The next section focuses on the assumption that the total radiation field �E(�r) is known, so
that the coefficients alm and blm can be calculated from projecting the total field onto the base
functions �M and �N . Then, the alm and blm can, with some important restrictions, be used to
calculate the various contributions of the multipole fields.

5.2 Expansion Coefficients for given Electric Field

In this section, we mainly follow works by Mühlig et al., [1] and [64], respectively. However, it
should be mentioned that the results presented in these two papers are not valid when toroidal
moments are present in the considered system. Improvements to the formulae given by them
will be discussed subsequently.

To get values for the coefficients alm and blm in (5.1), we project the functions �N and �M onto
the known electric field in a suitable distance r = R0 from the source [1]. With suitable we
mean, on the one hand, that the sphere with radius R0 should, by any means, fully contain the
sources. On the other hand, due to numerical or experimental restrictions, the sphere should
be as close enough to the sources as possible. Of course, the results for alm and blm have to be
independent of the choice of R0. A suitable choice for R0 therefore usually takes computational
or experimental constraints into account [65]. Due to divergence of the radial integral, it is
generally not possible to integrate till infinite radius.
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The equations for calculating alm and blm in our normalization explicitely read as

alm = −ik
∫ 2π

0
∫ π

0
�E(r = R0) · �N∗

lm(r = R0) sin θ dθ dφ

Z0
∫ 2π

0
∫ π

0 | �Nlm(r = R0)|2 sin θ dθ dφ
(5.8)

and

blm =
∫ 2π

0
∫ π

0
�E(r = R0) · �M∗

lm(r = R0) sin θ dθ dφ

Z0
∫ 2π

0
∫ π

0 | �Mlm(r = R0)|2 sin θ dθ dφ
. (5.9)

We have to find out now which of these two prefactors accounts for the electric and toroidal
and which for the magnetic multipoles. We can deduce this by looking at the symmetry prop-
erties. The parity operator inverts the spatial coordinates. By using properties of the spherical
harmonics, one can show that this is equivalent to [31, p. 227]

P |l m〉 = (−1)l+1 |l m〉 ,

where l and m are eigenvalues of the angular momentum operator. From this, we can deduce
the following behavior:

P �M = ih(1)
l (kr)√
l(l + 1)

(−�r × (−�∇))PYlm = ih(1)
l (kr)√
l(l + 1)

(�r × �∇)Ylm(−1)l+1 = (−1)l+1 �M

and
P �N = i

k
(−�∇) × �M(−1)l+1 = (−1)l �N .

This means that �M is for l = 1 invariant under parity transformation, whereas �N is odd. This
has now to be related to the physical properties of multipoles. As discussed in chapter 2, the
dipoles, meaning l = 1, behave like

P�p = −�p , P �m = �m .

From this we can conclude, since �M has the same spatial symmetry as the magnetic moments,
that blm, which is the amplitude coefficient in its expansion, contains the information about
the magnetic moments. Consequently, �N shares the spatial symmetry of the electric field and
alm contains information about the multipole moments with electric parity. However, it was
attributed to only electric multipole moments in [64, p. 23], herefore losing information on the
toroidal contribution.
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We can summarize that, though the relation between the radiating parts of the current and the
radiation fields is unambiguous, the ansatz we used in Eq. (5.1) is not the appropriate one to
calculate the various multipolar contributions separately. We were not able to distinguish be-
tween electric and toroidal moments because our base functions �M and �N reflect only different
parity properties, but not the different properties under time inversion. This means that the ex-
pansion coefficient alm in Eq. (5.8) contains both electric and toroidal contributions,
which cannot be distinguished with the preceding calculation.

In the next section, we will use the source densities to calculate the expansion coefficients. In
the long-wavelength limit, this way will yield a clear distinction between electric and toroidal
moments.

5.3 Expansion Coefficients for given Sources

In this section, we want to discuss how the expansion coefficients alm and blm in (5.1) can
be calculated directly from the charge and current densities of the considered system. This
is equivalent to using the electric and magnetic potentials for calculating the �E- and �B-fields.
This path will give new insights how the coefficients alm and blm are related to the multipole
moments.

The results in the last section suggested at first glance that the coefficient with the electric parity,
alm, contains only the electric multipoles moments. By using the sources, we will now show that
the different multipolar contributions to the expansion coefficients alm and blm can be clearly
separated, at least in the long-wavelength limit [22]. The following calculation is developed in
analogy to [38] and [9], but in both texts, the toroidal moments are not considered, because
they are one order higher with respect to the frequency than the usual electric moments. We
show some important steps for the calculation of alm, the calculation for blm is analogous.

We begin with Eq. (5.1) and project the two terms again onto a spherical surface to obtain
a suitable expression for alm, but this time we multiply them first with a complex conjugated
spherical harmonic function and the spatial vector �r. The reason for this is that we only need
�r · �E⊥ to express the expansion coefficients through the sources, not the full �E⊥ [9, p. 440].
Furthermore, we do not, contrary to the previous section, fix the radial coordinate r of the



5.3 Expansion Coefficients for given Sources 57

electric field. The calculation reads
∫

Y ∗
lm(θ, φ)�r · �E⊥ dΩ =

∫
Y ∗

lm�r · Z0
∑
l′m′

[
bl′m′ �Ml′m′ + i

k
al′m′ �Nl′m′

]
dΩ

=
∫

Y ∗
lm(θ, φ)�r · Z0

∑
l′m′

[ i
k

al′m′ �∇ × h
(1)
l′ (kr) �Xl′m′

]
dΩ

= i
k

Z0h
(1)
l′ (kr)

∫
Y ∗

lm �r ·
∑
l′m′

al′m′√
l′(l′ + 1)

�∇ × LYl′m′ dΩ

= −Z0
k

h
(1)
l′ (kr)

∫
Y ∗

lm

∑
l′m′

al′m′√
l′(l′ + 1)

L2Yl′m′ dΩ

= −Z0
k

h
(1)
l (kr)

√
l(l + 1)alm . (5.10)

For the second line we used that �M has no components in radial direction, therefore the scalar
product with �r is zero. For the third line, we took advantage of the identity �r · �∇ × �F = iL · �F ,
valid for every differentiable vector field �F . Finally, in the last line we performed the angular
integration by using the orthogonality relation of the spherical harmonics and the fact that they
are eigenfunctions of the squared angular momentum operator, L2Ylm = l(l + 1)Ylm.

Thus, for alm we arrive at the following equation:

alm = − k

Z0h
(1)
l (kr)

√
l(l + 1)

∫
Y ∗

lm(θ, φ)�r · �E⊥ dΩ . (5.11)

In the same manner one calculates the coefficient of the magnetic contributions. Because of
Maxwell’s equation �∇ · �H = 0, �H is only transversal and we do not need to separate the
longitudinal part.

blm = k

h
(1)
l (kr)

√
l(l + 1)

∫
Y ∗

lm(θ, φ)�r · �H dΩ . (5.12)

To get expressions for alm and blm which depend on the sources, not on the fields, we use a path
sketched in [9]. The idea is to solve Helmholtz equation (3.12), but not for the vector fields �E

and �H; instead, we apply the scalar Helmholtz equation to the scalar products �r · �E and �r · �H,
respectively. This is outlined in the following. It will provide an explicit expression for �r · �E⊥
and �r · �H. These expressions we will plug in afterwards in (5.11) and (5.12).

As we only want to treat the transverse part of the electric field, we have to redefine it. Unlike
[9], we define the divergenceless electric field as

�E⊥ = �E −
�j‖

iωε0
, (5.13)
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so that by using the continuity equation (3.5), it holds

�∇ · �E⊥ = 1
ε0

ρ − 1
iωε0

�∇ ·�j‖ = 1
ε0

ρ − 1
iωε0

iωρ = 0 .

In the following, we will suppress the time dependence of �j and not write it as an argument.
The spatial dependence of �j will only be written when it is important for the equation. Plugging
the redefined electric field into Faraday’s law (3.3), we get

�∇ × �E⊥ = �∇ × �E − �∇ ×
�j‖

iωε0
= iωμ0 �H + i

ωε0
�∇ ×�j‖ . (5.14)

Actually, the term with �∇ × �j‖ is equal to zero, but we keep it in the equations to have the
full current distribution in the final results, not only the transverse part. Now we plug �E⊥ into
Maxwell’s version of Ampère’s law, Eq. (3.4),

�∇ × �H = �j + ε0
∂

∂t

(
�E⊥ +

�j‖
iωε0

)
= �j⊥ − iωε0 �E⊥ . (5.15)

We now combine Eqs. (5.14) and (5.15) to arrive at two wave equations, similar to (3.6) and
(3.7), but without longitudinal field components:

[Δ + k2] �E⊥(�r, ω) = −iωμ0�j⊥ − i
ωε0

�∇ × �∇ ×�j‖ = −iωμ0 �∇ × �∇ ×�j , (5.16)

[Δ + k2] �H(�r, ω) = −�∇ ×�j . (5.17)

The last step in Eq. (5.16) is outlined in the appendix. But we do not need a solution for �E⊥
and �H, but for �r · �E⊥ and �r · �H. Using several properties of the fields and relations of the orbital
angular momentum operator, we are allowed to write [9, p. 429 et seq.]

[Δ + k2]�r · �H = −�r · (�∇ ×�j) = −iL ·�j , (5.18)

[Δ + k2]�r · �E⊥ = Z0
k

�r · �∇ × (�∇ ×�j) = Z0
k

L · (�∇ ×�j) , (5.19)

where we again used the relation �r · (�∇ × �F ) = iL · �F .

The solutions for Eqs. (5.18) and (5.19) are [9, p. 440]

�r · �E⊥(�r) = −Z0
4π

∫ e ik|�r−�r ′|

|�r − �r ′|
1
k

L′ · �∇�r ′ ×�j(�r ′) d3r′ (5.20)
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and

�r · �H(�r) = i
4π

∫ e ik|�r−�r ′|

|�r − �r ′| L′ ·�j(�r ′) d3r′ . (5.21)

The symbol L′ is the orbital angular momentum operator defined in (3.23), but acting on �r ′

instead of �r.

We now plug Eqs. (5.20) and (5.21) into Eqs. (5.11) and (5.12) and use [9, p. 440]

1
4π

∫
dΩ Y ∗

lm(θ, φ)e ik|�r−�r ′|

|�r − �r ′| = ikh
(1)
l (kr)jl(kr′)Y ∗

lm(θ′, φ′) .

This yields for alm

alm = − 1
Z0h

(1)
l (kr)

k√
l(l + 1)

∫
Y ∗

lm(θ, φ)�r · �E⊥ dΩ

= − 1
Z0h

(1)
l (kr)

k√
l(l + 1)

∫
Y ∗

lm(θ, φ)
(

−Z0k

4π

∫ e ik|�r−�r ′|

|�r − �r ′|
1
k2 L′ · �∇�r ′ ×�j(�r ′) d3r′

)
dΩ

= 1
Z0h

(1)
l (kr)

Z0k

k2
k√

l(l + 1)

∫
L′ · �∇�r ′ ×�j(�r ′) ik h

(1)
l (kr)jl(kr′)Y ∗

lm(θ′, φ′) d3r′

= ik√
l(l + 1)

∫
jl(kr)Y ∗

lm(θ, φ) L · �∇ ×�j(�r) d3r (5.22)

and the same calculation for blm results in

blm = − k2√
l(l + 1)

∫
jl(kr)Y ∗

lm(θ, φ)L ·�j(�r) d3r . (5.23)

After some algebraic transformations [9, p. 440 et seq.], we arrive at the following expressions
for alm and blm:

alm = k√
l(l + 1)

∫
Y ∗

lm

[
−iωρ

∂

∂r
[rjl(kr)] + k2(�r ·�j)jl(kr)

]
d3r (5.24)

and

blm = − ik2√
l(l + 1)

∫
jl(kr)Y ∗

lm(θ, φ)∇ · (�r ×�j) d3r . (5.25)

(5.24) consists of two terms: One term with the charge density ρ, and one term where only
the radial components of �j appear. Note that we only used the transverse part of the current
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density, thus the charge density should, strictly speaking, not occur. However, it can be added
as a phantom term in this derivation, where it is just zero. Slightly different derivations [9] show
that the term containing the charge density is present.

In this form, the two results for alm and blm look quite awkward. However, they can be simplified
in the long-wavelength limit, meaning that kr � 1. Under this assumption, the Bessel function
can be approximated with [9, p. 427]

jl(x)  xl

(2l + 1)!!

(
1 − x2

2(2l + 3) + ...

)
.

This approximation can be truncated after arbitrary terms, depending on the desired accuracy.
In [9, p. 441], only the zeroth order contribution in (5.24) was kept and the first omitted.
However, as it was pointed out in 2002 [22], the first order approximation (thus keeping terms
with k2) yields the toroidal moments. To show this for the dipoles, we set l = 1 and expand the
Bessel function in the first term of alm until the first order, but for the Bessel function in the
second term of alm we keep only the zeroth order, so that in both terms the highest order of k

is k4.

a1m = k√
2

∫
Y ∗

1m

[
−iωρ

∂

∂r
[rj1(kr)] + k2(�r ·�j)j1(kr)

]
d3r

 k√
2

∫
Y ∗

1m

[
−iωρ

[(
2kr

3 − 4k3r3

30

)]
+ k2(�r ·�j)

(
kr

3

)]
d3r (5.26)

Some manipulations when plugging in m = {−1, 0, 1} can be done using the continuity equation
(3.5) and Gauss’s theorem (4.26). When combining the different a1m in a suitable way, we arrive
at the relation [22] ⎛

⎜⎜⎝
a11 − a1−1

i(a11 + a1−1)
−

√
2a10

⎞
⎟⎟⎠  − k2

√
3π

(−iω�p + k2�t ) , (5.27)

with the well-known definitions for the electric and toroidal dipoles, Eqs. (4.7) and (4.45).
Thus, the contributions of the electric and toroidal dipoles have been disentangled in the long-
wavelength limit.

Equation (5.27) can also be given for arbitrary l and m as well as arbitrary high orders of
approximations of the Bessel function [22]. It holds

alm = − k2
√

3π
[−iωQlm(0, ω) + k2Tlm(−k2, ω)] , (5.28)
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where Qlm(0, ω) are the spherical electric multipole moments defined in section 4.3 and
Tlm(−k2, ω) is the toroidal multipole form factor [16]. The long-wavelength limit of Tlm(−k2, ω)
leads to the spherical toroidal multipole moment Tlm(0, ω) with

Tlm(0, ω) = −
√

πl

2l + 1

∫
rl+1

[
�Y ∗

ll−1m(θ, φ) + 2
√

l/(l + 1)
2l + 3

�Y ∗
ll+1m(θ, φ)

]
·�jω(�r) d3r . (5.29)

The definitions of the vector spherical harmonics �Y ∗
ll′m are given in the appendix.

Considering the blm and keeping only the zeroth order of the Bessel function, we get

blm = − k2√
l(l + 1)

∫
jl(kr)Y ∗

lm(θ, φ)L ·�j(�r) d3r

 k2√
l(l + 1)

1
(2l + 1)!!

∫
rl�j(�r) · L Y ∗

lm(θ, φ) d3r

= −ik2√
l(l + 1)

1
(2l + 1)!!

∫
rl�j(�r) · (�r × �∇)Y ∗

lm(θ, φ) d3r

= −ik2

(2l + 1)!!

√
2l + 1

4π
Mlm (5.30)

with the usual spherical magnetic multipole moments [38]

Mlm = 1√
l(l + 1)

√
4π

2l + 1

∫
rl�j(�r) · (�r × �∇)Y ∗

lm(θ, φ) d3r . (5.31)

In the coefficient blm, there is no contribution from another multipole family, because, as already
mentioned in chapter 2, such a multipole family does not exist in Maxwell-Lorentz electrody-
namics.

We have thus shown a connection between the exact multipole moments and their
long-wavelength limit [66]. We could demonstrate that the toroidal moments appear as the
next term after the electric dipole moment when the exact expansion coefficient alm is expanded
for small values of the wave number.

5.4 Physical Relevance of the Longitudinal Part

Although not treated in [61] and [9], for a complete discussion of the scattered electric field we
need to take into account its longitudinal part and wish to provide an expansion for it. It is
given by the first term of Eq. (5.1),

�E‖ = Z0
∑
lm

[
clm jl(kr) �Wlm

]
= Z0

k

∑
lm

[
clm

�∇jl(kr)Ylm(θ, φ)
]

. (5.32)
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From the definition of the transverse part of �E, Eq. (5.13), we get another definition of �E‖ [35,
p. 15]:

�E‖ =
�j‖

iωε0
. (5.33)

So we can equate Eqs. (5.32) and (5.33) and take the divergence of it,

�∇ · �E‖ = Z0
k

∑
lm

[clm Δjl(kr)Ylm(θ, φ)]

= −Z0
∑
lm

[clm kjl(kr)Ylm(θ, φ)]

= 1
ε0

ρ . (5.34)

Here we used in the second line the Helmholtz equation (3.25) and in the third line Gauss’s law
(3.1).

We now project Eq. (5.34) on a spherical surface by multiplying it with Y ∗
lm(θ, φ)jl(kr). To avoid

divergence of the radial integral, we just integrate until a radius R0, that must be big enough
so that the corresponding sphere encloses the sources completely.

∫
Y ∗

lm(θ, φ)jl(kr) ρ

ε0Z0k
d3r = −

∫
jl(kr)Y ∗

lm(θ, φ)
∑
l′m′

cl′m′jl′(kr)Yl′m′(θ, φ) d3r

= −
∫ R0

0
r2jl(kr)

∑
l′m′

cl′m′jl′(kr)δll′δmm′ dr

= −clm

∫ R0

0
r2jl(kr)jl(kr) dr . (5.35)

The integral
∫ R0

0 r2jl(kr)jl(kr)dr is just a number, and it follows

clm = − 1∫ R0
0 r2jl(kr)jl(kr) dr

∫
Y ∗

lm(θ, φ)jl(kr) ρ

ε0Z0k
d3r .

As we see, the coefficient clm for the longitudinal part of the electromagnetic field is closely
related to the decomposition (5.34) of the charge density ρ into spherical Bessel functions and
spherical harmonics. This ties with the statement [35, p. 16] that the longitudinal electric field is
basically the Coulomb field, when the charge density ρ is assumed as static and the propagation
velocity as infinite. Also, the longitudinal part of the vector potential, which arises from the
longitudinal part of the current, is a consequence of gauge and has no physical meaning [59]. It
is therefore sufficient to only consider the transverse part of the current and of the fields when
dealing with the radiation field.



6 Connection and Comparison of the
Different Approaches

In the previous chapters, we analyzed the multipole expansions starting both from the potentials
and from the fields. We found that a comprehensive derivation of the toroidal moments is possible
on the level of the sources. In the expressions of the potentials we introduced the concept of
mean-square radii, which can also have effects on the fields. From symmetry arguments, we could
deduce that the fields of the electric and toroidal moments look almost identically. Later in this
chapter we point to their differences and discuss physical implications. Now, we wish to compare
the various approaches for the multipole expansion. We give some formulae to transform the
spherical multipole moments into the Cartesian multipole moments. For the dipole order, this
is done explicitly, for higher orders transformation formulae are given. Furthermore, we will
compare the physical relevant �E- and �B-fields as caused by the multipole moments of interest.
This completely avoids gauge issues and terms in the potentials which have no effect on the
fields.

6.1 Conversion of Spherical into Cartesian Moments and Vice
Versa

Generally, it can be a disadvantage of the spherical multipole moments Qlm and Mlm as well as
of the coefficients alm and blm that they characterize the multipole contributions in spherical co-
ordinates. For practical purposes it is often convenient to use Cartesian coordinates. Therefore,
transformation rules have to be found to express the Cartesian multipole moments in terms of
the spherical multipole moments. Thus, in this section we want to demonstrate the transforma-
tion for the dipole order and provide equations which can be used to perform the transformation
for arbitrary orders.

Before going into the discussion of the transformation formulae, we clarify the notation. We
use �p, �m, Q̂(e), Q̂(m) etc. for the Cartesian electric and magnetic multipole moments derived in
section 4.2. Because of the approximations done in the Taylor series, these multipole moments
are only valid for small sources in the long-wavelength limit. In Eq. (4.67) we defined for the
static case the spherical electric multipole moments Qlm and in Eq. (5.31) the static magnetic
spherical multipole moment Mlm. The alm, ãlm blm, b̃lm from chapters 4 and 5 are valid for the
dynamic case and for an arbitrary extent of the source. We showed that in the long-wavelength
limit, they can be expressed through the quantities Qlm and Mlm. Keeping this in mind, we

S. Nanz, Toroidal Multipole Moments in Classical Electrodynamics, BestMasters,
DOI 10.1007/978-3-658-12549-3_6, © Springer Fachmedien Wiesbaden 2016
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only discuss transformation formulae for the Qlm and Mlm, since the alm and blm transform in
the same way.

In section 4.3.1, we haven chosen the normalization constant of the spherical multipole moments
in a way that for l = 0 the monopole moment is exactly reached, Q00 = q. We now look at the
l = 1 terms:

Q10 =
∫

ρ r cos θ d3r

=
∫

ρ z d3r ≡ pz , (6.1)

where we used z = r cos θ and the definition of the electric dipole in Eq. (4.7). In the same
manner one calculates [22]

Q11 = − 1√
2

∫
ρ r sin θe−iφ d3r

= − 1√
2

∫
ρ r sin θ(cos φ − i sin φ) d3r

= − 1√
2

∫
ρ (x − iy) d3r

≡ 1√
2

(ipy − px) (6.2)

and analogous for Q1−1

Q1−1 = 1√
2

(ipy + px) .

Inverting these relations provides the dependence of the Cartesian moments on the spherical
moments,

px = − 1√
2

(Q11 + Q∗
11) or py = i√

2
(Q∗

11 − Q11) (6.3)

and

px = 1√
2

(Q1−1 − Q11) or py = − i√
2

(Q11 + Q1−1) . (6.4)

So in total we can write

�p = − 1√
2

⎛
⎜⎜⎝

(Q11 − Q1−1)
i(Q11 + Q1−1)

−
√

2Q10

⎞
⎟⎟⎠ . (6.5)

For the alm, such a formula containing also spherical toroidal moments, was already given in
Eq. (5.27). In analogy, the Cartesian magnetic dipole moment can be expressed through the
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spherical magnetic multipole moments, defined in (5.31), as

�m = − 1√
2

⎛
⎜⎜⎝

(M11 − M1−1)
i(M11 + M1−1)

−
√

2M10

⎞
⎟⎟⎠ . (6.6)

Using the spherical toroidal multipole moments, Eq. (5.29), the Cartesian toroidal dipole moment
is

�t = − 1√
2

⎛
⎜⎜⎝

(T11 − T1−1)
i(T11 + T1−1)

−
√

2T10

⎞
⎟⎟⎠ . (6.7)

In [22] and [27] formulae are given to transform the multipole moments up to third order from
spherical into Cartesian base. These formulae were supposedly calculated for every order sep-
arately. It is more convenient to use a general formula, where arbitrary high orders can be
calculated. Such a formula for general Cartesian and spherical tensors was given in [67]. The
entries (Tl)pqr of a Cartesian tensor of rank p + q + r = l can be calculated from the spherical
tensor components Tlm with the formula

(Tl)pqr = iq

2p+q

p+q∑
m=0

p+q+m even

C(p, q, m)A(−1)p

lm ,

where Aε
lm with ε = (−1)p = ±1 is given through

Aε
lm = 1

1 + δm0

(
2l(l − m)!(l + m)!

(2l)!

) 1
2

[Tlm + εTl−m] .

The numerical prefactor C(p, q, m) reads as

C(p, q, m) = q!
[1/2(p + q + m)]! [1/2(q − p − m)]! 1F2[−p, −1/2(p + q + m); 1/2(q − p − m) + 1; −1] ,

where 1F2 is the hypergeometric function. p, q, and r are the exponents of the coordinates x,
y, and z. E.g. for p = 1, q = 3, and r = 2, we have (Tl)pqr = (T6)132 = xy3z2.

These formulae produce exactly the relations given in Eqs. (6.2)–(6.7). The formulae to go
in the other direction, from Cartesian to spherical multipole moments, can be also found in
[67]. We do not discuss it here, since our discussion of the fields hereafter uses only Cartesian
moments.
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6.2 Properties of the Fields including Toroidal Moments

So far, we have calculated several scalar and vector potential expressions. The important physical
quantities, however, are the electric and magnetic fields. Thus, in this section we will discuss
the fields �E and �B originating from the different approaches of the multipole expansions.

As Raab and Lange pointed out [10, p. 27 et. seq.], it is in general not sufficient to only consider
the traceless electric and magnetic multipole moment tensors. When comparing the vector
potential in first order for the two multipole moment definitions, namely primitive [Eq. (4.22)]
and traceless [Eq. (4.40)], we see a discrepancy, but the electric and magnetic fields for both
expressions of the vector potential will be the same. This is because the mean-square radius
of the electric dipole does not, as shown before, contribute to the fields. The electric far field
originating from the zeroth and first order Cartesian Taylor expansion of the vector potential,
no matter if Eq. (4.22) or Eq. (4.40) is used, is [68]

�E(0+1)(�r, ω) = k2

4πε0

e ikr

r

{
�n × (�p × n) + 1

c
(�m × �n) + ik

2 �n × [�n × (Q̂(e) · �n)]
}

, (6.8)

where �n = �r/r and only terms ∼ 1/r are kept. From this formula for �E, the magnetic field, if
needed, could be calculatad via

�B = 1
c
�n × �E .

For the third order, there is a discrepancy when using primitive or traceless moments. The
electric field in second order with primitive moments, calculated from Eq. (4.23), is

�E
(2)
prim(�r, ω) = k2

4πε0

e ikr

r

{ ik
2c

�n × ( ˆ̃Q(m) · �n) + k2

6 �n × [�n × ( ˆ̃O(e) · �n) · �n]
}

, (6.9)

whereas for traceless moments (and neglecting the terms arising in the symmetrizing and de-
tracing process), this would be

�E
(2)
tra-less(�r, ω) = k2

4πε0

e ikr

r

{ ik
2c

�n × (Q̂(m) · �n) + k2

6 �n × [�n × (Ô(e) · �n) · �n]
}

. (6.10)

One can show that in general �E
(2)
prim �= �E

(2)
tra-less [10, p. 27], because in general ˆ̃O(e) �= Ô(e) and

ˆ̃Q(m) �= Q̂(m). We therefore have to take into account the contributions from symmetrizing and
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detracing the multipole tensors and use Eq. (4.42). This yields for the three lowest orders [68]

�E(0+1+2)(�r, ω) = k2

4πε0

e ikr

r

{
�n × (�p + ik�t ) × n + 1

c
(�m × �n) + ik

2 �n × [�n × (Q̂(e) · �n)]

+ ik
2c

�n × (Q̂(m) · �n) + k2

6 �n × [�n × (Ô(e) · �n) · �n]
}

. (6.11)

We are therefore urged to include the toroidal dipole moment if we want to describe the electric
field up to the second order properly. For higher orders, this of course is also true, and only in
the zeroth and first order, a toroidal moment does not occur.

We now turn to the exact fields of a toroidal dipole. As already mentioned in chapter 2, the
electric and magnetic fields of a toroidal dipole are almost the same as the fields of an electric
dipole. The fields of a toroidal dipole read as [26]

�E(t)(�r, ω) = 1
4πε0

(
ik3

r
(�n × �t ) × �n +

(
ik
r3 + k2

r2

)[
3�n(�n · �t ) − �t

])
e ikr (6.12)

and

�B(t)(�r, ω) = c

4π
k2(�n × �t)

( ik
r

− 1
r2

)
e ikr . (6.13)

In comparison, the fields of an electric dipole are [9, p. 411]

�E(p)(�r, ω) = 1
4πε0

(
k2

r
(�n × �p) × �n +

( 1
r3 − ik

r2

)
[3�n(�n · �p) − �p]

)
e ikr (6.14)

and

�B(p)(�r, ω) = c

4π
k2(�n × �p)

(1
r

− 1
ikr2

)
e ikr . (6.15)

Thus, the fields of electric and toroidal dipole (and in general all fields of the electric and toroidal
n-th pole) only differ in the factor ik. This has two implications: First, the radiated intensity of a
toroidal dipole is scaled with the factor k2 compared to the intensity of the electric dipole (under
the assumption that �p and �t do not depend on ω). It is known that the radiated intensity of an
electric dipole has the shape of the Lorentz curve [42, p. 230]. This means that by measuring
the radiated intensity for different frequencies, one should be able to identify if the dipole is of
electric or toroidal kind [22].

Secondly, the imaginary unit i generates a phase-shift of π/2 of the toroidal dipole field with
respect to the electric dipole field. This could be exploited to design a source distribution where
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the electric and toroidal dipole annihilate each other. The sum of both fields is

�E(tot) = �E(p) + �E(t)

= 1
4πε0

(
k2

r
(�n × (�p + ik�t ) × �n +

( 1
r3 − ik

r2

)
[3�n(�n · (�p + ik�t )) − (�p + ik�t )]

)
e ikr . (6.16)

Thus, if we design a charge-current distribution in a way that �p = −ik�t, the electric and magnetic
fields vanish both in the near and in the far field [26]. Of course this is only possible if �p and
�t can be tuned independently from each other, which is, considering the results of the previous
chapter, not possible. This destructive interference would be then the anapole configuration
described in section 2.4. The vector potential, however, does not vanish, enabling Aharonov-
Bohm like effects [19]. It was reported recently [7] that a non-radiating current-distribution was
found in dielectric nanoparticles and interpreted as an anapole. Also it seems possible to make
a nanowire invisible by interference of electric and toroidal dipoles [8].



7 Summary and Outlook

The research field of toroidal multipole moments has been of growing interest in recent years.
This thesis should provide a contribution to this research by discussing the relevance of toroidal
moments and possibilities how they can be included in the classical electromagnetic multipole
expansions.

Chapter 2 contained the motivation, why toroidal moments are a useful concept for describing
certain current distributions. We gave an overview of space and time symmetry properties of the
four possible dipole families. The discussion was then limited to three multipole families because
the forth, the axial toroidal moments, are usually considered as not realizable in elementary
charge-current distributions.

In chapter 4 we analyzed various multipole expansions on the level of the potentials and discussed
several possibilities how the toroidal moments can be included naturally into these formalisms.
Starting from the multipole expansion of the vector potential, we outlined that with the Carte-
sian Taylor expansion it is not feasible to derive the toroidal moments. Such Taylor expansion
however is the usual approach taught in the context of lectures on electrodynamics, which might
explain why toroidal multipole moments have not been considered. The multipole tensors shall
have definite properties under rotations and parity. The multipole tensors emerging from the
Taylor expansion do not have such definite properties and are thus not appropriate multipole
tensors. By using certain prescriptions to identify the relevant contributions of the tensors, the
toroidal dipole moment could be identified. However, it is practically not feasible to decompose
those tensors for each higher order separately into their fundamental constituents, which then
would have definite properties.

A more algorithmic approach asks to translate the requirement of definite parity and rotational
properties into the mathematical conditions of tensor symmetry and tracelessness. We discussed
such an algorithm with which it is possible to calculate the toroidal moments for arbitrary
high orders. Hereby, we showed that the toroidal multipole moments have contributions from
detracing the electric multipole tensors as well as from symmetrizing and detracing the magnetic
multipole tensors. We derived a form of the vector potential containing the three distinct
multipolar moments. This expression, Eq. (4.58), and the formulae (4.59)–(4.61) enable the
calculation of the Cartesian multipole moments for arbitrary order. However, the expression for
the toroidal multipole tensor is not self-contained, because one needs to know the traces of the
two orders higher electric multipole tensor. Generally, it would be nice to have an expression
for the toroidal multipole tensor which does not rely on the electric dipole tensor.

We then turned to the expansion of the vector potential in spherical coordinates. As a difference
to the previous Cartesian derivations, we carried out the calculations with the current density
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in momentum space and separated the longitudinal and transverse parts. This derivation is
exact and does not contain, contrary to the Cartesian expansion, the approximation of small
sources in the long-wavelength limit. We showed that by decomposing the current density in
momentum space into its transverse and longitudinal parts, we were able to derive expressions
for the various multipole moments. Comparing these expressions suggested that the electric
and toroidal dipoles are proportional to each other for a given current distribution. This is an
important finding since it suggests that the electric and toroidal multipole moments cannot be
adjusted independently. They are intimately linked. Once the electric dipole moment is fixed
for a given vector potential, the toroidal multipole moment is given as well. The implication
of this finding in the context of metamaterials still needs to be discussed, because it has been
suggested that the multipole moments can be accessed somehow independently from each other
[26].

In chapter 5, we performed the multipole expansion on the level of the fields. Similar to the
current density in chapter 4, we decomposed the electric and magnetic fields into its longitudinal
and transverse parts. We argued that the longitudinal part is not relevant for the radiation field,
and hence focused only on the transverse part. Following this, we outlined two possibilities to
calculate the expansion coefficients of the field decomposition. The one which only uses the fields
itself mixes up the contributions from electric and toroidal moments. The distinction between
electric and toroidal moments could only be restored when we used the sources to express the
expansion coefficients and took the long-wavelength limit. This is very helpful since it provides
a link between the results obtained with the Taylor expansion in Cartesian coordinates and the
expansion in spherical coordinates.

In chapter 6 we compared the different approaches and linked the Cartesian multipole moments
to the multipole moments in spherical coordinates. We discussed the electric fields of primitive
and traceless multipole tensors and outlined differences between the two approaches. Further-
more, we compared the exact fields of an electric dipole with those of a toroidal dipole and
showed how an anapole can be generated.

Summarizing, we analyzed the electromagnetic multipole expansion with respect to the toroidal
moments, and we found that their emergence is closely related to the long-wavelength approxi-
mation. Only be demanding definite properties of the multipole tensors, the toroidal moments
appear as part of the Cartesian Taylor expansion. This may be a reason why they are over-
looked often when doing the multipole expansion. Our calculations in spherical coordinates
suggest that the electric and toroidal multipoles are both built up from the same combination of
coefficients, and differ only in the prefactor. This would make it impossible to tune both dipoles
independently, and toroidal moments would always be present in a system which has an electric
moment.
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Even though many important questions have been answered, a few open questions remain. First
of all, an experiment including the feature of time inversion should be carried out. This would
provide a clear indication of toroidal moments and their distinction to electric moments.

Another question, which was not addressed in this thesis, concerns the physical realizability of
axial toroidal moments. As mentioned in chapter 2, such moments are usually considered as not
possible in microscopic current distributions. However, no proof of this point of view is known
to us.

Also, the results in section 4.3 suggest that electric and toroidal moments are always proportional
to each other, disregarding the specific current distribution. Such a connection has nowhere
been discussed so far, and more investigation of this observation and the question if the toroidal
moments are a independent degree of freedom is needed.
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Detailed Calculations

Tensorial Decomposition of Eq. (4.41)

We want to decompose the second order of the dynamic vector potential, Eq. (4.42), which reads
as

A
(2)
i (�r, t) = μ0

4π

1
2
∑
jk

∫ (3rjrk − r2δjk

r5

(
ji(�r ′, τ) + r

c
j̇i(�r ′, τ)

)
+ rjrk

c2r3 j̈i(�r ′, τ)
)

r′
jr′

k d3r′

into terms with irreducible tensors.

Formulae for Decomposition

The formulae to decompose a reducible tensor of rank 3 into irreducible tensors are taken from
[50]. In this section, we use T̂ as symbol for a general tensor not to be confused with toroidal
multipole moment tensors.

An irreducible tensor of rank 3 can be expressed through the following sum of irreducible ten-
sors:

Tijk = T
(0)
ijk +

∑
p=1,2,3

T
(1;p)
ijk +

∑
p=1,2

T
(2;p)
ijk + T

(3)
ijk .

These irreducible parts are given through the following formulae:

T
(0)
ijk = 1

6εijkεabcTabc

T
(1;1)
ijk = 1

10(4δijTmmk − δikTmmj − δjkTmmi)

T
(1;2)
ijk = 1

10(−δijTmkm + 4δikTmjm − δjkTmim)

T̂
(1;3)
ijk = 1

10(−δijTkmm − δikTjmm + 4δjkTimm)

T
(2;1)
ijk = 1

6εijt(2εmstTmsk + 2εmskTmst + εmstTkms + εmskTtms − 2δitεnmsTnms)

T
(2;2)
ijk = 1

6εjkt(2εmstTims + 2εmsiTtms + εmstTmsi + εmsiTmst − 2δitεnmsTnms)
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T
(3)
ijk = 1

6(Tijk + Tjik + Tikj + Tjki + Tkij + Tkji)

− 1
15[δij(Tmmk + Tmkm + Tkmm) + δik(Tmmj + Tmjm + Tjmm)

+ δjk(Tmmi + Tmim + Timm)]

Calculations

We consider for simplicity only the tensor

Tijk =
∫

jirjrk d3r .

We get:
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T
(2;1)
ijk = 1

6εijt

∫
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There seems to be a mistake in the paper where we took the formulae from, because the two
contributions for the magnetic dipole moment should have the same prefactor [16].

T
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ijk =

∫ [1
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The quantities, which have been defined here, are explained in the main text. The sum of all
these irreducible tensors is

Tijk = 1
3Ȯ
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Plugging this sum into the formula for the second order of the vector potential yields
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3c2 �r × ( ¨̂
Q(m) · �r) + 6�r (�r · �t) − 2r2�t + 6r

c
�r (�r · �̇t) − 2r3

c
�̇t

+ 2r2

c2 �r (�r · �̈t) + 9
5�r(�r · �r

(2)
�p ) + 3r

5c
�r(�r · �̇r

(2)
�p ) + 3r2

5c2 �r(�r · �̈r
(2)
�p ) − r2

5 �r
(2)
�p − r3

5c
�̇r

(2)
�p

]
.

This is Eq. (4.42).

Proof of Eq. (4.27)

We want to proof Eq. (4.27) using mathematical induction.

The statement to prove is

∇i

[
n∏

m=1
rimji

]
= nji1

n∏
m=2

rim −
n∏

m=1
rim ρ̇ +

n∑
k=1

εi1ikl(�r ×�j)l

n∏
m=2
m�=k

rim .

Base case: n = 2:

∇i [ri1ri2ji] = 2ji1ri2 + ri1ri2∇i
�ji + εi1i1l(�r ×�j)l

2∏
m=2
m�=1

rim + εi1i2l(�r ×�j)l

2∏
m=2
m�=2

rim

= 2ji1ri2 − ri1ri2 ρ̇ + εi1i2l(�r ×�j)l

We used that for the empty product it holds by definition

2∏
m=2
m�=2

rim = 1 .

Inductive step:

∇i

[
n+1∏
m=1

rimji

]
= ∇i

[
n∏

m=1
rimjirn+1

]

= ∇i

[
n∏

m=1
rimji

]
rn+1 +

[
n∏

m=1
rimji

]
∇irin+1

=

⎡
⎢⎢⎣nji1

n∏
m=2

rim −
n∏

m=1
rim ρ̇ +

n∑
k=1

εi1ikl(�r ×�j)l

n∏
m=2
m�=k

rim

⎤
⎥⎥⎦ rin+1 + jin+1

n∏
m=1

rim

Using [10, p. 211]
jjri − jirj = εijk(�r ×�j)k ,
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it follows for arbitrary i, j

jin+1

n∏
m=1

rim = jin+1ri1

n∏
m=2

rim =
[
ji1rin+1 + εi1in+1p(�r ×�j)p

] n∏
m=2

rim ,

and thus as last step of the proof

∇i

[
n+1∏
m=1

rimji

]
=

⎡
⎢⎢⎣nji1

n∏
m=2

rim −
n∏

m=1
rim ρ̇ +

n∑
k=1

εi1ikl(�r ×�j)l

n∏
m=2
m�=k

rim

⎤
⎥⎥⎦ rin+1 + jin+1

n∏
m=1

rim

=

⎡
⎢⎢⎣nji1

n∏
m=2

rim −
n∏

m=1
rim ρ̇ +

n∑
k=1

εi1ikl(�r ×�j)l

n∏
m=2
m�=k

rim

⎤
⎥⎥⎦ rin+1

+
[
ji1rin+1 + εi1in+1p(�r ×�j)p

] n∏
m=2

rim

= (n + 1)ji1

n+1∏
m=2

rim −
n+1∏
m=1

rim ρ̇ +
n+1∑
k=1

εi1ikl(�r ×�j)l

n+1∏
m=2
m�=k

rim .

Proof of Eq. (5.16)

The transverse part of �j can, like the electric field in section 5.1, be represented as

�j⊥ =
∑
jm

[ajm
�Mjm + bjm

�Njm]

with
�∇ × �M = −ik �N

�∇ × �N = k �M

and thus
�∇ × �∇ × �M = k2 �M

�∇ × �∇ × �N = k2 �N

and
�∇ × �∇ ×�j⊥ = k2�j⊥

This yields

[Δ + k2] �E⊥ = −iωμ0
1
k2

�∇ × �∇ ×�j⊥ − i
ωε0

�∇ × �∇ ×�j‖ = − i
ωε0

�∇ × �∇ ×�j .
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Spherical Harmonics

The spherical harmonics Ylm for indices up to l = 2 are:

l = 0:
Y00 = 1√

4π

l = 1:

Y10 = 1
2

√
3
π

cos θ

Y11 = −1
2

√
3

2π
e iφ sin θ

Y1−1 = 1
2

√
3

2π
e−iφ sin θ

l = 2:

Y20 = 1
4

√
5
π

(
3 cos2 θ − 1

)

Y21 = −1
2

√
15
2π

e iφ sin θ cos θ

Y2−1 = 1
2

√
15
2π

e−iφ sin θ cos θ

Y22 = 1
4

√
15
2π

e2iφ sin2 θ

Y2−2 = 1
4

√
15
2π

e−2iφ sin2 θ

Spherical Bessel and Hankel functions

The spherical Bessel functions, jl(kr), and spherical Hankel functions of first kind, h
(1)
l (kr), up

to index l = 2 are:

l = 0:
j0(kr) = sin(kr)

kr

l = 1:

j1(kr) = sin(kr)
k2r2 − cos(kr)

kr

l = 2:

j2(kr) =
(
3 − k2r2) sin(kr)

k3r3 − 3 cos(kr)
k2r2

l = 0:
h

(1)
0 (kr) = − ie ikr

kr

l = 1:

h
(1)
1 (kr) = e ikr(−kr − i)

k2r2

l = 2:

h
(1)
2 (kr) = ie ikr

(
k2r2 + 3ikr − 3

)
k3r3
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Vector Spherical Harmonics

The Cartesian components of the vector spherical harmonics are [22]

(�Yllm)x = − c1√
2

Ylm−1 + c3√
2

Ylm+1 ,

(�Yllm)y = − ic1√
2

Ylm−1 − ic3√
2

Ylm+1 ,

(�Yllm)z = c2Ylm ,

where

c1 = −
√

(l + m)(l − m + 1)√
l(2l + 2)

,

c2 = m√
l(l + 1)

,

c3 =
√

(l − m)(l + m + 1)√
l(2l + 2)

,

(�Yll−m)x = − c1√
2

Yl−1m−1 + c3√
2

Yl−1m+1 ,

(�Yll−m)y = − ic1√
2

Yl−1m−1 − ic3√
2

Yl−1m+1 ,

(�Yllm)z = c2Yl−1m ,

where

c1 =
√

(l + m − 1)(l + m)√
l(2l − 1)

,

c2 = (l − m)(l + m)√
2l(2l + 1)

,

c3 =
√

(l − m − 1)(l − m)√
2l(2l − 1)

,

(�Yll+m)x = − c1√
2

Yl+1m−1 + c3√
2

Yl+1m+1 ,

(�Yll+m)y = − ic1√
2

Yl+1m−1 − ic3√
2

Yl+1m+1 ,

(�Yllm)z = c2Yl+1m ,
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where

c1 =
√

(l − m + 1)(l − m + 2)√
(2l + 2)(2l + 3)

,

c2 = (l + m + 1)(l − m + 1)√
(l + 1)(2l + 3)

,

c3 =
√

(l + m + 1)(l + m + 2)√
(2l + 2)(2l + 3)

.
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