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Preface

The basic problem described in this book is how one can find effective charac-
teristics such as conductivity, dielectric permittivity, magnetic permeability, etc.,
knowing the distribution of different components constituting inhomogeneous
medium.

We consider here a wide range of recent studies dedicated to the elucidation
of the physical properties of macroscopically disordered systems. They are
galvano-electric, thermoelectric, and elastic properties as well as behavior of 1/f-
noise, current moments, and higher harmonic generation in composites at the
threshold of percolation. Our goal in writing this book is to reflect on recent
advances in our understanding of percolation systems and to present in coherent
fashion a very wide range of transport phenomena in inhomogeneous disordered
systems. We also tried to use, as much as possible, unifying treatment that would
allow interdisciplinary view of apparently diverse physical properties to be treated
at equal footing. We also regret in retrospect that many important areas of recent
activities in field have not been included such as thermoelectric properties of
composites.

The unity of treatments, by authors deep conviction, is main thrust here: con-
nects phenomena that seem to be very different and yet so close under closer
investigation. Their appearance seems to be strange under one book. For instance,
one would not expect to see 1/f noise in percolation systems together with pinning
and Abrikosov vortexes. Authors were trying to present material in a way to make it
readily available to a typical reader who is familiar with undergraduate physics
courses and is trying to familiarize himself with active research avenues in the
advanced fields of condensed matter sciences, materials, etc. It is our hope that that
present book would enable serious advance student to obtain most of described
results with minimum time and paper. We use hierarchical model and believe that it
is the most straightforward way to arrive at basic physical properties of complicated
systems along with corresponding qualitative characteristics and functional
dependencies.
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We did not try to write a classic exhausting monograph, but rather straightfor-
ward set of useful tools and even recipes, so that reader could almost immediately
“see” and “try” and even “feel” by his own hands or with simplest MathCad what
and how composites behave.

Material of this book is presented in three parts. In the first one we describe two
classes of the methods of studying macroscopically disordered media. In this first
class we include mainly mean field techniques, which typically give reliable results
in the cases when density number of one of phases is much smaller compared with
another. Sometimes they work even for large density.

The second class of methods is usually intended to describe processes in vicinity
of the threshold of percolation when small changes in number densities may cause
big changes. One of the models is the so-called hierarchical model. In the second
part of this book we consider the application of different techniques to a broad
spectrum of physical properties of composites roughly one per chapter. The reader
has to realize that it is next to impossible to study but all phenomena of transport in
composites. Most obvious omissions are mechanical and electrical disruption of
materials such as composites, processes of fluid dynamics in porous media, ther-
mogalvanomagnetic phenomena, conductivity of many component media, quantum
Hall effect, etc. Decisive role in our interest to what is described in this book was
initiated by A.M. Dykhne. We dedicate this book to him.
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К. Slipchenko, Y. Strelniker, P. Tomchuk, К. Usenko, A. Vinogradov, and
M. Zhenirovsky. We also thank CUNY for assistance.
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Methods



Chapter 1
Introduction

1.1 Types of Macroscopically Disordered Media

When we consider macroscopically inhomogeneous media we usually understand
that the characteristic sizes of inhomogeneity is much greater compared with any
characteristic macroscopic lengths. For instance, if we consider DC conduction of
the electric current, and we usually assume that we have a situation where the size
of inhomogeneity is much larger than mean free path of the current density. In
particular, this fact signifies that local Ohm’s law is satisfied; connecting the current
density jðrÞ to the electric field EðrÞ at arbitrary point of the medium
jðrÞ ¼ rðrÞEðrÞ, and the nonuniformity of the medium is signaled by the special
local conductivity rðrÞ.

The macroscopic inhomogeneity may be continuous as well as discrete,
depending on whether local conductivity rðrÞ is continuous or not. In the latter case
we usually imply that we deal with two, three, and greater number of phases of
media, where under word phase we understand set of regions with the common
partial conductivities—r1; r2; . . ..

There exist a huge number of different models of two-phased systems. For
example, in some models it is assumed that there is set of spherical inclusions in
host matrix. In more sophisticated models spherical shape is replaced by others
shapes, ellipsoidal, for instance. In these cases one may introduce the distribution of
the axial sizes of these ellipsoids, different characteristics of sizes of inclusions,
different conductivities, etc. (see Fig. 1.1).

Effective kinetic coefficients correspond to the basic properties of transport
processes in macroscopically disordered systems. They provide a global charac-
terization of the inhomogeneous medium and describe basic physics due to typical
sizes much larger compared to sizes of inhomogeneity of macroscopic deviations.
In fact there are two fundamentally different treatments: in the former we assume
the knowledge of local kinetic coefficients and we call it deterministic, in the latter

© Springer Science+Business Media, LLC 2016
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we know only them as random fields and we call it statistical one. Each of these
treatments possesses their advantages and disadvantages. The deterministic treat-
ment is usually applied for media with relatively simple structure; in the case of
stochastic one we may experience definite difficulties with correlation between
statistical description and physical observation of randomized disordered behavior
of the kinetic coefficients. When one is trying to rigorously apply stochastic
description he has to split original problem into two; first, estimation of kinetic
coefficients at fixed dependence of local kinetic coefficients and only later should
average over different realizations (ensembles). Effective kinetic coefficients, esti-
mated at the first stage, always depend on concrete realization of local kinetic
coefficients, though “… we always expect in correctly formulated theory the
appearance of some kind of self-averaging, but, on the other hand, the theory as
well as experiment deal with a sample of a certain realization” [3].

In what follows, we will always consider the self-averaging effective kinetic
coefficients such as functionals of local kinetic coefficients, so that when sending
the value of the volume of averaging to positive infinity, they approach the non-
random limiting values. The process of self-averaging quantities has been exten-
sively investigated in the quantum theory of random systems (see Chap. 2). There
exists a very deep analogy between self-averaging in the quantum theory of random
systems and the problems of foundations of classical statistical mechanics [2]. In
fact one can see a very illuminating table in [1], where this analogy is traced rather
directly. Following this example, we can supplement this idea with yet another
Table (1.1) with data of local transport coefficients. Averages over volume of the
field and the self-averaged currents do coincide with subsequent averages over all
the realizations of random fields of local kinetic coefficients. Proceeding this way,
one eventually needs only one concrete realization to determine effective unique set
of kinetic coefficients.

Fig. 1.1 Schematic representation of different disordered media: Upper row–one phase inclusions
(white area) into the matrix; lower row—three pictures on the left show possible anisotropic
inclusions
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1.2 Classification of Physical Properties. Physical
Analogies

Seemingly, a great number of different geometries signify the main difficulty in our
ability of evaluation of the effective kinetic coefficients as functions of concentra-
tions and their distribution. One unifying picture has never emerged. Situation is
rather delicate and even there is not a simple answer to whether effective properties
have to be anisotropic or not. We have to mention that no one ever suggested
exhaustive complete classification of possible geometric phases. However, for each
individual case such a description does exist; for example, two-phase systems with
spherically shaped inclusions with known distribution function of different diam-
eters. Of course, there exist much more sophisticated models of more complicated
structures, for instance, those ones which include the information about macro- and
micro-imperfections while their characteristic sizes could be bigger, equal, or
smaller than mean free path and even more complicated ones.

Up to this point, we have mainly mentioned as an example of effective kinetic
coefficients only effective electric conductivity, i.e., only for electric conduction in
random media. However, many other kinetic processes, such as heat conduction, for
instance, up to notational difference are very similar in their nature and could be
treated accordingly (Table 1.2). Of course, we can mention problems of very dif-
ferent physical phenomena such as evaluation of elastic properties of random
media, where a very different treatment is required.

Table 1.1 Correspondence between physical theories

Statistical mechanics Theory of random systems Macroscopically disordered
medium

Phase space—space of
points p; qf g, where
p и q—sets of
moments and
coordinates

Space of functions UðrÞ, where
UðrÞ—random potential, where
carriers move

Space of functions like local
kinetic coefficients, for instance
local kinetic coefficients, such as
local conductivity rðrÞ

Any non-averaged
physical function
f ðp; qÞ

Any non-averaged physical
functional A ¼ A UðrÞ½ �

Fluxes and fields, for example
j ¼ j rðrÞ½ � и E ¼ E rðrÞ½ �

Time average
corresponds to
physical characteristics

Volume average corresponds to
physical characteristics

Volume average corresponds to
physical characteristics

Ergodic hypothesis:
time average coincides
with ensemble average

Ergodic hypothesis: average over
volume coincides with mean over
all random field realizations

Averaged fluxes and fields
coincide with mean realizations
of random fields of local kinetics

1.2 Classification of Physical Properties. Physical Analogies 5



It is a rather surprising fact that there exists a whole family of problems of
finding effective properties of the media with the macroscopic disorder which can
be effectively reduced to above-mentioned technique. For Instance, the problem of
high-temperature hopping conductivity in doped semiconductor is such a problem
(Chap. 8).

References

1. Bonch-Bruevich V, Zvagin I, Kiper R et al (1981) Electronic theory of inhomogeneous
semiconductors. Nauka, p 384 (in Russian)

2. Lifshits IM, Gredeskul SA, Pastur LA (1988) Introduction to the theory of disordered systems.
Wiley, New York, p 462

3. Volovik GE, Dzyaloshinskiǐ IE (1978) Additional localized degrees of freedom in spin glasses.
Sov Phys JETP 48:555–559

Table 1.2 Different physical phenomena

Physical
phenomena

Thermodynamic flux and
equation, which describes
it in stationary

Thermodynamic force and equation
which describes it in stationary case

Law of
physics

Electrical
conductivity

j; div j ¼ 0 E; curlE ¼ 0 Ohm’s law
j ¼ rE

Thermal
conductivity

q; div q ¼ 0 g ¼ �rT ; curl g ¼ 0 Fourier’s
law q ¼ jg

Diffusion p; div p ¼ 0 s ¼ �rT ; curl s ¼ 0 Fick’s law
p ¼ js

j—electric current density, E—electric field, q—density of heat flow, g ¼ �rT—temperature
gradient, p—density of flux of particles, s ¼ �rn—gradient of number density
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Chapter 2
The Methods of Description of Random
Media

2.1 Effective Kinetic Coefficients, or What Do We
Measure

In order to make an illustration of the description of a macroscopically random medium
let us consider a sample, consistent mainly of some homogeneous material, which
includes also one or two inclusions of another material and having simple geometric
shape. One can solve the problem of spatial distribution, for example, of electric field
in this sample exactly. If we consider sufficiently large number of inclusions and/or if
they are randomly distributed, then we find that problem usually cannot be solved
analytically and even numerically. Though, in many cases we do not even need to look
for exact solution. In fact, we often are not even interested in detailed solution simply
because typically in experiment we can measure only some averaged characteristics,
such number densities of inclusions, their shapes, geometries, and sizes.

There exist media, for which, in many practical cases, one can obtain sufficient
description. They are so-called uniform in mean. If one looks at sufficiently large
samples of this medium, he finds their properties to be close to each other (Fig. 2.1).

Let us clarify the meaning of uniform in mean medium by the example of
electrical conductivity in inhomogeneous electric conducting media. Suppose a
local Ohm’s law is valid, and thus EðrÞ ¼ qðrÞ � jðrÞ, where EðrÞ—electric field,
jðrÞ—current density, and qðrÞ—local resistivity. Resistances of above mentioned
pieces will be same even though their special orientations in each sample will be
different. Figure 2.2 depicts measurement of resistance in such sample.

This resistance is a functional on jðrÞ and EðrÞ:

R ¼ R jðrÞ;EðrÞ½ �: ð2:1:1Þ

Let us pick an electric resistivity which we will call as qe, such that the total
resistance of the same shape and size of homogeneous conductor Re would be equal
R, Fig. 2.3. This medium might be called medium of comparison.

© Springer Science+Business Media, LLC 2016
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Simple analysis shows, that qe—coefficient of proportionality between Eh i and
average current density

Eh i ¼ qe jh i; ð2:1:2Þ

Indeed, for the sample of the length L and cross-sectional area S while Eh i k jh i
one can write (we skip here obvious vector notation)

Fig. 2.1 Microscopically
inhomogeneous medium.
Shown are microscopically
different samples of medium,
with the same characteristics

L

S

1 

2 

3Fig. 2.2 Measuring
resistance of the sample of the
uniform in mean. 1, 2—
phases making up the
medium, 3—pieces of contact
ðq3 � q1;2Þ

L

S

eρ

Fig. 2.3 A sample of the
medium of comparison,
which coincides with the
similar sample of the chosen
inhomogeneous media
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Eh iL ¼ qeL jh iS=Sð Þ;

Thus voltage U ¼ Eh iL and current I ¼ jh iS are related through following
formula

U ¼ ðqeL=SÞI;

In the other words, we obtain the well-known relationship for a resistance of a
sample, measured in typical experiment

Re ¼ qeL=S; ð2:1:3Þ

We give here the definition of macroscopically inhomogeneous medium. It is a
medium where the characteristic size of inhomogeneity a0 is much larger than any
typical physical characteristics ‘, for instance, mean-free-path of electric charge. We
express this fact by writing the following inequalities

ffiffiffiffi
V3

p
� ao � ‘; ð2:1:4Þ

where
ffiffiffiffi
V3

p
—characteristic size of the sample. One can introduce for macroscopi-

cally inhomogeneous medium the function qðrÞ—local conductivity, thus fulfilling
relation

EðrÞ ¼ qðrÞjðrÞ;

Introduced earlier in (2.1.2) effective kinetic coefficient qe is called by “effective
resistivity of the composite medium”. Generally speaking, qe and qh i do not
coincide. They are same in the obvious case of flat-layered medium. One can
instead of using qe—resistivity, utilize re—effective conductivity, which effectively
connects averaged over volume values of fields and currents

jh i ¼ re Eh i; re ¼ 1=qe: ð2:1:5Þ

In complete analogy one can speak of the other effective kinetic coefficients
(EKC) such as: thermal conductivity, thermo-EMF, Young modulus, etc.

qh i ¼ �je rTh i; ð2:1:6Þ

jh i ¼ �re rnh i � reae rTh i; ð2:1:7Þ

where je—EKC of thermal conductivity, re and ae—EKC of conductivity and
thermo-EMF.

It is worthy mentioning EKC, which is different from their specific character-
istics of subsequent homogeneous ones. In Fig. 2.4 we show the medium with
elongated longitudinally inclusions. Even though locally medium is isotropic
effective resistivity is a second rank tensor.

2.1 Effective Kinetic Coefficients, or What Do We Measure 9



q ¼ qðrÞ ¼ q1; r 2 O1;

q2; r 2 O2;

(
ð2:1:8Þ

Introduction of EKC is connected to the idea that as long as we are able to find
them, we are in position to calculate many integral properties of the concrete
samples of the medium, for instance, resistance of a sample with arbitrary geometry
and connect it to an experimental value.

In some cases EKC could be defined slightly differently, for instance, for r̂e we
can define

r̂e ¼
rðrÞE2ðrÞ� �
EðrÞh i2 ; ð2:1:9Þ

This expression immediately follows from (for example [3])

Ejh i ¼ Eh i jh i; ð2:1:10Þ

which is correct provided that we completely neglect boundary effects. Indeed,
substituting in left hand side of formula (2.1.10) expression for current density
j ¼ rE, and using in right hand side the fact, that (2.1.5) jh i ¼ re Eh i we obtain
(2.1.9), arriving at a reasonable result that the effective conductivity could be
understood as a normalized averaged Joule heat production.

The validity of (2.1.10) (detailed discussion and generalization of (2.1.10) see in
[1] could be understood in the following simplified way. Writing the expression for
an effective electric field in the following form

EðrÞ ¼ Eh i � ruðrÞ; ð2:1:11Þ

where potential uðrÞ corresponds to the field, scattered by inhomogeneities

ruðrÞh i ¼ 0:

L

S

Fig. 2.4 Inhomogeneous
medium with elongated
longitudinal inclusions
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The difference between left and right hand sides in (2.1.11) could be transformed
into surface integration

Ejh i � Eh i jh i ¼ 1
V

Z
Ej dV � Eh i jh i ¼ 1

V

Z
Eh ij dV � Eh i jh i � 1

V

Z
ruj dV :

First two terms cancel, and the third one yields with the help of divj ¼ 0 fol-
lowing result:

1
V

Z
ruj dV ¼ 1

V

Z
rðujÞ dV ¼ 1

V

Z
uj dS; ð2:1:12Þ

which vanishes in the limit V ! 1.
Vanishing of the surface integral in (2.1.12) can be achieved in samples of finite

sizes by appropriate boundary conditions and distribution of phases

2.2 Correlation Length and Self-averaging

So far we always assumed that EKC’s could be uniquely introduced, if the char-
acteristic length of the sample is large enough. Now we will suggest more rigorous
definition of “large enough characteristic size”. For this purpose we will introduce
correlation length n, or correlation radius.

Let uðrÞ—some random physical field, and qðu; rÞdu is a probability to find
values of u in interval ðu;uþDuÞ around r. Ergodic hypothesis is the statement
that expectation value of a random process can be done as an ensemble integration

uh i ¼ 1
V

Z
uðrÞ dr ¼

Z
uqðuÞ du: ð2:2:1Þ

We use S-point moment, and S-point function, or distribution Psðu1; r1;u2;
r2; . . .;us; rsÞ. If S ¼ 2, and using assumption that random field is homogeneous
and isotropic we have

P2ðu1; r1;u2; r2Þ � P2ðu1;u2; rÞ; ð2:2:2Þ

where r ¼ r2 � r1j j. This function posses following limited boundary properties:

P2ðu1;u2; rÞ ! dðu1 � u2Þqðu1;u2Þ; r ! 0;
qðu1Þ � qðu2Þ; r ! 1:

�

2.1 Effective Kinetic Coefficients, or What Do We Measure 11



Introducing autocorrelation function

CðrÞ ¼ uð0ÞuðrÞh i
u2h i �

R
u1u2P2ðu1;u2; rÞ du1du2R

u2j jqðuÞ du ; ð2:2:3Þ

then

CðrÞ ! 1; r ! 0;
0; r ! 1:

�

According to [5] one may define the correlation length and similar different areas
of continuous random field uðrÞ, as its characteristic topological signature, or the
typical spacial size

n2 ¼
R
r2CðrÞ d3rR
CðrÞ d3r :; ð2:2:4Þ

Relatively uniform medium, therefore, in addition to the sizes of different
inclusions and distances among them (“microscopic” sizes), possesses yet another
characteristic length n. Effective properties of the parts of media with sizes L � n
will be the same.

As it is well known, for the Gaussian random field [4, 5]

CðrÞ� e�r=n; ð2:2:5Þ

As the appropriate example we will again consider a conducting medium.
Uniqueness of re requires, that the average values jh i and Eh i in the relationship
jh i ¼ re Eh i would not depend on the location, where we choose a sample or on
random realization of different conducting phases. Condition (2.2.1) signifies the
fact that the correlation among their distribution is rather weak. This example will
also serve as an indicator of the property which we call self-averaging [2]. We
define it in the following way. For arbitrary realization x of the random rðrÞ there
exists a unique value of re, such that jh ix¼ re Eh ix. In other words, re does not
depend on x, and averaging over volume coincides with averaging over ensemble
of different realizations (ergodic hypothesis)
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Chapter 3
Effective Conductivity of Macroscopically
Disordered Media

3.1 Double-Sided Estimates of the Effective Kinetic
Coefficients

Let us ask a question: what can be learned of the effective kinetic coefficient, if very
little is known about the medium characteristics. After all, even for an approximate
determination of the effective kinetic coefficient one should have some information
on the medium, the concentration of inclusions, their shape, mutual arrangement,
etc. It appears that there exists a certain minimum of information that allows
obtaining double-sided estimates of the effective kinetic coefficient value which are
often referred to as “bounds.” Using additional information on the characteristics of
medium, the “bounds” can be narrowed, specifying possible bounds of the effective
kinetic coefficient, i.e., the larger information is taken into account, the narrower are
the “bounds.”

Consider double-sided restrictions on the effective kinetic coefficients by an
example of the effective conductivity re of a double-phase medium with conduc-
tivities of its component phases r1 and r2. For certainty, we will assume r1 [ r2.
Evidently, the simplest and at the same time the widest bounds of re will be
governed by inequalities

r2 � re � r1; ð3:1:1Þ

which means that re cannot be larger than maximum conductivity of medium
rmax ¼ r1 and smaller than minimum rmin ¼ r2. The second in complexity and,
naturally, a narrower “bound” can be obtained using additional information on the
medium, for instance, phase concentration.

Consider a case in Fig. 3.1a with alternation of parallel layers of different phases.
We will average the expression jx ¼ rðyÞEx (direction of axes is evident from
Fig. 3.1)

© Springer Science+Business Media, LLC 2016
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1
rðyÞ jx
� �

¼ 1
r

� �
jx ¼ Exh i; whence jxh i ¼ 1

r

� ��1

Exh i:

Besides, jxh i ¼ re? Exh i. Comparing these values, we find r? ¼ 1=rh i�1. In a
similar way one can find rjj ¼ rh i, here r? and rjj are components of the effective
conductivity tensor along and across the layers

r̂e ¼ rjj 0
0 r?

� �
: ð3:1:2Þ

In this case rh i ¼ pr1 þ 1� pð Þr2, and r�1
� � ¼ p=r1 þ 1� pð Þ=r2, where p is

phase concentration r1. Whence

r�1� ��1¼ r1r2
pr2 þ 1� pð Þr1 � re � pr1 þ 1� pð Þr2 ¼ rh i ð3:1:3Þ

Inequalities (3.1.3) were first established by Wiener. The left boundary value
was found by Voigt, the right—by Reis. Note that for the average isotropic medium
the achievement of bounds (3.1.3) is impossible.

The general concept of derivation of double-sided estimates is based on the
existence of principle of functional minimum equal in the case of conducting
medium to energy dissipation (the Joule heat release):

U ¼
Z
V

Ejð ÞdV : ð3:1:4Þ

In the stationary case E ¼ �ru and, as can be easily shown, from functional
minimum (3.1.4) there follows div j ¼ 0. Indeed, writing down (3.1.4) as

U r;ru½ � ¼
Z

F r;ruð ÞdV ;F ¼ r ruð Þ2; ð3:1:5Þ

(a) (b)

Fig. 3.1 Examples of phase arrangements whereby sample conductivity: a is maximum
rmax ¼ r½½; b is minimum rmin ¼ r?
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from the Euler’s equation for F

X
k

@

@xk

@F

@ @u
@xk

� 	� @F
@u

¼ 0; ð3:1:6Þ

we obtain at once div j ¼ 0, i.e., those distributions of fields E rð Þ and currents j rð Þ
which satisfy Maxwell’s equations and assign minimum to functional U (3.1.4).
Hence follows a general concept of constructing two-sided estimates—selection
from different physical considerations of functions j rð Þ and E rð Þ (they are called
“trial”), so that U r;ru½ � (3.1.4) be as low as possible. The application of a vari-
ational principle to construction of double-sided estimates (in particular, general-
ization for the anisotropic case) is given in [6], see also [3], Chap. 6.

Now we derive the relation (3.1.3) in a more general form. For this purpose we
will use the previously obtained relation E � jh i ¼ Eh i � jh i (see paragraph 2.1).
Taking into account that the average E � jð Þ has a minimum on the true values of
field E and assuming the values Eh i and jh i as trial values of E and j, we obtain

Ejh i ¼ Eh i jh i ¼ re Eh i2¼ rE2
� �� rh i Eh i2; ð3:1:7Þ

Ejh i ¼ 1
re

jh i2¼ 1
r
j2

� �
� 1

r

� �
jh i2: ð3:1:8Þ

Hence we find the final relation

r�1
� ��1 � re � rh i: ð3:1:9Þ

The next in complexity and even narrower “bound” can be obtained for the
average isotropic medium. Note that the inequalities (3.1.3) describe in the general
case the anisotropic medium, when r̂e is a tensor. Estimates of re for the isotropic
medium are called Hashin–Shtrikman “bounds” [12, 13]. To obtain them, one
employs a generalized variational principle and finds for re narrower bounds than
those given by the relations (3.1.3). A detailed derivation can be found in the work
[32]. In particular, for the two-phase material these bounds are determined by
inequalities (at r1 [ r2)

r2 þ p
1= r1 � r2ð Þþ 1� pð Þ=3r2 � re � r1 þ 1� p

1= r2 � r1ð Þþ p=3r1
: ð3:1:10Þ

Hashin and Shtrikman showed that the bounds (3.1.10) cannot be improved, if
phase concentrations p are assigned. Figure 3.2 shows the region of “borders” for
different r1 and r2 values. The “borders” “work” well at low values of r1

r2
ratio, at

large r1
r2

values the double-sided restrictions are practically useless.
In the construction of “borders” one can use a more detailed information on the

composite than phase concentration and medium isotropy, for instance, information
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on the geometry of phase arrangement or the data on three-point correlation
function. A review of the respective results is given in [3, 14]. The above-
considered variational principle can be extended to the problems of magnetostatics,
which allows finding double-sided restrictions for the magnetic field energy and the
induction of multicomponent materials [15]. For the case of complex values of
phase conductivity (quasi-harmonic case of conductivity on the alternating current)
one can also construct the respective “borders” [4, 10]. Their construction is based
on the assumption of analyticity of complex conductivity functions.

3.2 Approximations of Maxwell, Garnett, and Bruggeman

The Maxwell approximation. The Maxwell approximation is based on the
assumption that concentration of inclusions of one of the phases is low and the
inclusions have a correct compact shape, for instance, spherical. Contrary instance
is “metal” net in dielectric medium. The conducting phase concentration is low and
at the same time the inclusions are not compact.

One can obtain re in the analytical form in the Maxwell approximation only for
inclusions of certain shape. The general view of such a shape is a three-axial
ellipsoid. Under low concentration is understood such concentration of inclusions
ðp � 1Þ whereby the effect of one inclusion on the other (neighboring) can be
neglected. It means that the problem of distribution of fields and currents can be
solved for the case of a single inclusion. The analytical solution of such problem for
ellipsoid is well known. Note that the field inside the inclusion in this case proves to
be homogeneous. This fact allows finding a good approximation for the effective
conductivity in the nonlinear case as well.

Let us consider first the case of spherical inclusions. Let p be concentration of
good conducting phase of conductivity r1 (for instance, inclusions) in a medium of

0,0 0,2              0,4               0,6               0,8              1,0 p

1,0

0,8

0,6

1

2

1

eσ
σ

Fig. 3.2 Double-sided
restrictions for conductivity: 1
“bound” (3.1.9); 2 Hashin–
Shtrikman “bound” (3.1.10)

18 3 Effective Conductivity of Macroscopically Disordered Media



conductivity r2. As an example, Fig. 3.3 shows current distribution around the
cylinder inclusion in a two-dimensional case.

On the infinity, field E1 is finite and for the secluded inclusion coincides with
Eh i. The field inside the inclusion is given by solving stationary electrodynamics
equations [18]

E1 ¼ 3r2
2r2 þ r1

Eh i; ð3:2:1Þ

and, as is evident from (3.2.1), is coordinate independent. Subsequent derivation of
expression for re can be done by several methods interesting in that they yield
qualitatively different results. Let us consider the average j� r2Eh i. On the one
hand

j� r2Eh i ¼ jh i � r2Eh i ¼ ðre � r2Þ Eh i; ð3:2:2Þ

on the other hand

j� r2Eh i ¼ 1
V

Z
ðj� r2EÞdV ¼ 1

V

Z
ðrE� r2EÞdV

¼ V1

V
r1 � r2ð ÞE1 ¼ ðr1 � r2ÞpE1;

ð3:2:3Þ

where V is medium volume, V1 is first-phase volume, p ¼ V1=V .
Equating (3.2.2) and (3.2.3), we obtain

reBW ¼ r2 1þ 3p
r1 � r2
2r2 þ r1

� �
; p � 1: ð3:2:4Þ

Fig. 3.3 View of
equipotential lines and the
direction of current density
vectors for a secluded
cylinder inclusion
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Here re � reBW (BW—black in white)—“black” balls in a “white” medium. This
is the usual designation of a conductive phase with conductivity r1 called “black”
phase, in the phase with lower conductivity r2, which is called, respectively,
“white” phase. Similarly, one can consider a case of low concentration p2 ¼
1� p � 1 of poorly conducting phase with conductivity r2

reWB ¼ r1 1þ 3p2
r2 � r1
2r1 þ r2

� �
¼ r1

4r2 � r1
2r1 þ r2

þ 3p
r1 � r2
2r1 þ r2

� �
: ð3:2:5Þ

Let us pass to another method of derivation of Maxwell’s approximation that
gives the expression for re with a wider application area in terms of concentration.
Now on the infinity we will not assign filed intensity, but current density j1 which
for a secluded inclusion coincides with jh i. In so doing, instead of (3.2.1) there
will occur j1 ¼ 3r1=2r2 þ r1ð Þ jh i. Let us consider the average E� q2jh i, where
q2 ¼ 1=r2 is resistivity of second medium. Repeating computations similar to
(3.2.2)–(3.2.4), for the effective resistivity of medium qe with phase inclusions with
q1 in phase with q2 we obtain the expression

qeBW ¼ q2 1� 3p
q2 � q1
2q1 þ q2

� �
; ð3:2:6Þ

where p � 1 is phase concentration with q1. Taking into account that re ¼ 1=qe,
from (3.2.6) we find the relation

reBW ¼ r2
1� 3p r1�r2

r1 þ 2r2

; ð3:2:7Þ

which on expansion in small parameter p (to an accuracy of a linear component)
coincides with (3.2.4). As will be shown below, the expression (3.2.7) has a wider
application area, in particular, includes a peculiarity related to percolation threshold.

Similar to relation (3.2.5), for p2 ¼ 1� p � 1 one can write down

qeWB ¼ q1 1� 3 1� pð Þ q1 � q2
q1 þ 2q2

� �
; ð3:2:8Þ

or

reWB ¼ r1 r2 þ 2r1ð Þ
5r1 � 2r2 þ 3p r2 � r1ð Þ : ð3:2:9Þ

Before we analyze the resulting expressions, let us consider the effective character-
istics for other inclusion types. In the case when inclusions are ellipsoids with principal
semiaxes a; b; c, to find re one should know the field inside a separate inclusion. The
field inside inclusions E1, as before, can be expressed through the average field Eh i,
but now these fields will be, generally speaking, noncollinear, i.e.,
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E1 ¼ X
^
Eh i: ð3:2:10Þ

If coordinate system is related to ellipsoid axes, tensor X
^
will assume the sim-

plest, diagonal form

X
^
¼

X11 0 0
0 X22 0
0 0 X33

0@ 1A; Xii ¼ r2
r2 þ r1 � r2ð Þni ; i ¼ x; y; z; ð3:2:11Þ

and values ni that are called depolarization factors can be expressed through the
elliptical integrals

nx ¼ abc
2

Z1
0

ds
sþ a2ð ÞRs

; ny ¼ abc
2

Z1
0

ds
sþ b2ð ÞRs

; nz ¼ abc
2

Z1
0

ds
sþ c2ð ÞRs

;

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ a2ð Þ sþ b2ð Þ sþ c2ð Þ

p
:

ð3:2:12Þ

Knowing E1, we obtain the effective conductivity which in the general case is a
tensor. If all the inclusions are coaxial, i.e., directions of the respective axes of
different ellipsoids coincide, and their centers are located chaotically, then re is a
diagonal tensor

re ¼
r11 0 0
0 r22 0
0 0 r33

0@ 1A; ð3:2:13Þ

where

reii ¼ r2 þ r1 � r2ð ÞXiip; ii ! xx; yy; zz: ð3:2:14Þ

For some partial cases the integrals in (3.2.12) are taken in the explicit form.
Thus, for the ball inclusions nx ¼ ny ¼ nz ¼ 1=3 and by means of formulae
(3.2.11), (3.2.14), for instance, for rexx we obtain

rexx ¼
3r22 r1 � r2ð Þp

2r2 þ r1
;

in a similar way one can calculate other tensor components.
For cylinders with the axes along axis x a ! 1ð Þ
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nx ¼ 0; ny ¼ nz ¼ 1=2 rexx ¼ r2 þ r1 � r2ð Þp

For a prolate ellipsoid of revolution a[ b ¼ cð Þ

nx ¼ 1� e2

e3
arth e� eð Þ ny ¼ nz ¼ 1� nx

2
; e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=að Þ2

q
:

For an oblate ellipsoid ða ¼ b[ cÞ

nx ¼ ny ¼ 1� nz
2

; nz ¼ 1þ e2

e3
e� arctg eð Þ; e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=cð Þ2�1

q
:

Garnett approximation. Under this approximation, moments induced by the
external field on secluded inclusions are considered. Here one can do without
“dipole” terminology and make calculations similarly to derivation of Maxwell’s
approximations, using distortions of electric potential created by secluded inclu-
sions (Fig. 3.4), also referred to as scattered potential. Distortion of potential du
created by “black” ball (with conductivity r1) of radius a in a “white” medium
(with conductivity r2) is of the form

du ¼ r2 � r1
2r2 þ r1

a3cosh
r2

Eh ij j; ð3:2:15Þ

where du is additional component in potential expansion for the case when the
unperturbed potential part in the homogeneous medium is Eh iz, and axis oz is
directed along Eh i

u ¼ � Eh izþ du: ð3:2:16Þ

Consider now n “black” inclusions located in the sphere of radius b. The Garnett
approximation is based on the assumption that inclusions create beyond the sphere
a scattered potential ndu. To obtain re, let us introduce comparison medium, i.e.,

E〈 〉

( ),rδϕ θ

eσ

δϕ

1
2

3

n

δϕ
2a

2b

1

2

σ

σ

Fig. 3.4 Derivation of the Garnett approximation. The field on the infinity Eh i is directed along oz
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assume that scattered potential created by n balls of radius a, is equal to scattered
potential created by their comprising ball of radius b, provided that its conductivity
is re. In other words, ndu ¼ due, (see Fig. 3.4). Then

n
r2 � r1
2r2 þ r1

a3 cos h
r2

Eh ij j ¼ r2 � re
2r2 þ re

b3cosh
r2

Eh ij j: ð3:2:17Þ

Hence, considering that concentration of “black” phase with conductivity r1 is
p ¼ n a=bð Þ3, we obtain

reBW ¼ r2 2r2 þ r1 � 2p r2 � r1ð Þð Þ
2r2 þ r1 � p r1 � r2ð Þ : ð3:2:18Þ

Similarly we also derive reWB, since p2 ¼ 1� p

reWB ¼ r1
3r2 þ 2p r2 � r1ð Þ
3r1 � p r1 � r2ð Þ : ð3:2:19Þ

Note that in the literature one can come across other terms (particularly as
applied to dielectric media): “polarization,” “polarization factor.”

Approximation of self-consistent Bruggeman field. In the literature one can
find different names of the Bruggeman approximation: effective medium theory
(EMT), self-consistent field theory, Bruggeman–Landauer approximation, etc. This
method was considered by many authors (see a review in [32]), to name but [5, 19, 21].
Many examples of using this method are given in the book [24], Chap. 6.

We will illustrate this approximation by an example of a medium with spherical
inclusions. Let p is concentration of “black” inclusions, and re is the effective
conductivity of medium. Let us place into comparison medium with the effective
conductivity re N1 inclusions with conductivity r1 and N2—with conductivity r2,
so that N1=N2 ¼ p= 1� pð Þ. The concentration of “black” and “white” phases in
this case will not change, and the effective conductivity will remain the same. At the
same time, each inclusion introduces field distortions

dE1 ¼ E1 � Eh i; dE2 ¼ E2 � Eh i; ð3:2:20Þ

which we have already considered in the approximation of secluded inclusions

dE1 ¼ re � r1
2re þ r1

Eh i; dE2 ¼ re � r2
2re þ r2

Eh i: ð3:2:21Þ

As long as the effective properties of medium are not changed, field distortions
should compensate each other
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pdE1 þ 1� pð ÞdE2 ¼ 0; ð3:2:22Þ

exactly this is self-consistency condition.
Condition (3.2.22) can be approached otherwise, for instance, the average field is

of the form

Eh i ¼ p Eh i1 þð1� pÞ Eh i2; ð3:2:23Þ

where Eh i1 and Eh i2 are the average fields in the “black” and “white” phases.
Substituting (3.2.20) into (3.2.23), we again obtain self-consistency condition
(3.2.22).

Substituting (3.2.21) into (3.2.22), we obtain equation for the determination of re

re � r1
2re þ r1

pþ re � r2
2re þ r2

1� pð Þ ¼ 0; ð3:2:24Þ

whence we find the effective conductivity in EMT approximation

re ¼ 1
4

3p� 1ð Þr1 þ 2� 3pð Þr2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p� 1ð Þr1 þ 2� 3pð Þr2½ �2 þ 8r1r2

q� �
:

ð3:2:25Þ

Let us analyze in brief the concentration dependences of re for different
approximations. At low concentrations of inclusions with conductivity r1 p � 1 or
with conductivity r2 1� pð Þ � 1 the above approximations are in good agreement
with the numerical calculation.

So, there are four possible expressions for effective conductivity in approxi-
mations of “Maxwell” kind. In canonical Maxwell approximation the homogeneous
electrical field is set at the infinity E1 and E1 ¼ Eh i, as described in numerous
monographs, books, and reviews. In this case for p � 1 effective conductivity of
black inclusions in the white phase is described by (3.2.4). At the same time
effective conductivity of white inclusions in the black phase at p2 = 1 − p �1 is
described by (3.2.5). Border conditions could be different at the infinity: instead of
electrical field (E1) it could be conditions for the current: j1 and j1 ¼ jh i. For
these new border conditions a new expressions for effective conductivity are
obtained: expression (3.2.7) for black inclusions in white media (p � 1) and for
white inclusions in the black media (3.2.9). All four dependencies of effective
conductivity re and Bruggeman approximation are presented on the Fig. 3.5c. It is
clear from Fig. 3.5c that canonical Maxwell approximation is a very good
approximation for the case p � 1 (see 3.2.4) and it is a good fit for even not small
values of concentrations p for black inclusions. However, for the opposite case of
p2 = 1 − p � 1 canonical Maxwell approximation (3.2.5) is much worse than
approximation (3.2.9) [28].
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It would be useful to stress out two different facts. Approximation (3.2.5) could
be obtained from (3.2.4) for small parameter r2=r1 � 1. And, to the contrary, the
general approximation (9.2.9) could be obtained from less general (3.2.5) by using
approximation Pade for (3.2.5) [28, 29].

Did Maxwell know about percolation threshold? [28] It is extremely sur-
prising fact that the simplest dependence, namely that given by the Maxwell
approximation, in the derivation of re through qe (3.2.7) (it can be called as
derivation of the Maxwell approximation in q-representation) has a peculiarity at
p ¼ 1

3 (percolation threshold). This peculiarity reflects qualitatively truly the really
existing transition caused by the origination of infinite cluster—closed path of
current flow. It should be noted that derivation of dependence of the Maxwell
approximation in r-representation is related to dependence in q-representation, the
so-called Pade approximant [29]. Its meaning lies in the polynomial approximation
by linear-fractional relation, allowing a good description of real peculiarities
of physical dependences. Let us come back to the Maxwell approximation. In
r-representation we have
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Fig. 3.5 Concentration dependences of the effective conductivity in various approximations: a 1
for the Maxwell approximation (3.2.7), 2 Garnett (3.2.18), 3 EMA (3.2.25), it is assumed here
r1 ¼ 10; 000;r2 ¼ 1 (in reference units); b 1—for the Maxwell approximation (3.2.5), 2 Garnett
(3.2.18), 3 Garnett (3.2.19), 4 EMA (3.2.25), it is assumed here r1 ¼ 1000; r2 ¼ 1 (in reference
units); c -); c comparison of Bruggeman approximation—3 (solid line) and various Maxwell
approximations: reWB(3.2.8)—1, reBW (3.2.7)—2, reWB(3.2.5)—4 и reBW (3.2.5)—5
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reBW ¼ r2 1þ 3p
r1 � r2
2r2 þ r1

� �
¼ r2 1þ 3p

1� h
1þ 2h

� �
� r2 1þ 3pð Þ; h ¼ r2

r1
� 1;

ð3:2:26Þ

and in q-representation

reBW ¼ r2
1� 3p r1�r2

2r2 þr1

¼ r2
1� 3p 1�h

1þ 2h

� r2
1� 3p

; h ¼ r2
r1

� 1: ð3:2:27Þ

It can be readily seen that in the first approximation in the expansion of reBW into
a series about p these expressions coincide. However, the Maxwell approximation
in q-representation (3.2.27) has a specific point wherein an abrupt transition (at
r1=r2 	 1) from “dielectric” ðre � r2Þ to “metal” ðre � r1Þ behavior occurs
(Fig. 3.5). Note that the Bruggeman approximation that “works” well everywhere
except for the region close to peculiarity, in the vicinity of peculiarity itself does not
coincide with the numerical calculation and the experiment. The region close to
peculiarity-percolation threshold (in the approximations under study it is p ¼ 1=3)
is called critical. Its correct description calls for more complicated mathematical
methods and the introduction of deeper representations than a secluded inclusion in
the homogeneous external field. The respective research area has separated as
so-called percolation theory (from the English “percolation”). The fact, that pro-
posed approximation leads to the percolation threshold, not in any way diminish the
importance of the percolation theory. Percolation theory, in addition to the perco-
lation threshold, introduced new concepts such as critical behavior, critical indices,
scaling, etc. So, the proper answer to the question in the title is negative: “No, he
did not know, but he could have been.” One could wonder whether Maxwell would
have invented the percolation theory.

Generalizations of approximations described. Consider some generalizations
of the approximations described. Up to now we have studied the case of a
three-dimensional field (3D). One can find the respective relations in the
two-dimensional case (2D). Since the Maxwell approximation is a partial case of
the Bruggeman approximation, we will consider the Bruggeman approximation in
more detail. The sought-for expression for the 2D case can be obtained by several
methods.

1. Within the approach of a self-consistent field one can use the expressions [18]

dE1 ¼ re � r1
re þ r1

Eh i; dE2 ¼ re � r2
re þ r2

Eh i; ð3:2:28Þ

and write down the self-consistency conditions similar to expression (3.2.22).
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2. One can use the well known 3D solution for the ellipsoidal inclusions on
condition that on the semiaxis a ¼ b and c ! 1. In this case we obtain a set of
coaxial cylinder inclusions having sections in the form of circles. The respective
solutions represent the 2D case for circular inclusions. Both methods yield the
same expression for conductivity re, and self-consistency condition is of the
form

re � r1
re þ r1

pþ re � r2
re þ r2

1� pð Þ ¼ 0: ð3:2:29Þ

The self-consistency conditions can be generalized in one equation suitable for
the cases of different dimensions d

re � r1
ðd � 1Þre þ r1

pþ re � r2
ðd � 1Þre þ r2

ð1� pÞ ¼ 0; d ¼ 1; 2; 3: ð3:2:30Þ

Equation (3.2.30) also covers the case d ¼ 1 corresponding to conductivity re of
composite planar stratified medium. Certainly, in a real world, d� 3, but in per-
colation theory the calculation of critical behavior becomes particularly simple for
the case d ¼ 6 (critical dimension) and can be checked. The situation here is similar
to the case of critical dimension d ¼ 4 in the theory of second kind phase transitions
[18].

The self-consistency condition is also easily generalized for the multiphase
media. For instance, for spherical inclusions with conductivities r1; r2; . . .; rn and

the respective concentrations p1; p2; . . .; pn(here, of course,
Pn
i¼1

pi ¼ 1) we have

Xn
i¼1

pi
ri � re

ri þðd � 1Þre ¼ 0: ð3:2:31Þ

Note that for n[ 4, as is known, there is no general analytical finite expression
for solving the expression (3.2.31).

We have already seen that the expression for re in the Bruggeman approxi-
mation, just as the Maxwell approximation in q-representation, qualitatively
describe percolation transition at p ¼ 1=3. It is important that though, for instance,
in a simple cubic lattice of bonds pc � 1=3, in real two-phase composites pc can
have any values in the range 0\pc\1 [23]. In a modified EMT theory proposed in
works [32] p. 188, [22] it is taken into account that close to pc the concentration of
conducting phase p in a local field becomes larger than volume average
concentration.
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3.3 Periodically Located Inclusions

With low concentrations of inclusions it is not essential whether the inclusions are
distributed randomly or orderly, for instance, in periodic lattice nodes. The effective
conductivity of such media can be described by means of continual models
(secluded inclusion in the external field, see the Maxwell approximation in para-
graph 3.2), like in the discrete variant, by introducing a network (random or peri-
odical), see, for instance, “network” derivation of the EMT approximation by
Kirkpatrick [17].

With large concentrations, the behavior of the effective conductivity for media
with a random and periodic arrangement of inclusions differs considerably. It is
already apparent from the qualitative considerations—with a random arrangement
of good conducting inclusions in the poor conducting matrix with the inclusion
concentration equal and larger than the threshold (pc), in the medium there is a
formed infinite path only along the good conducting phase. For inclusions arranged
in cubic lattice sites such a path is created only at maximum possible concentration,
when all inclusions will touch each other. Composite with a periodic or close to
periodic arrangement of inclusions with large concentration values are called
high-filled composites, they are widely used in practice. For instance, it is covered
in publications dedicated to high-filled magnetic composites [9].

Investigation of media with periodic inclusions is interesting in many respects.
For example, a model problem which in a number of cases can be solved exactly
and as in comparison with the results of approximate methods to yield the appli-
cability limits (the error) of the latter.

With large concentration values, there is a big difference between the media that
can be described by discrete resistance networks and those for which such dis-
cretization is not permissible. With a medium simulation by a network composed of
good (“black”) and poor conducting (“white”) resistances, the information on the
shape of inclusions is lost completely. Moreover, concentration of inclusions can
assume any value (between zero and unity). The network variant of the Bruggeman
approximation gives the same expression for re as the continual variant for
spherical inclusions. And though it is clear that concentration of spherical inclu-
sions cannot exceed certain value (depending on the arrangement of particles), such
approximate results often agree well with the experiment (see, for instance [19, 20])
for a two-phase alloy, where the shape of phases is far from spherical.

However, in the cases when inclusions have spherical shape (or cylinder in 2D
case) and their shape cannot be neglected, at large concentrations of inclusions the
dependence of re on concentration and the ratio r2

r1
will differ considerably from the

EMT approximation. Among other things, it is related to the absence of symmetry
between the “black” and “white,” i.e., a medium with “black” spherical inclusions
in a “white” matrix under no concentration will go over to a medium where “white”
inclusions are in a “black” matrix. Besides, at large concentration values of
inclusions when calculating re the mutual effect of inclusions is essential. In the
EMT it was assumed that each inclusion is in the external homogeneous field and
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field distortions introduced by inclusions occur only in their own vicinity, whereas
now, figuratively speaking, there is no place without distortions of the field.

There are possible at least two basically different cases of media with inclusions
the shape of which is essential. First, these are the above-mentioned high-filled
polymers with periodically located inclusions (or with close to periodic arrange-
ment). Second, these are the so-called Swiss Cheese Media which are said to exhibit
continual percolation [8, 11], and which will be considered below in Chap. 7.

We consider here the effective conductivity of a medium with a periodic
arrangement of inclusions—the two-dimensional case—circular shaped inclusions.
To emphasize the difference between re obtained from EMT (or by numerical
calculation on the two-phase lattice, which also gives concentration dependence re)
and re for a medium with periodic inclusions, let us cite Fig. 3.6. Here each type
(BW and WB) has its limiting concentration of inclusions when they touch each
other—p
BW ¼ p=4 and pWB ¼ 1� p=4, the result of EMT coincides with the result
of solving a problem with a periodic arrangement of inclusions.

In the works [30, 31] for the periodically arranged circular inclusions by means
of physical simulation (dielectric inclusions were obtained by cutting holes in a
conducting film) there was obtained concentration dependence reWB. In [1] the
expression for re is found in the form of a series quickly converging in concen-
tration, or, which is the same (see Fig. 3.6), in the size parameter R=a. According to
[1] for WB-medium the effective conductivity re with an accuracy to 1 % can be
presented as follows:

reWB ¼ r1
a� pR2

4a2 d

aþ pR2

4a2 d
; ð3:3:1Þ
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Fig. 3.6 Dependence of effective conductivity of media with periodic inclusions and small
concentration of inclusions a media b for BW-case: 1 1� pð Þ � 1 for case WB (3.1.1), 2 p � 1
for case BW (3.3.4), 3 results for EMT approximation. Points—result of numerical calculation for
circular inclusions [25], thin line—from the work [1], r2
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= 10−5
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a ¼ 1� 1
3

gR4 �2
d2 � 1

63
gR4 �4

d2 � 5
9

d2 þ 4
5 � 11 � 132

� �
gR4 �6

d2. . .; ð3:3:2Þ

d ¼ r1 � r2
r1 þ r2

¼ 1� h
1þ h

; h ¼ r2
r1

; g ¼ 1
a4

K
1ffiffiffi
2

p
� �� �4

; ð3:3:3Þ

where K 1
� ffiffiffi

2
p � ¼ 1:85407. . . is full elliptical integral of the first kind with a

modulus.
Concentration of well conducting phase r1) has the form p ¼ 1� pR2=4a2. The

expression (3.3.1) is valid: a) in the entire range of changing concentration
p
BW � p� 1 of good conducting phase at dj j � 0:7. For r1 [ r2 the latter condition
means r1=r2 � 5:67; b) in the range of concentration 0:29� p� 1 for any ratio
r1=r2 [ 1.

Figure 3.7 shows concentration dependence of the effective conductivity with a
periodic arrangement of circular inclusions of poorly conducting phase in a good
conducting matrix

As an example, there were selected different values of phase conductivity ratios
r1=r2 (see also Fig. 3.6a). Inclusions touch each other at concentration equal to
p
BW ¼ 1� p

4 � 0:21ðR ¼ a=2Þ.
The effective conductivity in the opposite case, i.e., “black” inclusions in a “white”

matrix, as shown in [1], can be found using the reciprocity relations [7] (see Chap. 6)

reðpÞ ¼ r1r2
re 1� pð Þ : ð3:3:4Þ
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Fig. 3.7 Concentration
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In the region of concentrations close to limiting p
BW and p
WB, the expression for
re with a good precision can be written much simpler. As long as at R ! a the
larger part of resistance is accumulated in contact area. For BW-system the contact
area has the form of interlayer (Fig. 3.8a), and in case of WB—the form of con-
strictions (bridges) (Fig. 3.8b).

Consider, for instance, the problem WB. At R[ 0:95a the expression (3.3.1)
“works no longer.” In the calculation using bridge “ideology,” for the case of
r2 ¼ 0 according to [1] we obtain

reWB ¼ r1
1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
a� R
R

r
; ð3:3:5Þ

or in terms of concentration of good conducting phase we have

reWB ¼ r1

ffiffiffi
2

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

p
2
ffiffiffiffiffiffiffiffiffiffiffi
1� p

p � 1

s
: ð3:3:6Þ

Note that in terms of proximity to minimum possible concentration in this case
s ¼ p� p
, dependence reWB with regard to s � 1 has a power form with exponent
1/2 (see also [16])

reWB � r1
2

p3=2
s1=2WB ð3:3:7Þ

Figure 3.9 shows concentration dependences of the effective conductivity reWB
close to p
BW , here it is assumed r1 ¼ 100; r2 ¼ 0 (in reference units).

Similarly we find the concentration dependence of the effective conductivity in
the case of inclusions of well conducting phase in poorly conducting matrix. Close
to p
BW according to (3.3.4) and (3.3.5), or (3.3.6) [1]:

(a) (b)

Fig. 3.8 Contact areas where the main resistance is “accumulated”: a well conducting inclusions
in poorly conducting matrix (BW); b poorly conducting inclusions in well conducting matrix (WB).
The arrows indicate current direction at places of its largest density
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reBW ¼ r2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2 a� Rð Þ

s
; ð3:3:8Þ

where now is assumed r1 ! 1.
If reBW (3.3.8) is expressed through concentration, we obtain

reBW ¼ r2
pffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

ffiffi
p
p

q
� 1

r : ð3:3:9Þ

From the expression (3.3.9) it follows immediately that in terms of proximity to
p
BW—s ¼ p
BW � p dependence reBW , just as r

e
BW , has a power form with exponent

1/2 (see also [16])

reBW � r2
p3=2

2
s� 1=2
BW : ð3:3:10Þ

For the two-dimensional case, the effective conductivity of a medium for the
case of ideally conducting balls (r1 ! 1) periodically arranged in the sites of
cubic lattice, close to maximum possible concentration (p
BW ¼ p=6) has the form of
a logarithmic dependence [16]:

reBW � �p=2 ln p=6� pð Þ: ð3:3:11Þ

Thus, if in the two-dimensional case re behaves at p ! p
 similarly to re in
percolation media (i.e., it has power dependence on proximity to p
), then in the
periodic three-dimensional media (3.3.11) it is not the case.

In real high-filled composites strictly periodic arrangement of inclusions is observed
approximately. It seems important to be able to estimate how small structural deviations
(“movements”) from strict periodicity influence the effective conductivity. In other
words, whether re of such media is “rigid” or “soft,” i.e., will a small structural
deviation result in a large change of re or not. If the structure is “rigid,” the value of
precise solution for strictly periodic arrangement of inclusions is of less interest for
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Fig. 3.9 Concentration
dependence reWB: 1 by the
formula (3.3.1); 2 by the
formula (3.3.5); 3 direct
numerical simulation [26]
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practical purposes than “soft” structure. The problem of the influence of “movement”
in the two-dimensional structure of periodically arranged cylinders is considered in
[26], where it is shown that periodic structure is stable against “movement.”

3.4 Plain-Layered Systems

We considered above the approximate methods of describing the effective kinetic
coefficients. To establish their applicability limits is often a difficult task. Therefore,
it is desirable to have precise expressions of the effective kinetic coefficients at least
in some special partial cases. Such expressions are not only interesting in their own
right, but can be used for checking the precision of other methods. One of such
examples is planar stratified media for which one can get exact solutions for the
effective kinetic coefficients.

As an example, we will consider the effective conductivity re. For the planar
stratified media the effective conductivity is second-rank tensor. In the calculation
of re we will use the so-called method of brackets.1 Figure 3.10 represents a planar
stratified periodic two-phase medium homogeneous on the average.

Locally this medium is isotropic: the conductivities of layers r1 and r2 are
isotropic, and the effective conductivity re is a tensor. To find re, we write down
the following equations:

div j ¼ 0; ð3:4:1Þ

curl E ¼ 0; ð3:4:2Þ

j ¼ rðzÞ E: ð3:4:3Þ

As usual, we assign a field on the infinity equal to Eh i. From expressions (3.4.1)
and from r ¼ r zð Þ it follows that jz = const, and it is evident that this constant is
equal to jzh i, where under the mean the following expression is meant (the origin of
coordinates is at any point of oz axis)

:::h i ¼ 1
d

Zd
0

. . .dz;

where d is a size of a two-layer package (Fig. 3.10).
From Eqs. (3.4.1), (3.4.2) it follows that on the bounds

jzj1 ¼ jzj2; Ezj1 ¼ Ezj2;

Ex ¼ Exh i ¼ const: ð3:4:4Þ

1The authors did not manage to trace the reference.
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According to (3.4.3) and (3.4.4) one can construct the following chain:

jx ¼ rðzÞEx ! jx ¼ rðzÞ Exh i ! jx ¼ rðzÞ Exh ih i
! jxh i ¼ rðzÞh i Exh i; ð3:4:5Þ

Then, by determination of the effective coefficient of conductivity jxh i ¼ rexx Exh i
we have

rexx ¼ rðzÞh i: ð3:4:6Þ

For another current component jz ¼ rðzÞEz a similar chain (with regard to
jz ¼ jzh i) will be as follows

Ez ¼ jz
rðzÞ ! Ez ¼ jzh i

rðzÞ ! Ez ¼ jzh i
rðzÞ

� �
! Ezh i ¼ jzh i 1=rðzÞh i; ð3:4:7Þ

and hence

rexx ¼ 1=rðzÞh i�1: ð3:4:8Þ

Thus, the effective conductivity of a planar stratified medium is a tensor which in
the coordinate system in question can be written as

r_e ¼ rh i 0
0 1=rh i�1

� �
; ð3:4:9Þ

as it should be, the medium has different conductivities in different directions.
For a two-layer package shown in Fig. 3.10 we have

rexx ¼ pr1 þð1� pÞr2; rexx ¼
r1r2

ð1� pÞr1 þ pr2
; ð3:4:10Þ

where phase concentration is related to layer sizes as follows: p ¼ d1=d,
1� p ¼ d2=d.

δ

z

x

1 2σ σ

h

Fig. 3.10 Two-phase planar
stratified periodic medium
with the layer conductivities
r1 and r2
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It can be said that (3.4.9) is just a parallel and series connection of resistances.
Similarly one can also consider more complicated cases, for instance, the case of

anisotropic conductivity of layers, when each layer is an anisotropic media. Here
we will consider another case—the case of two-flux systems [27]. Thermoelectric
material can serve as an example. Let there be given two fluxes j and w and two
fields E and g. In other words, there are given two thermodynamic fluxes and two
thermodynamic forces. The fluxes obey the laws of conservation

div j ¼ 0; divw ¼ 0; ð3:4:11Þ

and the fields are potential

curlE ¼ 0; curl g ¼ 0: ð3:4:12Þ

For the thermoelectric case j is electric current density, w is energy flux density,
E is electric field intensity, g ¼ �grad T , T is temperature [18].

In the framework of a linear nonequilibrium thermodynamics, the fluxes and
forces are related by linear relations (the so-called material equations)

j ¼ A11EþA12g;

w ¼ A21EþA22g;
ð3:4:13Þ

where Aad is second-rank tensor in space E; gf g.
In coordinate notation material Eqs. (3.4.13) are of the form

j1 ¼ ðAikÞ11Ek þðAikÞ12gk; ji ¼ A11
ik Ek þA12

ik qk;

wi ¼ ðAikÞ21Ek þðAikÞ22gk:
ð3:4:14Þ

For planar stratified media components of tensor Aad are functions of coordinate
z Aad

ik ¼ Aad
ik zð Þ. We will introduce new (generalized) fluxes and fields

ix ¼
jx
wx

 !
; iy ¼

jy
wy

 !
; iz ¼

jz
wz

 !
; px ¼

ex
gx

 !
; py ¼

ey
gy

 !
; pz ¼

ez
gz

 !
:

ð3:4:15Þ
Now ratio (3.4.13) can be written down in compact form

i ¼ X
_

p; ik ¼ Xab
kmpm ð3:4:16Þ

where

Xkm ¼ A11
km A12

km

A21
km A22

km

 !
: ð3:4:17Þ
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To find the effective kinetic coefficient means to determine coefficients interre-
lating the average fluxes and fields ih i � I, ph i � P. According to the Onsager

principle, in the absence of a magnetic field tensor bX is symmetric. It means, for
instance, that A12

xy ¼ A21
yx . Based on the above-described schematic, the expressions

(3.4.5) and (3.4.7) will be written as

ix ¼ Xab
xxPx þXab

xz pz; Iz ¼ Xab
zxPx þXab

zz pz: ð3:4:18Þ

Solving the second Eq. (3.4.18) for pz and averaging it by terms, we obtain
(omitting indices a b)

pzh i ¼ Xzzð Þ�1
D E

Iz � Xzzð Þ�1Xzx

D E
Px ¼ Px; ð3:4:19Þ

whence we have

Iz ¼ ðXzzÞ�1
D E�1

Pz þ ðXzzÞ�1
D E�1

ðXzzÞ�1Xzx

D E
Px: ð3:4:20Þ

Similarly by means of Px and Pz, we find Ix, hence, the effective tensor bXe
[27]:

ðXxxÞe ¼ Xxx � XxzXzzXzxh iþ XxzðXzzÞ�1
D E

ðXÞ�1
D E

ðXzzÞ�1Xzx

D E
;

ðXxzÞe ¼ XxzðXzzÞ�1
D E

ðXzzÞ�1
D E�1

;

Xzx ¼ ðXzzÞ�1
D E

ðXzzÞ�1Xzx

D E
;

Xzz ¼ ðXzzÞ�1
D E�1

:

ð3:4:21Þ

A medium with periodically changing properties is idealization. A real medium
always has finite sizes. A question arises: how the finiteness of medium dimensions
affects the possibilities of practical use of planar stratified media. The error intro-
duced to the effective kinetic coefficient by the medium finiteness for planar
stratified media can be estimated as in follows [2]. Figure 3.10 shows part of
infinite planar stratified medium where a portion finite along the oz axis is sepa-
rated. This portion includes n packages (n periods) and incomplete part nþ 1 of
layer of dimension h. With a large n value, portion of dimension h will not affect the
effective conductivity value along the oz axis. By the value of deviation of medium
effective conductivity (with a finite h value) from the effective conductivity of
infinite rezz one can judge of the applicability of expression for rezz.

For the infinite medium (3.4.8) we have

rezz ¼ 1=rðzÞh i�1¼ lim
n!1

1
nd

Znd
0

dz
rðzÞ

0@ 1A�1

¼ 1
d

Zd
0

dz
rðzÞ

0@ 1A�1

; ð3:4:22Þ
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where the last equality takes into account periodicity in z with period d.
Similarly for the finite medium it can be written

rzzðh; nÞ ¼ 1
ndþ h

Zndþ h

0

dz
rðzÞ

0@ 1A�1

¼ nd
ndþ h

1
d

Zd
0

dz
rðzÞ þ

d
ndþ n

1
d

Zh
0

dz
rðzÞ

0@ 1A�1

ð3:4:23Þ

At n ! 1 rzzðh; nÞ ! rezz, and at n 	 1 one can approximately find

rzzðh; nÞ � 1
rezz

þ 1
nd

Zh
0

dz
rðzÞ

0@ 1A�1

: ð3:4:24Þ

Thus, it is exactly the ratio of ndRd
0

dz
rðzÞ

to rezz that shows (at n 	 1) how essential is

the fact that the medium is finite (Fig. 3.11)
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Fig. 3.11 Dependence of the
effective conductivity on the
size of planar stratified
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Chapter 4
Elements of Geometrical Theory
of Percolation

4.1 Percolation Problem

Initially percolation problem had been formulated by Broadbent and Hammersly in
[2]. Let us consider a porous medium, where pores are distributed randomly, for
instance, in activated coal in a filter of a gasmask. What is the dependence of the
length of the path of floating air on pores number density (relative volume). It is
obvious that the greater is this path, the cleaner the air is. How much is this path
branched up and paralleled? If the number density of pores gets smaller then,
effectively air path becomes shorter and, obviously, we can face a situation that the
air may not at all be able to get through the filter. What would be critical number
density which will bring this situation about? This critical number corresponds to
the so-called percolation threshold.

The simplest abstract formulation of this problem is following
There exists a ladder of random connections, random part of them p “black”—

conducting, and a rest of them—(1 � p) “white”—nonconducting (broken con-
nections). One has to determine pc “black” connections, when there exists at least
one nonvanishing conducting path. Similarly, one can formulate this problem for
vertices of the ladder. This threshold number density has been called percolation
threshold. For the first time this problem was formulated by Broandbent and
Hammersley [2]. The existence of such critical threshold is the main marker of
theory of percolation. Physical properties of this kind of system drastically change
while getting though this threshold of percolation (Fig. 4.1).

We use here “electric picture”—“black” connections (bonds) conduct current,
“white” (broken ones) do not conduct (in more advanced theory of percolation they
still conduct but not that effective (Fig. 4.2).

It turns out that the problem of finding the percolation threshold happened to be a
very nontrivial problem of the theory of probability and while trying to solve it

© Springer Science+Business Media, LLC 2016
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mathematicians and physicists come up with quite a number of new and original
ingenious techniques and methods termed today as the theory of percolation.

Conditionally one subdivides theory of percolation into geometric and physical
ones. The former one investigates questions of structure, statistics, and connectivity
of “black and white” sites or areas, finite, or infinite clusters in the spaces of
different dimensionality. (see, for example, [11]) and we will not consider these
topic in this book. The physical part of the theory of percolation usually deals with
various physical processes such as conduction of electric current, thermoelectric
phenomena, elastic as well as nonelastic deformations in the media with two- and
greater number of phases of this media with number density in the vicinity of
percolation threshold.
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Fig. 4.1 Dependencies of effective conductivity re=
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
for two-dimensional lattice of

resistors for different values of h ¼ r2=r1: a upon conducting phase concentration p, b upon
proximity to the percolation threshold s ¼ ðp� pcÞ=pc

(b)(a)

Fig. 4.2 The view of percolation system in vicinity of percolation threshold. a below threshold,
without percolation. b above threshold, with percolation
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4.2 Basic Concepts of Geometric Percolation

Here we will introduce some important concepts of the geometrical theory of
percolation, which will be significant in our later discussions of the physical aspects
of the phenomenon of percolation.

In the theory of percolation typically one considers dimensionless quantity
which indicate closeness to the threshold of percolation instead of number density

s ¼ p � pc
pc

; ð4:2:1Þ

characteristically, methods of the percolation theory applicable in the vicinity of the
threshold. sj j � 1.

The set of “black” connections (bonds), connecting “left infinity” with the
“right” one, are called infinite cluster. At s [ 0 infinite cluster exists, though at
s\ 0 it is missing. Appearance (creation) of the infinite cluster at the transition of
number density through the threshold of percolation can be considered to be
analogous to the emergence of geometrical analog of new state, new order
parameter. This fact makes it possible to see here second-order phase transition,
where order parameters possess so-called scaling and, specifically, while
approaching to threshold they feature power behavior. Thus, the power of infinite
“black” cluster P1 (the probability of getting randomly “black” connections or knot
belonging to this cluster) takes up following values

P1 � sb; s [ 0; b2 � 0:15; b3 � 0:4: ð4:2:2Þ

where b—so-called critical index, universal number, which depends only on
dimensionality of the problem, having a unique value for all lattices (for example,
in two-dimensional case for quadratic, triangular, hexagonal, disordered, etc.);
lower index at b points out to the number of dimensions of the system under
consideration.

Of course, the notion of infinite cluster, and, subsequently, P1 exists only above
threshold of percolation at p [ pc, s [ 0.

Below the percolation threshold (p\ pc) there are clusters of “black” phase only
of finite size.

One of characteristics of such clusters—the average number of “black” con-
nections (nodes) that belong to these clusters

S � sj j�c; c2 � 2:4; c3 � 1:7: ð4:2:3Þ

One more, a very important characteristic of a disordered medium is so-called
correlation n. It represents a typical length along which intensity of correlations falls
off accordingly to the vicinity of threshold s:
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n � a0 sj j�m; m2 ¼ 4
3
; m3 � 0:9; ð4:2:4Þ

where v—critical index of correlation length.
In the area with sizes n there exists only one cluster.
The characteristics of percolation system P1, S, n behave nonanalytically,

having power dependence on s, and a power—critical index—is a noninteger
number. Therefore, ether dependence itself or some of its derivatives with respect to
s are going to infinity at s ! 0. Critical indices do not depend on the type of lattice
and this fact is called universality of critical indices. Notice that for systems of
different dimensions (two-dimensional, three-dimensional) the critical indices are,
of course, different.

In what follows, while describing critical phenomena most prominent role would
belong to percolation. Apart from P1 (4.2.2) and S (4.2.3), it depends on many
other characteristics such as, for instance, number of nodes of infinite cluster with
characteristic sizes r

MðrÞ � raf ; r\ nð Þ; af ¼ a � b=m: ð4:2:5Þ

In infinite cluster one can recognize (1) “isle” of a cluster (back bone)—when we
talk about current flow along “black” connections, then it is currant-conducting
part; (2) “dead ends”—parts of infinite parts, along which current does not flow;
(3) “red connections” (red bounds)—single connections, located in a such manner
so that elimination of only one of them prevent current flow in infinite;
(4) “skeleton” cluster—it is a set of shortest paths from the given knot to all other
for the particular length.

Each of given characteristics is defined by its critical index. Their values can be
found in. [3, 11].

In order to describe behavior of different physical properties (for example, re) in
percolation media there exist a number of geometrical models: Skul-Shklovsky [8],
similar to it de Gennes [5], fractal model of Given-Mandelbrot [7], model of
Arcahelis-Redner-Caniglio [1], droplet model of Stanley and Coniglio [4, 10],
droplet model of Vinogradov and Sarichev [12], Luk’yanets-Snarsky [6], and many
others.

For some prolonged time it was a general belief that critical indices of basic
physical phenomena (effective conductivity, effective thermoEMF, etc.) could be
expressed only through geometrical critical indices—m; b; . . .. Though, as was
mentioned in [9], “it is quite possible that it is false.” Since that time of publication
of [9], most specialists believe into it. In spite of this, the concrete models of the
percolation structure proved to be useful theoretical tools, allowing researchers in
this field simplify and clarify basic quantitative (sometimes even qualitative)
characteristics of kinetic phenomena in percolation media.
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Chapter 5
Effective Conductivity of Percolation
Media

5.1 Analogy with the Phenomenological Theory
of Second-Order Phase Transitions. Scaling
and Critical Exponents

Once Broadbent and Hammersly [4] had introduced the percolation threshold and
discovered that various geometrical and physical characteristics of percolation
systems depend on the proximity to percolation threshold s and this is a power
dependence and critical indices describing it are universal (see Chap. 4), it could
not but suggest the idea that percolation systems behave similarly to systems with
second-order phase transitions. This idea was first put forward and realized in [15,
54]. To describe the results of these works and their subsequent development, it is
necessary to give some brief information, the basic terms and relationships of the
phenomenological theory of second-order phase transitions detailed, for instance,
in [25, 30, 39].

The trend in the theory of phase transitions is to use the so-called proximity to
phase transition point (temperature)t ¼ T � Tc or t ¼ ðT � TcÞ=Tc. In the latest
definition t is dimensionless; the order parameter η—the value characterizing the
properties of system as a whole, changes considerably with a phase transition, i.e. in
passing through Tc. In the case of ferromagnetics, the order parameter is ferro-
magnetic magnetization, and then Tc is the Curie temperature.

Correlation radius (length) rc, which is also frequently designated as n, shows
the order of magnitude of distances where correlation between the order parameter
fluctuations decreases considerably. This magnitude appears in the correlation
function [compare to (2.2.5)]:

GðrÞ � e�
r
n;

© Springer Science+Business Media, LLC 2016
A.A. Snarskii et al., Transport Processes in Macroscopically
Disordered Media, DOI 10.1007/978-1-4419-8291-9_5

47

http://dx.doi.org/10.1007/978-1-4419-8291-9_4
http://dx.doi.org/10.1007/978-1-4419-8291-9_2


and shows a power dependence on the proximity to the transition point

n � tj j�m; ð5:1:1Þ

where m is critical index of correlation length.Above and below the transition point, the
order parameter, just like the correlation length, has power-mode behavior (Fig. 5.1):

g � h tj j�c; t [ 0 T [ Tcð Þ; c [ 0; ð5:1:2Þ

g � tj jb; t\ 0 T \ Tcð Þ; b [ 0; ð5:1:3Þ

where c and b are certain critical indices, h is an external field (dimensionless),
its nature is different for various order parameters g, in the case of ferromagnetism it
is a magnetic field. In the area of t\ 0; T \ Tc (Fig. 5.1a) g � tb there is a
spontaneous magnetization separating some direction (hence the name—nonsym-
metric phase).

In the area of t [ 0; T [ Tc (Fig. 5.1b) g � h tj j�c the spontaneous magne-
tization occurs in the presence of an external magnetic field. Note that at T [ Tc
the order parameter is different from zero only in the presence of an external field h.

The external field (its dimensionless value is designated as h) “smears the phase
transition,” “the discrete point of the phase transition disappears” [25]. There is
some t-dependent characteristic ht, such that in the “weak” h � htð Þ fields its effect
on the order parameter behavior can be neglected, and in the “strong” h � htð Þ
fields this effect becomes dominant, and the order parameter, just like the corre-
lation length, depends not on t, but rather on h:

g � h
1
d; n � h�l: ð5:1:4Þ

Fig. 5.1 Dependence of the
order parameter η on the
proximity to phase transition
point Tc
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With an arbitrary relationship between t and h (however, remember that the
system is in the vicinity of the phase transition point, i.e. tj j � 1), one can for-
mulate for η the so-called scaling relationship (scaling function, scale invariance)
incorporating as particular cases (5.1.2)—(5.1.4):

g ¼ h
1
d f

t

h
1
bd

� �
; h [ 0: ð5:1:5Þ

Here at h < 0 one should make a substitution h !−h, η!−η. Note that from
(5.1.5) immediately follows the characteristic value ht which determines the mag-
nitude of dimensionless field (weak–strong):

h
1
bd
t � tj j: ð5:1:6Þ

Scaling function f (z) depending on one variable z ¼ t=h
1
bd behaves within

different limits as follows:

f ðzÞ �
z�c; z ! þ1; ðaÞ;
const; z ! 0; ðcÞ;
zj jb; z ! �1; ðbÞ:

8<: ð5:1:7Þ

Not all of the above used critical indices are independent. Some of them relate
the so-called equalities. For instance, one of them–

bd ¼ bþ c; ð5:1:8Þ

written here in a somewhat unusual form, is known as the Widom relation.
On separating the main factor from f(z), the remaining part has no peculiarities

and can be expanded in the small parameter z or 1/z depending on the limit kind in
(5.1.7). It is considered in more detail in [25]. For the case (5.1.7b) at h 6¼ 0, η 6¼ 0
both for t < 0 and for t > 0. Thus, the case t = 0 is “in no way remarkable”
physically, which means that f(z) is expanded in the integer powers z:

g � h
1
d B0 þ B1h

� 1
bdt þ B2h

� 2
bdt2 þ . . .

� �
: ð5:1:9Þ

Similarly to cases (5.1.7a) и (5.1.7c), η (t, h) can be expanded in the integer
powers h (with regard to different factors z�c and zj jb, respectively). For expression
(5.1.7a) we get

g ¼ h
1
df

t

h
1
bd

� �
¼ h

1
d

t

h
1
bd

� ��c

f
t

h
1
bd

� �
¼ ht�cuþ

t

h
1
bd

� �
� ht�c A0 þ A1ht�bd þ A2h2t�2bd þ . . .

� �
;

ð5:1:10Þ
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where the Widom relation is taken into account (5.1.8), and in the function f(z) the
variable is raised to the—db power.

For the case (5.1.7b) we have

g ¼ h
1
df

t

h
1
db

� �
¼ h

1
d

tj j
h

1
db

� �b

f
t

h
1
db

� �
¼ tj jbu�

h

tj jbd
 !

�

� tj jb C0 þ C1 h tj j�db þ C2 h2 tj j�2db þ . . .
� �

:

ð5:1:11Þ

Summarizing (5.1.9), (5.1.10), and (5.1.11), we write down

g ¼
h t�c A0 þA1 h t�d b þA2 h2 t�2 d b þ . . .

� �
; t[ 0; h

td b � 1; að Þ
h

1
d B0 þB1 h

� 1
d b tþB2 h

� 2
d b t2 þ . . .

� �
; h

td b � 1; cð Þ
tj jb C0 þC1 h tj j�d b þC2 h2 tj j�2 d b þ . . .
� �

; t\0; h
tj jd b � 1 bð Þ:

8>><>>:
ð5:1:12Þ

The constants Ai;Bi;Ci remain of the order of unity, among them there are both
positive and negative.

Up to now it has been supposed that the system sizes L wherein the phase
transition occurs are much in excess of the correlation length L � n. In this case the
properties of system as a whole do not depend on the instantaneous realization of
local properties (with regard to fluctuations) that takes place at given time moment.
At the same time, it means that the properties of system do not depend on the system
sizeL. In the opposite case, when L� n, at each time moment due to fluctuations (the
characteristic size of which is now of the order of system sizes) the values of the
order parameter are different and all subsequent relationships are certainly written for
the time average. The order parameter in this case is a function of system size L, this
dependence becoming minor with increase in L, when condition L � n is satisfied.
To determine the dependence η = η (L), one must use a relation between the
proximity to transition point t and the correlation length (5.1.1):

tj j � n�
1
m; ð5:1:13Þ

moreover, tj j � n=a0ð Þ�1
m, where a0 is characteristic microscopic size, such as inter-

atomic distance, which, in the subsequent discussion will be omitted for simplicity.
A technique leading to dependence η = η (L) for systems with L� n lies in the

substitution of n by L in (5.1.13). Thus, substituting (5.1.13) into (5.1.2) and (5.1.3)
and replacing n by L, we get

g� h L
c
m T [ Tcð Þ; g� L�

b
m T\Tcð Þ: ð5:1:14Þ

The infinite cluster P1 sð Þ can serve as the analog of the order parameter η in the
geometrical percolation theory, see (4.2.2). In so doing, the analog of variable T in
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the theory of phase transitions is 1 − p, where p is concentration of “black” nodes
(or bonds). According to (4.2.2), P1 sð Þ 6¼ 0 only at s > 0, i.e. in the case of the
infinite cluster. To draw an analogy, one should introduce the concept of infinite
cluster power P1 sð Þ below the percolation threshold, when there is not infinite
cluster, but there are single finite clusters of the “black” phase. Such a paradoxical
requirement can be met by interrelating finite clusters in artificial way. For this
purpose Kastellein and Fortuine [22] (see also a detailed presentation in [45])
introduced the so-called Kastellein-Fortuine demon (Fig. 5.2a) “black” node
beyond the lattice to which with a probability 1� e�h is related each of the “black”
lattice nodes (dashed line), where h is the analog of the external magnetic field in
the theory of phase transitions.

At s � 1 p[ pcð Þ and h � 1P1ðpÞ� h, i.e. just like the order parameter η in
the theory of phase transitions is proportional to the external field, and at p ¼
pc P s ¼ 0; hð Þ� h

1
d [compare to (5.1.4)].

As we will see below, in the description of physical effects, such as conductivity,
in percolation structure, when the effective conductivity re can be assumed as the
order parameter, the introduction of analog to the external magnetic field does not
require the use of the above described artificial technique.

5.2 Effective Conductivity as an Order Parameter.
Phenomenological Description

In this paragraph, we use the analogy with the theory of second-order phase tran-
sitions (see 5.1). The role of proximity to phase transition point t ¼ T � Tcð Þ=Tc is
now played by the value s ¼ p� pcð Þ=pc. Like before, p is the concentration of
good conducting (“black”) phase, and as p increases (passes through the percolation
threshold pc), the medium goes over to a conducting state (the analog of non-
symmetric ferromagnetic phase in the theory of phase transitions), however, in the
theory of phase transitions such a transition takes places with a reduction of t. Thus,
if we draw an analogy, the T and p axes are directed in opposite directions.

1
1

1

2Fig. 5.2 Schematic of
combination of finite clusters
of the “black” phase 1 finite
“black” clusters 2
Kastellein-Fortuine demon
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Above and below the percolation threshold pc the effective conductivity re, as
established by numerous experiments (full-scale and numerical [51]), shows a
power dependence on s:

re � r1st; s[ 0; p[ pc
re � r2 sj j�q; s\0; p\pc

�
ð5:2:1Þ

or in a dimensionless form:

re
r1

� st; s[ 0;
re
r1

� r2
r1

sj j�q; s\0; ð5:2:2Þ

where t and q are critical indices of conductivity above and below pc.
From Eqs. (5.2.2) and (5.2.1), it can be seen that role of field h in the theory of

phase transitions is played by the relationship of phase conductivities

h ¼ r2
r1

: ð5:2:3Þ

Theory of critical behavior of re, based on the analogy with the theory of phase
transitions, was constructed in the works [15, 54]. In this theory, the analog of
scaling relationship for the order parameter (5.1.6) is scaling relationship for the
effective conductivity

re ¼ rq1r
t
2

� � 1
tþ qf

s

h
1

tþ q

� �
; ð5:2:4Þ

where for the sum of t + q the designation u = t + q—the so-called scaling factor,
is often introduced.

Scaling relationship (5.2.4) can be written in a dimensionless form as follows:

re
r1

¼ h
t
uf

s

h
1
u

� �
; u ¼ tþ q; ð5:2:5Þ

Scaling function (compare to (5.1.7)) has the following asymptotes: [15]:

f ðzÞ�
zt; z ! þ1; ðaÞ;

const; z ! 0; ðcÞ;
zj j�q; z ! �1; ðbÞ:

8<: ð5:2:6Þ

Remind that the T and p axes are directed oppositely, therefore, in (5.2.6) as
compared to (5.1.7) the a and b dependences (drop and increase with a reduction of
z) have changed their places. According to [25] (paragraph 5.1) from (5.2.4) and
(5.2.6) follow three types of different behaviurs of re and expansion of f(z) in three

different areas of parameters. At z ! 1, i.e. when s[ 0 and s h�
1
u � 1, from

(5.2.4) and (5.2.6) we get re ¼ r1 h
t
uf s

h
1
u

� �			
s h�

1
u�1

� r1 h
t
u sh�

1
u

� �t
f1 s

h
1
u

� �
.
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When the main factor (singular part zt) is singled out from f(z), the remaining

factor has no peculiarities, s 6¼ 0, therefore, the function f1 s=h
1
u

� �
can be expanded

in the integer powers h:

f1
s

h
1
u

� �
	 f2

h
su

� �
� A0 þA1 h s

�u þA2 h
2s�2u þ . . .:

Finally, for re we get

re � r1s
t A0 þA1 h s

� tþ qð Þ þA2 h
2s�2 tþ qð Þ þ . . .

� �
: ð5:2:7Þ

Similarly, for the case z ! �1, i.e. at s\0 и sj jh�1
u � 1, we have

re � rq1r
t
2

� �1
u

sj j
h

1
u

� ��q

f3
h
sj ju

� �
� r2 sj j�q C0 þC1 h sj j� qþ tð Þ þC2 h

2 sj j�2 tþ qð Þ þ . . .
� �

: ð5:2:8Þ

For the case z ! 0 and h 6¼ 0 scaling function can be expanded in the integer
powers s:

re � rq1 r
t
2

� �1
u B0 þB1 s h

�1
u þB2 s

2 h�
2
u þ . . .

� �
: ð5:2:9Þ

The Ai; Bi; Ci coefficients need not be positive. Later we shall see that from
physical considerations one can determine a sign for some of them. Note that when
describing behavior of re close to percolation threshold by analogy to theory of
phase transitions there is no need in the structure of the Kastellein-Fortuine demon
type that interrelates finite “black” clusters. For the conductivity the analog of
external field h is the ratio between phase conductivities r2=r1, i.e., at nonzero
“field” h r2 6¼ 0ð Þ “black” clusters (with conductivity r1) are connected through
“white” r2ð Þ bonds. Transition to the geometrical percolation theory lies in the fact
that r2 ! 0, and, hence, one has to introduce special addition kind of “black”
cluster bonding—the Fortuin–Kasteleyn demon.

The large field area (phase transition blurring area) in the theory of phase
transitions (5.1.12c) is referred to as smearing region in the percolation theory
(5.2.9). Its size—D, like in the theory of phase transitions, can be determined from
two considerations. First, according to (5.2.6), a change in a and b: modes zj j � 1
(5.2.6a, b) by z � 1 mode (5.2.6c) occurs at z � 1. Replacing in z sj j by D, we get

D=h
1
u ¼ 1; D ¼ h

1
u; u ¼ tþ q: ð5:2:10Þ

5.2 Effective Conductivity as an Order Parameter. Phenomenological Description 53



Second, since (5.2.7) and (5.2.8) are valid at s � D, and (5.2.9)—at s � D, the
value of D can be found from the condition of violation of convergence of series
(5.2.7–5.2.9), i.e., when the next expansion member becomes of the order of the
preceding one. Assuming that constants Ai; Bi; Ci have the values of the order of
unity, we get the same value of D (5.2.10).

Summing up (5.2.7), 5.2.8), and (5.2.9), we write down [15]:

re ¼
r1st A0 þA1 h s� tþ qð Þ þA2 h2s�2 tþ qð Þ þ . . .

� �
; D � s � 1; s[ 0; ða)

rq1r
t
2

� � 1
tþ q B0 þB1s h

� 1
tþ q þB2s2h

� 2
tþ q þ . . .

� �
; sj j �D; ðcÞ

r2 sj j�q C0 þC1 h sj j� qþ tð Þ þC2 h2 sj j�2 tþ qð Þ þ . . .
� �

; D � sj j � 1; s\0: ðbÞ

8>><>>:
ð5:2:11Þ

In many cases (but not all!) we can restrict ourselves to the first term in (5.2.11),
then beyond the smearing region re behaves according to (5.2.1), and in the
smearing region [15]:

re ¼ rq1r
t
2

� � 1
tþ q: ð5:2:12Þ

Note that under this approximate description, the smearing region is the value of
s whereby the conductivity realized in the “black” r1ð Þ phase re ¼ r2 st is com-
pared to the conductivity determined by the “white” r2ð Þ phase re ¼ r2 sj j�q:

r1 s
tjs¼D¼ r2 sj j�qjs¼D: ð5:2:13Þ

From expression (5.2.13) it follows immediately that D ¼ r2=r1ð Þ 1
tþ q, and on

substituting D to any relation from (5.2.1), we get the expression re in the smearing
region (5.2.12). Qualitatively, behavior of re ¼ re pð Þ is represented in Fig. 5.3.
Here D is the size of smearing region, a is the area of concentration above the
percolation threshold (the analog of the nonsymmetric phase in the theory of phase
transitions), b is the area below the percolation threshold, c is the region of phase
transition smearing (the analog of the symmetric phase in the theory of phase
transitions.

In Fig. 5.3 it is difficult to see the behavior of re in smearing region. On the one
hand, percolation theory is valid at h � 1, on the other—this condition means
infinitesimality of D. Qualitatively, the existence of smearing region means (for
example, for s > 0) in logarithmic coordinates ln re; ln sð Þ the saturation of ln re
with a reduction of s.

Surprisingly, this transition for the two-dimensional case is qualitatively
described already by EMT (Bruggeman approximation). Figures 5.4a, b show
dependences obtained from the EMT-approximation in the two-dimensional case.
In the limiting case h ! 0 r1 ! 1 or r2 ! 0ð Þ there is no smearing region,
qualitatively the behavior of re and qe is shown in Fig. 5.5.
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Fig. 5.3 General view of effective conductivity dependence re ¼ re pð Þ in the critical area: 1
re pð Þ at h 6¼ 0; 2 re pð Þ at h ¼ 0, r2 6¼ 0, r1 ¼ 1; 3 re pð Þ at h ¼ 0, r2 ¼ 0,r1 6¼ 1

Fig. 5.4 The saturation of effective conductivity re=r1 in smearing region D and its behavior far
from percolation threshold

ln eσ ln eρ

cp
cpp p

(a) (b)Fig. 5.5 Dependence of re
and qe in the limiting case
h = 0. a one of the phases is
an ideal isolator, r2 ¼ 0;
b one of the phases is an ideal
conductor
r1 ¼ 1;q1 ¼ 1=r1 ¼ 0:
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One would think that so small area D inside an already small region sj j � 1
should not “manifest” itself during real experiments. However, as will be shown
below, for instance, in Chap. 8 where strongly inhomogeneous systems with
exponentially broad spectrum are described, the concept of smearing region is
crucial and necessary.

5.3 Calculation of Critical Indices

Up to now, by analogy to theory of phase transitions, it has been assumed that at
p[ pc sj j � Dð Þ the region in Fig. 5.3, i.e., the region with infinite “black” phase
cluster, is the analog to nonsymmetric phase in theory of phase transitions.
Conductivity in this region is also available at zero “field” h = 0, similar to theory
of phase transitions where the order parameter η 6¼ 0 at h = 0. And vice versa, in the
region sj j\D the effective conductivity is proportional to “field” (5.2.2) and is zero
in the zero field. However, in the percolation theory, unlike theory of phase tran-
sitions, the “field” can be zero both due to r2 ¼ 0 (what happens in this case is
described above), and with r1 ¼ 1. In the former case a medium of one of the
phases is an ideal isolator; in the latter case a medium comprises an ideal conductor.
Behavior of re at r1 ¼ 1 is shown by dashed line in Fig. 5.3. Thus, h = 0 means
the possibility of two ideal cases that can be conveniently represented as behavior
of re at h ¼ 0; r2 ¼ 0 and qe ¼ 1=re; at h ¼ 0; r1 ¼ 0 (see Fig. 5.4).

Up to now, in the description of behavior of various physical values close to
percolation threshold pc the numerical values of critical indices have not been
considered. The task of their theoretical determination is a considerable challenge.
Suffice it to recall that for the development of theoretical methods of calculating
critical indices in the theory of second-order phase transitions K. Wilson won a
Nobel Prize.

At first, for the description of system behavior close to pc few critical indices
were employed—m, b, t, q. Later on, the number of critical indices describing both
the geometrical and physical properties of percolation system was increased. In the
geometrical percolation theory, the number of critical indices was largely increased
due to the fact that an infinite cluster at the percolation threshold is of fractal nature
and, accordingly, has a large set (generally speaking, infinite) of fractal dimensions
describing various structure details. For instance, outside perimeter, inside
perimeter, distribution of “dead” ends, parallel bonds and so on. In the description
of physical processes for each physical effect—conductivity, thermoelectricity,
elasticity, etc., special critical indices are introduced as well.

It turned out that some of them are “secondary,” i.e., expressed through the basic
“primary” indices. Thus, the percolation theory has come against two main tasks:
(1) to obtain the numerical values of critical indices and (2) to establish relations
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between critical indices describing various physical processes in percolation sys-
tems. The first task will be described in the next paragraph, and the second task—in
what follows.

There are a great number of more or less appropriate methods for determination
of critical indices. From some simple and obvious methods, such as the
Skal-Shklovsky model [47], [13] to such mathematically refined as field theory
methods with the use of continual integration [3]. For the calculation of critical
indices the percolation theory employs the same methods that were elaborated in
second-order phase transition theory, in particular, series expansion [1, 17],
expansion about critical dimension dc ¼ 6 in parameter e ¼ dc � d [18, 19, 28],
renormalization group method [24, 53], fractal approach (drop model) [29, 58] (see
details in [57]). Many papers (their number continues to increase) are dedicated to
numerical simulation on large lattices (with size L larger than correlation radius)
and on the lattices with L\n (the so-called finite scaling). The first numerical
calculation of critical index of conductivity t was made in [23]. The review [21]
cites over 40 references dedicated to calculation of critical indices.

Here, we consider only several models which will be used in the modified form
hereafter for a qualitative and quantitative description of different kinetic effects in
percolation media. Prior to discussing these models, let us cite the numerical values
of critical indices according to monograph [51]. From this point on, we will call
these values canonical. Table 5.1 represents the numerical values of canonical
critical indexes that will be used in the calculation of other critical indices.

The Last-Thouless model of percolation structure [26] is the simplest model
above the percolation threshold. Figure 5.6 shows conducting channels along one
of the three equivalent directions in the n 
 n 
 n cube. All conducting bonds
belong to infinite cluster, with the same current passing through each of them.

Table 5.1 Numerical values of canonical critical indices

Relationship with a critical index Critical index Lattice dimension d

d = 2 d = 3 d ¼ dc ¼ 6

Correlation length
n� sj j�m

m 4
3 � 1:33 0.88 1

2

Power of infinite cluster
P1 � sb

b 5
36 � 0:14 0.41 1

Effective conductivity at p[ pc
re � st

t 1.30 2.0 3

Effective conductivity at p\pc
re � sj j�q

q 1.30 0.73 0

Note m2 andb2 are precise values. Critical indices at d ¼ dc are calculated on the Bethe lattice
(“Cayley tree”) and also are established precisely. The remaining indices are calculated with
certain error which is different in different works
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In this model the entire infinite cluster is current-carrying. In the cube of
dimension n 
 n 
 n the number of bonds in the infinite cluster is equal to
P1 pð Þ n=a0ð Þ3, where a0 is a bond length. The number of conducting channels
along one of the three equivalent directions is equal to

1
3
P1ðpÞ n=a0ð Þ3

n=a0
¼ 1

3
P1ðpÞ n=a0ð Þ2: ð5:3:1Þ

The effective conductivity re ¼ 1=qe can be determined with regard to the fact that,
on the one hand, for cube n 
 n 
 n the resistance

R ¼ qe
n

n2
; ð5:3:2Þ

and on the other hand,

R ¼ 1
r1

n

1
3P1ðpÞ n

a0

� �2 : ð5:3:3Þ

Equating these expressions to each other we get

re ¼ 1
R n

� r1P1ðpÞ� r1s
b: ð5:3:4Þ

Of course, this model is oversimplified. It assumes that all the bonds of infinite
cluster are electric current conductors and form a very simple structure—all con-
ducting channels have the length n. Nevertheless, this model does reflect the
essence of the process. The effective conductivity depends on the proximity to
percolation threshold as a power function. The numerical value of critical index of
conductivity t obtained in this model is equal to critical index b, in the
three-dimensional case equal to b3 ¼ 0:41 (see Table 5.1), which is considerably
different from the canonical value t3 ¼ 2:0. The assumption that all the bonds of the
infinite cluster are current conductors did “undermined” for this model. Indeed,

Fig. 5.6 Last-Thouless
model of percolation structure
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some of them, as is known, for example, from the numerical simulation, are dead
ends and at r2 ¼ 0 do not participate in current transfer.

A more complicated model that takes into account the presence of dead ends is
the Skal-Shklovsky model [45, 47] (see also [13]). The authors themselves call this
model a single-conductor network model. To construct it, let us assume that in the
infinite cluster one can single out a single-scale current-carrying network with a
characteristic dimension equal to correlation length n (Fig. 5.7).

To calculate re, like in the Last-Thouless model, one must know the length of a
link. Let it have a power dependence on s:

‘ � a0 s
�f; ð5:3:5Þ

where f is critical index that can be found from the following considerations. If the
network bond is broken with a probability p� pcð Þ=p, the fraction of integral bonds
will be surely equal to p 1� p� pcð Þ=p½ � ¼ pc. As long as in the assumed model a
link is single-conductor, it will be broken already with breaking a single bond.
Thus, the probability of breaking each link is proportional to its length and equal to
‘=a0ð Þ p� pcð Þ=pc. With a certain value of fraction of broken links yc, the network
of links will be broken as well yc ¼ p� pcð Þ=p½ � ‘=a0ð Þ, hence

‘� p� pcð Þ�1; ð5:3:6Þ

i.e., in the designations of (5.3.5) f = 1.

ξ

ξ

ξ

3D

ξ

2D

Node
Link

(a) (b)

Fig. 5.7 Skal-Shkovsky model of percolation structure above the percolation threshold in the
two-dimensional (a) and three-dimensional (b) cases

5.3 Calculation of Critical Indices 59



Knowing ‘, similar to the way it was done in the Last-Thouless model, one can
determine critical index of the effective conductivity

1
r1

‘

ad�1
0

¼ 1
re

n

nd�1 ; re � r1
‘nd�2 ; ð5:3:7Þ

where d is problem dimension.Substituting n ¼ a0s�m and ‘ from (5.3.6) into
(5.3.7) gives

re ¼ r1s
1þ m d�2ð Þ; t2 ¼ 1; t3 ¼ 1þ m3 ¼ 1:88: ð5:3:8Þ

The critical indices of conductivity found for the two-dimensional t2 and
three-dimensional t3 cases are closer to the canonical, however, in the
two-dimensional case the critical index f2 ¼ 1 leads to a controversy. With a
reduction in s (on approximation to percolation threshold) due to the fact that
m2 [ f2, the correlation length grows faster than the length of link ‘, i.e., at some
value of s[ 0 p[ pcð Þ the link should have been broken. And this contradicts the
condition of p[ pc. Such a controversy, of course, is due to the fact that the model
takes no account of doubling the bonds in a link.

Further model development and account of parallel bonds lead to creation of the
so-called Nodes-Links-Blobs model (NLB) [50]. In this model, the two elements,
namely nodes and single-conductor links (see Fig. 5.7) are supplemented with
“blobs”—parts of the network comprising many parallel bonds (Fig. 5.8).

Now the controversy that appeared in the Skal-Shklovsky model is removed.
The link (single-conductor with ‘� s�1) need not be longer than n, the missing part
being added by “blobs.”

The NLB model is also approximate. According to this model, a “blob” is
supposed to include so many parallel bonds that “blob” resistance as compared to

Blob

Link
Node

Fig. 5.8 Nodes–Links–Blobs
model (dead ends are not
indicated)
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link resistance can be ignored. Thus, the entire system resistance is governed by the
so-called single connected bonds (SCB), i.e., such bonds when a breakdown of any
of them will result in current cut-off. It is exactly SCB that form a link in the
Skal-Shklovsky model and a link in the NLB model. In the works [9, 10, 40] it was
shown that the number of SCB bonds between two NSCB nodes has in the context of
NLB model a critical index equal to -1 (compare to (5.3.6)

NSCB � s�fR ; fR ¼ 1 ð5:3:9Þ

where the sign R will be explained a little bit later.
From the formula (5.3.9) it immediately follows [let us repeat the reasoning of

(5.3.6)!(5.3.8)] that critical index of the effective conductivity:

re ¼ r1s
fR þ d�2ð Þ m; fR ¼ 1: ð5:3:10Þ

Both in the two- and three-dimensional cases critical index t in the NLB model
coincides with critical index of the Skal-Shklovsky model:

tNLB ¼ 1þ d � 2ð Þm; t2 ¼ 1; t3 ¼ 1:88; . . .; t6 ¼ 3; ð5:3:11Þ

in particular, for critical dimensions dc ¼ 6 critical index assumes an exact value
(see Table 5.1).

Up to this point we have considered the models of percolation structure above
the percolation threshold p[ pc and assumed that only good conducting phase with
electric conductivity r1 takes part in conduction, and r2 ¼ 0. Below the percolation
threshold there is no infinite cluster, and the model of percolation conducting
structure should comprise small conducting bonds. Now, specifically these bonds
determine in the first approximation (r1 ¼ 1; r2 is finite) the complete system
resistance (see Table 5.1).

Of vital importance here are those places between the parts of good conducting
phase that are maximum close—“at the distance” of one bad conducting bond. Such
bonds (see Fig. 5.9) are called Single DisConnected Bonds (SDCB). The SCB
bonds are arranged in succession. A breakdown of any of them (i.e., substitution of
the “black” bond r1ð Þ by the “white” r2ð Þ) results in system transition from p[ pc
to p\pc state. The number of such bonds is governed by critical index fR (5.3.9),
where index R is a logical consequence of the fact that SCB resistance is a sum of
resistances of the “black” phase bonds. The SDCB, on the contrary, are arranged in
parallel to each other. A breakdown of any of them (substitution of the “white”
bond r2ð Þ by the “black r1ð Þ) results in system transition from p\pc to p[ pc.
Their number is also governed by critical index designated as fG, where index
G logically follows from the fact that the sum of conductances of these bonds yields
SDCB conductance:
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NSDCB � sj j�fG : ð5:3:12Þ

In the work [60] it is shown that nG ¼ 1.
Knowing NSDCB, it is easy to find critical index of effective conductivity re

below the percolation threshold. On the one hand, conductance G of the cube nd is
equal to

G ¼ re
nd�1

n
¼ ren

d�2 ¼ re sj j�m d�2ð Þad�2
0 ; ð5:3:13Þ

on the other hand,

G ¼ r2 a
d�2
0 NSDCB ¼ r2 a

d�2
0 sj j1; ð5:3:14Þ

when

re ¼ r2 sj j� 1�m d�2ð Þð Þ; q ¼ 1� m d � 2ð Þ: ð5:3:15Þ

Thus, in the two- and three-dimensional cases according to this model we have

q2 ¼ 1; q3 ¼ 0:22: ð5:3:16Þ

Blob

Link

Node

Single disconnected

bonds (SDCB)

(a) (b)

Fig. 5.9 Model of percolation structure below the percolation threshold: a case including “blobs,”
nodes, SCB-single connected bonds and shorted bonds of bad connecting phase, the so-called
single disconnected bonds (SDCB); b schematic according to work [11]
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It is clear that the above models yield critical indices t and q with little accuracy.
However, a lot of credit must go to these models because they allowed pointing out
the main elements of percolation structure in the problem of current flow. Critical
indices describing the elements of these structures obtained in the context of the
above-considered approach, are approximate and sometimes lead to a controversy,
for example, according to (5.3.15) q6 ¼ 1 instead of the canonical (see Table 5.1)
q6 ¼ 0. More strict reasoning within the same models [38, 60] yields only the
inequalities

t� 1þ m d � 2ð Þ; q� 1� m d � 2ð Þ:

“First principle” calculation of critical indices by analogy with the theory of
second-order phase transitions will be called a microscopic approach. The
description of kinetic phenomena in percolation systems can be also attacked on the
other side: to construct certain generalized phenomenological model of percolation
structure, whose geometry elements have critical indices that are supposed to be
known, and to use this model for the description of various kinetic effects. Such an
approximate approach, of course, where it “works,” would allow to describe in a
unified manner various kinetic processes in percolation media and to indicate the
relation between critical indices of these processes. Exactly this model will be dealt
with in the following paragraph.

5.4 Hierarchical Model of Percolation Structure

In this paragraph, we consider a hierarchical model (HM) of percolation structure
which afterwards will be used to describe various physical processes in percolation
media.

1. First we consider an ideal case for p[ pc: good conducting phase has finite
conductivity r1, and bad conducting phase is an ideal dielectric, r2 ¼ 0. Let us
modify the NLB model given in Fig. 5.10. The resistance of a bridge (thus, of
the entire system on dimensions n) is determined by its length a0 � N1, where a0,
like before, is a minimum dimension in the system, for instance, bond length.
We will ignore the resistance of blobs, just like in the NLB model, and select the

Bridge Blob

ξFig. 5.10 Schematic of the
first step of hierarchical model
above the percolation
threshold p[ pcð Þ
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resistance of the bridge such that the resulting critical index of conductivity
coincides with the canonical one. The resistance of the bridge R1 and of the
entire system on n is governed by its length which is assigned by the number of
bonds in the bridge N1. The law for N1 will be chosen as

N1 ¼ s�a1 : ð5:4:1Þ

This law is different from a similar for NLB (see Fig. 5.11). In the percolation
structure apart from “blobs” including many parallel bonds, there are portions with
two or three parallel bonds. The number of parallel bonds—SCB, NSCB � s�1. In
the first step of HM the bridge lacks any bonds, except for unparallel, but their
number is a function of s by a different law N1 � s�a1 .

Let us determine critical index a1 through critical index of conductivity t which
will be assumed to be known. On the one hand, system resistance on the dimen-
sions n is of the form

R1 ¼ N1

r1 ad�2
0

¼ s�a1

r1 ad�2
0

; ð5:4:2Þ

on the other hand,— n ¼ a0 s�mð Þ it can be written as

R1 ¼ 1

re n
d�2 ¼

sm d�2ð Þ

re ad�2
0

; ð5:4:3Þ

and, since re ¼ r1 st, from (5.4.2) and (5.4.3) we get

a1 ¼ t � m d � 2ð Þ ¼ fR: ð5:4:4Þ

This index fR has been already encountered in percolation theory, it governs
system resistance on the dimensions n [60]:

Rn � s�fR : ð5:4:5Þ

Here it is used to determine the bridge parameters. A bridge can be represented
as a combination of bonds, each having the resistance r1 ¼ 1=r1ð Þ a0=ad�1

0

� �
. In

fact, separate parts of the bridge are scattered among the blobs, but in the model
under consideration (see Fig. 5.11b all of them are connected together in a single

1 2 3

(a) (b)

Fig. 5.11 Schematic of the first step of HM (b) and NLB model (a)
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link. Thus, at p[ pc and r2 ¼ 0, (where r1 is finite) a model of percolation
structure is a bridge and “blobs,” and the resistance of the latter can be ignored. The
bridge will be designated by a wavy line (see Fig. 5.12a).

2. Consider now an ideal case at p\pc: bad conducting phase r2 has finite con-
ductivity, and good conducting phase is an ideal conductor q1 ¼ 1=r1 ¼ 0. The
main role in the determination of system resistances is played by SDCB con-
sisting of small conducting phase and connected in parallel [44, 55], see also
[38, 60]. Here, unlike the referred works, in the HM of the percolation structure
we assign

N2 ¼ sj j�a2 ; ð5:4:6Þ

so that critical index governing behavior of re at p\pc is equal to q. For this
purpose we note that, on the one hand, system conductance on the dimensions of
order n [38, 60] is of the form:

Gn � sj jfG ; ð5:4:7Þ

and on the other hand—(see Fig. 5.12b):

Gn ¼ r2 N2: ð5:4:8Þ

Comparing (5.4.6), (5.4.7), and (5.4.8) and taking into account that
re p\pcð Þ ¼ r2 sj j�q, for NG we get [38, 48]:

a2 ¼ qþ m d � 2ð Þ 	 fG: ð5:4:9Þ

1 2 1N

2

1

2N

(a)

(b)

– for 2
1 0

1

1 dr a , – for 2
2 0

2

1 dr a .

Fig. 5.12 Schematic of the main elements of percolation structure a bridge, b interlayer
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Thus, at p\pc; r2 6¼ 0; q1 ¼ 1=r1 ¼ 0, a model of percolation structure is an
interlayer (Fig. 5.12b) and blobs with bridges whose resistance q1 ¼ 0ð Þ does not
contribute to system resistance.

3. Let us now move from “idealization” of h ¼ r2=r1 ¼ 0 r2 ¼ 0 or q1 ¼ 0ð Þ and
consider a more realistic case when both above and below the percolation
threshold h ¼ r2=r1 6¼ 0. In particular, it means that above the percolation
threshold (Fig. 5.13) part of the current (of course, minor—by virtue of h � 1)
can pass through the interlayer—the element of percolation structure consisting
of bad conducting phase. The bridge in this case is shunted by the interlayer (see
Fig. 5.13b).

Schematic below the percolation threshold (Fig. 5.14), when at h 6¼ 0 the bridge
adds its small part of resistance to the interlayer resistance is similar and presented
in Fig. 5.14b [32, 33].

Fig. 5.13 Model of percolation structure above the percolation threshold: a ideal case r2 ¼ 0, the
only element of percolation structure which is essential for determination of system resistance is
bridge 1; b case r2 6¼ 0, one should take into account one more element of percolation structure—
interlayer 2 that shunts the bridge; c percolation structure in terms of bridge and interlayer

Fig. 5.14 Model of percolation structure below the percolation threshold: a ideal case q1 ¼ 0, the
only element of percolation structure which is essential for determination of system resistance is
interlayer 2; b case q1 6¼ 0, one should take into account one more element of percolation
structure, namely, bridge 1. c schematic representation of part of percolation structure in terms of
bridge and interlayer
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The schemes 5.4.10 and 5.4.11 show the first corrections to the ideal case of
h ¼ r2=r1 ¼ 0 (r2 ¼ 0 in Fig. 5.13b and q1 ¼ 1=r2 ¼ 0 in Fig. 5.14b. This
specification alone allowed qualitative and in some cases quantitative [33] expla-
nation of the regularities of various physical processes in percolation media. Prior to
showing it, we continue constructing the following IM of percolation structure [34]
above the percolation threshold:

ð5:4:10Þ

and below the percolation threshold

ð5:4:11Þ

Graphical schemes (5.4.12) and (5.4.13) consecutively show the first, second
and other hierarchy levels of percolation structure hierarchical model. Each of them
in their own approximation, if we are dealing, for instance, with conductivity
problems, yields the value of full resistance R or conductance G ¼ 1=R of system
for the dimensions of ordern. These schemes for the conductivity problem (and not
only) should be logically replaced by the equivalent electric circuits:

1G

1G 2G1G
2G

1G ð5:4:12Þ
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2G

2G1G1G

2G

2G
ð5:4:13Þ

where G1 is bridge conductance (5.4.1)–(5.4.4):

G1 ¼ 1=R1 ¼ 1=r1 N1 ¼ r1 a
d�2
0 =N1 ¼ r1 a

d�2
0 sj ja1 ; a1 ¼ fR; ð5:4:14Þ

and G2 is interlayer conductance (5.4.5)–(5.4.8):

G2 ¼ 1=R2 ¼ r2 a
d�2
0 N2 ¼ r2 a

d�2
0 sj j�a2 ; a2 ¼ fG: ð5:4:15Þ

The bridge and interlayer conductances can appear in the expressions (5.4.12)
and (5.4.13) with their weights. If we ignore this, then for a full (effective) con-
ductance of system Ge on dimensions of order n one can write down a closed
equation (an analog of the Dyson equation), solution of which gives Ge with regard
to all hierarchy levels. Indeed, from (5.4.12) it follows

eG

eG

2G
1G ð5:4:16Þ

and from (5.4.13) we have

eG

2G

eG1G

ð5:4:17Þ

in this case, of course, (5.4.12) and (5.4.13) are supposed to converge.
Equations (5.4.16) and (5.4.17), written in symbolic form, are conventional quad-
ratic equations:
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G2
e � G1 Ge � G1 G2 ¼ 0; p[ pc; G2

e þG1 Ge � G1 G2 ¼ 0; p\pc:

ð5:4:18Þ

Note that the ratio G2=G1 according to (5.4.14) and (5.4.15) is of the form

G2

G1
¼ r2

r1
sj j� fR þ fGð Þ¼ r2

r1
sj j� tþ qð Þ¼ D

sj j
� �tþ q

; ð5:4:19Þ

and is a small parameter, since beyond smearing region [see (5.2.1)] sj j � D, which
means infinitesimality of the right side in (5.4.19). Expanding solution of
Eqs. (5.4.18) in the small parameter G2=G1, we obtain

Ge ¼ G1 1þG2=G1 � G2=G1ð Þ2 þ . . .
h i

; p[ pc;

Ge ¼ G2 1� G2=G1 þ 2 G2=G1ð Þ2�. . .
h i

; p\pc:
ð5:4:20Þ

With regard to Ge ¼ re n
a�2 ¼ re ad�2

0 sj j�m d�2ð Þ, and taking into account
(5.4.13), (5.4.14), and (5.4.19), we find expressions (5.4.20) passing to known
expressions (5.2.11a), (5.2.11c) [15] for re.

Thus, the hierarchical model of percolation structure yields all the expansion
members of scaling function of the effective conductivity re to an accuracy of
numerical values of factors Ai andCi, however, allows to determine their sign.
These signs can be also found based on simple physical reasons. Thus, adding an
interlayer to the second hierarchy level above the percolation threshold [(5.4.10)
and (5.4.12) second schematic] can only increase the effective conductivity,
therefore, A1 [ 0 (5.2.11), and adding a bridge to the second level of hierarchical
model below the percolation threshold can only reduce re, therefore, C1\0
(5.1.11c).

4. Smearing region. At first sight, a simple model of percolation structure in
smearing region (sometimes it is said—on the percolation threshold) is
impossible, since at p ¼ pc the correlation length is infinite and the model
should include an infinite number of elements of various structure. Indeed,
infinite cluster of good conducting phase on the percolation threshold has a
fractal structure [16, 41]. Fractality feature is used in many models of perco-
lation structure (see, for instance, [12, 31, 43, 58], many models are considered
in the review [8]). However, all these models consider only good conducting
phase structure, i.e., the case of r2 ¼ 0. Therefore, they deal with calculation of
critical indices of various values, in particular, the effective conductivity t above
the percolation threshold. As regards the model of percolation structure in
smearing region for the effective conductivity, it should result in the expression

re ¼ rq1 r
t
2

� � 1
tþ q, i.e., include structural elements of bad conducting phase (with

r2 6¼ 0) alongside with good conducting one.
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By definition, smearing region is such a range of s values where the contribu-
tions to re of the good conducting r1ð Þ and bad conducting r2ð Þ phases become
equalized [see (5.1.13)]. The correlation length in this case �D� s� þDð Þ is
finite,

D ¼ r2=r1ð Þ 1
tþ q6¼ 0; nmax ¼ n Dð Þ ¼ a0 D

�m ¼ a0 r2=r1ð Þ� m
tþ q6¼ 1:

Finiteness of n and equality of contribution of phases to D means that in
smearing region on the dimensions of order n one can come across different
structures. It can be both the bridge and the interlayer type (see Fig. 5.15). Both of
them will make approximately equal contribution to resistance.

In Ref. [49], a model of percolation structure in smearing region is proposed that
includes both a bridge and an interlayer. Such a model is given in Fig. 5.16. In this
model the bridge and interlayer resistances at sj j ¼ D are as follows:

R1 ¼ N1 s ¼ Dð Þ
r1 ad�2

0
¼ D�a1

r1 ad�2
0

; a1 ¼ fR; ð5:4:21Þ

R2 ¼ 1
r2 ad�2

0 N2 s ¼ Dð Þ ¼
Da2

r2 ad�2
0

; a2 ¼ fG: ð5:4:22Þ

maxξ

maxξ

Fig. 5.15 Structure of percolation system in smearing region: In different regions with dimensions
of order nmax one can come across both a bridge and an interlayer. These regions have the same
resistance values
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Note that R1 Dð Þ ¼ R2 Dð Þ. Resistance rm in the schematic of Fig. 5.16a should
be such that in going from area c to area a, the model would pass to a model of
percolation structure above the percolation threshold (where bridge is the main
element), and in going from c to b it would pass to a model of percolation structure
below the percolation threshold (where interlayer is the main element). Such
requirements can be met on the assumption that with probability PD the resistance
rm ¼ r1, and with probability 1� PD—it is equal to rm ¼ r2, where

PD ¼ Dþ s
2D

; 1� PD ¼ D� s
2D

: ð5:4:23Þ

In other words, if rm is a bridge, the schematic of a model of percolation
structure in smearing region (Fig. 5.16c) goes over to a series connection of

Fig. 5.17 Model of smearing region for two extreme cases: a a� s ¼ D; rm ¼ r1, current can
flow only through the bridges (good conducting phase), interlayers (bad conducting phase) only
shunt the bridges; b b�s ¼ �D; rm ¼ r2, current must flow through the interlayer (bad conducting
phase)

1R 2R

1R2R

mr

τ

c аb

−Δ Δ

Fig. 5.16 Model of percolation structure in smearing region: a p[ pc there is a path along the
good conducting phase (bridges); b p\pc current will necessarily flow through bad conducting
phase (interlayers); c sj j\D smearing region, bridges, and interlayers make equal contribution to
resistance
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bridges, and the interlayers are just shunting the bridges (see Fig. 5.16a). And on
the contrary, if rm ¼ r2, current must necessarily flow along the interlayer. With
s ! D, the probability is increased, the closer s is toD, and the system—to the
boundary between the areas c and a in Fig. 5.16, the larger is the probability of a
bridge occurring on the dimensions of order n. With s ¼ D, the interlayer as the
main element of percolation structure disappears (see Fig. 5.17a). And on the
contrary, for s ! �D, interlayers are seen more frequently, and, for s ¼ �D,
bridges as the main element of percolation structure disappear. Current must nec-
essarily flow through the interlayers (see Fig. 5.17b).

Thus, on the whole, the percolation structure of a medium is as follows:

– beyond smearing region, above the percolation threshold sj j � D; s[ 0ð Þ the
system resistance is governed by bridges with resistance
R1 ¼ r1s�a1 ; r1 ¼ 1=r1ad�2

0 ; a1 ¼ fR ¼ t � m d � 2ð Þ.
– beyond smearing region, below percolation threshold sj j � D; s\0ð Þ the sys-

tem resistance is governed by interlayers with resistance
R2 ¼ r2sþ a2 ; r2 ¼ 1=r2ad�2

0 ; a2 ¼ fG ¼ qþ m d � 2ð Þ:
– in smearing region (including the percolation threshold itself for p ¼ pc) the

correlation radius n and the resistances of bridges and interlayers no longer
depend on s, so R1 ¼ R1 Dð Þ, R2 ¼ R2 Dð Þ, n ¼ nmax ¼ n Dð Þ, and the main
element of percolation structure with certain probability PD is a bridge, and with
probability 1� PD—an interlayer.

Hereafter, we shall see that the described model of percolation structure provides
for a simple, illustrative, and unified means of describing a plurality of various
physical processes in the media with percolation threshold. In particular, a model of
percolation structure in smearing region allowed obtaining the basic regularities of
finite scaling at r2=r1 6¼ 0 and the effective conductivity in systems with the
so-called exponentially wide spectrum of local conductivity distribution.

5.5 Examples of Applications of Percolation Theory

Many different theoretical models based on the percolation and explain different
transport phenomena (hopping transport in disordered materials—[2], transport
properties of bilayer graphene [42], kinetic properties of polymer composites—
[35], properties of tunneling resistor networks—[36], conductivity of acids—[56],
thermal conductivity—[5, 27].

Application of percolation theory in porosity media considered in works [20, 37, 46].
Application of percolation theory for the description of ionic conductors was described
in [6, 14], 61].

Nonstandard modification or applications of percolation theory considered in
[7, 52] (a mechanism of nonuniversality of critical component for conductivity in
composites). Two percolation thresholds were observed in the paper [59].
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Chapter 6
Self-dual Media

6.1 Locally Isotropic Media

Exact solutions for the effective conductivity re are interesting for many reasons. In
particular, an exact solution allows estimating the validity of different approxima-
tions applied in the derivation of re. By the exact solution, we mean a finite
analytical expression with one or several parameters that can be varied over the
entire range of their values. Let us remind ourselves that (see Chap. 1) there is an
infinite number of various composite structures. With a slight inhomogeneity (the
degree of inhomogeneity is determined by the ratio r2=r1), a great number of
structures have not only about the same value of re, but even the same concen-
tration dependence reðpÞ. With a strong inhomogeneity h ¼ r2=r1 � 1, it is no
longer the case, at least, for large concentrations. Thus, as it seems at first sight, at
h � 1 and a large concentration, each composite with given structure will have its
own re. In other words, the effective conductivity will be sort of “mark,” “label” of
this structure, similar to fractal dimension of given Koch snowflake [9], and no
more than that. It turned out to be even more surprising that there exists an infinite
and rather versatile set of two-dimensional structures with half concentration of
phases for which the effective conductivity has the same expression, and no
restrictions are imposed on the inhomogeneity value, the case r1=r2 ! 1 taking
place. These are the so-called self-dual media (D-media). The expression for the
effective conductivity re for the D-medium was first obtained in [5] for a very
general case. In the same work there were introduced, in the general form, sym-
metry transformations for the local fields and currents, generalized and used
thereafter for solving many problems. A concept of conjugate harmonic functions
(potentials) that are a particular case of transformations in [5] was introduced in
[10]. From this point on, like in nearly all papers using self-duality, we will employ
these symmetry transformations [5].

Let us consider a two-dimensional two-phase medium with such an arrangement
of phases that

© Springer Science+Business Media, LLC 2016
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(1) the effective conductivity is isotropic;
(2) the interchange of phases does not change re. The latter means that the phases

are in geometrically equivalent positions and have half concentration.
Examples of such phase arrangement are given in Fig. 6.1. Figure 6.2 shows
an example of “basic” medium and its dual.

For the two-dimensional randomly inhomogeneous media at the percolation
threshold, on sizes larger than correlation length, different phases are also in a
geometrically equivalent (on the average) position, interchanging r1 , r2 does not
change re. Thus, these are also the D-media.

According to [5], let us introduce symmetry transformations

~j ¼ Kn� E;
~E ¼ K�1n� j;

ð6:1:1Þ

where (see Fig. 6.2) E and j are local fields and current in the “basic” medium, and
~E and ~j—in its “dual” medium, n is normal unit vector.

It must be emphasized that fields ~E and points ~j are “real,” i.e., obey the same
equations div~j ¼ 0; curl ~E ¼ 0 as the fields and currents in the basic medium. It can
be easily shown: for instance, curl ~E ¼ r� ~E ¼ K�1 r� n� jð Þ ¼
K�1 n r � jð Þ ¼ K�1n div j and from div j ¼ 0 it follows that curl ~E ¼ 0.

The possibility of div transformation into rot, and vice versa, at symmetry
transformation (6.1.1) exists only in the two-dimensional case. In the
three-dimensional case one equation div j ¼ 0 can in no way be transformed into
three equations �curlE ¼ 0.

Fig. 6.1 Examples of a self-dual (on the average) medium: phase arrangement is self-dual, i.e.,
substitution r1 , r2 in figure a results in medium b, but does not change the effective
conductivity re
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Local Ohm’s law in the “basic” medium after transformations (6.1.1) will pass
into Ohm’s law in the “dual” medium

j ¼ rðx; yÞE ! ~j ¼ K2

r x; yð Þ
~E; ð6:1:2Þ

where K2=r x; yð Þ, apparently, is local conductivity in the dual medium:

~rðx; yÞ ¼ K2

r x; yð Þ : ð6:1:3Þ

By virtue of duality, at the coordinate values x; yð Þ whereby the conductivity
r x; yð Þ is equal to r1, the conductivity of the dual medium ~r x; yð Þ must be equal to
r2, and vice versa:

rðrÞ ¼ r1; r 2 O1;
r2; r 2 O2;

�
; ~rðrÞ ¼ r2; r 2 O1;

r1; r 2 O2:

�
ð6:1:4Þ

Conditions (6.1.4) can be satisfied on setting

K2 ¼ r1 � r2 ð6:1:5Þ

For medium-volume fields and currents in the isotropic case

jh i ¼ re Eh i; ~j
� � ¼ ~re ~E

� �
; ð6:1:6Þ

one can use averaged in volume symmetry transformation (6.1.1)

~j
� � ¼ Kn� Eh i; ~E

� � ¼ K�1n� jh i: ð6:1:7Þ

D -points

1σ

E
~

1σ 2σ

1σ

1σ
2σ

2σ
n

j

Fig. 6.2 Two-phase self-dual
medium: on top is “basic”
medium, at the bottom—its
dual, n is normal unit vector
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Then from expressions (6.1.5), (6.1.6) and (6.1.7) it follows

~re ¼ r1r2
re

: ð6:1:8Þ

Since the media under consideration are self-dual, i.e.,

re ¼ ~re; ð6:1:9Þ

from (6.1.8) immediately follows the Dykhne formula for re:

re ¼ ffiffiffiffiffiffiffiffiffiffi
r1r2

p
: ð6:1:10Þ

The expression for re is also valid for the two-dimensional randomly inhomo-
geneous medium on the percolation threshold, and it is exactly this expression that
percolation theory leads to at p ¼ pc ¼ 1=2.

For a net problem with bond resistances r1 and r2 there exists an analog (6.1.10)
in the form

re ¼ ffiffiffiffiffiffiffiffi
r1r2

p
: ð6:1:11Þ

The continual variants of the D-media are certain to include the so-called D-
points. One of them is shown in Fig. 6.2. The conductivity of this point (if at all one
can speak of point conductivity) is neither r1 nor r2. It would seem that this point
can be equally considered conductive with r1 or r2 depending on the history of this
medium formation. For instance, if a medium of chessboard type with p ¼ 1=2 was
formed with a growth of “black” (r1) squares in a “white” (r2) matrix, then the
D-point conductivity is, certainly,r2, and if, on the contrary, with a growth of
“white” squares, then its conductivity is, certainly, r1. Indeed, as is easily seen from
the analysis of the net D-medium considered below, the D-point conductivity isffiffiffiffiffiffiffiffiffiffi
r1r2

p
. For a continual realization the conductivity of one (or even many) point is

minor, however, at large inhomogeneity r1=r2 � 1 it is exactly the D-point
neighborhood that determines the conductivity of the entire system. Soderberg and
Grimvall [15] deals with the distribution of current and Joule heat release in the D-
medium which has the structure of a chessboard. With a large inhomogeneity, the
behavior of current lines in the D-point neighborhood is as shown in Fig. 6.3.

In a bad conducting (r2) phase, current lines in the D-point neighborhood are
actually a part of concentric circles, i.e., have the only component jh and can be
approximately written as [15]

jh r; hð Þ� jh i
ffiffiffiffiffiffiffiffiffiffiffiffi
r2=r1

p
r1�

ffiffiffiffiffiffiffiffiffi
r2=r1

p ; ð6:1:12Þ

i.e., current density quickly (� 1=r) reduces with distance from the D-point.
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The Joule heat release is reduced still more quicker, and since the effective
conductivity re is nothing more than normalized Joule heat release (re � rE2

� �
),

the region in the D-point neighborhood determines the value of re. More detailed
calculations show [15], that, for instance, at r2=r1 ¼ 10�2, half of the entire Joule
heat is released in approximately 0.1 % of its volume.

There is known [8] an exact solution of mathematical physics problem on the
potential distribution in a strictly periodical inhomogeneous structure of chessboard
type, however, it is clear that for any other realization (for instance, periodic only on
the average or when sides intersect at theD-point not only at a right angle) the solution
will be different. But the conclusion itself on current concentration and Joule heat
distribution in the D-point neighborhood and the basic dependencies, such as
jh � r�a, a � 1 r2=r1 � 1ð Þ that govern the resistance of the entire medium, persist.

With unequal phase concentration, self-duality is impossible. Then from (6.1.8)
follows only the relation between re of the basic medium and its dual (but no longer
self-dual):

re pð Þ~re pð Þ ¼ r1r2: ð6:1:13Þ

For the randomly inhomogeneous media and some other (periodic) structures,
the substitution r1 , r2 is equivalent to the substitution p , 1� p, i.e.

~re pð Þ ¼ re 1� pð Þ: ð6:1:14Þ

For such media from (6.1.13) follows the so-called reciprocity relation [5, 10]

reðpÞre 1� pð Þ ¼ r1r2: ð6:1:15Þ

(a) (b)

Fig. 6.3 View of the D-point neighborhood: a current line distribution in the D-point
neighborhood at r1 � r2, black color is used to denote the good conducting phase; b different
kinds of the D-point neighborhood
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Fulfillment of (6.1.15) imposes certain restrictions on the geometry of phase
arrangement [1], thus, for a medium consisting of “black” round inclusions in a
“white” matrix there is no reciprocity relation (6.1.15).

Hereafter we will use one specific realization of the D-medium. This medium is
“built” using the so-called mixing procedure [11–13], i.e., step by step, when
homogenization takes place during each step, minimal characteristic length tends to
zero and the description of its properties passes from local to averaged by means of
the effective values, which, in turn, becomes local for the next step. During the first
step (Fig. 6.4a) the medium is constructed of equally thick stripes with conduc-
tivities r1 and r2. The first white arrow indicates to homogenization process,
dimension a0 tends to zero and planar stratified medium “passes” into a

monocrystal with the principal values of conductivity tensor r 1ð Þ
jj and r 1ð Þ

? , the

second white arrow shows how a new planar stratified medium is assembled of
these anisotropic layers.

Letting stripe thickness a0 to zero, i.e., homogenizing the medium, we pass over
to a primary “single crystal,” the conductivity of which is described by the effective
conductivity tensor

r_
ð1Þ ¼ r 1ð Þ

jj 0

0 r 1ð Þ
?

 !
; r 1ð Þ

jj ¼ r1 þ r2
2

; r 1ð Þ
? ¼ 2

r1r2
r1 þ r2

: ð6:1:16Þ

During the second step, equally thick stripes are cut of primary “single crystal”
(Fig. 6.4b) along and across the initial layers and a new stratified medium is
composed of them (Fig. 6.4c). Tending the stripe thickness to zero, we pass over to
the secondary “single crystal” with the basic components of conductivity tensor

(a) (b) (c)

Fig. 6.4 Schematic of the first steps of mixing procedure: a planar stratified medium of equally
thick stripes with conductivities r1 and r2. b Equally thick layers are cut of primary “single
crystal” along the quasi-crystalline axes; c a new planar stratified medium is assembled of these
anisotropic layers
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r 2ð Þ
jj ¼

r 1ð Þ
jj þ r 1ð Þ

?
2

; r 2ð Þ
? ¼ 2

r 1ð Þ
jj r 1ð Þ

?

r 1ð Þ
jj þ r 1ð Þ

?
: ð6:1:17Þ

Further mixing (when good and bad conducting directions rjj and r? are per-
manently alternating, i.e., mixed), for nþ 1 step yields

r nþ 1ð Þ
jj ¼

r nð Þ
jj þ r nð Þ

?
2

; r nþ 1ð Þ
? ¼ 2

r nð Þ
jj � r nð Þ

?

r nð Þ
jj þ r nð Þ

?
: ð6:1:18Þ

The iteration procedure (6.1.18) possesses invariant J of the kind

r nþ 1ð Þ
jj � r nþ 1ð Þ

? ¼ r nð Þ
jj r nð Þ

? ¼ � � � ¼ r1r2 ¼ J: ð6:1:19Þ

If the iteration procedure is converged, then

lim
n!1 r nð Þ

jj ¼ lim
n!1 r nð Þ

? ¼ re; ð6:1:20Þ

and from (6.1.19) immediately follows r2e ¼ r1 � r2, i.e., the effective conductivity
of the D-medium (6.1.10) (the Dykhne formula).

One can trace the convergence of the procedure having written the first equation

from (6.1.14) with regard to the fact that r nð Þ
? ¼ r1r2=r

nð Þ
jj (6.1.19) in the form of a

one-dimensional representation:

r nþ 1ð Þ
jj ¼ 1

2
r nð Þ
jj þ J

r nð Þ
jj

0@ 1A; J ¼ r1r2; ð6:1:21Þ

or in simplified designations

xnþ 1 ¼ f xnð Þ; f xð Þ ¼ 1
2

xþ J
x

� �
: ð6:1:22Þ

Figure 6.5 shows the Lamerey ladder for the representation (6.1.22). With any
initial value x0 6¼ 0, consecutive iterations lead to a fixed point x	,
x	 ¼ 1

2 ðx	 þ J=x	Þ, т.o. x	ð Þ2¼ J.
This procedure allows obtaining the D-medium. Indeed, (1) the substitution

r1 , r2 does not change re; (2) the phase concentration is half one; (3) the
effective conductivity is isotropic.

Mixing method (Fig. 6.4) is easily generalized for the case of p 6¼ 1=2. Now,
instead of the iteration procedure (6.1.18), we have
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r 1ð Þ
jj ¼ pr1 þ 1� pð Þr2; r? ¼ r1r2

1� pð Þr1 þ pr2
; ð6:1:23Þ

with the invariant J of the kind

J ¼ r1r2
pr1 þ 1� pð Þr2
1� pð Þr1 þ pr2

; ð6:1:24Þ

and one-dimensional representation (6.1.21) can be written

r nþ 1ð Þ
jj ¼ pr nð Þ

jj þ 1� pð Þ J

r nð Þ
jj

: ð6:1:25Þ

The fixed point of representation (6.1.25) where r nð Þ
jj and r nð Þ

? are converged at

n ! 1 leads to

re pð Þ ¼ ffiffiffiffiffiffiffiffiffiffi
r1r2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr1 þ 1� pð Þr2
1� pð Þr1 þ pr2

s
: ð6:1:26Þ

As it immediately follows from (6.1.26), for the obtained procedure of medium
mixing the following reciprocity relation is met: re pð Þre 1� pð Þ ¼ r1r2.

Symmetry transformations can be applied not only to the two-phase D-medium,
but also to numerous particular cases of multiphase media and media with a smooth
coordinate dependence of local conductivity. As is shown in [5], for this purpose

Fig. 6.5 The Lamerey ladder
for one-dimensional
representation x ! 1

2 xþ J
x

� 	
;

on the insert consecutive

values of r nð Þ
jj for n ¼ 1; 2; . . .

for r1 ¼ 1; r2 ¼ 0:02
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the multi-point function of local conductivity distribution must be an even function
of variables

v x; yð Þ ¼ ln r x; yð Þ � ln r x; yð Þh i: ð6:1:27Þ

Now constant K in symmetry transformations (6.1.1) is of the form
K ¼ exp ln rh ið Þ, and Ohm’s law in the basic medium with conductivity
r x; yð Þ ¼ exp ln rh iþ vð Þ:

j ¼ e ln rh iþ v: ð6:1:28Þ

Substituting in (6.1.28) v ! �v and using the parity of local conductivity dis-
tribution function, we find that the dual medium is macroscopically equivalent to the
basic one, i.e., it is self-dual. Using averaged symmetry transformations (6.1.7) with

K ¼ exp ln rh ið Þ; ð6:1:29Þ

we find that re ¼ K, i.e.

re ¼ e ln rh i: ð6:1:30Þ

Examples of local conductivity distributions, even in v, are shown in Fig. 6.6.
In a particular two-phase case we have

f rð Þ ¼ pd r� r1ð Þþ 1� pð Þd r� r2ð Þ; p ¼ 1=2; ð6:1:31Þ

and (see Fig. 6.6a) in the logarithmic axes the peaks of d-functions are symmetrical
with respect to ln re. A similar symmetry is also observed for a multiphase case

( )f σ

( )ln σ
( )ln eσ

( )f σ

( )ln σ
( )ln eσ

( )f σ

( )ln σ
( )ln eσ

( )f σ

( )ln σ
( )ln eσ

(a)

(c) (d)

(b)

Fig. 6.6 Examples of local conductivity distribution functions of self-dual media: a two-phase
medium with phase conductivities r1 and r2; b eight-phase medium with conductivities
r1; r2 . . . r8; c, d examples of continuous phase distribution
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(see Fig. 6.6b) and for each pair of phases the relation of the type ln r1 � ln re ¼
ln re � ln r5 is met.

With a continuous distribution of local conductivity, a self-dual medium can be
easily imagined as such that will not differ (on the average) from the basic medium in
the case when in the basic medium (positive) the value of local conductivity is mat-
chedwith “black” colored intensity, then its dualmediumwill be a negative (Fig. 6.7).

For the Gaussian distribution (see Fig. 6.6c) with a mean square fluctuation of
conductivity logarithm D ¼ ffiffiffiffiffiffiffiffiffi

v2h i
p

the effective conductivity according to (6.1.30)
can be written as

re ¼ rh ie�D=2: ð6:1:32Þ

Mixing procedure (Fig. 6.4) which in the two-phase case leads to re of the
self-dual media, can be extended to n-phase and three-dimensional media that will
be self-dual no more, however [12, 13].

6.2 Locally Anisotropic Media

Consider a two-dimensional polycrystal [5], the local conductivity of which in
plane XOY at given point r is described by tensor r̂ u rð Þð Þ, where

r̂ u rð Þð Þ ¼ P̂u r̂ P̂�u; ð6:2:1Þ

Fig. 6.7 Example of a self-dual medium with a continuous distribution of local conductivity.
a basic medium (positive), b its dual (negative)
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Here P̂u is operator of rotation by angle u in plane xoy, r̂ is conductivity tensor
in crystallographic coordinate system, angle u, thus, assigns the direction of
principal crystallographic axes in this coordinate system. Using the Dykhne
transformations written here in a somewhat different form

~j ¼ K P̂p=2 E; E ¼ K�1P̂p=2j; ð6:2:2Þ

we will pass from Ohm’s law for the basic medium

j ¼ r̂ uð ÞE; ð6:2:3Þ

to Ohm’s law for the dual medium

~j ¼ ~̂r uð Þ~E; ð6:2:4Þ

where

~̂r ¼ K2 P̂p=2 r̂
�1 P̂�p=2 ð6:2:5Þ

is local conductivity tensor in the dual medium.
Using the identity

P̂p=2r̂
�1 uð ÞP̂�p=2 ¼ r̂ uð Þ

detr̂ uð Þ ; ð6:2:6Þ

we get

~̂r uð Þ ¼ K2r̂ uð Þ
detr̂ uð Þ ð6:2:7Þ

By applying to averaged Ohm’s laws for the basic and dual media

jh i ¼ re Eh i; ~j
� � ¼ ~̂re ~E

� � ð6:2:8Þ

the averaged in volume transformations (6.2.2), we find a relation between the

effective conductivities of the basic r
_

e and dual ~r
_

e media

~̂re ¼ K2r̂e
detr̂e

: ð6:2:9Þ

Now consider a case for such a polycrystalline medium where detr̂ uð Þ is
coordinate independent. Choosing constant K equal to

K2 ¼ detr̂ uð Þ; ð6:2:10Þ
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from (6.2.7) we find that the basic and dual media are identical

~̂r uð Þ ¼ r̂ uð Þ: ð6:2:11Þ

Consequently, their effective values are also identical

~̂re ¼ r̂e; ð6:2:12Þ

which leads to a precise (applicable for however large anisotropy) relation for a
determinant of the effective conductivity of such polycrystalline medium

detr̂e ¼ detr̂ uð Þ ¼ detr̂: ð6:2:13Þ

If crystals are located in a polycrystal such that the medium on the whole is
isotropic, i.e., the effective conductivity is a scalar, then from (6.2.13) follows the
Dykhne expression [5]:

re ¼
ffiffiffiffiffiffiffiffiffi
detr̂

p
: ð6:2:14Þ

The simplest example of such a polycrystal consists of identical monocrystals
with a chaotic spread in the angles of axes of local conductivity tensor

r̂ ¼ rk 0
0 r?

� �
; ð6:2:15Þ

where rk and r? are principal values of local conductivity tensor that are coordinate
independent. In this case from expression (6.2.14) we get

re ¼ ffiffiffiffiffiffiffiffiffiffiffi
rkr?

p
: ð6:2:16Þ

Formula (6.2.16) can be derived as simply as possible [13] based on the exact
solution for a two-phase D-medium [5]. For this purpose let us imagine that each
crystallite with conductivity tensor (6.2.15) is a limiting case of the two-phase
planar stratified medium with the values of layer conductivities r1 and r2 with
identical phase concentration (Fig. 6.8).

For such a two-phase medium having a specific structure all conditions required
by the D-medium are met (the medium is on the average isotropic, the phase
concentration is p ¼ 1� pð Þ ¼ 0:5, and interchanging r1 � r2 does not change the
effective conductivity value) and, hence, on the one hand,

re ¼ ffiffiffiffiffiffiffiffiffiffi
r1r2

p
; ð6:2:17Þ

88 6 Self-dual Media



on the other hand, for rk and r? of such planar stratified medium the equality is met

rkr? ¼ r1r2; ð6:2:18Þ

whence on substituting (6.2.18) to (6.2.17) follows the Dykhne expression for the
effective conductivity of a two-dimensional polycrystal (6.2.16).

The expression (6.2.16) for the effective conductivity is valid for however strong
anisotropy. In so doing, as can be seen from (6.2.16), the “good” rk and “bad”
r? � rk conductivities contribute to re equally. The nontriviality of re behavior at
rk � r? lies in the fact that current that should have avoided directions with bad
conductivity r? on passing through polycrystal, in fact, flows not only along “easy”
directions (rk), but also along “difficult” ones (r?), with equal resistance accu-
mulated along both directions.

A similar situation in a two-phase isotropic strongly inhomogeneous D-medium
(re ¼ ffiffiffiffiffiffiffiffiffiffi

r1r2
p

) (current in the bad conducting phase is met with the same resistance
as in the good conducting phase) is due to the presence of the D-points. As was
mentioned above, it is exactly current behavior in the D-point neighborhood that
governs (at r1 � r2) the resistance of the entire medium. A specific geometric
structural element exists in a polycrystalline medium, too.

As was shown in [3], the reason for “equality” of rk and r? lies in the existence
of the so-called current traps. When current lines get into the area near the apex of
three crystallites, where directions with good conductivity rk cross the converging

(a)

(b)

Fig. 6.8 Polycrystal structure as the limiting case of planar stratified media: a polycrystal: arrows
are used to indicate the directions of principal axes of crystallite conductivity tensor; b crystallite
“microstructure”—two-phase planar stratified medium
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boundaries, the line of good conductivity together with current line (rk � r?) will
“wind” around this apex (Fig. 6.9).

According to [3] (see also [6, 7]), the trap cross section is of the order of crystal
size, and the probability that good conducting lines will pass the polycrystal past all
the traps is exponentially little.

Current bundle, wound around the apex after the good conductivity line, will be
compressed (Fig. 6.9). Current density in this case will increase, and the resistance
per bundle unit length along the good conductivity line will increase accordingly.
Finally, this resistance will become so large that for the current it will be “ad-
vantageous” to cross the good conductivity line and “unwind” in the reverse
direction along the adjacent good conductivity line. In [3], the trap resistance R was
estimated using the variational principle, formulated in [4], R� 1= ffiffiffiffiffiffiffiffiffiffiffirkr?

p .
A good trap model can be represented by a quasi-crystallographic medium with

the axes running along the logarithmic spiral (Fig. 6.10). Such an approach to
calculation of current trap resistance and, thus, the effective conductivity, was
proposed and partially realized in [6]. In the intrinsic crystallographic axes X; Yf g
(Fig. 6.10) the conductivity tensor is of the form (6.2.5), whereas in the laboratory
polar system r; wf g its components are as follows:

rrr ¼ rk cos2 hþ r? sin2 h; rrw ¼ rwr ¼ r? � rk
� 	

cos h sin h

rww ¼ rk sin2 hþ r? cos2 h;
ð6:2:19Þ

Note that with such a choice of crystallographic axes in the form of a logarithmic
spiral, components of local conductivity tensor (6.2.19) are coordinate independent,
therefore the equation for potential u r;wð Þ dir r̂ graduð Þ ¼ 0 has a simple form

Fig. 6.9 Good conducting
lines (along rk) close to the
apex of three crystallites:
solid arrows are used to
indicate current direction
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rrr
@

@r
r
@u
@r

� �
þ 2rrw

@2u
@r @w

þ 1
r
rww

@2u

@w2 ¼ 0: ð6:2:20Þ

Choosing its solution in the form

u r;wð Þ ¼ Araeiw; ð6:2:21Þ

for a we have

a ¼ x� ic; x ¼ ffiffiffiffiffiffiffiffiffiffiffi
rkr?

p 

rrr: ð6:2:22Þ

Thus,

u r;wð Þ ¼ Arx cos w� c ln rð Þ: ð6:2:23Þ

As long as with a strong anisotropy the main resistance is accumulated close to
the trap center, at some distance of radius R from it one can replace the locally
anisotropic medium by the isotropic one with the effective conductivity re,
demanding satisfaction of standard boundary conditions that follow from continuity
equation (divj ¼ 0) and field potentiality

jr r ¼ Rð Þ ¼ jþr r ¼ Rð Þ; u r ¼ Rð Þ ¼ uþ r ¼ Rð Þ; ð6:2:24Þ

where index “+” is used to denote the outer problem in the region of r[R.

Fig. 6.10 Current trap model
—quasi-crystallographic
medium with the axes in the
form of a logarithmic spiral:
solid line is used to show one
of the crystallographic axes,
angle h is spiral parameter

6.2 Locally Anisotropic Media 91



Solution in the outer region will be selected as

uþ r;wð Þ ¼ B r cos w� hð Þ: ð6:2:25Þ

Writing down the expressions for current density jr ¼ rrrEr þ rrwEw in the inner
and outer regions

jr ¼ Arx�1rrrx cos w� c ln rð Þ; jþr ¼ reB cos w� hð Þ ð6:2:26Þ

and satisfying the boundary conditions (6.2.24), for the effective conductivity, as
was to be expected, we get re ¼ xrrr ¼ ffiffiffiffiffiffiffiffiffiffiffirkr?

p .
Different generalizations of (6.2.14) and (6.2.16) are possible. Reference [2]

deals with such a two-dimensional anisotropic medium wherein the direction of
principal axes of local conductivity tensor r̂ rð Þ does not depend on coordinates, i.e.,
at any r we have

r̂ðrÞ ¼ rk rð Þ 0
0 r? rð Þ

� �
: ð6:2:27Þ

For a two-phase case: r̂ rð Þ ¼ r̂1 rð Þ—in the first phase and r̂ rð Þ ¼ r̂2 rð Þ—in the
second phase, with the first phase concentration equal to p, one can write down the
following reciprocity relations:

rek p; rk1; r?1; rk2; r?2
� 	

re? p; rk1; r?2;
rk1r?1

rk2
;
rk2r?2

r?2

� �
¼ rk1r?1;

re? p; rk1; r?1; rk2; r?2
� 	

rek p; rk1; r?1;
rk1r?1

rk2
;
rk2r?2

r?2

� �
¼ rk1r?1:

ð6:2:28Þ

If the distribution of the anisotropic phases is geometrically isotropic, then

rek p; rk1; r?1; rk2; r?2
� 	 ¼ rek p; r?1; rk1; r?2; rk2

� 	
;

re? p; rk1; r?1; rk2; r?2
� 	 ¼ rek p; r?1; rk1; r?2; rk2

� 	
;

ð6:2:29Þ

and for the randomly inhomogeneous medium

rek;? p; rk1; r?1; rk2; r?2
� 	 ¼ re? 1� p;rk2; r?2; rk1;r?1

� 	
: ð6:2:30Þ

Reference [14] deals with a polycrystal consisting of two types of single crystals
r_1 and r_2, such that

r̂2 ¼ ar̂1; a ¼ const; ð6:2:31Þ

then with a mutually dual geometry of their arrangement and equal concentration
(p ¼ 1=2)
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detr̂e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detr̂1 detr̂2

p
¼ ffiffiffi

a
p

detr̂1: ð6:2:32Þ

For p 6¼ 1=2 the reciprocity relation is met

r̂e 1� pð Þdetr̂e pð Þ ¼ r̂e pð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detr̂1 detr̂2

p
: ð6:2:33Þ

For a continuous distribution, when rk rð Þ and r? rð Þ are scalar random fields
having identical polynomial distribution functions even in v.

v ¼ ln rk � ln rk
� �

; ln r? � ln r?h i� 	
; ð6:2:34Þ

it is possible [14] to generalize the Dykhne expression

detr̂e ¼ e2 ln rkh i ¼ e2 ln r?ð Þ: ð6:2:35Þ

However, if the fields rk rð Þ and r? rð Þ are not correlated, the effective con-
ductivity tensor will degenerate into a scalar

re ¼ e ln rkh i ¼ e ln r?h i: ð6:2:36Þ
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Chapter 7
Continual Percolation Problem

7.1 Types of Continual Percolation Problems

So far we have considered percolation problems that might be logically reduced to
solving network problems, i.e., two-phase medium was simulated by a network of
resistances r1 and r2. On the one hand, it means that there exists a certain char-
acteristic linear size a0 of the network, on the other—that in the calculation of
impedance, spectral density of 1=f -noise, etc., the shape of resistances is not
important, it is only resistance rating that matters. In other words, in all the resis-
tances the spatial distribution of current is homogeneous. In particular, it means that
resistance of the bridge (see Chap. 5) is just a sum of equal resistances r1 forming
this bridge. However, a different case is possible, when the problem lacks a min-
imum length, and then the shape of given phase inclusions becomes vital. One of
such important cases is Swiss Cheese Media [4, 6, 14], the simplest example of
which is a medium that represents a conducting matrix (r1) with nonconducting
(r2 ¼ 0) spherical inclusions, i.e., porous medium. When the concentration of
inclusions is close to threshold value, current has to flow through contractions
formed by the nonconducting media (Fig. 7.1).

Current flow in such media can differ from that described by a standard network
model. As is evident from Fig. 7.1, in different points the contraction size can be
different, including arbitrarily small one. In so doing, current lines are contracted in
the area of a neck and the resistance of this contraction is essentially dependent on
the size d, which, unlike a0, is not fixed, different for different contractions, and has
no characteristic (minimum) value.

Thus, on the one hand, the problem of calculation, for instance, of the effective
conductivity re is, as usual, the percolation problem, and, hence, there exist:
(1) percolation threshold, (2) two phases r1 � r2, (3) standard elements of
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percolation structure (bridge, interlayer), and on the other hand—the “elementary
resistance” r1 is not a constant, but rather depends in a certain way on parameter d:
r ¼ rðdÞ. To emphasize both the similarity and difference of these two problems—
standard percolation and Swiss Cheese problem, Fig. 7.2 qualitatively shows the
main element of percolation structure—bridge—for these two problems.

To determine the effective conductivity in the case of p[ pc one should be able
to calculate the resistance of the bridge. To do this, in a standard percolation
problem it is sufficient to know the number of resistances r1 in a bridge N1. In Swiss
Cheese problem the resistance of the bridge depends not only on N1, but also on the
law of distribution of parameter d.

The research on network models but with distributed values of r1 (or, which is
the same, d) was originated in [2, 8, 18], where the following distribution function
for local conductivity d was assumed:

DðdÞ ¼ ð1� pÞdðrÞþApr�a: ð7:1:1Þ

Here a is the distribution parameter.
The problems similar to those described above are commonly called continual.

Let us describe three of them

(1) Swiss Cheese problems (see Fig. 7.1)—intersecting voids (r2 ¼ 0) in a con-
tinuous conducting (r1) medium [4, 6]. This problem is also called the
problem of voids.

δ
δ

Fig. 7.1 Contractions
(necks) in the percolation
structure, on which the main
voltage drop can be observed.
For simplicity, the
two-dimensional case is
shown

1r 1r 1r

1 2 1N

( )1 1r δ ( )1 2r δ ( )11 Nr δ

1 2 1N

(a)

(b)

Fig. 7.2 The main element
of percolation structure—a
bridge: a for a standard
(network) percolation
problem, b for Swiss Cheese
problem
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(2) Problem of spheres or inverted Swiss Cheese problem—intersecting good
conducting spheres (r1) in a nonconducting matrix (r2 ¼ 0) [13, 16].

(3) Another type of percolation-similar problems with a continuous distribution of
local conductivity that will be discussed in Chap. 8—conductivity of a med-
ium with exponentially wide spectrum of local conductivity.

The geometric aspect of the Swiss Cheese and inverted Swiss Cheese problems
is detailed in the books [3, 15] and a review [7]. We only note here that correlation
length, like in an ordinary network problem, is determined by a standard critical
index m [1, 5].

7.2 Swiss Cheese Media

Let us show how to calculate the effective conductivity re in Swiss Cheese model.
According to [4, 6], an assumption is made that for d � a, where a is the radius of
voids, the distribution is uniform—see Fig. 7.3. In so doing, each s ¼ ðp� pcÞ=pc
value has its own dmin (certainly, different from zero, since p[ pc). The resistance
of irregular shaped neck (for the three-dimensional case this shape is given in
Fig. 7.4) is found by replacing this shape by a simple one—parallelepiped having
the same dependence on d:

r� d�ð1þ yÞ; gi ¼ 1
ri
; y ¼ a

1� a
: ð7:2:1Þ

Here parameter y is found from qualitative considerations and can be obtained
by solving a boundary value problem of mathematical physics. Thus, for the
three-dimensional case we have

g� d3=2; y ¼ 1
2
; a ¼ 1

3
; ð7:2:2Þ

( )D δ

0

1
δ

δminδ

Fig. 7.3 Distribution of
parameter d in the case when
d is much less than the radius
of voids, d � a (with their
inclusion conductivity
r2 ¼ 0)
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for the two-dimensional case

g� d1=2; y ¼ � 1
2
; a ¼ �1: ð7:2:3Þ

By definition, a bridge always comprises maximum of all possible resistances,
therefore its resistance values are expressed through r and DðdÞ as follows:

R1 ¼ r dminð ÞþN1

Z
dmin

rðdÞDðdÞddþN1r1 � r1 d�ð1þ yÞ
min þN1d

�y
min

� �
þN1r1:

ð7:2:4Þ

The last term in (7.2.4) is a standard percolation term which is universally present
(at large d, when the neck shape is of no significance). This term will matter, if the
resistance rmax � 1=dmin included into the bridge and will make a lesser contribution
to the bridge resistance than the sum of the other resistances N1r1.

Minimal size dmin (for given s value) is found from the following considerations:
the probability of the bridge having no resistance larger than rmax (i.e., there are no
d lesser than dmin) can be written as

1�
Zdmin

0

DðdÞdd
0
@

1
A

N1

� e�
dmin
d0

N1 ; ð7:2:5Þ

where it is taken into account that 1=
R dmin

0 DðdÞdd ! 1 at dmin ! 0.
Since this probability should not depend on s, we have

dmin

d0
N1 � s0; ð7:2:6Þ

δ

δ

a

Fig. 7.4 View of a neck in the three-dimensional case and its approximation
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whence it follows that

dmin �N�1
1 : ð7:2:7Þ

Thus, the larger is N1, i.e., the closer is the system to percolation threshold, the
lower dmin and the larger rmax will be included into the bridge. The value of d0 does
not affect the calculation results.

Substituting dmin from (7.2.7) to the expression for R1 (7.2.4) yields

R1 � r1 N1þ y
1 þN1

� �
¼ r1N1 Ny

1 þ 1
� �

: ð7:2:8Þ

Passing from the bridge resistance R1 to the effective resistivity qe ¼ R1N
mðd�2Þ
1 ,

we find (all the calculations are made within the NLB-model)

qe � R1N
1þ mðd�2Þ
1 Ny

1 þ 1
� �

; ð7:2:9Þ

and taking into account that within the NLB-model N1 � s�1 and t ¼ 1þ mðd � 2Þ,
from (7.2.9) we have

qe ’ q1 sj j�ðtþ yÞ þ q1 sj j�t: ð7:2:10Þ

The last expression is valid close to percolation threshold, i.e., at s ! 0,
therefore, depending on the value of y this or other term will “win” in it. In the
three-dimensional case, at y ¼ 1=2, the first term is considerably larger than the
second one, therefore critical index of the effective conductivity in Swiss Cheese
problem �t3 is of the form

�t3 ¼ t3 þ y; ð7:2:11Þ

and in the two-dimensional case, as long as y ¼ �1=2, the second term will take
over, we have

�t2 ¼ t2: ð7:2:12Þ

The effective conductivity of inverted Swiss Cheese problem is found similarly.
If in Swiss Cheese model renormalization of critical index t was related to the fact
that current lines had to pass through a contraction that was called a neck (see
Figs. 7.1, 7.4), here current lines pass through a contraction (see Fig. 7.5), that is
commonly called a bottle neck. As is shown in [4], both in the two-dimensional and
the three-dimensional case parameter y\0: y2 ¼ �1, y3 ¼ �1=2, therefore critical
index of conductivity in the inverted Swiss Cheese problem does not differ from
such in the network problem (see also [11]).

Similar to Swiss Cheese and inverted Swiss Cheese problems describing con-
tinual percolation problem above the percolation threshold, one can also consider
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problems below the percolation threshold. Schematically all the four continual
problems are given in Fig. 7.6. The elements on which the main voltage drop
occurs include the bridge (Fig. 7.6a, b) and the interlayer (Fig. 7.6c, d).

In work [17] one more type of continual percolation problem is proposed, close
to Swiss Cheese, and named by the author as Blue Cheese. The shape of non-
conducting inclusions (r2 ¼ 0) in this problem is strongly different from the
spherical one in Swiss Cheese—one of inclusion sizes is considered equal to zero
(Fig. 7.7).

Blue Cheese problem is a good model of fractured media and allows determining
critical behavior and critical indices of the effective conductivity, elasticity, etc., in
such media. Critical indices of the effective conductivity in Blue Cheese problem
for the three-dimensional case do not differ from the network ones, and in the
three-dimensional case they differ logarithmically. However, for other problems
(elasticity, 1=f -noise) these indices are different.

1 0σ =

2σ

2σ

δ

Fig. 7.5 Schematic of inverted Swiss Cheese problem: a geometrical parameters of contraction;
b qualitative view of current lines in the contraction. Concentration of conducting (r1) phase
above the percolation threshold

(a) (b) (c) (d)

Fig. 7.6 Schematic of four possible continual Swiss Cheese problems: a Swiss Cheese model
(r2 ¼ 0); b inverted Swiss Cheese- (r2 ¼ 0); c and d percolation system below the percolation
threshold (1=r1 ¼ 0). Dark color is for a phase with conductivity r1
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In the study [12] the Swiss Cheese and inverted Swiss Cheese models were
generalized for the case of more complicated (but still convex) inclusion surfaces.

Let us note, without going into details, several works that describe the experi-
ments. In work [9] for a composite consisting of conductive balls (indium balls of
diameter about 20 lm) in a glass matrix the critical index of conductivity was
obtained as �t3 ’ 3:1� 0:3 which is in agreement with the theoretical value
�t3 ¼ tþ 1=2 � 2þ 0:5 ¼ 2:5. In work [10] an experiment was performed with a
metal plate with openings drilled in it. As theoretically predicted, for the
two-dimensional case the resultant critical index �t2 ¼ 1:24� 0:13 coincides with
the network one.
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Chapter 8
Media with Exponentially Broad
Spectrum of Local Properties

8.1 Formulation of the Problem and Approximate
Calculation of the Effective Conductivity

Hitherto we have considered percolation media that can be represented as a network
of randomly scattered strongly different resistances r2 � r1, with the concentration
p of the lower of resistances ðr1Þ being close to the threshold pc. The distribution
function f ðrÞ in the case when there are only two resistance types: “metal”—r1 and
“dielectric”—r2 is of the form

f rð Þ ¼ pd r � r1ð Þþ 1� pð Þd r � r2ð Þ: ð8:1:1Þ

No less interesting and important is the problem of calculation of the effective
conductivity of media, when the spectrum of resistance values is continuous on
retention of a strong inhomogeneity, i.e., the “worst” ðrmaxÞ of all possible resis-
tances are much larger than “the best” ðrminÞ, rmax � rmin. One of the examples of
such distribution is exponentially wide distribution, when

r ¼ r0e�kx; k � 1: ð8:1:2Þ

Here x is a random variable lying in the interval ð0; 1Þ and having a smooth
distribution function DðxÞ. In the simplest case DðxÞ is a uniform distribution,

D xð Þ ¼ 1; 0� x� 1;
0; x\0; x[ 1:

�
ð8:1:3Þ

The resistance distribution function f ðrÞ according to (8.1.3) in this case is of the
form

f rð Þ ¼ 1
kr

; r0e�k � r� r0: ð8:1:4Þ
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The problem of calculation of the effective conductivity re of such randomly
inhomogeneous medium with exponentially wide spectrum of resistance distribu-
tion is of great significance in various applications, in particularly, it is a type of
sample conductivity determination problem for hopping conductivity [2, 11, 12].
According to [12], the electron conductivity of a sample, if hopping conductivity
happens to be the case, amounts to “calculating conductivity of a random network,
where each node coincides with one of the donors, and a resistance is included
between a pair of nodes,” one of possible, taken from (8.1.4). Such network is
called Miller-Abrahams network [7].

Resistance between i and j nodes for hopping conductivity depends on the dis-
tance between the nodes lij and the difference in energies at the donor levels eij (see
details in [12]), the latter at relatively high temperatures can be neglected, and then

rij � e
2lij
a ; ð8:1:5Þ

where a is effective Bohr radius.
In the specific cases of weakly doped semiconductors the resistances rij are

essentially dependent on lij and can be different by many orders of magnitude (105

and more). In [12] an example is given when rijð2lijÞ is different from rijðlijÞ by a
factor of 105 � 1010:

On the face of it, the problem of determination of re for a network with expo-
nentially wide resistance spectrum is not percolation—there is no percolation
threshold, on reaching which, one of the phases forms infinite cluster, since there
are no phases as such. However, a technique proposed in [5] and [11] allows in a
certain approximation reducing this problem to a standard percolation one. To
demonstrate how this technique works, let us make the following construction.
“Remove” from the Miller-Abrahams network all the resistances, keeping in mind
their positions and begin consecutively “inserting” them in their places, starting the
process from the minimum ðrminÞ (Fig. 8.1). All the resistances included at this
moment will be considered a “metal” phase. When the “metal” phase reaches the
threshold concentration, an infinite cluster will appear in the system—the last
inserted resistance rc will close the bridge. Since with exponentially wide resistance
spectrum each subsequent inserted resistance is much larger compared with the
preceding one, the resistance of resultant infinite cluster is practically determined, to
an accuracy of pre-exponential factor, by the last inserted resistance. Further
addition of shunting resistances will not change anything, since their values are
much larger than the critical rc:

Critical resistance rc can be easily found from the following condition: it
“appears” at the threshold concentration

Z1

xc

D xð Þdx ¼ pc: ð8:1:6Þ
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Whence, with regard to (8.1.3), we obtain xc ¼ 1� pc:
Thus, we have

rc ¼ r0e�kx0 ¼ r0e�kð1�pcÞ; ð8:1:7Þ

or in terms of specific conductivity:

re ¼ r0ekxc ¼ r0ekð1�pcÞ: ð8:1:8Þ

8.2 Correlation Length and Pre-exponential Factor

Such an approach—insertion of consecutively growing resistances—yields a good
approximation for re. Though, a series of unsolved problems remain. The first one
is related to correlation length n:

Unlike the two-phase system with r2=r1 ¼ 0 for which n is infinite on the
percolation threshold, the correlation length for a system with exponentially wide
resistance spectrum is finite. However, it is not clear which considerations can lead
one to obtain its value, since the approach employed lacks the concept of smearing
region. There is also an alternative way of reducing the problem to percolation one

1a 2a   3a 4a 

1b 2b   3b 4b 

Fig. 8.1 System view with a consecutive insertion of “metal” and “dielectric” inclusions: 1a–4a—
arrangement of “metal” resistances as they are inserted, in 4a there appears a bridge; 1b–4b—
arrangement of “metal” resistances as “dielectric” resistances are inserted, in 4b there appears an
interlayer
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[8], [9]. According to the above-described method, during the first stage
(Fig. 8.11a), the system was completely nonconducting, i.e., one can say that
practically all the network was filled with infinite resistances that were consecu-
tively replaced by rmin � r� rc. According to the alternative approach, at first
(Fig. 8.11b), practically all the network is filled with zero resistances that are
consecutively replaced by rc � r� rmax, i.e., the largest resistances are inserted first.
As the threshold concentration is approached, there comes a moment when the
inserted resistance blocks the zero resistance channels, and then the entire system
will possess finite resistance. Since each subsequent resistance is much less that the
preceding one, it is exactly the last inserted resistance rc that will govern current in
the system. Thus, like in the first approach, re ¼ r0ekxc . One can say that in the first
approach a “metal” phase was closed in a medium with infinite resistance, and in
the second approach a “dielectric” phase disconnected the current flowing in a
perfect conductor. Both approaches give the same re, but to an accuracy of
exponential factor. As can be readily seen in Fig. 8.1, the finite percolation structure
Fig. 8.14a, 4b in both approaches is quite different. And this certainly leads [9], as
will be shown below, to different pre-exponential factors. Write down re as follows
[3, 14]:

re ¼ A
ad�2
0 rðxcÞ

DðxcÞ
k

� �y

¼ A
ad�2
0

DðxcÞy
r0

k�yekxc � k�yekxc : ð8:2:1Þ

To determine the critical index, we begin with considering the first approach:
i.e., all the resistances r� rðxcÞ� rc are “metal,” and the rest have infinite resis-
tance. We will use the NLB and HM models described earlier in Chap. 5. Let the
concentration of “metal” phase be p, then, with regard to

s ¼ p� pc
pc

; x� xc ¼ 1� xcð Þs; ð8:2:2Þ

one can estimate the average value of resistances that form the bridge

rh i1¼
Z1

x1

rðxÞP1ðxÞdx � rðx1Þ
1� x1

k�1; x1 [ xc; k � 1 ð8:2:3Þ

where rðx1Þ is the largest resistance in the bridge; renormalization of distribution

Pðx1Þ ¼ DðxÞR 1
x1
DðxÞdx

ð8:2:4Þ

is related to the fact that the largest bridge resistance is rðx1Þ.
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The resistance of the bridge, hence of the entire system on correlation dimen-
sions, is of the form

R1 ¼ N1 rh i1: ð8:2:5Þ

Passing from the system resistance R ¼ R1 to specific conductivity
re ¼ 1

�
Rnd�2, for the first approach we find

reI ¼
1� x1

rðx1Þad�2
0

sa1 þ mðd�2Þ; ð8:2:6Þ

where a1 ¼ 1 in the NLB-model and a1 ¼ nR ¼ t � mðd � 2Þ in the HM.
In perfect analogy we find system resistance in the second approach. The

average bond resistance in the interlayer, provided all of them are located in par-
allel, can be estimated as follows:

1=rh i2¼
Zx2
0

P2ðxÞ
rðxÞ dx �

1
kx2rðx2Þ ; ð8:2:7Þ

where [compare to (8.2.4)] the renormalization of distribution

P2ðxÞ ¼ DðxÞR x2
0 DðxÞdx ð8:2:8Þ

is due to the fact that the lowest resistance in the interlayer is rðx2Þ.
The resistance of interlayer, hence the resistance of the entire correlation volume

is of the form

R2 ¼ 1
N2 1=rh i2

: ð8:2:9Þ

Passing to specific conductivity, for the second approach we find

reII ¼
s�a2 þ mðd�2Þ

x2rðx2Þad�2
0

k�1: ð8:2:10Þ

Comparing the values of reI from (8.2.6) and reII from (8.2.10), we see that even
if we assume x1 ¼ x2 ¼ xc, they will contradict each other; dependence on k
(remind that k � 1) will be exactly opposite: kþ 1 in reI and k�1 in reII . Moreover,
reI and reII have also dependence on the proximity to percolation threshold s, which
was introduced conventionally [11], it is not a free parameter whose values can be
selected at will, as it is done for the two-phase media, changing the concentration of
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one of the phases, and should not be present in the final expression for the effective
conductivity.

The above contradictions can be removed [9], further assuming by analogy to
the two-phase system that a system with exponentially wide resistance spectrum is
the smearing region. It is the more natural since if in the two-phase systems in
extreme cases r2 ¼ 0 or r1 ¼ 1 the magnitude of smearing region can be equal to
zero, then in systems with exponentially wide resistance spectrum the ratio of local
conductivities, even if very small, is always finite.

To determine the magnitude of smearing region D, like in the two-phase case,
equating reI and reII , we obtain

reI s ¼ Dð Þ ¼ reII s ¼ �Dð Þ; ð8:2:11Þ

and take into account that according to (8.2.2)

x1 ¼ xc þ 1� xcð ÞD; x1 ¼ xc � 1� xcð ÞD: ð8:2:12Þ

Substituting now (8.2.6), (8.2.10) and (8.2.12) to (8.2.11), we find the equation
for determination of the magnitude of smearing region

e�2ð1�xcÞDk ¼ xc � ð1� xcÞD½ � 1� xc � ð1� xcÞD½ �Da1 þ a2 � k2: ð8:2:13Þ

As is shown by numerical solution (8.2.13) at a1 ¼ nR and a2 ¼ nG for
102\k\107 the values of D lie in the range of 10�6\D\2 � 10�2, in this case
1\Dk\6. Thus, lnDj j[ ln kD, which enables to obtain an approximate solution
of the equation. Ignoring the summand ð1� xcÞD as compared to xc and 1� xc,
from expression (8.2.13) we find

D � �k�1
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xcð1� xcÞ

p
k1�

a1 þ a2
2

h i
1� xc

: ð8:2:14Þ

From this we have

re ¼ A
ad�2
0

k�yekxc ; ð8:2:15Þ

where A is weakly dependent on k (A�ðln kÞa1 þ a2 þ mðd�2Þ), and critical index of
percolation factor [9]:

y ¼ a1 � a2 þ 2mðd � 2Þ
2

: ð8:2:16Þ

To determine the numerical value of critical index y, one should assign the
values of indices a1 and a2, which, in turn, will govern the number of the so-called
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SCB- and SDCB-bonds (see Chap. 5). For the two-phase systems in the HM it was
assumed that a1 ¼ nR, a2 ¼ nG. In this case

y a1 ¼ nR; a2 ¼ nGð Þ ¼ t � q
2

ð8:2:17Þ

However, if a1 ¼ a2 ¼ 1 (NLB-model),

y a1 ¼ 1; a2 ¼ 1ð Þ ¼ m d � 2ð Þ: ð8:2:18Þ

As can be seen, in the two-dimensional case, both (8.2.17) and (8.2.18) imply
that y2 ¼ 0.

This y2 ¼ 0 assertion is rigorous, following immediately from considerations of
duality and available in work [1]. Indeed, in case of continuous distribution
according to [1] we have

re ¼ e ln rh i; ð8:2:19Þ

and in case of exponentially wide resistance spectrum (8.1.2) the effective con-
ductivity can be written as

r ¼ r0e�kx: ð8:2:20Þ

In case of uniform distribution (8.1.3) the distribution function f ðrÞ is [compare
to (8.1.4)]

f rð Þ ¼ � 1
kr

: ð8:2:21Þ

Then ðx0 ¼ 0; x1 ¼ 1Þ we have

ln rh i ¼
Zx1
x0

f rð Þ ln rdr ¼ ln r0 � 1
2
k: ð8:2:22Þ

Substituting ln rh i to (8.2.19), we find

r ¼ r0e�kx ¼ e�kxc ; xc ¼ 1
2
; ð8:2:23Þ

which is to say that at d ¼ 2 [see (8.2.15)] y2 ¼ 0.
Table 8.1 gives the numerical values of critical index in the three-dimensional

case with the HM (8.2.17) and NLB-model (8.2.18) and according to numerical
simulation.

Work [6] analyzes the use of different theoretical methods when solving the
problem of determination of critical index y, such as renormalization group and
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finite size scaling methods, field-theoretical method (expansion close to critical
dimension dc ¼ 6) and so on. All these methods according to [6] result in (8.2.18).
However, work [13] summarizes arguments against it, since according to [13] all
conclusions have been obtained within the limit k ! 1, which is impossible both
in real systems and in numerical simulation alike. As is evident from Table 8.1, the
numerical values (8.2.17) better agree with numerical simulation. It means that in
the three-dimensional case y\m, rather than y ¼ m [6]. As we will see below, in
Chap. 13, in the calculation of higher moments of current distribution (in the
calculation of re the second moment was calculated) it appears necessary to come
back to determination of a1 and a2 within the NLB-model. The distribution of the
Joule dissipation in such media (see Chap. 14) is considered in [10].
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Chapter 9
Finite Scaling

9.1 Properties of Percolation Systems with Dimensions
Lesser Than Their Correlation Length

Up to now, in the description of geometrical or physical properties of media located
close to percolation threshold, we have implied that sample size L for which, for
example, conductance G or effective conductivity re ¼ GLd�1

�
L are determined, is

much larger than the correlation length n, i.e., L � n. In this case the value G (or
re) is self-averaged over realizations of a random structure, i.e., does not depend on
the way this or other resistance will “fit” at creation of a random medium [1].

When L\n, this, of course, is not the case, and the value G (or re) will change
from one realization to another one, and its fluctuations (due to structure realiza-
tions) will be the larger, the lower value of L. It would seem that at L\n it is
difficult to count on revealing of simple regularities—after all, each medium real-
ization is random. However, in the critical region, close to percolation threshold, the
main feature of percolation structure is infinite cluster with fractal dimensions. One
of the main properties of fractal objects is the fact that any intensive X value that
characterizes a fractal, for instance, its density (volume unit mass) [2] depends on
L as follows:

X L; nð Þ ¼ x L=nð Þ � nv=m � nv=m; L � n;
Lv=m; L\n;

�
ð9:1:1Þ

where x L=nð Þ is scaling function, m is critical index of correlation length, v is critical
index describing behavior of X L; nð Þ value. Certainly, in the case of L\n, by
X L; nð Þ is meant an average over realizations X L; nð Þf g, though in the literature this
essential remark is often omitted.

As long as n� s�m, with increasing L the value X is no longer dependent on
dimension, but on the other hand the dimension becomes dependent on concen-
tration X� sj j�v. And averaging over realizations is not required any more.
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A.A. Snarskii et al., Transport Processes in Macroscopically
Disordered Media, DOI 10.1007/978-1-4419-8291-9_9

113



Surprisingly, the regularity of passing from one, concentration type of depen-
dence, to another, namely dimensional, has a perfect analogy in the theory of
second-order phase transitions in going from temperature dependence of the order
parameter to dimensional dependence, averaged over time (thereby, over
realizations).

The use of the term “finite-size scaling” is attributable to the fact that we are
dealing with scaling dependences of systems with finite size L\n. Starting from
L[ n, the system properties are no longer dependent on L.

It should be specified what is meant by percolation structure in the case of L\n.
One of the basic parameters of percolation medium is percolation threshold pc
which is strictly determined only at L � n. For a sample with a finite size, as
detailed in [7, 9], the name of percolation threshold for a sample of given size L can
be given to such concentration of “black” nodes (bonds), averaged over realiza-
tions, whereby for the first time there appears an “infinite cluster”, i.e., percolation
through the whole system of given size. By this concentration is meant (1) relative
number of “black” nodes (bonds) in the network where “white” nodes (bond)
randomly “change color” before the onset of percolation—pc (microcanonical
distribution)—pc MCð Þ or (2) apriori probability of the fact that a node (bond) is
“black”, and percolation pc (canonical distribution)—pc Cð Þ has occurred in the
system. Both definitions are identical for a system with L � n, but for a finite case
at L\n they result in different values of percolation threshold.

In the former case we are dealing with a microcanonical assembly, i.e., the
concentration of “black” bonds (nodes) in the sample is strictly equal to pc MCð Þ; in
the latter case—with a canonical assembly.

In [7] the numerical simulation was used to find the distribution function
f pc Cð Þð Þ for a canonical assembly of the problem of nodes that proved to be very

close to the Gaussian function. The dispersion of this distribution W ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c

� �� pcf g2
q

(from here on the sign K will be omitted) is determined by the

critical index of correlation length

W � BL�1=m � L�1=m; ð9:1:2Þ

where B is a certain constant of the order of unity, in the two-dimensional case in [7]
it was obtained as B � 0:54. As one would expect, W is reduced with increasing L.

Percolation threshold averaged over realizations pc Lð Þf g for a system of size
L\n is larger than the threshold of “infinite” system with pc ¼ pc L � nð Þ.

pc Lð Þf g � pc ¼ AL�1=m � L�1=m; ð9:1:3Þ

where A is a certain constant. These regularities are true both for the two- and
three-dimensional cases [12].
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Numerical experiments show “…quite nontrivial, well appreciable … excess of
mean-square fluctuation W over the shift of maximum point of distribution function
pc Lð Þf g (i.e., the average value)” [7, 9]. Thus, for the distribution function of

percolation thresholds in the finite (L\n) system one can write down

f pcð Þ ¼ 1ffiffiffiffiffiffi
2p

p
W

e�
pc Lð Þ�pc�AL�1=m½ �2

2W2 ; ð9:1:4Þ

or, ignoring the excess of W over the shift and passing on to afterwards more
convenient variable sc ¼ pc Lð Þ � pcð Þ=pc (Fig. 9.1), we have

f scð Þ ¼ 1ffiffiffiffiffiffi
2p

p
W

e�
p2c
2W2s

2
c : ð9:1:5Þ

Come back now to finite-size scaling of the effective conductivity. According to
(9.1.1) we write down

ref g ¼ r1 L=a0
� �� t

m � r1L
�t

m; ð9:1:6Þ

Later on in this chapter, for simplicity of notation, we will use dimensionless
unit and therefore omit a0 everywhere.

In formula (9.1.6) it is meant that the system is in the critical region and that
r2 ¼ 0. Realizations where no percolation occurs do not contribute to an average
over realizations. Numerical experiments in this case (see references in [12]) with a
good precision confirm the power dependence ref g and these dependences are used
to determine the numerical value t=m. Such numerical experiments employed rather
high-power (at that time) computers, up to Cray [8] and Sun 4/280 [5].

In the case when bad conducting medium has a finite resistance q2 6¼ 1, and
good conducting medium is a perfect conductor (r1 ¼ 1), the average over real-
izations conductivity is no longer an appropriate characteristic, since one percola-
tion realization (which is always available) is enough for ref g ¼ 1. An
appropriate characteristic here will be the average over realizations resistivity

qef g ¼ q2L
q=m; ð9:1:7Þ

w− w
cτ

( )cf τ
Fig. 9.1 The distribution
function of percolation
thresholds for the size L\n,
the thin line is its uniform
approximation
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in so doing, realizations with percolation, where ref g ¼ 1, will fall out of aver-
aging, since for them qe ¼ 0.

Formally, dependences (9.1.6) and (9.1.7) were obtained from the first
approximations over concentration re ¼ re sð Þ above re ¼ r1st and below re ¼
r2 sj j�q the percolation threshold by simple substitution s ! n�1=m ! L. It is clear
that with arbitrary sets of parameters r1, r2, s and L such formal technique does not
allow answering the question of finite-size scaling at r2=r1 6¼ 0.

With sizes L\n, i.e., in the fractal region both above and below the percolation
threshold, realizations with and without the percolation will occur (see Fig. 9.2). In
other words, in the assembly of systems with sizes L\n and given value s, with
certain probability PL there will occur systems lying above the percolation threshold
(percolation ones)—I and with probability 1� PL—below the percolation threshold
(non-percolation ones)—II. The probability PL is of the form

1

2

ξ

I

II

Fig. 9.2 Schematic of percolation system above the percolation threshold: Solid lines a
combination of conducting bonds. 1 part of infinite cluster, 2 finite clusters. I region of size
L\n lying above the percolation threshold, II region of size L\n lying below the percolation
threshold
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PL ¼
Z0

�1
f scð Þdsc: ð9:1:8Þ

To obtain simple analytical expressions for PL, function f scð Þ can be conve-
niently approximated by a uniform function. Then ignoring constant W and intro-
ducing the notation

sL ¼ L�1=m; ð9:1:9Þ

for PL and 1� PL we get

PL ¼ sL þ s
2sL

; 1� PL ¼ sL � s
2sL

: ð9:1:10Þ

The situation when both percolation and non-percolation parts are found in the
system has been already encountered in smearing region. Indeed, if at L\n the
system is in the smearing region ( sj j �D), then with probabilities PD ¼ Dþ sð Þ=2D
and 1� PD ¼ D� sð Þ=2D one can (within the order of fd) come across both
percolation and non-percolation situations (see Chap. 5). Using this analogy (the
role of D—smearing region—is now played by sL) between ref g at L\n (n ¼ s�m,
i.e., sj j � sL) and re at L\n and sj j �D; re sj j �Dð Þ � r1 Dþ s

2D þ r2 D�s
2D D�q

� 1
2 r1D

t þ r2D
�qð Þ ¼ rq1r

t
2

� � 1
tþ q, we write down

ref g ¼ r1
sL þ s
2sL

stL þ r2
sL � s
2sL

s�q
L ; ð9:1:11Þ

or, distinguishing the main multipliers with L, we get

ref g ¼ r1
sL þ s
2sL

L�t=m þ r2
sL � s
2sL

Lq=m: ð9:1:12Þ

In perfect analogy one can write down the expression for the average over
realizations resistivity

qef g ¼ q1
sL þ s
2sL

Lt=m þ q2
sL � s
2sL

L�q=m: ð9:1:13Þ

Note at once that expressions (9.1.6) and (9.1.7) follow from (9.1.12) and
(9.1.13) as particular cases (for r2=r1 ¼ 0). For instance, at s[ 0 and r2 ¼ 0 from
(9.1.12) and (9.1.13) we find

ref g ¼ r1
sL þ s
2sL

L�t=m; qef g ¼ 1; ð9:1:14Þ
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with due regard here that in the fractal region 0\s\sL and PL � 1. Similarly, for
the case s\0 and q1 ¼ 0 (r1 ¼ 1) we have

qef g ¼ q2
sL � s
2sL

L�q=m; ref g ¼ 1: ð9:1:15Þ

For the analysis of general case (9.1.12) and (9.1.13) it is convenient to use the
space of parameters with the axes 1=sL and 1=D (Fig. 9.3). The first quadrant is
matched with s[ 0, the second—with s\0. Since percolation behavior implies
larger inhomogeneity (r1 � r2), then the area close to axis 1=sL (shaded in
Fig. 9.3) is excluded from consideration of ref g with finite-size scaling, since in
this area the condition r2=r1 	 1 is not met. The area immediately surrounding the
axis 1=D is not considered either, since the size of system L must be larger than
minimum size a0.

Fractal behavior (� L) is matched with the areas I and II, where the average over
realizations ref g and qef g have power dependence on the system size L. In the area
Ia (except for the part immediately adjacent with the axis 1=D) ref g� L�t=m,
qef g� L�q=m At the boundaries between the areas I and III and I and IV ref g and

qef g pass over to expressions for smearing region re ¼ rq1r
t
2

� � 1
tþ q. In the area V the

effective conductivity is conductivity at s[ 0 and L � n (re ¼ r1st) in the area VI

1/ cτ− 1/ cτ

cI bI

aI

II

IV III

aIIcII cIIVI V

1/
max1/ νξΔ

Fig. 9.3 Schematic of space partition 1=sL; 1=Dð Þ
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at—s\0 and (re ¼ r2 sj j�q). Inside the fractal region (finite-size scaling), (I and II
—the shaded area in Fig. 9.3) ref g and qef g behave as follows.

The area Ia 1=sL 	 1= sj j, i.e.sL � sj j, moreover, the area II is much lower than
the dashed line in Fig. 9.3, it means sL � D. Account of these two inequalities for
(9.1.12) and (9.1.13) results in the following:

ref g � r1s
t
L ¼ r1L

�t=m; Ia; ð9:1:16Þ

qef g � q2s
q
L ¼ q2L

�q=m; Ia: ð9:1:17Þ

Thus, in the area Ia

ref g 6¼ 1
qef g : ð9:1:18Þ

With increasing system dimension L (or, which is the same, 1=sL) Ia ! Ib and
Ia ! Ic, the expressions (9.1.16) remain in force, but close to transition lines
1=sL � 1=D, hence, r1D

t � r2D
�q, so now already

ref g � 1
qef g ; Ib; Ic: ð9:1:19Þ

Similar partitioning in the space temperature-size for metal-insulator mixtures is
presented in [3, 4].

9.2 Finite-Size Scaling for Self-dual Media

For the two-dimensional samples with L\n the reciprocity relation (Chap. 6) can
be generalized [11]. As was shown in [1], if L � n, then in the two-dimensional
case we have

re sð Þ � re �sð Þ ¼ r1r2: ð9:2:1Þ

A similar relation is also possible for L\n. Consider a rectangular shaped
two-dimensional sample with the sides Lk and L?, where Lk is sample size along ox,
and L?—along oy. We apply current contacts to this sample: one time along the
parallel sides, so that the average current is jh i k ox, another time along oy. In so
doing, Ohm’s law can be written as

Ik;? ¼ Gk;? � Uk;?; ð9:2:2Þ

where Gk;? is sample conductance along ox and perpendicular to ox. The Dykhne
symmetry transformations (Chap. 6), expressed through full current, in terms of full
current Ik;? and voltage drop Uk;? are as follows
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Ik;? ¼ �K~Uk;?;Uk;? ¼ �K�1~Ik;?; ð9:2:3Þ

where K ¼ ffiffiffiffiffiffiffiffiffiffi
r1r2

p
.

Note that determination of conductance G or resistance R ¼ 1=G of finite sample
implies assignment of specific boundary conditions. For instance, ideal current con-
tacts on some surfaces and ideal isolation on the other. The Dykhne transformations
change boundary conditions so that ideal current contacts pass into ideally isolated
surfaces, and vice versa. Indeed (see Chap. 6), an ideal current contact, in particular,
implies that current density has only normal to it component (see Fig. 9.4a),
and symmetry transformations rotate this vector by p=2, “turning” it by means of
multiplication by constant K to the electric field intensity (Fig. 9.4b), which is now
tangent to the edge with an ideal isolation.

Substituting (9.2.3) to (9.2.2), we find

~Ik;? ¼ ~Gk;? ~Uk;?; ð9:2:4Þ

where

~Gk;? ¼ K2

Gk;?
: ð9:2:5Þ

One can select such special arrangement of phases or resistances in the network,
that, for instance, with a half concentration of their phases the valid expression will
be ~Gk;? ¼ Gk;? ¼ G, see, for instance, [6, 14, 13], later on we will come back to
such examples.

In the case when squares L
 L are cut of randomly inhomogeneous medium and
its dual medium (r1 � r2), averaging should be made over possible realizations.
From the expression (9.2.5) we have

(a)
(b)

Fig. 9.4 Basic and dual media and their boundary conditions: a current contacts are arranged in
the basic medium vertically; b in the dual medium—horizontally
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~Gk;?
� �
1
�
Gk;?

� � ¼ K2 ¼ r1r2: ð9:2:6Þ

Taking into account that Lk ¼ L? and passing on to specific characteristics, we
get

re p; Lð Þf g
~qe p; Lð Þf g ¼ r1r2; ~qe ¼

1
re

: ð9:2:7Þ

The following is valid for randomly inhomogeneous media

~qe p; Lð Þf g ¼ qe 1� p; Lð Þf g; ð9:2:8Þ

and then from (9.2.7) follows the reciprocity relation

re p; Lð Þf g
qe 1� p; Lð Þf g ¼ r1r2; L\n: ð9:2:9Þ

With L � n the need for averaging over realizations disappears and then (9.2.9)
passes into a well-known reciprocity relation [1], and at p ¼ 1=2—to the Dykhne
formula for the effective conductivity re ¼ ffiffiffiffiffiffiffiffiffiffi

r1r2
p

.
Since the operations of division and averaging over realizations are not com-

mutated, then at L\n the expression similar to the Dykhne formula no longer
follows from (9.2.9). Its analog can be obtained by finding the logarithm of (9.2.5)

ln ~Gk;? þ lnGk;? ¼ 2 ln
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
; ð9:2:10Þ

and then averaging over realizations with regard to the fact that ln ~Gk;?
� � ¼

lnGk;?
� � ¼ ln re p ¼ 1=2; Lð Þf g.

Fig. 9.5 Example of deterministic two-dimensional two-phase self-dual media. Black color is for
phase r1, white is for r2
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Then from (9.2.10) it follows

ln re p ¼ 1=2; Lð Þf g ¼ ln
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
; ð9:2:11Þ

which for the case L\n is the analog of the Dykhne formula. In [11] the relation
(9.2.11) is verified by numerical simulation on the networks.

There can be also such phase arrangements that at L\n a medium is self-dual
and no averaging over realizations is required for conductance determination [11].
Numerous examples of such phase arrangement are given in [10], some of them are
represented in Fig. 9.5. The effective conductivity re of any such media is

ffiffiffiffiffiffiffiffiffiffi
r1r2

p
and will not change with substitution r1 � r2 or transfer of contacts from one pair
of parallel sides to the other.
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Chapter 10
Conductivity of Percolation Layer

10.1 Effective Conductivity of the Percolation Systems
in the Cases with Some Sizes Are Lesser
and the Other Greater Than Percolation Length.
Definition of the Problem

In the case when size L of a sample cut of randomly inhomogeneous medium is
much larger than the correlation length n, the effective characteristics of the med-
ium, such as the effective conductivity, are well-defined entities. In the case when
L� n, sample conductance changes from one realization to another realization and
the well-defined value is conductance fGg averaged over realizations, or effective
conductivity freg averaged over realizations (see Chap. 9).

In practice (see, for instance, [1, 3]) the situation is not infrequent, when one of
sample sizes exceeds the correlation length, and the others—not. Figure 10.1 shows
an example when along two directions the sample length is H � n, and along the
third direction—L\n.

Such a layer, on the one hand, does not behave as a three-dimensional sample,
i.e., for instance, for re no standard percolation dependence of the type re ¼ r1st

will be met, and on the other hand, despite its seeming two-dimensionality
(H � L), the necessary condition of two-dimensionality—no absence of z-com-
ponents of fields and currents—is not met. However, by virtue of the fact that
H � n, the effective properties are well defined. The layer conductance both along
ox and oy, and oz directions requires no averaging over realizations.

At L ! a0 the medium becomes two-dimensional, at L � n—three-dimensional.
Thus, a layer in the case when H � n and L� n, occupies intermediate position
between the two- and three-dimensional cases. Hereafter, for brevity, we will call
this case 2:5D-media. One can also speak about 1:5D-media, however, they repre-
sent much less interesting possibility.
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Depending on the concentration of phases, the sizes and the ratio of phase
conductivities, 2:5D-media show a large variety of regularities [1, 4]. Here we will
consider the effective conductivity of 2:5D-media—re along xoy (position of
contacts see in Fig. 10.1). Later on we will consider that we deal with a “deeply”
fractal mode:

a0 � L � n3max: ð10:1:1Þ

To avoid confusion, we will write down the index denoting problem dimen-
sionality; here n3max is maximum value of correlation length in the
three-dimensional case:

n3max ¼ D�m3
3 ¼ ðr2=r1Þ�

m3
t3 þ q3 : ð10:1:2Þ

Here and afterwards, like in Chap. 9, for simplicity of notation, where conve-
nient, we will assume a0 ¼ 1.

Condition (10.1.1) with regard to (10.1.2) simultaneously means

r1s
t3
L � r2s

�q3
L ; ð10:1:3Þ

where sL ¼ L�1=m3 , while r1s
t3
L and r2s

�q3
L are the average over realizations effective

conductivities of a sample of L� L� L sizes in the case of percolation and
non-percolation realization, respectively.

Introduce the following designations:

~r1 ¼ r1s
t3
L ; ~r2 ¼ r2s

�q3
L : ð10:1:4Þ

As was shown in Chap. 9, the probabilities to come across the percolation (PL)
and non-percolation—ð1� PLÞ realizations can be written down as follows:

PL ¼ sL þ s3
2sL

; 1� PL ¼ sL � s3
2sL

; sL ¼ L�1=m3 : ð10:1:5Þ

x

z

y

H

H

L

Fig. 10.1 Percolation layer.
Layer sizes along ox and oy
axes—H � n, and along
oz—L\n
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10.2 Solution Technique

The main idea [2] that allows to find approximately the expressions for conductance
and effective conductivity r2:5De of a layer being in a “deeply” fractal mode. This
idea consists of roughening inhomogeneous structure with characteristic size a0 to
size L. The layer after this roughening is a two-dimensional film with a typical
inhomogeneity size L.

This two-dimensional inhomogeneous medium (its characteristics will be
denoted by tilde sign) is characterized by proximity to percolation threshold

~s2 ¼ PL � Pc2

2Pc2
; ð10:2:1Þ

which with regard to (10.1.5) and the fact that Pc2 ¼ 1=2 can be written as follows:

~s2 ¼ s3=s2: ð10:2:2Þ

In going from a three-dimensional H � H � L layer with L\n to a
three-dimensional medium the following approximation was implicitly made.
A good conducting element ~r1 (Fig. 10.2) of a medium roughened to size L, was
selected as the average over realizations (10.1.4) of L� L� L cube. Now the
characteristic size of inhomogeneity ~a0 ¼ L. Percolation element with ~r1 and
non-percolation element with ~r2 differ considerably from each other in conductivity
~r1 � ~r2. However, the conductance of L� L� L cube for given concrete real-
ization with percolation structure and the average over realizations conductance
fGg ¼ ~r1 differ from each other in that the former can have percolation structure
along one direction and not have it along the other. Thus, it should be taken into
account that in a more precise approximation the “roughened” layer in Fig. 10.2
consists of randomly scattered strongly anisotropic elements, rather than of two
isotropic phases. We consider below the simplest approximation: the layer in
Fig. 10.2 will be thought as one to consist of two isotropic phases.

L

H ξ>>

H ξ>>

Fig. 10.2 View of inhomogeneous layer after “roughening” (renormalization): Black color is for
percolation realizations with conductivity ~r1, white color—for non-percolation realizations with
conductivity ~r2
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We require the following condition to be satisfied

~s2j j � 1; ð10:2:3Þ

only in this case the percolation description of the “two-dimensional” medium in
Fig. 10.2 is possible.

From (10.2.3) it follows that s3j j � L�1=m3 , and since the minimum value s3 � D3

(see Sect. 5.1), then the inequality (10.2.3) leads to L � n3max or to (10.1.2), and,
hence, under the assumed conditions of a “deeply” fractal mode the inequality
(10.2.3) is met automatically.

Therefore, in the description of layer conductivity one can use the
two-dimensional percolation relationships

r2:5De � ~r1~s
t2
2 ; ~s2j j[ 0; ~D2 � ~s2 � 1; I; ð10:2:4Þ

r2:5De � ~r1 ~s2j j�q2 ; ~s2j j\0; ~D2 � ~s2j j � 1; II; ð10:2:5Þ

r2:5De �
ffiffiffiffiffiffiffiffiffiffi
~r1~r2

p
; ~s2j j � ~D2; III; ð10:2:6Þ

where smearing region ~D2, like in the ordinary two-dimensional case (see Chap. 5),
is found from condition r1D

t2
2 ¼ r2D

�q2
2 and is of the following form:

~D2 ¼ ð~r2=~r1Þ
1

t2 þ q2 : ð10:2:7Þ

Substituting ~s2 and ~r1, ~r2 to (10.2.4)–(10.2.7), we find the dependence of the
effective conductivity of percolation layer

r2:5De ¼ r1s
t2
3 s

t3�t2
L ¼ r1s

t2
3 L

�t3�t2
m3 ; I; ð10:2:8Þ

r2:5De ¼ r2 s3j j�q2sq2�q3
L ¼ r2 s3j j�q2L�

q2�q3
m3 ; II; ð10:2:9Þ

r2:5De ¼ ffiffiffiffiffiffiffiffiffiffi
r1r2

p
s
t3�q3

2
L ¼ ffiffiffiffiffiffiffiffiffiffi

r1r2
p

L
t3�q3
2m3 ; III; ð10:2:10Þ

where the areas I, II, III, in (10.2.8)–(10.2.10) are the same as in (10.2.4)–(10.2.6).
Obtained in (10.2.8)–(10.2.10) three types of r2:5De behavior, namely above, below
and the percolation threshold itself, are met in quite certain concentration ranges of
good conducting phase pðs3Þ. For instance, in III (10.2.6) or (10.2.10) ~s2j j �D2,
whence according to (10.2.2) we have

s3j j �D2s
t2 þ q2� t3 þ q3ð Þ

t2 þ q2
L ¼ D2L

t3 þ q3�2t2
2t2m3 � s3min; ð10:2:11Þ
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where D2 ¼ ðr2=r1Þ1=2t2 is smearing region in the ordinary two-dimensional case,
and in (10.2.11) it is considered that q2 ¼ t2, and for convenience the designation of
characteristic value s3min is introduced

s3 min ¼ D2L
t3 þ q3�2t2

2t2m3 ;
t3 þ q3 � 2t2

2t2m3
¼ 0:057: ð10:2:12Þ

Let’s note a weak dependence of s3min on L.
In all the three modes—I, II, and III, the effective conductivity of the layer r2:5De

is decreased with increase of L [see (10.2.8)–(10.2.10)]. However, from general
considerations it follows that the layer resistance R ¼ r2:5De H=HL should decrease
at H ¼ const and with increase of L. And, certainly, dependences (10.2.8)–
(10.2.10) must satisfy this requirement. Indeed, (10.2.8)–(10.2.10) imply

R	 La; aI ¼ t3 � t2
m3

� 1; aII ¼ q2 � q3
m3

� 1; aIII ¼ t3 � q3
2m3

� 1; ð10:2:13Þ

where index y a denotes belonging to mode I, II, III in (10.2.8)–(10.2.10).
Substituting into (10.2.13) the canonical values of critical indices, from Table 5.1

we find

aI ¼ �0:2; aII ¼ �0:35; aIII ¼ �0:28; ð10:2:14Þ

With increasing layer thickness, its resistance drops.
In dependences of R on the layer thickness, critical indices of two- and

three-dimensional problem of percolation theory have “united” in a manner unusual
for percolation, which resulted, in particular, in the unexpected inequalities.
Requirement of condition a\0 according to (10.2.13) necessitates fulfillment of
two inequalities:

t3 � t2\m3; q2 � q3\m3: ð10:2:15Þ

It is easy to derive the expressions for the effective conductivity, similar to
(10.2.8)–(10.2.10), for the two-dimensional stripe r1:5De . Moreover, for the case
of stripe one can indicate a class of media for which the reciprocity relations are
met [5].

So far we have dealt primarily with a “deeply” fractal mode, when the condition
(10.1.1) or (10.1.3) was supposed to be valid. It means, among other things, that

ðL=a0Þ�1=m � 1, i.e.L � a0. If such a strong inequality is not fullfilled, i.e., the system
leaves the “deeply” fractal mode, one must take into account [1, 4], that percolation
threshold of percolation layer pck is different from that of three-dimensional sample:

pck ¼ pc3 þ pc2 � pc3ð ÞL�1=m3 : ð10:2:16Þ
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In a “deeply” fractal mode the second term in (10.2.16) is minor, it can be
ignored.

Account of percolation threshold shift (10.2.16) allows at L ! a0 passing to a
two-dimensional case in the expressions for r2:5De :

pck L ! a0ð Þ ! pc2 : ð10:2:17Þ

In [4] a large number of particular cases are considered, as well as the dielectric
(x 6¼ 0) properties of percolation layer.
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Chapter 11
AC Conductivity

11.1 EMT-Approximation

So far we have considered direct current problems, abbreviated as DC-problems
(DC—direct current). For an alternating current (AC-problem, AC—alternating
current) and in the case of low frequencies as compared to frequencies necessary for
establishing the electrical and magnetic polarizations [3], then the conductivity can
be described using complex resistance ZðxÞ—the so-called conductor impedance.
The value inverse to ZðxÞ, is called a conductance GðxÞ ¼ 1/ZðxÞ. In this chapter,
we will provide brief discussion (see monograph [1, 4]) of the effective properties
of the so-called “bad” conductors [3]. For this case both conductivity and dielectric
constant (or inductance) can be simultaneously introduced for the media.

Specific conductance r(x) in this case can be written as

rðxÞ ¼ r0 þ ir00 ¼ rþ xe
i4p

; ð11:1:1Þ

where r is “ordinary” conductivity (i.e., conductivity at direct current), and e is
dielectric constant.

Consider a two-phase composite, where one of the phases is metal and the other
is a “bad” conductor, i.e., a dielectric having low conductivity at direct current as
follows:

r1ðxÞ ¼ r1; r2ðxÞ ¼ xe2
i4p

þ r2: ð11:1:2Þ

Here we ignore the imaginary part of the metal phase conductivity and assume
that the medium is strongly inhomogeneous: r1 � r2, and in the case of an ideal
dielectric r2 ¼ 0.
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Accordingly, for the effective coefficients we have

reðxÞ ¼ r0e þ r00e ¼ re þ xee
i4p

: ð11:1:3Þ

The concentration dependences reðpÞ and eeðpÞ can be found in the EMT
approximation (see Sect. 3.2). For the three-dimensional case

reðxÞ � r1ðxÞ
2reðxÞþ r1ðxÞ pþ

reðxÞ � r2ðxÞ
2reðxÞþ r2ðxÞ ð1� pÞ ¼ 0: ð11:1:4Þ

Figure 11.1 is a plot of the concentration dependence of the real and imaginary
parts of the effective conductivity reðxÞ ¼ re þxee=i4p versus the metal phase
concentration p.

The real part of the effective conductivity Re reðxÞ ¼ r0e (hereafter the prime
will be omitted) behaves in an ordinary (see Chap. 5) monotonous manner, dras-
tically changing its behavior close to pc ¼ 1=3, as it should be with a large
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Fig. 11.1 Concentration dependence of the real and imaginary parts of the effective conductivity:
a the plot of reðxÞ. b dependence of Re reðxÞ on the metal phase concentration, projection to real
plane. c dependence of Im reðxÞ—dielectric constant on the metal phase concentration, projection
to imaginary plane for r1 ¼ 1000, r2 ¼ 0, e1 ¼ 0, xe2=4p ¼ 10 (in arbitrary units)
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inhomogeneity (r1 � r2 or r2 ¼ 0). The imaginary part describing the behavior of
the effective dielectric constant, as is seen from Fig. 11.1c, has a maximum close to
pc, the value of this maximum (with selected parameter values in Fig. 11.1c
eex=4p � 50) being much in excess of the phase itself (e2x=4p ¼ 10). Thus, if re
is monotonously increasing with growth in p, then ee has a maximum close to pc,
i.e., on approaching pc it increases “on both sides.” From expression (11.1.4) it also
appears that maximum of the effective dielectric constant eeðpeÞ is proportional to
the metal phase conductivity r1.

11.2 The Method of Percolation Theory

In the case of large inhomogeneity, as already mentioned before (Sect. 3.2), close to
percolation threshold the EMT predictions become only qualitative, and for a
quantitative determination of the behavior of re, critical indices describing the
behavior of Re reðxÞ and Im reðxÞ one should apply to percolation theory.

Percolation analysis of AC-problem was made in [2], where several possible
particular cases are considered. One of them: Im r1ðxÞ ¼ 0; Re r2ðxÞ ¼ 0,—when
good conducting phase—metal—has no imaginary part, and bad conducting phase
is a perfect dielectric, in this case the direct current conductivity is zero:

r1ðxÞ ¼ r1; r2ðxÞ ¼ xe2=i4p: ð11:2:1Þ

At x ¼ 0 below the percolation threshold in such a medium current cannot flow
reðx ¼ 0; s\0Þ ¼ 0. However, at x 6¼ 0 this is no longer the case. According to
[2], infinitesimality parameter h which in the “ordinary” (x ¼ 0) case is h ¼ r2=r1,
at x 6¼ 0 should be replaced by

h ¼ xe2=4pr1: ð11:2:2Þ

Now, using h from (11.2.2) and the analogy to the effective conductivity, at
x ¼ 0 below the percolation threshold we get

Re reðx; pÞ ¼ x2e2

4pr1
sj j�ð2qþ tÞ; s\0;

eeðx; pÞ ¼ e2 sj j�q; s\0:
ð11:2:3Þ

In smearing region we have

Re rcðx; peÞ ¼ r1
xe2
4pr1

� � t
tþ q

; eeðx; pcÞ ¼ e2
4pr1
e2x

� � q
tþ q

: ð11:2:4Þ

This, among other things, implies that ee � r1, as was qualitatively predicted by
EMT.
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In the case when a dielectric is imperfect, we write down

r2ðxÞ ¼ xe2
i4p

þ r2; r2 6¼ 0: ð11:2:5Þ

Instead of expression (11.2.4) we have

eeðx; pcÞ ¼ e2
r1
r2

� � q
tþ q

: ð11:2:6Þ

These and some other regularities are described by scaling relationship [2]:

reðx; sÞ ¼ r1ðxÞh t
tþ qW

s

h
1

tþ q

� �
; ð11:2:7Þ

formally repeating scaling relationship (5.2.5), however, now h ¼ r2ðxÞ=r1ðxÞ
and will be a complex quantity.

A combination of these regularities, and in particular, such a strange at first sight
fact that the effective dielectric constant above the percolation threshold is described
by index q which had been earlier introduced for the description of re below the
percolation threshold, can be explained on the basis of a hierarchical model of
percolation structure (Sect. 5.4).

Consider first a hierarchical model above the percolation threshold. The first
phase will be assumed to be a metal Im r1ðxÞ ¼ 0, and the second—a perfect
dielectric Re r2ðxÞ ¼ 0, i.e., r2 ¼ 0 see (11.1.2). According to (5.4.12), for the
second hierarchy degree we have

Ge ¼ G1 þG2; ð11:2:8Þ

where according to (5.4.14), (5.4.15)

G1 ¼ r1a
d�2
0 sa1 ; G2 ¼ r2a

d�2
0 s�a2 ;

Ge ¼ reðxÞad�2
0 smðd�2Þ; a1 ¼ t � mðd � 2Þ; a2 ¼ qþ mðd � 2Þ: ð11:2:9Þ

Whence

reðxÞ ¼ r1s
t þ r2ðxÞs�q; s[ 0: ð11:2:10Þ

On dividing reðxÞ into real and imaginary parts, we find

Re reðxÞ ¼ r1s
t þRe r2ðxÞs�q;

ImreðxÞ ¼ Im r2ðxÞs�q:
ð11:2:11Þ
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In this case, when Re r2ðxÞ ¼ 0, from (11.2.11) it follows

re ¼ r1s
t; s[ 0: ð11:2:12Þ

And, since e2 ¼ �ð4p=xÞImr2ðxÞ; ee ¼ �ð4p=xÞIm reðxÞ; for the effective
dielectric constant

ee ¼ e2s
�q; s[ 0: ð11:2:13Þ

The schematic of hierarchical model (11.2.8) immediately implies qualitative
explanation of the appearance of critical index q in the case of s[ 0. Indeed,
whereas for the real part of conductivity its main element is an ordinary resistance
R1 = 1/G1 of the bridge, for the imaginary part which exists only at x 6¼ 0, the main
element is interlayer (capacitor) which is a good conductor of the alternating cur-
rent. Thus, a bridge, hence index t, is responsible for Re reðxÞt, and interlayer,
hence index q, is responsible for Im reðxÞ. With the alternating current, an inter-
layer is an element of percolation structure which at p > pc and x ¼ 0 gives just a
slight correction to the effective conductivity (5.2.11a), for the imaginary part re is
the main element.

For the same case (r1ðxÞ ¼ r1; r2ðxÞ ¼ xe2=i4p) below the percolation
threshold according to the second degree of hierarchical model (5.4.13) we have

Ge ¼ G1G2

G1 þG2
; ð11:2:14Þ

where G1, G2, and Ge are determined as before according to (11.2.9).
Hence

reðxÞ ¼
r1

xe2
4p

� �2
st�2q

r21s
2t þ xe2

4p

� �2
s�2q

þ
r21

xe2
i4p

� �
s2t�q

r1s2t þ xe2
4p

� �2
s�2q

: ð11:2:15Þ

For the case of direct current conductivity (x ! 0), Re reðxÞ ! 0. The inter-
layer serving as a capacitor (11.2.14) “locks” the current. Thus, Re reðxÞ should be
proportional to x and, as is seen from (11.2.15), it is possible on meeting the
inequality

sj jtþ q� xe2
4pr1

; ð11:2:16Þ

and then (11.2.15) takes on the form

reðxÞ � r1
xe2=4p

r1

� �2

sj j�ðtþ 2qÞ þ xe2
i4p

sj j�q; ð11:2:17Þ
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which, on dividing into real and imaginary parts, yields the expression

Re reðxÞ � r1
xe2=4p

r1

� �2

sj j�ðtþ 2qÞ; ee ¼ e2 sj j�q: ð11:2:18Þ

Smearing region, like in the DC-problem, is determined from equality
reðD; p[ peÞ ¼ reðD; p\peÞ. Indeed, equating (11.2.10) and (11.2.16), we have

r1D
t þ xe2

4pi
D�q ¼ r1

xe2=4p
r1

� �2

D�ðtþ 2qÞ þ xe2
i4p

D�q ð11:2:19Þ

from the equality of both real (11.2.19) and imaginary parts, we obtain smearing
region [2]:

D ¼ xe2
4pr1

� � 1
tþ q

: ð11:2:20Þ

Note that according to (11.2.20) condition (11.2.16) means sj j � D, i.e., con-
dition of reðxÞ from (11.2.17) describing the behavior of the effective conductivity
and dielectric constant beyond smearing region [2].

In the case of imperfect dielectric (11.2.5) instead of (11.2.15) from (11.2.14) it
follows

re xð Þ ¼ r1st � r2 xð Þs�q

r1st þ r2 xð Þs�q
; r2ðxÞ ¼ r2 þ xe2

i4p
: ð11:2:21Þ

On the assumption of r2 � xe2=4p and r1 � r2 (strong inhomogeneity) [2]
and condition that the system is beyond smearing region r1st � r2s�q, from
(11.2.21) one can approximately write down reðxÞ as

reðxÞ ¼ r2s
�q þ xe2

i4p
s�q; s\0: ð11:2:22Þ

Equating (11.2.22) to (11.2.10) at sj j ¼ D, we find smearing region for the case
of imperfect dielectric r2 6¼ 0ð Þ:

D ¼ r2
r1

� � 1
tþ q

: ð11:2:23Þ

Whence follows the expression for the effective dielectric constant in smearing
region

eeðDÞ ¼ e2
r2
r1

� �� q
tþ q

: ð11:2:24Þ
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Thus, depending on the fact which inequality holds true: r2 � xe2=4p or the
opposite one—the maximum value eeðDÞ will have the form (11.2.19) or (11.2.4).
Figure 11.2 schematically, on the basis of EMT—approximation, shows both cases
(a similar schematic figure is given in [2]).

Another case is also possible—when the metal phase conductivity includes a
small imaginary part

r1ðxÞ ¼ r1 � xe1
i4p

;
xe1
4p

� r1; ð11:2:25Þ

where e1 is called the dielectric constant of metal.
Note that since the sign of the imaginary part in r1ðxÞ is opposite to the sign of

the imaginary part of dielectric phase r2ðxÞ ¼ xe2=i4p, one can speak of the
imaginary addition in (11.2.25) not as of “dielectric” or capacitive, but as of
inductive one. In conformity with this, above the percolation threshold, with
increasing concentration of the first phase, the imaginary part of the effective
conductivity can change its sign from positive to negative. The medium in general
will become “inductive,” rather than “capacitive.” Figure 11.3 shows a calculation
of the dependence of the imaginary part of the effective conductivity made within
the EMT-approximation for the case of nonzero imaginary part of the first (metal)
phase: r1ðxÞ ¼ r1 � xe1=i4p; r2ðxÞ ¼ xe2=i4p.

In critical region from (11.2.8) and (11.2.10) immediately follows [2]

ee ¼ e2s
�q � e2s

t: ð11:2:26Þ
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Fig. 11.2 Effective dielectric constant eeðpÞ: 1—r1 ¼ 1000; e1 ¼ 0; r2 ¼ 0, xe2=4p ¼ 10,
2—r1 ¼ 1000, e1 ¼ 0, r2 ¼ 10, xe2=4p ¼ 10:
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And from condition eeðp�Þ ¼ 0 one obtains

p� ¼ pc þ pc
e2
e1

� � 1
tþ q

: ð11:2:27Þ

In so doing, certainly, the following inequality should be satisfied

s� ¼ p� � pc
pc

� 1: ð11:2:28Þ

As was shown above, the derivation of all considered cases of the effective
conductivity behavior in critical region was based on the previously established
percolation expressions reðs;x ¼ 0Þ (5.2.4), (5.2.11) or, which is the same, on the
hierarchical model of percolation structure. One can say that the resulting expres-
sions for reðxÞ are valid as much as the schemes of percolation model, in other
words, until bridges and interlayers are the main governing elements at current flow
in the system. As long as there is strong inhomogeneity Re r1ðxÞ � Re r2ðxÞ—
this is probably so. However, other cases are possible, for instance, systems with
low dissipation, when Re r1ðxÞ and Re r2ðxÞ are small (ideally, tend to zero), and
the imaginary parts Im r1ðxÞ and Im r2ðxÞ have different signs. Figuratively
speaking, this is a case, when a medium is a mixture of capacitive and inductive
elements with an ultimately low dissipative part. Such a case goes beyond the
standard percolation theory and will be dealt with in Chap. 20.
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Chapter 12
Galvanomagnetic Properties
of Macroscopically Disordered Media

12.1 Introduction

On introducing a medium into a magnetic field, an “ordinary” Ohm’s law for the
isotropic medium j ¼ rE (r is a scalar) states that

j ¼ r̂ðHÞE; ð12:1:1Þ

where r̂ðHÞ is conductivity tensor,

r̂ ¼
rs ra 0
�ra rs 0
0 0 rz

0
@

1
A; ð12:1:2Þ

where magnetic field intensity H k oz.
Hereafter, for the dependence of the diagonal rs; rz and nondiagonal ra tensor

components on the field H (12.1.2) we will use standard expressions

rs ¼ r

1þ b2
; ra ¼ rb

1þ b2
; ð12:1:3Þ

where r ¼ r H ¼ 0ð Þ, dimensionless magnetic field b ¼ lH=c; l is current carrier
mobility in a medium, c is velocity of light. In so doing, it is common practice to
recognize two cases, a weak field:

b � 1; rs ¼ r; ra ¼ b; ð12:1:4Þ

and a strong field:

b � 1; rs ¼ rb�2; ra ¼ rb�1: ð12:1:5Þ

© Springer Science+Business Media, LLC 2016
A.A. Snarskii et al., Transport Processes in Macroscopically
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Other designations are also of frequent use, e.g.

E ¼ qjþ j� b; b k H; ð12:1:6Þ

or

rE ¼ j� j� b; b k H; ð12:1:7Þ

where r is the same as in (12.1.3), q ¼ 1=r; b ¼ �rb.
The Hall constant R in these designations is of the form

R ¼ � b
H

¼ b
rH

: ð12:1:8Þ

As such, a complicated problem of determination of the effective conductivity
re, becomes even more complicated at H 6¼ 0, and this additional complexity is due
to two factors: the conductivity which is a scalar at H ¼ 0, becomes a tensor when
H 6¼ 0. Second, on application of a magnetic field, the electrical field and current
distortions around a secluded inclusion are changed considerably. At b � 1, cur-
rent distortion occurs not only at the distance of the order of inclusion with size a,
but at a much larger distance of the order of value ba (Fig. 12.1).

aβ

x

H

x

H

x

H

(a)

(c)

(b)

Fig. 12.1 Qualitative pattern of current distortion around spherical inclusion in the
three-dimensional case: Magnetic field H is oriented: a perpendicular to undistorted current
density lines, inclusion—a perfect dielectric r̂2 ¼ 0; b along current lines, inclusions—a perfect
dielectric r̂2 ¼ 0; c perpendicular to current lines, inclusion—a perfect conductor r̂1 ¼ 1
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However, at b � 1 and pb � 1 (p is concentration of inclusions) and p � 1,
EMA “works” no longer. There is no solution of “initialization” problem for
EMA—the problem of field and current distribution in and around a secluded
inclusion, since there is no secluded inclusion itself. Many works disregarding this
fact have unclear applicability limits.

When the distance ba “reaches” the neighboring inclusions (becomes compa-
rable to the distance between the neighboring inclusions), there appear many size
effects. In particular, there is a possibility in the case when pb � 1; res becomes
proportional to the odd degree of field res � b�1, at the same time the longitudinal
rez becomes dependent on a magnetic field in an odd way: rez � b�1.

In the case of large fields ðb � 1Þ it becomes essential that ra [ rs and, even with
small inhomogeneities,whendr=r � 1anddb=b � 1,fluctuationsofra canbemuch
in excess of rs itself, and the use of perturbation theory is impossible. The elaborated
methods that made it possible to go beyond the limits of conventional perturbation
theory in the case of b � 1 have shown that at weak fluctuations of rðdr=r � 1Þ:

r̂ ¼ rðrÞ
b�2 b�1 0
�b�1 b�2 0
0 0 1

0
@

1
A; b � 1; ð12:1:9Þ

the effective values rea � b�1 and rz � b0 show a standard magnetic field depen-
dence, however, a diagonal component of the effective conductivity tensor res
depends on the field unexpectedly (the law of Dykhne-Dreizin):

res �H�4=3 ð12:1:10Þ

Qualitative description of result (12.1.10) (obtained in [57]) was given in
[55]. Account of the limitations of medium sizes along the magnetic field Lz in
large magnetic fields can change the effective conductivity considerably. Thus, as is
shown in [18], in the ultimately strong fields we have

res �H�1L�1=2
z ; b! 1: ð12:1:11Þ

There is no exact solution for effective magnetoresistance properties. However,
for some specific cases—exact solutions (specific for two-dimensional models) and
approximations exist and continued to be developed.

Particularly, for media with two-dimensional microstructure new results devel-
oped in papers [7–9, 11, 21, 22]. Another simplified structure that allows obtaining
new results is a periodical media. Interesting results for periodical media described
in the article [23].

The behavior of magnetotransport in high field in percolation media discussed in
papers [5, 19]. Another approaches (effective medium approximation,
two-dimensional media with equal area fractions) for determining magnetotransport
in high field considered in papers [10, 17].
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There is no possibility to consider the entire variety of inhomogeneous media
behavior in a magnetic field. Therefore, we will dwell on some of them

1. One-dimensional case—layered media in a magnetic field.
2. Two-dimensional D-media and two-dimensional polycrystalline media.
3. Strongly inhomogeneous two-phase media ðr1ðH ¼ 0Þ � r2ðH ¼ 0ÞÞ close to

percolation threshold in the two-dimensional and three-dimensional cases.

12.2 Layered Media in the Magnetic Field

Let us consider the case when oz axis is directed along a magnetic field, oz k H; ox
axis—along the layers, and oy—across the layers. In this case (12.1.2) is written
down as

jx ¼ rsðyÞEx þ raðyÞEy

jy ¼ �raðyÞEx þ rsðyÞEy

�
; ð12:2:1Þ

and account of the boundary conditions (similar to the case of layered media
without a magnetic field, Chap. 3.4) leads to expressions

jy ¼ jy
� �

; Ex ¼ Exh i: ð12:2:2Þ

Using a conventional “parentheses” method (see Sect. 3.4) one can obtain the
following effective conductivity tensor:

re ¼ rexx rexy
reyx reyy

� �
; reyx ¼ �rexy; ð12:2:3Þ

where

rexx ¼ rh i � b2
� �
1þ b2

r

D E ; rexy ¼
bh i

1þb2

r

D E ; reyy ¼
1

1þ b2

r

D E : ð12:2:4Þ

Note that in the local conductivity tensor rxx ¼ ryy, while in the effective con-
ductivity tensor it is no longer the case: rexx 6¼ reyy. Certainly, it is due to the fact that
a layered medium is on the average anisotropic even in the absence of a magnetic
field.
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12.3 Dual Media in the Magnetic Field

The problem of calculation of re in two-dimensional self-dual media (see [13] also
[1, 2, 20] was generalized in [14] for the case when magnetic field is perpendicular
to the gradient of inhomogeneity.

Then for H 6¼ 0 it is possible to obtain an exact solution of the problem for any
value of inhomogeneity (see Chap. 6). Two different cases were considered in [14]:
(1) b1 = b2; r1 6¼ r2 and (2) r1 ¼ r2; b1 6¼ b2. Generalizations were given in [1, 20],
where the most general situation was considered in [1].

Generalization of transformations Dykhne presented in (12.3.1) using notations
from [1]:

j ¼ ~a ~jþ ~bn� ~E
� �

E ¼ ~a ~c~Eþ ~dn�~j
� �

)
; ð12:3:1Þ

Ohm’s law in the presence of magnetic field could be written as:

jþ j� b ¼ rE ð12:3:2Þ

Let us note that b in (12.3.2) has different sign in comparison to (12.1.7). That,
however, does not influence the final result.

Substituting (12.3.1) into (12.3.2) for fields and fluxes with tilde, it is possible to
obtain the same expression (but with tilde field and flux) as in (12.3.2), where

~r ¼
~b2 þ r~c� b~b

� �2
r ~cþ ~b~d
� � ; ~b ¼ bþ c~d

� �
r~c� b~b
� �� ~b

r ~cþ ~b~d
� � ð12:3:3Þ

The media with tilde values would be dual to the main media when for the first
phase

r ¼ r1; b ¼ b1; ~r ¼ r2; ~b ¼ �b2; ð12:3:4Þ

and for the second phase:

r ¼ r2; b ¼ b2; ~r ¼ r1; ~b ¼ �b1; ð12:3:5Þ

It is possible to obtain values ~a; ~b;~c; ~d from (12.3.3), (12.3.4), and (12.3.5).
Using the same analysis for average quantities Eh i; jh i, it is possible to get for

p ¼ 1=2:

r2e~dþ 2be~re � 1þ b2e
� �

~b ¼ 0 ð12:3:6Þ
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It is necessary to have one more expression with re and be in order to get these
values.

Let us consider one more transformation similar to (12.3.1) for the new double
tilde media that will be exactly like the original media, but with the opposite sign of
the magnetic field.

It means that instead of (12.3.4) and (12.3.5) the following expressions should
be considered:

for the first phase:

r ¼ r1; b ¼ b1; ~~r ¼ r1;
~~b ¼ �b1; ð12:3:7Þ

and for the second:

r ¼ r2; b ¼ b2; ~~r ¼ r2;
~~b ¼ �b2; ð12:3:8Þ

Finally, it is possible to find for the two tilde media

r2e
~~dþ 2bere � 1þ b2e

� �~~b ¼ 0 ð12:3:9Þ

After substituting ~a; ~b;~c; ~d into (12.3.6) and (12.3.9), it is possible to find re and
be:

re ¼
ffiffiffiffiffiffiffi
r1r2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r1b2�r2b1

r1 þ r2


 �2
r ;

be ¼ re
b1 þb2
r1 þr2

¼ ffiffiffiffiffiffiffiffiffiffi
r1r2

p b1 þ b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 þ r2ð Þ2 þ r1b2�r2b1ð Þ2

p

9>>>=
>>>;

ð12:3:10Þ

Let us note that expression (12.3.9) is correct for arbitrary distribution of phases
and their concentrations (however, only for isotropic media on the average) [1].
Otherwise, it will not be possible to obtain effective kinetic coefficients. For
example, if one phase is a dielectric ðr̂2 ¼ 0Þ, it is possible to obtain from (12.3.9):

be
re

¼ b1
r1

; p[ 1=2; ð12:3:11Þ

It means, that effective Hall coefficient is equal to R1 for weak magnetic fields
[1]:

Re ¼ R1; ð12:3:12Þ

i.e., effective Hall coefficient is not equal to zero (even with r̂2 ¼ 0) and Re is a
constant quantity, not dependent on concentration [1].
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For D-media, it is possible to write equations for effective coefficients above and
below the percolation threshold for magnetic field, similar to case when H ¼ 0.

The values of reðH 6¼ 0Þ could be obtained for different regular structures, for
example for the net of narrow of periodic dielectric inclusions, or periodic squares
of one phase that do not touch each other, etc. [16]. These values could be obtained
mostly by the methods of theory of complex variables.

The range of applicability of such expression is not clear in advance, especially
in strong magnetic fields, when currents’ changes spreading for long distance. It is
not clear if the solution is stable for small changes of structure (for example, in case
of small deviations from periodicity).

Generalized transformations Dykhne has been considered for the case when
two-dimensional media is locally anisotropic even for H ¼ 0 [4].

For the case when magnetic field is perpendicular to the two-dimensional media,
it is possible to obtain

r̂ðrÞ ¼ r11 r12
r21 r22

� �
¼ r11 rK

rK r22

� �
þ 0 ra

�ra 0

� �
ð12:3:13Þ

where for initially isotropic media rK ¼ 0. Particularly, these generalized trans-
formations are helpful for obtaining effective conductivity for the two-dimensional
polycrystalline media

re ¼ res rea
�rea res

� �
;

res ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11r22 � r12 þr21ð Þ2

4

q
; rea ¼ r12�r21

2

9>=
>; ð12:3:14Þ

There is also a simple way for obtaining the same expressions using different
considerations [15].

In this case, polycrystalline is “built” from two-phase media. Let us assume that
anisotropy (12.3.13)“not real,” but artificially created—local media consists of
parallel infinite stripes with different conductivities:

r̂1ðHÞ ¼ a1 b1
�b1 a1

� �
; r̂2 Hð Þ ¼ a2 b2

�b2 a2

� �
ð12:3:15Þ

Connections between stripes’ conductivities ai; bi and conductivities of single
crystals considered above (12.2.4), in our two-phase case they are:

r11 ¼ 2
a1a2

a1 þ a2
; r22 ¼ a1 þ a2ð Þ2 þ b1 � b2ð Þ2

2 a1 þ a2ð Þ ; r12 ¼ �r21 ¼ a1b2 þ a2b1
a1 þ a2
ð12:3:16Þ
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The tensor of the effective conductivity of the two-phase media in the magnetic
field (12.3.10) could be expressed in the following way:

res ¼
ffiffiffiffiffiffiffiffiffi
a1a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b1 � b2

a1 þ a2

� �2
s

; rea ¼
a1b2 þ a2b1
a1 þ a2

ð12:3:17Þ

In order to obtain the tensor of the effective conductivity of polycrystal, it is
necessary to present ai and bi from (12.3.16) as the function of tensor components
rik from (12.3.14). It follows from (12.3.16) and (12.3.17),

r11r22 ¼ res
� �2

; r12 ¼ rea; ð12:3:18Þ

From here it is possible to derive expressions for the tensor of effective con-
ductivity of polycrystall in the magnetic field (12.3.13).

The same result could be obtained using the generalization of the idea of trap
model (see Chap. 6) for the case of not equal to zero of the magnetic field [15].

12.4 Strongly Inhomogeneous Media in the Vicinity
of the Percolation Threshold, Two-Dimensional
Case

Consider galvanomagnetic properties with the initial (without a magnetic field)
considerable inhomogeneity, r1ðH ¼ 0Þ=r2ðH ¼ 0Þ � 1. In this case, percolation
structure is of great importance in current distribution, and magnetic field “plays its
game” in its background. Galvanomagnetic phenomena in percolation structures
were considered in many papers, see for example [3, 6–12, 19, 20–23, 27–31, 34,
36, 39-54].

Connection between effective Hall constant Re and re(H=0) was determined for
two-dimensional case for all concentration in the paper [20], see also [25]. In papers
[3, 4] isomorphism method was introduced for galvanomagnetic phenomena (see
chap. 15 specifically – for thermoelectric phenomena). The case of the strong
magnetic fields was considered in paper [3]. Particularly, (see [45, 20]), critical
behavior of Re is quite non-trivial as well as the critical behavior of magnetore-
sistance. In [3] different cases are considered: 1. The case when the first phase is an
ideal conductor r1 ->∞. 2. The case when the first phase is an ideal isolator r2=0.
Two particular cases: (1) the first phase—a perfect conductor r̂1 ¼ 1, (2) the
second phase—a perfect dielectric r2 ¼ 0.

In the first case [3]:

res ¼ rs2f2ðpÞ; rea ¼ ra2; s\0; ð12:4:1Þ
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where f2ðpÞ is a function that determines the concentration behavior of the effective
conductivity below the percolation threshold at H ¼ 0,

f2ðpÞ ¼ re H ¼ 0; pð Þ=r2; s\0; ð12:4:2Þ

for sj j � 1 this function, as is known from the percolation threshold (Chap. 5), is
f2 sð Þ ¼ sj j�q.

In the second case [3], at r̂2 ¼ 0 we have

res ¼ rs1
r2s1 þ r2a1

r2s1 þ r2a1f1ðsÞ
f1ðsÞ; rea ¼ ra1

r2s1 þ r2a1
r2s1 þ r2a1f1ðsÞ

f 21 ðsÞ; s[ 0; ð12:4:3Þ

where f1ðsÞ is introduced similarly f2ðsÞ:

f1ðpÞ ¼ re H ¼ 0; pð Þ=r1; s[ 0; ð12:4:4Þ

and at s � 1

f1ðsÞ ¼ st; s[ 0: ð12:4:5Þ

Thus, close to percolation threshold Eq. (12.4.3) assume the form

res ¼ r1
st

1þ b21s
2t
; rea ¼ r1b1

s2t

1þ b21s
2t
; ð12:4:6Þ

these expressions, for b1s
t � 1, are simplified:

res ¼ r1s
t; rea ¼ r1b1s

2t; b1s
t � 1: ð12:4:7Þ

In so doing, the diagonal component of the effective conductivity tensor behaves
as if a magnetic field were equal to zero. Note that since st � 1, the smallness of
b1s

t is by no means the smallnessy of a dimensionless magnetic field b1.
In the case of a large field, so much large that not only b1 � 1, but also

b1s
t � 1, from (12.4.6) it follows

res ¼ r1b
�2s�t; rea ¼ r1b

�1s0; s[ 0: ð12:4:8Þ

As can be seen from (12.4.8), the diagonal component of the effective con-
ductivity tensor behaves in the unusual way on approaching the percolation
threshold, when a bridge becomes increasingly longer, and its resistance—in-
creasingly larger, the diagonal component is not reduced, but res � s�t is increased.
The effective Hall constant Re, as is evident from (12.4.6), does not depend on a
magnetic field
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Re ¼ rea
res
� �2

H
¼ R1: ð12:4:9Þ

It is interesting to note (see [3]) that in a sufficiently strong magnetic field the
boundary condition at r̂2 ¼ 0 in the second phase becomes the same as for r̂1 ¼ 1
in the first phase, i.e., at r̂1 ¼ 1 the boundary of the first (“metal”!) phase behaves
as a dielectric. Figures 12.2 and 12.3 show the schematic concentration and field
dependences of res and rea in the two-dimensional case above and below the per-
colation threshold, respectively.

Let us note that though with a change of magnetic field in rs1 ¼ r1
�

1þ b21
� �

a

transition from rs1 � b0 dependence to rs1 � b�2
1 dependence occurs at b1 � 1, for

res it is “extended”. Indeed, since res � 1þ b21s
2t

� ��1
, and now this transition takes
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Fig. 12.2 Field a, b and concentration c, d dependences of res and rea in the two-dimensional case
above the percolation threshold, in the case when the second phase is a perfect dielectric r̂2 ¼ 0:
Magnetic field ranges: A 1 � b1 � s�t;res ¼ r1st;rea ¼ r1s2tb1, B b1 � s�t;res ¼ r1s�tb�2

1 ;

rea ¼ r1b
�1
1
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place at b1 � s�2t � 1, i.e., with a much larger field. The same “extension” of
transition from one field dependence to the other is also observed for rea.

The general case, when the first phase is not a perfect conductor, but has finite
conductivity, and the second phase which is not a perfect dielectric also has finite
conductivity, though much lower than the first phase, was described in [3]. This
solution clarifies the particular cases mentioned above, and mainly describes the
system behavior in smearing region (in ideal cases this region degenerates into a
point p ¼ pc). As it turns out, when magnetic field is not equal to 0, the standard
smearing region D is modified. For a particular case, when b1 ¼ b2, we have

DH ¼ D

1þ b2
� � 1

tþ q

¼ r2=r1
1þ b2

� � 1
tþ q

; ð12:4:10Þ

i.e., the larger is a magnetic field, the narrower is smearing region DH . Thus, a
situation is possible when a system that was inside smearing region D, on appli-
cation of a magnetic field, leaves smearing region (now DH). The expressions for res
and rea (12.4.6) were derived on the basis of similar expressions for the effective
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Fig. 12.3 Field a, b and concentration c, d dependences of qes and qea in the two-dimensional case
below the percolation threshold, in the case when the second phase is a perfect conductor r̂2 ¼ 1:
Magnetic field ranges: A b2 � 1;qes ¼ qs sj jq;qea ¼ q2 sj j2qb2, B 1 � b1 � s�q;qes ¼
qs sj jqb22; qea ¼ q2 sj j2qb32, C b � sj j�q;qes ¼ q2 sj j�q;qea ¼ q2b2
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conductivity in the absence of a magnetic field and beyond smearing region
sj j � D. Inside smearing region the effective conductivity has, certainly, a different
dependence on the values of phase conductivities. While applying a magnetic field,
two different cases are possible at sj j � D : sj j � DH and sj j � DH . Then we have
for area A

b � s�t; res ¼ r1s
�tb�2; rea ¼ r1b

�1; sj j � DH ; ð12:4:11Þ

for area B

s�t
ffiffiffiffiffiffiffiffiffiffiffiffi
r2=r1

p
� b � st; res ¼ r1s

t; rea ¼ r1s
2tb; sj j � DH ; ð12:4:12Þ

for area C

1 � b � s�t
ffiffiffiffiffiffiffiffiffiffiffiffi
r2=r1

p
; res ¼

ffiffiffiffiffiffiffiffiffiffi
r1r2

p
b�1; rea ¼ 2r2b

�1; sj j � DH ;

ð12:4:13Þ

for area D

b � 1; res ¼
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
; rea ¼ 2r2b; sj j � DH : ð12:4:14Þ

The inequalities for dimensionless field b given in (12.4.11)–(12.4.14), also follow

from the restrictions on s, for instance, from sj j � DH ¼ D0= 1þ b2
� � 1

tþ q; t2 ¼ q2
immediately follows the inequality b � s�t

ffiffiffiffiffiffiffiffiffiffiffiffi
r2=r1

p
(12.4.12).

Apparently, Fig. 12.3 shows the field dependences of res and rea in the
two-dimensional case below the percolation threshold.

As it is evident from (12.4.13) (region C in Fig. 12.4a) the field dependence
res � b�1 is abnormal, and even when the field dependences of rs1 and rs2 are even
the effective dependence of res from the field is odd.
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e
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Fig. 12.4 Field dependences of res and rea in smearing region: magnetic field ranges A, B, C, and
D correspond to expressions (12.4.11)–(12.4.14)
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The general case also described in [3].
The main regularities of the field and concentration behavior of r̂e Hð Þ in the

two-dimensional case beyond smearing region are easily explained and derived
within the models of NLB and HM types. Thus, for instance, below the percolation
threshold along the ox axis current flow occurs similar to situation without a
magnetic field, so we immediately get res ¼ rs2ðbÞ sj j�q, which coincides with the
first expression from (12.4.1), allowing for the fact that beyond smearing region
f2ðpÞ� sj j�q. For the nondiagonal component rea, (Fig. 12.5) the effective value is
determined as such that it connects average over the volume current jy

� �
and field

Exh i:

jy
� � ¼ �rea Exh i; ð12:4:15Þ

in so doing, potential difference Du ¼ Exh i=n; Exh i � Eh i is applied along ox to the
volume with dimensions of the order of correlation radius n. As long as voltage
drop almost completely occurs on the interlayer (with characteristic dimension a0),
the field inside the interlayer is much larger than the average value Exh i and is of the
form

E0 ¼ Eh i � n=a0: ð12:4:16Þ

Exactly this field “creates” the main Hall current directed along the interlayer

jy ¼ �raE
0 � �ra Eh in=a0; ð12:4:17Þ

Here, (in (12.4.17) and in Fig. 12.5) a case is shown when the interlayer is
elongated along oy, however, account of its convolution changes nothing. When
field E0 rotates, the Hall current which is perpendicular to the field will rotate
simultaneously (Fig. 12.5).

The average Hall current is found on condition that this current in the interlayer
jy � a0 is the entire Hall current jy

� �
n:

jy
� � ¼ �jy � a=n ¼ �ra Eh i; ð12:4:18Þ

which immediately implies rea ¼ ra, since jy
� � ¼ �rea Exh i [see the second

expression in (12.4.1)]. The absence of concentration dependence of rea is readily
explained in HM—the Hall current is “accumulated” in the interlayer, in the
presence of the field E0, which is many times larger than the average one, however,
the interlayer cross-section is less than correlation size n by the same magnitude.
Similarly, it is possible to find galvanomagnetic properties above the percolation
threshold, using HM [37]. There are many different situations when
two-dimensional media is located in inclined magnetic field: see [4,37,48].
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12.5 Strong Disorder, Three-Dimensional Case

Three-dimensional case is much more complicated than two-dimensional one. At
H ¼ 0 the behavior of re (see scaling relations in Chap. 5) differs only in the
numerical values of critical indexes, whereas at H 6¼ 0, as we will see below, it is
not the case. In the three-dimensional case, there can appear regularities that are
mostly different from the two-dimensional case.

Particular emphasis in the three-dimensional case was placed on the behavior of
the effective Hall constant. Using a percolation model, for s[ 0 one can write
down

Re �R1s
g; g ¼ 0:6	 1: ð12:5:1Þ

Numerical calculations on different nets give close values for g – for example, in
[30] - g = 0.25±0.05, [29]- g = 0.49±0.06, [32] – g3/m3 = 0.4, it means that if m3 =
0.88, g = 0.35, [42] – g = 0.6±0.1. In granular films [27] the following value of g =
0.49±0.07 was obtained, and in composites GeAu [12] – g = 0.38 when concen-
tration of Ge is close to the percolation threshold, and g = 3.8 when Au is close to
the percolation threshold. Based on the phenomenological consideration, for Re it
was obtained

y

x

j

j

'E

'E

(a) (b)

Fig. 12.5 Schematic of the first HM stage (interlayer) for the determination of the nondiagonal
component oft the effective conductivity tensor reðHÞ in the two-dimensional case: a for the case
below the percolation threshold the resistance of the first phase (shaded) is ignored (an ideal
conductor); b part of interlayer with indication of current and the electrical field direction
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Re ¼ h2R2
re H ¼ 0ð Þ
r1 H ¼ 0ð Þ

� ��2

þ R1 � h2R2
 �<ðp; hÞ; ð12:5:2Þ

where

h ¼ r2ðH ¼ 0Þ
r1ðH ¼ 0Þ ; <ðp; hÞ ¼ uðp; hÞ � r2ðH ¼ 0Þ

r1ðH ¼ 0Þ
� ��1

; ð12:5:3Þ

and uðp; hÞ appears in the relationship

rea ¼ ra2 þ ra1 � ra2ð Þuðp; hÞ; ð12:5:4Þ

In the critical area we have

<ðp; hÞ ¼ h�kF
s

h
1

tþ q

� �
; ð12:5:5Þ

and at

s[ 0; D � s � 1; <� s�q; ð12:5:6Þ

s\0; D � sj j � 1; <� sj j�q; ð12:5:7Þ

sj j � D; <� h�k; ð12:5:8Þ

where

k ¼ g=ðtþ qÞ: ð12:5:9Þ

In the two-dimensional case g2 ¼ 0 and, thus, dependence of Re can be only
smooth.

The simplified version of formula (12.5.2) was suggested in [20]):

Re ¼ h2R2
reðH ¼ 0Þ
r1ðH ¼ 0Þ

� ��2

þ R1½ 
<ðp; hÞ; <ðp; hÞ ¼ ðs2 þD2Þ�g=2 ð12:5:10Þ

Similar expression were obtained in [6]

Re ¼ B1R2h
2s�2t þA1R1s

�q; s[ 0; 1 � s � D0; ð12:5:11Þ

Re ¼ B2R2jsj2q þA2R1s
�g; s\0; 1 � jsj � D0; ð12:5:12Þ

Re ¼ B3R2h
2q
tþ q þA3R1h

� q
tþ q; jsj\D0; ð12:5:13Þ

where A1, B1, A2, B2, A3, and B3 are constants.
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Let us note that (12.5.11)–(12.5.13) from [6] were obtained under scaling
assumptions, but (12.5.2) were obtained for any values of parameters (in linear
H approximation).

Formula (12.5.10) explains why different values of critical exponent g measured
in [12].

Condition of experiment from [12] are such that for the case g * 0.38 the
second term from (12.5.11) is dominant, and for the second case the dominant is the
first term. In the second case not the index g is measured, but an index of the first
term (2t * 4, in experiment *3.8).

Figure 12.6 shows qualitative behavior of Re [6]. Concentration dependence of

Re in the case R1=R2ð Þ tþ q
2qþ g\r2=r1 is smooth, but for R1=R2ð Þ tþ q

2qþ g\r2=r1 - there is

a maximum at p ¼ pc and a minimum at pmin ¼ pc � R1=R2ð Þ 1
2qþ g, accordingly,

Remax ¼ Re pcð Þ ¼ R1 R2=R1ð Þ g
tþ q and Remin ¼ Re pminð Þ ¼ R1 R2=R1ð Þ g

2qþ g:
In the two-dimensional case g2 ¼ 0, therefore concentration dependence of Re is

smooth.
Everything stated above for the three-dimensional case refers to a weak magnetic

field. In strongly inhomogeneous media, for a strong magnetic field mostly new
dependences are possible. In a strongly inhomogeneous medium [56] , i.e., when
the second phase is dielectric inclusions with a low concentration, the transverse
and longitudinal (with respect to a magnetic field) components of conductivity at
H ! 1 abnormally ð�H�1Þ depend on a magnetic field:

res � 1=H; rze � 1=H; bð1� pÞ � 1; 1� p � 1; ð12:5:14Þ

where p, as a rule, is concentration of the first good conducting phase.
It is shown in [40] that at H ! 1 the magnetoresistance exhibits nontrivial

magnetic field dependence in the form

ln eR

p

cpminp

minR

maxR

1
2

Fig. 12.6 Concentration
dependences of the effective
Hall constant Re in critical
region sj j � 1: 1

R1=R2ð Þ tþ q
2qþ g\r2=r1; 2

R1=R2ð Þ tþ q
2qþ g [r2r1
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qeðHÞ=qeðH ¼ 0Þ�H0:5: ð12:5:15Þ

Structural details of percolation cluster, though insignificant in small fields, can
have important consequences for the magnetoresistance behavior in strong fields.
As an example, let us consider a portion of a bridge with and without a loop
(Fig. 12.7).

Let a bridge consist of material with a magnetoresistance that is independent of a
magnetic field. In the absence of a magnetic field, the resistance of bridge portion
between the edges a and b (Fig. 12.7) rab does not depend on the presence or
absence of a loop. In the presence of a strong magnetic field, current flowing along
the portion creates a considerable electromotive force in cd loop due to the Hall
effect. Current generated due to this EMF is proportional to magnetic field H and
creates, in turn, additional Hall voltage proportional to H2 in ab channel.

Note in brief that the above considered methods of studying the effective con-
ductivity in a magnetic field can be used when studying the quantum Hall effect
(QHE) [24, 26, 33]. It is particularly simple to show the “presence” of the quantum
Hall effect (QHE) in a dual medium, writing down components of the effective
conductivity tensor in a magnetic field in the form

rexx ¼
re

1þ b2e
; rexy ¼ �reyx ¼

rebe
1þ b2e

ð12:5:16Þ

where re and be were taken from (12.3.10). Letting r1 ! 1; b1! 1, at r1=b1 ¼
const we obtain

rexx ¼ 0; rexy ¼ r1=b1; ð12:5:17Þ

i.e., the diagonal dissipative part of conductivity tensor is equal to zero and the
nondiagonal part is different from zero.

b

a

b

a

d
c

(a) (b)
Fig. 12.7 The main element
of percolation structure above
the percolation threshold—a
bridge: a portion of a bridge
without a loop; b a bridge
with a loop creating additional
Hall voltage in the bridge
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Chapter 13
Flicker-Noise (1/f-Noise)

13.1 Flicker-Noise in Inhomogeneous Media

When a direct electrical current flows through a conducting sample, voltage fluc-
tuations can be observed. One of the main characteristics of such fluctuations is
their spectral density. The basic definitions and noise measurement techniques are
given in [26, 9]. Noise spectral density is a name for Fourier transform (spectrum)
from the time-domain correlator of fluctuation

SU ¼ dUdUf g; ð13:1:1Þ

where fdUdUg is taken to mean the Fourier image of the time-domain correlator

dUdUf g ¼ 4
Z1
0

d t1 � t2ð Þ cosx t1 � t2ð Þ U t1ð Þ � Uh i;Uðt2Þ � Uh if g;

dUdUf g ¼ 4
Z1
0

d t1 � t2ð Þ cosx t1 � t2ð Þ dUðt1ÞdUðt2Þf g;
ð13:1:2Þ

dUðtÞ ¼ UðtÞ � UðtÞ; ð13:1:3Þ

fdUðt1Þ; dUðt2Þg is the double correlation function, dash above UðtÞ means
averaging over time.

In the state of thermodynamic equilibrium, i.e., in the absence of current, noise
spectral density is proportional to temperature and does not depend on frequency—
it is the so-called Nyquist noise. Current flow causes additional (sometimes called
surplus) noise, the noise spectral density of which is inversely proportional to
frequency. Such a noise is called 1/f-noise (f is frequency designation in radio
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engineering), although often, apart from the above-mentioned term “surplus,” it is
referred to as flickering noise or current noise. At low frequencies, the amplitude of
noise spectral density exceeds other kinds of noise, due to its inverse proportion-
ality to frequency.

Voltage fluctuations dUðtÞ at direct current or current fluctuations dIðtÞ at direct
voltage owe their origin to resistance fluctuations dRðtÞ of the sample. The physical
reason for such resistance fluctuations (noise spectral density is inversely propor-
tional to frequency) has not been established. Here, we will use a phenomenological
approach, rather than discuss these possible mechanisms for 1/f-noise origination.
1/f-noise was discovered in a large number of different effects: in biology, such as
sugar fluctuations in blood, in road traffic, in stock exchange quotation fluctuations,
and many other phenomena.

Instead of noise spectral density it is convenient to use the relative spectral
density of fluctuations (of noise)—the RSD S:

dXdXf g
X2 ; X ¼ J;U;R; ð13:1:4Þ

specifically the RSD of resistance takes the form

S ¼ dRdRf g
R2 ; ð13:1:5Þ

in doing so, the linear conduction region the RSD of current and voltage coincide
with a good precision [see 26]

dRdRf g
R2 ¼ dIdIf g

I2
¼ dUdUf g

U2 : ð13:1:6Þ

Instead of the RSD S, use is often made of the specific RSD C:

C ¼ VS; ð13:1:7Þ

where V is sample volume.
The value C is also called local current density at point r to which volume V is

constricted. Exactly this value characterizes 1/f-noise of given macroscopically
inhomogeneous sample at given point, in particular, 1/f-noise of given phase.

Note that in going from the RSD value to specific RSD, one should multiply by
the volume, rather than divide, as in the case of standard specific values. It is due to
the fact that the larger is the volume where noise is measured, the smaller is the
RSD.

Then, for each phase we will introduce its constant C characterizing this
homogeneous material, thus, a sample of volume V will be characterized by the
value S ¼ C=V . In papers [14, 39, 40], an analogue of Kirchhoff’s rules is given for
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the calculation of S, parallel Sk and series Sn connections of resistances r1; r2; . . .
with the RSD S1 and S2. . . in the form

Sn ¼
X
i

ri
rn

� �2

Si; Sk ¼
X rk

ri

� �2

Si; ð13:1:8Þ

where rk and rn is a total resistance of series and parallel-connected resistances
r1; r2; . . ..

As long as in the measurement of the RSD of current (voltage) its value is
proportional to square of current (voltage), full (effective) RSD Se of a sample with
arbitrarily connected resistances will be expressed through current moment (voltage
moment) [38, 39]:

Se ¼
P

SiI4i r
2
iP

I2i rið Þ2
¼

P
SiU4

i

�
r2iP

U2
i =rið Þ2

; ð13:1:9Þ

where IiðUiÞ is current (voltage drop) on the ith bond. The expression (13.1.9) can
be written in terms of specific RSD C, current density, and field intensity [53, 11]:

Ce ¼
CðrÞðEðrÞjðrÞÞ2

D E
EðrÞjðrÞh i2 ¼ CðrÞr2ðrÞE4ðrÞ� �

re EðrÞh i2
� �2 ¼ CðrÞq2ðrÞj4ðrÞ� �

qe jðrÞh i2
� �2 ; ð13:1:10Þ

where . . .h i is average in the volume.
The expression (13.1.10) for the effective specific RSD Ce can be obtained as

follows. From the determination of the effective conductivity in the form

re ¼
rE2
� �
Eh i2

follows the expression for fluctuation re:

dreðt1Þ ¼
drE2
� �

Eh i2 �
1
V

R
dr1drðr1; t1ÞE2ðr1Þ

Eh i2 : ð13:1:11Þ

Whence

dreðt1ÞdreðteÞf g
r2e

¼
1
V

R
dr1drðr1; t1ÞE2ðr1Þ � 1

V

R
dr2drðr2; t2ÞE2ðr2Þ

	 

re Eh i2

� �2 :

ð13:1:12Þ
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Interchanging spatial and temporal . . .f g averaging and taking into account that
conductivity fluctuations are d-correlated in space, we obtain

drðr1; t1Þdrðr1; t2Þf g� dðr1 � r2Þ; ð13:1:13Þ

where dð. . .Þ is Dirac delta-function, from (13.1.12) we obtain (13.1.10).
Thus, the effective value of the RSD of 1/f-noise in the inhomogeneous medium

is weighted with weight CðrÞ and orthonornmalized square of the Joule heat release
Q ¼ E � j. Therefore, the more inhomogeneous is the medium, the more inhomo-
geneous is Q distribution in it and according to the Cauchy inequality

E2j2
� �� E � jh i2

� �
, the larger is Ce value at approaching the percolation threshold

for p both larger and smaller than the value pc.
Different models of 1/f noise considered in papers [4, 7, 33]. In the paper [36], a

new model of 1/f noise in non-equilibrium stationary state was described as a
product as effective noise of composite network consisting of two types of resistors
(that associated with thermally activated processes of breaking and recovery).
Monte Carlo approach was applied for explanation of concentration dependence of
1/f noise for nanotube films [7].

It is shown that 1/f noise in 3D electron glass connected with percolating phe-
nomena [44].

Another recent area of study of non-equilibrium noise in percolation media is an
area of shot noise experiments and models—see, for example [12, 20]. Application
of anomalous diffusion on fractal media for explanation of shot noise considered in
paper [20]. Experimental of 1/f noise in percolation structures considered in the
following papers [15, 16, 37, 41, 49].

13.2 Flicker-Noise in Inhomogeneous
Media—EMT-Approximation

For the RSD Se, just as for the effective conductivity, the EMT-approximation can
be constructed [38]:

Se
d
¼ p

S1g21 þ d � 1ð ÞSeg2e
g1 þ d � 1ð Þge½ �2 þð1� pÞ S2g

2
2 þ d � 1ð ÞSeg2e

g2 þ d � 1ð Þge½ �2 ; ð13:2:1Þ

where gi ¼ 1=ri is conductance of the ith bond, ge is conductance of the entire
network of resistances, d ¼ 2; 3. . . is problem dimensionality, and the effective
conductance ge is determined in the EMT-approximation.

Equation (13.1.11), linear in the desired value Se, in terms of Ce (13.2.1) is of
the form
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Ce

d
¼ p

C1r21 þ d � 1ð ÞCer2e
r1 þ d � 1ð Þre½ �2 þð1� pÞC2r22 þ d � 1ð ÞCer2e

r2 þ d � 1ð Þre½ �2 ; ð13:2:2Þ

Figure 13.1 shows concentration dependences Ce, obtained in the
EMT-approximations. As is evident from Fig. 13.1, Ce increases on approaching
the percolation threshold, and the maximum value Ce pcð Þ can exceed considerably
the value C1 and C2 in the phases close to percolation threshold (pc ¼ 1=3 for the
3D case). The higher are the inhomogeneities, i.e., the larger is the r1=r2 value, the
larger is Ceðp ¼ pcÞ. Representation of Ce ¼ CeðpÞ dependence in a double loga-
rithmic scale clearly shows the power dependence of Ce ¼ C1 sj j�k on
s ¼ p� pcð Þ=pc, within the EMT-approximation k ¼ 1. When pc approaches
smearing region, Ce saturation occurs. In [38] for the case of infinitely large
inhomogeneity ðr2 ¼ 0Þ and for the region above the percolation threshold the
critical index of 1/f noise within the EMT-approximation was obtained

Ce ¼ C1 sj j�k; kEMT ¼ 1: ð13:2:3Þ

13.3 Flicker-Noise in Percolation Systems

In [54] based on the NLB-model authors considered cases above and below the
percolation threshold. Above the percolation threshold at r2 ¼ 0 for the critical
index of noise k in [54] the following restrictions were obtained:

Fig. 13.1 Concentration dependence of specific RSD of 1/f-noise Ce for three-dimensional case
within EMT-approximation: a view of Ce close to percolation threshold pc ¼ 1=3. Parameter
values (in arbitrary units) r2 ¼ 1;C1 ¼ 1;C2 ¼ 10, 1 r1 ¼ 102, 2 r1 ¼ 103, 3 r1 ¼ 104; b view
of Ce dependence on the proximity to percolation threshold above the percolation threshold
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dmþ 1� 2fR � k0 � dm� fR; fR ¼ t � ðd� 2Þm: ð13:3:1Þ

Below the percolation threshold at 1=r1 ¼ 0 we have

Ce � sj j�k0 ; ð13:3:2Þ

and according to [54] we get

dmþ 1� 2fR � k0 � dm� fR; fR ¼ qþðd� 2Þm: ð13:3:3Þ

Substitution of numerical values m; fR; fG fromTable 5.1 into (13.3.1) and (13.3.3)
yields the values

1:53� k3 � 1:6; 0:38� k03 � 1:02: ð13:3:4Þ

Note that both (13.2.3) and (13.3.2) were obtained for the case of infinitely large
inhomogeneity (r1=r2 ¼ 1). At the percolation threshold (in smearing region), the
expressions for Ceðp[ pcÞ and Ceðp\pcÞ must be equal to each other

Ceðs ¼ D; p[ pcÞ 	 Ceð sj j ¼ D; p\pcÞ; ð13:3:5Þ

and a contradiction immediately follows from (13.2.3) and (13.3.2), since according
to (13.3.5) we have

C1D
�k ¼ C2D

�k0 ; ð13:3:6Þ

and (13.3.6) suggests that the value of smearing region unlike the commonly

accepted value D ¼ r2=r1ð Þ 1
tþ q depends on the ratio C2=C1, rather than on r2=r1.

The second step of the HM will help to understand this contradiction and remove
it [34]. As will be shown below, based on the HM, in the determination of critical
behavior of Ce close to percolation threshold, of principal importance is account of
finite conductivity of phases, and terms proportional to r2=r1 in Ce are not just
small additions to the main expression, as in the case of re.

Consider first the case above the percolation threshold and use the second HM
step (see Fig. 5.13b). According to percolation structure model (see Fig. 5.13b) it
can be written

Ce ¼
C1j21E

2
1
V1
V þC2j22E

2
2
V2
V

r2e Eh i4 ; ð13:3:7Þ

where index 1 refers to the bridge (V1 ¼ a0N1a20 is bridge volume), and index 2 to
the interlayer (V2 ¼ a20N2a0 is interlayer volume), V ¼ n3.
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Currents and fields are simply related to potential difference Du at the ends of a
sample with characteristic size n:

j1 ¼ Du

R1a20
; E1 ¼ Du

L1
; j2 ¼ Du

R2N2a20
; E2 ¼ Du

a0
; ð13:3:8Þ

where L1 ¼ a0N1 is bridge length, N2a20 is interlayer area.
From the expressions (13.3.7) and (13.3.8) ðre ¼ r2 sj j�qÞ immediately follows

[33, 34]:

Ceðp[ pcÞ ¼ C1 sj j�k þC2h
2 sj j�w; h ¼ r2

r1

 1; p[ pc; ð13:3:9Þ

with the following critical index values:

k3 ¼ 4m3 � t3; w3 ¼ q3 þ 2ðm3 þ t3Þ: ð13:3:10Þ

Generalization for the d-dimensional case results in the expressions

k ¼ 2mðd � 1Þ � t; w ¼ qþ 2ðmþ tÞ: ð13:3:11Þ

The expression for 1/f-noise below the percolation threshold is found in a similar
fashion [33, 34, 50]:

Ceðp\pcÞ ¼ C2 sj j�k0 þC1h
2 sj j�w0

; ð13:3:12Þ

where

k0 ¼ 2m� q; w0 ¼ 2qþ tþ 2mðd � 1Þ: ð13:3:13Þ

It is worthy to note that in the expressions for the effective conductivity the additional
components are proportional to h and, for example, at p[ pc; re ¼ r1st þ r1h�
sj j�q þ � � � : are small additions, whereas similar components in (13.3.9) and
(13.3.12), proportional to h2, can be both much lower and much larger than the first
component depending on the ratio C1=C2. Thus, if in the first inhomogeneity
approximation the effective conductivity both above re 	 r1st and below r2 	
r2 sj j�q the percolation threshold is described by the first HM step, then the RSD of
1/f-noise Ce calls for account of the second HM step, and then the expressions
(13.3.9) and (13.3.12) will serve as the first inhomogeneity approximation.
Subsequent terms, now really always minor (beyond smearing region) as compared
to the basic ones, could be obtained by the analysis of subsequent HM steps.

The expressions Ceðp[ pcÞ (13.3.9) and Ceðp\pcÞ (13.3.12) allow consistent
determination of the RSD of 1/f-noise in smearing region. Just like for re, in
smearing region the equality (13.3.5) should be met. Substituting (13.3.9) and
(13.3.12) into (13.3.5) we get
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C1D
�k þC2h

2D�w ¼ C2D
�k0 þC1h

2D�w0
; ð13:3:14Þ

which yields two equations for the determination of D:

D�k ¼ h2D�w0
; h2D�w ¼ D�k0 : ð13:3:15Þ

In turn, these two equations result, as they must, in identical values for smearing
region D that coincide with the standard:

D ¼ h
2

w0�k ¼ h
2

w�k0 ¼ h
1

tþ q:

Note that compatibility of equation system (13.3.15) is only possible under quite
certain relation between the four critical indices of 1/f-noise—k; k0;w;w0:

w� k0 ¼ w0 � k: ð13:3:16Þ

Moreover, from the condition of compatibility of equation systems (13.3.15) and
(13.3.16) follows a relation between certain combinations of critical indices of 1/f-
noise and the so-called scaling factor u ¼ tþ q

w� k0

2
¼ w0 � k

2
¼ u; ð13:3:17Þ

scaling relations similar to those mentioned above are given in [29].
Relations (13.3.16) and (13.3.17) do not depend on the model used and, thus, on

the specific values k; k0;w;w0 that are different in different models and
approximations.

Substitution of D into (13.3.9) or (13.3.12) results in the expression for the RSD
of 1/f-noise in smearing region in the following form

CeðDÞ ¼ C1h
�x þC2h

�x0
; ð13:3:18Þ

where

x ¼ 2
k

w� k0
¼ k

tþ q
; x0 ¼ 2

k0

w� k0
¼ k0

tþ q
: ð13:3:19Þ

In the framework of the HM with regard to (13.3.117) and (13.3.13) we have

x ¼ 2mðd � 1Þ � t
tþ q

; x0 ¼ 2m� q
tþ q

: ð13:3:20Þ

For the two-dimensional case ðt2 ¼ q2 	 m2Þ, at the percolation threshold we
write down
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x1 ¼ x2 ¼ 2m2 � t2
2t2

	 1
2
: ð13:3:21Þ

Relative contribution to the RSD of 1/f-noise depends only on the ratio between
the RSD of 1/f-noise in phases and is independent of the value r2=r1:

CeðDÞ ¼ ðC1 þC2Þh
2m2�t2
2t2 	 ðC1 þC2Þ

ffiffiffi
h

p
; ð2DÞ ð13:3:22Þ

From the analysis of expressions for Ce above (13.3.9) and below (13.3.12) the
percolation threshold, it follows that there is a possible set of parameters, such that
beyond smearing region the dominant contribution will be provided by the second
term (Fig. 13.2) [29, 34]. For instance, above the percolation threshold for

C2=C1 � h k�k0ð Þ= tþ qð Þ and sc ¼ h2C2
�
C1

�  1
w�k for the concentration range of good

conducting phase D 
 s\sc the critical index k is replaced by w (Fig. 13.2a), and

below the percolation threshold for C2=C1 
 h k�k0ð Þ= tþ qð Þ and s0c ¼ � h2c1=c2ð Þ 1
w0�k0

in the concentration range sj j\ s0c
�� �� the critical index k0 is replaced by w0. The

values sc and s0c can be calculated directly from (13.3.9) and (13.3.12).
Thus, in the measurement or numerical simulation, on approaching the perco-

lation threshold, at p[ pc critical index k0 can be replaced by w0 [33, 34] and k—by
w [33, 34, 50]. Really, in some papers dedicated to experimental studies, one can
come across critical indices: in the two-dimensional case k2=t2 	 6:27� 0:08 [32],
and in the three-dimensional case k3=t3 	 5� 1 [13], that are close to w2=t2 and
w0
2=t2.
Table 13.1 lists the numerical values of critical indices obtained by numerical

simulation and theoretical methods. A detailed discussion of the experimental data
will take place after the description of critical behavior of 1/f-noise in the so-called
Swiss Cheese media [21].

'kτ − wτ −

eC

kτ −

Δ τcτ

eC

Δcτ− τ

'wτ −

'kτ −

kτ −

(a) (b)

Fig. 13.2 Schematic representation of concentration dependence Ce ¼ CeðsÞ in the double
logarithmic range for two special cases: a above the percolation threshold; b below the percolation
threshold
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Note that the numerical values of indices k; k0;w;w0 and their exact boundaries in
Table 13.1 were calculated in conformity with the use of “canonical” values of t,
q and v, therefore, they are slightly different from those in [54].

13.4 Abnormally High Rate of Flicker-Noise in Self-dual
Media

As it follows from the determination of the RSD of 1/f-noise (13.1.10), it is
expressed through the fourth moment of electric current density or electric field
intensity. For re, which, in turn, is expressed through the second moment, there
exists a universal expression for self-dual media (the Dykhne formula
re ¼ ffiffiffiffiffiffiffiffiffiffi

r1r2
p

). However, it can be easily shown than for the RSD of 1/f-noise as a
more “intrinsic” characteristic depending on the fourth moment, there is no such
relation. And, the expressions for Ce are different, for instance, for randomly
inhomogeneous medium and self-dual medium with a checkerboard structure. The
effect of “microgeometry” on the RSD of 1/f-noise was considered for some cases
in [8]. Here we will consider a case of checkerboard type medium.

Paper [18] deals with 1/f-noise in the medium having a checkerboard structure,
with D-point as its main element (Chap. 6)—Fig. 6.3. In [47] it was shown that the

Table 13.1 The numerical values of critical indexes obtained by numerical simulation and
theoretical methods

Critical
index

Numerical value according to
the HM [33, 34]

Exact boundary
according to [54]

Numerical
simulation

k3 1.52 1:4� k3 � 1:52 1.47 [28], 1.57 ([3])
1.58 [17], 1.49 [51]
1.58 [30]

k03 1.03 0:42� k03 � 1:03 0.55 [30], 0.58 [51]
0.68 [52]

k2 ¼ k02 1.37 1:07� k2 � 1:37 1.12 [39]

w3 6.49

w0
3 6.98

w2 ¼ w0
2 6.57

k6 2 2� k6 � 2 2:06� 0:08 [2]

k06 1 0� k06 � 1

w6 7

w0
6 7

x2 ¼ x0
2 0.53

x3 0.56

x0
3 0.38

Note Exact boundaries [54]: dmþ 1� 2fR � k� dm� 3fR; dm� 1� 2fR � k0 � dm� fR
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main Joule heat E � j, the more so its square ðE � jÞ2, is released in the vicinity of
D-point. The distribution of uðr; hÞ potential close to D-point (Fig. 13.3) is found
similar to the way it was done for current trap in a two-dimensional polycrystalline
medium:

u1ðr; hÞ ¼ A1r
m cosmh;

u2ðr; hÞ ¼ A2r
m sin m

p
2
� h

� �h i
;

ð13:4:1Þ

where indices 1 and 2 are related to the first ðr1Þ and second ðr2Þ phases, while
constant m and a relation between A1 and A2 are found from the boundary
conditions.

At the phase boundaries, i.e., at h ¼ �a there should be met the potential
continuity

u1ðr; h ¼ �aÞ ¼ u2ðr; h ¼ �aÞ; ð13:4:2Þ

and the continuity of current components normal to phase boundary

jh1ðr; h ¼ �aÞ ¼ jh2ðr; h ¼ �aÞ; ð13:4:3Þ

where

jhkðr; hÞ ¼ rkEhðr; hÞ ¼ �rk
1
r
@uk

@h
; k ¼ 1; 2: ð13:4:4Þ

Substitution of (13.4.1) into (13.4.3) and (13.4.4) leads to expressions

tgðmaÞtg m
p
2
� a

� �h i
¼ r2

r1
; ð13:4:5Þ

r1A1r
mm sinðmaÞ ¼ r2A2mr

m cos m
p
2

� �
� a

h i
: ð13:4:6Þ
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0,2

0,1

2/ πα

ch

r

θ α

x

y

1σ

2σ

(a) (b)

( )

Fig. 13.3 Dependence hc ¼ hcðaÞ (a) and location of phases close to D-point (b)
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Thus, according to (13.4.5) each value of r2=r1 ratio is matched by its own
value of m parameter, and condition (13.4.6) allows expressing A2 through A1. With
regard to (13.4.5) and (13.4.6), the square of electric field intensity in the first phase
is equal to

E2
1 ¼ E2

r1 þE2
h1 ¼

@u1

@r

� �2

þ 1
r
@u1

@h

� �
¼ A2

1m
2r2ðm�1Þ: ð13:4:7Þ

E2
2 is exactly of the same form, but with A2 substituted for A1. As long as the

RSD of 1/f-noise Ce is proportional to
R
E4dV where dV ¼ 2pr dr, from (13.4.5) it

follows that

Ce �
Za

0

dr
r3�4m: ð13:4:8Þ

Here, a is a size of the order of medium “box” size. As can be seen from
(13.4.8), at

m�mc ¼ 1
2
; ð13:4:9Þ

the integral (13.4.8) becomes divergent which means an abnormal growth of 1/f-
noise.

According to (13.4.5), for each angle a there exists such value hc ¼ r2=r1ð Þc,
whereby for h\hc the integral (13.4.8) becomes divergent and the amplitude of 1/f-
noise Ce becomes abnormally large. Dependence hc ¼ hcðaÞ is shown in Fig. 13.3,
a, where hc = tg mcað Þtg mc p=2� að Þ½ � ¼ r2=r1 and mc ¼ 1=2. In Fig. 13.3a, an
area is separated where the amplitude of 1/f-noise is abnormally large. For a
medium with checkerboard structure a ¼ p=2; hc p=2ð Þ ¼ 0:172ð Þ.

13.5 Flicker-Noise in the Systems with Exponentially
Broad Spectrum of the Resistances

Consider now the RSD of 1/f-noise in the systems with exponentially wide resis-
tance spectrum [35]. The results of such measurements are given in [10]. In this
paper, the percolation effects in systems with such 1/f-noise have been called
quantum percolation.

To determine the RSD of 1/f-noise, one should first formulate an assumption
similar to the Houge hypothesis, i.e., assign the dependence of C on local con-
ductivity r. In Chap. 8, for the local resistance and conductivity it was assumed
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rðxÞ ¼ r0e�kx; r xð Þ ¼ r0ekx; k � 1; ð13:5:1Þ

where x is random variable uniformly distributed in the range [0,1].
According to the Houge hypothesis, C� 1=n, where nðxÞ is current carrier

concentration. As long as generally the specific conductivity r� n, here the fol-
lowing hypothesis will be assumed:

CðxÞ ¼ a
rðxÞ ; a ¼ const: ð13:5:2Þ

The RSD of 1/f-noise is calculated similar to re in the systems with exponen-
tially wide spectrum of properties (Chap. 8)—one should calculate the RSD of 1/f-
noise of the bridge and interlayer in smearing region.

For the bridge according to (13.1.8) we have

S1 ¼
X r xð Þ

re

� �2

SðxÞ; ð13:5:3Þ

where the sum is taken over all the bonds in the bridge, and according to (13.5.2)
for the three-dimensional case, we will get

SðxÞ ¼ a
rðxÞ
a20

: ð13:5:4Þ

Thus,

S1 � a

P
r3ðxÞ
r2e

¼ a
N1 r3

� �
1

r2e
; ð13:5:5Þ

. . .h i1 is calculated just as in Chap. 8 (8.2.3):

r3
� �

1 ¼
Z1

x1

r3 xð ÞP xð Þdx ¼ r30
3 1� x1ð Þk e�3kx1 � e3k

�  	 r31e
�3kx1

3 1� x1ð Þk ;

x1 ¼ xc þ 1� xcð ÞD;
ð13:5:6Þ

where D is the size of smearing region (8.2.14).
Substituting D into expressions (13.5.6) and (13.5.6) into (13.5.5), we find

S1 � ar xcð Þk2�3a1 þ a2
2 ; ð13:5:7Þ
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or, passing from S1 to specific characteristic, we have

Ce
1 � ar xcð Þk2�3a1 þ a2

2 þ md: ð13:5:8Þ

The RSD of 1/f-noise of the interlayer is calculated in a similar fashion:

S2 ¼
X re

r xð Þ
� �2

SðxÞ� r2e
X 1

r xð Þ ¼ r2eN
1
r

� �
2
: ð13:5:9Þ

Whence

S2 � ar xcð Þka1�a2
2 ; Ce

2 � ar xcð Þka1�a2
2 þ md: ð13:5:10Þ

Within both the NLB-model ða1 ¼ a2 ¼ 1Þ and in the HM ða1 ¼ nR; a2 ¼ nGÞ
we write down

a1 � a2
2

[ 2� 3d1 þ d2
2

: ð13:5:11Þ

Thus, in the systems with exponentially wide resistance spectrum, 1/f-noise in
smearing region is always larger in the interlayer than in the bridge, i.e., it deter-
mines the noise in the whole system

Ce � 1
r
e�kxckm ¼ k2m

re
; ð13:5:12Þ

m ¼ a1 � a2
2

þ md: ð13:5:13Þ

Within the NLB-model we have

mNLB ¼ md; d ¼ 2; 3; . . .: ð13:5:14Þ

Within the HM

m ¼ t � q
2

þ 2m; d ¼ 2; 3; . . .: ð13:5:15Þ

In [31], a numerical simulation on cubic network was conducted. The value of
index m� 2y was calculated, which proved to be equal to 0:78� 0:09, which is
closer to (13.5.14) mNLB � 2yNLB ¼ 0:88 than to (13.5.15) mиM − 2yиM = 1.12. It
means that in the calculation of the second moments of current distribution the
decisive contribution is made exactly by SDCB-“single disconnected bonds,” the
number of which in the interlayer N2 � s�1 [54]. Qualitatively, this conclusion can
be explained as follows. As was previously described in Sect. 5.4 (see Figs. 5.11
and 5.12), the difference of the HM from the NLB-model lies in selecting N1—the
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number of bonds in the bridge and N2—in the interlayer. In the NLB,N1 and N2 are
SCB- and SDCB-bonds. If, as a result of this approach, when calculating the
effective conductivity one takes into account only such bonds in the bridge and the
interlayer, critical indices of conductivity t and q will be only approximately equal
to their values established in numerical and field experiments.

In reality, in a bridge even the major element of percolation structure, one can
come across twice and three times of paralleled bonds. Such bridge construction
becomes too complicated for calculations. In the HM this complicated bridge is
replaced (approximately) by a simple one, where all paralleled bonds are replaced
by certain number of SCB, the total number of SCB being selected equal to
N1 � snR , i.e., such that in the calculation of re one could get the predetermined
(canonical) value of critical index t.

A similar substitution takes place in the other element of percolation structure—
the interlayer. Apart from SDCB (single disconnected bonds of small conducting
phase), it comprises elements with two, three … bonds. In the HM these elements
are taken into account and replaced by a certain number of “single” ones, such that
full number of “single” elements be already not N2 � s�1, like in the NLB-model,
and N2 � snG , such that critical index of the effective conductivity below the per-
colation threshold q be equal to canonical value.

For two-phase systems, when each conducting bond has resistance r1, and
bad conducting bond—r2, such HM approach allows in many cases sufficiently
precise calculation of critical indices. For systems with exponentially wide spec-
trum of resistances the situation is more difficult. While in the calculation of y—
critical index of pre-exponential factor in the effective conductivity—the HM
approach “works” (i.e., these predictions are more precise than in the NLB-model),
in the calculation of higher current moments this is no longer the case. Even in
smearing region the bridge and interlayer resistances are considerably different.
And then two series couples of parallel-connected resistances in a bridge cannot be
reduced to one resistance r1, since in each couple the resistance values are con-
siderably different and only one of them is essential for passing of the current.
However, in the interlayer, one of the two series-connected resistances will be much
larger than the other, and these couples have to be discarded from the interlayer, and
only SDCB with N2 � s�1 remain, as accepted in the NLB-model.

Thus, the result of numerical simulation [31] allows one to assume that
current-carrying cluster in systems with exponentially wide spectrum of resistance
distribution on consideration of the fourth (and, probably, higher) current moment
is different from that in two-phase systems.

Coming back to the expression for the RSD of 1/f-noise Ce (13.5.12), note that
local Houge hypothesis assumed in (13.5.2) is not longer fulfilled for the entire
sample:

Cere � k2m � 1: ð13:5:16Þ
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In papers [27, 48] it was shown that in a number of cases local values of C in
tunnel junctions may not depend on r1, i.e., instead of the Houge hypothesis
(13.5.2) holds

CðxÞ 	 a

rðxÞh
; h ! 0: ð13:5:17Þ

In paper [45], the RSD of 1/f-noise was calculated for systems with exponen-
tially wide spectrum of resistance distribution, when (13.5.17) is met for the local
noise. Calculations similar to those given above yield the expression

Ce � r0ekxc
� �h

kmh : ð13:5:18Þ

It turned out that in the range 0\h\2 critical index is universal, i.e., inde-
pendent of parameter h:

mh ¼ md; 0\h\2: ð13:5:19Þ

This theoretical conclusion is proved by numerical simulation (in more detail see
in [45, 46]).

It is interesting to note that though Ce h ¼ 1ð Þ exponentially is considerably
different from Ce h ¼ 0ð Þ, for instance, at k 	 30 and xc ¼ 0:75, we have

Ce h ¼ 0ð Þ
Ce h ¼ 1ð Þ ¼ ekxc � 109; ð13:5:20Þ

index mh both according to theory and the numerical calculation results remains the
same.

The problem of calculation of current distribution in a system with exponentially
wide spectrum of resistance distribution describes not only hopping conduction in
doped semiconductors. To this problem, for example, is reduced the problem of
properties of semiconductors with large-scale potential relief VðrÞ modulating the
bottom of conduction band [42, 43]. To solve the problem of determination of re
and RSD of 1/f-noise Ce in such semiconductors, one should first of all know the
resistance of the bridge and the interlayer. Second, unlike the approach given
above, it has specific features close to Swiss Cheese-media (Chap. 7), since in each
of resistances that enter the bridge and the interlayer, current flows through passes
in potential relief and its distribution in such passes is nonuniform. Account of this
non-uniformity, similar to the way it happens, for instance, in the “necks” in
Swiss-Cheese-problem, leads to renormalization of critical index y of effective
conductivity [5] with addition of summand 1/2:

re ¼ r xcð Þk�y; y ¼ a1 � a2
2

þ m d � 2ð Þþ 1
2
; ð13:5:21Þ
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where k ¼ 2V0= KTð Þ � 1;V0, is energy parameter determining large-scale
potential VðrÞ close to saddle value:

VðrÞ ¼ VS þ V0

b
�x2 þ y2 þ z2
� 

; ð13:5:22Þ

and VS is pass height, b is spatial scale.
On meeting the Houge hypothesis CðrÞ ¼ a=nðrÞ with regard to current inho-

mogeneities on the passes, we get

Ce ¼ a
nc

V0

KT

� �c

; c ¼ 3
2
þm; ð13:5:23Þ

where m is the same as in (13.5.13), (13.5.14) is critical index of the RSD of 1/f-
noise without account of current non-uniformity in each of the passes, constant 3/2
renormalizing critical index m is related exactly to this account; nc is concentration
of free carriers on the main (key) pass that determines rðxcÞ.

In addition to the above, in [6] authors consider passes having two energy
parameters instead of one.

13.6 Flicker-Noise for Fluctuation of Phase Concentration

Unexpected “percolation” mechanism of the RSD of 1/f-noise was discovered in
high-quality thin superconducting films. In the works [22] (see also [19, 24, 25, 23])
when measuring 1/f-noise on the high-quality thin films in superconducting state
there were obtained critical indices k and k0 exceeding critical indices k and k0

(Table 13.2).
In the superconducting state, the conductivity in high-quality thin films is

described as the conductivity of a net of Josephson contacts interconnecting
superconducting grains. Each of Josephson contacts has its own value of critical
current Ic such that on passing current I\Ic through the contact it is supercon-
ducting (no voltage drops on it), and at I[ Ic the contact is a conventional resis-
tance. The value Ic is directly proportional to bond energy [1]. Temporal
fluctuations of bond energy lead to fluctuations of the number of Josephson contacts

Table 13.2 Critical indices for bulk media k, k' and for thin superconducting films k, k'

Problem dimensionality k k0 k
t

k0
q

k ¼ 2
t k0 ¼ 2

q

2D 1.37 1.37 1.05 1.05 1.54 1.54

3D 1.52 1.03 0.76 1.41 1.0 2.74
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in the sample, i.e., to fluctuation of superconducting phase concentration. For
instance, below the percolation threshold ðp\pcÞ we have

qe � p� pej jq: ð13:6:1Þ

Whence

dqe ¼
@qe
@p

dp� q
1�1

q
e dpðtÞ; ð13:6:2Þ

And for the RSD of 1/f-noise we get

Ce ¼ dqedqef g
q2e

� q
�2

q
e dpdpf g; p\pc: ð13:6:3Þ

Thus, a new critical index k0 related to fluctuation of superconducting phase
concentration is of the form

k0 ¼ 2
q
: ð13:6:4Þ

The critical index above the percolation threshold is found similarly

k ¼ 2
t
: ð13:6:5Þ

As is evident from Table 13.2, for instance, in the three-dimensional case, below
the percolation threshold k03 ¼ 2:74, which is twice as large a k03=q3 ¼ 1:41. The
resulting critical indices k0 and k are in good agreement with the experimental data,
for instance, [23].
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Chapter 14
Higher Current Moments

14.1 Definitions

The effective resistivity qe is proportional to second current moment

qe � qj2
� �

; ð14:1:1Þ

and the relative spectral density of 1/f-noise, more “intimate” medium parameter,—
to fourth current moment:

Ce � Cq2j4
� �

: ð14:1:2Þ

Both qe; Ce, and re can be expressed through moments of electric field intensity
or moments of local Joule heat release Q = E � j.

In case of conducting composites with a weak nonlinearity of one or both
phases, when local conductivity can be represented as an expansion (see Chap. 17),
it can be written

r�r0ðrÞ + vð3ÞE2 + . . ., ð14:1:3Þ

and thus, in the calculation of the effective properties it is also necessary to consider
higher current and field moments.

Therefore, one can formulate the problem of behavior of n-th field moment,
current, Joule heat release. For two-phase media these moments can be “separated”
into two phases

Qnh i = 1
V

Z
V

QndV = p Qnh i1 + (1 - p) Qnh i2; ð14:1:4Þ

where . . .h ii = V�1
i

R
Vi

. . .dV is the average of i-th phase.
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Critical behavior of higher moments (with n� 2) was studied in many papers, in
particular [3, 5, 8], current moments in percolation media were investigated and
critical indices for the description of such moments were introduced. Numerical
simulation for the determination of critical indices of higher moments in the two-
and three-dimensional cases was performed in [2, 10] and in [7] based on the HM.
There were obtained analytical expressions for critical indices and the problem of
higher moment scaling was considered.

By analogy to relative spectral density of 1/f-noise we will introduce the fol-
lowing determination for the effective n-th moment of distribution of current (field,
Joule heat release) in the form

CeðnÞ = Cðn; rÞ EðrÞ � jðrÞð Þnh i
EðrÞh i jðrÞh ið Þn ; n = 1; 2; . . . ð14:1:5Þ

Moment CeðnÞ is normalized for Eh i jh ið Þn = re Eh i2
� �n

= rne Eh i2n. In particu-

lar, such normalization (which includes re) for n = 1 leads to identity

Ceðn = 1Þ = 1; ð14:1:6Þ

and, thus, higher moments Ceðn[ 1Þ provide information additional to the moment
proportional to re. For n = 2 with selection of Cð2; rÞ ¼ dr drf g=r2 the moment
Ceðn = 2Þ is the relative spectral density of 1/f-noise. If Cð2; rÞ = 1 is selected, in
this case Ceðn = 2Þ will be the moment of distribution of Joule heat release.

For the two-phase medium (14.1.5) it is logical to write as follows:

CeðnÞ = 1
Eh i jh ið Þn pC1ðnÞrn1 E2n� �

1 þð1� pÞC2ðnÞrn2 E2n� �
2

� �
¼ 1

Eh i jh ið Þn pC1ðnÞqn1 j2n
� �

1 + (1� p)C2ðnÞqn2 j2n
� �

2

� �
:

ð14:1:7Þ

Hence, CeðnÞ is determined through partial (according to phases) moments of
electric field intensity and current density. Note that with a selected normalization
of CeðnÞ (14.1.5), it is not the values of current density jðrÞ or field intensity EðrÞ
that are essential, but only their directions jðrÞ= jh ij j; EðrÞ= EðrÞh ij j.

14.2 Critical Exponents of the Higher Current Moments

Close to percolation threshold CeðnÞ behaves universally, i.e., just as in the case of
re and the relative spectral density of 1/f-noise is characterized by critical indices.
The HM allows (approximately, of course) expressing critical indices CeðnÞ
through the basic critical indices of percolation theory—critical index of correlation
length and critical indices of the effective conductivity above and beyond the
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percolation threshold. In so doing, use is made of the fact that correlation length is a
universal parameter with critical index v that does not depend on the moment under
consideration [11].

Similar to the way the relative spectral density of 1/f-noise was calculated in the
HM, one can also find critical indices, describing the behavior of CeðnÞ. For
instance, above the percolation threshold (see paragraph 5.4):

CeðnÞ ¼ C1ðnÞ jn1 En
1 VB=V þC2ðnÞ jn2 En

2 VI=V

rne Eh i2n ; ð14:2:1Þ

where j1 and E1 is current and field in the bridge, j2 and E2 is current and field in the
interlayer, VB = ad�1

0 l = ad0N1 is bridge volume, VI = ad0N2 is interlayer volume,
V = nd .

Introducing the average field E¼ Du=n, where Du is potential difference on the
size n and expressing E1 and E2 through Du, from (14.2.1) we immediately find [7]:

CeðnÞ = C1ðnÞs�kn þC2ðnÞhns�wn ; ð14:2:2Þ

and below the percolation threshold for the same reasons we have

CeðnÞ = C2ðnÞ sj j�k0n + C1ðnÞhn sj j�w0
n ; ð14:2:3Þ

where

kn ¼ 2mðd � 1Þ � t½ �ðn� 1Þ; k0n = (2m� q)(n� 1), ð14:2:4Þ

wn ¼ k0n + nðtþ qÞ; w0
n = kn + nðtþ qÞ; ð14:2:5Þ

There is a connection between the critical indices kn; k0n;wn and w0
n [compare to

(13.3.16)]:

kn þwn ¼ k0n þw0
n: ð14:2:6Þ

Substituting into (14.2.2) or (14.2.3) instead of s the value of smearing region

D ¼h
1

tþ q, we find the expression CeðnÞ in smearing region

CeðnÞ = C1ðnÞhsn + C1ðnÞh�zn ; ð14:2:7Þ

where

sn =
kn

t + q
; zn ¼ k0n

t + q
: ð14:2:8Þ

Relationships (14.2.5), (14.2.6), and (14.2.8) are precise, independent of the
employed model of percolation structure. They follow from the requirements to
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have the same values of the effective coefficients below, above and on the perco-
lation threshold itself (in smearing region). Concrete values of kn and k0n (14.2.4)
(see Table 14.1) are of course approximate, since they are based on the HM.

The accuracy of critical indices describing the behavior of higher moments
obtained on the basis of the HM can be estimated by considering the works [2, 10],
where the numerical experiment (simulation by the Monte Carlo method) was
performed on the random lattice of resistances. In these works n-th cummulant of
fluctuations of resistances in the net

P
a

i2a
� 	n

CaðnÞ, was calculated, where CaðnÞ is
n-th cummulant of fluctuations of a-bond. This sum depending on the values of
problem parameters can be written as the sum over all well-conducting bonds (in so
doing, the resistances of poorly conducting bonds are selected as infinite r2 ¼ 1)
[2]:

X
a

i2a
� 	2( )

� L�xn ; L \n; ð14:2:9Þ

or as a sum over poorly conducting bonds (in so doing, the resistance of
well-conducting bonds r1 ¼ 0):

X
a

i2a
� 	n( )

� Lyn ; L \n: ð14:2:10Þ

The expressions (14.2.9) and (14.2.10) consider nets at the percolation threshold
and with sizes L� n, braces mean averaging over random net realizations. In this
case (see Chap. 9 and [3, 5, 8, 9]) the averaged over realizations values are pro-
portional to sample size. When sample size exceeds the value n, this dependence
must be replaced by concentration one, substituting consecutively into (14.2.9) and
(14.2.10) instead of L the correlation length n, and instead of n its concentration
dependence sj j�m.

Critical indices xn and yn, obtained in [2, 10] by means of numerical simulation,
can be also calculated within the HM. For instance, for the case of (14.2.9) the basic
current flows through the bridge, therefore

Table 14.1 Indices values
based on HM kn and k0n

n knðd ¼ 2Þ ¼ k0nðd ¼ 2Þ knðd ¼ 3Þ k0nðd ¼ 3Þ
2 1.37 1.52 1.03

3 2.73 3.04 2.06

4 4.1 4.56 3.09

5 5.47 6.08 4.12

6 6.83 7.6 5.12
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X
a

i2na ¼ i2na N1 ¼ a2 d�1ð Þn
0 N1j

2n
1 ; ð14:2:11Þ

where it is taken into account that ia ¼ ad�1
0 j1; j1 is current density in the bridge

and, as long as in the correlation volume the entire current flows through the bridge,
then I ¼ j1ad�1

0 .
In [2, 10] it is assumed that I ¼ 1, therefore, from (14.2.11) it followsX

a

i2na ¼ N1 ¼ s�a1 ; a1 = t - mðd � 2Þ: ð14:2:12Þ

Comparing (14.2.12) and (14.2.9)
P
a
i2n


 �
� L�xn � smxn , we find

- mxn = t - mðd � 2Þ: ð14:2:13Þ

Similarly, for the case of r1 ¼ 0 (14.17) we obtain

�myn ¼ ð2n� 1Þ qþðd � 2Þm½ �: ð14:2:14Þ

Table 14.2 gives numerical values �mxn and �myn obtained by numerical sim-
ulation [2, 10] and within the HM (14.2.13), (14.2.14).

In paper [4] numerical simulation on the flat disordered lattice was used to find
critical indices describing the concentration dependence of partial moments of the
electric field intensity

wð2nÞ
i =

1
V

Z
Vi

EðrÞ
EðrÞh ij j

� 2n

dV ; i ¼ 1; 2; ð14:2:15Þ

where i is phase number, integration is made over i-th phase.

Table 14.2 Numerical values �mxn and �myn

n �mxn �myn
HM Tremblay et al. [10], Albinet et al.

[2]
HM Tremblay et al. [10], Albinet et al.

[2]

d ¼ 2

1 1.3 1.3 1.3 1.3

2 1.3 1.1 3.9 4.0

3 1.3 1.02 6.5 6.6

d ¼ 3

1 1.12 1.12 1.61 1.9

2 1.12 1.1 4.83 5.7

3 1.12 1.03 8.05 9.5

14.2 Critical Exponents of the Higher Current Moments 185



According to [4] above the percolation threshold and beyond smearing region
we have

wðnÞ
1 � stðnÞ; wðnÞ

2 � slðnÞ; ð14:2:16Þ

tð2Þ ¼ 1:30	 0:01; tð4Þ ¼ 1:42	 0:06; tð6Þ ¼ 1:5	 0:2;
lð2Þ ¼ 1:3	0:05; lð4Þ ¼ 3:56	 0:06; lð6Þ ¼ 6:0	 0:1: ð14:2:17Þ

Within the IM, critical indices t nð Þ and l nð Þ (using the reasoning similar to given
above in the calculation of xn and yn) are of the form

tðnÞ ¼ ðn� 1Þt � ðn� 2Þðd � 1Þm; lðnÞ ¼ qþðn� 2Þm ð14:2:18Þ

Substituting into these expressions d ¼ 2 and the numerical values t2 ¼ q2 ¼
1:3; m2 ¼ 4=3 into (14.2.18), we find

( ) ( )2 1.3t HM = , ( )( )4 1.23t HM = , ( )( )6 1.17t HM = ,

( )( )2 1.30HM = , ( )( )4 3.97HMµ = , ( )( )6 6.63HMµ = .µ
ð14:2:19Þ

As is obvious from Table 14.2 and comparison between (14.2.17) and (14.2.18),
the HM, despite its simplicity, yields satisfactory agreement with numerical
simulation.

Surely, the approach based on the HM of percolation structure, is approximate
and restricted by not very high and not very low values of n. Thus, at high values of
n ! 1 on summation of currents the HM is “inferior” to SCB model. In the HM it
is customary to choose N1 as N1 � snR , at n ! 1 it is necessary to come back to
their precise value: N1 � s�1. Similarly, at n ! 0 it is necessary to sum over not
only by the bonds in the bridge, but also by all the bonds where current flows, and
their number is determined not through nR, but through critical index describing the
number of bonds in the blobs (backbone). A detailed analysis of situations beyond
the HM was performed in [1, 6].
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Chapter 15
Thermoelectric Properties

15.1 EMT-Approximation

Thermoelectric effects provide an example of a medium where two thermodynamic
fluxes simultaneously (j is an electric flux density, q is a heat flux density) are created
by two thermodynamic forces: electric field intensity E and temperature gradient rT

j ¼ rEþ ra �rTð Þ;
q ¼ raTEþ j 1þ ZTð Þ �rTð Þ; ZT ¼ ra2

j T;

�
ð15:1:1Þ

where a is the Seebeck coefficient, j is thermal conductivity, Z ¼ ra2=j is ther-
moelectric figure of merit (the Ioffe number, sign of merit).

Thermoelectric properties are “included” in (15.1.1) in off-diagonal components,
the existence of which results in the fact that the electrical current is caused not only
by the electrical field, but also by temperature gradient, hence, part of heat flux is
related to the electrical filed (or, which is the same, to the electrical current, which,
in fact, constitutes the Peltier effect).

There are many different strategies to improve thermoelectric properties. In
composites, thermoelectric properties could be enhanced by inclusion of nanopar-
ticles, by influence of nanowires, by influence of interface between different phases,
and by special methods of preparation of different media. The influence of structure
of composites on the thermoelectric characteristics considered in the following
papers [2, 36]. Interesting application of theory of composites was considered in [2]
paper, where it was applied for explanation of temperature dependence of electric
conductivity and thermoelectric power. Influence of nanocontacts on thermoelectric
properties of composites was developed in the paper [36].

The synthesis of composites consisting from nanoparticles is discussed in the
paper [11, 27, 28]. Models of nanostructured materials are discussed in [13, 16, 23].
Model describing properties of thermoelectric nanocomposite materials consisting
of granular regions is considered in paper [23].

© Springer Science+Business Media, LLC 2016
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It is shown in [24] that composites material (particularly, material with
metal/semiconductor interfaces) could lead to the increase of Seebeck coefficient
(interface scattering of phonons could increase ZT). Another way to improve ZT by
considering perfectly conducting channels considered in the papers is [20–22]
(Influence of silicon nanowires), [19].

Weak tunneling between grains also could be a factor in improving ZT [17].
Optimization of structure for increasing efficiency of thermoelectric materials

considered in the work [25]. Energy efficiency of composites is considered in the
paper [39].

Just as the problem of calculation of the effective conductivity, the problem of
calculation of the effective kinetic coefficients (including the coefficient of the
effective thermoEMF) can be solved in different approximations. Consider first the
EMT-approximation.

In order to construct the EMT-approximation for thermoelectric effects, it is
necessary, like in the problem of re, to have a solution of the problem of field and
flux distribution for a secluded spherical inclusion. In this case it is a ball consisting
of a medium with coefficients r1; j1; a1 (or r2; j2; a2) located in a medium with
coefficients re; je; ae, with the values of field hEi and temperature gradient hrTi
assigned on the infinity. Equations allowing to find potential distribution u rð Þ and
temperature distribution T rð Þ, for the general case, are given, for instance, in [4]. In
[38], in the approximation when corrections to re and je due to thermoelectric
effects are small, the analytical solution of this problem is given for the
three-dimensional case

ae ¼ har=D0i
hr=D0i ; D0 ¼ 2re þ rð Þ 2je þ jð Þ; ð15:1:2Þ

where re and je are found from the EMT-approximation (without regard to ther-
moelectric effects),

re � r
2re þ r

� �
¼ 0;

je � j
2je þ j

� �
¼ 0; d ¼ 3: ð15:1:3Þ

Similarly, one can write down (15.1.2) and (15.1.3) for the two-dimensional
case.

For the three-dimensional case of the two-phase medium from expressions
(15.1.2) and (15.1.3) it follows

ae ¼ pr1a1 2re þ r2ð Þ 2je þ j2ð Þþ 1� pð Þr2a2 2re þ r1ð Þ 2je þ j1ð Þ
pr1 2re þ r2ð Þ 2je þ j2ð Þþ 1� pð Þr2 2re þ r1ð Þ 2je þ j1ð Þ ; d ¼ 3

ð15:1:4Þ

For the two-dimensional case instead of (15.1.3) one should use re�r
re þr

D E
¼ 0;

je�j
je þ j

D E
¼ 0 and D0 ¼ re þ rð Þ je þ jð Þ, and therefore we have [4]:
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ae ¼ pr1a1 re þ r2ð Þ je þ j2ð Þþ 1� pð Þr2a2 re þ r1ð Þ je þ j1ð Þ
pr1 re þ r2ð Þ je þ j2ð Þþ 1� pð Þr2 re þ r1ð Þ je þ j1ð Þ ; d ¼ 2:

ð15:1:5Þ

As follows from the analysis of (15.1.4), the concentration dependence ae ¼
ae pð Þ behaves differently depending on the phase thermal conductivity ratio j2=j1
(Fig. 15.1). With a large inhomogeneity of electrical conductivity r1=r2 � 1 and
thermal conductivity j1=j2 � 1 there is a step in the dependence of ae pð Þ which
disappears at j1 � j2. Smooth dependences are observed at weak inhomogeneity of
conductivity.

In the case when current in one of the phases does not flow, i.e., if r2 ¼
0; ae ¼ a1 is the value of pure phase over the entire range of re existence, i.e., at
p[ pc (Fig. 15.2). In the case of j1 � j2 close to pc there is easily observable
drastic (percolation) transition of ae from a1 to a2.
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Fig. 15.1 Concentration dependence ae ¼ ae pð Þ for two limiting cases of phase thermal
conductivity ratio: a at r1 � r2 r1=r2 ¼ 103; a2=a1 ¼ 4ð Þ 1� j2=j1 ¼ 5� 10�2 � 1� 2� j1 ¼ j2;
b at r1=r2 � 1 r1=r2 ¼ 6ð Þ1�j2=j1 � 1; 2�j1 ¼ j2
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Fig. 15.2 Concentration
dependence ae ¼ ae pð Þ at
r2 ¼ 0 for two limiting cases
of phase thermal conductivity
ratio: 1�j2=j1 � 1 and
2�j1 ¼ j2
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For the general case without requirement of ZT � 1 in [4] there was obtained
(within the EMT) a system of equations to determine ae; re and je, however, its
investigation in the analytical form is difficult.

15.2 Thermoelectric Properties of the Self-dual Media

As in the “usual” (without thermoelectric effects) conductivity case, exact solution
of ae problem in the two-dimensional case for the self-dual media is possible.
According to [3, 4]:

ae ¼ a1
ffiffiffiffiffiffiffiffiffiffi
r1j2

p þ a2
ffiffiffiffiffiffiffiffiffiffi
r2j1

pffiffiffiffiffiffiffiffiffiffi
r1j2

p þ ffiffiffiffiffiffiffiffiffiffi
r2j1

p ¼
a1

ffiffiffiffi
j2
j1

q
þ a2

ffiffiffiffi
r2
r1

q
ffiffiffiffi
r2
r1

q
þ

ffiffiffiffi
j2
j1

q : ð15:2:1Þ

In particular, at r2 ¼ 0 ae r2 ¼ 0ð Þ ¼ a1 (Fig. 15.2).
For the self-dual media the effective re and je are of the form

re ¼ ffiffiffiffiffiffiffiffiffiffi
r1r2

p ffiffiffiffiffiffiffiffiffiffi
r1j2

p þ ffiffiffiffiffiffiffiffiffiffi
r2j1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1j2

p þ ffiffiffiffiffiffiffiffiffiffi
r2j1

p� �2 þ Tr1r2 a1 � a2ð Þ2
q ; ð15:2:2Þ

je ¼ ffiffiffiffiffiffiffiffiffiffi
j1j2

p ffiffiffiffiffiffiffiffiffiffi
r1r2

p
re

: ð15:2:3Þ

As long as percolation threshold in the self-dual media pc ¼ 1=2; ae (15.2.1)
leads to the value of ae at the percolation threshold in the two-dimensional case. At
j1 � j2 and strong conductivity inhomogeneity r2=r1 ¼ h � 1 from (15.2.1) it
follows

ae ¼ a1 þ a2h
1
2

1þ h
1
2

� a1 þ a2h
1
2: ð15:2:4Þ

As a rule, in the “metal” ðr1Þ phase the thermo EMF is much lower than in the
“semiconductor” phase ðr2 � r1Þ a1 � a2, then from (15.2.4) at the percolation
threshold we obtain

ae � a2h
1
2; a2h

1
2 � a1; ð15:2:5Þ

i.e., ae is limited by the low factor h ¼ r2=r1.
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At j2 � j1 and, as before, r2=r1 � 1 and a1 � a2 from (15.1.4) follows

ae � a2

ffiffiffiffiffiffiffiffiffiffiffiffi
r2=r1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
r2=r1

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
j2=j1

p ; ð15:2:6Þ

and, if
ffiffiffiffiffiffiffiffiffiffiffiffi
r2=r1

p � ffiffiffiffiffiffiffiffiffiffiffiffi
j2=j1

p
, then

ae � a2; ð15:2:7Þ

i.e., as compared to the case of j1 � j2 at p ¼ pc the value ae is drastically increased.
This behavior is in good agreement with the results of EMT-approximation
(Fig. 15.1a).

(15.1.1) could be written down in the abstract form, suitable for any two-flow
system with cross effects

j ¼ A11eþA12g;
q ¼ A21eþA22g;

Â ¼ A11 A12

A21 A22

� 	
; ð15:2:8Þ

where Â is tensor of local kinetic coefficients. In this case the effective values Ae
i j of

the self-dual media (to an accuracy of notation), coinciding with (15.2.1), (15.2.3)
can be written for tensor Âe [35]:

Âe ¼ DetbA1 DetbA2


 �1
4

bX1 þ bX2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det bX1 þ bX2


 �r ; bXn ¼
bAnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det bAn


 �r ; n ¼ 1; 2; ð15:2:9Þ

where subscript n denotes phase number.
Just as for the effective conductivity problem (see Chap. 6), there exist the exact

solution for the two-dimensional polycrystal [35]

Âe ¼ DetbAkDetbA?

 �1

4
bXk þ bX?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det bXk þ bX?

 �r ; bXk;? ¼

bAk;?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det bAk;?


 �r ; ð15:2:10Þ

where bAk and bA? are main values of tensor of local coefficients Aik.
In “thermoelectric” terminology for the two-dimensional polycrystal [6] instead

of (15.2.10) we have

ae ¼ ak
ffiffiffiffiffiffiffiffiffiffiffirkj?

p þ a?
ffiffiffiffiffiffiffiffiffiffiffir?jk

pffiffiffiffiffiffiffiffiffiffiffi
rkj?

p þ ffiffiffiffiffiffiffiffiffiffiffir?jk
p ; ð15:2:11Þ
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re ¼ ffiffiffiffiffiffiffiffiffiffiffi
rkr?

p ffiffiffiffiffiffiffiffiffiffiffi
rkj?

p þ ffiffiffiffiffiffiffiffiffiffiffi
r?jk

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rkj?

p þ ffiffiffiffiffiffiffiffiffiffiffi
r?jk

p
 �2
þ Trkr? ak � a?

� �2r ; ð15:2:12Þ

je ¼ ffiffiffiffiffiffiffiffiffiffiffi
jkj?

p ffiffiffiffiffiffiffiffiffiffiffirkr?
p

re
: ð15:2:13Þ

The expressions for re and je (15.2.2) can be written in order to explicitly single
out a component with “thermoelectric figure of merit” (in [32, 33] such figure of
merit was called the internal figure of merit, certainly, it does not coincide with the
effective figure of merit Ze ¼ rea2e=je):

~ZT ¼
ffiffiffiffiffiffiffiffiffiffi
r1r2

pffiffiffiffiffiffiffiffiffiffi
j1j2

p a1 � a2ð Þ2ffiffiffiffi
r2
r1

q � ffiffiffiffi
j2
j1

q
þ

ffiffiffiffi
j2
j1

q � ffiffiffiffi
r2
r1

q� 	2 T ; ð15:2:14Þ

re ¼
ffiffiffiffiffiffiffiffiffiffi
r1r2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~ZT

p ; ð15:2:15Þ

je ¼ ffiffiffiffiffiffiffiffiffiffi
j1j2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~ZT

p
: ð15:2:16Þ

Thus, condition of small influence of thermoelectric effects on the effective
electric and thermal conductivity: ZT � 1 (15.2.14) is immediately obvious. The
concept of thermoelectric figure of merit of phases (Ioffe number) Zi ¼ ria2i


ji is

essential in the calculation of the efficiency of thermoelectric devices (thermal
generators, Peltier coolers, etc.) [12, 26]. Note that in ~ZT (15.2.15) parameters of
thermoelectric materials r1; j1; a1 and r2; j2; a2 form a peculiar dimensionless
combination which is not, however, the function of Z1 ¼ r1a21


j1 and

Z2 ¼ r2a22

j2. It means that at least in this case the influence of thermoelectric

effects on the effective properties of composite (including the efficiency of ther-
moelectric devices created of such composite) cannot be expressed only through Z1
and Z2 (or through Ze ¼ rea2e


je), but calls for more complicated (nontrivial)

combinations of parameters, such, for instance, as in (15.2.14). The effective figure
of merit characterizing the figure of merit (ability to convert thermal into electric
energy) of composite also depends in a complicated way on the parameters of
thermoelectric material of phases. Double-side restrictions of Ze were considered in
works [9, 10, 34].
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15.3 Critical Region of Concentration—Behavior of ae
in the Vicinity of Percolation

In a medium with strongly inhomogeneous conductivity ðh ¼ r2=r1 � 1Þ the
distribution of currents and fields in the medium close to percolation threshold is
“controlled,” as detailed above (Chap. 5), by percolation structure—bridges and
interlayers. The presence of additional processes, in this case thermoelectric, cer-
tainly affects the distribution of currents in the medium, however, bridges and
interlayers still remain as the governing elements of percolation structure.
Therefore, it should be expected (and these expectations are justified) that behavior
of the effective kinetic coefficients, including ae, close to percolation threshold is
universal, i.e., described by critical indices.

Behavior of re; je and ae in the critical region was first studied in the works [18,
37]. In [29, 30] numerical experiments were performed for the determination of
critical indices. Prior to discussing these and other papers, let us suggest explana-
tion based on the HM on a simple qualitative level the critical behavior of ae for two
different cases: j1 � j2 and j1 � j2. In doing so, we assume that r2=r1 � 1 and
a2 � a1. As we see, the HM allows not only showing the difference in ae behavior
for these cases, but also determining critical indices ae.

Consider first a medium below the percolation threshold [31] (see paragraph 5.4
Fig. 5.8a). In the presence of temperature gradient, this schematic is of the form
(see Fig. 15.3a). Its equivalent electrical circuit with regard to EMF arising due to
temperature difference DT ¼ T2 � T1 is shown in Fig. 15.3b, where R2 is interlayer
resistance, e1 is EMF created on the interlayer, Rn is resistance of parallel to
interlayer part of poorly conducting medium (with characteristic size n), e02 is EMF
created on this part.

2T 1T

TΔI

2α

1α 1α

II

2R 2ε

Rξ 2ε ′

I

II

(a) (b)

Fig. 15.3 Percolation structure below the percolation threshold (a) and the equivalent electrical
circuit (b)
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Temperature difference on size n : DT ¼ T2 � T1, total EMF en on size n
(circuit b in Fig. 15.3) is found as

en ¼ e2
R2

þ e
0
2

Rn

� 	�
1
R2

þ 1
Rn

� 	
; ð15:3:1Þ

whence

ae ¼ en
DT

¼
e2 þ e

0
2
R2
Rn

1þ R2
Rn

� 1
DT

�
e2 þ e

0
2
R2
Rn

DT
; ð15:3:2Þ

where it is taken into account that the interlayer resistance R2 is always much lower
than Rn—the resistance of that part of poorly conducting phase that does not enter
the interlayer, and

e2 ¼ DaDT2; e
0
2 ¼ DaDT ; Da ¼ a2 � a1; ð15:3:3Þ

where DT2 is temperature difference on the interlayer.
With a large difference in phase thermal conductivities j1 � j2, the temperature

difference on the interlayer is practically the same as on the volume boundaries
DT2 � DT , then substituting (15.3.3) into (15.3.2), we get

ae � Das0; j1 � j2; ð15:3:4Þ

i.e., in the case of p\pc; j1 � j2; r1 � r2; a2 � a1ae is concentration
independent.

In the case when phase thermal conductivities are approximately equal to
j1 � j2, the temperature difference on the interlayer is much less than DT:

DT2 � DT
a0
n
; DT sj jm� DT : ð15:3:5Þ

Hence and from (15.3.3) it follows

ae ¼ DTa0=nþDTR2=Rn

DT
� Da sj jm þ sj jqð Þ; ð15:3:6Þ

Where it is taken into account that a0=n � sj jm, a R2=Rn � sj jq.
As long as both in the two- and three-dimensional case m[ q (see Table 5.1),

sj jq [ sj jm, then from (15.3.6) we have

ae � Da sj jq; j1 � j2: ð15:3:7Þ

Weak dependence of ae on s at j1 � j2 and power drop of ae at j1 � j2 is also
predicted by the EMT-approximation.
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Above the percolation threshold the percolation structure according to the HM
(see paragraph 5.4 Fig. 5.7b) reduces to the following equivalent schematic (see
Fig. 15.4a). Its equivalent electrical circuit with regard to EMF arising due to
temperature difference DT ¼ T2 � T1 is shown in Fig. 15.4b, where R1 and R2 are
bridge and interlayer resistances, e1 and e2 are EMF arising due to temperature
difference on the bridge DT1 and DT2.

Similar to (15.4.23) for ae, according to schematic in Fig. 5.7b we have

ae ¼ e1=R1 þ e2=R2

1=R1 þ 1=R2

1
DT

¼ e2 þ e1R2=R1

1þR2=R1

1
DT

: ð15:3:8Þ

In case of big difference in phase thermal conductivities j1 � j2, temperature
differences on the bridge and interlayer are approximately equal

DT1 � DT ; DT2 � DT ð15:3:9Þ

For the bridge it is related to the fact that though bridge length � a0N1, its length
(the distance from one end to the other along the straight line) due to tortuosity is
less and, as follows from simple geometrical considerations, is proportional to n.

According to (15.3.9)

e1 � a1DT ; e2 � a2DT ; ð15:3:10Þ

on substitution to (15.3.8), with regard to R2=R1 ¼ G1=G2 ¼ r1=r2ð Þ � sj jtþ q (see
paragraph 5.4) we have

ae�Daþ a1 r1=r2ð Þ sj jtþ q

1þ r1=r2ð Þ sj jtþ q : ð15:3:11Þ

2T 1T
TΔ

1α
1α

2α

II

I

2R2ε

Rξ2ε′

I

II

(a) (b)

Fig. 15.4 Percolation structure: above the percolation threshold (a) and the equivalent electrical
circuit (b)

15.3 Critical Region of Concentration … 197

http://dx.doi.org/10.1007/978-1-4419-8291-9_5
http://dx.doi.org/10.1007/978-1-4419-8291-9_5


Taking into account that above smearing region sj jtþ q� r1=r2 let us convert
(15.3.11) into

ae � a1 þ a2
r2
r1

sj j� tþ qð Þ: ð15:3:12Þ

Then it becomes readily apparent that two different types of behavior are pos-

sible depending on the ratio a2=a1ð Þ r2=r1ð Þ and sj j� tþ qð Þ.
At

sj jtþ q� a2
a1

r2
r1

; ð15:3:13Þ

from (15.3.12) it follows that the effective Seebeck coefficient

ae � a1; ð15:3:14Þ

and does not depend on concentration.
On approaching the percolation threshold, i.e., with a reduction of s, when the

reciprocal (15.3.13) inequality is met, but provided that the system is still beyond
the smearing region

r2
r1

� sj jtþ q� a2
a1

r2
r1

; ð15:3:15Þ

from (15.3.12) we find

ae � a2
r2
r1

sj j� tþ qð Þ: ð15:3:16Þ

These and some other regularities of ae behavior were also obtained by rigid
methods (see, for instance, [5, 7]), the results of which will be described below.
Considered here the application of HM created on the basis of information on the
behavior of re close to percolation threshold allows vividly obtaining and
explaining the nontrivial regularities in the behavior of the effective Seebeck
coefficient ae.

15.4 Isomorphism

In paper [37] a new method was proposed, subsequently generalized and developed
in many works, for instance [5–7, 10, 18]. This method allows in a number of cases
to reduce a two-flux problem with a cross component (with thermoelectric problem
as their partial case) to single-flux problem, for instance, the problem of conduc-
tivity. In other words, this method allows establishing an exact correspondence
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(isomorphism) between the problems of finding the effective kinetic coefficients for
a system with thermoelectric effects and the effective electrical conductivity in a
medium without thermoelectric effects.

Probably, the most vivid illustration of reducing one problem to the other
belongs to Dykhne [15]. In particular, in [15] it is shown how expand the result [14]
re ¼ ffiffiffiffiffiffiffiffiffiffi

r1r2
p

to thermoelectric case. Let us write down the Eqs. (15.1.1) in the form

j ¼ seþ ah
q ¼ beþ kh

�
; ð15:4:1Þ

where in the case of thermoelectric problem: e ¼ �ru; h ¼ �rT and
divj ¼ 0; divq ¼ 0; s ¼ r; a ¼ ra; . . .

Local coefficients s, a, b, k are constants in each of the phases and equal to
s1; a1. . . and s2; a2. . . in the first and second phases.

We introduce a new flux:

i ¼ jþ cq ¼ sþ cbð Þeþ aþ ckð Þh; ð15:4:2Þ

where c is a certain coordinate-independent constant which will be chosen such that

a1 þ ck1
s1 þ cb1

¼ a2 þ ck2
s2 þ cb2

¼ x; x ¼ const: ð15:4:3Þ

Then (15.4.2) with regard to (15.4.3) can be rewritten as i ¼ sþ cbð Þ
eþ aþ ck

aþ cb h

 �

, i.e.,

i ¼ sþ cbð Þe; ð15:4:4Þ

where e is a new field,

e ¼ eþxh: ð15:4:5Þ

Field e and flux i satisfy the same equations dive ¼ 0; curli ¼ 0, as the initial j,
q and e, h. That is why medium “current” ih i ¼ I and medium “field” eh i ¼
eh iþx hh i are related in the same way as the medium field with the medium current
in the one-flux problem. If, for instance, in the latter we select a case of self-dual
medium jh i ¼ ffiffiffiffiffiffiffiffiffiffi

r1r2
p

eh i, then

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ cb1ð Þ s2 þ cb2ð Þ

p
eh iþx hh ið Þ: ð15:4:6Þ

Equation (15.4.3) for the determination of c is square, its solution gives two
values of cI and cII . Thus, there are two equations:
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jh iþ cI qh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ cIb1ð Þ s2 þ cIb2ð Þ

p
eh iþxI hh ið Þ;

jh iþ cII qh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ cIIb1ð Þ s2 þ cIIb2ð Þ

p
eh iþxII hh ið Þ:

ð15:4:7Þ

Solving these equations for jh i and qh i, we obtain all the four effective kinetic
coefficients.

In the most general form the isomorphism method was developed in [5], where it
is realized not only for thermoelectric phenomena, but also for two- and
three-dimensional galvanomagnetic effects and the problem of anisotropic medium
conductivity. Afterwards, this method was expanded to thermogalvanomagnetic
effects [8]. In [5] material Eqs. (15.1.1) are written as

ja ¼
X
b

rabEb; a; b ¼ 1; 2; ð15:4:8Þ

where j1 	 j; j2 	 q=T , and it is shown that by means of linear transformation one
can get

Ea ¼
X
b

MabE0
b; ja ¼

X
b

Nabj0b: ð15:4:9Þ

The matrix of local kinetic coefficients rab can be diagonalized simultaneously
for two phases, which in the primed system is written as follows:

j0b ¼ r0b rð ÞE0
b: ð15:4:10Þ

Without going into details of rather tedious calculations, we cite only the final
result. Given the known solution of problem of the calculation the effective electric
conductivity re in the medium without thermoelectric effects, which will be shown
as

re ¼ r1f p; hð Þ; ð15:4:11Þ

where h ¼ r2=r1 and p, as a rule, is concentration of the first (good conducting
phase), the matrix of kinetic coefficients r̂ in thermoelectric case is of the form

r̂i ¼ ri ci
ci vi

� 	
; ci ¼ riai; vi ¼ ji=T þ ria

2
i ; ð15:4:12Þ

where i ¼ 1; 2 denote phase number.
Then the effective kinetic coefficient according to [5] can be written as

re ¼ lr1 � r2ð Þf p; kð Þ � kr1 � r2ð Þf p; lð Þ
l� k

; ð15:4:13Þ
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ae ¼ lc1 � c2ð Þf p; kð Þ � kc1 � c2ð Þf p; lð Þ
lr1 � r2ð Þf p; kð Þ � kr1 � r2ð Þf p; lð Þ ; ð15:4:14Þ

je ¼ r1j1 l� kð Þf p; kð Þf p; lð Þ
lr1 � r2ð Þf p; kð Þ � kr1 � r2ð Þf p; lð Þ ; ð15:4:15Þ

Where functions f p; kð Þ and f p; lð Þ are the same as in (15.4.11) (with substi-
tution of h by k and l, respectively), and l and k are of the form

l

k

( )
¼ 1

4r1j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1j2

p þ ffiffiffiffiffiffiffiffiffiffi
r2j1

pð Þ2 þ r1r2T a1 � a2ð Þ2
q�



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1j2
p � ffiffiffiffiffiffiffiffiffiffi

r2j1
pð Þ2 þ r1r2T a1 � a2ð Þ2

q �2

:

ð15:4:16Þ

According to method of derivation of these relations, the expressions (15.4.13)–
(15.4.15) are valid for problems of any dimension, two-phase media with any
structure (arrangement of phases whereby re in problem (15.4.11) is isotropic).

Note that elimination of functions f p; kð Þ and f p; lð Þ from (15.4.13)–(15.4.15)
results in the ratio relating re; je; ae and independent of concrete medium
structure [5]

je
re

¼ T
c1v2 � c2v1 � r1v2 � r2v1ð Þae � r2c1 � r1c2ð Þa2e

r2c1 � r1c2
: ð15:4:17Þ

In the case when the influence of thermoelectric effects on the electric and
thermal conductivity is bad, i.e., at low figure of merit ZiT � 1, the ratio (15.4.17)
goes over to a simpler one [5, 18]:

ae ¼ a1r1j2 � a2r2j1 � r1r2 a1 � a2ð Þje=re
r1j2 � r2j1

¼ a1 þ r1r2 a1 � a2ð Þ
r1j2 � r2j1

j1
r1

� je
re

� 	
;

ð15:4:18Þ

where now re ¼ r1f p; r2=r1ð Þ; je ¼ j1f p; j2=j1ð Þ.
Thus, the behavior of the effective coefficient ae in critical area is determined by

the behavior of the effective conductivity (calculated without regard to thermo-
electric effects), for which purpose it is sufficient to substitute function f p; hð Þ from
(15.4.12) into (15.4.13)–(15.4.15). In particular, it means that critical indices
describing the behavior of ae close to percolation threshold, can be combinations of
only t, q, and v—critical indices describing the behavior of re.

The ratio (15.4.18) to a high accuracy was verified by means of numerical
simulation [29] and experimentally [1].
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As was considered above, within the EMT-approximation and by means of the
HM percolation structure the behavior of ae at j1 � j2 and j1 � j is qualitatively
different.

Consider first, the case j1 � j2. If the inequality below is met

r2
r1

� 	 t
tþ q

� a2r2
a1r1

� 1; ð15:4:19Þ

Then, as follows from (15.4.18), the effective coefficient ae is changed consid-
erably in the critical region

ae � a1; p[ pc; s
t � a2r2=a1r1; s � D; I; ð15:4:20Þ

ae ¼ a2
r2
r1

s�t; p[ pc; D � s � a2
a1

r2
r1

� 	1
t

; II, ð15:4:21Þ

ae ¼ a2
r2
r1

� 	 q
tþ q

¼ a2D
q; sj j\D; III, ð15:4:22Þ

ae ¼ a2 sj jq; p\pe; sj j � D; IV; ð15:4:23Þ

where r2=r1ð Þ t
tþ q¼ D, as before, denotes smearing region.

For illustration, the regularities (15.4.20)–(15.4.23) are given in Fig. 15.5.
It is interesting to note that above the percolation threshold, beyond smearing

region, where by all appearances “the leading part” should be played by the first
phase ðr1; j1; a1Þ; ae is determined by a2 in the II region.
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Fig. 15.5 Concentration dependence of the effective Seebeck coefficient in the critical region
under close values of phase thermal conductivity j1 � j2 (see also Fig. 15.1a)
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In the opposite case, when phase thermal conductivities are essentially different
ðj1 � j2Þ, a change in ae from a1 to a2 occurs in the critical region unlike the case
when they are close ðj1 � j2Þ, when ae is changed over the entire region of
concentration change (see EMT-approximation yielding good precision beyond the
critical region). At j1 � j2 several different cases are possible. At r2=r1 �
a2r2=a1r1 � 1 or, which is the same, a2 � a1 and a2r2 � a1r1 and at r2=r1 ¼
j2=j1 in (15.4.18) mathematical uncertainty appears. Analysis of general expres-
sions (15.4.13)–(15.4.15) shows that in this case in the linear in ai approximation
the effective coefficient ae is expressed not only through function f p; hð Þ (15.4.11),
but also through its derivative [7]:

ae ¼ a1 þ a2 � a1ð Þ @ ln f p; hð Þ
@h

; h ¼ r2
r1

¼ j2
j1

: ð15:4:24Þ

Then

ae � a1; s � a2
a1

� 	 1
tþ q

D; p[ pc; I; ð15:4:25Þ

ae � a2
r2
r1

� 	
s� tþ qð Þ; D � s � a2

a1

� 	 1
tþ q

D; p[ pc; II, ð15:4:26Þ

ae ¼ t
tþ q

a2; sj j\D; III; ð15:4:27Þ

ae ¼ a2; sj j � D; p\pc; IV, ð15:4:28Þ

For illustration, the regularities (15.4.24)–(15.4.28) are depicted in Fig. 15.6.
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Fig. 15.6 Concentration dependence of the effective Seebeck coefficient in the critical region at
a2 � a1 and a2r2 � a1r1 and at r2=r1 ¼ j2=j1 (see also Fig. 15.1a)
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Chapter 16
Effective Elastic Properties

16.1 Basic Concepts of Elasticity Theory

Due to the fact that the elastic macroscopically inhomogeneous media have a huge
applied significance, a large number of monographs are dedicated to calculation of
the effective elastic moduli of composites, such as [3, 10, 27, 34, 35]. There is no
possibility and need to repeat the content of all the works. Some of them are
strongly formalized and mainly include theorems and proofs of the existence of the
effective kinetic coefficients in different cases. Some of the works are dedicated to
concrete applications of empirical regularities discovered in practice. In [35] dif-
ferent numerous approximate methods for calculation of the effective elastic moduli
have been described, except for the region close to percolation threshold. We will
focus on the description of the effective elastic moduli of the two-phase strongly
inhomogeneous components close to percolation threshold, as well as show that the
main regularities of the effective kinetic coefficients can be explained within the
HM-percolation structure. A review of original papers that consider critical
behavior of the effective elasticity modules is given in [32, 33].

There are many different applications of network models/ percolation models in
the theory of elasticity. Elasticity of networks could be studied in many different
situations: static (study of effective modules), dynamic (study of vibrational prop-
erties, for example [22], non-equilibrium, for example [8]. Because elasticity
equations are more complex (have more components) than linear equation, there are
many different simplified elastic networks could be considered.

For example, in the paper [39] random network of rigid rods is considered. In the
work [17] it is shown for bond-bending network with freely rotating cross-links,
that the elastic exponent is different than in central force percolation network. In [9]
mechanic stability of networks that have fiber-bending and fiber-stretching prop-
erties, see also [11, 18]. Critical elastic behavior observed in percolation network in
[14]. Vibrational properties of networks considered in [1] (model of phonons in
random elastic networks).

© Springer Science+Business Media, LLC 2016
A.A. Snarskii et al., Transport Processes in Macroscopically
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There are many different non-equilibrium phenomena studied by the paradigm of
spring networks: self-organization of networks, application of elastic for the
description of fracture considered in [26, 31, 37] (see also [16, 25]). Self-
organization of networks studied in the paper [8]. Appearance of rigidity in self-
organized networks is described in [21]. Review of this area provided in the article
[12]. Critical behavior of rheology of spring networks considered in [40], see also
[7]. There are also unusual applications of percolation theory for study of com-
posites [13]. This unexpected application of percolation theory was used for
analysis of unusual elastic solids/leaks composites. Application of theory of elastic
networks for explaining red blood cell membranes provided in [42].

There also an application of percolation theory for explaining of fracking phe-
nomena. Different models of percolation (particularly invasion percolation) used for
description of fracking phenomena [23, 24, 38].

Early in the investigation of the elastic properties of components close to per-
colation threshold, an opinion existed that in order to determine the effective kinetic
coefficients it is sufficient to employ the analogy between the elasticity and con-
ductivity problems—to replace the good conducting phase by the “soft” elastic
phase, and bad conducting phase—by the “rigid” one. In fact, it is not the case, the
conductivity problem is not directly reduced to the other problem—of elasticity, at
least because the equations that determine the distribution of currents and fields in
the conductivity problem, and deformations and stresses in the elasticity problem
[20], belong to different classes. This in equivalence is also apparent from the fact
that in the isotropic case conductivity is a scalar, and to determine the elastic
properties of even a homogeneous isotropic body1 two material constants will be
needed—Young’s modulus E and shear modulus l which are tensor components.
Hooke’s law—the analog of Ohm’s law—can be written down as [20]:

uik ¼ 1
9k

dikrll þ 1
2l

ðrik � 1
3
dikrllÞ; i; k; l ¼ 1; 2; 3; ð16:1:1Þ

where uik is component of deformation tensor, rik is stress tensor, k ¼
El=3ð3l� EÞ is uniform compression modulus.

The ratio (16.1.1) can be rewritten as

uik ¼ Xiklmrlm; ð16:1:2Þ

where Xiklm is fourth rank tensor, components of which according to (16.1.1) are
expressed for the isotropic body through E and l. A similar notation for the iso-
tropic conducting medium has the form ji ¼ rdikEk, emphasizing again the dif-
ference between the elasticity and conductivity problems.

Percolation elasticity problems were actively studied by means of numerical
simulation of different elastic lattices. Substitution of lattice elastic problem is

1In elasticity theory such a medium is called linearly elastic Hooke medium.
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possible in several variants. If, for instance, we assign for the square net the
coefficient of elasticity (Young’s modulus) for each bond in the lattice, i.e. consider
each bond as an elastic rod, such net on application of forces in certain direction
will not resist the shear. In such a model the rods resist only tension and can easily,
without efforts, change an angle between themselves. Such a model is called central
—force Born model. It is matched by the following expression for the elastic
deformation energy [19, 32]:

U0 ¼ a1
2

X
ij

½ðui � ujÞrij�2‘ij; ð16:1:3Þ

where a1 is a constant related to rod elasticity, ui is displacement of node i, rij is
unity vector directed from node i to node j, ‘ij is elastic constant of the rod con-
necting nodes i and j.

Below we will consider a more realistic case, when the elastic energy exists in
the model, related both to tension of rods (16.1.3) and to change of angle between
them, which removes the “impossibility” of zero effective shear modulus

U ¼ U0 þ a2
2

X
ijk

ðdhijkÞ2‘ij‘ik; ð16:1:4Þ

where a2 is a constant related to a bend (change of angle between the rods),
summation is done over all triplets of rods j� i and i� k, a change in angle dhijk
can be represented as

dhijk ¼
Uij�rij�Uik�rikð Þ rij�rikð Þ

rij�rikj j ; rij∦rik;

Uij þUik
� �� rij
�� ��; rij k rik;

8<
: ð16:1:5Þ

where Uij ¼ ui � uj.
Such a model is called bond-bending. Thus, hereafter we will suppose that the

medium has nonzero local moduli related both to tension (E) and to shear (l).

16.2 Effective Module in the Vicinity of Percolation
Threshold

Let us consider, within the HM, a strongly inhomogeneous in elastic constants
medium below the percolation threshold, and the inhomogeneity will be considered
so large that deformation of the first phase will be ignored. As can be seen from
Fig. 16.1, describing the percolation structure at p\pc, when there are portions of
any direction in the interlayer. For simplicity, we will consider the two-dimensional
case, divide the entire interlayer into portions extended along x direction (denote
them A) and along y (B) (Fig. 16.1).

16.1 Basic Concepts of Elasticity Theory 209



For each type (A and B) of interlayer portions one can write down the Hooke’s
law for A portions

FyA

‘AH
¼ E2

D‘y
a0

;
FxA

‘AH
¼ l2

D‘x
a0

; ð16:2:1Þ

and for B portions

FyB

‘BH
¼ l2

D‘y
a0

;
FxB

‘BH
¼ E2

D‘x
a0

; ð16:2:2Þ

where FxA, FyA, FxB, FyB—x and y—are components of force F acting on the portion
A and B, E2, l2 are local moduli of elasticity of the “soft” (second, in terms of
conductivity) phase, and D‘x and D‘y is displacement along the axes OX and
OY(insert in Fig. 16.1), ‘A and ‘B is total length of portions A and B, H is thickness
of the two-dimensional medium. Here we take into account that at small defor-
mations the shear angle Du (insert in Fig. 16.1) which enters the determination of

F

F

a0

x

y
yΔ

a0
ϕΔ

Fig. 16.1 Schematic of interlayer subject to tension. Solid arrows—tensile force F, dashed
arrows—forces leading to shear deformation
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shear modulus l is equal to displacement divided by the interlayer thickness
—D‘x=a0 (for the portion B D‘y=a0). Expressing the tensile force F applied to the
interlayer as

F ¼ FxA þFxBð Þiþ FyA þFyB
� �

j; ð16:2:3Þ

through the displacement D l

D l ¼ D‘xiþD‘yj; ð16:2:4Þ

and taking into account (16.2.1) and (16.2.2), we find F ¼ E2 þ l2ð Þ ‘H=a0ð ÞD l;
where we assume that ‘A � ‘B ¼ ‘. By determination of the Young’s modulus
(Fig. 16.2) F=nH ¼ EeD l=n. Then from (16.2.4) we have

Ee ¼ ðE2 þ l2Þ
‘

a0
: ð16:2:5Þ

taking into account that interlayer area according to the HM in the two-dimensional
case is of the form

S ¼ ‘a0 ¼ a20N2; N2 ¼ sj j�q2 ; ð16:2:6Þ

we find the expression for the description of critical behavior for the effective
Young’s modulus below the percolation threshold and critical index S2

Ee � E2 þ l2ð Þ sj j�S2 ; S2 ¼ q2; d ¼ 2: ð16:2:7Þ

Quite similarly are found the expressions describing the critical behavior of the
effective Young’s modulus in the three-dimensional case. The only difference is
that interlayer portions in one of the directions are subject to tension, and in the
other two directions—to shear, which causes a change in multiplier at s in (16.2.6)
in the form

ξ

H

lΔ

F

1
e eE μ

H

lΔ

F

F
ξ

1
e eE μ

ϕΔ

(a) (b)

Fig. 16.2 Determination of the effective Young’s modulus Ee and shear modulus le

(two-dimensional case): a F=nH ¼ EeDl=n; b F=nH ¼ leDu; Du � D l=n
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Ee � E2 þ 2l2
3

sj j�S3 ; S3 ¼ q3; d ¼ 3: ð16:2:8Þ

Thus, below the percolation threshold both in the two- and three-dimensional
cases the critical index of Young’s modulus coincides with the critical index of the
effective conductivity

S ¼ q; p\pc; d ¼ 2; 3: ð16:2:9Þ

Let’s assume now that the external force to be applied to characteristic size n in
such a way that the interlayer on the whole is subject to shear (see dashed arrows in
Fig. 16.1). Repeating calculation similar to the above, for the effective shear
modulus le (see Fig. 16.2b) we obtain

le � sj j�S; S ¼ q: ð16:2:10Þ

A simplified conclusion (16.2.8)–(16.2.10), without regard to “crumpled”
interlayer, is given in [36].

Numerical simulation represented in [4] for the two-dimensional case leads to
(16.2.7) with a good precision. At the same time, S\q was obtained in [2, 15]. For
the three-dimensional case, arguments in favor of S3 ¼ q3 are given in [5, 6]. In [5]
arguments are provided that S2 ¼ q2 is a precise equality.

Now we consider within the IM of percolation structure the behavior of the
effective Young’s modulus above the percolation threshold. For this purpose within
the HM we equate the potential energies of the two-dimensional inhomogeneous
medium and the comparison medium with the effective modules. In the
two-dimensional case the main deformation of tortuous bridge under compression
(tension) is bending. The energy of the unit length of bent rod according to [20] is
the integral along the rod length—the bridge (Fig. 16.3):

x

z

yFig. 16.3 Bridge portion in
the three-dimensional case
with cross-section at
z ¼ const:
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U ¼
Z

M2d‘
2JE

; ð16:2:11Þ

where M is the moment of applied forces, J is the so-called moment inertia of
section, equal to J ¼ R

x2ds; ds is section element. Axis oz is directed along the
bridge (elastic rod); for certainty we assume that the bend occurs in plane (z; x).

The deformation energies of comparison medium in the two-dimensional (U2)
(see Fig. 16.2a) and three-dimensional cases (U3) are of the form

U2 ¼ F
nH

� �2n2H
2Ee ; U3 ¼ F2n

Een2
: ð16:2:12Þ

Equating (16.2.11) with U2 from (16.2.12) at M ¼ Fn, and D‘ ¼ a0N1, we find

Ee � E1
J
H

1

n2a0N1
; ð16:2:13Þ

where as before, it is taken into account that the characteristic size (not the length!)
of the bridge is of the order n. According to the HM of percolation structure,
N1 d ¼ 2ð Þ � s�t; whence follows the critical index of the effective Young’s
modulus in the two-dimensional case

Ee � E1s
f2 ; f2 ¼ t2 þ 2m2; p[ pc: ð16:2:14Þ

In the three-dimensional case
R
d‘ ¼ a0N1 � s�tþ m and for Ee we obtain the

same relation between the critical indices of elasticity f, conductivity t and corre-
lation length

Ee � E1s
f ; f ¼ tþ 2m; d ¼ 2; 3: ð16:2:15Þ

With regard to numerical values of t and v (Table 5.1) (16.2.15) we have

f2 ¼ 3:97; f3 ¼ 3:76: ð16:2:16Þ

In [19, 30] there was obtained a precise restriction of the kind

f � 1þ md: ð16:2:17Þ

In [28] for reasons close to those considered above there was obtained a
restriction of the kind

f � tþ 2m; ð16:2:18Þ

and was shown that the value f2 ¼ 3:97 ¼ tþ 2m is in good agreement with that
found from the numerical simulation f2 ¼ 3:96	 0:04 [41].
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It should be noted that the numerical values of critical index f essentially differ in
different papers. For instance, for the two-dimensional case in [29] f2 � 3, however,
in [5] it is asserted that the ratio (16.2.15) in the two-dimensional case is accurate.

Let us come back to reasoning within the HM. From the reasons stated for the
determination of critical behavior of the effective Young’s modulus Ee above
(16.2.15) and below (16.2.7), (16.2.8) the percolation threshold it follows that
critical behavior of the effective shear modulus le is the same. Therefore, to
determine the smearing region and the kind of Ee and le in this region, one can act
similarly to the way it was done for the case of the effective conductivity, namely,
to equate Ee (p\pc) and Ee (p[ pc) at sj j � D. Then for the two-dimensional case
we get

E2 þ l2
2

DEð Þ�q� E1D
f
E; ð16:2:19Þ

whence

DE ¼ E2 þ l2
2E1

� � 1
f þ q

: ð16:2:20Þ

Thus, on the percolation threshold (in smearing region) the effective modulus of
elasticity will be of the form

Ee � E1
E2 þ l2
2E1

� �S02
; S02 ¼

t2 þ 2m2
2 t2 þ m2ð Þ ; ð16:2:21Þ

where it is taken into account that q2 ¼ t2.
Because in the two-dimensional case the percolation threshold p ¼ 1=2, the

expression for Ee should be invariant with a mutual replacement of phases, which
calls for correction (16.2.21). The expression (16.2.21) for Ee can be artificially
“symmetrised” by writing down

Ee ’ E1 þE2ð Þ1�S0 2
E1 þ l1

þ 2
E2 þ l2

� ��S0

; ð16:2:22Þ

and since the medium is supposed to be strongly inhomogeneous—E1=E2 
 1;
l1=l2 
 1; dependence (16.2.22), obeying symmetry requirements, practically
does not differ from (16.2.21). The general universal expression for Ee ¼
Ee E1;E2; l1; l2ð Þ in the two-dimensional case on the percolation threshold, similar
to the Dykhne expression re ¼ ffiffiffiffiffiffiffiffiffiffi

r1r2
p

and suitable for any values of the ratios
E1=E2 and l1=l2, is hardly possible. Conditions of mutual duality of media are not
unambiguously determined by Ee [3]—additional information is needed on the
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medium structure. Therefore, universality of Ee close to percolation threshold
apparently exists only for randomly inhomogeneous medium and only in the case of
strong inhomogeneity (E1=E2 
 1; l1=l2 
 1). In so doing, the problem of the
value of ratio, for instance, E1=l1, remains beyond the scope of the HM.

In the three-dimensional case instead of (16.2.17) we write down

Ee � E1
E2 þ 2l2

3E1

� �S03
; S03 ¼

t3 þ 2m3
t3 þ q3 þ 2m3

; ð16:2:23Þ

and smearing region is of the form

DE ¼ E2 þ 2l2
3E1

� � 1
t3 þ q3 þ 2m3

: ð16:2:24Þ

The numerical values S02 (16.2.21) and S03 from (16.2.23) according to Table 1 in
Sect. 5.3 are

S02 ¼ 0:75; S03 ¼ 0:82: ð16:2:25Þ

Similar to the fact it was done for re, in the determination of the elastic prop-
erties one can take into account corrections to Ee, including to consideration the
second, third, etc. steps of the HM. Then above the percolation threshold (p[ pc)
we obtain

Ee ¼ E1s
f ½A0 þA1Kds

�ðqþ tÞ þA2 Kds
�ðqþ tÞ

� 	2
þ � � ��; ð16:2:26Þ

where according to (16.2.21) and (16.2.23) we find

Kd ¼ E2 þ d � 1ð Þl2
E1d

; d ¼ 2; 3 ð16:2:27Þ

Below the percolation threshold (at p\pc)

Ee � E1Kd sj j�q½B0 þB1Kd sj j�ðqþ tÞ þB2 Kd sj j�ðqþ tÞ
� 	2

þ � � ��; ð16:2:28Þ

The expressions (16.2.7), (16.2.8), (16.2.13), (16.2.21), and (16.2.23) can be
written down in a unified way, introducing, by analogy to re, scaling function FðzÞ
of the form

Ee � E1K
S0
d F s=K

S
tþ q

d

� �
s f ; ð16:2:29Þ
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where FðzÞ has the following asymptotics:

FðzÞ�
z f ; z ! 0; p[ pc; s 
 DE;
1; zj j � 1; s � DE ;
zj j�q; z ! �1; p\pc; sj j 
 DE:

8<
: ð16:2:30Þ
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Chapter 17
Nonlinear Properties of Composites

17.1 Types of Nonlinearity

Up to now, in the calculation of the effective properties of composites it has been
always assumed that local volt-ampere characteristics are linear, i.e., Ohm’s law is
met for each of the phases. Of course, there are cases, and they are numerous, when
it is not the case. First, with increasing electrical field (or current), above certain
values, slight deviation from linearity will occur. Such case is commonly called
weak nonlinearity:

j ¼ rEþ c Ej j2Eþ ::: ð17:1:1Þ

Here, often we restrict our consideration to the second component, and the
“weakness” of nonlinearity determines the inequality

cE2 � r: ð17:1:2Þ

With small fields the second component is ignored and then (17.1.1) goes over to
a linear dependence, i.e., to Ohm’s law.

Second, there are media wherein even under arbitrarily small fields the
volt-ampere characteristic does not become linear. One of the kinds of such non-
linearity [14, 31]

j ¼ v Ej jbE ð17:1:3Þ

is commonly called strong nonlinearity. Note that in this case even for arbitrarily
small field (at b 6¼ 0) the law (17.1.3) doesn’t approach the linear one.

There are many cases with more complicated nonlinearities, for instance, with
the electrical damage (breakdown of poorly conducting part) the volt-ampere
characteristic will be not smooth (probably it will be even discontinuous function).

© Springer Science+Business Media, LLC 2016
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In ferromagnetic materials, dependence of magnetic permeability l ¼ l Hð Þ is a
nonmonotonous function of magnetic field intensity H, and with account of hys-
teresis—an ambiguous function (see Chap. 18).

To determine the effective properties of inhomogeneous medium, as has been
above for the linear cases and remains valid for the nonlinear ones, means to find a
relation between the average in volume field hEi and current hji. With a nonlinear
volt-ampere characteristic, for instance, in case of weak nonlinearity (17.1.1), phase
isotropy and isotropy of their geometric arrangement does not mean yet the isotropy
of the effective coefficients [3, 25]. In the simplest case from (17.1.1) follows

hji ¼ rehEiþ ce Ej j2
D E

hEi; ð17:1:4Þ

however, ce can be second-rank tensor. The possibility of anisotropy origination is
particularly illustrative on a specially selected example in [3]. Here, we do not
consider such cases and consider that ceijkl ¼ ce dikdlm þ dildkm þ dimdklð Þ=3, what
allows us writing down (17.1.4).

A review of papers dedicated to calculation of the effective properties of non-
linear composites within the EMT approximation is given in [22]. An appropriate
generalization of the EMT method proposed in [8] for the linear case in different
versions of nonlinearlity and was employed in [11, 12, 13, 33, 35], and some
others. Below we will show how this EMT generalization “works” for the case of
weak and strong nonlinearity, and in Chap. 18—for the nonlinearity inherent in
ferromagnetic materials.

The first part of this chapter deals with the case of weak nonlinearity (17.1.1),
and the second part with strong nonlinearity (17.1.3).

17.2 The Case of Weak Nonlinearity

The effective coefficient ce (17.1.4) is closely related to the relative spectral density
of 1/f—noise. In [1, 32] it is shown that ce, as well as the relative spectral density of
1/f—noise Ce, is expressed through the fourth moment of field E of the linear
problem as

ce ¼
cðrÞE4ðrÞ� �

hEi4 ; ð17:2:1Þ

where E is field in a linear problem calculated at c rð Þ ¼ 0. The proof of this
surprising fact, apart from [1, 32], is given in many later works, and most vividly it
is represented in [2].

Let us now show the way of calculating the effective coefficients by means of a
generalized EMT method [36]. Consider n-phase medium, where i ¼ 1; . . .n is used
to label the phases. According to (17.2.1) it can be written as

220 17 Nonlinear Properties of Composites

http://dx.doi.org/10.1007/978-1-4419-8291-9_18
http://dx.doi.org/10.1007/978-1-4419-8291-9_18


ce ¼
1

hEi4
X

picihE4ii; ð17:2:2Þ

where h. . .ii means averaging over ith phase.
The basic approximation lies in the replacement

hE4ii ! hE2i2i ; ð17:2:3Þ

then (17.2.2) takes on the form

ce �
1

hEi4
X

picihE2i2i ; ð17:2:4Þ

and the problem reduces to determination of the second moment of field hE2ii.
Let us use the following checked ratio:

@re
@ri

¼ p
hE2ii
hEi2 ; ð17:2:5Þ

whence

hE2ii ¼
hEi2
p

@re
@ri

; ð17:2:6Þ

and the factor @re=@ri (17.2.6) is found from the EMT equation which for the n-
phase case is of the form X

pi
re � ri

ðd � 1Þre þ ri
¼ 0; ð17:2:7Þ

where d is a dimension of the problem.
Despite the approximation (17.2.3), the above-considered approach gives a good

agreement with the numerical experiment both in the two-dimensional [34] and
three-dimensional [36] cases. Figure 17.1 shows concentration dependence ce ¼
ceðpÞ for several value sets of local coefficients in the three-dimensional case.
Conspicuous is a fact that drastic increase of ce near the percolation threshold.
This fact becomes understandable if we recollect that ce, just as the relative spectral
density of 1/f—noise, is determined by the fourth moment of field, and that the
relative spectral density of 1/f—noise, as is shown in Chap. 13, is drastically
increased in the critical region.

Notwithstanding the fact that the above-considered EMT modification describes
well the concentration dependence of ce over a wide range, in the critical region at
sj j � 1, due to its “origin” (from the linear version of EMT) it cannot provide a
correct description of critical index values.
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For the first time, increase in nonlinearity on approaching the percolation
threshold from below (from p < pc) was indicated in [20], where for field calcu-
lation there was introduced such element of percolation structure as interlayer.
There is no need to calculate critical indices of nonlinear conductivity ce ab initio.
They, by the above-mentioned analogy are expressed through critical indexes of the
relative spectral density of 1/f—noise. Indeed, comparing the expression (17.2.1)
and Ce (see Chap. 13), we get

Ce ¼
Cr2E4
� �
r2ehEi4

; ð17:2:8Þ

whence we find the analogy

ce ! r2eCe; r2ðrÞCðrÞ ! cðrÞ; ð17:2:9Þ

i.e., ce is expressed through both Ce and re, provided that for the latter the local
r2ðrÞCðrÞ are replaced by cðrÞ. Thus, multiplying the expression for Ce above the
percolation threshold

Ce ¼ C1s
�k þ r2=r1ð Þ2C2s

�w; p[ pc; ð17:2:10Þ

by r2e and taking into account that re ¼ r1st, we find

ce ¼ c1s
2t�k þ c2s

2t�w; p[ pc; ð17:2:11Þ
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and similarly below the percolation threshold, we have

ce ¼ c2s
�2q�k0 þ r2=r1ð Þ4c1s�2q�w0

: ð17:2:12Þ

Thus, critical behavior of ce is described by four critical indices:

ce ¼ c1s
�u þ c2s

�m; p[ pc; ð17:2:13Þ

ce ¼ c2s
�u0 þ r2=r1ð Þ4c1s�m0

; p\pc; ð17:2:14Þ

where

u ¼ k � 2t; m ¼ w� 2t; u0 ¼ k0 þ 2q; m0 ¼ w0 þ 2q: ð17:2:15Þ

Like in the case of relative spectral density of 1/f—noise, the expressions of ce
above and below the percolation threshold should be agreed, ce (p > pc) must
coincide with ce (p < pc) in the smearing region, i.e., at sj j ¼ D. This agreement
exists, if for critical indices of the relative spectral density of 1/f—noise k, k0, w, and
w0 we use their values obtained by means of the HM (see Chap. 13). Substituting
these values into (17.2.15), we obtain

u ¼ 3t � 2mðd � 1Þ; m ¼ 2mþ q; u0 ¼ m; m0 ¼ 2mðd � 1Þþ tþ 4q;

ð17:2:16Þ

Table 17.1 gives their numerical values for two- and three-dimensional cases.
Note that u2;3\0.

Smearing region, as it follows immediately from (17.2.13), (17.2.14), and

(17.2.16), has, as it should be, the standard value D ¼ r2=r1ð Þ 1
tþ q. At sj j � D the

first component in (17.2.13) becomes equal to the second one in (17.2.14)
c1D

�u ¼ r2=r1ð Þ4c1D�m0
, and the second (17.2.13)—to the first one in (17.2.4)—is

compared to (13.3.14).
It should be noted that the first component in (17.2.13) comprises factor s in the

positive degree and, therefore, in the critical region at s ! 0 it is much less than the
second component (at nonzero c2). The same can be said about the second com-
ponent in (17.2.14), it is small due to factor ðr2=r1Þ4. On the whole, both above and
below the percolation threshold, the second “dielectric” phase is the main con-
tributor to nonlinear conduction increase. This, of course, is related to the fact that
in strongly inhomogeneous medium close to percolation threshold the local field is
increased exactly in the “thin” interlayer (with thickness of order a0), rather than in

Table 17.1 Indices values
for two- and
three-dimensional cases

Dimension u m ¼ u0 m0

d = 2 −1.23 3.97 9.17

d = 3 −2.48 2.49 10.2
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the “long” bridge (of length � a0s�a1 ). When value of c2 is not low in comparison
to c1, we have

ceðp[ pcÞ � c2s
�m; ceðp\pcÞ � c2 sj j�u0 ; ð17:2:17Þ

and since m ¼ u0, the increase in ce on approaching the percolation threshold occurs
symmetrically.

On approaching the smearing region, both components in (17.2.14) increase. In
the very smearing region from (17.2.13) and (17.2.14) ( sj j ¼ D) it follows

ce ¼ c1h
� u

tþ q þ c2h
� m

tþ q; h ¼ r2
r1

; sj j �D; ð17:2:18Þ

and as long as u < 0 (see Table 17.1), with increasing inhomogeneity (i.e., when
r1=r2 increases) the first component is reduced, and the second increased.

In the expressions for current (17.1.1) and (17.1.4) in the case of weak non-
linearity, it is assumed that each subsequent component—the second, third, etc.—is
much less than the previous one. Critical field Ec is a such characteristic value of
field that gives criterion of applicability of weak nonlinearity approximation.
Specifically at hEi � Ec this approximation “works”. If the expression for ce is
known as (17.2.13) or (17.2.14), then Ec is easily determined. Thus, for the case of
p < pc:

hji �re sj j�qhEiþ c2 sj j�u0 hEi2hEi; ð17:2:19Þ

whence immediately follows the expression for Ec:

re sj j�qEc ¼ c2 sj j�u0E3
c ; ð17:2:20Þ

Thus, we could write down the following

Ec � sj jM ; M ¼ u0 � q
2

: ð17:2:21Þ

Within the HM, we have

M ¼ u0 � q
2

¼ k0 þ q
2

; M2 ¼ 1:33; M3 ¼ 0:88: ð17:2:22Þ

In [10] it was found that within the EMT M2 = M3 = 1/2, and double-sided
boundaries for M are of the form

1:18�M2 � 1:33; 0:66�M3 � 0:88; ð17:2:23Þ

which agrees with (17.2.22).
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It should be noted that apart from condition hEi � Ec, for the validity of weak
nonlinearity approximation the local fields also should be such whereby, for
instance, that the second components in (17.1.1) are little less than the first ones [28].

Just as the relative spectral density of 1/f—noise, the nonlinear conductivity ce
“feels well” the medium structure. Its behavior, for instance, in self-dual media,
differs from that in the two-dimensional randomly inhomogeneous media on per-
colation threshold. It is impossible to obtain a single expression for ce in D-media.
Such an expression, unlike the effective conductivity, will depend on the kind of
specific realization. Nevertheless, one can find general expression for the effective
properties, independent of realization in one specific case [30]. The second com-
ponent in this case should be much less than the first one. Then the Dykhne
transformations j ¼ Kn� ~E;E ¼ K�1n�~j are converted (17.1.1) into

~j ¼ ~r~Eþ~c~E
2~E; ð17:2:24Þ

where

~r ¼ K2=r; ~c ¼ �c K=rð Þ4; K ¼ ffiffiffiffiffiffiffiffiffiffi
r1r2

p
; ð17:2:25Þ

and the rest components in (17.2.24) are discarded due to their smallness.
Duality means that

r21c2 ¼ �r22c1: ð17:2:26Þ

Repeating arguments similar to those given in Chap. 6, for medium fields hEi
and currents hji, we arrive at reciprocity relations:

~reðpÞreðpÞ ¼ r1r2; ~ceðpÞ ¼ �~ceðpÞ
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
=reðpÞð Þ4: ð17:2:27Þ

Then in the case of mutually dual media ~re pð Þ ¼ re 1� pð Þ and
~ce pð Þ ¼ ce 1� pð Þ, we can write down

reðpÞreð1� pÞ ¼ r1r2; ~ceð1� pÞ ¼ �ceðpÞ
ffiffiffiffiffiffiffiffiffiffi
r1r2

p
=reðpÞð Þ4: ð17:2:28Þ

For the linear part of conductivity from (17.2.28) at p = 1/2 follows the Dykhne
formula re ¼ ffiffiffiffiffiffiffiffiffiffi

r1r2
p

, and for the nonlinear one must assume

ce p ¼ 1=2ð Þ ¼ 0: ð17:2:29Þ

Thus, the duality requirement from which follows the requirement of different
signs of nonlinearity in phases (17.2.26): in one phase the nonlinearity increases
medium conductivity, and in the other reduces it, leading to mutual compensation
of these contributions for the entire medium in general. In this case, the effective
medium conductivity will be linear.
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The presence of D-points in the self-dual media leads, as in the case of 1/f—
noise, to a divergence of the linear part of conductivity [23, 24, 26]:

ce �
1

h� he
; h ¼ r2

r1
; hc ¼ ctg

a
4

� � 1þ tgða=4Þ
1� tgða=4Þ ; ð17:2:30Þ

where the same notation is used as in Fig. 13.3 in Chap. 13.
Generally speaking, local electrical conductivity depends on temperature, and

account of this fact can change the behavior of the nonlinear part of conductivity,
especially for structures possessing peculiarities of D-points close to which the
Joule heat release is concentrated. As it turned out [27], account of thermal con-
ductivity in such structures (and, of course, temperature dependence of c on local
conductivity) can result in the elimination of peculiarities similar to (17.2.30).

17.3 The Case of Strong Nonlinearity

The kind of nonlinearity (17.1.3) that is commonly called strong nonlinearity is
observed experimentally, for instance, in ZnO varistors [9, 19] and disordered
alloys [21]. Theoretically, it was first studied in the critical region in [14, 31].

The most appropriate method for calculation of the effective conductivity of
randomly inhomogeneous medium with nonlinearity of the type (17.1.3) over the
entire concentration range was proposed in [13] (see also [11, 12]). This method is a
generalization of EMT similar to that described above for the weak nonlinearity.
Consider it by an example when only one of the phases is nonlinear [11]:

j ¼ v1 Ej jbE; j ¼ r2E; ð17:3:1Þ

and, thus, (17.3.1) can be rewritten as

j ¼ r Eð ÞE; r Eð Þ ¼ v1 Ej jb; I phase;
r2; II phase;

�
ð17:3:2Þ

where rðEÞ is coefficient of nonlinear conductivity relating the electrical field
intensity to current density. In so doing, for the effective conductivity value we
obtain

hji ¼ re hEið ÞhEi: ð17:3:3Þ

Calculation of re with application of generalized EMT method consists in the
fact that (the first approximation) the nonlinear conductivity in the first phase
rðEÞ ¼ v1 EðrÞj jb is replaced by the constant:

226 17 Nonlinear Properties of Composites

http://dx.doi.org/10.1007/978-1-4419-8291-9_13
http://dx.doi.org/10.1007/978-1-4419-8291-9_13


rðEðrÞÞ ! r hEið Þ ¼ v1 Ej jb
D E

1
; ð17:3:4Þ

and then the nonlinear law (17.3.1) is converted into linear, i.e., into Ohm’s law,
though with a so far unknown value h Ej jbi1:

j ¼ v1 Ej jb
D E

E ¼ ~r1E: ð17:3:5Þ

Now the medium consists of two phases with conductivities ~r1 and r2 and for
such “linear” medium one can find within the linear EMT the effective conductivity,
for instance, for the two-dimensional case:

re ¼ 1
2

ð1� 2pÞðr2 � ~r1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2pÞ2ðr2 � ~r1Þ2 þ 4~r1r2

q� 	
; ð17:3:6Þ

in so doing, the value h Ej jbi1 remains so far unknown.
The second approximation lies in replacement (compare to (17.2.3))

Ej jb
D E

1
! Ej j2
D Eb=2

1
; ð17:3:7Þ

where medium square of the field Ej j2
D E

1
is found from the ratio (17.2.6) which in

this case is convenient to be written as

Ej j2
D Eb=2

¼ 1
pb=2

@re
@~r1


 �b=2

Eh ib; ð17:3:8Þ

and under @re=@~r1 is meant derivative of re from (17.3.6).

Thus, for the two unknown re and Ej jb
D E

1
! Ej j2
D Eðb=2Þ

1
there are two non-

linear algebraic equations (17.3.6) and (17.3.8) solving which allows finding re for
the nonlinear inhomogeneous medium over the entire concentration range.

Despite the two essential approximations, the above schematic is in good
agreement with the numerical experiments and allowed, in particular, explaining the
dependences obtained during numerical calculation in [15]. One can say that to a
large extent such appropriate EMT generalization is due to the fact that the linear
EMT is based on field calculation in spherical (in the general case—ellipsoidal)
inclusions, and, as is well known, the field inside such an inclusion does not depend
on whether it is linear or not.

In the critical region close to percolation threshold in the case when one of the
phases is strongly nonlinear, the problem of calculation of the effective coefficients
was first considered in [14, 31]. For the case of p > pc, there was obtained
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hji ¼ v1s
tðbÞ hEij jbhEi; p[ pc; r2 ¼ 0; ð17:3:9Þ

with critical index

tðbÞ ¼ ðd � 2� bÞmþð1þ bÞfðbÞ; ð17:3:10Þ

where within the NLB model fðbÞ ¼ 1, and within the IM fðbÞ ¼ fR.
[20] deals with a case below the percolation threshold, when the second phase is

nonlinear, and the first phase is a perfect conductor

hji ¼ v2 sj j�qðbÞ hEij jbhEi; p\pc; q1 ¼ 1=r1 ¼ 0; ð17:3:11Þ

where

qðbÞ ¼ fðbÞ � ðd � 2� bÞm; ð17:3:12Þ

and within the NLB model fðbÞ ¼ 1, and within the HM fðbÞ ¼ fG.
Simultaneous account of nonlinearity of both phases with identical coefficient of

nonlinearity b1 ¼ b2 ¼ b, but with v1 	 v2 was provided in [19]. Account of final
“conductivity”v1 6¼ 0 and v2 6¼ 0 of both phases yielded, in particular, the
expression in the smearing region:

hji ¼ vqðbÞ1 vtðbÞ2

� � 1
tðbÞþ qðbÞ hEij jbhEi ð17:3:13Þ

where tðbÞ is given in (17.3.10), and qðbÞ—in (17.3.12).
Below we consider a case [27] when phases have different volt-ampere char-

acteristics (b1 6¼ b2), in particular, they include the cases when both phases are
linear (b1 ¼ b2 ¼ 0).

Consider, for instance, a problem when in the first and second phases the
volt-ampere characteristics are equal, respectively, to

j ¼ v1 Ej j�2=3E; j ¼ v2 Ej j2E; ð17:3:14Þ

or

E ¼ c1 jj j2j; E ¼ c2 jj j�2=3j; ð17:3:15Þ

where

v1 ¼ c�1=3
1 ; c2 ¼ v�1=3

1 : ð17:3:16Þ

Figure 17.2 schematically represents these characteristics and shows Ec—the
value of electric field intensity whereby current values in the first and second phases
are compared. In region I of electrical fields the first phase conducts current better
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than the second one (it can be called “metal”), in region II the conducting properties
of phases are approximately equal, in region III the phases “change places”—now
the second phase conducts current better (plays the role of ”metal”).

To calculate the effective properties, let us use the second step of the HM. The
bridge and interlayer resistances can be assigned based on the kind of volt-ampere
characteristic. Consider a three-dimensional case:

U1 ¼ N1

a50v
3
1
J31 ; U2 ¼ a0

v2N2
J1=32 ; ð17:3:17Þ

where U1,2 is voltage drop, J1,2 are the bridge and interlayer currents.
In the derivation of (17.3.17), like in the linear case, it is taken into account that

currents flowing through “single connected bonds”—SCB, of which a bridge is
composed, are identical for each resistance and equal to full current through the
bridge, and that voltage drop on each of “single disconnected bonds”—SDCB, of
which the interlayer is composed, is identical and equal to voltage drop on the
interlayer. Above the percolation threshold the bridge and the interlayer are con-
nected in parallel, so full current Jn on sizes of the order of correlation length n is
equal to the sum of currents J1 þ J2 ¼ Jn. Then

Jn ¼ a50v1
N1


 �1=3

U1=3
n 1þ v2

v1

N2N
1=3
1

a8=30

U8=3
n

 !
; ð17:3:18Þ

where it is taken into account that U1 ¼ U2 ¼ Un is voltage drop on elements of
order n.

j

EI II III

cE

1

2

Fig. 17.2 Volt-ampere
characteristics of the first
“black”—1 and second
“white”—2 phases
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Below the percolation threshold Un ¼ U1 þU2 and J1 ¼ J2 ¼ Jn, then we have

Un ¼ a0
v2N2


 �1=3

Jn 1þ v2N2

a0


 �1=3 N1

a50v
3
1
J8=3n

" #
; p\pc: ð17:3:19Þ

The use of both HM and NLB model assumes the presence of strong inhomo-
geneity—conductivity of the “black” phase should be much larger that that of the
“white” phase, which is possible (see Fig. 17.2) in region I, when E � Ec and
j � jc, where Ec and jc for the considered case (17.3.14), (17.3.15) are of the form

Ec ¼ v1
v2


 �3=8

; jc ¼ v91
v1=82

 !3=8

: ð17:3:20Þ

As long as maximum current is a bridge current, and maximum field is an
interlayer field, then

jmax ¼ hjij j sj j�2m; Emax ¼ hEij j sj j�m; ð17:3:21Þ

and, thus, the medium is found in the region of fields I, if

hEij j � Ec sj jm¼ v1
v2


 �3=8

sj jm; ð17:3:22Þ

hjij j � jc sj j2m¼ v91
v1=82

 !3=8

sj j2m: ð17:3:23Þ

The presence of factor s in (17.3.22) and (17.3.23) means that the closer to
percolation threshold is the first phase concentration, the more rigid are these
conditions.

Apart from restrictions due to strong inhomogeneity, there are restrictions
inherent in the model of percolation structure: above the percolation threshold its
basic element should be a bridge, and below the percolation threshold—an inter-
layer. In other words, at p[ pc the inequality Q1 	 Q2 should be met, where Q1

and Q2 is heat release on the bridge and interlayer. Since at p[ pc this inequality
assumes the form J1 	 J2, then with regard to (17.3.17) we have

U2 � a0
v1
v2


 �3=8

sj j 3nR þ nGð Þ=8; p[ pc: ð17:3:24Þ

Below the percolation threshold the condition Q2 	 Q1 is fullfilled, which with
regard to J1 ¼ J2, U2 	 U1 brings about the following:
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J1 � a20
v91
v2


 �1=8

sj j 3nR þ nGð Þ=8; p\pc: ð17:3:25Þ

If (17.3.22)–(17.3.25) are met, then (17.3.18) and (17.3.20) can be used to
determine the effective properties of a nonlinear medium. Taking into account that
in the three-dimensional case Jn ¼ hjij jn2, Un ¼ hEin and n ¼ a0 sj j�m, from
(17.3.18) and (17.3.19) we obtain

hji ¼ v1 sj j~t hEij j1=3 hEihEij j 1þ v2
v1

sj j�~u hEij j8=3

 �

; p[ pc; ð17:3:26Þ

hji ¼ v2 sj j�~q hEij j3 hEihEij j 1� 3
v2
v1

sj j�~u hEij j8=3

 �

; p\pc; ð17:3:27Þ

where

~t ¼ 5mþ nR
3

; ~q ¼ mþ nG; ~u ¼ ~tþ ~q; ð17:3:28Þ

and, within the HM we have

~t3 ¼ 4m3 þ t3
3

; ~q3 ¼ 2m3 þ q3; ~u ¼ t3 þ 3q3 þ 10m
3

; ð17:3:29Þ

Within the NLB model, nR and nG in (17.3.28) should be replaced by unity.
Substitution of nR and nG expressed through t, q, and m in (17.3.24) and (17.3.25)

shows that these two conditions coincide, i.e., it is the same thing written down in
different ways:

hEij j � v1
v2


 �3=8

s tþ 3qþ 10mð Þ=8; ð17:3:30Þ

or, which is the same,

jj jh i � v91
v2


 �1=8

sð3tþ qþ 14mÞ=8; ð17:3:31Þ

which denotes, as it should be, the smallness of second components as compared to
the first one in (17.3.26) and (17.3.27).

Similarly to the linear case, using the expressions (17.3.26) and (17.3.27) one
can find the size of the smearing region D and the effective properties of the
nonlinear medium in this region. To determine D, having previously replaced sj j by
D, we equate the first components in (17.3.26) and (17.3.27) or the first and second
components in (17.3.26) [or in (17.3.27)], and in all these cases we obtain
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D ¼ v2
v1


 � 3
tþ 3qþ 10m

hEij j 8
tþ 3qþ 10m: ð17:3:32Þ

As can be seen from (17.3.32), the size of the smearing region D depends on the
average field value. As long as the critical region for which (17.3.26) and (17.3.27)
are valid, is the concentration region sj j � 1, then for D from (17.3.32) the
inequality D � 1 must be also satisfied, or

hEij j � v1
v2


 �3=8

: ð17:3:33Þ

Note that if condition hEij j � Ec from (17.3.22) is satisfied, then, as long as
sj jm� 1, the condition (17.3.33) is known to be satisfied.
Substituting D from (17.3.32) to the first component (17.3.26) or (17.3.27), we

find the effective properties of a nonlinear medium in the smearing region as

hji ¼ v3ðqþ 2mÞ
1 
 vtþ 4m

2

� � 1
tþ 3qþ 10m hEij j3tþ qþ 14m

tþ 3qþ 10m
hEi
hEij j ; sj j �D: ð17:3:34Þ

The numerical values of critical indices of conductivity (17.3.29) with a given
selected kind of nonlinearity are of the form

~t3 ¼ 1:84; ~q3 ¼ 2:49; ~u3 ¼ 4:33: ð17:3:35Þ

Note that while above and below the percolation threshold, beyond the smearing
region, the field dependence (17.3.26) and (17.3.27) for the medium current

(� hEij j1=3 p[ pc and hEij j3 p\pc) coincides with that for pure phase. However,
in the smearing region this value coincides with neither of them and is in the
interval between them (17.3.35):

3tþ qþ 14m
tþ 3qþ 10m

¼ 1:47; 0:33\1:47\3: ð17:3:36Þ

Let us consider calculation of the effective properties for the strong nonlinearity
in the general case, when the dependences of j on E for the first and second phases
are the following:

j ¼ v1 Ej j1�c
c E; j ¼ v2 Ej jb�1E; ð17:3:37Þ

where b and c are parameters assigning the kind of strong nonlinearity, in general
case, is similar to that given above,

hji ¼ v1s
~t hEij j1=c hEihEij j 1þ v2

v1
s�~u hEij jb�1=c


 �
; p[ pc; ð17:3:38Þ
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hji ¼ v2s
�~q hEij jb hEihEij j 1� v2

v1
s�~u Eh ij jb�1=c


 �c
 �
; p\pc ð17:3:39Þ

hji ¼ v~q1v
~t
2

� �1=~u
hEij jb

~tþ ~q=c
~u

hEi
hEij j ; sj j\D: ð17:3:40Þ

Here the size of the smearing region, like in (17.3.32), depends on hEi:

D ¼ v2
v1


 �
hEij jb�1=c

� 	1=u
; ð17:3:41Þ

and critical indices ~t, ~q, ~u (within the HM) are of the form

~t ¼ tþ mðd � 1Þðc� 1Þ
c

; ~q ¼ qþ mðb� 1Þ; ~u ¼ ~tþ ~q: ð17:3:42Þ

It is noteworthy that under certain values of nonlinearity parameters b and c,
namely, when b~tþ ~q=c ¼ 0, a medium which remains nonlinear above and below
the percolation threshold, in the smearing region behaves linearly.

The above percolation description of the effective properties assumes consid-
erable inhomogeneity, i.e., valid in region I (see Fig. 17.2), when E � Ec. Consider
now the region which is close to Ec—region II in Fig. 17.2. Directly at point Ec,
i.e., at hEij j ¼ Ec, the medium becomes homogeneous in conductivity, and close to
Ec—though nonlinear, but weakly inhomogeneous. Therefore, for the analysis of its
effective properties the percolation approach can be used no longer, but one can
apply the EMT generalization of a linear case [11, 12, 13, 35]. This method,
provided that the notation hji ¼ re hEij jð ÞhEi is accepted, will lead to the first

approximation in the small parameter hEij j�Ecð Þ
Ec

� 1. In so doing, for re hEij jð Þ the
following expression is obtained:

re � v2 1� 2
c� 1

ð1� pÞðc� 1Þ � 2
p
hEi � Ec

Ec


 �
: ð17:3:43Þ

In the third region of volt-ampere characteristic (see Fig. 17.2) at E 	 Ec the
elements of “black” and “white” phases change their places. It would seem that at
replacement v1 � v2, p� 1� p, one should observe the same percolation structure
and the same properties. In so doing, however, one should be sure that at all
medium points, not only in percolation elements (bridge and interlayer) at given
average field hEi 	 Ec the local field is larger than critical one. A detailed analysis
of nonlinear medium in the region of fields III has not been addressed yet.
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In the two-dimensional case in the self-dual media, at certain ratio of nonlin-
earity parameters b and c, namely, at

c ¼ 1=b; ð17:3:44Þ

the exact solution of problem of the effective properties of inhomogeneous medium
is possible.

Using the Dykhne transformation (see Chap. 6) one can find [29] that in the case
(17.3.44) the volt-ampere characteristic is linear, and the effective conductivity is of
the form

re ¼ vb1v2
� � 1

1þ b
: ð17:3:45Þ

In the case when b ¼ 1, both phases are nonlinear, and re (17.3.45) coincides
with the effective conductivity obtained by A.M. Dykhne, re ¼ ffiffiffiffiffiffiffiffiffiffi

r1r2
p

. A discrete
variant when a network of nonlinear resistances has a linear volt-ampere charac-
teristic is considered in [4].

Numerical check of critical indices obtained for the case of strong nonlinearity
was provided in many works. In [6, 7], critical index of conductivity above the
percolation threshold was calculated by means of models of hierarchical fractal
networks. In [16, 17] (see also the references cited) there were found numerical
values of critical index of conductivity above the percolation threshold. It is
noteworthy that in many papers where the numerical experiment was performed on
the network models, strong nonlinearity can be written as

V ¼ r Ij jasgn I; ð17:3:46Þ

where V is voltage drop on the bond, r is its resistance, I is current through this
bond, sgn is sign function.

In the numerical experiment where one seeks the average over realizations,
resistance {R} depending on L—sample size:

fRg� L
~fðaÞ; ð17:3:47Þ

Such dependence at L 	 n goes over (see Chap. 9) (n ! s�m) to the following
one:

R� s�fðaÞ; fðaÞ ¼ m~fðaÞ: ð17:3:48Þ

For the effective “resistivity” ce in the d-dimensional case, we have

ce ¼ Rnd�1=a=n; ð17:3:49Þ
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Passing to substituting field intensity hEi byV=n and current density
hji by I=nd�1 into (17.3.46) we find

hEi ¼ V
n
¼ R

na�1� a
n

I

nd�1


 �a

ð17:3:50Þ

whence with regard to (17.3.48) we obtain

ce � s�ta ; ta ¼ amðd � 1Þþ fðaÞ � m: ð17:3:51Þ

As long as the effective coefficient ce in the case of strong nonlinearity is related
to ve as follows:

ve ¼ c�1=a
e ; ð17:3:52Þ

we have from expression (17.3.51) the following

tðaÞ ¼ mðd � 1Þ � f að Þ � m
a

; ð17:3:53Þ

and in terms of parameter b (b ¼ ð1� aÞ=a) (17.3.53) changes, as it should be, to
(17.3.10).

In [16, 17] the numerical values of fðaÞ were found for different a and problem
dimension d. It turned out that fðaÞ does not differ much from unity and weakly
depends on a, see Table 17.2, where the numerical values of index fðaÞ are given
for two-, three-, and six-dimensional problems and a ¼ 5:0 [16]. In the NLB model
fðaÞ ¼ 1, and within the HM fðaÞ ¼ fR. Both models, at not very large values of b,
yield satisfactory agreement with the numerical calculation. As in the case of
problem of current moments, while moment degree is far from zero and not very
large, the main elements of percolation structure are the bridge and the interlayer,
which gives agreement between calculations within different models and the
numerical calculations.

In [5, 6] a generalized problem is considered—the problem of determination of
critical behavior of current moments in a strongly nonlinear medium, and it is
shown that qth moment in a medium where E� jb is satisfied, is scaled as follows:

MqðbÞ� L
~wðq;bÞ; ð17:3:54Þ

Table 17.2 The numerical
values of f(a)

Problem dimensionality fða ¼ 0:5Þ
2 1:02� 0:08

3 1:02� 0:08

6 1:00� 0:01
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where critical index ~wðq;bÞ for different values of q and b yields for partial cases
the well-known critical indices, for instance

~wð1; 1Þ ¼ nR; ~wð1;bÞ ¼ 1=m; ~wðq;1Þ ¼ 1=m; ~wðq;�1Þ ¼ DB; . . .:

ð17:3:55Þ
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Chapter 18
Effective Properties of Ferromagnetic
Composites

18.1 Nonlinearity and Hysteresis in Ferromagnets

In the present chapter we consider a randomly inhomogeneous medium, where one
of the phases is ferromagnetic, and the other—nonmagnetic (dia- or paramagnetic,
the susceptibility of which can be ignored).

The main characteristic of ferromagnetic composite is the effective magnetic
permeability le. By determination, le interrelates the volume-averaged intensity
H and magnetic field B:

Bh i ¼ leff Hh ið Þ Hh i; ð18:1:1Þ

where . . .h i ¼ V�1
R
. . .dV , V is averaging volume. Despite the formal similarity of

problems of calculating the effective magnetic permeability and the effective con-
ductivity, there are, at least, two principal moments that complicate the analysis
considerably. First, local effective permeability l(H) is characterized by a peculiar
kind of nonlinearity (see Fig. 18.1) which reduces neither to weak nonlinearity,
when at small fields the dependence l(H) becomes linear (for instance, dependence
of Ohm’s law type), nor to strong nonlinearity, when power volt-ampere charac-
teristic is assumed (in terms of the electrical fields and currents). At sufficiently
large magnetic fields, the relative magnetic permeability is close to unity, i.e., a
medium consisting of ferromagnetic and nonmagnetic phases is weakly inhomo-
geneous. At the same time, in the intermediate fields the relative magnetic per-
meability can reach large values and, thus, the medium becomes strongly
inhomogeneous. Second, when in the ferromagnetic phase one cannot ignore the
residual magnetization, the concept of magnetic permeability loses its unambiguity.

In paragraph 18.2 we consider a case when hysteresis loop can be ignored, i.e.,
when in the ferromagnetic phase the magnetic permeability is an unambiguous field
function, and in 18.3 we consider a problem of determination of residual magne-
tization and coercive force.

© Springer Science+Business Media, LLC 2016
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18.2 Hysteresis-Less Case

To determine the external field dependence of le, let us use a modification of
EMA-approximation [3, 6] proposed in [4, 5] for the case of power nonlinearity and
described in the previous chapter. We will dwell in brief on the basic steps of this
method for our case. A nonlinear phase with l1 ¼ l1 Hð Þ will be characterized by
certain permanent magnetic permeability

~l1 ¼ l1 Hð Þh i1; ð18:2:1Þ

where averaging is taken over the volume of inclusions.
Then for the determination of leff one can use standard EMA-approximation for

the three-dimensional case:

leff ¼
1
4

3p� 1ð Þ~l1 þ 2� 3pð Þl2½ � þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p� 1ð Þ~l1 þ 2� 3pð Þl2½ �2 þ 8l2~l1

q� �
;

ð18:2:2Þ

where p is ferromagnetic phase concentration. Further [see (17.2.6)] we have

H2� �
1¼

H2
� �
p

@leff
@~l1

: ð18:2:3Þ

The second approximation of this method for the determination of ~l1 through
H2
� �

1 yields

~l1 ¼ l Hð Þh i1� l1

ffiffiffiffiffiffiffiffiffiffiffiffi
H2h i1

q� �
: ð18:2:4Þ
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Fig. 18.1 The magnetic field
dependence of relative
magnetic permeability in
ferromagnetic phase; points
stand for the values of
magnetic permeability for
concrete material (steel); solid
curve stands for analytical
function approximating the
experimental points
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Substitution of (18.2.4) into (18.2.2) and (18.2.2) into (18.2.3) leads to a non-
linear equation for the determination of H2

� �
1

H2� �
1¼

H2
� �
4p

3p� 1þ 3p� 1ð Þ~l1 þ 2� 3pð Þl2½ � 2� 3pð Þþ 4l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p� 1ð Þ~l1 þ 2� 3pð Þl2½ �2 þ 8l2~l1

q
9>=
>;

8><
>: : ð18:2:5Þ

Determining from (18.2.5) field H2
� �

1 and substituting it into (18.2.2), we find
the effective magnetic permeability of ferromagnetic composite leff as the function
of concentration p of ferromagnetic medium, external magnetic field Hh i, and
parameters of nonlinearity functions.

As an example, consider concrete dependence of local magnetic permeability
shown in Fig. 18.1 as

l1 Hð Þ ¼ l0 1þ 1:57� 106 � tan h 5� 10�4 � Hð Þ
H

� 2:58� 105 � tan h 3� 10�3 � Hð Þ
H

� �
;

ð18:2:6Þ

where l0 ¼ 4p� 10�7 N=A2. Figure 18.2 shows calculated from (18.2.2) and
(18.2.5) dependence of leff on the concentration of ferromagnetic phase p and
external field Hh i [1, 2]. At p ¼ 1, as expected, the field dependence of leff
coincides with dependence of magnetic permeability of pure ferromagnetic phase.
For the magnetic fields whereby l1 ¼ l1 Hð Þ � 1, the effective magnetic perme-
ability leff increases dramatically while crossing the percolation threshold.

400

200

0.8 0.6 0.4
1.0

8000
4000

0.0

Fig. 18.2 Dependence of the
effective magnetic
permeability leff on the
concentration of
ferromagnetic phase p and the
intensity of volume-averaged
magnetic field Hh i from 0 to
10,000 A/m
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18.3 Ferromagnetic Composites with a Nonzero Hysteresis
Loop

In the case of a ferromagnetic phase with a nonzero hysteresis loop, an unam-
biguous determination of both local and effective magnetic permeability is
impossible. The local value of magnetic permeability in this case loses its unam-
biguity, its value already depends on the history of sample magnetization.
Therefore, complete solution of the problem of finding the effective magnetic
permeability and dependence of Bh i on Hh i is only possible with knowledge of
magnetization “history.” However, even in this case, when we know magnetization
history, for instance, a sample is first brought to technical saturation, following
which demagnetization occurs along the so-called back of hysteresis loop (see the
arrow in Fig. 18.3), a nonstandard situation is created for the determination of the
effective characteristics. Namely, at H ¼ 0 there is a nonzero Bvalue, wherein lies
the presence of residual magnetization.

To calculate the effective coefficients of a composite, when one of the phases (or
both) has hysteresis loop, we will apply local linearization method (LL-method) [8]
(see also [2]). We will also find dependence of coercive force Hc and composite
residual magnetization Br on the concentration of ferromagnetic phase and the value
of coercive force hc and residual magnetization br in this phase. To determine the
coercive force of composite, we pass over to terms of the effective magnetic
resistance keff found from equation:

Hh i ¼ keff Bh ið Þ Bh i: ð18:3:1Þ

Let us consider in more detail the local linearization method for calculation of
the effective magnetic resistance.

The first approximation in the LL-method lies in the local linearization of equation

H rð Þ ¼ ki Bð Þ � B rð Þ ð18:3:2Þ

H

B

B

H

( )dλ B

Back of hysteresis
loop

Fig. 18.3 Demagnetization
curve
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for certain induction value eB, when local nonlinearity at B ¼ eB is replaced by
linearized one (see Fig. 18.3) (index i ¼ 1 for the first phase and i ¼ 2 for the
second phase). In this case we obtain

H ¼ kdi eB	 

� BþX; ð18:3:3Þ

where

Xi eB	 

¼ H eB	 


� kdi eB	 

� eB ¼ ki eB	 


� kdi eB	 
	 

� eB; ð18:3:4Þ

kdi eB	 

¼ dHi Bð Þ

dB

����
B¼eB : ð18:3:5Þ

Let us next consider that field \H[ was brought to the values of technical
saturation of ferromagnetic phase, following which it starts to be reduced. Thus, a
medium is “situated” on the upper recurrent part of hysteresis loop, if hysteresis
loop is considered in the axes with H along the abscissa and B along the ordinate.
Our task is to determine the effective coefficients in the system using the law of
(18.3.3) type relating local field and induction as

Hh i ¼ ke Bh ið Þ � Bh iþXe; ð18:3:6Þ

In order to do that, one should determine the value Xe (without selection of
sample magnetization history it is equal to the effective coercive force of the entire
sample Hc), and calculate ke like for linear laws (for instance, EMA). To determine
Xe, let us draw an analogy between (18.3.3) and thermoelectric medium:

E ¼ qi � j� ai rTh i; ð18:3:7Þ

where ai is the Seebeck coefficient in ith phase, qi is resistivity of ith phase, ji is
thermal conductivity of ith phase. The law (18.3.7) is valid at low thermoelectric
figure of merit (T � a2i

�
qi � jið Þ � 1, where T is temperature). Comparing (18.3.7)

and (18.3.3) we see that the analogy exists, if ai rTh i ¼ const in each phase. When
ai in each of the phases is chosen as coordinate-independent, it is also necessary that

rTh i ¼ const ð18:3:8Þ

for the entire sample. It is the second approximation of the LL-method. We will
consider condition (18.3.8) to be met, then the relations describing a nonlinear medium
after local linearization Eqs. (18.3.3–18.3.6) within the replacement of notation

�ai rTj j $ Xi; �ae rTj j $ Xe;
qi $ kdi Bð Þ; qe $ ke;

ð18:3:9Þ

18.3 Ferromagnetic Composites with a Nonzero Hysteresis Loop 243



coincide with thermoelectric system, where qe is the effective resistance of ther-
moelectric linear system with local relations (18.3.7):

Eh i ¼ qe jh i � ae rTh i; ð18:3:10Þ

The effective coefficient qe in (18.3.10) can be found using, for instance, stan-
dard EMA-method (or any other linear approximation). By means of isomorphism
between ae and qe ¼ 1=re (see Chap. 15) we will determine ae as

ae ¼ a1qd2 - a2qd1ð Þ - qe a1 - a2ð Þ
qd2 - qd1

; ð18:3:11Þ

Taking into account replacement of notation (18.3.9) and that Hc ¼ Xe B ¼ 0ð Þ,
hc1 ¼ X1 0ð Þ and hc2 ¼ X2 0ð Þ, we obtain

Hc ¼ hc2kd1 0ð Þ - hc1kd2 0ð Þð Þ - ke 0ð Þ hc2 - hc1ð Þ
kd2 0ð Þ - kd1 0ð Þ ; ð18:3:12Þ

Figure 18.4 represents concentration dependence of the effective coercive force
of the entire sample. To find ke, the three-dimensional EMA-approximation was
used

ke ¼ 1
2

ð1� 3pÞkd2 þð3p� 2Þkd1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3pÞkd2 þð3p� 2Þkd1½ �2 þ 8kd1kd2

q� �
ð18:3:13Þ

The residual magnetization Br is calculated quite similarly (see
Fig. 18.5) demonstrate a good agreement with numerical and experimental results
mentioned in [7].
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Fig. 18.4 Dependence of
composite coercive force on
the ferromagnetic phase
concentration
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Chapter 19
Temperature Coefficient of Resistance
and Third Harmonic Generation Close
to Percolation Threshold

19.1 Temperature Coefficient of Resistance

One of the important characteristics of composite materials is temperature depen-
dence of resistance which can be expressed through temperature coefficient of
resistance.

TCR ¼ 1
R
dR
dT

: ð19:1:1Þ

The lower the temperature coefficient of resistance of a given material in a given
temperature range, the less will be the temperature dependence of material resis-
tance. With the use of composite materials as resistances in different electrical
circuits, it is of critical importance to know temperature coefficient of resistance,
since for the operating stability of electronic devices it should be as low as possible
(see, for instance [5]), which is also concerned with temperature coefficients of
resistance of thin-film composite resistors.

Temperature dependence of conductivity and thermoelectric properties in
composites considered in the following papers [4] (application of percolation theory
for the description of positive temperature coefficient effect of polymer composite)
[1], (two-dimensional percolation models were used for explanation of temperature
dependence of conductivity of copper- and nickel-doped Bi2Te3 crystals) [3].

Temperature coefficients of resistance of two-phase strongly inhomogeneous
media close to percolation threshold pc can be easily determined from the
expressions for the effective resistivity [8]. For convenience, we pass on to specific
temperature coefficient of resistance

b ¼ 1
qe

dqe
dT

; bi ¼
1
qi

dqi
dT

; i ¼ 1; 2; . . .; ð19:1:2Þ

where i is phase number.

© Springer Science+Business Media, LLC 2016
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Below the percolation threshold, where qe � q2 sj jq B0 þB1h sj j�uð Þ,
h ¼ r2=r1 � q1=q2, u ¼ tþ q, account of temperature dependence of q1, and q2
leads to the expression

dqe
dT

¼ B0
dq2
dT

sj jq þB1
dq1
dT

sj j�u: ð19:1:3Þ

Dividing this expression by q2 sj jq and discarding higher components in the
order of magnitude as compared to q1=q2, we obtain

be ¼ B0b2 þB1b1h sj j�u; u ¼ tþ q; p\pc; s � D; ð19:1:4Þ

In the same way, we find temperature coefficients of resistance above the per-
colation threshold and at the threshold—in the smearing region

be ¼ A0b2 þA1b1h sj j�u; p[ pc; s � D; ð19:1:5Þ

be ¼
q
u
b1 þ

t
u
b2; sj j �D: ð19:1:6Þ

As can be seen from (19.1.4) and (19.1.5), on approaching the percolation
threshold, temperature coefficient of resistance can change its value. For instance,
below the percolation threshold, in the case when temperature coefficient of
resistance of poorly conducting phase b2 is much larger than b1, one can select such
values of parameters and concentrations that

b1h sj j�u [ b2; s[D: ð19:1:7Þ

It means that below the percolation threshold, the effective temperature coeffi-
cient of resistance will be characterized by temperature coefficient of resistance of
well conducting phase and will depend on concentration.

A similar simple calculation can be also used to determine temperature coeffi-
cient of resistance of media with exponentially wide resistance distribution spec-
trum [8].

19.2 Third Harmonic Generation

The problem of temperature coefficient of resistance is closely related to a nonlinear
temperature response—third harmonic and 1=f -noise generation [2, 6, 7, 9–11]. On
application of current with frequency x, the presence of temperature dependence of
resistance leads to third harmonic generation (with frequency 3x).

248 19 Temperature Coefficient of Resistance and Third Harmonic …



To explain this effect, consider first a homogeneous case. From the determina-
tion of temperature coefficient of resistance (19.1.2), it follows that deviation of
specific resistance dq due to temperature deviation from the average value T0
(dT ¼ T � T0) can be represented as

dq ¼ bq T0ð ÞdT; ð19:2:1Þ

where dT is proportional to Joule heat release,

dT � q T0ð Þj2 xð ÞF x; Tð Þ; ð19:2:2Þ

and q T0ð Þj2 xð Þ is Joule heat release and F x; Tð Þ is a function that characterizes
heat outflow.

If alternating voltage is applied to a sample in such a way that

j xð Þ ¼ j0 cosxt; ð19:2:3Þ

then from (19.2.1) and (19.2.2) we obtain

dq ¼ q20bF x; Tð Þj20 cos2 xtþu0ð Þ; ð19:2:4Þ

where u0 is a phase, and it is also taken into account that at low overheats
bdT � 1ð Þ q Tð Þ � q0 1þ bdTð Þ, and notation q0 ¼ q T0ð Þ is introduced.
Thus, on passing current with frequency x, the resistance changes by the law

cos2 xt, i.e., comprises the second harmonic (cos2 xt ¼ 0:5þ 0:5 cos 2xt), which
results in the third harmonic generation. In fact, substituting dq from (19.2.4) into
E tð Þ ¼ qþ dqð Þj xð Þ, after elementary transformation we obtain that E tð Þ comprises
odd harmonics x and 3x.

Making the same calculations for the effective resistivity Eh i ¼ qe þ dqeð Þ jh i,
where now

dqe jh i2¼ j2dq
� �

; j r;xð Þ ¼ j0 rð Þ cosxt; ð19:2:5Þ

we find

j0h i2dq ¼ bq20j
2
0

� �
F x; Tð Þ cos2 xtþu0ð Þ: ð19:2:6Þ

Here q0 ¼ q0 rð Þ is permanent part of local resistivity.
Substituting dqe into Eh i ¼ qe þ dqeð Þ jh i, for the amplitude of third harmonic of

the field we find

Eh i ¼ qe T0ð Þ j0h icos xtð Þþ 1
4
F x; tð Þ bq20j

4
0

� �
j0h i cos 3xtð Þþ :::; ð19:2:7Þ
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Therefore the amplitude of third harmonic Eh i3f and normalized for j0h i3
amplitude B3f can be expressed in the form

Eh i3f �
bq20j

4
0

� �
j0h i

B3f ¼
Eh i3f
j0h i3 � bq20j

4
0

� �
j0h i4 :

ð19:2:8Þ

As can be seen from (19.2.8), B3f is expressed through normalized fourth current
moment and, to an accuracy of inessential factors, coincides with concentration
behavior of q2eCe.

Just as the value of the relative spectral density of 1=f -noise Ce, the value B3f can
“detect” the differences in the structure of inhomogeneous media, “inaccessible” to
effective conductivity. Experiments illustrating this fact are given in [2, 10, 11] that
studied media with different local structure, close to percolation threshold. For such
media (two-phase, strongly inhomogeneous, p � pc) for B3f in [7] there were
obtained concentration dependences above and below the percolation threshold with
a finite ratio of phase conductivities, as well as in the smearing region

B3f � b1
qe
q1

� �k
t þ 2

þ b2h
2 qe

q1

� �k0 þ 2u
t þ 2

; p[ pc; s � D; ð19:2:9Þ

B3f � b1
qe
q2

� �k
t þ 2

þ b2h
2 qe

q2

� �k0 þ 2u
t þ 2

; p\pc; sj j � D; ð19:2:10Þ

B3f � b1
qe
q1

� �k
t þ 2

þ b2h
2 qe

q2

� �k0 þ 2u
t þ 2

; sj j\D; ð19:2:11Þ

where h ¼ r2=r1 ¼ q1=q2.
In (19.2.9)–(19.2.11) the concentration dependence of B3f is written through

function of concentration qe ¼ qe sð Þ. In so doing, certainly, dependences qe sð Þ in
(19.2.9)–(19.2.11) should correspond to indicated ranges of concentration change,
for instance, in (19.2.9) qe sð Þ � q1s

�t.
Snarskii [7] also deals with third harmonic generation in the systems with

exponentially wide resistance spectrum. If pre-exponential factor is neglected, then

B3f � q3e : ð19:2:12Þ

Similar to higher current moments (see Chap. 14) one can also consider gen-
eration of higher odd harmonics—B5f ;B7f ; . . .: Certainly, their experimental studies
due to fact of amplitude smallness are more complicated [10, 11].
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Chapter 20
Instability and Chaos
in the Macroscopically Inhomogeneous
Media with Weak Dissipation

20.1 Dual Media

Till now, we have considered cases when, at least in one of the phases, conductivity
had a nonzero real part (see Chap. 11). In particular, for the two-dimensional
medium at the percolation threshold A.M. Dykhne obtained a precise result (see
Chap. 6):

re ¼ ffiffiffiffiffiffiffiffiffiffi
r1r2

p ð20:1:1Þ

However, cases are possible when the real part of local conductivity of phases is
small (in the ideal case it is equal to zero), and the imaginary parts have different
signs. It can be said that a medium consists of inductances and capacitances
characterized by magnetic permeability and dielectric permittivity. One of the
examples of such media is films consisting of metal islands divided by dielectric
areas. The metal parts of the film possess inductance, and dielectric areas (often it is
just air) are capacitive. In such media there are gigantic inhomogeneities of local
fields (see, for instance [1–3]). In the derivation of formula (20.1.1) (see Chap. 6) no
restrictions were imposed on the phase conductivity values. Thus, one of the phases
can be a perfect conductor—conductivity r in this case has only the imaginary
negative part (inductance), and the second phase—a perfect dielectric, and con-
ductivity r in this case has only the imaginary positive part (capacitance). Thus, one
can write

r1 ¼ �iy; r2 ¼ ix; x[ 0; y[ 0; ð20:1:2Þ

where x ¼ xc, y ¼ 1=xl, and c and l are specific capacitance and inductance of
material (F/m3, H/m3).
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Then from (20.1.1) it follows directly that

re ¼ ffiffiffiffiffi
xy

p ¼
ffiffiffiffiffiffi
c=l

p
: ð20:1:3Þ

According to (20.1.3), the effective conductivity of such a medium composed of
imaginary phases with different signs is real, i.e., a medium “composed of imagi-
nary resistances, not leading to energy dissipation, possesses a real equivalent
resistance, i.e. absorbs energy” [4], wherein lies a paradox!

The paradox could be solved as follows. In work [14] it is shown that on the
network with purely imaginary conductivities of bonds the problem of potential
distribution coincides with Anderson localization problem. A small real addition to
the imaginary part of conductivity of metal phase can be taken into account within
the perturbation theory. Under this approach, in particular, the correlation length
was calculated. It proved to be proportional to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re r1;2

p
(for the two-dimensional

case). Thus, in the case of purely imaginary phases the correlation length diverges
nðRe r1;2 ! 0Þ ! 1. In other words, at the percolation threshold at Re r1;2 ¼ 0
the concept of effective conductivity loses its physical meaning.

The above described paradox has well-illustrated the fact that one cannot just
substitute the imaginary conductivities of phases of different signs into the
expression for the effective conductivity obtained for the case of finite correlation
radius. One should make it certain that correlation radius remains finite.

Let us illustrate [5] this by an example of D-medium obtained by mixing (see
Chap. 6). In the “ordinary” case, at Im r1 ¼ Im r2 ¼ 0, as was shown [see (6.1.26
)], the mixing procedure quickly converges to isotropic medium with the effective
conductivity value

re ¼ ffiffiffiffiffiffiffiffiffiffi
r1r2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr1 þð1� pÞr2
ð1� pÞr1 þ pr2

s
: ð20:1:4Þ

At p ¼ pc ¼ 1=2 the expression (20.1.4) reduces to (20.1.1), and the iteration
procedure [formula (6.1.25)] is a technique, well known from applied mathematics,
for square root calculation by Newton method (see chapter 6, Fig. 6.7). In the case
of conductivities with a zero real part and the imaginary parts with the identical
signs (for instance, a medium consists of two media with different dielectric con-
stants), to an accuracy of notation everything remains unchanged. While in the case
of different signs of the imaginary parts, i.e., at Re ðr1Þ ¼ Re ðr2Þ ¼ 0 and
Im ðr1Þ � Im ðr2Þ\0, the situation changes cardinally (Fig. 20.1) [6, 7, 11]. Taking

into account that Re rðnÞ?
� �

¼ Re rðnÞk
� �

¼ 0 and introducing similar (20.1.2)

notation for rðnÞ? и rðnÞk , we obtain

rðnÞ? ¼ �i � Yn; rðnÞk ¼ i � Xn; ImXn ¼ ImYn ¼ 0: ð20:1:5Þ
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On mixing, (Chap. 6) we have

rðnþ 1Þ
jj ¼ prnjj þ ð1� pÞrn?, rðnþ 1Þ

? ¼
rðnÞk rðnÞ?

ð1� pÞrðnÞ? þ prðnÞk
, ð20:1:6Þ

where rð1Þk ¼ p � r1 þ 1� pð Þ � r2, rð1Þ? ¼ r1 � r2= ð1� pÞ � r1 þ p � r2ð Þ, see (6.1.
18).

Iteration process (20.1.6) possesses an invariant [see (6.1.19)] rðnÞjj rðnÞ? ¼ J,

which for the case (20.1.2) is of the form

I ¼ xy
py� ð1� pÞx
ð1� pÞy� px

: ð20:1:7Þ

In terms of Xn (20.1.5) the iteration process (20.1.6) can be represented as
follows (compare to (6.1.25))

Xnþ 1 ¼ pXn � ð1� pÞ J
Xn

: ð20:1:8Þ

Fig. 20.1 Single-dimensional mapping x ! px� ð1� pÞI=x; p ¼ 0:4 ; r1 ¼ 1i, r2 ¼
�0:5i; I ¼ 0:125: The inset shows iteration process for these parameters (compare to Fig. 6.5)
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The fixed point of iteration process (20.1.8) X� is formally equal to

X� ¼ �
ffiffiffiffiffiffiffi
�J

p
: ð20:1:9Þ

By definition of Xn (20.1.5), Im ðXnÞ ¼ 0, hence the fixed point X� exists only at
J\0. It is possible when any of the two inequality systems given below is satisfied

py[ ð1� pÞx;
ð1� pÞy\px;

�
I;

py\ð1� pÞx;
ð1� pÞy[ px:

�
II: ð20:1:10Þ

To the shaded areas in Fig. 20.2 corresponds to an empty set of solutions of
(20.1.10) system—there is no fixed point.

At p ¼ 1=2 the resulting medium [11], on the one part, geometrically is a D-
medium, and on the other, as can be seen from Fig. 20.2—there is no fixed point.
Writing down in this case the mapping (20.1.8) as
NðzÞ ¼ ðz� J=zÞ=2; Im J ¼ 0;Re J[ 0, it can be shown [13] that its Julia set—JN ,
dividing attraction pools of stable fixed points � ffiffiffi

J
p

, coincides with the imaginary
axis. Mapping on JN induces one-dimensional mapping that reduces to (20.1.8) (at
p ¼ 1=2) and determines the dynamics on the Julia set. Mapping NðZÞ is conjugate
to mapping RðuÞ ¼ u2 obtained by replacement of u ¼ ðzþ ffiffiffi

J
p Þ=ðz� ffiffiffi

J
p Þ. In so

doing, the imaginary axis (Julia set) goes over to unit circumference, the dynamics
on which is assigned by mapping rðhÞ ¼ 2hmod 2. The latter, as is well known
[13, 15], gives rise to a chaotic dynamics.

Thus, when medium parameters get to the shaded area, the iteration process does
not converge, and at p ¼ 1=2 there is a strictly deterministic chaos. In particular, it
means that there is no self-averaging in such a medium, i.e., correlation radius tends
to infinity.

0,0 0,2          0,4 0,6 0,8 1,0
p

6,0

4,0

2,0

/x
y

Fig. 20.2 Instability areas (shaded) of mixing procedure (20.1.8) depending on concentration p of
the first phase and the ratio of phase conductivities x=y
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For the network realization of D-media the absence of certain re value in the
finite network at Im ðr1Þ � Im ðr2Þ\0 was first noted in [9]. According to [9], at
concentration values above pc there is a continuous path from one contact to the
other (from “�1” to “1”) both “from left to right” and “upwards” along the bonds
that represent inductivity. However, the effective conductivity of a medium
depending on the conductivity values of network elements can be both above and
below zero, i.e., represent both capacitance and inductance. In the network media,
at concentration other than threshold, the reciprocity relation means that the
effective conductivity of the “basic” medium is of capacitive type (Im ðreÞ[ 0),
whereas that of the “reciprocal” medium—of the inductive type (Im ðreÞ\0).
Nothing is changed at concentration tending to threshold and, finally, the effective
conductivities of the “basic” and dual media remain with different signs. At the
same time, in the network media on the percolation threshold, if they are D-media,
there is always at least one element (bond) with neither the first phase nor the
second phase conductivity (Fig. 20.3). The conductivity of this D-bond is

ffiffiffiffiffiffiffiffiffiffi
r1r2

p
(for more details see [9, 17]). In a continual two-phase case of D-media these bonds
degenerate into points (Fig. 6.2). If such a D-bond is absent, then at Re r1;2 ¼ 0 and
Im r1Im r2\0 the network will not be dual, in particular, conductances “from left
to right” and “upwards” will have different signs—along one direction the medium
will be a “capacitor”, and along the other—a “capacitance”, and if a D-bond is
present, the medium is not, strictly speaking, a D-medium consisting of two phases.
The effect of this bond should be the less, the larger is medium size. The latter
proves true at Im r1Im r2\0 only for the case of Re r1;2 6¼0.

Figure 20.3 represents one of possible realizations of D-network of finite size
[9]. Conductances z1 are marked with black color and—z2—with white. In the
centre is a D-bond which, in order to satisfy the network variant of symmetry
transformation (see Chap. 6) and condition ~re ¼ re, should have resistance equal toffiffiffiffiffiffiffiffi
z1z2

p
. The D-bond (resistance) is a network analog of D-points in a continual case

(see Fig. 6.2).

1 2

D -bond

Fig. 20.3 Embodiment of a
D-network of finite size
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Let us now explain how in a D-medium at n ! 1 and Re r1;2 ¼ 0 there appears
an absorption, i.e. the real value of the effective conductivity [5]. The answer lies in
the limit n ! 1 and the existence of fluctuations of conductivity with the nonzero
real part. It is easy to verify that arbitrarily small real part added to r1 or r2 makes the
above considered iteration process (20.1.8) stable. This process now converges to
the real value

ffiffiffiffiffiffiffiffiffiffi
r1r2

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðRe r1 þ i Imr1ÞðRe r2 þ i Im r2Þ
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Im r1Imr2

p
(wherein small “initialization” real additions can be ignored). From Fig. 20.4 it is
evident how small fluctuations take away phase point (in space fRe r� Im rg) from
axis Im r where it made chaotic jumps (Fig. 20.1) to the trajectory converging to the
real axis. “Phase” trajectories quickly converge to the real axis. If small “initial-
ization” additions are ignored, the trajectories “settle” on the axis Re rn.

Thus, there simultaneously exist two limiting transitions n ! 1 and
Re r1;2 ! 0, and they cannot change places. Under medium finite size, competition
will take place between the number of elements (bonds, medium size) and the value
of the real conductivity part. If the number of elements “loses”, then there is no
self-averaging in the system and given random realization takes place. In such
average inhomogeneous medium, naturally, exist large space fluctuations of Joule
heat release, absorption, higher moments of current distribution, etc.

0 10 20 30 40 50 60 70 80

60

40

20

20

40

( )Im nσ

( )Re nσ

Fig. 20.4 “Phase” trajectories of iteration process (20.1.6) in space fIm r� Re rg at small real
“initialization” parts of phase conductivity: dashed—r1 ¼ 0:1� 10 � i, r2 ¼ 0:1þ 20 � i; contin-
uous—r1 ¼ 0:056� 6:667 � i, r2 ¼ 0:1þ 30 � i; points—r1 ¼ 0:038� 5 � i, r2 ¼ 0:1þ 40 � i
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20.2 Ladder Filter

The above-mentioned paradox—the “appearance” of a real part of resistance in a
medium consisting of elements with purely imaginary part of resistance—is present
in the simplest theory of networks in the theory of ladder filter (LC-chain) and is
still in the focus of attention [18]. Surprisingly, even in the “canonical” textbooks
on the course of general physics, for instance, in [8, 16], one can come across the
diametrically opposite opinions concerning the existence of a real part of resistance
of ladder filter in a certain frequency range and, thus, the opposite explanations of
this filter operation.

Consider LC-chain in more detail [5]. Impedance Z of infinite ladder chain (see
Fig. 20.5) can be found by its consecutive construction, writing down the expres-
sion for Znþ 1 in the form

Znþ 1 ¼ f Znð Þ; f Znð Þ ¼ z1 þ Znz2
Zn þ z2

; n ¼ 1; 2; . . .;1; ð20:2:1Þ

where z1, z2 are complex resistances-conductances of chain elements.
At any z1 and z2 there always exists fixed point Z� found from equation

Z� ¼ f ðZ�Þ,

Z� ¼ z1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21
4
þ z1z2

r
: ð20:2:2Þ

If fixed point Z� is stable, the impedance Z of infinite ladder chain exists and is
the limit limn!1 Zn ¼ Z�. In the opposite case there is no limit for limn!1 Zn (see
Fig. 20.6) and there is no sense to speak of the impedance infinite chain.

Analysis (20.2.1) shows that in the ideal case of purely imaginary impedances (a
chain consists of capacitances and inductances with zero active resistances). Under
certain values of z1 and z2 there is no stable fixed point Z�. Indeed, fixed point Z� of
the iteration process (20.2.1) is stable [15], if

df Znð Þ=dZnj jjZn¼Z�\1; ð20:2:3Þ

1z 1z 1z 1z

2z 2z 2z 2z

Fig. 20.5 Infinite ladder LC-chain (filter): z1 ¼ ixL; z2 ¼ 1=ixC
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In the case under consideration we have

df ðZnÞ
dZn

���� ��������
Zn¼Z�

¼ 1

ð1þ Z�=z2Þ2
�����

����� ¼ 4

2þ z1=z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1=z2Þ2 þ 4z1=z2

q� �2
�����

�����
;

ð20:2:4Þ

Denoting t ¼ �z1=z2, we rewrite condition (20.2.3) as

F tð Þ ¼ 4

2� t �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 4t

p� �2���� ����\1: ð20:2:5Þ

Under a real t function,FðtÞ, as can be easily seen, behaves in the range

0� t� 4 ð20:2:6Þ

somewhat unexpectedly—it does not depend on t and is precisely equal to unity.
Thus, the inequality (20.2.5) is not met and the fixed point is unstable. Note that
under arbitrary addition of a real part to z1 or z2, the instability condition is always
met. It is attributable to the fact that system with FðtÞ ¼ 1 is close to stability, and
arbitrarily small shear would be sufficient.

At t\0 the stable point exists and is of the form

Z� ¼ 1
2

z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ 4z1z2

q� �
; t\0; ð20:2:7Þ
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Fig. 20.6 Infinite ladder LC-chain (filter): z1 ¼ ixL
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and at t[ 4 the stable point is as follows

Z� ¼ 1
2

z1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ 4z1z2

q� �
; t[ 4: ð20:2:8Þ

Note different signs before the root in (20.2.7) and (20.2.8).
Consider in more detail the case of purely imaginary z1 and z2 of different signs,

when z1 ¼ i � x � L, z2 ¼ 1=i � x � C, then from (20.2.5) and (20.2.7) it follows
that at

x[x0 ¼ 2ffiffiffiffiffiffi
LC

p ; ð20:2:9Þ

the fixed point is stable and the impedance of infinite chain exists and, as expected,
is purely imaginary

Z� ¼ i
xL
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2L2

4
� L
C

r !
; ð20:2:10Þ

and at

x\x0 ¼ 2ffiffiffiffiffiffi
LC

p ð20:2:11Þ

there is no fixed stable point and, hence, one cannot speak of the impedance of
infinite chain. Therefore, a statement in [8]: “Looking at infinite network from
terminal a0, we would see a characteristic impedance Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=C � x2L2=4

p
” is

invalid. And then, in [8]: “For low frequencies, impedance is pure resistance,
therefore it absorbs the energy”. Thus, filter transmission for low frequencies
according to [8] is related to its absorption caused by (Re Z0 [ 0)—dissipation.
Though, further in [8] one can read quite a valid statement: “…it turns out that when
a source is connected to a network, it must first supply energy to the first inductance
and capacitance, then the second, third, etc. In networks of this kind the energy is
permanently sucked from generator at a constant rate and flows to the network
without stop. The energy is accumulated in the inductances and capacitances along
the network”. Thus, energy absorption by filter is present, while dissipation is not,
i.e., one should clearly distinguish between energy absorption by a medium of LC-
elements with and without dissipation. The point is that in [8] Z0 is found from
solving a quadratic equation on the assumption (incorrect) that impedance of chain
of n links (at x\x0) converges. In the work [18] behavior of Zn at n ! 1 is
considered depending on the values of z1 and z2. As it should be, at z1 ¼ ixL and
z2 ¼ 1=ixC in the range x\x0 Zn does not converge. The range x\x0 is filter
transmission range. In [18] filter transmission in this range is related (like in [8]), to
the presence of dissipation in a system. To his question: “How can relation for Z0
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give a correct answer in practice, if we substantiated it to be incorrect?” the author
[18] answers: “…a real part of inductor always has the internal resistance r 6¼ 0”.
In this case, the question of Zn convergence at n ! 1, certainly, stands no longer.
With the existence of arbitrarily small real part in z1 and/or z2, the characteristic
impedance Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=C � x2L2=4

p
does exist. However, in real filters with a finite,

sometimes very low, number of elements, a small real part in z1 and/or z2 appar-
ently cannot change anything. Therefore, the “existence” of Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=C � x2L2=4

p
cannot be used to explain filter transmission.

In reality, as is well known [12] (see also [10]), for a finite filter of n links with
purely imaginary elements there are two solutions relating inlet voltage UðtÞ ¼
U0 cosxt and outlet voltage UnðtÞ. The first one, valid for transmission range, is as
follows

UnðtÞ ¼ U0
cos b=2

cosðnþ 1=2Þb cosxt; cos b ¼ 1� LCx2; x\x0 ¼ 2=
ffiffiffiffiffiffi
LC

p
:

ð20:2:12Þ

At x � x0 UðtÞ � U0 cosxt, i.e., a filter of purely imaginary elements with a
finite, including very small, number of elements, transmits a signal without dis-
tortion. For other frequencies from the range x\x0 the transmission is nonuni-
form, nevertheless, no “locking” occurs.

The second solution in the range x[x0 is in the form

UnðtÞ ¼ U0 �1ð Þn exp n
2

	 
� exp � n
2

	 

exp nþ 1

2

	 

n

	 
� exp � nþ 1
2

	 

n

	 
 cos xtð Þ; ð20:2:13Þ

where n is found from cosh n ¼ 1� LCx2=2
�� ��.

From (20.2.13) it is readily apparent that output signal amplitude is exponen-
tially reduced with increasing the number of links n and with their sufficiently large
number it can be written down that

UnðtÞ ¼ U0 �1ð Þn e
n
2 � e�

n
2

� �
e� nþ 1

2ð Þn cos xtð Þ; ð20:2:14Þ

i.e., signal locking takes place, and filter does not pass frequencies above critical.
The filter operation can be qualitatively explained by the existence of resonances

in transmission area. In the finite chain the transmission frequencies are close to
resonances. In the infinite chain the resonances merge, and all transmission fre-
quencies lie on the resonance frequencies.
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Chapter 21
Percolation-Similar Description
of Abrikosov Vortex

There are many different applications of percolation theory in superconductivity.
They could be divided into the following groups:

1. Microscopic case one—when the characteristic size of inhomogeneity small and
used for an explanation of superconductivity.

2. Microscopic case two—when the characteristic size of inhomogeneity small and
describe different phenomena, but not superconductivity itself.

3. Macroscopic case—when the size of inhomogeneity is macroscopic.

Percolation theory could be applied for explaining superconducting phenomena
at different level of inhomogeneity. It could be applied for explanation of appear-
ance of superconductivity, explanation of properties of inhomogeneous supercon-
ductors, or explanation of properties of mixtures of superconducting and normal
components.

Models that used percolation theory for explanation of superconductivity con-
sidered in papers [5–7, 29, 34, 46, 47], where percolation used to describe
appearance of superconducting order.

In [34] the theory of percolation and theory of networks are applied for expla-
nation of lattice effects and superconductivity appearance. In [35] percolating
networks of superconducting oxygen rich puddles were actually observed.

Percolation effects in granular superconductors are observed in works [18, 20,
44, 45]. Percolative Josephson media is considered in papers [13, 15–17].

In [45] two-dimensional random—resistor networks are modeled by resistances
between two grains (it is governed either by Josephson junction coupling, Cooper
pair’s tunneling or by quasiparticle tunneling). Scaling coefficient of magnetic
susceptibility for granular superconductors is determined in [20]. Percolation
models are also used for description of mixture of superconducting and normal
phases [21–26, 31].

© Springer Science+Business Media, LLC 2016
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The influence of geometry and morphology of superconducting structure on
critical currents and magnetic flux trapping in percolative type-II superconductors is
considered in [23]. Vortex—glass model describes superconducting-normal tran-
sition as a percolating transition according to the paper [31]. In [10] a percolation
transition was observed in NbSe2 crystal where heterogeneous phase of vortices
consists of ordered and disordered domains. Dependence of magnetoresistance
from magnetic field is studied for thin amorphous superconducting thin films on the
basis of percolation approach in [32].

Interesting application of percolation theory for enhancement of superconduc-
tivity (not connected with explanation of superconductivity itself) is considered in
papers [4, 28]. Bianconi [4] work describes increase of Tc in network model.

Macroscopic inhomogeneities are observed in papers [14, 30].
Osofsky et al. [30] describe influence of oxygen inhomogeneities in YBa2Cu3O7

crystals as macroscopic phenomena are based on percolation theory. For
FeAs-based superconductors percolation effects are observed in the paper [11],
where influence of neutron irradiation on the structure of crystal samples was
described using percolation theory. Interesting applications of percolation theory
were provided in [27, 39], where two different percolation thresholds are found in
ferromagnet-superconductor composites.

One of the most interesting applications of percolation models in supercon-
ductivity is a description of pinning of Abrikosov vortices.

21.1 The Pinning of the Abrikosov Vortexes

One of the main applications of superconductors is using them as current con-
ductors with a zero resistance. As a rule, conventional superconductors (type I
superconductors) have small critical fields, owing to which they cannot pass high
currents. Type-II superconductors [1] possess higher critical fields. It is due to the
so-called mixed state existing in such superconductors. In this mixed state a
superconductor is permeated by vortex threads—the Abrikosov vortices passing a
magnetic field through the superconductor. The Abrikosov vortices are current
tubes in the middle of which (the center or core of the vortex) a conductor is in a
normal state. Exactly for this reason the external magnetic field can penetrate from
one side of superconducting sample to the other. There is one quant of magnetic
flux U0 ¼ p�hc=e passing through each Abrikosov vortex (Fig. 21.1). Beyond the
region occupied with vortices the superconductor retains its superconducting
properties, and it is exactly in this region that transport current (assigned from the
outside) is passed. If the vortices are fixed, no energy dissipation occurs and
superconductor in general is a perfect conductor with a zero resistance. However,
vortices can move. The point is that on switching of transport current, there appears
a force (it is customarily called the Lorentz force—FL) that affects the vortex. The
origin of FL is due to the fact that, on the one side of vortex transport current is
added to vortex current, and on the other side subtracted (Fig. 21.1), therefore,
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forces affecting current in a magnetic field B (Ampere forces) are not compensated.
The resulting of these forces is the Lorentz force—FL, which [1] is expressed
through a quant of magnetic flux U0 in the form

FL ¼ 1
c
U0j� b; ð21:1:1Þ

where b is unity vector along the vortex axis.
With vortex motion at rate v it is exposed to viscous forces:

Fg ¼ �gv; ð21:1:2Þ

where η is certain viscosity factor [1].
Moving vortices dissipate the energy, with dissipation power equal to vFg. The

physical reason for dissipation lies in the fact that moving vortex converts con-
ductor’s superconducting portions into conventional, and vice versa.

To stop the motion of vortices and, thus, to get a perfect conductor wherein
current is not dissipated, vortices should be fastened. The effect of fastening vortices
to certain superconductor points is called pinning. In particular, in the
high-temperature superconductors (HTSC) one of the kinds of pinning centers are
charged defects creating the electrostatic potential. Random arrangement of such
defects creates a random distribution of electrostatic pinning forces—Fp.

If the distribution of pinning forces D Fp
� �

is narrow, then with increasing
transport current, the Lorentz force FL will “conquer” pinning force almost for all
vortices at once, and the entire lattice will start moving. Superconductor in this case
will go over to a resistive state and the resistance will appear, though part of
conductor outside the vortices will still be in the superconducting state.

21.2 The Case of the Wide Pinning Force Distribution

When the distribution of pinning forces is wide [40, 41], then, as transport current
increases, so does the area of portions for which FL [Fp. However, their motion
will occur only in a restricted space and within limited time till the areas with

B

LF

j

Fig. 21.1 Schematic of the
Abrikosov vortex in a
superconducting film:
j—density of transport current
assigned from outside, FL is
Lorentz force affecting the
vortex
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FL [Fp coalesce and form an infinite cluster. It will happen at FL �Fpc, where Fpc

is such critical value of pinning force that the areas FL �Fpc form an infinite cluster
—a connected array of channels (areas) passing through the entire sample. In this
case, when the below equality is satisfied

Fp þFg ¼ FL; ð21:2:1Þ

a stationary flow of vortices is possible at a rate

v ¼ 1
g

FL � Fp
� � ¼ 1

g
jU0

c
� Fp

� �
; ð21:2:2Þ

where it is assumed that viscosity force Fg is sufficiently large and can not be
neglected as the influence of acceleration and inhibition portions of vortices at their
interaction with pinning centers. Moreover, when considering the area of rather
weak magnetic fields (H � Hc2), one can ignore the forces of interaction between
the vortexes, since they are few (“one-particle” pinning mode).

The density of critical transport current jc is governed by critical pinning force
Fpc Eqs. (21.1.1) and (21.1.3) in the usual form

jc ¼ cFpc=U0; ð21:2:3Þ

Consider motion of vortices at transport current close to critical:

sj ¼ j� jc
jc

� 1; ð21:2:4Þ

Let us recall, as it is common practice in percolation theory, those film areas
where FL [Fp, i.e., where vortices can move, as a “black” phase. Then the “black”
phase concentration is equal to

p ¼
ZFp

0

D Fp
� �

dFp; ð21:2:5Þ

and for the homogeneous distribution of pinning forces, when D Fp
� � ¼ 1=Fpm ¼

const, Fp 2 0;Fpm
� �

, where Fpm is maximum value of pinning force in the film.
With any other smooth distribution s ¼ p� pcð Þ=pc and sj ¼ j� jcð Þ=jc are pro-
portional to each other, and in case of a homogeneous distribution they coincide.

To determine the volt-ampere characteristic of the resistive state of HTSC film,
one should find the power of energy dissipation by vortices. We assume that the
major energy is dissipated by vortices in the basic element of percolation structure
above the percolation threshold—the bridge. Figure 21.2 schematically shows a
portion of percolation structure above the percolation threshold. It should be taken
into account that the Lorentz force is always unidirectional (along the ox axis in
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Fig. 21.2) and, hence, it cannot “push” a vortex through BC portion. It means that
transport current should be increased until the emerging portions of infinite cluster
(one of them, BD, is shown in Fig. 21.2 as a dashed line) allow the vortex to pass
through the infinite cluster from beginning to end (from A to G). Certainly, in the
calculation of dissipation one should take into account only those portions of
infinite cluster on which vortices move along the Lorentz force—ABDG. Thus, a
conventional percolation model should be modified. The so-called model of diode
percolation, or, more precisely, fully directed percolation (FDP) is the closest to the
modification we need. The diode percolation modules are dealt with in a large
number of papers (see, for instance, [2, 3, 8, 9, 12, 19, 36–38, 43]).

Consider a square lattice. With a diode percolation, “black” and “white” resis-
tances and diodes are randomly scattered on the lattice, the latter passing an elec-
tric current is only in one direction. There are many versions of such models:
(1) the lattice consists only of nonconducting bonds and diodes, (2) there are
conducting bonds, (3) direction of scattered diodes is random, (4) not random, etc.
We need the version shown in Fig. 21.3, when current is conducted only by diodes,
on the average they have the same, local, direction, just as the Lorentz force,
namely the diodes are diagonally directed upward or downward. In this FDP case
the concentration of conducting diode does not include portions of BC type in
Fig. 21.2, therefore, FDP problem (Fig. 21.3) and the problem of vortex flow,
though close, are not identical to each other, and further calculation should be
undertaken as the estimate of critical index.

Critical indices of FDP-model differ from such in a conventional percolation
problem, moreover, now there are two indices of correlation length: mk—for the
correlation length nk along the average direction of diode conductivity—ox, and
m?—for the correlation length n? across the diode conductivity direction—oy:

nk ¼ a0s
�mk ; n? ¼ a0s

�m? ; ð21:2:6Þ

ξ

ξ⊥

LF

ηF

j

v
LF

j

v

A

B

C

D G
Fig. 21.2 Schematic of
percolation structure portion
wherein the Abrikosov vortex
flows
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Dependence of the effective conductivity on s in such a model is of conventional
form, but with a different critical index:

re ¼ rstþ ; ð21:2:7Þ

where r is diode conductivity in the direction of current passage.
For the two-dimensional case mk � 1:73; m? � 1:097 [12], tþ � 0:63 [3].
The bridge length in FDP-model is found as follows. On the one hand, the

resistance of media, corresponding to the correlation space with the unity thickness
is of the form

R ¼ 1
re

nk
n?

; ð21:2:8Þ

on the other hand, this resistance is governed by the resistance of a bridge of length
l ¼ a0N þ

1 ; N þ
1 � s�aþ

1 .

R ¼ 1
r
N þ
1 ¼ 1

r
s�aþ

1 ; ð21:2:9Þ

Whence with regard to Eq. (21.2.7) we have

aþ
1 ¼ tþ � m? þ mk; ð21:2:10Þ

Note that for d-dimensional case [37] aþ
1 ¼ tþ � d � 1ð Þm? þ mk. Thus, the

bridge length becomes

l � a0s
�aþ

1 ; ð21:2:11Þ

The energy Q1 dissipated by one vortex during time t0 of passing the bridge, is
as follows

y

x

Y

X

Fig. 21.3 Version of diode
percolation—fully directed
percolation (FDP):
nonconducting bonds are
marked by thin lines. Arrows
are used to denote diodes and
current flow direction in the
diodes. All the diodes are
directed either along ox, or oy,
OX, and OY axes are the same
as in Fig. 21.2
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Q1 ¼
Zt0
0

Fgvdt ¼ l
Zt0
0

FL � Fp
� �

D Fp
� �

dFp; ð21:2:12Þ

where t0 is passage time,

t0 ¼
Zt0
0

dt ¼
Z l

0

dv
v
¼ g l

ZFpc

0

D Fp
� �

FL � Fp
dFp; ð21:2:13Þ

For the uniform distribution D Fp
� � ¼ 1=Fpm and from Eqs. (21.2.12) and

(21.2.13) we obtain

Q ¼ lF2
p

2Fpm
; t0 ¼ g l ln 1=sð Þ

Fpm
; ; ð21:2:14Þ

where it is taken into account that j � jc.
The concentration of vortices is equal to B=U0, and their number n in a bridge

n ¼ a0lB
U0

� a0B
U0

s�aþ
1 ; ð21:2:15Þ

Hence, on the one hand, the power of energy dissipation of all vortices on the
area nk � n? is of order

Q ¼ nQ1

t0
¼ � a0BF2

p l

2U0g ln s
; ð21:2:16Þ

on the other—motion of vortices results in the appearance of the electrical field [1],
and Q can be written down as the Joule dissipation:

Q ¼ jEnkn?; ð21:2:17Þ

From the expressions (21.2.6), (21.2.11), and (21.2.17) we find

E ¼ a0BF2
pc

2U0gjcnkn? ln 1=sð Þ ¼ A ln
j� jc
jc

� �
j� jc
jc

� �c

; ð21:2:18Þ

where A is certain constant which is inessential for the determination of critical
index, and critical index is of the form
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c ¼ m? � mk � aþ
1 ¼ 2m? � tþ ; ð21:2:19Þ

and with regard to numerical values m? and tþ we obtain

c � 1:6: ð21:2:22Þ

Experimental studies of a resistive state of HTSC really indicate to power
dependence of voltage on current in the initial portions of volt-ampere character-
istic. In doing so, factor c varies over a wide range. In relatively weak fields
H� 0:2 Tð Þ the numerical values of c lie in the range c ¼ 1:3� 1:5 [42].
Percolation-like description of pinning was also used to describe the resistive

state of HTSC film in variable (in sign) magnetic fields [33]. In case of a variable
magnetic field, hence, the Lorentz force varies in time and direction. The super-
conductor transition to a resistive state does not require the presence of infinite
cluster, the vortices dissipate the energy moving “hither and thither” along the finite
portions of a cluster.
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Chapter 22
Anderson Localization in the Percolation
Structure

Theory of percolation was extensively used for explanation of quantum phenom-
ena. For example, it was used for explanation of Anderson localization and
quantum Hall effects.

Particularly, random network models used for explaining quantum phenomena
in papers: [7] reviewed application of random network models, based on the per-
colation model, and used for explanation of integer quantum Hall effect [5], (model
consisting of superconducting and quantum links used for explanation of integer
quantum Hall transition) [8], (studied localization in quantum random networks)
[4], (multifractal properties of RRN).

22.1 Anderson Localization

In metals, at low temperatures, the interference correction to conductivity—dr
becomes significant. This correction is due to the presence of the nonzero proba-
bility of existence of electron trajectories with self-intersections. Correction dr at
T ! 0 is increased and, when dr=r � 1, localization of electrons occurs, a sample
ceases to conduct current and metal ! dielectric transition takes place [1]. Such
localization (in the limit T ¼ 0) is commonly referred to as Anderson localization
[2], and the metal that “turned” into dielectric—Anderson dielectric (AD).

Dependence of correction dr=r on the sample size is different for three-, two-,
and one-dimensional cases. In the following, we will need only the one-dimensional
case. One-dimensionality here means that sample cross section b is much lesser than
Lu, where Lu is characteristic length of coherence failure of electron wave function
amplitude (we are dealing with macroscopic sizes [1]. For such one-dimensional
case localization occurs when its length L exceeds critical length Lc,
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Lc ¼ l
b
k

� �2

; ð22:1:1Þ

where l is mean free path, k is electron wavelength.
At L[ Lc with increasing L the sample conductance G drops off exponentially,

G� e�L=Lc ; ð22:1:2Þ

there is also a similar drop in dimensionless conductance y ¼ G=G0, where
G0 ¼ e2= p2�hð Þ, e is electron charge.

Thus, as the length of such metal wire increases, it, eventually, ceases to be a
conductor and is converted into AD.

22.2 Anderson Metal–Insulator Transition in Percolation
Structure

In [6] authors considered the effect of Anderson localization on metal–dielectric
junction in percolation structure, when a conducting bond (of length a0) is metal
and characterized by mean free path l or, which is the same, by dimensionless
conductance y y� 1=lð Þ. The nonconducting bonds are a common (classical)
dielectric. For the conducting bond there exists such a value of yc0 that in the case of
y[ yc0 the bond would not conduct, passing from the metallic to AD state. In fact,
increase in y means a drop in the mean free path, hence, a decrease in Lc—(22.1.1).
When Lc becomes shorter than the bond length a0, A. Thus, on the one hand, at
p ¼ 1 all bonds in the lattice are metallic, but they cease to conduct current with
y[ yc0. On the other hand, at p� pc the lattice ceases to conduct current due to
disappearance of a connected way in metal bonds. A general case of arbitrary
concentration is given in Fig. 22.1, where a solid line yc ¼ ycðpÞ is a critical value
of dimensionless conductance dividing metal phase M and Anderson dielectric AD
at T ¼ 0. CD is classical dielectric, p is concentration of metals bonds. Second
phase conductivity is r2 ¼ 0. Dashed line divides the conducting and noncon-
ducting p[ pc system states at finite temperatures when localization effects are
marginal.

In the work [6] it was shown that yc ¼ ycðpÞ becomes zero (at p ! pc) in power
manner and is characterized by critical index. The physical reason for such behavior
of yc pð Þ is related to the fact that close to percolation threshold the main element of
percolation structure is a bridge—the one-dimensional way for current to be con-
ducted when its length (to be more precise, the length of its continuous part)
exceeds Lc and Anderson localization occurs.
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For the calculation of critical index [9] we take into account that according to the
first step of the HM, the bridge length is of the form

L � a0 p� pcð Þ� t3�m3ð Þ: ð22:2:1Þ

Then from condition Lc � L and (22.1.1) we obtain

a0 p� pcð Þ� t3�m3ð Þ� l
b
k

� �2

: ð22:2:2Þ

With regard to the fact that y� 1=l, we find

yc pð Þ� p� pcð ÞA; ð22:2:3Þ

where

A ¼ t3 � m3; ð22:2:4Þ

For the first time this critical index was obtained in [6] using other considerations.
Experimental discussion of Anderson localization in percolation systems can be

found, for instance, in [3].

CD

AD

M

p

cp

cy p

Fig. 22.1 Phase diagram in
percolation lattice with regard
to Anderson localization
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Chapter 23
Conclusion

The idea of the book could be formulated as follows: to find the basis of simple
transport property which is represented by critical geometric elements that are
responsible for this property and to use the knowledge of the geometry of these
elements to explain many different transport properties. Schematically, it could be
expressed as: [geometry] ! [simple transport property] ! [new geometry] !
[complex transport properties]. The described idea could be extended for classifi-
cation of existing models and for suggestions for new development. For example,
new approaches to the problem of turbulence are self-organized critically, that
include use of models of percolation structures [2–5] could be described as [non-
stationary geometry] ! [simple transport properties (advection, diffusion)] !
[ selection of a new geometry] ! [combined diffusion].

Similar ideas could be applied for many different applications:

A. Extensions to the new percolation geometries and complex networks, see for
example [1].

B. The proposed approach is considered for stable geometry when time of change
of geometry � characteristic time of transport process (time of measurement
or time of change of transport properties). It will be interesting to extend it to
the unstable geometry when [time of change of geometry] * [characteristic
time of transport process].

C. Application to finance: [all players] ! [simple behavior] ! [important play-
ers] ! [result behavior of market] (similar to market microstructure).

D. Time series: [time series converted to network] ! [some aggregated properties
of time series] ! [important sub-points] ! [prediction for the future].

E. Algorithms: [all elements] ! [simple algorithm] ! [important elements] !
[complex algorithms].

We hope that this approach could be applied for different additional area of
percolation theory and beyond.
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