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Preface

In health care systems that provide universal access to care, efforts to contain costs for standby hospital
capacity usually result in wait lists for surgical procedures. When access to health care is rationed by such
wait lists, the length of time that patients are required to wait is usually uncertain. This uncertainty is a
natural product of stochastic variation in service time and in the percentage of urgent cases in any queuing
system. However, in a queue for elective (nonemergency) procedures, waiting-time uncertainty has many
additional causes. For instance, decisions of both patients and care providers may override a queue discipline.
Alternatively, the lack of a hospital resource, such as beds in the intensive care unit, may change queuing
practices in favor of services that would not require the resource.

Waiting time is often compared between regions, hospitals, periods, or surgical services to evaluate pol-
icy and performance. However, surprisingly little attention has been given to the variation in times spent in a
single queue. Why some patients wait longer than others remains an important question in health services re-
search. It is unclear, for example, whether time to service varies more than would be expected through chance
alone after differences in clinical condition are taken into account. Another important issue is preferential
allocation of hospital resources. It also remains unclear whether patients of low priority are admitted directly
as a way to circumvent long wait lists or to substitute for cancellations on the operating room schedule. Wait
lists for elective surgery have typically been accepted on the premise that they ensure the most efficient use
of hospital resources; the only alternative would be underutilization of capacity within the health care sys-
tem. Recently, however, the debate has shifted toward the issue of how much capacity is required to maintain
safe wait lists. Policy makers have called for establishing target access times for major operations that would
minimize the adverse events associated with treatment delay.

Although it was recognized early that methods of time-to-event analysis are applicable to waiting-time
data, literature on the methodology of collecting, reporting, and analyzing waiting times is scarce, in par-
ticular for applications of competing-risks methods. The purpose of this book is to place the analysis of
waiting-time data within the paradigm of health services research, the study of outcomes of health care
delivery to a population. We suggest two uses for this book. First, it is intended as a reference for health
services researchers who are looking for statistical tools with which to study waiting times for health ser-
vices. The book provides coverage of statistical concepts and methods for the analysis and interpretation
of waiting-time data, such as time-to-event analysis, discrete-time regression models, competing risks, and
pseudovalues regression models. Second, the book is a workbook for a range of professionals in the health-
care community, offering a collection of examples of waiting-time data analysis in health services research.
It gives a practical perspective, from framing the study question through interpretation of results, on how to
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describe and compare waiting experiences, how to study the impact of factors associated with waiting times,
and how to use appropriate statistical techniques.

The book is divided into 10 chapters, grouped in two parts. Part I, Data, Questions and Methods, intro-
duces the field of health services research on access to care. Chapter 1 provides a comprehensive overview
of waiting-time data in health services research. In particular, we describe types of data and types of ques-
tions, study designs, and options for analysis of waiting-time data. We then develop the statistical rationale
for evaluating the effects of factors potentially associated with waiting times in surgical care by defining a
study outcome admission from the wait list. Arguing that scheduling the operation provides a single oppor-
tunity for admission, we develop a measure of access to elective procedures the probability of admission per
scheduling cycle. We observe that because factors interfering with access may lower chances of admission,
it is possible to study their impact on access to service by estimating the probability of admission across
categories of explanatory variables. The effects of study variables can be further estimated by modeling the
probability of admission as a function of study variables. In Chapter 2, we described three sets of records on
access to surgery at the hospital, regional, and population level, respectively, which are used for the analyses
in Part II. Chapter 3 presents statistical methods for the analysis of waiting-time data. We first introduce
the descriptive statistics that are used to summarize the frequency of events on wait lists, such as propor-
tions, event rates, and cumulative incidence functions. In particular, we show that measuring the proportion
of patients admitted within certain time frames may shed light on how factors within and outside elective
care influence the probability of access to service. We then discuss measures of comparison and introduce
corresponding tests for comparing these measures statistically across groups. Finally, we describe regression
models that are used to quantify the effects of explanatory variables on wait-list outcomes. For each model
we show how to interpret the regression coefficients.

Part II, Waiting-time Studies, presents case studies of waiting-time data, in which we address the ques-
tions posed in Part I. In particular, in Chapter 3 we show the use of waiting-time data to estimate admission
probabilities and to study variation in waiting times within a single queue. In the chapters that follow, we
show statistical techniques appropriate for gaining a better understanding of the relation between weekly
number of emergency referrals and rate of elective admissions within the target access time, the proportion
of patients who undergo late surgery after registration on surgical wait lists of different sizes, the effect of
delays in scheduling an operation on waiting time for surgery, and the risk of unplanned emergency surgery
among patients waiting for elective surgery, among other issues.

The data analyses and output presented in this book were generated using SAS/STAT software from the
SAS System for Windows, version 9.1.3. Matlab version 7.0.1 from MathWorks, Inc. was used to generate
the figures presented in this book and perform some statistical analyses. The appendix contains the SAS
codes and macros that we developed for preparing the data sets described in Part I, as well as the SAS and
Matlab codes for performing some of the statistical analyses in Part II.

The writing of this book was made possible, in part, through funding from the Canada Research Chairs
Program. We gratefully acknowledge the support of the Centre for Clinical Epidemiology & Evaluation at
the Vancouver Coastal Health Research Institute, where most of the research was undertaken, and the able
assistance of Peggy Robinson and Taina Immonen in preparing the manuscript.

Innovations in health care management require leadership. We dedicate this book to Dr. Peter Brown,
a valued leader who championed the Change Foundation Waiting List Project that gave birth to wait-list
management systems in the network of regional hospitals in Ontario, Canada.

Vancouver, British Columbia Boris Sobolev
September 2007 Lisa Kuramoto
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Part I

Data, Questions and Methods



1

Health services research on access to care

1.1 Access to elective care

In this book, we focus on access to elective surgical procedures provided in hospital operating rooms. Access
to patient care at hospitals is usually managed by scheduling demands for service. In the scheduling of
surgical demand, the patients available for the next service period are identified, and hospital resources are
reserved to ensure appropriate care before and after an instance of surgery [16]. To plan utilization of surgical
suite resources, the hospital releases, on a periodic basis, blocks of operating room time to various surgical
services, each of which then places its patients on the operating room schedule [77]. Some time slots are set
aside for emergency cases. Any time not booked by a service is made available to other services. We use the
term scheduling cycle for the sequence of events in surgical scheduling between two consecutive releases of
operating time blocks.

Within services, patients are selected from wait lists and scheduled for surgery on the basis of urgency,
best use of allocated operating time, and availability of hospital resources. However, emergency patients have
preferential access to hospital resources, which may lead to cancellation of scheduled operations. Conversely,
already scheduled patients may undergo surgery ahead of their scheduled dates if an operating room time slot
becomes available, especially if they can come in at very short notice. Service access is defined as immediate
if patients are admitted within the scheduling cycle that started before they were put on the wait list. Access
is said to be delayed if patients were admitted within the scheduling cycle that started after their acceptance
for service.

1.2 Wait lists

Patients are placed on a wait list after the decision to perform surgery is made, but only if they cannot be
immediately added to the current operating room schedule. Patients are ranked by how urgently they need
treatment, and a priority group is assigned to each patient to determine relative position on the list. Patients
with a higher priority will be selected for service ahead of those with a lower priority, regardless of when
they were placed on the list. Patients in the same priority group are ranked in order of arrival time.

Before being added to the operating room schedule, each patient is assessed by his or her surgeon to
determine suitability for surgery. If a patient is deemed unfit, scheduling of the operation may be postponed.
Scheduling the operation may be delayed for the following additional reasons: the patient decides to postpone
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the surgery; the hospital ward, bed, or operating room is unavailable at the scheduled time; or the doctor
decides to send the patient for additional preoperative investigation.

Patients are removed from the wait list after undergoing the operation; if they die while awaiting surgery,
reconsider the decision to undergo surgery, decline admission, accept surgery from another surgeon, or move
out of the province; if their condition deteriorates to the point that the operation is no longer possible; if the
operation is deferred or suspended on medical grounds; if the physician decides to try a medical treatment
instead of waiting for surgery; if their condition precludes scheduling surgery; if their condition improves and
surgery becomes unnecessary; or if the operation no longer offers the likelihood of improvement. Patients
may eventually be reinstated on the list following medical deferral, self-deferral, or failure to attend [11].

1.3 Waiting times

Waiting, or staying in a queue, refers to the time between entering and leaving the queue. In elective medical
services, waiting time generally refers to the interval between acceptance and admission for service. Regis-
tration on the wait list is clearly the appropriate event to denote the patient’s acceptance to receive service.
Other events, such as the decision to perform surgery expressed in a letter to the patient’s referring physician,
a final visit to a specialist, or facility booking are used as proxies only if the date of registration on the wait
list is not available [99].

Although the event of admission ends waiting in a queue, the majority of waiting-time studies have used
the date of surgery to denote the end of the waiting period [35]. This option has been chosen either because
of study design (where only those patients who underwent the procedure were eligible for a study) or data
availability. We believe that admission to hospital characterizes the end of the waiting experience better
than the receipt of the surgical service because time from admission to service usually includes several
procedures that prepare a patient for the service. In addition, more than one service can take place during the
same admission, and even though the services are provided on different days, waiting is essentially over on
the date of the admission.

One scheduling cycle serves as the natural counting unit for time to admission because only scheduling
generates elective admission; it thus provides a single opportunity for admission to occur. Therefore, in
studies on access to elective care, time to admission is inherently discrete and is best measured as the number
of new scheduling cycles from registration to admission. If scheduling is done weekly, waiting time may be
computed as the number of calendar weeks between registration and admission. For those removed from
the wait list before admission, the waiting time is then computed as the number of calendar weeks from
registration to removal.

If the goal is to capture the total duration of waiting, the time between registration and admission is
computed irrespective of events that take place within that period. The other approach is to “restart the
clock” if a patient comes off the list temporarily but is then reinstated; the patient is thus considered to
have had more than one waiting episode. Instances when the patient self-defers, or fails to attend should be
differentiated from instances when the operation is deferred or suspended on medical grounds.

1.4 Studies of waiting times

The overall purpose of a waiting-time study is to estimate parameters of access to care that can be compared
between providers, periods, or management practices. The results of several studies highlight the need for a
waiting-time registry to collect prospective data on patient progress in a queue from acceptance for treatment
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[118]. Such a registry helps in monitoring critical events during a stay in the queue and would record reasons
for leaving the queue. Use of a population-based registry would also facilitate collecting information to ac-
count for differences in service demand between population groups. In the absence of a prospective registry,
service records allow us to ascertain waiting times for patients who are eventually admitted. However, such
records have the potential for selection bias, because those who do not attend, those who self-defer, and
those whose surgery is suspended on medical or administrative grounds are not represented [10]. Because
the timing of a service in a queue is random, statistical models for service rates are drawn from the general
area of time-to-event analysis [53]. The chief analytical tool in such analyses is the access function, that is,
the probability of accessing a service within a certain time of registration on the wait list [78], which is a
useful way of describing the proportion of those in a queue who were served as a function of wait-list time
[11]. Comparing access probabilities by study factors allows measurement of their effects on access to care.

1.5 Factors associated with waiting times

Factors that may affect time to admission can be classified into four groups: demands, hospital resources,
waiting-list management, and patient characteristics.

Although the level of demand may be regarded as largely external to the processes by which patients
gain access to service from waiting lists, variations in time of arrival among patients undergoing elective
surgery and variations in the needs of these patients may create opportunities for speeding up or delaying
access. For instance, treatment of emergency cases may cause cancellation of planned elective services, or
patients may put demands on hospital resources different from those anticipated. Therefore, a batch arrival
or a prolonged series of patients with the same needs may extend waits. Another factor to be considered is
the manner in which the arrival pattern changes over time [11].

The simple measure of arrival rates, according to type of surgical demand, is useful in comparative
studies. If an arrival pattern changes from one calendar year to the next, period-specific arrival rates should
be taken into account. Longitudinal records of resource availability, such as the split of operating room hours
between emergency and elective cases, bed vacancies, and the number of anesthesiologists, are instrumental
for creating time-dependent covariates. If detailed records of the status of resources are not available, the
average numbers during a calendar period might be used.

The availability of hospital resources, such as surgeons, anesthesiologists, surgical nurses, operating
rooms, special equipment, and beds, defines the chances of a patient being placed on the surgical schedule
[16]. Therefore, it is important to include resource-related indicators in analyzing whether differences in
availability of resources, as opposed to differences in management practices, can explain variations in access
to care [99].

The most important management-related factor is the priority discipline by which patients are selected
for scheduling once a queue has formed. As noted above, patients with a higher priority are usually selected
ahead of those with a lower priority, regardless of when they were added to the list, and patients in the same
priority group are usually selected in the order of their arrival. However, there are several situations in which
this priority discipline may be altered. In the first, which is called preemptive queue, an emergency patient
might be allowed to enter the service immediately upon arrival, even if an elective patient has already been
admitted to hospital. The second situation is related to the management practice based on the current state
of the schedule and the queue. The need to avoid idle operating room time, which may occur if planned
elective surgery is cancelled, creates opportunities for the immediate admission of purely elective cases.
If operating room time becomes available unexpectedly, surgeons for whom the operating room time was
allocated ask managers to find out if anyone on the list can come in at short notice. Therefore, demand on
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different hospital resources and the availability of those resources may change the queue discipline in favor
of less urgent cases or late cases in the same priority group.

The number of priority groups might be an important factor, given that variation in waiting times tends to
decline within each group. Usually each priority group has a target access time, but this target time might be
a continuous variable if it is directly related to an urgency score calculated by a formal algorithm [61]. There-
fore, the range of target access times within each priority group could be important in explaining variability
in waiting time. Another important characteristic of queuing procedures is whether patients are partitioned
to create a pool for immediate substitution when an operation on the current schedule is cancelled. Patients
may be asked in advance if they are able to come in at very short notice, especially if the procedure requires
no preparatory work-up. This effectively divides a queue into two pools according to patients’ agreement to
come in at short notice. Therefore, such a policy may change the first-come, first-served discipline within
priority groups.

There are two types of management policy for cancellations of booked services. In the first type, patients
are taken off the list and reinstated later. In the second type, patients are kept on the list until their eventual
admission, irrespective of events taking place between acceptance and admission. Therefore, comparisons
between providers may produce biased results if intermediate events occurring between registration and
admission are not taken into account.

Surgical needs, severity of the patient’s condition, and the presence of comorbidity are the most important
patient-related factors. Comorbidity denotes the presence of one or more diseases in addition to the disease
under study. In general, a large number of comorbid conditions is a contraindication to aggressive treatment
and may jeopardize the likelihood of treatment success. Other patient-related factors are whether the patient
was reinstated on the list after earlier removal because of cancellation, whether the patient was placed on
the list from a follow-up program, whether the patient was waiting for a second procedure, and whether
the patient was in a short-notice pool. Age and sex are important confounding factors because of their
association with surgical need. Differences in access to treatment among social classes could also be relevant
to a waiting-time study [88]. It has been suggested that better-educated patients may receive referral to
specialist services for less critical conditions, at earlier stages, and with lower levels of expected benefits
[98]. In addition, members of groups with higher socioeconomic status may have the skills required to
negotiate expedited access to care [79].

Patients may also be treated differently depending on where they live. Therefore, differences in referral
patterns (that is, differences between referring physicians as to the stages of disease at which they think it is
appropriate to refer patients to hospital) and variations in clinical practice in the assessment of urgency must
be considered in waiting-time studies [19]. The nonclinical factors that may operate as confounders include
the hospital affiliation of the referring physicians [6] and preferential allocation of hospital resources [5].

1.6 Types of data

Waiting-time studies may be classified as either prospective or retrospective according to how waiting time is
ascertained. In a prospective study, where waiting time is evaluated from registration to admission or removal
from the list for a reason other than admission, the sampling unit is “patient listed”. In a retrospective study,
where waiting time is ascertained from admission backward to some preceding moment, the sampling unit
is “patient admitted”. Whereas prospective studies examine how long patients who have been accepted for
treatment wait for admission to hospital, retrospective studies examine how long patients who have been
admitted were required to wait after registration.
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1.6.1 Prospective registries

A waiting-time registry facilitates the collection of prospective information on events and circumstances that
have led to admission or removal within a cohort of patients recruited to the waiting list [84]. In the absence
of waiting-time registries, service or admission records collected in administrative databases are often used
to select patients for study [76]. If every wait ended in admission, the two sources would generate equivalent
data. However, neither patients removed before admission nor those still waiting are represented in service
records [35].

The data sets from a prospective registry offer a valid method of calculating waiting times that ensures
complete representation of the experience of patients: those who were accepted over a given period, those
awaiting attention at a particular moment, those who underwent treatment during a specified period, and
those who were removed from the wait list without treatment.

1.6.2 Operating room records

Registration for a service is the point at which clinicians confirm the need for treatment and service providers
begin planning resource allocation for admission. However, at many hospitals, patients are not represented
in the operating room records until the treatment has taken place. In time-to-event studies in other fields,
it has been suggested that such a retrospective design can lead to serious problems with inferences [121].
Retrospective design can similarly bias the results of a waiting-time study. For instance, the waiting times of
patients placed on the list late in the study will necessarily be short. Thus, the effect of factors associated with
long waits would be biased toward the null, whereas the effect of urgency status would be overestimated.
Even if patient removals occurred at random, discarding those removed from the waiting list before surgery
would invalidate the results of a study. For instance, coexisting illnesses may delay surgery in one group but
have no effect in another. If sicker patients are routinely removed from a queue before admission, there is a
potential for bias in a between-group comparison.

1.6.3 Wait-list counts

Wait-list censuses provide information on how long patients currently on a list have been waiting [38]. This
cross-sectional design also involves opportunities for selection bias, and patients with long waits are over-
represented [10]. For this book, we used primarily data sets containing records of registrations rather than
records of admission for service, although we do compare the service- and registration-based approaches.

1.7 Types of questions

Waiting lists for elective surgery have been commonly accepted in publicly funded health care systems
on the premise that they ensure the most efficient use of hospital resources; the only alternative would be
underutilization of capacity within the system [81]. The system’s operational considerations alone may be
irrelevant, in that long waiting times constitute deprivation of rights to personal inviolability. The debate
has therefore shifted toward the issue of how much capacity is required to maintain safe wait lists. Many
governments have called for target access times for surgical procedures that would minimize the adverse
events associated with treatment delay. A major effort has been devoted to understanding why some patients
wait longer than others for the same service. In the following sections we introduce some questions that have
been considered in studies on access to care.
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1.7.1 What is the variation in time spent waiting for elective surgery?

The length of time that patients spend on wait lists has been examined in several studies that have reported
on variations in waiting times according to procedure, urgency, practice, period, and type of surgical service.
Few studies have been concerned with the variation in waits for services from a single provider, although this
information is important for understanding what factors are involved. Most studies are primarily concerned
with the statistical variation in a queue of patients with equal surgical needs and urgency. Whether waiting
times vary by chance alone after adjustment for clinical factors, variation in demand, and patient and hospital
characteristics remains an important question in health services research on access to surgery.

1.7.2 What is the probability of undergoing surgery within a certain time?

In any analysis of hospital wait lists, it is useful to obtain the probability distribution of waiting times so that
the proportion of listed patients undergoing treatment within a certain period can be compared between ser-
vices, calendar years, and management practices. This probability distribution allows researchers to compare
performance in terms of the percentage of patients who had a specified wait (for example, 0 to 2 months) in
two periods. Alternatively, services can be compared by wait-list times for a specified percentile of waiting
times, for example, the 50th percentile.

1.7.3 Does priority affect chances of admission for surgery?

Explicitly queuing patients who are awaiting elective surgery according to urgency of required treatment
is generally perceived as a suitable method to facilitate access to care within a clinically appropriate time
frame. Most surgical queue-management systems use clinical criteria to determine the urgency of the need
for a procedure [86]. In theory, patients are prioritized according to established guidelines, and access to
surgery is expedited if they are considered at greater risk of deterioration or death. However, wide variations
in individual waiting times have been reported within priority groups [84]. This may suggest that priority
ranking serves only as an aid in queuing patients for elective surgery, with the decisions of patients, surgeons,
and service managers easily altering the order of admissions. Indeed, patients may be selected for surgery on
the basis of best use of allocated operating room time, availability of hospital resources, or anticipated length
of stay in intensive care. Therefore, several studies have estimated the probability of undergoing surgery as a
function of wait-list time in a synthetic cohort of patients registered on priority wait lists. In Part II we report
on the impact of priority, using an example from vascular surgery, where the urgency of intervention can be
clearly defined.

1.7.4 Does registration period affect waiting times?

Concerned with growing wait lists for cardiac surgery in the mid-1990s, the provincial government in British
Columbia, Canada, started providing supplementary funding to increase the annual number of coronary
artery bypass grafting (CABG) procedures by 15%, starting in 1998. Although they were intended to improve
the situation, it is not known whether these measures changed the time that patients spent on wait lists for
elective CABG.

Previous studies have shown inconsistent results regarding the impact of supplementary funding on time
to surgery in publicly funded health care systems [99]. It has been suggested that the effect may vary ac-
cording to the scope (single hospital versus all hospitals in a region) and the term (one-time versus ongoing
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increases) of funding commitment [57]. In addition, there has been little information on the impact of sup-
plementary funding across different priority groups.

In Part II, Chapter 6, we describe one study that compared the number of weeks between being registered
for CABG and undergoing the operation for equal proportions of patients registered in different years before
and after the provincial government started providing supplementary funding [70]. The specific research
questions were (1) Did the period of registration affect the time that patients spent on wait lists for CABG?
and (2) Was the period effect similar across priority groups?

1.7.5 Does the type of procedure affect waiting times?

Although access to surgery depends on the assigned priority, several studies have reported that patients with
equal surgical needs have waited considerably different times for elective procedures provided by a single
surgical service [103]. For example, in Canadian hospitals, the department of vascular surgery performs a
variety of surgical procedures, such as abdominal aortic aneurysm repair, carotid endarterectomy, peripheral
vascular bypass surgery, other arterial reconstructive and graft procedures involving blood supply to the
legs, and creation of arteriovenous fistula to provide long-term access for hemodialysis in patients with renal
failure. Patients waiting for these procedures compete for the same hospital resources. If operating room time
becomes available unexpectedly, surgeons ask the office managers to find out if anyone can come in within
a few hours, especially for a procedure requiring no preparatory work-up. On the other hand, cancellations
because of lack of a hospital resource, such as an intensive care unit bed, can schedule first procedures that
do not require the resource. Therefore, the question is often asked whether the type of procedure has an
independent effect on services where queuing procedures are in place [27].

1.7.6 Does wait-list size at registration affect time to surgery?

The length of a surgical wait list is a common surrogate for the expected wait for hospital admission. Indeed,
if there are patients already on the list, a patient who has just arrived will be admitted within a certain
period only if all current patients have been served during that period. In British Columbia, priority wait
lists are commonly used to manage access to elective procedures according to urgency of need for treatment.
In particular, patients with coronary artery disease are prioritized according to angina symptoms, coronary
anatomy, and impairment of left ventricular function to facilitate access to surgical revascularization within
a clinically appropriate time. Describing waiting times for CABG in the province, Katz et al. suggested that
variation in the size of the wait list among individual surgeons may be an important factor as well [60].
Surprisingly little is known about how the list size at registration affects waiting time for elective surgical
procedures. Without this information, it is difficult to accurately estimate how much service capacity is
required to maintain short wait lists for surgery [119].

1.7.7 What is the relation between emergency referrals and elective admission within the target time?

Comparing the proportions of patients who undergo elective surgery within the target access time across
hospitals may be misleading if referral patterns are not considered. At least one study found that variations
in outpatient referral rates were an important determinant of variations in admission rates [30]. Given its
association with variations in practice, referral pattern is a potential confounding factor for any observed as-
sociations between practice patterns and performance indicators. Little is known about the relation between
volume of emergency referrals and admission rates from a waiting list for the same surgical service, although
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a batch arrival or a prolonged series of emergency cases would seem likely to delay access for patients al-
ready on the list. In theory, queuing procedures may ensure equal access to care according to patient need
and urgency, if implemented uniformly across the health care system. However, the chances of admission
for elective surgery can easily be altered if surgical services experience an uneven influx of emergency cases
[107]. For instance, the availability of hospital resources may require to serve less urgent cases first [16],
or emergency cases may lead to cancellation of planned elective services, even though some time slots on
the operating room schedule are usually set aside for emergency procedures [77]. For evaluation purposes
therefore the common concern is whether the proportions of patients who undergo surgery within the target
access time can be accurately estimated without considering emergency caseload.

1.7.8 What proportion of patients have late surgery after registration on wait lists of different sizes?

The proportion of patients who undergo surgery within a clinically acceptable time is an important perfor-
mance indicator in health care systems that use wait lists to manage access to care [118]. In theory, queu-
ing procedures should ensure access to care according to urgency of treatment if implemented uniformly.
Sobolev et al. performed an empirical analysis of a population-based registry and found that the length of the
queue at registration affected the time to elective surgery [112]. Surprisingly little is known about how the
list size at registration affects the chances of undergoing elective surgical procedures within an acceptable
time. The common concern for evaluation purposes is therefore whether the proportion of late surgeries can
be accurately estimated without considering the length of the wait list. In Part II, Chapter 7 of this volume,
we describe a study that aimed to determine the proportion of patients who had late surgery after registration
on surgical wait lists of different sizes.

1.7.9 What is the effect of delays in scheduling an operation?

When time to elective admission is compared between providers, periods, or management practices to eval-
uate performance, there is a possibility that patients will have experienced an intermediate event between
registration and admission for treatment. Such intermediate events might include a delay in scheduling the
operation, cancellation of booked services, or reinstatement after self-deferral. The occurrence of the events
preceding admission may alter the admission rate in one group, having no effect in the other; may have the
same effect in both groups; or may have different effects in each group. The common concern is therefore
the potential bias in estimates of relative admission rates when the comparison is done without consider-
ing events preceding admission. There is a strong argument that an adjustment should be performed for
time-varying covariates when studying differences between groups in a prospective study [62].

In Part II, Chapter 7 of this volume, we assess the magnitude of the bias when access to surgery is
compared between two registration periods without data on intermediate events. The aim is to demonstrate
the effect of exclusion of data on delays in scheduling operations in calculating differences in admission
rates. Waiting-time analysis was conducted in two ways: first, with data on elective admission only and then
with additional data on the occurrence and timing of delay in scheduling the operation.

1.7.10 Do longer delays contribute to preoperative mortality among patients with less urgent need
for surgery?

In surgical care, the existence of wait lists for elective procedures raise concerns about delaying necessary
treatment. Explicitly queuing patients with coronary artery disease according to urgency is generally per-
ceived as a method of facilitating access to treatment within a clinically appropriate time. As such, priority
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wait lists manage delays by prioritizing patients by need. For example, when accepting patients on CABG
wait lists in British Columbia, cardiac surgeons indicate the priority for booking the operating room accord-
ing to angina symptoms, coronary anatomy, and left ventricular function.

Although several studies have described the impact of prioritization on time to surgery [33, 101], the
effects of sharing services between patients with different priorities are less well understood. In particular,
little attention has been given to the impact of delaying low-risk patients to expedite treatment of those at
higher risk.

In a patient with coronary artery disease who is to undergo CABG, delaying that operation may lead to
deterioration of the patient’s condition, a poor clinical outcome, and an increased risk of death. In population-
based studies, death before CABG has been reported in 0.4% to 1.3% of patients in whom it was felt that
surgery could be safely delayed. These estimates, however, are affected by the incidence of both surgery and
death. Therefore, without further analysis seeking to isolate the effect of these two competing risks, it is not
clear whether longer delays contribute to the probability of death before surgery among patients in the less
urgent category.

From a methodological perspective, measuring mortality on surgical wait lists is similar to quantifying
risk of death over time in populations exposed to competing risks [1]. The time-dependent cumulative inci-
dence of preoperative death, which accounts for the occurrence and timing of competing events, is a useful
way of comparing the proportion of patients who die before surgery across urgency groups [45].

1.7.11 What is the risk of unplanned emergency surgery among patients waiting for surgery?

In patients with coronary artery disease for whom elective surgical revascularization is indicated, extended
treatment delays may increase the probability of emergency admission [94]. Unplanned admission may be
associated with an episode of unstable angina or aggravation of symptoms requiring immediate admission
to hospital [68]. The proportion of patients who undergo elective surgery through unplanned emergency
admission was identified as an important performance indicator in health care systems that use wait lists
to manage access to care [12]. However, few studies have correlated the chances of undergoing CABG
through unplanned emergency admission with the time spent on a CABG wait list after registration for
elective surgery. In particular, there is little information on the chances of emergency surgery across priority
groups. In addition, it is unclear whether expediting treatment reduces the number of unplanned emergency
procedures in more urgent groups.

In Part II, Chapter 8, we summarize a study that aimed to describe the incidence of unplanned emer-
gency surgery among patients waiting for isolated CABG and to determine whether shorter delays reduced
the probability of emergency surgery among patients prioritized in more urgent groups. To estimate the time-
dependent probability that a patient, who can be removed from the list through planned surgery, death, or
other competing events, undergoes unplanned emergency surgery during or before a certain wait-list week,
we prospectively analyzed actual waiting times from a population database of all patients registered for
isolated CABG between 1991 and 2000 in British Columbia. To examine the relation between the length
of delay and the cumulative incidence of emergency surgery, we first describe the probability of remaining
on a waiting list by time since registration. Then, we compare the rate of emergency surgery per unit of
wait-list time across priority groups using discrete-time survival models. Finally, we compare the cumu-
lative incidence of emergency surgery across priority groups using competing-risks regression models for
pseudovalues of cumulative incidence functions.
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1.7.12 What is the relation between length of the wait list and chances of death while on the wait list?

The length of the wait list for surgery, a common correlate of the expected wait for hospital admission, is
often the only information available to cardiologists and their patients in the decision where to seek surgical
treatment. Indeed, all patients on a wait list must be treated before a patient who has just been registered for
surgery can be scheduled for hospital admission. Surprisingly, few studies have correlated the health effects
of the presurgical wait with wait-list size at the time of registration for elective cardiac surgery. It has been
argued that cardiologists and their patients should assess the likely extent of treatment delay and associated
risks when they choose a cardiac surgeon. The common concern is whether the decision to refer a patient to
a specific cardiac surgeon can be made without considering the length of the current wait list.

1.7.13 What is the relation between length of the wait list and chances of unplanned emergency
surgery?

Few studies have correlated the chances of undergoing unplanned emergency surgery from the wait list
with wait-list size at the time of registration for elective surgery. However, this relation is important in
deciding where to undergo treatment because wait-list size is often the only information available. The
objective of a study we summarize in Part II, Chapter 8, was to compare the time-dependent probability
of undergoing elective surgery through unplanned emergency admission between two groups of patients
classified according to the length of wait lists at the time of registration for surgery. We also tested for
significant differences in the risk of unplanned emergency surgery resulting from registration on a longer
wait list.

1.7.14 What is the risk of death associated with delayed surgical treatment?

When reporting the mortality rate for patients who may die or undergo surgery, special statistical techniques
must be used to isolate the effect of competing risks of surgery and death. The Kaplan-Meier method, which
is used in randomized controlled trials of immediate CABG versus medical therapy, is not appropriate for
describing the probability of competing outcomes over time [1]. Methodologically, not including preop-
erative deaths implies that survival time begins at the time of the procedure; therefore, treatment effect is
implicitly conditional on surviving to treatment. The proportion of patients scheduled for CABG who die
preoperatively is affected by the incidence of both surgery and death, and it is therefore unclear whether the
low observed probabilities of death indicate a true low risk of death or appropriate timing of surgery.

One measure suggested for summarizing the risk of death over time in a setting of competing risks is the
probability of death conditional on not having experienced the competing event by a certain time [73]. Using
this approach, we sought to improve the estimates of the risk of death associated with delaying CABG among
patients requiring the operation. We therefore estimated the time-dependent probability of death, given that
CABG was not performed by certain times, using data from a prospective database of all adult patients who
were accepted for isolated first-time CABG.

1.7.15 What is the survival benefit of coronary artery bypass grafting?

Randomized trials and observational studies have demonstrated survival benefits conferred by CABG [96].
The intervention has been shown to improve long-term survival in stable symptomatic patients with left
main coronary artery disease, triple-vessel disease, or two-vessel disease with significant stenosis of the
proximal left anterior descending coronary artery [122]. In practice, however, personal reasons, scheduling
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procedures, and surgical wait lists can delay CABG after a decision to operate has been made [36]. Hannan
et al. argued that estimates of survival benefits conferred by CABG should account for the total number
of deaths, including deaths resulting from delays for required revascularization [50]. We anticipate that
such estimates can show the difference in the risk of death between patients who actually undergo required
CABG and those who remain untreated after the decision to treat. The purpose of this analysis is to compare
survival after the treatment decision in patients who undergo CABG and those who remain untreated. We
used observational data from a population-based registry of patients with established coronary artery disease
for whom surgical revascularization was indicated and planned.

1.8 Types of inferences

In health services research on access to care, we are mostly concerned with differences in proportions, rates,
and distributions across periods, regions, procedures, or groups of patients. We would like to know whether
the proportion of patients undergoing surgery within the target access time is similar for two calendar periods,
whether the rate of admissions from wait lists for different procedures is the same, and whether waiting time
becomes shorter when additional funds become available. In statistical terms, we must estimate the effects
of factors interfering with access by describing odds ratios, rate ratios, and hazard ratios associated with
categories of explanatory variables. We can further estimate the effects of those factors by expressing the
probability of admission through a regression function of study variables.

1.9 Statistical challenges

The statistical challenges associated with analyzing waiting-time data include the question of how to ad-
dress incomplete observations or unobserved heterogeneity between patients. Random-effects modeling of
right-censored and left-truncated observations is the most useful analytical tool to address this issue [63].
Measured as the number of scheduling cycles, each providing a single opportunity for elective admission,
time to admission is inherently discrete. Therefore, statistical analysis of waiting-time data could take ad-
vantage of discrete time-to-event models [2].

1.9.1 Incomplete observations

In studies of waiting times, the interest often lies in summarizing time since registration among patients who
were registered for treatment sequentially in calendar time. As reported elsewhere [10, 103], ten percent of
patients accepted for treatment can expect to be removed from the wait list, after spending some time on the
list, for reasons other than receiving the treatment. Some of these patients may experience other competing
events, such as health deterioration or emergency treatment. Other patients may decide against surgery or
decline admission; some may move from the area and contact with them may be lost. In a prospective
study, an observation for a patient removed from the list before admission occurs is considered incomplete;
in this situation, the recorded waiting time is less than it otherwise would be. Observations may be also
censored when the study is restricted by date, and only a portion of the waiting time is observable for
patients registered near the end of the study period. If they are still on the list at the end of the study, their
ultimate waiting times are unknown. These observations are said to be right censored, since all that is known
is that time to admission exceeds the observed value.
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Fig. 1.1. Lexis diagram of waiting times. Each slanted bar is the time course of a single patient after registration on a wait
list. A cohort study will use waiting-time data from all patients registered between January 1, 1991 and December 31,
2001 and followed up to the end of the study period. The gray bars indicate patients registered before the study period.
The bars of patients remaining on the wait lists at the end of follow-up are censored. The bars crossed by the dashed line
represent patients remaining on the wait lists at 52 weeks after registration for treatment.

This idea is explained by the Lexis diagram, which summarizes waiting times collected in a prospective
study (Figure 1.1). In general, the Lexis diagram is a coordinate system with calendar time in the horizontal
direction and follow-up time in the vertical direction. In Figure 1.1, slanted bars represent time courses for
individual patients’ waiting times, graphed in ascending order of registration date; the abscissa shows the
date each patient was registered, u, and the ordinate shows the elapsed time since registration, v. Patient
i enters the diagram at (u, v) = (bi, 0), wait-list week 0, and progresses week by week diagonally until
(ui, vi), the last week on the list. The right end of the abscissa indicates the end of a study period at which
observations for all patients remaining on the list are censored. By drawing a horizontal line at a specific
waiting time, the magnitude of the risk set at that time and the amount of follow-up beyond it can be exam-
ined. For example, the bars crossed by the dashed line form the risk set of patients remaining on the wait
lists at 52 weeks after registration for treatment.
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Sometimes patients registered to a specialist’s wait list are then referred to another specialist for addi-
tional investigations. If this referral results in a long delay, these patients are temporarily “put on hold” until
they receive the specialist’s approval for treatment. Observations for these patients are said to be left cen-
sored since all that is known is that time to admission is actually less than the interval between registration
and admission, and part of that time was spent waiting for the investigation, not for treatment.

Regular regression analysis of waiting times cannot cope with the uncertainty in the data caused by
censoring. However, censored observations should not be withdrawn from the analysis. If the censored ob-
servations are not accounted for, the estimated probabilities of receiving the service may be biased toward
a higher rate, and the median and mean waiting time may be underestimated [104]. The methods of time-
to-event analysis allow us to use incomplete information in a sample [66]. A fundamental assumption that
makes use of these methods is that the distribution of censored time does not depend on the parameters
governing waiting-times distribution. If, however, censoring were related to the mechanism governing ad-
missions, this assumption would result in biased estimates of the probability of receiving the service within
a certain time.

1.9.2 Truncated samples

Another challenging data feature is largely related to sampling schemes in which certain events or conditions
may screen some patients from observation so that the investigator will not be aware of their existence.
These samples must be considered truncated. The most common situation, left truncation, occurs when
an event between acceptance and admission is used to identify individuals for a study. Sometimes it is
a preceding procedure, a visit to a specialist, or the event of scheduling services. In this sampling scheme,
patients removed from the list before these screening events take place will not be selected. Thus, the waiting
experiences of such patients have no chance to contribute to the study. Here, the problem is not that the time
from acceptance to admission is unavailable, but rather that patients must experience an intermediate event
to be included in the study cohort. Therefore, observed waiting time should be greater than the smallest time
from acceptance to an intermediate event. Right truncation arises in waiting-time studies that are based on
the experience of those admitted, not those removed. Sampling consists of observing the waiting time within
the observational window (0 to τ ), usually fiscal year, or quarter, of registration. Only patients admitted
for service before time τ are included in the sample. Admitted patients who have yet to be scheduled for
the service are not included. Therefore, in addition to selection bias, patients who need longer waits are
underrepresented.

1.9.3 Correlated observations

Several waiting times for the same patient might be considered as possibly correlated observations. For
instance, in the aforementioned study on access to elective surgery, 11% of the patients accepted to surgery
were added to the list two or three times [103]. Some patients had been reinstated on the list, whereas the
others entered the list several times for different surgical procedures. Correlation between observations may
cause some distortion in estimates and hypothesis testing. To address this problem, a model of the joint
distribution of the two waiting times could be developed [100]. Alternatively, the model could be fitted using
the generalized estimation equations [37].

1.9.4 Intermediate events

In prospective studies, information is often available on intermediate events that patients may experience be-
tween registration and admission to hospital for treatment. These include delay in scheduling the operation,
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cancellation of booked services, reinstatement following medical deferral, and failure to attend. The occur-
rence of the events preceding admission may alter the admission rate in one group and have no effect in the
other, have the same effect in both groups, or have different effects in each group. The common concern is
therefore potential bias in estimates of relative admission rates when a comparison does not take into account
events preceding admission. Some argue that an adjustment should be made for time-varying variables when
groups are compared [62]. The primary purpose of this adjustment is to see how the effects of the fixed
factors change when intermediate events occur [67]. In addition, it may help to strengthen the inferences
about how the intermediate event affects the admission rate [8].

Analysis of intermediate events raises some methodological complications. For instance, directly com-
paring patients who had a scheduling delay with patients who did not have such a delay may produce mis-
leading results. First, patients from the first group must have stayed on a waiting list at least until the time of
the event, whereas some patients in the second group might leave the list before the event occurs. Second,
unlike main events, an intermediate event is not certain to occur; therefore, it is not appropriate to use the
main event to censor intermediate events [69]. Measuring time to admission from the date of an intermediate
event introduces bias toward a higher rate in the estimated probabilities of admission within a short duration
of registration [10].

1.9.5 Competing risks

Competing risks naturally arise in wait-list settings. A competing event is “any event whose occurrence ei-
ther precludes the occurrence of another event under examination or fundamentally alters the probability of
occurrence of this other event” [45]. In the analysis of random durations, events are classified as competing
events if their occurrence precludes the subsequent occurrence of the primary event or as censoring events if
their occurrence precludes the observation but not the development of the primary event. For example, sup-
pose the primary event of interest is death while on the wait list for surgery; then, undergoing the planned
operation is a competing event, and loss to follow-up is a censoring event. A patient on a wait list is consid-
ered at risk of the primary event from time of registration until he or she experiences the primary event, a
competing event, or a censoring event.
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Waiting-time data used in this book

2.1 Patient progress through surgical care

Surgical care encompasses a continuum of activities through the diagnostic, preoperative, operative, and
postoperative stages [28, 34]. During the diagnostic stage, the patient undergoes tests and other forms of
evaluations to identify the condition causing illness, which may or may not require surgery. The preoperative
stage consists of all the clinical and managerial activities that take place from when a decision to operate
is taken until the patient enters the operating room. The operative stage lasts from the patient’s entry into
the operating room until his or her entry into the recovery suite. The postoperative stage includes recovery
care and treatment in an inpatient surgical unit and/or an intensive care unit and ends with discharge from
hospital.

The following is a summary of the processes in surgical care at major teaching hospitals in Canada. When
necessary, primary care physicians refer to a specialist any patient who presents with signs and symptoms
specific to a condition that is amenable to surgical intervention. If, following an outpatient consultation,
surgery is deemed necessary, staff in the surgeon’s office register the patient on an appropriate wait list and
sends the request for operating room time to hospitals where the surgeon has admitting privileges. The patient
is then scheduled for presurgical assessment at a preadmission clinic, where an anesthesiologist determines
the patient’s suitability for surgery and creates a care plan for the preoperative and postoperative periods [44].
The procedure is postponed if the patient is deemed unfit for any reason. If necessary, the patient undergoes
additional preoperative investigations for assessment of surgical risks. Clinic staff provide education about
the procedure and any preparation required at home.

Each patient’s access to surgery is managed through the scheduling of operating room time [16]. Surgical
scheduling staff identify the patients available for allocated operating room time slots and reserve hospital
resources to ensure appropriate care during and after the operation [49]. Patients are selected for scheduling
both from hospital wards and from the surgical wait lists on the basis of allocated operating room time slots.

Patients may be admitted to the hospital through the emergency room, the same-day admission clinic,
or the patient admitting office. To allow optimal utilization of surgical suite resources, hospitals periodically
release blocks of operating room time to various surgical services. Each service then places its patients on
the operating room schedule, with some operative slots set aside for emergency cases [77]. Any time that
is not booked by a particular service is then made available to other services. Each surgical service selects
patients from its wait lists and schedules operations on the basis of urgency, best use of allocated operating
time, availability of hospital resources, and plan for discharge from the hospital. Once set, the schedule for a
particular service may be changed to accommodate the needs of emergency patients, who have preferential
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access to hospital resources. Conversely, scheduled surgery may be moved ahead if an operating room time
slot becomes available.

On the day of a scheduled procedure, the anesthesiologist and the attending surgeon assess the patient
before transfer to the operating room holding area. After the operation, the patient is taken to the postanes-
thesia care unit for monitoring and treatment of possible side effects of anesthesia. The anesthesiologist
performs a postsurgical assessment, and the patient is transferred to the intensive care unit or to a hospital
ward for further treatment [14].

While the patient is on the ward, a bedside nurse reassesses the patient’s pain and other aspects of his or
her condition. Once the patient reaches the point where oral analgesics are sufficient to control postsurgical
pain, the primary surgical service takes over the task of following the patient. Finally, when the criteria for
discharge are met, the patient is discharged from the hospital to home or to after-hospital care.

2.2 Access to coronary artery bypass grafting surgery

2.2.1 Capturing events in surgical cardiac care

In this section, we describe variables that reflect a patient’s progress from the time of registration on a wait
list for elective coronary artery bypass grafting (CABG) in British Columbia, Canada. Patients who are
to undergo CABG may encounter different events along their individual care pathways. Figure 2.1 shows
the care pathways and perioperative activities that patients presenting with symptoms of coronary artery
disease are likely to experience, according to initial presentation and subsequent events leading to surgery.
For example, a 55-year-old woman who is registered on a surgical wait list at a particular hospital may,
at the time of registration, have an urgency status of semiurgent, with no comorbidities. Her subsequent
care steps may involve a visit to the preadmission clinic, assessment by an anesthesiologist, the scheduled
bypass surgery itself, and discharge from hospital. Alternatively, a 75-year-old man who is registered on
a surgical wait list at a different hospital may, at the time of registration, have urgent status, with chronic
obstructive pulmonary disease as a major comorbidity. If his condition deteriorates, his surgery may be
cancelled because he is unfit to undergo the procedure. These various care pathways and characteristics of
patients scheduled for CABG are captured through events and attributes of interest.

To reconstruct the events that patients experience during the perioperative period, health services re-
searchers develop a data model that specifies the relations between data elements and events occurring
during the process of care. In this book, data on patients who were registered to undergo CABG were ob-
tained from the British Columbia Cardiac Registry (BCCR) [120]. This prospective database contains dates
of registration on the list, procedure, and withdrawal from the list, along with disease severity and other risk
factors, for all patients who have been registered to undergo CABG in any of the four tertiary care hospitals
that provide cardiac care to adult residents of British Columbia since 1991 [110].

A time stamp is recorded for all captured events, so the time between events in the process of care is
easily recovered. Therefore, we refer to patient-level information on events and their dates as waiting-time
data. In the database that we used for our analysis, the sequence of events for individual patients can be
presented in terms of patient-level records, whereby one patient has only one record with multiple variables
representing the date and type of event, or by means of a patient-episode data set, in which each patient has
multiple records. The patient-level format is best suited to presenting events that occur at regular intervals,
in which case the fields containing event dates are labeled with numeric suffixes to relate the event date to
the subsequent event [102]. For some factors that vary over time, an additional set of fields is needed to store
information on the date and value of each factor. For example, if the hospital capacity changes quarterly,
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four additional variables are needed for 1 year of follow-up. In contrast, the person-episode record has for
each patient only fields for event identification number and event date. The combination of patient identifier
and sequential event number uniquely determines the record related to a certain event.

Registry records also provided information on each patient’s age, sex, urgency status, coronary anatomy,
and hospital at the time of registration on the wait list.

The primary events of interest for each patient were registration and removal from the wait list, hospital
admission and separation, scheduled surgery and unplanned emergency surgery, and preoperative, in-hospital
or follow-up death. The date of the surgeon’s request to book the operating room served as the date of the
decision for surgery and registration on a wait list. In British Columbia, surgical wait lists hold patient
names until the surgery can be scheduled. Patients are removed from a wait list without surgery if they
die, if they reconsider the decision to undergo surgery, if their condition deteriorates such that surgery is
no longer possible, or if they undergo surgery elsewhere. Each week, the offices of all cardiac surgeons
provide information to the registry on registrations for surgery, operations performed, wait-list reconciliation
(removals), and discharge summaries.

2.2.2 Other data sources

Additional information on access to CABG was obtained from administrative health databases and provincial
death records. To identify hospital admission and discharge dates, coexisting conditions, and whether the
patient was discharged alive or died in hospital, we used each patient’s provincial health number to link
deterministically BCCR records to the British Columbia Linked Health Database Hospital Separations File.
[25]. Data on coexisting conditions were retrieved in the form of diagnoses reported in discharge abstracts
created during the calendar year before the treatment decision [56]. Unplanned emergency surgeries were
identified by the emergent or urgent code for admission from the emergency department or by the emergent
code for admission from the admitting department after the patient was registered on a surgical wait list.
To identify deaths that did not occur in a hospital, we linked the BCCR to the British Columbia Linked
Health Database Deaths File [117]. Underlying causes of death were coded according to the International
Classification of Diseases, 9th revision (ICD-9). Deaths related to cardiovascular disease were represented
by ICD-9 codes 410 to 414 (ischemic heart disease) or 420 to 429 (other forms of heart disease) [23].

2.2.3 Analytical data set

The registry records were linked to the other databases to create the analytical data set for patients registered
for elective CABG. A data dictionary was created to describe the variables representing events and attributes
of interest in this data set (Table 2.1). In this table, the rows show variables in the data set and the columns
show characteristics of each variable, such as the name, the information stored in the variable, the data
sources, the type of data, and how the data are coded. For example, the variable named “SEXF” contains
data on the patient’s sex and is a categorical variable where 0 indicates man and 1 indicates woman.
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Table 2.1. Data dictionary for records of patients awaiting elective coronary bypass grafting

Variable Description Source Code

BCCR_ID Patient identifier BCCR <Text>

AGECAT Age decade BCCR 1 – 20–29 years

2 – 30–39 years

. . .

8 – ≥90 years

SEXF Sex BCCR 0 – Man

1 – Woman

ANATOM Coronary anatomy BCCR 1 – Left main disease

2 – 2- or 3-vessel disease, with PLAD

3 – 3-vessel disease, with no PLAD

4 – 1-vessel disease, with PLAD

5 – 1- or 2-vessel disease, no PLAD

U – Otherwise and unknown

UR_BK Urgency at booking BCCR 0 – Emergency

1 – Urgent

2 – Semiurgent

3 – Nonurgent

U – Unknown

CM_CH Comorbidities from Hospital Separations 0, 1, 2, 3, or 4 (≥4)

Charlson index

CM_BK Major comorbidities Hospital Separations 1 – CHF or diabetes or COPD

or rheumatism or cancer

0 – Other

INST_BK Location at registration BCCR Hospital 1, 2, 3, or 4

WL_ST Wait-list registration date BCCR mm/dd/yyyy

WL_EN Wait-list removal date BCCR mm/dd/yyyy

WL_RM Reason for removal BCCR 0 – Underwent surgery

1 – Death

2 – Medical treatment

3 – At patient request

4 – Transfer to other hospital

5 – Otherwise removed from list
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6 – No surgical report

7 – Still on wait list

8 – Other surgery

9 – Death recorded in BCCR,

not in Deaths File

DTHDATE Death date Deaths File mm/dd/yyyy

< . > – no date recorded

EXIT_CODE Type of hospital discharge Hospital Separations D – Discharged alive

S – Left against medical advice

X – Died in hospital

N/A – Not applicable

ADDATE Hospital admission date Hospital Separations mm/dd/yyyy

< . > – no date recorded

SEPDATE Hospital separation date Hospital Separations mm/dd/yyyy

< . > – no date recorded

Abbreviations: BCCR = British Columbia Cardiac Registry, CHF = congestive heart failure,

COPD = chronic obstructive pulmonary disease, PLAD = proximal left anterior descending

Table 2.2 shows a sample of fictitious records from the analytical data set, in which each row represents a
patient record and each column is a variable representing an event or attribute of interest. From each patient
record, we can reconstruct the key events and attributes of the patient’s care pathway. For example, patient
100002 was a man between 50 and 59 years of age, who had three-vessel disease with no proximal left
anterior descending, and no comorbidities. On July 22, 1994, he was registered on a wait list for hospital 4,
with semiurgent status. He was admitted to hospital on February 14, 1995; he underwent surgery and was
removed from the wait list on February 17, 1995. He was discharged alive on February 27, 1995; however,
he died on July 15, 1996.

2.2.4 Patient population

In Part II of this book, we present the results of several modeling studies that we performed using the
records of patients for whom surgical revascularization was indicated at the time of consultation with a
cardiac surgeon.

In British Columbia, there are two pathways to surgical revascularization: registration on a wait list
or direct admission after coronary angiography. A patient who presents with symptoms of coronary artery
disease is referred to a cardiologist, who evaluates the results of coronary angiography and recommends
treatment. If coronary angioplasty is not indicated, the patient is referred to a cardiac surgeon, who assesses
the need and suitability for CABG. Following the decision to operate, surgeons register on their wait lists
patients who require and decide to undergo the operation.

Between January 1991 and December 2000, 9346 patients were registered for first-time isolated (with-
out a valve-replacement procedure) CABG on the elective basis. We excluded the records of 147 patients for
a variety of reasons: case was coded as an emergency at the time of registration (30 patients), patient was
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removed from the list on the registration date (99), operating room report was missing (4), or registration
on a weekend with admission the next day, which suggests immediate access (14). The records for the
remaining 9199 patients (see Table 2.3 for baseline characteristics) had either a surgery date or a date of
removal without surgery (and a reason for this event). The study period ended in December 2001, which
allowed only 52 weeks of follow-up after the last patients were added to the list. Therefore, we restricted the
analysis to the first 52 weeks after registration, such that the 471 patients (5.1%) remaining on the lists at
12 months were censored. Of those, 167 eventually underwent surgery, 7 died, 78 became unfit for surgery,
187 declined surgery, 16 were transferred to another surgeon or hospital, and 99 were removed from the
wait lists for other reasons. Among the 8728 patients (94.9%) who were removed from the list by 52 weeks,
7654 received planned surgery, 314 underwent unplanned emergency surgery, 91 died, 173 became unfit for
surgery, 104 declined surgery, 98 were transferred to another surgeon or hospital, 23 received other surgery,
and 188 were removed for other reasons.

Alternatively, when urgent assessment is deemed necessary, patients are admitted to a hospital cardiac
ward directly from the catheterization laboratory. If suitable for surgery, such patients remain in hospital
until the operation. There were 10 467 direct admissions between January 1991 and December 2001 (see
Table 2.4 for baseline characteristics). The data dictionary for the analytical data set of directly admitted
CABG patients is shown in the Appendix (Table A.1).

To prioritize patients and assign the target access time for surgery, all cardiac surgeons in British
Columbia used established guidelines developed in 1990, which was based on the severity of angina symp-
toms, the extent of coronary artery disease (including the extent of left main stenosis), the results of non-
invasive tests, and the presence of left ventricular dysfunction (ejection fraction less than 50%) as described
elsewhere [70]. There were three priority groups at registration for CABG: urgent, semiurgent, and nonur-
gent. The target time to surgery was 3 days for patients with left main coronary artery stenosis greater than
70% (urgent group); 6 weeks for patients with persistent unstable angina, impaired left ventricular func-
tion, and significant obstruction, defined as left-main stenosis, triple-vessel disease, or double-vessel disease
with significant stenosis of the proximal left anterior descending artery (semiurgent group); and 12 weeks
for patients with intractable chronic angina, normal left ventricular function, and single-vessel disease or
double-vessel disease with no lesion in the proximal left anterior descending artery (nonurgent group).

2.3 Access to elective vascular surgery

2.3.1 Data sources

Data were obtained from a hospital registry set up by the Department of Surgery, Queen’s University,
Kingston, Ontario, to prospectively collect data on waiting times for admission of patients registered for
elective vascular surgery. The registry records accounted for all patients referred to the department for as-
sessment at the outpatient clinic who were afterward added to the wait list. Patients who received emergency
treatment were excluded. The data dictionary for the vascular data, which describes variables representing
events and attributes of interest, appears in Table A.2.

2.3.2 Patient population

We studied the records of patients for whom elective vascular surgery was indicated and planned. Patients
were registered on the wait list after the consultation visit during which surgery was deemed necessary.
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Table 2.3. Characteristics of 9199 patients registered for elective isolated coronary artery bypass grafting in British
Columbia, 1991–2000

Priority group; no. (%) of patients

All∗ Urgent Semiurgent Nonurgent

Characteristic (n = 9199) (n = 646) (n = 6481) (n = 1959)

Age group (years)

<50 731 (7.9) 37 (5.7) 497 (7.7) 187 (9.5)

50–59 2002 (21.8) 128 (19.8) 1404 (21.7) 452 (23.1)

60–69 3511 (38.2) 250 (38.7) 2491 (38.4) 728 (37.2)

70–79 2763 (30.0) 207 (32.0) 1963 (30.3) 554 (28.3)

≥80 192 (2.1) 24 (3.7) 126 (1.9) 38 (1.9)

Registration period

1991–1992 1723 (18.7) 116 (18.0) 1220 (18.8) 334 (17.0)

1993–1994 1883 (20.5) 110 (17.0) 1377 (21.2) 386 (19.7)

1995–1996 1995 (21.7) 237 (36.7) 1360 (21.0) 374 (19.1)

1997–1998 1884 (20.5) 116 (18.0) 1324 (20.4) 428 (21.8)

1999–2000 1714 (18.6) 67 (10.4) 1200 (18.5) 437 (22.3)

Sex

Men 7572 (82.3) 526 (81.4) 5365 (82.8) 1581 (80.7)

Women 1627 (17.7) 120 (18.6) 1116 (17.2) 378 (19.3)

Comorbidity at registration

Major conditions† 2004 (21.8) 163 (25.2) 1391 (21.5) 424 (21.6)

Other conditions‡ 2431 (26.4) 217 (33.6) 1765 (27.2) 421 (21.5)

None 4764 (51.8) 266 (41.2) 3325 (51.3) 1114 (56.9)

Location at registration

Hospital 1 1895 (20.6) 130 (20.1) 1371 (21.2) 385 (19.7)

Hospital 2 3130 (34.0) 282 (43.7) 2467 (38.1) 371 (18.9)

Hospital 3 2121 (23.1) 18 (2.8) 1022 (15.8) 1019 (52.0)

Hospital 4 2053 (22.3) 216 (33.4) 1621 (25.0) 184 (9.4)

Coronary anatomy

Left main disease 1411 (15.3) 401 (62.1) 972 (15.0) 32 (1.6)

Multivessel§ 7025 (76.4) 215 (33.3) 5075 (78.3) 1692 (86.4)

Limited‖ 763 (8.3) 30 (4.6) 434 (6.7) 235 (12.0)
∗ Includes 113 patients with unknown priority group
†Congestive heart failure, diabetes mellitus, chronic obstructive pulmonary

disease, rheumatoid arthritis, or cancer
‡Peripheral vascular disease, cerebrovascular disease, dementia, peptic ulcer

disease, hemiplegia, renal disease, or liver disease
§Two- or three-vessel disease with proximal left anterior descending (PLAD)
‖Two-vessel disease with no PLAD or one-vessel disease with PLAD
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Table 2.4. Characteristics of 10 467 direct admissions for isolated coronary artery bypass grafting in British Columbia,
1991–2001

Priority group; no. (%) of patients

All∗ Urgent Semiurgent Nonurgent

Characteristic (n = 10467) (n = 5353) (n = 4536) (n = 523)

Age group (years)

<50 808 (7.7) 384 (7.2) 374 (8.2) 46 (8.8)

50–59 2082 (19.9) 1040 (19.4) 910 (20.1) 126 (24.1)

60–69 3689 (35.2) 1851 (34.6) 1616 (35.6) 198 (37.9)

70–79 3509 (33.5) 1856 (34.7) 1493 (32.9) 141 (27.0)

≥80 379 (3.6) 222 (4.1) 143 (3.2) 12 (2.3)

Surgery period

1991–1992 1770 (16.9) 777 (14.5) 826 (18.2) 152 (29.1)

1993–1994 1526 (14.6) 985 (18.4) 503 (11.1) 37 (7.1)

1995–1996 1686 (16.1) 1004 (18.8) 600 (13.2) 82 (15.7)

1997–1998 1997 (19.1) 1044 (19.5) 856 (18.9) 86 (16.4)

1999–2000 2454 (23.4) 1081 (20.2) 1199 (26.4) 156 (29.8)

2001 1034 (9.9) 462 (8.6) 552 (12.2) 10 (1.9)

Sex

Men 8154 (77.9) 4059 (75.8) 3603 (79.4) 441 (84.3)

Women 2313 (22.1) 1294 (24.2) 933 (20.6) 82 (15.7)

Comorbidity at surgery

Major conditions† 4040 (38.6) 2046 (38.2) 1803 (39.7) 171 (32.7)

Other conditions‡ 5268 (50.3) 2853 (53.3) 2221 (49.0) 170 (32.5)

None 1159 (11.1) 454 (8.5) 512 (11.3) 182 (34.8)

Location at surgery

Hospital 1 1590 (15.2) 558 (10.4) 1007 (22.2) 20 (3.8)

Hospital 2 2522 (24.1) 1500 (28.0) 920 (20.3) 101 (19.3)

Hospital 3 4362 (41.7) 2149 (40.1) 1811 (39.9) 364 (69.6)

Hospital 4 1993 (19.0) 1146 (21.4) 798 (17.6) 38 (7.3)
∗ Includes 55 patients with unknown priority group
†Congestive heart failure, diabetes mellitus, chronic obstructive pulmonary

disease, rheumatoid arthritis, or cancer
‡Peripheral vascular disease, cerebrovascular disease, dementia, peptic ulcer

disease, hemiplegia, renal disease, or liver disease
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Patients were removed from the list if they reconsidered their decision for surgery, if they died while await-
ing surgery, if their condition deteriorated so that the operation was no longer possible, if their condition
improved and the surgery therefore became unnecessary, or when surgery was performed.

All 1916 adult cases registered for elective vascular surgery between July 1994 and March 2002 were
followed until surgery, until removal from the wait list without surgery, or December 31, 2002. Altogether,
1845 patients (96.3%) were removed from the list within 40 weeks of registration. The remainder had waits
longer than 40 weeks: for 18 patients, surgery was deferred indefinitely by the surgeon; 7 patients declined
planned surgery; the condition of 4 patients improved; 1 patient died; and 41 patients whose procedures had
been initially deferred (24 at the physician’s request and 17 at the patient’s request) eventually had surgery.
Missing information made it impossible to adjust these extended waits for periods when surgery could not
be performed because the patients were unfit for the operation. Therefore, we restricted our analysis to the
first 40 weeks of follow-up and considered these 71 observations to have been censored at 40 weeks. Of
the total number of patients registered, 1743 (91.0%) underwent surgery, 71 (3.7%) were still waiting at
40 weeks, and 102 (5.3%) were removed from the list without surgery for various reasons: the patient’s
condition improved (23), the patient died while awaiting surgery (5), the surgical risk became too great (57),
or the patient decided against surgery (17).

2.3.3 Priority groups

In vascular surgery, the urgency of the patient’s need for an intervention can be clearly defined. Clinical
urgency status, assigned on the basis of the patient’s condition, defines the maximum allowable delay before
the procedure takes place. As described elsewhere [106], an internal protocol in the Department of Surgery
was used to determine the number of days that a patient can safely wait for the planned operation according
to clinical urgency. However, a previous analysis showed wide variations in individual waits among patients
with equal need and clinical urgency [103]. In that study, we found that for some surgical procedures pa-
tients with less urgent status had a chance of being admitted before patients with more urgent status. Patient-
or hospital-related delays in scheduling surgery have been suggested as an explanation. For example, can-
cellations of booked surgery may lengthen waiting periods independent of the urgency status assigned at
registration. We therefore based our analysis on queuing patterns observed in practice, rather than urgency
status assigned at registration. Queuing priority groups were defined as shown in Table 2.5, with smaller
numbers indicating higher priority.

2.4 Access to elective cholecystectomy

2.4.1 Data sources

At the time of our study, the Department of Surgery at Queen’s University was housed in two tertiary refer-
ral centers providing services to more than half a million residents of southeastern Ontario. Eight general
surgeons were performing cholecystectomy at that time. Each surgeon’s office operated its own wait list
independently, and there was no priority ranking system. Surgeons on call made the decision to operate on
patients who presented to the emergency department by evaluating (a) the clinical presentation for symptoms
and signs of persistent or worsening abdominal tenderness, guarding, or rebound; (b) the ultrasonographic
finding of a thick-walled gallbladder with pericholecystic fluid or a finding of hepatobilary iminodiacetic
acid on radionuclide scan; or (c) both (a) and (b).

Data on the timing and type of surgery were retrieved from the hospital’s electronic patient information
system. Information on the date of the consultation visit was obtained from patient records through the
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Table 2.5. Characteristics of 1916 patients registered for elective vascular surgery in Ontario, 1994–2002

Priority status∗; no. (%) of patients

1 2 3 4 5

Characteristic (n = 344) (n = 149) (n = 247) (n = 313) (n = 863)

Age group (years)

<45 2 (0.6) 0 (0.0) 3 (1.2) 0 (0.0) 105 (12.2)

45–64 83 (24.1) 22 (14.8) 60 (24.3) 60 (19.2) 293 (34.0)

65–74 137 (39.8) 63 (42.3) 112 (45.3) 158 (50.5) 287 (33.3)

≥75 122 (35.5) 64 (43.0) 72 (29.1) 95 (30.4) 178 (20.6)

Registration period

1994–1996 232 (67.4) 89 (59.7) 167 (67.6) 189 (60.4) 629 (72.9)

1997–2002 112 (32.6) 60 (40.3) 80 (32.4) 124 (39.6) 234 (27.1)

Sex

Men 219 (63.7) 116 (77.9) 144 (58.3) 250 (79.9) 510 (59.1)

Women 125 (36.3) 33 (22.1) 103 (41.7) 63 (20.1) 353 (40.9)

Procedure

AAA repair 23 (6.7) 149 (100.0) 0 (0.0) 313 (100.0) 0 (0.0)

CEA 0 (0.0) 0 (0.0) 247 (100.0) 0 (0.0) 164 (19.0)

PVD surgery 321 (93.3) 0 (0.0) 0 (0.0) 0 (0.0) 331 (38.4)

AVF 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 368 (42.6)

Abbreviations: AAA = abdominal aortic aneurysm, CEA = carotid endarterectomy,

PVD = peripheral vascular disease, AVF = arteriovenous fistula
∗ Lower numbers indicate greater priority

quality assurance program of the Department of Surgery. Patients who underwent emergency surgery without
a prior clinic appointment were excluded. All cholecystectomies were initially attempted as laparoscopic
procedures. Conversion to the open procedure was required when the dissection was not technically feasible
or safe. The data dictionary for the cholecystectomy data, which describes variables representing events and
attributes of interest, appears in Table A.3.

2.4.2 Patient population

We identified, for the period 1997 to 2000, all adult patients who underwent emergency or elective cholecys-
tectomy after being seen in clinic for biliary colic. Forty-one of the patients were excluded from the analysis
because they had immediate access (within 3 days) to planned surgery, which left a sample of 761 patients
(Table 2.6).
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Table 2.6. Characteristics of 761 patients registered for cholecystectomy in Ontario, 1997–2000

No. (%) of patients

All cases Elective Emergency

Characteristic (n = 761) (n = 710) (n = 51)

Age group (years)

<25 33 (4.3) 28 (3.9) 5 (9.8)

25–34 105 (13.8) 98 (13.8) 7 (13.7)

35–44 142 (18.7) 138 (19.4) 4 (7.8)

45–54 170 (22.3) 161 (22.7) 9 (17.6)

55–64 155 (20.4) 148 (20.8) 7 (13.7)

65–74 107 (14.1) 97 (13.7) 10 (19.6)

≥75 49 (6.4) 40 (5.6) 9 (17.6)

Sex

Men 189 (24.8) 179 (25.2) 10 (19.6)

Women 572 (75.2) 531 (74.8) 41 (80.4)

Registration period

1997–1998 282 (37.1) 263 (37.0) 19 (37.3)

1998–1999 270 (35.5) 254 (35.8) 16 (31.4)

1999–2000 209 (27.5) 193 (27.2) 16 (31.4)

Surgeon’s annual case volume

<20 54 (7.1) 34 (4.8) 20 (39.2)

20–40 292 (38.4) 278 (39.2) 14 (27.5)

>40 415 (54.5) 398 (56.1) 17 (33.3)
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Waits and outcomes: What should be reported?

3.1 Introduction

This chapter presents statistical methods for the analysis of waiting-time data. In section 3.2 we introduce de-
scriptive statistics that are used to summarize the frequency of events on wait lists. We provide the definition,
estimation procedure, and interpretation for each summary measure, such as proportions, rates, cumulative
incidence function. Measures of comparison and corresponding tests for comparing these measures statis-
tically across groups are presented in section 3.3. Finally, section 3.4 describes regression models that are
used to quantify the effects of explanatory variables on wait-list outcomes. For each model we show how to
interpret the regression coefficients based on concepts from the previous two sections.

3.2 Descriptive statistics

3.2.1 Notation

Consider a wait-list population exposed to two competing risks, for example surgery, and death before
surgery. Let event 1 be the primary event of interest and event 2 the competing event, and let Tm denote
the latent time to event m = 1, 2. In this competing-risks setting, we observe the time to removal from the
list T = min{T1, T2} and the cause for removal δ = argminm{Tm}. If neither event occurs during the
study period or the patient is lost to follow-up, the observation is considered censored at the time of removal
from the wait list or the end of follow-up. Censored observations are included in the vector of observed
times. The joint distribution of the random variables (T, δ) is of interest, where it is not assumed that the
competing risks act independently.

Suppose the events occur at E distinct, unevenly spaced, ordered times t1, t2, . . . , tE , and define t0 = 0.
Without loss of generality, we assume that time is measured in calendar weeks. Using Gooley’s notation, let
ei be the number of primary events at time ti, ri be the number of competing events at time ti, ci be the
number of censored events at time ti, and ni = ni−1 − (ei + ri + ci) be the number of patients still waiting
beyond time ti, where n0 is the initial number of patients at risk [45].

We use this notation throughout this section. Although we consider only two types of events, the primary
event and the competing event, events other than the primary event may be combined into the risk of a single
competing event [91].
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3.2.2 Proportions and odds

Definition

Proportions summarize the fraction of patients who experience a certain event. For instance, the weekly
proportion of patients who were admitted, the proportion of patients who underwent surgery within target
access times (TAT), and the proportion of patients who died before surgery are important indicators used to
characterize access to elective surgery [114, 115, 116].

Although the proportion is the common measure for the probability of an event, an alternative is the odds
of the event, which is defined as the ratio of the expected number of times that the event will occur to the
expected number of times it will not occur [4]. For instance, the odds of death on the wait list by 52 weeks
may be of interest. Unlike proportions, which are bounded by 0 and 1, the odds have a lower limit of 0 but
no upper limit.

Estimation

To estimate the event proportion among waiting patients, p, the number of events observed is divided by the
total number of patients at risk:

p̂ =
total number of events observed
total number of patients at risk

. (3.1)

For example, the estimated proportion of patients who were admitted for surgery during week i from the
time of their registration on a wait list is estimated as

p̂i =
ei

ni−1
. (3.2)

In this example, the event is surgery during week i, and the patients at risk are those who were still on the
wait list at the beginning of that week.

Another example is the proportion of patients who underwent surgery within the TAT, which is estimated
by

p̂ =
1
n0

∑

{i|ti≤TAT}

ei . (3.3)

Here, the event of interest is surgery within the TAT from registration, and the patients at risk are all those
accepted on a wait list.

Similar quantities can be defined for events competing with the occurrence of surgery. The estimated
proportion of patients who experienced the competing event, say preoperative death, within 52 weeks of
registration is

p̂ =
1
n0

∑

{i|ti≤52 weeks}
ri . (3.4)

In this example, the event of interest is death on the wait list within 52 weeks from registration, and the
patients at risk are all those accepted for surgery.
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For large sample sizes, one can use the normal approximation to the binomial distribution to obtain
approximate 100(1 − α)% confidence intervals (CI) for the sample proportion p̂ given by the following
formula

p̂ ± z1−α/2

√
p̂(1 − p̂)/n , (3.5)

where z1−α/2 is the 100(1−α/2)th quantile of the standard normal distribution, n is the number of patients
at risk, and

√
p̂(1 − p̂)/n is the standard error of the estimated proportion p̂ [29]. For a 95% CI, α = 0.05

and z0.975 = 1.96.
The estimated odds of an event is simply the ratio of the estimated proportion of the event to its comple-

ment [74]:

ôdds =
p̂

1 − p̂
. (3.6)

Interpretation

By multiplying the proportion by 100, one can estimate the expected number of events among 100 patients
on the list. Alternatively, the resulting quantity can be interpreted as the percentage of patients experiencing
the event. In Part II of this volume, we use proportions for analysis of surgical waiting times. For instance,
the weekly proportions of admissions by week and priority group are shown in Figure 5.3. The estimated
percentage of nonurgent patients who underwent surgery within 12 weeks from the time of their registration
for elective coronary artery bypass grafting (CABG) was 27.7% (95% CI 25.8–29.7) (Table 7.1). The esti-
mated percentage of patients who died on the wait list within 52 weeks from registration for elective CABG
was 1.0% (95% CI 0.8–1.2) (Table 8.2).

The odds of 1 imply that the presence of the event is just as likely as its absence. Similarly, odds less
than 1 imply that the absence of the event is more likely and odds greater than 1 imply that the presence of
the event is more likely. For example, the odds of 2 mean that the event is twice as likely to occur as to not
occur. In Part II, we estimated the odds that a patient awaiting elective CABG dies on the wait list by 52
weeks as 0.01 (0.01/0.99). Thus, the expected number of deaths on the wait list is one-hundredth the number
of survivals. Note that in the case of a rare event, such as death on the wait list, the estimated odds is close
to the estimated proportion.

Remarks

Proportions are informative statistics for summarizing events among patients. However, they do not account
for the time that patients spend on wait lists. In the next section, we describe event rates as an alternative
summary measure which accounts for waiting time.

For the 100(1 − α)% CI of p̂ in equation 3.5, it is possible for the confidence limits to lie below 0 or
exceed 1. Generally, one should use a continuity correction if np̂ or n(1− p̂) are not well above 5. For small
sample sizes, an exact confidence interval may be derived from the binomial distribution [29].

3.2.3 Hazard and rates

Definition

For a continuous time t, the event-specific hazard,
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λm(t) = lim
h→0

Pr(t ≤ T < t + h, δ = m|T > t)
h

, (3.7)

represents the instantaneous probability of event m at time t, conditional on remaining at risk of the event
by time t. For discrete times t1, t2, . . ., say weeks since registration for surgery, the event-specific hazard is
defined as

λm(ti) = Pr(T = ti|T ≥ ti) , (3.8)

which is the probability that event m occurs in a certain week ti, conditional on remaining on the list until
that week.

For discrete times, the cumulative hazard function of time,

Λm(t) =
∑

{i|ti≤t}
λm(ti) , (3.9)

characterizes the risk of event m accumulated over a certain time t when competing risks are removed [66].
In health services research, the cumulative hazard is predominantly interpreted as the population mean

number of events occurring by time t

Λ(t) = E{N(t)} ,

where N(t) is a random variable counting the occurrence of the event over time t. The Λ(t) is a function of
time, therefore its derivative

λ(t) =
d

dt
Λ(t)

is interpreted as the event rate function.
When the event rate changes with time, it summarizes the frequency of events in a time interval of one-

unit length [2], say the weekly rate of admission when observed times, ti, are measured in weeks. When the
event rate is constant over the length of the study period, λ(t) = λ, it summarizes the frequency of events
experienced by patients accounting for the total amount of time that patients were at risk of the event, which
is known as patient-time at risk. For instance, the number of weeks that all patients spent on the wait list is
the sum of the number of weeks for each patient. The expected number of events by time t when event rate
λ is constant is given by

Λ(t) = λ × t , (3.10)

which for example gives the number of preoperative deaths occurring by 52 weeks after registration on
surgical wait lists in a region that reports a certain death rate.

Estimation

The Nelson–Aalen estimator for the cumulative hazard function of the competing event, that is, m = 2, is

Λ̂2(t) =
∑

{i|ti≤t}

ri

ni−1
, (3.11)

where ri

ni−1
is an estimate of the rate of the competing event λ2(ti). The estimated variance of the Nelson–

Aalen estimator is [66]
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V̂ar(Λ̂2(t)) =
∑

{i|ti≤t}

ri

(ni−1)2
. (3.12)

Alternatively, if the competing-event rate is estimated as an average over the length of the study period,
λ2, then the cumulative hazard function is estimated by

Λ̃2(t) = λ2 × t . (3.13)

To calculate the average event rate among waiting patients, the number of events is divided by the total
patient-time spent on the list [52]:

λm =
total number of type m events observed

total waiting time
. (3.14)

The denominator represents the total waiting time that all patients have contributed to the study [29].
In Gooley’s notation, the estimated average weekly competing-event rate is

λ2 =
E∑

i=0

ri

ti(ei + ri + ci)
, (3.15)

with estimated variance [52]

V̂ar(λ2) =
(λ2)2∑E

i=0 ri

. (3.16)

Therefore, an approximate 100(1 − α)% CI for the average competing-event rate is

λ2 ± z1−α/2

√
V̂ar(λ2) , (3.17)

where z1−α/2 is the 100(1 − α/2)th quantile of the standard normal distribution. For a 95% CI, α = 0.05
and z0.975 = 1.96.

Interpretation

When event rates are small, it is convenient to scale the rates. For example, multiplying a surgery rate of
0.097 per patient per week by 100 allows the rate to be expressed as 9.7 per 100 patient-weeks. The latter
may be more readily interpreted as almost 10 surgeries expected for every 100 patient-weeks on average. In
Part II, the average weekly death rate among all patients awaiting elective CABG is reported as 0.67 (95% CI
0.53–0.80) per 1000 patient-weeks (Table 8.1), which we interpret as almost 1 preoperative death per every
1000 weeks of the total waiting time. Among semiurgent and nonurgent patients who register to undergo
CABG, the cumulative hazard was approximately linear with time spent on wait lists (Figure 8.2). Among
these patients, the average weekly death rate was 0.00061 per patient-week. Therefore, by 52 weeks on the
list, 3 deaths would be expected for every 100 patients placed on the wait lists (0.00061 × 52 = 0.03).
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Remarks

The cumulative hazard and event rates are useful statistics for summarizing events among patients who
are on wait lists for different lengths of time. For example, the admission rate, which is the conditional
probability of leaving the wait list for service in a certain week, represents the average proportion of patients
admitted from a wait list. Unlike the proportions that we discussed in the previous section, the event rates
account for the amount of time that patients spend on wait lists, by adjusting the at-risk set at the beginning
of consecutive weeks.

Although accurately describing the instantaneous risk of an event, event-specific rates cannot be con-
verted into the probabilities of events without the unrealistic and unverifiable assumption that time to primary
event and time to competing event are independent [45].

Despite that it is always possible to calculate an average event rate over the study period, such an average
rate may not be representative if the rate varies during the period. In this case, the study period should be
divided into adjacent intervals and the interval-specific rate calculated. To determine if the risk of an event
varies with the duration of the wait, the rate can be calculated for intervals of time on the wait list.

A constant event rate or exponentially distributed waiting times are required to obtain reasonable sum-
maries of average event-specific rates [52]. The slope of the estimated event-specific cumulative hazard in
equation 3.11 provides crude estimates of the event rate [66]. If the cumulative hazard is linearly related to
the time spent on the wait list, then a constant rate is implied.

For the 100(1−α)% CI for the average rate estimate (equation 3.17) it is possible for the lower confidence
limit to be negative. For modest sample sizes, one should use confidence intervals based on the natural
logarithm of rate

λ1 × exp
{
±z1−α/2

(∑

i

ei

)−1/2}
, (3.18)

where z1−α/2 is the 100(1 − α)%th quantile of the standard normal distribution [52].

3.2.4 Probabilities of access

Definition

In health services research, where the interest lies in describing how quickly patients receive services, the
primary tool for analysis is the access function, which shows the proportion of patients with waiting time
T less than some stated value t and which thereby estimates the probability of undergoing surgery within a
certain time t:

F (t) = Pr(T < t). (3.19)

In prospective studies, waiting times are analyzed as observations beginning at the time of registration, wait-
list week 0, and followed up to removal, the last week on the list. Time to removal without surgery is then
considered a censored observation, assuming that the actual wait would be larger otherwise [103].

Estimation

The cumulative probability of undergoing surgery within a certain time t, is commonly estimated using the
complement of the product-limit method developed by Kaplan and Meier [17, 66]:
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F̂ (t) = 1 −
∏

{i|ti≤t}

(
1 − ei

ni−1

)
, t ≥ t1 . (3.20)

Note that if no events have occurred by time t, then F̂ (t) = 0. In equation 3.20, qi = 1 − ei

ni−1
is the

conditional probability of not undergoing surgery during week i, and the cumulative product of qi for all i
such that ti ≤ t estimates the probability of not undergoing surgery by time t.

The variance of the estimator at time t is given by

V̂ar(F̂ (t)) =
(
1 − F̂ (t)

)2

×
∑

{i|ti≤t}

ei

ni−1(ni−1 − ei)
,

and the standard error of the estimator is given by
(
V̂ar(F̂ (t))

)1/2

at time t [66].

Interpretation

The graph of the access function, or access curve, is an informative visual tool for monitoring hospital wait-
list statistics and studying access to surgery [78]. Figure 3.1 presents an example of an access curve that
summarizes the probabilities of undergoing elective vascular surgery at a tertiary care center [103]. The
abscissa shows time (in weeks) spent on the wait list since registration for surgery, and the ordinate shows
the probability of undergoing the operation for each consecutive wait-list week.

The access curve, which is a nondecreasing function of time, provides many insights about the distribu-
tion of waiting times. First, one can specify a waiting time and determine the corresponding probability of
undergoing surgery by this time. From a patient’s perspective, the access curve displayed in Figure 3.1 shows
that, according to historical performance, the chance of undergoing surgery by 13 weeks is 3 in 4. From a
hospital’s perspective, the same figure shows that 75% of patients will have to wait less than 13 weeks.

Second, one can determine the number of weeks required for a specified proportion of patients to undergo
the operation. Figure 3.1 shows that 50% of patients underwent surgery in 6 weeks, the median time for the
distribution of waits.

Third, one can compare the time between being registered on a wait list and undergoing surgery for equal
proportions of patients in different groups. In Part II, we compare waiting times for elective vascular surgery
across priority groups (Figure 6.1). The access curves in that figure show that half of the patients in priority
groups 1, 2, 3, and 4 underwent surgery in 2, 3, 7, and 11 weeks, respectively.

Finally, one can compare access curves for specified wait-list intervals across periods to assess how
access to elective CABG has changed during the decade (Figure 6.5). Table 6.4 shows the number of weeks
required for a specified proportion of patients to undergo the operation across registration periods. Higher
access probabilities in one period will be interpreted as representing shorter waiting times relative to another
period. The access curves show that time to surgery increased in the middle of the decade and decreased
toward the end of the decade. The access curve also shows the proportion of patients undergoing surgery
within target access times: 8% within 1 week for patients with priority 1, 17% within 2 weeks for patients
with priority 2, 27% within 3 weeks for patients with priority 3, and 16% within 4 weeks for patients with
priority 4 (Figure 6.1).

Remarks

When dealing with censored observations, the sample average is not an appropriate summary measure of
waiting times. For censored observations, it is assumed that actual waiting time for surgery is longer than



38 3 Waits and outcomes: What should be reported?

1 4 7 10 13 16 19 22 25 28 31 34 37 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time  since  registration  (weeks)

P
ro

ba
bi

lit
y 

 o
f  

un
de

rg
oi

ng
  s

ur
ge

ry

Fig. 3.1. Probability of undergoing elective vascular surgery within a certain waiting time, as estimated by the product-
limit method

the observed follow-up time. Therefore, the sample average would result in an underestimate of the mean
waiting time. An alternative to the mean waiting time is the median waiting time. The median waiting time
to surgery is the length of time by which half of the patients undergo surgery. Unlike the mean, the median
is not biased in the presence of censored observations. The median waiting time can be inferred from the
access curve; it is the first week since registration when the probability of undergoing surgery exceeds 0.5
[66]. A related summary measure of interest is the median residual lifetime at time t defined as the period
between time t and the time when one-half of the patients still remaining on the list at time t undergo surgery
[66]. The median residual lifetime at time 0 is the median waiting time.

When there are competing events, the Kaplan-Meier method can also be used to estimate the probability
of remaining on the list, S(t), by certain times:

Ŝ(t) =
∏

{i|ti≤t}

(
1 − ei + ri

ni−1

)
, t ≥ t1 . (3.21)
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Note that if no events have occurred by time t, then Ŝ(t) = 1. In Part II, applications of the product-limit
method to estimate the probabilities of remaining on the list are illustrated using waiting-time studies. For
example, Figure 8.1 shows the estimated probabilities of remaining on the list for elective CABG by priority
group.

When the product of the event-specific hazard, λm, and waiting time, t, is small, the cumulative hazard
function is very close to the Kaplan-Meier estimator for the probability of event, since 1−e−λmt ≈ λmt. For
instance, for patients waiting for elective CABG, the weekly probability of death before surgery is 0.0006,
so the estimates of the cumulative hazard of death and the complement of the Kaplan-Meier curve for death
are similar. In a competing-risks setting, caution should be exercised in using the Kaplan-Meier method for
interpreting the estimated probabilities of a rare event, such as death on wait lists. In such cases, use of the
Kaplan-Meier method is strongly discouraged. Instead, the cumulative incidence function, described in the
next section, should be used.

In quantifying the risk of preoperative death among patients waiting for surgery, the Kaplan-Meier
method is commonly used to estimate the cumulative probability of death by certain times after registra-
tion for the operation [58, 68, 94]. It has been established, however, that the Kaplan-Meier method is not
appropriate for describing the probabilities of competing events, since its complement overestimates the
event incidence [1]. This method produces valid probability estimates only in a hypothetical situation where
all competing risks can be removed without altering the risk of death. Therefore, an alternative approach to
summarizing wait-list data is to estimate the proportion of patients dying before surgery by a certain time
and the proportion of patients dying by a certain time among those who have not received treatment by that
time [73].

In the estimation of access curves, there is a difference in the information given by retrospective and
prospective studies. Figure 3.2 shows the estimated probabilities of undergoing elective vascular surgery
by a certain week since registration in the nonurgent group. Data for estimating these access curves were
analyzed according to both a retrospective and a prospective design.

The difference between the estimates from the retrospective and prospective designs were measured by
the one-sample log-rank test [41], described in section 3.3.4. Differences were statistically significant for
the semiurgent (log-rank test = 3.7, df = 1, p = 0.05) and nonurgent (log-rank test = 49.1, df = 1, p <
0.0001), but not for the urgent group (log-rank test = 0.97, df = 1, p = 0.33). As expected, the retrospective
analyses produced estimates of the probability of undergoing surgery that were biased upward. In these
retrospective analyses, the average weekly admission rates were 46.4 per 100 patient-weeks (95% CI 41.4–
51.4), 11.3 (95% CI 10.4–12.1), and 10.2 (95% CI 9.5–11.0) for the urgent, semiurgent and nonurgent
groups, respectively. In contrast, in prospective analyses, the corresponding average weekly surgery rates
were 43.5 per 100 patient-weeks (95% CI 38.8–48.2), 10.3 (95% CI 9.5–11.0), and 6.9 (95% CI 6.4–7.4).

Retrospective analyses also underestimated the median waiting times for surgery, which were 2 weeks
(95% CI 1–2), 7 weeks (95% CI 7–8), and 7 weeks (95% CI 6–7) for the urgent, semiurgent, and nonurgent,
respectively. In contrast, in prospective analyses, corresponding median wait times were 2 weeks (95% CI
1–2), 8 weeks (95% CI 7–8), and 8 weeks (95% CI 7–9).

3.2.5 Cumulative incidence functions

Definition

Methodologically, measuring the risk of death as a function of treatment delay among patients awaiting the
treatment is similar to quantifying the risk of death during follow-up in a population exposed to competing
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Fig. 3.2. Probability of undergoing surgery within a certain waiting time, as estimated by the product-limit method. Data
for a single group of patients awaiting vascular surgery were analyzed according to both retrospective and prospective
designs.

events [1]. One approach to summarizing competing-risks data is to estimate the proportion of patients dying
by a certain time among those who have not received treatment by that time [73].

The cumulative incidence function (CIF) of event m,

Fm(t) = Pr(T ≤ t, δ = m) , (3.22)

characterizes the time-dependent marginal probability that event m occurs at or before a certain waiting
time in the presence of competing events. For instance, preoperative death or unplanned emergency surgery
occurring before or during a certain week after registration on a wait list for surgery may be of interest.

The CIF of event m is calculated by the integration over time of the product of the event-specific hazard
of event m and the probability of remaining on the list

Fm(t) =
∫ t

0

λm(u)S(u−)du , (3.23)

where S(t−) = Pr(T > t−) is the probability that a patient remains on the list beyond a time just before
time t [21].
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The CIF is also referred to as a subdistribution since it is not a proper distribution [91]. In a competing-
risks setting the subdistribution of event m approaches the probability of event m as waiting time increases.
In contrast, if there were no competing risks, the distribution would approach 1, a characteristic of a proper
distribution.

Estimation

The CIF of an event and its standard errors can be estimated using nonparametric methods [90]. Kalbfleisch
and Prentice suggested an estimator for the CIF of the primary event at discrete time t, F1(t), [59]:

F̂1(t) =
∑

{i|ti≤t}

ei

ni−1

∏

{j|tj≤ti−1}

(
1 − ej + rj

nj−1

)
. (3.24)

The estimator

λ̂1(ti) =
ei

ni−1
(3.25)

represents the primary event hazard at time ti, and

Ŝ(ti−1) =
∏

{j|tj≤ti−1}

(
1 − ej + rj

nj−1

)
(3.26)

is the Kaplan-Meier estimator of the probability of remaining on the list beyond time ti−1. The estimator in
equation 3.24 is the maximum likelihood estimator [91].

Note that the probability of experiencing any event by time t is equal to the sum of all the cumulative
incidences of the event at time t.

The standard error of the estimator for the CIF of the primary event is given by

ŜE(F̂1(t)) =
(
V̂ar(F̂1(t))

)1/2

. (3.27)

Using a Taylor series approximation [43], the estimated variance of the estimator for the CIF of the primary
event can be derived as follows,

V̂ar(F̂1(t)) ≈
∑

{i|ti≤t}

⎛

⎝ni−1 − ei

eini−1
+

∑

{j|tj<ti}

ej + rj

nj−1(nj−1 − ej − rj)

⎞

⎠ ×

×

⎛

⎝ ei

ni−1

∏

{k|tk≤ti−1}

(
1 − ek + rk

nk−1

)⎞

⎠
2

+

+ 2
∑

{i|ti<t}

⎛

⎝− 1
ni−1

+
∑

{j|tj<ti}

ej + rj

nj−1(nj−1 − ej − rj)

⎞

⎠ ei

ni−1
×

×
∏

{k|tk≤ti−1}

(
1 − ek + rk

nk−1

)
×

∑

{i′|ti′≤t}

ei′

ni′−1

∏

{k|tk≤ti′−1}

(
1 − ek + rk

nk−1

)
. (3.28)

Pintilie has provided alternative estimators for the standard error of CIFs [91]. Nonparametric estimators for
the CIF of the competing event are analogous.
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Interpretation

We interpret the cumulative incidence of the primary event as the proportion of patients who experience
the primary event before competing events, a value that increases with time on the wait list from which
the patients can be removed because of any competing event. Since the CIF accounts for both the primary
event rate and the waiting-time distribution, the impact of delay on the proportion of primary events can be
evaluated.

In Part II, applications of the CIF are illustrated using waiting-time studies. For example, Figure 3.3
shows the estimated CIF of death among patients waiting for elective CABG. The ordinate shows the cumu-
lative incidence of death on the wait list by a certain time and the abscissa shows week since registration on
the wait list. From this figure, one can see that the percentage of patients who died on the wait lists by 52
weeks was 1.0%.
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Fig. 3.3. Cumulative incidence of preoperative death during or before a certain week since registration for elective
coronary artery bypass grafting, as estimated by the cumulative incidence function
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Remarks

Gooley proposed an alternative form of the estimator for the CIF of the primary event:

F̃ 1(t) =
∑

{i|ti≤t}
eiJ(i)

where

J(i) =

{
1

n0
, t ≤ t1

J(i − 1)
(
1 + ci−1

ni−1

)
, t > t1 .

(3.29)

The relation between the two estimators is demonstrated by the following:

F̂1(t) =
∑

{i|ti≤t}

ei

ni−1

∏

{j|tj≤ti−1}

(
1 − ej + rj

nj−1

)

=
∑

{i|ti≤t}

ei

ni−1

∏

{j|tj≤ti−1}

(nj−1 − (ej + rj)
nj−1

)

=
∑

{i|ti≤t}

ei

ni−1

∏

{j|tj≤ti−1}

( (nj + ej + rj + cj) − (ej + rj)
nj−1

)

=
∑

{i|ti≤t}

ei

ni−1

∏

{j|tj≤ti−1}

(nj + cj

nj−1

)

=
∑

{i|ti≤t}

ei

ni−1
× (ni−1 + ci−1)

n0

∏

{j|t1<tj≤ti−1}

(nj−1 + cj−1

nj−1

)

=
∑

{i|ti≤t}

ei

n0

∏

{j|t1<tj≤ti}

(
1 +

cj−1

nj−1

)

= F̃1(t) .

Although they yield the same estimate, the two formulations of the CIF estimator convey different messages.
From the Kalbfleisch and Prentice estimator, F̂1(t), it is apparent that the CIF estimator depends on the
hazard of both the primary event and competing events. In addition, the CIF estimate at time t depends on the
probability of remaining on the list. From the Gooley estimator, F̃1(t), it is apparent that the CIF of primary
event estimate changes if and only if there is a primary event [45]. Note that if there were no censored
observations, then the CIF would increase by 1

n0
for each observed primary event. However, if there are

censored observations, their potential contribution to the primary event is distributed among patients who
are still at risk.

CIFs are non-decreasing functions of waiting time that take values between 0 and 1. For the 100(1−α)%
confidence interval for F̂1(t) in equation 3.28, it is possible for the confidence limits to lie below 0 or exceed
1. An alternative 100(1−α)% confidence interval can be obtained by calculating the complementary log-log
transformation of F̂1(t). This confidence interval has the form [91]

F̂ (t)exp(±Γ) , (3.30)

where
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Γ =
z1−α/2

√
V̂ar(F̂1(t))

F̂ (t) log(F̂ (t))
.

In quantifying the risk of adverse events on wait lists, the Kaplan-Meier method is commonly used to
estimate the cumulative probability of an event by a certain time after registration for the operation [94, 58,
68]. It has been established, however, that the complement of the Kaplan-Meier estimator overestimates the
incidence of the event in the competing risks setting [45, 91]. Because patients on wait lists are subject to
competing events of surgery, death, or removal for other reasons, the method produces probability estimates
that are valid only in a hypothetical situation when all competing risks are removed before the event without
altering the risk of the adverse event of interest [43]. This implicitly assumes that time to surgery and time
to the adverse event are independent. Without this assumption the Kaplan-Meier estimator is not valid and
should not be used [1]. Furthermore, the independence of wait outcomes cannot be verified from data and
may not be a realistic assumption, as low probability of the adverse event may indicate either low risk of this
event or high surgery rate.

Pintilie proved that the cumulative incidence estimates are always less than or equal to the complement of
the Kaplan-Meier curve to one (1− KM) for all time points [91]. Figure 3.4 shows the estimated probabilities
of preoperative death occurring during or before a certain week after registration for CABG, derived with
(CIF) and without (1− KM) adjustment for the incidence of all competing events. As expected, the two
methods produced different estimates, with the CIF curve being lower than the 1− KM curve. By 52 weeks
on the list, the CIF curve reached the proportion of 0.009 and the 1− KM curve reached 0.037.

Other investigators have reported the incidence of preoperative death per time unit of waiting for CABG
[15, 80, 95, 94, 68, 33, 101]. Although accurately describing the instantaneous hazard, these death rates
cannot be converted into the probabilities of death without the unrealistic and unverifiable assumption that
time to surgery and time to death are independent [45]. Plomp et al. have reported on the variation in time
to death among those who died before surgery [92], but the proportion of CABG candidates dying over
follow-up could not be derived from their figures.

Appropriate statistical methods include the CIF, described in this section, and conditional probability
function (CPF), described in the next section, which can be estimated without the independence assumption
for competing events. CIF and CPF have been consistently suggested for summarizing results of time-to-
event analysis with multiple competing end points [21, 24, 13]. Pepe argued that CIF is a more accurate and
comprehensive summary of the risk of death in competing-risks settings than death rates or cumulative haz-
ards, as the latter cannot be converted into death probabilities [90]. An alternative approach to summarizing
competing-risks data is to estimate the proportion of patients dying by a certain time among those who have
not received treatment by that time.

Given that CIFs estimate marginal probabilities, if the marginal probability of one event is low, then the
marginal probability of the other will be high. CIFs for all events should be interpreted simultaneously. [90].

3.2.6 Conditional probability functions

Definition

Another approach suggested as a method for summarizing multiple end points in the competing-risks setting
is to estimate the conditional probability function (CPF) [89]. For a primary event the CPF characterizes the
probability that a patient will experience the event conditional on not experiencing the competing event in
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Fig. 3.4. Probability of death while on wait list within a certain time since registration for coronary artery bypass grafting,
as estimated by the Kaplan-Meier method (1− KM) and the cumulative incidence function (CIF) (and standard errors)

relation to exposure time [90]. Let F1 be the CIF of the primary event and F2 be the CIF of the competing
event. The CPF of the primary event, CP 1(t), as a function of t is defined as

CP 1(t) =
F1(t)

1 − F2(t)
. (3.31)

Estimation

To estimate CPF, one should first estimate separately the cumulative incidence of the primary event and the
cumulative incidence of the competing event over time, while treating wait-list removals, other than those
resulting from the primary event of interest and the competing event, as censored observations. The CPF
of the primary event is then calculated by dividing the cumulative incidence of the primary event by the
complement of cumulative incidence of the competing event [73]

ĈP 1(t) =
F̂1(t)

1 − F̂2(t)
. (3.32)



46 3 Waits and outcomes: What should be reported?

In equation 3.32, the estimated CIF of the primary event is

F̂1 =
∑

{i|ti≤t}

ei

ni−1

∏

{j|tj≤ti−1}

(
1 − ej + rj

nj−1

)
, (3.33)

and the estimated CIF of the competing event is

F̂2 =
∑

{i|ti≤t}

ri

ni−1

∏

{j|tj≤ti−1}

(
1 − ej + rj

nj−1

)
. (3.34)

Notice that the competing event may occur at times different from the primary event.
Pepe [90] showed that

√
n{ĈP 1(t) − CP 1(t)} ∼ N(0, σ2(t)), where a consistent variance estimator

for σ2(t) is given by

σ̂2(t) =
[Ŝ(t)]2

[1 − F̂2(t)]4

∫ t

0

[1 − F̂2(tu)]2dN1(u) + [F̂1(tu)]2dN2(u)
nu−1[nu−1 − 1]/n0

≈ [Ŝ(t)]2

[1 − F̂2(t)]4
∑

{i|ti≤t}

[1 − F̂2(ti)]2ei + [F̂1(ti)]2ri

ni−1[ni−1 − 1]/n0
. (3.35)

Here, N1(k) and N2(k) are the number of primary events and competing events that have occurred up
to and including time tk, respectively.

Therefore, an approximate 100(1 − α)% confidence interval for CP 1(t) is

ĈP 1(t) ± zα/2
σ̂(t)√

n0
, (3.36)

where zα/2 is the 100(1 − α/2)th quantile of the standard normal distribution.

Interpretation

The CPF of the primary event is interpreted as the cumulative incidence of the primary event by a certain
wait-list week among patients not experiencing the competing event by that time. The risk of an adverse
event as a function of treatment delay is described by the probability that a patient experiences the adverse
event, conditional on not receiving surgery by a certain time after registration on a wait list.

In Part II, applications of CPF are illustrated using waiting-time studies. For example, Figure 8.10 shows
the estimated conditional probability of preoperative death by time since registration for elective CABG.
The ordinate shows the conditional probability of death by a certain time, and the abscissa shows time since
registration on the wait list. Among patients who had not undergone CABG by 52 weeks, the probabilities
of death were 0.14 and 0.08 in the semiurgent and nonurgent groups, respectively.

Remarks

CPFs may range from 0 to 1. For the 100(1 − α)% confidence interval for ĈP 1(t) in equation 3.36, it is
possible for the confidence limits to lie below 0 or exceed 1. An alternative 100(1−α)% confidence interval
is given by the complementary log-log transformation of ĈP 1(t). This confidence interval has the form [91]
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ĈP 1(t)exp(±Γ) , (3.37)

where

Γ =
z1−α/2

√
V̂ar(ĈP 1(t))

F̂ (t) log(ĈP 1(t))
.

3.3 Methods of comparison

3.3.1 Notation

In this section, we use notation defined in section 3.2.1. Although we consider only two types of events, the
primary event and the competing event, this does not restrict generality since events other than the primary
event may be combined into a single competing risk [91].

3.3.2 Comparison of proportions and odds

In section 3.2.2 we introduced proportions and odds as summary measures for a binary outcome where the
event occurred or did not occur, for example, the patient underwent surgery or did not undergo surgery after
registration on a wait list. To determine and quantify differences in proportions or odds between groups,
measures of comparison are required. In this section, we describe methods for comparing proportions and
odds between groups.

Pearson’s test of association

Pearson’s test is used to test for an association between binary outcomes and group membership. The null
hypothesis states that there is no association, whereas the alternative hypothesis states that there is an as-
sociation. The general form for the Pearson’s test statistic is based upon differences between observed and
expected counts [29]:

S2 =
∑

i

∑

j

(Oij − Eij)2

Eij
, (3.38)

where Oij is the observed count and Eij is the expected count in row i and column j of the contingency
table, in which i indexes group (i = 1, . . . , g), and j indexes outcome (j ∈ {event,no event}). Expected
counts, Eij , are derived under the assumption of the null hypothesis that the probability of an event across
the groups are equal. For example, the expected number of events in group 1 is the product of the number of
patients in group 1 and the overall observed proportion of events in all groups.

Under the null hypothesis, the test statistic in equation 3.38 has a chi-square distribution with g − 1
degrees of freedom [29]. A value of the test statistic greater than the 100(1 − α)th percentile of the chi-
square distribution with g − 1 degrees of freedom indicates that there is sufficient evidence to reject the null
hypothesis at the α significance level. For example, with two groups at the 0.05 significance level, the 95th
percentile of a chi-square distribution with 1 degree of freedom is 3.84. The probability of observing a value
greater than the test statistic given the null hypothesis is called the p-value. By convention, small p-values are
interpreted as evidence against the null hypothesis. The p-value is computed from the chi-square distribution
with g − 1 degrees of freedom.
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Odds ratios

In section 3.2.2 we introduced the concept of odds of an event. The odds ratio (OR) is the ratio of the odds
for one group to the odds for another group:

OR =
odds for group 1
odds for group 2

. (3.39)

The ORs are commonly used in health services research to quantify differences between two groups. If the
OR is 1, then the odds of the event is the same in the two groups. If the OR is greater than 1, then the odds
of the event is higher in group 1 than in group 2, whereas if the OR is less than 1, then the odds of the event
is lower in group 1 than in group 2. The OR is estimated by the ratio of the estimated odds [55]:

ÔR =
p̂1/(1 − p̂1)
p̂2/(1 − p̂2)

, (3.40)

where p̂1 and p̂2 are the estimated event proportions in groups 1 and 2, respectively. Group 2 is often called
the reference group.

Determining if the odds of an event differs between two groups is equivalent to testing whether the OR
differs from 1 or whether the logarithm of OR differs from 0. Statistical tests for differences in the odds
between groups are based on the quantity β = log(OR) since it has an approximately normal distribution
[55, 52]. The Wald test statistic is then

W =
β̂

SE(β̂)
, (3.41)

where β̂ is log(ÔR), SE(β̂) is the standard error of β̂, and W 2 has a chi-square distribution with 1 degree
of freedom [55]. Estimators for SE(β̂) may be found in Hosmer and Lemeshow [55] or Holford [52]. A
W 2 value greater than the 100(1 − α)th percentile of the chi-square distribution with 1 degree of freedom
indicates that there is sufficient evidence to reject the null hypothesis at the α significance level. At the 0.05
significance level, the 95th percentile of a chi-square distribution with 1 degree of freedom is 3.84.

A 100(1 − α)% CI for ÔR is given by

exp{β̂ ± z1−α/2 × SE(β̂)}, (3.42)

where z1−α/2 is the 100(1 − α/2)th quantile of the standard normal distribution.

Remarks

Pearson’s test of association is an attractive approach for comparing proportions since it can be computed by
essentially all statistical programs and is easily extended to more than two groups. For a valid chi-square test,
one should ensure that the expected counts must be greater than 5 [29]. In the case of a binary outcome and
two groups, the chi-square test is based on the normal approximate to the binomial distribution, therefore,
Yate’s correction should be applied, which involves subtracting 0.5 from the absolute value of the difference
between observed and expected counts.

ORs allow not only testing of hypotheses but also quantification of the relative difference in outcomes.
There is a relation between hypothesis tests at the α significance level and 100(1−α)% confidence intervals.
If the null hypothesis that OR = 1 is rejected at the α level, then the 100(1 − α)% confidence interval for
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the OR will not contain 1. Conversely, if the null hypothesis is not rejected, then the confidence interval for
the OR will contain 1. We emphasize that confidence intervals are more informative than simply reporting a
p-value.

3.3.3 Comparison of hazard and event rates

Hazard ratios

In section 3.2.3, we defined the hazard as the instantaneous probability of an event at time t, conditional on
remaining at risk of the event by that time (for example, conditional on the patient remaining on the wait list
until that time). Recall that the term “hazard” is used to refer to a continuous-time setting. The hazard ratio
(HR) is the ratio of the hazard for one group to the hazard for another group

HR =
hazard for group 1
hazard for group 2

. (3.43)

The HR quantifies the relative hazard of an event in two groups and, therefore, comparing the HR to 1 is
used to describe differences between groups. If the HR is 1, then the hazard of the event is the same in the
two groups. If the HR is greater than 1, then the hazard of the event is higher in group 1 than in group 2,
whereas if the HR is less than 1, then the hazard of the event is lower in group 1 than in group 2.

The hazard function of continuous time is a theoretical construct and cannot be estimated directly from
data. As described in section 3.4.3, Cox regression can be used to model the hazard of an event and to obtain
the HRs and their corresponding CIs for making comparisons between groups.

Rate ratios

In section 3.2.3, we introduced the concept of event rate. The rate ratio (RR) is the ratio of the event rate for
one group to the rate for another group:

RR =
event rate for group 1
event rate for group 2

. (3.44)

The RR measures relative differences in the rate of an event between two groups. If the RR is 1, then the
event-specific rate is the same in the two groups. If the RR is greater than 1, then the rate is higher in group 1
than in group 2, whereas if the RR is less than 1, then the rate is lower in group 1 than in group 2. Therefore,
comparing rates in two groups is equivalent to comparing the RR to 1. The RR is estimated by the ratio of
the estimated rates:

R̂R =
E1/T1

E2/T2
, (3.45)

where E1, E2 are the total count of events and T1, T2 are the total times at risk in groups 1 and 2, respectively.
As described in section 3.4.4, Poisson regression can be used to obtain the RRs and their corresponding CIs
for comparing multiple groups. In addition, it is possible to test the hypothesis that the rates in two groups
are different.
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Odds ratios for discrete times

In waiting-time studies, researchers are often interested in events occurring over time, where time is (or
considered) discrete. In section 3.2.3, we introduced the conditional probability of an event as a measure
of discrete-time hazard. Recall that the conditional probability is estimated by a proportion, where the nu-
merator is the number of events in a given period and the denominator is the number of patients at risk (see
equation 3.2). In this context, the OR measures the relative conditional odds of an event of interest in two
groups at time t among those who are still at risk by that time. The OR for discrete times t is the ratio of the
conditional odds of the event for one group to the conditional odds for another group:

ORt =
conditional odds of event for group 1
conditional odds of event for group 2

. (3.46)

For events occurring on wait lists, the OR for week t since registration is estimated by the ratio of the
estimated conditional odds:

ÔRt =
p̂1t/(1 − p̂1t)
p̂2t/(1 − p̂2t)

, (3.47)

where p̂gt is the estimated event proportion in week t among patients who were still remaining on the list
until that week in group g = 1, 2.

If the difference between two groups is assumed to be constant over consecutive follow-up periods, a
common OR can be estimated using discrete-time survival regressions in which the log odds for the reference
groups are modeled for each period of follow-up (see section 3.4.5).

3.3.4 Comparison of probabilities of access

Log-rank test

In section 3.2.4, we introduced the concept of access probabilities, which represent the probabilities of
undergoing surgery within certain times from registration. These cumulative probabilities can be estimated
using the Kaplan-Meier method. Suppose we are interested in comparing the chances of undergoing surgery
within a certain time across groups, for instance, to determine if classifying patients into urgency groups
makes a difference in times to surgery.

By using the log-rank test, access to surgery can be compared across patient groups [18, 66]. The log-
rank test is a nonparametric test based on the difference between the observed and expected number of
procedures in each group [66]. Using the notation from section 3.3.1, the contribution to the test statistic
from group g is

E∑

j=1

(
egj −

ej

nj−1
× ng,j−1

)
, (3.48)

where egj is the observed number of procedures (the primary event) in group g at time tj , and ng,j−1 is the
number of patients in group g who are still waiting beyond time tj−1.

The null hypothesis states that the access curves across groups are the same. Under the null hypothesis,
the log-rank test statistic has a chi-square distribution with degrees of freedom equal to one fewer than the
number of groups being compared [59]. At the 0.05 significance level, a p-value less than 0.05 indicates that
there is sufficient evidence to support the hypothesis that the access curves are different. For further details,
see Klein and Moeschberger [66].
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Wilcoxon test

The nonparametric Wilcoxon test can be used to compare access to surgery across patient groups. The
Wilcoxon test is based on a weighted difference between the observed and expected numbers of procedures
in each group [66]. Using notation from section 3.3.1, the contribution to the test statistic from group g is

E∑

j=1

nj−1

(
egj −

ej

nj−1
× ng,j−1

)
, (3.49)

where egj is the observed number of procedures (the primary event) in group g and time tj , and ng,j−1 is
the number of patients in group g, who are still waiting beyond time tj−1. Note that the weight is equal to
nj−1 which is the total number of patients who are still waiting beyond time tj−1.

The null hypothesis states that the access curves across groups are the same. Under the null hypothesis,
the Wilcoxon test statistic has a chi-square distribution with degrees of freedom equal to one fewer than the
number of groups being compared [59]. At the 0.05 significance level, a p-value less than 0.05 indicates that
there is sufficient evidence to support the hypothesis that the access curves are different. For further details,
see Klein and Moeschberger [66].

Remarks

The Wilcoxon test differs from the log-rank test since it is a weighted sum of differences between the
observed and expected numbers of events. This weight is equal to the number of patients remaining on the
list at a certain time. Since these weights are greater for early time points, the Wilcoxon test is more sensitive
to differences at earlier times than the log-rank test [3]. The log-rank test and the Wilcoxon test do not do
well in detecting differences when the access curves cross [3].

The log-rank test is suitable for comparing two or more groups. In some cases, it may be of interest to
compare one group with a standard population. In this case, comparisons can be made using the one-sample
log-rank test [41], which is based on the difference between the total observed number of events, O, and total
expected number of events, E. The total expected number of events is equal to the sum of the cumulative
event rate (equation 3.9) at the time of last follow-up for each patient. The one-sample log-rank statistic is

(O − E)2

E
. (3.50)

The null hypothesis states that the access curve in the group of interest is the same as that of the standard
population. Under the null hypothesis, the one-sample log-rank statistic has a chi-square distribution with
one degree of freedom.

The cumulative probability of removal for any reason within a certain time after registration can also
be estimated using the product–limit method [17]. By using the log-rank test or the Wilcoxon test, time to
removal is compared across groups [18].

3.3.5 Comparison of cumulative incidence functions

In section 3.2.5, we introduced the CIF as an appropriate measure for summarizing the risk of an event in a
wait-list setting. Suppose we want to compare the proportions of patients experiencing an adverse event, such
as preoperative death, by a certain time between groups. In this section, we discuss methods for comparing
CIFs.
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Two-sample test

Using Gray’s two-sample test, it is possible to compare CIFs between study groups [47]. This method tests
the hypothesis of equality of CIFs across groups by comparing weighted averages of the hazards of the
subdistributions. An open-source R code for the estimation and comparison of CIFs has been developed by
Gray [46]. For further details, see Gray [47] and Pintilie [91].

Nonparametric two-sample test

Using a nonparametric, two-sample test, CIFs can be compared across groups by the methods developed by
Pepe [90]. The test statistic is a cumulative weighted differences between CIFs. For discrete times, the test
statistic is

Δ =
(

nInII

nI + nII

)1/2 ∑

{i|ti>0}
Ŵ (ti)(F̂ I

1 (ti) − F̂ II
1 (ti))(ti − ti−1) ,

where ng is the number of patients in group g, F̂ g
1 (t) is the estimated CIF of the primary event for group g

at time t, and the weight function, Ŵ (ti), is calculated from data as follows

Ŵ (ti) = ĈI(ti)ĈII(ti)
(

nI

nI + nII
ĈI(ti) +

nII

nI + nII
ĈII(ti)

)−1

, (3.51)

where Ĉg(t) is the left-continuous estimator of the censoring distribution function in group g at time t, and
g = I, II . This choice of the weight function reduces the impact of differences at later time points, when
the number of patients still on the list is small.

Pepe showed that the asymptotic distribution of Δ is normal, with a mean of zero. The variance estimator

nII

nI + nII
σ̂2

I +
nI

nI + nII
σ̂2

II (3.52)

converges in probability to the true variance. Here (suppressing group subscripts and superscripts),

σ̂2
i = n

∑

{i|ti>0}

1
ni−1(ni−1 − 1)

{[ ∑

{j|tj≥ti}
Ŵ (tj){1−F̂1(tj)−F̂2(ti)}

]2

ei+
[ ∑

{j|tj≥ti}
Ŵ (tj)F̂1(tj)

]2

ri

}
,

where n = nI + nII .

Remarks

Gray’s two-sample test can be used to compare CIFs across two or more groups. Lunn extended Pepe’s
two-sample test to compare CIFs across multiple groups [75].

Recall that the CIF depends on both the event-specific rate and the probability of remaining on the list.
This observation may help in the interpretation of differences between CIFs. For example, if the primary
event of interest is preoperative death and if the CIF for preoperative death differs between two groups
but the death rates are the same, then it is the probabilities of remaining on the list that contribute to the
difference. Alternatively, if the primary event of interest is unplanned emergency surgery and the rate of
emergency surgery is higher in one of the groups while the CIFs are similar, then it is the lower probabilities
of remaining on the list that contribute to the similarity.
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3.3.6 Comparison of conditional probability functions

In section 3.2.6, we introduced the CPF as an appropriate measure for summarizing the risk of an event in a
competing-risks setting. Suppose we would like to compare proportions of patients experiencing an adverse
event by a certain time on the wait list among those who had not undergone surgery by that time. In this
section, we present methods for comparing conditional probabilities over time.

Nonparametric two-sample test

Using a nonparametric, two-sample test, CPFs are compared between the study groups by methods devel-
oped by Pepe [90]. Suppose there are two competing events. Let F1 be the CIF for event 1 and F2 be the
CIF for event 2. Let the CPF for event 1, CP 1(t), be defined as follows:

CP 1(t) =
Pr(event 1 by time t)

1 − Pr(event 2 by time t)

=
F1(t)

1 − F2(t)
.

A statistic developed by Pepe can be used to test the hypothesis that the CPF of event 1 is greater in
group I than in group II [90]. The statistic is a cumulative weighted difference between CPFs. For discrete
time, this test statistic is

Δ =
(

nInII

nI + nII

)1/2 ∑

{i|ti>0}
Ŵ (ti)(ĈP

I

1(ti) − ĈP
II

1 (ti))(ti − ti−1) , (3.53)

where ĈP
g

1(t) denotes the estimated CPF for group g at time t, ng is the number of patients in group g, and
the weight function, Ŵ (ti), is as follows

Ŵ (ti) = ĈI(ti)ĈII(ti)
(

nI

nI + nII
ĈI(ti) +

nII

nI + nII
ĈII(ti)

)−1

, (3.54)

where Ĉg(t) is the left-continuous estimator of the censoring distribution function in group g at time t, and
g = I, II . This choice of the weight function reduces the impact of differences at later time points, when
the number of patients still on the list is small.

Under the null hypothesis that the CPFs in both groups are equal, Pepe showed that the asymptotic
distribution of Δ is normal, with a mean of zero and variance ρIIσ2

I +ρIσ2
II , where ρg = limn→∞

ng

nI+nII .
The variance estimator,

nII

nI + nII
σ̂2

I +
nI

nI + nII
σ̂2

II , (3.55)

converges in probability to the true variance. Here (suppressing group subscripts and superscripts),

σ̂2 = n
∑

{i|ti>0}

{[ ∑

{j|tj≥ti}

Ŵ (tj)Ŝ(tj)(tj − tj−1)
[1 − F̂2(tj)]2

]2[ [1 − F̂2(ti)]2ei + [F̂1(ti)]2ri

ni−1(ni−1 − 1)

]}
, (3.56)

where n = nI + nII .
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Remarks

Pepe’s nonparametric test for comparing conditional probabilities over time can be extended to more than
two groups [75, 91].

3.4 Regression models

In health services research, regression models are used to quantify the effect of one variable after adjustment
for other variables.

3.4.1 Notation

Suppose there is a synthetic cohort of n patients who registered on the wait lists for surgery during some
calendar period. Let xij be the value of covariate j for patient i, where j = 1, . . . , m. Let ti be the waiting
time and δi be the indicator for a noncensored event for patient i. Without loss of generality, it is assumed
that time is measured in calendar weeks. The notation for the response variable is defined for each model
below.

3.4.2 Logistic regression

In section 3.2.2, we defined the proportion and described its relation to the odds of an event. The odds ratio
(OR) as a measure of comparison between two groups was described in section 3.3.2. In this section, we
introduce a regression model to quantify the effect of a study variable with adjustment for other factors using
ORs.

Logistic regression models the relation between a binary outcome and one or more explanatory variables
[55]. Examples of binary outcomes include whether or not the patient received surgery within the target
access time, and whether the patient died while on the wait list. Explanatory variables of interest might be
priority group or wait-list size. Logistic regression helps in addressing questions such as “How much more
likely is it that a patient with urgent status will die on the wait list than a patient with nonurgent status?”

Model

Let yi be the value of a binary outcome variable, 1 or 0, for patient i, with a value of 1 indicating that the
event of interest occurred and a value of 0 indicating that the event did not occur. The adjusted effect of a
factor on the proportion of patients experiencing the event can be estimated by means of logistic regression
that models the log odds of the probability pi that patient i experiences the event, or the probability that yi

equals 1, as a linear function of covariates

log
( pi

1 − pi

)
= α + β1xi1 + . . . + βmxim , (3.57)

where α, β1, . . . , βm are the model parameters; βj is a regression coefficient associated with covariate j and
the intercept α is the log odds in a reference group. Note that this model implies that the probability of the
event depends on the explanatory variables [55]. The expression on the left-hand side of equation 3.57 is
referred to as the logit of pi.
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The binary outcome variable is assumed to have a binomial distribution, therefore maximum likelihood
techniques can be used to estimate the model parameters. The method involves finding a set of parameters
that maximize the probability of observing the given data, which, when considered a function of the model
parameters, is called the likelihood function. The likelihood function for the logistic regression model is

L(α, β1, . . . , βm) =
n∏

i=1

pyi

i (1 − pi)1−yi , (3.58)

where pi = (1 + exp{−(α + β1xi1 + . . . + βmxim)})−1 [4]. This approach assumes that the patients are
independent of each other. Maximum likelihood estimates of these parameters can be obtained by using SAS
PROC LOGISTIC or PROC GENMOD.

Once the model is estimated, one of the first questions to be addressed is “Does the model with covariates
explain the outcome better than a model with no covariates at all?” The likelihood ratio test can be used to
assess goodness of fit, by testing the hypothesis that at least one of the regression coefficients is different
from 0. The test statistic compares the observed and predicted values via the likelihood function [55]:

LRT = −2 log
( likelihood of model with intercept only

likelihood of fitted model

)
. (3.59)

Under the global null hypothesis, in which all regression coefficients are 0, the test statistic follows a chi-
square distribution with degrees of freedom equal to m. If the null hypothesis is rejected, it can be concluded
that at least one of the covariates is associated with the outcome.

Once it has been determined that the model with covariates is better than no model at all, it is possible to
evaluate specifically which covariates are associated with the outcome. The Wald test can be used to test the
hypothesis that the model parameter is different from 0. The Wald test statistic is

W =
β̂j

SE(β̂j)
, (3.60)

where β̂j is the parameter estimate for the jth explanatory variable and SE(β̂j) is the standard error of β̂j .
Under the null hypothesis that βj = 0, W 2 has a chi-square distribution with 1 degree of freedom. Along
with the point estimates, statistical software provides their standard errors.

A 100(1 − α)% confidence interval for βj is given by

β̂j ± z1−α/2 × SE(β̂j) , (3.61)

where z1−α/2 is the 100(1 − α/2)th quantile of the standard normal distribution.

Interpretation

The regression coefficients in the logistic model (equation 3.57) quantify association between the explana-
tory variables and the log odds of the event of interest. The regression estimates themselves, β̂j , may be
difficult to interpret. However, these estimates are related to a more familiar measure of comparison, namely
OR, described in section 3.3.2. For a binary explanatory variable, xj , for which one category is coded as 1
and the reference category is coded as 0, the exponential of the estimate β̂j

ÔR = exp {β̂j} , (3.62)
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produces the OR that compares the odds of the event in patients with xj = 1 to the odds of the event in
patients with xj = 0. For example, when the event is surgery and the variable xj represents sex with a value
of 1 for a woman and a value of 0 for a man, the OR less than 1 indicates lower odds of undergoing surgery
in women relative to men. In general, if OR is 1, there is no difference in the odds of the event. If OR is
greater than 1, the odds of the event are greater, and if OR is less than 1, the odds are lower. An approximate
100(1 − α)% CI for this OR is given by

exp {β̂j ± z1−α/2 × SE(β̂j)} . (3.63)

Note that this CI needs not be symmetric around the point estimate exp{β̂j}.
For a continuous variable, using the maximum likelihood estimate β̂j , the effect of an increase in value

by δ units is estimated by

ÔR = exp {β̂j × δ} , (3.64)

and its approximate 100(1 − α)% CI is given by

exp {β̂j × δ ± z1−α/2 × δ × SE(β̂j)} , (3.65)

which is not symmetric around the point estimate. This OR compares the odds of the event between groups
of patients with values of the continuous variable that differ by δ units. Typically, δ is taken to be 1, such
that the change in odds is for every unit increase of the continuous variable. For example, if the variable xj

represents age in years and δ = 1, then exp{β̂j × 1} represents the factor by which the odds changes for
every year of increase in age.

Studies in health services research often report the quantity 100×|eβ̂j − 1| that estimates the percentage
change in odds for a 1-unit increase in continuous covariate xj [4]. For a binary covariate, 100 × |eβ̂j − 1|
similarly estimates the percentage change in odds in one group relative to the reference group.

Remarks

The motivation for using a logit transformation in logistic regression arises from the fact that the probability
of an event can only range from 0 to 1. Directly modeling a probability using a linear regression model
would be inappropriate, as estimates could lie below 0 or above 1, whereas modeling the logit of a proba-
bility restricts probability estimates to lie between 0 and 1. For a complete discussion of logistic regression,
refer to Hosmer and Lemeshow [55]. In Part II, we use logistic regression in the analysis of registration
outcomes for patients on the wait list. In Chapter 8, we compare the odds of preoperative death at 52 weeks
in the semiurgent and nonurgent groups. The odds of death at 52 weeks were about 1.6 times greater in the
nonurgent group than in the semiurgent group (OR = 1.6, 95% CI 1.0–2.6).

When interpreting ORs for continuous variables, a meaningful unit of change should be used. For exam-
ple, if the number of direct admissions is an explanatory variable of interest, it may be more meaningful to
consider the OR associated with an increase in the mean weekly number of direct admissions than interpret
the OR associated with an increase of one direct admission.

Note that log (OR) = log (eβ) = β and log(1) = 0; therefore, testing the hypothesis that OR is different
from 1 is equivalent to testing the hypothesis that β is different from 0. There is a relation between CIs
and hypothesis tests. If the null hypothesis that OR is 1 is rejected at the α significance level, then the
100(1− α)% CI for the OR will not contain 1. Conversely, if the null hypothesis is not rejected, then the CI
for the OR will contain 1.
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3.4.3 Cox regression

In section 3.2.3, we introduced the concept of hazard and later in section 3.3.3 the hazard ratio (HR) was
defined as a measure of comparison between two groups. In this section we discuss the use of proportional
hazards models for obtaining adjusted HRs associated with study variables. Cox proportional hazards models
are widely used in a variety of survival analysis applications to explore association between the hazard of an
event and one or more explanatory variables. For example, suppose the primary event of interest is death. It
may be of interest to study how treating patients with surgery affects their risk of death. In this scenario, the
Cox model is used to estimate the expected percentage change in the hazard of death in treated relative to
untreated patients. Cox regression models may be applied to both continuous and discrete time data. Here,
we describe the model for continuous time, which we use for the analysis of times to death.

Model

The adjusted HR can be obtained from the Cox regression that models the hazard of an event for patient i at
time t as the product of the baseline hazard, λ0(t), and an exponentiated linear function of covariates

λi(t) = λ0(t) exp{β1xi1 + · · · + βmxim} , (3.66)

where β1, . . . , βm are regression coefficients associated with the covariates and the baseline hazard function
λ0(t) can be thought of as the hazard for a reference group [31]. One appealing feature of the model is
its semiparametric nature; the form of the baseline hazard function does not have to be specified but needs
to be restricted to a value greater than 0. Second, the covariates have a multiplicative effect on the hazard
function. Third, this model is often referred to as a “proportional hazards” model since the ratio of two
patients’ hazards is assumed to be proportional over time.

Although for this model it does not have to be assumed that waiting times follow a specific distribution,
the maximum likelihood method still can be used to estimate the model parameters. The partial likelihood
function of the proportional hazards model with fixed covariates is

PL(β1, . . . , βm) =
n∏

i=1

( eβ1xi1+···+βmxim

∑
{j|tj≥ti} eβ1xj1+...+βmxjm

)δi

, (3.67)

which does not include the baseline hazard function λ0(t) [3]. In practice, statistical programs, such as SAS
PROC PHREG, can be used to obtain parameter estimates.

The Wald test is used to test the hypothesis that a model parameter is different from 0. The Wald test
statistic is the ratio of the parameter estimate to its standard error:

W =
β̂j

SE(β̂j)
, (3.68)

where β̂j is the parameter estimate for the jth covariate and SE(β̂j) is the standard error of β̂j . Under the
null hypothesis that βj = 0, W 2 has a chi-square distribution with 1 degree of freedom.

A 100(1 − α%) CI for βj is given by

β̂j ± z1−α/2 × SE(β̂j) , (3.69)

where z1−α/2 is the 100(1−α/2)th quantile of the standard normal distribution and SE(β̂j) is the estimated
standard error for the parameter estimate.
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Time-dependent covariates are explanatory variables whose value changes over time. For example, for
each week that a patient is on the wait list, the weekly number of direct admissions varies. Also, in studying
the effect of surgery on perioperative mortality, it would be necessary to evaluate a time-dependent indicator
for surgery. It is relatively easy to incorporate time-dependent covariates into a Cox regression model. First,
suppose that there is one time-dependent covariate that is an indicator for some event. Let λ1(t) be the
hazard of the outcome event before the time-dependent event occurs, and let λ2(t) be the hazard after the
time-dependent event occurs. Incorporating this time-dependent indicator into the model is based on the
assumption that the hazard for patients who experienced the outcome after the time-dependent event is
proportional to the hazard of patients who did not experience the time-dependent event. The relation between
these hazards, given a particular set of covariates, x, is defined as follows:

λ2(t|x) =

{
λ1(t|x), t < time of intermediate event

λ1(t|x)HR, t ≥ time of intermediate event ,
(3.70)

where HR is the hazard ratio associated with the time-dependent event.
An indicator variable, x0(t), which changes from 0 to 1 at the time of the event, is used to model the

time-dependent event. The Cox regression to be estimated is

λ0(t) exp{β0x0(t) + β′x} =

{
λ0(t) exp{β′x}, t < time of intermediate event

λ0(t) exp{β0 + β′x}, t ≥ time of intermediate event ,
(3.71)

with an unspecified baseline hazard λ0(t) and regression coefficients β0 corresponding to the time-dependent
covariate and β corresponding to the fixed covariates.

In general, suppose there are m time-dependent covariates, which may be binary indicators or continuous
variables. Then the Cox regression model in equation 3.66 becomes [3]

λi(t) = λ0(t) exp{β1xi1(t) + · · · + βmxim(t)} , (3.72)

where xij(t) is the value of covariate j at time t for patient i. Time-dependent covariates are a convenient way
to include information on changes in the patient’s and the system’s status at any time before and including
time t. For example, it may represent the number of direct admissions during week t or it may represent
the total number of direct admissions up until week t. Note that models may include both fixed and time-
dependent covariates. For fixed covariates, the value of the covariate remains the same across time (that
is, xij(t) = xij(0) for all t). The regression parameters are estimated via maximum partial likelihood
techniques.

Interpretation

The regression coefficients in the Cox model (equation 3.66) quantify the association between the explana-
tory variables and the hazard of an event. The regression estimates are related to HRs, a familiar measure of
comparison described in section 3.3.3. For a binary explanatory variable xj , for which the reference category
is coded as 0, the exponential of the estimate β̂j

ĤR = exp{β̂j} , (3.73)

produces the HR that compares the hazard of an event in patients with xj = 1 with the hazard of the event
in patients with xj = 0. For example, when the variable xj represents priority group with a value of 1 for a
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high-priority patient and a value of 0 for a low-priority patient, the HR greater than 1 indicates higher hazard
in higher-priority patients. In general, if HR is 1, there is no difference in the hazard of the event, and if HR
is less than 1, the hazard is lower. An approximate 100(1 − α)% CI for this HR is

exp{β̂j ± z1−α/2 × SE(β̂j)} , (3.74)

which is not symmetric around the point estimate.
The HR associated with δ-unit increase in continuous variable xj is estimated by

ĤR = exp{β̂j × δ} , (3.75)

and its corresponding 100(1 − α)% CI is given

exp{β̂j × δ ± z1−α/2 × δ × SE(β̂j)}. (3.76)

This HR compares the hazard of the event between groups of patients with values of the continuous variable
that differ by δ units. Typically, δ is taken to be 1, such that the change in hazard occurs for every unit increase
of the continuous variable. For example, if the variable xj represents the size of a wait list at registration and

δ = 1, then eβ̂j represents the factor by which the hazard of the event changes for every additional patient
already on the list. The quantity 100 × |eβ̂j − 1| estimates the percentage change in hazard for a 1-unit
increase in a continuous variable xj [3]. If xj is binary, 100 × |eβ̂j − 1| estimates the percentage change
in hazard in one group relative the reference group. Note that log (HR) = log (eβ) = β and log(1) = 0;
therefore, testing the hypothesis that HR is different from 1 is equivalent to testing the hypothesis that β is
different from 0.

Remarks

The Cox proportional hazards model gets its name from its assumption that hazards are proportional to one
another. The proportionality of hazards assumption may be assessed by plotting the logarithm of hazards
over time, expecting these curves are parallel. Cox regression is suitable for stratified analysis, in which the
baseline hazard is allowed to vary across strata.

In Chapter 9, to measure the treatment-related effect of elective CABG, we used Cox regression with a
time-dependent indicator variable (section 3.4.4) that changed from 0 to 1 after surgery [42]. The exponential
of the regression coefficient for this variable gave the hazard ratio of death for treated patients relative to
those who remained untreated, with a value of less than 1 indicating a reduced hazard resulting from having
undergone CABG. We also studied whether survival differed significantly among patients who waited for
CABG longer than the target access time (6 weeks for semiurgent procedures and 12 weeks for nonurgent
procedure) [70], using a separate model with two time-dependent indicator variables for CABG performed
before and after the target time. Point estimates and CIs for HRs were calculated for each urgency group and
for the entire cohort. When performing the Cox regression analysis, we stratified on age and sex to avoid the
proportionality assumption for these variables.

When more than one event occurs at a certain time, the data are said to be “tied”, a situation that is likely
to occur with waiting-time data. For example, if time is measured in weeks, multiple patients will experience
the event of surgery in the same unit of time (that is, in the same week). In this situation, the methods of
analysis should be appropriate to handling ties. Both approximate and exact methods are available for this
purpose. When there are more ties than the number of patients still on the wait list, approximate methods
give regression estimates that are biased toward 0 [3]. Statistical software can be used to fit Cox regression
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models, refer to Allison for a practical reference on survival analysis in SAS [3]. This reference includes
discussions on using PROC PHREG in SAS to fit Cox regression models. PROC PHREG also allows for
time-dependent covariates and tied event times.

If the Cox regression for discrete-time data assumes that the events truly happen at the same time, it is
modeling a conditional probability instead of a hazard. Specifically, this approach models the logit of the
conditional probability that the patient will experience an event at time t, given that he or she is still on
the wait list at that time. It is equivalent to the discrete-time survival regression models discussed in section
3.4.5.

3.4.4 Poisson log-linear regression

In section 3.2.3, we introduced the concept of event rate, and then in section 3.3.3 we defined the rate ratio
(RR) as a measure of comparison between groups. In this section, we discuss log-linear regression models
that produce RRs to summarize effects, after adjustment for other factors.

Model

The log-linear regression model assumes that the log of the event rate is linearly related to one or more
explanatory variables [52]:

log λi = α + β1xi1 + · · · + βmxim , (3.77)

where λi is the event rate for patient i, and xij is the value of variable j for patient i. When the number of
events is assumed to follow a Poisson distribution and the event rate is constant over the follow-up time, this
model is called Poisson regression.

As discussed in section 3.2.3, the event rate is a ratio of the number of events to the total waiting time.
Equation 3.77 can also be expressed for the expected number events [52]:

log μi = α + β1xi1 + · · · + βmxim + log(ti) , (3.78)

where μi is the expected number of events for patient i, ti is the waiting time for patient i, and log(ti) is
referred to as the “offset.” Note that the log link restricts the expected number of events to values greater
than 0.

The maximum likelihood method is used to estimate the model parameters for a given set of covariates
using the Poisson likelihood function as follows [52]

L(α, β1, . . . , βm) =
n∏

i=1

μyi

i eμi

yi!
, (3.79)

where yi is a Poisson-distributed random variable for the number of events and μi is defined in 3.78. In prac-
tice, statistical programs, such as PROC GENMOD in SAS can be used to obtain the parameter estimates.

Interpretation

The regression coefficients in the Poisson model (equation 3.78) quantify association between the event
rate and the explanatory variables. The regression estimates are used to obtained RRs; and both crude and
adjusted RRs can be estimated with Poisson regression models. For a binary explanatory variable, xj , for
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which one category is coded as 1 and the reference category is coded as 0, the exponential of the estimate
β̂j ,

R̂R = exp{β̂j} , (3.80)

yields the estimated RR that compares the event rate among patients for whom xj = 1 with the rate of the
event among patients for whom xj = 0. For example, when variable xj represents registration period with
a value of 1 for reduced-funding years, the RR less than 1 indicates the lower rate for the reduced-funding
years relative to the standard year. If RR is 1, there is no difference in the event rate, and if RR is greater
than 1, the event rate is greater. An approximate 100(1 − α)% CI for this RR is

exp{β̂j ± z1−α/2 × SE(β̂j)} , (3.81)

which is not symmetric around the point estimate.
For a continuous variable, using the maximum likelihood estimate β̂j , the effect of increase in value by

δ units is estimated by

R̂R = exp{β̂j × δ} , (3.82)

and by its approximate 100(1 − α)% CI

exp{β̂j × δ ± z1−α/2 × δ × SE(β̂j)} . (3.83)

This RR compares the event rate between groups of patients with values of the continuous variable that
differ by δ units. If δ is taken to be 1, the change in the event rate is quantified for every unit increase of
the variable. For example, if the variable xj represents the volume of emergency referrals and δ = 1, then
exp{β̂j} represents the factor by which the event rate changes for every emergency admission.

The quantity 100 × |eβ̂j − 1| estimates the percentage change in rate associated with the 1-unit increase
in a continuous variable xj . If xj is binary, 100× |eβ̂j − 1| yields the percentage change in rate in one group
compared with the reference group.

Remarks

To determine whether the admission rate is constant over the time that patients spend on the wait list, one
can test the null hypothesis that the waiting-time distribution is exponential. The rationale is that a constant
rate corresponds to an exponential distribution [53].

In Part II, we use Poisson log-linear regression to analyze the relation between the weekly rate of elective
vascular surgery and priority group. Using RRs, we compare the rates of surgery between priority groups,
finding, for example, that the weekly rate of surgery was 1.7 times higher for priority 2 patients than for
priority 3 patients.

Note that log (RR) = log (eβ) = β and log(1) = 0; therefore, testing the hypothesis that RR is different
from 1 is equivalent to testing the hypothesis that β is different from 0.

3.4.5 Discrete-time regression

Discrete-time regression models the relation between time to an event and one or more explanatory variables,
when many events could occur at the same time. For example, scheduling patients for surgery provides a
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weekly opportunity for hospital admission. Measured as the number of service-scheduling cycles, waiting
time is therefore inherently discrete and is best measured as the number of new scheduling cycles from
registration to admission. Therefore, a key feature of waiting-time data from surgical service is that the
scheduling cycle is the unit of analysis. Because scheduling is done weekly, the waiting period is computed
as the number of calendar weeks between registration and admission. For those removed from the wait list
before admission, waiting time is the number of calendar weeks from registration to removal. In this section,
we introduce two regression models that can be used to quantify adjusted effects of study factors when time
to event is discrete.

It is common practice in regression analysis of discrete times to perform a pooled analysis of the logistic
regression models developed for each time unit of follow-up, treating consecutive periods of observation as
ordered strata (see Allison [2]). For each wait-list week t, the regression model is defined by three elements:
(1) the indicator variable δit, which is set to 1 if patient i, who was still on the wait list just before week t,
experienced an event of interest and otherwise is set to 0; (2) the probability of the event

pit = Pr(δit = 1 | xi1, . . . , xim) , (3.84)

which is the conditional probability of the event in week t, given that it did not occur in preceding weeks
and given the explanatory variables xi1, . . . , xim; and (3) a link function that relates the probability pit to a
linear function of the variables αt + β1xi1 + . . . + βmxim, where αt characterizes the event rate at week t
in the reference group and βj , j = 1, . . . ,m are regression coefficients.

In the next sections, we consider two common link functions, the logit function and the complementary
log-log function, which allow for indicator variables that code the ordered strata to be included in the set of
explanatory variables .

Proportional odds model

As its name suggests, the proportional odds model assumes that the odds of an event in one group are
proportional to the odds of the event in another group. Let p1t be the conditional probability of the event at
time t in group 1, and let p0t be the conditional probability of the event at time t in group 0, the reference
group. The proportional odds model then is formulated as follows

p1t

1 − p1t
= eβ p0t

1 − p0t
, (3.85)

where eβ is the proportionality constant. Applying a log transformation to equation 3.85 gives the basic form
of the proportional odds model with one regression coefficient representing group 1:

log
( p1t

1 − p1t

)
= αt + β , (3.86)

the intercept αt is the log odds of the event at time t in the reference group.
Applying the logit link to relate the conditional probabilities of the event to a linear function of several

covariates results in a multivariable proportional odds model:

log
( pit

1 − pit

)
= αt + β1xi1 + · · · + βmxim , (3.87)

where βj is a regression coefficient associated with covariate j. Although it looks similar to the logistic
regression model (equation 3.57), this model is fundamentally different because indicator variables that
code the consecutive units of follow-up time are included to model the event odds over time.
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The parameters of the proportional odds model can be estimated by the maximum likelihood method.
The likelihood function for the proportional odds model is

L(αt, β1, . . . , βm) =
n∏

i=1

( piti

1 − piti

)δit ∏

{j|tj≤ti}
(1 − pitj

) , (3.88)

where each week of follow-up is assumed to represent an independent period of observation and is included
separately for each subject, and pit = (1 + exp{−(αt + β1xi1 + · · · + βmxim)})−1.

Time-dependent covariates can also be incorporated into proportional odds models. With time-dependent
covariates, the discrete-time regression model with the logit link function becomes

log
( pit

1 − pit

)
= αt + β1xi1(t) + · · · + βmxim(t) , (3.89)

where xij(t) is the value of covariate j for patient i at time t [2]. Note that the regression coefficients do not
change over time.

For analysis of waiting-time data, we consider consecutive weeks on the wait list as independent periods
of observation, each included in the data set separately for each patient in a synthetic cohort. The effects of
the explanatory variables on the odds of an event of interest are assumed to be constant over consecutive
wait-list weeks. Therefore, the regression coefficients in the proportional odds model (equation 3.87) can be
interpreted as the log of common ORs. In the same manner as for the logistic regression, the exponential
of the estimate β̂j yields the estimated OR of two groups for a binary explanatory variable, and the esti-
mated OR associated with 1-unit increase in a continuous variable; see the Interpretation section for logistic
regression coefficients in section 3.4.2.

In a simple case of a constant event rate for all weeks (that is, αt = α) and one indicator variable
representing the comparison group, the weekly probability of the event is (1 + exp{−α})−1 in the reference
group and (1 + exp{−(α + β)})−1 in the comparison group.

For model 3.89 it is assumed that the effects of time-dependent covariates are constant over time. For
example, one direct admission during a patient’s 1st week on the wait list is assumed to have the same
effect as one direct admission arriving during the patient’s 10th week on the list. Therefore, the regression
coefficients associated with the time-dependent covariates in model 3.89 can be converted into a similar
manner.

In Chapter 6, we use the proportional odds model to evaluate the combined effect of volume of direct
admissions on the surgery rate among patients awaiting elective CABG. In multivariable analysis we adjust
for age, sex, comorbidity, calendar period of registration, and hospital. For the direct admissions, we interpret
the odds ratio as a change in the weekly odds of elective surgery associated with one additional surgery
performed immediately after angiography.

Complementary log-log model

The complementary log-log model is the discrete-time version of the proportional hazards model [93, 2]. It
is based on the assumption that the conditional probability of no event at time t in one group is the same as
the conditional probability of no event at time t in another group to a fixed power. Let p1t and p0t be the
conditional probability of an event at time t for group 1 and group 0, respectively. Group 0 is considered the
reference group. The complementary log-log model then assumes that for all consecutive times t = 1, 2, . . .
the conditional probabilities of no event in the two groups are related by a fixed power:
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(1 − p1t) = (1 − p0t)eβ

, (3.90)

where eβ is some fixed constant. Applying the log-log transformation to equation 3.90 gives the basic form
of the complementary log-log model with one explanatory variable for the comparison group:

log(− log(1 − p1t)) = αt + β , (3.91)

where αt characterizes the hazard of the event at time t in the reference group. Applying the complementary
log-log link to relate the conditional probabilities of an event to a linear function of several covariates results
in a multivariable regression [93]:

log(− log(1 − pit)) = αt + β1xi1 + · · · + βmxim . (3.92)

The parameters of the complementary log-log regression are estimated by the maximum likelihood pro-
cedure used for generalized linear models because the time to event has the same likelihood function as
a sequence of Bernoulli trials with probability of success pit [2]. The likelihood function for observations
consistent with the complementary log-log model is

L(αt, β1, . . . , βm) =
n∏

i=1

( piti

1 − piti

)δit ∏

{j|tj≤ti}
(1 − pitj

) , (3.93)

where each week of follow-up is assumed to represent an independent period of observation and is included
separately for each subject, and pit = 1 − exp{− exp{αt + β1xi1 + · · · + βmxim}}. Using the regression
estimates, it is possible to derive the HRs to assess the difference among the groups or percentage change
associated with an increase in a continuous explanatory variable in the same manner as a for proportional
hazards model [3]; see the Interpretation section in 3.4.3.

With time-dependent covariates, the discrete-time regression model with complementary log-log link
function in equation 3.92 becomes

log(− log(1 − pit)) = αt + β1xi1(t) + · · · + βmxim(t) , (3.94)

where xij(t) is the value of covariate j for patient i at time t [93]. It is assumed that the effects of time-
dependent covariates do no change over time, so the regression coefficients are constant. Therefore the
corresponding regression estimates can be converted into HRs; refer to the Interpretation section in 3.4.3 for
further details.

In a simple case of a constant event rate for all weeks (that is, αt = α ) and one indicator variable rep-
resenting the comparison group, the weekly probability of the event is 1 − exp{− exp{α}} in the reference
group and 1−exp{− exp{α+β}} in the comparison group. It is important to note that the model expressed
by equation 3.94 is population-based, with the coefficients β representing the average effects of covariates
among those at risk. The model is therefore applicable to grouped data.

In Chapter 6, we use a discrete-time regression model with complementary log-log link to express the
admission rate for vascular surgery in one wait-list size group relative to that in another group. In a multivari-
able analysis, the association between the length of wait list at registration and wait to surgery is measured
by relative rate of admission adjusted for type of procedure, age, sex, and calendar period of registration.

Remarks

Unlike the proportional odds model, the complementary log-log model assumes that the waiting times are
truly continuous, but have been grouped into intervals. Therefore, the regression parameters being estimated
with this model have a relative risk interpretation [3].
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Both the logit and the complementary log-log link transform probabilities, which range from 0 to 1,
to quantities that range from negative infinity to positive infinity. The logit link is symmetric. Therefore,
modeling the probability of an event or modeling the probability of no event will simply result in regression
coefficients of opposite signs. In contrast, the complementary log-log link is asymmetric. Therefore, mod-
eling the probability of an event and no event will yield regression coefficients of different magnitudes. In
contrast to the Cox regression, discrete time regressions also yield estimates of baseline probabilities.

In the analysis of data with time-dependent covariates, patient-level data are converted into patient-time
data. In contrast to the patient-level data set, in which each row represents one patient, the patient-time data
set consists of one row for each week that the patient spent on the list. A patient who was on the list for 5
weeks would therefore be represented by five rows of data in the patient-time data set. PROC GENMOD in
SAS can handle time-dependent covariates for discrete-time regression presented in the patient-time format.

3.4.6 Regression for pseudovalues of cumulative incidence functions

In section 3.2.5, we introduced the cumulative incidence function (CIF) as the time-dependent, marginal
probability that an event will occur at or before a certain waiting time in the competing-risks setting. Methods
for comparing CIFs between groups were discussed in section 3.3.5. In this section, we describe a regression
model for quantifying the adjusted effect of study variables on the CIF. Klein and Andersen [64] proposed an
estimation procedure for obtaining the effects of covariates on the CIF for each competing event separately.
This approach is based on using regression analysis of pseudovalues for the estimator of the CIF [9].

Model

Because the CIF represents probabilities over time, the proportional odds model is a natural choice for
directly relating two CIFs [39]:

Fc(t | group 1)
1 − Fc(t | group 1)

= eβ Fc(t | group 0)
1 − Fc(t | group 0)

, (3.95)

where Fc(t | group 1) and Fc(t | group 0) are CIFs of event c for group 1 and group 0, and eβ is the
proportionality constant. The adjusted effect of a factor on the CIF of the event can be estimated by means
of a multivariable logistic regression that models the logit of F (t | xi) as a linear function of covariates
xi = (xi1, . . . , xip)′ for all times t = 1, . . . ,K:

log
( F (t | xi)

1 − F (t | xi)

)
= αt + β′xi , (3.96)

where αt is the logit of the CIF at time t in the reference group; β = (β1, . . . , βm)′ is a vector of regression
coefficients associated with the covariates; the event-type subscript is suppressed for ease of notation. Note
that this model implies that the effects of explanatory variables do not change over time [9, 64].

Klein and Andersen proposed a regression analysis with pseudovalues of the CIF as the outcome. For
each subject a series of pseudovalues is estimated. These pseudovalues may be thought of as representing
the observed CIF for the subject. Specifically, we let F̂ (t) be the estimated CIF based on the observation of
n subjects over K time points t1, . . . , tK . For subject i, the pseudovalue of the CIF at time t is defined as
follows
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θ̂it = nF̂ (t) − (n − 1)F̂ (i)(t) , (3.97)

where F̂ (i)(t) is the estimated CIF modified by removing subject i. In the absence of censoring (that is, all
subjects experience one of the competing events during follow-up), the pseudovalues of the CIF have some
noteworthy properties. First, for each subject, these pseudovalues correspond to a series of binary variables
equal to 0 before and 1 at or after the event of interest (that is, θ̂it = 1, if time to event is greater than or equal
to t, 0 otherwise). Second, for a given time, the average of the pseudovalues across subjects corresponds to
the value of the CIF at that time, that is,

n−1
n∑

i=1

θ̂it = F̂ (t) . (3.98)

Third, when there is no censoring, the pseudovalues are independent; when there is censoring, they are ap-
proximately independent [64]. Using the pseudovalues the parameters of the CIF regression model (equation
3.96) are estimated then by generalized estimating equations approach to adjust for subject-level correlation
between the pseudovalues [72, 37].

Let θ̂i = (θ̂it)′ be the estimated vector of pseudovalues across time for subject i and μi(γ) = (μ(αt +
β′xi))′ be the K × 1 vector of the corresponding mean function for model 3.96 presented as follows

μ(αt + β′xi) = (1 + exp{−(αt + β′xi)})−1 . (3.99)

The estimating equations take the form

n∑

i=1

∇μiV
−1
i (θ̂i − μi(γ)) = 0 , (3.100)

where ∇μi is the (K + p) × K matrix of the partial derivatives of μ by γ and Vi is the K × K working
covariance matrix of the pseudovalues for subject i.

The working weight matrix may be fixed and estimated as a product–moment correlation matrix among
the pseudovalues of the CIF. Each element of the covariance matrix Vi is given by

v̂hl =
1
n

n∑

i=1

(θ̂ih − θ̄h)(θ̂il − θ̄l) , (3.101)

where θ̄h = 1
n

∑n
i=1 θ̂ih. The independence of the pseudovalues across subjects is addressed by Andersen

et al [9], and the independence of the pseudovalues within subjects is addressed by Klein et al [64].

Interpretation

The regression coefficients in the CIF pseudovalue model (equation 3.96) quantify the effect of explanatory
variables on the CIF. In this model the effects of the explanatory variables on the logit-transformed CIF are
assumed to be constant over time. Since the CIF represents a series of probabilities, we can interpret the
exponential of the regression coefficients as the OR of two groups for a binary explanatory variable, and
the OR associated with a 1-unit increase in a continuous variable; see the Interpretation section for logistic
regression coefficients in section 3.4.2. Klein argued that when studying events in a competing-risks setting,
the results for all risks should be reported [64].
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Remarks

The logit function is one possible link function for relating the pseudovalues of the CIF to the explanatory
variables. Another possible link function is complementary log-log [64]. When using a logit or comple-
mentary log-log link, the estimated regression coefficients are approximately unbiased, with as few as five
time points. Klein recommended using pseudovalues at 10 or more time points for good estimates [64]. In
practice, statistical programs, like PROC GENMOD in SAS, can be used to obtain parameter estimates.

In addition to Klein and Andersen, others have proposed regression models related to the CIF [64]. Fine
and Gray proposed a method for modeling the subhazard [40, 91]. Bryant and Dignam discussed semipara-
metric models for the CIF [21].
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Waiting-time Studies
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Overview of waiting times and other variables

4.1 Introduction

In Part II of this book, we present various analyses of waiting-time data for elective vascular surgery, chole-
cystectomy, and coronary artery bypass grafting, all based on the data sets described in Chapter 2. In the
current chapter, we define and categorize the outcomes, study variables, and confounders for each of the
three data sets used in the subsequent analyses. Then, in Chapters 5 through 10, we address the questions on
access to elective care posed in Chapter 1, using the statistical methods presented in Chapter 3.

4.2 Elective vascular surgery

4.2.1 Waiting times

We studied prospectively the waiting times experienced by a cohort of patients registered on wait lists for
elective vascular surgery to be provided by a single team of specialists at an acute care hospital in Ontario.
A detailed description of the elective vascular surgery data is given in Chapter 2. SAS Code B.1 and B.2
(see Appendix) shows how we used a DATA step to prepare the analytical data set. This data set is used in
the analyses and SAS examples presented throughout the remainder of this book. The following procedures
were considered: repair of abdominal aortic aneurysm, carotid endarterectomy, peripheral vascular bypass
surgery and other procedures for peripheral vascular disease involving blood supply to the legs, or vascular
access for dialysis. For each patient, waiting time was calculated in calendar weeks from registration to
surgery or to removal from the list without surgery. The date of the surgeon’s letter to the referring primary
care physician regarding acceptance for surgery served as the date of registration on the list.

In the majority of our analyses, we used discrete-time survival analysis because waiting time is inherently
discrete and is best measured by the number of weekly operating room schedules [107].

4.2.2 Confounders

Multivariable models were used to control for differences in patient characteristics and important con-
founders (summarized in Table 2.5). In one analysis, we studied two calendar periods in which patients
were accepted for surgery: period 1 covered the time before March 31, 1997, and period 2, the time from
that date forward. A decrease in operating time from 3.0 in period 1 to 2.6 days per week in period 2, because
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of a decrease in the number of anesthetists, raised concerns about differences in access to elective surgery
between the periods.

4.2.3 Wait-list size

For each calendar week during the study, the demand for surgery was characterized according to the queue
length and the batch size of arrivals. For each patient, list size was calculated by a simple census of patients
with higher or equal queuing priority already on the list at the time of registration. Patients contributed one
count to the wait-list size for each week on the list, except the week of arrival. As operations are routinely
scheduled 1 week in advance, patients who underwent surgery were considered to have been removed from
the wait list in the calendar week preceding their admission dates. Patients whose operations were deferred
indefinitely contributed to the queue length for 52 weeks after their registration. For each patient, the batch
size of arrivals was the count of patients with higher or equal queuing priority registered on the list in the
same week.

List size at registration was categorized by clearance time, that is, a hypothetical time within which the
list could be cleared at a maximum weekly service capacity if there were no new arrivals. This time was
calculated as the number of patients on the list divided by the average weekly number of removals from the
list. Given the capacity level of 5 operations a week in this service, 0–4 patients on the list corresponded to
a clearance time of 1 week; 5–20, to 1 month; and 21 or more, to more than 1 month. Similarly, batch sizes
of arrivals were divided into categories of 1–4 and 5 or more.

To investigate the effect of total demand during a certain week, we divided patients into six strata ac-
cording to a combination of list-size and batch-size categories: list < 5 and batch < 5, list < 5 and batch ≥5,
list 5–20 and batch < 5, list 5–20 and batch ≥5, list ≥21 and batch < 5, and list ≥21 and batch ≥5.

4.3 Elective cholecystectomy

4.3.1 Waiting times

A detailed description of the elective cholecystectomy data is given in Chapter 2. SAS Code B.5 (see Ap-
pendix) shows how we used a DATA step to prepare the analytical data set. This data set is used in the
analyses and SAS examples presented throughout the remainder of this book. A waiting time based on the
number of weeks from the last consultation visit to elective or emergency surgery was calculated for each
patient. This approach assumes that the last visit before surgery is the date of the decision to operate [35].

4.3.2 Confounders

Age decade, sex, registration period and the surgeon’s annual volume of cholecystectomies were considered
potential confounding variables.

4.4 Elective coronary artery bypass surgery

4.4.1 Waiting times

A detailed description of the elective coronary artery bypass grafting data is given in Chapter 2. SAS Code
B.3 and B.4 in the Appendix shows how we used a DATA step to prepare the analytical data set. This data set
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is used in the analyses and SAS examples presented throughout the remainder of this book. The time on the
wait list was computed as the number of calendar weeks from registration to surgery, death or removal from
the wait list. The date of the surgeon’s request to book the operating room served as the date of registration
on the wait list. Waiting times were treated as prospective observations that were monitored from registration
to the patient’s last week on the list.

In the majority of our analyses, we used discrete-time survival analysis because waiting time is inherently
discrete and is best measured by the number of weekly operating room schedules [107]. We represented time
to event by a sequence of binary variables indicating if the patient experienced the event during a certain
wait-list week. The likelihood function of such indicators is defined by conditional probabilities of an event
in a certain week among those remaining on the list [2]. To fit a pool of logistic regression models (equation
3.87), it was assumed that binary indicators were independent across patients, as described in Chapter 3.

4.4.2 Waiting outcomes

To identify type of admission for surgery (elective or unplanned emergency), hospital admission and dis-
charge dates, coexisting conditions, and in-hospital deaths, we used a patient’s Provincial Health Number
to deterministically link the British Columbia Cardiac Registry (BCCR) records to the British Columbia
Linked Health Database Hospital Separations File [25]. Unplanned emergency surgeries were identified by
the emergency or urgent code for admission from the emergency department or the emergency code for
admission from the admitting department after the patient was registered on a surgical wait list. Data on
coexisting conditions were retrieved in the form of diagnoses reported in discharge abstracts created during
the calendar year before the treatment decision [56]. To identify deaths that did not occur in a hospital, we
linked the BCCR records to the British Columbia Linked Health Database Deaths File [117].

4.4.3 Confounders

The existing literature suggests that elderly patients are more likely to undergo revascularization as an ur-
gent procedure [26], that a smaller coronary vessel diameter may account for the higher risk of adverse
cardiovascular events in women [87], that coexisting medical conditions may delay open heart surgery [82],
that postoperative survival depends on institutional constraints and individual care providers [36], and that
changes in practice or supplementary funds may reduce time until surgery [70]. All of these factors were
entered into multivariable regressions in our study.

We used multivariable models to control for differences in patient characteristics and significant con-
founders (summarized in Table 2.3). In particular, we entered two indicator variables, one for any of a spec-
ified group of coexisting medical conditions (congestive heart failure, diabetes mellitus, chronic obstructive
pulmonary disease, cancer or rheumatoid arthritis [83]) and the other for other coexisting chronic conditions
as defined by Romano et al [97]. Presentation without coexisting conditions was the reference category. We
also entered an indicator variable for each hospital in the models to obtain regression estimates for the study
variables adjusted for possible variations in access management. Hospital 1 was coded as the referent. To
assess whether the estimated models were consistent with our data we used the likelihood ratio test.

4.4.4 Wait-list size

For each patient, list size was calculated by a simple census of patients, in the same hospital, with higher
or equal queuing priority already on the list at the time of registration. Patients contributed one count to the
wait-list size for each week they stayed on the list, except for the week of arrival. As operations are routinely
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scheduled 1 week in advance, patients who underwent surgery were considered to have been removed from
the wait list in the calendar week preceding their admission dates. Patients whose operations were deferred
indefinitely contributed to the queue length for 52 weeks after their registration. For each patient, the batch
size of arrivals was the count of patients with higher or equal queuing priority registered on the list in the
same week.

The wait-list size was categorized by clearance time, that is, a hypothetical time within which the list
could be cleared at a maximum weekly service capacity if there were no new arrivals. We categorized wait-
list size as less than a week, half a month, a month, or more than one month of clearance time. In three of the
four participating hospitals that had a service capacity of 15 operations per week, wait lists of up to 14, 15
to 29, 30 to 59 and more than 60 patients corresponded to clearance time of a week, half a month, a month,
and more than one month. In the fourth hospital, which had a service capacity of 25 operations per week,
the same clearance times corresponded to up to 24, 25 to 49, 50 to 99 and more than 100 patients on the list.
SAS Code B.8 and in the Appendix shows how we used DATA steps to compute list size.

Batch size (the number of new registrations) was categorized as to whether or not it exceeded the weekly
number of operating room slots allocated exclusively to patients on the wait lists. We divided batch size
values into two categories: (1) 1 to 6 patients at the three hospitals with a service capacity of 15 operations
per week and 1 to 12 patients at the fourth hospital; and (2) 7 or more patients at the three hospitals with a
service capacity of 15 operations per week and 13 or more patients at the fourth hospital. Similar SAS code
for computing list size was used to compute batch size.

The weekly number of direct admissions was treated as a continuous variable.
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Variation and access probabilities

5.1 Introduction

Whether waiting times vary by chance alone after adjustment for clinical factors, variation in demand, and
patient and hospital characteristics remains an important question in health services research on access to
surgery. Surprisingly, little attention has been given to the variation in times spent in a single queue. As
described in Chapter 1, it is useful to estimate the proportion of patients who are admitted from a wait list
within certain time frames after registration. In this chapter, we present results for admission rate and access
probabilities according to length of stay on the list.

5.2 What is the variation in time spent waiting for elective surgery?

The objective of this study was to evaluate the variation in time spent on the wait list for elective vascular
surgery provided by the same team of specialists, where queuing procedures were uniform (Chapter 2).
Compared to our previous analysis in [103], we added patients who were registered on the wait list after
1998.

The study was primarily concerned with the statistical variation in duration of waiting in a queue of
patients with equal surgical needs and urgency. We compared the number of weeks required for specified
proportions of patients to undergo the operation by sex and age groups. The cumulative probabilities of
undergoing surgery within a certain time were estimated using the product-limit method [17], as described
in Chapter 3; waiting times were treated as prospective observations that were monitored from registration
until the patient’s last week on the list. The log-rank test, described in Chapter 3, was used to compare
waiting times across groups [18]. SAS Code B.6 (see Appendix) shows a macro we used to estimate event
proportions by group.

The average weekly rate of surgery, that is the total number of admissions divided by the total number of
patient-weeks of follow-up, was calculated as a measure of the rate of admission within each priority group;
see Chapter 3. SAS Code B.7 (see Appendix) shows a macro we used to estimate event rates by group.

Then, the effect size of priority group on the weekly rate of surgery was estimated by means of the
Poisson log-linear model (3.78), which yielded the rate ratio (RR) [52], as discussed in Chapter 3. We
determined whether the admission rate was constant over the time patients spent on the wait list by testing
the null hypothesis that the waiting-time distribution is exponential. The rationale is that a constant rate
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Fig. 5.1. Estimated probability of undergoing elective vascular surgery within a certain waiting time, by sex

corresponds to exponential distribution of waiting times [54]. We used multivariable models to control for
differences in age, sex, and registration period.

Among 1916 patients waiting for elective vascular surgery, 1743 (91.0%) received access to surgery. The
median waiting time from registration to surgery was 6 weeks (95% CI 6–7). Waiting times were such that
10%, 25%, 75%, and 90% of patients underwent surgery within 1, 3, 14, and 27 weeks from registration. The
last 10% of patients waited 5 to 16 weeks, 12 to 25 weeks, 19 to 41 weeks, and 24 to 41 weeks in priority
groups 1, 2, 3, and 4, respectively (Table 5.1). The overall average weekly admission rate was 9.7 per 100
patient-weeks (95% CI 9.2–10.1).

There was a difference in access to surgery between men and women, as measured by the log-rank test
(test statistic = 5.5, df = 1, p = 0.02), with men having a greater chance of surgery within a certain time
(Figure 5.1). There was also a difference in access to surgery between age groups, as measured by the log-
rank test (test statistic = 37.9, df = 3, p < 0.0001), with shorter waiting times for older patients (Figure
5.2).

We estimated the effect of priority group on weekly admission rates using a Poisson log-linear regression
model (equation 3.77). The expected number of events, μ, was modeled as a log-linear function of priority
group as defined in SAS Code B.1 (see Appendix):
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Fig. 5.2. Estimated probability of undergoing elective vascular surgery within a certain waiting time, by age

log μ = α + β1pr1 + β2pr2 + β3pr3 + β4pr4 + log(wait)

where pr1 is 1 for priority 1 and 0 otherwise, pr2 is 1 for priority 2 and 0 otherwise, pr3 is 1 for priority 3
and 0 otherwise, pr4 is 1 for priority 4 and 0 otherwise, and wait is the waiting time in weeks.
SAS Code 5.1 shows how we used PROC GENMOD to estimate the parameters of this model. The GEN-
MOD procedure fits generalized linear models, which are an extension of traditional linear models that
allows the population mean to depend on a linear predictor through a nonlinear link function [85]. First, we
used a DATA step to create an offset variable. Then we used PROC GENMOD to fit a Poisson regression
model (SAS Output 5.1). Relative to priority 5, the parameter estimates decreased with lower urgency: 1.74
(SE = 0.07) for priority 1, 1.02 (SE = 0.09) for priority 2, 0.45 (SE = 0.08) for priority 3, and 0.16 (SE =
0.07) for priority 4. The rate ratios corresponding to SAS Output 5.1 are shown in Table 5.2.

Using a chi-square test, we tested the null hypothesis that weekly probabilities of admission are constant
over time spent on wait lists and found that these probabilities were not constant over time (Table 5.2,
Figure 5.3). We concluded that when queuing procedures are uniform, the waiting times for access to elective
vascular surgery provided by the same team of specialists differ considerably for patients with equal surgical
needs and urgency.
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SAS Code 5.1: Poisson log-linear regression of weekly admission rates on priority group

* create offset variable *;
data admisdat;
set vasc;

where wait>0;
ltime=log(wait);
admis=0; if status=0 then admis=1;

run;

* Poisson regression *;
proc genmod data=admisdat;
model admis=pr1 pr2 pr3 pr4 /d=poisson link=log offset=ltime waldci;

run;

SAS Output 5.1: Results from Poisson log-linear regression of weekly admission rates on priority group
� �

Analysis Of Parameter Estimates

Standard Wald 95% Chi -
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 -2.6864 0.0370 -2.7589 -2.6140 5282.72 <.0001
pr1 1 1.7406 0.0690 1.6053 1.8760 635.51 <.0001
pr2 1 1.0194 0.0937 0.8358 1.2030 118.45 <.0001
pr3 1 0.4474 0.0757 0.2990 0.5958 34.91 <.0001
pr4 1 0.1644 0.0691 0.0289 0.2999 5.65 0.0174
Scale 0 1.0000 0.0000 1.0000 1.0000

� �
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Table 5.1. Characteristics of waiting-time distributions for elective vascular surgery, by sex, age, surgical procedure, and
priority group

Percentiles (weeks)

Factor No. of Procedures Median 10th 25th 75th 90th Maximum

patients performed, % (95% CI) time

Sex

Women 677 88.8 7 (6–8) 1 3 15 29 41

Men 1239 92.2 6 (5–7) 1 3 13 26 41

Age (years)

< 45 110 76.4 8 (6–10) 1 3 37 41 41

45–64 518 90.9 6 (5–7) 1 3 15 29 41

65–74 757 92.9 7 (6–7) 1 3 13 24 41

≥ 75 531 91.3 6 (5–7) 1 2 13 23 41

Registration period

1994–1996 610 90.7 6 (5–6) 1 2 14 27 41

1997–2002 1306 91.1 7 (6–7) 2 3 14 27 41

Procedure

AAA repair 485 94.6 8 (7–9) 1 3 13 20 41

CEA 411 90.8 10 (8–12) 2 5 19 30 41

PVD surgery 652 87.3 4 (3–4) 1 2 12 37 41

AVF for hemodialysis 368 92.9 5 (5–6) 2 3 10 21 41

Priority

1 (most urgent) 344 95.6 2 1 1 3 5 16

2 149 95.3 4 (3–5) 1 2 7 12 25

3 247 93.9 7 (6–8) 2 3 12 19 41

4 313 93.9 11 (9–12) 3 6 16 24 41

5 (least urgent) 863 86.4 8 (7–9) 2 4 20 39 41

Abbreviations: CI = confidence interval, AAA = abdominal aortic aneurysm, CEA = carotid endarterectomy,

PVD = peripheral vascular disease, AVF = arteriovenous fistula
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Table 5.2. Weekly admission rates for elective vascular surgery, by priority group

Weekly admission rate∗ Crude Test

Priority Average (SE) Minimum Maximum RR (95% CI) statistic† p value

1 (most urgent) 43.5 (2.4) 20.0 45.7 5.7 (5.0–6.5) 82.0 < 0.0001

2 19.9 (1.7) 9.8 30.0 2.8 (2.3–3.3) 8.4 < 0.01

3 10.8 (0.7) 5.9 23.1 1.6 (1.3–1.8) 18.8 < 0.0001

4 8.1 (0.5) 2.6 23.5 1.2 (1.0–1.3) 192.2 < 0.0001

5 (least urgent) 6.9 (0.3) 1.4 10.0 1.0 2.2 0.14

Abbreviations: SE = standard error, RR = rate ratio, CI = confidence interval
∗Weekly admission rate was calculated as the number of elective procedures divided by the sum of

waiting times (per 100 patient-weeks)
† For testing the hypothesis that the waiting time distribution is exponential
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Fig. 5.3. Weekly proportion of elective admissions (that is, conditional probability of admission), by waiting time and
priority group
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5.3 What is the probability of undergoing surgery within a certain time?

5.3.1 Elective vascular surgery

Previously, we performed a study to evaluate the probability of undergoing elective vascular surgery within
a certain time among patients on wait lists, as described in [103]. Here, we updated our analysis by including
patients who were registered on the wait list after 1998.

The cumulative probabilities of undergoing surgery within a certain time were estimated using the
product-limit method [17], as described in Chapter 3; waiting times were treated as prospective observa-
tions that were monitored from registration until the patient’s last week on the list.

Of the 1916 cases, 1743 (91.0%) underwent surgery, 71 (3.7%) were still waiting at the end of the
follow-up period, and 102 (5.3%) were removed from the list without surgery for a variety of reasons (Table
5.3). Among those who received surgery, the proportions within and beyond recommended times were al-
most equal (50.9% and 49.1%, respectively). Among those who were removed from the list without having
surgery, 31.4% were removed before recommended times expired. The main reason patients waited longer
than the recommended times was the length of the wait list (997/1916 or 52.0%).

Table 5.3. Waiting outcomes and scheduling delays for patients registered for elective vascular surgery

Waiting outcomes n (%)

Surgery received

Immediate access 60 (3.1)

Access within recommended times 827 (43.2)

Access beyond recommended times

Because of the length of the wait list 586 (30.6)

Because of delay in scheduling surgery 270 (14.1)

Surgery not received

Removed from list before recommended times expired 32 (1.7)

Removed from list after recommended times expired

Waited because of the length of the wait list 39 (2.0)

Waited because of delay in scheduling surgery 31 (1.6)

Still on the list beyond recommended times

Because of the length of the wait list 20 (1.0)

Because of delay in scheduling surgery 51 (2.7)

Among patients waiting for elective vascular surgery, there were 1743 procedures over 18 015 patient-
weeks. The overall average weekly surgery rate was 9.7 per 100 patient-weeks (95% CI 9.2–10.1).

SAS Code 5.2 shows how we used PROC LIFETEST to estimate the percentiles of waiting time to
surgery and the probabilities of surgery within certain times. The LIFETEST procedure computes these
estimates by the non-parametric product-limit method. Waiting times were such that 25%, 50%, 75%, and
90% of patients underwent surgery in 3, 6, 14, and 27 weeks, respectively (SAS Output 5.2). The chances
of undergoing surgery by 1, 2, 3, 4 and 13 weeks on the list, the target access times, were 0.13, 0.25, 0.34,
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0.40, and 0.75, respectively (SAS Output 5.2). The median time to surgery was 6 weeks and the cumulative
probability of surgery by 13 weeks from registration was 75% (see Figure 3.1). Therefore, we concluded
that patients wait considerably different times for access to elective surgery provided by the same team of
specialists.

SAS Code 5.2: Product-limit estimates of waiting time percentiles and cumulative probabilities of admission

proc lifetest data=vasc method=km intervals = (1 to 40 by 1);
where wait>0;
time wait*status(1 2 3 4 5 6 7 8);

run;

SAS Output 5.2: Results from product-limit estimates of cumulative probabilities of admission
� �

The LIFETEST Procedure

Product -Limit Survival Estimates

Survival
Standard Number Number

wait Survival Failure Error Failed Left

0.0000 1.0000 0 0 0 1856
1.0000 0.8745 0.1255 0.00769 233 1623
2.0000 0.7521 0.2479 0.0100 459 1389
3.0000 0.6638 0.3362 0.0110 620 1211
4.0000 0.5978 0.4022 0.0114 740 1086
5.0000 0.5414 0.4586 0.0116 842 979
6.0000 0.4952 0.5048 0.0117 925 891
7.0000 0.4488 0.5512 0.0117 1008 803
8.0000 0.4012 0.5988 0.0115 1093 715
9.0000 0.3657 0.6343 0.0113 1156 650

10.0000 0.3420 0.6580 0.0112 1198 605
11.0000 0.3119 0.6881 0.0109 1251 549
12.0000 0.2794 0.7206 0.0106 1308 490
13.0000 0.2548 0.7452 0.0103 1351 446
14.0000 0.2340 0.7660 0.0100 1387 406
15.0000 0.2175 0.7825 0.00980 1415 369
16.0000 0.1951 0.8049 0.00944 1453 331
17.0000 0.1839 0.8161 0.00924 1472 310
18.0000 0.1713 0.8287 0.00901 1493 285
19.0000 0.1604 0.8396 0.00879 1511 265
20.0000 0.1488 0.8512 0.00855 1530 245
21.0000 0.1403 0.8597 0.00836 1544 230
22.0000 0.1336 0.8664 0.00820 1555 219
23.0000 0.1250 0.8750 0.00799 1569 205
24.0000 0.1145 0.8855 0.00771 1586 184
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25.0000 0.1101 0.8899 0.00759 1593 175
26.0000 0.1018 0.8982 0.00736 1606 161
27.0000 0.0929 0.9071 0.00709 1620 145
28.0000 0.0884 0.9116 0.00695 1627 137
29.0000 0.0825 0.9175 0.00676 1636 128
30.0000 0.0799 0.9201 0.00667 1640 122
31.0000 0.0746 0.9254 0.00648 1648 112
32.0000 0.0712 0.9288 0.00636 1653 105
33.0000 0.0699 0.9301 0.00631 1655 103
34.0000 0.0671 0.9329 0.00621 1659 99
35.0000 0.0637 0.9363 0.00608 1664 93
36.0000 0.0596 0.9404 0.00592 1670 87
37.0000 0.0582 0.9418 0.00586 1672 84
38.0000 0.0548 0.9452 0.00571 1677 79
39.0000 0.0526 0.9474 0.00562 1680 74
40.0000 0.0505 0.9495 0.00553 1683 71
41.0000* . . . 1683 0

NOTE: The marked survival times are censored observations.

Summary Statistics for Time Variable wait

Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)

75 14.0000 13.0000 15.0000
50 6.0000 6.0000 7.0000
25 3.0000 2.0000 3.0000

Mean Standard Error

10.2801 0.2520

NOTE: The mean survival time and its standard error were
underestimated because the largest observation was censored and

the estimation was restricted to the largest event time.

Summary of the Number of Censored and Uncensored Values

Percent
Total Failed Censored Censored

1856 1683 173 9.32
� �
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5.3.2 Elective coronary artery bypass grafting

We performed a study to evaluate the variation in time spent on the wait lists for coronary artery bypass
grafting (CABG) among patients awaiting elective surgery, as described in [70] (Chapter 2). Here, we limited
the analysis to patients who were registered for first-time isolated CABG. The cumulative probabilities of
undergoing surgery within a certain time were estimated using the product-limit method [17]; waiting times
were treated as prospective observations that were monitored from registration until the patient’s last week
on the list, as described in Chapter 3.

Among patients awaiting elective CABG, there were 7654 procedures over 136 746 patient-weeks.
Among the 8728 patients (94.9%) who were removed from the list by 52 weeks, 7654 received planned
surgery, 314 underwent unplanned emergency surgery, 91 died, 173 became unfit for surgery, 104 declined
surgery, 98 were transferred to another surgeon or hospital, 23 received other surgery, and 188 were removed
for other reasons (Table 5.4). The overall average weekly surgery rate was 5.6 per 100 patient-weeks (95%
CI 5.5–5.7). The waiting times were such that 25%, 50%, 75%, and 90% of patients underwent surgery in 5,
12, 23, and 46 weeks, respectively. The chances of undergoing surgery by 3, 6, 12, 25, and 52 weeks on the
list were 0.18, 0.31, 0.53, 0.79, and 0.91, respectively (Figure 5.4).

Again, we conclude that there was a considerable variation in delays for surgical revascularization in a
regional healthcare system. It remains to be examined whether events related to the wait-list management, for
example, delays in scheduling operations and surgery cancellations, affect the waiting time after adjustment
for urgency and comorbidity status.

Table 5.4. Waiting outcomes at 52 weeks since registration for elective coronary artery bypass grafting, by priority group

All patients Urgent Semiurgent Nonurgent

Waiting outcomes n (%) n (%) n (%) n (%)

Surgery at planned date∗

Immediate access 253 (2.8) 137 (21.2) 108 (1.7) 7 (0.4)

Within recommended time 2528 (27.5) 0 (0.0) 1981 (30.6) 547 (27.9)

Beyond recommended time 4833 (52.5) 433 (67.0) 3513 (54.2) 852 (43.5)

Removal from wait list

Unplanned emergency surgery 314 (3.4) 50 (7.7) 205 (3.2) 57 (2.9)

Died while waiting 91 (0.1) 4 (0.6) 54 (0.8) 26 (1.3)

Became unfit for surgery 173 (1.9) 3 (0.5) 88 (1.4) 78 (4.0)

Patient request 187 (2.0) 2 (0.3) 130 (2.0) 51 (2.6)

Transferred or moved 98 (1.1) 2 (0.3) 62 (0.1) 31 (1.6)

Other surgery 23 (0.3) 1 (0.2) 13 (0.2) 8 (0.4)

Other reason 188 (2.0) 9 (1.4) 117 (1.8) 57 (2.9)

Still on wait list 471 (5.1) 5 (0.8) 210 (3.2) 245 (12.5)
∗ Additional 40 (0.4%) with unknown priority underwent surgery between 1 and 12 weeks
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Fig. 5.4. Probability of undergoing elective coronary artery bypass grafting within a certain waiting time, as estimated
by the product-limit method. Arrows show probability of undergoing surgery by 3, 6, 12, 25, and 52 weeks.



6

Factors influencing waiting times

6.1 Introduction

In Chapter 1, we described the following factors that affect time to surgery: level of demand, hospital re-
sources, wait-list management, and patient characteristics. In this chapter, we present the results of several
studies investigating the relations between factors within and outside surgical care and waiting times for
surgery. We show that measuring the proportion of wait-listed patients undergoing treatment within a certain
period can clarify the role of these factors in accessing surgical services.

6.2 Does priority affect chances of admission for surgery?

6.2.1 Elective vascular surgery

The objective of this study was to compare the time spent on the wait list for elective vascular surgery
by priority group (Chapter 2). Compared to our previous analysis in [103], we added patients who were
registered on the wait list after 1998. We compared the number of weeks required for specified proportions
of patients to undergo the operation by priority group. The cumulative probabilities of undergoing surgery
within a certain time were estimated using the product-limit method [17], as described in Chapter 3; waiting
times were treated as prospective observations that were monitored from registration until the patient’s last
week on the list. The log-rank test, described in Chapter 3, was used to compare waiting times across priority
groups [18].

The average weekly rate of surgery, that is, the total number of admissions divided by the total number of
patient-weeks of follow-up, was calculated as a measure of the rate of admission within each priority group;
see Chapter 3. Then, the effect size of priority group on the weekly rate of surgery was estimated by means of
Poisson regression (3.78), which yielded the rate ratio (RR) [52], as discussed in Chapter 3. For this model,
in addition to variables coding priority group as in section 5.2, we entered age, sex, and registration period
to obtain adjusted rate ratios.

Waiting times varied across priority groups. SAS Code 6.1 shows how we used PROC LIFETEST to
evaluate the association between waiting times and priority group. SAS Output 6.1 shows that priority had a
major influence on waiting times, with shorter times for higher-priority groups, as measured by the log-rank
test and Wilcoxon test. In priority group 5, waiting times were such that 10%, 25%, 50%, 75%, and 90% of
the patients underwent surgery in 2, 3, 8, 20, and 39 weeks, respectively. In contrast, half of the patients in
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priority groups 1, 2, 3, and 4 underwent surgery in 2, 3, 7, and 11 weeks, respectively (Figure 6.1). Patients
in higher-priority groups had less than a 30% chance of undergoing surgery within the target access times:
8% of those with priority 1 underwent surgery within 1 week, 17% of those with priority 2 within 2 weeks,
27% of those with priority 3 within 3 weeks, and 16% of those with priority 4 within 4 weeks. Priority 5
patients had a 65% chance of undergoing surgery within 13 weeks, the target access time.

SAS Code 6.1: Comparison of access curves across priority groups

proc lifetest data=vasc method=km intervals = (1 to 40 by 1);
time wait*status(1 2 3 4 5 6 7 8);
strata urgstat;

run;

SAS Output 6.1: Results from comparison of access curves across priority groups
� �

Test of Equality over Strata

Pr >
Test Chi -Square DF Chi -Square

Log -Rank 756.9964 4 <.0001
Wilcoxon 732.8910 4 <.0001
-2Log(LR) 640.8100 4 <.0001

� �

The surgery rates were greater among higher-priority patients, ranging from 43.5 per 100 patient-weeks
for patients with priority 1 to 6.9 per 100 patient-weeks for patients with priority 5 (Table 6.1). Among
those who underwent surgery, 48.0% of priority 1 patients did so within target times, whereas only 17.3%
of priority 4 patients received timely access (Table 6.2). The odds of surgery within target times were about
5, 3, 2, and 14 times greater for patients with priority 1, 2, 3, and 5, respectively, than for patients with
priority 4. The median residual waiting times were longer for lower-priority groups and tended to fluctuate
over time (Figure 6.2).

Patients with equal surgical needs spend considerably different times on a wait list to elective surgery
provided by the same team of specialists, where queuing procedures are uniform. These variations in waiting
times within priority groups suggest that urgency of intervention is not the only factor influencing time spent
in a queue for elective surgery.
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Fig. 6.1. Estimated probability of undergoing elective vascular surgery within a certain waiting time, by priority group

Table 6.1. Relation between priority group and weekly rate of elective vascular surgery, as measured by rate ratios
derived from Poisson log-linear regression models

Priority No. of Total wait Surgery rate∗ (95% CI) Adjusted RR (95% CI)

procedures (patient-weeks)

1 (most urgent) 329 757 43.5 (38.8–48.2) 3.62 (3.04–4.30)

2 142 715 19.9 (16.6–23.1) 1.73 (1.40–2.15)

3 232 2149 10.8 (9.4–12.2) 1.00

4 294 3649 8.1 (7.1–9.0) 0.72 (0.61–0.86)

5 (least urgent) 746 10745 6.9 (6.4–7.4) 0.67 (0.58–0.78)

Abbreviations: CI = confidence interval, RR = rate ratio, adjusted for age, sex, and registration period
∗ Surgery rate was calculated as the number of elective procedures divided by the sum of waiting times

(per 100 patient-weeks)
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Table 6.2. Relation between priority group and probability of undergoing elective vascular surgery within target access
time for those who underwent such surgery, as measured by odds ratios derived from logistic regression models

Priority No. of procedures No. of procedures Procedures 90th–100th OR∗ (95% CI)

performed within TAT within TAT, % percentiles (weeks)

1 (most urgent) 329 158 48.0 5–16 4.5 (3.1–6.6)

2 142 58 40.8 12–26 3.3 (2.1–5.1)

3 232 66 28.4 19–41 1.5 (1.3–2.9)

4 294 51 17.3 24–41 1.0

5 (least urgent) 746 554 74.3 39–41 14.3 (10.0–20.5)

Abbreviations: TAT = target access time, OR = odds ratio, CI = confidence interval
∗Adjusted for sex, age, and registration period
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Fig. 6.2. Median residual waiting time for elective vascular surgery for a certain wait-list week, by priority group
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6.2.2 Elective coronary artery bypass grafting

The objective of this study was to compare the time spent on the wait list for coronary artery bypass grafting
surgery (CABG) by priority group, as described in [112] (Chapter 2). Here, we limited the analysis to
patients who were registered for first-time isolated CABG. We compared the number of weeks required for
specified proportions of patients to undergo the operation by priority group. The cumulative probabilities of
undergoing surgery within a certain time were estimated using the product-limit method [17], as described in
Chapter 3; waiting times were treated as prospective observations that were monitored from registration until
the patient’s last week on the list. The log-rank test, described in Chapter 3, was used to compare waiting
times across priority groups [18].

The average weekly rate of surgery, that is, the total number of admissions divided by the total number
of patient-weeks of follow-up, was calculated as a measure of the rate of admission within each priority
group, see Chapter 3. Then, the effect size of priority group on the weekly rate of surgery was estimated by
means of discrete-time survival regressions (3.87), which yield odds ratios (OR) [2], as described in Chapter
3. We used multivariable models to control for differences in age, sex, comorbidity, registration period, and
hospital. Confounding variables are discussed in Chapter 4.
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Fig. 6.3. Estimated probability of undergoing elective coronary artery bypass grafting within a certain waiting time, by
priority group
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Fig. 6.4. Median residual waiting time for elective coronary artery bypass grafting for a certain wait-list week, by priority
group

As expected, priority had a major influence on waiting times for CABG, with shorter times for higher-
priority groups, as measured by the log-rank test (test statistic = 1414.9, df = 2, p < 0.0001) and the Wilcoxon
test (test statistic = 1752.9, df = 2, p < 0.0001). Figure 6.3 shows the estimated access curves by priority
group. In the nonurgent group, waiting times were such that 10%, 25%, 50%, 75%, and 80% of patients
underwent surgery in 6, 11, 21, 41, and 52 weeks, respectively. In contrast, half of the patients in the semi-
urgent group underwent surgery within 10 weeks, and half of those in the urgent group underwent surgery
within 2 weeks. Patients had a less than 50% chance of undergoing surgery within the target access times:
40% of those in the urgent group underwent surgery within 1 week, 33% of those in the semiurgent group
within 6 weeks, and 29% of those in nonurgent group within 12 weeks.

Nonurgent patients had longer median residual waiting times for all weeks since registration (Figure
6.4). Although median residual waiting times did not change drastically over time in the semiurgent and
nonurgent groups, these times increased dramatically for patients in the urgent group after 15 weeks on the
list. The weekly rate of surgery was greater in higher-priority groups (Table 6.3).

To evaluate the unadjusted effect of priority group on the weekly probability of admission for surgery
we used a proportional odds model (equation 3.85) from discrete-time survival methods. The logit transfor-
mation of the time-dependent probability of surgery p was modeled as a linear function of priority group as
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defined in SAS Code B.3 (see Appendix):

log
( pwk

1 − pwk

)
= αwk + β1iurbk1 + β2iurbk2 ,

where iurbk1 is 1 for urgent group and 0 otherwise, iurbk2 is 1 for semiurgent group and 0 otherwise,
and wk indexes week on the wait list. A pooled analysis of the logistic regression models developed for
each week of follow-up, treating consecutive periods of observation as ordered strata, were used to estimate
common regression coefficients for the study variables.

Using SAS Code 6.2, we fit this proportional odds model. For this, we expanded the data set to create
patient by week records, with an indicator variable for surgery. Then, we fitted the regression model using
PROC GENMOD. By specifying wk as a class variable and the “noint" option in PROC GENMOD, we
obtain 53 intercept estimates, α̂wk, for each week on the wait list. SAS Output 6.2 shows the parameter
estimates for the effect of urgent (β̂1 = 1.88, standard error = 0.05) and semiurgent (β̂2 = 0.71, standard
error = 0.03) status, relative to nonurgent status. Before adjustment, the weekly odds of surgery were more
than 6 times greater for patients in the urgent group and 2 times greater for those in the semiurgent group,
relative to patients in the nonurgent group (Table 6.3). After adjustment (SAS code and output not shown),
the weekly odds of surgery were more than 5 times greater and less than 2 times greater for patients in the
urgent and semiurgent group, respectively (Table 6.3).

Therefore, we concluded that there were significant differences in access to surgery among priority
groups, with larger proportions of more urgent patients undergoing CABG during every wait-list week.
However, considerable variation in waiting times was observed within each priority group. Clearly, coex-
isting illnesses, a patient’s request to postpone the operation or a surgeon’s decision to ask for additional
examinations before the scheduling could extend waiting times. On the other hand, cancellations because of
lack of a hospital resource, such as an intensive care unit bed, could change queuing in favour of procedures
that, for instance, would not require the resource.

Table 6.3. Relation between priority group and weekly rate of elective coronary artery bypass grafting, as measured by
odds ratios derived from discrete-time survival regression models

No. of Total wait Surgery rate∗ Crude OR Adjusted OR†

Priority procedures (patient-weeks) (95% CI) (95% CI) (95% CI)

Urgent 570 3 056.5 18.6 (17.1–20.2) 6.58 (5.92–7.33) 5.36 (4.80–6.00)

Semiurgent 5602 86 952.5 6.4 (6.3–6.6) 2.04 (1.92–2.16) 1.59 (1.49–1.70)

Nonurgent 1406 44 595.0 3.2 (3.0–3.3) 1.00 1.00

All patients‡ 7654 136 745.5 5.6 (5.5–5.7) – –

Abbreviations: OR = odds ratio from discrete survival analysis, CI = confidence interval
∗ Weekly surgery rate was calculated as the number of elective procedures divided by the sum of

waiting times (per 100 patient-weeks)
† Adjusted for age, sex, registration period, comorbidity, and hospital
‡ Includes additional patients whose priority was not available
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SAS Code 6.2: Discrete-time survival regression model for effect of priority groups

* Create patient-week data for discrete-time survival analyses *;
data cabgex;
set cabg;
isx=0;
do i=0 to wait;
wk=i; if i=0 then wk=0.5;
if (status=0 | status=13) & i=wait then isx=1; * indicator for surgery *;
if wk<=52 then output; * censor at 52 weeks *;

end;
drop i;

run;

* Discrete-time survival model *;
proc genmod data=cabgex desc;
where ur_bk^=’U’;
class wk;
model isx= wk iurbk1 iurbk2 /d=binomial link=logit noint;

run;

SAS Output 6.2: Results from discrete-time survival regression model for effect of priority groups
� �

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi -
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 0 0.0000 0.0000 0.0000 0.0000 . .
wk 0.5 1 -4.3058 0.0701 -4.4431 -4.1685 3777.75 <.0001
wk 1 1 -3.5705 0.0547 -3.6777 -3.4634 4263.45 <.0001
wk 2 1 -3.5536 0.0561 -3.6635 -3.4436 4012.21 <.0001
...
wk 51 1 -4.6674 0.3817 -5.4156 -3.9192 149.49 <.0001
wk 52 1 -4.1734 0.3064 -4.7739 -3.5729 185.54 <.0001
iurbk1 1 1.8847 0.0544 1.7781 1.9913 1200.84 <.0001
iurbk2 1 0.7108 0.0307 0.6506 0.7711 535.22 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

� �

6.3 Does registration period affect waiting times?

The objective of the next study was to determine whether the period of registration on a wait list affected
time to isolated CABG and whether the period effect was similar across priority groups. Compared to our
previous analysis in [70], we limited the analysis to patients registered for first-time isolated CABG. Using
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all relevant records from the provincial population-based registry of patients with coronary artery disease
(CAD) identified as needing bypass surgery, as described in Chapter 2, we studied the waiting time before
and after supplementary funding became available.

We compared the number of weeks from registration to surgery for equal proportions of patients in
synthetic cohorts defined by five 2-year periods of registration on the wait lists: 1991–1992, 1993–1994,
1995–1996, 1997–1998, and 1999–2000. The cumulative probabilities of undergoing surgery within a cer-
tain time were estimated using the product-limit method [17], as described in Chapter 3; waiting times were
treated as prospective observations that were monitored from registration until the patient’s last week on the
list. The log-rank test, described in Chapter 3, was used to compare waiting times across registration periods
[18].

The average weekly rate of surgery, that is, the total number of admissions divided by the total number
of patient-weeks of follow-up, was calculated as a measure of the rate of admission within each registration
period; see Chapter 3. To measure the effect of the registration period, we used Cox regression with fixed
indicator variables for registration period (3.66). The exponential of the regression coefficients for these
variables gave the hazard ratios for each registration period relative to 1991–1992, a value of less than 1 in-
dicating a lower hazard of surgery. We used multivariable models to control for differences in priority group
and comorbidity. We stratified by age and sex to avoid the proportionality assumption for these variables.
Confounding variables are discussed in Chapter 4.

Waiting times in 1995–1996 were such that 25%, 50%, 75%, and 90% of patients underwent surgery in
6, 15, 27, and 50 weeks, whereas half of patients in 1991–1992 and 1993–1994 underwent surgery within 9
weeks (Table 6.4).

Table 6.4. Delays in undergoing elective coronary artery bypass grafting after registration on a wait list, by registration
period

Percentiles (weeks)

Registration No. of Procedures Median 10th 25th 75th 90th Maximum

period patients performed, % (95% CI) time

1991–1992 1723 83.5 9 (9–10) 1 4 20 48 51

1993–1994 1883 84.3 9 (9–10) 2 4 19 48 52

1995–1996 1995 82.3 15 (15–16) 2 6 27 50 52

1997–1998 1884 81.6 14 (13–15) 3 7 26 44 52

1999–2000 1714 84.5 11 (10–12) 3 6 19 40 52

All periods 9199 83.2 12 (11–12) 2 5 23 46 52

Abbreviations: CI = confidence interval

The proportion of registered patients designated as having priority 1 was lowest in 1999–2000 (10.4%)
and highest in 1995–1996 (36.7%), whereas the proportion designated as having priority 3 was highest was
in 1999–2000 (22.3%) (Table 2.3). There was a difference in the proportion of patients undergoing surgery
across registration periods, as measured by the log-rank test (test statistic = 106.1, df = 4, p < 0.0001). In
each priority group, there was a difference in access to surgery between those registered in 1991–1992 and
those registered in 1995–1996 (priority 1: test statistic = 4.1, df = 1, p = 0.04; priority 2: test statistic = 56.0,
df = 1, p < 0.0001; priority 3: test statistic = 20.1, df = 1, p < 0.0001). For priority 1 patients, the average
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Fig. 6.5. Estimated probability of undergoing elective coronary artery bypass grafting within a certain waiting time, by
registration period

weekly surgery rates declined from 36.4 per 100 patient-weeks in the 1991–1992 cohort to 17.8 in the 1995–
1996 cohort and to 11.6 in the 1999–2000 cohort. For priority 2 patients, the average weekly surgery rate
changed from 7.0 per 100 patient-weeks in the 1991–1992 cohort to 5.2 in the 1995–1996 cohort to 7.1 in
the 1999–2000 cohort. For priority 3 patients, the average weekly surgery rate followed a similar pattern to
that for priority 2 patients, with 3.7 per 100 patient-weeks in the 1991–1992 cohort, 2.6 in the 1995–1996
cohort, and 3.9 in the 1999–2000 cohort. The total number of elective and inpatient procedures increased by
13% (3681 to 4168) from 1995–1996 to 1999–2000, Tables 2.3 and 2.4. Overall, 9199 patients spent a total
of 136 746 patient-weeks on the wait lists. The time to surgery increased by the middle of the decade and
decreased toward the end of the decade (Figure 6.5).

To evaluate the effect of registration period on weekly surgery rate, we used a Cox regression model
(equation 3.66). The hazard of surgery, λ(t), was modeled across strata as a log-linear function of explana-
tory variables defined in SAS Code B.3 (see Appendix):

log λs(t) = αs(t) + β1iurbk2 + β2iurbk3 + β3icmc2 + β4icmc3 + β5icy93 + β6icy95

+β7icy97 + β8icy99 ,
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where iurbk2 is 1 for semiurgent group and 0 otherwise, iurbk3 is 1 for nonurgent group and 0 otherwise,
icmc2 is 1 for other comorbid conditions and 0 otherwise, icmc3 is 1 for major comorbid conditions and
0 otherwise, icy93 is 1 for 1993–1994 registration period and 0 otherwise, icy95 is 1 for 1995–1996
registration period and 0 otherwise, icy97 is 1 for 1997–1998 registration period and 0 otherwise, icy99 is
1 for 1999–2000 registration period and 0 otherwise, and αs(t) is the logarithm of a baseline hazard function
for stratum s defined by age group and sex. SAS Code 6.3 shows how we used PROC PHREG to fit this Cox
regression model to evaluate the effect of registration period on weekly surgery rate, stratified by age and
sex and adjusted for priority group and comorbidity.

Tests of the global null hypothesis (SAS Output 6.3) revealed evidence to indicate that the model explains
variation in surgery rates (likelihood ratio test statistic = 1387.2, df = 8, p < 0.0001). The likelihood ratio
test statistic (equation 3.59) is equal to the difference between −2 times the log-likelihood of the model with
an intercept only and −2 times the log-likelihood of the fitted model. The −2 times the log-likelihood of the
intercept only model and fitted model (see SAS Output 6.3) are 56771.9 and 55384.7, respectively. Thus,
the likelihood ratio test statistic is

LRT = 56771.9 − 55384.7 = 1387.2 .

The degrees of freedom for the chi-square distribution under the null hypothesis is equal to the number
of parameters in the model, excluding the intercept, namely 8. Therefore, the p-value is the probability of
observing a test statistic greater than or equal to 1387.2 from a chi-square distribution with 8 degrees of
freedom, which results in a p-value less than 0.0001. SAS Output 6.3 also shows the parameter estimates for
each registration period 1993–1994, 1995–1996, 1997–1998, 1999–2000 relative to 1991–1992, identified
by variables icy93, icy95, icy97, and icy99.

Relative to the 1991–1992 registration period, and after adjustment for priority group at registration,
comorbidity, age and sex, the conditional weekly probabilities of undergoing surgery were 30% lower among
patients who were registered on a wait list in 1995–1996 (hazard ratio [HR] = 0.70, 95% CI 0.65–0.76) and
23% lower among those who were registered in 1997–1998 (HR = 0.77, 95% CI 0.71–0.83); there was
no difference for those registered in 1999–2000 (HR = 0.96, 95% CI 0.89–1.03) (Table 6.5). The effect of
registration period differed across priority groups (Table 6.6).

SAS Code 6.3: Cox regression model for effect of registration period

proc phreg data=cabg;
where ur_bk^=’U’ & agecat2^=99 & sexf^=’U’;
model wait05*status(1 2 3 4 5 6 7 8 9 12)= iurbk2 iurbk3 icmc2
icmc3 icy93 icy95 icy97 icy99
/ties=discrete;
strata agecat2 sexf;

run;



98 6 Factors influencing waiting times

SAS Output 6.3: Results from Cox regression model for effect of registration period
� �

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 56771.907 55384.718
AIC 56771.907 55400.718
SBC 56771.907 55456.182

Testing Global Null Hypothesis: BETA=0

Test Chi -Square DF Pr > ChiSq

Likelihood Ratio 1387.1894 8 <.0001
Score 1598.8831 8 <.0001
Wald 1442.4426 8 <.0001

Analysis of Maximum Likelihood Estimates

Parameter Standard
Variable DF Estimate Error Chi -Square Pr > ChiSq

iurbk2 1 -1.24406 0.04914 640.8364 <.0001
iurbk3 1 -1.95616 0.05515 1257.9714 <.0001
icmc2 1 0.17705 0.02855 38.4495 <.0001
icmc3 1 0.08349 0.03080 7.3462 0.0067
icy93 1 0.02198 0.03817 0.3317 0.5647
icy95 1 -0.35222 0.03801 85.8831 <.0001
icy97 1 -0.26192 0.03848 46.3269 <.0001
icy99 1 -0.04290 0.03923 1.1954 0.2742

� �

Our results provide evidence that time to CABG declined after annual supplementary funding was pro-
vided to tertiary care hospitals within a single publicly funded health system. One plausible explanation is
that these hospitals had the capacity to increase the number of operations. At the same time, the effect was
not uniform across priority groups, which indicates that changes in clinical practice should be considered
when extra funding is added to reduce wait lists.
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Table 6.5. Relation between registration period and average weekly rate of elective coronary artery bypass grafting, as
measured by adjusted hazard ratios derived from Cox regression models

Registration period No. of Total wait Surgery rate∗ (SE) HR (95% CI)†

procedures (patient-weeks)

1991–1992 1438 23 044.5 6.2 (0.2) 1.00

1993–1994 1588 25 289.5 6.3 (0.2) 1.02 (0.95–1.10)

1995–1996 1641 34 098.0 4.8 (0.1) 0.70 (0.65–0.76)

1997–1998 1538 30 355.5 5.1 (0.1) 0.77 (0.71–0.83)

1999–2000 1449 23 958.0 6.0 (0.2) 0.96 (0.89–1.03)

All periods 7654 136 745.5 5.6 (0.1)

Abbreviations: SE = standard error, HR = hazard ratio, CI = confidence interval
∗ Weekly surgery rate was calculated as the number of elective procedures divided by

the sum of waiting times (per 100 patient-weeks)
† Adjusted for priority group and comorbidity, stratified by age and sex

Table 6.6. Access to surgery for patients registered for elective coronary artery bypass grafting, by registration period
and priority group, as measured by adjusted hazard ratios∗ derived from Cox regression models

Urgent Semiurgent Nonurgent

Registration Surgery rate† HR Surgery rate† HR Surgery rate† HR

period (SE) (95% CI) (SE) (95% CI) (SE) (95% CI)

1991–1992 36.4 (3.7) 1.00 7.0 (0.2) 1.00 3.7 (0.2) 1.00

1993–1994 27.0 (2.6) 0.93 (0.67–1.29) 7.7 (0.2) 1.11 (1.02–1.21) 3.0 (0.2) 0.79 (0.66–0.94)

1995–1996 17.8 (1.2) 0.70 (0.53–0.94) 5.2 (0.2) 0.71 (0.65–0.78) 2.6 (0.2) 0.69 (0.58–0.82)

1997–1998 14.0 (1.4) 0.54 (0.39–0.75) 6.0 (0.2) 0.81 (0.75–0.89) 2.9 (0.2) 0.74 (0.62–0.88)

1999–2000 11.6 (1.5) 0.53 (0.36–0.78) 7.1 (0.2) 0.99 (0.91–1.08) 3.9 (0.2) 1.09 (0.92–1.29)

Abbreviations: SE = standard error, HR = hazard ratio, CI = confidence interval
∗ Adjusted for comorbidity, stratified by age and sex
† Weekly surgery rate was calculated as the number of elective procedures divided by the sum of waiting times

(per 100 patient-weeks)
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6.4 Does the type of procedure affect waiting times?

The objective of this study was to compare the time spent on the wait list for elective vascular surgery by
procedure (Chapter 2). Compared to our previous analysis in [103], we added patients who were registered
on the wait list after 1998.

We compared the number of weeks required for specified proportions of patients to undergo the operation
by procedure. The cumulative probabilities of undergoing surgery within a certain time were estimated
using the product-limit method [17], as described in Chapter 3; waiting times were treated as prospective
observations that were monitored from registration until the patient’s last week on the list. The log-rank test,
as described in Chapter 3, was used to compare waiting times across procedures [18].

The average weekly rate of surgery, that is, the total number of admissions divided by the total number
of patient-weeks of follow-up, was calculated as a measure of the rate of admission for each procedure, see
Chapter 3. Then, the effect size of procedure on the weekly rate of surgery was estimated by means of the
Poisson log-linear model (3.78), which yields the rate ratio (RR) [52], as described in Chapter 3.
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Fig. 6.6. Estimated probability of undergoing elective vascular surgery within a certain waiting time, by procedure. AVF
= arteriovenous fistula, AAA = abdominal aortic aneurysm, CEA = carotid endarterectomy.
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Among all patients awaiting elective surgery, there was a difference in access to surgery according to type
of procedure (arteriovenous fistula (AVF), abdominal aortic aneurysm (AAA), or carotid endarterectomy
(CEA)), as measured by the log-rank test (test statistic = 43.0, df = 2, p < 0.0001). In the AVF group,
waiting times were such that 25%, 50%, 75%, and 90% of patients underwent surgery within 3, 5, 10, and
21 weeks, respectively (Figure 6.6). Waiting times were similar for the AAA group, with 50% and 90%
undergoing surgery within 8 and 20 weeks, but longer for the CEA group, with 50% and 90% undergoing
surgery within 10 and 30 weeks.

The weekly admission rate was lowest for patients undergoing CEA (7.4 per 100 patient-weeks) and
highest for those undergoing AVF for hemodialysis (11.5 per 100 patient-weeks) (Table 6.7).

Among priority 5 patients, there was a difference in access to surgery across procedures, as measured by
the log-rank test (test statistic = 98.5, df = 2, p < 0.0001). For these patients, waiting times to surgery were
shortest for more urgent peripheral vascular disease procedures and longest for least urgent CEA procedures
(Figure 6.7).

Table 6.7. Relation between type of procedure and average weekly rate of elective vascular surgery, as measured by rate
ratios derived from Poisson regression models

Surgical procedure No. of Total wait Surgery rate∗ (SE) RR (95% CI)

procedures (patient-weeks)

AAA repair 459 4389 10.5 (0.5) 0.9 (0.8–1.0)

CEA 373 5071 7.4 (0.4) 0.6 (0.6–0.7)

PVD surgery 569 5586 10.2 (0.4) 0.8 (0.7–1.0)

AVF for hemodialysis 342 2969 11.5 (0.6) 1.0

Abbreviations: SE = standard error, RR = rate ratio, CI = confidence interval,

AAA = abdominal aortic aneurysm, CEA = carotid endarterectomy,

PVD = peripheral vascular disease, AVF = arteriovenous fistula
∗Weekly surgery rate was calculated as the number of procedures divided by the sum of waiting

times (per 100 patient-weeks)

Two other factors are worth discussing in this context. First, if operating room time becomes available
unexpectedly, the surgeons occasionally call their wait-list managers to see if there is anyone on the list who
can come in within a few hours. Therefore, partitioning a queue according to patient agreement to come
at very short notice may have changed the first-come-first-served queue discipline within priority classes
in favour of that procedure. Second, we hypothesize that two events, delay in scheduling operations and
cancellation of booked operations, may also change waiting times.
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Fig. 6.7. Estimated probability of undergoing elective vascular surgery within a certain waiting time, by procedure. PVD
= peripheral vascular disease, CEA = carotid endarterectomy.

6.5 Does wait-list size at registration affect time to surgery?

6.5.1 Elective vascular surgery

The objective of this study was to assess how the probability of undergoing vascular surgery within a certain
period relates to the number of patients on the wait list at the time of registration [109]. We used a prospective
cohort study of patients registered on the wait list for elective vascular surgery at an acute care hospital in
Ontario, as briefly described in Chapter 2.

The primary outcome was time to surgery, and comparisons were made between list-size categories. List-
size computation and categorization are described in Chapter 4. First, we compared the number of weeks
required for specified proportions of patients to undergo the operation by list-size and batch-size categories.
For each patient, the batch size of arrivals was the count of patients with higher or equal queuing priority
registered on the list in the same week. The cumulative probabilities of undergoing surgery within a certain
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time were estimated using the product-limit method [17], as described in Chapter 3; waiting times were
treated as prospective observations that were monitored from registration until the patient’s last week on
the list. The log-rank test, described in Chapter 3, was used to compare waiting times across list-size and
batch-size categories [18].

Then, we used regression analysis of waiting times, specifically the complementary log-log model (3.92)
from discrete-time survival analysis described in Chapter 3, to express the admission rate in one list-size
group relative to another, with the hazard ratio being a measure of the difference between groups. Within
this model, we assumed that time to surgery (in weeks) is a coarse measure and that removal from the list
could occur at any time. We used multivariable models to control for differences in procedure, age, sex, and
registration period. Confounding variables are discussed in Chapter 4.

For the majority of priority 1 and 2 patients, the length of the wait list at registration was 4 or fewer,
whereas for the majority of priority 4 and 5 patients, it was 21 or more (Table 6.8). There was an association
between list length at registration and waiting times, with shorter times for shorter lists (log-rank test statistic
= 597.4, df = 2, p < 0.0001). When the list length exceeded 20 patients, waiting times were such that 10%,
25%, 50%, and 75% of patients underwent surgery within 3, 5, 11, and 19 weeks, respectively, whereas 50%
underwent surgery within 6 weeks if 5 to 20 patients were ahead (Figure 6.8).

The batch size of arrivals in the week of registration was also associated with waiting times, with shorter
times for 1 to 4 arrivals (log-rank test statistic = 38.5, df = 1, p < 0.01). For batch sizes of less than 5, waiting
times were such that 10%, 25%, 50%, and 75% of patients underwent surgery within 1, 2, 5, and 12 weeks,
respectively, whereas for batch sizes of 5 or more, 50% underwent surgery within 8 weeks. Although for
patients registered on lists with fewer than 5 patients there was a difference in time to surgery for different
batch sizes (log-rank test statistic = 6.7, df = 1, p = 0.01), there was no significant difference related to batch
size for patients registered on lists with 5 to 20 patients (log-rank test statistic = 1.2, df = 1, p = 0.27) or
more than 20 patients (log-rank test statistic = 1.5, df = 1, p = 0.22). Furthermore, equality of hazard ratios
between batch sizes showed a difference within the smallest list-length group, as measured by the Wald test
(Wald test statistic = 11.1, df = 1, p = 0.0009), but no difference in effect was detected within the group with
batch size 5 to 20 (Wald test statistic = 2.2, df = 1, p = 0.13) or within the group with batch size over 20
(Wald test statistic = 1.9, df = 1, p = 0.17). Therefore, we report effects by batch size within the smallest
list-size category only.

Table 6.8. Distribution of wait-list size and batch size for patients registered for elective vascular surgery, by priority
group

Priority; no. (%) of patients

Factor All patients 1 2 3 4 5

Wait-list size

0–4 479 (25.0) 332 (96.5) 130 (87.2) 6 (2.4) 4 (1.3) 7 (0.8)

5–20 531 (27.7) 12 (3.5) 19 (12.8) 123 (49.8) 75 (24.0) 302 (35.0)

≥21 906 (47.3) 0 (0.0) 0 (0.0) 118 (47.8) 234 (74.8) 554 (64.2)

Batch size∗

1–4 1041 (54.3) 307 (89.2) 130 (87.2) 105 (42.5) 105 (33.5) 394 (45.7)

≥5 875 (45.7) 37 (10.8) 19 (12.8) 142 (57.5) 208 (66.5) 469 (54.3)
∗Number of patients with higher or equal queuing priority registered on the wait list

in the same week
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Fig. 6.8. Estimated probability of undergoing elective vascular surgery within a certain waiting time, by wait-list size
and batch size

List length at registration was associated with length of wait (log-rank test statistic = 597.4, df = 2,
p < 0.0001). To evaluate the effect of wait-list size on surgery rate we used a discrete-time survival regres-
sion model with complementary log-log link (equation 3.92). The complementary log-log transformation
of the time-dependent probability of surgery p was modeled as a linear function of wait-list size and other
explanatory variables as defined in SAS Code B.1 (see Appendix):

log(− log(1 − pweek)) = αweek + β1wlsz2 + β2wlsz3 + β3ag0 + β4ag1 + β5ag2 + β6sexf

+β7per32 + β8per33 + β9proc1 + β10proc2 + β11proc3 ,

where wlsz2 is 1 for list sizes 5–20 and 0 otherwise, wlsz3 is 1 for list sizes over 21 and 0 otherwise,
ag0 is 1 for age less than 45 years and 0 otherwise, ag1 is 1 for age between 45 and 64 years and 0
otherwise, ag2 is 1 for age between 65 and 74 years and 0 otherwise, sexf is 1 for woman and 0 otherwise,
per32 is 1 for registration period 1997–1999 and 0 otherwise, per33 is 1 for registration period 2000–
2001 and 0 otherwise, proc1 is 1 for AAA and 0 otherwise, proc2 is 1 for CEA and 0 otherwise, proc3
is 1 for other PVD procedures and 0 otherwise, and week indexes week on the wait list. The effects of
explanatory variables are assumed to be constant over consecutive wait-list weeks, so we performed a pooled
analysis of the regression models developed for each week of follow-up. In SAS Code 6.4, we used PROC
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GENMOD to estimate the effect of wait-list size on surgery rate via a complementary log-log regression
model. By specifying week as a class variable and the “noint" option in PROC GENMOD, we obtain 40
intercept estimates, α̂week, for each week on the wait list. SAS Output 6.4 shows partial results of this
model. Compared with the smallest list-size category, the parameter estimates for list sizes 5–20 and over 20
were β̂1 = −1.19 (SE = 0.08) and β̂2 = −1.61 (SE = 0.07), respectively. The corresponding hazard ratios
from SAS Output 6.4 are shown in model 1 of Table 6.9. Patients who were registered when the list length
exceeded the weekly service capacity had 70% lower conditional probability of undergoing surgery than
those on a list with fewer patients (HR = 0.30, 95% CI 0.26–0.35) after adjustment for sex, age, procedure,
and period. In a separate analysis, we found that registering more than 5 patients when the list was short had
an independent effect (HR = 0.61, 95% CI 0.45–0.82) (see model 2 in Table 6.9).

SAS Code 6.4: Complementary log-log regression model for effect of wait-list size

proc genmod data=wtimesz5 desc;
where wait>0; * exclude those with immediate access *;
class week;
model access=week ag0 ag1 ag2 sexf per32 per33 proc1 proc2 proc3 wlsz2 wlsz3
/d=binomial link=cll noint;

run;

SAS Output 6.4: Results from complementary log-log regression model for effect of wait-list size
� �

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 18E3 10441.1237 0.5835
Scaled Deviance 18E3 10441.1237 0.5835
Pearson Chi -Square 18E3 17862.6345 0.9983
Scaled Pearson X2 18E3 17862.6345 0.9983
Log Likelihood -5220.5618

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi -
Parameter DF Estimate Error Limits Square Pr > ChiSq

wlsz2 1 -1.1943 0.0807 -1.3524 -1.0361 219.05 <.0001
wlsz3 1 -1.6102 0.0731 -1.7535 -1.4668 484.69 <.0001

� �

The number of registrants on a surgical wait list affected the length of delay in providing necessary
treatment. Our results suggest that a regulated list-length policy may help to reduce waiting times. Hospital
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Table 6.9. Relation between wait-list size and probability of admission for elective vascular surgery in the next week, as
measured by adjusted hazard ratios∗ derived from complementary log-log regression models

Model 1 Model 2

Factor HR∗ (95% CI) Factor HR∗ (95% CI)

- List size 0–4, batch size 1–4 1.0

List size 0–4 1.0 List size 0–4, batch size ≥5 0.61 (0.45–0.82)

List size 5–20 0.30 (0.26–0.35) List size 5–20, any batch size 0.28 (0.24–0.33)

List size ≥21 0.20 (0.17–0.23) List size ≥21, any batch size 0.18 (0.16–0.21)

Abbreviations: HR = hazard ratio, CI = confidence interval
∗Adjusted for procedure, age, sex, wait-list week, and registration period

managers may also use the findings to reduce uncertainty in reporting expected waits given the current list
size, which could improve resource planning.

6.5.2 Elective coronary artery bypass grafting

Previously, we determined whether the probability of undergoing CABG within a certain time was related to
the number of patients on the wait list at registration in a publicly funded health system [112]. Here, we lim-
ited our analysis to patients who were registered for first-time isolated CABG. To examine the relationship
between the size of a surgical wait list and the delay before undergoing treatment, we studied actual waiting
times from a population-based database of patients registered for CABG surgery between 1991 and 2000 in
British Columbia (Chapter 2).

For each calendar week, the list size, the number of new registrations, and the number of direct ad-
missions immediately after angiography characterized the demand for surgery. List-size computation and
categorization according to clearance times are described in Chapter 4. We compared the number of weeks
required for specified proportions of patients to undergo the operation by clearance-time categories. The
cumulative probabilities of undergoing surgery within a certain time were estimated using the product-limit
method [17], as described in Chapter 3; waiting times were treated as prospective observations that were
monitored from registration until the patient’s last week on the list. The log-rank test, as described in Chap-
ter 3, was used to compare waiting times across clearance-time categories [18]. The average weekly rate of
surgery, that is, the total number of admissions divided by the total number of patient-weeks of follow-up,
was calculated as a measure of the rate of admission within each group, see Chapter 3.

The effect size of clearance time on the weekly probability of admission for surgery was estimated by
means of the proportional odds model (3.87) from discrete-time survival analysis, which yields the odds ratio
(OR) [2], see Chapter 3. We used multivariable models to control for differences in age, sex, comorbidity,
period, and hospital. Confounding variables are discussed in Chapter 4.

Table 6.10 shows the distribution of clearance times and batch sizes for patients registered for CABG, by
priority group. All patients with urgent status had a clearance time of less than 1 week, whereas the clearance
time was 1 month for most patients with semiurgent status (52.2%) and more than 1 month for most of those
with nonurgent status (55.6%). For the majority of patients (71.9%), batch size did not exceed the weekly
number of operating room slots.

The waiting times for surgery were longer for patients who were registered on lists which required longer
clearance times (Table 6.11). The length of delay in undergoing treatment was associated with clearance time
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Table 6.10. Distribution of clearance time and batch size for patients registered for elective coronary artery bypass
grafting, by priority group

Priority; no. (%) of patients

Factor All patients Urgent Semiurgent Nonurgent

Clearance time

< 1 week 1508 (16.4) 646 (100.0) 749 (11.6) 77 (3.9)

0.5 month 1273 (13.8) 0 (0.0) 999 (15.4) 253 (12.9)

1 month 3950 (42.9) 0 (0.0) 3380 (52.2) 539 (27.5)

> 1 month 2468 (26.8) 0 (0.0) 1353 (20.9) 1090 (55.6)

Batch-size∗

≤ weekly capacity 6613 (71.9) 639 (98.9) 4337 (66.9) 1541 (78.7)

> week capacity 2586 (28.1) 7 (1.1) 2144 (33.1) 418 (21.3)
∗Number of patients with higher or equal queuing priority registered on the

wait list in the same week

at registration, with shorter times for shorter lists (log-rank test statistic = 1103.3, p < 0.0001) (Figure 6.9).
The average weekly surgery rate decreased with longer lists: 12.4 per 100 patient-weeks (95% CI 11.7–13.0)
for group with clearance times of less than 1 week, 6.6 per 100 patient-weeks (95% CI 6.2–7.0) for group
with clearance time of 0.5 month, 5.5 per 100 patient-weeks (95% CI 5.3, 5.6) for group with clearance time
of 1 month, and 3.9 per 100 patient-weeks (95% CI 3.8–4.1) for group with clearance time of greater than 1
month.

To evaluate the effect of clearance time on the weekly probability of admission for surgery we used a
proportional odds model (equation 3.87) from discrete-time survival methods. The logit transformation of
the time-dependent probability of surgery p was modeled as a linear function of clearance time and other
explanatory variables as defined in SAS Code B.3 and SAS Code B.8 (see Appendix):

log
( ptime

1 − ptime

)
= αtime + β1age0 + β2age1 + β3age3 + β4age4 + β5sexfn + β6icmc2 + β7icmc3

+β8icy93 + β9icy95 + β10icy97 + β11icy99 + β12ihsp2 + β13ihsp3 + β14ihsp4

+β15wlsz2 + β16wlsz3 + β17wlsz4 ,

where age0 is 1 for age less than 50 years and 0 otherwise, age1 is 1 for age between 50 and 59 years and 0
otherwise, age3 is 1 for age between 70 and 79 years and 0 otherwise, age4 is 1 for age over 80 years and 0
otherwise, sexfn is 1 for woman and 0 otherwise, icmc2 is 1 for other comorbid conditions and 0 otherwise,
icmc3 is 1 for major comorbid conditions and 0 otherwise, icy93 is 1 for 1993–1994 registration period
and 0 otherwise, icy95 is 1 for 1995–1996 registration period and 0 otherwise, icy97 is 1 for 1997–1998
registration period and 0 otherwise, icy99 is 1 for 1999–2000 registration period and 0 otherwise, ihsp2 is
1 for hospital 2 and 0 otherwise, ihsp3 is 1 for hospital 3 and 0 otherwise, ihsp4 is 1 for hospital 4 and 0
otherwise, wlsz2 is 1 for half month clearance time and 0 otherwise, wlsz3 is 1 for one month clearance
time and 0 otherwise, wlsz4 is 1 for over one month clearance time and 0 otherwise, and time indexes week
on the wait list.

A pooled analysis of the logistic regression models developed for each week of follow-up, treating con-
secutive periods of observation as ordered strata, were used to estimate common regression coefficients for



108 6 Factors influencing waiting times

Table 6.11. Delays in undergoing elective coronary artery bypass grafting after registration on a wait list, by clearance
time and batch size

Percentiles (weeks)

Factor No. of Procedures Median 10th 25th 75th 90th Maximum

patients performed, % (95% CI) time

<1 week clearance time

Batch size ≤ weekly capacity 1400 88.9 5 (4–5) 0 2 10 17 51

Batch size > weekly capacity 108 88.0 6 (5–8) 1 3 11 30 50

0.5 month clearance time

Batch size ≤ weekly capacity 1046 81.1 10 (10–11) 3 6 20 39 50

Batch size > weekly capacity 227 87.7 9 (8–10) 3 6 14 17 45

1 month clearance time

Batch size ≤ weekly capacity 2688 82.7 14 (14–15) 3 7 25 50 52

Batch size > weekly capacity 1262 88.6 10 (10–11) 2 5 19 30 52

> 1 month clearance time

Batch size ≤ weekly capacity 1479 74.8 21 (19–22) 4 10 40 52 52

Batch size > weekly capacity 989 82.8 12 (11–14) 2 5 26 44 52

Abbreviations: CI = confidence interval

the study variables. SAS Code 6.5 shows how we used PROC GENMOD to estimate the effect of clearance
time on the conditional probability of admission. Using a SAS DATA step, we created patient-week data
for input into PROC GENMOD, as shown in SAS Code B.9 (see Appendix). SAS Output 6.5 shows partial
results of this analysis. The ORs corresponding to SAS Output 6.5 are shown in model 1 of Table 6.12.

SAS Code 6.5: Discrete-time survival regression model for effect of clearance time

proc genmod data=wtimeszex desc;
class time;
model access=time age0 age1 age3 age4 sexfn icmc2 icmc3 icy93 icy95 icy97 icy99

ihsp2 ihsp3 ihsp4 wlsz2 wlsz3 wlsz4
/d=binomial link=logit noint;

run;

Patients registered when the list size required a clearance time of more than 1 week had 41% lower odds
of undergoing surgery than those registered when list size required a clearance time of less than 1 week
(OR = 0.59, 95% CI 0.54–0.65), after adjustment for age, sex, comorbidity, period, and hospital (see model
1 in Table 6.12). In a separate analysis (SAS output not shown), we found that the weekly number of new
registrations exceeding weekly service capacity had an independent effect toward longer service delays when
the list size at registration required a clearance time of less than 1 week (OR = 0.58, 95% CI 0.47–0.73),
but not for longer lists (see model 2 in Table 6.12). By entering a continuous variable for the number of



6.5 Does wait-list size at registration affect time to surgery? 109

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<1 week

0.5 month

1 month

> 1 month

Time  since  registration  (weeks)

P
ro

ba
bi

lit
y 

 o
f  

un
de

rg
oi

ng
  s

ur
ge

ry

Fig. 6.9. Estimated probability of undergoing elective coronary artery bypass grafting within a certain waiting time, by
clearance time

direct admissions, we found that every time an operation was performed for a patient requiring surgery
without registration on a wait list, the odds of surgery for listed patients were reduced by 5% (OR = 0.95,
95% CI 0.94–0.96) (see model 3 in Table 6.12).

For wait-listed patients, we concluded that time to surgery depended on the clearance time at registration
and the number of new registrations, as well as on the weekly number of patients who moved immediately
from angiography to CABG without being registered on a wait list. Hospital managers may use these findings
to improve resource planning and to reduce uncertainty when providing advice on expected treatment delays.
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SAS Output 6.5: Results from discrete-time survival regression model for effect of clearance time
� �

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 15E4 57467.7685 0.3943
Scaled Deviance 15E4 57467.7685 0.3943
Pearson Chi -Square 15E4 145581.0433 0.9989
Scaled Pearson X2 15E4 145581.0433 0.9989
Log Likelihood -28733.8842

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi -
Parameter DF Estimate Error Limits Square Pr > ChiSq

wlsz2 1 -0.5262 0.0453 -0.6150 -0.4374 134.94 <.0001
wlsz3 1 -0.8300 0.0373 -0.9030 -0.7569 495.71 <.0001
wlsz4 1 -1.0828 0.0425 -1.1661 -0.9995 648.96 <.0001

� �

Table 6.12. Relation between both clearance time and batch size and conditional probability of elective coronary artery
bypass grafting, as measured by odds ratios derived from discrete-time survival regression models

OR∗ (95% CI)

Factor Model 1 Model 2 Model 3

<1 week clearance time

Overall 1.0 – –

Batch size ≤ weekly capacity – 1.0 1.0

Batch size > weekly capacity – 0.58 (0.47–0.73) 0.60 (0.48–0.74)

0.5 month clearance time 0.59 (0.54–0.65) 0.56 (0.51–0.61) 0.57 (0.52–0.62)

1 month clearance time 0.44 (0.41–0.47) 0.42 (0.39–0.45) 0.41 (0.38–0.44)

>1 month clearance time 0.34 (0.31–0.37) 0.32 (0.30–0.35) 0.31 (0.29–0.34)

Direct admissions† – – 0.95 (0.94–0.96)

Abbreviations: OR = odds ratio, CI = confidence interval
∗Adjusted for age, sex, comorbidity, registration period, hospital, and wait-list week
† Number of additional procedures performed without wait-list registration
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Surgery after target access time

7.1 Introduction

The length of the wait list for surgery, a common correlate of the expected wait for hospital admission, is
often the only information available at the time of deciding where to seek treatment. Surprisingly little is
known about how the list size at registration affects the chances of undergoing elective surgical procedures
within an acceptable time. One common concern for evaluation purposes is therefore whether the proportion
of late surgeries can be accurately estimated without considering the length of the wait list. Another common
concern is whether the proportion of patients who undergo surgery within the target access time can be
accurately estimated without considering the emergency caseload.

7.2 What proportion of patients have late surgery after registration on wait lists of
different sizes?

The objective of this study was to determine the proportion of patients who underwent late coronary artery
bypass grafting (CABG) after registration on wait lists of various sizes in a network of hospitals with uniform
standards for timing of surgery [115]. Here, we limited our analysis to patients who were registered for first-
time isolated CABG. We also examined the relation between the number of procedures performed without
wait-list registration and the chances of surgery within the target access time among wait-listed patients.
Using records from a population-based registry, as described in Chapter 2, we studied waiting times that had
been prospectively collected for a cohort of patients registered on wait lists for CABG procedures.

In this study, the primary outcome was admission for surgery within the target access time. For proce-
dures delayed until after the target access time, we used the number of weeks to the target time. All cases re-
moved from wait lists without surgery and all those that exceeded target access time were treated as censored
observations at 1 week after the target time. Primary comparisons were between wait-list size categories, as
described in Chapter 4. The effect of list size on the weekly rate of on-time surgery was estimated by means
of the proportional odds model (equation 3.87), which yields the odds ratio (OR) from discrete-time survival
analysis, as described in Chapter 3, for each urgency group [2]. We used multivariable models to control for
differences in patients’ characteristics and significant confounders, namely age, sex, comorbidity, calendar
period of registration, hospital, and the weekly number of direct admissions. These confounding variables
are described in Chapter 4. For the direct admissions, we interpreted the OR as a change in the weekly odds
of on-time surgery associated with one additional surgery being performed immediately after angiography.
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Among those who were removed from the list before or at the target access time, 2926 (88.5%) under-
went surgery, 180 (5.5%) underwent unplanned emergency admission, 62 (1.9%) continued with medical
treatment, 37 (1.1%) died, 31 (0.9%) declined surgery, 22 (0.7%) were transferred to another surgeon or
hospital, and 47 (1.4%) were removed for other reasons. Among those who were removed from the list after
the target access time, 4728 (80.2%) eventually underwent elective surgery, 156 (2.6%) declined surgery,
134 (2.3%) underwent unplanned emergency admission, 111 (1.9%) continued with medical treatment, 76
(1.3%) were transferred to another surgeon or hospital, 54 (0.9%) died, 164 (2.8%) were removed for other
reasons, and 471 (8.0%) were still on the wait list at 52 weeks.

The proportion of patients who underwent surgery within target access times varied with priority group,
hospital, and clearance time (Table 7.1). For instance, the proportion who underwent surgery within target
access times decreased with urgency: 39.8% of those with urgent status, 32.3% of those with semiurgent
status, and 27.7% of those with nonurgent status.

Table 7.1. Characteristics of patients undergoing elective coronary artery bypass grafting within target access time, by
priority group at time of registration, hospital, and clearance time for wait list

Characteristic No. of patients % (95% CI)

Priority at registration

Urgent 259 39.8 (36.0–43.5)

Semiurgent 2110 32.3 (31.1–33.4)

Nonurgent 557 27.7 (25.8–29.7)

Location at registration

Hospital 1 679 35.8 (33.7–38.0)

Hospital 2 1099 35.1 (33.4–36.8)

Hospital 3 392 18.5 (16.8–20.1)

Hospital 4 756 36.8 (34.7–38.9)

Clearance time

< 1 week 702 46.6 (44.0–49.1)

0.5 month 428 33.6 (31.0–36.2)

1 month 1094 27.7 (26.3–29.1)

> 1 month 702 28.4 (26.7–30.2)

Abbreviations: CI = confidence interval

Over the period 1991 to 2001, two-thirds of patients were at risk of delayed surgery when registered on
wait lists for isolated CABG procedures in British Columbia. Although no patients with urgent status were
assigned to a wait list with clearance time exceeding 1 week, the odds of on-time surgery were reduced by
25% (OR = 0.75, 95% confidence interval [CI] 0.65–0.87) for every additional operation performed without
registration on a list.

SAS Code 7.1 shows how we used PROC GENMOD to estimate the effect of wait-list size on on-time
surgery for the semiurgent group. We used a DATA step to create patient-week data for on-time surgery in
SAS Code B.10 (see Appendix). SAS Output 7.1 shows partial results of this analysis. With the smallest
list-size category as the baseline group, the parameter estimates were −0.74 (standard error [SE] = 0.08)



7.2 What proportion of patients have late surgery after registration on wait lists of different sizes? 113

for a wait list with clearance time of 0.5 month, −0.83 (SE = 0.06) for a wait list with clearance time of
1 month, and −0.57 (SE = 0.07) for a wait list with clearance time of more than 1 month. The crude ORs
corresponding to SAS Output 7.1 are shown in Table 7.2.

SAS Code 7.1: Discrete-time survival regression model for effect of wait-list size

proc genmod data=wtimeszex2 desc;
where ur_bk2=’2’;
class time;
model access=time wlsz2 wlsz3 wlsz4 /d=binomial link=logit noint;

run;

SAS Output 7.1: Results from discrete-time survival regression model for effect of wait-list size
� �

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi -
Parameter DF Estimate Error Limits Square Pr > ChiSq

wlsz2 1 -0.7396 0.0793 -0.8950 -0.5843 87.07 <.0001
wlsz3 1 -0.8291 0.0627 -0.9519 -0.7062 174.97 <.0001
wlsz4 1 -0.5742 0.0717 -0.7147 -0.4337 64.15 <.0001

� �

Table 7.2. Relation between wait-list size and probability of elective coronary artery bypass grafting within target access
time, as measured by odds ratios derived from discrete-time survival regression models

Semiurgent Nonurgent

Crude Adjusted∗ Crude Adjusted∗

Factor OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Clearance time

< 1 week 1.00 1.00 1.00 1.00

0.5 month 0.48 (0.41–0.56) 0.62 (0.53–0.73) 0.86 (0.60–1.22) 0.71 (0.48–1.05)

1 month 0.44 (0.39–0.49) 0.50 (0.43–0.59) 0.37 (0.26–0.52) 0.35 (0.24–0.52)

≥1 month 0.56 (0.49–0.65) 0.46 (0.37–0.56) 0.29 (0.21–0.40) 0.28 (0.18–0.42)

Direct admission† – 0.93 (0.91–0.95) – 0.90 (0.87–0.94)

Abbreviations: OR = odds ratio, CI = confidence interval
∗Adjusted for age, sex, comorbidity, registration period, hospital, and wait-list week
†Associated with one additional surgery performed without wait-list registration
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When the wait list at registration required a clearance time of more than 1 month, patients with semi-
urgent status had 54% lower odds of on-time surgery than patients registered on lists with clearance time
of less than 1 week (OR = 0.46, 95% CI 0.37–0.56), after adjustment for age, sex, comorbidity, registration
period, hospital, and week on the list (Table 7.2). In the nonurgent group, the odds were 72% lower (OR
= 0.28, 95% CI 0.18–0.42). Every time an operation in the same hospital was performed without registra-
tion on a wait list, the odds of on-time surgery for listed patients were reduced by 7% (OR = 0.93, 95% CI
0.91–0.95) for the semiurgent group and by 10% (OR = 0.90, 95% CI 0.87–0.94) for the nonurgent group.

The chances of delayed surgery increased with wait-list size for patients needing CABG on a semiur-
gent or nonurgent basis. The weekly number of patients who were admitted for the operation directly from
angiography, without registration on a wait list, reduced the chances of surgery within the target access time
for all urgency groups. When advising patients who will be placed on a wait list about the expected time to
treatment, hospital managers should take into account both the current list size and the weekly number of
patients who require CABG immediately after undergoing coronary angiography.

The contribution of this study to the research on access to care is three-fold. First, it provides evidence
that, for evaluation purposes, it is impossible to accurately estimate the proportion of procedures that will be
delayed beyond the target access time without considering the length of the wait list. Second, it quantifies
the effect of list size on the proportion of patients for whom CABG surgery will be delayed beyond target
access time in a network of hospitals with uniform standards for timing of surgery. Finally, it quantifies the
effect of patients undergoing the procedure without registration on a wait list on the odds of on-time surgery
for patients registered on the list in that week.

7.3 What is the relation between weekly number of emergency referrals and elective
admissions within the target time?

The objective of this study was to estimate the relation between the weekly number of emergency referrals
and the rate of elective admissions to hospital within the target access time. To examine this relation, we
used data for waiting times for elective vascular surgery and operating room records on emergency surgical
procedures collected at an acute care hospital in Kingston, Ontario, as described in Chapter 2. Compared on
our previous analysis in [107], we added patients who were registered on the wait list after 1999.

The primary outcomes were the number of patients who underwent surgery within the target access time
and time to surgery. We used proportions to characterize the probability of a patient undergoing surgery
within the target access time. As described in Chapter 3, the effects of access attributes on the odds of
on-time surgery were estimated by means of logistic regressions (equation 3.57), which yielded the OR as
a measure of effect size [55]. Primary comparisons were between urgency groups. Sex, age, registration
period, and type of surgical procedure were entered as independent variables in the multivariable regressions
to obtain adjusted effects.

The average weekly rate of on-time surgery, that is, the total number of admissions within target access
times divided by the total number of patient-weeks on the list, was calculated as a measure of the rate of
on-time admissions, as described in Chapter 3. To measure the effect of the weekly number of emergency
referrals on the odds of elective admissions to hospital within the target access time, we estimated ORs by
means of the proportional odds model (3.87) from discrete-time survival analysis, as described in Chapter 3
[2]. All cases removed from the wait list without surgery and those that exceeded the maximum target access
time were treated as censored observations.

Overall, the proportion of patients who underwent surgery within the target access time was 0.47 (95%
CI 0.43–0.50). The average weekly rate of surgery within the target access time was 10.2 per 100 patient-
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weeks (95% CI 9.6–10.8). Table 7.3 shows the relation between probabilities of undergoing vascular surgery
within the target access time and the study variables. The odds of on-time surgery, derived from the logistic
regression, were 28% lower in the second registration period (April 1, 1997, to March 31, 2002) (OR = 0.72,
95% CI 0.57–0.93). The odds of the procedure being done within the target access time were 34% lower for
abdominal aortic aneurysm repair (OR = 0.66, 95% CI 0.38–1.15) and 43% lower for carotid endarterectomy
(OR = 0.57, 95% CI 0.38–0.89) than for surgery for peripheral vascular disease.

After adjustment for the case mix and access attributes using the proportional odds model, the odds of
elective admission within the target access time were, on average, 25% lower for weeks in which there were
one or two emergency cases (OR = 0.75, 95% CI 0.57–0.98) and 39% lower for weeks with three or more
emergency cases (OR = 0.63, 95% CI 0.48–0.84), relative to weeks with no emergency cases (Table 7.4).

In conclusion, when there was an increase in the number of emergency cases, a lower proportion of pa-
tients underwent elective surgery within the target access time. Thus, when performance of surgical services
is evaluated, the probability of patients undergoing elective surgery on time should be adjusted to account
for the number of emergency referrals.

Table 7.3. Relation between access factors and probability of undergoing elective vascular surgery within target access
time, as measured by adjusted odds ratios derived from logistic regression

No. of

Factor procedures Probability (95% CI) OR∗ (95% CI)

Registration period

1994–1996 295 0.48 (0.44–0.52) 1.00

1997–2002 249 0.45 (0.41–0.49) 0.72 (0.57–0.93)

Procedure

AAA repair 105 0.32 (0.27–0.37) 0.66 (0.38–1.15)

CEA 94 0.34 (0.28–0.40) 0.57 (0.38–0.89)

PVD surgery 220 0.55 (0.50–0.60) 1.00

AVF for hemodialysis 125 0.77 (0.70–0.83) 2.95 (1.84–4.72)

Priority group

Urgent 123 0.55 (0.48–0.61) 1.00 (0.68–1.47)

Semiurgent 143 0.30 (0.26–0.35) 0.56 (0.35–0.88)

Nonurgent 278 0.59 (0.55–0.63) 1.00

Abbreviations: OR = odds ratio, CI = confidence interval,

AAA = abdominal aortic aneurysm, CEA = carotid endarterectomy,

PVD = peripheral vascular disease, AVF = arteriovenous fistula
∗ Adjusted for all covariates
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Table 7.4. Relation between access factors and weekly rate of elective vascular surgery within target access time, as
measured by odds ratios derived from discrete-time survival regression

Factor OR∗ (95% CI)

Registration period

1994–1996 1.00

1997–2002 0.74 (0.62–0.89)

Procedure

AAA repair 0.61 (0.38–0.99)

CEA 0.55 (0.40–0.78)

PVD surgery 1.00

AVF for hemodialysis 1.80 (1.37–2.36)

Priority group

Urgent 8.69 (6.03–12.50)

Semiurgent 2.22 (1.45–3.41)

Nonurgent 1.00

Volume of emergency cases

0 1.00

1 or 2 0.75 (0.56–0.98)

≥ 3 0.63 (0.48–0.84)

Abbreviations: OR = odds ratio, CI = confidence interval,

AAA = abdominal aortic aneurysm, CEA = carotid endarterectomy,

PVD = peripheral vascular disease, AVF = arteriovenous fistula
∗ Adjusted for all covariates
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Adverse events while waiting

8.1 Introduction

In a patient with coronary artery disease who is to undergo coronary artery bypass grafting (CABG), delaying
the operation may lead to deterioration in the patient’s condition, a poor clinical outcome, an increased risk
of death, or an increase in the probability of emergency admission. Recently, policy makers have called for
the establishment of target access times for major operations that would minimize the risk of adverse events
associated with treatment delay. Surprisingly, few studies have correlated the health effects of the presurgical
wait with wait-list size at the time of registration for elective surgery. In particular, little attention has been
given to the impact of delaying low-risk patients to allow treatment of those at higher risk to be expedited.
The common concern is whether a patient can be referred to a specific cardiac surgeon without considering
the length of the current wait list.

8.2 Do longer delays for coronary artery bypass grafting contribute to preoperative
mortality among patients with less urgent need for surgery?

The objective of this study was to evaluate whether longer delays contributed to the probability of death be-
fore surgery among patients with a less urgent need for surgery using methods in Chapter 3. We prospectively
studied all patients who were registered for isolated CABG in British Columbia, Canada, in 1991–2000, as
described in Chapter 2. Compared on our previous analysis in [117], we limited this analysis to patients who
were registered for first-time isolated CABG.

The primary outcome was the occurrence of death from any cause while awaiting CABG. To examine
the relation between the length of delay and the cumulative incidence of preoperative death, we first esti-
mated the probability of remaining on a wait list by time since registration using the product-limit method
[17]. Waiting times were treated as prospective observations that were monitored from registration until the
patient’s last week on the list. The log-rank test was used to compare waiting times across priority groups
[18]. We also estimated the time-dependent probability that a patient, who could be removed from the list
as a result of surgery, death, or another competing event, dies during or before a certain wait-list week. The
effect size of priority group on the weekly rate of removal was estimated by means of discrete-time survival
regressions, which yielded the odds ratio (OR) [2].

We used proportions to characterize the probability that a patient would die while awaiting surgery. The
effect of priority group on the odds of preoperative death was estimated by means of logistic regressions,
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which yielded the OR as a measure of effect size [55]. The cumulative hazard of death was estimated to
investigate the accumulated risk of death over time spent on the list. The average weekly rate of death, that
is, the total number of deaths divided by the total number of patient-weeks of follow-up, was calculated as
a measure of the rate of death within each priority group. We then compared the rate of preoperative death
per unit of waiting time across priority groups using the proportional odds model (3.87) from discrete-time
survival analysis [2].

Finally, as discussed in Chapter 3, we used the cumulative incidence function (CIF) to characterize the
time-dependent, marginal probability that death would occur during or before a certain wait-list week in the
presence of competing wait-list events [90]. The cumulative incidence of preoperative death was compared
between patients with semiurgent need for surgery and those whose need was nonurgent to isolate the effect
of delaying treatment for the latter group. Matlab Code C.1 in the Appendix shows a function we used to
estimate the CIF. We interpreted the cumulative incidence of preoperative death as the proportion of CABG
candidates who were to undergo elective surgery but died before treatment, a number that increased over
waiting time. The CIF for preoperative death is defined as the integration over time of the product of the
weekly death rate and the probability of remaining on the list [21]. The CIF for death and its standard errors
were estimated using nonparametric methods [90]. We used a two-sample test to compare the CIFs across
priority groups [47], as described in Chapter 3.

To test for differences in the CIF between priority groups, we used competing-risk regression models
based on pseudovalues of the CIF (3.96) [64]. Pseudovalues for the CIF for death were computed in the
presence of surgery and other competing events at all distinct, observed event times. For each patient, the
CIF pseudovalues corresponded to a series of binary variables equaling 0 before death and switched to 1
after death in the absence of censoring. We adjusted the CIF models for subject-level correlation between
pseudovalues using the generalized estimation equations. The working weight matrix was fixed and esti-
mated as a product–moment correlation matrix among the pseudovalues. We used multivariable models to
control for differences in age, sex, and comorbidity. Confounding variables are discussed in Chapter 4.

Priority group was a major factor influencing the time spent on wait lists. There was a difference in
the probability of remaining on the list across groups, with shorter times for greater urgency (log-rank test
statistic = 1414.0, df = 2, p < 0.0001) (Figure 8.1). The cumulative hazard of death increased linearly
with waiting times, which implied a constant hazard of death (Figure 8.2). In total, 1.0% of 9199 patients
registered for CABG died on the wait list by 52 weeks: 4 (0.6%) of the 646 patients with urgent status, 54
(0.8%) of the 6481 patients with semiurgent status, and 26 (1.3%) of the 1959 patients with nonurgent status
(status was unknown for 7 patients who died on the wait list). To compare the odds of preoperative death
at 52 weeks between the semiurgent and nonurgent groups, we used a logistic regression model (equation
3.57). The logit transformation of the probability of preoperative death p is modeled by

log
( p

1 − p

)
= α + β1iurbk3 ,

where iurbk3 is 1 for nonurgent group and 0 otherwise. SAS Code 8.1 shows how we used PROC LOGIS-
TIC to estimate the parameters of this model, and SAS Output 8.1 shows the corresponding partial results.
A test of the global null hypothesis indicated that there was marginal evidence to support that the model
explains variation in the probability of death (likelihood ratio test statistic = 3.62, df = 1, p = 0.06). With
the semiurgent group as the reference group, the parameter estimate for the nonurgent group, β̂1, was 0.47
(standard error [SE] = 0.24). Converting this parameter estimate into an OR indicates that the odds of preop-
erative death at 52 weeks in the nonurgent group were about 1.6 times greater than in the semiurgent group
(OR = 1.6, 95% confidence interval [CI] 1.0–2.6).
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Fig. 8.1. Estimated probability of remaining on wait list, by time since registration and priority group

SAS Code 8.1: Logistic regression model for effect of priority group on preoperative death

proc logistic data=cabg desc;
where ur_bk=’2’|ur_bk=’3’;
model death = iurbk3;

run;
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SAS Output 8.1: Results from logistic regression model for effect of priority group on preoperative death
� �

Testing Global Null Hypothesis: BETA=0

Test Chi -Square DF Pr > ChiSq

Likelihood Ratio 3.6162 1 0.0572
Score 3.9100 1 0.0480
Wald 3.8405 1 0.0500

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi -Square Pr > ChiSq

Intercept 1 -4.7793 0.1367 1223.1644 <.0001
iurbk3 1 0.4705 0.2401 3.8405 0.0500

� �

The nonurgent group had a higher cumulative incidence of death than the semiurgent group, as measured
by Gray’s two-sample test (test statistic = 3.9, df = 1, p = 0.05) (Figure 8.3). Despite similar death rates in
the semiurgent and nonurgent groups (0.62 [95% CI 0.46–0.79] and 0.58 [95% CI 0.36–0.81] per 1000
patient-weeks, respectively) (Table 8.1), patients with nonurgent status were remaining on the list longer,
which contributed to higher cumulative incidence of death from any cause than in the semiurgent group (ad-
justed OR = 1.66, 95% CI 1.02–2.68) (Table 8.2). To estimate the effect of priority group on the cumulative
incidence of death we used a CIF pseudovalue regression model (equation 3.95). The logit-transformed CIF
was modeled as a linear function of priority group:

logit(F (time)) = αtime + β1sexfn + β2age1 + β3age2 + β4age3 + β5age4 + β6icmc2

+β7icmc3 + β8iurbk3 ,

where sexfn is 1 for woman and 0 otherwise, age1 is 1 for age less than 50 years and 0 otherwise, age2 is
1 for age between 50 and 59 years, age3 is 1 for age between 60 and 69 years, age4 is 1 for age between
70 and 79 years, icmc2 is 1 for other comorbid conditions and 0 otherwise, icmc3 is 1 for major comorbid
conditions and 0 otherwise, iurbk3 is 1 for nonurgent group and 0 otherwise, and time indexes week on
the wait list. For illustration purposes, SAS Code 8.2 shows how we used PROC GENMOD to estimate
the effect of priority group on the cumulative incidence of death at six time points via a CIF pseudovalue
regression model. With no censoring of events, we used a DATA step to create pseudovalue data for input
into PROC GENMOD (SAS Code B.11). SAS Output 8.2 shows partial results from SAS Code 8.2. With
the semiurgent group as the reference group, the parameter estimate for the nonurgent group was β̂8 = 0.50
(SE = 0.24). Table 8.2 shows the corresponding ORs from parameter estimates based on the model for all
time points. To estimate these ORs, we used code similar to SAS Code 8.2, but instead of 6 time points
we included all 35 distinct, observed event times. The working correlation matrix had off-diagonal entries
ranging from 0.19 to 0.99.
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Fig. 8.2. Estimated cumulative hazard of all-cause preoperative death (and 95% confidence intervals) for semiurgent and
nonurgent groups, by time since registration. The straight line is the average death rate multiplied by time.

SAS Code 8.2: Cumulative incidence function pseudovalue regression model for effect of priority group

proc genmod data=cabg23ex2 desc;
where time=1|time=10|time=20|time=30|time=43|time=52;
class ptno time;
model psvalue = time sexfn age1 age2 age3 age4 icmc2 icmc3 iurbk3
/dist=binomial link=logit noint;

repeated subject=ptno
/type=user(1 0.38652 0.32346 0.29595 0.2836 0.27266

0.38652 1 0.83686 0.76569 0.73373 0.70542
0.32346 0.83686 1 0.91495 0.87676 0.84294
0.29595 0.76569 0.91495 1 0.95826 0.92129
0.2836 0.73373 0.87676 0.95826 1 0.96142
0.27266 0.70542 0.84294 0.92129 0.96142 1
) corrw;

run;
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SAS Output 8.2: Results from cumulative incidence function pseudovalue regression model for effect of priority group
� �

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 51E3 3768.3352 0.0744
Scaled Deviance 51E3 3768.3352 0.0744
Pearson Chi -Square 51E3 51083.1381 1.0090
Scaled Pearson X2 51E3 51083.1381 1.0090
Log Likelihood -1884.1676

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

iurbk3 0.5036 0.2453 0.0229 0.9843 2.05 0.0400
� �

Table 8.1. Relation between priority group and all-cause weekly death rate for patients registered for elective coronary
artery bypass grafting, as measured by odds ratios derived from discrete-time survival regression models

No. of Total wait Death rate∗

Priority group deaths (patient-weeks) (95% CI) OR† (95% CI)

Urgent 4 3056.5 1.31 (0.03–2.59) 2.00 (0.72–5.59)

Semiurgent 54 86952.5 0.62 (0.46–0.79) 1.00

Nonurgent 26 44595.0 0.58 (0.36–0.81) 0.94 (0.58–1.51)

All patients‡ 91 136745.5 0.67 (0.53–0.80) –

Abbreviations: CI = confidence interval, OR = odds ratio
∗ Per 1000 patient-weeks, calculated as the number of deaths from any causes divided

by the sum of observed waiting times
† Adjusted for age, sex, and comorbidity
‡ Includes additional patients for whom priority was not provided

In conclusion, the contribution of this study was twofold. First, we estimated summary probabilities that
usually are not reported in prospective studies of death on wait lists. Second, we evaluated the impact of
prioritizing CABG candidates on wait-list mortality. Longer delays in the nonurgent group contributed to a
higher proportion of patients dying from any cause before surgery relative to the semiurgent group.
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Fig. 8.3. Estimated cumulative incidence of all-cause preoperative death (and standard errors) for semiurgent and nonur-
gent groups, by time since registration

Table 8.2. Relation between priority group and cumulative incidence of all-cause mortality for patients registered for
elective coronary artery bypass grafting, as measured by adjusted odds ratios derived from regression models for pseu-
dovalues of cumulative incidence functions

No. of No. of % dead∗

Priority group deaths patients (95% CI) OR† (95% CI)

Urgent 4 646 0.6 (0.0–1.2) –

Semiurgent 54 6481 0.8 (0.6–1.1) 1.00

Nonurgent 26 1959 1.3 (0.8–1.8) 1.66 (1.02–2.68)

All patients‡ 91 9199 1.0 (0.8–1.2) –

Abbreviations: CI = confidence interval, OR = odds ratio
∗At 52 weeks
† Adjusted for age, sex, and comorbidity
‡ Includes additional patients for whom priority was not provided
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8.3 What is the risk of unplanned emergency surgery among patients waiting for
surgery?

8.3.1 Elective cholecystectomy

The objective of this study was to describe the distribution of times spent waiting for the operation and to
assess the relation between waiting times and the risk of emergency admission [108]. We analyzed time to
emergency admission for a group of 761 patients who underwent cholecystectomy after being seen in clinic
for biliary colic and being placed on wait lists at two acute care centres in Ontario, from 1997 to 2000, as
described in Chapter 2.

The primary outcome was emergency admission for cholecystectomy due to the worsening of symptoms
while awaiting elective surgery. Cumulative probabilities of undergoing surgery electively as a function of
waiting time were estimated by the product–limit method, as described in Chapter 3, with emergency cases
being treated as censored observations [54, 7]. Similarly, cumulative probabilities of undergoing emergency
surgery were estimated. To determine if the risk of emergency admission varied with the duration of the
wait, the weekly rate, as described in Chapter 3, was calculated for the following seven intervals of time
on the wait list: less than 4 weeks, 4–7 weeks, 8–11 weeks, 12–19 weeks, 20–27 weeks, 28–39 weeks,
and 40–52 weeks. Because the population at risk decreases over time, the later time intervals were longer
so that they would include a sufficient number of events. For each interval of waiting time, crude rate ratios
(RR) were estimated relative to the first 4 weeks using the Poisson regression (3.78) [51]; see Chapter 3. Age
decade, sex, calendar period of registration, and the surgeon’s annual volume of cholecystectomy procedures
were entered as independent variables in a multivariable regression to obtain adjusted RRs. The conditional
probability of an emergency admission was estimated for the seven wait-list intervals as the number of
admissions during a given interval among patients who had waited until the beginning of the interval.

Patients awaiting elective surgery spent a total of 5712 patient-weeks on wait lists. The average weekly
rate of elective surgery was 12.4 (95% CI 11.5–13.3) per 100 patient-weeks. Among all patients, 25%, 50%,
75%, and 90% received access to elective surgery by 3, 6, 10, and 17 weeks, respectively (Figure 8.4).

Fifty-one patients (6.7%) had an emergency admission because of worsening symptoms while awaiting
elective cholecystectomy. The average weekly rate of emergency surgery was 0.9 per 100 patient-weeks
(95% CI 0.6–1.1). Among all patients, 25% and 50% underwent emergency surgery by 28 and 42 weeks,
respectively (Figure 8.5).

The average weekly rate of emergency admission was 2.7 (95% CI 1.2–4.1) per 100 patient-weeks among
patients who waited for 20 weeks or more and 0.9 (95% CI 0.6–1.2) per 100 patient-weeks among those who
waited for less than 20 weeks. The weekly rate of emergency admission was low during the first 19 weeks
on the list but increased by a factor of almost 3 after 20 weeks (RR = 2.8, 95% CI 1.9–4.1).

Although the probability of emergency admission was low during the first 19 weeks, after 20 weeks the
probability started increasing and approached 40% in the interval of 40–52 weeks (Table 8.3). SAS Code
8.3 shows how we used PROC GENMOD to estimate the effect of waiting time on emergency admission
via a Poisson log-linear regression model. SAS Output 8.3 shows the corresponding parameter estimates
for wait-list intervals. For example, compared with the shortest interval (less than 4 weeks), the parameter
estimate was −0.33 (SE = 0.40) for the interval of 4–7 weeks and 0.78 (SE = 0.51) for the interval of 20–27
weeks. The crude RRs corresponding to SAS Output 8.3 are shown in Table 8.4.
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Fig. 8.4. Estimated probability of undergoing elective cholecystectomy surgery by a certain wait-list week. Reprinted
from [48] with kind permission of Springer Science and Business Media.
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Fig. 8.5. Estimated probability of undergoing unplanned emergency cholecystectomy surgery by a certain wait-list week.
Reprinted from [48] with kind permission of Springer Science and Business Media.

Table 8.3. Probability of elective and unplanned emergency admission for cholecystectomy by different periods of wait-
ing time, conditional on remaining on the list until the start of each interval. Reprinted from [48] with kind permission
of Springer Science and Business Media.

Interval (weeks) Elective Emergency

<4 0.32 0.02

4–7 0.44 0.02

8–11 0.49 0.03

12–19 0.53 0.03

20–27 0.43 0.11

28–39 0.33 0.19

40–52 0.60 0.40
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Adjusted RRs, can be estimated with similar code, with the inclusion of confounding covariates. Relative
to the first 4 weeks on the list, the rate was 1.6 times higher from 20 to 27 weeks, 2.3 times higher from 28
to 39 weeks, and 7.1 times higher from 40 to 52 weeks (Table 8.4).

SAS Code 8.3: Poisson log-linear regression model for effect of waiting time

proc genmod data=chole;
model emgadm = wcat2-wcat7 /d=poisson link=log offset=ltim waldci;

run;

SAS Output 8.3: Results from Poisson log-linear regression model for effect of waiting time
� �

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 1733 387.5345 0.2236
Scaled Deviance 1733 387.5345 0.2236
Pearson Chi -Square 1733 3305.0896 1.9071
Scaled Pearson X2 1733 3305.0896 1.9071
Log Likelihood -244.7672

Analysis Of Parameter Estimates

Standard Wald 95% Chi -
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 -4.7687 0.2425 -5.2440 -4.2933 386.59 <.0001
wcat2 1 -0.3269 0.3985 -1.1080 0.4542 0.67 0.4121
wcat3 1 0.0029 0.4491 -0.8773 0.8831 0.00 0.9949
wcat4 1 -0.4243 0.5557 -1.5135 0.6649 0.58 0.4452
wcat5 1 0.7760 0.5087 -0.2211 1.7731 2.33 0.1272
wcat6 1 0.8871 0.5557 -0.2021 1.9763 2.55 0.1104
wcat7 1 1.9065 0.5557 0.8173 2.9957 11.77 0.0006
Scale 0 1.0000 0.0000 1.0000 1.0000

� �

The probability that a patient on a wait list will be admitted for emergency cholecystectomy increased
consistently with the duration of the wait, particularly after 20 weeks. These results have implications for de-
veloping waiting-time limits for elective surgery. The findings suggest that for patients with biliary colic who
wait longer than 20 weeks for elective cholecystectomy, the risk of acute symptoms necessitating emergency
surgery rises substantially.
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Table 8.4. Relation between time on wait list and weekly rate of emergency admission for cholecystectomy, as measured
by weekly event rates and adjusted rate ratios derived from Poisson log-linear regression models. Reprinted from CMAJ
2003; 169(7), Page(s) 662-665 by permission of the publisher. c© Canadian Medical Association

Waiting time No. of Admissions/ Admission rate∗ Crude RR† Adjusted RR‡

interval (weeks) patients at risk weeks (95% CI) (95% CI) (95% CI)

< 4 761 17/2002 0.8 (0.5–1.3) 1.0 1.0

4–7 499 10/1633 0.6 (0.3–1.1) 0.7 (0.3–1.6) 0.7 (0.5–1.1)

8–11 271 7/822 0.9 (0.4–1.6) 1.0 (0.4–2.4) 1.0 (0.7–1.5)

12–19 132 4/720 0.6 (0.2–1.3) 0.7 (0.2–1.9) 0.6 (0.4–1.1)

20–27 46 5/271 1.8 (0.7–3.9) 2.2 (0.8–l5.9) 1.6 (1.1–2.6)

28–39 12 4/194 2.1 (0.6–4.7) 2.4 (0.8–7.2) 2.3 (1.4–3.8)

40–52 10 4/70 5.7 (1.8–12.8) 6.7 (2.3–19.0) 7.1 (4.1–12.3)

Abbreviations: CI = confidence interval, RR = rate ratio
∗ Per 100 weeks of waiting time, calculated as the number of emergency admissions divided by

the number of patient-weeks on the list for each interval; CIs were obtained by transforming the

95% CIs for the logarithm of observed rates
† Relative to the first 4 weeks
‡ Adjusted for age decade, sex, registration period, and surgeon’s annual volume of cholecystectomies

8.3.2 Elective coronary artery bypass grafting

The objectives of this study were to describe the incidence of unplanned emergency surgery among patients
waiting for isolated CABG and to determine whether shorter delays reduced the probability of emergency
surgery for patients with more urgent need for procedure. To estimate the time-dependent probability that a
patient, who could be removed from the list through planned surgery, death, or another competing event, un-
derwent unplanned emergency surgery during or before a certain wait-list week, we prospectively analyzed
actual waiting times from a population database of all patients registered for isolated CABG between 1991
and 2000 in British Columbia, as described in Chapter 2.

The primary outcome was the occurrence of unplanned emergency admission to the participating hospi-
tal, followed by CABG, while awaiting the operation on an elective basis. Surgeons on call made the decision
to operate on patients who presented to the emergency or admitting department.

To examine the relation between length of delay and cumulative incidence of emergency surgery, we first
described the probability of remaining on a wait list by time since registration. This probability was estimated
by the product–limit method [17], as described in Chapter 3. The log-rank test was used to compare waiting
times across priority groups [18], as also described in Chapter 3.

We then compared the rate of emergency surgery per unit of waiting time across priority groups using
the proportional odds model (3.87) from discrete-time survival analysis [2]; see Chapter 3. The effect size
of priority group on the weekly rate of waiting outcomes was estimated by means of discrete-time survival
regressions, which yielded the OR [32].

Finally, we compared the cumulative incidence of emergency surgery across priority groups using
competing-risk methods. We used the CIF to characterize the time-dependent, marginal probability that
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unplanned emergency surgery would occur during or before a certain wait-list week in the presence of com-
peting wait-list events [90], as described in Chapter 3. The CIF for emergency surgery and its standard errors
were estimated using nonparametric methods [90]. We used a two-sample test to compare the CIFs across
priority groups [47], as described in Chapter 3. To test for differences in the CIF between priority groups,
we used competing-risk regression models based on pseudovalues of the CIF (3.96) [64], as described in
Chapter 3 and used section 8.2. We used multivariable models to control for differences in age, sex, calendar
period of registration, comorbidity, and hospital.

Overall, 314 of the 9199 CABG candidates underwent unplanned emergency surgery. By 52 weeks
on the wait list, 7.7% (95% CI 5.7–9.8) of the 646 patients in the urgent group, 3.2% (2.7–3.6) of the
6481 patients in the semiurgent group, and 2.9% (2.2–3.7) of the 1959 patients in the nonurgent group had
undergone emergency admission followed by CABG. The cumulative incidence of unplanned emergency
surgery differed across priority groups, with higher incidence for patients with more urgent need (Gray’s
two-sample test statistic = 41.0, df = 2, p < 0.0001) (Figure 8.6). The estimated proportions of patients
undergoing emergency surgery was similar for the semiurgent and non-urgent groups (adjusted OR = 0.99,
95% CI 0.71–1.39) (Table 8.5); this result was attributed to the 47% higher removal rate for patients in the
semiurgent group (OR = 1.47, 95% CI 1.38–1.56), despite a higher rate of emergency surgery (0.24 [95%
CI 0.20–0.27] and 0.13 [95% CI 0.09–0.16] per 100 patient-weeks, respectively) (Table 8.6).

Table 8.5. Relation between priority group and cumulative incidence of emergency admission for patients registered
for elective coronary artery bypass grafting, as measured by adjusted odds ratios derived from regression models for
pseudovalues of cumulative incidence functions

No. of No. of % admissions∗

Priority group admissions patients (95% CI) OR† (95% CI)

Urgent 50 646 7.7 (5.7–9.8) 2.48 (1.61–3.81)

Semiurgent 205 6481 3.2 (2.7–3.6) 0.99 (0.71–1.39)

Nonurgent 57 1959 2.9 (2.2–3.7) 1.00

All patients‡ 314 9199 3.4 (3.0–3.8) –

Abbreviations: CI = confidence interval, OR = odds ratio
∗ At 52 weeks
† Adjusted for age, sex, registration period, comorbidity, and hospital
‡ Includes additional patients for whom priority was not provided

The contribution of this study was twofold. First, we estimated the summary probabilities of emergency
surgery, which have not previously been reported in prospective population-based studies of preoperative
outcomes for patients on surgical wait lists. Second, we found that the existing practice of queuing patients
with coronary artery disease according to urgency of treatment reduced the number of emergency procedures
among CABG candidates with semiurgent need. Despite a higher rate of unplanned emergency surgery in
the semiurgent group than in the nonurgent group, shorter treatment delays for patients with semiurgent need
resulted in similar proportions of emergency procedures over time on wait lists for both groups.
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Fig. 8.6. Estimated cumulative incidence of unplanned emergency surgery (and standard error) for the three priority
groups, by time since registration
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Table 8.6. Relation between priority group and weekly rate of admission for unplanned emergency surgery for patients
registered for elective coronary artery bypass grafting, as measured by odds ratios derived from discrete-time survival
regression models

No. of Total wait Admission rate∗

Priority group admissions (patient-weeks) (95% CI) OR† (95% CI)

Urgent 50 3056.5 1.64 (1.18–2.09) 6.91 (4.54–0.52)

Semiurgent 205 86952.5 0.24 (0.20–0.27) 1.23 (0.90–1.69)

Nonurgent 57 44595.0 0.13 (0.09–0.16) 1.00

All patients‡ 314 136745.5 0.23 (0.20–0.26) –

Abbreviations: CI = confidence interval, OR = odds ratio
∗ Per 100 weeks of waiting time, calculated as the number of unplanned emergency surgeries

divided by the sum of waiting times
† Adjusted for age, sex, registration period, comorbidity, and hospital
‡ Includes additional patients for whom priority was not provided
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8.4 What is the relation between length of the wait list at registration for coronary
artery bypass grafting and chances of death while on the wait list?

The objective of this study was to compare the cumulative incidence of death while on the wait list between
two groups of patients classified according to the length of the wait list at the time of their registration for
CABG and to test for significant differences in the risk of death resulting from registration on a longer wait
list [111]. Compared with our previous analysis in [111], the study cohort was limited to patients who were
registered to undergo isolated CABG and included patients who received immediate access, as described in
Chapter 2.

The primary outcome was death from any cause among patients awaiting elective CABG. The probability
of remaining on the list after a certain time was estimated by the product–limit method [17], as described in
Chapter 3. The log-rank test was used to compare the time to removal from the list across the study groups
[18], as also described in Chapter 3.

We compared the time-dependent cumulative incidence of preoperative death before or during a certain
wait-list week between two categories of wait-list size according to clearance time. List-size computations
are described in Chapter 4. In this study, we categorized list size into two groups and chose 1 month clearance
time as a cut-off, reasoning that registration on a wait list with a clearance time of 1 month or less would
permit surgery within the target time (for semiurgent patients) of 6 weeks. We used the CIF to characterize
the time-dependent probability that death would occur before or during a certain wait-list week [90], as
described in Chapter 3. Using a two-sample test, as described in Chapter 3, we compared the unadjusted
CIFs between urgency groups and between clearance-time categories [47].

The effect of wait-list clearance time on the weekly rate of preoperative death was estimated by means
of the proportional odds model (3.87) from discrete-time survival analysis [2], as described in Chapter 3.
To test for differences in the CIF, between list-size categories, we used competing-risk regression models
(3.96) for the CIF with an indicator variable for a clearance time of more than 1 month [64]. The exponential
of the regression coefficient for that variable gives the OR of death for clearance-time category more than
1 month relative to clearance-time category 1 month or less. For direct admissions, we interpreted the ORs
as the change in the weekly odds of death while on the wait list associated with one additional surgery
performed immediately after angiography. We used multivariable models to control for differences in age,
sex, comorbidity, and calendar period of registration. Confounding variables are discussed in Chapter 4.

No patients with urgent status were ever registered on a wait list with a clearance time of more than
1 month. Patients with semiurgent status were registered on shorter wait lists more often than nonurgent
patients (79.1% vs. 44.4%). Among those with clearance time of less than 1 month, waiting times were such
that 25%, 50%, 75%, and 90% were removed from the list by 5, 10, 18, and 31 weeks, respectively (Figure
8.7), whereas among those with clearance times of more than 1 month, 50% and 90% were removed after
15 and 50 weeks, respectively. For patients with semiurgent or nonurgent status, the observed proportion of
wait-list deaths by 52 weeks was lower for those patients registered on a list with clearance time of 1 month
or less than for those registered on a list with clearance time of more than 1 month (0.7% [44 deaths] vs.
1.5% [36 deaths], p < 0.005) (Figure 8.8). After adjustment, the odds of death before surgery were 91%
higher for patients on longer lists (OR = 1.91, 95% CI 1.19–3.07) (Table 8.7). The observed death rate
was higher for patients registered on wait lists with clearance time of more than 1 month than for patients
registered on wait lists with clearance time of 1 month or less (0.75 [95% CI 0.50–0.99] and 0.53 [95%
CI 0.37-0.68] per 1000 patient-weeks, respectively; adjusted OR = 1.59 [95% CI 0.97-2.59]) (Table 8.8).
Longer waiting times (log-rank test statistic = 255.3, df = 1, p < 0.001) and higher death rates contributed to
a higher cumulative incidence of death on the wait list with a clearance time of more than 1 month (Gray’s
two-sample test statistic = 10.1, df = 1, p = 0.001).
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Fig. 8.7. Estimated probability of remaining on wait list for semiurgent and nonurgent priority groups, by time since
registration and wait-list clearance time

The contribution of this study was twofold. First, the cumulative incidence for death on the wait list
in relation to wait-list size at the time of registration for CABG has not, to our knowledge, been reported
previously. After accounting for the surgery rate in semiurgent and nonurgent groups, we found that long wait
lists were associated with increased probability that a patient would die before surgery. Second, physicians
who advise patients to undergo revascularization with a cardiac surgeon can use these results to consider the
risk of presurgical death associated with the current length of the surgeon’s wait list.
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Fig. 8.8. Estimated cumulative incidence of preoperative death (and standard error) for semiurgent and nonurgent priority
groups, by time since registration and wait-list clearance time



8.4 Relation between length of the wait list and chances of death while on the wait list? 135

Table 8.7. Relation between wait-list clearance time and cumulative incidence of death from any cause, for semiurgent
and nonurgent patients registered for elective coronary artery bypass grafting, as measured by odds ratios derived from
regression models for pseudovalues of cumulative incidence functions

No. of No. of % dead

Factor deaths patients (95% CI)∗ OR† (95% CI)

Wait-list clearance time

< 1 month 44 5997 0.7 (0.5–0.9) 1.00

≥ 1 month 36 2443 1.5 (1.0–2.0) 1.91 (1.19–3.07)

Priority group

Semiurgent 54 6481 0.8 (0.6–1.1) 1.00

Nonurgent 26 1959 1.3 (0.8–1.8) 1.30 (0.78–2.17)

Direct admission‡ – – – 1.00 (1.00–1.00)

Abbreviations: CI = confidence interval, OR = odds ratio
∗ At 52 weeks
†Adjusted for age, sex, comorbidity, registration period, and week on the list
‡Associated with one additional surgery performed without wait-list registration

Table 8.8. Relation between wait-list size and all-cause death rate for patients registered for elective coronary artery
bypass grafting, as measured by odds ratios derived from discrete-time survival regression models

No. of Total wait Death rate∗

Factor deaths (patient-weeks) (95% CI) OR† (95% CI)

Wait-list clearance time

< 1 month 44 83 378.5 0.53 (0.37–0.68) 1.00

≥ 1 month 36 48 169.0 0.75 (0.50–0.99) 1.59 (0.97–2.59)

Priority group

Semiurgent 54 86 952.5 0.62 (0.46–0.79) 1.00

Nonurgent 26 44 595.0 0.58 (0.36–0.81) 0.73 (0.42–1.27)

Direct admission‡ – – – 1.03 (0.96–1.11)

Abbreviations: CI = confidence interval, OR = odds ratio
∗ Per 1000 weeks of waiting time, calculated as the number of deaths

divided by the sum of waiting times
†Adjusted for age, sex, comorbidity, registration period, and week on the list
‡Associated with one additional surgery performed without wait-list registration
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8.5 What is the relation between length of the wait list at registration for coronary
artery bypass grafting and chances of unplanned emergency surgery?

In this study, we compared the cumulative incidence of unplanned emergency surgery between two groups
of patients, classified according to the length of the wait list at the time of their registration for CABG and
tested for significant differences in the risk of emergency surgery resulting from registration on a longer wait
list [113]. We also examined the relation between the number of procedures performed without wait-list
registration and the chances of unplanned emergency surgery among patients on the wait list. We used data
from a prospective study of all adult British Columbia residents who were registered to undergo first-time
isolated CABG, as described in Chapter 2. Compared with our previous analysis in [113], the study cohort
was limited to patients who were registered to undergo isolated CABG and included patients who received
immediate access, as described in Chapter 2.

The primary outcome was the occurrence of unplanned emergency surgery among patients awaiting elec-
tive CABG. Primary comparisons were between list-size categories. List-size computations are described in
Chapter 4. In this study, we categorized list size into two groups, with 1 month as the dividing cut-off, rea-
soning that registration on a wait list with a clearance time of 1 month or less would allow the patient to
undergo surgery within the target time (for semiurgent patients) of 6 weeks.

The probability of remaining on the list after a certain time was estimated by the product-limit method
[17], as described in Chapter 3. The log-rank test was used to compare the time to removal from the list
across the study groups [18], as described in Chapter 3. We compared the time-dependent cumulative in-
cidence of planned surgery through unplanned emergency admission before or during a certain wait-list
week between two categories of wait-list size according to clearance time. We used the CIF to characterize
the time-dependent probability that unplanned emergency surgery would occur before or during a certain
wait-list week [90], as described in Chapter 3. Using a two-sample test, we compared the unadjusted CIFs
between urgency groups and between clearance-time categories [47], as described in Chapter 3.

The effect of wait-list clearance time on the weekly rate of unplanned emergency surgery was estimated
by means of the proportional odds model (3.87) from discrete-time survival analysis [2], as described in
Chapter 3. To test for differences in the CIF, between list-size categories, we used competing-risk regression
models (3.96) for the CIF with an indicator variable for a clearance time of more than 1 month [64]. The
exponential of the regression coefficient for that variable gives the OR of unplanned emergency surgery
for patients registered on a wait list with clearance time of more than 1 month relative to those registered
on a wait list with clearance time of 1 month or less. For direct admissions, we interpreted the ORs as
the change in the weekly odds of unplanned emergency surgery associated with one additional surgery
performed immediately after angiography. We used multivariable models to control for differences in age,
sex, comorbidity, calendar period of registration, and urgency.

All patients with urgent status were registered on wait lists with clearance time of 1 month or less, and
more of the patients with semiurgent status than with nonurgent status were registered on shorter wait lists
(79.1% and 44.4%, respectively). After adjustment for age, sex, comorbidity, registration period, urgency,
and week on the list, the rate of unplanned emergency admission was similar for patients registered on a list
with clearance time of more than 1 month and those registered on a list with a clearance time of 1 month or
less (OR = 1.59, 95% CI 0.97–2.59) (Table 8.9). The cumulative incidence of unplanned emergency surgery
was similar between the clearance-time groups (Gray’s two-sample test statistic < 0.01, df = 1, p = 0.99)
(Figure 8.9). During 52 weeks of follow-up, an equal proportion of patients in both clearance-time categories
underwent unplanned emergency surgery after registration (OR after adjustment = 1.05, 95% CI 0.79–1.40)
(Table 8.10). The number of patients who underwent CABG without having been registered on a wait list in
the same hospital exerted no independent effect.
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Table 8.9. Relation between wait-list size and weekly rate of admission for unplanned emergency surgery for patients
registered for elective coronary artery bypass grafting, as measured by odds ratios derived from discrete-time survival
regression models

No. of Total wait Admission rate∗

Factor admissions (patient-weeks) (95% CI) OR (95% CI)†

Wait-list clearance time

< 1 month 186 83 378.5 0.22 (0.19–0.26) 1.00

≥ 1 month 76 48 169.0 0.16 (0.12–0.19) 1.59 (0.97–2.59)

Priority group

Semiurgent 205 86 952.5 0.24 (0.20–0.27) 1.00

Nonurgent 57 44 595.0 0.13 (0.09–0.16) 0.73 (0.42–1.27)

Direct admission‡ – – – 1.03 (0.96–1.11)

Abbreviations: CI = confidence interval, OR = odds ratio
∗ Per 100 weeks of waiting time, calculated as the number of unplanned emergency procedures divided by

the sum of waiting times
†Adjusted for age, sex, comorbidity, registration period, and week on the list
‡Associated with one additional surgery performed without wait-list registration

The length of a wait list at registration had no effect on the probability that a patient with semiurgent or
nonurgent status would undergo CABG through unplanned emergency admission before or during a certain
wait-list week.

Table 8.10. Relation between wait-list clearance time and cumulative incidence of unplanned emergency surgery for
semiurgent and nonurgent patients registered for elective coronary artery bypass grafting, as measured by adjusted odds
ratios derived from regression models for pseudovalues of cumulative incidence functions

No. of No. of % admissions∗

Factor admissions patients (95% CI) OR† (95% CI)

Wait-list clearance time

< 1month 186 5997 3.1 (2.7–3.5) 1.00

≥ 1 month 76 2443 3.1 (2.4–3.8) 1.05 (0.79–1.40)

Priority group

Semiurgent 205 6481 3.2 (2.7–3.6) 1.00

Nonurgent 57 1959 2.9 (2.2–3.7) 0.95 (0.69–1.29)

Direct admission‡ – – – 1.00 (1.00–1.00)

Abbreviations: CI = confidence interval, OR = odds ratio
∗At 52 weeks
†Adjusted for age, sex, comorbidity, registration period, and week on the list
‡Associated with one additional surgery performed without wait-list registration
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Fig. 8.9. Estimated cumulative incidence of unplanned emergency surgery (and standard errors) for semiurgent and
nonurgent priority groups, by time since registration and wait-list clearance time
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8.6 What is the risk of death associated with delayed surgical treatment of coronary
artery disease?

The purpose of this study was to improve existing estimates of the risk of death associated with delayed
surgical treatment of coronary artery disease. We estimated the time-dependent probability of death, given
that CABG was not performed by certain times, using data from a prospective database of all adult patients
who were accepted for isolated first-time CABG in British Columbia, as described in Chapter 2. Compared
to our previous analysis in [116], here we included patients who received immediate access.

In this study, the primary outcome was the occurrence of death from any cause among patients awaiting
elective CABG. We used the conditional probability function (CPF) of death to characterize the probability
that a patient would die conditional on not undergoing surgery by a certain time after registration on a wait
list, as described in Chapter 3. The CPF of death is based on the CIF of death and the CIF of surgery, and is
defined as

CP death(t) =
Fdeath(t)

1 − Fsurgery(t)
. (8.1)

Matlab Code C.2 in the Appendix shows a function we used to estimate the CPF. We interpreted the CPF
of death as the cumulative incidence of death by a certain wait-list week among patients who had not yet
undergone CABG. Using a two-sample test, we compared the unadjusted CPFs between priority groups
[90]. Matlab Code C.3 in the Appendix shows a function we used to compare the CPFs.

We estimated the cumulative incidence of preoperative death, the cumulative incidence of surgery, and
the probability that a patient, who may die or undergo surgery, would die if he or she did not undergo
operation by certain times over the 52-week period after the decision to perform CABG. The risks were
quantified separately in two groups: patients with semiurgent status at presentation were patients with either
persistent unstable angina or stable angina and extensive coronary artery disease; patients with nonurgent
status at presentation were stable symptomatic patients with limited disease. Among patients who had not
undergone CABG by 8, 16, 32, and 52 weeks, the probabilities of death from any cause were 0.6%, 1.8%,
6.7%, and 14.5% for patients with semiurgent status and 0.6%, 1.1%, 3.4%, and 7.5% for patients with
nonurgent status, respectively (Figure 8.10). For all-cause mortality, the conditional probability of death was
greater in the semiurgent group than in the nonurgent group (Pepe’s two-sample test statistic = 2.9, df = 1,
p = 0.002).

The contribution of this study is the estimated conditional probabilities of death in relation to different
delays in the treatment of patients requiring and suitable for CABG. These summary probabilities derived
from the population-based prospective database suggest that the risk of death among those remaining un-
treated increases with time on a wait list. Protracted delay for revascularization carries a significant risk of
death even for patients judged to be at low risk.
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Fig. 8.10. Estimated conditional probability of preoperative death (and 95% confidence intervals) for semiurgent and
nonurgent priority groups, by time since registration
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Intermediate events

9.1 Introduction

When comparing two groups of patients, the occurrence of certain events before admission may alter the
admission rate in one group, having no effect in the other; may have the same effect in both groups; or may
have different effects in each group. The common concern is therefore potential bias when the groups are
compared without consideration of events preceding admission. In this chapter, we first assess the effect of
delays in scheduling operations on admission rates. We then assess the magnitude of the bias when access to
surgery is compared between two calendar periods without data on intermediate events. This waiting-time
analysis is conducted in two ways: first, using only data for the main event (elective admission) and then
with additional data for the occurrence and time of an intermediate event (delay in scheduling the operation).

9.2 What is the effect of delays in scheduling an operation?

The objective of this study was to determine whether delays in scheduling an operation affected waiting
time in a queue for elective vascular surgery provided by a single team of specialists. For this study, we
used data from the waiting-time registry of the Division of Vascular Surgery within the Queen’s University
Department of Surgery, based at the Kingston General Hospital, Kingston, Ontario (Chapter 2). Compared
to our previous analysis in [106], we added patients who were registered on the wait list after 1998.

A natural way to determine the impact of intermediate events, such as delay in scheduling an operation,
on the outcome of interest is to use a relevant multistate model. Klein et al. have suggested using a time-
dependent covariate to model (3.72) the occurrence and timing of an intermediate event that precedes the
event of interest [67]. An alternative to the assumption that hazards are proportional before and after a delay,
or some other time-dependent event, is to develop a model of the after-delay event hazard with a distinct
baseline function for delayed patients. Notice that only patients who underwent surgery or were removed
from the list after the target access times provide any information on the admission rate after delay. These
observations, sometimes called late entries, must be considered left-truncated, as patients removed from the
wait list without surgery before the target access time have no chance to contribute their waiting times to
this analysis [22]. When data are truncated, the main impact on the analysis is that one must redefine a risk
set [66]. In a left-truncated sample of n observations, in which waiting times ti are available only for those
who exceeded the target time di, the risk set at week j is
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Rj =
n∑

i=1

I(di ≤ j ≤ ti) ,

where I(E) is 1 if E is true, and 0 otherwise. Andersen et al. have proposed that a separate Cox regression
with late entries be used to model the rate of each possible transition in a multistate process [8]. In this study,
both approaches, described in more detail in Chapter 3, were employed.

We first described the variation in times from acceptance to admission for surgery and the rates at which
patients were selected from the wait list for treatment; we then estimated the effects on waiting time of
different sources of delay in scheduling surgery and compared the admission rates after scheduling delays
attributed to patient or hospital factors with the rate without any delay. An indicator variable is used to
estimate the effect of the delay, taking on the value of 1 for those with the delay in scheduling and 0 for the
rest of observations. This places the patients who received surgery after the target access times but without
a scheduling delay in the reference group. Fitting the Cox model to the left-truncated data set yields partial
likelihood estimates of the regression coefficients, which are interpreted as adjusted effects in the logarithmic
scale.

Table 9.1. Distribution of type of scheduling delay for elective vascular surgery, by priority group

Priority∗; no (% ) of patients

1 2 3 4 5 Total

No delay

Within recommended time 160 (46.5) 63 (42.3) 67 (27.1) 53 (16.9) 576 (66.8) 919 (48.0)

Beyond recommended time 123 (35.8) 38 (25.5) 141 (57.1) 163 (52.1) 180 (20.9) 645 (33.7)

Delay

Patient unfit for surgery 13 (3.8) 13 (8.7) 11 (4.5) 28 (8.9) 48 (5.6) 113 (5.9)

Patient refused 9 (2.6) 7 (4.7) 10 (4.0) 14 (4.5) 23 (2.7) 63 (3.3)

Hospital or ICU bed unavailable 23 (6.7) 19 (12.8) 6 (2.4) 43 (13.7) 4 (0.5) 95 (5.0)

Operating room unavailable 12 (3.5) 5 (3.4) 7 (2.8) 5 (1.6) 8 (0.9) 37 (1.9)

Doctor’s decision 4 (1.2) 4 (2.7) 5 (2.0) 7 (2.2) 23 (2.7) 43 (2.2)

Total 344 149 247 313 862† 1915

Abbreviation: ICU = intensive care unit
∗ Adjusted for age, sex, calendar period of registration, comorbidity, and hospital
† One patient with unknown reason for delay

For most (81.7%) of the patients there was no delay (Table 9.1). Scheduling delays were most frequent for
patients with priority 2 status (32.2% of patients) and least frequent for those with priority 5 status (12.3%)
(Table 9.1). The proportion of patients waiting beyond target access times ranged from 20.9% of patients
with priority 5 status to 57.1% of those with priority 3 status. Admissions with a scheduling delay tended
to have longer waiting times (Table 9.2). Patients without a scheduling delay had the highest probability of
undergoing surgery for all weeks on the list, whereas those with a scheduling delay had the lowest probability
of undergoing surgery (Figure 9.1).
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Table 9.2. Characteristics of waiting-time distributions for elective vascular surgery, by priority group and type of ad-
mission

No. of No. (%) Median no. of weeks

patients censored of waiting (95% CI)

Admission with no delay in scheduling

Priority

1 (most urgent) 344 72 (20.9) 2 (1–2)

2 149 54 (36.2) 3 (3–4)

3 247 47 (19.0) 7 (6–8)

4 313 103 (32.9) 10 (8,–2)

5 (least urgent) 863 167 (19.4) 18 (16–21)

Overall 1916 443 (23.1) 6 (6–7)

Admission with a delay in scheduling

Priority

1 (most urgent) 61 4 (6.6) 3 (3–4)

2 48 1 (2.1) 7 (5–9)

3 39 7 (17.9) 9 (7–14)

4 97 13 (13.4) 12 (12–14)

5 (least urgent) 107 57 (53.3) 35 (30–41∗)

Overall 352 82 (23.3) 13 (12–15)

Admission beyond recommended time, with no delay in scheduling

Priority

1 (most urgent) 123 9 (7.3) 3 (3–4)

2 38 1 (2.6) 5 (4–6)

3 141 7 (5.0) 10 (8–11)

4 163 4 (2.5) 12 (10–13)

5 (least urgent) 180 38 (21.1) 24 (22–26)

Overall 645 59 (9.1) 12 (11–13)
∗Data derived from all waiting-time observations by censoring any

delayed patient at their delay time

Among those who had surgery, only 50.9% underwent the operation within target access times. This
proportion varied significantly across priority group, from 17.4% of patients with priority 4 status to 74.3%
of patients with priority 5 status. Patients with any delay in scheduling surgery had longer waiting times
than patients without delays (Figure 9.1). Using all observations, we modeled the time-dependent effect of a
delay. Then using a left-truncated sample of waiting times that exceed target access times, we modeled the
effect of a delay.
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Fig. 9.1. Estimated probability of undergoing elective vascular surgery, by type of admission

In the first analysis, the time-dependent effect of delay on the hazard of admission was modeled using
Cox regression (3.71). The hazard of admission, λ(t), was modeled across strata as a log-linear function of
explanatory variables defined in SAS Code B.1 (see Appendix):

log λs(t) = αs(t) + β1pr1 + β2pr2 + β3pr3 + β4pr4 + β5sexf + β6ag0 + β7ag1 + β8ag2 + β9idelay ,

where pr1 is 1 for priority group 1 and 0 otherwise, pr2 is 1 for priority group 2 and 0 otherwise, pr3 is
1 for priority group 3 and 0 otherwise, pr4 is 1 for priority group 4 and 0 otherwise, sexf is 1 for woman
and 0 otherwise, ag0 is 1 for age less than 45 years and 0 otherwise, ag1 is 1 for age between 45 and 64
years and 0 otherwise, ag2 is 1 for age between 65 and 74 years and 0 otherwise, idelay is 1 if scheduling
delay and t is greater than target access time and 0 otherwise, and αs(t) is the logarithm of a baseline hazard
function for stratum s defined by registration period. SAS Code 9.1 shows how we used PROC PHREG to
estimate this regression model with a time-dependent effect of a scheduling delay. SAS Output 9.1 shows
the partial results of this analysis. A test of the global null hypothesis indicated that there was evidence to
support that the model explains variation in the hazard of admission (likelihood ratio test statistic = 590.4, df
= 9, p < 0.0001). The parameter estimate for the time-dependent effect of a delay was β̂9 = −0.67 (standard
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error [SE] = 0.08). The adjusted HR corresponding to SAS Output 9.1 is shown in Table 9.3. According to
the first analysis, the admission rate was 49% lower (hazard ratio [HR] = 0.51, 95% confidence interval [CI]
0.44–0.60) for those with a delay than for those without a delay. Using the likelihood ratio test, we compared
the models before and after adjustment for scheduling delay:

LRT = 9293.0 − 9214.4 = 78.6 .

Based on a chi-square distribution with 1 degree of freedom, a test statistic of 78.6 indicates strong evidence
to support that scheduling delays explained the variation in the hazard of admission for surgery.

In the second analysis, we used a similar Cox regression model to study the effect of scheduling delay,
but the time at risk was left-truncated at the target access time. SAS Code 9.2 shows how we used PROC
PHREG to estimate this regression model with an effect for scheduling delay. SAS Output 9.2 shows the
partial results of this analysis. A test of the global null hypothesis indicated that there was evidence to support
that the model explains variation in the hazard of admission (likelihood ratio test statistic = 177.2, df = 9,
p < 0.0001). The HR value of 0.55, derived from the left-truncated sample in the second analysis, also
suggested that the admission rate for patients with scheduling delays was about half the rate for patients who
waited longer than the target access time but without any delays.

In a separate analysis, we studied the impact of different sources of delay using all observations. For
certain sources of delay, the admission rate was 20% to 70% lower than the rate for admissions without a
delay, independent of the urgency of the surgical intervention (see model 1 in Table 9.4). The admission
rate for patients with scheduling delays due to reasons other than operating room unavailability was 51%
lower than the rate for patients admitted without the delays. However, there were no differences between
the admission rate for patients delayed because the operating room was unavailable and the rate for patients
admitted without the delays (see model 2 in Table 9.4).

The contribution of this study was twofold. First, we developed a method to infer how intermediate
events, occurring randomly between registration and admission, affect waiting time. Second, these results
provide evidence that delays in scheduling operations lengthen waiting times independent of the patients’
urgency status. These findings support the concern expressed by Lewis et al. [71] and others that waiting
time for elective surgery is not simply determined by how many patients are on the wait list or by how
urgently they need treatment, but also by wait-list management practices.

SAS Code 9.1: Cox regression model for time-dependent effect of scheduling delay

proc phreg data=vasc;
where wait>0;
model wait*status(1 2 3 4 5 6 7 8)= pr1 pr2 pr3 pr4
sexf ag0 ag1 ag2 idelay /ties=exact risklimits;
idelay=del;
if wait<gl then do; idelay=0; end;

strata fy;
run;
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SAS Output 9.1: Results from Cox regression model for time-dependent effect of scheduling delay
� �

Testing Global Null Hypothesis: BETA=0

Test Chi -Square DF Pr > ChiSq

Likelihood Ratio 590.3995 9 <.0001
Score 814.7548 9 <.0001
Wald 685.9355 9 <.0001

Analysis of Maximum Likelihood Estimates

Parameter Standard
Variable DF Estimate Error Chi -Square Pr > ChiSq

idelay 1 -0.66536 0.07860 71.6511 <.0001

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio
Variable Ratio Confidence Limits

idelay 0.514 0.441 0.600
� �

Table 9.3. Relation between priority group and admission for elective vascular surgery before and after adjustment for
scheduling delays, as measured by hazard ratios derived from Cox regression models

HR (95% CI)

For all observations For left-truncated sample

Before adjustment After adjustment∗ Before adjustment After adjustment∗

Priority

1 (most urgent) 6.02 (5.14–7.05) 7.77 (6.57–9.19) 7.12 (4.86–0.43) 8.66 (5.88–2.78)

2 2.51 (2.07–3.05) 3.36 (2.73–4.18) 3.54 (2.49–5.03) 4.53 (3.16, 6.48)

3 1.38 (1.18–.61) 1.51 (1.29–1.77) 2.24 (1.69–2.98) 2.33 (1.75–3.11)

4 1.00 (0.87–1.15) 1.17 (1.01–1.36) 1.76 (1.36–2.29) 2.03 (1.55, 2.64)

5 (least urgent) 1.0 1.0 1.0 1.0

Scheduling delay

No – 1.0 – 1.0

Yes – 0.51 (0.44–0.60) – 0.55 (0.46–0.65)

−2 log likelihood 9293.0 9214.4 4100.6 4051.5

Abbreviations: HR = hazard ratio, CI = confidence interval
∗Adjusted for sex and age and stratified on the registration period
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SAS Code 9.2: Cox regression model for effect of scheduling delay

proc phreg data=vasc;
where outcome>1;
model (gl,wait)*status(1 2 3 4 5 6 7 8) = pr1 pr2 pr3 pr4
sexf ag0 ag1 ag2 del /ties=exact risklimits;

strata fy;
run;

SAS Output 9.2: Results from Cox regression model for effect of scheduling delay
� �

Testing Global Null Hypothesis: BETA=0

Test Chi -Square DF Pr > ChiSq

Likelihood Ratio 177.2392 9 <.0001
Score 187.5150 9 <.0001
Wald 178.2214 9 <.0001

Analysis of Maximum Likelihood Estimates

Parameter Standard
Variable DF Estimate Error Chi -Square Pr > ChiSq

del 1 -0.60630 0.08912 46.2810 <.0001

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio
Variable Ratio Confidence Limits

del 0.545 0.458 0.649
� �
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Table 9.4. Relation between both priority group and specific reason for scheduling delay and admission for elective
vascular surgery among patients who waited longer than target times, as measured by hazard ratios derived from Cox
regression models

HR∗ (95% CI)

Model 1 Model 2

Priority

1 (most urgent) 8.82 (5.96–13.07) 8.83 (5.98–13.05)

2 4.74 (3.30–6.80) 4.69 (3.27–6.71)

3 2.50 (1.87–3.34) 2.37 (1.78–3.15)

4 2.03 (1.55–2.65) 2.08 (1.59–2.71)

5 (least urgent) 1.00 1.00

Reason for scheduling delay

No delay 1.00 1.00

OR unavailable 1.22 (0.85–1.74) 1.16 (0.81–1.66)

Patient unfit 0.38 (0.28–0.52) –

Patient refused 0.44 (0.32–0.59) –

Hospital or ICU bed unavailable 0.83 (0.64–1.08) –

Doctor’s decision 0.30 (0.19–0.48) –

Other than OR unavailable – 0.49 (0.41–0.59)

Abbreviations: HR = hazard ratio, CI = confidence interval,

OR = operating room, ICU = intensive care unit
∗Adjusted for sex and age and stratified on the calendar year
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9.3 What is the effect of registration period in the presence of delays?

Previously, we determined the effect of excluding data related to delays in scheduling operations in calculat-
ing the difference in admission rates between two registration periods [105]. Compared to our previous anal-
ysis, we added patients who were registered on the wait list after 1999. Data were taken from a waiting-time
registry that was set up to prospectively collect data for a cohort of patients accepted for elective vascular
surgery in the Department of Surgery, Queen’s University, Kingston, Ontario, as described in Chapter 2.

The cumulative probability of admission as a function of time spent on the wait list was estimated by the
product-limit method [54], as described Chapter 3. All cases removed from the wait list without surgery were
treated as censored observations [7]. By using the log-rank and Wilcoxon tests, we were able to compare the
likelihood of admission by registration period [65].

The target access time, measured in weeks, was used as a proxy for the delay in scheduling surgery. To
measure the effect of scheduling delays, we used Cox regression with a time-dependent indicator variable
that changed from 0 to 1 at the time of the delay (3.72) [67], as described in Chapter 3. The exponential
of the regression coefficient for this variable gave the HR for delayed patients relative to those who were
not delayed, a value of less than 1 indicating a lower hazard resulting from delay. First, the registration
period effect was estimated without taking intermediate events into account. Second, the occurrence and
timing of delays in scheduling operation were entered into the analysis. Lastly, the occurrence and timing of
scheduling delays for each registration period were accounted for. The estimates were derived from the Cox
regression model with three time-dependent indicator variables coded in such a way that the before-delay
admission rate in the first registration period (July 1, 1994 to March 31, 1997) was the reference.

We used multivariable models to control for differences in patient characteristics and significant con-
founders. In particular, we entered indicator variables for sex and urgency status. When performing the Cox
regression analysis, we stratified by surgical procedure and age group to avoid the proportionality assump-
tion for these variables.

There was no association between waiting times and registration period (log-rank test statistic = 3.6, df =
1, p = 0.06) (Figure 9.2). The average weekly rate of surgery was 10.5 per 100 patient-weeks (95% CI 9.6–
11.4) in the first registration period (July 1, 1994 to March 31, 1997) and 9.3 per 100-patient weeks (95%
CI 8.8–9.9) in the second registration period (April 1, 1997 to March 31, 2002). Median time to surgery was
similar in the two registration periods (6 weeks [95% CI 5–6] for the first registration period and 7 weeks
[95% CI 6–7] in the second registration period). After a delay, the average weekly surgery rate remained
higher for patients enrolled during the first registration period (9.2 per 100 patient-weeks, 95% CI 6.6–11.8)
than for patients enrolled during the second registration period (6.7 per 100 patient-weeks, 95% CI 5.8–7.5).

In the first analysis, the effect of registration period on the hazard of admission, λ(t), was modeled across
strata as a log-linear function of explanatory variables (model 1):

log λs(t) = αs(t) + β1pr1 + β2pr2 + β3pr3 + β4pr4 + β5sexf + β6per2 ,

where pr1 is 1 for priority group 1 and 0 otherwise, pr2 is 1 for priority group 2 and 0 otherwise, pr3 is 1
for priority group 3 and 0 otherwise, pr4 is 1 for priority group 4 and 0 otherwise, sexf is 1 for woman and
0 otherwise, per2 is 1 for the second registration period and 0 otherwise (see SAS Code B.1 in Appendix),
and αs(t) is the logarithm of a baseline hazard function for stratum s defined by age group and type of
surgery. Without adjustment for scheduling delays, the admission rate for the second registration period was
23% lower than for the first registration period (see model 1 in Table 9.5). In the next analysis, we adjusted
for scheduling delays using model 2:

log λs(t) = αs(t) + β1pr1 + β2pr2 + β3pr3 + β4pr4 + β5sexf + β6per2 + β7idelay ,
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Fig. 9.2. Estimated probability of elective vascular surgery, by registration period

where idelay is 1 if scheduling delay and t exceeds target access time and 0 otherwise. The difference
between the registration periods remained significant after adjustment for scheduling delays (see model 2 in

Table 9.5. Relative rates of admission without (model 1) and with (models 2 and 3) adjustment for scheduling delays

RR∗ (95% CI)

Factor Model 1 Model 2 Model 3

1994–1996 1.0 1.0 1.0

After delay – – 0.59 (0.43–0.80)

1997–2002 0.77 (0.69–0.86) 0.82 (0.73–0.91) 0.85 (0.73–0.99)

After delay – – 0.57 (0.48–0.67)

Delay – 0.58 (0.50–0.67) –

Abbreviations: RR = relative rate, CI = confidence interval
∗Adjusted for sex, age, urgency, and type of surgery
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Table 9.5). However, the difference between registration periods was minimal for comparisons of admission
rates before any delay occurred (see model 3 in Table 9.5). In the last analysis, we adjusted for scheduling
delays for each registration period (model 3):

log λs(t) = αs(t) + β1pr1 + β2pr2 + β3pr3 + β4pr4 + β5sexf + β6iadelayper1 + β7ibdelayper2

+β8iadelayper2 ,

where iadelayper1 is 1 if scheduling delay and t exceeds target access time in period 1 and 0 otherwise,
ibdelayper2 is 1 if scheduling delay and t is within target access time in period 2 and 0 otherwise, and
iadelayper2 is 1 if scheduling delay and t exceeds target access time in period 2 and 0 otherwise. For
patients with a scheduling delay, the admission rate among those enrolled in the first and second registration
periods was 41% and 43% lower, respectively, than among those enrolled in the first registration period
without any scheduling delays (see model 3, after delay, in Table 9.5).

These results provide evidence that patients experiencing a delay in the scheduling of an operation have a
lower admission rate after the event causing the delay. Thus, potential for bias exists when a between-group
comparison of waiting time is done without adjustment for an intermediate event that may occur before
elective admission.
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Survival benefit of coronary artery bypass grafting

10.1 Introduction

Randomized trials and observational studies have demonstrated the survival benefits conferred by coronary
artery bypass grafting (CABG). In practice, however, personal reasons, scheduling procedures, or surgical
wait lists can delay CABG after decision to operate has been made. Hence, any treatment-related effect
found in such studies does not include additional potential benefit for patients who died before they could
undergo the scheduled procedure. Hannan and colleagues argued that estimates of survival benefits from
undergoing CABG should account for the total number of deaths, including those that resulted from a longer
wait for required revascularization [50]. The analysis presented in this chapter, which concludes that under-
going CABG rather than remaining untreated reduces the risk of death by half, is more relevant to patients
perspective because it compares the long-term prognosis for both alternatives: if CABG is performed or if
the patient remains untreated. In our view, such estimates introduce a methodological innovation, whereby
deaths among untreated patients are used to estimate the death rate for the treated group if they had remained
untreated.

10.2 What is the survival benefit of coronary artery bypass grafting?

The objective of this study was to compare survival after the treatment decision between patients who under-
went CABG and those who remained untreated. We used observational data from a population-based registry
of patients with established coronary artery disease for whom surgical revascularization was indicated and
planned, as described in Chapter 2.

The primary outcome was death from any cause after the decision for surgery was made. The time to
death was counted as the number of months from the decision to treat (or the last request for an operating
room) until death or 5 years after the treatment decision or December 31, 2002, whichever came first. We
also studied deaths that occurred after surgery but during the same hospital admission [20] and deaths that
occurred after discharge from the hospital. The time to death for patients who underwent surgery and were
alive at discharge was counted as the number of months from discharge to death or 5 years after discharge
or December 31, 2002, whichever came first. We excluded an additional 70 records from the analysis of
long-term postoperative survival because the discharge date was invalid or missing.

We measured the effect of surgical revascularization on survival after the treatment decision in two co-
horts of patients, namely semiurgent and nonurgent, categorized by symptoms, coronary anatomy, and left
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ventricular function. To measure the treatment-related effect, we used Cox regression with a time-dependent
indicator variable that changed from 0 to 1 after surgery (3.72) [42], as described in Chapter 3. The expo-
nential of the regression coefficient for this variable gave the hazard ratio (HR) for treated patients relative
to those who remained untreated, a value of less than 1 indicating a lower hazard resulting from having
undergone CABG.

We also studied whether survival differed significantly among patients who waited for CABG longer than
the target access time (6 weeks for patients in the semiurgent group and 12 weeks for those in the nonurgent
group [70]), using a separate model with two time-dependent indicator variables for CABG performed be-
fore and after the target access time. To test for differences in postoperative survival between patients who
underwent CABG within and after the target access time, we used Cox regression with fixed covariates [31].
The timing of surgery was an indicator variable, a value of 1 denoting CABG within the target access time.
Point estimates and confidence intervals (CIs) for HRs were calculated for each urgency group and for the
combined cohorts.

We used multivariable models to control for differences in patient characteristics and significant con-
founders (summarized in Table 10.1). In particular, we entered two indicator variables, one for coexist-
ing medical conditions (congestive heart failure, diabetes mellitus, chronic obstructive pulmonary disease,
rheumatoid arthritis, or cancer [83]) and other coexisting chronic conditions, as defined by Romano et al
[97]. Presentation without coexisting conditions was the reference category. When performing the Cox re-
gression analysis, we stratified by age and sex to avoid the proportionality assumption for these variables.
To assess whether the estimated models were consistent with our data, we used the likelihood ratio test.

Of patients in the semiurgent group, 32.2% underwent elective CABG within the target access time,
55.2% underwent the procedure after the target access time, and 3.2% underwent the procedure via un-
planned emergency admission (Table 10.1). Among those in the nonurgent group, 28.3% underwent elective
CABG within the target access time, 48.1% underwent the procedure beyond the target access time, and 3.1%
underwent the procedure via unplanned emergency admission (Table 10.1). About 10% of patients died dur-
ing the first 5 years after the treatment decision: 80 died while awaiting surgery, 141 after withdrawal from
the wait list, 100 postoperatively during the admission for CABG, and 563 after hospital discharge (Table
10.2).

The effect of surgery on the hazard of death, λ(t), was modeled across strata using a log-linear function
of explanatory variables (3.66):

log λs(t) = αs(t) + β1icmc2 + β2icmc3 + β3icy + β4ihsp2 + β5ihsp3 + β6ihsp4 + β7iurbk2

+β8isx ,

where icmc2 is 1 for other comorbid conditions and 0 otherwise, icmc3 is 1 for major comorbid conditions
and 0 otherwise, icy is 1 for 1997–2000 registration period and 0 otherwise, ihsp2 is 1 for hospital 2 and
0 otherwise, ihsp3 is 1 for hospital 3 and 0 otherwise, ihsp4 is 1 for hospital 4 and 0 otherwise, iurbk2 is
1 for semiurgent group and 0 otherwise, isx is 1 if received admission to surgery by t and 0 otherwise, and
αs(t) is the logarithm of a baseline hazard function for stratum s defined by age group and sex. SAS Code
10.1 shows how we used PROC PHREG to fit this time-dependent effect for surgery via a Cox regression
model.

SAS Output 10.1 shows the partial results of this analysis. A test of the global null hypothesis indicated
that there was evidence to support that the model explains variation in the hazard of death (likelihood ratio
test statistic = 123.4, df = 8, p < 0.0001). The estimated regression coefficient for the time-dependent effect
for surgery is −0.57 (standard error [SE] = 0.09). Among those who underwent CABG, the hazard of death
was 57% of that in the untreated group (adjusted HR = 0.57, 95% CI 0.48–0.68) (Table 10.3).
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SAS Code 10.1: Cox regression model for time-dependent effect of surgery

proc phreg data=cabg;
where ur_bk=’2’|ur_bk=’3’;
model twlsdthcm*dthstssc(98 99)=icmc2 icmc3 icy ihsp2 ihsp3 ihsp4 iurbk2 isx
/ties=breslow rl;
strata sexfn agecat2;
if (status5y=0|status5y=12|status5y=13) & twlsdthcm>=waitm0 then isx=1; else isx=0;

run;

SAS Output 10.1: Results from Cox regression model for time-dependent effect of surgery
� �

Testing Global Null Hypothesis: BETA=0

Test Chi -Square DF Pr > ChiSq

Likelihood Ratio 123.3951 8 <.0001
Score 135.3492 8 <.0001
Wald 131.9699 8 <.0001

Analysis of Maximum Likelihood Estimates

Parameter Standard
Variable DF Estimate Error Chi -Square Pr > ChiSq

isx 1 -0.56603 0.09103 38.6599 <.0001
� �

The effect was stronger when CABG was performed within the target access time: adjusted HRs were
0.51 (95% CI 0.42–0.63) for early treatment and 0.70 (95% 0.58–0.84) for late treatment (Wald chi-square
for the difference between hazard ratios = 12.8, df = 1, p < 0.01) (Table 10.3).

Compared with untreated patients, the hazard of death was 40% lower for patients in the semiurgent
group who underwent the procedure (adjusted HR = 0.60, 95% CI 0.49–0.75) and 52% lower for patients in
the nonurgent group who underwent the procedure (adjusted HR = 0.48, 95% CI 0.34–0.67) (Table 10.4).

Of the 7431 patients who underwent CABG, 100 (1.3%) died postoperatively during the same hospital
admission. The odds of in-hospital death among patients who underwent CABG was 37% lower for those
who underwent CABG within the target access time than beyond (adjusted HR = 0.63, 95% CI 0.41–0.98)
(Table 10.5).

Of the 7261 patients who underwent CABG and survived surgery, 563 (7.8%) died within 5 years.
Among these patients, the hazard of death for those who underwent CABG within target access time relative
to those who underwent the procedure beyond the target access time was 21% lower for patients in the
semiurgent group (adjusted HR = 0.79, 95% CI 0.65–0.96) and 19% lower for those in the nonurgent group
(adjusted HR = 0.81, 95% CI 0.52–1.25) (Table 10.5).

In conclusion, our estimates that account for patients who died before they could undergo a required
CABG indicate a significant survival benefit of performing early surgical revascularization. In particular, we
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found a significant mortality reduction for patients registered to undergo coronary revascularization on the
non-urgent basis. The survival benefit of CABG was greater when patients underwent the operation within
the target time, suggesting that some of the benefit was lost by the delay beyond the target time.
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Table 10.1. Characteristics of patients registered for elective coronary artery bypass grafting, by type of access to surgery

Access to surgery; % of patients∗

Unplanned Within target After target Remained

All patients emergency time time untreated

Characteristic (n=8440) (n=266) (n=2643) (n=4522) (n=1009)

Age group (years)

<50 8.1 2.8 31.3 54.1 11.8

50–59 22.0 3.0 28.8 56.7 11.5

60–69 38.1 3.2 31.6 53.6 11.6

70–79 29.8 3.3 32.9 51.9 11.9

≥80 1.9 2.4 31.7 41.5 24.4

Sex

Women 17.7 4.1 30.9 51.5 13.4

Men 82.3 2.9 31.4 54.0 11.6

Priority group

Semiurgent 76.8 3.2 32.2 55.2 9.4

Nonurgent 23.2 3.1 28.3 48.1 20.5

Comorbidity

Major conditions† 21.5 3.7 33.3 49.4 13.6

Other conditions‡ 25.9 3.6 35.9 48.8 11.7

None 52.6 2.7 28.2 57.6 11.4

Coronary anatomy

Left main 11.9 2.6 40.5 48.7 8.2

Multivessel§ 80.2 3.1 30.0 54.9 12.0

Limited‖ 7.9 4.0 31.2 47.1 17.6

Registration Period

1991–1992 18.4 3.2 40.2 44.9 11.8

1993–1994 20.9 2.9 38.3 47.2 11.6

1995–1996 20.5 3.1 21.6 62.9 12.5

1997–1998 20.8 3.7 25.3 58.2 12.8

1999–2000 19.4 2.9 32.1 54.0 11.0

Location of registration

Hospital 1 20.8 3.7 35.8 46.2 14.3

Hospital 2 33.6 2.6 35.4 51.9 10.1

Hospital 3 24.2 2.8 18.6 60.2 18.4

Hospital 4 21.4 3.8 34.9 56.0 5.3
∗For the column with data for all patients, the percentages within each characteristic are calculated with

reference to the total number of patients (that is, percentages sum to 100 within each characteristic).

For the columns with data according to access to surgery, the percentages are calculated with

reference to the number of patients within each category (that is, percentages sum to 100 across rows)
†Congestive heart failure, diabetes mellitus, chronic obstructive pulmonary disease, rheumatoid arthritis, or cancer
‡Peripheral vascular disease, cerebrovascular disease, dementia, peptic ulcer disease, hemiplegia, renal

disease, or liver disease
§Three- or two-vessel disease with stenosis of the proximal left anterior descending artery
‖Two-vessel disease with no lesion in the proximal left anterior descending artery or one-vessel disease with

stenosis of the proximal left anterior descending artery



158 10 Survival benefit of coronary artery bypass grafting

Table 10.2. Characteristics of patients registered for elective coronary artery bypass grafting who died during follow-up

Time of death∗; % of patients†

After During After

On wait list withdrawal admission discharge

Characteristic (n=80) (n=141)‡ (n=100) (n=563)§

Age group (years)

<50 6.3 3.5 2.0 2.7

50–59 21.3 14.2 17.0 13.5

60–69 36.3 27.0 36.0 34.8

70–79 35.0 45.4 43.0 44.8

≥80 1.3 9.9 2.0 4.3

Sex

Women 8.8 24.8 26.0 17.1

Men 91.3 75.2 74.0 82.9

Priority group

Semiurgent 67.5 68.1 88.0 82.4

Nonurgent 32.5 31.9 12.0 17.6

Comorbidity

Major conditions‖ 32.5 37.6 34.0 32.5

Other conditions∗∗ 25.0 25.5 24.0 24.0

None 42.5 36.9 42.0 43.5

Coronary anatomy

Left main 7.5 9.2 12.0 13.5

Multivessel†† 82.5 79.4 84.0 81.3

Limited‡‡ 10.0 11.3 4.0 5.2

Registration Period

1991–1992 16.3 15.6 28.0 26.1

1993–1994 28.8 19.1 14.0 20.2

1995–1996 22.5 27.7 23.0 24.3

1997–1998 21.3 23.4 21.0 20.6

1999–2000 11.3 14.2 14.0 8.7

Location of registration

Hospital 1 13.8 32.6 9.0 19.4

Hospital 2 32.5 27.0 52.0 34.1

Hospital 3 43.8 30.5 15.0 21.5

Hospital 4 10.0 9.9 24.0 25.0
∗On wait list = any preoperative death while on the wait list for surgery;

after withdrawal = any preoperative death after removal from the wait list without surgery;

during admission = any death after surgery during the same hospital admission;

after discharge = any death after hospital discharge
† The percentages within each characteristic (as listed in column 1) are calculated with reference to the number

of patients within each category at time of death
‡ Within 5 years of registration date
§ Within 5 years of hospital separation date, excluding two patients with unknown separation date
‖

Congestive heart failure, diabetes mellitus, chronic obstructive pulmonary disease, rheumatoid arthritis, or cancer
∗∗Peripheral vascular disease, cerebrovascular disease, dementia, peptic ulcer disease, hemiplegia, renal disease,

or liver disease
††Three- or two-vessel disease with stenosis of the proximal left anterior descending artery
‡‡Two-vessel disease with no lesion in the proximal left anterior descending artery or one-vessel disease with

stenosis of the proximal left anterior descending artery
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Table 10.3. Hazard ratios for death at any time after registration for coronary artery bypass grafting, comparing treated
and untreated patients and comparing surgery within and after target access times, derived from Cox regression models

HR (95 % CI)

Time-dependent treatment effect∗ Deaths/patients Unadjusted Adjusted†

Model 1 (Treatment indicator)

Treated vs untreated 624/7431 vs 221/1009 0.60 (0.50–0.71) 0.57 (0.48–0.68)

Model 2 (Treatment indicator by target time)

Early surgery vs untreated 218/2794 vs 221/1009 0.53 (0.44–0.65) 0.51 (0.42–0.63)‡

Late surgery vs untreated 406/4637 vs 221/1009 0.68 (0.57–0.82) 0.70 (0.58–0.84)‡

Model 3 (Treatment indicator by target time and admission type)

Early surgery vs untreated 205/2643 vs 221/1009 0.53 (0.43–0.65) 0.51 (0.41–0.62)§

Late surgery vs untreated 394/4522 vs 221/1009 0.68 (0.57–0.81) 0.70 (0.58–0.84)§

Unplanned emergency vs untreated 25/266 vs 221/1009 0.68 (0.45–1.04 0.68 (0.44–1.03)

Abbreviations: HR = hazard ratio, CI = confidence interval
∗Among 8440 patients who were to undergo the operation
† Adjusted for comorbidity, registration period, hospital and priority group, and stratified by age and sex
‡Significant difference between regression estimates (Wald chi-square = 12.8, df = 1, p < 0.01)
§Significant difference between regression estimates (Wald chi-square = 12.9, df = 1, p < 0.01)



160 10 Survival benefit of coronary artery bypass grafting

Table 10.4. Hazard ratios for death at any time after registration for coronary artery bypass surgery, comparing treated
and untreated patients, derived from Cox regression models

HR (95 % CI )

Time-dependent treatment effect∗ Semiurgent group Nonurgent group

Overall survival (time-dependent treatment effect, as no. of deaths/no. of patients)†

Deaths/patients:

Treated patients 526/5874 98/1557

Untreated patients 150/607 71/402

Model 1 (treatment indicator)

Treated vs untreated

Unadjusted hazard ratio 0.61 (0.49–0.75) 0.46 (0.33–0.63)

Adjusted hazard ratio‡ 0.60 (0.49–0.75) 0.48 (0.34–0.67)

Model 2 (treatment indicator by target time)

Early surgery vs untreated

Unadjusted hazard ratio 0.56 (0.44–0.70) 0.38 (0.24–0.59)

Adjusted hazard ratio‡ 0.56 (0.44–0.70) 0.38 (0.24–0.59)

Late surgery vs untreated

Unadjusted hazard ratio 0.70 (0.56–0.87) 0.53 (0.37–0.76)

Adjusted hazard ratio‡ 0.75 (0.60–0.93) 0.57 (0.40–0.83)

Model 3 (treatment indicator by target time and admission type)

Early surgery vs untreated

Unadjusted hazard ratio 0.56 (0.44–0.71) 0.35 (0.22–0.55)

Adjusted hazard ratio‡ 0.56 (0.44–0.71) 0.35 (0.22–0.56)

Late surgery vs untreated

Unadjusted hazard ratio 0.70 (0.56–0.87) 0.52 (0.36–0.74)

Adjusted hazard ratio‡ 0.75 (0.60–0.93) 0.56 (0.39–0.81)

Unplanned emergency vs untreated

Unadjusted hazard ratio 0.58 (0.35–0.96) 0.99 (0.47–2.07)

Adjusted hazard ratio‡ 0.61 (0.37–1.02) 0.88 (0.41–1.86)

Abbreviations: HR = hazard ratio, CI = confidence interval
∗Unless indicated otherwise
†Among 8440 patients who registered to undergo the operation
‡Adjusted for comorbidity, registration period, hospital and priority group, and stratified

by age and sex
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Table 10.5. Odds ratios for in-hospital death, derived from logistic regression models, and hazard ratios for postoperative
death, derived from Cox regression models

All patients Semiurgent Nonurgent

Outcome group group

In-hospital∗ (deaths/admissions)

Early surgery 30/2794 – –

Late surgery 70/4637 – –

Unadjusted OR (95 % CI) 0.71 (0.46–1.09) – –

Adjusted OR (95 % CI)† 0.63 (0.41–0.98) – –

Long-term postoperative survival‡ (no. of deaths/total follow-up years)

Early surgery – 163/9505 31/2390

Late surgery – 300/15 171 67/4008

Unadjusted HR (95 % CI) – 0.86 (0.71–1.04) 0.79 (0.52–1.21)

Adjusted HR (95 % CI)§ – 0.79 (0.65–0.96) 0.81 (0.52–1.25)

Abbreviations: OR = odds ratio, CI = confidence interval, HR = hazard ratio
∗ Among 7431 patients who were admitted for surgery
† Adjusted for age, sex, comorbidity, registration period, hospital, and priority group
‡Within 5 years from discharge date among 7261 patients who underwent surgery and

did not die in hospital, after removal of 70 patients with invalid discharge dates
§ Adjusted for comorbidity, registration period, hospital, priority group and mode of admission,

and stratified by age and sex
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Data dictionaries

A.1 Data dictionary for coronary artery bypass grafting inpatients

Table A.1. Data dictionary for records of inpatients admitted for coronary artery bypass grafting

Variable Description Source Code

BCCR_ID Patient identifier BCCR <Text>

AGECAT Age decade BCCR 0 – < 20 years

1 – 20–29 years

2 – 30–39 years

. . .

8 – ≥90 years

SEXF Sex BCCR 0 – Man

1 – Woman

UR_SX Urgency at surgery BCCR 0 – Emergency

1 – Urgent

2 – Semiurgent

3 – Nonurgent

U – Unknown

CM_CH Comorbidities from Hospital Separations 0, 1, 2, 3, or 4 (≥ 4)

Charlson index

CM_SX Major comorbidities Hospital Separations 1 – CHF, diabetes, COPD,

rheumatism or cancer

0 – Other

INST_SX Location at surgery BCCR Hospital 1, 2, 3, or 4
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SX_DATE Operation date BCCR mm/dd/yyyy

Abbreviations: BCCR = British Columbia Cardiac Registry, CHF = congestive heart failure,

COPD = chronic obstructive pulmonary disease
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A.2 Data dictionary for vascular

Table A.2. Data dictionary for records of patients awaiting elective vascular surgery

Variable Description Code

CR Patient identifier Positive integer

SEX Sex Male – Man

Female – Woman

AGE Age (years) Positive integer

SX_DX Diagnosis 1 – Repair of AAA more 8 cm

2 – Repair of AAA 6 to 8 cm

3 – Repair of AAA 5 to 6 cm

4 – CEA for symptomatic disease

5 – CEA for asymptomatic disease

6 – Bypass surgery for PVD with pain at rest

7 – Other PVD surgeries

WL_DATE Wait-list registration date mm/dd/yyyy

ADM_DATE Wait-list removal date mm/dd/yyyy

ADM_WIT Admission within target access time Yes – Within target access time

No – Beyond target access time

N/A – Removed without surgery

WL – Still on wait list

IF_NOT Reason for delay 0 – No delay

1 – Patient unfit for surgery

2 – At patient request

3 – No hospital bed

4 – No intensive care unit bed

5 – Operating room unavailable

6 – Doctor’s decision

7 – Length of wait list

TAKEN_OF Reason for removal 0 – Received surgery

1 – Still on wait list

2 – Cancellation of booked surgery due to patient

condition

3 – Patient condition prevented booking surgery
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4 – Health deterioration: stroke, rupture, TIA

5 – Death

6 – Patient refused to undergo booked surgery

7 – Patient improved

8 – Patient decided against surgery

EXPR1 Indicator of AVF procedure 1 – AVF

0 – Otherwise

EXPR2 Indicator of ABF procedure 1 – ABF

0 – Otherwise

EXPR3 Indicator of other bypass surgery 1 – Other bypass surgery

0 – Otherwise

EXPR4 Indicator of VV or ligation, 1 – VV or ligation if no AVF

0 – Otherwise

Abbreviations: AAA = abdominal aortic aneurysm, CEA = carotid endarterectomy,

PVD = peripheral vascular disease, AVF = arteriovenous fistula,

ABF = aorto-bifemoral bypass, VV = varicose veins, TIA = transient ischemic attack
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A.3 Data dictionary for cholecystectomy

Table A.3. Data dictionary for records of patients awaiting elective cholecystectomy

Variable Description Code

AG_CA1 Age decade 1 – <25 years

2 – 25–34 years

3 – 35–44 years

4 – 45–54 years

5 – 55–64 years

6 – 65–74 years

7 – ≥75 years

SEXF Sex 0 – Man

1 – Woman

EP Registration period 1 – 1997–1998

2 – 1998–1999

3 – 1999–2000

VT Surgeon’s annual case volume 1 – <20

2 – 20–40

3 – >40

EVENT Surgery type 1 – Elective surgery

2 – Emergency surgery

WAIT Waiting time from registration to surgery Integer for number of weeks
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SAS code

B.1 DATA steps

B.1.1 Preparing data set on access to vascular surgery

SAS Code B.1: DATA step to create analytical data set

/*******************************************************
* Program: \vascular\sas\common\step_1.sas
*
* Input data: "booklib" is a library that contains
* the data set, "vasc1", of original records
*
* Description: to apply exclusion criteria,
* create categorical and indicator variables,
* and compute waiting times
*******************************************************/

data vasc2;
set booklib.vasc1;
**********************
* Exclusion criteria *
**********************;
if age < 25 then delete;

******************
* Priority group *
******************;
/* AAA > 8 cm or PVD with pain */
if sx_dx =1 or sx_dx =6 then urgstat=1;
/* AAA 6-8 cm */
if sx_dx =2 then urgstat=2;
/* AAA 5-6 cm */
if sx_dx =3 then urgstat=4;
/* CEA symptomatic */
if sx_dx =4 then urgstat=3;
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/* CEA asymptomatic, other PVD, ABF, other bypass surgery, VV */
if sx_dx =5 or sx_dx =7 then urgstat=5;
/* indicator variables and target access times */
pr1=0; pr2=0; pr3=0; pr4=0; pr5=0;
if urgstat=1 then do; pr1=1; gl=1; end;
if urgstat=2 then do; pr2=1; gl=2; end;
if urgstat=3 then do; pr3=1; gl=3; end;
if urgstat=4 then do; pr4=1; gl=4; end;
if urgstat=5 then do; pr5=1; gl=13; end;

****************
* Age category *
****************;
if age^=. then do;
age_cat=99; ag0=0; ag1=0; ag2=0; ag3=0;
if age<45 then do; age_cat=0; ag0=1; end;
if 45<=age<65 then do; age_cat=1; ag1=1; end;
if 65<=age<75 then do; age_cat=2; ag2=1; end;
if 75<=age then do; age_cat=3; ag3=1; end;

end;

***********************
* Registration period *
***********************;
m=month(wl_date); d=day(wl_date); yo=year(wl_date);
if mdy(06,1,1994)> mdy(m,d,yo) then delete;
if mdy(06,01,1994)<= mdy(m,d,yo) <=mdy(03,31,1995) then do; fy=1; end;
if mdy(04,01,1995)<= mdy(m,d,yo) <=mdy(03,31,1996) then do; fy=2; end;
if mdy(04,01,1996)<= mdy(m,d,yo) <=mdy(03,31,1997) then do; fy=3; end;
if mdy(04,01,1997)<= mdy(m,d,yo) <=mdy(03,31,1998) then do; fy=4; end;
if mdy(04,01,1998)<= mdy(m,d,yo) <=mdy(03,31,1999) then do; fy=5; end;
if mdy(04,01,1999)<= mdy(m,d,yo) <=mdy(03,31,2000) then do; fy=6; end;
if mdy(04,01,2000)<= mdy(m,d,yo) <=mdy(03,31,2001) then do; fy=7; end;
if mdy(04,01,2001)<= mdy(m,d,yo) <=mdy(03,31,2002) then do; fy=8; end;
* 2 period categories ;
per1=0; if fy<4 then per1=1;
per2=1-per1;
* 3 period categories ;
per3=0; per31=0; per32=0; per33=0;
if fy<4 then do; per3=1; per31=1; end; * 94/95 to 96/97 ;
if fy>=4 & fy<7 then do; per3=2; per32=1; end; * 97/98 to 99/00 ;
if fy>=7 then do; per3=3; per33=1; end; * 00/01 to 01/02 ;

*******
* Sex *
*******;
if sex^="" then do; sexf=0; if sex=’Female’ then sexf=1; end;
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*************
* Procedure *
*************;
/* Surgical procedures, sx_dx is original codes
sx_dx sx
1 1 - Repair of AAA more 8 cm
2 2 - Repair of AAA 6 to 8 cm
3 3 - Repair of AAA 5 to 6 cm
4 4 - CEA for symptomatic disease
5 5 - CEA for asymptomatic disease
6 6 - Bypass surgery for PVD with pain at rest
7 7 - Other PVD surgeries

8 - AVF for hemodialysis access
9 - Aorto-bifemoral bypass
10 - Other bypass surgeries
11 - VV or veins ligation

*/
sx=sx_dx;
if expr1=1 then sx=8; * AVF ;
if expr3=1 and sx_dx=7 then sx=10; * other bypass surgeries for PVD ;
if expr2=1 then sx=9; * ABF - aorto-bifemoral bypass ;

if expr4=1 and expr1^=1 then sx=11; * VV or ligation ;
proc=1; * AAA ;
if sx_dx =6 and sx =9 then sx=6;
if sx=4 or sx=5 then proc=2; * CEA ;
if sx=6 or sx=9 or sx=10 then proc=3; * PVB ;
if sx=7 or sx=11 then proc=3; * other PVD surgeries ;
if sx=8 then proc=4; * AVF ;
/* indicator variables */
proc1=0; proc2=0; proc3=0; proc4=0;
if proc=1 then proc1=1;
if proc=2 then proc2=1;
if proc=3 then proc3=1;
if proc=4 then proc4=1;

*****************
* Waiting times *
*****************;
* number of weeks from registration on wait list to admission or removal ;
weeks=intck(’week’,mdy(m,d,yo),
mdy(month(adm_date),day(adm_date),year(adm_date)));
* number of weeks from first date to registration on wait list ;
week0=intck(’week’,mdy(6,1,1994),mdy(m,d,yo));

********************
* Wait-list status *
********************;
/* Status codes

0 - Received surgery
1 - Still on wait list
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2 - Cancellation of booked surgery due to patient condition
3 - Patient condition prevented booking surgery
4 - Health deterioration: stroke, rupture, tia
5 - Death before admission
6 - Patient refused to undergo booked surgery
7 - Patient improved
8 - Patient decided against surgery

*/
status=0;if taken_of^=. then status=taken_of;
* assign status "still on wait list" to patients with delays over 1 year *;
* those who are active already have ’WL’ in adm_wit and will not be affected *;
if adm_wit=’’ then do;
adm_wit=’WL’;
weeks=53;
status=1;
if_not=6;

end;
wait=weeks;

**********************************************
* Admission within/beyond target access time *
**********************************************;
* correct adm_wit if wait<=gl among received ;
if wait<=gl and adm_wit=’No’ then do;
adm_wit=’Yes’;
if_not=0;

end;
* correct adm_wit if wait>gl among received ;
if wait>gl and adm_wit=’Yes’ then do;
adm_wit=’No’;
if_not=1;

end;
* correct wait if wait<=gl but there is info on if_not among removed ;
if wait<=gl and adm_wit=’N/A’ and if_not>0 then do;

wait=gl+1;
end;
if if_not=. then do;
if adm_wit=’Yes’ then if_not=0;
if adm_wit=’No’ then if_not=1;
if adm_wit=’N/A’ then do;
if wait <=gl then if_not=0;
if wait >gl then if_not=1;
if wait >gl and proc=4 then if_not=6;

end;
end;
run;
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SAS Code B.2: DATA step to censor waiting times

/*******************************************************
* Program: \vascular\sas\common\step_2.sas
*
* Input data: "vasc2"
*
* Description: DATA step to censor waiting times
*
*******************************************************/

data vasc;
set vasc2;
status0=status;
if wait>40 then do; /* censor if wait is more than 40 weeks */
wait=41;
if adm_wit=’N/A’ or weeks>40 then do;

adm_wit=’WL’;
end;
status=1;

end;

***********
* Outcome *
***********;
outcome=1; * surgery or censored within target access time ;
if adm_wit=’No’ or adm_wit=’WL’ or adm_wit=’N/A’ then do;

outcome=2;
/* no surgery within target time due to patient problems */

if if_not=3 or if_not=4 or if_not=5 then outcome=3;
/* no surgery within target time due to hospital problems */

if if_not=6 then outcome=4;
/* no surgery within target time due to doctor decision */

if if_not=7 then outcome=5;
/* no surgery within target time due to the length of wait list */

end;
if adm_wit=’N/A’ then do;

if wait<gl or if_not=0 then outcome=1; * censored within target time ;
end;

*******************
* Delay indicator *
*******************;
del=0;
if outcome=2|outcome=3|outcome=4 then del=1;

run;
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B.1.2 Preparing data set on access to coronary artery bypass grafting surgery

SAS Code B.3: DATA step to create analytical data set

/*******************************************************
* Program: \cabg\sas\common\step_1.sas
*
* Input data: "booklib" is a library that contains
* the data set "cabg1" of original records
*
* Description: DATA step to apply exclusion criteria,
* create categorical and indicator variables,
* and compute waiting times
*******************************************************/

data cabg2;
set booklib.cabg1;
/* Exclusion criteria

patients:
- with emergency priority status at registration
- who received surgery within one day and arrived on weekend
- with reason for removal of surgery done, no OR report
- who arrived and were removed from wait list on same date

*/
where ur_bk^=’0’

& ^( (wl_rm=’0’|wl_rm=’10’) & (weekday(wl_st)=7 | weekday(wl_st)=1)
& intck(’day’,mdy(month(wl_st),day(wl_st),year(wl_st)),
mdy(month(wl_en),day(wl_en),year(wl_en)))=1 )

& wl_rm^=’6’
& wl_st^=wl_en;

by bccr_id;

*******************
* Priority groups *
*******************;
* indicator for priority group at registration ;
iurbk1=0; iurbk2=0; iurbk3=0; iurbku=0;
if ur_bk=’1’ then do; iurbk1=1; end;
if ur_bk=’2’ then do; iurbk2=1; end;
if ur_bk=’3’ then do; iurbk3=1; end;
if ur_bk=’U’ then do; iurbku=1; end;

**************
* Age groups *
**************;
* collapse age categories ;
agecat2=99; age0=0; age1=0; age2=0; age3=0; age4=0;
if age<50 then do; agecat2=0; age0=1; end;
if age>=50 & age<60 then do; agecat2=1; age1=1; end;
if age>=60 & age<70 then do; agecat2=2; age2=1; end;
if age>=70 & age<80 then do; agecat2=3; age3=1; end;
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if age>=80 then do; agecat2=4; age4=1; end;
if age=. then do; agecat2=99; end;

***********************
* Registration period *
***********************;
* registration period and indicator variables ;
cy=99;
icy91=0; icy93=0; icy95=0; icy97=0; icy99=0; icy01=0;
if wl_yr=’1991’ | wl_yr=’1992’ then do; cy=1; icy91=1; end;
if wl_yr=’1993’ | wl_yr=’1994’ then do; cy=2; icy93=1; end;
if wl_yr=’1995’ | wl_yr=’1996’ then do; cy=3; icy95=1; end;
if wl_yr=’1997’ | wl_yr=’1998’ then do; cy=4; icy97=1; end;
if wl_yr=’1999’ | wl_yr=’2000’ then do; cy=5; icy99=1; end;
* split into first 3 years vs last 2 years ;
icy=99;
if cy=1 | cy=2 | cy=3 then icy=0;
if cy=4 | cy=5 then icy=1;

*******
* Sex *
*******;
sexfn=0; * numeric indicator for sex ;
if sexf=’0’ then sexfn=0;
if sexf=’1’ then sexfn=1;
if sexf=’U’ then sexfn=.;

***************
* Comorbidity *
***************;
* comorbidity categorical variable ;
comor=99; icmc1=0; icmc2=0; icmc3=0;
if cm_ch=’0’ then do; comor=1; icmc1=1; end; * none ;
if cm_ch^=’0’ & cm_bk=’0’ then do; comor=2; icmc2=1; end; * no major == minor;
if cm_ch^=’0’ & cm_bk=’1’ then do; comor=3; icmc3=1; end; * major ;

************
* Hospital *
************;
* numeric indicators for institution at registration ;
ihsp1=0; ihsp2=0; ihsp3=0; ihsp4=0;
if inst_bk=’1’ then ihsp1=1;
if inst_bk=’2’ then ihsp2=1;
if inst_bk=’3’ then ihsp3=1;
if inst_bk=’4’ then ihsp4=1;

********************
* Coronary anatomy *
********************;
* collapse anatomy categories ;
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anatom2=’99’;
if anatom=’1’ then anatom2=’1’; * left main ;
if anatom=’2’ | anatom=’3’ | anatom=’5’ then anatom2=’2’; * multivessel ;
if anatom=’4’ | anatom=’U’ then anatom2=’3’; * limited ;

*****************
* Waiting times *
*****************;
* number of calendar weeks from January 1, 1991 to registration on wait list ;
week0=intck(’week’,mdy(1,1,1991),mdy(month(wl_st),day(wl_st),year(wl_st)));
* weeks on wait list ;
wait=intck(’week’,mdy(month(wl_st),day(wl_st),year(wl_st)),

mdy(month(wl_en),day(wl_en),year(wl_en)));
* months on wait list ;
waitm=intck(’month’,mdy(month(wl_st),day(wl_st),year(wl_st)),

mdy(month(wl_en),day(wl_en),year(wl_en)));
* target access times ;
mrwt=999;
if ur_bk=’1’ then mrwt=0.5; * urgent, target time < 1 week;
if ur_bk=’2’ then mrwt=6; * semiurgent, target time <= 6 weeks;
if ur_bk=’3’ then mrwt=12; * nonurgent, target time <= 12 weeks;
* indicator for removal within target access time ;
iadw=0;
if wait<=mrwt then iadw=1; * removal within target time ;
if mrwt=999 then iadw=99; * emergency or missing cases ;

********************
* Wait-list status *
********************;
status=99; * status indicator in numeric format ;
if wl_rm=’0’ then status=0; * underwent surgery ;
if wl_rm=’1’ then status=1; * died ;
if wl_rm=’2’ then status=2; * medical treatment ;
if wl_rm=’3’ then status=3; * patient request ;
if wl_rm=’4’ then status=4; * transferred ;
if wl_rm=’5’ then status=5; * otherwise removed from list ;
if wl_rm=’6’ then status=6; * surgery done, no OR report ;
if wl_rm=’7’ then status=7; * wait list ;
if wl_rm=’8’ then status=8; * other surgery (for valve replacement, etc) ;
if wl_rm=’9’ then status=1; * patient died (no corresponding vital statistics);
if wl_rm=’10’ then status=12; * unplanned emergency admission ;
if (wl_rm=’0’ | wl_rm=’10’) & wait=0 then status=13; * immediate sx ;

***************
* Death dates *
***************;
* preserve original death date ;
dthdate0=dthdate;
* refine death dates ;
* refine death dates among those who died in hospital ;
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if exit_code=’X’ then dthdate=sepdate;
* refine death dates among those who died on WL ;
if wl_rm=’1’ | wl_rm=’9’ then dthdate=wl_en;
* if discharged alive but sepdate before dthdate then refine dthdate ;
if (wl_rm=’0’|wl_rm=’10’) & exit_code^=’X’ & dthdate^=. & (sepdate>dthdate) then
dthdate=intnx(’day’,sepdate,1);

*****************************
* Perioperative death times *
*****************************;
* months from registration on wait list to death or end of study ;
twlsdthm=.;
if dthdate^=. then do;
twlsdthm=intck(’month’,mdy(month(wl_st),day(wl_st),year(wl_st)),
mdy(month(dthdate),day(dthdate),year(dthdate)));

end;
if dthdate=. then do;
twlsdthm=intck(’month’,mdy(month(wl_st),day(wl_st),year(wl_st)),
mdy(12,31,2002));

end;

****************
* Death status *
****************;
dthsts=99;
* preoperative death on wait list ;
if (wl_rm=’1’|wl_rm=’9’) & wait<=52 then dthsts=1;
* in-hospital death ;
if (wl_rm=’0’ | wl_rm=’10’) & dthdate^=. & exit_code=’X’ then dthsts=2;
* late postoperative death ;
if (wl_rm=’0’ | wl_rm=’10’) & dthdate^=. & exit_code^=’X’ then dthsts=3;
* death after removal from wait list without surgery ;
if ^(wl_rm=’0’|wl_rm=’10’) & ^((wl_rm=’1’|wl_rm=’9’) & wait<=52)
& dthdate^=. then dthsts=4;

* alive at study end ;
if dthdate=. & ^(wl_rm=’9’) then dthsts=98;

run;

SAS Code B.4: DATA step to censor waiting times

/*******************************************************
* Program: \cabg\sas\common\step_2.sas
*
* Input data: "cabg2"
*
* Description: DATA step to censor waiting times
*******************************************************/
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data cabg;
set cabg2;
ptno=_N_;
************************
* Censor waiting times *
************************;
wait0=wait;
waitm0=waitm;
status0=status;
status5y=status;

* censor if wait is more than 52 weeks ;
if wait>52 then do;
wait=53;
status=9;

end;

wait05=wait;
if wait=0 then wait05=0.5;

* censor if wait is more than 60 months ;
if waitm>60 then do;
waitm=61;
status5y=9;

end;

*************
* Indicator *
*************;
* indicator for wait-list death ;
death=0; if status=1 then death=1;

**********************
* Censor death times *
**********************;
twlsdthcm=twlsdthm;
dthstssc=dthsts;

* censor if transferred or underwent other surgery ;
if status0=4|status0=8 then do;
twlsdthcm=waitm0;
dthstssc=99; * alive, censored ;

end;

* censor if time is more than 5 years;
if twlsdthcm>60 then do;
twlsdthcm=61;
dthstssc=99; * alive, censored ;

end;
run;
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B.1.3 Preparing data set on access to cholecystectomy surgery

SAS Code B.5: DATA step to create analytical data set

/*******************************************************
* Program: \chole\sas\common\step_1.sas
*
* Input data: "booklib" is a library that contains
* the data set "chole1" of original records
*
* Description: DATA step to create categorical
* and indicator variables
*******************************************************/

data chole2;
set booklib.chole1;

******************
* Age categories *
******************;
/* indicator variables for age group */
ag1=(ag_ca1=1);
ag2=(ag_ca1=2);
ag3=(ag_ca1=3);
ag4=(ag_ca1=4);
ag5=(ag_ca1=5);
ag6=(ag_ca1=6);
ag7=(ag_ca1=7);

*******
* Sex *
*******;
sexm=1-sexf;

***********************
* Registration period *
***********************;
* indicator variables for registration period ;
fy1=(ep1=1); fy2=(ep1=2); fy3=(ep1=3);

******************************
* Surgeon annual case volume *
******************************;
* indicator variables for surgeon volume ;
vt1=(vt=1); vt2=(vt=2); vt3=(vt=3);

run;
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/*******************************************************
* Program: \chole\sas\common\step_2.sas
*
* Input data: "chole2"
*
* Description: DATA step to create patient-interval data
*******************************************************/
data chole;
array p[7] per1-per7;
array lp[7] lpr1-lpr7;
set chole2;
**************************
* Waiting-time intervals *
**************************;
/* number of weeks in interval */
per1=3; per2=4; per3=4; per4=8; per5=8; per6=12; per7=12;
/* lowerbound of interval */
lpr1=0; lpr2=3; lpr3=7; lpr4=11; lpr5=19; lpr6=27; lpr7=39;

***********************
* Waiting-time period *
**********************;
per=(wait>0)+(wait>=4)+(wait>=8)+(wait>=12)+

(wait>=20)+(wait>=28)+(wait>=40);

**********************************
* Time-dependent event indicator *
**********************************;
do j=1 to per;
emgadm=0; * indicator for emergency admission ;
eladm=0; * indicator for elective admission ;
tim=p[j];
if j=per then do;
tim=wait-lp[j];
emgadm=(event=2);
eladm=(event=1);

end;
* offset variable for Poisson regression ;
ltim=log(tim);
* indicator variables for waiting-time interval ;
wcat1=(j=1); wcat2=(j=2); wcat3=(j=3); wcat4=(j=4); wcat5=(j=5);
wcat6=(j=6); wcat7=(j=7);
output;

end;
run;
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B.2 Estimating summary measures

B.2.1 Macro to estimate proportion by group

SAS Code B.6: Macro to estimate event proportions by group

/*******************************************************
* Program: macro_getprop.sas
*
* Description: ’getprop’ is a macro to compute event proportions by group
*
* Input:
* dat, specifies the name of the data set
* grp, group variable in ’dat’
* sts, status variable in ’dat’ for status of patient
* rcdc, corresponding ’sts’ code for patients who
* experienced event of interest
* alp, number between 0 and 1; 100(1-alp)% confidence interval
* estimated for event proportion
* outdat, name of output data set
*
* Output:
* data set called ’outdat’ with columns for the following:
* grp, grouping variable
* numpt, number of patients
* totev, total number of events
* evprop, event proportion (=totev/numpt*100)
* seevprop, standard error of estimated event proportion
* (approx sqrt(evprop/100*(1-evprop/100)/numpt)*100 )
* lbprop, lowerbound of 100*(1-alp)% CI for event proportion
* ubprop, upperbound of 100*(1-alp)% CI for event proportion
*
* Developed by Lisa Kuramoto (2003/12/09);
* Revised by Lisa Kuramoto (2004/04/27);
* Revised by Lisa Kuramoto (2004/05/03);
* Revised by Lisa Kuramoto (2006/09/22);
* Revised by Lisa Kuramoto (2006/09/25);
*******************************************************/

%macro getprop(dat,grp,sts,rcdc,alp,outdat);
* create indicator for event of interest *;
data evind;
set &dat;
ev=0;
if &sts=&rcdc then ev=1;

run;

* compute total number of events by group *;
proc sort data=evind out=evinds;
by &grp;

run;
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proc means noprint nway data=evinds;
by &grp;
var ev;
output out=evot

sum=totev;
run;

* compute event proportion *;
data &outdat;
set evot;
* event proportion and standard error *;
evprop=totev/_FREQ_;
seevprop=sqrt(evprop*(1-evprop)/_FREQ_);

* approximate 100(1-alp)% CI for event proportion *;
lbprop=evprop-probit(1-&alp/2)*seevprop;
ubprop=evprop+probit(1-&alp/2)*seevprop;

* report as percentage *;
evprop=evprop*100; seevprop=seevprop*100;
lbprop=lbprop*100;
ubprop=ubprop*100;

rename _FREQ_=numpt;
drop _TYPE_;

run;

proc print data=&outdat;
format evprop 8.1 seevprop 8.1 lbprop 8.1 ubprop 8.1;

run;
%mend getprop;

B.2.2 Macro to estimate event rates by group

SAS Code B.7: Macro to estimate event rates by group

/*******************************************************
* Program: macro_getrate.sas
*
* Description: "getrate" is a macro to compute event rates by group
*
* Input:
* dat - specifies the name of the data set
* grp - group variable in dat
* time - waiting time variable in dat
* sts - status variable in dat for status of patient
* rcdc - corresponding sts code for patients who
* experienced event of interest
* unit - integer number to estimate
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* event rate per unit patient-times
* alp - number between 0 and 1 to estimate
* 100(1-alp)% confidence interval for event rate
* outdat - name of output data set
*
* Output:
* data set "outdat" with columns
* grp - grouping variable
* numpt - number of patients
* totev - total number of events
* totpttme - total number of patient-times
* evrt - event rate (=totev/totpttme)
* seaevrt - standard error of estimated event rate
* (approx sqrt(totev)/totpttme )
* lbrt - lowerbound of 100*(1-alp)% CI for event rate
* ubrt - upperbound of 100*(1-alp)% CI for event rate
*
* Developed by Lisa Kuramoto (2003/12/09)
* Revised by Lisa Kuramoto (2004/04/27)
* Revised by Lisa Kuramoto (2004/05/03)
* Revised by Lisa Kuramoto (2006/09/20)
*******************************************************/

%macro getrate(dat,grp,time,sts,rcdc,unit,alp,outdat);
/* create indicator for event of interest */
data evind;
set &dat;
ev=0;
if &sts=&rcdc then ev=1;

run;
/* compute total number of events and patient-time by group */
proc sort data=evind out=evinds;
by &grp;

run;
proc means noprint nway data=evinds;
by &grp;
var ev &time;
output out=evrate

sum=totev totpttme;
run;
/* compute event rate */
data &outdat;
set evrate;
/* event rate and standard error */
evrt=totev/totpttme*&unit;
seevrt=sqrt(totev)/totpttme*&unit;
/* approximate 100(1-alp)% CI for event rate */
lbrt=evrt-probit(1-&alp/2)*seevrt;
ubrt=evrt+probit(1-&alp/2)*seevrt;
rename _FREQ_=numpt;
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drop _TYPE_;
run;
proc print data=&outdat;
format evrt 8.2 seevrt 8.2 lbrt 8.2 ubrt 8.2;

run;
%mend getrate;
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B.3 Creating new variables and reformatting records

B.3.1 DATA step for estimating wait-list size

SAS Code B.8: DATA step to estimate wait-list size

/*******************************************************
* Program: \cabg\sas\common\wlsize.sas
*
* Input data: "cabg2"
*
* Description: DATA step to compute wait-list size
*******************************************************/

* find number of surgeries by calendar week and hospital *;
data cabg2u;
set cabg2;

* classify patients with unknown priority at booking *;
ur_bk2=ur_bk;
if ur_bk=’U’ & (ur_sx=’1’ | ur_sx=’2’ | ur_sx=’3’) then ur_bk2=ur_sx;
if ur_bk=’U’ & (ur_sx=’U’ | ur_sx=’N/A’) then ur_bk2=’3’;
if ur_bk=’U’ & ur_sx=’0’ then ur_bk2=’3’;

run;

* patients who were on surgical wait list during study period *;
data sub;
set cabg2u;

* calendar week of registration on wait list from fixed date *;
week1=intck(’week’,mdy(1,1,1990),mdy(month(wl_st),day(wl_st),year(wl_st)));

* calendar week of removal from wait list from fixed date *;
week2=intck(’week’,mdy(1,1,1990),mdy(month(wl_en),day(wl_en),year(wl_en)));

run;

* expand to patient-week data *;
* only include weeks that contribute to wait-list size *;
data subex;
set sub;

* do not contribute to wait-list size during week of arrival *;
week1p1=week1+1;

* do not contribute to wait-list size during week of removal/surgery *;
week2m1=(wl_rm^=’7’)*(week2-1)+(wl_rm=’7’)*week2;

* contribute to wait-list size from week after registration *;
* to just before removal from WL *;
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do i=week1p1 to week2m1;
cweek=i;
output;

end;

run;

* count number of surgeries by hospital, calendar week *;
* and priority at registration *;
ods output Table=sztbl;
proc tabulate data=subex missing ;
class inst_bk cweek ur_bk2;
table inst_bk*cweek*ur_bk2;

run;

* compute wait-list size by priority within each hospital *;
* assumes higher priority undergo surgery first *;
data sztbl2;
set sztbl;
by inst_bk cweek;
retain wlsize;

if first.cweek then wlsize=0;

if N=. then N=0;

wlsize=wlsize+N;

rename cweek=week1; * week of registration on surgical WL *;
keep inst_bk cweek ur_bk2 wlsize;

run;

* extract patients with referral date during study period of interest *;
* and who are on surgical WL *;
proc sort data=sub out=subs;
by inst_bk week1 ur_bk2;

run;

* merge data with WL size data *;
data wlszdat;
* append new variable ’wlsize’ to data set *;
merge subs (in=ori) sztbl2;
by inst_bk week1 ur_bk2;

* those at beginning of study period defined to have 0 wlsize *;
if wlsize=. then wlsize=0;

* create 4 categories of wait-list size *;
* (dependent upon hospital at booking) *;
wlszcat=0;
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wlsz1=0; wlsz2=0; wlsz3=0; wlsz4=0;
if (inst_bk=’1’ | inst_bk=’2’ | inst_bk=’4’) &
wlsize>=0 & wlsize<=14 then do; wlszcat=1; wlsz1=1; end;

if (inst_bk=’1’ | inst_bk=’2’ | inst_bk=’4’) &
wlsize>=15 & wlsize<=29 then do; wlszcat=2; wlsz2=1; end;

if (inst_bk=’1’ | inst_bk=’2’ | inst_bk=’4’) &
wlsize>=30 & wlsize<=59 then do; wlszcat=3; wlsz3=1; end;

if (inst_bk=’1’ | inst_bk=’2’ | inst_bk=’4’) &
wlsize>=60 then do; wlszcat=4; wlsz4=1; end;

if inst_bk=’3’ & wlsize>=0 & wlsize<=24 then do; wlszcat=1; wlsz1=1; end;
if inst_bk=’3’ & wlsize>=25 & wlsize<=49 then do; wlszcat=2; wlsz2=1; end;
if inst_bk=’3’ & wlsize>=50 & wlsize<=99 then do; wlszcat=3; wlsz3=1; end;
if inst_bk=’3’ & wlsize>=100 then do; wlszcat=4; wlsz4=1; end;

if ori=1 then output;
run;
proc sort data=wlszdat;
by bccr_id;

run;

* censor waiting times after 52 weeks *;
data wtimesz2;
set wlszdat;

ptno=_N_;

* retain original status *;
status0=status;

* censor if wait is more than 52;
if wait>52 then do;
wait=53;
status=9;

end;

wait05=wait;
if wait=0 then wait05=0.5;

run;

B.3.2 DATA step for creating patient by week data for access to surgery

SAS Code B.9: DATA step to create patient by week data for access to surgery

/*******************************************************
* Program: \cabg\sas\common\ptwkdata_access.sas
*
* Input data: "wtimesz2"
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*
* Description: DATA step to create patient by week data for access to surgery
*******************************************************/

data wtimeszex;
set wtimesz2;
retain cweek;

do time=0 to wait;

access=0; * access to surgery indicator *;
if time=wait and (status=0|status=13) then access=1;

* create calendar week variable *;
if time=0 then cweek=week0+1;
if time^=0 then cweek=cweek+1;

if time=0 then time=0.5;
if time<=52 then output;
if time=0.5 then time=0;

end;

run;

B.3.3 DATA step for creating patient by week data for on-time surgery

SAS Code B.10: DATA step to create patient by week data for on-time surgery

/*******************************************************
* Program: \cabg\sas\common\ptwkdata_ontime.sas
*
* Input data: "wtimesz2"
*
* Description: DATA step to create patient by week data for on-time surgery
*******************************************************/

data wtimeszex2;
set wtimesz2;
retain cweek;

do time=0 to wait;

access=0; * access to surgery indicator *;
if time=wait and (status=0|status=13) then access=1;

* create calendar week variable *;
if time=0 then cweek=week0+1;
if time^=0 then cweek=cweek+1;
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if time=0 then time=0.5;
if (ur_bk2=’1’ & time<=0.5) | (ur_bk2=’2’ & time<=6) |
(ur_bk2=’3’ & time<=12) then output;

if time=0.5 then time=0;
end;

run;

B.3.4 DATA step for expansion to pseudovalues data

SAS Code B.11: DATA step to create pseudovalue data

/*******************************************************
* Program: \cabg\sas\common\pvdata.sas
*
* Input data: "cabg"
*
* Description: DATA step to create pseudovalue data (no censored observations)
*******************************************************/

data cabg23ex2;
set cabg;
where ur_bk=’2’|ur_bk=’3’;
by ptno;
retain psvalue;

if first.ptno then do;
psvalue=0; * pseudovalue *;

end;

* pseudovalues for CIF of death *;
do i=0 to 52;
time=i;
if time=0 then time=0.5;
if status=1 & time>=wait05 then psvalue=1;
output;

end;

keep wait05 ur_bk status ptno time psvalue
iurbk1 iurbk2 iurbk3 iurbku
sexfn
age0 age1 age2 age3 age4
icy91 icy93 icy95 icy97 icy99
icmc1 icmc2 icmc3
ihsp1 ihsp2 ihsp3 ihsp4
;

run;
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Matlab code

C.1 Estimating the cumulative incidence function

Matlab Code C.1: Function to estimate cumulative incidence function for the event of interest

%% ’getcif’ is a function to compute the cumulative incidence
%% for event of interest
%%
%% Input:
%% N, total number at risk (integer)
%% e, number of events of interest at current time point
%% (vector of integers)
%% r, number of competing events at current time point
%% (vector of integers)
%% c, number of censored observations at current time point
%% (vector of integers)
%% t, distinct, ordered times (vector of integers/doubles)
%%
%% Note that the elements of ’e’, ’r’, and ’c’ should
%% correspond to the same time points in ’t’.
%%
%% Output:
%% F, estimated cumulative incidence function for event of
%% interest at each time point in ’t’
%% varF, estimate variance of cumulative incidence function for
%% event of interest at each time point in ’t’
%% t, distinct, ordered times (vector of integers/doubles)
%% n, number at risk *beyond* time point
%%
%% Developed by Lisa Kuramoto (2004/08/18);
%% Reviewed by Boris Sobolev (2004/09/01);
%% Revised by Lisa Kuramoto (2005/05/20).
%%
%% Based on Kalbfleisch and Prentice (1980) and Gaynor (1993).

function [F, varF, t, n] = getcif(N,e,r,c,t)
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%% estimate cumulative incidence function %%

% number of distinct, ordered time points
ntme=length(e);

% number at risk beyond time point
n=N-cumsum(sum([e r c],2));

% number at risk at time point
Y=[N; n(1:(ntme-1))];

% total number of events at time point
dd=e+r;

% hazard of event of interest
lam=e./Y;

% overall survival
pS=1-dd./Y;
pS=[1; pS];
pS=pS(1:(length(pS)-1));
S=cumprod(pS);

% cumulative incidence for event of interest
F=cumsum(lam.*S);

%% estimate variance of cumulative incidence function %%

% estimated survival function
tmp2=[1; cumprod(1+(c(1:(ntme-1)))./n(1:(ntme-1)))];
KMc=cumsum(dd.*tmp2)/N;
if any(isnan(KMc))

indx=ntme-sum(isnan(KMc));
KMc(isnan(KMc))=KMc(indx);

end;
S=1-KMc;
S=[1; S];
S=S(1:(length(S)-1));

% covariance matrix of lamS
ny=length(Y)-1;
tmp=dd(1:ny)./(Y(1:ny).*(Y(1:ny)-dd(1:ny)));
sumtmp=cumsum(tmp);
sumtmp=[0; sumtmp];

lamS=lam.*S;

vlamS=zeros(ntme,1);
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ind=(e~=0);
vlamS(ind)=lamS(ind).^2.*((Y(ind)-e(ind))./(e(ind).*Y(ind))+sumtmp(ind));

covmtx=zeros(ntme,ntme);
tmpmtx=zeros(ntme,ntme);
for i=1:(ntme-1),

for j=(i+1):ntme,
ind=(e(i)~=0 & e(j)~=0);
covmtx(i,j)=ind*lamS(i)*lamS(j)*(-1/Y(i)+sumtmp(i));
covmtx(j,i)=covmtx(i,j);
tmpmtx(i,j)=covmtx(i,j);

end;
covmtx(i,i)=vlamS(i);

end;
covmtx(ntme,ntme)=vlamS(ntme);

% compute variance of F
crstrm=sum(tmpmtx,1)’;
varF=cumsum(vlamS)+2*cumsum(crstrm);

C.2 Estimating the conditional probability function

Matlab Code C.2: Function to estimate conditional probability function for the event of interest

%% ’getcp’ is a function to compute the conditional probability
%% function for event of interest
%%
%% Input:
%% N, total number at risk (integer)
%% e, number of events of interest at current time point
%% (vector of integers)
%% r, number of competing events at current time point
%% (vector of integers)
%% c, number of censored observations at current time point
%% (vector of integers)
%% t, distinct, ordered times (vector of integers/doubles)
%%
%% Note that the elements of ’e’, ’r’, and ’c’ should
%% correspond to the same time points in ’t’.
%%
%% Output:
%% CP, estimated conditional probability function for event
%% of interest at each time point in ’t’ (vector of doubles)
%% varCP, estimated variance of conditional probability
%% function for event of interest at each time point
%% in ’t’ (vector of doubles)
%% t, distinct, ordered times (vector of integers/doubles)
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%%
%% Helper function:
%% ’getcif’ to compute the cumulative incidence function
%%
%% Developed by Lisa Kuramoto (2004/08/13);
%% Reviewed by Boris Sobolev (2004/08/27);
%% Revised by Lisa Kuramoto (2004/08/18);
%% Revised Lisa Kuramoto (2006/12/07).
%%
%% Based on Pepe (1993).

function [CP, varCP, t] = getcp(N,e,r,c,t)

%% estimate conditional probability function %%

% number of distinct, ordered time points
ntme=length(e);

% cumulative incidence for event of interest
[F1 varF1 t1 n1] = getcif(N,e,r,c,t);

% cumulative incidence for competing event
[F2 varF2 t2 n2] = getcif(N,r,e,c,t);

% conditional probabilities for event of interest
CP=F1./(1-F2);

% find number at risk beyond time point *
n=N-cumsum(sum([e r c],2));

%% estimate variance for conditional probability function %%

% number at risk at time point
Y=[N; n(1:(ntme-1))];

% overall survival
[Fo varFo to no] = getcif(N,e+r,zeros(length(e),1),c,t);
S=1-Fo;

% variance of CP
trm1=S.^2./(1-F2).^4;
num=(1-F2).^2.*e + F1.^2.*r;
den=Y.*(Y-1);
smd=num./den;
cs=cumsum(smd);

varCP=trm1.*cs;



C.3 Comparing conditional probability functions in two groups 197

C.3 Comparing conditional probability functions in two groups

Matlab Code C.3: Function to compare conditional probability functions in two groups

%% "cptest" is a function to compare the conditional probability
%% functions between group 1 and 2
%%
%% Input:
%% dat1, nt by 4 matrix for group 1, where ’nt’ is the number
%% of unique time points and columns are as follows:
%% (1) waiting time
%% (2) number of events of interest
%% (3) number of censored observations
%% (4) number of competing events
%% dat2, nt by 4 matrix for group 2, where ’nt’ is the number
%% of unique time points and columns are as follows:
%% (1) waiting time
%% (2) number of events of interest
%% (3) number of censored observations
%% (4) number of competing events
%% rho, exponent for the weight function
%% rho=0 => weight of 1 for all time points;
%% rho=1 => weight equal to censored distribution
%%
%% Output:
%% del, "difference" between CP in group 1 and 2
%% sig2, estimated variance of "difference"
%% tstat, test statistic (=del/sqrt(sig2))
%% pval, p-value
%% W, weight function
%%
%% Helper functions:
%% - getcif.m
%%
%% Restrictions:
%% - assumes the difference between time points is 1 %
%% - assumes observed time points for group 1 are same as group 2
%% - compares across first 53 time points
%%
%% Developed by Lisa Kuramoto (2004/08/13);
%% Reviewed by Boris Sobolev (2004/08);
%% Revised by Lisa Kuramoto (2006/12/07);
%%
%% Based on Pepe (1993).

function [del, sig2, tstat, pval, W] = cptest(dat1,dat2,rho)

% group 1 ;
wt1=dat1(:,1); % waiting time
e1=dat1(:,2); % number of events of interest
c1=dat1(:,3); % number of censored
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r1=dat1(:,4); % number of competing events
N1=sum(e1)+sum(r1)+sum(c1); % number initially at risk

% group 2 ;
wt2=dat2(:,1); % waiting time
e2=dat2(:,2); % number of events of interest
c2=dat2(:,3); % number of censored
r2=dat2(:,4); % number of competing events
N2=sum(e2)+sum(r2)+sum(c2); % number initially at risk

N=N1+N2; % total number initially at risk;

zros=zeros(length(wt1),1);

%% non-parametric estimates of cumulative incidence function %%
% cumulative incidence for event of interest in group 1
[F1I v t1I n1] = getcif(N1,e1,r1,c1,wt1); F1I=F1I(1:53);
% cumulative incidence for competing event in group 1
[F2I v t2I n1] = getcif(N1,r1,e1,c1,wt1); F2I=F2I(1:53);

% cumulative incidence for event of interest in group 2
[F1II v t1II n2] = getcif(N2,e2,r2,c2,wt2); F1II=F1II(1:53);
% cumulative incidence for competing event in group 2
[F2II v t2II n2] = getcif(N2,r2,e2,c2,wt2); F2II=F2II(1:53);

%% non-parametric estimates of conditional probability function %%
% conditional probability of event of interest
CP1I=F1I./(1-F2I); % CP for event of interest in group 1
CP1II=F1II./(1-F2II); % CP for event of interest in group 2

%% non-parametric estimates of complement Kaplan-Meier function %%
% group 1
cns=e1+r1;
[CKMcI v tmp2 n1] = getcif(N1,c1,zros,cns,wt1); CKMcI=CKMcI(1:53);
CKMI=1-CKMcI;
% group 2
cns=e2+r2;
[CKMcII v tmp2 n2] = getcif(N2,c2,zros,cns,wt2); CKMcII=CKMcII(1:53);
CKMII=1-CKMcII;

%% non-parametric estimates of S (ie. overall survival) %%
[ScI tmp tmp2 tmp3] = getcif(N1,e1+r1,zros,c1,wt1);
SI=1-ScI(1:53);
[ScII tmp tmp2 tmp3] = getcif(N2,e2+r2,zros,c2,wt2);
SII=1-ScII(1:53);

%% number at risk just before time t %%
y1=[N1; n1];
y2=[N2; n2];
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%%% Compute test statistic to compare the CIFs from two samples %%%
%%% H0: CP_1==CP_2
%%% HA: CP_1>=CP_2 if W>0

%% Compute weights %%
num=CKMI.*CKMII;
den=(N1/N)*CKMI + (N2/N)*CKMII;
W=(num./den).^rho;

tmp=[0; wt1(1:53)]; % assuming wt1=wt2;
tmediff=diff(tmp);

del=sqrt(N1*N2/N)*sum(W.*(CP1I-CP1II).*tmediff);

%% Compute variance %%
% group 1 %
Nt=length(wt1)-1; % number of time points
sig2I=0; %variance

num=(1-F2I).^2.*e1(1:Nt) + F1I.^2.*r1(1:Nt);
den=y1(1:Nt).*(y1(1:Nt)-1);
trm2=num./den;
smd=W.*SI./(1-F2I).^2;

for k=1:Nt,
trm1=sum(smd(k:Nt).*tmediff(k:Nt));
sig2I = sig2I + trm1^2*trm2(k);

end;
sig2I=sig2I*N1;

% group 2 %
Nt=length(wt2)-1; % number of time points
sig2II=0; %variance

num=(1-F2II).^2.*e2(1:Nt) + F1II.^2.*r2(1:Nt);
den=y2(1:Nt).*(y2(1:Nt)-1);
trm2=num./den;
smd=W.*SII./(1-F2II).^2;

for k=1:Nt,
trm1=sum(smd(k:Nt).*tmediff(k:Nt));
sig2II = sig2II + trm1^2*trm2(k);

end;
sig2II=sig2II*N2;

%% Compute estimated variance %%
sig2=(N2/N)*sig2I + (N1/N)*sig2II;
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%% Compute test statistic %%
tstat=del/sqrt(sig2);

%% Compute p-value %%
pval=1-normcdf(tstat);
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