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Part I:

Developments in Neuro-
science: Pain and Dystonia



1

Clinical Features of Dystonia and European
Guidelines for Diagnosis and Treatment

A. Albanese

tonia and dystonia plus syndromes. Task force mem-
bers were: A. Albanese (Milan, chairman), M.P. Barnes
(Newcastle-upon-Tyne), K.P. Bhatia (London), E. Fer-
nandez (Barcelona), G. Filippini (Milan), T. Gasser
(Tubingen), J.K. Krauss (Hanover), A. Newton (Brus-
sels), I. Rektor (Brno), M. Savoiardo (Milan), J. Valls-
Solé (Barcelona).

Computerized MEDLINE and EMBASE searches
(1966 up to February 2005) were conducted using
a combination of textwords and MeSH terms:
“dystonia”, “blepharospasm”, “torticollis”, “writer’s
cramp”, “Meige syndrome”, “dysphonia” and “sen-
sitivity and specificity” or “diagnosis”, and “clinic-
al trial” or  “random allocation” or “therapeutic use”
limited to human studies. The Cochrane Library and
the reference lists of all known primary and review
articles were searched for relevant citations. No
language restrictions were applied. Studies of diagno-
sis, diagnostic test, and various treatments for pa-
tients suffering from dystonia were considered and
rated as level A to C according to the recommen-
dations for EFNS scientific task forces [4]. Where
only class-IV evidence was available but consensus
could be achieved, we have proposed good practice
points.

The results of the literature searches were circu-
lated via e-mail to the task force members for com-
ments. The task force chairman prepared a first draft
of the manuscript based on the results of the literature
review, data synthesis and comments from the task
force members. The draft and the recommendations

Introduction

Dystonia is characterized by sustained muscle con-
tractions, frequently causing repetitive twisting move-
ments or abnormal postures [1, 2]. Although it is
thought to be rare, it is possibly underdiagnosed or
misdiagnosed due to the lack of specific clinical cri-
teria.

The prevalence of dystonia is difficult to ascertain.
On the basis of the best available prevalence estimates,
primary dystonia may be 11.1 per 100,000 of early-
onset cases in Ashkenazi Jews from the New York area,
60 per 100,000 of late-onset cases in Northern En-
gland, and 300 per 100,000 for late-onset cases in the
Italian population over the age of 50 [3].

Primary dystonia and dystonia plus are chronic
and often disabling conditions with a wide spectrum
mainly in young people. Areas of specific concern in-
clude differential diagnosis with other movement dis-
orders, etiological diagnosis, drug treatment, surgical
interventions, and genetic counseling.

Methods

A task force appointed by the European Federation of
Neurological Societies (EFNS) and by the European
Section of the Movement Disorders Society (MDS-ES)
met repeatedly to perform a systematic review on the
diagnosis and treatment of primary (idiopathic) dys-
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1
were discussed during a conference held in Milan on
February 11/12, 2005, until consensus was reached
within the task force.

Results

Diagnosis

The literature search on the diagnosis of dystonia iden-
tified no existing guidelines or systematic reviews.
Two consensus agreements [1, 5], two reports of
workshops or taskforces [6, 7], 69 primary studies on
clinically based diagnosis and 292 primary studies on
the diagnostic accuracy of different laboratory tests
were found. Dealing with primary clinical studies,
there were 6 cohort studies, 23 case-control studies,
3 cross-sectional, and 37 clinical series.

The classification of dystonia is based on three
axes: (a)"etiology, (b) age at onset of symptoms, and

(c) distribution of body regions affected (⊡ Table 1.1).
The etiological axis discriminates primary (idiopa-
thic) dystonia, in which dystonia is the only clinical
sign without any identifiable exogenous cause or other
inherited or degenerative disease, from non-primary
forms in which dystonia is usually just one of several
clinical signs. Dystonia plus is characterized by dys-
tonia in combination with other movement disorders,
for example myoclonus or parkinsonism. Primary
dystonia and dystonia plus, whether sporadic or fami-
lial, are thought to be of genetic origin in most cases.

The clinical features of dystonia encompass a
combination of dystonic movements and postures to
create a sustained postural twisting (torsion dys-
tonia). Dystonic postures can precede the occurrence
of dystonic movements and in rare cases can persist
without appearance of dystonic movements (so called
“fixed dystonia”) [8]. Sustained dystonic postures may
be the presenting feature of torsion dystonia and may
remain the only sign for many years before torsional
movements become apparent. Dystonia has some spe-

⊡ aT elb .1.1 sexaeerhtnodesabainotsydfonoitacifissalC
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)ygoloite(esuacyB –
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.)11-TYD(
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cific features that can be recognized by clinical exami-
nation. Speed of contractions of dystonic movements
may be slow or rapid, but at the peak of movement it
is sustained. The involuntary movement associated
with dystonia is often variable within months or years
and from one subject to the other. However, during a
given period of observation, and in each affected in-
dividual, dystonia is distinctively consistent and pre-
dictable.

Dystonic Postures

Postures that flex or twist a body part along the main
axis are associated with a sensation of rigidity and
traction. Dystonic postures are directional and force
the involved body region into an abnormal position
that is consistently present. In axial dystonia postural
abnormalities are often a prominent feature, due to
the rare occurrence of dystonic movements in the
trunk. Predominantly postural forms of axial dysto-
nia include scoliosis and camptocormia. Usually, pain
is not a prominent feature of primary dystonia, except
for cervical dystonia [9] and some secondary forms.
Dystonic postures, rather than movements, cause pain.

Dystonic Movements

As a rule, dystonic movements have a twisting nature
and a directional quality, they are repetitive and pat-
terned, consistent and predictable, and are sustained
at their peak. The directional quality is sustained (if
only for an instant), and consistency and predictabil-
ity indicate that the same muscle groups are repeat-
edly involved. Movements are directional with
variable speed. Dystonic neck movements have a di-
rectional preponderance, forcing the head to assume
an abnormal position (e.g., horizontal rotation or lat-
eral tilt), if only for a moment. Similarly, other focal
forms of dystonia result in consistent directional or
posture assuming movements (e.g., ulnar deviation,
plantar flexion, vocal fold adduction, eye closure).

Dystonic movements are occasionally rhythmic
and most often arrhythmic. When rhythmic, they are
difficult to differentiate from non-dystonic essential
tremor [10]. Aside from their directional character,
clinical features indicating rhythmic dystonia, rather
than essential tremor, include: irregularity, the pres-
ence or worsening of tremor when the affected body
part is placed in a position opposite to the direction
of pull, and activation of muscles not required for
maintenance of the movement (overflow, as described
below). By contrast, dystonic movements are easily
distinguished from chorea: in dystonia there is no

flowing of movement along the affected body parts,
and muscle tone is not reduced. Dystonic movements
may have different speeds. When fast, they may re-
semble myoclonus and generate what has been
termed “myoclonic dystonia” [11, 13]; when slow and
distal they match the description of athetosis [14].
Unlike tics that usually change their pattern over time,
dystonic movements are predicable and consistent
during an observational period. Furthermore, there is
no strong urge to execute the involuntary movement
and no relief after execution; these are aspects of tics
that make them assume a “semi-voluntary” or at least
intentional nature not usually observed in dystonia. In
people with excessive blinking it may be difficult to
recognize the features of dystonic movements from
those of motor tics. The expression “dystonic tics” has
been used to indicate motor eye tics, which look like
mild dystonia [15].

Additional Clinical Features

Dystonia is not a static phenomenon. Changes in the
pattern of muscle activation occur during the course
of the disease and also following specific manoeuvres
that have diagnostic value [16]. The possibility to ag-
gravate or relieve dystonia by using specific physical
signs has diagnostic value in many cases.

Eliciting or Worsening Dystonia

Overflow is observed when dystonia extends to a con-
tiguous body region where it is not observed as an
independent phenomenon. An example is overflow to
the upper limbs in patients with cervical dystonia.
Mirroring occurs when, during a voluntary task in-
volving a limb, similar albeit involuntary movements
(often with dystonic features) arise in the contralat-
eral limb. Mirroring is not a specific feature of dysto-
nia, although it may reveal a latent dystonia, particu-
larly in subjects belonging to dystonia families. When
occurring in dystonic patients, mirroring can be con-
sidered as a minimal expression of focal dystonia that
is observed in otherwise unaffected body regions.

The term “action dystonia” indicates that dystonia
is activated by a voluntary task. Activation by volun-
tary movements allows to detect dystonia when it is
not observed at rest or to increase its intensity when
it is too mild to be unequivocally recognised. The ac-
tivating voluntary movement may vary from non-spe-
cific to highly task-specific. Occupational dystonia
occurs when a specific occupation (i.e., a motor task)
is performed. Task specificity is a feature of mild forms
of dystonia, which may be lost with progression.



6 Part I · Development in Neuroscience: Pain and Dystonia

1
Primary writing tremor, was first described in a

patient who complained of jerking of the right fore-
arm on writing [17]. Despite its name, this is consid-
ered a task-specific dystonia where the movement
resembles tremor due to its rhythmicity. Similarly to
dystonic movements, dystonic postures may also be
activated by specific voluntary motor tasks.

Transiently Improving Dystonia

Dystonic movements and postures may be alleviated
by some specific voluntary movements, also called
gestes antagonistes, or by sensory tricks [18, 19]. Their
observation strongly supports the diagnosis of dys-
tonia [20]. They are thought to inhibit, at the central
level, the cortical overflow associated with dystonia
[21] and their finding is a clinical sign for the diagno-
sis of dystonia.

The two terms hint at different pathophysiology:
performing a highly specific voluntary movement
may interfere with the outflow of motor programmes
from the basal ganglia thus inhibiting dystonia (gestes
antagonistes); on the other hand, sensory afferents
may inhibit the clinical emergence of dystonia (sen-
sory tricks) [22]. Thus, gestes antagonistes and sen-
sory tricks do not merely counteract the involuntary
movement.

Patients often automatically select gestes antago-
nistes when dystonic movements are at their peak;
this can be regarded as an exception to the general
rule that voluntary movements, particularly purpose-
ful skilled actions, aggravate dystonia, either mobile
or fixed. For that reason, the amelioration of dystonia
with activity has also been termed “paradoxical dys-
tonia” [23]. The usage of this confounding expression
is, however, discouraged. The gestes antagonistes nor-
mally involve a body part different from (and often
contiguous with) the one affected by dystonia that is
alleviated.

Recommendations and Good Practice
Points

Clinical Diagnosis

 Diagnosis and classification of dystonia are highly
relevant for providing appropriate management,
prognostic information, genetic counselling and
treatment (good practice point).

 Based on the lack of specific diagnostic tests, ex-
pert observation is recommended. Referral to a

movement disorders expert increases the diag-
nostic accuracy [24] (good practice point).

 Neurological examination alone allows the clini-
cal identification of primary dystonia and dysto-
nia plus, but not the distinction among different
etiological forms of heredo-degenerative and sec-
ondary dystonias (good practice point).

Laboratory Tests

 Diagnostic DYT1 testing in conjunction with ge-
netic counseling is recommended for patients
with primary dystonia with onset before age
30 [25] (level B).

 Diagnostic DYT1 testing in patients with onset
after age 30 may also be warranted in those hav-
ing an affected relative with early onset [25, 26]
(level B).

 Diagnostic DYT1 testing is not recommended in
patients with onset of symptoms after age 30 who
either have focal cranial-cervical dystonia or have
no affected relative with early onset dystonia
[25, 26] (level B).

 Diagnostic DYT1 testing is not recommended in
asymptomatic individuals, including those under
the age of 18, who are relatives of familial dysto-
nia patients. Positive genetic testing for dystonia
(e. g. DYT1) is not sufficient to make a diagnosis
of dystonia unless clinical features show dystonia
[25, 27] (level B).

 A diagnostic levodopa trial is warranted in every
patient with early onset dystonia without an alter-
native diagnosis [28] (good practice point).

 Individuals with myoclonus affecting the arms or
neck, particularly if positive for autosomal domi-
nant inheritance, should be tested for the DYT11
gene [29] (good practice point).

 Neurophysiological tests are not routinely recom-
mended for the diagnosis or classification of dys-
tonia; however, the observation of abnormalities
typical of dystonia is an additional diagnostic tool
in cases where the clinical features are considered
insufficient to the diagnosis [30, 31] (good prac-
tice point).

 Brain imaging is not routinely required when there
is a confident diagnosis of primary dystonia in
adult patients, because a normal study is expected
in primary dystonia [32] (good practice point).

 Brain imaging is necessary for screening of sec-
ondary forms of dystonia, particularly in the pe-
diatric population due to the more widespread
spectrum of dystonia at this age [33] (good prac-
tice point).
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 MRI is preferable to CT, except when brain calci-
fications are suspected (good practice point).

 There is no evidence that more sophisticated
imaging techniques (e. g., voxel-based morpho-
metry, DWI, fMRI) are currently of any value in
either the diagnosis or the classification of dysto-
nia (good practice point).

Treatment

Botulinum Toxins

 Botulinum toxin type A (BoNT-A; or type B if there
is resistance to type A) can be regarded as first
line treatment for primary cranial (excluding oro-
mandibular) or cervical dystonia [34, 35] (level A).

 Due to the large number of patients who require
BoNT injections, the burden of performing treat-
ment could be shared with properly trained nurse
specialists, except in complex dystonia or where
EMG guidance is required [36] (level B).

 BoNT-A may be considered in patients with writ-
ing dystonia [37] (level C).

Anticholinergic Drugs

The absolute and comparative efficacy and tolerabil-
ity of anticholinergic agents in dystonia is poorly
documented in children and there is no proof of effi-
cacy in adults; therefore, no recommendations can be
made to guide prescribing (good practice point).

Antiepileptic Drugs

There is lack of evidence to give recommendations for
this type of treatment (good practice point).

Anti-Dopaminergic Drugs

There is lack of evidence to give recommendations for
this type of treatment (good practice point).

Dopaminergic Drugs

Following a positive diagnostic trial with levodopa,
chronic treatment with levodopa should be initiated
and adjusted according to the clinical response [38]
(good practice point).

Neurosurgical Procedures

 Pallidal DBS is considered a good option, particu-
larly for generalized or cervical dystonia, after

medication or BoNT have failed to provide ad-
equate improvement. While it can be considered
second-line treatment in patients with general-
ized dystonia, this is not the case in cervical dys-
tonia since there are other surgical options
available (see below). This procedure requires a
specialized expertise, and is not without side ef-
fects [39, 40] (good practice point).

 Selective peripheral denervation is a safe proce-
dure with infrequent and minimal side effects that
is indicated exclusively in cervical dystonia. This
procedure requires a specialized expertise [41]
(level C).

 There is insufficient evidence to use intrathecal
baclofen in primary dystonia; the procedure can be
indicated in patients where secondary dystonia is
combined with spasticity [42] (good practice point).

 Radiofrequency lesions are currently discouraged
for bilateral surgery [43] (good practice point).

Conclusions and Implications
for Clinical Practice Today

Diagnosis and classification of dystonia are highly
relevant for providing appropriate management and
prognostic information, and genetic counseling. Ex-
pert observation is suggested. DYT1 gene testing is
recommended for patients with primary dystonia
with onset before age 30 and in those with an affected
relative with early onset. Positive genetic testing for
dystonia (e. g. DYT1) is not sufficient to make a diag-
nosis of dystonia.

BoNT-A (or type B if there is resistance to type A)
can be regarded as first-line treatment for primary
cranial (excluding oromandibular) or cervical dysto-
nia and can be effective in writing dystonia. Pallidal
deep brain stimulation (DBS) is considered a good
option, particularly for generalized or cervical dysto-
nia, after medication or BoNT have failed to provide
adequate improvement. Selective peripheral dener-
vation is a safe procedure that is indicated exclusively
in cervical dystonia.

Future Directions

The Task Force will meet regularly to review new evi-
dence on diagnosis and treatment and will update its
recommendations according to emerging new scien-
tific evidence.
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Complex Regional Pain Syndrome –
What’s in a Name?

B. van Hilten

Introduction

In 1994 the term Complex Regional Pain Syndrome
(CRPS) was introduced along with its criteria, which
focused on sensory and autonomic features of this
disorder [1]. These criteria were to replace the term
“reflex sympathetic dystrophy” (RSD) with CRPS
type I and causalgia with CRPS type II, respectively
[1]. The difference between the two types of CRPS
is based on the absence (CRPS type I) or presence
(CRPS type II) of an overt nerve lesion. CRPS fre-
quently follows tissue injury, which can be minimal or
severe (sprain/strain, fracture, contusion/crush in-
jury) [2]. But in 5–16% of the patients, no inciting
event can be identified. As with prior RSD criteria sets,
the CRPS criteria of the IASP focus on the different
aspects of sensory and autonomic features [3, 4].
However, there is a growing recognition that the clini-
cal spectrum of CRPS is broader including also move-
ment disorders. Additionally, the CRPS criteria set
has a low specificity [5]. Recent reviews on the uti-
lisation of diagnostic criteria in studies/trials on
CRPS highlight a lack of consensus on the content
and application of criteria sets [4–6]. Together, these
short-comings have led to new criteria that were pub-
lished in 2005 (see below) [7].

Modified IASP research diagnostic criteria for
CRPS-1 – Budapest criteria [2] (submitted to Commit-
tee for Classification of Chronic Pain of the IASP for the
3rd taxonomy, not yet accepted):

1. Continuing pain, which is disproportionate to any
inciting event.

2. Must report at least one symptom in each of the
four following categories:
Sensory: reports of hyperesthesia and/or allo-

dynia.
Vasomotor: reports of temperature asymme-

try and/or skin color changes and/or skin co-
lor asymmetry.

Sudomotor/edema: reports of edema and/or
sweating changes and/or sweating asymme-
try.

Motor/trophic: reports of decreased range
of motion and/or motor dysfunction (weak-
ness, tremor, dystonia) and/or trophic chan-
ges (hair, nails, skin).

3. Must display at least one sign* in two or more of
the following categories:
Sensory: evidence of hyperalgesia (to pin-

prick) and/or allodynia (to light touch and/or
deep somatic pressure and/or joint move-
ment)

Vasomotor: e.vidence of temperature asym-
metry and/or skin color changes and/or asym-
metry.

Sudomotor/edema: evidence of edema and/or
sweating changes and/or sweating asymmetry.

* A sign is counted only if observed at the time of diagnosis.
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to move, but it won’t work” [8, 16, 17]. The loss of vol-
untarily control has also been reported in primary
dystonia [18]. In our experience, bradykinesia is a
typical abnormal movement characteristic in CRPS,
even in patients that solely suffer from pain. Dystonia,
a prominent motor feature of CRPS, is characterized
by involuntary abnormal, predominant flexor pos-
tures (fixed dystonia) of the fingers, wrist and feet [8,
15]. In more severely affected patients the dystonia
may progress to more proximal sites with again pre-
dominant flexor involvement [15]. Clinically, fixed
dystonia may show a variable degree of flexion of the
digits. In less affected patients, the hands may appear
seemingly normal at inspection. In these patients,
dystonia may only appear following the performance
of repetitive tasks. In many patients there is a relative
sparing of the first two digits that has been explained
by a larger proportion of direct cortico-motoneuronal
connections relative to interneuronal-motoneuronal
connections of flexors of digits I and II [15]. Hence,
the preferential involvement of flexors III–V has been
interpreted as evidence pointing towards a role of
abnormal function of interneuronal circuits [15].
Passive stretching of the affected digits results in a
contraction of the stretched muscle suggesting a
stretch reflex hyperexcitability [15, 17]. Dystonia
may worsen by activity of the involved extremity,
under circumstances of cold temperatures and hu-
midity and in the more severely affected patients by
tactile and auditory stimuli [15]. Myoclonus and
tremor (3–7 Hz) are frequently reported by CRPS
patients with dystonia, but in rare cases this may
occur as the sole or predominant movement disorder
[8, 15, 18, 20].

CRPS: How Regional?

CRPS is commonly known as a disorder affecting one
extremity. However, several studies have highlighted
that in 4–7% of the cases, the disease may spread to
other extremities [15, 20, 21]. The spread of CRPS may
result in rather unusual patterns characterized by
multifocal or generalized distribution [15, 20, 21].
These more severely affected patients tend to be
younger than those patients where CRPS remains re-
stricted to one extremity [20, 21].

In more severely affected CRPS patients where
the disease has spread to other extremities, it is not
unusual to encounter bladder (urgency, retention)
and bowel (obstipation, diarrhoea, or a combination
of both) disorders as manifestations of CRPS [22, 23].

Motor/trophic: evidence of decreased range of
motion and/or motor dysfunction (weakness,
tremor, dystonia) and/or trophic changes
(hair, nails, skin).

4. There is no other diagnosis that better explains
the signs and symptoms.

The Clinical Spectrum of CRPS:
How Complex?

Defining the typical spectrum of CRPS is a challeng-
ing task (because symptoms and signs can be difficult
to identify), may occur in different combinations, and
vary over time. Key features in the acute phase of
CRPS are characterized by various combinations of
sensory and autonomic symptoms and signs [3].
Although, the CRPS criteria require the presence of
pain, this has been a controversial issue. In the series
of Veldman, 4–7% of the cases had prominent auto-
nomic symptoms and signs but no pain [3]. Addition-
ally, while there has always been a focus on the
sensory and autonomic features, there is increasing
evidence that movement disorders are part of the
spectrum of CRPS. Movement disorders may precede
the occurrence of non-motor features of CRPS [3, 8,
9]. Some studies have even highlighted the sole occur-
rence of dystonia or tremor following trauma [10–13].
These movement disorders are concordant with those
encountered in CRPS patients that suffer from sen-
sory and autonomic features as well. The movement
disorders occurring in CRPS patients may include
weakness, dystonia, tremor and myoclonus, but fre-
quently different combinations of these movement
disorders may coincide within one patient [3, 8, 14,
15]. There is no reliable information on the incidence
and prevalence of the different movement disorders
in CRPS because epidemiological studies on CRPS
suffer from methodological shortcomings, including
selection bias (data are obtained from university-
based tertiary chronic pain clinics or trauma units),
design, and anecdotal reports. Nevertheless, the in-
creasing awareness that CRPS patients may suffer
from movement disorders has resulted in adding this
clinical category to the new criteria set (see above) [7].
Many studies have documented the presence of weak-
ness or a limited range of motion. However, both are
not necessarily motor features as they may result from
pain, edema or arthrogenic changes. A frequent find-
ing in CRPS patients with weakness and/or dystonia
is the so-called loss of voluntary control; patients will
describe this phenomena as “My mind tells my hand
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CRPS: Multiple Underlying Patho-
physiological Mechanisms?

Although several hypotheses have been suggested, in-
cluding sympathetic hyperactivity, changes in adren-
ergic sensitivity and psychological predisposition, the
pathophysiological basis of CRPS is still unclear. Si-
milarities between the classical symptoms of inflam-
mation and the clinical features of CRPS have led sev-
eral investigators to suggest an inflammatory origin
of the disease [24, 25]. Indeed, the evidence pointing
towards a possible involvement of the peripheral ner-
vous system in the generation of inflammatory re-
sponse in CRPS is compelling. CRPS has not been
reported in patients with complete nerve lesions, sug-
gesting that at least some continuity of a nerve is a
pre-requisite to develop this disorder [26]. Both sen-
sory and autonomic symptoms of CRPS occur in a
similar glove- or stocking-like distribution pattern
pointing towards a common underlying mechanism
of both features [15]. Increasingly, research is docu-
menting a perturbed function of C- and Aδ-fibres of
sensory nerves as a potentially important candidate
mechanism in the acute phase of CRPS [27–30]. Be-
sides warning us of imminent or actual tissue damage
of the skin, C and Aδ-fibres of sensory nerves respond
to this damage as a first line of defence through the
release of the neuropeptides substance P and Calcito-
nin gene-related peptide (CGRP) from the afferent
nerve endings, a process known as neurogenic in-
flammation [31, 32]. This in turn results in local va-
sodilatation and increased capillary permeability
causing edema and an increase of skin blood flow.
Although peripheral nerve involvement is likely to
play an important role in the acute phase of CRPS,
numerous abnormalities on the neuroimmune level
may play a role as well.

In contrast to the sensory and autonomic features,
movement disorders in CRPS tend to become more
prevalent as the disease duration lengthens [3]. Con-
sequently, this suggests that a different mechanism
may underlie the occurrence of movement disorders
in CRPS. Most likely, this mechanism reflects the de-
velopment of altered sensory motor integration on the
spinal cord level as has been noted for peripheral
nerve lesions [33–35]. The ability to experience pain
serves a purpose as noxious stimuli elicit protective
withdrawal reflexes, which generally involve flexor
muscles to minimize or avoid potential tissue damage.
The conspicuous involvement of flexor muscles in
CRPS patients who have dystonia therefore hints to-
wards the involvement of spinal motor programs that
are involved in protective responses against pain [36].

Neurophysiological studies have revealed impairment
of interneuronal circuits that mediate presynaptic
inhibition of motoreurons of distal musculature and
postsynaptic inhibition of motoneurons of proximal
musculature [17, 37]. Successful pharmacological
treatment of dystonia of CRPS by means of intrathe-
cal administration of baclofen, a GABA B agonist, has
highlighted the involvement of spinal GABAergic in-
hibitory interneurons [38]. These interneurons inhibit
the amount of excitatory synaptic transmitter re-
leased by the sensory input on motoneurons in the
spinal cord by means of presynaptic inhibition [39].
Spinal GABAergic interneurons receive both inputs
from sensory nerves and descending fibres from the
brainstem and motor cortex (supraspinal), and there-
fore have a strategic position in the regulation of
muscle tone [39, 40]. Through impairment of these
interneurons, motoneurons are exposed to an unin-
hibited sensory and supraspinal input explaining the
worsening of dystonia by tactile stimuli, low tempera-
tures, activity of the involved extremity, and emo-
tional stress. Taken together, the above findings on
fixed dystonia of CRPS are in line with the general
pathophysiological concept of abnormal central sen-
sorimotor processing in primary and secondary dys-
tonia [38, 39].

Central sensitization is an important mechanism
in pain and reflects the increased sensitivity of spinal
neurons, despite unchanged afferent input. As a result,
pain becomes chronic, and non-noxious stimuli be-
come painful [44]. On a molecular level, central sen-
sitization is associated with changes in the release of
neuropeptides, neurotransmitters, prostaglandine E2,
and the expression of N-methyl aspartate (NMDA)
receptors [44, 45]. In view of the mechanisms by
which they evolve and the time frame in which they
appear, the movement disorders of CRPS most likely
evolve within the context of central sensitization [36].
Although, the mechanism underlying the impairment
of GABAergic inhibitory interneurons in CRPS is un-
known; there are indications that substance P may
mediate these changes [46, 47].

CRPS: A Multifactorial Disease?

CRPS has many characteristics that are typical of
multifactorial disease. On the one hand, in CRPS a
wide range of precipitating trauma has been identi-
fied [3]. In response to trauma, the body responds
with a series of specific reactions aiming to repair the
damage, promote wound healing and recruit host
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defence mechanisms that involve bi-directionally act-
ing components of the nervous system and the im-
mune system [48]. In CRPS, this biological defence
mechanism to noxious or non-noxious stimuli appar-
ently has the capacity of becoming detrimental when
it cannot be controlled appropriately. On the other
hand, as indicated by a younger age at onset in cases
with a progressive disease course and the association
with HLA factors, there is evidence suggesting a role
for genetic factors conferring susceptibility to develop
or sustain CRPS [23, 49]. Taken together, CRPS likely
stands as an intriguing human model of aberrant re-
sponse mechanisms to trauma (⊡ Fig. 2.1).
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Neuropathic Pain:
Assessment and Medical Treatment

G. Cruccu

At present, a task force of the IASP taxonomic
committee is preparing a new definition and a diag-
nostic grading as “definite, probable, possible” neuro-
pathic pain. In the meanwhile, we suggest that the
narrow definition and classification is retained, be-
cause of the risk of overestimating neuropathic pain
and because it is easy to understand.

Some conditions are listed in the putative and/or
mixed groups to emphasize the difficulties currently
met in classification, until new pathophysiological
evidence and more precise definitions are achieved.

Bedside Examination

The examination of a pain patient aims at clarifying
underlying disease and understanding whether the
pain is nociceptive, neuropathic, psychogenic, or a
combination of these. In ca ase of neuropathic pain,
abnormal sensory findings should be neuroanatomic-
ally logical, compatible with a definite lesion site.
Location, quality, and intensity of pain should be as-
sessed. A clear understanding of the possible types of
negative (e. g. sensory loss) and positive (e. g. pares-
thesia) symptoms and signs is necessary. Neuropathic
pain can be spontaneous (stimulus-independent or
spontaneous pain) or elicited by a stimulus (stimulus-
dependent or stimulus-evoked pain). Spontaneous
pain is often described as a constant burning sen-

Definition and Classification

Pain specialists feel that the major problems with neu-
ropathic pain regard its treatment. We also believe
that definition/classification and diagnostic tools are
currently insufficient.

It is generally understood, however, that the lesion
must involve the somatosensory pathways with dam-
age to small fibers in peripheral nerves or to the
spino-thalamo-cortical system in the CNS. Previous
classifications of neuropathic pain have been based
on underlying disease (e. g. diabetic neuropathy,
multiple sclerosis etc.) or site of lesion (e. g. periph-
eral nerve, spinal cord etc.). Traditionally, neurologists
have considered neuropathic pains to be present only
when there are definite signs of a nervous lesion. The
issue about definition became even more demanding
following the suggestion of a mechanism-based clas-
sification (Woolf and Max 2001). Some characteristics
of neuropathic pain such as sensitized nociceptors,
allodynia, abnormal temporal summation, or extra-
territorial spread of pain, are also shared by less clear
chronic pain conditions (Hansson et al. 2001; Jensen
et al. 2001). The inclusion of the word “dysfunction” in
the definition of neuropathic pain implies that other
conditions such as complex regional pain syndromes
or even musculo-skeletal disorders associated with
signs of hypersensitivity may be considered neuro-
pathic pains. ⊡ Table 3.1 provides an example of the
difficulties currently met in classification.
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sation, but may also include intermittent shooting,
lancinating sensations, electric shock-like pain, and
dysesthesias (i. e. abnormal, unpleasant sensations).
Paresthesias are abnormal, though not unpleasant
sensations. Stimulus-evoked pains are elicited by me-
chanical, thermal, or chemical stimuli. Hyperalgesia is
an increased pain response to a stimulus that nor-
mally provokes pain, whereas allodynia is a pain sen-
sation induced by a stimulus that normally does not
provoke pain, and thus implies a change in the qual-
ity of a sensation. Mechanical allodynia, which is most
easily tested, is further classified as dynamic (brush-
evoked) or static (pressure-evoked). The suggested
tools are summarized in ⊡ Table 3.2.

Quantitative Sensory Testing (QST)

Because they are also found in non-neuropathic pains,
QST abnormalities cannot be taken as a conclusive
demonstration of neuropathic pain (level B); further-
more QST depends on expensive equipment, it is
time-consuming and thus difficult to use in clinical
practice. In contrast, QST is helpful to quantify the
effects of treatments on allodynia and hyperalgesia
and can reveal a differential efficacy of treatments on
different pain components (level B). To evaluate me-
chanical allodynia/hyperalgesia, we recommend the
use of simple tools such as a brush and at least one
high-threshold von Frey filament. The evaluation of
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Outcome Measures

All the psychometric instruments assessing treatment
in neuropathic pain have been shown sensitive in sev-
eral class 2 RCTs. The simplest scales are probably the
best. Whereas verbal rating scale (VRS) is found
easier by many patients, visual analogue scale (VAS)
is more apt to treatment trials because it permits
parametric statistics. The Likert 0–10 NRS is a good
compromise (level C). We recommend the use of uni-
dimensional pain scales, particularly the numeric
rating scale (NRS), the global impression of change
(GIC) and the evaluation of specific pain symptoms
(such as burning pain, pain paroxysms, or allodynia)
since this may reveal preferential effects of treatments
(level B). We do not favor the systematic use of non-
specific multidimensional scales (e. g. McGill pain
questionnaire, MPQ). Although interesting, the multi-
dimensional scales specific for neuropathic pain still
lack extensive validation as tools for treatment assess-
ment (level C).

Improvement of quality of life (QoL) has been
regarded as the final aim of pain treatment. QoL is
measured either by the 0–10 scale or by specific scales
such as 36-item short form (SF-36; Ware et al. 1992) or
the Nottingham health profile (NHP; Hunt et al. 1980;
Meyer-Rosberg et al. 2001).

Medical Treatment

Selecting a first-line medication in neuropathic pain
should take into account not only the relative efficacy
based at best on direct drug comparisons, but also the
ratio efficacy/safety. Whenever possible, the effects
on pain symptoms and on comorbidities should be
taken into account. However, such assessment has
been performed in a limited number of studies and
with only a few drugs to date, and the evaluation of
pain symptoms or signs has used various methods of
assessment, which were not all validated (Cruccu et al.
2004).

The effects of drugs on distinct peripheral neuro-
pathic conditions share many similarities, with the
exceptions of HIV polyneuropathy and trigeminal
neuralgia. Central pain has been much less studied.
For this reason, the following recommendations con-
cern mainly the most studied neuropathic pain group,
represented by peripheral neuropathic pains. Drugs
with established efficacy on the basis of several class I
or II trials in various etiological conditions include
tricyclic antidepressants (TCAs: amitriptyline, imi-

pain in response to thermal stimuli is best performed
using the thermotest, but we do not recommend the
systematic measure of thermal stimuli except for pa-
thophysiological research or treatment trials. A simple
and sensitive tool to quantify pain induced by thermal
stimuli in clinical practice should be developed.

Standard Electrophysiological Testing

Large-size, non-nociceptive afferents have a lower
electrical threshold than small-size, nociceptive af-
ferents. Unless special techniques are adopted (ex-
perimental blocks) or special organs are stimulated
(cornea, tooth pulp, glans), electrical stimuli unavoid-
ably also excite large, non-nociceptive afferents. The
large-afferent input inhibits the nociceptive input at
central synapses and hinders the nociceptive signals
(IFCN Recommendations for the Practice of Clinical
Neurophysiology). Hence standard neurophysiologi-
cal responses to electrical stimuli, such as nerve con-
duction studies and somatosensory evoked potentials,
are useful to demonstrate, locate, and quantify dam-
age along the peripheral or central sensory pathways.
But they do not assess function of nociceptive path-
ways (level B).

Laser-Evoked Potentials

For many years a number of techniques have been
tried for the selective activation of pain afferents. The
best method now appears to be provided by radiant-
heat pulse stimuli delivered by laser stimulators,
which selectively excite the free nerve endings (Aδ
and C) in the superficial skin layers. That laser evok-
ed potentials (LEPs) are nociceptive responses is now
widely agreed by over 200 studies. Late LEPs reflect
activity of the Aδ and ultralate LEPs of the unmyel-
inated nociceptive pathway (Bromm and Treede 1984,
1987, 1991; Bragard et al. 1996; Magerl et al. 1999;
Cruccu et al. 2004).

Laser-evoked potentials are the easiest and most
reliable neurophysiological method of assessing func-
tion of nociceptive pathways; in clinical practice their
main limit is that they are currently available in too
few centers. Late LEPs are diagnostically useful in
peripheral and central neuropathic pains (level B).
The experience as a tool for assessing treatments is so
far insufficient. More studies on ultralate LEPs in pa-
tients with neuropathic pain are encouraged.
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pramine, nortriptyline, clomipramine, desipramine,
maprotiline), opioids, gabapentin, pregabalin and
topical lidocaine (level A). TCAs and opioids are more
efficacious on the basis of the number needed to treat
(NNT). Direct comparisons based on small sample
sizes have failed to demonstrate significant differ-
ences of efficacy between opioids and TCAs, and be-
tween TCAs and gabapentin, but TCAs induced more
cognitive side effects than opioids in one trial
(level B). Based on the ratio efficacy/safety, TCAs (par-
ticularly those with selective noradrenaline reuptake),
gabapentin, pregabalin or topical lidocaine can be rec-
ommended as first line therapy. Opioids should be
proposed as second-line therapy, because of a less fa-
vorable ratio efficacy/safety and precautions for use
inherent to opioids in chronic non cancer pain. Anti-
depressants and topical lidocaine have been shown ef-
fective on various pain symptoms (level B). Effects on
mechanical allodynia have been reported for
lidocaine (level B) but are less documented for anti-
depressants. Thus the use of topical lidocaine could be
preferred in patients with mechanical allodynia, espe-
cially when the area of pain is limited. Regarding
comorbidities and quality of life, only gabapentin,
pregabalin and duloxetine have been adequately stud-
ied and have shown positive effects, while effects of
opioids are controversial.

Drugs with less established efficacy in various
neuropathic conditions and recommended as second
line therapy include lamotrigine, carbamazepine and

the newer antidepressants venlafaxine and dulo-
xetine (level A). However, venlafaxine and duloxe-
tine may be considered as first line therapy in pain-
ful polyneuropathies.

Drugs with weak or controversial efficacy include
capsaicin, SSRIs and mexiletine (level A), but capsai-
cin may be more effective on paroxysmal pain and
mechanical allodynia (level B) and can be proposed if
pain covers a limited area and if there is preservation
of sensation. There is insufficient support for the use
of oxcarbazepine (level C). In three RCTs topiramate
was ineffective (level A). Combination therapy is
recommended in case of insufficient efficacy with
mono-therapy and should preferably use drugs with
complementary mechanisms of action. It has been
shown useful for gabapentin/morphine and gabapen-
tin/venlafaxine (level A).
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Building the Evidence Base for Medical Devices:
Strategies and Pitfalls

R. Taylor

world. However, many European countries (e. g. UK,
Sweden, Germany and the Netherlands) for a medical
device to be listed or reimbursed by a healthcare
payer have, in recent times, introduced the additional
evidence hurdles of clinical effectiveness (i. e. what
are the benefits of a medical device over and above
current therapy?) and cost effectiveness (i. e. are these
health benefits worth the additional cost of the me-
dical device [2]?).

Superimposed on these evidential requirements,
is the recognition for the hierarchy of evidence. Ac-
cording to the evidence hierarchy, the randomized
controlled trial (RCT) is regarded as the highest level
of evidence for judging the effectiveness of therapeu-
tic interventions [3]. For example, evidence collected
within two or more well conducted randomized-con-
trolled trials would be regarded as “level I++ evi-
dence” and as a result would receive a “grade A” policy
recommendation. In contrast, evidence from an un-
controlled case series represents “level-IV evidence”
and would receive a “grade D” policy recommenda-
tion. One frequently used example of such an evi-
dence hierarchy [4] is shown in ⊡ Table 4.1.

The Pitfalls of Building Evidence
for Medical Devices

A number of characteristics of medical devices chal-
lenge the conduct of the classic double-blind random-

Why the Increasing Need for Evidence?

There is an increasing global trend for healthcare
policy makers to use evidence to assist their popula-
tion level decisions, so-called evidence-based policy.
Such policy decisions can be at the level of hospital,
primary care trust, a region or a whole country [1]. In
the current climate of rising healthcare costs, many
healthcare providers and payers also wish to include
not only consideration of evidence of clinical out-
comes but also the costs of medical technologies, such
as new medical devices or drugs. Evidence is therefore
increasingly seen as a tool to assist health care policy
makers in their efforts to contain costs.

This paper discusses a number of issues related to
the evidence for medical devices and clinical related
procedures: the changing face of evidence require-
ments of healthcare policy makers; the challenges of
generating evidence for medical devices and proce-
dures: and finally, some suggestions for how medical
device evidence should be collected in the future.

What Do We Mean by “Evidence”?

For many years there has been a requirement for ef-
ficacy (i. e. what are the benefits of a medical device
compared to no therapy or placebo) and safety data
for a medical device for licensing and obtaining a CE
mark in Europe or equivalent in other parts of the
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ized controlled trial, often undertaken for pharma-
ceuticals. Some of these key differences between
medical devices and drugs that underpin these chal-
lenges are summarized in ⊡ Table 4.2 below. The dif-
ficulty in undertaking medical device and clinical
procedure trials has been comprehensively reviewed
elsewhere [5, 6].

Nevertheless, as will be argued below, many of
these difficulties of medical device clinical trial design
can be overcome (at least in part) by innovative trial
methodology and design.

Strategies for Building an Evidence Base

A case example is used to illustrate the strategies of
building an evidence base: spinal cord stimulation
(SCS) for patients with failed backed surgery syn-
drome/chronic leg and back pain (FBSS/CLBP).

Knowing Your Evidence Base

The first component of the strategy for evidence
building is to thoroughly know the evidence base for
the medical device. Systematic review and meta-
analysis are recognized methods to comprehensively
and explicitly assess the evidence base for a given
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therapy [7] A systematic review of SCS for FBSS and
CLBP identified 72 case series, one RCT and one co-
hort study [8]. The RCT showed that patients receiv-
ing SCS experienced both a significantly higher level
of pain relief and lower requirement for opiate anal-
gesia compared to re-operation [9]. Using the Har-
bour and Miller evidence assessment scale, there is
“level I+” evidence for the use of SCS in FBSS. How-
ever, despite level-I evidence, in Europe current man-
agement practice for FBSS patients would be more
likely to be optimal non-surgical medical care rather
than re-operation. Thus the policy recommendation
was “grade B”.

A systematic review provides the means by which
evidence grading can be undertaken and also evi-
dence gaps can be identified.

Moving up the Evidence Hierarchy

The second component of the strategy of building is
to move as high as possible up the evidence hierarchy.
In the case of SCS for FBSS, this required a new RCT
to be designed and undertaken that compared SCS
with conventional medical management. With the
support of one of the device manufacturers (Med-
tronic Sarl), in 2000 a group of clinicians experienced
in SCS and clinical trial specialists met to consider
how best to design such a trial. As a result, the
PROCESS (A Prospective, Randomized, Controlled,
Multicenter Study to Evaluate the Effectiveness and
Cost-Effectiveness of Spinal Cord Stimulation) trial
was born [10].
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PROCESS was designed to both overcome a num-
ber of the potential challenges of medical device tri-
als and also explicitly cater for the changing evidence
needs of policy makers. The challenges of device tri-
als and some of the solutions are summarized in
⊡ Table 4.3.

Conclusions

There has traditionally been a requirement for effi-
cacy and safety evidence for the licensing of medical
devices. However, health-policy makers are increas-
ingly expecting data of the “real world” clinical effec-
tiveness and cost effectiveness of medical devices.
Furthermore, such data needs to be collected using a
randomized controlled trial design. The collection of
such data requires innovative design of medical de-
vice clinical trials.
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Mechanisms of Spinal Cord Stimulation
in Neuropathic and Vasculopathic Pain:
Present Status of Knowledge – and Views
for the Future

B. Linderoth

Neurogenic Pain

In neuropathic pain the hyperexcitability demon-
strated by multimodal wide-dynamic range (WDR)
cells in the dorsal horns [49] seems to be related to in-
creased basal release of excitatory amino acids e. g.
glutamate, and a dysfunction of the local spinal GABA
system [8, 42]. SCS has, in experiments on animal
models of neuropathy, been demonstrated to inhibit
dorsal horn (DH) WDR hyperexcitability and to in-
duce release of GABA in the DHs, with a subsequent
decrease of the interstitial glutamate concentration [8,
49]. The GABA release was solely observed in animals
responding to SCS with symptom alleviation [42].
Activation of the GABA-B receptor seems to play a
pivotal role for the suppression of glutamate release.
Available evidence indicates that stimulation-induced
release of adenosine [8], serotonin and noradrenalin
[23, 25] (the two latter involved in descending inhibi-
tion) in the DH also may contribute (see ⊡ Fig. 5.1
which schematically illustrates the circuitry involved
in the effects of SCS). As a matter of fact, descending
inhibition via a brain stem loop has been proposed as
the principal mechanisms by some research groups
(e. g. [12]).

In contrast, our own studies have so far indicated
that only a minor part (<10%) of the DH inhibition is
relayed by a supra-spinal loop [48].

However, a cascade release of neuroactive sub-
stances is probably induced by SCS both in the DHs

Background

Spinal cord stimulation (SCS) emerged as a direct
clinical spin-off from the gate control theory by Mel-
zack and Wall in 1965 [34]. It has been estimated that,
presently, more than 22,000 SCS systems are im-
planted every year worldwide and out of these more
than 14,000 new cases. Although the physiological
mechanisms behind the beneficial effects of this
therapy, as yet, are only fragmentarily understood, the
spread of the method is high. Paradoxically, and in
contrast to predictions from the gate theory, SCS
proved inefficacious in acute nociceptive pain condi-
tions, and neuropathic pain of peripheral origin even-
tually emerged as the cardinal indication for this
mode of treatment [22, 29, 32, 35, 37].

However, during the 80s reports demonstrated
that SCS could alleviate also some types of nocicep-
tive pain, i. e. selected ischemic pain states in e. g.
peripheral arterial occlusive disease (PAOD), in vaso-
spastic conditions and in therapy-resistant angina
pectoris.

The exact mechanisms of action for SCS are thus
still not mapped and only over the last few years more
solid evidence of the underlying physiological mecha-
nisms has emerged. Present concepts concerning the
mechanisms of pain relief with SCS differ funda-
mentally between the use of this therapy in neuro-
pathic and in ischemic/vasculopathic pain conditions
(e. g. [29]).
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and in other sites, e. g. in the brain stem [42], and mul-
tiple, as yet unknown, mechanisms thereby activated
(review cf [31, 38]).

Peripheral Vasculopathic Pain

As already stated above, it is by now widely recognized
that SCS does not alleviate acute nociceptive pain.
However, in ischemic extremity pain, which is mainly
nociceptive, SCS-induced relief of tissue ischemia
seems to be the primary event either by increasing/re-
distributing blood flow to the ischemic tissues (re-
views in [23, 27, 31], or by decreasing tissue oxygen
demand.

In PAOD, experimental studies favor the notion
that SCS induces peripheral vasodilatation by sup-
pressing efferent sympathetic activity resulting in di-
minished peripheral vasoconstriction and secondary
relief of pain [24, 25, 27, 29], but recent evidence indi-
cates that also antidromic mechanisms may be acti-
vated by SCS intensities far below the motor threshold
and that this may result in peripheral CGRP release
with subsequent peripheral vasodilatation [6, 30, 43,
45] (see ⊡ Fig. 5.2 which summarizes the demon-
strated dual-mechanism concept).

Recent animal studies have demonstrated that,
which mechanism dominates, is related to the activ-
ity level of the sympathetic system – and possibly also
to genetic and dietary differences [44].

Angina Pectoris

For coronary ischemia, manifesting as angina pecto-
ris, the situation is also unclear. Although early animal
data demonstrated direct inhibitory effects of SCS
on cardiac nociception [5], it has later been clearly
proven in clinical studies that SCS does not merely
cause a pain blockade; resolution of cardiac ischemia
remains the primary factor [33]. Some researchers fa-
vor a stimulation-induced flow increase or redistribu-
tion of blood supply (e. g. [16]), while others interpret
the reduction of coronary ischemia (decreased ST
changes; reversal of lactate production) as mainly due
to decreased cardiomyocyte oxygen demand ([33]; re-
view cf [11]). Experimental studies have hitherto been
unable to demonstrate a local flow increase or redis-
tribution of blood in the myocardium by SCS ([19]),
but instead pre-emptive SCS seems to induce protec-
tive changes in the myocardium making it more re-
sistant to critical ischemia (e. g. [4, 5]. Recent studies
indicate that SCS-induced local catecholamine re-
lease in the myocardium [1] could trigger protective
changes in the cardiomyocytes related to mechanisms
behind “ischemic pre-conditioning”.

Furthermore, SCS seems to exert arrhythmia con-
trol in the heart. In ischemia the intrinsic cardiac ner-
vous system is profoundly activated. If this activity
persists it may result in spreading dysrhythmias lead-
ing to more generalized ischemia. SCS stabilizes activ-
ity of these intrinsic ganglia especially at ischemic
challenge and may in this way protect the heart from

Sp
in

o
th

al
am

ic
 tr

ac
t

D
es

ce
n

d
in

g
 p

at
h

w
ay

s

Excitatory

Inhibitory

Orthodromic

Antodromic
SCS

Nerve injury

D
o

rs
al

 c
o

lu
m

n
s

Interneuron pool 
(GABA, Adenosine, X)

Second order 
neurons 
(WDR)

(GLU, ASP,  
SP, X)

A  afferents

C and A  afferents

Peripheral NerveDorsal Horn

FFFFFigigigigig. 5.1.. 5.1.. 5.1.. 5.1.. 5.1. Antidromic activation of dorsal
columns is, via collaterals, mediated into
the DHs, establishing contact with a
multitude of neurons; among those
GABAergic interneurons. A stimulation-
induced release of GABA, binding to
GABA-B receptors decrease release of
EAAs, especially glutamate. However,
many neuronal circuits take part in the
inhibitions of the sensitized DH neurons,
e. g. adenosinergic, serotonergic and no-
radrenergic neurons, the two latter me-
diating descending inhibitory influence
from supra-spinal centers. The major
part of this circuitry is certainly, as yet,
unknown (x). (Redrawn after Meyerson
and Linderoth 2003)



Mechanisms of Spinal Cord Stimulation in Neuropathic and Vasculopathic Pain
527

more severe ischemic threats due to generalized ar-
rhythmia [2]. The exact mechanisms remain to be
discovered.

Pain with Dysautonomia

SCS has during the last years demonstrated its effi-
cacy in complex regional pain syndromes (CRPS) [15,
18, 20, 41].

In principle SCS may act on the symptoms of
CRPS in several ways:
 by a direct inhibitory action onto central hyper-

excitable central neuronal circuits (as indicated
above);

 by decreasing sympathetic efferent output acting
on the de-novo activated adrenoreceptors on the
damaged sensory neurons [23], and/or

 by reducing peripheral ischemia both by the anti-
sympathetic action but also by e. g. antidromic
mechanisms resulting in peripheral release of
vasoactive substances e. g. CGRP and substance P
([6], cf also [3, 39, 47].

This 3rd action is related to the “indirect-coupling
hypothesis” for dysautonomic pain conditions where
the damaged afferent neurons develop hypersensitiv-
ity to even mild hypoxia [39] lowering their activation
thresholds. However, there are as yet no firm data to
support these hypotheses and some recent clinical
observations actually question the relevance of the
“indirect-coupling mechanism” for the effect of SCS
on pain in CRPS (e. g. [17]), but also conflicting data
exist [15].

Conclusions and Future Directions

Thus, SCS induces effects in multiple systems and the
benefit for a certain condition may depend on a selec-
tion out of this cascade of biological changes. Knowl-
edge about physiological mechanisms behind the
beneficial effects provides a corner-stone for further
development of stimulation methods and future
strategies to support these techniques with e g. ad-
ministration of receptor-active pharmaceuticals in
cases with inadequate response to stimulation per se
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at even low SCS intensities is the antidromic vasodilatation via activation of primary
efferent fibers leading to peripheral release of CGRP with subsequent vasodilatation.
The exact circuitry is not established but the presence of NO is required. Which mecha-
nism that dominates seems to depend on the activity level of the sympathetic system.
At low sympathetic tonus the antidromic activation dominates, but at higher levels,
especially the later phase of vasodilatation seems to depend on sympathetic inhibi-
tion [23]
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(cf [21, 40, 46]. SCS is a therapy, effective in some pain
syndromes otherwise resistant to treatment, which is
lenient to patients, minimally invasive, reversible and
with few side-effects compared to chronic pharmaco-
therapy. One may, in fact regard the stimulation-
induced changes as effects of an in situ (“super-
targeted”) delivery of physiologically relevant neuro-
active substances in “physiological dosages”. Recent
research also demonstrates that the method is cost-
beneficial, and although more expensive initially, has
in several studies proved to be less expensive than tra-
ditional treatment after in average 2.5–3 years. I firm-
ly believe that SCS at present is an under-used treat-
ment modality which unfortunately has been very late
in systematic exploration and comparison of different
stimulation modes, paradigms and over-all regimens.
The further exploration of the mechanisms of action
and of the most effective modes of stimulation are the
two areas which at present demand the highest priori-
ties. The technical developments needed are already
underway enabled by the progress in electronics and
forced by the increased commercial competition.
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Objective Measurement of Physical Activity
in Patients with Chronic Lower Limb Pain
Treated with Spinal Cord Stimulation

E. Buchser, A. Paraschiv-Ionescu, A. Durrer, K. Aminian

reporting is unreliable [18, 19], objective measure-
ments of the quality and the quantity of physical ac-
tivity can be important.

The research into the assessment of physical ac-
tivity has been driven mostly by queries regarding the
energy expenditure [20] and the analysis of the gait,
either in neurological and orthopedic disorders or to
characterize the risk of falling, particularly in the eld-
erly [21]. Techniques that are not restricted to the
environment of a laboratory and therefore offer the
possibility to carry out measurement in normal life
conditions, have undergone substantial sophistica-
tion. Over the last two decades they have evolved from
foot switches and pedometers [22, 23] to the use of
sophisticated kinematical sensors combining acceler-
ometers and gyroscopes [24–26].

We have used a validated method [27] to study the
quantitative and qualitative changes in the physical
activity and the gait parameters in a group of chronic
pain patients treated with spinal cord stimulation.

Summary of Background Data
and Methods

Using 3 kinematical sensors attached to the chest,
the thigh and the calf we measured the time spent in
different body postures (lying, sitting, standing), the
walking activity and the gait parameters. Changes in
the spontaneous physical activity following SCS were

Introduction

Spinal cord stimulation (SCS) is increasingly used for
the treatment of intractable pain syndromes due to
vascular [1] or neurogenic disorders [2]. Neuromodu-
lation therapies, whatever the indication, are symp-
tomatic treatments and their benefits are therefore
measured in terms of quality of life (QOL) rather than
disease cure. One of the main features of QOL is the
ability to perform unimpaired physical activity. Any
condition that results in the decrease of physical ac-
tivity is associated with a decrease in QOL, and higher
levels of activity are associated with improved well-
being [3]. A number of factors can affect the physical
performance including age, cardio-respiratory fitness,
body weight [4], fear of pain [5–7] and belief about
activity [8]. It is generally accepted that chronic pain
states are associated with a decreased level of physi-
cal activity, although there seems to be no direct cor-
relation between the intensity of pain and the restric-
tion of physical activity [9].

Quality of life is multidimensional [10] and is usu-
ally measured with validated questionnaires [11–16]
that assess physical, material, social and emotional
well-being as well as physical activity [17].

Contrary to the emotions that escape objective
assessment, the physical activity can be measured in
quantitative terms using a variety of techniques. The
level of physical activity can be a crucial part of the
evaluation of the state of a disease or the efficacy of a
treatment. Since it has long been recognized that self-
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pain relief is associated with a significant improve-
ment of the physical activity that is consistent, pro-
gressive and appears to be maintained over time.

Since the ability to perform physical activity is
closely correlated with the QOL, we suggest that quan-
titative and reliable assessment of the spontaneous
physical activity may be useful to further establish the
beneficial effect of symptomatic treatment in general
and SCS for the management of pain in particular.

Future Directions

It is well recognized that under healthy conditions,
most physiological signals have rhythms. Earlier stud-
ies showed that with normal gait, the stride interval
display subtle and complex fluctuations consistent
with a fractal rhythm organization. This organization
can be disrupted in disease states to a degree that is
related to the functional impairment [30].

Modern theories of nonlinear complex system can
be applied to analyze time series of long-term record-
ings of physical activity (postures and gait parameters
as described above). Using the detrended fluctuation
analysis we found that chronic pain is associated with
fractal pattern disruption of the daily life’s physical
activity, which tends to be restored with pain relief.

Given the unspecific and ubiquitous occurrence
of the fractal rhythms organization of biological pro-
cesses, the disruption of fractality in physical activity
parameters may be linked to similar alterations of
other functions (such as heart rate, blood pressure,
breathing, ion channel kinetics), which may lead to
fundamentally new approaches in the understanding,
the diagnosis, the prevention or the treatment of a
number of disorders.

References

1. Ubbink DT, Jacobs MJ. Spinal cord stimulation in critical
limb ischemia. A review. Acta Chir.Belg 2000; 100: 48–53
[2001; 100: 48–53]

2. Linderoth B, Meyerson B. Peripheral and central nervous
system stimulation in chronic therapy-resistant pain. Back-
ground, hypothetical mechanisms and clinical experien-
ces. Lakartidningen 2001; 98: 5328–5334, 5336

3. Stewart AL, Hays RD, Wells KB, Rogers WH, Spritzer KL,
Greenfield S. Long-term functioning and well-being out-
comes associated with physical activity and exercise in
patients with chronic conditions in the Medical Outcomes
Study. J Clin Epidemiol 1994; 47: 719–730

evaluated under real life conditions. Five series of
measurements (carried out each during 7 hours per
day on 5 consecutive days) were performed before the
implant and at one, three, six and 12 months after the
implantation of a SCS system. At the beginning of
each series of measurements the least and the usual
pain intensity scores were obtained in all patients us-
ing a 10 cm visual analogue scale (VAS).

Preliminary results from an ongoing study have
been recently published [28]. All patients suffered
from chronic intractable pain caused by spinal steno-
sis, peripheral artery disease or peripheral neuropa-
thy, which resulted in a decreased walking perimeter.

Results

Compared to baseline values, the average VAS score
(VAS 59 mm ± 17), decreased significantly (p<0.05) at
all times after the implantation of a SCS system 61%,
60%, 51%, and 81% at one, three, six, and 12 months
(VAS 10 mm ± 9), respectively. The physical activity
increased consistently during the entire follow-up pe-
riod and the time spent lying (600 min + 392 at
baseline) decreased steadily and was significantly
lower at six (p<0.001), and 12 months (197 min ± 237,
p<0.01). The average total walking distance (3064 m
± 2797 at baseline) increased by 146%, 206%, 328%
and 389% at 1, 3, 6 and 12 months (6478 m ± 2914)
respectively, reaching statistical significance (p<0.05)
after 1 month. The gait parameters improved progres-
sively. The stride length and the speed were signifi-
cantly increased (p<0.05) at all times. The variability
between patients decreased progressively over the
follow-up period. The trend was similar in all patients
and for all parameters.

Conclusions and Implications for Clinical
Practice Today

Meaningful assessment of the physical activity of
daily living must be carried out over a prolonged pe-
riod of time and should include an analysis of the gait
parameters. In a study looking at how patients vali-
date the outcomes that are commonly used in the
evaluation of SCS, the majority of patients reported
that the inability to walk “normal” distances without
pain was the predominant factor [29]. Yet most stud-
ies failed to include objective assessments of physical
activity. Current evidence suggests that SCS-related



32 Part II · Basic Research and Future Directions in Interventional Neuroscience

6

4. Coakley EH, Kawachi I, Manson JE, Speizer FE, Willet WC,
Colditz GA. Lower levels of physical functioning are asso-
ciated with higher body weight among middle-aged and
older women. Int J Obes Relat Metab Disord 1998; 22:
958–965

5. Crombez G, Vlaeyen JW, Heuts PH, Lysens R. Pain-related
fear is more disabling than pain itself: evidence on the role
of pain-related fear in chronic back pain disability. Pain
1999; 80: 329–339

6. Vowles KE, Gross RT: Work-related beliefs about injury and
physical capability for work in individuals with chronic pain.
Pain 2003; 101: 291–298

7. Vlaeyen JW, de Jong J, Geilen M, Heuts PH, van Breukelen G.
The treatment of fear of movement/(re)injury in chronic
low back pain: further evidence on the effectiveness of ex-
posure in vivo. Clin J Pain 2002; 18: 251–261

8. Silver A, Haeney M, Vijayadurai P, Wilks D, Pattrick M, Main CJ.
The role of fear of physical movement and activity in chro-
nic fatigue syndrome. J Psychosom Res 2002; 52: 485–493

9. Fordyce WE, Lansky D, Calsyn DA, Shelton JL, Stolov WC,
Rock DL. Pain measurement and pain behavior. Pain 1984;
18: 53–69

10. Felce D, Perry J: Quality of life: its definition and measure-
ment. Res Dev Disabil 1995; 16: 51–74

11. Melzack R. The McGill Pain Questionnaire: major properties
and scoring methods. Pain 1975; 1: 277–299

12. Holroyd KA, Holm JE, Keefe FJ, Turner JA, Bradley LA, Murphy
WD, Johnson P, Anderson K, Hinkle AL, O’Malley WB. A multi-
center evaluation of the McGill Pain Questionnaire: results
from more than 1700 chronic pain patients. Pain 1992; 48:
301–311

13. Brazier J. The Short-Form 36 (SF-36) Health Survey and its
use in pharmacoeconomic evaluation. Pharmacoecono-
mics 1995; 7: 403–415

14. Essink-Bot ML, Krabbe PF, Bonsel GJ, Aaronson NK. An em-
pirical comparison of four generic health status measures.
The Nottingham Health Profile, the Medical Outcomes Stu-
dy 36-item Short-Form Health Survey, the COOP/WONCA
charts, and the EuroQol instrument. Med Care 1997; 35:
522–537

15. Brazier JE, Walters SJ, Nicholl JP, Kohler B. Using the SF-36
and Euroqol on an elderly population. Qual Life Res 1996;
5: 195–204

16. Schroll M, Schlettwein D, van Staveren W, Schlienger JL.
Health related quality of life and physical performance.
SENECA 1999. J Nutr Health Aging 2002; 6:15–19

17. EuroQol – a new facility for the measurement of health-re-
lated quality of life. The EuroQol Group. Health Policy 1990;
16:199–208

18. Bassett DR, Cureton AL, Ainsworth BE. Measurement of
daily walking distance-questionnaire versus pedometer.
Med Sci Sports Exercise 2000; 32: 1018–1023

19. Kremer EF, Block A, Gaylor MS. Behavioral approaches to
treatment of chronic pain: the inaccuracy of patient self-
report measures. Arch Phys Med Rehabil 1981; 62: 188–191

20. Schutz Y, Weinsier RL, Hunter GR. Assessment of free-liv-
ing physical activity in humans: an overview of currently
available and proposed new measures. Obes Res 2001; 9:
368–379

21. Najafi B: Physical activity monitoring and the risk of falling
evaluation in elderly people. PhD Dissertation No 2672
(2002), Ecole Polytechnique Fédérale de Lausanne, 2003

22. Holden J, Fernie GR, Soto M. An assessment of a system to
monitor the activity of patients in a rehabilitation pro-
gramme. Prosthet Orthot Int 1979; 3: 99–102

23. Bassey EJ, Dallosso HM, Fentem PH, Irving JM, Patrick JM.
Validation of a simple mechanical accelerometer (pedo-
meter) for the estimation of walking activity. Eur J Appl
Physiol Occup Physiol 1987; 56: 323–330

24. Aminian K, Najafi B, Bula C, Leyvraz PF, Robert P. Spatio-
temporal parameters of gait measured by an ambulatory
system using miniature gyroscopes. J Biomech 2002; 35:
689–699

25. Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Bula CJ,
Robert P. Ambulatory system for human motion analysis
using a kinematic sensor: Monitoring of daily physical ac-
tivity in the elderly.  IEEE Transactions on Biomedical Engi-
neering 2003; 50: 711–723

26. Aminian K, Robert P, Buchser EE, Rutschmann B, Hayoz D,
Depairon M. Physical activity monitoring based on accel-
erometry: validation and comparison with video observa-
tion. Med Biol Eng Comput 1999; 37: 304–308

27. Paraschiv-Ionescu A, Buchser E, Rutschmann B, Najafi B,
Aminian K. Ambulatory system for the quantitative and
qualitative analysis of gait and posture in chronic pain
patients treated with spinal cord stimulation. Gait Posture
2004; 20: 113–125

28. Buchser E, Paraschiv-Ionescu A, Durrer A, Depierraz B, Ami-
nian K, Najafi B, Rutschmann B. Improved physical activity
in patients treated for chronic pain by spinal cord stimula-
tion. Neuromodulation 2005; 8:  40–48

29. Anderson VC, Carlson C, Shatin D. Outcomes of spinal cord
stimulation: Patient validation. Neuromodulation 2001; 4:
11–17

30. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P, Peng
CK, Stanley HE. Fractal dynamics in physiology: alterations
with disease and aging. Proc Natl Acad Sci USA 2002; 99
(Suppl 1): 2466–2472



7

How Could HFS Functionally Inhibit
Neuronal Networks?

A.-L. Benabid, S. Chabardes, E. Seigneuret, V. Fraix, P. Krack, P. Pollak

improvement induced by HFS of STN and the quality
of the improvement under the best levodopa treat-
ment. In addition to this major target which consti-
tutes currently the largest indication of HFS, over the
last few years and particularly the last two years, a
large number of other targets have been included in
the field of HFS such as the nucleus accumbens, the
internal capsule, the zona incerta, the radiatio pre-
lemniscalis, the thalamus (in VIM, in CM-Pf, in the
anterior nuclei), the STN, the internal pallidum (GPi),
the ventro-medial hypothalamus and probably the
lateral hypothalamus, the posterior hypothalamus, the
PAG-PVG and recently the cortex, not to mention the
posterior group of the thalamus which was stimulated
at low frequency for pain.

The indications are currently more or less vali-
dated, but mostly subjected for those which are not
validated, to multicenter clinical trials. The indica-
tions are in alphabetical order: aggressivity, cluster
headache [12], depression [17], dystonia [9] and tar-
dive dystonia, epilepsy [2, 7, 16], essential tremor,
OCD [20], Parkinson’s disease, TICs of the disease of
Gilles de la Tourette [21].

For all those indications (except pain and deaffer-
entation tremor which respond to low frequency
stimulation), the effect is obtained at frequencies
higher than 100 Hertz and mimics globally the effect
of ablative lesions in the same areas, when this has
been performed.

Main Clinical Effects of High Frequency
Stimulation (HFS)

It has been observed incidentally in 1987, during a
thalamotomy for essential tremor where electrical
stimulation at low frequency was used to locate the
target, that the tremor did not change significantly
under stimulation at 30 to 50 Hertz, while it was
stopped at 100 Hertz [1]. Since that time, the concept
that HFS could induce a functional inhibition, and
then could mimic a lesion, has been applied to all
available targets for functional neurosurgery such as
the thalamus and the pallidum. This concept was fur-
ther extended to all the targets suggested by the basic
research, such as the subthalamic nucleus (STN)
reinvestigated in 1990 [5].

STN HFS has been used since 1993 to control the
triad of symptoms in Parkinson’s disease. It signifi-
cantly decreases or even suppresses the akinesia, ri-
gidity and tremor as well as off period dystonias. The
quality of the results depends on the quality of the
surgery but also on the quality of patient selection.
The best candidates are Parkinsonian patients with
idiopatic Parkinson’s Disease (PD) who are levodopa
responsive, at the stage of motor fluctuations and dys-
kinesias without neurocognitive alteration nor gen-
eral contraindication.

It has been clearly shown [8] that there was a sig-
nificant linear relationship between the quality of the
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Is Excitation the Mechanism?

This works at high frequency only. Could it be a tem-
poral summation? This could be suggested by the fact
that the curve is the same as the intensity-frequency
curve shown in handbooks, based on the data ob-
tained during the excitation of the fibers of the crab
muscle nerve. This could also suggest that fibers are
involved in this mechanism, but HFS works only in
groups of neural somata, and not in fiber bundles: this
would in turn suggest that cell bodies are involved.

Therefore, how could excitation and total inhibi-
tion coincide with a similar outcome in every struc-
ture tested so far?

Jamming could be a determining factor. At the
neuronal level, there are several data showing that
HFS decreases or strongly perturbs cell firing. This
could be due to jamming or a feed-back loop, as we
suggested particularly in the cases of tremor, where
the jamming of the signal by HFS could render the
system unable to process the information. This is what
[14], has been called “zero variance” leading to a
“functional lesion”. This jamming is also visible in liv-
ing monkeys or rat brain slices [13, 15] showing that
jamming would perturb the transmission through the
neural structure of wrong neural messages which are
therefore becoming meaningless. Similar effects have
been shown in slices of hippocampus [6].

The silencing of neuronal firing has been shown
in the GPi [10], as well as in the STN [11, 22] of pa-
tients. It has been also shown [18] that immediately
after stimulation, there is a strong decrease of activ-
ity, suggesting resetting, jamming or desynchron-
ization.

What Happens at the Level of Passing Axons?

There is truly an excitation of these fibers and this
could account for the side effects observed, particu-
larly in the vicinity of STN, surrounded by extremely
noisy neighbors which are responsible for the side
effects seen when HFS involves the optic track, the py-
ramidal track, the lemnicus medialis, and third nerve
fibers, in addition to the involvement of nuclei from
the surrounding structures such as the thalamus, zona
incerta and the substantia nigra pars reticulata.

What Happens at the Level of Efferent
Axons?

Obviously, the axons exiting out of STN, are excited,
according to the general observation that fibers are
excited regardless of the frequency. Therefore, the

What Is the Mechanism?

This is the main question, which is currently not fully
answered. The basic concepts are that electrical stim-
ulation excites neural elements through membrane
depolarization and that axons are excited at lower
thresholds than cell bodies. There is therefore a para-
doxical lesion-like effect of HFS and the question is
how to solve this paradox between the fact that at high
frequency, meaning more than 50 Hertz, mostly be-
tween 130 and 185 Hertz, HFS mimics the effect of
ablative procedures considered of course as inhibitory
in neural somatic structures (the thalamus, basal gan-
glia and the hypothalamus) while high frequency and
low frequency stimulation both excite neural fiber
bundles, as can be observed during surgery where
HFS induces flashes in the optic track, contractions in
the pyramidal track, paresthesias in the lemniscus
medialis, and ocular deviations in the area of the third
nerve fibers.

The mechanism can be considered currently as a
complex association of various mechanisms, each of
them affected with variable coefficients, and the effect
might be more complex than it could be following
only lesions. Lesions obviously destroy cells and fi-
bers, both fibers outgoing from the target, and fibers
passing through the target. On the contrary, HFS
could be associating cell firing inhibition, excitation
of inhibitory afferents, excitation of excitatory effer-
ents in turn exciting inhibitory cells, exhaustion of
neurotransmitters from the nuclei and cells which are
being stimulated. The question is therefore to under-
stand what happens and what are those respective
weights for the different sub-mechanisms.

What Does the HFS of STN in the Basal Ganglia?

It has been shown in rats [4] that HFS of STN de-
creases the activity of this nucleus and in turn, by
shutting down the glutamate output, decreases the
activity in the entopedoncular cells (which is the equi-
valent of GPi in humans), as well as in the substantia
nigra pars reticulata cells (SNpr) which are both
GABAergic. Their hypo-activity would therefore in-
duce the liberation of the substantia nigra com-
pacta (SNpc) cells and all the ventral lateral group of
the thalamus cells which are reactivated. As a conse-
quence also, the reticularis thalami cells are inhibited
as expected from the basic scheme of the network.
This could be due to the retrograde excitation of the
GP cells (which correspond to GPe in humans), how-
ever the lesion of this nucleus does not suppress the
effect of HFS of STN.
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excitation of those fibers during their course between
the STN and the Gpi should induce an excitation at the
subthalamo-pallidal synaptic level. We have performed
studies using cell cultures where stimulation at high
frequency significantly decreases the production of
neurotransmitters, which would explain why excita-
tion of these fibers might not necessarily induce an
excitation at the post synaptic level (Xia et al., unpub-
lished data). Similarly, cellular and molecular effects
can be observed, using genomic and proteomic meth-
ods which are not described here.

Then one can produce a sketch of the putative
multi-modality mechanism [3].

Conclusion

Do we have a model? High frequency and low fre-
quency excite axons passing by the stimulation site
while low frequency excites the cell bodies. HFS inhib-
its neuronal firing and may jam the neuronal mes-
sages, whether they are normal or wrong. Axons ori-
ginating from the stimulated neurons convey spikes
drifting to the cell bodies as well as to the synapses.
HFS inhibits intra cellular protein synthesis processes.
Synapses receiving spikes fire blank, devoid of neuro-
transmitters.

References

1. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J.
Combined (thalamotomy and stimulation) stereotactic sur-
gery of the Vim thalamic nucleus for bilateral Parkinson
disease. Appl Neurophysiol 1987; 50: 344–346

2. Benabid AL, Minotti L, Koudsie A, de Saint Martin A, Hirsch
E. Antiepileptic effect of high-frequency stimulation of the
subthalamic nucleus (corpus luysi) in a case of medically
intractable epilepsy caused by focal dysplasia: a 30-month
follow-up: technical case report. Neurosurgery 2002; 50:
1385–1391

3. Benabid AL, Wallace B, Mitrofanis J, Xia R, Piallat B, Chabar-
des S, Berger F. A putative generalized model of the effects
and mechanism of action of high frequency electrical
stimulation of the central nervous system. Acta Neurol Belg
2005; 105: 149–157

4. Benazzouz A, Piallat B, Pollak P, Benabid AL. Responses of
substantial nigra reticulata and globus pallidus complex to
high frequency stimulation of the subthalamic nucleus in
rats: electrophysiological data. Neurosci Lett 1995; 189:
77–80

5. Bergman H, Wichmann T, DeLong MR. Reversal of experi-
mental parkinsonism by lesions of the subthalamic nucleus.
Science 1990; 249:1436–1438

6. Bikson M, Lian J, Hahn PJ, Stacey WC, Sciortino C, Durand
DM. Suppression of epileptiform activity by high frequency
sinusoidal fields in rat hippocampal slices. J Physiol 2001;
531:181–191

7. Chabardes S, Kahane P, Minotti L, Koudsie A, Hirsch E,
Benabid AL. Deep brain stimulation in epilepsy with par-
ticular reference to the subthalamic nucleus. Epileptic
Disord 2002; 4 (Suppl 3): S83–93

8. Charles PD, Van Blercom N, Krack P et al.  Predictors of effec-
tive bilateral subthalamic nucleus stimulation for PD.
Neurology 2002; 59: 932–934

9. Coubes P, Roubertie A, Vayssiere N, Hemm S, Echenne B.
Treatment of DYT1-generalised dystonia by stimulation of
the internal globus pallidus. Lancet 2000; 355: 2220–2221

10. Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR,
Lozano AM. Microstimulation-induced inhibition of neu-
ronal firing in human globus pallidus. J Neurophysiol 2000;
84: 570–574

11. Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO.
Stimulation-induced inhibition of neuronal firing in human
subthalamic nucleus. Exp Brain Res 2004; 156:274–281

12. Franzini A, Ferroli P, Leone M, Broggi G. Stimulation of the
posterior hypothalamus for treatment of chronic intract-
able cluster headaches: first reported series. Neurosurgery
2003; 52:1095–1099; discussion 1099–1101

13. Garcia L, Audin J, D’Alessandro G, Bioulac B, Hammond C.
Dual effect of high-frequency stimulation on subthalamic
neuron activity. J Neurosci 2003; 23:8743–8751

14. Grill WM, Snyder AN, Miocinovic S. Deep brain stimulation
creates an informational lesion of the stimulated nucleus.
Neuroreport 2004; 15:1137–1140

15. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimu-
lation of the subthalamic nucleus changes the firing pat-
tern of pallidal neurons. J Neurosci 2003; 23:1916–1923

16. Hodaie M, Wennberg RA, Dostrovsky JO, Lozano AM. Chro-
nic anterior thalamus stimulation for intractable epilepsy.
Epilepsia 2002; 43: 603–608

17. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz
D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimula-
tion for treatment-resistant depression. Neuron 2005; 45:
651–660

18. Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benaz-
zouz A, Boraud T. Subthalamic high frequency stimulation
resets subthalamic firing and reduces abnormal oscilla-
tions. Brain 2005; 128: 2372–2382

19. McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL. Elec-
tric field and stimulating influence generated by deep
brain stimulation of the subthalamic nucleus. Clin Neuro-
physiol 2004; 115: 589–595

20. Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyer-
son B. Electrical stimulation in anterior limbs of internal
capsules in patients with obsessive-compulsive disorder.
Lancet 1999; 354: 1526

21. Visser-Vandewalle V, Temel Y, Colle H, van der Linden C. Bi-
lateral high-frequency stimulation of the subthalamic nu-
cleus in patients with multiple system atrophy—parkin-
sonism. Report of four cases. J Neurosurg 2003; 98: 882–887

22. Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V,
Dormont D, Navarro S, Cornu P, Agid Y, Pidoux B. Effects of
high-frequency stimulation on subthalamic neuronal activ-
ity in parkinsonian patients. Arch Neurol 2004; 61: 89–96



8

Cortical Stimulation for Movement Disorders

S. Palfi

in the STN and GPi using unitary neuronal record-
ings. All these functional effects were similar to those
reported for deep brain stimulation in STN or GPi,
using intraparenchymal electrodes. Most importantly,
the present series of experiments were conducted as
a pre-clinical study assessing the behavioral benefit in
a chronic MPTP primate model in which dopamine
depletion was progressive and regularly documented
using 18-F-dopa Pet-scan. The data also suggest that
motor cortex stimulation was more effective in se-
verely disabled animals implying therapeutic poten-
tial for advanced parkinsonian patients. Moreover, the
major advantage of such a surgical approach is the
simplicity and safety of the procedure entailing an
epidural electrode that can be introduced without a
deep brain stereotaxic surgery.

A novel concept in movement disorders has emerged
postulating that the cortex may be implicated in the
genesis of motor symptoms. Further experimental
and clinical studies in Parkinson’s disease showed that
motor cortex may also pattern abnormal rhythmic
activity in the basal ganglia that underlies the ob-
served motor symptoms. Here, we describe the use of
electrical interference of motor cortex in a primate
model of Parkinson’s disease. Using high-frequency
trains of pulses, motor cortex stimulation signifi-
cantly reduces akinesia and bradykinesia in MPTP
baboons. This behavioral benefit was associated with
an increase metabolic activity in the supplementary
motor area using 18-F-deoxyglucose Pet-scan, nor-
malization of mean firing rate in internal globus pal-
lidus (GPi) and subthalamic nucleus (STN) and re-
duction of synchronized oscillatory neuronal activities
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Placement of Subthalamic DBS Electrodes
in a Radiology Suite Using Interventional MRI
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Introduction

Standard methodology for placement of deep brain
stimulator (DBS) electrodes includes preoperative
stereotactic brain imaging, supplemented by intra-
operative physiology in awake patients. However, mul-
tiple brain penetrations may be necessary in order to
achieve an acceptable micro-electrode signature, and
not all patients can tolerate awake surgery. In this
study, we investigate the use of direct real-time image
guidance as a means of delivering DBS electrodes. The
technique may be performed on anesthetized patients
and does not require stereotaxy, microelectrode re-
cordings, or an operating theater. The devices and
methods used in this study evolved from earlier work
on interventional MRI guided brain biopsy [1, 2].

Methods

Imaging was performed on a 1.5 T magnet (Philips
Intera, Best, The Netherlands) in a radiology suite
equipped with an in-room console. All patients signed
an informed consent form that was approved by the
university’s committee on human research. Following
induction of general anesthesia, the patient’s head was
fixed to the MR table-top using an MRI-compatible
headholder (Malcolm-Rand). A radiofrequency coil
consisting of two 20 cm diameter circular loops was

placed bilaterally against the patients head. A burr-
hole was created and a trajectory guide (Nexframe,
Image Guided Neurologics, Melbourne, FL) was at-
tached to the skull. The trajectory guide is identical to
that used for “frameless” neuronavigation-assisted
DBS placement [3]. A fluid filled 14 cm long “stem”
was inserted into the trajectory guide to indicate its
orientation.

Patients were then transferred to magnet iso-
center and high resolution T2-weighted spin echo im-
ages were acquired to delineate the STN and establish
the pivot point of the trajectory guide. The path be-
tween the selected target in the dorsolateral STN and
the pivot point of the trajectory guide represented the
desired insertion path for the DBS lead. Trajectory
guide alignment was achieved with a fluoroscopic
acquisition in a scan plane perpendicular to and cen-
tered on the desired trajectory. This scan plane was
positioned approximately 10 cm from the patient’s
skull, where only the tip of the fluid filled stem would
be visible. The neurosurgeon then reached into the
magnet and adjusted the trajectory guide until the
stem was centered in this imaging plane (⊡ Fig 9.1a).
The trajectory guide was then locked and two ortho-
gonal acquisitions were performed along the desired
trajectory to assure correct orientation of the guide.

Following alignment of the trajectory guide, the
fluid filled stem was removed and a peel-away intro-
ducer sheath with a titanium stylet was advanced to
the STN. Confirmation scans along the desired tra-
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jectory were performed during this introduction pro-
cess (⊡ Fig. 9.1b–d). After confirmation of successful
placement in the dorsolateral STN (⊡ Fig. 9.1e), the
stylet was removed and a 28 cm long DBS lead (DBS
lead model 3389, Medtronic, Minneapolis, MN) was
advanced to the target through the sheath. The high
resolution T2-weighted spin echo sequence was then
repeated to confirm lead placement and rule out hem-
orrhage. Finally, the peel away sheath was removed
and the lead was anchored to the skull (Stim-lock,
Image Guided Neurologics). The lead extender and
pulse generator were placed one week later in a stan-
dard operating room.

The “radial error” was measured on the MR con-
sole as the distance between the selected target and
the actual position of the lead, in the axial plane. Clini-
cal outcomes were assessed using the Unified Par-
kinson’s Disease Rating Scale (UPDRS) part III, pre-
operatively and 6 months after DBS.

Results

Twelve leads were implanted in eight patients. Four
patients had unilateral implantation, four had bilat-
eral implantation performed as staged (n=3) or si-
multaneous (n=1) procedures. The mean (± SD) age
of the patients was 57 ± 13 years, and the mean base-
line UPDRS-III score was 20 ± 6 on medication and
58 ± 15 off medication. Eleven of twelve leads were
placed using a single brain penetration; in one case a
second brain penetration was required as the initial
placement of the stylet/sheath was 2.5 mm from the
intended target. The total operative time for the pro-
cedure decreased from 5 hours, 40 minutes for the
first unilateral lead implant to 2 hours, 45 minutes for
the most recent unilateral implant. The mean (± SD)
radial error for lead placement was 1.2 ± 0.6 mm,
range 0.1 to 2.1 mm. At 6 months, improvement from
baseline in the off medication UPDRS-III score for the
first two bilaterally implanted patients was 81% and
68%. Two of the eleven procedures were followed by
scalp wound infections requiring lead removal.

⊡ FFFFFigigigigig. 9.1a–e. 9.1a–e. 9.1a–e. 9.1a–e. 9.1a–e..... The orientation of the trajectory guide is demonstrated following alignment (aaaaa). Insertion of a rigid titanium stylet
is monitored to confirm its trajectory and screen for hemorrhage (b–db–db–db–db–d). Following placement, stylet position is compared with the
intended target, which is indicated by the center of the red circle (eeeee)

a

b c

d e
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Conclusions

Early experience suggests that placement of STN DBS
electrodes in a radiology suite, using high field iMRI
without physiology is accurate. Improvement in par-
kinsonian motor signs at 6 months following implan-
tation is comparable to the results of STN-DBS using
standard stereotaxy with microelectrode guidance.
Infection is a serious concern in this environment.
To address the infection risk, we have modified our
procedures for initial patient draping and exposure. A
more complete description of this procedure has been
published [4].
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Treatment of Chronic Neuropathic Pain
by Motor Cortex Stimulation –
Results of a Prospective Controlled Trial

J.-P. Nguyen, F. Velasco, J.-P. Lefaucheur, M. Velasco, P. Brugières, B. Boleaga,
F. Brito, Y. Kéravel

Introduction

Chronic motor cortex stimulation (MCS) is a thera-
peutic procedure that is increasingly used for neuro-
pathic pain refractory to medical treatment. However,
no prospective controlled trial of the procedure has
been published. Its real impact on the patient’s im-
provement therefore remains controversial.

Method

This study was conducted at two different centers:
the Henri Mondor Hospital, Department of Neurosur-
gery, in Créteil (France) and the Mexico General
Hospital, Department of Stereotaxis and Functional
Neurosurgery (Mexico). Each center recruited five
patients with neuropathic pain refractory to medical
treatment, and the final group was composed of six
men and four women aged 29–75 years (mean: 54.7
±18 years). Three patients suffered from central pain
(1, 3, 8), three from neuropathic facial pain (2, 4, 5),
two from post-herpetic peripheral pain (6 and 7), and
two from complex regional pain syndrome (CRPS) of
the upper limb (9 and 10) (⊡ Table 10.1).

The patients were evaluated preoperatively and
postoperatively (D-30, D30, D60, D75, D90, M6, M9,
M12) using a 5-point verbal scale, a visual analogue
scale, the McGill Pain Questionnaire, the Wisconsin

Brief Pain Questionnaire, and the Medication Quan-
tification Scale. At the end of the second postoperative
month, patients were randomized to two groups. In
the first group, the neurostimulator was turned off
between D60 and D75 (OFF period) and then turned
on between D75 and D90 (ON period); the opposite
sequence was applied in the second group.

Results

All scores were significantly improved by the first
month and remained significantly improved until the
final evaluation at M12. In addition to the total score,
the various components of the MPQ were also analyzed.
Scores 2 and 3, evaluating affective and cognitive as-
pects of pain, were the most significantly improved
(p<0.02 and p<0.01). Activities of daily life evaluated
by certain items of the MPQ (ADL item) and WBPQ
(activity item) were also significantly improved
(p<0.02).

Overall, patients 5 and 6 showed the least marked
improvement for all scores (mean variation of all
scores between D-30 and M12 of –1.9% and 15.6%).
Patient 3 presented very variable improvements for
the various scores (mean of 39.7%). In all other pa-
tients (1, 2, 4, 7, 8, 9, and 10), practically all scores
evolved in the same direction (mean improvements of
35.1%, 68.1%, 86.4%, 69.4%, 82%, 67.7%, and 69.9%,
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cult to analyze the influence of the sequence order
(ON then OFF versus OFF then ON) in this short se-
ries. Overall, scores during the OFF period reflected a
deterioration compared with scores recorded during
the ON period, except for the VAS in the ON then OFF
group and the WBPQ in the OFF then ON group. No
complication related to the technique was observed.

Conclusion

The results of this study strongly suggest that motor
cortex stimulation markedly contributes to the im-
provement of patients in terms of pain intensity, ac-
tivities of daily life, and analgesic consumption.

respectively). Six patients can therefore be considered
to be markedly improved (2, 4, 7, 8, 9, and 10), two
patients to be moderately improved (1 and 3), and two
not improved (5 and 6).

The scores did not return to preoperative values
during the OFF period, suggesting a long period of
post-effect. Nevertheless, a significant improvement
of the scores was observed during the ON period (ver-
sus OFF period). During this blind evaluation period,
the condition of all patients deteriorated slightly
during stimulation, although the difference was not
significant compared with the score recorded at the
second month, except for the MPQ score and slightly
for the VAS score. After the randomization period,
patients took several months to regain their initial
improvement and some patients never did. It is diffi-

⊡ .1.01elbaT atadlacinilc'stneitaP

esaC xeS egA niapfoygoloitE niapfonoitubirtsiD yrotsiH
]sraey[

ecnabrutsidytilibisneS

1 M 07 )cigahrromeh(ekortS ydobimehthgiR 5 aisehtserepyH

2 F 57 yhtaporuenlanimegirT ecafimehthgiR 5 ainydollA

3 M 75 )cimehcsi(ekortS ydobimehthgiR 5 aisehtseopyH

4 M 75 yhtaporuenlanimegirT ecafimehtfeL 6 aisehtseopyH

5 F 13 yhtaporuenlanimegirT ecafimehthgiR 3 aisehtseopyH

6 F 57 )sepreh(larehpireP 6T-5TlatsocretnitfeL 4 ainydollA

7 M 86 )sepreh(larehpireP 3C-2CthgiR 4 aisehtserepyH

8 M 25 )cimehcsi(ekortS ecafimehtfeL 1 ainydollA

9 M 92 )SPRC(larehpireP 2T-3CtfeL 41 ainydollA

01 F 33 )SPRC(larehpireP 8C-5CtfeL 6 ainydollA
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Neuromodulatory Approaches to the Treatment
of Trigeminal Autonomic Cephalalgias (TACs)

P.J. Goadsby

Introduction

Trigeminal Autonomic Cephalalgias (TACs) is a group-
ing of headache syndromes including cluster head-
ache, paroxysmal hemicrania and short-lasting
unilateral neuralgiform headache attacks with con-
junctival injection and tearing (SUNCT) [1]. These
syndromes share two major clinical pictures: trigemi-
nal distribution of pain and ipsilateral cranial auto-
nomic symptoms [2]. These features are consistent
with cranial parasympathetic activation and sympa-
thetic hypofunction (ptosis and miosis) representing
a neurapraxic effect of carotid swelling with cranial
parasympathetic activation [3, 4]. The distinction be-
tween TACs and other headache syndromes is the
degree of cranial autonomic activation, not its pres-
ence alone, since other primary or secondary head-
aches show this type of activation [5–8].

Positron emission tomography (PET) studies in
cluster headache and paroxysmal hemicrania and
functional magnetic resonance imaging (MRI) stud-
ies in SUNCT have demonstrated ipsilateral posterior
hypothalamic activation which seems to be specific to
these syndromes and not present in other types of mi-
graine. There are direct hypothalamic-trigeminal
connections [9] and the hypothalamus is known to
have a modulatory role on the nociceptive and auto-
nomic pathways, specifically trigeminovascular noci-
ceptive pathways [10].

Summary of Background Data and State
of Today’s Knowledge

Cluster Headache (CH)

A CH attack is an individual episode of pain that can
last from a few minutes to some hours. A cluster bout
or period usually lasts from some weeks to months.
Pain is excruciatingly severe and is mainly located
around the orbital and temporal regions and usually
lasts 45 to 90 min, with an abrupt onset and cessation.
The distinctive feature of CH is the association with
autonomic symptoms such as conjunctival injection,
lacrimation, miosis, ptosis, eyelid edema, rhinorrhoea,
nasal blockage, forehead or facial sweating. In contrast
to migraine, CH sufferers are usually restless and irri-
table, move about and look for a movement or posture
that may relieve the pain. Alcohol, nitroglycerin, exer-
cise and elevated environmental temperature are pre-
cipitants of acute attacks. Most patients have 1 or 2
annual cluster periods, each lasting between 1 and
3 months. It is a lifelong disorder in the majority of
patients.

Pharmacological Treatment. Abortive agents are ad-
ministered parenterally or by the nasal route. They are
represented by sumatriptan, zolmitriptan, oxygen in-
halation, intranasal dihydroergotamine and subcuta-
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neous octreotide [11–16]. For prevention of attacks,
the main stay treatments are high-dose verapamil [17,
18], lithium [19], methysergide [20], melatonin [21],
prednisolone [22] and topiramate [23]. Nerve blocks
by means of the local injection of anesthetics and cor-
ticoids around the greater occipital nerve has yielded
inconsistent results [24–26].

Surgery. Destructive procedures may be employed as
a last-resort measure in patients resistant to pharma-
cological treatment and exclusively with unilateral
headache. The main procedures employed are the in-
terruption of the trigeminal sensory or autonomic
pathways, trigeminal sensory rhizotomy via a poste-
rior fossa approach, radiofrequency trigeminal gang-
liorhizolysis and microvascular decompression of
the trigeminal nerve with or without microvascu-
lar decompression of the nervus intermedius. All
these techniques bring with them several complica-
tions.

Neuromodulation. Franzini et al. [27] and Leone et al.
[28] reported favorable lasting results in a cohort of
patients with chronic CH treated with deep brain
stimulation (DBS). Suboccipital nerve stimulation is
also being investigated in CH [28, 29].

SUNCT

SUNCT syndrome manifests as a unilateral headache
which occurs in association with cranial autonomic
features. In contrast to other TACs, attacks have a very
brief duration, can occur very frequently and the
prominent feature is represented by conjunctival in-
jection and lacrimation [30, 31]. This syndrome is
rare, has a male predominance (sex ratio: 2.1:1) and
the onset is between 40 and 70 years. Pain is usually
maximal in the ophthalmic distribution of the tri-
geminal nerve (orbital and peri-orbital regions, fore-
head and temple) and is typically unilateral. It is of
moderate to severe intensity and attacks last between
5 and 250 seconds [32] although attacks lasting up
to 2 hours have been described [33–35]. Attacks are
always accompanied by ipsilateral conjunctival injec-
tion and lacrimation, while other autonomic symp-
toms are less commonly reported.

The majority of patients can precipitate attacks
by touching trigger zones innervated by trigeminal
nerve. SUNCT must be differentiated from trigeminal
neuralgia, primary (idiopathic) stabbing headache
and paroxysmal hemicrania.

Pharmacological Treatment. Several categories of
drugs used in other headache syndromes such as non-

steroidal anti-inflammatory drugs (including indo-
methacin), paracetamol, 5-HT agonists (triptans,
ergotamine and dihydroergotamine) beta-adrener-
gic blockers, tricyclic antidepressants, Ca-channel blo-
ckers (verapamil, nifedipine), methysergide, lithium,
prednisolone, phenytoin, baclofen and i.v. lignocaine
have proved to be ineffective in SUNCT [34]. Intrave-
nous lignocaine has been shown to be effective in the
acute suppression of SUNCT [37].

Prevention of attacks may be obtained with carba-
mazepine [33, 34, 36, 38, 39], lamotrigine [40–44],
gabapentin [45–47] and topiramate [34].

Surgery. Several surgical approaches have been tried
in SUNCT syndrome, but none has a follow up suffi-
cient to reach reliable conclusions. Destructive proce-
dures are therefore at the moment not recommended.

Neuromodulation. Leone et al. [48] have recently re-
ported excellent results in SUNCT after stimulation of
posterior hypothalamus.

Future Directions

Neuromodulation appears to be a promising new ap-
proach to treatment of both CH and SUNCT syn-
dromes refractory to other treatments.
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Hypothalamic Deep Brain Stimulation for
the Treatment of Chronic Cluster Headaches:
A Series Report

A. Franzini, P. Ferroli, M. Leone, G. Bussone, G. Broggi

by PET during CH, this prompted the authors to in-
vestigate the effects of hypothalamic stimulation in
CH patients and stereotactic hypothalamic surgery
was successfully performed in the first patient in July
2000 [4].

Methods

Since July 2000, seven additional patients have been
undergone to stereotactic hypothalamic surgery. The
patient selection was performed by a co-operative
team of neurologists experienced in headache and of
neurosurgeons. The initial diagnosis of CH was made
according to the classification of the International
Headache Society [5]. Patients were receiving treat-
ment with a number of drugs, alone or in combina-
tion such as corticosteroids, lithium, methysergide,
ergotamine, calcium channel blockers, beta-adrener-
gic blockers, tricyclic antidepressants, valproate, topi-
ramate, gabapentin, melatonin and non steroidal anti-
inflammatory agents. Transnasal endoscopic block of
sphenopalatin ganglion was performed twice in all
patients before taking into consideration more inva-
sive surgical procedures. Patients who after at least
1 year did not have pain remission were considered to
be candidates for hypothalamic surgery, were exam-
ined to exclude psychiatric complications and in-
formed on the classical surgical procedures available
for treatment of intractable CH.

Introduction

Chronic cluster headache (CH) is one of the most se-
vere facial pain syndromes. Pain usually starts in or
around the eye or the temple and may occasionally
affect also the face, the neck, the eye or the entire
hemicranium. Attacks are generally unilateral and
start with sudden, deep, non-fluctuating and excruci-
ating pain, which shifts to the contra-lateral side in
about 15% of patients. Attacks may last from 15 min
to 3 h, range in frequency from 8/day to 1/week, and
occur 5 to 10 times daily in severe chronic forms. Pain
is accompanied by autonomic symptoms such as lac-
rimation from the eye in the affected side, nasal dis-
charge, eye reddening and sweating. Pain attacks may
usually be triggered by the sublingual administration
of 1 mg nitroglycerin.

CH has traditionally been considered as a vascu-
lar headache but there is clinical evidence suggesting
that vascular reactions observed during the attacks
are primarily due to CNS discharge. Posterior hypo-
thalamus has been recently identified as the possible
central generator of pain: positron emission tomog-
raphy (PET) has shown activation in the ipsilateral
inferior hypothalamic gray matter during CH attacks
[1] and morphometric magnetic resonance imaging
(MRI) has demonstrated an increase in neuronal hy-
pothalamic size and density in CH patients [2]. In
1970, Sano [3] performed posterior ipsilateral hypo-
thalamotomy to treat cancer facial pain. Since the tar-
get area was close to the hypothalamic area evidenced
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The first patient who was operated in July 2000,
required a contralateral second implant because of
bilateral CH. Chronic stimulation of left posterior
hypothalamus was successful in producing complete
ipsilateral pain relief, but 8 months after right radio-
frequency trigeminal rhizotomy, which had been ef-
fective in obtaining cessation of attacks, right-sided,
drug refractory pain attacks recurred at a rate of 3–8
per day. After stereotactic implant in the right poste-
rior hypothalamus and the immediate start of con-
tinuous stimulation, right sided attacks disappeared.

In another patient, who showed only a 20% de-
crease in attacks after the intervention, MRI showed
that the electrode was 4 mm posterior to the optimal
estimated target and a replacement procedure was
therefore performed. A marked reduction in pain
attacks occurred only a few days after the interven-
tion.

Conclusions and Implications for Clinical
Practice Today

Although a broad range of pharmacological agents is
employed for treatment of CH, there are patients who
develop chronic, unremitting CH refractory to any
medical management. Surgical treatments based on
the interruption of autonomic pathways and/or on
partial or total trigeminal lesion show that success is
inevitably accompanied by complications such as sen-
sory deficit and subsequent dysesthesias, painful an-
esthesia, facial numbness, keratitis, etc. Recurrence
rate also remains high after complete trigeminal deaf-
ferentation.

The recent PET findings during attacks and the
hypothalamic abnormalities found in these patients
suggest that a central dysfunction involving hypotha-
lamic circuitry is involved in CH. Data supporting this
hypothesis are:
 the effect of stimulation is strictly ipsilateral, as

shown by one of our cases;
 the correct placement of the electrode in the pos-

terior hypothalamus is mandatory to obtain a sat-
isfactory result;

 in CH patients, opiates are not effective, ruling out
a generic analgesic effect due to the release of
endogenous opiates;

 the prolonged duration of pain relief in the ab-
sence of the development of tolerance, which on
the contrary appears in patients undergoing peri-
acqueductal gray matter stimulation for different
types of pain [6].

Of the 8 patients who underwent hypothalamic
surgery since July 2000, 5 were males and 3 females,
their ages ranged from 27 to 63 years (median age:
42 years), the duration of CH ranged from 1 to 7 years
and the number of daily bouts ranged from 1–4 to
6–8.

Stereotactic implants were performed under local
anesthesia and a pre-operative MRI was used to ob-
tain high definition anatomic images which made
possible the precise determination of both anterior
commissure and posterior commissure line and of
position and limits of basal ganglia and main mesen-
cephalic nuclei. A rigid cannula was inserted through
a frontal paramedian burr hole and positioned up to
10 mm from the target. This cannula was used both as
a guide for micro-recording (Lead Point, Medtronic)
and for placement of the definitive electrode (DBS-
3389, Medtronic). After macro-stimulation to evaluate
potential side effects, the guiding cannula was re-
moved and the electrode secured to the skull, then an
extension cable was connected to the electrode, tun-
neled subcutaneously and brought out of the skin
through a stab wound. After 7–10 days of trial stimu-
lation, the electrodes were connected to a permanent,
implanted neuropulse generator (Itrel II, Medtronic)
positioned subcutaneously in the subclavicular area
and chronic stimulation was started after daily CH
attacks reappeared. The stimulation parameters em-
ployed were: amplitude: 0.5–3.8 V, frequency: 185 Hz,
pulse width: 60 microsec. Voltage was gradually in-
creased until the therapeutic effect appeared.

Results

All patients experienced complete pain relief after 1
to 10 weeks of high-frequency hypothalamic stimu-
lation (on average: 4.4 weeks). Three of 8 patients re-
mained pain-free without the need of any medication,
while in 5 cases attacks recurred but responded sat-
isfactorily to low doses of methysergide or verapamil,
drugs which had been completely ineffective prior to
the surgical intervention. No unwanted effects attrib-
utable to chronic stimulation nor acute complications
from the implant procedure were observed. There was
no clinical evidence of autonomic effects related to
hypothalamic stimulation: 24-hour monitoring of ar-
terial BP showed asymptomatic orthostatic hypoten-
sion in 4 patients. In 2 cases the stimulation had to be
turned off and this resulted in the sudden reappear-
ance of CH attacks which immediately disappeared on
resumption of stimulation.
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Contrary to the findings of Sano [3] no undesirable
autonomic responses were observed in these patients.

Future Directions

The cases reported in this paper represent the largest
series of patients with chronic CH, successfully treat-
ed with high-frequency hypothalamic stimulation.

The results described suggest that this technique
may represent an effective and safe treatment of CH
and that it can also be employed bilaterally in case of
attacks affecting both sides of the cranium. Dedicated
software is being developed at Istituto Neurologico
Besta to facilitate a precise placement of the electrode
during the stereotactic intervention for target plan-
ning.
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Amygdalohippocampal Deep Brain Stimulation
(Ah-DBS) for Refractory Temporal Lobe Epilepsy

P. Boon, K. Vonck, V. De Herdt, J. Caemaert, D. Van Roost

shown during this period were implanted with an
abdominally located pulse generator. Patients were
followed-up at the epilepsy clinic every 2–4 weeks.

Results

Four patients had a left-sided focal medial temporal
lobe onset. Three patients had a right-sided regional
medial temporal lobe onset. One patient had a bilat-
eral regional temporal lobe onset with predominant
involvement of the left side. Two patients had a left-
sided regional medial temporal lobe onset. Nine out
of 10 patients had a >50% reduction of interictal
spikes during the initial AH-DBS trial period. In one
patient who showed very infrequent spiking, seizure
frequency that had significantly decreased, was used
as a criterion for implantation. One patient did not
meet the chronic implantation criterion and under-
went a selective amygdalo-hippocampectomy. Nine
out of 10 patients were implanted with an internal
generator. The mean follow-up in these patients was
16 months (range: 9–25 months). One patient has
been free of complex partial seizures (CPS) for 2 years
and has been tapered off 2 anti-epileptic drugs
(AEDs). Another patient has become seizure-free in
the past 9 months; 3/10 patients have a >50% reduc-
tion in seizure frequency; 3/4 patients have been ta-

Introduction

Electrical seizure onset in the amygdala and hippo-
campus is the key feature of the medial temporal lobe
epilepsy syndrome [1]. About 10% of patients with
refractory epilepsy are scheduled for invasive video-
EEG monitoring to localize the ictal onset zone dur-
ing presurgical evaluation [2]. Chronic deep brain
stimulation (DBS) electrodes are suitable for intra-
cranial ictal onset localization in the medial temporal
lobe [3]. Using DBS electrodes, we evaluated the ef-
ficacy and safety of amygdalo-hippocampal DBS
(AH-DBS), following invasive localization of the ictal
on-set zone, in patients with refractory temporal lobe
epilepsy. Parts of this work have been previously re-
ported [3, 4].

Patients and Methods

Ten patients with refractory epilepsy were implanted
with bilateral AH-DBS electrodes and/or subdural
grids for ictal onset localization and subsequent
stimulation. In patients with ictal onset in the tem-
poral lobe, AH-DBS was initiated at the side of ictal
onset during an acute stimulation period with an ex-
ternal pulse generator. Patients in whom a significant
reduction of interictal spikes and/or seizures was
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pered off 1 AED. 2/10 patients have a reduction of 25%
of seizure frequency but have still been tapered off
2 AEDs; one of these patients had bilateral seizure
onset and is currently being revised for bilateral AH-
DBS. In two patients no overall change in seizure fre-
quency occurred. None of the patients reported side
effects. The resected patient has been seizure free for
12 months. An asymptomatic haemorrhage at the tip
of one of the four electrodes was reported in one
patient, resolving spontaneously after one week on a
control MR scan.

Discussion

High levels of invasiveness and relative inefficacy are
major concerns and limitations of standard treat-
ments that provide the impetus for further develop-
ing neurostimulation as a treatment for epilepsy.

Sensible approaches for DBS in refractory epi-
lepsy are either:
 to target crucial “pacemaker” central nervous sys-

tem structures (such as the thalamus or the sub-
thalamic nucleus), or

 to interfere with the area of ictal onset itself.

Our study aimed at evaluating the efficacy of DBS in
the medial temporal lobe after the ictal onset zone
had been identified in this region.

Animal studies have shown abortive effects on
epileptic activity when electrical fields were applied to
hippocampal slices [5]. In-vivo studies in rats showed
that electrical stimuli applied following a kindling
stimulus (“quenching”) can delay the development of
the kindling process [6, 7]. Bragin et al. found that
repeated stimulation of the hippocampal perforant
path in the kainate rat model significantly reduced
seizures [8]. In humans, preliminary short-term AH-
DBS showed promising results with significant reduc-
tion of interictal epileptiform activity and seizure
frequency [9].

Half of the patients treated with AH-DBS in this
study had a reduction of seizure frequency of >50%
allowing tapering off one or more AEDs. None of the
patients reported side effects or showed changes in
bedside neurological and neuropsychological testing.
Results of formal neuropsychological testing com-
paring pre- and post-DBS results will be published
shortly.

The mechanism of action (MOA) of DBS in reduc-
ing seizures remains unclarified. Some support the
hypothesis that actual stimulation is not necessary to

achieve efficacy and claim that efficacy is based on the
lesion provoked by the insertion of the electrode
(“microthalamotomy” effect) [10]. Furthermore, pro-
longed seizure control in patients who underwent
invasive recording with conventional electrodes have
been described [11]. Blinded randomization of pa-
tients to “on” and “off” stimulation paradigms follow-
ing implantation during follow-up >6 months may
clarify this issue and may also simultaneously clarify
the potential effect of sham stimulation due to an
implanted device. DBS may also act through local in-
hibition induced by current applied to nuclei that are
involved in propagating, sustaining or triggering of
epileptic activity in a specific CNS structure (“revers-
ible functional lesion”). Apart from this “local” inhi-
bition, the MOA of DBS may be based on the effect on
projections leaving from the area of stimulation to
other central nervous structures. This may be the
most likely hypothesis when crucial structures in epi-
leptogenic networks are involved. However, consider-
ing that the medial temporal lobe structures are also
potentially involved in these networks it may be that
targeting the ictal focus may also affect the epilepto-
genic network.

Conclusion

In this open pilot trial, AH-DBS significantly reduced
seizure frequency during long-term follow-up with-
out side effects. For patients who are less suitable can-
didates for epilepsy surgery, AH-DBS may become
a valuable alternative. Randomized and controlled
studies in larger patient series are mandatory to iden-
tify the potential treatment population and optimal
stimulation paradigms.
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Non-Pharmacological Approaches
to the Treatment of Depression –
Mechanisms and Future Prospects

T.E. Schlaepfer

gene expression (c-FOS) in the periventricular nu-
cleus of the thalamus, dopamine release and changes
in cortisol and prolactin levels.

Studies of TMS in depression have yielded incon-
clusive results. A systematic review of approximately
15 randomized, placebo-controlled clinical studies
involving around 200 patients reached the conclusion
that there is currently insufficient evidence to suggest
that TMS is effective for this indication [9]. The au-
thors did not rule out a beneficial effect from this
intervention; however, they cited a number of meth-
odological flaws in the evidence base, for example
small sample size, concurrent use of psychotropic
medication and failure to conceal the treatment group
to which a patient was allocated [9].

Studies support a potential antidepressant effect
from repetitive TMS (rTMS), with one study assessing
rTMS to the left dorsal prefrontal cortex in seven
children and adolescents with depression, reporting
a response in five of the seven patients treated [13].
Significant adverse events, seizures or cognitive chan-
ges with TMS have not been reported [11, 13]. Today,
rTMS presents an interesting and potentially promis-
ing technique.

Magnetic Seizure Treatment

While electroconvulsive treatment (ECT) has demon-
strated unparalleled efficacy in severe depression, it is

Introduction

There is growing awareness within the field of psy-
chiatry of an urgent need for new therapeutic options
for patients with treatment refractory severe depres-
sion. The recognition that psychiatric disorders such
as depression and obsessive compulsive disorder are
correlated with impared function of circuits within
specific brain regions, many of which are becoming
well characterized, has led to the development of tech-
niques for stimulation of these brain circuits. Novel
methods of brain stimulation developed over the last
decade include repetitive transcranial magnetic sti-
mulation (rTMS), magnetic seizure therapy (MST),
vagus nerve stimulation (VNS) and deep brain stimu-
lation (DBS).

Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) employs a
hand-held stimulating coil applied directly to the
head to deliver very strong magnetic fields to the ce-
rebral cortex in order to induce currents which are
able to depolarize neurons [3]. Unlike vagus nerve
stimulation, deep brain stimulation and magnetic sei-
zure therapy, TMS requires neither an implanted
prosthesis nor general anesthesia [2]. It has been
demonstrated that a range of measures of brain func-
tion are influenced by TMS, including increased early
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associated with cognitive adverse events [15]. Im-
proved understanding of the mechanisms underlying
ECT has led to the development of magnetic seizure
treatment (MST). The first use of therapeutic mag-
netic seizure induction in a psychiatric patient took
place at the University Hospital in Bern, Switzerland,
in May 2000. MST uses TMS to induce therapeutic
seizures under general anesthesia in the same setting
as for ECT [5]. The electrical field induced by MST for
seizure induction is more focal and limited than that
induced by ECT [6]. This enhanced control allows
treatment to be focused on target cortical structures
considered essential to the antidepressant response,
while reducing spread to medial temporal regions,
which are associated with the cognitive adverse events
of ECT [7].

Although MST is at an early stage of development,
preliminary data suggest advantages over ECT in
terms of both subjective adverse events and acute
cognitive function [7]. A recent randomized, within-
patient, double-masked trial compared ECT and MST
in 10 patients and indicated superiority with MST in
terms of time to recovery of orientation, measures of
attention, retrograde amnesia, category fluency and a
reduced incidence of adverse events [8]. Studies are
currently underway to address the antidepressant
efficacy of MST [7].

Vagus Nerve Stimulation

Vagus nerve stimulation (VNS) is an established
treatment for drug-resistant partial-onset seizures in
epilepsy and is now approved by the FDA for the treat-
ment of refractory depression.

During VNS, electrical signals are delivered to the
left vagus nerve at the cervical level. The pulse genera-
tor is implanted in a subcutaneous chest pocket just
below the clavicle, whereas the electrodes are attached
to the vagus nerve through an incision at the neck
[4].

This treatment appears to be well tolerated by and
of benefit to patients with treatment-resistant depres-
sion. In a study of 30 patients, a response rate of 40%
(12/30 patients) was seen after 12 months of VNS treat-
ment, with a remission rate of 29% (8/28 patients).
This result is supported by two recent 12-month stud-
ies [2, 14]; VNS demonstrated significantly greater
antidepressant benefit than usual treatment proce-
dures at 1 year [2].

Longer-term studies also support the use of VNS
in the treatment of chronic or recurrent treatment-

resistant depression. In 59 patients, a response rate
of 42% (25/59) and a remission rate of 22% (13/29)
were seen at 2 years of VNS treatment in one study
[12].

Deep Brain Stimulation

Deep brain stimulation (DBS) is a particularly prom-
ising investigational treatment in neuropsychiatry
and is conducted through the stereotactic placement
of unilateral or bilateral electrodes connected to a
permanently implanted neurostimulator [15].

Although its exact mode of action is unknown, the
hypothesis is that chronic high frequency (130–185 Hz)
stimulation reduces neural transmission through the
inactivation of voltage-dependent ion channels. Re-
cently, promising results have been seen in refractory
depression with DBS close to the subgenual cingul-
ated region cg25 (Brodmann area 25) [10]. This area
is metabolically overactive in treatment-resistant
depression and DBS may reduce the elevation in ac-
tivity and produce benefit in patients with treatment-
resistant depression.

After 2 months of chronic white matter tract sti-
mulation, a striking response on depression was seen
in five patients, of whom four maintained this re-
sponse after 6 months. Antidepressant effects were

Procedures

Subcaudate Tractotomy

Anterior cingulotomy

Anterior capsulotomy

DBS of subgenual 
cingulate (cg25)

DBS of internal capsule 
(nucleus accumbens)
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CN
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THTH

PU PU

⊡ Fig. 14.1. Neurosurgical targets for treatment of refractory
obsessive-compulsive disorder and major depression. Histori-
cally a multitargeted procedure, termed  limbic leucotomy, com-
bining anterior cingulotomy and subcaudate tractotomy has
been used for intractable depression, obsessive-compulsive dis-
order and some other forms of severe anxiety disorders. (From
Schlaepfer and Lieb [15])
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associated with a marked reduction in cerebral blood
flow in cg25 as measured by positron emission tomo-
graphy [10].

Other targets for DBS could also include the an-
terior limb of the internal capsule and the nucleus
accumbens which has connections to both amygdala
and prefrontal cortex. However, this treatment re-
mains experimental and randomized, controlled,
crossover data are needed to determine the optimum
duration of treatment and to allay concerns over the
risk of brain surgery and potentially severe adverse
events with DBS [15].

Conclusions

ECT is the most effective treatment known for major
depression, nevertheless it retains undeserved public
stigma and is used as a last resort for non-responders
to therapy. However, good evidence is emerging for
promising newer methods of brain stimulation. There
has been a flurry of new evidence recently, which has
established VNS as a credible alternative treatment.
In addition, although at an early stage, the evidence
benefits from MST and DBS are compelling and await
confirmation in controlled trials. Given DBS ability to
very directly and focusedly modulate dysfunctional
deeper brain circuits it might well be that this method
will be demonstrated to be the most efficacious in the
treatment of very refractory neuropsychiatric disorders.
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DBS and the Treatment of Obsessive
Compulsive Disorder

L. Gabriëls, B. Nuttin, P. Cosyns

Introduction

Obsessive-compulsive disorder (OCD) affects ca. 2%
of the general population [1]. The cardinal symptoms
of OCD are intrusive thoughts (obsessions) and/or
repetitive behaviors (compulsions) that persist despite
the patient’s attempts to eliminate them. The obses-
sions and compulsions are accompanied by marked,
overwhelming anxiety and are distressing and time-
consuming. In addition, patients tend to avoid objects
or situations that provoke obsessions or compulsions.
Their functioning becomes increasingly limited by
avoidance behaviors and they are burdened by shame
and demoralization. Although the majority of the
patients recognize the exaggerated nature of their
obsessions and senselessness of their compulsions,
they feel enslaved and are compelled to engage in
their rituals. They cannot simply dismiss the obses-
sional ideas and large amounts of time are spent on
compulsive rituals. The bizarre and exaggerated as-
pects of the symptoms result in a deep sense of shame
and may lead to social isolation and depression. Co-
morbidity of OCD with depression is considerable: up
to 67% of patients with primary OCD have a lifetime
history positive for major depressive disorder [2].

Both pharmacotherapy and cognitive behavioral
psychotherapy (CBT) have proven to be effective in
the treatment of OCD. However, standard treatments
do not work for some patients: full or partial remis-
sion is only seen in approximately 60–80%, while the
remaining patients experience only a minimal or no

response. Notwithstanding the important advances
made over the last decades in the efficacy, safety, and
tolerance of treatments for OCD, up to 7.1% of the
patients show persistent disabling symptoms in spite
of combined pharmacological and psychotherapeutic
treatment [3]. For these patients who remain severely
disabled despite these state-of-the-art approaches
new treatment strategies are needed.

Summary of Background Data
and Methods

For some of these extremely suffering and treatment-
refractory patients stereotactic neurosurgical inter-
vention may be considered. Four stereotactic neuro-
surgical lesioning techniques have been available for
the treatment of these patients: limbic leucotomy,
subcaudate tractotomy, anterior cingulotomy and
capsulotomy.

There is growing evidence for a neurobiological
basis for OCD. Abnormalities in frontal lobe and basal
ganglia function in OCD patients have led to hypoth-
eses about the pathogenesis of the disorder [4]. One
of the important loops in OCD, the frontal-striatal-
pallidal-thalamic-frontal loop, passes through the
anterior limb of the internal capsule, the target in
anterior capsulotomy [5].

Only a limited number of procedures for neuro-
surgical treatment for mental disorders is carried out
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at a handful of centers in the world, with response
rates varying between 35 and 65% [6]. While serious
adverse effects are described [6–8], the overall side-
effect burden is acceptable to the patient suffering
previously from a severe, longstanding, intractable
psychiatric disorder. Nevertheless, these side effects
remain a major concern, in view of the irreversibility
of the current lesioning procedures.

From scientific viewpoint, an important issue is
the lack of randomized double blind “placebo-con-
trolled” trials with these lesioning techniques. One
can argue that a placebo effect in neurosurgical treat-
ment for OCD is unlikely, bearing in mind that the
psychiatric disorder has run over such a long course
pre-operatively and that OCD is known to have low
placebo responses to treatment. There is little evi-
dence for spontaneous remission in severe, intractable
and longstanding OCD [9]. In a follow-up of patients
who are eligible for intervention but never undergo
surgery for different reasons, their condition re-
mained the same and some of them eventually com-
mitted suicide [10].

Development of deep brain stimulation (DBS)
opens a new avenue for research and neurosurgical
treatment in psychiatric disorders. A major advan-
tage of stimulation, compared to conventional abla-
tive neurosurgery, is that it is reversible. The implan-
tation of electrodes in the brain does not significantly
damage brain tissue and the stimulation itself can be
modified or discontinued in the event of side effects.
Electrical brain stimulation enables double blind re-
search: once electrodes and stimulators are implanted,
electrical current can be switched on or off, or can be
applied at different amplitudes without the patient’s
knowledge. The effects of deep brain stimulation on
symptoms of the psychiatric disorder, as well as on
personality, cognitive and social functioning, and
quality of life can be investigated in a prospective,
double blind protocol.

Currently, DBS is accepted as the standard of
therapy for medically refractory Parkinson’s disease
(PD), where it replaced the former ablative proce-
dures. In PD, the DBS electrodes are positioned in the
same area where formerly the lesioning probe was
targeted. In a recent randomized prospective study
clinicians confirmed the inherent advantage of DBS
over their lesioning counterparts [11]. DBS had simi-
lar therapeutic benefits, fewer side effects and was
superior in overall improvement of daily functioning.

We hypothesized that in the treatment of refrac-
tory OCD patients, for whom capsulotomy is con-
sidered, DBS in the anterior limbs of the internal cap-
sules might decrease the severity of OCD. The main

aim of our study is the evaluation of the clinical
efficacy and safety of electrical stimulation in the an-
terior limbs of the internal capsules (capsular stimu-
lation) in severe OCD.

Since DBS does not require destruction of brain
tissue, it does not preclude further newer treatments
should they become available. Moreover, it is possible
to assess any benefits that may accrue, but if the pa-
tient does not want to continue treatment, or if severe
side effects should appear that contraindicate further
stimulation, it can either be switched off or even have
the electrodes removed. If the therapeutic results of
capsular stimulation are insufficient, removing the
electrodes and performing a capsulotomy remains a
therapeutic option.

Patients suffering from long-standing, severe,
highly disabling OCD were screened and evaluated in
the department of psychiatry of the University Hospi-
tal of Antwerpen for complete psychiatric and neuro-
psychological assessment, both before treatment and
during the whole study period. They were referred to
the University Hospitals of Leuven, Belgium, for neu-
rosurgical intervention. Both hospitals’ Ethical Review
Boards approved the study protocol. Inclusion crite-
ria required a diagnosis by Structural Clinical Inter-
view for DSM-IV (SCID-IV) of OCD, judged to be of
disabling severity, with a Yale-Brown Obsessive-Com-
pulsive Scale (Y-BOCS) score of at least 30/40 and a
Global Assessment of Functioning (GAF) score of 45
or less. This level of impairment must have persisted
for a minimum of five years. Reports on failures of an
exhaustive array of other available treatments for
OCD are required: ineffectiveness or intolerance to
adequate trials of at least 3 selective serotonine re-
uptake inhibitors and clomipramine, augmentation
strategies with antipsychotics, and CBT. Patients had
to be at least 18 old years, and no more than 60 years
of age. They must be able to understand, comply with
instructions and provide their own written informed
consent. The patient and a close family member were
repeatedly and fully informed on both procedures
(capsulotomy and capsular stimulation). The stan-
dard risks known from the experience of DBS in PD
were explained. Exclusion criteria were a current or
past psychotic disorder, any clinically significant dis-
order or medical illness affecting brain function or
structure (other than motor tics or Gilles de la Tou-
rette syndrome), or current or unstably remitted sub-
stance abuse.

Medication was tapered off to an attainable mini-
mum at least 6 weeks before surgical intervention and
kept at a constant level for the first year after electrode
implantation. Baseline assessment was accomplished
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after stabilization of the pharmacological treatment.
The primary outcome measure is the Yale-Brown
Obsessive-Compulsive Scale score (Y-BOCS) [12, 13].

Neurosurgical intervention on all patients was
performed by the same neurosurgeon (Bart Nuttin).
We described this procedure elsewhere [14, 15]. Ini-
tially, the targets in the internal capsules were similar
to those aimed for in the anterior capsulotomy [16].
The electrode was extended ventrally to the most
inferior capsular fibers. The most distal contact was
very near to or in the nucleus accumbens, the next two
contacts were situated in the internal capsule, and the
most proximal contact (the one farthest away from the
electrode tip) was sited dorsally to the internal capsule.

After an initial stimulation phase of variable
length, when stimulation parameters where screened
and contact combinations that yielded therapeutic
benefits were searched, patients entered a randomized
long-term double blind crossover design: a branch
with stimulator continuously “on” during 3 months
was followed by a branch with stimulator “off” during
3 months or vice versa in random order. At the end of
each branch, psychiatric assessment were completed.
Patients and evaluators were blinded for the stimula-
tion condition. However, if the assessors documented
a serious worsening in the patient’s condition, if sui-
cidal ideation appeared or if patient and assessors
decided that the suffering of the patient was unbear-
able any longer, measures were taken to shorten that
branch of the crossover and to switch to the other
condition, without unblinding the patient or the as-
sessors.

Results

Eleven patients have been included in our protocol
and have received bilateral electrode implants in the
anterior limbs of the internal capsules.

With varying stimulation-parameters, a whole
range of acute stimulation effects were observed.
Some of them have been reported elsewhere [17]. Par-
esthesias or a warm feeling and flushing were ob-
served in all patients although contact combinations
and threshold level at which they appeared differed.
Brusque abolition of stimulation frequently caused a
transient hot feeling, transpiration and flushing as well.

Changes in affect were most prominent under bi-
lateral stimulation. All patients reported sudden hap-
piness, joy and a good feeling some seconds after
stimulation was switched on with particular contact
combinations. They smiled and laughed extensively.

When asked why they were laughing they often could
not give a special reason. They just felt an inner joy
and were filled with silent laughter. They sometimes
tried to swallow their laughter but this ended in a
laughing fit. Patients became more talkative and
talked in a louder voice when happy feelings were in-
duced. In at least 4 patients unilateral stimulation
(both left and right) with the deepest contacts pro-
duced transient contralateral contraction of facial
muscles resulting in a typical demi-smile with higher
amplitudes. At the same time, they reported a jolly
feeling. Bilateral stimulation of the same contacts pro-
duced less reproducible involuntary muscle contrac-
tion although it was witnessed at some occasions. In
three patients some contact combinations led to a
worsening mood, depressive feelings and more anxi-
ety. Switching stimulation off or changing to other
contact combinations reversed those feelings.

Other transient effects with varying stimulation-
parameters include verbal perseveration, dysarthria,
hyperventilation, nausea, sudden epigastric sensa-
tions, peculiar feeling in the throat, prolonged muscle
contraction in cheek and neck leading to cramp. Both
bilateral and unilateral stimulation with the deepest
contacts produced a transient smell sensation in 2 pa-
tients. Four patients reported transient visual percep-
tions (black or white specks, and subtle changes in the
color of the walls, impression of moving objects, or
they saw everything blurred and deformed).

For eight patients double blind assessment of
YBOCS scores during stimulation “on” and stimula-
tion “off” were obtained. Mean Y-BOCS (SD) at base-
line before surgery was 33.8 (3.2). At the end of the
crossover branch, during which electrical stimulation
was switched off, mean Y-BOCS (SD) was 33.1 (2.7),
while at the end of the crossover branch during which
patients received electrical stimulation mean Y-BOCS
(SD) was 17.0 (7.8). In six of these eight patients the
severity of OCD, as measured by the Y-BOCS, de-
creased of more than 35% and thus they were consid-
ered responders.

Side effects include changes in weight and sleep
pattern. The changes in sleep pattern are reversible
with stimulation. Other side effects (disinhibition,
overconfidence, inaccurate risk assessment) are am-
plitude dependent and disappear when the amplitude
is lowered, but this sometimes comes at the cost of the
therapeutic effect on OCD and requires careful bal-
ancing between therapeutic aim and undesirable sec-
ondary effects.

Due to the high current densities necessary to
obtain optimal therapeutic benefit, battery life is cur-
rently restricted. Since obsessions and compulsive
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rituals typically return within hours to days after fail-
ure of the batteries, patients require regular replace-
ments. Obsessions and symptoms return with former
intensity and often patients become severely de-
pressed as well.

In an attempt to optimize the target for stimula-
tion and thus decrease the necessary current density,
the optimal area for electrical stimulation within the
region of the anterior limbs of internal capsules and
the grey matter caudal to this area was investigated.
Therefore, the reduction in Y-BOCS when patients
where stimulated compared to no stimulation was
calculated and expressed as a percentage of the Y-
BOCS score when stimulation was off. These reduc-
tions where highly correlated to the distance of the
implanted electrode to the posterior border of the
anterior commissure, both at the left (Kendall’s tau
B=0.889; p=0.003) and at the right side (Kendall’s tau
B=0.926; p=0.002), at the level of the anterior commis-
sure, in an axial plane approximately through AC-PC.
For the patients with the largest reductions (i.e. the
most therapeutic benefit), the electrode was situated
1 mm posterior to the posterior border of the anterior
commissure at the level of AC-PC. Correlations with
the laterality of the electrode tip to the midline were
not statistically significant. In the patients with opti-
mal therapeutic benefits, the tips were located be-
tween 6 and 8 mm lateral of the midline and the
stimulating contacts are situated in the Bed nucleus of
the stria terminalis and the great terminal island.

Conclusions and Future Directions

Treatment-refractory OCD patients considered for
neurosurgical treatment have a longstanding history
of extremely persistent and incapacitating intrusive
obsessions and repetitive compulsions. OCD symp-
toms dominate every aspect of daily activities and a
meaningful way of living becomes impossible. In this
present, multidisciplinary study, we demonstrated
that electrical stimulation in the anterior limbs of the
internal capsules induces clinically significant thera-
peutic benefit in patients with severe, treatment re-
fractory OCD. Capsular stimulation not only leads to
a substantial decrease in severity of OCD symptoms,
it also has a beneficial impact on the patient’s mood
scores. Compared to capsulotomy, the observed side
effects are acceptable.

Technical aspects currently limit the use of capsu-
lar stimulation as a therapeutic option. These may

be overcome by the development of a battery with a
longer life span, a rechargeable battery or further re-
search on target optimizing.

Treatment of OCD patients with capsular stimu-
lation remains investigational and is not considered
as standard therapy. Therapeutic innovations should
always be incorporated into a research project in order
to establish their true efficacy and safety while retain-
ing the therapeutic objectives. Such a study necessi-
tates considerable commitment of multidisciplinary
teams and patients.

The OCD-DBS collaborative group was estab-
lished in an effort to prevent indiscriminate and wide-
spread application of electrical brain stimulation
before adequate long-term safety data are available,
and to ensure adequate human subject protection
while providing access to potential therapeutic inno-
vation. We hereby stress the importance of the guide-
lines issued by this group [18].
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The Nucleus Accumbens: A Target for Deep-
Brain Stimulation in Obsessive-Compulsive
and Anxiety Disorders

V. Sturm, D. Lenartz, A. Koulousakis, H. Treuer, K. Herholz, J. C. Klein, J. Klosterkötter

Summary

We considered clinical observations in patients with
obsessive-compulsive and anxiety disorders who un-
derwent bilateral anterior capsulotomy, as well as ana-
tomical and pathophysiological findings. Based on
these considerations, we chose the shell region of the
right nucleus accumbens as the target for deep-brain
stimulation in a pilot series of four patients with se-
vere obsessive-compulsive and anxiety disorders. Sig-
nificant reduction in severity of symptoms has been
achieved in three of the four patients treated. Clinical
results, as well as a 15O-H2O-PET study performed in
one patient during stimulation, speak in favor of the
following hypothesis: As a central relay structure be-
tween the amygdala, basal ganglia, mesolimbic dopa-
minergic areas, mediodorsal thalamus, and prefron-
tal cortex, the nucleus accumbens seems to play a
modulatory role in the flow of information from the
amygdaloid complex to the latter areas. If disturbed,
an imbalanced information flow from the amygdaloid
complex can yield obsessive-compulsive and anxiety
disorders. These can be counteracted by blocking the
information flow within the shell region of the nucleus
accumbens by means of deep-brain stimulation (DBS).

Introduction

Obsessive-compulsive disorder (OCD) is a chronic
and disabling condition which severely impairs per-

sonal, social, and professional life. Patients with OCD
suffer from recurrent obsessive thoughts and uncon-
trollable compulsive reactions, such as repetitive be-
havioral or mental acts occurring in response to an
obsession. OCD occurs frequently in combination
with other anxiety and depressive disorders. It is no-
torious for both the chronicity and the difficulty of
its treatment. In severe cases of treatment-refractory
OCD and anxiety disorders, neurosurgical procedures
(cingulotomy, limbic leukotomy, subcaudate tracto-
tomy, and anterior capsulotomy) may be indicated
[10, 18]. The best results have been obtained with bi-
lateral anterior capsulotomy [12, 15].

Electrical deep-brain stimulation (DBS) at high
frequencies has a blocking effect on the stimulated
area and mimics the effect of tissue lesioning [2, 3].
DBS is reversible and has a much lower rate of side
effects than lesioning with thermocoagulation [21].
Thus, Nuttin and Cosyns [17] used bilateral DBS of
the anterior limb of the internal capsule instead of
lesioning for treatment of severe OCD. Significant
improvement of symptoms was achieved in four pa-
tients. However, unusually high stimulation ampli-
tudes had to be used, which resulted in high energy
consumption requiring frequent exchange of the por-
table energy source.

Based on clinical observations as well as on ana-
tomical and pathophysiological considerations, we
used the right nucleus accumbens as the primary tar-
get for DBS in four patients with the diagnosis of
severe, pharmaceutically resistant anxiety disorders
and OCD.
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Anatomy and Pathophysiology

During the past three decades, basal forebrain areas,
especially the ventral striatum, the nucleus accum-
bens, and the rostral parts of the “extended amygdala”
[4, 9], have attracted the growing interest of anato-
mists, pharmacologists, and clinicians. The dopamine
theory of schizophrenia has focused on the nucleus
accumbens and its role in psychiatric diseases [14, 23].
The nucleus is located immediately underneath the
anterior limb of the internal capsule and covers a
large area of the basal forebrain rostral to the anterior
commissure.

Medially adjacent to it is the vertical part of the
diagonal band of Broca, while laterally adjacent to it
are the claustrum and piriform cortex. Dorsally, neigh-
boring structures include rostral extensions of the
globus pallidus and the anterior limb of the internal
capsule. The nucleus accumbens extends dorsolater-
ally into the ventral putamen, dorsomedially into the
ventral caudate, i.e., the ventral striatum sensu stricto,
without a sharp demarcation.

The nucleus accumbens is divided into two prin-
cipal parts: a central core and a peripheral shell. The
former is associated with the extrapyramidal motor,
the latter with the limbic system. While the core-shell
dichotomy is well-established in rodents, in the pri-
mate, especially in man, both parts are poorly charac-
terized. However, there is a consensus that the shell
region is confined to the ventromedial margin of the
nucleus (for review see Heimer [8]).

The shell region has histological and biochemical
properties similar to those of the central amygdaloid
nucleus, which, together with the medial amygdaloid
nucleus, gives origin to the extended amygdala system
(de Olmos and Heimer 1999; Alheid et al. 1998). It
contains a larger proportion of relatively small cells
with high concentrations of D1- and D3-receptors
and a denser distribution of many neuropeptides such
as VIP, CCK, enkephalins, substance P, and neuro-
tensin, than other regions of the nucleus accumbens
and the ventral striatum (Heimer 2000).

Within the nucleus accumbens, information is
transmitted from shell to core. Together with the ven-
tral striatum, the nucleus accumbens, especially the
shell region, receives a strong dopaminergic input
from the VTA and the dorsal tier of the substantia
nigra and projects back to major parts of the dorsal
and ventral tier (dorsal and and densocellular parts of
the substantia nigra pars compacta) as described by
Haber et al. [7].

In the human being, the nucleus accumbens re-
ceives strong afferents from the basolateral amygdala
via the ventral amygdalofugal pathway, and most

probably also from the central and medial amygdal-
oid nuclei, via the sublenticular and supracapsular
parts of the extended amygdala [1, 4]. Its main effer-
ents innervate the pallidum, striatum, mediodorsal
thalamus, prefrontal, including cingulate cortex and,
as mentioned above, mesolimbic dopaminergic areas.

The nucleus accumbens thus attains a central po-
sition between limbic and mesolimbic dopaminergic
structures, the basal ganglia, the mediodorsal thala-
mus, and the prefrontal cortex.

Since dopamine is a major transmitter in the nu-
cleus accumbens, a modulating function on amygda-
loid-basal ganglia-prefrontal cortex circuitry can be
assumed [5, 16, 19].

Implications for Psychiatric Surgery

In the 1960s, Leksell and Talairach introduced ante-
rior capsulotomy as a treatment for severe OCD and
anxiety disorders. Fiber tracts connecting the me-
diodorsal thalamus reciprocally with the prefrontal
cortex were interrupted by thermocoagulation or
focused stereotactic irradiation bilaterally in the an-
terior limb of the internal capsule [12, 15]. Significant
reduction of OCD-related behavior, fear, and anxiety
has been achieved in the majority of patients, but
“frontal” symptoms have been observed occasionally,
most probably because fibers projecting to the dorso-
lateral prefrontal cortex have been interrupted, in ad-
dition to fibers terminating in orbitofrontal regions.

Based on growing experience with DBS for Par-
kinson’s disease [2, 24], Nuttin and Cosyns [17] re-
placed the lesioning procedures, with their irrevers-
ible effects, by stimulation at high frequencies, which
has a blocking effect that is fully reversible. Bilateral
DBS of the anterior limb of the internal capsule by
Nuttin and Cosyns yielded significant improvement
of OCD symptoms in four patients, but unusually
high stimulation amplitudes had to be used, which
caused high energy consumption of the impulse gen-
erators and consequently their frequent servicing.

The fact that the distal lead of the electrodes used
(Medtronic, Minneapolis, USA) is placed into the ven-
tral edge of the internal capsule, where it abuts the
nucleus accumbens, and the high stimulation ampli-
tudes make functional blocking of accumbens activ-
ity highly probable.

The extensive experience of the Karolinska group
[15], as well as our own observations with anterior
capsulotomy for treating OCD and anxiety disorders,
show that lesioning of the ventrocaudal part of the
internal capsule is decisive for successful treatment.
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Similar conclusions have been made by Rasmussen
and Greenberg (2002, personal communication) for
gamma-capsulotomy. Thermocoagulation and radia-
tion necrosis in the ventral edge of the internal cap-
sule are likely to affect the nucleus accumbens as well,
including its shell region.

Target Selection and Clinical Findings

Considering the central position of the nucleus ac-
cumbens between the amygdaloid complex, basal
ganglia, mediodorsal thalamic nucleus, and prefron-
tal cortex, all of which are involved in the pathophysi-
ology of anxiety disorders [22] and OCD [20], the
beneficial clinical effects of anterior capsulotomy
might well be caused by blocking of the amygdaloid-
basal ganglia-prefrontal circuitry at the level of the
shell region of the nucleus accumbens, rather than by
blocking of the fiber tracts in the internal capsule.

These considerations prompted us to modify the
electrode track for DBS. Instead of targeting the an-

terior limb of the internal capsule alone, we implanted
the electrode in a way that permitted stimulation of
the ventral part of the anterior limb of the internal
capsule as well as of the shell region of the nucleus
accumbens with the same electrode and selective
stimulation of these structures.

For the first patient treated in the pilot series we
implanted the DBS electrodes bilaterally. Alternating
activation of various contact combinations of the
right, left, or both electrodes was performed during a
testing period of several weeks following electrode
implantation. We observed that bipolar stimulation
over the two distal leads of the right electrode (0 nega-
tive, 1 positive), which were placed within the right
nucleus accumbens, yielded significant reduction
in symptoms. Bilateral stimulation did not improve
the effects. Activation of leads placed in the internal
capsule had not been effective. Consequently, in the
following three patients we implanted the electrode
only unilaterally into the right nucleus accumbens
(⊡ Fig. 16.1).

The DBS electrode implantation is performed
stereotactically. The positioning of the electrode is

FFFFFigigigigig. 16.1.. 16.1.. 16.1.. 16.1.. 16.1. Frontal section of the human
brain at the level of the target point in
the ventro-medio-caudal part of the
nucleus accumbens. Arrow indicates tar-
get point. Coordinates: 2.5 mm rostral
anterior border of AC, 6.5 mm lateral of
midline, 4.5 mm ventral AC. (Mai et al.
1997)
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⊡ FFFFFigigigigig. 16.2.. 16.2.. 16.2.. 16.2.. 16.2. Upper image: region of neuronal inhibition as measured by 15O-H2O-PET superimposed onto the preoperative MR
image. Lower image: frontal cortex shows neuronal activation as a result of DBS in the ipsilateral (right) shell of the nucleus
accumbens
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verified by intraoperative X-ray. Target point and tra-
jectory have been assessed using stereotactic MR and
CT imaging (⊡ Figs. 16.2 and 16.3).

Unilateral DBS of the right accumbens was perfor-
med in four patients. They were suffering from severe
anxiety disorders and OCD and no longer responding
to medical treatment and psychotherapy. DBS treat-
ment, applied with permanent pulse-train stimulation
(square-wave impulses of 90 µs duration, 130 Hz, and
amplitudes between 2 and 6.5 V) yielded nearly total
recovery from both anxiety and OCD symptoms with-
out any side effects in three of four patients with fol-
low-up periods of 24–30 months. Clinical improve-
ment occurred a few days to several weeks after the
beginning of DBS. In the fourth patient no beneficial
effect was achieved. A recently performed MRI inves-
tigation in that patient revealed that the target area
had been missed owing to a displacement of the elec-
trode in the caudoventral direction, which explains
the therapeutic failure.

In one patient a 15O-H2O-PET study in condi-
tions “stimulation on vs. stimulation off ” was per-
formed. High-frequency stimulation of the shell of the
nucleus accumbens inhibited the activity of the ipsi-
lateral dorsolateral rostral putamen but activated the
right dorsolateral prefrontal and cingulate cortex.

One patient had a severe relapse of OCD and
anxiety symptoms 30 months after electrode implan-
tation and permanent DBS. Following exchange of the
pacemaker, the patient recovered very well and was
able to return to “normal” life 3 days later.

This article focuses on a possible rationale for
DBS in the nucleus accumbens in the treatment of

anxiety and obsessive-compulsive disorder. A detailed
presentation of the clinical and PET data (not yet pub-
lished) would exceed the scope of the present commu-
nication.

Discussion

The significant improvement of symptoms due to se-
vere anxiety and OC disorders obtained with unilat-
eral high-frequency stimulation of the shell of the
right n. accumbens indicates a major role for this nu-
cleus as a central relay between the amygdaloid com-
plex, the basal ganglia, the mediodorsal thalamus, and
the prefrontal cortex. The amygdaloid complex, espe-
cially the lateral nucleus, is well-known to be involved
in anxiety and fear reactions [11, 22]. Disinhibition of
the lateral amygdaloid nucleus has been shown to be
decisive for the development of Pavlovian learned
fear, depending on a deficiency of gastrin-releasing
peptide receptors on GABA-ergic interneurons, which
in turn causes disinhibition of principal neurons in
the lateral-amygdaloid nucleus [22].

Pathological information flow from the lateral
amygdaloid nucleus can be propagated to basolateral
and central amygdaloid nuclei, to finally converge in
the shell region of the accumbens via both the ventral
amygdalofugal pathway and the extended amygdala.
The shell region could thus represent a “bottleneck”
for impulse propagation from the amygdaloid com-
plex to the basal ganglia, mediodorsal thalamus, and
prefrontal cortex, areas involved in the pathophysi-

FFFFFigigigigig. 16.3.. 16.3.. 16.3.. 16.3.. 16.3. Postoperative T1-weighted
MRI depicts exact electrode placement
in the desired target area. Note the dark
artifact surrounding the electrode,
which is due to disturbance of the local
magnetic field by the electrode and not
caused by tissue damage
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ology of OCD, as shown with functional imaging [22].
This was supported by our PET data, briefly described
above.

The PET findings seemed to correlate well with
the symptoms of the patient, which were aggravated
in the stimulation-off period and relieved in the sti-
mulation-on period. A placebo effect cannot be ex-
cluded because the investigated patient had not been
blinded.

The good results in our anxiety and OCD patients
might be explained by blocking of this hypothetical
pathological impulse flow through chronic high-
frequency stimulation of the shell of the N. accum-
bens. It is noteworthy that unilateral stimulation of
the right n. accumbens was sufficient. This finding is
in line with the results of Lippitz et al. [12], who found
that capsulotomies in the right hemisphere were de-
cisive for a favorable therapeutic outcome.

Inputs from the amygdaloid complex to the
nucleus accumbens “gate” both fronto-striatal and
hippocampo-striatal circuitry [5, 16, 19]. It might thus
be speculated that a dysfunction of the nucleus
accumbens, resulting in an impairment to adequately
modulate amygdalo-basal ganglia-prefrontal circui-
try, might be at the origin of anxiety disorders and
OCD.
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Stimulation of the Posterior Hypothalamus
for Medically Intractable Impulsive
and Violent Behavior

A. Franzini, C. M. P. Ferroli, O. Bugiani, G. Broggi

lated to the prolonged administration of elevated
doses of the medicines. This made it compulsory to
resort to an alternative treatment.

The second patient showed labio-palatoschisis,
chorioretinitis and moderate oligophrenia probably
attributable to congenital toxoplasmosis. At the age of
17 he had been admitted to a psychiatric institution.
Many attempts to reintroduce him to a domestic
environment had failed. Treatments with neuroleptics,
anti-epileptics and benzodiazepines were unsuccess-
ful in controlling aggressiveness.

Methods

After the informed consent was obtained from the
parents, under general anesthesia both patients un-
derwent stereotactic bilateral electrode implant in the
medial portion of the posterior hypothalamus. Two
4-contact electrodes (Quad 3387, Medtronic Inc.)
were inserted through a 3 mm, coronal paramedian
twist-drill hole at the appropriate coordinates. Post-
operative stereotactic computerized tomography
(CT) was merged with pre-operative magnetic reso-
nance imaging (MRI) to confirm the correct place-
ment of electrodes. Two pulse generators (Soletra,
Medtronic) were placed in the subclavicular region
and connected to the brain electrodes. The day after

Introduction

In 1970, Sano [1] reported that the lesion of the pos-
terior hypothalamus by means of stereotactic radio-
frequency was effective in treating disruptive and
aggressive behavior. More recently, positron emission
tomography (PET) has shown activation of ipsilateral
posterior-inferior hypothalamic gray matter during
attacks of chronic cluster headache (CH) [2, 3]. The
high frequency electrical chronic stimulation (HFS)
of the hypothalamic area has been found to be effec-
tive in CH [4–6], a condition in which violent behav-
ior and psychomotor agitation may develop during
pain attacks [7, 8].

High-dose neuroleptics are employed to control
aggressive and acting out patterns but in some pa-
tients this pharmacological treatment is ineffective
and associated with severe extrapyramidal side ef-
fects [9, 10].

Two male patients came to our observation, aged
36 and 37 years, respectively, suffering from mental
retardation with aggressive and disruptive behavior,
resistant to pharmacological treatment. The first pa-
tient also complained of grand mal seizures and the
EEG showed the presence of many multifocal spikes.
He was unable to speak and could only modulate in-
articulate sounds. He had been under treatment with
neuroleptics and anti-epileptics and lab examinations
showed signs of liver function failure, probably re-
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surgery, bilateral continuous monopolar 185 Hz, 1
volt, 60 µs electrical stimulation was started. No side
effects occurred.

Results

Neuroleptic administration was interrupted in the
first patient 2 weeks after the start of stimulation. The
patient appeared calmer and more cooperative and a
few weeks later he was able to stand and walk. One
year later these effects were still present: the patient
had regained a normal circadian rhythm, was able to
take care of himself and to undergo rehabilitation. His
family relationships and social interests markedly
improved. Epileptic seizures decreased from 7–10 to
4–7 per day.

In the second patient, aggressive behavior, includ-
ing acting-out, completely disappeared and dosage of
neuroleptics could be reduced. Three months later
his psychiatric condition was stable, and he was trans-
ferred to a specialized center for occupational therapy.

Conclusions and Implications for Clinical
Practice Today

Deep Brain Stimulation (DBS) is thought to act through
the functional inhibition of targeted areas produced
by HFS, an effect similar to the one reported by Sano
with radiofrequency lesions [1]. The result is an at-
tenuation of behavioral abnormalities of patients
with mental retardation secondary to brain damage.
Hypothalamus is a core structure of the limbic system
which connects hippocampus, involved in learning
and memory, and amygdala, associated with emo-
tions, affiliative behavior and with autonomic and
endocrine functions. Hypothalamus is also connected
to the orbito-frontal cortex via the amygdala and the
limbic thalamus. Stimulation of the posterior hypo-
thalamus has been shown to be effective in patients
with CH without producing behavioral effects [5],
while in the 2 cases reported in this paper, it caused
disruptive behavior to disappear, at the same time

markedly improving social relationships and quality
of life of the subjects. This seems to suggest that the
neurostimulation of the same brain target may induce
different effects according to the different existing
clinical conditions.

Future Directions

HFS of hypothalamus appears to be a clinically and
ethically acceptable technique in patients with aggres-
sive behavior when conservative treatments are not
applicable and pharmacological treatment is ineffec-
tive or causes important, unacceptable side effects.
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Gilles de la Tourette’s Syndrome:
A Movement Disorder

C. van der Linden

Gilles de la Tourette’s syndrome (TS) is a genetic dis-
order with onset in childhood and characterized by
phonic and motor tics. Typically, the disorder starts
around the age of seven with simple motor tics, such
as forceful eye blinking, followed by simple vocal tics
such as grunting noices or throat clearing. Subse-
quently, the tics become more complex, sometimes re-
sembling purposeful movements. Vocal tics may
become more complex, sometimes leading to copro-
lalia, i.e. the use of obscenic words. Boys are four times
more effected than girls. The mode of inheritance is
unknown, but is it believed to be autosomal dominant
with variable penetrance. Behavioral disturbances
are associated with TS. Obsessive-compulsive behav-
ior (OCB), attention-deficit/hyperactivity disorder
(ADHD) and loss of impulse control are co-morbid
psychiatric disorders. The etiology and pathogenesis
are unknown. Several lines of research are indicative
of involvement of the basal ganglia in the generation
of tics. The basal ganglia are probably the key struc-
ture in the pathophysiology of tics in TS. Various cir-
cuits have been described in which activity origin-
ating from the frontal cortex leads back to the frontal
cortex via the basal ganglia and thalamus, the so-
called cortico-striato-thalamo-cortical loops [17, 18].
The various loops run parallel to each other and each
have their own function, varying from a sensorimo-
tor integrative to a more complicated cognitive and
behavioral function. These cognitive and behavioral
loops probably play an important role in the patho-
genesis of tics in TS. All these circuits run through the

internal pallidum (GPi), which serves as the major
output structure of the basal ganglia. Via various tha-
lamic nuclei, including the ventrolateral nucleus and
the more median located nuclei such as the centro-
median and parafascicular nuclei, the loops project
back to the frontal cortex. Within the basal ganglia,
two major pathways have been identified, the direct
and the indirect, which connects the input and output
of the basal ganglia (⊡ Fig. 18.1). Using this simplified
basal ganglia model one can hypothesize the patho-
genesis of the various hypokinetic and hyperkinetic
movement disorders. In TS, a typical hyperkinetic dis-
order, an altered modulation of the striatum giving
rise to an increased inhibition of the GPi and disinhi-
bition of the thalamo-cortical projection may be in-
volved in the pathogenesis. This altered inhibition of
the GPi may be induced by abnormal activity origi-
nating from the pre-frontal cortex [19]. Moreover,
animal experiments show that stereotypic behavior
could be induced by abnormal activity from the stria-
tum [20, 21]. Using PET en SPECT technology, in-vivo
studies reveal a disturbance of both the presynaptic
and postsynaptic striatal dopamine receptors in pa-
tients with TS [22, 23]. Taking all those observations
into account, altered modulation of the dopamine in-
put seems important in the genesis of tics. This had
been hypothesized for decades by the notion that dopa-
mine antagonists have a favorable effect in controlling
tics [24]. In addition, lesions in the mesencephalon, in
which there is a large concentration of dopamine-con-
taining neurons, have been described to cause tics (25).
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by the surgery, it was unclear which target was respon-
sible for the reduction of tics, because of the lack of
selective lesions [4]. In addition, the lesions were very
large. Regions in the vicinity of the presumed target
could have contributed to the reduction of the tics.
⊡ Table 18.1 shows an overview of the various pre-
sumed targets of recent publications. All authors re-
port serious adverse events in several of the operated
patients [5–13].

Because of the serious morbidity, neurosurgery as
a treatment option in TS was generally abandoned by
most specialized TS centers. Due to the refinement of
the stereotactic technique and the safe procedure of
deep brain stimulation (DBS) in other movement dis-
orders, such as Parkinson’s disease, tremors and dys-
tonia [14–16], the neurosurgical treatment has gained
new attention.

Treatment

The treatment of Gilles de la Tourette syndrome (TS)
needs different approaches. In the first place, it is im-
portant to give detailed information to the patient,
parents, school or workplace. Generally, this informa-
tion is sufficient for TS patients to cope with motor
and vocal tics. Secondly, if tics interfere with social
and professional activities pharmacological treatment
may be necessary. Several classes of anti-tic medica-
tion are available, in particular the alpha-adrenergic
drug clonidine and neuroleptics such as haloperidol
and pimozide and more recently atypical neuroleptics
such as risperidone [1] Thirdly, recent studies have
shown that behavioral therapy may, at least in part,
control the tics [2]. Most patients with TS will have a
significant reduction of tics by the time they reach
adulthood (3). However, a small portion of TS patients
continue to have bothersome tics with interference of
both social and professional life despite adequate
pharmacological treatment. In those patients brain
surgery has been employed since the early 60s. De-
tailed data on the short and long term results are lack-
ing and serious side effects have limited their general
use.

Initially, neurosurgical procedures consisted of
the destruction of various brain tissues on the basis
of empirical data. Most of these reported patients
were operated, because of associated psychiatric dis-
turbances, in particular obsessive compulsive dis-
order (OCD) [4]. Frequently, the tics were not res-
ponsive to the surgical procedure. If tics were reduced
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Neurosurgery

Before the description of the cortico-striato-thalomo-
cortical loops, neurosurgical procedures including
thalamic lesioning and leucotomies were performed
on an empirical basis. It was not until Hassler and
Dieckman described their surgical cases of Tourette
patients with intractable tics that specific regions of
the brain were targeted for lesioning [10]. They chose
the medial thalamus as the main target for the treat-
ment of tics, whereas Babel et al. [12] added the infra-
thalamic region as a target on the basis of neurophysi-
ological studies in TS. Side effects have limited this
procedure. In a recent study, deep brain stimulation
(DBS) was shown to be safer than lesioning in patients
treated for tremor [15]. Therefore, DBS was assumed
to be the neurosurgical treatment of choice for intrac-
table tics.

The principal of electrical stimulation of a target
is believed to be similar to lesioning, since both meth-
ods inhibit the activity of the target. Vandewalle et al.
reported on bilateral medial thalamic stimulation in
a 37 year old male TS patient resistant to conventional
tic therapy [26]. The target was chosen on the basis of
the reported lesioning by Hassler and Dieckman in
the medial thalamus [10]. Because of the multitude
of lesions in Hassler’s cases, the quadripolar electrode
was placed in such a direction that many of the re-
ported lesions by Hassler and Dieckman could theo-
retically be involved in the stimulated area. The afore-
mentioned cortico-striato-thalamo-cortical loops,
including the medial thalamus with the centromedian

nucleus as a possible source for the generation of tics,
were taken into account. The safety of this procedure
and the relief of the tics in this patient were demon-
strated.

Similar procedures were carried out in another 2
adult male patients (ages 28 and 42) with medically
intractable tics [27]. The electrodes were placed bilat-
erally using the stereotactic approach. In 2 patients
propofol tuned anesthesia and in one patient general
anesthesia was used. Tics were scored blindly using a
20 minute video-recording with chronic stimulation
and 12 hours after cessation of the stimulation. After
one and 5 years there was a tic reduction of  72,3%
and 90%, respectively, comparable to the tic reduction
seen immediately after surgery. Post-operatively, all
patients reported a temporary loss of energy. One
patient reported an increased and another a dimin-
ished sexual drive.

In a 27 year old male TS patient, medial thalamic
stimulation was compared to bilateral internal pal-
lidal stimulation, by placing one quadripolar elec-
trode in each target bilaterally, thereby implanting a
total of four intracerebral electrodes [28]. The stimu-
lation of the internal pallidum appeared to be more
effective than the medial thalamus in reducing the
tics. The ventrolateral part of the internal pallidum,
i.e. the target used for the treatment of dystonia and
for some patients with Parkinson’s disease was se-
lected (⊡ Fig. 18.2).

Based on these results, the target to be used for
chronic stimulation in the control of intractable tics
in TS remains to be determined. All selected patients

⊡ FFFFFigigigigig. 18.2.. 18.2.. 18.2.. 18.2.. 18.2. Post-operative MR T1 axial
image through the basal ganglia in the
patient with bilateral pallidal stimula-
tion. Note the artefact from the elec-
trodes located in the ventrolateral part
of the internal pallidum
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had low levels of comorbidity, because the effect of
chronic stimulation on associated symptoms such
as obsessive-compulsive behavior (OCB), attention
deficit-hyperactivity disorder (ADHD) or loss of im-
pulse control is unclear.

Conclusion

TS is a neurological disorder in childhood, frequently
“self-limiting”, not requiring any treatment into
adulthood. Counseling and behavioral therapy may
suffice for the treatment of tics and comorbidity.
Pharmacological therapy is in some cases necessary
and in most cases effective. In rare instances in pa-
tients with TS in adulthood, who do not respond to
various forms of non-invasive treatment, neurosurgi-
cal therapy may be effective in suppressing tics. The
lesioning technique of brain targets is obsolete due to
the serious adverse events reported in most of the
cases. The deep brain stimulation technique appears
promising due to its efficacy and safety in the four
described cases (⊡ Fig. 18.3).

However, it remains to be determined which is the
preferred target for optimal tic control. Based on the
current understanding of the pathophysiology of the
Gilles de la Tourette syndrome, both targets, i.e. me-
dial thalamus and GPi, can theoretically be consid-
ered. Prospective studies are underway to evaluate the
effect of the different targets on the tics and its effi-
cacy and safety.
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Advances in Gilles de la Tourette Syndrome:
Preliminary Results in a Cohort of 10 Patients
Treated with DBS

M. Porta, D. Servello, M. Sassi, A. Brambilla

 voluntary,
 unvoluntary,
 involuntary,
 automatic.

Besides voluntary movements, during all the other 3
types, tics can be produced.

Tics are purposeless movements which can be
voluntarily and temporarily suppressed but which
suddenly reappear in bursts, with a variable time
course and affecting several muscle groups such as the
respiratory, laryngeal, pharyngeal, oral and nasal
muscles. Tics tend to disappear when the subject is
performing mental or physical activities, including
sexual intercourse. Paradoxically, the clinical picture
deteriorates when the subject is relaxed or resting.
During sleep, pathological movements may disappear
but more frequently they tend to persist.

For the diagnosis, for a better assessment of
symptoms and progress of the disease, a number of
evaluation tools have been proposed such as the Yale
Global Tic Severity Scale (YGTSS), the Tourette Syn-
drome Questionnaire (TSQ), the Tourette Syndrome
List (TSL), the Unified Tourette Syndrome Rating
Scale and a rating score for the video assessment of
the disease which takes into account the anatomic lo-
cation of tics, types of vocal tics, the severity and the
frequency of tics. It has been observed that patients
with TS often complain also of Obsessive Compulsive
Behavior (OCB) and/or of Attention Deficit Hyperac-

Introduction

Tourette syndrome (TS) is a disorder characterized
according to DSM IV [1] by:
 presence, simultaneously or not, of motor and vo-

cal tics of a duration longer than 1 year, in a con-
tinuous or intermittent manner;

 variability during time in rate, intensity and pat-
terns of tics;

 onset of disturbances before the age of 18;
 exclusion of secondary tics, attributable to psy-

chotropic drugs, infectious diseases, intoxications,
altered CNS development, CNS trauma, stroke,
use of neurotoxic substances such as cocaine, etc.;
need of a diagnosis supported by an adequate
video/cinematographic documentation evaluated
by an expert;

 psychosocial impact.

Jankovic [2] has distinguished the following types of
tics:
 simple motor (clonic, dystonic, tonic)
 complex motor (apparently purposeless, inad-

equate, finalistic)
 simple vocal (cough, grunting)
 complex vocal (echolalia, palilalia, often copro-

lalia).

Jankovic [3] has also described physiology of move-
ments as follows:
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tive Disorder (ADHD). Anxiety is also present in these
patients as Self Injury behavior (SIB), originally de-
scribed also by Gilles de la Tourette. We used the
Robertson-Cohen Classification of Tourette Syndrome,
differentiating patients with simple, full-blown, or
plus form of the disease. Patients refractory to stan-
dard and innovative drug- and psycho-, conservative
therapies were considered in a distinct subgroup la-
beled “resistant”. Patients belonging to this group
were considered eligible for surgery.

TS is recognized to be more common than was
previously reported with prevalence figures from re-
cent studies [4] of between 0,4% and 1,76% of young-
sters between the ages of 5 and 18 years.

Physiopathology and Pathogenesis

It has not yet been possible to identify histopathol-
ogical lesions responsible for the onset of TS: It has
been postulated that there is the involvement of the
caudate nucleus and of the lower area of pre-frontal
cortex, similar to what has been supposed for OCD
and ADHD [6, 7]. Volumetric MRI [7] has shown
asymmetry in basal ganglia while functional MRI [8]
has shown that during suppression of tics, subcorti-
cal extrapyramidal areas are hypoactive while the
activity of inhibitory cortical areas is increased.

By means of PET with 18-fluoro-2-deoxy-D-glu-
cose [9] two metabolic patterns have been identified:
the first characterized by increased activity in lateral
pre-motor and supplementary motor areas, the sec-
ond characterized by decreased activity of the caudate
nucleus and of thalamic areas belonging to the pro-
jection circuit limbic system-basal ganglia-thalamus-
cortex.

Biochemical data point to a reduction of cortical
cyclic AMP [6, 10] and to alterations in dopamine up-
take [11] but also changes in neurotransmission of
GABA, neuropeptides, acetylcholine and N-methyl-D-
aspartate appear to be present. On the basis of behav-
ioral patterns, Pinelli et al., in collaboration with Porta
[12], have clinically differentiated 2 types of patients
with TS, one with predominant disorder of the sero-
toninergic system and the other with predominant
disorder of the dopaminergic system.

Multiple factors have been considered to play a
role in the onset of TS, such as heredity, age, gender
and environment. Also infections have been consid-
ered as possible causative factors, particularly infec-
tions from beta-hemolytic Streptococcus, but also
Borrelia and Herpes simplex have been considered

possible agents triggering the onset of the syndrome.
Alsobrook and Pauls in 2002 demonstrated heritabil-
ity in 3 out of 4 factors, among which coprolalia,
aggressivity, simple motor and phonic tics. More re-
cently, Abelson et al. (2005) reported the association
of TS with the gene SLITRK1 on chromosome 13q31.1
in a small number of individuals with TS, which is the
first indication of an actual gene being involved in
some cases of TS.

Management

The management of patients with TS presents several
difficulties. The first problem is to decide which type
of patient should be treated, when and how long.
Social distress is one of the important components of
the syndrome. This requires appropriate treatment to
improve the quality of life of these patients. Mild cases
of TS do not require any treatment, unless they are
associated with ADHD and OCB which may markedly
impact on daily life.

The basic treatment of TS is represented by drugs
acting on the dopaminergic system such as haloperi-
dol and pimozide [13, 14]. This latter, similarly to
other selective D2 receptor antagonists, frequently
causes undesirable side effects, especially ECG alter-
ations, which require close monitoring. Sulpiride, tia-
pride and the recently introduced atypical neuro-
leptics risperidone and olanzapine have also been
employed in TS with fairly good results. Tetrabenazine
is a powerful dopamine depleting agent [15] which
has shown good results in TS but the drug is not yet
available on the Italian market. Presently, no clinical
or laboratory data exist which may indicate which
type of neuroleptic should preferentially be em-
ployed.

The complexity of the pathogenetic systems in-
volved in the disease is shown by the fact that also the
opposite pharmacological approach with dopamine
agonists such as pergolide has been employed [16]
while alpha-2 adrenergic agonists such as clonidine
and guanfacine have also been used [11, 17].

CNS stimulating drugs such as methylphenidate
and amphetamines have been shown to be useful in
disturbances related to ADHD while selective seroto-
nin re-uptake inhibitors (SSRI) have proven to be
beneficial in OCB [18–22]. Recently, the transdermal
administration of nicotine has been shown to be use-
ful in reducing the dosage of neuroleptics [23].

Botulinum toxin, by local injection, has recently
been successfully employed to relax muscles involved
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After a “map” of neuronal activity is thus drawn,
we proceeded with macro-stimulation with a gradual
increase of the intensity, in order to record every sub-
jective impression reported by the patient. The limit
of 5 m Amp was usually reached. Macro-stimulation
with these features started at the target for all the three
channels, and was performed for 2 minutes (accord-
ing to clinical manifestations) at every millimeter
along the stereotactic trajectory until reaching 5 mm
above the target: the multipolar, definitive stimulating
electrode was positioned following the trajectory of
one of the three probes, considering the results of
stimulation and the adverse effects.

Intralaminar and parafascicular thalamic nuclei
and the internal part of the ventral-oral thalamic
nucleus were targeted on the basis of the neuronavi-
gation reports.

The day after the procedure a control T2 weighed,
Inversion Recovery, 3 mm coronal MRI scan was ob-
tained.

The two stimulating electrodes were connected
with the Kinetra device (Medtronic), positioned in a
subcutaneous, pre-pectoral fashion during a second
surgical procedure performed under general anesthe-
sia at a mean of 3 days after the first surgical proce-
dure.

Results of surgical series are summarized in
⊡ Table 19.1.

Patients were followed with monthly clinical eva-
luation by a multidisciplinary team. Tic manifesta-
tions, social functioning as reported by caregivers
and by the patients themselves were carefully re-
corded and fluctuations in psychological manifesta-
tions were evaluated with standardized psychological
scales (Yale-Brown Obsessive-Compulsive Scale, State
Trait Anxiety Inventory, Symptoms Checklist 90-R)
[30–32].

Yale Global Tic Severity Scale values for 8 out of
the 10 patients treated with a minimum of 3 months
follow-up as reported in Graph 1: a global decrease in
frequency and severity of tics is indicated. Concern-
ing drug intake after DBS in 2 pts, medication was
stopped completely; in the others drug intake was re-
duced to a range of 25 to 50 percent.

Conclusions and Future Directions

The TS has been revisited in the last few years and
much in its psychopathological picture has changed.
Epidemiology has shown that TS is an important dis-
ease both for its prevalence and its social impact and

in tics: the muscle relaxation also reduces propriocep-
tive activity, thus decreasing sensory feeling which is
often the cause of the pathological motor fits (pre-
monitory sensation). The percutaneous injection into
vocal cords has been shown to be effective in reliev-
ing muscle tension thus decreasing coprolalia and
vocalizations. A transient hypophonia occurred in
85–90% of cases [24, 25].

Supportive psychiatric and psychodynamic treat-
ments are currently used especially to improve sub-
jective tolerability of the disturbance by patients and
their family [26, 27].

Deep Brain Stimulation in Tourette
Syndrome

Over the last few years, various reports [28, 29] have
been published concerning surgical treatment of in-
tractable Tourette Syndrome by means of stereotactic
deep brain stimulation. On the bases of these prelimi-
nary experiences, starting from November 2004 DBS
was performed in 10 patients with chronic, severe to
marked tics, resistant to at least 1 year of conservative
treatment. Subjects were evaluated by a multi-disci-
plinary team, and patients with cognitive impairment
or psychosis were excluded. Patients have been treated
targeting centromedian-parafascicular and ventral-
oral complex nuclei of the thalamus, bilaterally. Coor-
dinates are referred to the commissural line and are
5 mm lateral to the AC-PC line, 2 mm posterior to
mid-commissural point, and at the AC-PC plane. Sur-
gical procedure was performed under local anesthe-
sia, with stereotactic guidance with the aid of neuro-
navigation (Treon – Medtronic). The day before sur-
gery an MRI scan of the brain was obtained: 3 mm
thickness, with T1 weighed axial and sagittal, and T2
weighed coronal.

Preoperatively, a CT scan of the brain was ob-
tained after positioning of the stereotactic frame un-
der local anesthesia. The exam was then acquired
by the neuronavigation device (TREON, Medtronic),
and fused with the preoperative MRI, in order to
obtain the coordinates of the nuclei according to
the Schaltenbrand-Wahren atlas and the Talairach
grid (⊡ Figs. 19.1 and 19.2).

A pre-coronal drill hole of 14 mm diameter was
then performed after proper local anesthesia. Using
the “ben-gun” method, a three-channels simultaneous
micro-registration was obtained with tungsten bi-
polar micro-electrodes (Inomed) with high-imped-
ance.
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that therefore it can no longer be considered as an
orphan disease, while appropriate guidelines are be-
ing developed both for diagnosis and treatment.

An integrated, collaborative approach to treatment
is mandatory, with the participation of neurologist,
functional neurosurgeon, psychologist, psychiatrist
and social operator.

This will help in improving quality of life of an
important number of subjects who often find them-
selves in a situation of marked distress and significant
social impairment.
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