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Preface

This book is a revision of the 2005 3rd Edition with the same title. There is
additional material, mainly in the entirely new Chap. 13 on migration and substantial
new parts on ultramicroelectrode arrays in Chap. 12, as well as a general overhaul
of all other chapters including many references to more recent work.

It has been our aim since the 1st Edition to write on the subject in a didactic
manner, and we believe we have succeeded. The first chapters provide the reader
with the background needed for the programming of simulations. There are still very
few books in this field. Another book on the same subject has recently appeared [1],
emphasizing cyclic voltammetry, although other experimental techniques are men-
tioned. The interesting book [2] by Honeychurch, very wide-ranging, presenting
Mathematica [3] solutions to simulation, is now out of print and hard to obtain and
in any case serves a different purpose, programming in that environment, whereas
we continue to propagate a compiled language, in our case Fortran 95 (or higher).

The book is accompanied by a number of example procedures and programs,
all in Fortran 90/95 (available at http://extras.springer.com). These have all been
verified as far as possible. While some errors might remain, they are hopefully very
few and mainly cosmetic.

We gratefully acknowledge a number of colleagues for fruitful discussions. They
are (in alphabetical order) Dr. Lesław Bieniasz (Cracow University of Technology),
Dr. Stephen Feldberg (Brookhaven National Laboratory, Upton, New York), Profes-
sor Bertel Kastening (Hamburg University), Professor J.A. Manzanares (Valencia
University), Professor Keith Oldham (Trent University Canada), Dr. Ole Østerby
(Aarhus University), and Professor Bernd Speiser (Tübingen University). If we have
left anybody out, we apologize.

Finally, one of us (DB) thanks his wife for mathematical support, and we both
thank our wives for their patience during the writing of this book.

Aarhus, Denmark Dieter Britz
Tübingen, Germany Jörg Strutwolf
January 2016
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Chapter 1
Introduction

This book is about the application of digital simulation to electrochemical problems.
The term “simulation” came into wide use with the advent of analog computers,
which could produce electrical signals that followed mathematical functions to
describe or model a given physical system [1–3], and there was even a digital
simulator of an analog control circuit for an electrochemical simulation [4]. When
digital computers became common, people began to do these simulations digitally
and called this digital simulation. Most commonly we simulate electrochemical
transport problems, which are difficult to solve analytically in all but a few
model system cases—when things get more complicated, as they do in real
electrochemical cells, problems may not be solvable algebraically, yet we still want
answers.

Most commonly, the basic equation we need to solve is the diffusion equation,
relating concentration c to time t and distance x from the electrode surface, given
the diffusion coefficient D:

@c

@t
D D

@2c

@x2
: (1.1)

This is Fick’s second diffusion equation [5], an adaptation to diffusion of the
heat transfer equation of Fourier [6]. Technically, it is a second-order parabolic
partial differential equation (pde). In fact, it will mostly be only the skeleton of
the actual equation one needs to solve; there will usually be such complications
as convection (solution moving), migration (ion movement in solution due to an
electric field) and chemical reactions taking place in the solution, which will
cause concentration changes in addition to diffusion itself. Numerical solution may
then be the only way we can get numbers from such equations—hence digital
simulation.

The numerical technique most commonly employed in digital simulation is
(broadly speaking) that of finite differences and this is much older than the digital
computer. It dates back at least to 1911 [7] (Richardson). In 1928, Courant et al. [8]
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2 1 Introduction

described what we now take to be the essentials of the method; Emmons [9] wrote a
detailed description of finite difference methods in 1944, applied to several different
equation types. There is no shortage of mathematical texts on the subject: see, for
example, Lapidus and Pinder [10] and Smith [11], two excellent books out of a large
number.

It should not be imagined that the technique became used only when digital
computers appeared; engineers certainly used it long before that time, and were
not afraid to spend hours with pencil and paper. Emmons [9] casually mentions
that one fluid flow problem took him 36 h! Not surprisingly, it was during this early
pre-computer era that much of the theoretical groundwork was laid and refinements
worked out to make the work easier—those early stalwarts wanted their answers as
quickly as possible and accurate.

Electrochemical digital simulation is almost synonymous with Stephen Feldberg,
who wrote his first paper on it in 1964 [12]. It is not always remembered that
Randles [13] used the technique much earlier (in 1948), to solve the linear
sweep problem. He did not have a computer and did the arithmetic by hand.
The most widely quoted electrochemical literature source is Feldberg’s chapter
in Electroanalytical Chemistry [14], which describes what will here be called the
“box” method. Feldberg is rightly regarded as the pioneer of digital simulation in
electrochemistry, and is still active in the field today. This has also meant that the
box method has become standard practice among many electrochemists, while what
will here be called the “point” method is more or less standard elsewhere. Having
experimented with both, the present authors favour the point method for the ease
with which one arrives at the discrete form of one’s equations, especially when the
differential equation is complicated.

A brief description will now be given of the essentials of the simulation
technique. Assume (1.1) above. We wish to obtain concentration values at a given
time over a range of distances from the electrode. We divide space (the x coordinate)
into small intervals of length h and time t into small time steps ıt. Both x and t can
then be expressed as multiples of h and ıt, using i as the index along x and j as that
for t, so that

xi D ih (1.2)

and

tj D jıt : (1.3)

Figure 1.1 shows the resulting grid of points. At each drawn point, there is a
value of c. The digital simulation method now consists of developing rows of c
values along x, (usually) one t-step at a time. Let us focus on the three filled-circle
points ci�1, ci and ciC1 at time tj. One of the various techniques to be described
will compute from these three known points a new concentration value c0

i D ci.t D
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Fig. 1.1 Discrete sample
point grid

ci−1 ci ci+1

ci

δt

2δt

...

jδt

t

h 2h 3h . . . ih
x

. j C 1/ıt/ (empty circle) at xi for the next time value tjC1, by expressing (1.1) in
discrete form:

c0
i � ci
ıt

D D

h2
.ci�1 � 2ci C ciC1/ : (1.4)

The only unknown in this equation is c0
i and it can be explicitly calculated. Having

obtained c0
i, we move on to the next x point and compute c0 for it, etc., until all c

values for that row, for the next time value, have been computed.
In the remainder of the book, the various schemes for calculating new points will

often be graphically described by isolating the marked circles seen in Fig. 1.1; in
this case, the scheme would be represented by the following diagram

This follows the convention seen in such texts as Lapidus and Pinder [10] (who call
it the “computational molecule”). It is very convenient, as one can see at a glance
what a particular scheme does. The filled points are known points while the empty
circles are those to be calculated.

Several problems will become apparent. The first one is that of the method used
to arrive at (1.4); this will be dealt with later. There is, in fact, a multiplicity of
methods and expressions used. The second problem is the concentration value at
x D 0; there is no x�1 point, as would be needed for i D 0. The value of c0 is a
boundary value, and must be handled in some other way. Another boundary value is
the last x point we treat. How far out into the diffusion space should (need) we go?
Usually, we know good approximations for concentrations at some sufficiently large
distance from the electrode (e.g. either “bulk” concentration, or zero for a species
generated at the electrode), and we have pretty good criteria for the distance we need
to go out to. Another boundary lies at the row for t D 0: this is the row of starting
values. Again, these are supplied by information other than the diffusional process
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we are simulating. Boundary problems are dealt with in Chap. 6. They are, in fact, a
large part of what this book is about, or what makes it specific to electrochemistry.
The discrete diffusion equation we have just gone through could just as well apply
to heat transfer or any other diffusional transport problems.

Throughout the book, the following symbol convention will be used: dimen-
sioned quantities like concentration, distance or time will be given lower-case
symbols (c, x, t, etc.) and their non-dimensional equivalents will be given the corre-
sponding upper-case symbols (C, X, T, etc.), with a few unavoidable exceptions.
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Chapter 2
Basic Equations

2.1 General

In this chapter, we present most of the equations that apply to the systems and
processes to be dealt with later. Most of these are expressed as equations of
concentration dynamics, that is, concentration of one or more species as a function
of time, as well as other variables, in the form of differential equations. Fun-
damentally, these are transport (diffusion-, convection- and migration-) equations
but may be complicated by chemical processes occurring heterogeneously (i.e. at
the electrode surface—electrochemical reaction) or homogeneously (in the solution
bulk—chemical reaction). The transport components are all included in the general
Nernst–Planck equation (see also [1]) for the flux Jj of species j

Jj D �Djrcj � zjF
RT Djcjr� C cjv (2.1)

in which Jj is the molar flux per unit area of species j at the given point in space, Dj

the species’ diffusion coefficient, cj its concentration, zj its charge,F , R and T have
their usual meanings, that is, respectively the Faraday (universal) gas constant and
temperature, � is the potential and v the fluid velocity vector of the surrounding
solution (medium). The symbol r denotes the differentiation operator and it is
directional in three-dimensional (3D) space. This equation is a more general form of
Fick’s first diffusion equation, which contains only the first term on the right-hand
side, the diffusion term. The second term on that side is the migration term and the
last is the convection term. These will now be discussed individually. At the end of
the chapter, we go through some models and electrode geometries, and present some
known analytical solutions, as well as dimensionless forms of the equations. There is
no term in the equation to take account of changes due to chemical reactions taking
place in the solution, since these do not directly give rise to a flux of substance. Such
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6 2 Basic Equations

terms come in later, in the equations relating concentration changes with time to the
above components (see (2.15) and Sect. 2.2.6).

2.2 Some Mathematics: Transport Equations

2.2.1 Diffusion

For a good text on diffusion, see the monograph of Crank [2], or Ghez [3]. Consider
Fig. 2.1. We imagine a chosen coordinate direction x in a solution volume containing
a dissolved substance at concentration c, which may be different at different
points—i.e., there may be concentration gradients in the solution. We consider a
very small area ıA on a plane normal to the x-axis. Fick’s first equation now says
that the net flow of solute (flux fx, in mol s�1) crossing the area is proportional to the
negative concentration gradient at the plane, in the x-direction

fx D dn

dt
D �ıAD

dc

dx
(2.2)

with D a proportionality constant called the diffusion coefficient and n the number
of moles. This can easily be understood upon a moment’s thought; statistically,
diffusion is a steady spreading out of randomly moving particles. If there is
no concentration gradient, there will be an equal number per unit time moving
backward and forward across the area ıA, and thus no net flow. If there is a
gradient, there will be correspondingly more particles going in one direction (down
the gradient) and a net increase in concentration on the lower side will result.
Equation (2.2) is of precisely the same form as the first heat flow equation of
Fourier [4]; Fick’s contribution [5] lay in realising the analogy between temperature
and concentration, heat and mass (or number of particles). The quantity D has units
m2 s�1 (SI) or cm2 s�1 (cgs).

Equation (2.2) is the only equation needed when using the box method and
this is sometimes cited as an advantage. It brings one close to the microscopic
system, as we shall see, and has—in theory—great flexibility in cases where the

Fig. 2.1 Diffusion across a
small area
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diffusion volume has an awkward geometry. In practice, however, most geometries
encountered will be—or can be simplified to—one of but a few standard forms
such as rectangular, cylindrical or spherical—for which the full diffusion equation
has been established (see, e.g., Crank [2]). In Cartesian coordinates this equation,
Fick’s second diffusion equation, in its most general form, is

@c

@t
D Dx

@2c

@x2
C Dy

@2c

@y2
C Dz

@2c

@z2
: (2.3)

This expresses the rate of change of concentration with time at given coordinates
.t; x; y; z/ in terms of second space derivatives and three different diffusion coeffi-
cients. It is possible for D to be direction-dependent (in anisotropic media) and it
can also be space-dependent but for a solute in solution, it is normally equal in all
directions and usually the same everywhere, so (2.3) simplifies to

@c

@t
D D

�
@2c

@x2
C @2c

@y2
C @2c

@z2

�
; (2.4)

that is, the usual three-dimensional form. Even this is rather rarely applied—we
always try to reduce the number of dimensions, preferably to one, giving

@c

@t
D D

@2c

@x2
(2.5)

(but see Sect. 12.4 for 2D systems and an example of a 3D problem).
If the geometry of the system is cylindrical, it is convenient to switch to

cylindrical coordinates: z along the cylinder, r the radial distance from the axis and �
the angle. In most cases, concentration is independent of the angle and the diffusion
equation is then (see Appendix B)

@c

@t
D D

�
@2c

@z2
C @2c

@r2
C 1

r

@c

@r

�
: (2.6)

There is no gradient along z (the axis) for a (long) cylinder, so only r remains

@c

@t
D D

�
@2c

@r2
C 1

r

@c

@r

�
: (2.7)

For a spherical system, assuming no concentration gradients other than away from
the centre (radially), the equation becomes

@c

@t
D D

�
@2c

@r2
C 2

r

@c

@r

�
: (2.8)
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2.2.2 Diffusion Current

Equation (2.2) gives the flux in mol s�1 of material as the result of a concentration
gradient. If there is such a gradient normal to an electrode/electrolyte interface,
then there is a flux of material at the electrode and this takes place via the electron
transfer. An electroactive species diffuses to the electrode, takes part in the electron
transfer and becomes a new species. The electrical current i flowing is then equal to
the molar flux multiplied by the number n of electrons transferred for each molecule
or ion (2.2), and the Faraday constant

i D nFAD

�
@c

@x

�
xD0

(2.9)

for a reduction current. The flux and the current are thus, in a sense, synonymous and
will, in fact, profitably be expressed simply in terms of the concentration gradient
itself or its dimensionless equivalent, to be discussed later (Sect. 2.3).

2.2.3 Convection

If we cannot arrange for our solution to be (practically) stagnant during our
experiment, then we must include convective terms in the equations. Figure 2.2
shows a plot of concentration against the x-coordinate at a given instant. Let x1 be
a fixed point along x, with concentration c1 at some time t, and let the solution
be moving forward along x with velocity vx, so that after a small time interval ıt,
concentration c2 (previously at x2) has moved to x1 by the distance ıx. If ıt and ıx

Fig. 2.2 Convection



2.2 Some Mathematics: Transport Equations 9

are chosen sufficiently small, we may consider the line PQ as straight and we have,
for the change ıc at x1

ıc D �ıxdc

dx
: (2.10)

Dividing by ıt, taking vx D ıx=ıt and going to the infinitesimal limit, we get for the
x-term

@c

@t
D �vx @c

@x
: (2.11)

If there is convection in all three directions, this expands to

@c

@t
D �vx @c

@x
� vy

@c

@y
� vz

@c

@z
: (2.12)

This treatment ignores the diffusional processes taking place simultaneously; the
two transport terms are additive in the limit.

Convection terms commonly crop up with the dropping mercury electrode, rotat-
ing disk electrodes and in what has become known as hydrodynamic voltammetry,
where the electrolyte is made to flow past an electrode in some reproducible way
(e.g. the impinging jet, channel and tubular flows, vibrating electrodes, etc.). This is
discussed in Chap. 14.

2.2.4 Migration

Simulation of migration is treated in Chap. 13. Often, the electrochemist is able to
eliminate this transport term (and will do so for practical reasons as well). If our
species is charged, that is, it is an ion, then it may experience electrical forces due
to potential fields. This will be significant in solutions of ionic electroactive species,
not containing a sufficiently large excess of inert electrolyte.

In general (see Vetter [6]), for an electroactive cation with charge CzA and anion
with charge �zB, an inert electrolyte with the same two charges on its ions, and with
r the concentration ratio electrolyte/electroactive ion, we have the rather awkward
equation

i

i0
D
�
1C

ˇ̌
ˇ̌ zA
zB

ˇ̌
ˇ̌� .1C r/

�
1 �

�
r

1C r

�p�
(2.13)

where

p D
�
1C

ˇ̌
ˇ̌ zA
zB

ˇ̌
ˇ̌��1

(2.14)
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and i0 is the pure diffusion current, without migration effects. To illustrate, let us
take jzAj D jzBj D 1. Then i=i0 D 2 for r D 0 (no inert electrolyte), 1:17 for
r D 1, 1:02 for r D 10 and 1:002 for r D 100. For very accurate studies, then, inert
electrolyte should be in excess by a factor of 100 or more. Cases where this is not
so are dealt with in the migration Chap. 13.

There is one situation in which migration can have an appreciable effect, even in
the presence of excess inert electrolyte. For the measurement of very fast reactions,
one must resort to techniques involving very small diffusion layers (see Sect. 2.4.1.1
for the definition)—either by taking measurements at very short times or forcing
the layer thickness down by some means. If that thickness becomes comparable
in magnitude with that of the diffuse double layer, and the electroactive species is
charged, then migration will play a part in the transport to and from the electrode.
The effect has been clearly explained elsewhere [7]. A rough calculation for a planar
electrode in a stagnant solution, assuming the thickness of the diffuse double layer
to be of the order of 10�9m and the diffusion coefficient of the electroactive species
to be 10�12 m2 s�1 (which is rather slow) shows that migration effects are expected
during the first few microseconds or so. This is also gone into in Chap. 13.

2.2.5 Total Transport Equation

This section serves merely to emphasise that for a given cell system, the full
transport equation is the sum of those for diffusion, convection and migration. We
might write, quite generally,

@c

@t
D
�
@c

@t

�
diff

C
�
@c

@t

�
conv

C
�
@c

@t

�
migr

(2.15)

with the “diff” term as defined by one of the equations (2.3)–(2.8), the “conv” term
by (2.11) and “migr” related to (2.13). At any one instant, these terms are simply
additive. Digitally, we can “freeze” the instant and evaluate the sum of the separate
terms. There may be non-transport terms to add as well, such as kinetic terms, to be
discussed next.

2.2.6 Homogeneous Kinetics

Homogeneous reactions are chemical reactions not directly dependent upon the
electrode/electrolyte interface, taking place somewhere within the electrolyte (or,
in principle, the metal) phase. These lead to changes in concentration of reactants
and/or products and can have marked effects on the dynamics of electrochemical
processes. They also render the dynamic equations much more difficult to solve
and it is here that digital simulation sees much of its use. Whereas analytical
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solutions for kinetic complications are difficult to obtain, the corresponding discrete
expressions are obtained simply by extending the diffusion equation by an extra,
kinetic, term (although practical problems arise, see Chaps. 5 and 9). The actual
form of this depends upon the sort of chemistry taking place. In the simplest case,
met with in flash photolysis, we have a single substance generated by the flash,
then decaying in solution by a first- or second-order reaction; this is represented by
equations of the form

@c

@t
D �k1c (2.16)

or

@c

@t
D �2k2c2 (2.17)

and these can be added to the transport terms. Very often, we have several substances
interacting chemically, as in the example of the simple electrochemical reaction

A C ne� • B (2.18)

followed by chemical decay of the product B. If this is first-order and we have a
simple one-dimensional diffusion system, we then have the two equations (cA and
cB denoting concentrations of, substances A and B, respectively; DA and DB the two
respective diffusion coefficients)

@cA
@t

D DA
@2cA
@x2

@cB
@t

D DB
@2cB
@x2

� k1cB :

(2.19)

There is a great variety of such reactions including dimerisation, disproportionation
and catalytic reactions, both preceding and following the electrochemical step(s)
and it is not useful to attempt to list them all here but see Bard and Faulkner [1] for
a full discussion. The point is merely to stress that they are (with greater or lesser
difficulty) digitally tractable, as will be shown in Chaps. 5 and 9.

There is one problem that makes homogeneous chemical reactions especially
troublesome. Most often, a mechanism to be simulated involves species generated
at the interface, that then undergo chemical reaction in the solution. This leads to
concentration profiles for these species that are confined to a thin layer near the
interface—thin, that is, compared with the diffusion layer (see Sect. 2.4.1.1, the
Nernst diffusion layer). This is called the reaction layer (see [1, 6, 8]). Simulation
parameters are usually chosen so as to resolve the space within the diffusion layer
and, if a given profile is much thinner than that, the resolution of the sample point
spacing might not be sufficient. The thickness of the reaction layer depends on
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the nature of the homogeneous chemical reaction. In any case, any number given
for such a thickness—as with the diffusion layer thickness—depends on how the
thickness is defined. Wiesner [9] first derived an expression for the reaction layer
thickness �,

� D
r

D

k
: (2.20)

(Wiesner’s expression used different symbols, but this is not important.) This
expression strictly holds only for a first-order reaction and Vetter [6] provides a more
general expression. However, the above expression is sufficient for most simulation
purposes. The problem exists only for rather large values of the rate constant k; for
small values, � becomes greater than the diffusion layer thickness, which will then
dominate the concentration profile. At the other end of the scale of rate constants,
for very fast reactions, � can become very small. The largest rate constant possible
is about 1010 s�1 (the diffusion limit) and this leads to a � value only about 10�5
the thickness of the diffusion layer, so there must be some sample points very close
to the electrode. This problem has been overcome, first by using unequal intervals,
then by the use of dynamic grids, both of which are discussed in Chap. 7.

2.2.7 Heterogeneous Kinetics

In real (as opposed to model) electrochemical cells, the net current flowing will
often be partly determined by the kinetics of electron transfer between electrode
and the electroactive species in solution. This is called heterogeneous kinetics,
as it refers to the interface instead of the bulk solution. The current in such
cases is obtained from the Butler–Volmer expressions relating current to electrode
potential [1, 6–8]. We have at an electrode the process (2.18), with concentrations
at the electrode/electrolyte interface cA;0 and cB;0, respectively. We take as positive
current that going into the electrode, i.e., electrons leaving it, which corresponds
to the reaction (2.18) going from left to right, or a reduction. Positive or forward
(reduction) current if is then related to the potential E by

if D nFAcA;0k
0 exp

��˛nF
RT .E � E0/

�
(2.21)

with A the electrode area, k0 a standard heterogeneous rate constant, ˛ the so-
called transfer coefficient which lies between 0 and 1 and E0 the system’s standard
potential. For the reverse (oxidation) current ib,

ib D �nFAcB;0k
0 exp

�
.1 � ˛/

nF
RT .E � E0/

�
: (2.22)
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Both processes may be running simultaneously. The net current is then the sum
.if C ib/ and this will, through (2.9), fix the concentration gradients at the electrode
in these cases.

The Butler–Volmer relation which, as Inzelt points out in a thorough review of
the history of the formulation of electrode kinetics [10], should really be called the
Butler–Volmer–Erdey-Gruz theory. There has been much discussion comparing the
theory with the Marcus–Hush theory. This has the unfortunate property that to use it,
one must compute integrals, although Zeng et al. [11] have presented some simpler
approximations, and Bieniasz [12] showed some ways to get accurate rate constants
using the theory. Feldberg [13] advises caution when applying Butler–Volmer to
steady state currents at an ultramicrodisk electrode, where the currents can be lower
than predicted by Butler–Volmer, compared with the more correct Marcus–Hush
theory, whereas Henstridge et al. [14] find that such conditions are unlikely to be
met in practice. The Inzelt and Feldberg papers contain numerous references to this
complex field, but in this book only Butler–Volmer theory will be dealt with.

If a reaction is very fast, it may be simpler to make the assumption of complete
reversibility or electrochemical equilibrium at the electrode, at a given potential E.
The Nernst equation then applies:

E D E0 � RT
nF ln

�
cB;0
cA;0

�
(2.23)

or, for the purpose of computation,

cA;0
cB;0

D exp

�
nF
RT .E � E0/

�
: (2.24)

Just how this is applied in simulation will be seen in later chapters.
The foregoing ignores activity coefficients. If these are known, they can be

inserted. Most often they are taken as unity.

2.3 Normalisation: Making the Variables Dimensionless

In most simulations, it will be advantageous to transform the given equation
variables into dimensionless ones. This is done by expressing them each as a
multiple of a chosen reference value, so that they no longer have dimensions. The
time variable t, for example, is expressed as a multiple of some characteristic time
� , which may be different things depending upon the experiment to be simulated.
Sometimes it might be the total duration of an experiment (the observation time)
or, in the case of a linear sweep experiment, the length of time it takes for the
voltage to change by some specified amount. The distance from an electrode x can
be conveniently expressed as a multiple of some characteristic distance ı, which
will be defined below. Concentrations are normally expressed as multiples of some
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reference concentration, usually the initial bulk concentration of a certain species
involved in the reaction, say c�. The convention adopted in the rest of the book is,
then, that the new dimensionless variables, written in capitals, are

C D c=c�

X D x=ı

T D t=� :

(2.25)

The reference time scale � depends on the system to be simulated, as will be seen in
the next section, where some model systems are described. There, the characteristic
distance ı will also be defined as used in this book (Sect. 2.4.1.1). Other variables
that are normalised are the current and electrode potential. Current i is proportional
to the concentration gradient, by Fick’s first equation (2.2), as expressed in (2.9).
We introduce the dimensionless gradient or flux, defined as

G D @C

@X

ˇ̌
ˇ̌
XD0

: (2.26)

This will now represent the current in dimensionless form. The actual current can
be calculated by denormalisation, that is,

i D n F ADG
c�

ı
: (2.27)

The standard heterogeneous rate constant, seen in Eqs. (2.21) and (2.22), with
dimensions m s�1, is normalised by

K0 D k0
p
�=D : (2.28)

Potential values (in V) are normalised by the RT =nF unit and usually by referring
to some reference value E0, using (in this book) the symbol p:

p D nF
RT

�
E � E0

�
(2.29)

so that one p-unit corresponds to 25:69=nmV. Thus, the two Butler–Volmer
components in Eqs. (2.21) and (2.22) can be expressed in terms of dimensionless
current G as

G D KfCA;0 � KbCB;0 (2.30)

with

Kf D k0 expf�˛pg
Kb D k0 expf.1� ˛/pg (2.31)
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and the Nernst equation very simply as

CA;0

CB;0
D ep : (2.32)

With certain rules and tricks, as will be shown, this will lead to equations whose
solutions are much more general and useful than if we solve the dimensioned
equation for our particular parameter set of values.

2.4 Some Model Systems and Their Normalisations

When developing a new simulation method, it is good to have a number of model
systems at hand, for which there are known results, whether these be in the form
of analytical solutions (concentration profiles, current) or well-established series
solutions (as in the case of linear sweep voltammetry (LSV), where some parameters
have been calculated to quite high precision). The test models should be chosen,
as far as possible, to challenge the method. If the new method’s primary purpose,
for example, is simply greater efficiency, then a simple model like the Cottrell
system and chronopotentiometry may be enough to demonstrate that; these two
differ fundamentally in their boundary conditions, the Cottrell system having a so-
called Dirichlet boundary condition (given concentrations at the boundary), while
chronopotentiometry has a derivative or Neumann condition, where gradients are
specified at the boundary. If a method under development is expected to give
high resolution (small intervals) along x—usually at the boundary—a model that
provides marked concentration changes very close to the boundary is the best for
testing that.

Along with a group of models that have shown themselves useful, their particular
normalisations will be presented. The first model, the Cottrell system, will also serve
to introduce the concept of the Nernst diffusion layer.

2.4.1 Potential Steps

Potential step experiments are a popular way to look at electrochemical kinetics. The
oldest known is the Cottrell system, where the potential stepped to is so far negative
that the resulting current is limited by the transport of the active substance. If the step
is not so far negative, one then has either Nernstian boundary conditions, or those
for quasireversible or irreversible systems. All of these cases have been analytically
solved. As well, there are two systems involving homogeneous chemical reactions,
from flash photolysis experiments, for which there exist solutions to the potential
step experiment, and these are also given; they are valuable tests of any simulation
method, especially the second-order kinetics case.
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Fig. 2.3 A semi-infinite
one-dimensional cell

2.4.1.1 Cottrell System

We introduce here the diffusion-controlled potential-step experiment, hereafter
called the Cottrell experiment [15]. Consider Fig. 2.3, showing a long thin tube
representing an electrochemical cell, bounded at one end by an electrode and filled
with electrolyte and an electroactive substance initially at concentration c� (the bulk
concentration). We place the electrode at x D 0 and the other, counter-electrode (not
shown), at a large distance so that what happens there is of no consequence to us.
We apply, at t D 0, a potential such that our electroactive substance reacts at the
electrode infinitely fast—that is, its concentration c0 at the electrode .x D 0/ is
forced to zero and kept there. Clearly, there will be flow of substance towards the
electrode by diffusion (we assume no convection here) and we will gradually cause
some depletion of material in the solution near x D 0; this depletion region will grow
out from the electrode with time. Mathematically, this is described by the diffusion
equation

@c

@t
D D

@2c

@x2
(2.33)

with the boundary conditions

t D 0; all x W c D c�

t > 0; x D 0 W c D 0

all t; x ! 1 W c D c� :

(2.34)

This classical equation with the boundary conditions as shown has an analytical
solution (Cottrell [15], see also standard texts such as Bard and Faulkner [1] or
Galus [8]):

c.x; t/ D c� erf

�
x

2
p
Dt

�
: (2.35)

In electrochemical experiments, we usually want the current or, since it is related
simply by (2.9) to @c=@x at x D 0, we want .@c=@x/0. This is obtained by
differentiating (2.35) and setting x D 0, resulting in

�
@c

@x

�
0

D c�
p
�Dt

(2.36)
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Fig. 2.4 Concentration profile changing with time for the Cottrell experiment

and the current itself is given by

i D nFA
p
Dc�

p
�t

; (2.37)

the Cottrell equation.
The function erf is the error function, for which tables exist [16], and which

can be numerically computed (see the function ERF discussed in Appendix E). The
solution, (2.35), is shown in Fig. 2.4 for three values of t, increasing as the curves
go to the right.

These so-called concentration profiles agree with our intuitive picture of what
should happen. Note that the concentration gradient at x D 0 decreases with time.
The current function declines with the inverse square root of time (2.36). If, for a
particular t value, we wish to know the current, we can insert c�, D and t into this
equation and use (2.9) to get it.

It is clear from Fig. 2.4 that we should be able to define a distance that roughly
corresponds, at a given time, to the distance over which much of the concentration
change has taken place. One possible choice for this is the distance ı as shown in
Fig. 2.5, obtained by continuing the concentration gradient at x D 0 straight up to
c�. Since this tangent line has the equation

c D
�
@c

@x

�
0

x D c�xp
�Dt

; (2.38)

ı will be obtained by substituting c D c� and x D ı; this leads to

ı D p
�D� (2.39)
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Fig. 2.5 The diffusion layer thickness ı

now expressed for the particular observation time � . This quantity—a length scale—
was defined by Nernst (and Brunner) in 1904 [17, 18], and is named after the former.
We find that, at any given time, there will be noticeable concentration changes in the
solution within a space extending only a few multiples of ı.

This definition of ı is one of several possible. The way it is defined above yields
that distance for which the concentration has moved from zero to c� by a fraction
erf. 1

2

p
�/ � 0:8 or in other words, about 80 % of the change has happened at that

point. Although this might be the most rational definition, others can be agreed upon.
In the present context, it turns out that a smaller distance is the most convenient:

ı D p
D� : (2.40)

At this distance, about 52 % of the total change has happened. This definition
of ı will be used in the remainder of the book. It is customary, since Feldberg’s
seminal chapter [19], to use a multiple of 6

p
Tm as the outer limit, with Tm being the

maximum dimensionless time in a given simulation. The number 6 is normally used
without comment. Looking at the solution of the potential jump experiment [see
below, (2.43)], at this multiple of ı, the concentration changes are less than 10�4 the
bulk value and for simulations aiming at an accuracy of no better than about 0.01 %,
this is a sufficient distance. On occasion it is however better to increase the distance
somewhat, as has been the case with work by the present authors [20–22], where
multiples of 8 or even 10 have been used to ensure accuracy.



2.4 Some Model Systems and Their Normalisations 19

This scale is now used. The three variables c, x and t are rendered dimensionless
by the normalisations in (2.25) and applying these to (2.33) results in the new
dimensionless diffusion equation

@C

@T
D @2C

@X2
(2.41)

and for the Cottrell system in these terms, the dimensionless boundary conditions,

T D 0; all X W C D 1;

T > 0;X D 0 W C D 0;

all T;X ! 1 W C D 1 :

(2.42)

From both the diffusion equation and the boundary conditions, such parameters as
D and c� have now been eliminated. The solution is then

C.X;T/ D erf

�
X

2
p
T

�
(2.43)

for the concentrations and
�
@C

@X

�
0

D G D 1p
�T

: (2.44)

This might be called the dimensionless Cottrell equation, for “current” G, which in
fact is the dimensionless concentration gradient at X D 0.

2.4.1.2 Potential Step, Reversible System

In the Cottrell experiment, as described in the last section, we have a step to a
very negative potential, so that the concentration at the electrode is kept at zero
throughout. It is possible also to step to a less extreme potential. If the system is
reversible, and we consider the two species A and B, reacting as in (2.18), then we
have the Nernstian boundary condition as in (2.24). Using (2.29) and assigning the
symbols CA and CB, respectively, to the dimensionless concentrations of species A
and B, we now have the new boundary conditions for the potential step,

T D 0; all X W CA D 1;CB D 0;

T > 0;X D 0 W CA=CB D ep;

all T;X ! 1 W CA D 1;CB D 0 ;

(2.45)

in which species B is not initially present. Note that substance A is now the reference
species and the values of its diffusion coefficientDA and its initial bulk concentration
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c�
A are the ones used in the normalisations (2.25) and (2.40). Similarly, if the

diffusion coefficients are different for the two species, we also define the ratio

d D DB=DA : (2.46)

There is the additional boundary condition (flux condition),

fA C fB D 0 (2.47)

or, in terms of concentration gradients at the electrode,

DA
@cA
@x

ˇ̌
ˇ̌
xD0

C DB
@cB
@x

ˇ̌
ˇ̌
xD0

D 0 (2.48)

which, in its dimensionless form and using (2.46), becomes

@CA

@X

ˇ̌
ˇ̌
XD0

C d
@CB

@X

ˇ̌
ˇ̌
XD0

D 0 : (2.49)

The solution to all this is, as given in Galus [8], is

CA.X;T/ D
d�1ep C erf

�
X

2
p
T

�
1C d�1ep

(2.50)

and for CB

CB.X;T/ D
d erfc

�
X

2
p
dT

�
1C d�1ep

(2.51)

and the current (expressed as the dimensionless gradient for A) is

G D GCott=.1C d�1ep/ (2.52)

where GCott is the G-value for the simple Cottrell case as in (2.44). This equation is
also seen in Bard and Faulkner [1, p. 178].

If the two species’ diffusion coefficients are assumed equal (d D 1), the above
equations simplify in an obvious way. In fact, then the problem is mathematically
equivalent to the simple Cottrell case. Cottrell pointed out [15] that then, initially
the concentrations at the electrode of the two species will instantly change to their
Nernstian values and remain there after that.

A final point concerns the fact that, if indeed d D 1, then at any point X,

CA.X;T/C CB.X;T/ D CA.X; 0/C CB.X; 0/ : (2.53)
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This equation could be used to simplify the simulation, reducing it to only a single
species to be simulated. Agreeing with Feldberg however (private communication),
this is not a good idea. Rather, the above equation should be used as a check on a
given simulation, to make sure that all is well.

2.4.1.3 Potential Step, Quasi- and Irreversible System

For the quasireversible case, two species A and B must again be considered and
the two boundary conditions are the flux condition (2.49) and the dimensionless
form of the Butler–Volmer equation. The forward and backward heterogeneous rate
constants kf and kb are normalised:

Kf D kf

r
�

DA
(2.54)

Kb D kb

r
�

DA
(2.55)

and the dimensionless current G is as given in (2.30). With suitable discretisation,
G becomes one of the two boundary conditions, the other one being the usual flux
expression (2.47).

This case was studied and published in 1952–1953 by several groups indepen-
dently, some giving the solution for the case of both Kf and Kb being nonzero and
some treating the totally irreversible case, Kb D 0. See [8] for the references. Texts
tend to give only the solution for the current, but by continuing the treatments in
[8, p. 235] or [1] and using form 170 in the tables in Doetsch [23] the solution, in
dimensionless form, is [1, p. 192]

CA.X;T/ D

1 � Kf

Kf C Kb

�
� exp.HX C H2T/ erfc

�
H

p
T C X

2
p
T

�
C erfc

�
X

2
p
T

�	

(2.56)

for the concentration profile of species A and

CB.X;T/ D
Kf

Kf C Kb

�
� exp.HX C H2T/ erfc

�
H

p
T C X

2
p
dT

�
C erfc

�
X

2
p
dT

�	

(2.57)
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for species B, where the dimensionless variable H is defined as

H D kf

r
�

DA
C kb

r
�

DB
(2.58)

(deviating slightly from the notation in [24]). The dimensionless current then is

G D Kf exp.H2T/ erfc.H
p
T/ : (2.59)

Modification to the totally irreversible case (kb D 0) is trivial, as is the simplification
to equal diffusion coefficients (d D 1).

2.4.1.4 Potential Step, Homogeneous Chemical Reactions

Three examples are popular here. The first two start with flash photolysis, where
an intense flash irradiates the whole cell at t D 0, instantly producing an
electrochemically active species that decays chemically in time, either by a first-
order reaction, or a second-order reaction. The labile substance is assumed to be
formed uniformly in the cell space with a bulk concentration of c�. These are cases
where the concentration at the outer boundary is not constant, falling with time. The
third case, the catalytic or EC0 system (see [1]), is of special interest because of the
reaction layer it gives rise to.

The Reinert–Berg system is the one in which the reactions are

A C e� ! B

A ! prod ;
(2.60)

substance A having been generated by an intense flash. The two reactions take place
simultaneously. We need only consider the single species A. This system poses no
special problems. Reinert and Berg solved it [25] for a potential step to very negative
potentials, that is, doing a Cottrell experiment on this system. The diffusion equation
becomes

@c

@t
D D

@2c

@x2
� kc (2.61)

where k is the rate constant of the homogeneous chemical reaction and boundary
conditions are

t D 0; all x W c D c�

t > 0; x D 0 W c D 0

all t; x ! 1 W c D c�e�kt :

(2.62)
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Note the difference from (2.34). Normalising as usual, with the additional normali-
sation of rate constant k to K,

K D k� (2.63)

so that these equations become

@C

@T
D @2C

@X2
� KC (2.64)

and

T D 0; all X W C D 1

T > 0;X D 0 W C D 0

all T;X ! 1 W C D e�KT :

(2.65)

The solution of this is the one for the simple Cottrell system, multiplied by the decay
factor

C.X;T/ D exp.�KT/ erf

�
X

2
p
T

�
(2.66)

and [25]

G.T/ D exp.�KT/
1p
�T

(2.67)

(the solution of Reinert and Berg [25], is for a dropping mercury electrode but
can be transferred to the planar Cottrell case). Obviously, one must choose the
characteristic (observation) time � reasonably—several multiples of the half-life—
so that even out in the bulk, there is still some substance left at that time, or else
the calculation will be operating on values very close to zero. This will depend on
the value of K. When simulating the plain Cottrell experiment, it is customary to
simulate to T D 1, but here, one might only go to T D n=K, with n some smallish
number, so that exp.�KT/ does not become too small.

In the Reinert–Berg system, the homogeneous chemical reaction involves a bulk
species, and there is no reaction layer (Sect. 2.2.6).

The Birk–Perone system, a flash photolysis experiment with subsequent second-
order decay, is a little more interesting because it can, with an unsuitable simulation
method, lead to negative concentration values. The simultaneous reactions are

A C e� ! B

2A ! prod
(2.68)

and this has the governing equation

@c

@t
D D

@2c

@x2
� 2kc2 ; (2.69)
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where k is the rate constant of the homogeneous chemical reaction and boundary
conditions are

t D 0; all x W c D c�

t > 0; x D 0 W c D 0

all t; x ! 1 W c D c�=.1C 2ktc�/ :

(2.70)

The boundary condition at X ! 1 is the solution of the simple homogeneous
reaction taking place there. Normalising all variables, and k normalised using

K D 2kc�� ; (2.71)

these become

@C

@T
D @2C

@X2
� KC2 ; (2.72)

with

T D 0; all X W C D 1

T > 0;X D 0 W C D 0

all T;X ! 1 W C D .1C KT/�1 :

(2.73)

A solution for this system was first attempted by Birk and Perone [26], who however
oversimplified their assumptions. This was pointed out later [27] and the more
rigorous solution (current only) was found to be

ik
ikD0

D 1

1C �

(
1C

1X
nD1

an

�
�

1C �

�n
)
; (2.74)

in which ikD0 is the plain Cottrell solution, � is defined as 2kc�t D KT and the first
10 coefficients an are [27]

a1 D 4=� � 1 D 0:27324

a2 D 0:08327

a3 D 0:02893

a4 D 0:01162

a5 D 0:00540

a6 D 0:00286

a7 D 0:00169

a8 D 0:00108

a9 D 0:00074

a10 D 0:00053 :
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Another system of interest in connection with potential steps (and, see below,
LSV) is the catalytic or EC0 system (classified as ErC0

i in [1]), described in
simplified form by

A C e� • B

B ! A ;
(2.75)

where the product B reverts, with pseudo-first-order rate constant k, to the original
A. The first reaction is conveniently taken to be diffusion limited (that is, the
potential is very negative as in the Cottrell experiment). Normalising as usual [rate
constant k as above, (2.63)] and assuming equal diffusion coefficients (d D 1), the
boundary conditions are

T D 0; all X W CA D 1;CB D 0

T > 0;X D 0 W CA D 0

all T;X ! 1 W CA D 1;CB D 0 :

(2.76)

The solution, derived by Delahay and Stiehl [28] and, independently in the same
year by Miller [29], in dimensionless form, is

CA.X;T/ D 1 � 1
2

exp.X
p
K/ erfc

�
X

2
p
T

C p
KT

�

� 1
2

exp.�X
p
K/ erfc

�
X

2
p
T

� p
KT

�

CB.X;T/ D 1
2

exp.X
p
K/ erfc

�
X

2
p
T

C p
KT

�
(2.77)

C 1
2

exp.�X
p
K/ erfc

�
X

2
p
T

� p
KT

�

and the current

G D p
K erf

p
KT C exp.�KT/p

�T
: (2.78)

This system will be discussed again in a later chapter, because it is of special interest,
both species A and B forming a reaction layer. The thickness � of this layer was
given in Sect. 2.2.6 and this can now be normalised, for a first-order homogeneous
reaction, for which we have the dimensionless rate constant as in (2.63), giving the
dimensionless reaction layer thickness

�� D 1p
K
: (2.79)
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Note that for large K and T, the current G approaches the constant value
p
K [24, p.

504] citing [30], converting to our dimensionless units.

2.4.2 Constant Current

While the Cottrell system might be regarded as the simplest possible model with
a Dirichlet boundary condition (that is, in which boundary concentrations are
specified), the constant current case is the simplest possible for the Neumann
boundary condition, in which a concentration gradient is specified at the boundary.
This model can also be called the chronopotentiometric experiment since here, the
current is given and it is the electrode potential that is measured against time.
Mathematically this model is defined by the usual equation (2.33), here with the
boundary conditions

t D 0; all x W c D c�

t > 0; x D 0 W dc=dx D const :

all t; x ! 1 W c D c� :

(2.80)

The solution to this, that is, the concentration profile as a function of x and t, is [1]

c.x; t/ D c� � i

nFAD

(
2

r
Dt

�
exp

�
� x2

4Dt

�
� x erfc

�
x

2
p
Dt

�)
; (2.81)

where i is the constant current that is applied, D is the diffusion coefficient of the
electroactive species. Some concentration profiles at three time values are shown
in Fig. 2.6 and the constant concentration gradient at x D 0 can be seen. Also, the
concentration c.0; t/ decreases with time t; it is in fact

c.0; t/ D c� � 2i
p
t

nFA
p
�D

(2.82)

and reaches zero at some time, as shown in the figure. This time is the transition
time (so named because the electrode potential undergoes a sharp transition at this
point). It is given the symbol � and is related to the current i by the Sand equation:

i
p
�

c� D nFA
p
�D

2
(2.83)

first given by Sand [31] and, with more detail, by Karaoglanoff [32].
To normalise this system, the previous definition (2.40) is used for the distance x,

and c�, the bulk concentration, for the concentration c; for the time unit, it is natural
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Fig. 2.6 Concentration profile changing with time for chronopotentiometry

to use the transition time � itself. This makes the boundary conditions

T D 0; all X W C D 1;

T > 0;X D 0 W dC=dX D 1
2

p
�

all;X ! 1 T W C D 1 :

(2.84)

Interestingly, here the constant current becomes the dimensionless constant con-
centration gradient at the electrode, with the value 1

2

p
� . The dimensionless

concentration profile is

C.X;T/ D 1 � p
T

�
exp

�
�X2

4T

�
�

p
�X

2
p
T

erfc

�
X

2
p
T

�	
(2.85)

and, very simply,

C.0;T/ D 1 � p
T : (2.86)

In Fig. 2.6, the profiles shown are for t D 0:1� , t D 0:3� and t D � ; that is, for
T D 0:1, T D 0:3 and T D 1.

2.4.3 Linear Sweep Voltammetry

This is another useful system with which methods can be tested, one reason being
that it demands more iterations than those mentioned above and is thus notoriously
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time-consuming. We again consider the simple reaction

A C ne� • B (2.87)

and assume reversibility. The electrode potential E.t/ is time-dependent,

E.t/ D E1 � vt (2.88)

in which E1 is the starting potential and v is the scan rate in V s�1. The diffusion
equations are as for the potential step with a reversible system (2.18) with the
boundary conditions, for the classical case,

t D 0 W E D E1

t D 0; all x W cA D c�; cB D 0

t > 0 W E.t/ D E1 � vt

t > 0; x D 0 W cA=cB D exp
˚

nF
RT .E.t/ � E0/



t > 0; x ! 1 W cA D c�; cB D 0 ;

(2.89)

where c� is the initial bulk concentration of species A and species B is not
present initially. A common diffusion coefficient for both species, D, is assumed.
In practice, the sweep terminates at some (more negative) potential E2, but this
is not part of the description. This system is interesting in that it was in fact the
first to be simulated, by Randles, in 1948 [33] using hand calculations. In the
same year, Ševčík [34] worked towards an analytical solution, ending in an integral
equation he was forced to solve numerically. The current function is therefore
called the Randles–Ševčík function. The integral equation was developed in 1964
by Nicholson and Shain [35] and solved numerically with greater accuracy. Their
calculations were later improved by Oldham [36], Mocak [37] and Mocak and
Bond [38] who used series solutions. The Oldham values have not been improved
upon. The current function (which will be seen below to be the dimensionless flux
for species A at the electrode), given the symbol �, was found by Oldham to have
a peak value at the dimensionless potential pmax [for the definition see (2.29)] of
�1:1090, corresponding to �28:493=nmV (at 25 ıC and using the Diehl value [39]
for the Faraday, 96486.0 C/mol), the peak � (or G) value there being 0:44629. These
numbers are useful to know as standards for comparing simulations, and refer only
to the LSV case (that is, no reverse sweep is described).

To render the LSV system dimensionless, the usual reference values for con-
centration, time and distance from the electrode are needed, as well as that for
potential (2.29) (and thus, sweep rate). Both species’ concentrations are normalised
by the initial bulk concentration of A, c�, as always, and the potential to dimension-
less p as in (2.29), (2.88) thus becoming

p D p1 � at (2.90)
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with p1 being the dimensionless starting potential, and the variable a given by

a D nF
RT v ; (2.91)

the sweep rate (and now sweeping in the cathodic direction). A reference time � can
now be defined, being simply the time it takes to sweep through one p-unit,

� D a�1 (2.92)

so that we have, as usual,

T D t=� (2.93)

and also the reference distance ı, as before,

ı D p
D� (2.94)

and thus

X D x=ı (2.95)

so that we now have the two diffusion equations

@CA

@T
D @2CA

@X2

@CB

@T
D @2CB

@X2

(2.96)

with the boundary conditions

T D 0 W p D p1

T D 0; all X W CA D 1;CB D 0

T > 0 W p.T/ D p1 � T

T > 0;X D 0 W CA=CB D exp. p.T//

T > 0;X ! 1 W CA D 1;CB D 0 :

(2.97)

Note the rather simple form of the Nernst equation here, and the fact that the
dimensionless sweep rate is now unity, that is, one p-unit per one T-unit.
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When solving this system by computer, the dimensionless results can then be
translated back into dimensioned values. The above � function is the same as
dimensionless @CA=@X .X D 0/ or G, and becomes a real current via the equation

i.t/ D nFAcb

r
nFD�

RT � (2.98)

at the actual potential

E.t/ D RT
nF p.t/C E0 : (2.99)

With LSV, the quasireversible and irreversible cases might also be interesting
models, both of which have mixed boundary conditions, lying somewhere between
the extremes of Dirichlet and Neumann conditions, because here we have fluxes at
the electrode, determined by heterogeneous rate constants (depending on potential)
and concentrations at the electrode. Also, as will be seen in a later chapter, these
models can give rise, with some simulation methods, to surprising instabilities.
These models are described in the standard texts such as [1, 8].

The quasireversible LSV case was treated by Matsuda and Ayabe [40], who used
a series sum as an approximation to the integral equation obtained from the Laplace-
transform solution of the problem. The result depends on the heterogeneous rate
constant, both the peak current and the peak potential varying with this parameter.
Basha et al. [41] tried to improve on the results but it seems that those of Nicholson
and Shain [35] were better. These also provided results for the totally irreversible
case, first described by Delahay [42]. For this, the �.at/-function has a constant
maximum, given to four figures in [1], 0.4958, from the tables in [35]. Peak potential
varies with rate constant, as with the quasireversible case.

Thus, for these two cases, we do not have high-precision comparisons. In such
a case, one recourse is to do convergence computations, going to finer and finer
intervals until there is no further change in the values, which can then be used for
reference. This of course rests on the assumption that one has a method that is
guaranteed to work; and often, this is reasonable. One uses a tried-and-true method
with such a guarantee but which is not necessarily highly efficient. The values are
then used to check whatever method one is working on that might be more efficient.
If this strikes the reader as somewhat unsatisfactory, note that, for LSV, there are in
fact no analytical solutions at all, except those based on numerical methods of some
kind, by either solving the associated integral equation numerically, or evaluating
various series sums that are considered good approximations to the solution of such
integral equations. It can be considered that digital simulation is one further method
for doing this job.

Another case of interest with LSV is the catalytic EC’ system, described above
in the section on potential steps. The equations are the same except that the
potential here is not constant nor very negative, following (2.29) in its dimensionless
form. For small and intermediate rates of the homogeneous chemical reaction
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Fig. 2.7 LSV curves, catalytic system

(dimensionless constant K), the same procedure as mentioned above, that is,
convergence simulations, must be used. For large K, however, the LSV curves
become sigmoid, with a plateau equal to the current for the potential step, G D p

K.
This can be used to test methods. Figure 2.7 shows LSV curves for some K-values,
where this effect is seen.

Finally, it should be pointed out [43, 44], concentrations must be set to their
equilibrium values prior to the sweep. This will most often be simple, as most
sweeps start at a potential where the product is at zero concentration, but this may
not always be the case.

2.5 Adsorption Kinetics

Adsorption is often present in electrochemical systems, both unintended and
intended for certain purposes. The rate at which adsorbed layers form is of interest
and must be simulated in most cases, as it is mathematically difficult, although a
few simple cases have been solved. Modern texts [1, 8] give adsorption kinetics
quite brief treatment, and the classic literature is rather old. Textbooks devoted to the
subject (Damaskin et al. [45] or Jehring [46]) deal very briefly with the kinetics of
adsorption. The recent focus is on self-assembled monolayers (SAMs; for a review,
see, for example, [47]), and the kinetics of their formation are complicated by
changes that take place after adsorption [1]. It used to be thought that the adsorption
step itself is fast on mercury, but slower on solid metals [8]. The insight gained from
the study of SAMs suggests that on solid metals, too, adsorption as such is fast, but
the rearrangement that takes place afterwards, is a slow process [47].
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There are some important general relations for a substance adsorbed from
solution on an electrode. These pertain to the equilibrium state and the kinetics of
the process leading to equilibrium. Adsorption kinetics receives rather intermittent
attention in the electrochemical literature. One of the clearest discussions is by
Mohilner [48]; see also Delahay [49], Bard and Faulkner [1].

The degree of adsorption is expressed either by 	 , the surface concentration, in
units of moles per unit area, or in terms of the fractional coverage � :

� D 	 =	m ; (2.100)

where 	m is the maximum possible surface concentration at saturation, in many
cases corresponding to a complete monolayer of the substance on the electrode.
At equilibrium, 	 or � are related to the adsorbed substance’s concentration c0
adjacent to the electrode, by the adsorption isotherm I, customarily written in the
inverse form

bc0 D I.�/ (2.101)

or, in dimensionless terms,

BC0 D I.�/ (2.102)

with B D bc�. It may be that while the state of adsorption is in momentary
equilibrium with c0, there are nevertheless concentration gradients in the solution.
The isotherms take many forms; a large list was presented by Mohilner [48]. A few
examples are

I.�/ D � (2.103)

which is the linear or Henry isotherm, sometimes applicable for � � 1; or the
Langmuir isotherm

I.�/ D �

1 � �
: (2.104)

If there is interaction between the particles (attractive or repulsive), the Frumkin
isotherm may apply:

I.�/ D �

1 � �
exp.�2a�/ (2.105)

with a the attraction parameter. The logarithmic Temkin isotherm [48] is

I.�/ D exp.a�/ : (2.106)

There are other, more complicated isotherms but the above examples suffice.
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In order to reach a certain surface concentration 	 or fractional coverage � , the
substance in question must first arrive at the electrode by some transport process.
The diffusion equation applies for this part. The rate of increase of 	 (per unit area)
is proportional to the unit area flux at the electrode

d	

dt
D �f (2.107)

(flux being regarded as away from the electrode). From (2.2) this becomes

d	

dt
D D

@c

@x

ˇ̌
ˇ̌
xD0

: (2.108)

We prefer to work with � and so get [using (2.100)]

d�

dt
D D

@c

@x

ˇ̌̌
ˇ
xD0

	m : (2.109)

In dimensionless form, using the transformations (2.25) as before, this is

d�

dT
D c�p

D�

	m
G ; (2.110)

� being the observation time as before. Some model systems with solutions exist for
adsorption kinetics. The simplest case is that of a very large B parameter in (2.102),
and a Cottrellian experiment. For B ! 1, there is then the set of boundary
conditions

T D 0 W C.X;T/ D 1I � D 0

T > 0 W C.0;T/ D 0I � D c�

p
D�

	m

R T
0
G dT

all T;X ! 1 W C D 1 :

(2.111)

In other words, adsorption is so strong, that every particle of the substance arriving at
the electrode is adsorbed immediately, forcing the concentration there, in solution,
to zero. So the adsorbate simply accumulates by the Cottrellian flux given by the
potential step experiment, and the solution, given first by Koryta [50], is

�.T/ D 2cb
p
D�

	m
p
�

p
T : (2.112)

If adsorption is fast but not sufficiently strong to justify the assumption C0 � 0,
then C0 will, at any instant, be determined by the adsorption isotherm (2.102). This
boundary condition leads to mathematical problems; the integral equation resulting
from (2.109) then becomes a Volterra equation. This has been solved for only
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some very simple isotherms. Delahay and Trachtenberg [51] solved it for the Henry
isotherm (2.103), the solution being

C D 1 � exp

�
X

K
C T

K2

�
erfc

 
X

2
p
T

C
p
T

K

!
; (2.113)

in which the dimensionless K D b	m=
p
D� .

Reinmuth [52] arrived at a solution for the Langmuir isotherm in the form of a
series, involving the beta function. Levich et al. [53] had an approximate solution
for a general adsorption isotherm.

If the adsorption step itself is rate-limiting, one must have available rate
expressions for the adsorption and the desorption steps. The flux in (2.107) is then
split into two opposing components. Using the notation of Delahay and Mohilner
[48, 54], there is a forward flux vf , adding to the adsorbate’s surface concentration
and backward flux vb, the rate of redissolution of adsorbed substance. These obey
rate equations rather analogous to those for electron transfer, the Butler–Volmer
equation, in the sense that there are rate constants that are potential dependent. For
the forward and backward rates, we have

vf D kf f1.c0; 	 /

vb D kbf2.	 / ; (2.114)

where kf and kb are the forward and backward rate constants and f1 and f2 are
functions whose forms depend on the adsorption isotherm assumed. Note that the
two constants have different units. If the forward and backward rates are equal, then
there is equilibrium and the isotherm is obtained by equating the right-hand sides
of (2.114). If the rates are not equal, there will be a net flux of substance between
the two phases.

Various workers [55–59] have presented particular forms of the functions f1 and
f2, for various isotherms. For all these equations, one needs to know the k parameters
and possibly more. In all cases, we have

d	

dt
D vf � vb (2.115)

which we would usually normalise to the dimensionless form

d�

dT
D Vf � Vb (2.116)

with V D v�=	m, � being, as before, a chosen experimental time scale.
Two examples are given here, to be followed up in Chap. 10. Lovrić and

Komorsky-Lovrić [58] expressed (2.114) for the simple Henry isotherm (2.103),
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as

vf D kf c0

vb D kb	 ; (2.117)

which is linear in both c0 and 	 , while Lorenz [60] expressed the equation for the
Langmuir isotherm (2.104) as

vf D kf c0.	m � 	 /
vb D kb	 (2.118)

where we now have a nonlinear term in the first equation. These can be normalised
conveniently. The v are normalised to V as above. Letting Kf D kf �c�=	m and
Kb D kb�c� (note the different normalisations of the two rate constants), we obtain

Vf D KfC0

VB D Kb� (2.119)

for the Henry isotherm, and

Vf D KfC0.1 � �/

Vb D Kb� (2.120)

for the Langmuir isotherm. These two cases—one linear and the other nonlinear—
are good examples for the simulation process. More complex isotherms such as
the Frumkin isotherm also lead to nonlinear equations, so that this one nonlinear
example suffices to point the way. How all this is simulated is described in Chap. 10.
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9. Wiesner K (1947) Pokus o výpočet absolutnich hodnot rychlostnich konstant pro disociaci

slabých kyselin. Chem Listy 41:6–8
10. Inzelt G (2011) Milestones of the development of kinetics of electrode reactions. J Solid State

Electrochem 15:1373–1389
11. Zeng Y, Smith RB, Bai P, Bazant MZ (2014) Simple formula for Marcus-Hush-Chidsey

kinetics. J Electroanal Chem 735:77–83



36 2 Basic Equations

12. Bieniasz LK (2012) A procedure for rapid and highly accurate computation of Marcus-Hush-
Chidsey rate constants. J Electroanal Chem 683:112–118

13. Feldberg SW (2010) Implications of Marcus-Hush theory for steady-state heterogeneous
electron transfer at an inlaid disk electrode. Anal Chem 82:5176–5183

14. Henstridge MC, Rees NV, Compton RG (2012) A comparison of the Butler-Volmer and
asymmetric Marcus-Hush models of electrode kinetics at the channel electrode. J Electroanal
Chem 687:79–83

15. Cottrell FG (1903) Der Reststrom bei galvanischer Polarisation, betrachtet als ein Diffusion-
sproblem. Z Phys Chem 42:385–431

16. Abramowitz M, Stegun IA, editors (1969) Handbook of mathematical functions. Dover,
New York

17. Nernst W (1904) Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z Phys
Chem 47:52–55

18. Brunner E (1904) Reaktionsgeschwindigkeit in heterogenen Systemen. Z Phys Chem 47:56–
102

19. Feldberg SW (1969) Digital simulation: a general method for solving electrochemical
diffusion-kinetic problems. In: Bard AJ (ed) Electroanalytical chemistry, vol 3. Marcel Dekker,
New York, pp 199–296

20. Britz D, Østerby O, Strutwolf J (2008) Comparison of flux approximations in electrochemical
digital simulation. Part 2: complications due to homogeneous chemical reactions, charge
estimation and application to the ultramicrodisk electrode. J Electroanal Chem 622:51–58

21. Britz D, Østerby O, Strutwolf J (2010) Reference values of the chronoamperometric response
at cylindrical and capped cylindrical electrodes. Electrochim Acta 55:5629–5635

22. Britz D, Østerby O, Strutwolf J (2012) Minimum grid digital simulation of chronoamperometry
at a disk electrode. Electrochim Acta 78:365–376

23. Doetsch G (1967) Anleitung zum praktischen Gebrauch der Laplace-Transformation und der
Z-Transformation. Oldenburg Verlag, München, Wien

24. Bard AJ, Mirkin MV (2001) Scanning electrochemical microscopy. Marcel Dekker, New York
25. Reinert KE, Berg H (1962) Theorie der polarographischen Verfolgung schneller chemischer

Reaktionen in Lösung mittels reaktionsbedingter Diffusions-Zeit-Kurven. Monatsber Deut
Akad Wiss Berlin 4:26–32

26. Birk JR, Perone SP (1968) Electrochemical studies of rapid photolytic processes. A theoretical
and experimental evaluation of potentiostatic analysis in flash photolysed solutions. Anal Chem
40:496–500

27. Britz D, Kastening B (1974) On the electrochemical observation of a second-order decay of
radicals generated by flash photolysis or pulse radiolysis. J Electroanal Chem 56:73–90

28. Delahay P, Stiehl GL (1952) Theory of catalytic polarographic currents. J Am Chem Soc
74:3500–3505

29. Miller SL (1952) Polarographic currents from a combination of diffusion and reaction. J Am
Chem Soc 74:4130–4134

30. Saveant JM, Vianello E (1965) Potential-sweep chronoamperometry: kinetic currents for first-
order chemical reaction parallel to electron-transfer process (catalytic currents). Electrochim
Acta 10:905–920

31. Sand HJS (1900) Über die Konzentration an den Elektroden in einer Lösung mit besonderer
Berücksichtigung der Wasserstoffentwicklung durch Elektrolyse einer Mischung von Kupfer-
sulfat und Schwefelsäure. Z Phys Chem 35:641–651

32. Karaoglanoff Z (1906) Über Oxidations- und Reduktionsvorgänge bei der Elektrolyse von
Eisensalzen. Z Elektrochem 12:5–16

33. Randles JEB (1948) A cathode-ray polarograph. Part II - the current-voltage curves. Trans
Faraday Soc 44:327–338
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Chapter 3
Approximations to Derivatives

In this chapter, all the discrete approximations required for simulation are estab-
lished, that is, for first and second derivatives, both central and asymmetric forms,
equally or randomly spaced points, and for a range of numbers of points used.

3.1 Approximation Order

Consider Fig. 3.1 and assume that the intervals between the marked points on the x-
axis are equidistant with length h between them. For the moment, consider a simple
first derivative “around the region” between x1 and x2 (to be made more precise in
later sections). The function shown as a curve is known only in the form of the fat
points on it. Intuitively, one thinks of the approximation in that region as

dy

dx
D y2 � y1

h
(3.1)

and this can be used to define the concept of order. The above expression is that
for the slope of the straight line drawn from the first point (at x1) to the second (at
x2), and is slightly in error. The error depends on where on the curve we mean the
expression to apply. In later sections all this will be developed precisely, but here
it suffices to say that the error will usually be a function of the interval h, and will
become smaller, as we make h smaller. The order then tells us how much smaller.
The relation between the error e and h is approximately given by

e D const � hp (3.2)

and the power p is the order (while the constant is of lesser importance). For
example, it is seen below that, if we mean (3.1) to apply at the position x1 or x2, then
p is equal to unity, and one says that the approximation is first-order with respect
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Fig. 3.1 Arbitrary function with three points marked

to h, expressed as O.h/. In other words, if we attempt to make the error smaller by
halving h, then we also halve the error. If we mean the approximation to apply to
the point midway between the interval, that is, at x D .x1 C x2/=2, it turns out that
p D 2, and the error is O.h2/. Thus, if we halve h, the error becomes a quarter as
large. This is better than first-order and generally, one seeks approximations of high
order.

In digital simulation, when discretising the diffusion equation, we have a first
derivative with respect to time, and one or more second derivatives with respect to
the space coordinates; sometimes also spatial first derivatives. Efficient simulation
methods will always strive to maximise the orders.

3.2 Two-Point First Derivative Approximations

Consider again Fig. 3.1, and the point at x2, expressed as a Taylor series development
going from x1. Note that the symbols y2, f .x2/ and f .x1 C h/ are all synonymous.
The Taylor expansion is

y2 D y1 C hy0
1 C h2

2Š
y00
1 C h3

3Š
y000
1 C : : : (3.3)

where y0
1 etc. are the progressively higher spatial derivatives of the function at the

point .x1; y1/. This equation can be rearranged to

y0
1 D y2 � y1

h
� h

2Š
y00
1 � h2

3Š
y000
1 � : : : (3.4)

where the first term on the right-hand side is in fact (3.1) above. However, now we
know more about this approximation: we note that it refers to the point .x1; y1/, and
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that if we write

y0
1 D y0.x1/ D y2 � y1

h
(3.5)

then this has an error equal to the sum of the further terms on the right-hand side
of (3.4). That is, the error is

e D � h

2Š
y00
1 � h2

3Š
y000
1 � : : : : (3.6)

This is a polynomial in h, and since h is normally rather small, the lowest power
in h will contribute most to the sum. Thus we see that the error is O.h/ (the actual
coefficients do not matter as much as the order).

The approximation (3.5) is called a forward difference because the values used
to approximate it lie forward of the point (x1) where it is meant to apply.

It is possible to develop the point at x2 going backward, again using the Taylor
expansion:

y1 D y2 � hy0
2 C h2

2Š
y00
2 � h3

3Š
y000
2 C : : : (3.7)

where there is now an alternation of sign because of the negative value �h.
Rearranging this yields

y0
2 D y2 � y1

h
C h

2Š
y00
2 � h2

3Š
y000
2 C : : : (3.8)

giving the approximation

y0
2 D y0.x2/ D y2 � y1

h
(3.9)

which is also O.h/ (with different polynomial coefficients) and, as it refers to the
point .x2; y2/ using a preceding other point, is a backward difference.

It will now become clear why Fig. 3.1 has three points on it. We focus on the
point at x2 and use Taylor’s expansions around this point for both y1 [see (3.7)]
and y3:

y3 D y2 C hy0
2 C h2

2Š
y00
2 C h3

3Š
y000
2 C : : : : (3.10)

Subtracting (3.7) from (3.10) and rearranging yields

y0
2 D y3 � y1

2h
C h2

3Š
y000
2 C : : : (3.11)



42 3 Approximations to Derivatives

that is,

y0
2 D y3 � y1

2h
C O.h2/ (3.12)

a second-order central difference approximation to the first derivative, which is
much better than either the forward or backward formulae in the above. Clearly,
we could have done this, focussing on a point midway between x1 and x2 (let us call
it x1:5) and Taylor-expanding around it for the two points y1 and y2, thus arriving at
the approximation, y1:5 at x1:5,

y0
1:5 D y2 � y1

h
C O.h2/ (3.13)

which is also second-order with respect to h.
We now have three two-point approximations for a first derivative, all in fact

being the same expression, .y2 � y1/=h, but depending on where this formula is
intended to apply, being, respectively a forward difference of O.h/ if applied at x1,
a backward difference of O.h/ if applied at x2 and a central difference of O.h2/ if
applied at .x1Cx2/=2. In subsequent chapters, all these will be used to approximate,
among others, the various derivatives in Eqs. (2.3)–(2.8) on page 7.

3.3 Multi-Point First Derivative Approximations

The above approximations to a first derivative used only two points, which sets
a limit on the approximation order. By using more points, higher-order approxima-
tions can be achieved. In the context of this book, forward and backward multi-point
formulae are of special interest, as well as some asymmetric and central multi-point
ones. To this end, a notation will be established here. Figure 3.2 shows the same

Fig. 3.2 Arbitrary function with seven points marked
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curve as Fig. 3.1 but now seven points are marked on it. The notation to be used is
as follows. If a derivative is approximated using the n values y1 : : : yn, lying at the
x-values x1 : : : xn (intervals h) and applied at the point.xi; yi/, then it will be denoted
as y0

i.n/ (for a first derivative) and y00
i .n/ (for a second derivative).

For a given number n of points to be included in an approximation for y0 applied
at point index i within the group, the procedure is to calculate the ˇ coefficients in
the general expression

y0
i.n/ D 1

h

nX
iD1

ˇiyi : (3.14)

This is done by writing the Taylor expansions around the point at index i for all the
other (n� 1) points, to a sufficient number of terms, and solving for the derivatives,
discarding all but the numbers for the first derivative. A single example will illustrate
the method. Assume that we want y0

2.4/, that is, the derivative y0 at point .x2; y2/ out
of points at x1 : : : x4 in Fig. 3.2. Taylor expansions are written for points at x1; x3; x4,
going to the third derivative (in general, for n points, to the .n � 1/st derivative):

y1 D y2 � hy0
2 C h2y00

2

2Š
� h3y000

2

3Š
C O.h4/

y3 D y2 C hy0
2 C h2y00

2

2Š
C h3y000

2

3Š
C O.h4/ (3.15)

y4 D y2 C 2hy0
2 C 4h2y00

2

2Š
C 8h3y000

2

3Š
C O.h4/ :

The above can be rewritten as a matrix equation,

2
664

�1 1
2Š

� 1
3Š

1 1
2Š

1
3Š

2 4
2Š

8
3Š

3
775

2
664
h 0 0

0 h2 0

0 0 h3

3
775

2
664
y0
2

y00
2

y000
2

3
775 D

2
664
y1 � y2

y3 � y2

y4 � y2

3
775 (3.16)

(remembering the O.h4/ terms but not writing them). This can be written as

AHd D b (3.17)

where A is the main matrix, H the diagonal matrix of terms in h, d the solution

vector of derivatives
�
y0
2 y

00
2 y000

2

�T
and b the right-hand side vector of knowns. The

next step is to multiply by the inverses of the two left-hand matrices

d D A�1H�1b : (3.18)



44 3 Approximations to Derivatives

All that is wanted here is the top row of the inverted matrix, since

y0
2 D h�1 �c11 c12 c13�

2
664
y1 � y2

y3 � y2

y4 � y2

3
775 (3.19)

(with c11 etc. being the first row elements of the inverse C D A�1). When inverting
matrix A, the numbers come out as decimal fractions, in this case

�� 1
3
1 � 1

6

�
. We

prefer whole-number fractions and, in the case of equidistant points, these exist. It
is an easy programming job to find a multiplier that makes whole numbers out of all
entries in the top row of A�1; in this case, it is 6 and the result of the computation is

y0
2 D 1

6h

��2 6 �1�
2
6664
y1 � y2

y3 � y2

y4 � y2

3
7775 (3.20)

which, when multiplied out and after sorting, gives the result

y0
2 D 1

6h
f�2y1 � 3y2 C 6y3 � y4g C O.h3/ (3.21)

in which the order term indicates that this approximation is third-order with respect
to h.

In this way, the coefficients for any y0
i.n/ can be calculated. Table A.1 in

Appendix A shows a number of these, as whole numbers mˇi, where m is the
multiplier mentioned above. For each n, the table shows forward differences (at
index 1), backward derivatives (at index n) and derivatives applying at points
between the two ends. In case the reader wonders why all this is of interest: the
forms y0

1.n/ will be used to approximate the current or, in general, the concentration
gradient, in simulations (see the next section); the backward forms y0

n.n/ will be
used in the section on the BDF method in Chaps. 4 and 9, and the intermediate forms
shown in the table will be used for the Kimble and White (high-order) start of the
BDF method, also described in these chapters. The coefficients have a long history.
Collatz [1] derived some of them in 1935 and presents more of them in [2]. Bickley
tabulated a number of them in 1941 [3]. The three-point current approximation,
essentially y0

1.3/ in the present notation, was first used in electrochemistry by
Randles [4] (preempted by 2 years by Eyres et al. [5] for heat flow simulations), then
by Heinze et al. [6]; Newman [7, p. 554] used a five-point current approximation,
and schemes of up to seven-point were provided in [8].
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3.4 The Current Approximation

As shown in Chap. 2, Eq. (2.26), the current in its dimensionless form G is the
dimensionless gradient of C with respect to X at X D 0. This implies that a forward
difference must be used, as we normally have C-values starting at X D 0. There
are algorithms with points at negative X values, but they are not generally very
successful or popular. The approximation can therefore be expressed as the n-point
approximation

G � 1

H

n�1X
iD0

ˇiCi : (3.22)

The symbol H is the interval along the normalised spatial axis. The symbol Gn will
sometimes be used, to mark n, the number of points used. The simplest formula is
the two-point form,

G � 1

H
.C1 � C0/ (3.23)

This seems a poor, low-order approximation. It can be justified, however, in cases
where H is very small, as is in fact so with most useful programs these days, since
these use unequal intervals, usually spaced very closely near the electrode. As will
be seen, this two-point form makes the discretisation of boundary conditions much
easier. There are even cases in which the current approximation becomes worse
as more points are introduced. This happens with severely stretched grids (see
“unequal intervals”, elsewhere), so the n-point formula should probably be used
only with equal intervals. It has also been argued [9] that the three-point formula for
equal intervals,

G � 1

2H
.�3C0 C 4C1 � C2/ (3.24)

is most compatible with the usual three-point second-order approximation to the
second space derivative, being itself second-order. This is a matter of taste.

3.5 The Current Approximation Function G

The above (3.22) is now generalised to operate on any array or vector v D
Œv0; v1; : : : ; vn�1
T , that is, we define the function

G.v; n;H/ D 1

H

n�1X
iD0

ˇivi (3.25)
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which will be used extensively in this book. Mostly, the second and third arguments
will be taken as understood, and the function will then simply be written as G.v/ for
the general vector v, which in many cases will be concentration C (but, as will be
seen in Chap. 6, not always). The function is implemented in the Fortran function
G0FUNC and is included in the example routines in Appendix E.

3.5.1 Unequal Intervals

Equation (3.25) holds for equal intervals but also for arbitrary (unequal) intervals,
if the coefficients are computed accordingly. For unequal intervals, the coefficients
must be computed (probably precomputed in a given program), as they cannot be
tabulated, and this is best done using the Fornberg algorithm [10], to be described
in the later Chap. 7. It is implemented in the routine G0FORN, also described in
Appendix E.

3.6 High-Order Compact (Hermitian) Current
Approximation

There is a trick by which one can increase the order, and thereby the accuracy,
of current approximations for a given number of points used. It is related mathe-
matically to the Numerov method, to be discussed in a later chapter. The device
is based on the particular form of the pde that we are trying to solve for. It was
introduced to electrochemistry by Bieniasz [11, 12], referring to some earlier work
in other fields. The device belongs to a class of schemes given various names, among
them “compact stencil” or “high-order compact (HOC) scheme”, or Hermitian
discretisation. The latter term is possibly the best. It refers to Hermite’s interpolation
method, clearly described by Kopal [13]. Its essence is the use in an approximation,
not only of function values at grid points but also function derivatives. This is now
generally applied in other contexts outside interpolation. The English translation
of Collatz’ book [2] uses the term to translate the original “Mehrstellenverfahren”
and notes that this does not imply that Hermite used the method in this way. The
Hermitian method can not only be used to obtain better current approximations, but
also for simulations with derivative boundary conditions, to be described in Chap. 9.
An example of a Hermitian method is the Numerov method [14], also described in
Chap. 9.

The information on derivatives that the device makes use of is the pde itself,
which can be written in the form

@2C

@X2
D F.X;T;C; @C=@T/ (3.26)
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writing it out for a normalised equation for simplicity (Bieniasz makes it very
general, as a system of such equations, each one with its own diffusion coefficient).
The F term always contains the time derivative, but may also contain, for example,
homogeneous chemical terms in concentration. In what follows, the function will be
simply written as Fi, where it is understood that this refers to the point at X D iH.

First we consider the current approximation presented in the above two sections.
A question left untouched, for example, the equation for the current approxima-
tion (3.25) above, is just what terms were dropped when generating a particular
form. The order of what was dropped is given in Sect. 3.3, but not extended to actual
higher terms. This must be done now. Bieniasz [11] presents a table of these and we
can write the first few. For this, it is convenient to use a more compact notation for
the higher derivatives: let

Dk
X � @kC

@Xk

ˇ̌
ˇ̌
X

(3.27)

and recall that Gn denotes a current approximation using n points as defined
above (3.25), that is, neglecting higher terms. This gives us, for n D 2,

D10 D G2 � 1
2
HD20 � 1

6
H2D30 � : : : (3.28)

and for n D 3,

D10 D G3 C 1
3
H2D30 C 1

4
H3D40 C : : : (3.29)

and so on for the higher-n forms. An extended table is seen in Bieniasz’s paper [11],
but these two will suffice here. In order to improve the two approximationsG, clearly
we need information on the higher derivatives.

One further new notation is useful here, used by Bieniasz. A given current
approximation is denoted as n.m/, where n is the number of points used to
approximate it, and m is the order with respect to H, the intervals in X. Thus, the
formulae used so far make, for example, G2 a 2.1/ form and G3 a 3.2/ form. It will
be seen that we can easily obtain, for example, 2.3/ and 3.4/, etc.

In order to obtain the missing higher derivatives, or approximations to them, we
write (3.26) for X D 0:

@2C

@X2

ˇ̌̌
ˇ
0

D D20 D F.0;T;C0; @C0=@T/ D F0 : (3.30)

This can be applied directly to (3.28), neglecting the term in D30 there and replacing
the term in D20 as in (3.30), obtaining a new approximation,

D10 � G2 � 1
2
HF0 (3.31)
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which is 2(2), an improvement on the old form. Bieniasz’ treatment results in a
general equation that can be written as

D10 D Gn C H
n�1X
iD0

�iFi (3.32)

or, in words, with the old formulae of the above two sections, all n.n�1/, improved
by the addition of (up to) an equal number n of Fi values with weighting coefficients
�i. In the above simple 2.2/ example, we have �o D � 1

2
; �1 D 0. In the table of �

coefficients in Bieniasz [11], it is seen that for all n, there is a set of coefficients that
give n.n/, and they all have the last one, �n�1, equal to zero. These all fail to make
use of the last Fn�1 value, but do have the advantage of an easy calculation of the �
coefficients, and easy implementation.

We can go further with the above two-point case, to get 2.3/. For this, expressions
for Fi are generated from (3.30) by Taylor expansion. Here we use just one:

F1 D F0 C HD30 C H2

2
D40 C : : : (3.33)

and cutting this off (for the moment) from the fourth derivative onwards, the third
derivative is obtained:

D30 � 1

H
.F1 � F0/ (3.34)

which, together with (3.30) can be inserted in (3.29) (neglecting the fourth-order
derivative term) and upon rearranging, we get

D10 � G2 C H
�� 1

3
F0 � 1

6
F1
�

(3.35)

which is 2.3/, with coefficients �0 D � 1
3
; �1 D � 1

6
.

We can go further, taking the three-point approximation. As well as (3.33), we
write the Taylor expansion for F2:

F2 D F0 C 2HD30 C 4H2

2
D40 C : : : : (3.36)

The simpler formula simply makes use of (3.34) and inserting it into (3.36), D40 is
obtained and after some rearrangement of the F terms, we get the 3.3/ form

D10 � G3 C H
�� 1

3
F0 C 1

3
F1
�
: (3.37)

Here, �0 D � 1
3
; �1 D C 1

3
; �2 D 0 and we thus have the 3.3/ form. Again, the last

(third) point in F is unused. To involve it as well, write out the Taylor expansions
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for both F1 and F2 to the fourth derivative term:

F1 D F0 C HD30 C H2

2
D40 C : : :

F2 D F0 C 2HD30 C 4H2

2
D40 C : : : (3.38)

and solve this little system for both derivative terms. One way to do this is to express
D30 from the first equation in terms of the other terms and to substitute that in the
second. This is a recursive process as described by Bieniasz [11], but what one does
is in fact to solve such systems. Doing this, one obtains for this case the 3.4/ form

D10 � G3 C H
�� 1

4
F0 C 1

6
F1 C 1

12
F2
�
; (3.39)

with the coefficients obvious from the formula. This treatment can be extended to
higher numbers of points and the reader is invited to look up Table 3 in Bieniasz [11],
where this has been done up to n D 5, up to the 5.6/ form. The results of using these
are given in that paper for a number of different electrochemical problems and, not
unexpectedly, it seems that the n.n/ forms are inferior to the n.n C 1/ forms, so
the latter seem to be the logical choice. There are arguments for the 2.3/ form in
particular. It is third-order, and this goes well together with higher-order methods,
which rarely recommend themselves, in terms of computing time and programming
effort, above that order. Also, with unequal intervals, there are no ready-calculated
coefficients for more than two points and thus two points recommend themselves.
The 2.3/ formula can be applied as it stands in (3.35).

There remains one problem, that of the values of Fi needed for the approxima-
tions. Their determination depends on the simulation method used, but at this point,
it can be said that the major term, @C=@T, always present, can be approximated
simply as

@Ci

@T
� Ci �0Ci

ıT
(3.40)

where Ci is the present value, just calculated, and 0Ci is the last value before the
step taken. This is a backward difference, and something better than this can be
achieved and is described in Chap. 8. If other terms are contained in F, their most
recent values are simply used.

In the above discussion we assumed that the pde is in the form of (3.26)
and that the spatial grid is uniform. For more general pdes involving first spatial
derivatives as well, Bieniasz [15] developed a three-point, fourth order accurate
compact boundary gradient approximation. In the case of nonuniform spatial grids
the derivation of compact gradient approximations becomes more complicated (see,
for example, Bieniasz [16]) and relevant boundary gradient formulae are not yet
available.
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3.7 Second Derivative Approximations

Clearly, some approximations to second derivatives are also needed. The most
widely used approximation is derived as follows. Regard Fig. 3.2 and focus on the
point at x2, where the derivative is to apply. We already have Taylor expansions
for the points at x1 and x3 [Eqs. (3.7) and (3.10)], both of which have a neglected
term of O.h4/. Adding the two equations and rearranging leads to the approximation
formula

y00
2 D y1 � 2y2 C y3

h2
C O.h2/ ; (3.41)

a second-order approximation. Until recently, this has always been used in digital
simulation. In 1990, Kimble and White [17] suggested a higher-order formula using
five points (and six at the electrode), together with an unusual way of simulating,
described in a later chapter. While the method itself is somewhat demanding in
terms of computer memory and has not become popular (it solves the whole grid in
.X;T/ as one large system), the five-point approximation for the second derivative
does seem promising, and has been explored [18, 19]. Therefore, both the central
five-point scheme and a few asymmetrical multipoint schemes are needed. The
procedure is the same as described above for the first derivative. For example, in
the case of the central five-point scheme, centered on the point .x3; y3/ in Fig. 3.2,
we write Taylor expansions for the surrounding four points, going out to terms in
h4y0000

3 , and solving the system of four equations. In this case, it is the second row of
the matrix inverse that provides the coefficients, since we seek y00

3 of the unknowns
vector. The result is the matrix equation

2
666664

�2 4
2Š

�8
3Š

16
4Š

�1 1
2Š

�1
3Š

1
4Š

1 1
2Š

1
3Š

1
4Š

2 4
2Š

8
3Š

16
4Š

3
777775

2
666664

h 0 0 0

0 h2 0 0

0 0 h3 0

0 0 0 h4

3
777775

2
66664

y0
3

y00
3

y000
3

y0000
3

3
77775 D

2
66664

y1 � y3

y2 � y3

y4 � y3

y5 � y3

3
77775 : (3.42)

Inverting the matrices and multiplying out the second row with the coefficient vector
finally yields the approximation, presented in Table A.2 in Appendix A, together
with a few others. It turns out that in the process, the terms in h5 drop out and
the final approximation is of O.h4/, arising from the neglected terms in h6. The
formula has been given as early as 1935 by Collatz [1], who also presented some
asymmetric forms in his 1960 book [2], and Bickley in 1941 [3]. Noye [20] also
provides a number of multipoint second derivatives for use in the solution of pdes.

For reasons that become clear in Chap. 9, we also need an asymmetric form,
centered on the point .x2; y2/, since in a simulation (index 1 being the electrode)
this point is also subject to diffusional changes. The obvious course here is to use
an asymmetric five-point formula, but this, as pointed out by Collatz [2], is only of
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O.h3/. Presumably for this reason, Kimble and White chose a six-point asymmetric
scheme here, not provided by Collatz (who goes to a seven-point scheme). The six-
point scheme is indeed O.h4/ and is included in Table A.2. At the outer end of the
diffusion space, this is needed again at the second-last point and it is given as y00

5.6/

in the table, meaning the second derivative applied to point .x5; y5/. The coefficients
are those for y00

2.6/ in reverse order but without sign flip.

3.8 Derivatives on Unevenly Spaced Points

Some simulation techniques make use of points along x, and indeed sometimes
along t, that are spaced unevenly, either in some smooth transformational progres-
sion or more or less arbitrarily. A general treatment is given in this section, as well
as an example of a particular algebraic solution.

The need for such formulae and algorithms became clear upon publication
of the paper by Rudolph [21], showing that direct discretisation of derivatives
on an exponentially expanding grid is in fact better than discretisation on an
equally spaced transformed grid. This is in contrast with what the computer science
community is agreed upon, based on early works [22–24]. One reason for this is,
as Rudolph points out, that the concentration profiles in electrochemical work are
normally almost linear near the electrode, so that current approximations or other
first derivative expressions in that region in fact operate on a curved function in
transformed space. This does not explain why second derivatives in the diffusion
space, too, are more accurate when discretised directly on an unequal grid, as they
have been found to be by some numerical experiments. There have been a few
publications lately presenting derivative approximations on unequal grids in the
form of algebraic solutions [21, 25, 26]. Bieniasz, in his introductory paper [27]
on adaptive grids, used a four-point formula for a second derivative, which was
that of Blom [28]. This was found later to be inconsistent, and Bieniasz presented
a corrected expression [29]. Britz and Strutwolf [25] showed a derivation of such
formulae and a few particular examples. For approximations on just a few (3 or 4)
points, such formulae can be useful but for higher-order forms, a numerical approach
is better.

Figure 3.3 shows a few points along some function u D f .x/. The symbol u is
used for this, to indicate that intervals are unequal. The points are again numbered
from 1 to n in general, and a given derivative might be referred to a point at index
i among the n points. They will, as above, following the convention for equal
intervals, be denoted by the symbols u0

i.n/ for first derivatives or u00
i .n/ for second

derivatives. A one-sided first derivative, for example a current approximation, will
then be u0

1.n/ and a central second derivative as is often employed, referring to the
middle point, is u00

2 .3/. First derivatives will be given in terms of linear sums of the
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Fig. 3.3 Arbitrary function with unevenly spaced points

form

u0 D
nX

iD1
ˇi ui (3.43)

and second derivatives by a similar expression,

u00 D
nX

iD1
˛i ui : (3.44)

The coefficients are used to compute the derivatives, but can also be useful in the
discretisation of derivative boundary conditions or in the setting up of discretisation
matrices in some problems.

Define a sequence of displacements hk; k D 1 : : : n, given by

hk D xk � xi (3.45)

where the reference point xi is fixed. Clearly, hi D 0. This is the set of displacements
from the reference point. Taylor expansions are written for all points to be involved
around the ith point. Derivatives higher than the second are involved in the
expansion, and Dju denotes the jth derivative operator on u. For the kth point, we
have

uk D uiChkDuiC h2k
2Š
D2uiC h3k

3Š
D3uiC: : : ;C hn�1

k

.n � 1/ŠD
n�1ui CO.hnk/ : (3.46)

Just n�1 derivatives are needed on the right-hand side, and the dominant error term
is indicated. The resulting system can be cast in vector/matrix form

Hd D r C e (3.47)
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where

H �

2
666666666666664

h1 h21 h31 : : : hn�1
1

h2 h22 h32 : : : hn�1
2

: : :

hi�1 h2i�1 h3i�1 : : : hn�1
i�1

hiC1 h2iC1 h3iC1 : : : hn�1
iC1

: : :

hn h2n h3n : : : hn�1
n

3
777777777777775

; (3.48)

d denotes the vector of derivatives ŒDui
D2ui
2Š

: : : Dn�1ui
.n�1/Š 


T , r stands for the
vector of the knowns .uk � ui/, and e for the vector of the last, error terms in (3.46).
The vector d has been chosen as it was, with the factorials glued to the terms,
because this avoids the very small inverse factorials in the matrix. The matrix H,
as it is, already has elements of greatly varying magnitudes because of the powers
of intervals, which can be small; this leads to inaccurate inversion, and the problem
might be compounded by the factorials. These must be multiplied appropriately
after inversion.

Matrix H can be automatically generated and its inverse then yields the solution
for the derivatives. We require only the first two derivatives, which arise from the
first two rows of the inverse. If the inverse be V and its elements at indices i; j be vi;j,
then we have, by expanding d D Vr (neglecting the error terms Ve for the moment),

u0
i.n/ D Dui D v1;1.u1 � ui/C v1;2.u2 � ui/C � � � C v1;n�1.un � ui/ : (3.49)

There is no term in v1;i.ui � ui/ and so there is a break at index i in the sequence
of terms. For k < i, the terms are v1;k.uk � ui/, while for k > i, the terms are
v1;k�1.uk � ui/. Comparing with (3.43), it is clear that the row of v1;k represents the
ˇk coefficients, bar ˇi. We have

ˇk D
�
v1;k ; k < i
v1;k�1; k > i

(3.50)

(omitting ˇi). Finally,

ˇi D �
nX

kD1
.k¤i/

ˇk : (3.51)
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Similarly, the ˛ coefficients in (3.44) are obtained from the second row of the
inverse, so that

˛k D
�
2Š v2;k ; k < i
2Š v2;k�1; k > i

(3.52)

(remembering to multiply by 2Š) and

˛i D �
nX

kD1
.k¤i/

˛k : (3.53)

The above has been rendered superfluous by the Fornberg algorithm [10], which
produces weighting coefficients of great accuracy. It has been implemented by the
general subroutines FORN and FORNBERG (see Appendix E), which return both the
wanted derivative (first or second or in fact any) and the coefficients that produced it.
Section 3.9 also discusses this. The special routine G0FORN specifically computes
the gradient at the interface, as mentioned in Sect. 3.5.1.

3.8.1 Error Orders

From the above treatment, the error orders of the approximations can be determined.
First, a definition of what is meant here is required. With equal intervals of length
h, orders are expressed as powers of that length. Here we have arbitrarily spaced
points, and thus a set of different intervals. In computations to confirm error
order expectations, the following scheme can serve. Refer all hk as displacements
from point i, as above (3.45). A given derivative can then be computed. Then,
all points around the reference point xi are moved to a given fraction a of their
original displacements from the reference point, so that now there is a new set of
displacements,

h0
k D ahk ; (3.54)

new values are set at the new set of points and a new derivative is computed. The
two derivative estimates then yield the order, as usual.

Another way of expressing this is to take the average of all hk, calling this
simply h. The Taylor expansions (3.46) then each contain an error term of O.hn/,
which becomes the vector e in (3.47). When producing the respective derivative by
multiplying the first or second row of the inverse matrix with the vector of knowns,
an error term will arise by the multiplication of the same row with vector e. Some
consideration of matrix H and its inverse V reveals that the top row of V (which
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gives the first derivative) consists of elements, all of which are O.h�1/ and this,
multiplied with the error terms, results in an error of O.hn�1/. Similarly, the second
row, which gives the second derivative, has all terms of O.h�2/, so that second
derivatives are O.hn�2/ accurate.

Some numerical tests show that for first derivatives using n points, the error is
indeed of order n�1, while for second derivatives, it is of order n�2. If the intervals
are equal and the approximations are central (this is possible only for odd n), the
order goes up by unity for both derivatives.

Theoretically, there is no limit on the number n of points used in the approx-
imations. In practice, however, a limit is set by roundoff in the computations,
making an increase in n useless, and the factorials in the matrix H will increase to
impractical levels. In any case, there seems little point in n values greater than about
8, although for the usual 32-bit computers in use today, up to 12-point formulas can
be accommodated, and up to 15 if the Fornberg algorithm (Sect. 3.9) is used.

3.8.2 A Special Case

The above has considered arbitrarily spaced grids, whereas in practice, the spacing
is often the exponentially expanding sequence suggested by Seeber and Stefani [30]
and by Feldberg [31]. In terms of points, the special case is a sequence of positions
given by an exponentially expanding series of spatial intervals. This will be detailed
in Chap. 7. Here, it is sufficient to mention that this special case makes the derivation
of the coefficients for various derivative approximations easier and the expressions
themselves more compact, as was reported by Martínez-Ortiz [32]. That author also
found that there is a particular value for the expansion parameter, � D p

2, for which
the asymmetric four-point second derivative, referred to the second of the four points
u00
2.4/, is third-order accurate, rather than second-order as for other parameter values

or arbitrary placement of points. This might be considered of use in simulation. The
four-point approximation has some good properties besides this, as will be explained
in Chap. 7. On the other hand, an expansion factor of

p
2 is rather large. It has been

found [33] that the expansion factor should not exceed about 1.2 for best results.

3.8.3 Current Approximation

The above treatment includes the current approximation on an unequal grid, and the
subroutine G0FORN in Appendix E can compute it.

It should be noted here that Bieniasz [27] used what amounts to our G, designed
for equal intervals, to calculate current approximations on an arbitrary grid. The idea
is that the spatial axis is mapped onto an imagined, equally spaced, new axis and the
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approximation then becomes, using the notation of Sect. 3.5,

G D
 

n�1X
iD0

ˇiui

! 
n�1X
iD0

ˇixi

!�1
D G.u; n; 1/

G.x; n; 1/ : (3.55)

Interesting though this trick is, the results using it are disappointing.

3.8.4 An Example

For a small number n of points, it may be worthwhile using the algebraic solutions
for the coefficients. The procedure is as described above, but instead of inserting
actual hk values into the matrix in (3.48), that matrix is inverted algebraically and
the coefficients expressed as a general formula. These are given, both for first and
second derivatives on three and four points in Appendix A. We have derived forms
up to n D 6, and it soon becomes clear that the disadvantage of these is that every
specific u0

i.n/ or u00
i .n/ requires its own expression set, and for the larger n, the

resulting subroutines become rather long.
To give an idea of how the tabulated formulae are derived, the derivation for the

“central” second derivative on three points, u00
2.3/ is shown here. We have the two

displacements h1 and h3 [see their definitions in (3.45)], and the equations to solve
are

u1 � u2 D h1u
0
2 C h21

u00
2

2Š
C O.u000

2 /

u3 � u2 D h3u
0
2 C h23

u00
2

2Š
C O.u000

2 /

(3.56)

(still keeping the factorials glued to the derivatives) so that the matrix H to be
inverted is

H D
"
h1 h21

h3 h23

#
: (3.57)

The determinant is

� D h1h3.h3 � h1/ (3.58)

and the inverse V is

V D 1

�

"
h23 �h21

�h3 h1

#
: (3.59)
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To get the second derivative, the second row of V is multiplied by the left-hand side
vector in (3.56), giving

u00
2 D 2Š

�
.�h3.u1 � u2/C h1.u3 � u2// (3.60)

which when reorganised then yields the coefficients for the approximation u00
2 �

˛1u1 C ˛2u2 C ˛3u3,

˛1 D �2
h1.h3 � h1/

˛2 D �.˛1 C ˛3/ D 2

h1h3
(3.61)

˛3 D 2

h3.h3 � h1/
: (3.62)

In all these cases, the coefficient for the reference point is the negative sum of all
the others, as is clear from the form of (3.52) and (3.53). A similar formula has
been given by Gavaghan [26] and Rudolph [21], except that their notation for the
displacements were such that all distances from the reference point are positive, so
that the final formulae differ in the signs of some of the terms.

3.9 The Fornberg Algorithm

All of the above approximations can readily be obtained as a set of coefficients
computed using the Fornberg algorithm [10], implemented as two subroutines and
a function using these, in Appendix E. It applies to any spacing of the points to be
involved, whether equal or unequal, and can compute any degree derivative and
indeed even the zeroth degree, which is interpolation. Furthermore, it is highly
accurate and can handle up to 15-point approximations, which however never are
needed.

Fornberg described his algorithm in algorithmic language, and Bieniasz imple-
mented it using the programming language C++ (Bieniasz, private communication),
from which we generated the version in Fortran 90. In the present authors’ more
recent programs, the algorithm is always used in a preliminary calculation of ˇ and
˛ coefficients for derivative approximations on a given grid, one set of each for
each point on the grid, both central and one-sided forms. Equally, currents can be
approximated on unequally spaced points using such precomputed first derivative
coefficients, or on the spot, since current computation is a small part of the total cpu
use in a given program.

The two Fornberg Fortran 90 subroutines and the function for the current are
described in Appendix E.
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Chapter 4
Ordinary Differential Equations

In this chapter, the numerical solution of ordinary differential equations (odes) will
be described. There is a direct connection between this area and that of partial
differential equations (pdes), as noted in, for example, [1]. The ode field is large;
but here we restrict ourselves to those techniques that appear again in the pde field.
Readers wishing greater depth than is presented here can find it in the great number
of texts on the subject, such as the classics by Lapidus and Seinfeld [2], Gear [3],
Jain [4] or the very detailed volumes by Hairer et al. [5, 6]. There is a very clear
chapter in Gerald [7].

We begin with single odes. At the end of this chapter, systems of odes are dealt
with; they are in fact one way of handling pdes, using the Method of Lines (MOL,
see Chap. 9), which has a system of odes as an intermediate stage, or something
close to it.

The kind of odes most relevant in the present context is of the form

y0 D f .y/ (4.1)

with the boundary condition

y.t D 0/ D y0 : (4.2)

There is a more general form in which the time variable t also appears in the brackets
on the right-hand side of (4.1), but in the present context, it almost never does. The
simplified form will be our model.

In what follows below, the discussion assumes that a point y.tn/ at time tn D nıt
is known (as well as previous points), and that we wish to calculate the next point
y.t C ıt/ or y.tnC1/. These will also be denoted by yn, ynC1, etc., interchangeably
with the other notations.

© Springer International Publishing Switzerland 2016
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4.1 An Example ode

In what follows, the following specific ode will often be used as an example:

y0 D �y (4.3)

with the single boundary condition

y.0/ D 1 : (4.4)

In numerical texts, the right-hand side of (4.3) often has a multiplier, but this can
be normalised out. We note that this is an instance of (4.1) with f .y/ D �y. The
ode (4.3) together with boundary condition (4.4) has a known solution,

y.t/ D exp.�t/ (4.5)

and is a very convenient ode with which to test methods. Here it will be used to
illustrate the implementations.

4.2 Local and Global Errors

A note is in order here on errors in the numerical solution of an ode. There are
(regarding errors in a certain light) two kinds of errors. One is the local error, being
the error added by a single step. The solution is always carried forward to a final
point in t, using a number N of steps, and at that point we have a final, or global
error. Unfortunately, this is always of a lower order than the local error.

4.3 What Distinguishes the Methods

For most of the methods used to solve odes (at least, those described here), the
way in which the methods differ hinges on how the following three questions are
answered:

1. How is y0 approximated (how many points are used)?
2. To what value of t is that approximation intended to apply?
3. How is the right-hand side of (4.1) expressed or approximated?

It is very important to be clear on these points in devising simulation strategies,
especially (when going on to pdes) the boundary conditions, which must conform
to these points as well.
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It will be seen that for the three methods Euler, BI and the trapezium method, the
same approximation expression is used for the left-hand side of (4.1) but because of
points made in questions (2) and (3) above, the methods are very different.

4.4 Euler Method

Consider Fig. 4.1. The curve is the underlying function f .y/ that we are trying to find
and we have two pieces of information: one point on the curve, here at t D 0, the fat
point marked in the figure, and the gradient at any point, for example, at the same
point, drawn as a tangent. The procedure is now to find a point y1, at a subsequent
chosen time t, for example, ıt, as shown. The picture represents the mathematical
problem of finding the solution to the ode (4.1).

The simplest way to find other points on the curve, or approximations to such
points, is to move along the tangent drawn, to t D ıt, as shown in the figure.
Clearly, this will not land on the curve, if it is indeed curved as shown, but hopefully
somewhere close to it, producing the new point y1. This will then be repeated,
because from (4.1) we can obtain a new tangent, using y1 and so on. If we have
chosen ıt not too large (much smaller, for example, than in Fig. 4.1), this will result
in a series of discrete points yi; i D 1; 2; : : : ;N, that will be an approximation to the
desired solution. The method just described is the Euler method and is the basis for
what in digital simulation is called the explicit method.

Expressing this mathematically, y0 is approximated by the simple two-point
formula (3.1), written as

y0.t/ D y.t C ıt/ � y.t/

ıt
: (4.6)

Fig. 4.1 The Euler method
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An alternative way to proceed is to go from the Taylor expansion for y.t C ıt/, as
in (3.3),

ynC1 D yn C ıt y0
n C O.ıt2/ (4.7)

and substituting for y0 from (4.1),

ynC1 D yn C ıt f .yn/C O.ıt2/ (4.8)

which we note is O.ıt2/. The order refers to the local error due to a single step. In
[7] there is clear derivation of the order of the global error from that of the local
error, which is not reproduced here. Broadly, the idea is that when taking N steps of
length ıt, each contributing a local error of O.ıt2/, the order is reduced to O.ıt/.

What we have here, with the Euler method, is the definition of the derivative as
pertaining to time t (or nıt) and thus f .y.t// or f .yn/ on the right-hand side. For our
specific example (4.3), this becomes approximately

ynC1 D yn � ıt yn (4.9)

or

ynC1 D yn.1 � ıt/ : (4.10)

4.5 Runge–Kutta (RK)

Figure 4.2 illustrates an improvement on the Euler method. The point marked by
� is the same as point y1 in Fig. 4.1, having moved up the tangent from t D 0,
line 1 in the present figure. This point is just an intermediate result. Using (4.1), we
calculate the slope y0, that is, f .y1/ and draw that slope, line 2. We can hope that it
will be an approximation to the slope at ıt. We now have two slopes, lines 1 and 2.
Drawing a third slope midway between these two, (dashed) line 3, might be a better
approximation to the slope we should have used, and we use it now, line 4, parallel
to line 3, starting from the point y0, and this line hits the ıt line at the new point
y1. This turns out to be a much better approximation to the underlying curve. The
reason for this is that the slope of line 4 closely approximates the slope which, if
we had known it, would have given us the exact solution, namely that of the line
drawn from y0 to the point on the underlying curve at ıt. The above describes the
second-order Runge–Kutta (RK) method (there are other, higher-order variants of
Runge–Kutta). This is still an explicit method; the word “explicit” means that at
each step, the new point is calculated from previously calculated points only.

For the mathematics of this, consider the discrete equation resulting from the
Euler method, as in (4.8). Note that the new point, ynC1, is formed from the old
point yn by the addition of a term, here ıtf .yn/. With RK, these terms are given the
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Fig. 4.2 Second-order Runge–Kutta

symbols ki; there are from one to several of them, and they are added in a weighted
manner. The procedure is to generate a number of these k’s. One begins with an
Euler step,

k1 D ıtf .yn/ : (4.11)

(Note that the Euler method can be regarded as a first-order RK form, if we write
Eq. (4.8) as

ynC1 D yn C k1 (4.12)

which is the same thing). Following the description of Fig. 4.2, the mathematical
procedure for second-order RK is then to generate k2 from the tentative point at
yn C k1:

k2 D ıtf .yn C k1/ (4.13)

and then the final corrected point is

ynC1 D yn C 1
2
.k1 C k2/ : (4.14)

This formula has a global error of O.ıt2/ and will here be called RK2. We can do
even better, generating more k’s and getting higher orders. All these RK formulae,
including RK2, have variants that have the same error orders. For example, RK2 can
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also be carried out by generating k2 as

k2 D ıtf .yn C 1
2
k1/ (4.15)

following with

ynC1 D yn C k2 : (4.16)

Here, only some of all the variants are given. One variant of third-order RK uses k1
as defined above (4.11), then (4.15) for k2, and finally a third,

k3 D ıtf .yn � k1 C 2k2/ (4.17)

giving the third-order scheme RK3

ynC1 D yn C 1
6
.k1 C 4k2 C k3/ : (4.18)

Numerical professionals, when using the term “Runge–Kutta”, usually mean fourth-
order RK, and the classical scheme, here RK4, is k1 as above, then k2 as in (4.15),
then

k3 D ıtf .yn C 1
2
k2/ ; (4.19)

then a fourth k,

k4 D ıtf .yn C k3/ (4.20)

and finally the result, of global fourth-order

ynC1 D yn C 1
6
.k1 C 2k2 C 2k3 C k4/ : (4.21)

These formulae can all be applied to pdes in a simple manner, easy to program, but
have certain drawbacks, as described in a later chapter.

4.6 Backwards Implicit (BI)

Another possibility is to let the same derivative approximation pertain to the next
time; this is the backward implicit (BI) method, also called backward Euler [8]:

ynC1 D yn C ıtf .ynC1/ (4.22)
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which again leads to a global error order O.ıt/, and becomes, for our specific
example (4.3), after rearranging,

ynC1 D yn
1

1C ıt
: (4.23)

This method seems at first sight unpromising, because of its low error order, the
same as that for Euler. However, it has some very useful stability properties (see
later) and forms the basis for several high-order methods, as will be seen.

4.7 Trapezium Method

We know from (3.13) in Chap. 3, how that same derivative approximation is of
higher order O.ıt2/ when applied at the midpoint, and this leads to the trapezium
method, in which we must find an expression for the right-hand side of (4.1) at time
t C 1

2
ıt. This can be approximated as the average of the values at both ends:

f
�
y.t C 1

2
ıt/
� � f .y.t//C f .y.t C ıt//

2
(4.24)

giving

ynC1 D yn C ıt
f .yn/C f .ynC1/

2
: (4.25)

This can be awkward to go on with, being implicit in ynC1; in our specific
example (4.3), however, there is no problem, the above equation becoming

ynC1 D yn � ıt yn C ynC1
2

(4.26)

or, after rearranging,

ynC1 D yn
1 � 1

2
ıt

1C 1
2
ıt

(4.27)

which turns out to be (global) O.ıt2/. It is the basis of the Crank–Nicolson method
when applied to pdes, as will be seen.
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4.8 Backward Differentiation Formula (BDF)

The BDF method is ascribed to Curtiss and Hirschfelder [9], who described it in
1952, although Bickley [10] had essentially, albeit briefly, mentioned it already in
1941. Considering Fig. 4.3, the method can be seen as a multi-point extension of BI;
the derivative y0 is formed by using a number k of points from yn�kC2 to ynC1, but
referred to the new point ynC1. This implies a backward derivative, with formulas
of the form y0

n.n/ as in Appendix A, Table A.1. For example, using the three points
shown in Fig. 4.3 (in other words, k D 3), the table yields the formula

y0
nC1 �

1
2
yn�1 � 2yn C 3

2
ynC1

ıt
: (4.28)

For this value of k, then, (4.1) is discretised as

yn�1 � 4yn C 3ynC1 D 2ıtf .ynC1/ (4.29)

(note that the case k D 2 is equivalent to BI). This is implicit, as with BI.
For our example (4.3), the function on the right-hand side is simply �ynC1 and
rearrangement then produces

ynC1 D �yn�1 C 4yn
3C 2ıt

(4.30)

which is of (global) O.ıt2/. The order can be increased by increasing k, the
number of time levels (points) used for the backward difference approximation (see
Table A.1 for the coefficients y0

n.n/).
It turns out that although the BDF schemes achieve higher and higher orders as

k increases, the solution begins to oscillate (certainly when the method is adapted

Fig. 4.3 Backward differentiation formula
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to pdes) at about k D 5 and becomes unstable for k > 7 [9, 11, 12]. As applied to
diffusion simulations by the Feldberg school [13, 14], a value of 5 is normally used.
The choice of this parameter is discussed in a later chapter. The present authors
often use the three-point BDF for its O.ıt2/ property and convenience of use.

Note that the parameter k as defined here, being the number of time points used
for the backward difference, which is the convention in electrochemistry since [13],
differs from the usage in computer science, where k refers to the number of intervals
(“levels”) between these points, and is thus smaller by one. It is the electrochemical
usage that is adhered to in this book.

4.8.1 Starting BDF

BDF presents the problem of how to start it. If using, for example, a five-point
formula, it is not possible to use it for time points earlier than 4ıt. At earlier times,
an insufficient number of points for the application of the formula are known. This
problem is mentioned in, among others, [5, 15, 16]. There are various ways of
dealing with this, and four possible strategies will be described here. The simplest
way is to ignore the problem, and to artificially assume some points at times t < 0,
all equal to the initial value given for t D 0, and starting directly, generating the point
at ıt. This is the simple start, which is favoured by Feldberg and coworkers [13],
originally without justification other than convenience (private communication,
Feldberg 2001). It is illustrated graphically in Fig. 4.4. In the figure, the vertical
height of the points indicates the time level, the base line being the level t D 0.
Filled points are known values while empty points are those to be calculated. Four
steps are shown for a sequence using k D 4. The sequence starts with the set to the
far left, where the three known points are those for t D 0. The next set uses two
of these and the one just calculated. After this, all required points for subsequent
iterations are available. Surprisingly, it turns out that although this yields rather poor
results in itself (as will be seen below), a small trick used by Feldberg et al. [13, 14]
turns it into a highly accurate method. The trick consists in correcting the time
value given to each completed iteration by subtracting from it half a time interval.
That is, the iteration numbers 1; 2; : : : which normally are taken as indicating the
times ıt; 2ıt; : : : are taken to indicate the values 1

2
ıt; 3

2
ıt; : : : . This will be called

the simple start with correction, to be described later.

Fig. 4.4 Simple BDF start schematic
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Fig. 4.5 Rational BDF start schematics

Fig. 4.6 KW BDF start schematics

Among computing professionals solving odes, the usual practice has been what
might be called the rational start, see Fig. 4.5. This starts with the method BI,
which can be regarded as 2-point BDF, to generate the first new point, then uses
3-point BDF to generate the next, then 4-point, and so on, until the desired k has
been reached, and continues from there. Inevitably, the first few points will then
have errors of a lower order than later points. This does a little better in terms of
accuracy than the simple start (without the correction).

There is a high-order start provided by the method of Kimble and White, which
will be called the KW method here. The method was originally designed [17] for
the solution of PDEs, computing a whole grid in space and time in one large system
of equations. It is described as applied to odes below, in detail, in Sect. 4.10. In the
context of starting a BDF iteration, it can be applied to solve for the first k � 1

new values as a system of equations. It is illustrated in Fig. 4.6. The figure shows
that (again, k D 4) all three unknown points are calculated at once. Briefly, what
is done is to apply, at each of the unknown time levels, a four-point approximation
to the derivative referred to that level; in the present case (Fig. 4.6), all three are
asymmetrical forms, being the three y0

i.4/; i D 2; 3; 4, of Table A.1 in Appendix A.
This gives k � 1 (here, 3) equations in as many unknowns. This is a truncated
application of the general Kimble and White method described below.

4.8.1.1 Time Shifts

We allow ourselves a short digression here, in order to make a special point.
There are two ways of presenting an error in a numerical solution of a differential
equation. The usual way is to refer to the error in the quantity computed at each
new time interval; that is, the difference between the numerical approximation and
the underlying exact solution. Another way is to compute, for each calculated value,
the time at which that value is exact, and to express the error as a time shift, the
difference between the calculated time and the time at that iteration number. It is
called a time shift because in many kinds of simulations dealt with in this book,
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time itself does not enter the equations and, once a simulated sequence of values
has become shifted along in time, that shift is permanent. Putting this another way,
there is no clock inherent in the method. It will be seen (Chap. 8) that in fact, in
linear voltammetry, it does enter the equations indirectly, and no time shifts are
encountered in these simulations.

It turns out that there are characteristic time shifts associated with the various
methods for solving differential equations [18]. For example, both the Euler method
and backwards implicit have a linearly increasing time shift, reaching, respectively,
C 1
2
ıt and � 1

2
ıt at (normalised) t D 1, whereas a higher-order method such as the

trapezium method has a time shift close to zero. It was found [14, 18] that for BDF
with the simple start, the time shift appeared to converge to � 1

2
ıt. This seemed to

empirically justify the Feldberg time correction, but there was no explanation for
the effect at the time. Feldberg and Goldstein [14] called it “a fortuitous artefact”.
The explanation was found [19, 20] and the proof is reproduced in Appendix C.
Remarkably, for any function on the right-hand side of a differential equation such
as (4.1), whether ordinary or partial (as long as time is not a parameter in the
function), and for any BDF value of k, there is a convergence to a time shift of
exactly � 1

2
ıt. It will be seen that this makes the Feldberg starting protocol for BDF

a very efficient way of applying BDF.

4.8.1.2 Testing the Starting Protocols

To illustrate the points made above, some test computations were run, solving the
usual ode (4.3). Ten steps were taken over the interval 0 < t � 1, using BDF with
k D 4. Figure 4.7 shows the results, plotting the error against iteration number.
The simple start produces the largest error (curve 1), followed by the rational start

0

0.05

1 2 3 4 5 6 7 8 9 10

error

1

2

3

4

Fig. 4.7 Errors for the four starting methods (see text)
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(curve 2). The KW start (see Sect. 4.10.1 on page 76) is a line that might be mistaken
for the zero axis (curve 3). Remarkably, curve 4, showing the simple start with the
time correction, converges to the second-best error of the four. Since this is also as
easy to program as the simple method, it might be preferable. It was found by some
numerical experiments that this method is also the most efficient for electrochemical
digital simulations [21]. In that work, the KW method was optimised, and indeed
produced highly accurate results. However, this was at considerable computational
cost. Efficiency is determined in terms of achieving a target accuracy using the
shortest possible computing time and in these terms, the simple start with the
correction was the most efficient. This should be received with some relief, as
the KW method is not trivial to implement with pdes for k > 3, especially when
optimised for speed, using sparse matrix techniques.

Feldberg and Goldstein [14] extended BDF to exponentially expanding time
intervals, by using a general method for computing the coefficients for any time
sequence. This also yielded good results.

Finally, Lambert [22] describes a high-order start for general multi-level meth-
ods, based on Taylor expansions using higher derivatives. This seems less practical
to use as, for example, KW.

4.9 Extrapolation

Extrapolation is an old technique in numerical analysis invented by Richardson in
1927 [23]. Generally it makes use of known error orders to increase accuracy. In
the present context, its application is based on the first-order method BI, mentioned
above. One defines a notation in terms of operations L on the variable y.t/, the
operation being that of taking a step forward in time. Thus, the notation L1y.t/,
or simply L1yn, means a single step of one interval (the 1 being indicated by
the subscript on L). The simplest variant consists of two steps; an application of
operation L1 on yn and as a second step two operations, L21=2, that is, two consecutive
steps of half ıt (again starting the first from yn), and finally a linear combination of
the two results:

ynC1 D
�
2L21=2 � L1

�
yn : (4.31)

The reason why this provides a better estimate of ynC1 is that the (global) error e
from a series of single steps of size ıt is a polynomial

e D a1ıt C a2ıt
2 C : : : (4.32)

with the shown (unknown) coefficients. Clearly, (4.31) will eliminate the first term
in that polynomial, leaving only higher terms. The above scheme thus provides an
estimate for ynC1, that is, O.ıt2/.
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Likewise it is possible to eliminate even higher-order error terms as well, by using
more complicated combinations of step sequences. A full description of these is
given by Lawson and Morris [24] (second order only) and Gourlay and Morris [25];
these authors adapted the method to the solution of pdes and more is said on that in a
later chapter. With the higher-order forms, there are again variants, as with Runge–
Kutta. Gourlay and Morris carried out some analyses and numerical experiments
and the two “winning” schemes are as follows. The third-order scheme is

ynC1 D
�
9
2
L31=3 � 9

2
L2=3L1=3 C L1

�
yn (4.33)

where the sequence L2=3L1=3 means one step of 2
3
ıt followed by one more of 1

3
ıt.

The best fourth-order scheme is

ynC1 D
�
8L41=4 C 40

9
L3=4L1=4 � 32

3
L1=2L

2
1=4 � 7

9
L1
�
yn : (4.34)

In the literature, the schemes are usually described not in terms of fractional
steps but with a number of whole-interval steps; the two descriptions are equivalent,
however, and it seems that a combination of fractional steps, ending with a new
value at the next time interval, is more convenient.

4.10 Kimble and White (KW)

The method due to Kimble and White [17] is not actually a method designed for
odes, but was devised by the authors for electrochemical pdes. The method can
however be easily adapted to odes and in fact might be more appropriate there.
The method described in 1990 had a precursor in 1987 [26] and this section will
start with a description of its expression for odes, because it is simpler and makes
the point more clearly. A cut-down application of it has already been outlined in
Sect. 4.8.1.

The essence of KW is that multi-point central differences are used as derivatives
along most of the t scale, with some asymmetric expressions necessarily added
at the ends. Rather than using the time-marching method that is common to all
the methods described in previous sections, KW puts all the approximations into
one large system of equations, and solves the lot. It turns out that this results in a
fortuitous stability [27].

The method is based on another time-marching scheme not mentioned in the
above sections: the leapfrog method [28, 29], also called the midpoint rule by
Hairer and Wanner [6], using central differences. Equation (4.1) can be approxi-
mated as

ynC1 � yn�1
2ıt

D f .yn/ (4.35)
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where the derivative y0 is formed from the central difference spanning two time
intervals, and is referred to time tn. This seems intuitively satisfactory and indeed
the resulting formula,

ynC1 D yn�1 C 2ıtf .yn/ ; (4.36)

has a local error of O.ıt3/ and a global error of O.ıt2/. The method is conditionally
stable [29, 30] or “weakly unstable”, according to Hairer and Wanner [6]. Used
for parabolic pdes, it is unconditionally unstable [29]. Used in the Kimble and
White manner, applied at (almost) all points in time, it generates an equation system.
Clearly, if we have N points in time for which we want values of yi, starting with the
initial value y0, we can write expressions like (4.35) for all yi; i D 1 : : :N � 1. There
is an expression missing for the point at Nıt, for which there is no central difference.
Here, Nguyen and White [26] would use a BDF form and in this case, a three-point
form is appropriate, as it has the same error order as the central difference.

The equations then are the following. For i D 1we have, for the general ode (4.1),

y2 � y0
2ıt

D f .y1/ (4.37)

which includes the boundary value y0. For points yi; i D 2 : : :N � 1, we have

yiC1 � yi�1
2ıt

D f .yi/ (4.38)

and for the last point, the BDF form

yN�2 � 4yN�1 C 3yN
2ıt

D f .yN/ (4.39)

completing the system, which can now be arranged suitably, writing out the
functions f .y/. In the present example ode (4.3), we have f .yi/ D �yi, and the
system becomes

2
666664

2ıt 1

�1 2ıt 1
: : :

: : :

�1 2ıt 1

1 �4 .3C 2ıt/

3
777775

2
666664

y1
y2
:::

yN�1
yN

3
777775

D

2
666664

y0
0
:::

0

0

3
777775

: (4.40)

The interesting thing is that all but the last equation are leap-frog forms, which by
themselves result in an unstable solution if using them in a time-marching manner.
The mere addition of the last equation (4.39) renders the system stable, and the
solution is of O.ıt2/.
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In their 1990 paper, Kimble and White [17] extended this idea to a higher-
order formula. They replaced the second-order central difference with a fourth-order
central difference using five points (and, as well, for the pde they were solving a
five-point second derivative with respect to x). This necessitates more asymmetric
formulae, both for the start and at the end. As with the former scheme, the five-
point central difference approximation for y0 (see Table A.1, form y0

3.5/), if used as
a time march, is unstable [27]; and as with that scheme, the BDF form at the top end
stabilises it and yields a high-order solution [27]. The formulae, again for a row of
points yi; i D 1 : : :N (given the boundary or initial value y0), are the following.

For i D 1, a 5-point asymmetrical form, called y0
2.5/ in the table, is applied to

the point y1:

�3y0 � 10y1 C 18y2 � 6y3 C y4
12ıt

D f .y1/ (4.41)

and from there on for all i D 2; : : : ;N � 2, the central form y0
3.5/ is used,

yi�2 � 8yi�1 C 8yiC1 � yiC2
12ıt

D f .yi/ (4.42)

leaving the asymmetric form y0
4.5/ at i D N � 1,

�yN�4 C 6yN�3 � 18yN�2 C 10yN�1 C 3yN
12ıt

D f .yN�1/ (4.43)

and finally, the BDF form y0
5.5/ at the top end,

3yN�4 � 16yN�3 C 36yN�2 � 48yN�1 C 25yN
12ıt

D f .yN/ : (4.44)

Again replacing the function terms f .:/ in these equations with our specific example
function (4.3), f .y/ D �y, and rearranging, this becomes the system

2
666666666664

.�10C 12ıt/ 18 �6 1

�8 12ıt 8 �1
1 �8 12ıt 8 �1

: : :
: : :

1 �8 12ıt 8 �1
�1 6 �18 .10C 12ıt/ 3

3 �16 36 �48 .25C 12ıt/

3
777777777775

2
666666666664

y1
y2
y3
:::

yN�2

yN�1

yN

3
777777777775

D

2
666666666664

3y0
�y0
0
:::

0

0

0

3
777777777775

:

(4.45)

This, as has been mentioned above, was not the way Kimble and White applied the
method, but it works rather well and may well be more practical for odes. In their
application to pdes, the authors reduced the field to only a few points in both time
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and space, because otherwise the matrix to be solved, even when restricted to the
pentadiagonal form, becomes very large.

4.10.1 Using KW as a Start for BDF

In the present authors’ view, the KW method might find its most useful application
in providing high-order starting values for the BDF method, both for odes and pdes,
where this idea has been dubbed a “hyperimplicit” algorithm by Feldberg and Gold-
stein [14], presumably because it computes a number of time levels simultaneously.
The idea was broadly explained above in Sect. 4.8.1 but can now be detailed. In
order to start the BDF steps, the first few points need to be known; using k-point
BDF, this means, strictly speaking, the initial value y0 plus the points up to yk�2,
in order to compute the next point yk�1. When analysing this, however, it becomes
clear that it is better to generate new points up to yk�1, in order to get as high an error
order as the BDF method itself. For example, to start a 5-point BDF simulation, we
compute points y1 : : : y4. To get them, we can use KW. We restrict the discussion to
the 5-point example. It has four unknowns, for which we must write four 5-point
equations. It turns out that there are more possibilities than we require, and we can
choose which four we use; all but the central one at y2 are asymmetrical, and so
we choose a pure BDF form at y4, and choose not to refer to the derivative at y0
(although we could do so). The equations are then, for the indicated i’s, using again
the 5-point forms in Table A.1 (and moving the divisor 12ıt to the right-hand side)

� 3y0 � 10y1 C 18y2 � 6y3 C y4 D 12ıtf .y1/

y0 � 8y1 C 8y3 � y4 D 12ıtf .y2/

�y0 C 6y1 � 18y2 C 10y3 C 3y4 D 12ıtf .y3/ (4.46)

3y0 � 16y1 C 36y2 � 48y3 C 25y4 D 12ıtf .y4/

which, applied again to the example ode y0 D �y, produces the system

2
664
.�10C 12ıt/ 18 �6 1

�8 12ıt 8 �1
6 �18 .10C 12ıt/ 3

�16 36 �48 .25C 12ıt/

3
775
2
664
y1
y2
y3
y4

3
775 D

2
664
3y0
�y0
y0

�3y0

3
775 :

(4.47)

This works rather well with odes, as also seen in Fig. 4.7, where the 4-point BDF
form was used. For use with pdes, however, it may be considered too much trouble
to program, especially as there are easier options, for example, extrapolation, which
produce results that are just as good. Also, if BDF is nonetheless chosen, it was
found in Sect. 4.8.1 and proved mathematically in Appendix C that the simple start
with a simple time correction produces rather good results for much less effort.



4.11 Systems of odes 77

Table 4.1 Errors at t D 1 in
the simulation of y0 D �y
using 10 steps of length 0.1,
comparing all four BDF starts
for BDF k D 3; 4 and 5

Start k D 3 k D 4 k D 5

Simple 0:0203.1:01/ 0:0185.1:00/ 0:0186.1:00/

SimpC 0:0014.2:04/ 0:00039.2:16/ 0:00027.2:00/

Rational 0:0017.2:01/ 0:0021.1:99/ 0:0023.1:99/

KW 0:0013.2:01/ 0:000090.3:00/ �0:0000041.3:94/
Error orders are given in brackets (measured by taking 100
steps)

Nevertheless, we compared the four starting methods simple, simple with ıt=2
correction (“simpC”), rational and KW for the same simulation, and Table 4.1
shows the errors at t D 1 for each case. It is seen that for 3-point BDF, all but
the simple start result in much the same error, but for higher BDF forms, the KW
start outstrips the others impressively.

The 3-point BDF KW start is actually very simple to implement, requiring only
a 2 � 2 system whose solution (for y1 and y2) is easily expressed, and so it could be
feasible for use in pdes. However, the table shows that it results in no better errors
than simp+ or the rational start, so it does not recommend itself. It is interesting to
note, regarding the error orders, that both simp+ and rational show an order close to
2, regardless of the BDF order, meaning that with these starts, BDF using more than
three points is no improvement over three-point BDF. The only start that enables the
full accuracy of higher BDF orders is the KW start, which follows the BDF order.

4.11 Systems of odes

All the techniques described above can also be applied to the numerical solution
of systems of odes, and here we are getting closer to what happens when we solve
pdes, because in effect, one reduces them to ode systems when discretising them.

Instead of a single variable y, there are now a number n of variables,
y1; y2; : : : ; yn, represented by the vector y. Each of these variables has its own
differential equation, involving some function, on the function side, of the whole
vector:

y0
1 D f1.y/

:::

y0
i D fi.y/ (4.48)

:::

y0
n D fn.y/

(4.49)
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where each fi is some linear combination of the elements of the vector y. We are
concerned here only with linear systems; in those cases where a pde gives rise, upon
discretisation, to a nonlinear system of odes, tricks are normally used to avoid them,
as will be seen in later chapters. The system is then conveniently written in vector–
matrix form,

y0 D f.y/ (4.50)

or, since this is linear, as

y0 D Ay ; (4.51)

where A is the matrix of coefficients in the n functions fi. The system requires a set
of boundary conditions (for example, initial values) for its solution, or

y0.0/ D y0 : (4.52)

In principle, all the methods described above for single odes can be used for the
solution of such a system, when extended suitably. In the case of explicit methods
such as Euler or RK, this is very simple to implement, whereas with implicit
methods such as BI or the trapezium method, there are some choices to be made.

For brevity, the Euler method will be treated as a special case of RK, considered
as RK1. The method is then to start by calculating a vector of k1 values, one for each
y element. Discretising directly from (4.51), this is

k1 D ıtAy (4.53)

followed by

ynC1 D yn C k1 (4.54)

for the Euler method, where ynC1 is the next value of the whole vector y in the
iteration. The extension to RK is obvious. Note that the vector k1 (and, for higher
RKn, the other ki vectors) can be computed one element after the other, from known
elements of y, this being an explicit method.

Of implicit methods, two will be mentioned here, the first being BI. As outlined
in Sect. 4.6, this involves equating the same time derivative used in all the methods,
with the function on the right-hand side, referred to the next time interval. For the
system, then,

ynC1 � yn

ıt
D AynC1 (4.55)
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or

ynC1 D yn C ıtAynC1 (4.56)

an implicit equation. The solution can be expressed as

ynC1 D .I � ıtA/�1 yn (4.57)

in which I stands for the identity matrix. Similarly, the trapezium method starts with
the discretisation

ynC1 � yn

ıt
D �

AynC1 C Ayn

�
=2 (4.58)

leading finally to

ynC1 D �
I � 1

2
ıtA

��1 �
I C 1

2
ıtA

�
yn : (4.59)

These solutions are rather formal statements, and are rarely used as such,
because the matrices involved are almost always either tridiagonal or pentadiagonal,
making such direct solutions wasteful. It has been done in some cases [31, 32],
without any attempt at optimisation. It is possible to use solution methods that
recognise the sparse nature of these systems and many professional program
packages are available. One of these will be mentioned below. For methods for pdes
corresponding to BI, trapezium and BDF, there are more efficient procedures for the
solution, to be described in a later chapter.

In some cases, for example, electrochemical pdes with derivative boundary
conditions, the discretisation process for both the pde and the boundary conditions
leads to a mix of a differential equation system and one or more plain algebraic
equations. They might be, for example, equations of the form

f.y/ D 0 : (4.60)

The resulting system is called a set of differential algebraic equations (DAEs)
and their solution is now a specialised field with its own texts [6, 33] and there is a
package program, DASSL [34], for their solution. This can be of use in the present
context, for example, with the MOL, which indeed often results in a DAE system.
This is gone into in some detail in Chap. 9, in the context of Rosenbrock methods.

With most of the implicit methods to be described, however, the solution is found
by specialised techniques that make the process efficient, and these will be described
in their proper place.
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4.12 Rosenbrock Methods

This section pertains to systems of odes (or DAEs), although Rosenbrock methods
are a kind of Runge–Kutta method (Sect. 4.5). In RK, a number of trial changes
ki are explicitly computed, and a weighted sum of them is applied to the variable
(or vector). As noted in that section, such explicit RK methods can be highly
accurate, but are not stable for all step sizes, a limiting factor when applying them
to diffusion problems. A better way is to use implicit Runge–Kutta formulae. With
these, assuming, say, s trial ki, the s equations contain expressions in all ki (some of
them perhaps left out, that is, with zero coefficients). This gives rise to a system of
s equations in the vector k, which can be troublesome. The advantage is that these
implicit methods can lead to highly accurate, and stable, responses.

An alternative, called “semi-implicit methods” in such texts as [2], avoids the
problems, and some of the variants are L-stable (see Chap. 15 for an explanation
of this term), a desirable property. This was devised by Rosenbrock in 1962 [35].
There are two strong points about this set of formulae. One is that the constants in
the implicit set of equations for the k’s are chosen such that each ki can be evaluated
explicitly by easy rearrangement of each equation. The other is that the method
lends itself ideally to nonlinear functions, not requiring iteration (as with the Newton
method), because it is, in a sense, already built-in. This is explained below.

Consider the problem of a nonlinear ode

y0 D f .t; y/ : (4.61)

We might wish to solve it using an implicit method, for example, BI (Sect. 4.6).
Discretising (4.61) then gives

ynC1 � yn D ıt f .t C ıt; ynC1/ (4.62)

and the function on the right-hand side might not be known, nor might we be able
to isolate the unknown, ynC1, as was possible with the simple ode, y0 D �y. The
essence of Rosenbrock is now to take a single Taylor step, expanding f .tC ıt; ynC1/
around f .t; yn/ (and given that ynC1 D yn C k1),

f .t C ıt; ynC1/ D f .t; yn/C k1fy.t; yn/C ıtft.t; yn/ (4.63)

where the fy denotes differentiation by y, and ft that by t. We need to know these
differentials, but this is always easy. Now (4.62) can be written in the more amenable
form,

ynC1 � yn D ıt
�
f .t; yn/C k1 fy.t; yn/C ıtft.t; yn/

�
: (4.64)
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The right-hand side is in fact the expression for k1, and contains it; hence, the
equation for k1,

k1 D ıt
�
f .t; yn/C k1 fy.t; yn/C ıtft.t; yn/

�
; (4.65)

is indeed implicit, but note that now k1 can be isolated on the left-hand side, leaving
only terms on the right-hand side that can be evaluated. We get

.1 � ıtfy.t; yn//k1 D ıtf .t; yn/C ıt2ft.t; yn/ ; (4.66)

easily solved for k1. The formula might be called a one-stage Rosenbrock variant,
and can in fact be used, although it is not highly accurate. Applied to our ode,
y0 D �y, for which fy D �1 and ft D 0, it results in the formula

ynC1 D yn
1C ıt

(4.67)

which is seen to be identical with BI (in this case). Better than BI, however, (4.65)
can be used for nonlinear equations, and also (including ft) to odes where t plays
a role, the so-called nonautonomous odes. This is an important point later, when
applying Rosenbrock to diffusion problems, where time sometimes enters the
equations through boundary conditions (for example, LSV).

Before moving on to real Rosenbrock methods, consider again (4.66). The left-
hand side contains a term in fy; if we are dealing with a system of odes, this is called
the Jacobian of the system. It is often constant, evaluable in advance. It will be seen
in Chap. 9 that unless the diffusion problem has nonlinear concentration terms (for
example, from higher-order homogeneous reactions), the Jacobian is constant. If
not, it must be evaluated at every step.

There are several Rosenbrock variants, and a profusion of symbols used.
Rosenbrock originally described a second-order variant, that is, with errors of
O.ıt2/. It was for an autonomous ode, not involving t in the function on the right-
hand side of (4.61), and the formula can be readily extended to the nonautonomous
case (involving t) by a procedure described in [2, 6], among others. Briefly, the
procedure consists in adding the time variable to the vector y, and taking into
account that t0 D 1, and then expanding the formula appropriately. The formula
given by Rosenbrock (and in [2]) then expands to that given in Appendix A,
Sect. 9.4. In this book, the profusion of symbols is reduced to one consistent set,
as used in Hairer and Wanner [6], and this set is used exclusively in the table of
constants in the Appendix. It is also the set adopted by Lang in his publications
[36–38]. Lang, as will be noted, is the source of two new variants, at least one of
them L-stable, and a modification of an existing one, as well as updated tables of
coefficients, correct to 16 decimals in an Appendix in [38]. They are reproduced in
the present Appendix A.

In general, a Rosenbrock method consists of a number s of stages. At each stage,
a Runge–Kutta-type ki value is calculated, from explicit rearrangement of implicit
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equations for these. At stage i, the equation is

k0
i D ıt f

�
t C ˛iıt; y C

i�1X
jD1

˛ijk
0
j

�

C ıtfy.t; y/
iX

jD1
�ijk

0
j C �iıt

2ft.t; y/ ;

(4.68)

the ˛ and � being constants, tabulated in Appendix A. The reason for writing k0 is
that this equation, applied to ode systems, has a small problem, in that the middle
of the three terms on the right-hand side contains, in the sum, products of the form
fy.t; y/�ijk0

j , which for ode systems would mean multiplication of a Jacobian (the
equivalent of fy.t; y/) with the vectors k0

j. Hairer and Wanner [6] show that by a
transformation of the k0 values into new k values,

ki D
iX

jD1
�ijk

0
j ; (4.69)

a new equation using the ki can be developed, avoiding this problem. Application of
this transformation to (4.68) and rearranging, then lead to a new equation. We now
assume that this concerns a system of odes with vectors y and k. Also, all �ii are
conveniently chosen equal and are now simply called � , and new constants �i, aij
and cij appear. The final result is the explicit form,

.I � ıt� fy/ki D �
�
ıtf
�
t C ˛iıt; y C

i�1X
jD1

aijkj
�C �iıt

2ft C
i�1X
jD1

cijkj

�
(4.70)

(we write fy and ft without their arguments for brevity). Note that in texts such
as [6, 38], the equation presented is divided on both sides by �ıt. There are
practical reasons for not doing this in the present context. The equation must be
applied s times, according to the variant employed. Most variants seek to make
the calculation convenient, by allowing some of the constants to be zero. A useful
(and L-stable) second-order formula was described by Lang [38], called ROS2.
A favourite third-order variant is ROWDA3, described by Roche [39] and later
developed by Lang [37], making it more efficient. This is the variant favoured by
Bieniasz, who introduced Rosenbrock methods to electrochemical digital simulation
[40, 41] (using different symbols).

Having calculated the s ki values (vectors), the solution is

ynC1 D yn C
sX

iD1
miki ; (4.71)
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where the mi are weighting factors, included in the tables of constants for each
method.

4.12.1 Application to a Simple Example ODE

A simple example serves to illustrate the use of Rosenbrock, using the ode

y0 D t C y I y.0/ D 1 (4.72)

which has the analytical solution [7]

y.t/ D 2 exp.t/ � t � 1 : (4.73)

This is of interest because it contains t, so that we must use both fy and ft, both equal
to unity. Applying the ROS2 variant to this (see Appendix A for the coefficient
values), (4.70) (now for a single variable y) translates to the two equations

k1 D �
�
ıtf .t; y/C �1ıt2ft

�
1 � �ıtfy

D �
�
ıt.t C yn/C �1ıt2

�
1 � �ıt

(4.74)

and

k2 D �
�
ıtf .t C ˛2ıt; y C a21k1/C �2ıt2 C c21k1

�
.1 � �ıtfy/

D �
�
ıt.t C ˛2ıt C y C a21k1/C �2ıt2 C c21k1

�
.1 � �ıt/

(4.75)

containing the (now) known k1. Then applying

ynC1 D yn C m1k1 C m2k2 (4.76)

yields the solution. This works out rather well, and tests show that errors are O.ıt2/.

4.12.2 Error Estimates

In publications providing Rosenbrock coefficients such as [38, 40], there appear
alternative coefficients, “hatted”, such as Om1, etc. These always provide another
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variant with an order lower by one than the one used. The purpose of this is that
the difference between the two forms provides an (over)estimate of the error. The
practice is not followed in this book, as we are generally mainly interested in
the error order. So these alternative, lower-order coefficients are not included in
Appendix A.

4.13 Padé Approximants

The solution for the single variable (4.3) with boundary condition (4.4) is the
exponential expression (4.5), and an equivalent solution for the multivariable system
of odes (4.50) with its boundary condition (4.52) is [42]

y.t/ D eAty0 (4.77)

where y0 is the vector of initial values. The exponential function is defined by the
power series

eAt D I C tA C t2A2

2Š
C : : : (4.78)

(I being the unit matrix) which leads to several interesting possibilities and throws
some light on some of the methods described in this chapter. The problem is how
to evaluate the matrix exponential series. One procedure is to use the series as it
is, with a sufficient number of terms; for any given simulation problem, for stability
reasons, the matrix norm must be less than unity, so powers of A will approach either
zero or a constant value (see Chap. 15), so that the series will converge. This is the
basis for the Lawson method [43] and the eigenvalue, eigenvector method, both
to be described in Chap. 9. Here the focus is on Padé approximations of the matrix
exponential. They belong to a more general class of rational fractions of polynomials
for approximating series, described by Frobenius [44], as pointed out by Gragg [45],
and extended by Padé [46]. There is a history of these approximations [47].
Smith [42] shows how Padé approximations to the exponential function lead to some
well known finite difference schemes.

Rather than expressing the solution of the system of odes at a time t as in (4.77),
we can take a single step of length ıt from a known solution yn to the next at n C 1,

ynC1 D exp .ıtA/ yn : (4.79)

Smith [42, p. 117] presents a table of Padé approximants to the exponential function.
The simplest of these is the first two terms of the series expansion of the exponential,
1C ıtA. This produces the approximation

ynC1 D .I C ıtA/yn (4.80)
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which is seen to be the explicit method. Another approximation is .I�ıtA/�1, which
leads to the form

ynC1 D .I � ıtA/�1yn (4.81)

and after multiplication of both sides by .I � ıtA/ we obtain

.I � ıtA/ynC1 D yn (4.82)

which expresses the BI method, backward Euler. The trapezium method (Sect. 4.7)
can be easily derived using the (1,1) Padé approximation .I C ıtA=2/ .I � ıtA=2/�1.
For an explanation of the .n;m/ notation, see Smith [42] or Gragg [45]. There are
higher-order Padé approximants to be explored and this has largely not been done,
except for a series of works by Malvandi and Ganji [48] and the Rajendran group
[49–53], all of whom however used Padé approximants to analytical series solutions.
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Chapter 5
The Explicit Method

The simplest method of simulating pdes, and in particular odes, is the Euler method,
in the present context usually called the “explicit method”, or EX hereafter. It has
many drawbacks (to be outlined) but it does have the advantage of simplicity of
programming and if you are willing to let your computer do the hard work, it can
yield adequate results in many cases. There are recent examples of the use of the
method even for rather complex systems [1, 2] or to simulate processes at a disk
electrode [3], and a textbook on cyclic voltammetry [4] advocates the method (and
provides a program in Pascal). One might thus choose the method as such, or choose
to use it as a learning tool. The present authors prefer the latter. Having learned
how to use EX and becoming aware of its drawbacks, one might be ready to learn
something more advanced.

5.1 The Discretisation

The discussion will be restricted to the point method and to the one-dimensional
case. We will now work in normalised variables, see Sect. 2.3. We then have
concentration points C0;C1; : : :CN ;CNC1, at the locations X D 0;H; : : :NH; .N C
1/H, H being the interval in X, see Fig. 5.1. The end points at X D 0 and
X D .N C 1/H are boundary points with concentrations C0 and CNC1, respectively.
It is the concentrations between these, that are subject to diffusional changes, as
follows.

At any point with index i, that is at X D iH, the diffusion equation (1.1) is
discretised on the left-hand side in the Euler manner (Sect. 4.4, or in other words
the forward difference formula (3.1)) and on the right-hand side with the central
three-point approximation (3.41), giving for the iteration going from time T to the
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Fig. 5.1 Discrete sample point sequence

next time T C ıT,

Ci.T C ıT/ � Ci.T/

ıT
D 1

H2
.Ci�1.T/ � 2Ci.T/C CiC1.T// : (5.1)

The notation is now simplified by always assuming that we are at time T and are
going to time T C ıT and writing C.T C ıT/ as C0. The equation then rearranges to

C0
i D Ci C  .Ci�1 � 2Ci C CiC1/ (5.2)

which is explicit for C0
i , the new concentration (noting that we have combined ıT

and H into  D ıT=H2). This equation can be simply applied at all points. At the
first and last points to be computed (at i D 1 and N), the expression on the right
contains a boundary term. For i D 1 we thus have

C0
1 D C1 C  .C0 � 2C1 C C2/ (5.3)

and for i D N,

C0
N D CN C  .CN�1 � 2CN C CNC1/ : (5.4)

The outer point CNC1 is normally equal to the bulk initial value, and thus equal
to unity, since concentrations have been normalised by the bulk value (in cases
involving more than one diffusing species, their respective initial bulk values,
normalised by that of the chosen main species). The value of C0 is a little more
complicated to set. It depends on the experiment to be simulated, and for simplicity
at this point the discussion will be postponed to a later section in this chapter.
Assume that we know the valueC0. Then we need only go through all concentrations
C1 : : :CN , applying formula (5.2), and obtain the new row of values C0

1 : : :C
0
N .

5.2 Practicalities

In a given computer program, the section in which the above formula (5.2) appears
will normally be the shortest part of the program. Other parts of the program will
read in the required parameters or print out the current where needed. This raises
the question of which parameters to choose. Among these are the length of time
assumed for the experiment to be simulated or, in our dimensionless terms, the
number of units of the time used for normalisation, Tmax. If the experiment is a step
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technique, this will mostly be unity. In the case of linear sweep voltammetry (LSV)
(where, due to the normalisation, time and potential have the same magnitude), it
will be the number of potential units to be swept through (see Sect. 2.3). In either
case, we must decide how many intervals (NT ) there are to be per time unit or
(conversely) the interval length ıT. Other parameters to be decided are the interval
H and the number N of points along X. This is best done in terms of the largest
X-value, which in turn is set, via (2.40) and (2.43), such that there are no diffusional
changes beyond this point. In view of the properties of the error function and (2.43),
a value of Xmax given by

Xmax D 6
p
Tmax (5.5)

is recommended. The number 6 appears for the first time in the early work of Feld-
berg [5], without explanation, and has been tacitly assumed in the electrochemical
simulation literature since then. Given the analytical solution of the Cottrell system,
Eq. (2.35) on page 16, it is at a distance such that there can be no changes in
concentration there greater than 10�4 of the bulk concentration, which is usually
deemed sufficient.

Next, we need the interval H or conversely, the number of points N along the
X-axis. The recommendation here is to set this indirectly by means of the value of
, since this value is known to affect the stability of the simulation critically. For the
above formula, the largest usable value for it is 0.5. Having set its value, as well as
that of either NT (preferred) or ıT,  then sets N and H.

One also needs to think about at which points in time to output the current, being
almost always the aim of the simulation. If this is to be plotted, it might be output
at every new time into a plotting file. If one is testing a method, one might only
output the current at a selected number of intervals. The present authors find it most
convenient to output it at expanding time intervals, as this always gives a compact
output list. The current itself can be calculated from the concentration profile by a
number of approximations, depending upon how many points one takes. In Chap. 3
(page 45), the function G was defined to evaluate the gradient G. The simplest is the
two-point forward difference formula (3.1) which is G.C; 2;H/ or

G � C1 � C0
H

(5.6)

preferred by many (G here is the dimensionless current or gradient). It is, however,
as described in Chap. 3, first-order with respect to H and, with very little effort, one
can do much better than that. Since the three-point approximation to the second
derivative, the right-hand side of the diffusion equation as shown above in (5.2), is
second-order with respect to H, there are good arguments [6] for using a second-
order formula for G, the form y0

1.3/ in Table A.1, or

G � �3C0 C 4C1 � C2
2H

: (5.7)
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The present authors have used an even larger number of points, having established
a function subroutine G0FUNC (now supplemented by G0FORN) (see the collection
discussed in Appendix E), which allows up to seven points (n D 7) (G0FORN can
handle more than this but even seven might be regarded as more than enough). One
can then be sure that there are no significant error terms from the approximation to
G, no matter which method is used. Furthermore, although the calculation does take
a little longer than the simple two-point one, this is never a lot compared with the
simulation iteration itself, so it does not matter.

Eyres et al. [7] used a three-point flux approximation for heat flow simulations;
the earliest electrochemist to use simulation was Randles [8] and he also used a
three-point current. Amatore and Savéant [9] used a six-point approximation, as did
Bellamy et al. [10]. The latter authors also inverted the six-point formula to calculate
C0, in the manner of C0FUNC discussed in Appendix E.

5.3 Chronoamperometry and -Potentiometry

The program COTTEX (see Appendix E) is an example of a simulation of the
Cottrell experiment, using method EX. In this simplest of experiments, the boundary
concentration C0 is held at zero from T D 0 onwards (see Sect. 2.4.1.1). Boundary
conditions will be dealt with in detail in the next chapter, but here it is mentioned
only that this condition is the Dirichlet boundary condition, in which, in general,
the value of C0 is given. The other extreme condition is the Neumann condition, in
which the gradient G is given (a derivative boundary condition). An example of
this is given by chronopotentiometry, where a constant current is imposed on the
electrode. There is an important point to make here in this regard. When stepping
forward in time, one starts with a known array of concentration values C and uses
them explicitly (in this case of method EX) to compute the new row, C0. Thus,
since the old boundary values, C0 and CNC1 also go into Eqs. [(5.3) and (5.4)], they
must be available. Therefore, in chronopotentiometry, when a given C-row has been
computed, that value of C0 must be computed which yields the correct gradient G,
the boundary condition. This can be done readily by inverting the approximation for
G. For the two-point approximation (5.6) this becomes

C0 D C1 � GH (5.8)

while for the three-point G as in (5.7), it is

C0 D 1

3
.4C1 � C2 � 2GH/ : (5.9)
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In general, for n points, it becomes

C0 D 1

ˇ0

 
GH �

n�1X
iD1

ˇiCi

!
: (5.10)

This last general equation is implemented in the function C0FUNC, described in
Appendix E. The formula is applied in the seven-point form in the example program
CHRONOEX described in Appendix E, simulating chronopotentiometry. It must be
applied before every new iteration, in order for the C0 value to be in accord with
the other C values. In this program, the current is constant and it is the value of
C0 which is displayed and this should go to zero at T D 1 (Sect. 2.4.2). A more
appropriate display might be the electrode potential, which is always the measured
quantity, but this will be dealt with together with the more detailed discussion of
boundary conditions in Chap. 6.

A final practical point is the following. When computing the new row C0, it must
be computed from the old row. Therefore in a program, we cannot replace each Ci

with the new value in the array immediately, for each i, because the neighbouring
Ci�1 has just been changed to C0

i�1. One can either declare two separate arrays,
which might be considered slightly wasteful of space, or use the small trick seen in
the example programs (Appendix E), where both COTTEX and CHRONOEX use a
trio of scalar points that have the current three values Ci�1;Ci;CiC1 that are needed.
In this way, the new value C0

i can replace the old one in the array, which is preserved
in the scalar point trio. This must of course be shifted along at the bottom of the
loop, and the point CiC1 picked up at every new loop restart. This device is possibly
less important these days, since computers have more memory and an extra array
can be easily accommodated.

5.4 Homogeneous Chemical Reactions (hcr)

One of the simplest examples of a homogeneous chemical reaction (hcr) is the
Reinert–Berg system [11], in which an electroactive species is generated, for
example by means of a light flash, and then reduced as a Cottrell system, while
the species decays chemically with a first-order reaction. The reactions are then

A C e� ! B

A ! prod (5.11)

with k the rate constant of the second reaction, the hcr. This gives rise to the single
governing equation, for the concentration C of substance A

@C

@T
D @2C

@X2
� KC (5.12)
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where everything, including the rate constant (K D k�) as described in Sect. 2.4,
Eq. (2.63), has been normalised. The analytical solution of this equation with
Cottrell boundary conditions is given in Chap. 2, Sect. 2.4, Eqs. (2.66) and (2.67).
This system is very simple to discretise in the EX manner; the chemical term is
added to the equations above, (5.2)–(5.4). For the ith concentration [Eq. (5.2)] this
becomes

C0
i D Ci C  .Ci�1 � 2Ci C CiC1/� KıTCi : (5.13)

If several species are involved (in this case there is the product prod, but we are not
interested in it), the equations are extended in an obvious manner, apart from some
tricks to be seen in a later chapter in connection with implicit methods. This is one of
the attractive aspects of method EX. If the hcr is second-order, there will be a term
in C2i in the discrete equation, and it will present no problem in the discretisation
step [12].

There are, however, several problems here. The first is that in writing the
governing equation in discrete form as above, we are in effect uncoupling diffusional
changes from chemical changes. Numerically, they appear to take place indepen-
dently of each other, whereas in fact, they interact during the time interval. The
last term in (5.13) leads to inaccuracies, and Nielsen et al. [13] proposed using
the (explicit) Runge–Kutta method (RK) to overcome this problem, if the chemical
changes during a single time interval amount to a few percent of the concentration
itself or, in mathematical terms, if the quantity KıT in (5.13) exceeds 0.01 or so. In
[13] the method adopted was to use RK for the chemical reaction only, following
earlier suggestions in the literature [14], whereas in [15] the method is applied to
the whole equation, to be described in Chap. 9. This turns out, in either case, to give
only a modest improvement in efficiency, which can however be improved a little,
see the 5-point method, Chap. 9.

The above manner of computing the two components, that is, diffusional and
chemical changes separately, is sometimes called the parallel method. Another
way to improve efficiency slightly is to use instead what has been called [13] the
sequential method. It was intuitively applied at first, without any real justification
other than that it gave better results. The method consists of calculating the
diffusional change first, augmenting the concentrations by these amounts, and then
to apply the chemical reaction to these augmented values. As pointed out in [13],
this gives rather good results, but it was not clear at that time why this should be
so. Feldberg in fact used this method and describes it in his seminal chapter [5]. It
turns out that, by coincidence (of which we have several in digital simulation), the
sequential method does have a mathematical justification and is consistent with the
model equations that the discrete expressions approximate. A mathematical proof
of this consistency was given in 1991 [16] and is reproduced in Appendix C. The
improvement is not great, however, and other methods were sought.

If one is computing the two changes separately (the parallel method), and given
that the chemical reaction itself is usually tractable analytically, this component need
not be simulated. For a first-order reaction as seen in (5.11) and (5.12), the last part
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in (5.12) has the general solution for a first-order reaction,

C.T/ D C.0/ exp.�KT/ (5.14)

which becomes, over the interval ıT, for the concentration Ci

Ci.T C ıT/ D Ci.T/ exp.�KıT/ (5.15)

and if KıT is not large, this converges to

Ci.T C ıT/ D Ci.T/.1 � KıT/ (5.16)

which is indeed the chemical component in (5.13). Feldberg and Auerbach used
the analytical method [17] in 1964, as did Flanagan and Marcoux [18] in 1973
and Amatore and Savéant in 1979. It has since then given way to other, better
methods, due to the recognition that it is not justified to assume that diffusional and
chemical changes are separate. One of these better methods is the explicit Runge–
Kutta method (RK) applied to the whole discrete equation set (5.12), and it will be
described in Chap. 9.

5.4.1 The Reaction Layer

All the above methods, when hcrs are present, have one very serious drawback:
many hcrs give rise to a compact reaction layer, as described in Chap. 2. The above
Reinert–Berg reaction does not, but the EC reaction,

A C e� ! B

B ! C (5.17)

does. It turns out that the concentration profile for B extends less far into the solution
than that of A, which follows the normal rules. Figure 5.2 illustrates this for the
above mechanism, where concentration profiles for all three species are shown for
the Cottrell experiment run on this system, at (dimensionless) unity time, and a
dimensionless rate constant K D 10. The profile for species A is unchanged, that is,
it is the same as if there were no following reaction, and shows the normal Nernst
diffusion layer thickness ı. Species B, however, is confined to a narrower region and
its interface concentration is smaller than it would be without the following reaction;
species C contains the deficit in B. The problem here is that, if the rate constant is
large, the reaction layer is very thin and in order to be able to approximate such a
concentration profile, close spacing of points is required, increasing computer time.
There are ways to overcome this, but the EX method with equally spaced intervals
is not one of them.



96 5 The Explicit Method

Fig. 5.2 Concentration profiles with reaction layers

5.5 Linear Sweep Voltammetry

One of the main uses of digital simulation—for some workers, the only
application—is for LSV or cyclic voltammetry (CV). This is more demanding than
simulation of step methods, for which the simulation usually spans one observation
time unit, whereas in LSV or CV, the characteristic time � used to normalise time
with is the time taken to sweep through one dimensionless potential unit (see
Sect. 2.4.3) and typically, a sweep traverses around 24 of these units and a cyclic
voltammogram twice that many. Thus, the explicit method is not very suitable,
requiring rather many steps per unit, but will serve as a simple introduction.
Also, the groundwork for the handling of boundary conditions for multispecies
simulations is laid here.

The sequence of steps in a CV simulation program is as follows. A simple two-
species reaction

A C e� • B (5.18)

is our example, assumed to be quasireversible with dimensionless heterogeneous
standard rate constant K0:

1. Read in starting potential pstart and reversal potential prev (both in dimensionless
potential units), nTper, the number of time intervals per potential unit swept,
and , the simulation parameter, and K0, the dimensionless heterogeneous rate
constant.
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2. Calculate some numbers derived from these inputs, such as N, the number of
points in space (see below) and H, the interval along X and the total number of
time steps nT , as well as the time interval ıt. Initialise arrays etc.

3. Open the required output files.
4. Set the potential step ıp to �ıt, and the current potential p to pstart; that is, the

sweep starts in the negative direction.
5. Enter the loop, each time increasing the potential by ıp, and computing the new

concentrations. When these have been calculated, apply the boundary conditions
for the present potential, to get the boundary values at X D 0; write out the
potential and current into the file (perhaps only if there has been a change in
current greater than some set value, to reduce the volume of output). If half the
total number of time steps nT has been done, flip the sign of ıp, so that the next
half will go in the reverse direction, for CV.

6. During the loop, monitor the current to detect when it passes through a peak
(negative sweep) or a trough (return sweep), and keep these values and the
potential where they occurred.

7. Finish up by writing out the required numbers such as maximum and minimum
currents and potentials.

Some remarks on the above are in order. In the example program CV_EX
mentioned in Appendix E, a quasiversible reaction is indeed assumed, but if K0
exceeds the value 1000, the boundary conditions are taken to be those for a
reversible reaction. How these two different boundary conditions are applied to
calculate the concentrations CA;0 and CB;0 is described below. Note that before new
concentrations are to be computed, all old concentrations, including the boundary
values, must be known. When a new potential is stepped to, it comes into effect
only after the concentrations are renewed, after which C0 is calculated. This might
be thought of as less than satisfactory, but it is consistent with the explicit method.
In Chaps. 8 and 9, more satisfactory methods will be presented.

Regarding the number N of points in space, the rule shown in Eq. (5.5) is used;
the total time Tmax here is equal to the total number of potential units swept through.
If we, for example, set pstart equal to 12 and prev equal to �12, then Tmax D 48.
One could in principle save a little computing time by recognising the fact that
after a given number ns of steps taken, only that many concentrations can have
changed, due to the way changes propagate through the concentration profiles in the
explicit method, so while ns < N, one need only recompute ns points; but this is a
small saving in computing time and is not worth the effort, and increases the risk of
introducing a program error in the process.

Monitoring for peak and trough currents is seen in the example program EX_CV,
by the device that a trio of current values G1;G2;G3 is always kept (G3 being the
most recently computed value), and a check is made whether G2 is maximum or
minimium. If it is, the true peak or trough is computed, using the routine MINMAX
described in Appendix E, which uses a parabolic fit to detect the values, as well as
the position. This is converted to potential units in the program. There is a small
device to prevent spurious peak/trough detections (which arise in regions where the
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current is close to zero), by means of the restriction that only those taking place
within the potential range �2 < p < 2 are accepted.

The number of steps for a complete CV simulation will generally be quite large,
especially for the explicit method, where one must set the ıp values down around
at most 0.01, so that if currents are output for later plotting at each iteration, the file
becomes unnecessarily large. For this reason, EX_CV checks that there has been a
minimum change in current since the last, before writing the current out. Setting this
value to 0.001 gave a reasonably reduced number of outputs in some test runs (for
example, 1435 out of a total of 48,000, with ıp set to 0.001).

5.5.1 Boundary Condition Handling

In the example program EX_CV, as mentioned, two kinds of boundary conditions
are accommodated: those for a quasireversible reaction, and for a fully reversible
reaction. The choice is made on the basis of the dimensionless heterogeneous rate
constant K0; if it exceeds 1000, the reaction is considered reversible.

For the quasireversible case, the procedure is as follows. At a given stage in
the simulation, assume that the two concentration profiles, CA;i and CB;i, with
i D 1; 2; : : : ;N, have been calculated and that the potential is p. The dimensionless
form of the Butler–Volmer equation applies (2.30) and provides the concentration
gradient GA, proportional to the current:

GA D KfCA;0 � KbCB;0 (5.19)

where the two constants, the forward and backward rate constants, are as given
previously (2.31), functions of the potential. The left-hand side of this equation can
be discretised as the n-point current approximation, leading to

1

H

n�1X
iD0

ˇiCA;i D G.CA; n;H/ D KfCA;0 � KbCB;0 (5.20)

which can be dissected as

1

H

 
ˇ0CA;0 C

n�1X
iD1

ˇiCA;i

!
D KfCA;0 � KbCB;0 : (5.21)

There are two unknowns, so we need one more equation. This comes from the fact
that the flux of substance A at the electrode must be equal and opposite to that of
substance B. If we assume equal diffusion coefficients for the moment, this means

GA C GB D 0 (5.22)
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and employing the current approximations for both species and dissecting as above,
this and the former equation (5.21) rearranged, gives us the two-unknowns system

"
.KfH � ˇ0/ �KbH

ˇ0 ˇ0

#"
CA;0

CB;0

#
D

2
66664

n�1X
iD1

ˇiCA;i

�
n�1X
iD1

ˇiCA;i�
n�1X
iD1

ˇiCB;i

3
77775 (5.23)

which is readily solved for the two boundary values. The sums can be obtained
using the function G0FUNC discussed in Appendix E and a small trick. The function
requires a number of Ci values, including the (unknown) C0. However, since we are
calculating it and do not need the old value, we can afford to set it to zero, so that the
function represents the sum for i D 1; 2; : : : ; n � 1, leaving out the zeroth element,
as required in the above equations. This is made use of in the example program.

For the reversible case, the Nernst equation applies instead of the Butler–Volmer
equation, that is, in dimensionless terms as in (2.32), rewritten as

CA;0 � epCB;0 D 0 (5.24)

paired again with the flux equality condition (5.22). This gives the system in two
unknowns

"
1 �ep

ˇ0 ˇ0

#"
CA;0

CB;0

#
D

2
664

0

�
n�1X
iD1

ˇiCA;i�
n�1X
iD1

ˇiCB;i

3
775 (5.25)

which is even easier to render as an explicit expression for CA;0 and thereby for CB;0

from (5.24).
More will be said about boundary conditions in Chap. 6.
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Chapter 6
Boundary Conditions

In this chapter, boundary conditions and how to handle them in simulations are
described. Of necessity, some material here overlaps with that in other chapters,
especially Chaps. 8 and 9; but this cannot be avoided.

Adsorption kinetics has its own boundary conditions and is treated entirely
separately in Chap. 10.

6.1 Classification of Boundary Conditions

In the world of numerical analysis, one distinguishes formally between three kinds
of boundary conditions [1, 2]: the Dirichlet, Neumann (derivative) and Robin
(mixed) conditions; they are also sometimes called [1, 3] the first, second and
third kind, respectively. In electrochemistry, we normally have to do with derivative
boundary conditions, except in the case of the Cottrell experiment, that is, a jump to
a potential where the concentration is forced to zero at the electrode (or, formally,
to a constant value different from the initial bulk value). This is Dirichlet only for
a single species simulation. If the simulation involves two species (e.g. the reduced
and oxidised form) and the surface kinetics obeys the Butler–Volmer equation, flux
conditions must apply, i.e. derivatives are involved, see Sect. 5.5.1. If species do
not undergo electrode reactions, zero-flux conditions prevail at the location of the
electrode surface, involving also derivatives. In what follows below, we briefly treat
the single species case, which includes the Cottrell (Dirichlet) condition as well
as derivative conditions, and then the two-species case. In a later section in this
chapter, a mathematical formalism is described that includes all possible boundary
conditions for a single species and can be useful in some more fundamental
investigations.

In this chapter, the current approximation function G, defined in Chap. 3,
Eq. (3.25), will be used extensively. Note also that since this function is a linear
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102 6 Boundary Conditions

combination of the array argument (for example, C as in G.C; n;H/), the function
of a weighted sum of two arrays, such as the arrays u and v (to be met later), the
following holds (a being some scalar factor):

G.u C av; n;H/ D G.u; n;H/C aG.v; n;H/ : (6.1)

This will prove useful in connection with the “u-v” device, see below.

6.2 Single Species: The u-v Device

If the simulation only involves a single substance (species), the situation is relatively
simple, and this is the starting point. Some of this has already been described in
Chap. 5 but will be repeated here, more generally, and with reference to implicit
methods, not yet described. Recall the convention that a concentration denoted as
Ci is a “present” value at the (spatial) index i, that is, a known concentration at time
T, whereas C0

i denotes a value, yet to be calculated, at time T C ıT.

6.2.1 Dirichlet Condition

Here the value of the boundary concentration is specified. A familiar example in
the present context is the outer boundary, beyond the diffusion space, where the
concentration usually remains at the initial bulk value during the whole period over
which the simulation is carried out. This also applies to the case of the Reinert–
Berg mechanism (page 22), in which the bulk concentration itself changes with
time, but we know the bulk value at any time, because chemical reaction kinetics,
uncomplicated by transport effects, is well understood. In such cases, we can set a
given bulk concentration, albeit time-varying. Another familiar example arises from
the Cottrell experiment, in which the concentration at the electrode, C0, is set to
zero. This is a particular case of that concentration being set to a definite value, not
necessarily zero.

6.2.2 Derivative Boundary Conditions

For a single species, there are only two cases of interest, arising from the two
kinds of experiments in which either the current is controlled or the potential is
controlled, and the reaction is irreversible (if it is not irreversible, two species must
be considered). These two cases can serve as a kind of tutorial for the more complex
two-species systems.
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The chronopotentiometry (controlled current) case has already been described
for the EX method, where one simply finds a C0 value that fits the known gradient
G and the concentration points already established, as shown in (5.10). The situation
is not quite so simple for implicit methods, and we introduce here both a preview of
these, and the u-v device, which will be used extensively.

As will be seen in Chap. 8, implicit methods all lead (for the normal 3-point
approximation of the term @2C=@X2) to a system of N equations, each with three
unknowns. Generally, this can be written in the form, for the ith equation out of
the N,

C0
i�1 C a1.i/C

0
i C a2.i/C

0
iC1 D bi (6.2)

where the coefficients a1.i/ and a2.i/ depend on the particular implicit method
employed and the point spacing, and the bi term is some weighted sum of known
concentrations, again depending on the method. Because of the fact that the last
equation, where i D N, includes the bulk value C0

NC1 which is known, it is possible
to reduce the set of equations recursively to one in which each equation has two
unknowns, to be outlined in Chap. 8, going backwards from the outer value, and
ending in the new equation system:

C0
0 C a0

1C
0
1 D b0

1

C0
1 C a0

2C
0
2 D b0

2 : (6.3)

C0
2 C a0

3C
0
3 D b0

3

: : :

The details of how to get from the system (6.2) to (6.3) are described in Chap. 8. We
can use (6.3) to solve for all C0

i , if we know the boundary value C0
0. In the case of

the Cottrell system, we do know it; it is zero, thus giving us C0
1 directly, and then

C0
2, etc. This is essentially the Thomas algorithm (see Chap. 8).

If there is a derivative boundary condition, things are a little more complicated.
There are two kinds of cases. The first of these arises with controlled current, where
we know the gradient G, as already seen in Chap. 5. Here, however, we cannot
simply calculate C0

0, because we do not yet know the other concentrations. One way
to handle this is to add an expression for the boundary condition to a few equations
out of (6.3) and to solve. A simple example is to use the 2-point G-approximation
in the case, for example, of controlled current (G), and the first equation from (6.3)

C0
1 � C0

0 D GH

C0
0 C a0

1C
0
1 D b0

1 (6.4)
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and to solve for C0
0 (and C0

1), giving

C0
0 D b0

1 � a0
1GH

1C a0
1

: (6.5)

This is convenient for the simple 2-point approximation but if n > 2, more equations
out of (6.3) are needed, and the solution is less straightforward.

Another, more convenient way is the u-v device. We establish a relation between
the concentrations C0

i and C0
0, in order to obtain the extra information needed to

solve for C0
0. Taking the first equation in (6.3), we rewrite it explicitly for C0

1:

C0
1 D b0

1=a
0
1 � C0

0=a
0
1 (6.6)

or as a linear function of C0
0,

C0
1 D u1 C v1C

0
0 (6.7)

where

u1 D b0
1=a

0
1 I v1 D �1=a0

1 : (6.8)

The second equation of the system (6.3) is then reorganised explicitly for C0
2, giving

C0
2 D b0

2=a
0
2 � C0

1=a
0
2 (6.9)

and we substitute for C0
1 from (6.7), getting

C0
2 D b0

2=a
0
2 � .u1 C v1C

0
0/=a

0
2 (6.10)

which again can be expressed as a linear expression in C0
0,

C0
2 D u2 C v2C

0
0 (6.11)

where now

u2 D .b0
1 � u0

1/=a
0
2 I v2 D �v1=a0

2 : (6.12)

This can be continued and we can recursively express all C0
i as linear functions of

C0
0. For the ith concentration,

C0
i D ui C viC

0
0 (6.13)

and the coefficients are given by the recursive expressions

ui D .b0
i � ui�1/=a0

i I vi D �vi�1=a0
i : (6.14)
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This is easily programmed as a loop process. If we want to avoid a special expression
for u1 and v1, there is a trick: we start formally with a tautological equation,

C0
0 D u0 C v0C

0
0 (6.15)

in which, obviously, u0 D 0 and v0 D 1. Then the loop process, applying (6.14) for
i D 1; 2; : : : , can be set running. We do not need many iterations—in fact, n� 1 are
sufficient, n being the number of concentrations used in the approximation for G.
This is

G D G.C0; n;H/ (6.16)

and substituting for all C0
i from (6.13), noting (6.1) and defining the vectors (arrays)

u � Œu0 u1 : : : un�1
T and v � Œv0 v1 : : : vn�1
T , we get

G D G.u; n;H/C C0
0 G.v; n;H/ (6.17)

or multiplying by H,

GH D G.u; n; 1/C C0
0 G.v; n; 1/ (6.18)

which can now be rearranged to the explicit equation for C0
0,

C0
0 D GH � G.u; n; 1/

G.v; n; 1/ (6.19)

yielding C0
0. It is now also seen that the little trick (6.15) has another advantage,

enabling the use of the sums for i D 0; 1; : : : ; n � 1, which our function G and
thus procedure G0FUNC evaluates. G0FUNC(u, n, 1.0_dbl) must be called
as shown and u and v are arrays with bounds (0:n-1). For unequal point spacing,
the routine G0FORN is called instead.

Formally, the above process is equivalent to (6.4), extended for any n and solving
that system. The u-v device is a more efficient way of solving it than any linear
equation solver that might otherwise have been used, as n becomes larger. The u-v
device will be extensively used in this book, even with implicit methods for coupled
equation systems, where we must solve for a number of concentration profiles (see
below). There are practitioners who believe that n D 2, that is the two-point G-
approximation, is good enough. This is justified in cases where H is very small, as
it often is, at least near the electrode, when unequal intervals are used (see Chap. 9).
In that case, one can simply use (6.5).

Another case, if we have just one species, besides controlled current, is the
irreversible, controlled potential case. The gradient G is then given by half of the
Butler–Volmer equation and for the as yet unknown concentrations and the potential
p0 at the new time, this is

G0 D KfC
0
0 (6.20)
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(where we write G0, since the gradient is now time-dependent and we are referring
to the new time level) with Kf given by

Kf D K0 exp.�˛p0/ : (6.21)

G0 itself must then be replaced by the right-hand side of (6.16) and the resulting
equation,

G.C0; n;H/ D KfC
0
0 (6.22)

decomposed by applying (6.13) to the left-hand side. After some rearrangement,
this yields the solution,

C0
0 D G.u; n; 1/

HKf � G.v; n; 1/ : (6.23)

Again, if a two-point approximation is used, this simplifies to

C0
0 D b0

1

1C a0
1.1C HKf /

: (6.24)

Lastly, in Chap. 9, Sect. 9.2.7, an improvement in the above is described, based
on Hermitian schemes for a better gradient approximation.

6.3 Two Species

In Chap. 5, the two-species cases were described for the explicit method. Here we
add those for the implicit case. Both Dirichlet and derivative boundary conditions
are of interest, the latter both with controlled current or quasireversible and systems
under controlled potential.

When two species are involved, they may have different diffusion coefficients.
Here it will be assumed that the two species might be two out of more than
two species in a given mechanism, and that normalisation is referred to some
species other than these two. Therefore both their diffusion coefficients need to be
normalised. Let the two species be called O and R, and the reference species be
called A. Then the normalisations are

dO D DO=DA; dR D DR=DA (6.25)

and, of course, the concentrations are normalised as usual by the initial bulk
concentration of the reference species A.

Often, for convenience, diffusion coefficients of all species in a mechanism
are assumed equal, however unrealistic this probably is. If the reader wants to
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assume this, the d’s in what follows can simply be set equal to unity. The paper
[4] underlines the point, finding significant effects of unequal diffusion coefficients,
and Pedersen et al. [5] in fact measured differences of about 20 % between the
diffusion coefficients of some organic compounds and the radical anions formed
by their reduction. Such differences may well be significant in a simulation.

We consider here two species connected by the reduction reaction

O C e� ! R : (6.26)

We begin with the simpler case of the two species not being coupled, that is, each
of their discrete equations contains only terms from one of the species. The coupled
case is given below, being rather more complicated. There is of course coupling of
the two species by the boundary conditions.

As with the single-species case above, we anticipate the treatment given in
Chap. 8 for implicit methods. At each point i in space, there is an equation like (6.2)
for each species:

C0
O;i�1 C aO;1.i/C

0
O;i C aO;2.i/C

0
O;iC1 D bO;i

C0
R;i�1 C aR;1.i/C

0
R;i C aR;2.i/C

0
R;iC1 D bR;i (6.27)

where the coefficients may be different (often some of them at least are common
to the two). The two equations are of the same form as (6.2), except that there are
now twice as many. Again, the bulk concentrations will be known and can be used
to reduce the whole set to a new set in which each equation has only two unknowns,
and we write out the first few of these:

C0
O;0 C a0

O;1C
0
O;1 D b0

O;1

C0
R;0 C a0

R;1C
0
R;1 D b0

R;1

C0
O;1 C a0

O;2C
0
O;2 D b0

O;2 (6.28)

C0
R;1 C a0

R;2C
0
R;2 D b0

R;2

C0
O;2 C a0

O;3C
0
O;3 D b0

O;3

C0
R;2 C a0

R;3C
0
R;3 D b0

R;3

: : :

It might have been clearer to write these two systems separately but it was decided
to mix them in the above manner, as this serves a certain purpose later, with coupled
systems.

The u-v device can now be applied as before, the only complication being that
there will be two sets of u’s and v’s; the treatment is identical to the above one and
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results in the two equations

C0
Z;i D uZ;i C vZ;iC

0
Z;0 (6.29)

in which Z can be either O or R. The equations that generate the coefficients are the
same as (6.14).

It is now possible to bring in the particular boundary conditions, starting with the
Cottrell case, which is the simplest. For all mechanisms and boundary conditions,
we require two equations involving the two unknown boundary concentrations. As
with all cases, one of these is the flux condition,

fO C fR D 0 (6.30)

mentioned in Chap. 5, Sect. 5.5.1. We must take the possibly different diffusion
coefficients into account, since it is the fluxes, not the concentration gradients, that
must be equal and opposite:

DOGO C DRGR D 0 (6.31)

or, applying the normalisations of the diffusion coefficients,

dOGO C dRGR D 0 : (6.32)

This then becomes, for the usual n-point G-approximation,

dOG.C0
O; n;H/C dRG.C0

R; n;H/ D 0 (6.33)

(where C0
O stands for the vector of the values C0

O;0 : : : and similarly for C0
R) and

substituting (6.14) for C0
O;i and C0

R;i, and rearranging, this gives the equation

dOG.vO; n; 1/C
0
O;0CdRG.vR; n; 1/C

0
R;0 D �dOG.uO; n; 1/�dRG.uR; n; 1/ (6.34)

where the H has been divided out, but this is a matter of preference. The equation
will be written in a briefer form,

dOG.vO/C
0
O;0 C dRG.vR/C

0
R;0 D �dOG.uO/ � dRG.uR/ (6.35)

where the missing arguments (and the substitution of H with unity) are assumed.
The other equation depends on the boundary conditions and these will now be gone
through. They are controlled current, controlled potential with quasireversible and
reversible reactions.

With controlled current, the value of dO GO is controlled (not GO itself!). Let the
(dimensionless) value of this current be G. This yields the second equation simply as

G D dOG.C0
O; n;H/ D dO

�
G.uO; n;H/C C0

O;0dOG.vO; n;H/
�

(6.36)
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or, multiplying both sides by H and rearranging (using the briefer form)

dOC
0
O;0G.vO/ D GH � dOG.uO/ (6.37)

which can be used directly to obtain C0
O and thus, from (6.35), C0

R. Nevertheless for
consistency with the other cases to follow, the equation system is given here:


dOG.vO/ dRG.vR/

dOG.vO/ 0

�"
C0
O;0

C0
R;0

#
D
�dOG.uO/ � dOG.uR/

GH � dOG.uO/

�
: (6.38)

Controlled potential can be either a potential step or some potential program
such as LSV/CV, staircase voltammetry or even ac voltammetry, see the standard
texts [6, 7] for details. In all of these, we have (dimensionless) potential p at time
T and the new potential p0 at the next time level; p0 might thus be a constant
(as in potential step) or varying with time. One can then distinguish between
the cases quasireversible (including irreversible) systems or fully reversible ones.
Some simulation packages such as DigiSim [8] do not include the reversible case,
arguing that it does not exist, and is in fact a quasireversible reaction with a large
heterogeneous rate constant. This makes some sense but on the other hand, setting
that rate at some arbitrarily very high value to ensure reversible behaviour is no
more justifiable than assuming Nernstian equilibrium, that is, reversibility.

A quasireversible system is characterised by the Butler–Volmer equation, here in
dimensionless form,

dOG
0 D Kf C

0
O;0 � KbC

0
R;0 (6.39)

with

Kf D K0 exp.�˛p0/; Kb D K0 exp.Œ1 � ˛
p0/ : (6.40)

(Note that in (6.39), dOG0 is once again used, taking into account the diffusion coeffi-
cient of species O being different from that of the reference species). Equation (6.39)
is expanded for G0 as before, the u-v substitutions made and rearranged, to give

�
Kf � dOG.vO; n;H/

�
C0
O;0 � KbC

0
R;0 D dOG.uO; n;H/ (6.41)

which, multiplying by H and adopting the previous shorthand for G, and adding the
flux condition (6.35), results in the system

 �dOG.vO/ �dRG.vR/

HKf � dOG.vO/ �HKb

�"
C0
O;0

C0
R;0

#
D

dO .G.uO/C G.uR//

dOG.uO/

�
: (6.42)

This can easily be made into the irreversible case by setting Kb D 0 and, in principle,
into the reversible case by setting K0 very large. However, another way to ensure
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reversibility is to specify it as such, by the Nernst equation as in Chap. 2, page 15,

C0
O;0=C

0
R;0 D exp.p0/ (6.43)

or

C0
O;0 � exp.p0/C0

R;0 D 0 (6.44)

which, added to the flux condition produces the system


dOG.vO/ dRG.vR/

1 � exp.p0/

�"
C0
O;0

C0
R;0

#
D
�dO .G.uO/C G.uR//

0

�
: (6.45)

6.3.1 Two-Point Derivative Cases

For those who prefer to keep the derivative approximation of G down to the two-
point form, the above can perhaps be simplified a little; the u-v device is not needed
as such, as only the first substitution (6.6) is required.

The flux condition (6.32) is represented in two-point form as

dO
H

�
C0
O;1 � C0

O;0

�C dR
H

�
C0
R;1 � C0

R;0

� D 0 (6.46)

and (6.6) applied to the first two equations of (6.28), the C0 at X D H can be
eliminated, to give, after some cleaning up, the flux condition equation

dO

 
1C 1

a0
O;1

!
C0
O;0 C dR

 
1C 1

a0
R;1

!
C0
R;0 D dO

b0
O;1

a0
O;1

C dR
b0
R;1

a0
R;1

(6.47)

which is the one always needed out of the two. For controlled current, (6.36)
becomes (again invoking (6.6))

GH D �
 
1C 1

a0
O;1

!
C0
O;0 C b0

O;1

a0
O;1

(6.48)

or
 
1C 1

a0
O;1

!
C0
O;0 D �GH C b0

O;1

a0
O;1

(6.49)
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and thus, together with the first equation (6.47), this results in the system

2
4dO

�
1C 1

a0

O;1

�
dR
�
1C 1

a0

R;1

�
�
1C 1

a0

O;1

�
0

3
5
"
C0
O;0

C0
R;0

#
D
2
4dO

b0

O;1

a0

O;1
C dR

b0

R;1

a0

R;1

�GH C b0

O;1

a0

O;1

3
5 : (6.50)

It is arguable whether this is in fact simpler than the form for general n, Eq. (6.38),
but it does avoid calling a function.

The quasireversible case, analogous to Eqs. (6.39)–(6.41), becomes

"
HKf C dO

 
1C 1

a0
O;1

!#
C0
O;0 � HKbC

0
R;0 D dO

b0
O;1

a0
O;1

(6.51)

and the system to be solved,

2
4 dO

�
1C 1

a0

O;1

�
dR
�
1C 1

a0

R;1

�
HKf C dO

�
1C 1

a0

O;1

�
�HKb

3
5
"
C0
O;0

C0
R;0

#
D
2
4dO

b0

O;1

a0

O;1
C dR

b0

R;1

a0

R;1

dO
b0

O;1

a0

O;1

3
5 : (6.52)

Again, the irreversible case is accommodated by setting Kb to zero.
The reversible case gives rise to the same equation as for higher n as in (6.44)

and thus to the system

"
dO
�
1C 1

a0

O;1

�
dR
�
1C 1

a0

R;1

�
1 � exp.p0/

#"
C0
O;0

C0
R;0

#
D
"
dO

b0

O;1

a0

O;1
C dR

b0

R;1

a0

R;1

0

#
: (6.53)

6.4 Two Species with Coupled Reactions: U-V

Up to this point, the treatments have involved reactions for which the discrete
form of the reaction-diffusion equations involves only terms in concentration of the
species to which the discrete equation applies. That is, if there were two substances
involved, O and R as above, then the discrete equation at a point i had terms only in
C0
O for species O, and only C0

R for species R. This made it straightforward to use the
Thomas algorithm to reduce a system like (6.27) to (6.28), treating the two species’
systems separately. They then get coupled through the boundary conditions.

When homogeneous reactions take place, it often happens that some of the
discrete equations contain terms in concentration for more than the one species,
and it is then not generally possible to use the simple Thomas algorithm to reduce
the systems. These systems are said to be coupled. An example will illustrate this
situation.

Consider the catalytic or EC0 reaction pair as described in Sect. 2.4, page 25,
Eq. (2.75). The species designations A and B are now written as O and R, and the
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reaction pair then is

O C e� • R

R ! O :
(6.54)

The derivation of the discrete equations corresponding to this reaction pair will be
given in Chap. 8 and it will suffice here to provide the general form they will take:

C0
O;i�1 C aO;1.i/C

0
O;i C ak.i/C

0
R;i C aO;2.i/C

0
O;iC1 D bO;i

C0
R;i�1 C .aR;1.i/� ak.i//C

0
R;i C aR;2.i/C

0
R;iC1 D bR;i : (6.55)

The coefficients a:;1.i/ and a:;2.i/ arise from the particular spatial approximation
of the second derivative, while the ak.i/ come from the homogeneous chemical
reaction rate, as will be described in Chap. 8.

It will always be the case that the extra term, as seen here in the first equation for
species O, lies at index i only. As stated above, it is not generally possible to start
at the outer limit for X and reduce these two equations to fewer unknowns, as with
uncoupled cases. In fact, in this particular case, this can be done using a slightly
complicated trick but this will not be dealt with here. It is detailed in [9].

There are the usual boundary conditions depending on the experiment performed
on this system. One possible way to handle all this is simply to write out the whole
system as a large linear system, expand that to include the boundary conditions,
and solve. This, “brute force” approach (see below), has in fact been used [10, 11]
and can even be reasonably efficient if the number of equations is kept low, by use,
for example, of unequal intervals, described in Chap. 7. If the equations in such a
system are arranged in the order as above (6.55), it will be found that it is tightly
banded, except for the first two rows for the boundary conditions, which may have
a number of entries up to the number n used for the current approximation.

A better alternative approach is the block-matrix solution method, made widely
known to electrochemists by Rudolph [12]. It was in fact known before 1991 under
various names, notably block-tridiagonal [13–17]—citing only electrochemical
sources—(Newman using it tacitly in his BAND subroutine [15], repeated in an
updated form in [16, p. 619]). Bieniasz [18] provides an extensive history of block
matrix methods from the numerical literature, going back as far as 1952 [19]. If one
lumps the large matrix into a matrix of smaller matrices and vectors, the result is
a tridiagonal system that is amenable to more efficient methods of solution. In the
present context, we define some vectors

C0
x �

"
C0
O;x

C0
R;x

#
(6.56)
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where x can be i�1, i or iC1. The equation pair (6.55) can be partitioned into three
vertical slices involving such vectors, and then rewritten in the matrix–vector form,

C0
i�1 C AiC0

i C a2C0
iC1 D Bi (6.57)

in which we have another vector and two matrices for the coefficients:

Bi �

bO;i
bR;i

�
; (6.58)

Ai �

aO;1.i/ ak.i/
0 aR;1.i/ � ak.i/

�
; (6.59)

and

a2.i/ �

aO;2.i/ 0

0 aR;2.i/

�
: (6.60)

The point of this exercise is that (6.57) now is very like the previous single-species
equation, (6.2), except that it involves concentration vectors and coefficient vectors
and matrices, rather than all scalars as in (6.2). In Chap. 8, details will be given
on how this equation can be reduced to two terms using a block-Thomas process;
suffice it to say here that the process is analogous to that for a single species, making
use of the Nth equation containing the outer boundary vector CNC1. The result is
that the system (6.57) is replaced by a new reduced system, the first few equations
of which are

C0
0 C A0

1C0
1 D B0

1

C0
1 C A0

2C0
2 D B0

2 (6.61)

C0
2 C A0

3C0
3 D B0

3 ;

: : :

very similar in form to the system (6.3). Not surprisingly, the u-v device used for
the single-species case can be devised for the matrix–vector case, and will be called
the U-V device. U becomes a vector and V a matrix. We start by defining starting
values:

U0 D

0

0

�
(6.62)
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and

V0 D

1 0

0 1

�
(6.63)

which clearly allows the tautological statement analogous to (6.15),

C0
0 D U0 C V0C0

0 : (6.64)

Looking at (6.61), first line, we can, analogously to (6.6), write the vector C0
1 as a

linear function of C0
0, that is,

C0
1 D A0�1B0

1 � A0�1C0
0 (6.65)

which is then rewritten as

C0
1 D U1 C V1C0

0 (6.66)

with obvious definitions for the U1 and V1, in view of (6.65) and (6.64). This process
can be repeated for indices i equal to 2; 3; : : : , and the general recursive formulae
for the U and V are as follows:

Ui D A0�1 �B0
i � Ui�1

�
(6.67)

and

Vi D �A0�1Vi�1 : (6.68)

The process, as for the uncoupled case of the u-v device above, needs to be carried
forward only to i D n � 1. It yields n � 1 equations

C0
i D Ui C ViC0

0 (6.69)

which can finally be used for the boundary conditions.
We are still dealing with two species as in the uncoupled case and the same

boundary conditions apply; they are reformulated in the present matrix–vector form
here. As noted above, there is a common condition for all experiments, the flux
condition (6.30), generalised to include the normalised diffusion coefficients, to the
gradient condition (6.32), and we now write out its discrete form fully, pairing the
two species’ terms for each spatial index:

dOˇ0C
0
O;0 C dRˇ0C

0
R;0 C � � � C dOˇn�1C0

O;n�1 C dRˇn�1C0
R;n�1 D 0 (6.70)
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and invoking vector notation, writing C0
i for ŒC0

O;i C
0
R;i


T , this becomes

ˇ0ŒdO dR
C0
0 C ˇ1ŒdO dR
C0

1 C � � � C ˇn�1ŒdO dR
C0
n�1 D 0 (6.71)

which will be one of the two equations needed for all cases. It will be combined
with the particular equations for the cases Cottrell, quasi/irreversible and controlled
current.

For the simple Cottrell case, we have

C0
O;0 D 0 (6.72)

and, for convenience in what follows, this is expanded to include the other species,

C0
O;0 C �

0 � C0
R;0

� D 0 (6.73)

or

ˇ0Œ1 0
C0
0 D 0 (6.74)

in vector form (multiplying by ˇ0 for convenience). At the risk of repetition but in
order to make the next step clear, this equation is now paired with (6.71):

ˇ0Œ1 0
C0
0 D 0

ˇ0ŒdO dR
C0
0 Cˇ1ŒdO dR
C0

1 C : : : Cˇn�1ŒdO dR
C0
n�1 D 0

and these can be combined in one vector–matrix equation,

ˇ0


1 0

dO dR

�
C0
0 C ˇ1


0 0

dO dR

�
C0
1 C � � � C ˇn�1


0 0

dO dR

�
C0

n�1 D 0 : (6.75)

This is now written in the more general form,

ˇ0M0C0
0 C ˇ1M1C0

1 C � � � C ˇn�1Mn�1C0
n�1 D 0 (6.76)

with

M0 D ˇ0


1 0

dO dR

�
(6.77)

and

Mi D ˇi


0 0

dO dR

�
(6.78)



116 6 Boundary Conditions

for all 0 < i < n. This equation contains the vectors C0
i, and we can apply the U-V

relations (6.69) to put it all in terms of the one unknown vector C0
0,

ˇ0M0

�
U0 C V0C0

0

�C � � � C ˇn�1Mn�1
�
Un�1 C Vn�1C0

0

� D 0 (6.79)

and, defining the matrices

P �
n�1X
iD0

ˇiMiVi ; (6.80)

Q � �
n�1X
iD0

ˇiMiUi ; (6.81)

Eq. (6.79) then becomes

PC0
0 D Q (6.82)

which can readily be solved for the boundary values.
It will be seen that the equation always takes this form except for constant current

and in that case, only a slightly different one. The differences lie in the definitions
of the M matrices.

For the reversible case, apart from the flux condition, there is the Nernst equation,
previously shown to be

C0
O;0 � exp.p0/C0

R;0 D 0 (6.83)

now written as

�
1 � exp.p0/

�
C0
0 D 0 (6.84)

which is combined with the flux equation (6.71). This time the two equations are not
presented, because they follow the above pattern for the Cottrell case, ending with
the same equation (6.82), with P and Q generated as sums as in (6.80) and (6.81),
the difference being in the first M, here given by

M0 D ˇ0


1 exp.p0/
dO dR

�
(6.85)

and the other Mi exactly as in (6.78).
For the quasireversible case, the flux condition is combined with the Butler–

Volmer equation, as given above in (6.39), (6.40) and (6.41), the latter now to be
written in long-hand as

ˇ0C
0
O;0 C ˇ1C

0
O;1 C � � � C ˇn�1C0

O;n�1 D KfH

d0
C0
O;0 � KbH

dR
C0
R;0 (6.86)
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and collecting terms, again pairing the two boundary values,

ˇ0

�
1 � KfH

dOˇ0

�
C0
O;0 C KbH

d0ˇ0
C0
R;0

�
C ˇ1C

0
O;1 C � � � C ˇn�1C0

O;n�1 D 0 (6.87)

which leads again to the same equations, with the only difference here lying in M0,
now given by

M0 D
"�
1 � Kf H

dOˇ0

�
KbH
dOˇ0

dO dR

#
(6.88)

and again, the other Mi as in (6.78).
The totally irreversible case is again obtained by setting Kb to zero in the above

equations.
This leaves the controlled current case. As noted above (Sect. 6.3), it is the

current, not the gradient, that is controlled, so the equation is

G D d0
H

n�1X
iD0

ˇiC
0
O;i (6.89)

where G is the dimensionless current imposed. So, expanding the sum, working in
the (zero-weighted) terms in C0

R;i and going straight into the vector notation, this
becomes

ˇ0 Œ1 0
C0
0 C ˇ1 Œ1 0
C0

1 � � � C ˇn�1 Œ1 0
C0
n�1 D GH=d0 (6.90)

and we note that this differs from all the equations up till now in this section, in that
the right-hand side is not zero. Combined with the inevitable flux condition (6.71),
this yields the slightly different matrix/vector equation

PC0
0 D

"
GH
d0

0

#
C Q (6.91)

again readily solved.

6.5 Brute Force

In the last two sections, we have applied increasingly tricky devices to solve what
amounts to systems of equations, in order to make their solution efficient. Even
the two-species uncoupled case involved the generation of the u and v vectors and



118 6 Boundary Conditions

the solution of small (2 � 2) systems to obtain the boundary values. In the case of
coupled systems, the problems mount and matrix–vector equations had to be used.

One might ask, is all this necessary? It is not. In the next chapter, unequal
intervals are described, and these make it possible to reduce the number of points
N in space to quite reasonably small values. Whereas with equal intervals we might
need some hundreds of sample points along X, with unequal intervals we can make
do with as few as 15 or so. This means that systems such as (6.2) have only as few
equations as that or, with two species involved, twice that many (not counting the
boundary equations for the moment). The full systems are strongly banded if the
equations are ordered suitably, and this banding invites the use of more efficient
methods of solution, but if computers can do it fast enough by simply solving the
whole system without regard to the bandedness, tricks might not be needed. All we
then need to do is to add the equations for the boundary conditions (that is, include
the C0

0 variables in the system) and call a matrix solver for the solution. This was
mentioned by Rudolph [20] but was at the time considered “prohibitively expensive”
in computer time. Meanwhile, however, computers have become much faster and the
idea has been investigated [11, 21] and found, in some cases, to be about as good as
the tricky methods and in some cases even better. As well, there are some reasonably
simple methods of varying complexity to make such whole-system solutions more
efficient. These will be mentioned below. First, a more concrete description of what
is meant is presented here.

A simple example would be the single-species case and Cottrell. Then, the
system (6.2) would be augmented by adding, at the top, the Cottrell condition
C0
0 D 0 and the matrix equation is

2
666666664

1 0 : : :

1 a1.1/ a2.1/ 0 : : :

0 1 a1.2/ a2.2/ 0 : : :
: : :

: : :

1 a1.N�1/ a2.N�1/
1 a1.N/

3
777777775

2
666666664

C0
0

C0
1

C0
2
:::

C0
N�1
C0
N

3
777777775

D

2
666666664

0

b1
b2
:::

bN�1
bN � a2.N/C0

NC1

3
777777775

(6.92)

where the known outer boundary term, C0
NC1 has been carried over to the vector

of knowns. This is a trivial example but serves to explain the idea. It is in fact a
tridiagonal system, amenable to the Thomas algorithm to be described in Chap. 8.
Extension to the other more complicated cases is obvious, except where there are
two species, when the optimal order of the unknowns vector C0 is to pair the terms
for the two species, that is,

C0 � �
C0
O;0 C

0
R;0 C

0
O;1 C

0
R;1 : : : C

0
O;N C0

R;N

�T
(6.93)

which ensures tight banding.
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Extension to the other less trivial cases appears straightforward. Most boundary
conditions will put up to 2n elements into the first and second rows. For those cases
involving coupled equations, the rows after the second will contain five elements. It
can be seen from the first row of (6.55) that there needs to be a zero inserted after the
C0
O;i�1, for the nonexistent C0

R;i�1, but not a similar insertion after the last element,
or a total of five. Thus, if one eliminates the excess elements in the first two rows,
one can then use a solver for pentadiagonal systems, which is also quite feasible.

6.6 A General Formalism

Sometimes, when trying out a new method when efficiency is not (initially) of
highest priority, or when doing a stability study, it can be of advantage to have
a general formula for all possible boundary conditions. An early use of such a
formula is seen in [22], and the formula is also seen in some texts such as [2]. In the
electrochemical context, it has been presented a few times in recent years [23–25].
The formula is given in the form of [23]

g C rc0 � d

�
@c.0; t/

@x

�
D 0 : (6.94)

The constants g, r and d can take on various values to express any given boundary
condition. Thus, if we set d D 0 and r ¤ 0, we are left with the general form of
the Dirichlet condition and specifically with r D 1 and g D 0 we have the Cottrell
condition, while Eq. (6.94) expresses Robin conditions. The constant r expresses
the heterogeneous rate constant (this formula only considers a single species, so an
irreversible reaction is implied).

The Cottrell case is simple, and needs no further comment. The other two cases
can be usefully expressed in a different manner. The derivative is expressed as the
n-point approximation, giving

g C rc0 � d
n�1X
iD0

ˇici D 0 (6.95)

or, removing the c0 element from the sum,

g C .r � dˇ0/ c0 � d
n�1X
iD1

ˇici D 0 (6.96)
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giving

c0 D
d
n�1X
iD1

ˇici � g

r � dˇ0
(6.97)

and dividing by �ˇ0 and setting d D 1,

c0 D �b

ˇ0

(
n�1X
iD1

ˇici � g

)
(6.98)

with

b D
�
1 � r

ˇ0

��1
: (6.99)

The convenient thing here is that we now have the whole spectrum of conditions
from a very fast reaction (b D 0, implying r ! 1), through medium fast reactions
(medium values of b and thus r) to the controlled current case (b D 1). The first
case also encompasses the Cottrell case.

This formula has been used in some stability studies [23, 26, 27].
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Chapter 7
Unequal Intervals

In the preceding chapters, a grid with equal intervals in both time and space was
assumed (Fig. 1.1, page 3). There are several reasons for deviating from equal
space intervals. Firstly, one wants both to minimise the number of points over the
concentration profile and, at the same time, to have close spacing near the electrode.
Secondly, in some simulations, there arise sharp concentration changes somewhere
in the diffusion space, usually adjacent to the electrode. One then wants to have
close spacing in such regions in order to be able to simulate concentration changes
at all. This points to adaptive techniques; but first the simpler fixed unequal grid
techniques will be dealt with.

In this chapter, only one-dimensional unequal intervals will be described.
Mapping techniques for higher-dimensional simulations are left to Chap. 12.

Consider Fig. 2.4 on page 17, showing the concentration profile for a Cottrell
simulation at different times. It is clear that at small T the concentration change
occurs only over a narrow range of X close to the electrode, so that equal intervals
in X would be wasteful at larger X. An unequal spacing of the intervals could not
only provide more detail near the electrode where it is needed, but also make do
with fewer points by wider spacing far away from the electrode. So some kind of
grid stretching is indicated on this account.

If there are homogeneous chemical reactions, they may give rise to reaction
layers that can, for high reaction rates, be very thin. In order to get reasonable
simulation results, at least a few points are needed within such a layer. If equal
intervals in X are used, this means using a very large value of N and correspondingly
long computation times. One needs to have an idea of the thickness, ��, defined on
page 25 (2.79), and set the position of the points accordingly, as described in the
following sections.

There are several approaches to implementing grid stretching. The two com-
peting approaches are (1) the direct application of a stretched grid, discretising
directly on the unequal grid, and (2) the transformation of the equation to new
coordinates and using equal intervals there. There is a wealth of literature on this
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subject. Noye [1], and Hunter and Jones [2] recommend transformation, as does an
early study by Crowder and Dalton [3]. The much cited comparison by Kalnay de
Rivas [4] reached the same conclusion. However, Rudolph [5] showed conclusively
that, under the conditions of electrochemical simulations at least, the situation is
the reverse. He showed that both the current approximation and the second, spatial,
derivative as computed directly from an unequally spaced grid are more accurate
than those computed from a transformed grid with equal intervals. The reason for the
better performance of direct discretisation appears to be that concentration profiles
tend to be close to linear near the electrode, so that the current approximation can
be calculated quite well with only a few points (Rudolph always uses just two),
whereas in the transformed space (see below, Sect. 7.1), the profile becomes curved
near the electrode and more points are needed for a good approximation. Exactly
why the second, spatial, derivative is also more accurate when calculated directly is
not clear. Numerical experiments performed by the present authors show that, for
several different (artificial) profile functions, including the realistic one of erf.x/,
which often resembles real concentration profiles, the second derivative calculated
on the transformed grid is poor, especially near the electrode, where accurate values
are most needed. Direct calculation on the unequal grid yields roughly the same
accuracy right across the profile.

As well, it will be seen that the formulation of the second spatial derivative on
a general grid, spaced in some unspecified way, is rather flexible and permits easy
replacement, in a given program, of the stretching function used including, if one
desires, equal spacing, or even arbitrary placement of each point.

7.1 Transformation

Transformation for electrochemical work was proposed in the now classic paper by
Joslin and Pletcher [6]. They described a transformation, say from X to Y, such that
equal intervals in Y are a mapping of (correspond to) unequal intervals in X. The
aim is to find a transformation function which produces in Y-space a concentration
profile that resembles a straight line as much as possible.

The general treatment is as described by Joslin and Pletcher [6]. Assume an
arbitrary transformation function, Y D f .X/ mapping points in X onto the new
axis Y and its inverse, X D g.Y/. Then the right-hand diffusion term in the diffusion
equation, @

2C
@X2

becomes, by the rules of elementary calculus,

@

@X

�
@C

@X

�
D 1

g0.Y/
@

@Y

�
1

g0.Y/
@C

@Y

�
: (7.1)



7.1 Transformation 125

This can be expanded further to

@

@X

�
@C

@X

�
D 1

g0.Y/

�
1

g0.Y/
@2C

@Y2
C
�
@

@Y

�
1

g0.Y/

��
@C

@Y

�
: (7.2)

The work of Seeber and Stefani and Feldberg (both in 1981) [7, 8] indirectly
provides a useful transformation function that has some convenient properties. The
function is

f .X/ D Y D ln.1C aX/ (7.3)

where a is an adjustable parameter. Inserting this into (7.2), recognising that

g.Y/ D .eY � 1/=a and thus g0.Y/ D eY=a ; (7.4)

the new dimensionless diffusion equation in Y-space is then

@C

@T
D a2e�2Y

�
@2C

@Y2
� @C

@Y

�
: (7.5)

Note that if the original equation to be solved contains homogeneous chemical
terms, these do not change upon transforming the equation, since they give rise
to additional terms not involving X or Y.

The transformation function (7.3) is mathematically (approximately) equivalent
to the stretching function (7.16), as is shown in Appendix C, where the relation
between the respective adjustable parameters is given.

The gradient G is conveniently calculated on the grid in Y, and it is easy to show
that this is simply

G D @C

@X

ˇ̌
ˇ̌
XD0

D a
@C

@Y

ˇ̌
ˇ̌
YD0

(7.6)

which seems very convenient, requiring only a call to the routine that evaluates
the G function in Y-space and a multiplication by the parameter a. The problem,
as Rudolph showed [5], is that this yields a poor G-value, unless a large n is
used (6 or even 7). This is not a bad thing in itself, as we have functions for G
that we can simply call. However, derivative boundary conditions involving many
points become messy. Rudolph uses just two points, arguing that if the first point
is sufficiently close to the electrode, as it is with severe stretching, two points are
good enough, and this simplifies the discretisation of the boundary conditions a lot.
There are some arguments for using n D 3; Bieniasz [9, 10] points out that if a
second-order second spatial derivative is used for the simulation, then a matching
second-order (3-point) G-approximation is best. On the other hand, the second
spatial derivative directly discretised on using three points on an unequal grid is
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in fact a first-order approximation, arguing for Rudolph’s two-point G. This will be
a matter of individual choice.

7.1.1 Discretising the Transformed Equation

Transformation (7.3) leads to the new diffusion equation (7.5) in Y-space. Although
it is fairly obvious how the new right-hand side is discretised, for completeness, this
will be described here.

Instead of a number of sample points in X, we now have a number of equally
spaced points along the new coordinate Y with a spacing of ıY. Without considering
which simulation algorithm is to be used, we discretise the new Eq. (7.5) at the point
Yi as follows:

ıCi � ıTa2exp.�2Yi/
�
Ci�1 � 2Ci C CiC1

ıY2
� CiC1 � Ci�1

2ıY

�
(7.7)

(with ıCi D C0
i � Ci) and given that Yi D i ıY, this rearranges to

ıCi � i
�
.1C 1

2
ıY/Ci�1 � 2Ci C .1 � 1

2
ıY/CiC1

�
(7.8)

with i defined as

i D a2 exp.�2iıY/ ıT
ıY2

: (7.9)

The coefficients in the right-hand term in brackets in (7.8) can be precomputed, as
can the row of i values. Further details of how all this is implemented are given in
Chap. 8 for the respective simulation algorithms.

As mentioned above, Rudolph [5] pointed out that this discretisation yields very
poor values and leads ultimately to poor simulation performance, compared to
direct discretisation on an uneven grid, see below. Tests show that particularly at
small X values, near the electrode where the greatest changes occur, the second
spatial derivatives as seen in (7.7) are approximated poorly. Rudolph [11, 12] and
Bieniasz [13] showed that if what we might call the semi-transformed equation (7.1)
is used, rather than the fully transformed equation, this problem is eliminated. Doing
this in a consistent manner, and assuming general transformation functions f .X/ and
g.Y/, we can write for the ith point the approximation

1

g0.Y/
@

@Y

�
1

g0.Y/
@C

@Y

�
� 1

g0.Y/
1

ıY

0
@ CiC1 � Ci

g0.Y
iC 1
2

/ıY
� Ci � Ci�1

g0.Y
i� 1
2

/ıY

1
A : (7.10)
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Using the transformation (7.3) and thus substituting for g0.Y/ as given in (7.4) at the
indices given and rearranging a little, this becomes

ıCi � i
�
exp.� 1

2
ıY/.CiC1 � Ci/ � exp. 1

2
ıY/.Ci � Ci�1/

�
(7.11)

with i as defined above (7.9). Some tests indicate that this is a much better
approximation, giving derivatives of roughly the same accuracy over the whole
spatial range. The accuracy is comparable to that of direct discretisation on the
uneven grid, described below. Incorporation into the whole diffusion equation, as
was done for the completely transformed diffusion equation in (7.8), is obvious
from here on.

7.1.2 Choice of Transformation Parameters

We have seen from the above that, in some way or other, we choose the value of
H1 D X1. We also have a maximum value Xmax along X, which depends on the
experiment. Using (7.3), these two values provide the two equivalent values in Y-
space. The Y-value corresponding to X1 is also the interval in Y, as these are all
equal. The equations are

ıY D ln.1C aX1/ (7.12)

and

YN D ln.1C aXmax/ (7.13)

which set the number of intervals in Y,

N D YN=ıY (7.14)

(rounded up, thus correcting YN slightly). Knowing X1, there are then two parame-
ters to be determined, a and N. These are dependent on each other, so the choice of
one sets the other.

The easy alternative is to set a. One develops a feeling for what value might be
a good one. Having set this value and knowing that of Xmax, the above Eqs. (7.12)–
(7.14) yield N.

Alternatively, one might want to set X1 and N and find an a value that provides
these. Dividing (7.13) by (7.12) and noting (7.14), we obtain

f .a/ D N ln.1C aX1/ � ln.1C aXmax/ (7.15)

which can be solved numerically for that a which gives f .a/ D 0. There are two
solutions. The trivial (and unwanted) solution is a D 0. What makes the calculation
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rather easy is the fact that we do not need a very accurate value for the a parameter.
So a rough binary search will very quickly find a suitable value (see such elementary
texts on numerical computing as [14–16]). A binary search will be found better
here than the generally more efficient Newton method, which can point in the
wrong direction and converge to the trivial solution, or lead to numerical problems
(negative arguments to the log function).

Lastly, it is possible also to set a, Xmax and N, and to use them to find ıY and
thereby X1. If it is done on a calculator beforehand, one sees what value results,
before committing the chosen parameters to a simulation run.

7.2 Direct Application of an Arbitrary Grid

A stretched stack of boxes was used by Seeber and Stefani and by Feldberg [7, 8]
for the box-method, to be described in Chap. 9. Pao and Dougherty [17] developed
the same idea (and stretching function) in 1969, in the context of fluid dynamic
simulations. This is the simple placement of points at increasing intervals, in some
suitable point distribution or stretching function, and discretisation of the second
derivative of concentration along X on that unequal grid.

There are various ways of specifying the stretched point placement. The current
favourite appears to be the exponentially expanding sequence of intervals H along
X [7, 8],

Hi D Hi�1 � (7.16)

or

Hi D H1�
i�1 (7.17)

starting at some chosen H1 and choosing the stretching parameter � suitably. In
Feldberg’s case, the points thus generated are in fact box walls, but one could equally
well use them with the point method as concentration nodes. Also, Feldberg uses a
slightly different notation, setting not the � used here, but the related parameter
ˇ D ln.�/. The value of � is chosen such that H1 is rather small, but the number of
points in the diffusion region is also rather small. While with equal intervals, some
hundreds of points might be needed, a suitable choice of � (for example, 1.2–1.5)
can reduce their number to 10–20 (Feldberg suggests a ˇ range 0 : : : 0:5).

As will be seen below, the way stretched intervals are used here is that a set
of positions in X are specified. We must therefore convert the intervals formula
above (7.17) to one in terms of X. For any N > 0,

XN D H1

NX
kD1

� k�1 D H1

N�1X
kD0

� k (7.18)
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and this is readily summed to give the expression

XN D H1
�N � 1

� � 1 (7.19)

which is also the expression seen in Feldberg [8], albeit in terms of ˇ. In practice,
we find that � should not exceed about 1.2 or so [18], corresponding to a ˇ value
just under 0.2. However, a recent work by Martínez-Ortiz et al. [19] contradicts this,
using expansion factors up to 2 and obtaining good results.

The drawback of this point sequence (and most others except a sequence of equal
intervals) is that the three-point approximation to the second derivative with respect
to X is then a first-order approximation, as was mentioned in Chap. 3, Sect. 3.8.
The use of more than three points is thus indicated, and such approximations are
described in Chaps. 3 and 9, and some formulas are given in Appendix A.

There is one unequal sequence of points for which the second derivative, when
applied directly to the points, retains the second-order nature of an even point
spacing. This was found by Sundqvist and Veronis [20] in 1970. Their stretching
function was

Hi D Hi�1.1C ˛Hi�1/ : (7.20)

In the original form, the ˛ factor was effectively normalised by dividing by the total
extensionXmax of the diffusion space. In the present context, a suitable normalisation
might be division by H1, giving

Hi D Hi�1.1C ˛Hi�1=H1/ : (7.21)

Then, this function will yield sequences somewhat similar to exponentially expand-
ing sequences, by taking ˛ equal to something like 1

2
.� � 1/. This sequence has

not become popular (perhaps because it has escaped notice). It might, however,
be a useful alternative. Interestingly, Saul’yev mentions [21, p. 149] a private
communication from A.A. Samarskii, who found precisely the same relation (7.20)
and that it permits second-order approximations to the three-point second derivative.

A comparison of the two functions discussed here is shown in Fig. 7.1, presenting
the distribution out to about X D 6 for the exponential sequence (7.16) for � D 1:5,
and the S&V sequence (7.21) for ˛ D 0:2. Both were started with a first interval
H1 of 0.05. The exponential sequence gives 10 points, ending at X D 5:67 and
the other sequence gives 9 points ending at X D 6:36. It is seen that the S&V
sequence produces a more drastic expansion of the spacing. Preliminary numerical

Fig. 7.1 Points spaced unequally with the two functions
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experiments by the present authors indicate that the second spatial derivatives on the
S&V sequence are indeed mostly very accurate, but decline in accuracy at large X.
In two comparison programs, one using the exponentially expanding and the other
the S&V sequence, both starting with a base interval of 0.01 and using 50 points
in the X range 0–6 and discretising directly, a Cottrell simulation using 100 steps
in time each of length 0.01, the exponentially expanding sequence showed an error
in the final current at T D 1 of about 10�3 (relative), whereas the S&V sequence’s
error was 10�2. So, it appears that this point sequence might not be so good.

There is an inherently stretched grid implementation in the simulation technique
called orthogonal collocation, to be discussed in Chap. 9. It will be seen that this can
be extremely efficient but it suffers, as all fixed stretched grids do, from inflexibility,
as is noted in general in Sect. 7.3.

An interesting special case, mentioned in Chap. 3, is that of the second derivative
on four points, u00

2.4/. For arbitrarily (unequally) spaced points, this is a second-
order accurate approximation and, as described in Chap. 9, it has some advantages.
It allows the use of an efficient extended Thomas algorithm, rather than a penta-
diagonal solver or a sparse solver required if more than four points are used for
the approximation. There is one special case of this approximation, � D p

2, that
is interesting in that it yields a third-order approximation, as found by Martínez-
Ortiz et al. [22]. These authors also derived some conveniently compact specific
approximation formulae for the exponentially expanding grid, for most cases of
interest, obviating the need for a numerical computation of the approximation
coefficients. The value

p
2 may appear a little large but if only a few points and a

very small first interval are wanted, it might be useful. One would then have to find
the first interval that satisfies the � value and the desired number of points in the
space region, and this can be done by simple application of (7.19). As an example,
if we want N D 14 and Xlim D 6, this makes H1 D 0:0195691.

We have recently introduced another sequence of point positions, that we call
damped exponentially expanding, or at times sigmoidal spacing [23, 24]. It becomes
useful in cases where there are derivative boundary conditions at a far boundary.
Then the large intervals resulting there from exponential expansion give rise to
inaccurate derivative approximations, and smaller intervals are desirable. This can
be realised by the usual exponentially expanding sequence going only halfway and
then contracting again, but at the far boundary, the intervals need not be as small as
are needed at the electrode, or at discontinuities such as electrode edges or corners
met with in two-dimensional systems (see Chap. 12).

The sequence is similar to (7.16) but with the expansion factor now being damped

�i D 1C .�1 � 1/ exp.�aXi=Xmax/ (7.22)

with a a suitable factor, which we find about optimal at a D 6. Thus, the intervals
expand at a decreasing rate, and towards the far boundary, they tend to a constant
value, hence the term “sigmoidal”. Figure 7.2 shows the result, and the sigmoidal
nature of the intervals in the damped sequence.
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Fig. 7.2 Comparison of an unconstrained and damped exponentially expanding point sequence,
along the stretch 0 <D X <D 1. The base H1 was set at 10�4, giving, for 40 points, a fixed �
of 1.21 for the unconstrained sequence and a base �1 of 1.35 for the damped sequence. Top plots,
unconstrained exponentially expansion: (A1), positions X and (A2), intervals Hi. Bottom plots,
damped expansion: (B1), positions X and (B2), intervals

The expression (7.22) does not lead simply to one in X as (7.19), so a numerical
search for the base �1 that satisfies the requirement that XN D Xmax must be followed
by the calculation of the X positions as the running sum

Xi D
iX

kD1
Hk : (7.23)

All this is done in the subroutine DAMPED_EXPANSION in the Examples
Appendix E.

7.2.1 Choice of Parameters

For any point sequence and a given stretching function, there are several parameters
to choose. One is always N, the number of points along the profile. The others
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are the length of the first interval H1 or (the same thing) the position of the first
point next to the electrode X1. This might then determine the function parameter.
In most cases, setting X1 is desirable; for example, in order to achieve a certain
desired accuracy in the gradient G. If this is so, in both cases of the exponentially
increasing intervals function (7.17) and (7.21), the stretching parameter then needs
to be searched for by numerical means. Let the largest X-value be Xmax, and the
number of internal points be N. We have set the wanted X1. For exponentially
expanding intervals (7.17) we then apply (7.19) and seek a � value that satisfies it. A
simple numerical (for example, binary) search finds � . An example of such a search
is shown in the function EE_FAC described in Appendix E. Less conveniently, one
might choose X1 and � , and find out what N then becomes, by a simple calculation.
This is deemed less likely because one would usually want to have control over
the N value. The same goes for a damped exponentially expanding grid, where the
starting �1 must be found.

7.2.2 Current and C0 Approximations

The formula (3.25) on page 45 can be used as is for approximating the current (or
in fact the spatial gradient) on an arbitrary grid. The coefficients must be computed
appropriately, and this can be done conveniently using the Fornberg algorithm [25],
implemented in the routine G0FORN described in Appendix E.

For chronopotentiometry, where we have a known gradient and wish to compute
the value of the concentration at the electrode that produces this value, the same
formula as (5.10) on page 93 applies, again with appropriate coefficients. Again the
Fornberg algorithm is most convenient and this is implemented in the Examples
routine C0FORN.

7.3 Concluding Remarks on Unequal Spatial Intervals

The question arises of how low an N value it is possible to work with and still get
good results. The simulation package DigiSim due to Rudolph and Feldberg [26]
routinely uses as few as 14 and is able to achieve sufficient accuracy in the current.
This depends on one’s definition of “sufficient”. If 0.1 % accuracy is wanted, about
40 points in space might be optimal.

Clearly also, in order to choose a suitable set of parameters, one must know the
requirements before the simulation. If some homogeneous rate constant changes
during a series of program runs (for example, one in which such a rate constant is
searched for), then the grid parameters should change. This makes adaptive grids
more useful. These are described below.

As for the choice between direct discretisation on an arbitrarily spaced grid or the
formulae for the semi-transformed or the transformed diffusion equation, the present



7.4 Unequal Time Intervals 133

authors now incline towards the first of these. Some formulae for the derivatives
on arbitrarily spaced points are given in Chap. 3 and Appendix A, but in practice,
it is convenient to use the Fornberg algorithm implemented in FORN, also in the
same Appendix. The coefficients applying to each point can most conveniently be
precomputed.

7.4 Unequal Time Intervals

Just as space can be divided into unequally spaced intervals, so might time also be
unevenly divided. As with spatial intervals, there is the choice between discretising
on an uneven time grid or using a transformation to a new time scale. Since, except
for BDF methods, one usually differentiates with respect to time using only two
time points (levels), transformation does not make sense here.

There can be several reasons for wanting unequal time intervals. One is that one
may not want results at many equally spaced time intervals and only a few, possibly
expanding, time intervals are wanted. This can of course be realised by a number of
equal steps in time but only displaying results where wanted. More relevant are
simulations of, for example, pulse voltammetry, where large changes occur just
after the pulse onset but they slow down after that, so that expanding intervals are
appropriate. Initial steps in this direction were taken by Flanagan et al. [27], Dillard
et al. [28] and Nikolić [29], who used two different time intervals: largish intervals
when the current does not change much, and finer intervals (1/100 to 1/9 as large)
just after a pulse. Seeber and Stefani [7] used a rather complicated scheme, in which
they used expanding intervals in space and direct discretisation on that grid; and in
recognition of the fact that, far away from the electrode, the larger space intervals
also made larger time intervals possible there, used that as well. Klymenko et al. [30]
combined equally divided steps, followed by exponentially expanding time steps in
a simulation of double potential step chronoamperometry.

Another reason for starting with a small interval and expanding from there is
the use of simulation methods that have an oscillatory response, such as Crank–
Nicolson, alternating directions implicit (ADI) and DuFort/Frankel (see Chaps 8
and 9). These methods are less oscillatory for small time intervals. There are several
choices. For Crank–Nicolson, one might divide the first time step into subintervals,
either equal (the Pearson method [31]), or expanding subintervals; both have been
investigated [32, 33]. If choosing exponentially increasing time intervals over some
period � , which may be the total simulation period, a pulse duration or (see below) a
single whole time interval to be subdivided, one divides the period into M intervals
of length ıtk; k D 1; : : : ;M. Assume the recursive relation

ıtk D � ıtk�1 (7.24)
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and

MX
kD1

ıtk D � (7.25)

(note that these equations are of the same form as (7.16) and (7.17)). Peace-
man and Rachford [34] used the technique for the first time in 1955, in their
classical paper describing the ADI method (Chap. 12) and this has been studied
in an electrochemcial context [35–37]. As will be mentioned in Chap. 9, ADI,
a much used method for two-dimensional simulations, can produce oscillations
and unequal time intervals are routinely used [38–47], naming only publica-
tions of the last 10 years. None of these mentions oscillations. In [39] we
see the remark “in order to maximise the efficiency..” on expanding time inter-
vals, but in most works there is no explanation given. Some have used many
small equal intervals, which can also damp oscillations, also without explanation
[48–50].

There is no problem with varying time intervals with two-level simulation
methods, but with a method like BDF, there is the problem that one needs multi-
point time derivatives calculated from unequally spaced points in time. Feldberg
and Goldstein [36] show how to do this and even show how to apply the Feldbergian
correction of half a time interval in this case, that becomes necessary when using
the simple start for BDF, described in Chap. 4 (see also the consistency proof for
this procedure in Appendix C).

7.4.1 Implementation of Exponentially Increasing Time
Intervals

A special case of exponentially increasing intervals, applied only to the subdivision
of the first time interval with interval doubling, that is, the case � D 2, was applied
by Britz and Østerby [51]. Mocak et al. [52] suggested “gradually increasing D�”
(meaning time intervals). In [51], the sequence for M such steps was the sequence
of fractions 2�MC1; 2�MC1; 2�MC2; 2�MC3; : : : ; 1

2
. Note that the smallest fraction

is applied twice. The general formula using (7.24) and (7.25) is implemented in
a different way. This was done in a recent paper [32], using subdivision of the
first time interval, in order to damp the oscillations often produced by the Crank–
Nicolson method (Chap. 8). The form of the equations for the required parameters
(M, � , size of the first subinterval) is exactly like that for exponentially increasing
spatial intervals, Eqs. (7.16)–(7.19).
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7.5 Adaptive Interval Changes

The most flexible strategy is to adapt intervals, in space or in time, according
to need at any particular time during the simulation. Ablow and Schechter refer
to campylotropic or curvature-seeking coordinates [53]. It was noted above that
fixed unequal spatial intervals might not be suitable if, for example, a reaction
layer becomes too thin even for the first few intervals to lie within it. Worse
still, the method described above, in which points are most closely spaced near
the electrode, cannot accommodate sharp changes in concentration changes that
occur away from the electrode, as can indeed happen. Bieniasz [54] described,
in 1994, a system involving a second-order homogeneous chemical reaction, in
which a sharp concentration peak appears in the solution for one of the species.
Only adaptive techniques can handle this situation. This was rediscovered in 2010
[55, 56], as pointed out in [57]. We distinguish between adaptation of spatial and
temporal intervals. There is a vast numerical literature on this topic, and just some
selected citations are given here. Bieniasz wrote a series of articles in which he
introduced the idea to electrochemical simulations. In [9, 58], he described the use
of a fixed number of grid points, moved about as required. He then [54] applied this
to a concentration hump as mentioned above. Bieniasz later turned to a different
technique [59], which he called “patch-adaptive”, that starts with a coarse but evenly
spaced grid, to which new points are added (and perhaps removed again later)
midway between existing points, as required. He also applied time-step adaptation
[60]. Nann and Heinze [61, 62] meanwhile developed a finite element method in
which points (nodes) are added where needed, an idea carried forward, refined
and applied to two-dimensional systems by Harriman et al. [63–67]. Ludwig and
Speiser [68–70] applied an adaptive finite element algorithm to spatial integration,
controlled by a hierarchical a posteriori error estimator. Time step adaptation, a
standard in the literature on odes (see such texts as [71, 72]), was first applied by
Bieniasz [60] to electrochemical simulation (see below). The references cited here
include citations of the important works within the larger numerical literature.

7.5.1 Spatial Interval Adaptation

The single reference to Thompson’s survey [73] must suffice to represent the
numerical literature, and the references in the papers of Bieniasz [9, 54, 58, 59]
provide further background.

Bieniasz began his series with an exploration of moving grids [9, 58], using a
fixed number of points. As a given simulation develops, the program determines
whether the spacing needs to be closer or wider across the concentration profile,
in a preliminary forward step, and then adjusts the point positions. This is called
regridding. The criterion for moving the points is a sensitive issue, on which there is
some disagreement in the literature. The essence of all schemes is to produce a so-
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called monitor function [74] or a function based on it, that in some way resembles
the simulated variable’s profile, and then to slice this into equal vertical intervals,
producing new points along X which then, hopefully, place points where they are
most needed. Dorfi et al. [75] suggest using a monitor function such as

M.i/ D
p
˛ C .du=dx/2 (7.26)

at every point i, where u is the variable to be computed. The value of ˛ is given as
unity in older papers such as that of Blom et al. [74], but Bieniasz found [9, 58] that
a smaller value like 0.0005 is better in the present context. This monitor function is
now integrated with respect to x to produce the monitor profile, generally given the
symbol �:

�.x/ D
R x
0
M.x/ dxR xmax

0
M.x/ dx

(7.27)

(note that it is normalised by its value at the outer limit for x, xmax, so that it rises to
unity). An algorithm is then applied to it to slice it into equal vertical intervals and
to find the x-positions that correspond to them. The function (7.26) is also referred
to elsewhere [73, 76], to name just a few references. Blom [74], on the other hand,
recommends the use of the second derivative,

M.i/ D
q
˛ C jd2u=dx2j/ (7.28)

and Bieniasz follows this suggestion [9, 58]. The reason is (Bieniasz, 2001, private
communication) that the first derivative is not itself of great significance, if the
second derivative is small in the diffusion equation, so the second derivative
indicates places in the profile where things are changing.

The procedure is then as follows. At a given time, a trial step is taken to
the next time level. This produces a provisional new concentration profile. From
this, the �-function (7.27) is generated and from it, a new set of positions for the
points. Now the concentrations are interpolated at these points, between the present
concentration points, and the step to the next time level repeated on the new set of
points.

Let us provide an example. We take a uniform grid of just 20 points in the range
0 � X � 6 and assume a Cottrell concentration profile at time T D 0:5 shown
in Fig. 7.3. This is a little artificial, as one would never carry out such a drastic
regridding, but it will illustrate the method better than what usually happens (small
changes over a given time interval). It amounts to taking a huge step of 0.5 in T
and somehow having obtained a rather accurate new concentration profile. Against
the advice of Blom [74] and Bieniasz [9, 58] (see below), we compute second
derivatives of the profile at all the node points, using the usual central three-point
formula, except at the electrode, where an asymmetric three-point formula is used
(see Sect. 3.8, page 51 and Appendix A). These are all first-order accurate if the
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Fig. 7.3 Some profiles derived from a Cottrell profile at T D 0:5

Fig. 7.4 Regridding for the Cottrell profile in Fig. 7.3

intervals along X are not equal and we obtain the function M.X/ in Fig. 7.3, plotted
point to point. It is integrated to �.X/ using the trapezium method. Normalisation
is to its final value, at Xmax D 6. �.X/, ranging from zero to unity, is now inverted
to X.�/ and 20 X-values found for it at equal intervals in � of 0.05 by interpolation.
Blom et al. [74] and Bieniasz [9, 58] cite a paper by de Boor [77] for this process, but
it is in fact not very complicated to implement using a standard interpolation routine.
Now, if one were to go on, as one normally would, a new concentration profile at
the new set of positions along X at T is computed, again by interpolation. The shift
in positions is indicated in Fig. 7.4 and it is seen that there is now a wide spacing at
the far end, and a crowding of points, not near the electrode but some distance away
from it, where the monitor function is maximum. That is also roughly where the
greatest changes in concentration occur during the next time step; this supports the
argument in favour of the second derivative in the monitor function. Note that the
20 points here are a rather small number, chosen to make the figure clearer. Bieniasz
normally uses about 50, so that the possibly excessive spacing at the far end would
not be so wide. Also, to some extent the wide spacing is a result of the large step
in time taken in the example. A second regridding on the new grid shown in these
figures does in fact lead to a smaller gap at large X and this is what one would obtain
if a number of smaller steps had been taken.

Some remarks are in order, starting with the purpose of the ˛ term in (7.28).
As mentioned, the numerical literature appears to prefer it to be close to unity.
If one were to set it to zero, one would obtain an unacceptably wide spacing
at parts of the profile where the second derivative is close to zero. In effect, a
finite ˛ value ensures a finite positive gradient of �.X/ at large X. If this is not
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done, the plateau obtained means excessively large intervals in this region upon
regridding. As mentioned, in the work of Bieniasz, a value of 0.0005 was found
optimal. Secondly, there is the question of how to compute the second derivatives
over unevenly spaced points. Blom et al. [74], followed by Bieniasz [58], used a
somewhat awkward method. The first point monitored (using their method) lies at
the middle of the first interval, and the formula given by Blom et al. [74] is in fact
incorrect. Presumably, the second derivative at X D 0 is assumed zero, which it need
not be. In our example, it was computed as the one-sided three-point approximation
at X D 0, which seems to make more sense. From there on to the far edge, Blom
et al. use four-point expressions, centred on the middle of the mid-interval; however,
their expression again is incorrect, rendering the use of four points useless. The
object was to achieve a better approximation to the derivative, that might be second-
order in the interval lengths in some sense. The expression was later corrected by
Bieniasz [9]. Both teams then use the simple three-point approximations for the
final calculation, presumably in order to avoid yet further interpolations. It appears
that one might as well use three-point formulas in both phases, as was done in the
example above. Alternatively, one might use higher-order formulas, especially for
the diffusion step, on the unequal grid, using more than three points, for example
five, centered on existing points. This has not been attempted to date. Such formulae
are provided in Chap. 3; a few cases are also given in Appendix A, and a general
procedure for them is described in Appendix E.

Despite the fact that adaptive gridding seems to work very well (with some
refinements described in [9]), being for example, until recently, the only method
capable of adapting to a narrow concentration hump away from the electrode [54],
Bieniasz has recently concluded [59, 78–80] that another method is better. The
problems he noted are, among others, the need to set ˛ to some value, and the
problems arising from the approximation to the second derivative on an unequally
spaced grid. The new method is called patch-adaptive, and works with a continually
varying number of points. It is based on older work in the numerical literature (see
[59] for a large number of citations). One begins with a coarse evenly spaced grid,
and does a calculation to the next time level. This is then repeated on a grid of twice
as many points, the new points placed exactly midway between the first set. This
ensures a locally equal spacing and thus second-order second derivatives. The two
solutions are then used to provide an error estimate. The way this is done depends
on the simulation algorithm. One way might be to use extrapolation, described in
Chap. 9, which can provide an error estimate. At those places along X where this
error exceeds some set value in magnitude, new points are then placed midway
between the existing points, and the calculation repeated. If there appear sharp
gradients in the profile, more and more points will thus be inserted. All the time,
however, one is working (locally) with equally spaced points and thus second-order
second derivatives. The disadvantage is that one must keep track of a changing
number of points along X, as points are added and perhaps removed later. This
requires data structures that are not trivial to program. It seems to the present authors
that this renders the method less interesting to the programming electrochemist. It
might be of more interest to programmers of general simulation packages.
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7.5.2 Time Interval Adaptation

Just as sharp changes in the space direction point to changes in spatial intervals, so
sharp changes with time demand time interval adaptation. This is in fact standard
procedure in the ode world since the paper by Douglas [81], see, for example,
such standard works as [71, 72]. In electrochemical simulations, there have been
relatively few attempts to do this. The impetus for varying time intervals comes from
two problems. One problem is that of pulse techniques, especially current reversal
or potential double pulses. Clearly, there are sharp changes in concentration profiles
at the onset of each pulse. Crude beginnings of this [27–29], using alternately larger
and smaller time intervals before and after a pulse, have been mentioned above.

Once again, an adaptive technique might be the universal answer to these
problems, especially since there might be unforeseen changes at various stages
during a simulation, as can happen in linear sweep voltammetry. Such a scheme
has been devised by Bieniasz [60]. Upon first considering this, one might assume,
say, that current changes themselves could be the factor that decides the length of
the next time interval to be used. However, as with adaptive spatial intervals, this is
not as good as using a kind of second derivative, for similar reasons. If there were
changes in concentrations linear in time, then no matter how large these changes are,
large time intervals can be used; but if the changes are themselves changing (that
is, there are significant second derivatives with time), the intervals must be reduced.
The picture is complicated by the fact that this will mostly be used in conjunction
with adaptive spatial grids, making the second derivatives less straightforward to
express. Bieniasz suggests the use of the following quantity as a kind of monitor
function. Assume that a tentative step of ıT has been taken on the present grid, and
that a given point indexed i along X has just been moved by an amount ıH; the
estimate function EST is then

EST D ıT2

2

@2C

@T2
C ıTıH

@2C

@X@T
C ıH2

2

@2C

@X2
(7.29)

where the second derivatives must be discretised by some suitable expression. The
present authors regard this as more complicated than the average electrochemist is
willing to program, and the method is left to programmers of general simulation
packages and will not be detailed any further here. It did produce impressive results
[60] with square wave simulations.

There are some simpler strategies that might do, and are easier to program. If an
experiment such as double pulse or square wave voltammetry is simulated, the sharp
changes occur at predictable times, and simple sequences of time intervals, such as
exponentially expanding intervals, can be satisfactory, repeating the sequence at the
onset of each pulse.

If there are unpredictable changes, the answer might be to use a professional
package; that is, either a simulation package (see Chap. 17), or the method of lines
(Chap. 9) and a professional routine for solving the resulting set of odes, making use
of the adaptive time intervals feature, which these routines normally offer.
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Chapter 8
The Commonly Used Implicit Methods

Essentially, only two implicit methods will be described here, but with extensions
that make them more useful. They are derived from the implicit methods described
for odes in Chap. 4, BI and the trapezium method. These have different names in the
pde context, as will be seen.

Implicit methods have the great advantage of being stable for any  D ıT=H2, in
contrast with the explicit method. It will be seen (and analysed in detail in Chap. 15)
that the Laasonen method, a kind of BI, is very stable and responds to sharp
transients with smoothly declining (but relatively large) errors, whereas Crank–
Nicolson, also stable, responds with error oscillations of declining amplitude, but
is more accurate. The drawbacks of both methods can be overcome, as will be
described below.

First, the discretisation of the second, spatial derivative of concentration will be
reiterated in a general form that can then be built into the methods to follow. For the
three concentrations grouped around the point Xi, we can write the general linear
expression,

@2Ci

@X2
� ˛1Ci�1 C ˛2Ci C ˛3CiC1 (8.1)

in which the ˛ coefficients are defined according to whether equal or unequal
intervals are used. The three concentrations are situated at the three corresponding
positions Xi�1, Xi and XiC1. For equal intervals H in X, the coefficients are

˛1 D 1=H2

˛2 D �2=H2 (8.2)

˛3 D 1=H2
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as already given in Chap. 3, Eq. (3.41), and they are independent of the index i. If
unequal intervals are used, the coefficients are

˛1 D 2

.Xi � Xi�1/.XiC1 � Xi�1/

˛2 D � 2

.Xi � Xi�1/.XiC1 � Xi/
(8.3)

˛3 D 2

.XiC1 � Xi/.XiC1 � Xi�1/

(as also seen, in a different but equivalent form, in Appendix A, Table A.4 on
page 443) or they can be computed using the Fornberg subroutine FORN seen in
Appendix E. These ˛’s are dependent on the index i but for brevity, this will not
always be indicated in what follows below.

If transformation is to be used, by the function (7.3) on page 125, then
the resulting right-hand-side of the diffusion equation (7.5) can be written as a
transformation of the second spatial derivative,

@2C

@X2
D a2e�2Y

�
@2C

@Y2
� @C

@Y

�
(8.4)

and the (obvious) discretisation in terms of equal intervals ıY then results again in
a linear expression like (8.1), with the coefficients at the point Yi given by

˛1 D
�
1C ıY

2

�
wi

˛2 D �2 wi (8.5)

˛3 D
�
1 � ıY

2

�
wi

the common wi being

wi D a2 exp.�2iıY/
ıY2

: (8.6)

We thus have, for the diffusion equation

@C

@T
D @2C

@X2
; (8.7)
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a suitable discretisation for all three cases with their respective definitions of the ˛
coefficients, in the form

@C

@T
D ˛1Ci�1 C ˛2Ci C ˛3CiC1 : (8.8)

More points might of course be chosen for the approximation, which extends the
number of terms on the right-hand side, but for brevity we keep to the three-point
approximation here. In Sect. 8.4 however, a model using four-point approximations
is presented.

The diffusion equation, discretised on the right-hand side as in (8.8), is now a
system of odes in the concentration vector C, of the form

@C
@T

D f .C/ (8.9)

and the two main implicit methods will be seen to be analogous to those used for
odes.

8.1 The Laasonen Method or BI

When applied to the solution of odes, the BI method (Chap. 4) uses a backward
difference for the derivative on the left-hand side of (8.9) and the argument of the
function on the right-hand side is the future, unknown, concentration vector. In our
notation, at the point i along the row of concentrations, this is

C0
i � Ci

ıT
D ˛1C

0
i�1 C ˛2C

0
i C ˛3C

0
iC1 : (8.10)

This was formulated by Laasonen [1] in 1949. The equation set becomes

C0
0 C a1;1C0

1 C a2C0
2 D b1

C0
1 C a1;2C0

2 C a2C0
3 D b2

: : :

C0
i�1 C a1;iC0

i C a2C0
iC1 D bi

: : :

C0
N�1 C a1;NC0

N C a2C0
NC1 D bN

(8.11)
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with the coefficients given by

a1;i D ˛2 � 1=ıT
˛1

a2 D ˛3

˛1
(8.12)

bi D �1
ıT˛1

Ci

in which the coefficient a2 has been written as independent of i. In most cases, a2
will in fact be constant, and equal to unity for equal intervals in X. For exponentially
expanding intervals as in (7.19), ˛3=˛2 is equal to 1=� , that is, the inverse of the
interval expansion factor. It is however good practice to assume all coefficients as
i-dependent, making extension to more points for the approximations easier.

The solution of the above system of equations (8.11) will be described below,
together with that for the CN method.

8.2 The Crank–Nicolson Method, CN

This method derives from the trapezium method in the ode field in which the time
derivative in (8.9), expressed exactly as in (8.10), becomes a second-order central
difference by virtue of the fact that the right-hand side now refers to a point in time
midway in the time interval. This is achieved by taking the average of the second
spatial derivative at the present time T and that at T C ıT:

C0
i � Ci

ıT
D 1

2

�
˛1C

0
i�1 C ˛2C

0
i C ˛3C

0
iC1 C ˛1Ci�1 C ˛2Ci C ˛3CiC1

�
: (8.13)

The result is a system exactly as (8.11) but with different definitions of the
coefficients:

a1;i D ˛2 � 2=ıT
˛1

a2 D ˛3

˛1
(8.14)

bi D �Ci�1 � a3;iCi � a2CiC1

and the new coefficient

a3;i D ˛2 C 2=ıT

˛1
: (8.15)
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Again, a1 and a3 are dependent on the index i, by virtue of the fact that the ˛’s are
i-dependent.

Crank–Nicolson bears the name of its inventors [2]. It is interesting to note that
in their paper, they cite Hartree and Womersley [3], who describe what amounts to
its precursor.

8.3 Solving the Implicit System

The system (8.11) shown above, that is the result of discretising either according to
the Laasonen or CN method, can be solved efficiently by the Thomas algorithm [4,
5]. This recognises that the system is tridiagonal. It can be reduced to a didiagonal
system by working from either end, that is, from C0

0 or C0
N . The latter approach is

better here. The last equation in (8.11) has a term in C0
NC1, which is the bulk value,

not subject to diffusional changes, being a boundary value. Normally, it is constant,
equal to the initial bulk value. In some cases, it can change with time, for example
in the Reinert–Berg [6] or the Birk and Perone [7] systems, in which the reacting
substance itself undergoes a homogeneous decay reaction. In such cases, the value
of C0

NC1, while not constant, is still accurately predictable and thus known at any
time. Thus, this known term can be moved to the right-hand side of the last equation
of the system, thus giving the new last equation

C0
N�1 C a1;NC

0
N D bN � a2C

0
NC1 (8.16)

with only two unknowns. This is rewritten in the form

C0
N�1 C a0

NC
0
N D b0

N (8.17)

with, clearly,

a0
N D a1;N (8.18)

and

b0
N D bN � a2C

0
NC1 : (8.19)

Equation (8.17) is now used to express C0
N in terms of C0

N�1:

C0
N D b0

N � C0
N�1

a0
N

(8.20)

and this is substituted into the second-last equation of the system (8.11),

C0
N�2 C a1;N�1C0

N�1 C a2C
0
N D bN�1 (8.21)
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giving, after some tidying up, the next new equation

C0
N�2 C a0

N�1C0
N�1 D b0

N�1 (8.22)

with

a0
N�1 D a1;N�1 � a2

a0
N

(8.23)

and

b0
N�1 D bN�1 � a2

b0
N

a0
N

: (8.24)

This process continues in the backward direction and the recursive expressions for
the coefficients in the ith equation generated,

C0
i�1 C a0

iC
0
i D b0

i (8.25)

are

a0
i D a1;i � a2

a0
iC1

(8.26)

and

b0
i D bi � a2

b0
iC1

a0
iC1

(8.27)

[starting with (8.18) and (8.19)] until the first equation is reached,

C0
0 C a0

1C
0
1 D b0

1 : (8.28)

At this point, we have a new system of equations, each with two unknowns. The
point of attack now is C0

0, the boundary value. How this is calculated, has been
described in Chap. 6. When this is done, the process goes forward again, solving
explicitly for all unknowns, starting with

C0
1 D b0

1 � C0
0

a0
1

(8.29)

or, for a general C0
i ,

C0
i D b0

i � C0
i�1

a0
i

: (8.30)
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In Appendix E, a few examples of the use of CN are described: for a Cottrell
simulation (COTT_CN), chronopotentiometry (CHRONO_CN, CHRONO_CN_HERM)
and LSV (LSV_CN).

8.4 Using Four-Point Spatial Second Derivatives

It was shown in Chap. 7 that the three-point second spatial derivative on an
unequally spaced grid, leading to (8.1) with the coefficients defined in (8.2), can be
improved with relatively small effort to an asymmetric four-point formula, spanning
the indices i � 1; i; i C 1; i C 2, with the second derivative referred to the point at
index i. The diffusion equation is then semi-discretised to

dC

dT
D ˛1Ci�1 C ˛2Ci C ˛3CiC1 C ˛4CiC2 (8.31)

analogous to the three-point form (8.8). The derivation of the coefficients are
described in Chap. 3, and some formulae given in Appendix A, and procedures
FORN and FORNBERG are described in Appendix E. The above ˛ values are
again i-dependent. Here, we describe only the implementation of the scheme to
the Laasonen method, leaving out CN. The reason is that the Laasonen method
best enables the use of extrapolation, of which the simple second-order vari-
ant nicely couples with the second-order four-point approximation. Thus, using
Laasonen, (8.31) becomes

C0
i � Ci

ıT
D ˛1C

0
i�1 C ˛2C

0
i C ˛3C

0
iC1 C ˛4C

0
iC2 (8.32)

which leads to the system of equations

C0
0 C a1;1C0

1 C a2;1C0
2 C a3;1C0

3 D b1

C0
1 C a1;2C0

2 C a2;2C0
3 C a3;2C0

4 D b2

: : :

C0
i�1 C a1;iC0

i C a2;iC0
iC1 C a3;iCiC2 D bi

: : :

C0
N�2 C a1;N�1C0

N�1 C a2;N�1C0
N C a3;N�1C0

NC1 D bN�1
C0
N�1 C a1;NC0

N C a2;NC0
NC1 C a3;NC0

NC2 D bN

(8.33)
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with the coefficients given by

a1;i D ˛2 � 1=ıT

˛1

a2;i D ˛3

˛1
(8.34)

a3;i D ˛4

˛1

bi D �1
ıT˛1

Ci :

Note that this differs from the three-point system (8.11) in that every line now has
four coefficients, and their definitions have been written as i-dependent, which is the
case for unequally spaced X positions. Note also that an extra point, indexNC2, has
been added to the row of X values. Point N is still the last one to undergo diffusional
changes, so the fact that the point N C 2 lies past Xmax (which is at index N) does
not matter, both these extra points being either constant or set values, not subject to
diffusional changes.

The extra two intervals XNC1 � XN and XNC2 � XNC1 need not be expanding
and are best set equal to XN � XN�1. Alternatively, one might choose asymmetric
backward-pointing difference approximation u00

3.4/ for the point XN�1 and make
XN the bulk point, thus obviating the need for the extra two points. However, for
methods where there is a Neumann (derivative) condition at the outer boundary,
there is no such choice, and then XN is the furthest point, and backwards derivative
approximations must be applied on the boundary. This happens in such cases as thin
layer cells, the diffusion domain discussed in connection with arrays of electrodes
in Chap. 12, and a case the present authors have worked on, a flat polymer film
containing an enzyme over a disk electrode [8].

The above system, although leading to a quadradiagonal system of equations,
can still be solved by a smallish extension of the Thomas algorithm [9]. Consider
the last two equations of (8.33) and rewrite them, putting the bulk concentration
terms on the right-hand side:

C0
N�2 Ca1;N�1C0

N�1 Ca2;N�1C0
N D bN�1 � a3;N�1C0

NC1
C0
N�1 Ca1;NC0

N D bN � a2;NC0
NC1 � a3;NC0

NC2 :
(8.35)

We rewrite the last equation, which is already down to two unknowns, in the form

C0
N�1 C a0

NC
0
N D b0

N (8.36)

(a0
N and b0

N being obvious, and defined below in (8.38)) which, as before, allows
the substitution for C0

N in the next-last equation, which then also reduces to two
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unknowns,

C0
N�2 C a0

N�1C0
N�1 D b0

N�1 : (8.37)

Thus far, this looks just like the Thomas algorithm for the tridiagonal system, as
described above in Sect. 8.3. From here on, however, the processes diverge. We need
to keep both substitutions for C0

N and C0
N�1 and use them in the third-last equation,

which contains both. This process is continued backwards, reducing all equations
with four unknowns to new ones with just two unknowns. The expressions resulting
from this are the following:

a0
N D a1;N I b0

N D bN � .a2;N C a3;N/Cb ; (8.38)

Cb being the bulk concentration, equal to C0
NC1 and C0

NC2 in system (8.33). Then,

a0
N�1 D a1;N�1 � a2;N�1

a0
N

I b0
N�1 D bN�1 � a2;N

b0
N

a0
N

� a3;N�1Cb : (8.39)

These now serve as starting values for the recursive process; the ith equation of
system (8.33) becomes

C0
i�1 C a0

iC
0
i D b0

i (8.40)

with the two new coefficients recursively given by

a0
i D a1;i � 1

a0
iC1

�
a2;i � a3;i

a0
iC2

�
(8.41)

b0
i D bi � a2;i

b0
iC1

a0
iC1

� a3;i

�
b0
iC2

a0
iC2

� b0
iC1

a0
iC1a0

iC2

�
: (8.42)

This is not so difficult to program and leads to a new system just like that in Sect. 8.3,
right down to (8.28). Boundary condition handling is the same, as is the forward scan
that yields all the new unknowns, Eq. (8.30).

This has been programmed into example program COTT_EXTRAP4 described
in Appendix E. Compared with the three-point program, COTT_EXTRAP, it yields
results, using the same parameters, with an accuracy about an order of magnitude
better. Once programmed and debugged, the code can be easily transplanted into
other programs and seems worthwhile implementing.

Finally, as mentioned earlier (Chap. 7, Sect. 7.2), Martínez-Ortiz [10] developed
some rather simple formulae for derivative approximations for the special case of
exponentially expanding grid spacings, and discovered that the four-point second-
order derivative approximation u00

2 .4/, for the expansion factor � D p
2 is third-

order in accuracy, rather than second, as it is for other � values. This could be an
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easy and useful way to increase the accuracy, using the four-point formula. However,
as has also been found [11], � is best held below about 1.2, so this may not be such
a useful value in practice.

Martínez-Ortiz et al. [12] have recently extended the formulae to up to eight-point
approximations, always using an asymmetric form referring to the second point in
the window, and a very large expansion factor up to 2, with good results. They were
thus able to reduce the number of points in space to as little as 15 and still get
accurate values. The placement of the reference point and the addition of further
points beyond the outer spatial limit allowed them to use an extension of our four-
point Thomas algorithm. The use of � as high as 2 is in contrast with our finding
that it should not be more than about 1.2, possibly due to the large number of points
used in the approximations.

8.5 Improvements on CN and Laasonen

The Laasonen method, because of the forward difference in T, has errors of
O.ıT;H2/, and the first-order behaviour with respect to ıT limits its accuracy to
about the same as the explicit method described in Chap. 5. However, it has a smooth
error response to disturbances such as an initial transient (Cottrell), and is stable for
any value of ıT=H2, where H is either the same as all intervals if equal intervals are
used in X, or is the smallest (usually the first) interval if unequal intervals are used.
This makes the method interesting, and it will be seen below that it can be improved.
For simplicity, the symbol  will be used below, and denotes the largest value of that
parameter, that is, the value from the smallest interval in space in a given system.

CN is formally as stable as Laasonen, and more accurate, with errors of
O.ıT2;H2/. However, it has one serious drawback. If the initial conditions are a
sharp change in concentration (as in potential jump experiments), CN responds with
errors oscillating about zero and for large  values these oscillations can persist over
much of the simulation period. This has meant that simulators have tended to use
other methods instead. The stability and the reason for the oscillatory response of
CN are explained in Chap. 15, but here, a method of damping the oscillations will
be described.

To appreciate the problems with both CN and Laasonen, consider Fig. 8.1.
This shows three curves, and we ignore the stippled one for the moment (but see
Sect. 8.5.1.2). The plot shows simulations of the Cottrell system, using only 20 steps
in the range 0 < T � 1 and a  value of 3 (equal spatial intervals). The vertical axis
is the relative error e in the computed current, defined as

e D Gsim

GCott
� 1 (8.43)

where Gsim is the simulated current and GCott the Cottrell current, as given in (2.44)
on page 19. The smoothly falling solid line is that for the Laasonen method, while
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Fig. 8.1 Relative error in computed current vs time
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Fig. 8.2 Relative error in computed current vs time, narrow scale

the widely oscillating solid line is from CN. The plot does not make clear that the
error at T D 1 is in fact greater for Laasonen than for CN, but it does illustrate
the problem of oscillation with CN. To show the difference in final errors, Fig. 8.2
shows the same results but with the vertical scale now narrowed down. At smaller
times, the plot lies outside the range, but now it is clearly seen that although the CN
curve is still oscillating, the Laasonen response has the greater error at T D 1.
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8.5.1 Damping the CN Oscillations

Crank and Nicolson, in their original paper [2], recognised the oscillation problem
with their method, writing “If � [which is their ıt=ıx2 ] is very large an oscillatory
error which only disappears very slowly may arise”. The problem is referred to in
most texts describing the method. More detail is given in Chap. 15, but the essence
of the problem is that CN will oscillate if  > 0:5; in practice, a value of unity or
even 2 will not cause serious oscillations. So one way to reduce oscillations is to
lower , usually by reducing ıT. This might cause unduly long execution times, but
fortunately, once oscillations have been damped, they normally do not reappear, so if
they can be damped within the first interval, the problem is solved. This leads to the
most effective method, subdivision of the first time interval. Østerby has discussed
the various methods that can be used to damp CN oscillations [13].

8.5.1.1 First-Interval Subdivision

There are a few ways of subdividing the first time step: using a number M of equal
intervals, or a number of intervals expanding with time, usually exponentially. The
two methods can be formally combined into one description. Let the full interval
to be subdivided be of length ıT, and let it be subdivided into M smaller intervals
�i; i D 1 : : :M, such that

MX
iD1

�i D ıT (8.44)

and

�i D �i�1� D �1�
i�1 : (8.45)

Exponentially expanding subintervals are obtained if � > 1 and equal intervals
for � D 1. The latter method is (here) called Pearson, after the author who
first suggested it [14], in 1965. It has been studied more recently [13, 15–18].
Exponentially expanding subintervals will be called ees here. They were suggested
[19] and later used [20–22], and studied in some detail recently [15, 18].

Whether Pearson (in the one form or the other) or ees is to be used is a matter
of taste. Pearson is the simpler method, and it is simpler to determine the only
parameter involved, M. Numerical experiments [15] show that a (sub) value of
about unity is sufficient to damp oscillations during the first M substeps, so this sets
M simply to such a value as to satisfy the requirement. That is, if the main time
interval ıT leads to  > 1, then  subintervals are needed in order to bring the sub-
 below unity, or M D , but rounded up to the nearest integer. Besides simplicity,
this has the additional advantage of equal time intervals: in many simulations, the
coefficients as in (8.14) depend on the time interval, and must be recalculated
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if that interval varies. They must thus be calculated once, prior to the M sub-
steps, and again once upon resumption of the full ıT. With unequal time intervals,
however, they must be recalculated before each substep. In some cases, this can have
serious effects on computing time, even though in principle, fewer substeps can be
used if they are expanding. The simple Pearson start is automatically used in the
example program COTT_CN (Appendix E), and also, although as it turns out, not
really necessary, in CHRONO_CN (chronopotentiometry does not cause oscillation
problems with CN). If a large  value is used, Pearson can result in an excessive
number of substeps, and ees will then be better.

For ees, there is no simple recipe for the choice of M and � . The reader is referred
to the study [15], where several contour plots are provided that can help. A rough
guide is that � D 1:5 is a fairly universally useful value. It is the opinion of the
present authors that Pearson is the best choice here.

If ees is considered desirable, there is the small matter of the determination of the
parameters. Normally, one would choose M first, and then either the size of the first
interval �1 (which sets the expansion parameter � ) or � , which sets the first interval.
In the former case, having chosen M and �1, the function EE_FAC (see Appendix E)
can then be used to find the appropriate � . In the latter case, Eq. (7.19) on page 129
can be inverted to give explicitly

�1 D ıT
� � 1

�M � 1 : (8.46)

Finally, there is another mode of operation for ees. If one considers the total
simulation time as a single step, this can be subdivided into a number of expo-
nentially expanding “subintervals” in the same manner as the above description of
subdivision of the first interval. This was first suggested by Peaceman and Rachford
in 1955 [23], in their famous paper describing the ADI method (see Chap. 12), and
was used later [24, 25]. It is routinely used by Svir and coworkers [26, 27]. These
workers tend to use strong expansion with � D 2. The method requires a large
number of recalculations of the coefficients and thus uses more computer time than
equal intervals with a damping device applied to the first interval. This is however
possibly compensated by a much smaller number of steps in time.

8.5.1.2 Initial BI Step(s)

Rannacher and coworker [28–30] have experimented with the idea of starting a CN
simulation with one or more BI steps. The rationale is that BI damps errors in a non-
oscillatory manner, unlike CN, and in fact the larger  is, the more strongly an error
is damped. This also applies to an initial transient or singularity, as encountered in
a potential jump, for example. The disadvantage of BI, used for a whole simulation,
is that it has a global first-order error with respect to the time interval. However, the
local error for each individual step is second-order and it turns out that if one uses a
fixed number of BI steps to start with and then continues with CN, the global error
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is still second-order. Rannacher and his coworker seem to prefer taking two or even
four initial BI steps. In their second 1982 paper [28], they hint at a problem with
the larger number of steps and that two might after all be preferable. However, by
1984, Rannacher again preferred four. The problem is that although the global error
order does indeed remain O.ıt2/ for any fixed number M of BI steps, the error itself
increases with M. If the method is used to damp oscillations with CN, there must
then be a compromise between the degree of damping and the acceptable error.
The method has been studied again recently by Khaliq and Wade [31], who also
advocate taking four BI steps, and more recently by others [15, 17, 18, 32], in which
a single BI step was investigated, among other methods. Some tests convince the
present authors, that a single step is probably the best or at most two, and if that
does not remove the oscillations sufficiently, another method should be used, such
as Pearson.

The method works well if  	 1 or, in the case of unequal intervals or two-
dimensional geometries, where there is some critical, largest effective  greatly
exceeding unity. It was found [15] that the method works very well with a single
BI step in the case of (2-D) microdisk simulations, where indeed large effective 
values result at the disk edge and it is these that are responsible for the oscillations
if CN is used.

The dashed line in Figs. 8.1 and 8.2 is the response for a single Laasonen step
followed by CN from then on. For this simulation,  was set at 3, not a very large
value. Nevertheless, the single Laasonen step has clearly reduced the oscillation
amplitudes.

As a final note on this method, it is worth noting that Wood and Lewis [33]
essentially used this method, possibly not realising it. In an investigation of how
to damp CN’s oscillations, one of the methods they tried was to average the initial
values of the simulated quantities with the result of the first CN step. It can readily be
shown that this is equivalent to taking a single BI step of half a time interval. They
found some damping, but they must also have introduced an error in the time by
half an interval, which would persist thereafter and degrade the accuracy, probably
to first-order.

8.5.1.3 Averaging and Extrapolation

Lindberg [34] investigated smoothing of the trapezoidal response in the solution of
systems of odes, and this is of course a related problem. The idea of averaging is that
if a sequence of errors show alternate signs (which is what we mean by oscillation),
then combining several in a sequence might eliminate or reduce the error. Lindberg
used a three-point averaging formula, and combined it with extrapolation (see
below, and Sect. 4.9). Extrapolation alone, used with CN, does not damp oscillations
but does help, marginally, in conjunction with averaging. It seems, however, that
Lindberg’s results do not justify these techniques.
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8.5.1.4 Singularity Correction

Clearly, the largest errors in both simulated concentration and current values for any
simulation involving an initial potential or current step occur just after onset of the
perturbation, or singularity. BI shows large errors, smoothly damped in subsequent
steps, while CN has damped oscillatory errors. As Bieniasz writes [35], this is
because of “the lack of compatibility between partial differential equations (PDEs)
and their initial and boundary conditions”. He followed the work of Flyer and
Fornberg [36], who studied this problem for general pdes. Bieniasz modified their
method to obtain accurate responses for the one-dimensional problem involving a
homogeneous chemical reaction. The essence of this is to partition the equations
and boundary values into two, one of them being the pure diffusion case for which
there is a solution (for example, the Cottrell equation) and which holds to high
accuracy at very small times, including the first time interval, plus the one involving
the chemical reaction. Upon applying the analytical solution, the other partition now
has compatible initial conditions. The reader is referred to Bieniaz’s work [35] for
detail, but suffice it to say here that this produced highly accurate concentrations
and currents without large initial errors.

8.5.1.5 Recommendations

A choice needs to be made. The reader may or may not want to experiment with the
various possibilities. It is possible to provide some guidance here. Clearly, if  is
very large, then M can become ridiculously large if program COTT_CN is used—M
will be equal to . It is in such cases, however, that the BI method works best. So
a rough guide might be the following. For 3 �  � 100, use Pearson; for larger ,
the BI start method might be favourable, perhaps taking 2–4 initial BI steps despite
the slight loss in accuracy.

8.5.2 Making Laasonen More Accurate

In contrast to CN, Laasonen has a very acceptable error response, damping the error
(and initial concentration transients) smoothly, especially at high ; but it has the
disadvantage of poor accuracy, being globally first-order with respect to ıT. There
are two popular ways of increasing the accuracy (raising the order) of the method,
while preserving the smooth error response.

The two methods are BDF and extrapolation. Both methods are used for the
numerical solution of odes and are described in Chap. 4. The extension to the
solution of pdes is most easily understood if the pde is semidiscretised; that is, if
we only discretise the right-hand side of the diffusion equation, thus producing a set
of odes. This is the Method of Lines or MOL. Once we have such a set, as seen
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in (8.9), the methods for systems of odes can be applied, after adding boundary
conditions.

8.5.2.1 BDF

The BDF method has been described in Chap. 4. One starts with the system
such as (8.9), and goes on from there as described. This was first suggested for
pdes by Richtmyer in 1957 [37], who suggested the three-point variant, and was
first used in electrochemistry by Mocak and Feldberg [38] and later refined to
variable time intervals by Feldberg and Goldstein [24]. These workers call it FIRM,
an abbreviation of “Finite Implicit Richtmyer Modification”. The modification
referred to is that of the BI (or Laasonen) method to a multi-level backward
differentiation method. These authors also use a very simple start-up strategy,
described as the simple start with correction in Sect. 4.8.1 on page 69. As is
shown in Appendix C, this method, by good luck, provides second-order accuracy
at the corrected times. The second-order nature of it also implies, however, that
there is little sense in going to more than three-point BDF. With three points in
time, the global error is of O.ıT2/, and although an increase in the number of points
included in the BDF algorithm raises that order (up to seven-point can be used, and
Feldberg and coworkers now routinely use five-point or fourth-order), this is held
down to second-order by the start-up method. However, a second-order method is
very useful, being of the same order as CN, and three-point BDF has the smooth
error response of Laasonen. One small drawback of the method is that additional
concentration vectors must be kept in memory; in the case of three-point, one extra
array is needed. This is not so bad, and the results might be considered worth the
effort.

There have been attempts to improve the performance of BDF, which is normally
limited by the second-order (in the spatial interval H) discretisation of the spatial
derivative. Higher-order spatial second derivatives have been tried out in connection
with BDF [39, 40]. They can only work as intended if a high-order start is used,
such as the KW start as described in Sect. 4.8.1. This start was not found to be
efficient in [40], but it may be that a technique other than the one used there, such
as Numerov (see Chap. 9), which does not produce banded matrices, will make the
use of KW efficient and thus interesting. For this reason, the KW start is described
below.

First, it is worthwhile detailing the implementation of BDF itself, ignoring startup
for the moment. We choose three-point BDF. Based on (4.28) given on page 68 for
odes, the diffusion equation (8.8) is discretised at index i as

1
2

0Ci � 2Ci C 3
2
C0
i

ıT
D ˛1C

0
i�1 C ˛2C

0
i C ˛3C

0
iC1 (8.47)

where 0Ci indicates the concentration at point i and T�ıT, that is, the past (known)
concentration point. When this system of discrete equations is rearranged, it is of
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the same form as (8.11), with the new coefficients

a1;i D ˛2 � 3
2
=ıT

˛1

a2 D ˛3

˛1
(8.48)

bi D
0Ci

2ıT˛1
� 2Ci

ıT˛1

which is seen to be hardly more complicated than those for Laasonen. There is the
added step at every iteration of moving the concentration rows down one level, that
is, the rows for the present level T and TCıT (now computed) down to, respectively,
T � ıT and T.

Now consider the KW start for BDF. The description in [40] will be followed
here. First of all, (8.47) is rewritten in ode form for the whole system, replacing the
left-hand side by the time derivative and the right-hand side by the general matrix
form

dcj
dt

D 

ıt

�
Acj C s

�
(8.49)

where cj refers to the whole c vector across the spatial dimension at time index j,
matrix A arises from the coefficients such as those on the right-hand side of (8.47)
(but may be those from any other discretisation, including multi-point or Numerov,
see the next chapter), and s is the vector arising from boundary conditions. The left-
hand side of this equation now leaves us free to choose the particular BDF form.
As mentioned, the problem to solve here is providing the first few concentration
rows. It might be thought that for k-point BDF, k � 2 new cj are needed, those for
j D 1 : : : k � 2 (we already have the initial row for j D 0). Indeed this is true, but it
turns out that the row k � 1 is best also included in the calculation, as this produces
values of the same accuracy order with respect to t as the subsequent BDF steps.
This was mentioned in the chapter on odes, Sect. 4.10. There is then always one
more equation to choose from than needed, and a choice has to be made which ones
to use. This is more or less arbitrary. For example, for three-point BDF, we calculate
rows for j D 1 and 2. For these, we can refer the time derivative to two out of levels
0, 1 and 2. If we choose levels 1 and 2, we have the two matrix equations

c2 � c0
2ıt

D 

ıt
.Ac1 C s/ (8.50)

referring to j D 1 (thus a central difference), and

c0 � 4c1 C 3c2
2ıt

D 

ıt
.Ac2 C s/ (8.51)
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employing a BDF form referring to j D 2. These two equations combine into the
single block matrix equation


2A �I
4I .2A � 3I/

� 
c1
c2

�
D
�c0 � 2s

c0 � 2s

�
: (8.52)

Corresponding higher-order forms can now be constructed using the examples in
Chap. 4, Sect. 4.10. In the present context, the matrix equations get rather large for
larger k. If there are N unknowns across the spatial dimension, then the matrix
equation will be .k � 1/N � .k � 1/N. So the method might be suitable only for
smallish N.

Generally, it is sufficient in our experience to use a rational start for BDF, which
is simply a single BI step for three-point BDF, and this has become our own practice.

8.5.2.2 Extrapolation

Extrapolation is described in Chap. 4, Sect. 4.9. It can easily be adapted to pdes, as
first suggested by Liebmann [41] in 1955, but ascribed to Lawson and Morris [42],
followed by Gourlay and Morris [43]. Strutwolf et al. [44, 45] first described its
use in electrochemistry, and a higher-order variant was described later [46], in an
attempt to take advantage of the higher-order extrapolation schemes. Bieniasz [47]
now gives extrapolation based on BI the name LMGE-x (with x the order, for
example LMGE-2), meaning Lawson-Morris-Gourlay extrapolation. Here it will be
simply called extrapolation. The “BI” might be redundant, as it is almost always BI
that forms the basis for extrapolation, although other methods can in principle be
enhanced by extrapolation. Thus, Hartree and Womersley [3] used it in connection
with their method, which has the essential elements of CN. There is a review by
Deuflhart [48] and Twizell also used extrapolation in conjunction with CN [49], as
did Zhou [50] with ADI.

As with BDF, the simpler second-order scheme appears about optimal. This
method also shows the same smooth and damped error response of Laasonen,
with the accuracy of CN. The drawback is that for every step, several calculations
must be performed—in the case of second-order extrapolation, three in all (see
Sect. 4.9). This also implies an extra concentration array, for the final application
of the formula, for example the vector equivalent of (4.31), requiring the result of
the first, whole step, and then the result of the two half-steps. Discretisation for
extrapolation is the same as for Laasonen [coefficients as in (8.12)], but using two
different values of ıT and therefore two coefficient matrices. These can of course be
precomputed if the coefficients are constant over the simulation period, so this is not
a great problem. There are example programs using extrapolation (COTT_EXTRAP
and COTT_EXTRAP4) referred to in Appendix E.



8.6 Homogeneous Chemical Reactions 163

8.6 Homogeneous Chemical Reactions

Homogeneous chemical reactions (hcrs) have already been mentioned in Chap. 5,
where a simple explicit treatment is given. Some of the problems are also mentioned
there. For the explicit method, the main one is that if a term like KıT in the
discrete equation exceeds a few percent, the simulation is inaccurate [51]. For
large rate constants, this means unacceptably small ıT values leading to very long
computation times. Improvements were sought at the time, such as the use of
Runge–Kutta integration either for just the hcr part [51] or for the whole simulation
[52], and tricks such as the “sequential method” (described in Chap. 5). These did
not work very well. In a previous work [53], one of the present authors (DB)
classified hcrs into the three categories slow, medium and fast, and for each of
them a different method was suggested. Slow hcrs could be handled by the explicit
method, medium-rate ones by implicit methods or Runge–Kutta, and fast reactions
could only be handled by mathematical tricks such as that of Ruzić [54, 55],
the so-called heterogeneous equivalent, in which the hcr was combined with the
heterogeneous electron transfer reaction into a single new one with a different
(equivalent) heterogeneous rate constant.

Such tricks are no longer needed. Starting in the early 1990s, several advances
were made in simulation that have solved all the problems, and we can now handle
all hcrs with efficient implicit methods in a straight-forward manner. These solutions
are described in what follows.

The main problems that have been solved are these:

– thin reaction layers
– nonlinear equations (and negative concentrations)
– coupled systems.

The problem of thin reaction layers is described sufficiently in Chap. 5. The
solution is to use unequal intervals, that is, a few very small intervals near the
electrode, so that there are sample points within the thin profile. This can be done up
to a point by a fixed unequal grid such as the exponentially expanding grid described
in Chap. 7. A more flexible approach is the use of adaptive grids also described in
that chapter. This problem is thus solved and needs no further attention here.

In Appendix E, the program CV_EC is described, which simulates a CV for a
simple EC reaction.

8.6.1 Nonlinear Equations

If a given hcr is of higher than first order, nonlinear terms arise in the dynamic
equation(s). With terms, for example, in squared concentrations (see below), there
is the danger, due to computational errors, that a concentration becomes negative,
after which it can never be corrected. The technique CN is especially prone to this,
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because of the oscillations it engenders as a response to sharp transients such as a
potential jump. This is one reason some workers prefer the Laasonen method or its
improved offshoots, which have a smooth error response without any oscillations.
With a Pearson start, however, CN can be used safely, without the appearance of
negative concentrations, as has been seen in the above.

Until fairly recently, the problem was regarded as too hard. For example, Fisher
and Compton [56], in a study involving coupled equations with second-order terms,
used explicit discretisation for the second-order terms. This degrades the accuracy
of the simulation and forces very small time intervals.

With the usual nonlinear terms, which are either of the form of a squared term or
the product of two species’ concentrations, there are two approaches. One of them
is to approximate the nonlinear terms by linearised terms. The approximations are
different for CN and Laasonen.

8.6.1.1 Linearising Squared Concentration Terms

This has been mentioned in several papers, but the first to describe such approx-
imations were Mastragostino et al. in 1968 [57]. Let the squared term be C2; for
example, a term in �KC2 in the dynamic equation. The change ıC is equal to C0�C.

For the Laasonen method, C2 is expressed as the square of the next, unknown
concentration, C02. We have

C02 D .C C ıC/2

D C2 C 2CıC C ıC2

� C2 C 2C.C0 � C/

D 2CC0 � C2 :

(8.53)

This is now a linear expression in the unknown, C0, since C is known. The
approximation is O.ıC2/, since a term of that order was dropped.

For CN, discretisation makes the squared term the mean of the old and new terms,
so

1
2
.C2 C C02/ D 1

2
.C2 C .C C ıC/2/

� 1
2
.2C2 C 2CıC/

D C2 C C.C0 � C/

D CC0 :

(8.54)

Again, this is O.ıC2/.
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8.6.1.2 Linearising the Product of Concentrations of Two Species

For convenience, the two species’ concentrations are given the symbols A and B
here, with A0 and B0 the unknowns. Lerke et al. mention this briefly [58], for the
DuFort–Frankel method [59], for some time a method suggested by Feldberg [60].

For Laasonen, we then have

A0B0 D .A C ıA/.B C ıB/

D AB C BıA C AıB C ıA ıB

� AB C B.A0 � A/C A.B0 � B/

D A0B C AB0 � AB :

(8.55)

For CN,

1
2
.AB C A0B0/ D 1

2
.AB C .A C ıA/.B C ıB//

� 1
2
.2AB C BıA C AıB/

D 1
2
.2AB C B.A0 � A/C A.B0 � B//

D 1
2
.A0B C AB0/ :

(8.56)

This covers all the cases.

8.6.1.3 An Example Case: Linearising

To show how this is done both in the linearised and the nonlinear form, a simple
example is chosen, having the advantage of being a single-species mechanism. It is
that described by Birk and Perone [7]. The electroactive substance A is formed at a
uniform (bulk) concentration in a cell by a flash of light. It begins immediately to
decay in a second-order hcr, while being electrolysed in a Cottrell-like experiment.
This system will be called BP here. The equations are

A C e� ! B

2A ! prod
(8.57)

with the chemical step irreversible and with (dimensionless) rate constant K. The
normalised dynamic equation is then

@C

@T
D @2C

@X2
� 2KC2 : (8.58)
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The number 2 seems to be controversial but seems logical because every time two
molecules of A react, both are removed from solution. Birk and Perone presented a
solution for the current, but this was incorrect and was later corrected and augmented
by solutions for various electrode geometries [61]. So a solution exists that can be
used to test a simulation.

The linearised version is discretised for CN, using (8.54), as

C0
i � Ci

ıT
D 1

2

�
˛1C

0
i�1 C ˛2C

0
i C ˛3C

0
iC1 C ˛1Ci�1 C ˛2Ci C ˛3CiC1

�

� 2KCiC
0
i : (8.59)

Equation (8.59) then becomes a system like (8.11), except that the middle term on
the left-hand side is different:

C0
i�1 C .a1;i C ak;iCi/C

0
i C a2C

0
iC1 D bi (8.60)

where the new coefficient is given by

ak;i D �4K=˛1 (8.61)

and bi is exactly as already defined in (8.14); it does not contain a term arising
from the hcr. The system contains, besides the constant coefficients, concentration
terms that vary from step to step. In a given program, the a-coefficients can
be precomputed but the multiplication with the (known) concentrations must be
performed at every step. Reduction to the didiagonal form (the first step of the
Thomas algorithm), described by (8.16)–(8.28) will be modified in that (8.18)
becomes

a0
N D a1;N C ak;NCN (8.62)

and the ith equation becomes

a0
i D a1;i C ak;iCi � a2

a0
iC1

: (8.63)

The expressions for the b0 are unchanged, except for the outer value, where attention
must be given to the fact that the bulk concentration itself changes (decreases) with
time. Since a solution is available here (see any text on physical chemistry, for
example [62]), it may as well be used. In dimensionless terms and taking the factor
2 into account, it is

CNC1.T/ D .1C 2KT/�1 : (8.64)
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Consistent with CN custom, then, the last equation in the system is

C0
N�1 C .a1;N C ak;NCN/C

0
N D bN � a2C

0
NC1 (8.65)

in which the term bN (from (8.13)) contains the bulk value at time T (the old value),
but the last term on the right-hand side contains the new value for T C ıT. It is
important to do this correctly, for accuracy.

The above is incorporated into the example program BP_LIN described in
Appendix E.

8.6.1.4 An Example Case: Nonlinear

We can also choose not to linearise the nonlinear term by an approximation, in
which case we do not run the (minimal) risk of adding errors to the simulation by
the linearising approximation. The same example as used above (8.57) and again
choosing CN as the method, the dynamic equation (8.58) is discretised as

C0
i � Ci

ıT
D 1

2

�
˛1C

0
i�1 C ˛2C

0
i C ˛3C

0
iC1 C ˛1Ci�1 C ˛2Ci C ˛3CiC1

� 2KC2i � 2KC02
i

� (8.66)

in which the term in 2KC02
i is left in its nonlinear form (along with the other

nonlinear form 2KC2i , but this one is a known quantity and causes no trouble). This
engenders a new nonlinear system of equations

C0
i�1 C a1;iC

0
i C ak;iC

02
i C a2C

0
iC1 D bi (8.67)

where ak;i is defined differently:

ak;i D �2K=˛1 (8.68)

and also the right-hand side, bi, is different, containing a chemical term involving
ak;i :

bi D �Ci�1 � a3;iCi � ak;iC
2
i � a2CiC1 : (8.69)

The above equations (8.67), of which there are N for i D 1 : : :N, form a new system,
which we rewrite in a new form, using the symbol C for what is to become C0 at the
end of the Newton iterations (b is constant during the process). The equations are
the system, for i D 1 : : :N,

fi.C/ D Ci�1 C a1;iCi C ak;iC
2
i C a2CiC1 � bi : (8.70)
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At the start of an iteration, all C are equal to the known C. We seek a solution such
that all fi are equal to zero, which they are not at the start of the step. The Newton
method, which will be used, takes a number of steps, correcting the C values at each
step. Before we can do this, we must pay attention to the first and last equations of
the set. The first one (i D 1) contains the boundary value C0. If the system is that
for a Cottrell experiment, then that value is zero, so that the equation is

f1.C/ D a1;1C1 C ak;1C
2
1 C a2C2 � b1 (8.71)

which is very simple. If we have derivative boundary conditions and (sensibly, with
unequal intervals) use a two-point approximation for G, then C0 can be replaced by
a linear form in C1 according to the procedures described in Chap. 6. If a multi-point
derivative approximation is desired, that expression will be a linear combination of
several Ci; i D 1 : : : n� 1, which is more complicated and is not recommended. For
this example, we stay with Cottrell.

The other equation needing attention is that for i D N, being

fN.C/ D CN�1 C a1;NCN C ak;NC
2
N C a2CNC1 � bN (8.72)

which contains the bulk value CNC1. This is already known, being in this case given
by (8.64) for the time T C ıT. It is not part of the unknown set. Note that the last
term bN is the expression for (8.69) for i D N and contains an old bulk value. It is
important in the program to distinguish between these two different bulk values.

We are now ready to implement the Newton method. We wish to correct C. For
details of the Newton method used on a set of nonlinear equations, see a text like
Press et al. [63]. More briefly here, Taylor expansion of the system (8.66) around
the current C to the corrected CCıC where ıC is the correction term row, produces
the set of equations linear in ıC,

f .C1 C ıC1/ D f .C1/C .a1;1 C 2ak;1C1/ıC1 C a2ıC2

f .C2 C ıC2/ D f .C2/C ıC1 C .a1;2 C 2ak;2C2/ıC2 C a2ıC3

: : : (8.73)

f .Ci C ıCi/ D f .Ci/C ıCi�1 C .a1;i C 2ak;iCi/ıCi C a2ıCiC1 (8.74)

: : :

f .CN C ıCN/ D f .CN/C ıCN�1 C .a1;N C 2ak;NCN/ıCN

where the ıCi are the unknowns, the correction terms. In vector/matrix notation,
defining C � ŒC1;C2; : : :CN 


T , ıC � ŒıC1; ıC2; : : : ıCN 

T and the Jacobian,
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defined as

J.C/ D

2
6666664

@f1
@C1

@f1
@C2

: : : @f1
@CN

@f2
@C1

@f2
@C2

: : :
@f2
@CN

:::
:::
: : :

:::

@fN
@C1

@fN
@C2

: : :
@fN
@CN

3
7777775

(8.75)

becomes

J �

2
666664

.a1;1 C 2ak;1C1/ a2
1 .a1;2 C 2ak;2C2/ a2

1 .a1;3 C 2ak;3C3/ a2
: : :

: : :

1 .a1;N C 2ak;NCN/

3
777775

(8.76)

(only nonzero elements are shown), this becomes

F.C C ıC/ D F.C/C J � ıC (8.77)

and expecting convergence and thus setting F.C CıC/ to zero, we get the new, now
linear system,

J � ıC D �F.C/ (8.78)

which is a tridiagonal system that can be solved by the Thomas algorithm as usual,
for ıC. One must then either check the residual (8.77); its norm should be below
some value one sets, such as 10�6. Alternatively, one can check the correction vector
ıC. If its norm is below that small value, then no further iterations need be carried
out. The first method requires an extra calculation, while the second always requires
a last extra iteration because even if the very first iteration yields the correct set of
ıC values, that set itself will not be zero, but the second set will be.

The above is implemented in the program BP_NONLIN (Appendix E). One finds
that 2–3 iterations tend to be enough, and the results are very slightly better, for a
given set of simulation parameters, than those from the linearised version, BP_LIN.

A further method to handle nonlinearities directly without iteration, the Rosen-
brock method, is explained in Chap. 9.
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8.6.2 Coupled Equations

Coupled equations are those in which some or all of the dynamic equations
have terms in more than one of the variables (concentrations). This leads, upon
discretisation, to systems of discrete equations that cannot usually be solved using
the plain Thomas algorithm because, no matter how one orders the concentration
vectors, the systems correspond to matrix equations that are more than tridiagonal
or banded. It is not very long ago that this too was regarded as too hard, and
the explicit method was used, as this presents no special problems—except for
accuracy and computer time. Two techniques solved the problem: the block matrix
method, and direct matrix equation solving. The block matrix method, as will
be seen below, is itself a method of solving the matrix equations but, by proper
vector ordering and blocking, makes the matrix into a block-tridiagonal system,
which can be solved by a kind of block-Thomas algorithm. It was reintroduced
to electrochemistry by Rudolph in 1991 [64]. The technique was known outside
electrochemistry since 1952 [65] and since [66–74], and within the field [64, 75–
80]. Newman used the technique in 1968 [81] and Honeychurch mentions it in his
book [82]. Other methods exist to deal with the problem of banded matrices. The
most notable of these are the “strongly implicit procedure” (SIP) of Stone [83],
used recently by Alden et al. [84–86], the Krylov method [87], used by the same
team [86, 88, 89] and by Bard et al. [90] and Welford et al. [91]; and the multigrid
method [92], also used by Alden et al. [86]. The Alden et al. team made use of
ready-made commercial subroutines. These techniques are not trivial to apply, and
only the block matrix method will be described here.

To illustrate the block matrix method, we take the relatively simple two-species
catalytic or EC0 mechanism

O C e� , R

R ! O
(8.79)

as already mentioned in Chap. 6, page 112. As mentioned there, this leads, through
the obvious dynamic equations, to the discretised pair of equations for a given point
along X with index i,

C0
O;i�1 Ca1;iC0

O;i Cak;iC0
R;i Ca2C0

O;iC1 D bO;i

C0
R;i�1 C.a1;i � ak;i/C0

R;i Ca2C0
R;iC1 D bR;i

(8.80)

(we assume here that the coefficients are the same for both species and, again, that a2
is constant). The coefficients depend on the simulation method used (CN, Laasonen
or its variants) and on the sample point distribution, as already described.

This pair of equations produces, when written for all i, a system of 2N
equations. It is convenient to order the unknown concentrations in the sequence
CO;0;CR;0;CO;1;CR;1; : : : ;CO;N ;CR;N—that is, with CO and CR alternating. The
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system then becomes a pentadiagonal matrix equation, with perhaps some elements
off the five diagonals, depending upon the way derivative boundary conditions are
discretised. It is true that there are pentadiagonal solvers similar to the Thomas
algorithm [93], but we stay with the block matrix method here because the example
is a simple one, and the method can be extended to more than two species, which
widen the band in the matrix to more than pentadiagonal. Incidentally, in this
specific case, there is a method of using something like the Thomas algorithm, using
a double recursive method without blocks, but it is specific to this example, has no
general utility and will not be gone into here (unpublished work by DB).

The concentration vector is now lumped into pairs, rendering it into a vector of
two-element vectors; let

Ci �

CO;i

CR;i

�
(8.81)

and this allows us to write (8.80) in the more compact form, already seen in Chap. 6,
Eq. (6.57),

C0
i�1 C AiC0

i C a2C0
iC1 D Bi (8.82)

with the definitions

Ai �

a1;i ak;i
0 .a1;i � ak;i/

�
; (8.83)

Bi �

bO;i
bR;i

�
: (8.84)

The last equation of this new system, for i D N, can be used in the same manner
as the last equation in the scalar system (8.11), as the last term on the left-hand side
is known, C0

iC1 being the bulk values. In the scalar system, the equations, each with
three unknowns, were reduced to a new set, each with two unknowns, generating
a new set of scalar coefficients a0

i and b0
i. The same process can be used here, but

working with vectors and matrices. Applying the same approach as the above, (and
therefore not needing a lot of explanation), we write, analogous to (8.18),

A0
N D AN (8.85)

and as in (8.19)

B0
N D BN � a2C0

NC1 : (8.86)
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Then, analogous to the scalar process above, Eqs. (8.26) and (8.27), we have the
recursive relations, going backwards from N,

A0
i D Ai � a2.A0

iC1/�1 (8.87)

and

B0
i D Bi � a2.A0

iC1/�1B0
iC1 : (8.88)

This is continued down to i D 1, giving the system (6.61), described on page 113.
It turns out in practice that only the inverses of the new coefficient matrices A0

are needed for the last step, so only these inverses need be stored. Since the matrices
are small (in this case, just 2 � 2), the inversions can be efficiently computed.

Before the last sweep can be carried out, the boundary concentration vector C0
0

is needed, and how this is calculated is fully described in Chap. 6, Sect. 6.4, starting
on page 113. When this has been done, all the new concentrations can at last be
computed, from the forward-sweeping recursive expressions

C0
i D .A0

i/
�1 �B0

i � C0
i�1
�
; (8.89)

seen to be analogous with (8.30). If the concentrations are stored separately for each
species, then it might be most convenient to put each Ci vector away into its place
in those arrays as soon as they are computed; it is matter of personal strategy, how
to store the values.

The program CV_CAT (see Appendix E) is an example of a simulation of this
system, for cyclic voltammetry.
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Chapter 9
Other Methods

In previous chapters, those methods that are regarded as most advisable in some
sense are presented in some detail. The explicit method cannot really be said to
be advisable, but it does serve as an introduction to simulation, from which one
can advance to the slightly harder implicit methods mentioned in Chap. 8. In the
present chapter, a large number of alternative schemes that have been advocated
in the last several decades are at least mentioned, some in more detail than others,
according to the present authors’ estimation of the feasibility of the methods’ use,
or the ability of the average electrochemist to program them. This is inevitably a
subjective judgement and there will be some disagreement. References are provided
for the reader who wants to delve more deeply.

9.1 The Box Method

The Feldberg approach to digital simulation [1] uses a somewhat different method
of discretisation, and the method is alive and well [2]. It begins with Fick’s
first diffusion equation, using fluxes between boxes or finite volumes, rather than
concentrations at points in the discretisation process (see below).

Rather than, as is done in this book, sampling concentration along the x-
axis at a number of points, Feldberg thought in terms of boxes along the axis.
Initially, the boxes were of equal length but both Seeber and Stefani [3] and
Feldberg [4] proposed in 1981 that boxes of unequal length were better, and
suggested exponentially expanding box-lengths. A few such boxes are shown in
Fig. 9.1. We have selected three boxes, consecutively numbered, as shown. The
middle box is indexed with i, and is bounded by the positions xi�1 and xi. Its length
is hi. The formula for the expansion can be expressed as follows. We start with a first
box of length h1, chosen suitably (with perhaps a homogeneous chemical reaction in

© Springer International Publishing Switzerland 2016
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Fig. 9.1 Discrete boxes along x

mind, so that h1 lies well within the reaction layer). Then, each successive box has a
length a fixed multiple> 1 of the length of the one before it. This is in fact precisely
the same as is done in the exponentially spaced point positions, described in Chap. 7.
There, the symbol � is given to the expansion factor. Tradition has it, in the box
method approach, to use a different symbol and definition for the expansion factor;
our � is equivalent to exp.ˇ/ in the box terminology. We can thus directly describe
the outer box boundaries in the same terms as in (7.19), and arrive at Feldberg’s
equation,

xi D h1
exp.iˇ/ � 1

exp.ˇ/ � 1 : (9.1)

This is the formula in [4], seen again in Rudolph’s chapter in [5]. Also, the box
lengths themselves are given by

hi D h1 exp..i � 1/ˇ/ : (9.2)

This expanding box strategy is mathematically equivalent to the transformation
from X into Y as described for point positions in Chap. 7, Eq. (7.3), as is shown in
Appendix C. Its implementation in the discretisation process is however different.

The way this is used is as follows. Fick’s first law is used, and fluxes into and out
of box i are considered. For this, we need to assign distances between successive
boxes, and here a small difficulty arises. For boxes of equal length, the distance is
simply that length, stretching from box midpoint to the next box midpoint. With
boxes of unequal lengths, this leads to inaccuracies. What is done instead is to
(mentally) map the position x onto an index space, the i’s in Fig. 9.1. These have
equal intervals of size unity. The assigned midpoint of a given box indexed with i
is then at i � 1

2
, and this transforms to the midpoint positions marked in Fig. 9.1

as xi�1 : : : xiC1, at the dashed lines. These are not the midpoints of the boxes, that
is, not .xi C xiC1/=2, etc. Distances between boxes are then taken as the distances
between these points. The points are given by

xi D h1
exp..i � 1

2
/ˇ/� 1

exp.ˇ/ � 1 : (9.3)
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The flux f1 going into box i from the left is

f1 D �AD
ci � ci�1
xi � xi�1

(9.4)

where A is the cross-sectional area of the box and D is the diffusion coefficient. The
flux f2 going out of the ith box to the right is

f2 D �AD
ciC1 � ci
xiC1 � xi

: (9.5)

The resultant flux into box i is the difference between the two,

f D f1 � f2 (9.6)

which has units of moles per second. We want concentration changes, so we must
multiply by the time interval to get moles, and divide by the box volume to get ıci.
The time interval is ıt and the box volume Vi is

Vi D Ahi : (9.7)

All this leads to the equation for the change in ci,

ıci D Dıt

hi

�
ciC1 � ci
xiC1 � xi

� ci � ci�1
xi � xi�1

�
(9.8)

which, using Feldberg’s [4] and Rudolph’s [5] notation, is now expressed in the
form

ıci D D�
2i.ciC1 � ci/� D�

1i.ci � ci�1/ : (9.9)

The D� coefficients can be worked out from (9.8), substituting for the x terms
using (9.3). The denominators in the two terms in brackets on the right-hand side
of (9.8) can be simplified. As an example, consider the first of these. It is simplified
in the following manner. From (9.3),

xiC1 � xi D h1
exp..i C 1

2
/ˇ/ � exp..i � 1

2
/ˇ/

exp.ˇ/ � 1 (9.10)

and dividing top and bottom of this fraction by exp..i � 1
2
/ˇ/, we are left with

xiC1 � xi D h1 exp..i � 1
2
/ˇ/ : (9.11)



180 9 Other Methods

The second denominator term can be simplified in an analogous manner, dividing
by exp..i � 3

2
/ˇ/. This leads to the expressions, for i > 1,

D�
2i D D� exp.2ˇ. 3

4
� i/

D�
1i D D� exp.2ˇ. 5

4
� i/ (9.12)

with

D� D Dıt

h21
: (9.13)

For the very first box (i D 1) there is a small problem. There is no box at i D 0, and
the first box extends to x1 D h1, and from (9.3) (i D 1),

x1 D h1
exp. 1

2
ˇ/ � 1

exp.ˇ/ � 1
; (9.14)

which is the assigned distance of this box from the electrode. Inserting this
appropriately into (9.8) results in the two coefficients

D�
21 D D� exp.� 1

2
ˇ/

D�
11 D D� exp.ˇ/ � 1

exp. 1
2
ˇ/ � 1 : (9.15)

The above equations are all given in [4] and [5].
Consideration of (9.9) reveals that it is of the same form as that shown for the

point method using arbitrarily spaced points, Eq. (8.8) in Chap. 8. We can proceed
from here in the same way as in that chapter. That is, all methods described there
(or even the explicit method) can be applied. By dividing (9.9) by ıt, we can even
go into an Method of Lines (MOL)-type method (see below). There is thus no need
to describe the procedure further from here.

As a final word on the box method, it should be mentioned that in his publications
on unequal intervals, Rudolph [6–8] makes a strong case for the box method. His
initial aim in these papers was to show that discretisation in the point method, on
equal intervals in the transformed space (as described in Chap. 7) is not as accurate
as had been supposed. Rudolph devised an improved way of discretising the trans-
formed diffusion equation[7, 9] (the same as the present (7.11) in Chap. 7, derived
by Bieniasz [10]), and states that the box method with exponentially expanding
intervals, as described above, is as accurate as when using this improved formula.
It seems that the use of fluxes is the cause of the accuracy of the box method, even
though computed concentration values might be less accurate. Rudolph refers [8]
to exponential convergence of calculated flux values, using this method. This is
supported by the literature on the control volume method [11]. Patankar [11] writes
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that “even coarse-grid solution exhibits exact integral balances”. The control volume
method has been used in two other electrochemical works [12, 13]. There is as yet no
agreement on this, and further study is needed. Certainly Rudolph’s 2004 paper [8],
showing very rapid exponential convergence of the computed flux, makes a strong
case for this method.

9.2 Improvements on Standard Methods

Both the explicit and implicit methods already described have been improved to
greater accuracy and, hopefully, greater efficiency.

9.2.1 The Kimble and White Method

Kimble and White [14] developed a scheme which, as described and intended, was
somewhat awkward to use and limited the possible number of points in time and
space. The method is mentioned in other chapters for its use as a high-order start for
BDF (for which it did indeed work, but not with great efficiency). It is perhaps best
described in two stages. Consider Fig. 9.2, a modest-sized grid on which the KW
method is to be used, representing positions in time (indices j) and space (indices i).
The thicker bottom line represents initial conditions; the dotted line at the left is that

Fig. 9.2 An example grid for the KW method
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for the boundaryC0 values, that at the right the bulk values. The vertical line at i D 8

lies at Xmax. In general, let there be N C 2 mesh points in the horizontal, X-direction
and M C 1 in the vertical, T-direction, that is, N � M points to be calculated aside
from boundary points.

Nguygen and White [15] used such a grid, albeit for the purpose of solving an
elliptic problem, not involving time, so that the vertical axis was along y, the other
spatial dimension. The method therefore involved second spatial differences in both
directions, and they used three-point discretisations. What made their approach
special is that, rather than writing one large system of equations for all N � M
unknowns, which leads to a banded system, they wrote a system of matrix equations,
each unknown being the whole horizontal vector. This gave them a block tridiagonal
system, solvable by the available routine BANDJ by Newman [16].

This early paper was followed by another one in 1990 by Kimble and White [14],
now applying the method to a diffusion problem, and using 5-point approximations
in both directions. As before, the problem was cast into a block matrix, but because
of the 5 points used for the discretisations, this was block-pentadiagonal. For
most node points in the figure, the 5-point approximations yield the following
computational molecule or stencil.

All points have been drawn empty, indicating what is special about the KW
method. If the stencil had been drawn, as one might expect, with all points filled
(known) except the top one, this would indicate that the method marches forward
in time, using an explicit central differences form. Such central difference forms
are all known to be unstable. The classic one is the 3-point leap-frog scheme of
Richardson [17], which appears attractive intuitively, being second-order in time,
but was proved unconditionally unstable in 1950 [18]. The same holds for central
difference schemes using a larger number of points, as here. Neither does it make
a difference simply to put all the equations into one large system; the instability
still appears. What made the difference here, as shown in [19], is the device the
authors employed at the top of the grid. The 5-point temporal discretisation can
only be used up to line M � 2 (the top one being at index M). For index M � 1,
an asymmetric backward form is needed, using points at indices M � 4 : : :M (form
y0
4.5/ in Table A.1, Appendix A):
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and for the top line at index M, a BDF form, y0
5.5/ in the Table, was used. It is this

“cap” on the whole system that stabilises it [19].

Similarly, asymmetric forward forms are used at the bottom end.
Kimble and White were aware that leapfrog methods are unstable and simply

remark that this did not seem to apply to their method. Also, they mention the
use of five points for all approximations but their table of discretisations shows
that they used six points at the edges for the spatial second derivative. This is no
doubt because, as Collatz already mentions in 1960 [20], the asymmetric five-point
second derivative is only third-order, while a six-point formula is fourth-order, like
the symmetrical five-point ones used in the bulk of the grid. So, for the second
spatial derivative at index i D 1, the form y00

2.6/ was used, and the reverse, form
y00
5.6/ at i D N.

All this leads to a block-pentadiagonal system of equations in the unknown
vectors representing the horizontal lines in the figure. Results appeared to be
good [14] but clearly, the drawback of the method is that, for any reasonably sized
grid, the system becomes large. Probably for this reason, the method has not taken
on. It might, however, have application in the ode field, where the computational
molecule reduces, as it were, to a single vertical column.

Another potential use for the KW method is as a high-order start for the BDF
method, as indeed suggested by Feldberg and Goldstein [21], who dubbed this the
“hyperimplicit” approach. As described in previous Chaps. 4 and 8, BDF has the
problem of requiring starting values. If the grid in Fig. 9.2 is reduced to k time
levels for a k-point BDF variant, and solved for the k � 1 unknown levels, high-
order starting values result. This process is described in Chap. 8, Sect. 8.5.2.

9.2.2 Multi-Point Second Spatial Derivatives

When using methods such as extrapolation or BDF, which are capable of high order
results with respect to the time intervals, one finds that, going to orders higher
than O.ıT2/ does not lead to improvements, certainly not to greater efficiency—
rather the reverse, because more computing is done to achieve similar accura-
cies. The reason is that the error is a sum of terms involving ıTp (p being
the particular method’s order with respect to ıT) and H2 (for equal intervals),
H being the spatial interval. This comes from the three-point spatial second
derivative usually used. This term soon dominates and renders high-order time
schemes useless. Thus, higher-order second spatial derivatives might help and
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have been studied for equal intervals [22–25] as well as for unequal intervals
[26]. Inspiration for this came from the KW method, described above. As with that
work, six-point asymmetric discretisation becomes desirable at points next to the
boundaries, in order for all discretisations to be fourth-order with respect to the
spatial interval H. The equations then are in semidiscretised form (that is, leaving
the left-hand side of the diffusion equation untouched for the moment)

dC1
dT

D 1

12H2
.10C0 � 15C1 � 4C2 C 14C3 � 6C4 C C5/

dC2
dT

D 1

12H2
.�C0 C 16C1 � 30C2 C 16C3 � C4/

: : : (9.16)

dCi

dT
D 1

12H2
.�Ci�2 C 16Ci�1 � 30Ci C 16CiC1 � CiC2/

: : :

dCN�1
dT

D 1

12H2
.�CN�3 C 16CN�2 � 30CN�1 C 16CN � CNC1/

dCN

dT
D 1

12H2
.CN�4 � 6CN�3 C 14CN�2 � 4CN�1 � 15CN C 10CNC1/

where the first line (index 1) uses the y00
2.6/ form in Table A.2, and that at index N the

symmetrically opposite form y00
5 .6/. All other equations, indices 2 : : :N � 1, use the

symmetrical five-point form y00
3 .5/. There is, however, something special about lines

2 andN�1, in that, like the first and last lines, they include terms in boundary values.
In practice, the C0 values would be substituted by suitable expressions involving
unknown concentration terms C1; : : : , according to what the boundary conditions
are (Chap. 6). Also, the system (9.16), being pentadiagonal, requires something
more complicated than the Thomas algorithm, and one has been described [22],
based on such texts as that of Engeln-Müllges and Uhlig [27] and Fletcher [28].
It involves several sweeps and, depending on the boundary condition expressions,
possibly some preliminary eliminations to reduce the matrix to pentadiagonal form,
if these expressions produce some extra-long equations (typically, the first and
second).

This was examined in a series of works, using BDF [22], extrapolation [22],
RK (see below) [25] and BDF with the KW start [24]. The latter did produce
highly accurate starting vectors but due to the high computational overhead, was
found less efficient than some less accurate BDF starts. Overall, the most efficient
methods were those employing fourth-order extrapolation, followed closely (and
surprisingly) by the simple BDF start with the time correction [25], mentioned in
Sect. 4.8.1 on page 69, and Sect. 8.5.2, page 159.
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In practice, the (6,5) approach is, at present, limited by the fact that, in the form
presented here, it applies to equal intervals. A slight improvement with unequal
intervals, using a 4-point spatial second derivative, is described in Chap. 8, and this
might be sufficient improvement, at little cost in terms of desk work [29]. It has been
applied to the ultramicroelectrode [30] and for these, multi-point forms have been
studied in detail [31], as is also mentioned again in Chap. 12.

9.2.3 DuFort–Frankel

The (ode-) method called leapfrog has been mentioned in Chap. 4, where Eq. (4.38)
describes it. This was used by Richardson [17] to solve a parabolic pde, apparently
with success. The computational molecule corresponding to this method is

In this scheme, the temporal derivative is formed by the central (second-order)
difference between the upper and lower points, the second spatial derivative being
approximated as usual. This makes the discretisation at the index i in space,

C0
i � 0Ci

2ıT
D 1

H2
.Ci�1 � 2Ci C CiC1/ (9.17)

(adhering to the notation used for BDF as in Chap. 8, page 160, where 0Ci denotes
Ci at time T � ıT). The scheme is clearly explicit.

Leapfrog is used with apparent success to solve hyperbolic pdes [32], but was
proved unconditionally unstable for parabolic pdes in 1950 [18]. Richardson had
been lucky, in that the instabilities had not made themselves felt in his (pencil and
paper) calculations, in the course of the few iterations he worked.

DuFort and Frankel [33] devised a modification to this scheme in 1953 that
stabilises it:

The time derivative is the same central difference but the spatial second derivative
now leaves out the central point, substituting for it the mean of the past and future
points. Thus, the discretisation is

C0
i � 0Ci

2ıT
D 1

H2

�
Ci�1 � 0Ci � C0

i C CiC1
�

(9.18)
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which is still explicit for C0
i when rearranged but known to be stable for all

ıT=H2 [34]. This formula received some attention among electrochemists for some
time [35–37], some [36] calling it “FQEFD” (fast quasi-explicit finite difference).
It shares with BDF (or FIRM) the problem of start-up, since at the first step, a
row of values at T D �ıT are needed. This was mentioned by Marques da Silva
et al. [38], who studied this scheme, along with that of Saul’yev (see below) and
its offshoots, and hopscotch (see also below). They also mention another problem
with DuFort–Frankel, shared with hopscotch, as pointed out by Feldberg [39]. Both
DuFort–Frankel and hopscotch, being stable for any , invite the use of large  or
ıT values. This should result in a fast propagation of changes in the concentration
profile from what is happening at the electrode. However, because these schemes are
explicit, generating one new value at a time only from old values, such changes can
only advance into the cell’s interior by one spatial interval at a time. This compares
unfavourably with implicit methods for which the whole profile is always calculated
together at each step. For this reason, Feldberg [39] writes of the “propagational
inadequacy” of hopscotch, and this was also noted by Marques da Silva et al.
(private communication), also of the DuFort–Frankel scheme [38]. Both schemes
thus perform less and less well at large ıT, nullifying the advantages that might
have come from the unconditional stability. This problem had been pointed out in
the numerical text of Carnahan et al. [40, p. 440, Fig. 7.5] for the explicit method
itself. Also, most textbooks mention the inconsistency problem of DuFort–Frankel
in the case when ıT=H 	 0; in fact, the authors themselves mention this in their
1953 paper [33], as did Potter [41]. More about this can be read in Chap. 15.

The DuFort–Frankel scheme has apparently been dropped in favour of more
interesting schemes such as BDF, which can be driven to higher-orders, and for
which the start-up problem has been overcome (Chap. 4).

9.2.4 Saul’yev

A perhaps more interesting method is that of Saul’yev [42] (and apparently
independently, the same idea, of Barakat [43] a short time later). The method is
explicit, which makes programming easier than implicit methods, and is capable of
improvements over the original idea. There are two basic variants that make up the
building blocks for improvements. The LR variant, as the name implies moves from
left (that is, from X D 0) to right (higher X), generating new values at the next time
level. The computational molecule for this is
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and the diffusion equation is discretised from the four points in the form

C0
i � Ci

ıT
D 1

H2

�
C0
i�1 � C0

i � Ci C CiC1
�

(9.19)

which is seen to be a sort of tilted second derivative on the right-hand side. The left-
right progression is explicitly possible because the left-most element has already
been computed in the previous step. The equation is rearranged into a form explicit
for C0

i . Obviously, this leaves the problem of how to start, for which the boundary
value C0

0 is needed. This will be described below. The above equation can be
expressed in the form, explicit for C0

i ,

C0
i D a1.C

0
i�1 C CiC1/C a2Ci (9.20)

with the constants defined as

a1 D 

1C 
(9.21)

and

a2 D 1 � 

1C 
: (9.22)

The other variant is RL, moving from right to left:

and the discretisation is

C0
i � Ci

ıT
D 1

H2

�
Ci�1 � Ci � C0

i C C0
iC1
�
: (9.23)

When rearranged so as to be explicit for C0
i , it becomes

C0
i D a1.Ci�1 C C0

iC1/C a2Ci (9.24)

with the same definitions of the constants. The only difference is in the superscripts
of the first term on the right-hand side, and in the order of evaluation, here from
right to left.

It remains to describe how to handle the boundary value C0
0. Clearly, for the RL

variant, there is no problem because the last concentration value calculated is C0
1,

and C0
0 can then be computed from all the other C0 values, now known, according to

the boundary condition. This leaves the LR problem. If the boundary concentration
is determined as such (the Dirichlet condition, for example the Cottrell experiment),
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then this is simply applied. It is with derivative (Neumann) boundary conditions
that there is a (small) problem. Here, we know an expression for the gradient G
at the electrode. For simplicity, assume a two-point gradient approximation at time
T C ıT (G0),

G0 D C0
1 � C0

0

H
(9.25)

and this can be coupled with the first LR expression for C0
1 from (9.20), setting

i D 1, and the two equations solved for C0
0 (and C0

1). The LR process can then
begin. If more points are to be used for the gradient approximation, then more LR
expressions must also be added, and a correspondingly larger system of equations
needs to be solved. This has been described [44] in some detail.

This is as much as will be said here about the mechanics of the Saul’yev method;
the reader can take it from here, as it is quite simple. Some further remarks are
however in order.

Both the LR and RL variants, despite being explicit, are said to be stable for all
 values, which is a great advantage. Also, the method does not share with DuFort–
Frankel and hopscotch the propagational inadequacy problem [39] mentioned above
because both variants amount to a recursive algorithm, each newly calculated
element carrying with it some component from all previously calculated elements.

There are drawbacks, however. It is clear from the above computational
molecules that the second, spatial derivative is approximated in an asymmetric
manner, and although these approximations are in fact second-order with respect to
the interval H, they are not as good as, say, the Crank–Nicolson ones. Both LR and
RL, taken by themselves, do not produce very good results. It was not long after
Saul’yev’s book in 1964 that Larkin (in the same year) published some extensions,
as did other workers [45–47]. The asymmetry of each of the two variants suggests
combining them in some manner. Larkin [48] listed four strategies:

1. use the LR variant only;
2. use the RL variant only;
3. use the LR and RL variants alternately at each iteration;
4. use the LR and RL variants independently at each iteration and average the result.

Liu [46, 47] later added a modification, using one extra point at the bottom
advancing end of the molecules shown above, and showed that this made the
schemes more accurate and that they were still stable. Evans and Abdullah [45]
developed what they called group explicit methods (GEM) based on Saul’yev, in
which the LR and RL schemes were combined in larger computational molecules.

Electrochemists first investigated the Saul’yev method in 1988 and 1989 [38, 49],
including GEM, and the incorporation of implicit boundary values was added
later [44]. The result of these studies is broadly that the last of Larkin’s options
above, averaging LR and RL, is the best. This has about the same accuracy as
Crank–Nicolson, and could be considered to be easier to program. The third option,
alternating LR with RL, produces oscillations.
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The stability of the Saul’yev schemes in the electrochemical context with mixed
boundary conditions was examined [50, 51]. Surprisingly, it was found that the
LR variant can be unstable with mixed boundary conditions. There exists, for any
number N of intervals in space, a maximum  value in the discrete equation,
above which the LR scheme becomes unstable. Fortunately, it is rather difficult
to attain this condition in practice. Since these studies, Deng [52] has used the
various Saul’yev schemes and offshoots, and cites several Chinese studies also using
Saul’yev variants, but they have found little application elsewhere.

9.2.5 Hopscotch

In 1965, Gordon [53] reported some studies of what he called nonsymmetric
difference equations, meaning schemes like that of Saul’yev and the Peaceman-
Rachford ADI scheme (see Chap. 12), in which not all points are treated alike. One
of his new ideas was what he called the “explicit–implicit” scheme. It is as follows
(using the simple example of a 1-D simulation). As usual, we move along time with
index j and along space (X) with index i, starting with j D 1, having set the initial
values for j D 0. The X points are indexed from zero to N C 1, with X0 D 0 lying at
the electrode and XNC1 lying in the bulk, outside the diffusion space.

If j is even, then we first explicitly compute new points for all odd i, that is,

C0
i D Ci C .Ci�1 � 2Ci C CiC1/ ; (9.26)

and then using the implicit formula (the same as backward implicit BI) on all points
with even i,

C0
i D Ci C .C0

i�1 � 2C0
i C C0

iC1/ : (9.27)

The interesting thing here is that in contrast with BI, the values for C0
i�1 and C0

iC1
are already known from the run of (9.26), lying at odd values of i, so that (9.27) can
be rearranged explicitly for C0

i . At the next iteration, j will be odd, and the explicit
calculation is done on all even i, followed by the implicit calculation on all points
with odd i. In this way, alternating the sets being computed explicitly and implicitly,
a certain symmetry is produced.

Gordon also showed that the scheme is convergent and stable for all . The
scheme was taken up by Gourlay in 1970 [54], who tightened up the mathematical
notation, and applied the scheme to 2-D numeric problems, as well as introducing
the trick of overwriting values in the first (explicit) step, so that only one array of
values is needed. Gourlay coined the name “hopscotch” for this method, by which it
has been known since then, and usually only Gourlay is cited. There were follow-up
papers [55, 56]. It also became clear that the method was closely related to others
like ADI [54] (to be mentioned for 2-D).
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The enthusiasm for hopscotch arose from the fact that here was a method with
an accuracy thought to be almost comparable with that of Crank–Nicolson, but
which was an explicit computation at every step, not requiring the solution of linear
systems of equations, as other implicit methods do. It was also stable for all ,
thus making it possible to use larger time steps, for example. The convenience
of the point-by-point calculation has occasionally led workers to call the method
“fast” [57].

Shoup and Szabo [58–61] brought the method to electrochemistry, using it to
simulate diffusion at a microdisk electrode. This was a problem at the time. A
proper implicit scheme leads to rather large banded systems of equations (see
Chap. 12), and workers tended to use ADI (and still do so), which leads to (much
smaller) tridiagonal systems of equations. Hopscotch seemed to be the answer, as
one could recalculate all points explicitly, and use large  values (in both directions).
Feldberg [57] used the method to simulate processes at a rotating ring-disk
electrode, citing stability and ease of use. Other electrochemists followed [62–69].
There soon appeared criticisms, however. Ruzić [70] commented that Shoup and
Szabo had misrepresented the normal explicit method by stating that it required
two concentration arrays, and showed how this could easily be avoided by using
two scalar concentration values trailing behind the values treated, while overwriting
all values as they are calculated (this is the trio of variables, C1, C2, C3, used
in the example program COTT_EX, see Appendix E). Also, Ruzić showed that
some simple known improvements [71] to Feldberg’s explicit method improved
its accuracy to something close to that of the hopscotch method, so that the latter
was not needed. Shoup and Szabo had indeed shown in their 1984 paper [59] that
hopscotch’s accuracy declines badly at  values exceeding unity, so the ability to
use large  cannot be cited as an advantage of the method. Ruzić’s polemic was
rebutted by Shoup and Szabo [72], who admitted some of the points made but then
launched into a discussion on the precise implementation of the Feldberg (box-)
method which, unlike the point method, allows a number of interpretations and
tricks to improve the results. The improvement described by Ruzić, shown in his
example program and based on Sandifer and Buck [71], amounts to the use of the
point method.

In 1987, Feldberg [39] pointed out the most serious drawback of hopscotch. The
problem is that, at each step forward in time, application of the two Eqs. (9.26)
and (9.27) can propagate a perturbation at a given point in the profile (for example,
at the electrode) only by a single interval in space. If large time intervals are
used, then one would expect such changes to make themselves felt over a number
of neighbouring points, but hopscotch cannot do this. Feldberg writes of the
“propagational inadequacy” of the hopscotch method. As mentioned above, it shares
this with the DuFort–Frankel method and also with the explicit method. With the
latter, however, the stability limit on  prevents the use of time intervals large
enough for this inadequacy to matter, while for hopscotch (and DuFort–Frankel)
there is the possibility and temptation to use larger time intervals. At values that can
be used in the explicit method, hopscotch is only marginally better than explicit and
this, together with the propagational inadequacy feature, suggests that hopscotch is
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not a method of choice, despite the ease of programming, both for one- and two-
dimensional simulations. Its use has declined to almost zero in recent years; we are
aware of only a single recent electrochemical work using hopscotch [73].

9.2.6 Runge–Kutta

The RK variants are described for odes in Chap. 4, from page 64 and, for a system
of odes, from page 77. There, only the Euler method is detailed, but in terms of RK
terminology, from which the higher-order variants follow easily. The description
there will not be expanded here, for reasons given below. When solving a pde or a
system of such, one way is to “semidiscretise” the equation(s), meaning that only the
right-hand side is discretised, leaving the time derivative as it is. This yields a system
of odes, such as (4.49) on page 77 and one can then proceed with that. This is called
the MOL. One can either treat the boundary conditions separately, or add them to
the system, in which case the system becomes a Differential Algebraic Equations
(DAE) system, and requires other methods to solve for it, as briefly mentioned in
Chap. 4.

RK initially attracted attention in electrochemical digital simulation because of
homogeneous chemical reactions. With explicit simulations, it was realised that
there was a problem if the term KıT was of appreciable magnitude[74, 75]. Nielsen
et al. [76] pointed out that, if this term causes more than a few percent change in a
concentration upon a single step forward in time, the simulation will be inaccurate.
Early on it was suggested to treat the chemical term more accurately. Feldberg and
Auerbach [74] used the known analytical solutions for a first- and second-order
chemical reaction for the chemical term, and Flanagan and Marcoux [75] followed,
suggesting RK integration for those cases in which analytical solutions are not
known. The RK method was then used by Nielsen et al. [76].

It was realised then that the method of Nielsen et al. [76] had a defect, limiting
its accuracy. The diffusional and chemical terms were calculated separately, in
sequence. That is, first diffusional changes are applied to the concentrations, and
then the chemical reaction is allowed to run, on the changed concentrations. This is
the “sequential method” also used for the plain explicit (Euler) method for both
terms, where it has been shown to be consistent mathematically [77]; see also
Appendix C. No proof of the consistency of the method, when RK is applied to
the chemical terms, is known, however. Clearly, this technique uncouples the two
processes taking place, diffusion and chemical reaction. This was remedied [78] in
a work where RK was applied to the whole system of equations, thus taking care
of the coupled nature of the two processes. It was found [78] that using RK2, a
modest efficiency gain of about a factor 3, in terms of computer time used, was
achieved, compared with the plain explicit method, in order to reach a given target
accuracy in model simulations. This is not very much and the method has the
additional drawback of a limit on the size of , the same as the explicit method, 0.5.
Nevertheless, this whole-system RK method has seen some use since then, notably
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by the Lemos school [79–83], who emphasise the MOL nature of their approach,
Gosser [84], Barker [85] and Hayase et al. [86]. Accuracy contours were computed
for the method, among others [87] and a stability analysis was published [88], as
affected by the chemical reaction (the reaction lowers the limit on ). In the course
of an investigation of higher-order discretisations of the spatial second derivative,
RK was once again tested [25] and once again found not especially promising; using
5-point discretisation, the limit on  decreases to 0.375.

It is therefore concluded that this method, using explicit RK as described in
Chap. 4, is not worthwhile mainly because of the  limitation.

There are, however, implicit variants of RK, and these may have promise. There
are several classes of these, see a thorough text on the subject [89, 90]. One of these
classes, the Rosenbrock method, has been examined in the electrochemical context
[91, 92, and see the references therein] and found very efficient. This is described in
its own Sect. 9.4, below.

9.2.7 Hermitian Methods

Kopal [93] describes Hermitian interpolation, as used by Hermite. The essence of
this is that not only function values at grid points are used, but also derivative values.
For a given number of grid points used in a particular approximation formula,
this results in a higher-order accuracy with respect to the grid intervals. Although
Hermite used this only for interpolation, the term is now used more generally,
referring to the characteristics mentioned above. Three Hermitian methods have
been used in electrochemical simulations, up to the time of writing, and two of
them are due to Bieniasz.

9.2.7.1 Numerov/Douglas

In 1924, the Russian astronomer Numerov (transliterating his own name as
Noumerov), published a paper [94] in which he described some improvements in
approximations to derivatives, to help with numerical simulations of the movement
of bodies in the solar system. His device has been adapted to the solution of pdes,
and was introduced to electrochemistry by Bieniasz in 2003 [10]. The method
described by Bieniasz is also called the Douglas equation in some texts such as that
of Smith [95], where a rather clear description of the method is found. With the
help of the Numerov method, it is possible to attain fourth order accuracy in the
spatial second derivative, while using only the usual three points. The first paper by
Bieniasz on this method treated equally spaced grids, and it was followed by another
on unequally spaced grids [96]. The method makes it practical to use higher-order
time derivative approximations without the complications of, say, the (6,5)-point
scheme described above, which makes the solution of the system of equations a
little complicated (and computer-time consuming).
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The description in Smith [95, pp. 137-] is followed here. It starts with a statement
that a second derivative can be approximated by

@2u

@x2
� �

ı2x u � 1
12
ı4x u C 1

90
ı6x u � : : :

�
; (9.28)

where the symbol ınx u denotes the operation ınx on u corresponding to an approxi-
mation to the nth derivative with respect to x. In particular, we have

ı2x u D ui�1 � 2ui C uiC1 ; (9.29)

the familiar three-point form, second-order in the interval h between the (equally
spaced) points at indices i � 1; i; i C 1. It does not contain the interval h. Also, if ı2

operates on itself, it becomes ı4, etc. It is an operator, but can in this sense be treated
as a multiplier. It will be seen that we do not need to define higher derivatives than
the second, operator ı2.

Smith does not explain the origin of (9.28), but a derivation can be found in
Lapidus and Pinder [34, pp. 39-], to which the reader is referred. The form seen
in (9.28) is one of several equally valid forms, but is the one chosen in this context,
as it allows the Numerov device.

The method will be described as applied to BI, which is the basis for both
extrapolation and BDF, both of which can be driven to fourth order accuracy,
which is also achieved by the Numerov device applied to the right-hand side of
the diffusion equation,

@C

@t
D @2C

@X2
: (9.30)

Using the usual notation, C0
i denoting the next point in time after the present value

Ci, i being the index along the X axis, we now discretise the left-hand side only,
according to BI (see Chap. 8, but now assuming equal intervals), and use (9.28) for
the right-hand side:

C0
i � Ci D 

�
ı2XC

0
i � 1

12
ı4XC

0
i C 1

90
ı6XC

0
i � : : : � : (9.31)

We need not concern us with the implementation of the higher-order derivatives, as
will shortly be clear. Now both sides are operated on by .1 C 1

12
ı2/, which is the

same as adding to each side the operation 1
12
ı2X on that side. This gives

C0
i � Ci C 1

12
ı2X.C

0
i � Ci/

D 
�
ı2XC

0
i � 1

12
ı4XC

0
i C 1

90
ı6XC

0
i � � � � C 1

12
ı4XC

0
i � 1

144
ı6XC

0
i C : : :

� (9.32)

and it is seen that on the right-hand side, there are now only terms in ı2X and ı6X , the
ı4X terms having cancelled out. We can safely ignore the ı6X and higher terms, and
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now we have only ı2X terms on both sides of the equation. Now expanding according
to the definition of the operation ı2x (9.29), we get

C0
i�CiC 1

12
.C0

i�1�2C0
iCC0

iC1�Ci�1C2Ci�CiC1/ D .C0
i�1�2C0

iCC0
iC1/ (9.33)

(recall  D ıT=H2) which, multiplying by 12 and gathering terms, becomes the
familiar form seen in Chap. 8, the ith equation of system (8.11) for a general implicit
method,

C0
i�1 C aC0

i C C0
iC1 D bi ; (9.34)

where now

a D 10C 24

1 � 12

bi D Ci�1 C 10Ci C CiC1
1 � 12

: (9.35)

The difference is that this discretisation is O.H4/. The system can be solved as
easily by the Thomas algorithm as, say, the usual Laasonen or CN system, but
now it will be worthwhile applying a high-order process in the time direction.
The easiest one is extrapolation, described above, and it ought to be fourth
order, so as to match that of the spatial second derivative. Bieniasz tested the
method with three simulation algorithms, comparing with the normal, second-order
discretisation: BI (no difference, because of the first-order time derivative), second-
order extrapolation (not much difference, the second-order not providing a match
for the fourth order) and the Rosenbrock scheme using ROWDA3, which showed
a marked improvement in efficiency. Unfortunately, he did not attempt fourth-order
extrapolation, which might be expected to perform about as well as Rosenbrock,
and would be easier to implement, being simply a series of BI steps.

This method is worth investigating further. An analysis of the stability of the
formulae resulting from the method is yet to be done. There are some features
to note. Considering the constants definitions above (9.35), there is an apparent
problem if  D 1=12. In fact, if the whole Eq. (9.34) is multiplied by 1 � 12,
then this problem becomes a possible advantage, as that equation then simplifies,
for  D 1=12, to

12C0
i D Ci�1 C 10Ci C CiC1 : (9.36)

It is not clear whether this is a good formula in practice, and in any case, the  value
is inconveniently small.

Note also that, if there are homogeneous chemical reaction terms on the right-
hand side of (9.30), they can be accommodated without problems; they will lead to
some additional terms operated on by ı2X. What must not be present are convection
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terms, since these are spatial first derivatives, making the Numerov method, in
this form, impossible to use. However, Bieniasz has devised an improved version,
called the “extended Numerov method” [97], which indeed can handle first spatial
derivatives and thus convective systems.

9.2.7.2 Hermitian Current Approximation

As already described in some detail in Chap. 3, a one-sided first derivative such as
the current approximationG can be raised to higher-order by a Hermitian scheme, as
introduced to electrochemistry by Bieniasz [10]. This can then be used both to obtain
better current approximations, and also in those cases where G enters a boundary
condition. For the simpler case of the current approximation on a spatial grid of
concentrations already calculated, see the relevant Sect. 3.6 in Chap. 3. Here we
need to go into some detail on the boundary conditions application.

There are simulation cases (for example, using unequal intervals) where it is
desirable to use a two-point approximation for G, both for the evaluation of a
current and as part of the boundary conditions. In that case, an improvement over the
normally first-order two-point approximation is welcomed, and Hermitian formulae
can achieve this. Two cases of such schemes are now described: that of controlled
current and that of an irreversible reaction, as described in Chap. 6, Sect. 6.2.2, using
the single-species case treated in that section, for simplicity. The reader will be able
to extend the treatment to more species and other cases, perhaps with the help of
Bieniasz’ seminal work on this subject [10]. Both the 2(2) and 2(3) forms are given.
It is assumed that we have arrived at the reduced didiagonal system (6.3) (page 103)
and have done the u-v calculation (here, only u1 and v1 are needed).

We must also specify the time integration method used, because the Hermitian
scheme makes use of terms in dC=dT, which must be consistent with the time
integration. We assume the three-point BDF method, second-order in time, so that
an improvement in the usual two-point G-approximation to second or perhaps third-
order (in space) will be appropriate.

In the cases to be described below, we have a simple F-function, containing only
a term in dC=dT (see the outline in Chap. 3), which needs approximating. We follow
the description given by Bieniasz [10]. With BDF, this is consistently represented as

dCi

dT
D

0Ci � 4Ci C 3C0
i

2ıT
(9.37)

with 0Ci the concentration at T � ıT. If the rational BDF start is used (Sect. 4.8.1),
then the simulation will start with a single BI step, for which we have

dCi

dT
D C0

i � Ci

ıT
: (9.38)
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For controlled current G and the 2(2) form, the boundary condition becomes
the corrected form

G D C0
1 � C0

0

H
� H

2
F0 (9.39)

and multiplying both sides by H and expanding F0 for the BI step results in

GH D C0
1 � C0

0 � H2

2

�
C0
0 � C0
ıT

�
: (9.40)

Substituting C0
1 D u1 C v1C0

0 and rearranging, we obtain the solution

C0
0 D 2ıT.GH � u1/� H2C0

2ıT.v1 � 1/� H2
: (9.41)

For the subsequent BDF steps, this is

GH D C0
1 � C0

0 � H2

2

� 0C0 � 4C0 C 3C0
0

2ıT

�
; (9.42)

leading finally to

C0
0 D 4ıT.GH � u1/C H2.0C0 � 4C0/

4ıT.v1 � 1/� 3H2
: (9.43)

The 2(3) form starts with

G D C0
1 � C0

0

H
� H

3
F0 � H

6
F1 : (9.44)

Expanding and substituting for both C0
0 and C0

1 (the latter arising in F1), the final
result for the BI step is

C0
0 D 6ıT.GH � u1/C H2.u1 � 2C0 � C1/

6ıT.v1 � 1/� H2.v1 C 2/
; (9.45)

while for the BDF steps it becomes

C0
0 D 12ıT.GH � u1/C H2.3u1 C 20C0 � 8C0 C0C1 � 4C1/

12ıT.v1 � 1/� 3H2.v1 C 2/
: (9.46)

For the irreversible case with dimensionless heterogeneous rate constant K, G
is given as

G D KC0
0 (9.47)
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and using this instead of G as above, we have for the 2(2) scheme and BI,

KHC0
0 D C0

1 � C0
0 � H2

2

�
C0
0 � C0
ıT

�
(9.48)

which rearranges to

C0
0 D 2ıTu1 C H2C0

2ıT.KH � v1 C 1/C H2
(9.49)

or for the BDF steps

C0
0 D 4ıTu1 � H2.0C0 � 4C0/

4ıT.KH � v1 C 1/C 3H2
: (9.50)

For the 2(3) scheme and BI,

C0
0 D 6ıTu1 � H2.u1 � 2C0 � C1/

6ıT.KH � v1 C 1/� H2.v1 C 2/
(9.51)

and for the BDF steps,

C0
0 D 12ıTu1 � H2.3u1 C 20C0 � 8C0 C0C1 � 4C1/

12ıT.KH � v1 C 1/� 3H2.v1 C 2/
: (9.52)

Some experiments show that the 2.2/ forms are sufficient here, the 2.3/ forms not
leading to further improvement in accuracy. This is no doubt because the three-point
BDF algorithm used, started with a BI step, is second-order accurate in time, so a
third-order form cannot improve the accuracy. A higher-order algorithm, such as
ROWDA3 as used by Bieniasz [10] or indeed a higher-order BDF such as four-
point, would make the higher 2.3/ form more useful. Note also that in the above
examples, we have approximated @C=@T as the two-point form, and could probably
do better using the three-point BDF form, consistent with the use of BDF3.

The example program CHRONO_CN_HERM shows a Crank–Nicolson implemen-
tation and again, the 2(3) form is only marginally better than 2(2). Bieniasz showed
how to use this scheme for extrapolation and for the Rosenbrock ROWDA3 scheme
[10]. The reader is referred to that paper for details, where still higher-order forms
are found. The paper makes it clear that extremely small errors can be achieved by
using this method.

9.2.7.3 Method of Wu and White

Wu and White [98] have described a new method that is reminiscent of the earlier
work of Kimble and White [14] but makes use of the Hermitian method (that is,
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using derivatives) to achieve higher-order solutions for several concentration rows
at a time. They also suggest, but do not demonstrate, the use of their new scheme as
a possible start-up for BDF. The reader is referred to their paper for details.

9.3 MOL and DAE

The MOL is not so much a particular method as a way of approaching numerical
solutions of pdes. It is described well by Hartree [99] as the “replacement of the
second-order (space) derivative by a finite difference”; that is, leaving the first (time)
derivative as it is, thus forming from, say, the diffusion equation a set of ordinary
differential equations, to be solved in an unspecified manner. Thus, a system such
as (9.16) on page 184 can be written in the general vector–matrix form

dC
dT

D AC C s ; (9.53)

where C is the concentration vector, A is the matrix of coefficients in the system and
s is a vector of known quantities arising from the particular boundary conditions.
From this point on, a large variety of methods for solving this system can be used.
This encompasses all the methods so far described, but the term MOL nowadays
implies a particular method. This consists of using a variety of computer packages
to solve the set of odes, usually with a high degree of autonomy with respect to
time intervals and if, for example, BDF is used (as it often is with these packages),
with respect to BDF order. The word “lines” comes from the fact that the solution
is advanced a “line” at a time, the line stretching along the space dimension, and
advancing up the time axis.

The method has a long history. The name MOL seems to have become estab-
lished around 1960. Before this, various authors either used the word “line” [100]
or expressions like “on certain lines” [101] or a description of the idea. In the book
by Kantorovich and Krylov [101], there is a reference to a 1934 paper [102]. It
is also cited by Liskovets [103] as a source paper, along with Rothe [104], who
might be the first. Hartree and Womersley [105] use, in their summary, the words
“approximating by use of finite intervals in one variable, and integrating exactly in
the other variable”. The book by Schiesser [106] is the standard work now (he calls
the method NUMOL, for numerical method of lines). Electrochemical use of MOL
has been sparse. Lemos and coworkers [79–82] have investigated the method, using
various solution methods; Lasia and Grégoire [107] used it in conjunction with a
professional ode solver package, as did Zhang and Cheh [108].

MOL is intimately bound up with another method, that of using DAE sets. It can
be thought of as an extension of MOL. Therefore, MOL should be described here,
and it is in fact simple. In the most popular form of MOL, the diffusion equation
is discretised on a grid in the spatial dimension(s) only, leaving the time derivative
as it is. This results in a set of ordinary differential equations (9.53) as seen, for
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example, in the system (9.16) in this chapter. There, (6,5)-point approximations are
used for the spatial derivative, but this is immaterial; three-point formulae such as
described in Chap. 8, (8.1) on page 145 are more commonly used. In Chap. 6 the
discretisation of boundary conditions is described. The idea there is that a system
like (9.16) is solved in two steps by, for example, the Thomas algorithm. At the
end of the first stage, boundary conditions are expressed discretely and used in
the second stage. However, another approach is to add the discrete expressions for
boundary conditions to the ode system. These expressions are algebraic equations.
For example, for the Cottrell system, the expression

C0 D 0 (9.54)

might be added to the system. Or, if the experiment is that of chronopotentiometry,
discretised derivative boundary conditions will be developed and added to the
system, such as (6.4) or more complex discretisations. The result is always a
system of equations, some of which are differential and some algebraic. This is a
DAE system, and there are professional packages for their numerical solution. The
standard text is that of Brenan et al. [109], in which references are to be found to
existing packages such as LSODE and DASSL [110]. These can mostly be found at
the netlib site [111]. More on these packages can be found in Chap. 17.

A little detail is appropriate here, especially as this is needed for the next section.
Consider a set of odes using three-point approximation in space, such as (8.1)
on page 145, for simplicity. For N internal points, there will then normally be N
such equations in the set. Up to this point, the method has been either to substitute
for the boundary values according to the equations describing them (the boundary
conditions) or, as in the case of the implicit methods described above, to perform
a Thomas process going backward from the external boundary, and then to solve
for the value of C0, for example using the u-v process as described above. If
Runge–Kutta is used, one begins by generating a particular ki vector, then uses
this to calculate the ki belonging to C0 (and possibly to CNC1, if that also changes
with time), going on from there. These methods in one way or another separate
the treatment of boundary values from that of the internal points. However, as
mentioned above, the equations describing boundary values can also be added to
the equation set. They are always algebraic equations, so that the whole set is then a
DAE set. As a simple example, if we simulate chronopotentiometry using a two-
point approximation for the current, and equal spatial intervals H, the DAE set
corresponding to (8.1) becomes

0 D C1 � C0 � HG

dC1
dT

D 1

H2
.C0 � 2C1 C C2/

: : :
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dCi

dT
D 1

H2
.Ci�1 � 2Ci C CiC1/ (9.55)

: : :

dCN

dT
D 1

H2
.CN�1 � 2CN C CNC1/

0 D CNC1 � 1 :

The first equation is a description of the (controlled) current approximation, and the
last equation expresses the unity value of the outer boundary value.

There are now two principal ways of handling this set. One is to decide on some
discretisation of the time derivatives, rendering the odes into algebraic equations,
and solving the lot, for the next time step. The method chosen might be BDF, for
example, which is indeed used in the DAE solver package DASSL [110]. Seen in
this light, DAE sets might be considered always to be involved; when we use the u-v
mechanism along with the Thomas algorithm, we are essentially solving the DAE
set in an efficient manner. The other approach goes in the opposite direction, as it
were. All the odes in the set are left as such, and the algebraic equations are solved
along with them, using an ode solver. One of these is Runge–Kutta but, as was
mentioned above, explicit RK is not very efficient, so an implicit method suggests
itself, such as Rosenbrock, described for sets of odes in Chap. 4. This is dealt with
in the next section.

9.4 The Rosenbrock Method

For the basics of this method, see Chap. 4. There it was mentioned that Bieniasz
introduced this method to electrochemical simulation [91], preferring ROWDA3,
a third-order variant that also has a smooth response. There exists a second-
order variant with a smooth response, ROS2, due to Lang [112], which might be
more appropriate if second-order spatial derivative approximations are to be used.
Coefficients for some variants are given in Appendix A. The object here is to
describe the way Rosenbrock methods are used in the present context. The Bieniasz
paper [91] shows the way (but the standard symbols, as used in Chap. 4, are used
here, rather than those used by Bieniasz).

The set (9.55) (or one like it, with whatever boundary conditions we might have)
is written in the compact form

S
dC
dT

D F.T;C/ (9.56)

where S is the selection matrix. It is diagonal, and contains zeroes in those positions
where the DAE set has an algebraic equation (that is, zero on the left-hand side



9.4 The Rosenbrock Method 201

of, say, (9.55)) and unity in those positions corresponding to the odes. In a sense,
the zeroes say “zero dC=dT”. On the right-hand side, the function F.T;C/ is a
matrix–vector function expressing the whole collection of the right-hand sides of,
say, the set (9.55). The variable T is included for the important generality for those
cases where some variables are time-dependent. This is the case, for example, in
LSV simulations, where the potential is a function of time, or cases where the
electroactive substance itself undergoes a homogeneous reaction, as in the Reinert–
Berg system or, of more interest in this context, the second-order Birk–Perone
system, which gives rise to nonlinear equations, both described in the subsection
beginning on page 22. As was seen in Chap. 4, one of the strengths of Rosenbrock
is indeed its easy handling of nonlinear sets.

Applying (9.56) to the specific set 9.55 for illustration, we have

S D

2
666666664

0

1

1
: : :

1

0

3
777777775
; (9.57)

that is, S is almost an identity matrix except that the first and last diagonal elements
are zero, indicating algebraic equations. The function F.T;C/ can be broken up into

F.T;C/ D JC C s ; (9.58)

in which the matrix J multiplies the concentration vector; it is written as J here
because it is the Jacobian, and will later figure as such. Vector s arises from the
constant terms of the DAE set. The example set (9.55) resolves into

J D 1

H2

2
666664

�H2 H2

1 �2 1
: : :

1 �2 1

H2

3
777775
; (9.59)

s D 1

H2

2
666664

�H3G
0
:::

0

�H2

3
777775

(9.60)

and the C vector is indexed from 0 to N C 1.
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We are now ready to invoke the Rosenbrock method. A number s of ki vectors
must be computed, s being the order chosen. The general equation for each one is
an extension of that given for a pure ode set on page 82, Eq. (4.70), to the present
DAE case, introducing the selection matrix S and following Bieniasz [91] (though
with the more common notation):

ŒS � �ıTFC.T;C/
 ki D�
�
ıTF

�
T C ˛iıT; C C

i�1X
jD1

aijkj
�

C S
i�1X
jD1

cijkj C �iıT
2FT

�
:

(9.61)

Here, there appear the Jacobian FC, which is in fact J as defined above in (9.59), the
function F itself, applying at partly augmented T and C values, and, in case of time-
dependent systems, the time derivative FT , written in short form, as it is applied to
the present T and C. This last term is often zero, if the system does not include
functions of time.

Although (9.61) may look formidable, there are some conveniences. First of all,
for linear systems, the first matrix term on the left-hand side is a constant and can
be evaluated once and for all. We write

M D S � �ıTFC : (9.62)

In fact, in practice, some further tidying up is possible, by combining the quantities

ıT and
1

H2
into the familiar  and dividing throughout by some factors, but this is a

practical detail of no importance here. The right-hand side of (9.61) will need to be
evaluated at every step, s times. At each stage i, the equation can be written as

Mki D Bi (9.63)

where Bi is the evaluated right-hand side of (9.61). Thus, a linear system must be
solved to obtain each ki. The matrix M will normally be either tri- or pentadiagonal
or, in cases of simulations in more dimensions, will be rather sparse, so that either
the Thomas algorithm or an offshoot of it, or a sparse solver, can be used, for
efficiency. Also, the favoured Rosenbrock variants such as ROS2 or ROWDA3
(which Bieniasz prefers) have some zero coefficients, resulting in calculations
that need not be repeated after the first stage, thus further increasing efficiency.
Ludwig et al. [113] however find that another variant, ROS3P, is more efficient than
ROWDA3.
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Having calculated all s ki vectors, the RK formula is then used, here

CnC1 D Cn C
sX

iD1
miki (9.64)

to compute the next concentration vector.
There are advantages, and also drawbacks, of this method. The advantages are

great efficiency, stability and a smooth error response if ROS2 or ROWDA3 are used
(see a study by Bieniasz [91], albeit not including ROS2), and the easy handling of
time-dependent and/or nonlinear systems. No Newton iterations are required for
nonlinear systems (but see below). The most serious drawback is that the method
does not lend itself to problems with sharp initial transients, such as a potential step
method; at least, not for the very first step, as pointed out by Bieniasz [91]. The
reason is inconsistency. For example, in the Cottrell experiment, it is not possible
to calculate a derivative J at the starting point, T D 0. One way to overcome this,
taken by Bieniasz [91], is to start by invoking the boundary condition for T > 0

even initially. This can work, but can also lead to a persistent degradation of the
results. In practical terms, for the Cottrell system, where all Ci, including C0 should
be unity at T D 0, we set C0 D 0 at that time, and proceed. Note that this is exactly
what is done in the explicit method. In order to avoid the degradation in accuracy
(desirable for efficiency), the proper way is to use a different algorithm for the very
first step, choosing one that expresses derivatives at T D ıT, that is, an implicit
method such as BI (Laasonen), perhaps coupled with extrapolation for improved
accuracy. This might be considered defeating the Rosenbrock advantages, because
if the system is nonlinear, one now needs some Newton iterations after all, and it
could be argued that since one has programmed BI/extrapolation, one may as well
proceed with it over the whole simulation. But Rosenbrock may be more efficient,
so this is a compromise between programming effort and efficiency of computation.

Finally, it is to be noted that, when using Rosenbrock for an LSV simulation, one
must be aware that the potential p at time T, at a given step goes to pCıp at T CıT.
It is the old value p that must be used in the boundary expressions, augmented by
the ˛ coefficients in higher stages. It is incorrect, in other words, to add ıp to p at
the beginning of the iteration loop.

9.4.1 An Example, the Birk–Perone System

There is an example program described in Appendix E, BPROS, applying Rosen-
brock to the Birk–Perone system, in which we have both time-dependence and
nonlinear equations. It is described in Chap. 2, pages 23–24. Equation (2.72), with
boundary conditions, when semidiscretised using equal intervals in space, leads to
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the DAE system

0 D C0

dC1
dT

D 1

H2
.C0 � 2C1 C C2/ � KC21

: : :

dCi

dT
D 1

H2
.Ci�1 � 2Ci C CiC1/� KC2i (9.65)

: : :

dCN

dT
D 1

H2
.CN�1 � 2CN C CNC1/� KC2N

0 D CNC1 � 1

1C KT
:

The last equation expresses the analytical solution for the time decay of the
substrate. Here, then, we have selection matrix S as above (9.57), and the function
F.T;C/ is

F.T;C/ D

2
6666664

C0
1
H2
.C0 � 2C1 C C2/� KC21

:::
1
H2
.CN�1 � 2CN C CNC1/� KC2N

CNC1

3
7777775

C

2
6666664

0

0
:::

0

� 1
1CKT

3
7777775
; (9.66)

or regarding (9.58), FC, the derivative of F.T;C/ with respect to C,

FC D 1

H2

2
666664

H2

1 �2.1C H2KC1/ 1
: : :

1 �2.1C H2KCN/ 1

H2

3
777775

(9.67)

which contains concentration terms on the diagonal. For this reason, with this
problem it is necessary to evaluate FC at every step. Noting the form of (9.61)
and (9.62), and recalling  D ıT=H2, it is convenient here to redefine M as

M D S
�

� ıTFC (9.68)



9.4 The Rosenbrock Method 205

and after division by �, resulting in

� M


D

2
66666664

H2

1
�
� 1
�

� 2.1C H2KC1/
�

1

: : :

1
�
� 1
�

� 2.1C H2KCN/
�
1

H2

3
77777775

(9.69)

(9.61) becomes

� M


ki D �ıT


F
�
TC˛iıT;CC

i�1X
jD1

aijkj
�� S


i�1X
jD1

cijkj��iıT
2


FT.T;C/ ; (9.70)

where FT remains to be defined. It is the time-derivative of F.T;C/ and only
contains one non-zero element:

FT D

2
66664

0
:::

0

� K
.1CKT/2

3
77775 : (9.71)

The above equation evaluates to a tridiagonal linear equation system, after some
arrangement,

H2k0 D b0

k0 C a1k1 C k2 D b1

: : :

kl�1 C alkl C klC1 D bl (9.72)

: : :

kN�1 C aNkN C kNC1 D bN

H2kNC1 D bNC1

with

al D � 1

�
� 2.1C H2KCl/ (9.73)

with the vector b arising in an obvious manner from the evaluation of the right-
hand side of (9.70). This is the usual form for implicit systems, as seen in Chap. 8,
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page 147, albeit for unknown concentrations, here for unknown k. Index l is used,
i being reserved for the stage number here. The system is solved by the Thomas
algorithm.

Execution of the program BPROS shows that it works well, attaining a relative
accuracy of about 10�4 in about 100 steps of ıT D 0:01, both with ROS2 and
ROWDA3, the latter being slightly better (but using about 50 % more CPU time).

9.5 FEM, BEM, FVM and FAM (Briefly)

There is a class of methods called finite element method (FEM) and the related
boundary element method (BEM), also called boundary integral element method
(BIEM), and the finite analytical method (FAM). These will be given very short
shrift, in part because they constitute a large subject, many textbooks being devoted
to FEM and BEM alone. The usual approach is to use ready program packages. The
only member of the FEM group that will be described here is orthogonal collocation,
which has its own section (see below).

Roughly, FEM consists of choosing regions in the simulation space, marked by
node points, and fitting “trial” functions to the regions, in some optimal manner.
What is considered optimal is defined in several different ways. With BEM, only
points on the boundary are chosen and a function fitted to the space delimited by
these points is optimised. Thus, BEM uses fewer points than FEM. Both methods
appear to be highly efficient. FAM is similar to FEM, but instead of fitting an
arbitrary function to the elements (in FEM, usually polynomials), local analytical
solutions are sought for each of the elements.

Here are a few brief references to recent or key works in which these methods
have been described as used in electrochemical simulations. The interested reader
is urged to look these up and follow the references contained in them to the seminal
works and textbooks. Of necessity, much work is left uncited here.

Ferrigno et al. [114] describe the use of FEM for steady state simulations of
recessed, flush and protruding ultramicrodisk electrodes, giving a good description
of FEM. The method was made adaptive by Nann and Heinze [115, 116], and
Harriman et al. later published an extensive series of papers on adaptive FEM [117–
121]. More recent applications (of the last 5 years or so) are [122–133]. Many FEM
simulations are conducted using software like COMSOL Multiphysics® since no
programming knowledge is required of the user, but Morf et al. [134] used Excel,
Sanecki et al. [128] used their own ESTYM_PDE (using orthogonal collocation)
and Ueno et al. [131] used PDEASE (see Chap. 17 for these).

BEM might be thought of as best suited to steady state problems, and has been
used for this, for example in corrosion simulations [135] and current distributions
[136], but recently also for time-marching problems [137]. Electrochemical appli-
cations include [130, 136, 138–154].

FAM has been investigated by Jin and Qian et al. [155–160].
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The finite volume method FVM should probably be studied more than it is for
electrochemical applications, but it has been applied [161, 162]. It is possibly related
to the box method. A good text on FVM is that of Patankar [11].

The newer method of Bortels et al., called multidimensional upwinding method
(MDUM) should also be mentioned [163]. It was applied to a problem involving
diffusion, convection and migration, both steady state and time-marching.

9.6 Orthogonal Collocation (OC)

This is one of the variants of the FEMs. The essence of orthogonal collocation
(OC) is that a set of orthogonal polynomials is fitted to the unknown function,
such that at every node point, there is an exact fit. The points are called collocation
points, and the set of polynomials is chosen suitably, usually as Jacobi or Chebyshev
polynomials. The optimal choice of collocation points is to make them the roots
of the polynomials. There are tables of such roots, and thus point placements, in
Appendix A. The notable things here are the small number of points used (normally,
about 10 or so will do), their uneven spacing, crowding closer both at the electrode
and (perhaps strangely) at the outer limit, and the fact that the outer limit is always
unity. This is discussed below.

The method’s historical origins are complex but electrochemists used OC first
in 1970 [164], referring to an earlier work [165], for certain odes. Caban and
Chapman [166] then used OC to compute (steady state) current distributions, but
the work most cited by later users of OC in electrochemistry is that of Whiting and
Carr [167], who described its use in time-marching problems. They refer to the work
of chemical engineers Villadsen and Stewart [168]. A later book [169] is a good
source also, as is the chapter by Pons [170], drawing heavily on [169]. A number
of electrochemists have published in the area, notably Pons and Speiser [171, 172],
and later Speiser and coauthors; see the review by Speiser [173], for a complete list
of references and a good description of OC, among other topics.

The possibly peculiar spacing of the collocation points, crowding close both at
the electrode and at the outer diffusion limit, does not matter too much, and seems
unnecessary. For example, using only five internal points (that is, five apart from
zero and unity), they are placed at the values 0.047, 0.231, 0.5, 0.769, 0.953, a
series that is symmetrical about the midway point at 0.500. This spacing has been
circumvented by Yen and Chapman [174], using Chebyshev polynomials that open
out towards the outer limit. Their work has apparently not been followed up.

OC is capable of high accuracy and efficiency. Some comparisons have been
made with normal finite difference methods. Eddowes [175] found OC superior,
while Magno et al. [176] found it inferior to plain EX with expanding intervals (this
appears doubtful to the present authors). Bieniasz and Britz [177] cast some doubt
on OC, pointing out possible problems with the fit in between the collocation points,
possibly leading to negative concentrations or (see below) errors in the current
values computed from it. This was rebutted by Speiser [178], rather convincingly.
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The essence is that, if the concentration profile simulated is smooth (which it
normally is), then the polynomials will be well behaved in between points and no
such problems will be encountered. As is seen below, implicit boundary values
can easily be accommodated, and by the use of spline collocation [179–181],
homogeneous chemical reactions of very high rates can be simulated. This refers to
the static placement of the points. Having, for example, the above sequence of points
for five internal points, the point closest to the electrode is at 0.047. This will be seen,
below, to be in fact further from the electrode than it seems, because of the way that
distance X is normalised so that, for very fast reactions that lead to a thin reaction
layer, there might not be any points within that layer. Spline collocation thus takes
the reaction layer and places another polynomial within it, while the region further
out has its own polynomial. The two polynomials are designed such that they join
smoothly, both with the same gradient at the join. This will not be described further
here.

For the description of how OC works, assume for simplicity a single substance.
The diffusion equation, including a homogeneous reaction, is

@c

@t
D D

@2c

@x2
C f .c/ (9.74)

with f .c/ being the homogeneous reaction term, left unspecified. The equation is
written in dimensioned form for a reason. In OC, the space axis is normalised
in a manner different from the usual. It is here normalised by the total diffusion
space width L, so that the range is 0 � X � 1, in order to fit in with the range
of the polynomial. The value of L depends on the experiment being simulated,
and will be a multiple of

p
D� , � being some characteristic time. As explained in

previous chapters, � might be the duration of the experiment for pulse experiments
or the length of time taken by the potential, for a linear sweep, to change by one
dimensionless potential unit. In general, it is given by

L D f
p
D� (9.75)

and thus,

X D x=.f
p
D�/ : (9.76)

Time and concentration are normalised as usual (Sect. 2.3), and this leads to

@C

@T
D 1

f 2
@2C

@X2
C F.C/ ; (9.77)
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where we have the factor 1=f 2, (and F.C/ is the dimensionless form of the rate
equation for the homogeneous reaction term). The new factor is usually written as
ˇ, and is often discussed as an arbitrarily adjustable parameter. But it is not; it must
be determined by L, which is known for a given experiment. For, say, the Cottrell
experiment, f D 6, while for a linear or cyclic sweep, it is 6

p
T, with T being the

total number of potential (or time) units swept during the experiment. If one takes
ˇ to be arbitrary, one might either, by making it too small (i.e. L too large), simulate
a far too wide diffusion space and thus degrade the resolution near the electrode
or, by making it too large, simulate in a confined space, so that the outer boundary
concentration cannot be taken as constant throughout. The choice of ˇ is always
rational.

As an aside, there have been some interesting attempts to make the diffusion
space variable with time and to normalise by that variable. Yen and Chapman [174]
used this, and Urban and Speiser [182]. The diffusion equation then normalises to a
rather more complicated form, sometimes into a plain second-order ode, or in other
cases, into a form including time-dependent terms in @C=@X. Results [182] appeared
to be very good. This has apparently not been followed up, but perhaps it should be.

Now for the description of how OC works. Assume a number N C 2 points
situated at X0;X1; : : : ;XN ;XNC1, and X lying in the interval Œ0; 1
 by the normal-
isation described above. The points are chosen, following the work of Whiting and
Carr [167], as the roots of shifted Jacobian polynomials with parameters as given
in Tables A.5, A.6, and A.7 in Appendix A. The tabled values were computed
using the subroutine JCOBI mentioned in Appendix E. The concentration profile
is approximated by the polynomial P.X/,

C.X/ � P.X/ D
NC1X
jD0

bjX
j (9.78)

where bj are coefficients which, as it happens, we never need to find. The OC method
assumes that P.X/ exactly fits C.X/ at each of the collocation points. We have some
derivatives,

dC

dX
D d

dX
P.X/ D

NC1X
jD0

jbjX
j�1 (9.79)

and

d2C

dX2
D d2

dX2
P.X/ D

NC1X
jD0

j. j � 1/bjXj�2 : (9.80)
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Equations (9.78)–(9.80) can be written out for every value of Xj, leading to the
systems of equations

C0 D
NC1X
jD0

bj X
j
0

C1 D
NC1X
jD0

bj X
j
1

: : : (9.81)

CNC1 D
NC1X
jD0

bj X
j
NC1

for the concentrations themselves,

dC0
dX

D
NC1X
jD0

j bj X
j�1
0

dC1
dX

D
NC1X
jD0

j bj X
j�1
1

: : : (9.82)

dCNC1
dX

D
NC1X
jD0

j bj X
j�1
NC1

for the first derivatives with respect to X, and

d2C0
dX2

D
NC1X
jD0

j. j � 1/ bj X
j�2
0

d2C1
dX2

D
NC1X
jD0

j. j � 1/ bj X
j�2
1

: : : (9.83)

d2CNC1
dX

D
NC1X
jD0

j. j � 1/ bj X
j�2
NC1
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for the second derivatives. These equations are now written in matrix form:

C D Qb

dC
dX

D Rb (9.84)

d2C
dX2

D Sb ;

with Q, R and S obvious from the systems above.
So far, we have the set of coefficients, vector b, which we do not know. These

are eliminated by expressing the first equation of the set (9.84) explicitly for b:

b D Q�1C (9.85)

and substituting for it in the other two, giving

dC
dX

D RQ�1C D VC (9.86)

and

d2C
dX2

D SQ�1C D WC (9.87)

with

V D RQ�1 (9.88)

and

W D SQ�1 : (9.89)

The above presupposes that Q is invertible, and this is the case, as the system (9.81)
has no linearly dependent pairs of rows. The interesting thing is that V and W can
be precomputed, for a given N, once and for all, simply from the Jacobi roots.
Equation (9.87) can now be inserted in (9.77), to produce

@C
@T

D 1

f 2
WC C F.C/ (9.90)
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or, the set of N C 2 equations

@C0
@T

D 1

f 2
.W0;0C0 C W0;1C1 C � � � C W0;NCN C W0;NC1CNC1/C F.C0/

@C1
@T

D 1

f 2
.W1;0C0 C W1;1C1 C � � � C W1;NCN C W1;NC1CNC1/C F.C1/

@C2
@T

D 1

f 2
.W2;0C0 C W2;1C1 C � � � C W2;NCN C W2;NC1CNC1/C F.C2/

: : : (9.91)

@CN

@T
D 1

f 2
.WN;0C0 C WN;1C1 C � � � C WN;NCN C WN;NC1CNC1/

CF.CN/ :

@CNC1
@T

D 1

f 2
.WNC1;0C0 C WNC1;1C1 C � � � C WNC1;NCN

CWNC1;NC1CNC1/C F.CNC1/

This is written out in order to make the next point. The first and last equation in
the set are superfluous, because the boundary concentrations C0 and CNC1 are not
subject to diffusion changes, but to other conditions. Also, where the boundary
values appear in the other equations, they must be replaced with what we can
substitute for them. The outer boundary value, CNC1, is (almost always) equal
to the initial bulk concentration C�, usually equal to unity in its dimensionless
form. This means that the last term in each equation separates out as a constant

term and makes for a constant vector
�
W1;NC1C� W2;NC1C� : : : WN;NC1C��T ,

which will be called Z here. The concentration at the electrode C0 is handled
according to the boundary condition. For Cottrell, for example, it is set to zero
throughout and thus simply drops out of the set. For other conditions, for example
constant current or an irreversible reaction, a gradient G is involved, as described
in Chap. 6. In that chapter, the gradient was expressed as a possibly multi-point
approximation, but here we have a better device: the use of matrix V, applying it to
obtain G D dC=dX.X D 0/:

G D
NC1X
jD0

V0;jCj : (9.92)

This is written explicitly for C0,

C0 D ˇ1C1 C ˇ2C2 C � � � C ˇNCN C .ˇNC1C� � G=V0;0/ (9.93)
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where ˇj D �V0;j=V0;0. This can be substituted into the N equations of the set,
which adds terms to the W-coefficients and the constant term (the one in brackets
on the right-hand side of (9.93)) to the constant vector Z. We thus obtain a smaller
N � N equation set,

@C
@T

D 1

f 2
W0C C Z C F.C/ : (9.94)

For more than one species, the development is clear, based on Chap. 6, leading to
larger systems of equations.

The big advantage here is that the matrix W is always the same for a given N.
If one works always with some favourite value, such as 10 (a good value), then one
needs to compute W, and indeed V, only once, and use it as input data thereafter.

We have arrived at the point where a choice needs to be made of how to
proceed with the simulation. Note that (9.94) is in fact of the same form as that
obtained when using MOL, being of the same form as the set (9.16), but with more
coefficients on every line. From here on, one can use a variety of methods to do
the time-march. All of the methods considered in earlier chapters, and this chapter,
can be used. As with FEM, however, there is a certain tradition here, for using
ready-made ode solvers. Villadsen and Michelsen [169] use an implicit Runge–
Kutta algorithm devised by Caillaud and Padmanabhan [183], implementing it in
their routine STIFF3. The routine was reproduced by Pons [170] in his chapter,
mentioning that he too finds the method of Caillaud and Padmanabhan best. Whiting
and Carr [167] wrote their own solver, based on a predictor–corrector algorithm.
Speiser [173] describes several other subroutine packages, such as DDEBDF arising
from the work of Gear [184] or LSODE of Hindmarsh [185]. Bieniasz and
Britz [177] found the routine STINT [186] more efficient than STIFF3.

Another possible approach, apparently not taken by any electrochemical simu-
lator, is to render the equation set into a DAE set. Instead of substituting for C0 as
described above, one replaces the first equation of (9.91) by the algebraic equation
for the boundary condition, and uses one of the available DAE packages to solve the
system.

Both the approaches described above, that is, substituting for boundary con-
centrations, or adding algebraic equations to express boundary conditions, can be
applied to more complex mechanisms involving more than one species, including
coupled systems. With the latter, there is probably not much to be gained by the
block-matrix method, because of the number of coefficients on each line.

The present authors have used the simple second-order extrapolation technique to
proceed from (9.94), and this simple approach led to highly accurate results. Using
just 10 points (8 internal points) and 100 steps in time for a Cottrell simulation,
the current was in error by only 0.01 %. Using only 3 internal points, there was
a 10 % error in the current. These are remarkable results. For this, second-order
extrapolation was used in combination with BI.
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9.6.1 Current Calculation with OC

The normalised current, that is the gradient G, is given by using matrix V and (9.86).
The operation returns gradients at all collocation points, and one just takes the first
of these, which refers to X D 0. Alternatively, one can multiply just the top row of V
with the concentration vector C, which gives dC=dX.X D 0/ directly. Note that this
is not our usual G yet, because of the way X is normalised here. Regarding (9.76),
clearly,

G D 1

f

dC

dX
.X D 0/ : (9.95)

Alternatively, one can simply work with the X-scaling as it is, and change the
analytical solution correspondingly. For example, for the Cottrell experiment, with
the usual normalisation, the gradient G at time T has the analytical solution 1=

p
�T

(see (2.44) on page 19) while, with the normalisation as used in OC (9.76), the
analytical solution for the gradient at the electrode (Eq. (2.36), page 16) becomes

G D @C

@X

ˇ̌
ˇ̌
XD0

D f
1p
�T

: (9.96)

In the case of LSV, however, not dividing by the factor f would lead to currents that
are hard to compare with tabled values or values one expects.

9.6.2 A Numerical Example

For those wanting to try OC, here is a guide for checking the work. This follows the
example given by Whiting and Carr [167].

Assume a Cottrell simulation and the use of only five points, giving just three
internal points. From Table A.5, this places the internal points at the positions
(0.1127, 0.5000, 0.8873), here presenting fewer digits than in the table. Using
equation sets (9.81)–(9.83) and the definitions (9.84), we then have

Q D

2
666664

1:0000 0:0000 0:0000 0:0000 0:0000

1:0000 0:1127 0:0127 0:0014 0:0002

1:0000 0:5000 0:2500 0:1250 0:0625

1:0000 0:8873 0:7873 0:6986 0:6198

1:0000 1:0000 1:0000 1:0000 1:0000

3
777775

(9.97)



9.6 Orthogonal Collocation (OC) 215

R D

2
666664

0:0000 1:0000 0:0000 0:0000 0:0000

0:0000 1:0000 0:2254 0:0381 0:0057

0:0000 1:0000 1:0000 0:7500 0:5000

0:0000 1:0000 1:7746 2:3619 2:7943

0:0000 1:0000 2:0000 3:0000 4:0000

3
777775

(9.98)

and

S D

2
666664

0:0000 0:0000 2:0000 0:0000 0:0000

0:0000 0:0000 2:0000 0:6762 0:1524

0:0000 0:0000 2:0000 3:0000 3:0000

0:0000 0:0000 2:0000 5:3238 9:4476

0:0000 0:0000 2:0000 6:0000 12:0000

3
777775

: (9.99)

From these, using (9.88) and (9.89), we obtain

V D

2
666664

�13:0000 14:7883 �2:6667 1:8784 �1:0000
�5:3238 3:8730 2:0656 �1:2910 0:6762

1:5000 �3:2275 0:0000 3:2275 �1:5000
�0:6762 1:2910 �2:0656 �3:8730 5:3238

1:0000 �1:8784 2:6667 �14:7883 13:0000

3
777775

(9.100)

and

W D

2
666664

84:0000 �122:0632 58:6667 �44:6035 24:0000

53:2379 �73:3333 26:6667 �13:3333 6:7621

�6:0000 16:6667 �21:3333 16:6667 �6:0000
6:7621 �13:3333 26:6667 �73:3333 53:2379

24:0000 �44:6035 58:6667 �122:0632 84:0000

3
777775

: (9.101)

Matrix V is needed to generate G, and W is now stripped of its outer frame to
produce (9.94),

@C
@T

D 1

f 2

2
4�73:3333 26:6667 �13:3333
16:6667 �21:3333 16:6667

�13:3333 26:6667 �73:3333

3
5
2
4C1C2
C3

3
5C

2
4 6:7621

�6:0000
53:2379

3
5C F.C/ :

(9.102)
The above set of odes is now solved, choosing some algorithm. Nothing has been
specified about the homogeneous chemical reaction function F.C/, but it will add
terms to the matrix W0 when specified. After the time derivative is discretised
in some way, the equation can be rearranged into the same form as described in
Chap. 8 and solved using the same methods or, as mentioned above, solved using a
professional ode or DAE solver.
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9.7 Eigenvalue–Eigenvector Method

Yet another, quite different, approach to solving a system of odes, such as
one obtains as an intermediate step when using, for example, MOL or OC, is
the eigenvalue–eigenvector method. Its use for electrochemical simulations was
described in two papers: Friedrichs et al. [187] in 1989 and Kavanaugh et al. [188] in
1990. The method has some drawbacks, and does not appear to have seen much use
since these two papers (but see below). It does have one unique feature: there is no
discretisation of time. A solution is generated by the algorithm, at any chosen time.
So, although the method may at times be fairly inefficient, if one wants a current
or concentrations at only one or a few time points, this could be faster than a time
march with the usually small time intervals.

The method is also described rather clearly by Smith [95], whose description will
be followed here.

The method starts with a system of odes, represented as in (9.53),

dC
dT

D AC ; (9.103)

simplified here so that the vector coming from boundary conditions is not included.
It can be included but then the argument is less focussed. There is only one boundary
condition,

C .T D 0/ D C.0/ : (9.104)

Instead of now discretising the left-hand side of the equation in some way
(explicit BI, CN, etc.) and stepping forward in time by small time intervals, the
equation is solved analytically; the solution at time T is

C.T/ D exp.TA/C.0/ : (9.105)

This has an exponential of a matrix. It is defined in terms of the expansion of the
exponential function, see, for example, Smith [95, pp. 134–135]. Now, the usual
eigenvalue–eigenvector equation can be written in compact form,

AX D XD ; (9.106)

where D is the diagonal matrix containing all the eigenvalues and X is the matrix
containing the eigenvectors corresponding to the eigenvalues. X is also called
the modal matrix of A. X and D can be computed by available subroutines, and
Friedrichs et al. describe very efficient ways of calculating them [187, 188]. The
method rests crucially on these values.

Equation (9.106) can be written explicitly for D:

X�1AX D D : (9.107)
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Smith also shows that it follows from this that

X�1 exp.A/X D exp.D/ (9.108)

which will be useful below.
Let a new matrix Y.T/ be defined by

C.T/ D XY.T/ (9.109)

with the time-dependent vector Y as yet unknown. We can however solve for Y.0/
by setting T D 0 in (9.109), since we know X and the initial condition C.0/. Once
we have, for any other T, the vector Y.T/, it can be used, via (9.109), to compute
the desired vector C, by multiplication with X.

Combining (9.105) with (9.109), we can write

XY.T/ D exp.TA/XY.0/ (9.110)

and, multiplying by X�1,

Y.T/ D X�1 exp.TA/XY.0/ : (9.111)

Equation (9.108) allows us to write this as

Y.T/ D exp.TD/Y.0/ : (9.112)

Here we have an exponential of the matrix TD. The matrix is zero except on the
diagonal (containing the eigenvalues 1; 2; : : : ; N), and, as Smith proves, this and
the definition of a matrix exponential lead to the simple result that

exp.TD/ D

2
666664

exp.T1/
exp.T2/

exp.T3/
: : :

exp.TN/

3
777775
; (9.113)

so that finally the solution is

2
6664
C1.T/
C2.T/
:::

CN.T/

3
7775 D X

2
6664
Y1.0/ exp.T1/
Y2.0/ exp.T2/

:::

YN.0/ exp.TN/

3
7775 : (9.114)
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This entails matrix multiplication, and Smith suggests an approximation. The
eigenvalues j are negative and of increasing magnitude as j increases, so if T is
not too small, the top term of the right-hand vector is dominating, and can in itself
produce a good approximation to the solution. This has the drawback that no reliable
solution can be found for small T, and Friedrichs et al. [187] do not suggest this
approximation but rather, a more efficient way to calculate the eigenvalues and -
vectors. Their solutions are fairly accurate.

As mentioned, the procedure has the advantage that the time variable T is part
of the solution expression, so that if solutions at only a few time values, or even
just one such T, are sought, the method might be competitive with the more usual
time-marching schemes. Also, although the above description has been simplified
by leaving out the boundary condition vector in (9.103), its addition still leaves
the method intact. As shown in the second paper by Kavanaugh et al. [188], LSV
simulations and quasireversible systems can be handled. For some reason, however,
the method has not seen any use in electrochemistry since these two seminal papers,
with the exception of one study, comparing several methods of simulating the
ultramicrodisk electrode, to find out what is most efficient [31]. The eigenvector,
-value method did not generally turn out very efficient, although each evaluation
at a given time, once the eigenvectors and -values have been computed, is quite
fast. A curious result of the study was waves in the errors of the current computed
at a number of times, with some two-dimensional transformations but not all (see
Chap.12 for the transformations). They were called waves rather than oscillations,
which (as with CN) arise from error propagation, because there is no propagation in
this method, each computation at a new time value being independent of all others.
It has not been found out where these waves come from. They decrease with time
values, and also with increasingly fine spatial meshes.

One interesting application of the solution (9.105) for (9.103) is the solution for
a single step in time of size ıT. As pointed out by Smith [95, p. 117], we can write
(in our notation)

C0 D exp.ıTA/C : (9.115)

This seems to go back to Lawson [189]. By approximating the matrix exponential
by a Padé approximant, of which there are many, one can derive all the usual
simulation methods. This is described in detail in Smith, and was used by Strutwolf
and Schoeller [190] to analyse the extrapolation method, introduced by these authors
to electrochemistry. According to which Padé approximant one uses, the explicit,
BI or CN can be generated, and there are other, unexplored, possibilities that may
be worth studying. Momoniat, in another context, used MATHEMATICA [191] to
express the matrix exponential without approximation and derived what he calls the
Lawson-Euler and Lawson-RK schemes [192], and other schemes are possible, and
are left to the reader.
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9.8 Integral Equation Method

This is an alternative method of simulation. Bieniasz, who has worked extensively
on the method [193–210] has published a thorough monograph of the method [211].

One begins with an attempt at an analytical solution, by means of the Laplace
transformation, see also such standard texts such as Bard and Faulkner [212] or
Galus [213] for a description of this procedure. The result, after back transformation,
is an integral equation, which must be solved numerically. Regarding the description
of the mathematics of LSV in Chap. 2, from page 27, and taking the example of
a simple reversible system, the result is the equation, for the normalised current
(Randles–Ševčík function �.z/),

Z at

0

�.z/p
at � z

dz D 1

1C ��S.at/
; (9.116)

where � D .DO=DR/
1
2 , � D exp

˚
nF
RT .Ei � E0/



and S.at/ D exp.�at/, at being

the normalised time variable and Ei the initial potential at the start of the sweep. The
equation is that arising from the simple reversible system, but other systems lead to
equations of similar form, all Volterra equations.

In descriptions of this problem, the names of Randles [214] and Ševčík [215]
are prominent. They both worked on the problem and reported their work in 1948.
Randles was in fact the first to do electrochemical simulation, as he solved this
system by explicit finite differences (and using a three-point current approximation),
referring to Emmons [216]. Ševčík attempted to solve the system analytically, using
two different methods. The second of these was by Laplace transformation, which
today is the standard method. He arrived at (9.116) and then applied a series approxi-
mation for the current. Galus writes [213] that there was an error in a constant. Other
analytical solutions were described (see Galus [213] and Bard and Faulkner [217]
for references), all in the form of series, which themselves require quite some
computation to evaluate. So the direct approximation of equations like (9.116) was
an obvious step. This was taken in the classic paper of Nicholson and Shain [218],
and continued, by Nicholson [219] and Nicholson and Olmstead [220] for systems
other than the simple reversible. These used what is called the Huber method [221],
integrating by summing a number of intervals into which the limit at is divided.
If there are N intervals, the Huber method gives rise to a triangular system of N
simultaneous equations, which requires of the order N2 operations for the solution.
Bieniasz devised a better method [193, 194] that requires only of the order of N
operations. In an example using both the Huber and his new method, the Huber
method required 39 min for a computation, while the improved method did the same
in 0.13 min. This method is built into Bieniasz’ simulation package ELSIM [222].
In his 1992 paper, he also points out the mathematical relation between the integral
equation above, and the process of semi-integration, described by Oldham [223], for
which there are also more and less efficient algorithms. Bieniasz lists [194] a table of
the forms of the integral equation for a number of systems. More recently, Mirčeski
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has published an approximation to the integral, separating the current function out
as a sum, which he claims is an efficient method of solving these equations. The
interested reader is referred to the monograph by Bieniasz [211] for (many) further
details.

We do not go into any detail of the integration methods here, as it seems to us
that direct finite difference methods are preferable.

9.9 The Network Method

Since about 1989, Horno and coworkers have published a series of papers on their
“network thermodynamic method” of simulation. Only a few of these will be cited
here. In the first, the 1989 work, the method is described [224], and again in
1992–4 [225–227], adding cyclic voltammetry. In the 1994 paper [227], there is
a good description of the method, and an indication of how it can be adapted to
a multitude of different electrochemical systems. A Chinese group has also used
this method [228–231], as well as some others [232, 233]. Moya et al. [234–240]
continue with the work. Curiously, the method was suggested as early as 1946 for
heat flow simulations by Eyres et al. [241, p. 31], referring to even earlier precursors.

It is all done by modelling derivatives, fluxes and homogeneous chemical
reactions as electrical elements and current sources, and applying Kirchhoff’s
Law to them. After conversion to an analogue of an electric circuit, the standard
package SPICE or PSPICE then does the rest [242, 243], using Gear’s package for
solving odes [184]. The main work for the simulator is thus the translation of the
governing electrochemical equations into an electrical network and specifying it to
the packages.

Very briefly, basing the description on [227], the diffusion-reaction equation of
the form of (9.74) is semidiscretised as in MOL, to

dC

dt
D D

h2
.Ci�1 � Ci/C D

h2
.Ci � CiC1/C f .C/ : (9.117)

Then both sides are multiplied by the spatial interval h, and the result expressed,
term by term, as

J� i D Ji�1 � Ji C JGi (9.118)

with

J� i D h
dCi

dt
; (9.119)

regarded as a capactive flux due to “capacity” h and “voltage” Ci. The two terms Ji
and Ji�1 are regarded as resistive fluxes due to “resistance” h=D and again “voltage”
C, and finally JGi corresponds to the homogeneous reaction term, seen as a current
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source, which might depend on one or more “voltages” (concentrations), depending
on the reaction. These elements are then arrayed in a suitable manner in a ladder
network, and the input to SPICE or PSPICE is designed for that. It seems that
this process of translation into a sequence of specifications to SPICE (which Horno
indeed calls a program) is the main work, and appears to the present authors to be
rather indirect and cumbersome. Probably workers familiar with the method, as the
Horno school is, have a different view. The method has been successfully applied to
such difficult systems as catalytic second-order reactions [244], oscillating reaction-
diffusion systems [245], the square scheme [225, 246], to migration problems [234,
235] and steady state colloidal systems, solving for potential fields [247]. The list
of papers is only partial.

The method has not taken on elsewhere. One paper [248] reports the use of
PSPICE, but for simulating actual resistance in an electrolyte, modelled as a
resistance network. This is quite a different application, and much more directly
relevant.

9.10 Treanor Method

In a paper reporting the results of some simulations of diffusion of hydrogen
into palladium [249], the authors describe their method of solution as the Treanor
method. This is described in a few texts [250, 251] and goes back to a paper by
Treanor in 1966 [252].

The method is one way to handle a stiff set of odes, and is an extension of fourth-
order explicit Runge–Kutta. The function to be solved is approximated over the
next time interval by a combination of a linear function of the dependent variable
and a quadratic function of time (assuming that it is strongly time-dependent) and
this increases the accuracy and stability of the fourth-order Runge–Kutta method
considerably. Today, however, we have other methods of dealing with stiff sets of
odes, so this method might be said to have outlived its usefulness.

9.11 Monte Carlo Method

Diffusion is at base a process due to randomly moving particles, so it might be
logical to model or simulate it as such. This has been done in a few works.
Fanelli et al. [253, 254] thus simulated adsorption processes and fractal structures,
using a method described earlier by Voss and Tomkiewicz [255] (used to study
dendrite formation). Licht et al. [256] simulated concentration profiles around
arrays of generator-collector microbands. Borkowski and Stojek simulated a CV
at a microelectrode [257], referring to “diffusional noise”. Up to 35,000 particles
were let loose to do a random walk. The result was a very rough but recognisable
CV. Baur and Motsegood simulated a pair of coplanar disks [258]. Juwono et al.
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used the method for lateral diffusion of adsorbed species [259], and there are a few
publications from the Compton school on random walk simulation [125, 260] and a
few others [261–263]. Nagy et al. [264, 265] studied, among other systems, growing
spheres and a hemisphere array, and Yang et al. used it on microdialysis [266]. This
is interesting but hardly appears very useful, having no obvious advantages over
other methods and being presumably somewhat time-consuming, although Baur and
Motsegood argue for its use [258].
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Chapter 10
Adsorption

In this chapter it is shown how to simulate the adsorption of a substance, not
taking into account any electrochemical reactions the substance may undergo.
That is, only the adsorption itself is dealt with here. In Chap. 2, Sect. 2.5, some
theory is presented, laying the groundwork for the simulation. It is noted there that
adsorption may be controlled by transport and the adsorption isotherm, in which
case there is equilibrium at all times between the solution and surface phases; or
that the adsorption step itself may limit the rate of adsorption. In this latter case,
there are rate constants whose values must be known. In both cases, for isotherms
more complicated than the Henry isotherm (2.103), nonlinear terms will enter the
equations to be solved in a simulation.

Simulation of adsorption kinetics is not given as much attention as electron
transfer, but some work has been done over the years. Analytical solutions are few
and far between, as mentioned in Chap. 2. so, as for electron transfer, simulation
is needed. Some simulation work has been done. Rampazzo [1] was one of the
first, using a numerical solution of the Volterra integral equation describing the
adsorption kinetics. Flanagan et al. [2] mention nonlinear terms in a simulation,
as do Miller and coworkers [3–6], and Lovrić et al. [7]. Britz et al. [8] considered
nonlinear isotherms as part of the boundary conditions in an implicit simulation and
Hsu et al. [9] modelled adsorption at an air–water interface. Bieniasz introduced the
concept of an “interfacial species” in his work [10], and has incorporated adsorption
kinetics in his program package ELSIM [11–13], specifically in [14], as did Ludwig
et al. [15, 16] in their work on Echem++.

Other simulation works to be mentioned are (pure diffusion and isotherm
control) [15, 17–33], or (finite adsorption rate) [9, 34, 35], or both [6, 36].

Rather than the integral equation approach of Rampazzo [1], the direct simulation
from the transport equations is used here. In order to obtain a certain surface
concentration 	 or fractional coverage � , the substance in question must first arrive
at the electrode, by some transport process. As was shown in Chap. 2, the normalised
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equation describing the accumulation of substance at the electrode is

d�

dT
D KG (10.1)

with K being the normalising collection c�p
D�=	m and G the dimensionless flux.

This equation must be supplemented by another, describing the relation between the
coverage � and the concentration C0 in solution at X D 0. This is either an equation
involving an adsorption isotherm or one involving adsorption rates. For both these
cases, explicit or implicit methods can be used.

There is an extreme case—that of very strong adsorption where the adsorption
parameter b as in (2.101) is large, leading to the approximate condition c0 � 0 (all
t). This is just like the electrochemical purely diffusion limited potential step case,
for which we have the solution G.T/, Eqs. (2.44) and (2.26). G can now be inserted
into (10.1), and simple integration then gives:

�.T/ D 2c�p
D�

	m
p
�

p
T : (10.2)

This was also solved for the dropping mercury electrode by Koryta in 1953 [37].
Other cases, either fast adsorption with consideration of isotherms, or rate-limiting
adsorption, will now be described. In all cases below, a new variable � must be
added to the unknowns, vector C. Conveniently, we make it the first element of all
the unknowns.

10.1 Transport and Isotherm Limited Adsorption

For this case, we have, apart from the usual diffusion equations, two boundary
condition equations relating C0 and � . They are

BC0 D I.�/

d�

dT
D KG (10.3)

where, as mentioned above, K comes from the collection of parameters that go
into the normalisation. I.�/ is the adsorption isotherm. To this small set must now
be added the N discretised equations describing the diffusion of the substance in
solution.

There are now several choices of method. The simplest may be the explicit
method. Using this, one starts at time T, where we know all values, and use them to
proceed to the new time T C ıT. First, one recalculates all Ci; i D 1 : : :N. Parallel
with this, from the value of G, one calculates a new � . Discretising the second
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equation of the set (10.3) and expanding G as usual as an n-point approximation
leads to

� 0 D � C ıTK
n�1X
iD0

ˇiCi : (10.4)

Then, the new value of � is used in the isotherm equation to recalculate C0. This is
simple, but has the drawback of poor accuracy and the limit on the  factor. Clearly,
an implicit method is preferable, such as BI with extrapolation. The diffusion part
of the whole set of equations will depend on the placing of the points in space, as
described in Chap. 8, for example using the general three-point equation (8.8) on
page 147, or a multi-point form such as (8.31), page 151. These lead to the usual
system as (8.11) or its multi-point relative (8.33) on pages 147 and 151. The first
step is to do the backward Thomas scan as described in that chapter, and to apply the
u-v procedure, resulting in a set of linear expressions for the first n (as yet unknown)
concentration values, in terms of C0

0,

C0
i D ui C viC

0
0 : (10.5)

This can be substituted into the G approximation above (10.4) and discretising the
whole equation (10.4) according to the BI method (only new values used), we have

� 0 D � C KıT

 
n�1X
iD0

ˇi.ui C viC
0
0/

!
(10.6)

which can be rearranged in terms of the two remaining unknowns � 0 and C0
0, into

� 0 D P C QC0
0 (10.7)

with P and Q obvious from (10.6). This must now be combined with the first
boundary condition of (10.3). If the Henry isotherm holds, this is simply

BC0
0 D � 0 (10.8)

and the solution follows easily. If, on the other hand, a nonlinear isotherm such as
Langmuir or Frumkin isotherm holds, we have a nonlinear pair of equations, which
can be solved using the Newton method. It will normally be aided by the fact that at
a given step, both � and C0 change only a little, so the Newton process will probably
converge rapidly. Details are left to the reader.

An obvious alternative choice of method, given the probably nonlinear form of
the isotherm boundary condition is to use a Rosenbrock method. Then, the two
boundary conditions are simply the first two equations in a whole DAE set, the first
of the pair (10.3) being an algebraic equation, the second an ode. The Rosenbrock
method is described in Chap. 9, Sect. 9.4 starting on page 200.
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10.2 Adsorption Rate Limited Adsorption

If adsorption itself is a slow process, then rate equations for that process apply,
as outlined in Chap. 2, from page 34. As with the isotherm-dependent boundary
conditions, we may have nonlinear equations, such as (2.120). The boundary
conditions, inserting (2.120) into (2.116), are

d�

dT
D Vf � Vb

d�

dT
D KG : (10.9)

These can be made into a two-equation DAE set, by equating the two right-hand
sides and using one of the equations, conveniently the simpler, second one. This
yields the DAE system

0 D Vf � Vb � K
n�1X
iD0

ˇiC
0
i

d�

dT
D K

n�1X
iD0

ˇiC
0
i : (10.10)

As for the transport- and isotherm-controlled case above, these equation sets can
now be handled either using a standard implicit method or, perhaps logically in the
case of nonlinear isotherms, Rosenbrock.
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Chapter 11
Effects Due to Uncompensated Resistance
and Capacitance

Electrochemists are aware of the annoying residual uncompensated solution resis-
tance Ru between the Luggin probe and the working electrode, see, for example, [1].
Although it is possible in principle to compensate fully for the iR error thus intro-
duced [2, 3], this is rarely done, as it introduces, in practice, undesirable instrumental
oscillations or, in the case of damped feedback [3], sluggish potentiostat response.

The other often annoying fact electrochemists must live with is the double layer
capacitance Cdl. This produces capacitive currents whenever the applied potential
changes (see again [1]). The two effects work together, as capacitive currents also
give rise to further iR errors.

With potential step methods, the capacitive current is a transient, decaying with
a time constant equal to RuCdl. The usual procedure is to wait several of these time
constants before making the current measurement, by which time the capacitive
current has declined to a negligible value. It is therefore not a serious problem with
potential step experiments.

Where both capacitive current and iR do interfere is with a.c. voltammetry (not
gone into here) and LSV experiments. An early classic study is that of Nicholson [4],
who investigated the effects of iR alone, pointing out that a simple correction, from
measured currents and known Ru, for the potentials, does not work. The LSV curve
becomes distorted and such a correction does not retrieve the shape of the curve as
it would be in the absence of an iR effect. The reason is that the varying current
during the sweep changes the electrode potential by a varying amount iRu, and thus
the potential program, that was intended to be linear with time, is no longer so.

Bowyer et al. [5] and Strutwolf [6] show examples of such distorted potential-
time relations and also distorted LSV curves, see also below.

The simulation literature deals with this problem sporadically, although it is
often simply ignored. The iR effect introduces nonlinear boundary conditions (see
below), and these have been dealt with in various ways. Gosser [7] advocates simple
subtraction, using known measured currents of the experiment one is simulating
in order to fit some parameter. Deng et al. [8] use a stepwise procedure that
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successively solves for each of the several unknowns without iteration. Iteration
using binary searches have been used [6, 9, 10], as well as a Gauss–Seidel
method [11]. Safford et al. [12] rejected binary searching as too slow and Newton–
Raphson iteration as unreliable, and used the van Wijngaarden–Dekker–Brent
root-finding method, as described in Press et al. [13]. This is as reliable as a
binary search (bisection) but faster, using a parabolic fit at each step. The best
method is probably Newton–Raphson iteration, as used by Rudolph [14], despite
the misgivings of some.

Simulations must thus handle the nonlinear boundary conditions. Some
have taken the easy way out and used explicit methods [15–18], others used
hopscotch [12, 19], ADI (for a two-dimensional problem) [20, 21] and other
methods [4, 5, 22–26]. Bieniasz [27] used the Rosenbrock method (see Chap. 9),
which makes sense because it effectively deals with nonlinearities without
iterations at a given time step. Some have simulated both resistance and capacitive
effects [12, 15, 16, 20–22, 25].

The work of Bowyer et al. [5] is interesting. Recognising that iR effects will
distort the LSV signal from the nominal linear change, they took account of the
measured current and knowing the resistance, calculated the resulting distorted
potential sweep signal, and fed this into the simulation. They were thus able to
produce a simulated SV (not LSV) response to match with the experimental one.

The classic work in this connection is that by Imbeaux and Savéant [22], who
took the integral equation approach (see Chap. 9), incorporating the iR effects. They
also established the formulation of the problem and the way to normalise both the
uncompensated resistance Ru and double layer capacitance Cdl, which has been
followed by most workers since then. Their normalisation of Ru followed that of
Nicholson [4].

In what follows only the LSV problem will be considered, since it is here that the
major problems lie. The capacitive current component is, at any given time, given
by

ic D �Cdl
dE

dt
(11.1)

where the negative sign is intended to produce a (positive) cathodic current from
a cathodic-going sweep. This current will give rise to an iR error in the applied
potential, equal to CicRu (that is, the applied potential will be a little more positive
than intended). The Faradaic current will contribute a similar iR error.

First we must normalise some quantities, to make them compatible with the other
dimensionless parameters already used. We refer to the normalisation formulae on
p. 28. Recall that we have normalised voltage by the factor nF

RT and that the time
unit � for LSV is equal to RT

nFv (v being the sweep rate), or the time the sweep takes
to traverse one normalised potential unit p.
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Resistance has units of Volts per Ampere, and thus must be converted to p units
per G units. Using the normalisations in Chap. 2, this comes to

� D Ru
nF
RT nFD

1
2 c�

r
nFv
RT : (11.2)

This is as presented in [22], and is not normally simplified further. For capacity,
which has units of current � time per Volt, these become GT units per p units here
and conversion leads to

�c D Cdl
1

nFD
1
2 c�

r
RT v
nF ; (11.3)

also normally written in this unsimplified form.

11.1 Boundary Conditions

It is solely in the boundary conditions that simulations differ from those without iR
effects. We find that for a general electrochemical reaction (ignoring homogeneous
reactions in this context), involving the two species A and B, and a set nominal
potential pnom, we have six boundary quantities and thus six equations for them. In
fact, it is quite easy to reduce them to a set of four by elimination of two of the
currents, but it seems clearer not to do so and to formulate all six equations.

We have the following unknown boundary values: the two species’ near-surface
concentrations CA;0 and CB;0, the two species’ fluxes, respectively GA and GB, the
additional capacitive flux Gc, and the potential p, differing (for � > 0) from the
nominal, desired potential pnom that was set in, for example, an LSV sweep or a
potential step experiment. Five of the six required equations are common to all
types of experiments, but the sixth (here, the first one given below) depends on
the reaction. That might be a reversible reaction, in which case a form of the Nernst
equation must be invoked, or a quasi-reversible reaction, in which case the Butler–
Volmer equation is used (see Chap. 6 for these). Let us now assume an LSV sweep,
the case of most interest in this context. The unknowns are all written as future
values with apostrophes, because they must, in what follows below, be distinguished
from their present counterparts, all known.

The unknown capacitive flux G0
c is derived as follows. Equation (11.1) becomes,

in dimensionless terms,

G0
c D ��c dp

dT
: (11.4)
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Imbeaux and Savéant [22] provide the equation for the changed potential, which
translates in present terms into the equation

p D p1 � T C �.Gc C GA/ (11.5)

(sweeping in the negative direction) and this gives, after differentiation,

dp

dT
D �1C �

�
dGA

dT
C dGc

dT

�
; (11.6)

that is, both the Faradaic and capacitive currents affect the potential if there is an iR
drop. We can now construct all the needed boundary equations.

In the reversible case we have

C0
A;0 � exp.p0/C0

B;0 D 0 (11.7)

as the first equation, with three unknowns (including p0). For a quasireversible
system, the Butler–Volmer equation applies, instead,

G0
A D Kf C

0
A;0 � Kb C

0
B;0 (11.8)

as described on page 109. We then have the flux equality equation

G0
A C G0

B D 0 ; (11.9)

and the numerical approximation to the two fluxes

G0
A �

n�1X
iD0

ˇiC
0
A;i D 0

G0
B �

n�1X
iD0

ˇiC
0
B;i D 0 : (11.10)

The capacitive flux equation (11.4) is combined with (11.6) and the time derivatives
are approximated by the two-point formula

dG

dT
� G0 � G

ıT
: (11.11)

From the vantage point of time T C ıT, these are backward differences. This gives

G0
c C �c�

ıT

�
G0

c C G0
A

� D �c C �c�

ıT
.Gc C GA/ : (11.12)
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Lastly, (11.5) is put into the form

p0 � �.G0
c C G0

A/ D p1 � T 0 D p0
nom : (11.13)

It will be noted that the equation pair (11.10) contains further unknowns C0
A;i and

C0
B;i, for i > 0. These can however be eliminated as described in Chap. 6, using

the u-v mechanism. We assume that some implicit method is used here and that
the first, backward, Thomas scan has been performed. Then, as described in that
chapter, Sect. 6.2 or, for coupled systems, Sect. 6.4, concentrations can be expressed
in the form

C0
i D ui C vi C

0
0 (11.14)

for both species. Equation (11.10) then become

G0
A � C0

A;0

n�1X
iD0

ˇivA;i D
n�1X
iD0

ˇiuA;i

G0
B � C0

B;0

n�1X
iD0

ˇivB;i D
n�1X
iD0

ˇiuB;i ; (11.15)

now only containing concentrations at X D 0 or i D 0 as unknowns. For
convenience, we rewrite these as

G0
A � VA C

0
A;0 D UA

G0
B � VB C

0
B;0 D UB (11.16)

with the four constants obvious from (11.15).
As mentioned above, the two unknown fluxes G0

A and G0
B appearing in the set can

be eliminated by the application of the approximation pair (11.16), but it might be
clearer not to do this and leave the full set of six unknowns as they are.

Essentially everything has now been given. The six-equation set must be solved
numerically, and the Newton method works very well, requiring normally only two
to three iterations at most, since the changes over a given time interval are relatively
small. For this purpose the unknowns are gathered into the unknowns vector X �
ŒC0

A;0 C
0
B;0 G

0
A G0

B G0
c p

0
T . Further treatment is now confined to a concrete example.

11.1.1 An Example

The case of a reversible reaction is assumed, requiring (11.7). The set of six
equations given above are written as the system

F.X/ D 0 (11.17)
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or, detailed,

C0
A;0 � exp.p0/C0

B;0 D 0

VAC
0
A;0 C G0

A � UA D 0

VBC
0
B;0 C G0

B � UB D 0

G0
A C G0

B D 0 (11.18)

�
G0

A

ıT
C
�
1C �

ıT

�
G0

c � �c � � .GA C Gc/

ıT
D 0

��G0
A � �G0

c C p0 � p0
nom D 0 :

The Newton–Raphson method will now be described very briefly. For a more
detailed description, see, for example, Press et al. [13]. We assume that the present
vector X is in error by a small amount ıX, and a short Taylor expansion leads to

F.X C ıX/ D F.X/C J.ıX/ : (11.19)

J is the Jacobian of the system (11.18), that is, the derivatives matrix, with respect
to all the variables, of the system. It is

J �

2
66666664

1 � exp.p/ 0 0 0 � exp.p/CB;0

VA 0 1 0 0 0

0 VB 0 1 0 0

0 0 1 1 0 0

0 0
�c�

ıT 0 1C �c�

ıT 0

0 0 �� 0 �� 1

3
77777775
: (11.20)

The variables have been written without apostrophes. At the beginning of the
Newton process, they have the old values, while the function F.X/ supplies new
constant values, driving the calculation. We demand that the corrected vector XCıX
satisfies (11.17), that is, that the left-hand side of (11.19) is zero. This leaves

J ıX D �F.X/ ; (11.21)

a linear system that can be solved easily, for example using LUD decomposition.
Example program LSV4IRC (Appendix E) does this calculation. It is of interest

to look at some results. The program was run with values � D 1 and �c D 0:1.
Figure 11.1a shows all three fluxes. The dot-dashed (top) line is the total flux.
Note that the LSV sweep goes from right to left. Note also the initial rise of the
total current to the capacitive value, delayed by the time constant ��c. The solid
line represents GA alone, while the dashed (lowest at the left) line represents the
capacitive current alone. In the absence of uncompensated resistance, this would
rise to the constant value of 0.1 as soon as the sweep starts, because of the constant
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Fig. 11.1 LSV faradaic
currents and potentials with
and without uncompensated
resistance. Curve (a) The
individual currents and their
sum with iR and capacitance
present; (b) Faradaic current
GA with and without iR error;
(c) nominal (linear) and
actual potential against
applied potential, with and
without iR effect
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change in potential, and remain at that value. However, because of the iR effect, its
rise is delayed, and its value does not remain constant as the faradaic current begins
to rise, since then there are changes in potential beyond those due to the sweep,
because of contributions by �GA to the potential. It is also of interest to see how
much the faradaic current itself differs from that in the absence of iR effects. This is
shown in Fig. 11.1b. If one were to simulate only for GA, one might conclude from
that figure that the effect of iR is slight, but clearly, considering the total current
shown in Fig. 11.1a, it is not. It is this kind of curve one would obtain from an
experiment, and would compare with a simulation. These marked changes arise
from quite (visually) small deviations of the potential from the linear sweep, as seen
in Fig. 11.1c.

Thus we can conclude that iR effects ought to be included in LSV simulations.
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Chapter 12
Two (and Three) Dimensions

Electrochemical cells are of course three-dimensional (and in fact there is a section
in this chapter on three-dimensional geometry, Sect. 12.4.1). In preceding chapters,
symmetry or the absence of concentration gradients in two of these dimensions
has been assumed, thus conveniently reducing the system to one dimension. This
is not always possible, and in fact in recent decades, some of the most popular
electrodes require at least two dimensions for reasonable simulations. These are
first and foremost the ultramicroelectrodes (UMEs), in their various forms of disk
and band electrodes, among others. Some modern electrochemical techniques such
as scanning electrochemical microscopy employ UMEs. UMEs have also been
assembled into arrays of such, increasing the simulation difficulties. Fortunately,
the vast majority of these UMEs have zero gradients in one of the three directions,
or two of the three directions share the same geometry and thus require “only” two
dimensions for their representation. Going from one to two dimensions, however, is
a major step, requiring programming sophistication in order to avoid using too much
computing time for a given simulation. In what follows here, the ultramicrodisk
electrode (UMDE) will serve as the model for how to proceed, although the others
are mentioned, and references and some theory are provided.

A word on the names given to these electrodes is in order. As Amatore notes
[1], there is some confusion about what is “ultramicro-” and what is “micro-”. He
suggests that “ultramicro-” should be applied to electrodes of such small size that
they eliminate effects of natural convection, whereas “microelectrodes” are affected
by convection. This would still depend on the time scale of the experiment. Bard and
Faulkner [2, p. 169] decided that it is the size that rules, and regard electrodes with
at least one dimension smaller than 25 µm as ultramicro-sized, and in this chapter
this definition will be used. It will be seen that arrays of these UMEs are larger than
this, so they are microelectrodes when functioning as a single unit, as they do at
longer times. This is in line with the definition of “microelectrodes” by Laitinen
and Kolthoff [3] who experimented with millimetre-sized electrodes, calling them
microelectrodes.

© Springer International Publishing Switzerland 2016
D. Britz, J. Strutwolf, Digital Simulation in Electrochemistry, Monographs
in Electrochemistry, DOI 10.1007/978-3-319-30292-8_12
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Until the 1960s, the dropping mercury electrode (DME) dominated electroana-
lytical chemistry (see such standard texts as [2, 4, 5] for details, and complications).
It could be idealised as a sphere (disregarding the shielding due to the capillary and
the slight deviation from sphericity) and had the advantages of a clean and smooth
electrode surface, and a very wide potential working range, due to the high hydrogen
overvoltage for water reduction at mercury. However, it necessitated the handling of
liquid mercury, and it has mostly been replaced by the very small solid electrodes
used today. One of the first to appear was the rotating disk electrode (RDE) [6]
which is mentioned in Chap. 14, as it involves convection. It then led to stationary
disk electrodes, and other stationary types.

Today, a number of UMEs are in use. They include the disk electrode, flat or
hemispherical, the flat types being either inlaid—that is, flush with and embedded
in an insulating plane—or recessed or protruding; band electrodes, either flat or
hemicylindrical; and arrays of all these. The flat electrodes, flush with the insulating
plane, have a problem of very large local current densities at the electrode edges.
Bond et al. [7] mention this problem, and cite Engstrom et al. [8] for what they call
an illuminating demonstration of the effect, by experiment. The interesting paper by
Zeiri et al. [9] also gives evidence for high edge current densities. The edge effect is
responsible for the problems in simulating these electrodes. No matter how closely
one packs grid lines near the edges, appreciable errors are introduced and conformal
mapping techniques are indicated.

The books by Fleischmann et al. [10] and (Eds.) Montenegro et al. [11] are a
useful sources of information on all the used UMEs, both for experimental and
theoretical work. Some reviews stand out, such as those of Aoki [12], Amatore [13]
and Speiser [14], as well as the rather thorough section on UMEs in Bard and
Faulkner [2] and the detailed review by Heinze [15] and the more recent [16], as
well as others [17–22], covering a period up to 2014.

In this chapter, although the various ultramicroelectrode geometries are described
and literature is provided both to theory and simulation work, the emphasis is on the
UMDE. The principles of simulation at this electrode are then applicable to the
others.

12.1 Theories

12.1.1 The Ultramicrodisk Electrode

Initially, efforts were made to find expressions for the deviation of currents at the
UMDE from that at a so-called planar electrode, which is the unidimensional case
(called a “shrouded plane” by Oldham [23]). One can regard this as a disk (or any
shape) at the bottom of an insulating deep well of the same cross-sectional shape as
the electrode, so that the system can be reduced to one dimension. Here the Cottrell
equation defines the current for a potential step, as in Chap. 2 (2.37) and (2.44).
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At a flush UMDE, the current deviates from the Cottrell value very soon after the
potential jump. Lingane [24] suggested that to a good approximation and for a range
of small values of time t, the current iUMDE at a UMDE could be expressed as

iUMDE

iCott
D 1C A

�
Dt

a2

� 1
2

(12.1)

where a is the radius of the UMDE. He measured this experimentally, and found
little deviation from the straight line for a range of t, and determined the slopeA to be
2.12. In the same year, Soos and Lingane studied the problem mathematically [25]
and found that the slope was 2.26 or 4=

p
� ; they considered this value a slight

overestimate but in good agreement with experiment. This factor was then the
subject of further study following these two papers. It was measured again and found
to be 1.79 [26], then determined by simulation by the same team [27], again 1.79.
Heinze [28] measured it also in his classic simulation study of the UMDE, and found
it to lie in the range 1:77 : : : 2:26. Flanagan and Marcoux [29] found, by simulation,
a value of 1.92. Shoup and Szabo [30] corrected the value of Kakihana et al. [27],
arriving at the correct one,

p
� or 1.77. This is given again indirectly in the summary

paper by Aoki [12], where other electrode geometries are also considered.
These attempts to express deviations of the current at a UMDE from the Cottrell

current are somewhat fruitless because the expressions do not hold for other
than rather small t values or rather, dimensionless values of the normalised time,
Dt=a2. General solutions were—and are—needed. There have been no analytical
solutions holding for all times, but some limiting expressions, and a rather accurate
approximate one, have been derived.

Consider Fig. 12.1, depicting the UMDE in a cylindrical coordinate system. The
electrode of radius a is flush with an infinite insulating plane. The pde that governs
diffusion around the UMDE is then

@c

@t
D D

�
@2c

@r2
C 1

r

@c

@r
C @2c

@z2

�
(12.2)

Fig. 12.1 Ultramicrodisk
electrode coordinate system
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with boundary conditions, for the “Cottrell” case (potential jump to a potential very
far from equilibrium), as follows:

t D 0; all r; z W c D c�

t > 0; r � a; z D 0 W c D 0

r D 0; z > 0 W @c

@r
D 0

r > a; z D 0 W @c

@z
D 0 (12.3)

r ! 1; z ! 1 W c D c� :

For other kinds of experiments, the second, Cottrell condition, would be replaced
with another.

For any given system, the current i.t/ at any one time is given by

i.t/ D 2�nFD
Z a

0

r
@c

@z

ˇ̌̌
ˇ
.zD0/

dr : (12.4)

The classic study of Saito [31] is often cited. Saito derived the steady state
current iss at a UMDE, setting the left-hand side of (12.2) to zero, and arrived at

iss D 4nFc�Da : (12.5)

Amatore [13] and Zoski [32] write that the problem was first solved by Saito.
In fact, Soos and Lingane [25] preceded Saito by 2 years, having developed the
same equation, in a slightly more complicated form, cited by Liu et al. [33],
who themselves derived a more general solution for different shaped electrodes.
Moreover, while these are the first solutions in the context of electrochemistry,
the same mathematics applies to other phenomena such as electric fields and heat
transport. Saito himself cites the book by Grigull [34], which is a later edition of the
original 1921 book by Gröber [35], all presenting essentially the same solution for
heat transport. Aoki [12] cites Tranter [36] for the same solution in the context of
electric fields, and Weber (1873!) [37] is cited by Sarangapani and de Levie [38] for
the solution, again with electric fields. That article also shows the singularity in the
flux at the edge of a planar disk, predating the same discovery in electrochemistry
by many years. Carslaw and Jaeger also solved the heat conduction problem at a
circular disk, both for the field and flux [39], and in the first edition of 1947 for
the field only. In this book, the solution (12.5) will hereafter be referred to as the
Soos–Saito solution.

The steady-state value is the normalising quantity for the current as a function of
time in most studies except those where the Cottrell current is used as the reference
value. Saito also derived the concentration profile at steady state. It was printed
incorrectly in the paper [31], and Crank and Furzeland [40] present the correct



12.1 Theories 255

equation:

c D c�
 
1 � 2

�
sin�1

(
2ap

z2 C .a C r/2 Cp
z2 C .a � r/2

)!
(12.6)

for z > 0 and

c D c�
�
1 � 2

�
sin�1

na
r

o�
(12.7)

for z D 0; r > a.
We want the current i.t/, a function of time. Aoki and Osteryoung [41]

presented short- and long-time analytical expressions, the short-time one being the
above (12.1), with A D p

� D 1:77, that is

iUMDE

iCott
D 1C �

1
2

�
Dt

a2

� 1
2

: (12.8)

This is better expressed directly without reference to the Cottrell current, and Aoki
and Osteryoung [42] provide the short-time solution

i D iss

� p
�

2
p
�

C �

4
C 0:094

p
�

�
(12.9)

where iss is the steady-state current as given in (12.5) and � is the normalised time
(more on that below). However, this approximation is not quite correct. Aoki and
Osteryoung state [42] that they have adjusted the third coefficient (0.094) so that the
approximation better meshes with their long-time approximation (see below). This
was pointed out by Phillips and Jansons [43], who then presented the correct series:

i D iss

p
�

4

�
2�

� 1
2 C �

1
2 C 1

4
�
1
2

�
(12.10)

which makes the last coefficient in (12.9) 0.111 rather than 0.094. This slightly
extends the range of applicability of the approximation.

For longer times, a complicated expression was derived by Aoki and Ostery-
oung [41], but it was incorrect, as pointed out by Shoup and Szabo [30], who gave
the correct expression, also given by Aoki in 1993 [12], with one more term. The
first few terms of the long-time solution [12] are

I D iss

�
1C 0:71835�

�1
2 C 0:05626�

�3
2 C 0:00646�

�5
2 : : :

�
(12.11)
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For very large � , this becomes the steady state Soos–Saito value (12.5). The steady
state value might be considered the only exactly known expression, all others being
approximations.

Shoup and Szabo also provide a general approximation that they state is accurate
to 0.6 % at all values of � :

I D iss


0:7854C 0:8862�

� 1
2 C 0:2146 exp.�0:7823��1

2 /

�
: (12.12)

A word is needed here about the definition of normalised time, in this context
usually given the symbol � . Most workers, including Shoup and Szabo, use the
definition

� D 4Dt

a2
: (12.13)

This is the definition assumed in the work of Shoup and Szabo [30] and Aoki and
coworkers [12, 41, 42] and also by Gavaghan in some recent works [44, 45]. The
above three formulae (12.9), (12.11) and (12.12), are those for this definition of
normalised time. One inconvenient side-effect of the definition is that, when one
normalises the diffusion equation (12.2), using the new dimensionless variables’
definitions

C D c=c�

R D r=a

Z D z=a (12.14)

� D 4Dt=a2 ;

the diffusion equation becomes

@C

@�
D 1

4

�
@2C

@R2
C 1

R

@C

@R
C @2C

@Z2

�
(12.15)

in which there is the factor 1/4. This is avoided by a different normalisation of time.
Reverting now to the present context and using the symbol T (� being here reserved
for an observation time), we have the normalisation

T D Dt

a2
(12.16)

which eliminates the leading fraction. Using this definition, which the present
authors prefer (and which was also used by Flanagan and Marcoux [29]), the
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dimensionless diffusion equation is now as one expects,

@C

@T
D @2C

@R2
C 1

R

@C

@R
C @2C

@Z2
: (12.17)

The normalised set of boundary conditions is then

T D 0; all R;Z W C D 1

T > 0; R � 1; Z D 0 W C D 0

R D 0; Z > 0 W @C

@R
D 0

R > 1; Z D 0 W @C

@Z
D 0 (12.18)

R ! 1; Z ! 1 W C D 1

and the current integration formula (12.4) becomes

I.T/ D �

2

Z 1

0

R
@C

@Z

ˇ̌
ˇ̌
ZD0

dR (12.19)

which converges to unity at very large T. Also, the constants in the above three
solution approximations change. They become the following new formulae: The
short-time solution of Aoki and Osteryoung (12.9) is then

I D
 
1

4

��
T

� 1
2 C �

4
C 0:188 T

1
2

!
(12.20)

(iss does not of course change), whereas the more correct formula as presented by
Phillips and Jansons [43] is

I D �
1
2

4

�
T� 1

2 C �
1
2 C 1

2
T
1
2

�
: (12.21)

The long-time solution (12.11) becomes

I D
�
1C 0:35918 T�1

2 C 0:007033 T�3
2 C 0:000202 T�5

2 : : :

�
(12.22)

and the general approximation (12.12) becomes

I D
�
0:7854C 0:4431 T� 1

2 C 0:2146 exp.�0:3912 T�1
2 /

�
: (12.23)
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Note that the second coefficient in (12.22) was misprinted as 0.25918 in our
paper [46], although all computations were performed with the correct value.

There is, however, a much better pair of solutions, obtained by Mahon and
Oldham [47] and simplified a little a year later [48]. They used what they call
the “Cope–Tallman” method, involving the Green function, to find much improved
short-time and long-time solutions for the current at a disk electrode. Their formulae
express currents at T values as defined above (12.13) (previously designated by
�), and normalised by �nFDac�, rather than the steady-state value. Here they are
converted to the present scale by the simple expedient of a multiplication factor. The
short-time approximation is then1

I D �

4

0
@.�T/� 1

2 C 1C 1

2

�
T

�

� 1
2 � 0:120031163 T C 0:0132727696 T

3
2

1
A

(12.24)

and their long-time approximation is

I D 1C �

4

�
8�

� 5
2 T� 1

2 C 8:9542 � 10�3 T� 3
2 � 2:5664� 10�4 T� 5

2

� 2:2312 � 10�4 T� 7
2 C 2:7628 � 10�5 T� 9

2

�
:

(12.25)

Unlike the approximations of Aoki and Osteryoung, these two actually overlap in
their regions of applicability, as is seen in the next section.

12.1.1.1 Ranges of Applicability

From some simulations, in which reference current values were computed over a
large range of times [46], it was possible to assess the range of applicability of
the approximations. If we require that currents be accurate within 0.1 %, then the
short-time approximation of Aoki and Osteryoung, in its corrected form (12.21), is
accurate in the range 0 � T � 0:03, while their long-time expression (12.22) is
applicable for T > 0:5. There is thus a gap in the range 0:03 < T < 0:5, in which
neither approximation yields good values. In the gap range, it was found that errors
due to the approximations peak at about 0.8 %.

The universal approximation of Shoup and Szabo (12.23) has a similar, but
wider gap range 0:002 � T � 10, within which it has two excursions as high as
0.6 % in amplitude. This is in accord with the original statement in the work [30],
guaranteeing a maximum error of 0.6 %.

1These values were kindly communicated to us by Dr. Peter Mahon, Swinburne University of
Technology, Melbourne, Australia.
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Finally, the same study [46] showed that the short-time solution of Mahon and
Oldham (12.24) is 0.1 % accurate in the range 0 � T � 1, and the long-time
approximation in the range T 
 0:4. Thus, the two formulae yield accurate current
values over the whole time scale without a gap.

12.1.1.2 LSV

For LSV, the diffusion equation for a UMDE is a little different from that for a
potential jump. The LSV case can be considered as one of a group of possible cases,
in which the characteristic time is defined independently of the disk radius while
the space variables are rendered dimensionless using the disk radius, as described
before. In general, let that characteristic time be � . For LSV, as described on page 29,
it is the time taken by the potential to sweep over one dimensionless potential unit
and the scan rate parameter a was introduced, Eq. (2.91). It has the dimension of
s�1, so that � D a�1. Note that the scan rate parameter a should not be confused
with the radius of a UMDE which has the same symbol. The dimensionless time is
then defined by

T D t=� D nF
RT vt; (12.26)

while the distances .r; z/ and concentration c are normalized, as above, by the
disk radius a and a reference concentration c�, respectively. Introducing these
dimensionless variables into Eq. (12.2) gives

@C

@T
D 1

P2

�
@2C

@R2
C 1

R

@C

@R
C @2C

@Z2

�
: (12.27)

There is now an extra parameter P in the dimensionless form of the diffusion
equation, following the ideas of Heinze [49] and Aoki et al. [50]. For LSV, P is
given by

P D
�
a2nFv
RT D

� 1
2

; (12.28)

or, in more general form,

P D ap
D�

: (12.29)

showing that P is the ratio of the disk radius to the Nernst diffusion layer thickness.
The symbol P is normally rendered as p, but this collides with our p for the
dimensionless potential. Following definitions (12.28) P can be regarded as a scan
rate parameter for potential scan experiments at a disk electrode of radius a. A small
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P value means a slow LSV sweep rate for a given disk radius a, resulting in a
sigmoidal steady-state response, while a large value means a fast sweep rate with the
electrode behaving more like a planar (shrouded) electrode. Aoki et al. [50] present
an approximate solution for the LSV current in terms of some integrals that must
be evaluated numerically, and an expression for the peak current as a function of P,
accurate to 0.23 % for any P.

The above impinges on the choice of a maximum Z and R values which must
be set such that they contain a sufficient number of

p
D� units, according to the

experiment. This will be discussed in some detail in the simulation section, below.

12.1.2 Other UMEs

Theories for other UMEs are not as well developed as those for the UMDE but
some approximations do exist. There are some reasonable approximations for
the ultramicroband electrode, UMBE. This is a relatively long strip, most often
flush with the insulating plane it is embedded in. Since it is relatively long, that
dimension can be ignored in the pdes describing transport at the electrode. The
diffusion equation is very similar to that for the UMDE (12.2), removing the term
in r�1@c=@r, and replacing the disk radius a with the half-width w=2 of the strip, the
normalisation is also very similar. There has been a series of theory papers on this
electrode. Aoki et al. [51] provide, for short times, for the UMBE of half-width w
and length l,

i.T/

nFDc�l
D 1p

�T
C 1� .2T/3=4

�
exp.�1=.8T// U.2; .2T/�1=2/C : : : ; (12.30)

where

T D Dt=w2 (12.31)

and U is the parabolic cylinder function [52]. Szabo et al. [53] also derived the first
two terms on the right-hand side and find that the formula then holds to within 1.3 %
up to T < 0:4. A longer-time solution, for higher values of T, also accurate to 1.3 %
is then given by them,

i.T/

nFDc�l
D � exp.�2p�T=5/

4
p
�T

C �

ln


.64 exp.��/T/ 12 C exp. 5

3
/

� (12.32)

in which � D 0:5772156649 : : : is the Euler constant. Szabo et al. do present
a better long-time approximation, but it is in Laplace-transformed form. Their
paper is interesting for another reason, the relationship between the flat band
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and hemicyclindrical electrodes, see below. Sentamamarai and Rajendran have
developed another model in terms of Padé approximations to their series solution
[54] which seems quite accurate. Amatore et al. [55] published a general theoretical
paper on these and state that at long times, the current at a band of width w is the
same as that at a cylinder of radius w=4, previously concluded in 1987 [53, 56].

Both Aoki et al. and Szabo et al. normalise time as Dt=w2, whereas Coen and
coworkers [57–59] who have presented solutions to the diffusion-limited current
at a band electrode in the form of integral equations, normalise by the half-width
of the band, resulting in T D 4Dt=w2. The integral equations must be evaluated
numerically, so this can be regarded as simulation. Some simulation details for the
UMBE are given below. In this work, the normalisation by the half-width of the
band, w=2 is also favoured, following Coen et al. Then the dimensionless diffusion
equation, with X the coordinate across the band, with X D 0 along the centre, and Z
the coordinate normal to the band surface both normalised by w=2, is

@C

@T
D @2C

@X2
C @2C

@Z2
: (12.33)

Taking into account the symmetry of the system and thus applying the above only
to the right half of the band geometry, the boundary conditions are

T D 0; all X;Z W C D 1

T > 0 W
Z D 0; 0 � X � 1 W C D 0

Z ! 1; X ! 1 W C D 1

X D 0; Z > 0 W @C=@X D 0

Z D 0; X > 1 W @C=@Z D 0

and the normalised current

I.T/ D i.T/

nFDc�wL
D 2

Z 1

0

@C

@Z

ˇ̌
ˇ̌
ZD0

dX (12.34)

with L the normalised length of the band. The integration from X D 0 and the factor
2 are given by symmetry.

Aoki and Tokuda [60] present an approximate solution for the LSV current in
terms of integrals to be evaluated numerically, and for the peak current as a function
of P, accurate to 2.1 % for any P.

A very recent paper by Bieniasz [61] describes general solutions of extraordinary
accuracy valid for all times and these can now serve as standards. Bieniasz
followed up with polynomial approximations of the same accuracy which speed
up computation dramatically [62].
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Other UMEs are those with hemispherical and hemicylindrical geometries, long
since understood (see Bard and Faulkner [2] but see [63] for the capped or finite-
length cylinder electrode), ultramicroring electrodes, which [58] can be regarded
as infinite bands, a conical ultramicroelectrode [64], a sphere-cap ultramicroelec-
trode [65], the UMDE inside an insulating conical well [66]. Oblate hemispherical
UMEs have been considered [67, 68] and a large variety of shapes by Oldham [69]
and Zoski [32]. Arrays of all types of UMEs, see the later Sect. 12.5, have been used
and analysed. A range of ultramicroring electrode thicknesses was considered by
Amatore et al. [70], who found that a thick ring (that is, the ring width is comparable
with the diameter) behaves more like a disk, while a thin ring approaches a band,
as observed previously [58]. The Compton group has investigated what they call the
shrouded ring system [71–73], as a model for a partially blocked electrode. There
is much interest in the scanning electrochemical microscope (SECM), where no
theory has been developed to date, and simulation is the rule here. The method
was invented by Engstrom et al. [74], and recent papers on the subject of the last
10 years are [75–91]. A section on UMEs and their simulation is found in recent
reviews [16, 92].

12.1.3 Some Relations

It is intuitively obvious that at longer times, when the diffusion layer thickness
far exceeds the radius of a disk or hemisphere (for small P), or of the width of
a band or the hemicylinder, currents at flat electrodes (disk, band) must resemble
those at round electrodes (hemisphere, hemicylinder). Some relations between
these have been established. Oldham found [93] that the steady-state currents at
an ultramicrodisk and ultramicrohemisphere are the same if their diameters along
the surfaces are the same and he later unified UMEs of widely different shapes
in terms of the area of the interface between the electrode and electrolyte and
an accessibility factor [69]. Thus for an ultramicrodisk of radius a, the steady-
state current is the same as that at an ultramicrohemisphere of radius 2a=� . At
band or hemicylindrical electrodes, there is no steady state, but there still exists
a relationship between them at long times. Szabo et al. [53], using the Laplace
transform analytical solution for the current at an ultramicroband, and comparing
it with that at an ultramicrohemicyclinder, conjectured that the current at a band
of width w has the same long-time current as at a hemicyclinder with radius
w=4. This was borne out by simulated values, and analysed mathematically by
Bieniasz [61].



12.2 Simulations 263

12.2 Simulations

In the present context, we are interested in how best to simulate electrochemical
processes at a two-dimensional electrode. The flat disk, the UMDE, is taken as an
example, as the techniques that have been developed for it are the same as those for
the other geometries. However, the band electrode is also briefly mentioned.

All the UMEs already mentioned have been simulated.
The UMDE evinces strong edge effects or very uneven current densities along

the radius of the disk. It shares this problem with all the other flat UMEs such
as ultramicrobands or -rings. The exceptions of course are the hemispherical or
hemicylindrical UMEs, which have no effective edges and behave as half of a sphere
or cylinder, and also deeply recessed disks or bands, which approach the shrouded
types.

It was early realised (for example by Crank and Furzeland in 1977 [40]) that
the singularity at such edges will degrade overall accuracy in a simulation. In fact,
Gavaghan points out [44, 94] that because of this effect, the simulation error in
calculated concentrations is of O.h1=2/, h being the interval size in space, near the
edge. This is rather poor, so that unless special techniques (see below) are used,
these simulations can be very cpu-intensive. The worst methods for simulating such
systems are the explicit method and equal intervals in .r; z/ space (for the UMDE);
nevertheless, both have been used [95–98]. Motivation for using simple explicit or
splitting methods is said to be that the more efficient implicit methods are not easy
to implement in two dimensions. For this reason, hopscotch [99] and ADI [100] (see
below) have been favourites in this area, as they obviate the need for solving largish
banded systems of equations.

Flanagan and Marcoux [29] were the first to attempt a UMDE time-marching
simulation, in order to find the constant in the approximation of Lingane’s equa-
tion (12.1); they used the explicit method. Crank and Furzeland [40] addressed the
steady state for the UMDE and described some of the problems; they also briefly
mention time-marching simulations. Their work appears to have come just after that
of Evans and Gourlay [101], who used hopscotch. They also found some oscillatory
behaviour of the solution, which is not always mentioned. As Gourlay realised [99],
hopscotch is mathematically related to ADI, which in turn approximates Crank–
Nicolson, known to be oscillatory in response to initial discontinuities such as a
potential jump (more on this problem below).

Heinze is usually cited as the first to do a thorough study of the UMDE
simulation [28], using ADI for the potential step problem. He followed this with
an LSV study [102], and used unequal intervals in the next study [103], to
come to grips with the edge effect. Meanwhile, Shoup and Szabo [30] applied
hopscotch to the problem, and this method has continued to be used to some
extent [104–107], citing only more recent works among many other earlier ones,
also with other UMEs. As mentioned in Chap. 9, hopscotch has a problem, called
“propagational inadequacy” by Feldberg [108, 109]. Hopscotch becomes inaccurate
for large time intervals, which are one motivation for using stable algorithms. As
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well, as mentioned above, hopscotch does give rise to some initial oscillations for
potential step simulations. These are less severe for small time intervals, however,
and perhaps for that reason are not always mentioned or considered serious. Safford
and Weaver [110] addressed the nontrivial problem of uncompensated resistance
and double layer capacity in these simulations. ADI, as mentioned, was used
on some occasions [28, 111], and has enjoyed a lot of use in more recent years
[112–123], citing only work of the last 5 years, to avoid an over-long list here.
Finally, Crank–Nicolson remains an attractive method, if sparse matrix solvers are
used and its oscillatory response is damped, which can be done by some rather
simple expedients, as described [124, 125], such as either starting a potential jump
simulation by subdividing the first step in time into sub-intervals (the Pearson
method [126]) or—even simpler—using BI for the very first 1–4 steps [124, 127–
131]. BI is known to have a very steady response to initial transients, and it turns
out that after 1–4 BI steps, when CN is resumed, no more oscillations are seen.
What is more, this was found to be especially effective with UMDE simulations in
conformal space [124].

It was soon realised that unequal intervals, crowded closely around the UMDE
edge, might help with accuracy, and Heinze was the first to use these in 1986 [103],
as well as Bard and coworkers [132] in the same year. Taylor followed in 1990 [111].
Real Crank–Nicolson was used in 1996 [133], in a “brute force” manner, meaning
that the linear system was simply solved by LU decomposition, ignoring the sparse
nature of the system. More on this below. The ultimate unequal intervals technique
is adaptive FEM, and this too has been tried, beginning with Nann [134] and Nann
and Heinze [135, 136], and followed more recently by Gavaghan et al. [137] and
a series of papers by Harriman et al. [138–144], some of which studies concern
UMBEs and recessed UMDEs. One might think that FEM would make possible
the use of very few sample points in the simulation space; however, as an example,
Harriman et al. [143] used up to about 2000 nodes in their work. This is greater than
the number of points one needs to use with conformal mapping and multi-point
approximations in finite difference methods, for similar accuracy.

In general, the finding by Rudolph [145], that in one-dimensional simulations,
direct discretisation on an unequally spaced grid, rather than equal spacing on a
transformed grid, is best, does not appear to apply to UME simulations. Gavaghan
made a very thorough study of UMDE simulations [44, 45, 94, 146] and concluded
that the above-mentionedO.h1=2/ behaviour limits the convergence obtained. Much
better are transformations by conformal mapping, to eliminate the edge singularity.
Such conformal maps were used as early as 1966 by Newman in a mathematical
study of the rotating disk [147] and by Saito [31], who worked out the steady-state
current at a UMDE, used conformal mapping; in fact, he used the same formula as
later applied by Michael et al. [148]. Safford et al. [149] used the same formula, and
more is said about this technique below.

Other UMEs have been simulated, and are briefly mentioned here. Ultrami-
croband or ultramicrohemicyclinders were simulated starting in 1986 [150, 151],
mostly using hopscotch. Coen et al. [57], followed by Cope et al. [58, 59] used the
integral equation method (see Chap. 9) to simulate ultramicroband or -rings. Jin and
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coworkers used their finite analytical method (FAM) method on ultramicrobands
and -rings, as well as on an ultramicro-oblate spheroidal electrode [152–157]. Varco
Shea and Bard [158] used the explicit method on ultramicroband arrays, Bieniasz
and Britz [159] simulated chronopotentiometry at an ultramicroband using a Rosen-
brock method. A UMDE at the bottom of an insulating conical well [66] and a
conical-tip electrode [160] were simulated. Reference current tables were generated
by simulation for the UMDE [46], for the UMBE (band electrode) [161], and for
long and capped ultramicrocylinder electrodes [63]. Simulations of interdigitated
array (IDA) UMBEs are detailed in Sect. 12.5, where also generator-collector
systems are treated. The SECM with its similarity to a UMDE with a close
thin-layer-cell-like opposite wall and various boundary conditions there demands
simulation, and considerable work along these lines has been done [76–83, 85–
87, 89, 90, 95, 162–181]. There is some interest in conducting polymers embedding
enzymes, covering a UMDE [182–189]. This list is probably not exhaustive.

12.3 Simulating the UMDE

The ways to simulate our chosen example, the UMDE, are described here. The
integral equation approach, taken by Coen and coworkers over a number of years
[57–59, 190–193] for UMBEs, could be used on the UMDE as well, and has been
[191], see also extensive monograph on this method by Bieniasz [194], who has
published extensively on the integral equation method, having improved on former
solution techniques [194, 195, 195–211]. The reader is referred to these publications
for the method. Also, although the adaptive FEM approach might be thought to
be about the most efficient, and has been developed by a few workers (see above,
references to Nann and Heinze, and Harriman et al.), it does not seem the method
of choice; it is not trivial to program, and as Harriman et al. found, it appears that
a rather large number of nodes were required. The reason is probably that this is a
kind of discretisation in the original cylindrical .R;Z/ space, where convergence, as
mentioned above, is of O.h1=2/ [94], and many nodes are needed to get reasonable
results. This is of course also the case with finite differences, as described below.
Discussion here is confined to the use of finite difference methods for UMDE
simulation, since these serve as guides for the simulation of the other 2D electrodes.

One has, then, two choices: to apply finite difference discretisation either directly
to a grid of points in the cylindrical .R;Z/ space, or to a transformed space. In one
dimension, it has been found [145] that direct discretisation without transformation
is better. In the case of 2D simulations where edge effects are seen, this is not the
case, and transformation is better. Both approaches are described here.
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12.3.1 Methods of Solution

Whether the simulation is on a direct discretisation of the equations in cylindrical
or transformed coordinates, the discretisation process results in a (usually) linear
system of ordinary differential equations, that must be solved. In two dimensions,
the number of these will often be large and the equation system is banded. One
approach is to ignore the sparse nature of the system and simply to solve it, using
lower-upper decomposition (LUD) [212]. The method is very simple to apply and
has been used [133, 213, 214]—it is especially appropriate in curvilinear coordinates
and multipoint derivative approximations, where the system is of minimal size
[214], and can outperform the more obvious method, using a sparse solver such
as MA28 (see later). However, many simulators tend to prefer other methods, that
avoid using implicit solution in two dimensions simultaneously but still are implicit.
Of these, two stand out.

12.3.1.1 Hopscotch

One method apparently still in some favour, is hopscotch, already mentioned
in Chap. 9, extended to two-dimensional problems by Gourlay [215], as did
Evans [101] in the same year. Despite the indication by Feldberg [109] and Carnahan
et al. [108] that hopscotch suffers from “propagational inadequacy” (Feldberg’s
term), it has continued to be used by electrochemists [105–107, 148, 216–222].
Danaee and Evans [223] described a composite method using points and blocks,
that may have fixed the propagation problem but this has not been tried in
electrochemical work. Hopscotch is in some ways similar to Crank–Nicolson
and like that method, has an oscillatory error response, as is seen in [223] and [218],
among others. It has been described in Chap. 9.

12.3.1.2 ADI

Another, more popular, method is that of alternating direction implicit, or ADI. The
most popular variant (there are several) is that of Peaceman and Rachford [100].
Briefly, on a given grid, a time step is divided into two half steps. In the first step,
all rows are advanced by ıT=2 discretising implicitly along the row, but explicitly
in the other direction at each point (see, for example, Press et al. [212, p. 847]).
For unknown U, denoting the discrete second derivative operator along X as ı2X and
along Y as ı2Y , the first step at indices i; j and advancing from time step n to n C 1,

U
nC 1

2
j;i D Un

j;i C 1

2


 
ı2XU

nC 1
2

j;i C ı2YU
n
j;i

!
(12.35)
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followed by the same process but now implicit along Y and explicit along X,

UnC1
j;i D U

nC 1
2

j;i C 1

2


 
ı2XU

nC 1
2

j;i C ı2YU
nC1
j;i

!
: (12.36)

This is a formulation assuming equal intervals h in both directions so that we have
 D ıT=h2. It can easily be extended to unequal intervals. In practice, at each
solution along a row or column, a simple tridiagonal equation system is solved,
using the Thomas algorithm as already described in Chap. 8.

The Peaceman–Rachford ADI method is second-order with respect to time, and
performs similarly to Crank–Nicolson. Indeed, Lapidus and Pinder write [224,
p. 246] “: : : is a variation of the Crank–Nicolson approximation”. It is known to be
unconditionally stable [225]. As with CN, ADI may show some error oscillations, as
also evidenced by the fact that some habitually use expanding time intervals when
employing ADI [226–231], although some of these same workers on occasion also
use equal time intervals [232, 233].

ADI was first used for electrochemistry by Heinze et al. [28, 103] to simulate the
UMDE, and continues to be used by many. Naming only works published in the last
5 years (2010–2015) to avoid an overlong list we have [112–120, 122, 123, 234].
The method appears to be favoured by workers simulating the SECM and many
papers have been published using ADI [163–166, 169–172, 174, 179, 235–240].

12.3.1.3 Some Other Methods

There have been some attempts at using other methods regarded as more efficient.
Stone [241] introduced and analysed the strongly implicit method SIP of solving
the system of discrete equations and a book appeared on it [242] 1 year later. It has
been used by electrochemists, often compared with other efficient methods [243–
249], and the method compares favourably with, for example, BI or ADI. It has
not to our knowledge been applied to electrochemical simulations since those years,
perhaps because of the programming difficulties.

What might be called the Krylov method has been attempted and also compared.
It is based on an article by Krylov [250], and is described more accessibly in the
books of Saad [251, 252] and Wesseling [253]. Some electrochemists have tried it
out [246, 247, 254–256] but generally in comparisons, SIP wins. As with SIP, it
appears to have fallen out of favour.

Lastly we have the multigrid method, devised by Brandt in 1977 [257], which
also has been compared with SIP and Krylov by some electrochemists [247, 248,
258–260] and found very efficient. It may be worth more work.
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12.3.2 Direct Discretisation

The discussion to follow refers to the example program UMDE_DIRECT
(Appendix E). Consider Fig. 12.2, which is the normalised version of Fig. 12.1,
the disk edge now lying at R D 1. When discretising directly here, we must decide
on maximum values for R and Z, as indicated, see below. Clearly, given the poor
convergence, many grid points are needed, which in turn points to the use of unequal
point spacing in both axes. This was done by Taylor et al. [111] and by Gavaghan
in his three-part study [44, 45, 146], in which he employed a grid similar to that
pictured in Fig. 12.3.

There is a slight complication in the setting of the maximum R and Z values. The
procedure depends on whether (12.17) or (12.27) is simulated. In the former case,
we have

Zmax D 6
p
Tmax (12.37)

where Tmax is the number of time units over which the experiment runs. These units
are defined by (12.16) for this case, making the Nernst diffusion layer thickness
equal to the UMDE radius for one time unit. For Rmax, one should probably use the
formula

Rmax D 1C 6
p
Tmax ; (12.38)

taking into account that the extent is measured from the disk edge, one disk radius
from the origin.

If the characteristic time is defined independently of the disk radius (as it is with
LSV) and diffusion equation (12.27) results, the Nernst diffusion layer thickness is

Fig. 12.2 Coordinate system for the UMDE
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Fig. 12.3 UMDE unequally spaced grid in .R; Z/ coordinates

dependent only on the number of these time units. So if the characteristic time is �
and the maximum duration of the experiment is �max (giving Tmax D �max=�), then
the final diffusion layer thickness is

p
D�max. Then, in dimensionless distance units

(normalisation being division by the disk radius a), this becomes, after multiplying
by 6 and noting (12.29),

Zmax D 6

P

p
Tmax (12.39)

and for R,

Rmax D 1C 6

P

p
Tmax : (12.40)

Note that P D 1 for the simulation of a potential step experiment, so that
Eqs. (12.39) and (12.40) become identical to Eqs. (12.37) and (12.38). In the case
of LSV �max is the time to scan a potential from a starting value, Estart, taking
some potential units RT =nF , to the final potential Estop with a scan rate v. The
characteristic time � was previously defined as the time to sweep through one p-
unit, see Eq. (2.92) on page 29. Therefore Tmax is equivalent to the dimensionless
potential range prange of the LSV simulation and Zmax becomes

Zmax D 6

P
p
prange (12.41)
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and R,

Rmax D 1C 6

P
p
prange ; (12.42)

with P given by Eq. (12.28), page 259. For a CV experiment, where the potential
returns to the start potential, prange is simply multiplied by two. This will become a
little more complicated later, when the space is mapped into new coordinates, and
limits in terms of these must be set. In Fig. 12.3, the number of nodes (lines) is held
small, in order not to confuse the picture. The grid is chosen such that there are
expanding intervals in both the Z direction and in the two R directions away from
and on either side of the line R D 1. There are nA intervals between R D 0 and the
disk edge, and a total of nR between the origin and the point at which R D Rmax, the
outer boundary for R. The positions for Z, indexed with i, begin at zero and nZ is the
point at which Z D Zmax.

The unequal grid was generated with the aid of the Fortran function EE_FAC
(Appendix E and described in Sect. 7.2). One needs to decide the numbers of
points in each of the three ranges, and the minimum intervals, whereupon EE_FAC
produces the required � values for the expansion. One range goes from R D 1

backwards to R D 0. In the other direction, the expansion finds the final variable
point at Rmax. The third range is simply 0 � Z � Zmax.

In the third edition of this book, four-point spatial derivative approximations on
an unequal grid were advocated. However, when working directly in .R;Z/ space,
the most efficient way to solve the resulting system of discrete equations is to use a
sparse solver such as MA28 [261, 262], and a recent study [214] comparing various
methods of simulating transport at a UMDE concluded that in .R;Z/, three-point
approximations, despite their lower approximation order (see Chap. 3), are more
efficient in terms of computing time to achieve a given target accuracy. This rather
surprising result is probably due to the internal workings of MA28. The use of three-
point approximations conveniently brings with it easier programming, and therefore
less danger of programming error.

We are now ready to apply the discretisations, but must decide on the vector of
unknown concentrations at all the grid points in Fig. 12.3. It is convenient to include
the outer boundary points, setting these to known values in the large linear system
to be generated. Thus we note that the total number N of unknowns (grid points) is
given by

N D .nR C 1/ .nZ C 1/ : (12.43)

A convenient ordering of the grid points is achieved by arranging the concentration
grid one row at a time, going upwards from the bottom (Z D 0). The numbering
of the elements in the unknowns vector is then the following. Index k of the
vector element corresponding to the grid value Cij at .Zi;Rj/, .i D 0 : : : nZ; j D
0 : : : nR/ is

k D i .nR C 1/C j C 1 ; (12.44)
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so that the whole grid is now mapped into N elements. The map is conveniently
generated in the example program UMDE_DIRECT by the function KMAP. There is
a corresponding function UNMAP which calculates i and j from a given k, needed in
order to fold newly calculated concentration values back into the grid, which might
be desirable for current calculations or plotting.

With N elements as the unknown vector, an N � N matrix is clearly required for
the solution of the linear system of discrete equations. This can be rather large. One
approach, that has been tried [133, 214], is to ignore this problem and to actually
generate the large matrix and let the system be solved by a suitable solver. This
limits the size of N, however, leading to somewhat inaccurate simulations. However,
when discretising, one notes a large number of zero elements in the matrix, which
is banded, and this suggests a sparse matrix technique.

The program package MA28 [261] was found to be useful. The package can be
downloaded from the Harwell site [262]. It is written in Fortran IV, but there
is no problem in adapting it to Fortran 90, thanks to the (so far) downward
compatibility of the latest language definition. MA28 does an LU-decomposition of
a sparse matrix, allowing efficient solution by back-substitution after the initial LU-
decomposition. What is more, for those cases where the matrix varies with time—as
is the case in, for example, second-order homogeneous chemical reactions and in
time-varying boundary conditions—MA28 has the very convenient feature that it
preserves some information from the first LU-decomposition and, as long as the
sparsity pattern of the matrix does not change, subsequent LU-decompositions can
be done much faster than the first. This package, then, was used in the program
UMDE_DIRECT. Another package for the same thing is Y12M, available from
netlib [263], and described in [264]. It offers the same features as MA28.

Firstly, the discretisation itself is described. We restrict the discussion to the
BI time integration, in order to focus on the spatial discretisations. The program
UMDE_DIRECT in fact uses BI as the first step, then three-point BDF, which
produces second-order accuracy with respect to ıT, this being the rational BDF
startup described in Chap. 4, page 70. Take a point away from the boundaries,
indices i (for Z) and j (for R). The discretisation at concentration Ci;j of the
pde (12.17) has three derivative terms, all to be discretised using three-point
formulas. The coefficients can be precalculated. For the row along Z, there are, for
each 0 < Z � Zmax, that is, 0 < i � nZ , four coefficients for the approximations

@2C

@Z2
� ˛Z1Ci�1;j C ˛Z2Ci;j C ˛Z3CiC1;j (12.45)

(the coefficients can be precomputed using the routine FORN, described in
Appendix E). These coefficients are independent of R (or j), so there are only 3nZ of
these. Similarly, there are 3nR coefficients ˛Rk; k D 1 : : : 3, for the approximations

@2C

@R2
� ˛R1Ci;j�1 C ˛R2Ci;j C ˛R3Ci;jC1 : (12.46)
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This leaves the last term. For the moment, assume that we are away from the
problem area R D 0, and we thus have the simple approximation with the last set of
coefficients for the first derivative,

1

R

@C

@R
� 1

Rj

�
ˇR1Ci;j�1 C ˇR2Ci;j C ˇR3Ci;jC1

�
: (12.47)

These three formulae work for (almost) the whole field of values that undergo
diffusional changes, up to the boundary lines. There is a problem area, as mentioned
above, at R D 0, where the above approximation cannot be used, due to the
singularity. This has been addressed by Crank and Furzeland [40] and again by
Gavaghan [44]. The method they used is also described in detail by Smith [265].
It is the following. Expand .@C=@R/ at some small R, using Maclaurin’s expansion
(a special case of Taylor’s expansion):

@C

@R
.R/ D @C

@R
.0/C R

@2C

@R2
.0/C : : : (12.48)

and, from boundary conditions (12.18), @C
@R .0/ D 0, and letting R ! 0, we obtain

1

R

@C

@R
.0/ � @2C

@R2
.0/ : (12.49)

Thus, we can simply add this term to the existing one, and the pde on the axis
becomes

@C

@T
D
�
2
@2C

@R2
C @2C

@Z2

�
(12.50)

for which a discretisation already exist (12.45) and (12.46). The only (small)
problem is that in this case, j D 0, and the discretisation thus refers to nonexistent
points with index �1. This is easily overcome, again using the boundary condition
@C
@R .0/ D 0, which means that Ci;�1 D Ci;1 and thus

@2C

@R2
.R D 0/ � ˛R2Ci;0 C .˛R1 C ˛R3/Ci;1 : (12.51)

In fact, the three ˛ values are all the same, because the three points have equal
intervals between them, so that all ˛ D 1=R21.

Another special area is the insulating plane outside the disk, defined by Z D
0;R > 1. Here, the boundary condition is usually given as in the set (12.18), zero
gradient with respect to Z. This is expressed as a three-point first derivative, as

ˇ1C0;j C ˇ2C1;j C ˇ3C2;j D 0 : (12.52)
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To make the discretisation process more visual, consider any position .i; j/ in the
grid. There are a total of 5 points around and including this central point, and each
of them has its own k-value, mapped from its indices. It looks like this:

i, j − 1 i, j i, j + 1

i − 1, j

i + 1 , j

Each of the positions maps into a k value, the index of the element in the unknowns
vector to be solved for. These are denoted, corresponding to the above scheme, by

k21 k22 k23

k12

k32

Thus, the central point at .i; j/ has map-index k22. For its discretisation, there will
be entries in row k22, at column positions at all three k values. The horizontal row
(referring to the mapping formula (12.44)) are all contiguous k values, while the
vertical row maps into column values that are nR C 1 apart from each other. So only
k22 need be computed by the mapping function KMAP, the others can then be simply
set. For example,

k21 D k22 � 1

k23 D k22 C 1 (12.53)

k12 D k22 � nR � 1

k32 D k22 C nR C 1

etc.
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We can now put the discretisations together, still focussing only on the right-
hand side of (12.17). Adding up the individual discretisations (12.45)–(12.47), we
can express the total (semi)discretisation as

dC

dT
D a21Ci;j�1 C a22Ci;j C a23Ci;jC1 C a12Ci�1;j C a32CiC1;j ; (12.54)

where the a-coefficients are put together as follows:

a21 D ˛R1 C ˇ1=Rj�1
a22 D ˛R2 C ˇ2=Ri C ˛Z2

a23 D ˛R3 C ˇ3=RjC1 (12.55)

a12 D ˛Z1

a32 D ˛Z3

with the ˛ coefficients already defined above. For the axis where R D j D 0, the
term in Ci;j�1 drops out and the coefficients follow from (12.51).

This leaves the boundary conditions. The equation for the insulating plane
is given in (12.52), producing three matrix entries at each point R > 1. The
remaining points are now those on the disk surface itself, and the points outside the
diffusion space. On the disk surface, for the Cottrell-like simulation, we have zero
concentrations, and at the outer points all concentrations are unity. These produce
single row entries in the matrix.

We must now attend to the time integration, that is, the choice of discretisation
of the left-hand side of (12.17). In the example program UMDE_DIRECT it was
decided to use a second-order time integration, and not CN. This suggested
either extrapolation or BDF, both described in Chap. 8, Sect. 8.5.2. Second-order
extrapolation has the disadvantage of requiring two half-sized steps in time as well
as one whole step, which means two different coefficient matrices and thus two LU-
decompositions. This takes up more computer memory and cpu time. BDF, on the
other hand, is done in a single step and requires, for its second-order variant, only
a second concentration array, which is much smaller than the coefficient matrix.
BDF requires a start-up strategy, and the rational start, [266] taking a single BI
step, followed by second-order BDF is a natural choice. It produces second-order
accuracy with respect to ıT, and is stable.

For the BI step, the left-hand side of (12.54) is

dC0

dT
� C0

i;j � Ci;j

ıT
(12.56)
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which, when putting unknowns and knowns on opposite sides, makes (12.54)

a21C
0
i;j�1 C .a22 � 1

ıT
/C0

i;j C a23C
0
i;jC1 C a12C

0
i�1;j C a32C

0
iC1;j

D �Ci;j

ıT
: (12.57)

For second-order BDF,

dC

dT
�

0Ci;j � 4Ci;j C 3C0
i;j

2ıT
(12.58)

and the final lumped equation is

a21C
0
i;j�1 C .a22 � 3

2ıT
/C0

i;j C a23C
0
i;jC1 C a12C

0
i�1;j C a32C

0
iC1;j

D
0Ci;j

2ıT
� 2Ci;j

ıT
: (12.59)

There is just one small difference on both sides in the two forms and in the program,
there is need for only a small IF-statement split, to handle both in the same code
stretch.

A small problem is the current integration. This is defined, in dimensionless
terms in (12.19). The integration must be performed on an unevenly spaced set
of R values. Gavaghan has examined current integration. From some numerical
experiments on an evenly spaced grid [94] he concluded that the trapezium method
is the most suitable. Simpson integration did not produce better results, because the
edge anomaly produced large errors that dominate the current integration process.
In his 1998 paper [44], describing a UMDE simulation on an unevenly spaced grid,
Gavaghan then again opted for the trapezium method, stating that it is the most
economical, and for the three-point formula for evaluating the flux densities @C=@Z
at each R and Z D 0. In our own numerical experiments, a Simpson-like algorithm
was worked out for unevenly spaced points, and it works somewhat better than the
trapezium method if the concentrations to be integrated are sufficiently accurate in
the first place. Routines U_TRAP and U_SIMP, that integrate on an uneven grid, are
presented in Appendix E.

The resulting code can be seen in the example program UMDE_DIRECT which
the interested reader might study. It turns out that a rather large number of points
are required, and very small intervals near the disk and around the disk edge. To
get good accuracy from this program, for example, it was necessary to use the
maximum possible number of points on our computer, nA D nZ D 90; nR D 180,
and set the smallest ıZ D 10�6 and equally, the smallest ıR D 10�5, similar
to the values chosen by Gavaghan [45]. The expansion parameters � are then
computed automatically to fit these numbers. With these parameters, the program
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produces currents with better than 0.1 % accuracy for T < 5, even using three-point
approximations, and ran in less than 2 s, even on the somewhat outdated computer
used.

12.3.3 Discretisation in the Mapped Space

The other major approach to simulating a UME is to map the 2D-space into
another space using conformal mapping. Consider Fig. 12.4, showing two sets of
equiconcentration lines for a potential jump at a UMDE at T D 1. The lines range
from zero (along the electrode in A, or along 	 D 0 for B) in steps of 0.1 up to
0.9. Note the crowding of the lines in A around the electrode edge, but the rather
even spread of the lines in B, and the fact that they are almost parallel with the base
line. The mapping function used in this case is that of Amatore and Fosset [216],
about which more will be said below. The figure indicates that simulation in the
transformed space should be better than in the original .R;Z/ space, and this is
indeed true, especially for larger values of T. However, consider now Fig. 12.5, the
same situation but at T D 0:01. Here, the lines in normal space are, over most
of the R-range, almost parallel with the base line except for a small area around
the disk edge, while in transformed space, they are no longer parallel and somewhat
crowded at the right-hand end (which corresponds to the region near the central axis,
R D 0). This suggests that direct discretisation in .R;Z/ space might be favourable.
In practice, however [46, 214], conformal mapping is superior over the whole time
range.
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Fig. 12.4 Equiconcentration lines at T D 1 at a UMDE in normal and AF-transformed space
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Fig. 12.5 Equiconcentration lines at T D 0.01 at a UMDE in normal and AF-transformed space
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There is thus good argument for using transformation for 2D simulations. Several
transformation formulas have been suggested and used. The first to do this was
Newman in 1966 [267], for his study of the resistance to current at a flat disk;
he was followed by Saito [31], in his derivation of the steady-state currents at an
ultramicrodisk and -band electrode. Saito used a conformal mapping function for the
band electrode, that was later used again by Michael et al. [148], applying it to the
UMDE (see below). Amatore describes several conformal mappings in his review
of UMEs [13]. The properties of conformal maps can be found in such publications
as [268], and Amatore has a good discussion of the technique [13].

12.3.3.1 Some Transformations

Here, the five mapping functions for the disk electrode are presented, as well as
the form that the diffusion equation for the disk electrode takes in the mapped
spaces. We assume that the cylindrical coordinates, time and concentrations have
all been normalised by the disk radius as in (12.14). The way to achieve these
transformations is described in Appendix B.

Michael et al. [148] used the mapping function used earlier by Saito [31],
transforming to elliptic coordinates [269],

R D cos � cosh	 ;

Z D sin � sinh	 : (12.60)

This will be called MWA here. The transformation formula is in fact very old,
and can be found in such sources as the texts by Sneddon [270], Morse and Fes-
hbach [269] and Tranter [36]. The transformation is also used for band electrodes,
with R replaced by X, measured as a distance from the centre of the band, across
the band [13]. It results, in the case of the disk or band electrode, in a new diffusion
equation, whose form is deferred to a later place, below.

We wish to simulate by discretising on an equally spaced grid in the transformed
space, and this grid should place points optimally in the original .R;Z/ space. That
is, they should be closely spaced near the disk edge, and more widely spaced,
the further away form the edge point they are. For illustration, note Fig. 12.6,
where a coarse 10 � 10 grid is shown in the transformed .�; 	 / space of the
transformation (12.60). The 	 end is open. This means that for a given simulation,
one must decide on the maximum 	 value (see page 286). This grid of points,
retransformed by application of (12.60), produces the grid on the left-hand side of
the figure. We note that indeed, points are closely spaced around the disk edge, and
move apart away from that region. The outer, nearly circular curve corresponds to
the maximum 	 chosen in this example, 2.5. 	 is the parameter that sets distance
from the origin, in a slightly complicated way. We note that the regular grid of
Fig. 12.6 is reflected in a rather regular spacing of the “radial” lines (angles) and an
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Fig. 12.6 A 10� 10 grid in MWA .�; 	 / space and its equivalent in .R; Z/

expanding spacing in the distance of the circle-like lines. All this is favourable, as it
will tend to space isoconcentration lines at roughly equal intervals.

The MWA map has what might be regarded as a drawback. We wish to contain
the concentration field that varies during the time Tmax of the simulation, that is,
to have a computational domain extending over distances of about 6 sqrt(Tmax)
from the electrode surface. This translates, upon conformal mapping, to a certain
maximum value, 	max. How this is calculated is described in Appendix D. The point
is that such a calculation must be made, which however also applies to the other
transformations, as will be seen below.

The next conformal map to be developed was that of Amatore and Fosset [216],
here to be called AF:

R D .1 � �2/
1
2 = cos

�
�
2
	
�
;

Z D � tan
�
�
2
	
�

(12.61)

The symbols are (here) the same as for MWA, except that the range of � is from
zero to unity, rather than to �=2. A convenient result of this transformation is that
the concentration profile is very simple at steady state for the potential jump system:

C.�; 	 / D 	 : (12.62)

In other words, the profile has contour lines parallel with the base line (	 D 0).
This should make simulations using this transformation very efficient. However, the
above profile holds at steady state only, and when one compares the efficiency of
the transformations at shorter times, VB and OAS (see below) are equally efficient,
in the sense that they all take about the same amount of computer time to reach a
given target accuracy in the calculated current. MWA, AF and MF transformations,
however, are somewhat less efficient.

Figure 12.7 shows the equivalences for the AF map. This transformation, in
the ranges for � and 	 shown on the right-hand figure, contains the whole semi-
infinite space in .R;Z/, so no calculation of a maximum 	 is supposedly needed.
As explained below on page 286, however, there can be efficiency reasons for
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Fig. 12.7 A 10� 10 grid in AF .�; 	 / space and its equivalent in .R; Z/
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Fig. 12.8 A 10� 10 grid in VB .�; 	 / space and its equivalent in .R; Z/

calculating a maximum 	 even here. Also note that, contrary to the MWA map,
equal intervals in the conformal space produce � lines with varying (angular)
spacing in .R;Z/, being more widely spaced near the disk axis. This is undesirable
and might reduce accuracy in the discretisations around that axis. This was
confirmed in a recent study comparing all five transformations [214]. A positive
point is that the even spacings in the 	 direction produces expanding distances
from the electrode as we move further out. This is desirable, and better than MWA,
where the distances expand to a lesser degree. The problem with the angular spacing
was overcome by the fourth transformation, to be mentioned below.

Next, Verbrugge and Baker [271] changed the definition of 	 in MWA and
arrived at the new equation pair, here referred to as VB:

R D cos � cosh

�
	

1 � 	
�

Z D sin � sinh

�
	

1 � 	

�
: (12.63)

This transformation produces the equivalence pair in Fig. 12.8. As with AF, the
maximum 	 D 1 completely encloses the semi-infinite diffusion space. The



280 12 Two (and Three) Dimensions

2

4

6

1 2 50
R

Z

1

10 θ

Γ

Fig. 12.9 A 10� 10 grid in OAS .�; 	 / space and its equivalent in .R; Z/

parameter � has the same limits as with MWA. We note an even spacing of the
angles with changing � and an outwardly expanding spacing for a regular increase
in 	 . So this transformation has both positive features.

Oleinick et al. devised a fourth transformation, here called OAS. It is a variant of
AF, and is defined as follows:

R D sin
�
�
2
�
�
= cos

�
�
2
	
�

Z D cos
�
�
2
�
�

tan
�
�
2
	
�
: (12.64)

This is the AF map (now only “quasiconformal”, as the authors note), with �
replaced by cos.�/. Figure 12.9 shows the result. The change from � to cos.�/
eliminates the rather uneven spread of angles seen in Fig. 12.7; the angles are now
spread more like those for VB, Fig. 12.8. One difference here is that the angle � is
now zero on the axis, and unity on the insulating plane, the reverse of all three earlier
transformations. This transformation appeared to give rather good results, and one
expects it to perform somewhat like VB, which has been confirmed [214].

A fifth transformation, found in Morse and Feshbach [269] and here called MF
was used in an analytical solution by Newman [147, 267], and subsequently in a
single electrochemical simulation study by Kottke et al. [187], dealing with a UMDE
under an oblate spheroidal polymer drop containing an enzyme. It is defined as

R D
p
.1C 	 2/.1 � �2/

Z D �	 :
(12.65)

This rather simple transformation also leads to a pleasingly simple pde. The grid
equivalence is shown in Fig. 12.10, and we note an uneven distribution of the � lines
in the (R;Z/ plane, indicating that the transformation may not be too promising.
MF was convenient in the Kottke et al. study, as the maximum 	 value set there
matched the surface of the polymer drop, making the simulation easier. However,
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Fig. 12.10 Grid in MF .�; 	 / space and its equivalent in .R; Z/

applied to the general UMDE problem, the transformation turned out somewhat
inefficient [214], as expected from the grid comparison.

12.3.3.2 Inversion of the Transformations

It is sometimes of interest to invert the transformations, computing the pair
of .�; 	 / coordinates from a given .R;Z/ pair. All the transformations can be
inverted trigonometrically. The inversion for AF has been presented by Svir and
Oleinick [272] (with a small typographical problem), and that for OAS by those
authors themselves [273]. For some inversions, there are alternative expressions, and
there are cases where special formulae must be applied, as is described below.

The inversion equations for the MWA transformation (12.60) and 	 are given by

	 D arcsinh

r
1

2

�
R2 C Z2 � 1C

p
.R2 C Z2 � 1/2 C 4Z2

�

� D arccos

�
R

cosh	

�
(12.66)

for both R > 0 and Z > 0. There is an expression for � independent of that for 	 ,
but the one given here is preferable, because the other has two possible solutions,
and it is not immediately obvious which one is correct. The one given here comes
directly from the first of the transformation pair (12.60). Special cases are

R > 0; Z D 0 W � D 0I 	 D arccoshR

R D 0; Z > 0 W � D �=2I 	 D arcsinhZ (12.67)

R D 0; Z D 0 W � D �=2I 	 D 0 :

Inversion of VB (12.63) is almost the same as that for MWA, except that the
expression for 	 in (12.66) is now an expression for 	 0, to be converted to the
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present 	 by

	 D 	 0=.1C 	 0/ : (12.68)

The AF (12.61) general inversion is

� D
r
1

2

�
1 � R2 � Z2 C

p
.R2 C Z2 � 1/2 C 4Z2

�

	 D 2

�
arctan

�
Z

�

�
(12.69)

with the special cases

R > 1; Z D 0 W � D 0I 	 D 2

�
arccos

�
1

R

�

R D 0; Z > 0 W � D 1I 	 D 2

�
arctanZ (12.70)

R D 0; Z D 0 W � D 1I 	 D 0 :

For OAS (12.64) we have

� D 2

�
arccos

 r
1

2

�
1 � R2 � Z2 C

p
.R2 C Z2 � 1/2 C 4Z2

�!

	 D 2

�
arctan

�
Z

cos.�
2
�/

�
: (12.71)

Alternative inversion expressions are given by Oleinick et al. [273], equivalent to
those above.

The special cases for the OAS inversion are

R > 1; Z D 0 W � D 1I 	 D 2

�
arccos

�
1

R

�

R D 0; Z > 0 W � D 0I 	 D 2

�
arctanZ (12.72)

R D 0; Z D 0 W � D 0I 	 D 0 :

The inversion of the MF transformation is

	 D
r
1

2

�
R2 C Z2 C

p
.R2 C Z2/2 C 4Z2

�

� D Z=	 :

(12.73)
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12.3.3.3 The Diffusion Equation in the Mapped Spaces

The transformations lead to a change in the diffusion equation and boundary
conditions, in terms of the new variables. How the transformed pdes are found is
described in Appendix B. The general form of the diffusion equation, for all cases, is

@C

@T
D 1

F

�
a�
@2C

@�2
C b�

@C

@�
C a	

@2C

@	 2
C b	

@C

@	

�
(12.74)

with Tables 12.1 and 12.2 showing the parameters (they are not all constants) for
MWA, AF and VB, and for OAS and MF, respectively.

Consider again Fig. 12.8 for the VB grid. It shares with the MWA and AF
mappings the following simple equivalences in .R;Z/ space. The base line of the
mapped (right-hand) grid corresponds to the electrode itself, going inward from the
edge .� D 0/ to the disk centre (� D �=2). The left-hand edge (� D 0) traces the
insulating plane away from the disk edge; while the right-hand edge traces the axis
itself. The top line is at maximum distance from the electrode. In the case of AF,
VB and OAS, if it lies at 	 D 1, it corresponds to infinity. In the case of MWA, if
suitably chosen, it lies at a distance sufficient for significant diffusional changes to
be confined within that limit. More will be said about the limit below.

Table 12.1 Parameter values for the diffusion equations in the MWA, AF and VB spaces

Parameter MWA AF VB

F sin2 � C sinh2 	 �2 C tan2 	 0 sin2 � C sinh2. 	
1�	

/

a� 1 1� �2 1

b� � tan � �2� � tan �

a	 1
4
�2

cos2 	 0 .1� 	 /4

b	 tanh	 0 .1� 	 /2 tanh. 	
1�	

/� 2.1� 	 /3

For better readability, the symbol 	 0 � �
2
	 is used

Table 12.2 Parameter values
for the diffusion equations in
the OAS and MF spaces

Parameter OAS MF

F 1
cos2 	 0

�
cos2 � 0 C sin2 � 0 sin2 	 0

�
�2 C 	 2

a�
4
�2

1� �2

b�
2
�

cot	 0 2�

a	
4
�2

cot2 	 0 1C 	 2

b	 0 2	

For better readability, the symbols � 0 � �
2
� and 	 0 � �

2
	

are used
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Equation (12.74) must be accompanied by boundary conditions. These are,
generally, now again for the potential jump experiment:

T D 0; all �; 	 W C D 1

T > 0; 	 D 0 W C D 0 (12.75)

	 D 	max W C D 1

� D 0; �max W @C

@�
D 0 :

The second boundary condition will change appropriately if another experiment
than the potential jump is simulated. Here, 	max and �max depend on the conformal
map used, and on how 	max is chosen (see below). For MWA and VB, �max D �=2,
while for AF, it is unity.

12.3.3.4 Current Integration in Conformal Coordinates

The current integration (12.19) depends on the transformation. For the three
conformal mappings described above, the new expressions are as follows. For
MWA [148] and VB [271],

I D �

2

Z �=2

0

@C

@	

ˇ̌
ˇ̌
	D0

cos � d� : (12.76)

For AF it is [13]

I D
Z 1

0

@C

@	

ˇ̌
ˇ̌
	D0

d� I (12.77)

for OAS [273],

I D �

2

Z 1

0

@C

@	

ˇ̌̌
ˇ
	D0

sin.
�

2
�/ d� (12.78)

and for MF

I D �

2

Z 1

0

@C

@	

ˇ̌
ˇ̌
	D0

d� : (12.79)

How to obtain the current equation in transformed coordinates is described in
Appendix B.
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12.3.4 Band Electrodes

Apart from the circular UMDE, there is considerable interest in the UMBE, since
currents are larger. Here the pde is in .X;Z/, both dimensions normalised by the half-
width of the band, which most conveniently is taken as very small with respect to the
length of the band (but see Sect. 12.4.1 for bands of finite length). The dimensionless
pde is then

@C

@T
D @2C

@X2
C @2C

@Z2
: (12.80)

Taking into account the symmetry of the system and thus applying the above only
to the right half of the band geometry, the boundary conditions are

T D 0; all X;Z W C D 1

T > 0 W
Z D 0; 0 � X � 1 W C D 0

Z ! 1; X ! 1 W C D 1

X D 0; Z > 0 W @C=@X D 0

Z D 0; X > 1 W @C=@Z D 0

and the normalised current

I.T/ D i.T/

nFDc�wL
D 2

Z 1

0

@C

@Z

ˇ̌
ˇ̌
ZD0

dX : (12.81)

The integration from X D 0 and the factor 2 are given by symmetry.
As for the UMDE, this is best transformed, and a formula identical with the

Verbrugge–Baker one for the UMDE can be applied, as in (12.63). It leads to the
transformed pde

@C

@T
D 1

sin2 � C sinh2
�
	
1�	

�
�
@2C

@�2
C .1� 	 /4

@2C

@	 2
� 2.1� 	 /3

@C

@	

�
:

(12.82)
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with boundary conditions

T D 0; all �; 	 W C D 1;

T > 0 W
	 D 0; 0 � � � �=2 W C D 0

	 D 	max; 0 � � � �=2 W C D 1

0 � 	 � 	max; � D 0; �=2 W @C=@� D 0 :

The normalised current becomes

I D 2

Z �=2

0

@C

@	

ˇ̌̌
ˇ
	D0

d� : (12.83)

Everything else in the simulation closely resembles the treatment for the UMDE.

12.3.4.1 Choice of �max

When simulating the UMDE using one of the transformations, it is often of
advantage to know a maximum 	 value, 	max. In the case of MWA, this is
indeed necessary, as for that transformation,	 increases indefinitely with increasing
distance from the electrode. All the other transformations have a limiting 	 value of
unity, corresponding to points at infinity. However, even in these cases, computing
time can be saved by restricting the range of 	 or, conversely, if using a fixed
number of intervals in the 	 direction, better resolution can be achieved and
accuracy improved by the restriction [214]. It is thus of interest to find these
maximum 	 values.

How to determine the maximum 	 is deferred to Appendix D.

12.3.4.2 Discretisation

Taking one of the conformally mapped grids, such as the VB grid in Fig. 12.8,
it now remains to develop the discretisations of the corresponding pde (12.74),
with the coefficients as in Tables 12.1 and 12.2 or computed using the Fornberg
algorithm [274] (see the example subroutine FORN), and boundary conditions, as
in the set (12.75). One needs to choose the number of points for the derivative
approximations. This has been experimented with [214, 275] and the conclusion
was that three-point formulae (that is, three-point in each of the two dimensions)
gave slightly better results than using a higher number of points at short times
when discretising in .R;Z/ coordinates but five- or seven-point approximations were
most efficient in transformed coordinates at longer times. The approximations for m
points (with m odd), for some variable u referred to index i, away from the edges,
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are

@u

@X
�

mX
kD1

ˇkui�.m�1/=2�1Ck (12.84)

for first derivatives with respect to X and

@2u

@X2
�

mX
kD1

˛kui�.m�1/=2�1Ck (12.85)

for second derivatives with respect to X. With equal intervals, in principle, the
coefficient sets are independent of the index i but if the index is within .m � 1/=2

of an edge, asymmetrical forms must be used and then they are dependent on the
index. When working in transformed coordinates, we find [214] that often as few as
13 intervals along a coordinate are sufficient, so the near-edge problem applies to
relatively many index values, and one may as well compute a set of coefficients for
all index values. There is a set of each of the two derivatives for both the �- and
	 direction. The coefficients for first and second derivative approximations can be
added to produce a set of weights. For example, in the pde (12.74), both derivatives
with respect to � are approximated by a weighted sum of m points, so we can add
the coefficients, and divide by F (as defined in Tables 12.1 and 12.2) at the same
time; and the same with respect to 	 . The diffusion equation then becomes, on the
right-hand side, the discrete equation at index i; j

@C

@T

ˇ̌
ˇ
i;j

�
j2X

kDj1

w� .j; k/Ci;k C
i2X

kDi1

w	 .i; k/Ck;j ; (12.86)

w� and w	 being composites of the coefficients and j1 and j2 being the lower and
upper limits of the index around j, along � , and i1 and i2 being the lower and upper
limits of the index around i, along 	 . These limits depend on where the reference
point is; as mentioned, if it is away from the edges, they are equidistant from the
reference index and if near an edge, not so. They are conveniently determined by
a small subroutine at each reference point on the grid. Such a subroutine, I1I2, is
described in Appendix E.

The bottom edge of the right-hand grid in Fig. 12.8 corresponds to the electrode,
where values either are simply set (the Cottrellian case) or are computed in some
other way (for example, for a reversible reaction). The top edge is defined as points
with constant, bulk, concentration. Thus, the points to be treated by discretisation are
those in between these two lines. As with direct discretisation on the grid in .R;Z/,
all points are taken as unknowns and mapped into one long array. Let there be N�
intervals of length ı� in the � direction, so that the points are indexed 0 � j � N� ,
and similarly a number N	 intervals of length ı	 , 0 � i � N	 along 	 . The total
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number of points is then

N D .N� C 1/.N	 C 1/ : (12.87)

Then the concentration point at .i; j/ maps into a k given by

k D i .N� C 1/C j C 1 : (12.88)

A stencil of 2m�1 points is involved in the interior of the grid, and fewer at reference
points falling on an edge.

Each of the positions maps into a k value, the index of the element in the
unknowns vector to be solved for. It seems unnecessary to depict these.

The program UMDE_VB (Appendix E) is an example of using the Verbrugge–
Baker transformed grid to simulate the potential jump experiment at a disk electrode.
BI is used as the first step, followed by three-point BDF. This works rather well,
using m-point discretisations for the first and second derivatives. As mentioned, a
study attempting to optimise the efficiency of these simulations [214] concluded that
five- or seven-point approximations are most efficient. This yields a modest-sized
system of discrete equations that can either be solved as a whole-matrix system,
ignoring the majority of zeroes, or by treating it as a sparse system and using a
subroutine suite such as MA28 [261], available at [262].

12.3.4.3 Unequal Intervals in the Mapped Space

Although in general, equal intervals are used in the mapped .�; 	 / space, with all
the advantages this entails, there can be cases where unequal intervals, especially
in the 	 direction, can be of advantage. For example, in a study of an enzyme
system within a hemispherical polymer drop containing the enzyme, covering a
UMDE [182], there were derivative boundary conditions at the polymer drop surface
and in order to render these accurately, it was desirable to limit the expansion of the
grid inherent in the 	 direction. For this reason, a mild expansion going backward
from the maximum 	 level was employed. There may be other cases where this
would improve the results of a simulation.

12.3.5 A Remark on the Boundary Conditions

In the set of boundary conditions above, (12.3) and (12.75), there are zero-gradient
conditions. In the case of the grid in .R;Z/, there are two of them, at R D 0 and
at .Z D 0;R > 1/. Although both are given by Crank and Furzeland [40], these
authors do not in fact use both of them as boundary conditions; the one at R D 0 is
used as a symmetry argument, in order to develop the form of the term that might
become singular, arriving at (12.50). Thus, they allow diffusion along as well as
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away from the axis. Similarly, one might allow diffusion in the radial direction along
the insulating plane, as well as normal to it, leaving out the (zero) normal @C=@Z
term, and using symmetry to construct the special form of @2C=@Z2 there. This
latter discretisation seems not to be used by anyone. What is used is simply the no-
flux condition, discretised suitably. One might suspect that this makes use of less
information than is available, and thus render the solution less accurate.

In the case of the mapped grid, we also have two zero gradients @C=@� , at both
the left- and right-hand edges of, for example, Fig. 12.8. This is the way it is usually
done [216, 271, 275]. At both edges, however, it is also possible—and might make
more sense—to invoke the diffusion equation, taking symmetry into account, and
leaving out the first derivative terms @C=@� there. The program UMDE_VB was
modified with this in mind, allowing diffusion in both directions. Some numerical
experiments showed that the results were almost the same as for using the boundary
condition, and convergence to an accurate value with increasing grid intervals was
no faster. Therefore the choice remains a personal one.

12.4 Three-Dimensional Simulations

The laboratory space or electrochemical cell has of course the familiar three spatial
dimensions. However, as we have seen in the previous sections, the vast majority
of electrodes and their environment can be adequately described by reducing the
geometry to one or two dimensions. The reduction is possible because of symmetry
or zero gradients in one or two space directions. There are only a few cases where
the computational space has to comprise three dimensions. This is fortunate because
the computational expense increases steeply with each spatial dimension.

Three-dimensional simulations of single electrodes have been done by explicit
FD [96, 276], ADI [277] and FEM (COMSOL Multiphysics®) [278]. A three
dimensional dual ultramicrodisk system was simulated by Fulian and Fisher using
the boundary element method (BEM) [279]. BEM [87, 176, 177, 280] and FEM
(using COMSOL Multiphysics®) [281] were employed to simulate complex three
dimensional tip-substrate geometries in SECM. Arrays with a small number of elec-
trodes were simulated using ADI [282] and commercial FEM packages Fluxexpert®

[283, 284] and COMSOL Multiphysics® [285, 286].

12.4.1 Square and Rectangular UMEs

In Sects. 12.1.2 and 12.3.4 equations both in dimensional and dimensionless form,
as well as transformed coordinates for the UMBE, are given. It was assumed
that the length of the band is much greater than the width, l 	 w. Under these
circumstances the geometric space is reduced to an .x; z/ plane by assuming that
the concentration gradient pointing into y direction, i.e. along the length of the
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band electrode, is zero. This implies that the concentration profile calculated for
the .x; z/ plane is uniform along the length of the band electrode. The flux to the
UMBE is then calculated from the surface flux in the .x; z/ plane multiplied by the
length, l. For chronoamperometric current transients at UMBEs analytical series
solutions [12, 51, 53, 61, 62, 287, 288] as well as a precise numerical simulation
[161] have been published. The question arises: what will happen if the length of
band electrode is shorter, so that the condition l 	 w is no longer fullfilled? For
the UMBE the edge effect is only considered along the length of the electrode, not
at both ends. If l becomes shorter and approaches the range of w, the edge effect
along both ends of the electrode becomes more important for the overall flux to
the electrode. While the current will decrease with decreasing length, because the
area of the electrode becomes smaller, the current density will increase because of
the additional edge effect along both ends of the electrode. Therefore, from a certain
value of the ratio l=w on, the two-dimensional approach for modelling the behaviour
of such electrodes will introduce systematic errors. To examine this behaviour three
spatial dimensions have to be taken into account. We will show how to simulate
a potential step to the diffusion limit, i.e. the Cottrell experiment, at a rectangular
and square electrode. This was done first by Strutwolf [277], followed by Cutress
et al. [276] and Woodvine et al. [278]. For the notation, the term UMBE is applied
only when l 	 w, otherwise if l approaches w the term rectangular UME is used,
with the limit l D w for a square UME.

The location of a planar rectangular electrode of width w and length l in a
Cartesian coordinate system is shown in Fig. 12.11a. The origin of the coordinate
system is at the centre of the electrode. For normalisation we make use of the same
equations as for the UMBE.

C D c=c� (12.89a)

X D 2x=w (12.89b)

Y D 2y=w (12.89c)

Z D 2z=w (12.89d)

L D 2l=w (12.89e)

T D 4Dt=w2 ; (12.89f)

The right-hand side of Eq. (12.89f) contains a factor 4 which does not appear in
the definition of the dimensionless time for the UMDE, Eq. (12.16). This is because
space is normalized by the half width of the electrode, w=2, while for the UMDE
the radius a is used. The diffusion equation in three dimensions is then

@2C

@T2
D @2C

@X2
C @2C

@Y2
C @2C

@Z2
: (12.90)
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a

b

Fig. 12.11 (a) Cartesian coordinates for a rectangular electrode of length l and width w. (b)
Computational domain for the rectangular electrode in normalised space coordinates.

Figure 12.11b presents the rectangular electrode in dimensionless space. Because of
the symmetry of the rectangular UME it is sufficient to consider only a quarter of
the rectangle. Xmax, Ymax and Zmax mark the maximum values of the space variables
taken into account for the computation. Analogous to Eqs. (12.37) and (12.38) for
the UMDE, the limits are defined as

Xmax D 1C 6
p
Tmax (12.91)

Ymax D L C 6
p
Tmax (12.92)

Zmax D 6
p
Tmax : (12.93)

Tmax is the duration of the experiment in dimensionless units, see Eq. (12.89f).
The parameter L is the dimensionless half-length of the band and is given by the
ratio l=w. The boundary conditions for a simple potential step experiment to the
diffusion limit involving one electroactive species have been given before for an
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ultramicroelectrode (2.42) and for the UMDE (12.18). These conditions are adapted
to the geometry shown in Fig. 12.11b.

T D 0 for allX;Y;Z; C D 1; (12.94a)

T > 0

0 � X � 1; 0 � Y � L; Z D 0; C D 0 (12.94b)

1 < X < Xmax; 0 � Y < Ymax; Z D 0; @C=@Z D 0 (12.94c)

0 � X � 1; L < Y < Ymax; Z D 0; @C=@Z D 0 (12.94d)

0 � X < Xmax; Y D 0; 0 < Z < Zmax; @C=@Y D 0 (12.94e)

X D 0; 0 < Y < Ymax; 0 < Z < Zmax; @C=@X D 0 (12.94f)

X D Xmax; 0 � Y < Ymax; 0 � Z < Zmax; C D 1 (12.94g)

0 � X � Xmax; Y D Ymax; 0 � Z � Zmax; C D 1 (12.94h)

0 � X � Xmax; 0 � Y � Ymax; Z D Zmax; C D 1: (12.94i)

Equation (12.94a) is the initial condition—at the beginning of the computation
(or experiment) the concentration in the whole domain is equal to the bulk
concentration. Equation (12.94b) is the boundary condition at the electrode, where
the electroactive species reacts instantly, so that the concentration is zero. Equa-
tions (12.94c) and (12.94d) are the no-flux conditions at the insulating plane
surrounding the electrode. Equations (12.94e) and (12.94f) are symmetry conditions
along the XZ and YZ plane, respectively. Finally, the last three equations are the far
field conditions where C remains at its normalised bulk value.

For the current calculation, integration has to be performed along the x direction
(0 � x � w=2) and along the y direction (0 � y � l=2). This is expressed by the
double integral

i D 4nFD
Z w=2

0

Z l=2

0

@c

@z

ˇ̌
ˇ̌
zD0

dy dx : (12.95)

Replacing c, x, y and z as well as the integration limits by Eqs. (12.89a)–(12.89d)
results in

i D 2nFDc�wG (12.96)

where

G D
Z 1

0

Z L

0

@C

@Z

ˇ̌̌
ˇ
ZD0

dY dX (12.97)

is the normalized current.
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12.4.1.1 Discretisation

Some geometries, for example the UMDE, lend themselves to conformal mapping
which increases the computational efficiency considerably by folding away the
singularity at the electrode edge. However, it can be shown that conformal mapping
in Euclidean space of dimension greater than two is much more rigid and restricted
[289]. Therefore direct discretisation in the X;Y;Z space is applied, similar to what
is described for the UMDE in Sect. 12.3.2. The number of grid points for each space
direction is nX C 1, nY C 1 and nZ C 1. For accuracy of the simulation, small
intervals between grid points in the vicinity of the electrode edges are required.
As for the UMDE an unequal grid is generated using the Fortran function EE_FAC
(Appendix E, described in Sect. 7.2). The intervals expand from the electrode edges
along X D 1 in both X directions, towards X D 0 and X D Xmax and at Y D L
towards Y D 0 and Ymax. This is illustrated in Fig. 12.12a for an electrode of half-
length L D 2. For the Z direction the expansion of the intervals starts at Z D 0

towards Zmax, see Fig. 12.12b. Besides the target point, up to which expansion
should take place, the Fortran function EE_FAC needs information about the start
interval, that is, the smallest, and the number of points for the space over which
expansion will take place. Let naX C1 be the number of grid points in the X direction
on the electrode. Then X0;X1; ::XnaX are points along the electrode width, where
XnaX D 1 is the point at the electrode edge and XnaX �XnaX�1 is the smallest interval
(an input parameter) which will expand towards X0 with an expansion factor �
calculated by the function EE_FAC. Starting from XnaX towards Xmax there are then
nX � naX points, where XnX D Xmax. The smallest interval (an input parameter) is
XnaXC1 � XnaX which will expand until the point XnZ D Xmax is reached. For the Z
direction expansion is only away from the plane of the electrode, starting at Z0 D 0,
the same as for direct discretisation of the UMDE. The function EE_FAC only needs
the number of space points, nZ , the maximum value Zmax and the smallest interval,
Z1 � Z0.

For the numerical solution one could in principle now use the same strategy as
for the UMDE in the example program UMDE_DIRECT. Assuming the number
of grid points in each of the three space dimensions, including the boundary
points, is N. Then there are N3 equations to be solved simultaneously to compute
the new concentration vector C0 implicitly. The non-zero entries of the N3 � N3

matrix of coefficients will have a banded structure. Most of the entries will be
zero and a sparse matrix solver such as Y12M or MA28 (the latter was used
for the UMDE, see the UMDE_DIRECT program) can be employed to decrease
the required computer memory and to increase the speed of matrix computations.
However, in our experience, for a time march to simulate transients, the number
of space points (or unknown concentrations) should not be bigger than ca. 40,000
to keep the computation time within a reasonable limit. For the two-dimensional
case this implied a maximum value of N � 200 while for three dimensions, N
will drop to about 35, which is not enough for an accurate simulation. For this
reason an alternating direction implicit (ADI) scheme, mentioned in Sect. 12.3.1, is
applied for the numerical solution of Eq. (12.90). Instead of solving simultaneously
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a

b

Fig. 12.12 The unequally spaced grid for the three-dimensional simulation of a rectangular
electrode with L D 2. (a) XY plane; (b) XZ plane

in one (time) step for all concentrations, the ADI method splits each time step into
substeps in which concentrations only in one space dimension are solved for. The
UMDE simulation is two dimensional and therefore two substeps are necessary.
For three dimensions, each time step is divided into three substeps, in each of
them the concentrations in one space direction are solved for implicitly. There are
different choices of ADI schemes for three dimensions [290–295], which differ in
error order and computational costs. The ADI scheme by Douglas and Gunn [293]
is of second-order with respect to space and time intervals, O.ıT2; ıX2; ıY2; ıZ2/,
though it was noted that unequally spaced grid points degrades the order of the
spatial approximations, as discussed on page 55. The Douglas–Gunn ADI scheme
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for three dimensions is written as [293]

�
1 � ıT

2
ı2X

�
C� D

�
1C ıT

2
ı2X C ıTı2Y C ıTı2Z

�
C (12.98a)

�
1 � ıT

2
ı2Y

�
C�� DC� � ıT

2
ı2YC (12.98b)

�
1 � ıT

2
ı2Z

�
C0 DC�� � ıT

2
ı2ZC (12.98c)

where C is the known concentration, C�, C�� are interim unknowns and ı2X , ı2Y and
ı2Z are difference operators for the second derivative with respect to space. A three-
point central difference formula is applied, so that ı2X is defined as

@2C

@X2
� ı2XCi;j;k D ˛X1iCi�1;j;k C ˛X2iCi;j;k C ˛X3iCiC1;j;k; (12.99)

and similarly for ı2Y and ı2Z . The indices i; j; k characterise a location of a grid point at
Xi;Yj and Zk. The ˛ coefficients for the unequal grid are calculated by the subroutine
FORN, see Appendix E. Equation (12.98) expand to

�1
2

�
˛X1iC

�
i�1;j;k C

�
˛X2i � 2

ıT

�
C�i;j;k C ˛X3iC

�
iC1;j;k

�
(12.100a)
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(12.100b)

D C�i;j;k
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� 1
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˛Y1jCi;j�1;k C ˛Y2jCi;j;k C ˛Y3jCi;jC1;k
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i;j;k�1 C
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0
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�
(12.100c)

D C��i;j;k
ıT

� 1

2

�
˛Z1kCi;j;k�1 C ˛Z2kCi;j;k C ˛Z3kCi;j;kC1

�
:

In Eq. (12.98a) the concentrations in Xi direction are treated implicitly, using
known concentrations Ci;j;k . In a second step, (12.98b), the tridiagonal system of
equations is solved implicitly along Yj (0 < j < nY) with the known (explicit)
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concentrations C�i;j;k and Ci;j;k on the right-hand side. In a third step, (12.98c), new
concentrations C0

i;j;k running along Zk (0 < k < nZ) are computed using known

values of C�� and C. The coefficients on the left-hand side of (12.100) together with
the coefficients from the discretised boundary conditions form tridiagonal matrices
and the systems are solved for the unknown concentrations using the Thomas
algorithm [296], as described in Sect. 8.3.

To calculate the current at the rectangular electrode, Eq. (12.97) has to be solved
numerically using new concentrations C0. This can be done by repeated application
of the trapezoidal rule in two dimensions

G � 1

4

naY�1X
jD0

naX�1X
iD0

ıYjıXi
�
gi;j C giC1;j C gi;jC1 C giC1;jC1

�
(12.101)

where naY and naX are the maximum numbers of grid points on the electrode along
X and Y and ıXi D XiC1 � Xi and ıYj D YjC1 � Yj. The local surface gradients
(Z D 0) at the (i; j)th grid point are calculated, for example, by a four-point forward
difference approximation

gi;j � ˇ0C
0
i;j;0 C ˇ1C

0
i;j;1 C ˇ2C

0
i;j;2 C ˇ3C

0
i;j;3 (12.102)

with ˇk being the coefficients of the forward finite difference approximation of the
first derivative on the unequally spaced grid in Z direction, computed using the
routine FORN, see Appendix E.

12.4.2 The Grid

Suitable grid parameters can be evaluated by comparing current G=L of the
three-dimensional simulation for high values of the dimensionless length of the
ultramicroband, L, with the values given by the formula of Aoki et al. [12, 288]
for the (two-dimensional) UMBE. The following grid parameters were found to
reproduce the analytical result to within an error of 0.8 % [277]: nX D nY D nZ D
80, naX D naY D 40. The first grid intervals left and right of the electrode edges and
the first interval in Z direction was set to 10�4.

The Douglas–Gunn scheme is unconditionally stable. But, like Crank–Nicolson
or the Peaceman–Rachford ADI scheme [100], it is not L-stable [297], see also
Sect. 15.3. For the potential step experiment, where an abrupt change in the
concentration at the electrode surface occurs at zero time, the lack of L-stability
introduces oscillations of the computed concentrations. The oscillations will be
stronger the higher the value of the model diffusion coefficient  D ıT=h2 is, h
being a spatial interval. These oscillations might be damped quickly after a few time
steps, but for ultramicroelectrode simulations the model diffusion coefficient will be
quite large, because of the small grid intervals around the electrode edges. Damping
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of error oscillations occurring in the simulation of potential step experiments has
been investigated [124, 125, 298]. Strutwolf [277] applied the method of Pearson
[126] where the first time step of length ıT is divided into m equal subintervals.
Using ıT D 0:01 and a smallest space interval of 10�5 gives a maximum  of
about 106. Therefore a high value of m � 5000 has to be applied for damping
oscillations [277].

Examples of transient simulations for different values of L, starting with a square
shaped electrode (L D 1) are shown in [277] and [276]. The percentage deviation
between transients calculated for two-dimensional diffusion from the analytical
equation of Aoki et al. [12, 288] and three-dimensional simulation with decreasing
value of L has been presented [277]. An Aoki type equation where the coefficients
were evaluated by fitting to three-dimensional numerical simulations to describe
transients at square and rectangular electrodes has been published [276].

12.5 Ultramicroelectrode Arrays

The signal (current or potential) from a single UME is very small compared to a
conventional microelectrode. An obvious idea for increasing the small signal is to
run multiple UMEs in parallel in an electrochemical experiment. This led to the
development of ultramicroelectrode arrays, which are defined as an ensemble of
two or more UMEs on one device. The main motivation behind the development
of ultramicroelectrode arrays was to achieve higher electrochemical signals while
maintaining the advantageous properties of UMEs [41]. The progress in micro- and
nanomachining over the last decades [299, 300] enabled the development of well-
defined and reproducible UME arrays incorporating electrodes of different shapes
and dimensions and various electrode-to-electrode separations; see [18, 301–312]
for a few examples. Ultramicro- and nanoelectrode arrays are nowadays commer-
cially available. Besides electroanalysis, ultramicroelectrode arrays find application
in neurobiology and electrophysiology to stimulate and record neuron activities
[313–315]. Partially blocked electrodes can be regarded as electrode arrays, where
disk shaped openings in a blocking layer form active sites for electrochemical
reactions. Earlier theoretical and experimental works were concerned with partially
blocked stationary [316] and RDEs [317–320]. Scheller et al. prepared such blocked
electrodes with disk shaped openings of radii down to 6 µm by a photoresist
technique [318]. A modification of the Levich equation (i.e. the equation for the
RDE limiting current) was proposed taking into account nonlinear diffusion to the
active sites. The theory made use of what is called the diffusion domain approach
(see later in this section). The behaviour of microscopic active sites of partially
blocked electrodes has been numerically simulated [71–73, 316, 321–323].

A UME array operating as a working electrode in an electrochemical experiment
can be run in two principal modes. (a) In parallel mode all electrodes are connected
by a single common wire to a potentiostat, so that identical currents or potentials
are applied to all electrodes in the array; (b) in addressable mode, electrodes
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or group of electrodes can be addressed individually by a bi-potentiostat or
multiplexer. A typical example is the generator-collector mode, where a species is
electrochemically generated on one set of electrodes while the generated species
is then consumed at the second set of electrodes (the collector electrodes). A
controlled potential or current is applied to the generator, and a controlled potential
at the collector, different to that at the generator. Examples of theory and numerical
simulation of generator-collector systems are given in [112, 217, 234, 258, 324–
336]. More generally addressable UME arrays have been developed [286, 337–340],
which are of special interest for monitoring binding events that occur between the
members of a molecular library and a biological receptor [341].

UMEs are usually arranged in a regular pattern to form an array. Multitudes of
parallel UMBEs are present in an IDA electrode. Disks or square shaped UMEs can
be arranged in a square or hexagonal lattice. Randomly distributed UMDEs—if they
are not too closely packed—can be modelled by estimating the nearest-neighbour
distribution [342] and statistical considerations, as has been done by Scharifker
[343] and later by Compton et al. [344–348] and others [77, 349]. The next section
looks into the simulation approach for regular arrays of UMDEs.

12.5.1 Regular Arrays of UMDEs

As mentioned before, a motivation for operating a UMDE array in parallel mode is
to multiply the electrochemical response of a single UMDE in the array, for example
to decrease the detection limit of an analyte. However, the behaviour of the array
response depends on the design of the array and four parameters are crucial for this:
(1) the size of the UMDEs, given by their radius a; (2) the centre-to-centre distance
l between the nearest neighbour electrodes; (3) the total number Ne of UMEs in the
array; (4) the duration of the experiment or observation time. For the regular array
we assume that both l and a have the same values for all electrodes. Points (2) and
(3) also determine the overall size of the array. In practice this size is often restricted
by experimental conditions, e.g. the dimension of the electrochemical cell.

If the duration of the experiment is such that the extension of the diffusion
layers ı evolving around the single electrodes of the array is smaller than the
half-distances to the closest neighbours l=2, then the problem is reduced to that
of a single UMDE. If ı > l=2, then the diffusion zones will overlap and vicinal
UMDEs deplete the same region in the solution, leading to a decrease of flux
to an individual electrode in comparison with an isolated electrode, where radial
diffusion can evolve unhindered. This effect is taken into account by the concept of
active and inactive regions or the diffusion domain approach, which was first used
for partially blocked RDEs by Scheller et al. [318] and later applied by Matsuda
and co-workers for modelling chronoamperometry and chronopotentiometry [350],
linear and cyclic sweep voltammetry [351] and impedance measurements [352]
at hexagonal arrays of co-planar UMDEs. The same concept was then applied to
the calculation of CVs for hexagonal and square ultramicroelectrode arrays [316].
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a b

Fig. 12.13 Top view of sections of regular arrays of UMDEs arranged in (a) a square and (b)
hexagonal lattice

The diffusion domain approach allows the mapping of the three-dimensional multi-
electrode array geometry onto a two-dimensional unit cell involving just one active
area [350]. To illustrate how this is achieved, consider Fig. 12.13a which shows the
top view of a section of an array of UMDEs in a square packed geometry, forming
a square lattice. The active areas, i.e. the UMDEs, are each at the centre of a square
with a side length l, which is identical with the centre-to-centre separation between
adjacent electrodes. It is assumed that the array consists of a large number of
electrodes, all at the same potential or current, so that each electrode is represented
by an inner square cell and that the different environment of the outer electrodes, i.e.
the UMDEs along the edges of the array, can be neglected. Because all square unit
cells are identical, the boundary condition at all four sides of the square is a zero
flux condition. To simulate a single square unit cell, three space dimensions (x; y; z)
have to be considered, with the z axis being perpendicular to the centre of the disk
electrode. The z axis falls together with the C4 symmetry axis. The computational
domain would be a rectangular prism with a certain height zmax and a square base
area of side length l. Figure 12.13b shows UMDEs arranged in a hexagonal pattern
and the base side of the unit cell has the shape of a regular hexagon with the UMDE
at its centre. Here the z-axis falls together with a C6 symmetry axis. Though the
domain is reduced to a unit cell with just one electrode, the problem is again three
dimensional in space and therefore computationally demanding. It is desirable to
have the z axis assigned to a C1 symmetry axis because that results in a cylinder
and as we have seen from UMDE simulation (Sect. 12.3) the problem is reduced
to two space dimensions, r and z. The reduction of dimensions is achieved by the
diffusion domain approach.
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12.5.1.1 The Diffusion Domain Approach

Figure 12.14a shows a circle concentric with the UMDE and with the same surface
area as the square base of the unit cell. Since the area of the square is l2, the radius
d of the circle is found from �d2 D l2 or

d D lp
�

D 0:5642 l : (12.103)

For a hexagonal configuration, illustrated in Fig. 12.14b, the equivalence of the areas
of the hexagon and the circle concentric with the UMDE results in

d D
4
p
3p
2�

l D 0:5250l : (12.104)

Using these approximations the simulation task becomes essentially the same as
already described for the simulation of a UMDE undisturbed by other electrodes.
The pde to solve is given by (12.2). Normalisation is done as already described
for a single UMDE , resulting in Eq. (12.17) for potential step or (12.27) for LSV
conditions. The difference is that the UMDE is now in effect embedded in a walled
area of base radius d, i.e. the radius of the diffusion domain, so that rmax D d and
the boundary condition changes from

r ! 1 W c D c� (12.105)

a b

Fig. 12.14 The diffusion domain approach to (a) a square lattice and (b) a hexagonal lattice of
UMDEs of radius a and a centre-to-centre separation of l
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(see Eq. (12.3)) to

r D d W @c

@r
D 0 : (12.106)

In dimensionless form this reads

R D Rd W @C

@R
D 0 ; (12.107)

where Rd D d=a. The constant (bulk) concentration condition is thus replaced by a
no-flux or symmetry condition.

Equation (12.19) is applied to calculate the current at a single electrode. To
calculate the current of the array, (12.19) is multiplied by Ne, the number of
electrodes of the array.

The validity of the diffusion zone approach, even in the case where the electrode
separation becomes very small has been shown by three-dimensional Brownian
motion simulation [349]. However, the approximate nature and limits of the
diffusion zone approach must be pointed out. It is obvious that the representation
of a square or hexagon by a circle (or vice versa) is an approximation. The closer
the number in front of l in Eqs. (12.103) and (12.104) is to 0.5, the better the
approximation. The diffusion domain approach is better suited to a hexagonal
array than for a square array, though the difference is rather small [349]. A more
serious limitation arises from the assumption that the UMDE which is actually
simulated is representative of all the electrodes of the array. The simulated electrode
is an inner electrode surrounded by six (hexagonal lattice) or four (square lattice)
nearest neighbour electrodes, unlike the electrodes at the edge where the number
of nearest neighbour electrodes is smaller. Therefore the diffusion zone approach
requires that the number of inner electrodes is much higher than the number of
edge electrodes. In other words, the larger Ne, and the larger the area of the array,
the better the approximation. In a situation where Ne is small, but the array size
is large, so that l > ı, the diffusion fields around the UMDEs do not disturb
each other and the simulation is equivalent to an isolated disk electrode. In such
a case, the far field boundary condition, if constant bulk concentration or no-
flux condition, should have no influence, because the concentration at this limit
is not affected by diffusion. However, if the array dimension is in the µm range,
then the diffusion zone approach might introduce considerable errors, because then
the UMDEs are not equivalent, assuming a small value of Ne. Indeed the overall
array might then behave similarly to an ultramicroelectrode in an electrochemical
experiment. And as for an ultramicroelectrode, where the current varies across the
electrode surface—highest close to the edge, because of the edge effect—the flux
to UMDEs along the edge of the array will be different from the flux towards
UMDEs closer to the centre of the array. The ultramicroelectrode-like behaviour
of µm sized arrays has been observed experimentally. For example, a 40 � 40 µm2

sized array with 390 disks with a D 0:115 µm and l D 2:475 µm showed no current
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peak on the time scale of a slow voltammetric scan experiment [310]. Using the
diffusion zone approach in this situation predicts overlapping diffusion zones and
a high contribution of linear diffusion and consequently a current peak. For a µm
sized array, a simulation model has to take all electrodes into account and has to
consider three space dimensions, which is expensive from a computational point
of view and the number of publications is small. Kolev et al. simulated the three-
dimensional diffusion process at an array consisting of nine rectangular UMEs,
using an ADI algorithm adapted to three space dimensions [282] and a mixed
uniform/nonuniform grid. Three-dimensional simulations for UMDE arrays were
performed using commercial FEM software packages Flux-Expert® [283, 284] and
COMSOL Multiphysics® [285, 286, 353]. The latter software was also employed in
three-dimensional (diffusion) simulation of voltammograms and SECM approach
curves of nanotip arrays (modelled as nanodisk arrays) [354].

2D simulation of UMDE arrays using the diffusion zone approach has been done
by finite differences [344, 346, 355–359] and FEM [283, 360]. By fitting simulated
transients Shoup and Szabo derived an equation for the current at a hexagonal
UMDE array as a function of time and coverage. This equation reproduces their
simulations (using the hopscotch algorithm) with an error of less than 2 % for a
coverage of 0:368 < � < 0:841 (� D 1 � .a=d/2) [356]. The diffusion zone
approach was also applied in FEM simulations of ion transfer across liquid/liquid
interfaces confined in ultramicropores of regular solid-state membranes [361–364].

12.5.1.2 An Example

Consider an array of size 2 � 2mm2, so that the diffusion zone approach can
be applied. The UMDEs in the array have a radius of 10 µm and are arranged
on a square packed lattice. The centre-to-centre distance l determines how many
electrodes fit on the array. Table 12.3 lists five different array designs together
with their parameters. The current response towards an LSV experiment should be
simulated for the different arrays. A simple redox reaction

A C e� • B (12.108)

with complete reversibility of the electron transfer at a given potentialE occurs at the
electrode. Normalisation of space and concentration is done as given by Eq. (12.14).

Table 12.3 Five designs of a
2mm � 2mm array of disk
electrodes with radius of
10�m in a square packed
geometry

Array l .�m) Ne d .�m) Rd

A1 500 25 282:1 28:21

A2 200 121 112:8 11:28

A3 100 441 56:4 5:64

A4 50 1681 28:2 2:82

A5 25 6561 14:1 1:41
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Time is made dimensionless following Eq. (12.16) and more specific for the LSV
experiment by Eq. (12.26)

C D c

c�

R D r

a

Z D z

a
(12.109)

T D nFv
RT t :

The pde to be solved is given by Eq. (12.27), where P is defined by (12.28). P2 is
proportional to the potential scan rate v and can be regarded as a dimensionless
equivalent to the scan rate. For a given electrode radius a a high P implies a high
voltage scan rate. The dimensionless boundary conditions for the LSV experiment
are

T D 0 all R;Z W C D 1 (12.110a)

T D 0 W p D p1 (12.110b)

T > 0

p D p1 � T (12.110c)

0 � R � 1; Z D 0 W C D exp.p/=.1C exp.p// (12.110d)

1 < R < Rd; Z D 0 W @C=@Z D 0 (12.110e)

R D Rd; 0 < Z < Zmax W @C=@R D 0 (12.110f)

0 � R � Rd; Z D Zmax W C D 1 (12.110g)

R D 0; 0 < Z < Zmax W @C=@R D 0 (12.110h)

with p1 being the dimensionless start potential. The Dirichlet boundary condition
C D 1 for R ! 1 is replaced by Eq. (12.110f), a no-flux condition at R D Rd,
where Rd is the dimensionless radius d=a of the equivalent circle, see Fig. 12.14a.
Boundary condition (12.110d) expresses the Nernst equation (2.32), where the
dimensionless potential p is given by Eq. (2.29), assuming E0 D 0 V . For a scan
towards negative potentials with p1 as the starting potential, p at time T is given
by p1 � T. Using the potential range as an input parameter, the starting potential is
prange=2.

Furthermore identical diffusion coefficients for the reduced and oxidised form B
and A are assumed, so that CB D 1�CA for all Z; R. Therefore the problem can be
simplified by using just one concentration,C. The value of Zmax in (12.110) depends
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on the dimensional potential range and on the parameter P and is given by (12.41).
The dimensionless current is calculated from Eq. (12.19).

For the simulation direct discretisation in .R;Z/ space is applied, as described
previously for the UMDE. It is assumed that the reader is familiar with the approach
introduced in Sect. 12.3.2. The generation of the grid with high grid point density
close to the electrode surface and at the electrode edge is accomplished with the
help of the Fortran function EE_FAC. The grid consists of N D .nZ C 1/� .nR C 1/

grid points Zi and Rj with i D 0; 1; : : : nZ and j D 0; 1; : : : nR. RnR D Rd is the
dimensionless radius calculated from (12.103). The diffusion equation (12.17) was
discretised by-nine point stencils, with five-point central difference formulas for
the first and second derivatives with respect to R and the second derivative with
respect to Z. The coefficients were calculated by the Fortran subroutine FORN. For
the points next to the boundaries asymmetric five-point formulas are created with
the help of the subroutine I1I2, described in Appendix E, to avoid points lying
outside the computational domain. For the array there is a no-flux condition along
the boundary of the diffusion zone, R D Rd, 0 < Z < Zmax, Eq. (12.110f). Again,
the one-sided five-point formula u0

5.5/ was applied for discretisation. Asymmetric
formulas u0

5.5/ and u00
4.5/ are also used for the discretisation of the R derivatives of

the diffusion equation for the grid points next to Rd, j D nR � 1. The code has been
implemented in the example program UMDE_ARRAY in Appendix E.

Simulations were performed for the arrays listed in Table 12.3, using v D
10mV s�1 and a diffusion coefficient of D D 9 � 10�10 m2 s�1, so that P D
0:2078. For an isolated UMDE such a P value will result in a sigmoidal shaped
voltammogram with a normalised limiting current of G D 1. The potential range
is prange D 36, equivalent to 0.92 V. Zmax was calculated from Eq. (12.110f) giving
Zmax D 173. The number of grid points in the Z direction were nZ D 100. In the
R direction nR was set to 70, with na D 30 points along the electrode, resulting
in a total of 101 � 71 grid points. The smallest intervals in both space directions
were set to ıZ D ıR D 10�5. Starting at Z D 0, the intervals expand towards Zmax
with an expanding factor � , calculated by the Fortran subroutine EE_FAC. In the R
direction, the smallest interval is located at the electrode edge around R D 1, from
which expansion takes place towards R D 0 and towards Rmax.

Figure 12.15 shows the voltammograms for the different arrays. In Fig. 12.15a
the responses of single electrodes of the arrays are presented. For the largest
distance between the electrodes, A1, a sigmoidal shape with a limiting current of
unity is observed, indicating negligible or no interaction of diffusion zones in the
limiting region, a situation characterized by a spherical diffusion field, as outlined
in Fig. 12.16a. The current decay at lower potentials resulting in the appearance of a
current peak for array A2 indicates the influence of linear diffusion, a consequence
of overlapping diffusion zones. A sketch of this is shown in Fig. 12.16b. Diffusion is
purely linear after the total overlap of the diffusion zones, as shown in Fig. 12.16c.
The LSV of the array will then behave as a microelectrode with area 4mm2, i.e. the
size of the array. The design with the smallest electrode separation, A5 might show
the diffusion behaviour shown in Fig. 12.16c. The peak current for a micro electrode
can be taken from the Randles–Ševčík function (see Sect. 9.8) [365, 366]
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a b

Fig. 12.15 Simulated linear scan voltammograms for the arrays listed in Table 12.3. (a) Response
of a single electrode within the array; (b) response of the array consisting of Ne electrodes

a b c

Fig. 12.16 Sketch of equiconcentration lines showing the diffusional behaviour of UMDE
arrays. (a) Non-interacting diffusion zones; (b) partially overlapping diffusion zones; (c) strong
overlapping, resulting in purely linear diffusion

ip D 0:4463

� F3

RT

�1=2
n3=2Ac�.Dv/1=2: (12.111)

Using A D 4mm2, v D 10mV s�1, D D 9 � 10�10 m2 s�1, c� D 0:1mol m�3,
the peak current of the ultramicroelectrode is 3:2 � 10�4 A. This value has to be
compared with the current peak for array A5 which is Gp D 0:14 for a single
electrode (Fig. 12.15a) or 918 for the whole array (Fig. 12.15b). The latter Gp value
has to be multiplied by Eq. (12.5) to obtain the current in physical dimensions. The
result is a peak current of 3:2 � 10�4 A, indicating the absence of radial diffusion.
The active area of array A5 is only ca. 50 % of that of the equivalent mm2 sized
micro electrode. Because the current in both cases is the same, the current density at
the array electrodes will be higher than that of the micro electrode and the capacity
is expected to be lower. Ohmic and kinetic polarization will increase and in case
of a kinetically controlled electrode reaction, an apparent rate constant will depend
on surface coverage of the array, k0a D k0� [316, 351, 357], where the surface
coverage � is the ratio of electroactive area to the total area of the array. For array
A5 the surface coverage is � D Ne�a2=A2 � 0:5. Because in the example full
reversibility of the electron transfer is assumed by boundary condition (12.110d)
this has no effect.

A special case is diffusion to a µm sized electrode array, where electrodes radii
are in the nm range, with total overlapping diffusion zones. In this case, the current
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response will exhibit features of a UME, e.g. a steady state limiting current of the
same value as a UME with the same area as the array. This has been observed
experimentally [367].

With decreasing distances between the electrodes of the array, transport to the
individual electrodes decreases and so does the current, as shown in Fig. 12.15a.
However, with smaller centre-to-centre distances the number of electrodes Ne on
the array increases and the overall current is the highest for the array with the
smallest l, A5, c.f. Fig. 12.15b. Only array A1 exhibits typical UMDE behaviour,
which might be desirable in some experiments. All this has to be taken into account
when designing an electrode array.

12.5.2 Arrays of UMBEs

Arrays of multiple UMBEs parallel to each other have been widely used in elec-
troanalytical chemistry [368]. Fabrication methods include photolithography[369],
chemical and thermal vapor deposition [370, 371] and screen printing [372]. The
references serve as examples for the above-mentioned method and are not complete
by any means.

Figure 12.17a presents a section of a UMBE array in the form of a two terminal
IDA electrode. The length and width of the band and the width of the gap between
the electrodes are denoted by l, w and g. The IDA consists of two sets of UMBEs that
mesh with each other. The two sets can be connected in parallel to a potentiostat, so
that the same potential or current is applied to all electrode fingers and consequently
the same electrochemical reaction occurs at all UMBEs, as schematically presented
in Fig. 12.17b.
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Fig. 12.17 Arrays of ultramicroband electrodes. (a) An interdigitated array electrode (IDA); (b)
an IDA operated in parallel mode; (c) IDA operated in generator-collector mode
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The two sets of ultramicrobands can also be addressed differently by using a bi-
potentiostat to enable a generator-collector mode. One set of electrodes is set to a
potential (or current) where a species is generated at the electrode, e.g. by reduction,
and the other set of electrodes is set to a potential (or current) where the generated
species is consumed, e.g. by oxidation. The generator-collector mode is illustrated
in Fig. 12.17c.

One of the first publications on electroanalytical application of IDAs described a
photolithography process to produce arrays consisting of 40 ultramicroband pairs
with w D 3:5 µm, l between 1 and 2 mm and g D 2:5 µm [369]. An early
numerical solution for the steady state current at generator-collector IDA electrodes
using Schwarz–Christoffel transformation was presented by Aoki et al. [373]. The
three-dimensional computational domain for simulating an array of UMBEs can
be considerably simplified if four conditions are fulfilled: (a) the width of the band
electrodes is much smaller than the length (the same condition as for the single band
simulations introduced in Sect. 12.3.4); (b) all electrodes in the array are of the same
width and length; (c) the number of bands is high; (d) the overall array size is on a
micro scale that is, in the mm range). Conditions (c) and (d) are mutually dependent
and arise for the same reason that justifies the diffusion domain approach for arrays
of UMDEs: given a large number of band electrodes, the different diffusion fields
established at the outermost electrodes compared to the inner ones can be neglected
and the diffusion field at an inner electrode is representative for all electrodes.
However, this is only the case if the overall array size is in the larger micro range,
condition (d). If, for example, w and g are in the nano range, the expansion of
the array in the x direction, Ne.w C g/ � g, can be in the µm range, even if the
number of bands, Ne, is high. On the time scale of an electrochemical experiment,
typically in the range of seconds for a voltammetric scan, the IDA might behave like
a microelectrode, that is the bands are prone to different flux densities and cannot be
treated equally. The case where condition (a) is not satisfied and l approaches w was
discussed in Sect. 12.4.1. If the conditions (a)–(d) are fullfilled, diffusion is reduced
to two dimensions, and the pde to solve is the same as for a single UMBE, (12.33).
The computational domain for the simulation of an ultramicroband array in parallel
and generator-collector mode is shown on the left side of Fig. 12.18. The simulation
space for the parallel-operated IDA is similar to the one for a single UMBE (see
Sect. 12.3.4), except along the boundary line x D .w C g/=2; 0 < z < zmax. The
symmetry of the diffusion field along the line midway between the electrodes is
described by a no-flux condition,

t > 0; x D .w C g=2/; 0 < z < zmax; @c=@x D 0 : (12.112)

In both the parallel and generator-collector mode, the space variables are made
dimensionless by dividing by the half width of the electrodes, w=2.

X D 2x=w (12.113a)

Z D 2z=w: (12.113b)
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a

b

Fig. 12.18 Computational domain for an ultramicroband IDA in parallel (a) and generator-
collector mode (b). The domains are presented in physical (left) and, after normalisation by
multiplication with 2=w, in dimensionless space (right side)

The normalised gap width is

Wg D 2g=w: (12.114)

The figure on the right of Fig. 12.18a presents the computational domain in
dimensionless space for the IDAs in parallel mode. The symmetry condition for
the parallel-operated UMBE array, (12.112), becomes

T > 0; X D 1C Wg=2; 0 < Z < Zmax; @C=@X D 0; (12.115)

where the concentration C is made dimensionless by dividing with a reference
(bulk) concentration. T denotes the dimensionless time, as given by Eq. (12.89f)
for a potential step experiment. The remaining boundary conditions are identical
to those for the simulation of a single UMBE. The current of the IDA is calculated
from Eq. (12.34) and multiplying by Ne, the number of electrode fingers in the array.

The computational domain for the IDA in generator-collector mode is shown
in Fig. 12.18b in physical space and after normalisation by (12.113). Adjacent
generator and collector electrodes have to be taken into account because different
electrochemical processes are taking place at these electrodes and therefore there
will be no symmetry line at the centre of the gap, as is the case for the parallel
mode. One set of the electrodes of the IDA are set to a potential where reduction of
a species A, present in the in the bulk, occurs, to generate species B

A C e� • B: (12.116)
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On the collector set of UMBEs, the generated species B is recycled back to A

B • A C e�; (12.117)

c.f. Fig. 12.17c.
The IDA generator-collector system has been simulated using the Laasonen (BI)

scheme [374], explicit FD [375, 376], hopscotch and conformal mapping [220],
the finite analytic numerical method [152], extrapolation using expanding space
intervals [332] and ADI with expanding space intervals [348, 377]. Commercial
FEM software packages Flux-Expert® [324] and COMSOL Multiphysics® [378]
have also been employed.

For the boundary conditions of the computational domain (12.18b, right-hand
side) the left electrode serves as the generator and the right electrode as the collector.
Both electrode potentials are set so that the redox reactions are at the diffusion limit
and the surface concentration of the reacting species at the electrode is zero.

T D 0 all R;Z W CA D 1;CB D 0 (12.118a)

T > 0

0 � X � 1; Z D 0 W CA D 0; CB D 1 (12.118b)

1 < X < .1C Wg/; Z D 0 W @CA=@Z D @CB=@Z D 0

(12.118c)

.1C Wg/ � X � .2C Wg/; Z D 0 W CA D 1; CB D 0 (12.118d)

X D 0; 0 < Z < Zmax W @CA=@X D @CB=@X D 0

(12.118e)

X D 2C Wg; 0 < Z < Zmax W @CA=@X D @CB=@Z D 0 (12.118f)

0 � X � .2C Wg/; Z D Zmax W CA D 1; CB D 0 (12.118g)

The generator current (in Amperes) is calculated by solving the integral

ig D 2nFDc�l
Z w=2

o

@cA
@z

ˇ̌̌
ˇ
zD0

dx (12.119)

and the collector current is given by

ic D �2nFDc�l
Z w=2

o

@cB
@z

ˇ̌
ˇ̌
zD0

dx; (12.120)

where w, g and l are illustrated in Fig. 12.17a. Identical diffusion coefficients DA D
DB D D are assumed and c� is the initial or bulk concentration of species A. The
computational domain contains only half of each electrode and this is taken into
account by the factor 2. The current as calculated by Eqs. (12.119) and (12.120) is
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only for one generator and collector electrode. If the IDA has Ne band electrodes,
half of them operated as generators and half as collectors, a factor of Ne=2 is applied
to the equations for ig and ic. With the help of Eqs. (12.113) and (12.114) the currents
are made dimensionless

Gg D 2

Z 1

0

@CA

@Z

ˇ̌
ˇ̌
ZD0

dX; (12.121)

Gc D �2
Z 2CWg

1CWg

@CB

@Z

ˇ̌̌
ˇ
ZD0

dX: (12.122)

For the simulation of current transients the two-dimensional diffusion equation
together with the boundary conditions (12.118) has to be solved. The implicit
finite difference approach described for the direct discretisation of the UMDE,
Sect. 12.3.2 can be readily applied. For example, one can use three points in each
spatial direction, resulting in two-dimensional five point stencils. Three-point BDF,
which is second-order accurate with respect to ıT, can be used for time integration
with a first BI step to start the simulation, as described in Sect. 12.3.2 for the UMDE
or second-order accurate extrapolation, described in Sect. 4.9. The sparse matrix can
be solved with the MA28 package [261]. As for other UMEs, high numbers of grid
points are required along the electrode surfaces and especially at the electrode edges
.X;Y/ D .1; 0/ and .0; 1CWg/, where the boundary conditions change abruptly. An
example of the grid for the IDA in generator-collector mode (with a reduced number
of grid points for clarity) is presented in Fig. 12.20a. The grid in the X direction is
created from the smallest space interval �X1 at both electrode edges and from the
number of grid points along the electrode, na and along the gap, nb. In the Z direction
nz grid points expand from the smallest interval �Z1 at Z D 0 to Z D Zmax, where
Zmax is defined by Eq. (12.37). For simulation the following grid parameters were
typically chosen: �X1 D �Z1 D 10�4, na D 40, nb D 80 (so nx D 160) and
nz D 100. The constant time intervals were usually set to ıT D 0:01.

12.5.3 Elevated UMBEs

Photolithography, a common process for IDA electrodes, dual band and single band
electrode production, leads to elevated bands, as shown by SEM and AFM [379].
Indeed, elevated IDA electrodes can be produced with various heights. IDA of
elevated UMBEs have been simulated by the finite analytical numerical method
[152], by the strongly implicit technique [243], by explicit finite differences [376],
by a finite difference method with extrapolation [332] and using the commercial
FEM program COMSOL Multiphysics® [378]. Elevated IDA structures with the
side walls being conductive while the top of the elevated bands were non-conductive
(comb IDAs) were fabricated by Kim et al. [380] and steady state currents were
simulated using the commercial FEM program ANSYS®.
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a b

Fig. 12.19 The computational domain for the simulation of an IDA of elevated band electrodes.
(a) Physical and (b) dimensionless space

For simulation the same dimensionless variables as for IDA of co-planar band
electrodes are used. The computational domain for an IDA of elevated band
electrodes in physical and dimensionless space is shown in Fig. 12.19. The electrode
height in physical dimensions is given by h. Then He D 2h=w defines the
dimensional electrode height. The electrode reaction occurs not only on the top of
the electrodes, but also on their sides. The boundary conditions of the region shown
in Fig. 12.19b for a potential step to the diffusion limit at both, the generator and
collector are

T D 0 all R;Z W CA D 1;CB D 0 (12.123a)

T > 0

0 � X � 1; Z D He W CA D 0; CB D 1 (12.123b)

X D 1; 0 � Z < He W CA D 0; CB D 1 (12.123c)

1 < X < .1C Wg/; Z D 0 W @CA=@Z D @CB=@Z D 0

(12.123d)

X D 1C Wg; 0 � Z < He W CA D 1; CB D 0 (12.123e)

.1C Wg/ � X � .2C Wg/; Z D He W CA D 1; CB D 0 (12.123f)

X D 0; He < Z < Zmax W @CA=@X D @CB=@X D 0

(12.123g)

X D 2C Wg; He < Z < Zmax W @CA=@X D @CB=@Z D 0

(12.123h)

0 � X � .2C Wg/; Z D Zmax W CA D 1; CB D 0 (12.123i)
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The current not only flows on the top of the electrodes but also on the sides. This
is taken into account by an integral of the surface gradients along the sides of the
electrodes. The dimensionless current for a single generator electrode is

Gg D 2

Z 1

0

@CA

@Z

ˇ̌
ˇ̌
ZDHe

dX C 2

Z He

0

@CA

@X

ˇ̌
ˇ̌
XD1

dZ (12.124)

and for a single collector electrode

Gc D �2
Z 2CWg

1CWg

@CB

@Z

ˇ̌
ˇ̌
ZDHe

dX � 2
Z He

0

@CB

@X

ˇ̌
ˇ̌
XD1CWg

dZ : (12.125)

Each electrode has two sides and therefore there is a factor two in the second term
of the left-hand side of Eqs. (12.124) and (12.125). These equations describe the
dimensional current to a cross section in the .X;Z/ plane of the band electrodes. To
obtain the dimensionless current over the whole bands, Eqs. (12.124) and (12.125)
have to be multiplied by 2L. However, it is preferable to consider the electrode
length in the final step, when converting the dimensionless currents into currents
with physical units. If the IDA consists of Ne electrodes of length l (unit meters),
half of them running in generator modes, the other half in collector mode, then
Gg and Gc are multiplied by nFDc�lNe=2 to obtain currents in physical units. A
typical grid for simulating an IDA of elevated electrodes (with a reduced number
of grid points for clarity) is shown in Fig. 12.20b. The elevation of the band
electrode has consequences not only for the current but also for the time of flight
experiments in generator-collector mode. The time of flight is a measure of how fast
the communication by diffusion between the generator and collector electrode is,
i.e. how quickly the generated species appears at the collector electrode [325]. The
travel time T0:5 is defined as the time at which the collector current reaches half of

a b

Fig. 12.20 Grids for the simulation of IDA electrodes operated in generator-collector mode. (a)
Co-planar electrodes; (b) elevated electrodes
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Fig. 12.21 Travel time between band electrodes of an IDA as a function of the electrode width to
gap width ratio. The line is calculated from Eq. (12.126), the symbols are simulation results for flat
electrodes (plus sign), and electrodes with a height of He D 1 (open circle), 2 (open square) and 4
(open triangle).

its steady state value. Niwa et al. [381] introduced an empirical equation relating the
electrode and gap width to the time of flight. An improved equation was presented
by Aoki and Tanaka[382], which, modified for dimensionless variables, is

T0:5 D 3:6

�� g
w

�2 C g

w
C 1

36

�
: (12.126)

Figure 12.21 shows a plot of the travel time T0:5 between adjacent bands of an
IDA as a function of the ratio w=g. The line in Fig. 12.21 was calculated from
Eq. (12.126) and is shown together with simulated values for the flat electrodes
(symbol C). Agreement of the simulations with (12.126) is good. As the gap width
g for a given electrode width increases (and thus w=g decreases), T0:5 steeply
increases, an effect of the increasing length of path between the generator and
collector electrodes. Also included in Fig. 12.21 are results of simulations for
elevated bands with heights of He D 1 (the electrode height is half the electrode
width), He D 2 (the electrode height is equal to the electrode width) and He D 4

(the electrode height is twice the electrode width). At larger w=g ratios (w=g ' 2)
the travel times converge to the same value, independent of the electrode elevation.
However, for smaller w=g ratios the travel times become shorter the more elevated
the electrodes are. For example at w=g D 0:25 the travel time of the coplanar
IDA is reduced by factors of 1.8, 2.6 and 9.7 for He values of 1, 2 and 4,
respectively. The enhancement in current response and decrease in response time for
electrodes operated in generator-collector mode for the case of g < w has led to the
development of ultramicro gap electrodes, such as the dual plate ultramicrotrench
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electrode [383–386]. Liu et al. [387] set the time of flight equivalent to the time
delay tonset of the current onset at the collector electrode. For the potential sweep
experiment, they calculated the time of flight from

tonset D �Eonset

v
(12.127)

where v is the potential scan rate and �Eonset is the potential interval beginning at
a point of the potential axis where the generator current started to rise to a point
on the potential axis where the collector current started to flow. For a potential
step experiment, the time delay tonset would be simply the period of time passed
after the potential was applied at the generator electrode to the time where the
collector current started to rise. In any case, the definition of tonset suffers from some
arbitrariness with respect to the threshold of the current onset.

12.5.4 Dual Electrode Systems

A device with two closely spaced electrodes both serving as working electrodes that
might be individually addressable constitutes a dual electrode system, sometimes
also termed a system of paired electrodes. Like the IDA electrodes treated in the
previous section, we consider a dual electrode system in stagnant solution and
operated in generator-collector mode. As IDA electrodes the dual electrode system
can be used as an alternative to the rotating (macro) ring-disk electrode. For a
review on dual electrode systems see [388]. Different electrode geometries have
been explored, such as dual UMDEs [330, 335, 389, 390], dual hemispherical UMEs
[391], dual bands [105, 112, 328, 392–395], ring-disk electrodes [396–399], dual
cylinder [400, 401] and dual hemicylinder [331, 402] electrodes.

The lack of axial symmetry makes the simulation of dual disk and hemisphere
systems computationally expensive because three space dimensions have to be
taken into account. A few attempts have been made to numerically simulate such
systems. The BEM in three space dimensions was used for steady-state simulations
of dual hemispheres [279] and for time-dependent simulations of dual hemispheres
and disk systems in generator-collector mode [403]. Current transient behaviour
at dual disk electrodes has been simulated using explicit finite differences on an
expanding mesh utilizing a graphics processor unit (GPU) together with the CPU to
increase the performance of the computer [334]. However, each computation using
the explicit method took between 1 and 3 days [334]. Diffusion can be regarded
as a continuous random walk of particles and a three-dimensional random walk
model [404] has been applied to model the generator-collector process at dual disk
electrodes [405]. An improved model has been introduced [406], though in this case
the disk electrodes are not co-planar but facing each other. Phillips and Stone [330]
used an integral equation method to calculate steady state collection efficiencies for
two geometries, the dual disk system and the ring disk system; for the latter, either
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the disk or the ring served as the generator. A first order homogeneous reaction was
also considered. A simplification was made by assuming a constant current density
across the generator electrodes.

The axial symmetry of the ring-disk electrode and the assumption that the
length of the dual bands and dual cylinder electrodes are much bigger than their
width and radius, respectively, allow reduction to two space dimensions, as was
the case for single UMDE and UMBE simulations described in previous sections.
Liljeroth et al. [397, 407] simulated the ring-disk electrode where a species was
generated at the disk and collected at the ring using a commercial FEM toolbox
FEMLAB® (predecessor of COMSOL Multiphysics®) connected to MATLAB®.
For the simulation of dual band electrodes in generator-collector mode hopscotch
([99], see Sect. 9.2.5) with conformal mapping of the space [105, 217, 408], ADI
with conformal mapping [326] and FEMLAB® monitored by MATLAB® [395]
have been employed. Rajantie et al. [328] used spatial splitting of the fully implicit
scheme, which overcomes error oscillation issues of the classical Peaceman and
Rachford ADI scheme [100] while maintaining high accuracy by extrapolation.
Conformal mapping of the space as described by Fosset and Amatore [217] was
applied. Dual hemicylinders were simulated by Amatore et al. [331, 402] using ADI
and conformal mapping. Dual band electrodes were used in electrochemical time-
of-flight experiments to estimate diffusion coefficients by direct comparison with
simulations [325]. A constant current mode instead of the more usual potentiostatic
mode was employed to generate a species and the diffusion to the collector electrode
was monitored potentiometrically. An approximate model of a dual band electrode
was developed, using a hemicylindrical shape of the generator electrode to avoid
unequal current distribution tied to the edge effect at planar (flat) UMBEs [325].
The diffusion equation was solved by a fully implicit FD scheme.

In the following, two ultramicrobands of the same width w and length l and
separated by a gap g are considered, both w and g in the µm range. Again, l is
much greater than w; so diffusion is essentially two-dimensional. The computational
domain in .x; z/ coordinates is shown in Fig. 12.22a. The origin of the coordinates
lies at the midpoint of the gap between the electrodes. Multiplication with 2=g
renders the space variables dimensionless. The resulting domain in .X;Z/ is shown
in Fig. 12.22b, where the dimensionless electrode width is now We D 2w=g.
Dimensionless time and concentration are given by T D 4Dt=g2 and Ck D ck=c�
with D and c� being the diffusion coefficient and bulk concentration of a reference
species. The diffusion equation for a species k has the same form as for the single
band and for the IDA system

@Ck

@T
D dk

�
@C2k
@X2

C @C2k
@Z2

�
: (12.128)

Assuming the redox reactions (12.116) and (12.117) occurring at the generator and
collector electrode, respectively, the index k presents A and B. The dimensionless
diffusion coefficient dk D Dk=D becomes unity if identical D’s are assumed for all
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a

b

Fig. 12.22 Computational domain in Cartesian coordinates for a dual ultramicroband system in
generator-collector mode. (a) Physical space, (b) dimensionless space

species. If the diffusion coefficients are different and DA is used as a reference, then
dA D 1 and dB D DB=DA.

The computational domains shown in Fig. 12.22b have three far field boundary
conditions at ˙Xmax and Zmax. These are calculated similarly to Eqs. (12.37)
and (12.37). Depending on Tmax the computational domain might become quite
large, resulting in long computation times. As shown before, a more closed region
can be accomplished by conformal mapping, thus avoiding the large values of space
limits. Other advantages have been mentioned in Sect. 12.3.3. Here we show briefly
a conformal map introduced by Amatore et al. for dual UMBEs [105, 217, 408].
His conformal map was also used to simulate electrochemical titration experiments
[328]. The transformation equations from the .X;Z/ space to conformal coordinates
.�; 	 / are [217]

X D cos � cosh	 (12.129a)

Z D sin � sinh	 : (12.129b)
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Fig. 12.23 Computational
domain in the conformal
space as defined by (12.129)
for a dual ultramicroband
electrode in
generator-collector mode

This is the MWA transformation mentioned in Sect. 12.3.3.1, but applied to bands.
Inserting into Eq. (12.128) gives the time-dependent diffusion equation in conformal
coordinates for species k,

@Ck

@T
D dk

sinh2 	 C sin2 �

�
@C2k
@	 2

C @C2k
@�2

�
: (12.130)

The computational domain in .�; 	 ) coordinates is presented in Fig. 12.23. For
diffusion limited redox reactions at the generator and collector, the boundary
conditions in conformal coordinates are

T D 0 all 	; � W CA D 1;CB D 0 (12.131a)

T > 0

� D 0; 	e < 	 � 	max W @CA=@� D dB@CB=@� D 0; (12.131b)

� D 0; 0 � 	 � 	e W CA D 1; CB D 0 (12.131c)

0 < � < �; 	 D 0 W @CA=@	 D dB@CB=@	 D 0 (12.131d)

� D �; 0 � 	 � 	e W CA D 0; CB D 1 (12.131e)

� D �; 	e < 	 � 	max W @CA=@� D dB@CB=@� D 0; (12.131f)

0 < � < �; 	 D 	max W CA D 1; CB D 0: (12.131g)

where Eqs. (12.131c) and (12.131e) describe the boundary conditions for the
collector and generator electrode, respectively. In conformal space, the 	 coordinate
of the outer edges of the electrodes is given by

	e D arccosh.1C We/ ; (12.132)
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which is also the width of the band electrodes, see Fig. 12.23. While the domain in
the � direction is closed, 0 � � � � , the domain is open in the positive 	 direction.
A maximum value of 	 has to be estimated from the expansion of the diffusion
layer during the experiment. A value of 6

p
Tmax is sufficient, see (5.5) in Sect. 5.2,

where Tmax is the duration of the experiment to be simulated. Taking into account
the position of the outer electrode edges in .X;Z/ space, Fig. 12.22b, the maximum
values of X are

Xmax D ˙
�
1C We C 6

p
Tmax

�
; (12.133)

from which the maximum value of 	 is calculated to

	max D arccosh.Xmax/ ; (12.134)

as also shown in Appendix D. Currents of the generator and collector electrodes are
calculated from

Gg D
Z 	e

0

@CA

@�

ˇ̌̌
ˇ
�D�

d	 (12.135)

and

Gc D �
Z 	e

0

@CA

@�

ˇ̌
ˇ̌
�D0

d	 : (12.136)

The current in units of Ampere is obtained by multiplication of these equations with
nFDAc�l, where l is the length of the UMBE.

Simulation of electrochemical diffusion layer titration using dual band UMEs has
been reported [326, 328], where homogeneous reactions were involved. The dual
band was operated in generator-collector mode, so that the redox reactions (12.116)
and (12.117) occurred at the generator and collector band, respectively. However,
there was also an analyte C present in solution, that does not react at the electrodes
but undergoes a homogeneous reaction with the generated species to convert B back
to A.

B C C ! A C P : (12.137)

B served as a titrant for C and the change of the collector current compared to the
collector current in the absence of C was an indicator of (1) the amount of C present
in solution and (2) the rate constant of reaction (12.137). Rajantie et al. [328] used
ferrocyanide as a titrant which was generated from ferricyanide galvanostatically
and detected at the collector band amperometrically. The analyte was ascorbic acid.
Good agreement was found between simulation and experiment.
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Chapter 13
Migrational Effects

Migrational, or potential field, effects are those that affect the transport of ions
under the influence of an electric field in electrolytic solutions. The field can be
applied externally by means of electrodes, and can also be the result of the drift
of different ions with different mobilities in the solution. Thus, concentration and
potential gradients are coupled [1, 2]. In electroanalysis migration is regarded
as a nuisance and is usually eliminated by using excess inert electrolyte—the
consensus is to use inert electrolyte at about 100 times the concentration of the
electroactive substance. This ensures such weak potential effects that they can
safely be ignored, and mostly are. However, if it is not possible or desirable for
some reason to add the excess electrolyte, or if we are concerned with very small
volumes or liquid junctions, potential fields must be taken into account. Oldham
and Feldberg [3] provide six reasons why it is sometimes desirable or necessary to
work with dilute or absent supporting electrolyte, possibly chief among which are
electrochemistry in nonaqueous solution where the solubility of added electrolyte is
low, and electroanalysis in natural waters.

Concerns with liquid junctions—that is, electrolytes with different ionic con-
centrations or different ionic species meeting at a junction, such as a membrane
or simply a small hole in a Luggin capillary, go back at least to the works of
Nernst [4, 5], Planck [6] in the 1880s and 1890, and that of Henderson [7] in 1907.
It is Henderson who is credited with the derivation of the equation named after
him, for the potential difference across such a junction, see below, although we find
essentially the same equation in the 1890 work of Planck [6]. These works were con-
cerned with steady state solutions. Helfferich (in 1958) [8] and Cohen and Cooley
[9] computed, by finite differences, time-dependent behaviour at liquid junctions.
Many subsequent works were of course published since then, including the recent
work of Strutwolf et al. [10, 11], Dickinson et al. [12] and Britz and Strutwolf [13].

© Springer International Publishing Switzerland 2016
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In the following the theory, and applications to liquid junctions and electrolysis
are detailed, with three chosen examples to illustrate the simulation methods.

13.1 Theory

In this chapter, the symbol E will denote a dimensionless potential field, because no
other symbol fits this better, although it clashes with the use of E elsewhere in the
book.

The usual way in which diffusion/migration is introduced, for example in
Sokalski et al. [14] and Compton et al. [15] (to name just two works) is by the flux
density for a species j in a solution containing several ionic species (considering, for
the moment, a one-dimensional system), given by the Nernst–Planck equation [4–6]

Jj D �Dj

�
@cj
@x

C zjcj
F
RT

@�

@x

�
(13.1)

where Dj is the diffusion coefficient of species j with charge zj, F , R and T
have their usual meanings and x is the spatial coordinate. The concentration cj and
potential � are both time- and space-dependent. The equation can also be written in
terms of the potential field, see below. One form or the other can be more convenient
in particular simulations.

As well as the above, the potential must be related to the concentrations of all the
ionic species, by the Poisson equation,

@2�

@x2
D � F

�r�0

X
j

zjcj (13.2)

in which �r is the relative permittivity of the medium (for bulk water, it is equal
to 80) and �0 is the permittivity of free space, equal to 8:854188 � 10�12 F m�1 (F
denoting the Farad). The pair �r�0 thus has the value 0:71 � 10�9 F m�1.

If using the box method [16] or perhaps the finite volume method (also called
control volume method [17, 18]), fluxes might be just what is needed. If, however,
the point method is to be used, Eq. (13.1) is converted into a time-dependent
concentration form, using

@cj
@t

D �@Jj
@x

; (13.3)

producing the familiar parabolic pde,
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F
RT
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@x

@�

@x

��
(13.4)

followed by the Poisson equation (13.2).
The pdes for the various species and the Poisson equation (13.2) specify the

system and allow a solution for a given set of initial and boundary conditions.
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The Poisson equation is quite straight-forward to discretise and include in a
simulation, but most workers prefer simplifying it. When considering the relative
magnitude of the parts of the equation, it becomes clear that significant local charge
imbalance is unlikely, so most workers prefer to use what is variously termed
“local charge neutrality” or the “electroneutrality condition” (ENC, to be used
hereafter) and other names for it. This simply renders the Poisson equation as the
approximation

X
j

zjcj D 0 : (13.5)

Much has been written about this to justify the assumption, which has been used in
the earliest work on potential field effects whenever the transport of charged species
is considered. Nernst [5] assumed the ENC but Planck did not and on p. 186 [6]
goes to the root of the matter, estimating that the charges equalise within about
10�10 s. Strong defences of the use of ENC are seen, for example, in [9, 19–23] (to
cite only a few out of many articles), but in [24–28] we note the reverse argument
or [28] at least the study of the consequences of neglecting charge separation or, as
Oldham terms it [20], charge disparity. Those who advocate the ENC simplification
are considering problems where distances are large compared to the Debye length
and time scales much larger than 10�9 s or so; these are “normal” electroanalytical
applications. For problems of the formation of liquid junctions or potential fields
inside nanopores, very small scales are involved, so that the ENC does not apply.
Thus, Jackson [25, p. 2064] writes “. . . depends on the physical fact that diffusion
over a Debye length takes of the order of 10�9 sec in typical laboratory situations
and on the subjective fact that for a human observer 10�9 sec is an extremely small
time”.

Interestingly, Goldman [24] considers ENC in his theory of conditions around a
membrane separating two electrolytes with different concentrations or composition,
but also the further simplification of a constant potential field. This gave better
results compared with his experiments. Mafé et al. have examined the conditions
under which the Goldman condition is justified, and where it is not [29].

One might ask, why use the ENC at all? In a simulation, as we shall show below,
we can readily discretise the Poisson equation (13.2), so why not simply do this? The
answer is that for most problems, the ENC assumption simplifies the formulation of
the equations in their dimensionless form and in principle allows the elimination
of one variable (see below). When working, for example, on the time dependence
of conditions at a liquid junction after its onset, working on very small scales, the
Poisson equation must be used, whereas for simulations of electrolysis, where time-
and distance scales are much larger, the ENC is appropriate and convenient.

There is yet another potential complication. Buck [30] remarks that the concen-
tration gradient term inside the bracket in (13.1) neglects some terms. The equation
considers only the spatial gradient of each jth species, Dj

@cj
@x , whereas, according to

Onsager and Fuoss [31], there are cross-terms from the other ionic species. There
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has been some theory for the values of the cross-term coefficients [32–36] and Miller
concludes [35] that they have a range of 0–25 % of the main term, the diffusion
coefficient of the species in question. The upper end of this range, however, holds
for rather concentrated electrolytes, so that it is reasonably safe to ignore these cross-
terms. There has been a more recent publication on the effect of these terms [37]. In
this book, they will now be ignored.

13.2 Simulations

Migrational problems have been simulated for a long time, and there are certain
classical works that stand out and are often cited. Possibly the earliest effort was
that of Helfferich [8] in 1958, simulating conditions in an ion exchanger. Cohen
and Cooley simulated a liquid junction in 1965 [9], using a kind of iterative
Runge–Kutta method. Scharfetter and Gummel [38] are often cited for the method
they used for the drift of charged particles in a semiconductor. Interestingly, they
used a block matrix method of solution, as will be described below. The work of
Buck [30] was already mentioned for his comment on the Onsager terms. Brumleve
and Buck [39] simulated several cases in which migration plays a role, using the
backward implicit method and an available solver of the banded systems resulting
from the discretisation, iterating with the Newton method (see later). They rendered
the solution more efficient by reordering the banded system into a tight diagonal
band system, and considered unequal time- and spatial intervals. Newman worked,
among other problems, on copper deposition from a solution of copper sulphate in
sulphuric acid of various concentrations [19, 40, 41], to determine how the limiting
current depends on the ionic strength of the electrolyte. Myland and Oldham [21, 42]
derived the ratio of the time-dependent current to that with no migration (the RPC
example below) where the two charged species have equal diffusion coefficients, and
Bieniasz [43] extended the derivation by not making that assumption, and followed
up with a simulation study [44]. Metal deposition at a rotating disk electrode (RDE)
was treated as early as 1966 by Newman [40] (also reproduced in his classic
text [19, 45]), including a Fortran program. This was also studied by Yen and
Chapman [46] investigating the application of orthogonal collocation.

Three examples will now be described in some detail.

13.3 Time Development of a Liquid Junction

There has, as mentioned above, been much interest in liquid junctions for a long
time. Often only a steady state is of interest, and theoretical junction potentials were
derived as early as 1890 by Planck [6] and Henderson in 1907 [7], who is usually
cited for his analytical solution, which serves as a standard for comparison. A
table of such potentials was provided by Smyrl and Newman [47]. Time-dependent
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X
−L 0 L

L R

Fig. 13.1 Stretch of solution of dimensionless length 2L left (L) and right (R) compartments and
the junction at X D 0

development of the potential field across such a junction has no analytical solution
as yet but there have been many simulations over the years [8–14, 39, 48–57],
continuing until quite recently. The present description follows that in [13].

Figure 13.1 shows the system to be simulated. At X D 0 there is a junction
between two electrolytes, in this example the salt AB, both singly ionised, initially
at two different concentrations CL to the left of the junction and CR to the right,
established at time t D 0. The concentrations then change, the changes spreading
out from the junction with time. The spatial limits �L and CL will be explained
below. If we denote the concentrations of AC and B�, respectively as a and b, and
their diffusion coefficients as DA and DB, then, applying (13.4) and (13.2) to the two
ions, the time-dependent equations governing the system behaviour are
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C F

RT

�
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@x

@�

@x
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0 D F
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.a � b/C @2�

@x2
:

(13.6)

13.3.1 Normalisation

Equations (13.6) and (13.2) are now normalised. The reference length most
appropriate here is the Debye length, here defined as

LD D
r
�r�0RT

F2c� ; (13.7)

where c� is chosen either as the left-hand or right-hand initial concentration,
preferably the smaller of the two to ensure a sufficient length. There are various
factors introduced in the denominator inside the square root by various authors,
such as 2 [58], 4� [59] and unity as here [50, 60, 61], and unity is most convenient
in the present context, as its use does not add constants to the normalised pdes.
The Debye length also enters into the normalisation of time. The normalisations are
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given by [13]

A D a=c�

B D b=c�

CL D cL=c
�

CR D cR=c
�

 D F
RT �

E D � F
RT

@�

@x

X D x=LD

T D D�t=L2D
dA D DA=D

�

dB D DB=D
� :

(13.8)

The reference diffusion coefficient D� is most appropriately taken as
p
DA DB. This

produces the new dimensionless set of pdes
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(13.9)

Boundary conditions are

� D 0; �L � X < 0 W A D B D CL (13.10a)

� D 0 ; 0 < X � L W A D B D CR (13.10b)

� D 0; X D 0 W A D B D .CL C CR/=2 (13.10c)

� D 0; �L � X � L W  D 0 (13.10d)

� > 0; X D �L W A D B D CLI  D 0 (13.10e)

� > 0; X D CL W A D B D CRI @ 

@X
D 0 : (13.10f)
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The length L must be chosen such that there are no significant changes in
concentrations at X D ˙L at the maximum time Tmax to which the simulation is
to be driven, that is, as usual,

L D 6
p
Tmax : (13.11)

If the two diffusion coefficients differ markedly, one might, on the other hand, use

L D 6
p
dmTmax (13.12)

with dm being the larger of the two da and db, as was suggested by Compton et
al. [15, p. 151]. Subequation (13.10c) requires comment. It seems intuitively clear
that at the instant the junction is started, the concentrations at the junction itself
adjust to the mean of the left-hand and right-hand bulk values. This mean value
will then be set as the initial value at X D 0, if indeed there be a mesh point at
that position. The sequence of X-positions on the mesh can be chosen to ensure
this—and normally would be. If one feels insecure about the assumption of the
mean value, the issue can be avoided by choosing a sequence such that there is a
mesh point to either side of the junction but none at the junction. Then the two
points closest to X D 0 will start at the initial bulk values, CL and CR, respectively.
Experiments by the present authors (unpublished) show that it makes no difference
which choice is made, and the one that includes a point at X D 0 seems more
natural.

The actual sequence of positions along X should also be such that there is close
spacing near the junction, because strong gradients occur there, especially at short
times, but a purely exponentially expanding sequence, away from the centre, is
not desirable here; in the present authors’ experience, this produces inaccurate
results near the extremities of the cell. Therefore, a damped exponentially expanding
sequence as described in [13] and Sect.7.1 is better here. Figure 13.2 shows such a
sequence. It is rather rough for visibility. It was found [13] that a small number
of spatial points normally sufficient when using an exponentially expanding point
sequence is used (20–40), is not enough here, and for this reason, about ten times the
usual number is needed. This number—200–400—is still small in comparison with
what would be needed if equal intervals were used, because of the close spacing
needed near the junction.

−L 0 L

X1 XM+1 XN

Fig. 13.2 Point distribution with damped exponential expansion away from the centre along X in
the region around a liquid junction
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Time, too, can be divided into expanding intervals, as it is probably at increasing
time intervals that concentration, potential or potential field gradients are wanted,
and here too a damped exponentially expanding sequence of T values proves
appropriate.

The number of points on either side of the junction is set at M, making the
total number of points N D 2M C 1, so we now have a sequence of N positions
in X1;X2; : : :XN spanning the range Œ�L;CL
, see Fig. 13.2 for a coarse example,
and we can discretise the three equations relevant to this system, (13.9). First of
all, because varying time intervals are used it is most convenient to use backward
implicit with extrapolation. BDF with unequal intervals can be done, and was, by
Feldberg and Goldstein [62]. It requires a higher-order BDF, since our preference
of three-point BDF leads to O.ıt/ with unequal time intervals. The left-hand side of
the first two equations thus becomes, using BI,

@Ai

@T
� A0

i � Ai

ıT
(13.13)

where, as usual in this book, A0
i refers to the new (unknown) A value at index i, and

similarly for B.
There are several ways to handle this simulation, as has been detailed in [13]. If

the full Poisson equation is to be used, it is probably most convenient to substitute
the field E for �@ =@X in the equations, thereby eliminating one derivative. This
method was called ABE in [13], whereas the use of  was called AB§ . Both
methods gave the same results. It is perhaps tempting to eliminate either species A
or B from the system by substituting for it using the Poisson equation, thus reducing
the system to two equations; but this proved quite inefficient in this case. In the
following treatment, the potential field E will be used. Then, if one wants the actual
potential (relative to some point along X), it can be obtained by integrating E. The
pde system then is
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(13.14)

with the boundary conditions

� D 0; �L � X < 0 W A D B D CL (13.15a)

� D 0 ; 0 < X � L W A D B D CR (13.15b)

� D 0; X D 0 W A D B D .CL C CR/=2 (13.15c)
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� > 0; X D �L W A D B D CL (13.15d)

� > 0; X D CL W A D B D CR (13.15e)

� > 0; X D ˙L W E D 0 (13.15f)

where we assume zero field at both ends.
A word about the potential is in place here. We do not know the absolute value

at any point, and all we want is the potential drop across the cell. So we can, either
when using the potential  or integrating E, arbitrarily set  to zero somewhere,
most conveniently at the left-hand end, X D �L. Then the right-hand simulated
value corresponds to the potential drop. The choice is not always free, as will be
seen in the other example, below.

Spatial discretisations on unequally spaced points are best done using multi-point
stencils, for example five-point. However, in order to keep things simple, three-point
approximations are used in what follows. The symbols like ˇ.i/k refer to three ˇ
coefficients k D 1; 2; 3 pertaining to point i, used to approximate a first derivative
at point i, and similarly for the ˛ coefficients. These are all precomputed using the
Fornberg algorithm [63], implemented in the subroutines FORN and FORNBERG,
described in Appendix E.

At the left-hand end (X D �L; i D 0) we have

A1 D CL

B1 D CL

E1 D 0 :

(13.16)

For clarity, the difference operators� and�2 are introduced, which act on ui so that

�ui � ˇ.i/1ui�1 C ˇ.i/2ui C ˇ.i/3uiC1

�2ui � ˛.i/1ui�1 C ˛.i/2ui C ˛.i/3uiC1
: (13.17)

At all points i D 2 : : :N � 1 we have directly from (13.14),
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(13.18)
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At the right-hand end, X D CL; i D N,

AN D CR

BN D CR

EN D 0 :

(13.19)

This is now a 3N � 3N coupled nonlinear system of equations. The unknowns are
arranged in the vector ŒA0

1;B
0
1;E

0
1;A

0
2;B

0
2;E

0
2; : : :A

0
N ;B

0
N ;E

0
N 


T .
In order to solve for the system, it is rearranged into the form, at index i,
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(13.20)

and the aim is to find values of the unknowns that render the left-hand terms equal
to zero. Standard Newton iteration is used and a block-tridiagonal approach is most
efficient here. We define the vectors Fi � ŒFAi FBi FEi


T and Ui � ŒA0
i B

0
i E

0
i

T and

differentiating with respect to all three variables, obtain the N � N block system
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666666666664
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: : :
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: : :
: : :
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2
66666666664

�F1
�F2
:::

�Fi

:::

�FN

3
77777777775
; (13.21)
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ıUi being the correction to Ui at each Newton step. I is the unit matrix and the other
blocks are defined, for 2 � i � N � 1,

Li D

2
664
˛.i/1�ˇ.i/1Ei 0 �̌ .i/1�Ai C ˇ.i/1Ai
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0 0 �ˇ.i/1

3
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6666664
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3
7777775
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2
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0 ˛.i/3Cˇ.i/3Ei ˇ.i/3ıBiC˛.i/3Bi

0 0 �ˇ.i/3

3
775 :

(13.22)

The block system is solved by the block-Thomas algorithm described in Chap. 6,
Sect. 6.4, adapted to the present problem. We follow the description in [13]
but simplified to the case of potential field instead of potential. The difference
(simplification) lies in the last row of the block matrix in (13.21), which would
contain three blocks if working with potential (see (13.10f)). It goes as follows.

At the top, where we know ıU1 D �F1 we set, for convenience,

ıU1 D v1ıU2 C w1 (13.23)

where clearly v1 is the zero matrix and w1 D �F1. Row 2 expands to

L2ıU1 C M2ıU2 C R2ıU3 D �F2 (13.24)

and substituting for ıU1,

.L2v1 C M2/ıU2 C R2ıU3 D �.L2w1 C F2/ (13.25)

from which we get

ıU2 D v2ıU3 C w2 (13.26)
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where

v2 D �.L2v1 C M2/
�1 R2

w2 D �.L2v1 C M2/
�1 .L2w1 C F2/ :

(13.27)

We go on doing this and in general at index i,

ıUi D viıUiC1 C wi (13.28)

where

vi D �.Livi�1 C Mi/
�1 Ri

wi D �.Livi�1 C Mi/
�1 .Liwi�1 C Fi/ :

(13.29)

All vi and wi are stored. The process stops at i D N � 1, where

ıUN�1 D vN�1ıUN C wN�1 D wN�1 (13.30)

since ıUN D 0. This yields ıUN�1 directly, and back substitution for i D N �
2;N�3; : : : 2, using (13.28) then provides the solution for all ıUi. These are used to
correct the current value of U, and the whole process is repeated until convergence is
achieved. This can be defined in several ways: either that the norm of F is as small as
one wishes, or the norm of ıU, or indeed both. If, for example, in a given iteration at
the point where F is computed, its norm is seen to be sufficiently small, the iteration
can be stopped. If not, it might be stopped after ıU has been computed, if its norm
is sufficiently small. In most cases, numerical experiments show that about two to
three iterations are enough. One reason for this is that the changes during a single
time step are quite small.

Figure 13.3 shows plots of concentration at the dimensionless times 0.1, 1, 10
and 100 for a liquid junction consisting initially of 0.1 M HCl in the left-hand
cell and 1 M HCl in the right-hand cell, simulated by the above method. The
relative diffusion coefficients were computed from mobilities tabled in Bard and
Faulkner [64, p. 68] or directly from Newman and Thomas-Alyea [19, p. 284].
800 points were used along X, distributed in the damped exponentially expanding
sequence. The longest computation (for T D 100) took 10 s, as noted in [13],
as compared with 19 min for the ABE method, solving the whole matrix directly,
rather than using blocks. One could use a sparse matrix solver, but for this still
somewhat modest matrix size, it would gain little, because of the overhead of
such solvers. In the figure’s A panel, slight separation of the concentrations are
seen, and these are emphasised in the expanded plot in A1, where the curves
for [HC] lie to the right of the corresponding curve for [Cl�]. The separation is
most pronounced at short times and becomes smaller as T increases, so that at
T D 10 it is hardly visible. This underlines the idea of the electric neutrality
assumption, which holds for longer times (and of course equilibrium, if there is
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Fig. 13.3 Profiles of concentrations along X (panels a and a1 , potential b and potential field c for
a liquid junction of HCl, initially 0.1M in the left half and 1M in the right half, at dimensionless
times T D 0:1; 1; 10; 100. There is noticable separation of the concentrations at times up to about
10, shown more clearly in panel a1. In panels a and a1, the solid line indicates Cl� and the dashed
line HC
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equilibrium). Panels B and C in the figure show the potential and potential field
distribution, respectively, at the four T values. This example was also simulated
by Dickinson et al. [12], and our own results [13] are close to (but not quite
equal to) theirs, judging from their figure. The Henderson value for the potential
difference over the junction is (dimensionless) �1.48 and our simulation computes
�1.49.

The program can be seen in the Examples link, LIQU_JUNC.f90.

13.4 RPC Example

This follows the theory in [21, 43] and the simulation in [44]. The system to be
simulated is the reversible reduction or oxidation

R C zRe
� • P (13.31)

with R having charge zR, P being an uncharged soluble product, and there is a
counterion C with charge zC , opposite in sign to zR. There are thus three species
in solution, two of them charged, and there is the potential � as the fourth variable.
The experiment is chronoamperometry, with a potential step to electrode potential
E. The reaction is reversible.

The concentrations of substances R, P and C are denoted as R, P and C, all
normalised to the initial concentration of R. The electrode potential is normalised
by

� D zRF
RT .E � E0/ (13.32)

where E0 is the equilibrium potential. Further normalisations are

T D t=�

X D x=L

 D F
RT �

dP D DP=DR

dC D DC=DR

(13.33)

where � is the observation time, L D 6
p
dm (the sufficient diffusion length at T D 1,

dm again being the larger of dR D 1 and dC), and the two diffusion coefficient
ratios dP and dC for P and C from normalisation by the diffusion coefficient DR

of R.
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There are analytical solutions for the ratio of the current to that for the same
system with excess electrolyte, in both [21] and in [43], the latter considering
unequal diffusion coefficients. For this, and converting to our dimensionless units,
the flux j.T/ of R is

j.T/ D zR
d1=2P �

.1C �e� /

1p
�T

(13.34)

where � D 1p
dE dP

�
1 � zR

zC

�
and dE D dC.zR�zC/

.zRdR�zCdC/
(note that both expressions contain

dR but this is unity here). For pure diffusion with no migration, the dimensionless
flux is [64, p. 178]

jd.T/ D zR
1

.1C e� /
p
�T

(13.35)

so that the ratio, as seen in [43, Fig. 1] (where e� ! 0), becomes

j=jd D d1=2P �.1C e� /

1C �e�
: (13.36)

This system can in fact be reduced to a single simple pde [43] but because it has an
analytical solution it can serve as a good check on the simulation method used for
such systems.

The governing equation system for the experiment is, in dimensionless form,

@R

@T
D @2R

@X2
C zR

�
R
@2 

@X2
C @R

@X

@ 

@X

�

1

dP

@P

@T
D @2P

@X2

1

dC

@C

@T
D @2C

@X2
C zC

�
C
@2 

@X2
C @C

@X

@ 

@X

�

0 D zRR C zCC :

(13.37)

The spatial variable X is spread over the stretch 0 W L in a number N C 1 points,
in an exponentially expanding sequence, indexed by i D 0; 1; : : : ;N.
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Boundary conditions are

T D 0; all X W R D 1I P D 0; C D �zC=zRI  D 0

T > 0; X D 0 W
R � e�P D 0

@R

@X

ˇ̌
ˇ̌
XD0

C zRR
@ 

@X

ˇ̌
ˇ̌
XD0

C dP
@P

@X

ˇ̌
ˇ̌
XD0

D 0

@C

@X

ˇ̌
ˇ̌
XD0

C zCC
@ 

@X

ˇ̌
ˇ̌
XD0

D 0

zRR C zCC D 0

T > 0; X D L W R D 1I P D 0; C D �zC=zR;  D 0 :

(13.38)

The first condition for T > 0 is the Nernst equilibrium at potential � ; the second
expresses that the sum of fluxes of R and P is zero; the third that there is no flux in
C into or out of the electrode and we have the ENC also holding at the electrode (or
very close to it in solution). Note that it was necessary here to set the potential  
to zero in the bulk region (X D L), and to use the potential rather than the potential
field E. In fact, one finds from the results that E is level near the outer limit X D L,
so that E could have been used in the equation system, setting a zero @E=@X at
X D L as a boundary condition. But this was not certain beforehand and could not
safely be assumed.

The unknowns are taken in a large vector in the order ŒR0;P0;C0;  0;R1;P1;C1;
 1; : : : ;RN ;PN ;CN ;  N 


T but are lumped into the vector of four-point vectors
Ui � ŒRi;Pi;Ci;  i


T ; i D 0 : : :N, to prepare for the block-tridiagonal procedure for
solving the system. The system of equations (13.37) is nonlinear, and the Newton
method is used to solve it. At each index i we have three 4�4 blocks in the Jacobian
matrix: Li, the left-hand block for the elements at index i � 1; Mi, the middle block
for index i, and Qi, the right-hand block for index i C 1, that symbol chosen here in
order to avoid clashes with the concentration symbol R. They produce a tridiagonal
block system. For this example, three-point BDF was used, started with one BI step.

For the discretisation expressions, it is again convenient to use the notation in
Eq. (13.17) on page 347. At index i D 0, asymmetric one-sided formulae are used,
that is, three-point forward differences.

The F functions are, for i D 0,

FR;0 D R0 � e�P0

FP;0 D �R0 C zRR0� 0 C dP�P0

FC;0 D �C0 C zCC0� 0

F ;0 D zRR0 C zCC0 :

(13.39)
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For i D 1; : : :N � 1,

FR;i D �2Ri � Ri=ıT C zR
�
Ri�

2 i C�Ri� i
� � RHS

FP;i D �2Pi � Pi=.dPıT/ � RHS

FC;i D �2Ci � Ci=.dCıT/C zC
�
Ci�

2 i C�Ci� i
� � RHS

F ; i D zRRi C zCCi

(13.40)

for the first BI step; in subsequent three-point BDF steps, the terms in 1=ıT are
replaced by (or, in the program, modified to) 1:5=ıT. The operators� and�2 were
defined in (13.17) on p. 347.

At the far boundary, i D N, the values remain at their initial values. The right-
hand side values RHS are constant through a Newton iteration series at a given time
step, as they are based on old known values, and for a given variable (v standing for
R, P or C) they are

RHS D
� �vi=.dvıT/ (BI)
.0vi � 4vi/=.2dvıT/ (BDF)

(13.41)

where 0vi denotes the past value, vi being the present one. For R, dv is of course
equal to unity.

These equations must be differentiated wrt to all variables for the Newton
iteration solving, at each iteration step, the system

JıU D �F : (13.42)

The Jacobian is a matrix of blocks, and the system to be solved at every Newton
step is

2
666666666664

L0 M0 Q0

L1 M1 Q1

: : :
: : :

Li Mi Qi

: : :
: : :

LN�1 MN�1 QN�1
I

3
777777777775

2
666666666664

ıU0
ıU1
:::

ıUi
:::

ıUN�1
ıUN

3
777777777775

D �

2
666666666664

F0
F1
:::

Fi
:::

FN�1
FN

3
777777777775

: (13.43)

with I being the 4 � 4 unit matrix.
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The blocks are as follows. At the electrode, i D 0,

L0 D

2
664

1 �e� 0 0

ˇ1 C zR� 0 dPˇ1 0 zRˇ1R0
0 0 ˇ1 C zC� 0 zCˇ1C0
zR 0 zC 0

3
775 I

M0 D

2
664
0 0 0 0

ˇ2 dPˇ2 0 zRˇ2R0
0 0 ˇ2 zCˇ2C0
0 0 0 0

3
775 I

Q0 D

2
664
0 0 0 0

ˇ3 dPˇ3 0 zRˇ3R0
0 0 ˇ3 zCˇ3C0
0 0 0 0

3
775

(13.44)

and for i D 1; : : :N � 1, we then have for BI,

Li D

2
6666664

˛1 C zRˇ1� i 0 0 zR .˛1Ri C ˇ1�Ri/

0 ˛1 0 0

0 0 ˛1 C zCˇ1� i zC .˛1Ci C ˇ1�Ci/

0 0 0 0

3
7777775
;

MiD

2
6666666666664

0
@ ˛2�1=ıT

CzR.�2 iCˇ2� i/

1
A 0 0 zR .˛2RiCˇ2�Ri/

0 ˛2�1=.dPıT/ 0 0

0 0

0
@ ˛2�1=.dCıT/

CzC.�2 iCˇ2� i/

1
A zC .˛2CiCˇ2�Ci/

zR 0 zC 0

3
7777777777775

;

Qi D

2
6666664

˛3CzRˇ3� i 0 0 zR .˛3RiCˇ3�Ri/

0 ˛3 0 0

0 0 ˛3CzCˇ3� i zC .˛3CiCˇ3�Ci/

0 0 0 0

3
7777775

(13.45)

and at the end point, i D N, there is only a single block, the unit matrix.
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There is an alternative ENC expression. The ENC, last equation in (13.37), can
possibly be improved, as Bieniasz describes [44], by differentiating it wrt time,

0 D zR
@R

@T
C zC

@C

@T
(13.46)

and substituting the known time derivatives. It turns out, however, that this is no
improvement as it is a simple consequence of the properties of the equation set, as
pointed out by Østerby (private communication). That is, the resulting equation can
be reduced to the simpler one. An implementation produces, as expected, the same
results as using the simple ENC.

The block-Thomas solution is similar to that for the liquid junction example,
except that here one starts at the bottom of the system, where there is no change
in the variables. The system to be solved is (13.43) with the block as defined
in (13.44)–(13.45).

We know ıUN D FN D 0. At row N � 1 the equation

LN�1ıUN�2 C MN�1ıUN�1 C QN�1ıUN D �FN�1 (13.47)

then becomes

LN�1ıUN�2 C MN�1ıUN�1 D �FN�1 (13.48)

and this allows the substitution for ıUN�1,

ıUN�1 D VN�1ıUN�2 C WN�1 (13.49)

with VN�1 D �M�1
N�1LN�1 and the vector WN�1 D �M�1

N�1FN�1. In row N � 2 we
can now substitute for ıUN�1 and get a similar equation as (13.49), reduced to just
two unknowns. In general for row i < N � 1, we have

ıUi D ViıUi�1 C Wi (13.50)

with

Vi D � .Mi C QiViC1/�1 Li

Wi D � .Mi C QiViC1/�1 .Fi C QiWiC1/ :
(13.51)

These are computed for all i D N�2;N�3; : : : 1. In the first row of (13.43), we can
now substitute for ıU2 in terms of ıU1 and then for ıU1 in terms of ıU0, resulting
in an explicit equation for ıU0, after which all other ıUi; i D 1; : : : ;N � 1 can be
computed, successively applying (13.50).

The computation results in the current ratio j=jd that can be checked against the
known value (13.36) from [43]. The program is included in Appendix E, program
RPC.f90.
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13.5 Copper Deposition on an RDE

Copper is deposited on a RDE from a solution of CuSO4 at concentration c�,
to which H2SO4 has been added, concentration s. Steady state, transport limited
current at an RDE is assumed. There are three species in solution, and we denote
their concentrations as a; b; c, respectively standing for ŒCu2C
; ŒHC
; and ŒSO2�

4 
.
Their concentrations are initially c�; 2s and c� C s, respectively. The potential is �.
The three species will be indexed by j D 1; 2; 3, or denoted by A, B, C, respectively.
These are normalised as follows:

A D a=c� I B D b=c� I C D c=c� I S D s=c�

dA D DA=D
� I dB D DB=D

� I dC D DC=D
� (13.52)

where the D’s are the diffusion coefficients of the three species, normalised to
some reference diffusion coefficient, for example that of Cu2C itself (in which case
dA D 1). The potential � is normalised as above in Eq. (13.8). The three diffusion
coefficients, both dimensioned and dimensionless, are given in Table 13.1, out of the
CRC Handbook of Chemistry and Physics [65].

The governing equation for a transport limited electrolysis of a species j at the
RDE is

Dj
@2cj
@x2

� vx
@cj
@x

C zjDj
F
RT

�
cj
@2�

@x2
C @cj
@x

@�

@x

�
D 0 ; (13.53)

where x is the axial coordinate away from the disk surface and � the potential in
Volt. The charges zj are specifically zA D 2, zB D 1 and zC D �2 for this system.

The fluid velocity normal to the electrode is

vx D �0:51023 ��1=2 !3=2 x2 ; (13.54)

� being the kinematic viscosity in m2 s�1 and ! the rotation rate in units of s�1. The
characteristic length, the diffusion layer thickness, is given as

ı0 D 1:61166D1=3�1=6!�1=2 (13.55)

Table 13.1 Diffusion
coefficients dimensioned and
dimensionless of all three
species involved

Species D (m2/s) d

Cu2C 0:714 � 10�9 1

HC 9:311 � 10�9 13.0

SO2�

4 1:065 � 10�9 1.49

Note that they are related to the
mobilities u sometimes more eas-
ily found, by D D RT

zF u
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The two constants are as given by Levich [66]. Using

X D x=ı0

Vx D vxı0=D
� (13.56)

and (13.55) we finally obtain the normalised pde, expressed for species j, (standing
for A, B or C above)

dj
@2Cj

@X2
C KX2

@Cj

@X
C zjdj

�
Cj
@2 

@X2
C @Cj

@X

@ 

@X

�
D 0 ; (13.57)

with K D 2:13593, obtained by lumping the expressions for VX and ı0 above.
First we simplify the equation slightly for convenience,

@2Cj

@X2
C K0

j .X/
@Cj

@X
C zj

�
Cj
@2 

@X2
C @Cj

@X

@ 

@X

�
D 0 ; (13.58)

in which K0
j .X/ D KX2

dj
(j standing for A, B or C). These are precomputed, for all X

and j. Equation (13.57) must be discretised for all three species, resulting in three
algebraic equations, plus one for the potential. We make use of the coefficient trios
ˇ1; ˇ2; ˇ3 at each point along X, for three-point spatial first derivatives and ˛1; ˛2; ˛3
for spatial second derivatives. These too are precomputed, for each point in the
sequence of points along X (they are dependent on X or its index i). At the electrode,
a one-sided set of ˇ is needed, for the gradients there, referred to X D 0.

The maximum (dimensionless) distance from the electrode to be considered is
set at

L D 5
p

MAX.dA; dB; dC/ ; (13.59)

that is, five times ı0, which is found to be sufficient here.
A number N C 1 points are placed along the stretch 0 W L in an exponentially

expanding sequence, indexed by i D 0; 1; : : : ;N, and the discrete equation at point
i, for points in the bulk at i D 1; : : :N � 1, for species A, is

˛1Ai�1 C ˛2Ai C ˛3AiC1 C K0
A.X/ .ˇ1Ai�1 C ˇ2Ai C ˇ3AiC1/

C zA
�
Ai.˛1 i�1 C ˛2 i C ˛3 iC1/

C .ˇ1Ai�1 C ˇ2Ai C ˇ3AiC1/ .ˇ1 i�1 C ˇ2 i C ˇ3 iC1/
�

D 0 I
(13.60)
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for species B it is

˛1Bi�1 C ˛2Bi C ˛3BiC1 C K0
B.X/ .ˇ1Bi�1 C ˇ2Bi C ˇ3BiC1/

C zB
�
Bi.˛1 i�1 C ˛2 i C ˛3 iC1/

C .ˇ1Bi�1 C ˇ2Bi C ˇ3BiC1/ .ˇ1 i�1 C ˇ2 i C ˇ3 iC1/
�

D 0

(13.61)

and for species C,

˛1Ci�1 C ˛2Ci C ˛3CiC1 C K0
C.X/ .ˇ1Ci�1 C ˇ2Ci C ˇ3CiC1/

C zC
�
Ci.˛1 i�1 C ˛2 i C ˛3 iC1/

C .ˇ1Ci�1 C ˇ2Ci C ˇ3CiC1/ .ˇ1 i�1 C ˇ2 i C ˇ3 iC1/
�

D 0 :

(13.62)

The fourth equation is the electroneutrality condition

zAAi C zBBi C zCCi D 2Ai C Bi � 2Ci D 0 : (13.63)

Boundary conditions are

X D 0 W A D 0I JB D 0I JC D 0I 2Ai C Bi � 2Ci D 0

X D L W A D 1I B D 2SI C D 1C SI  D 0 ;
(13.64)

the last condition in the first line is the ENC and the last condition in the second line
is set arbitrarily. The fluxes are given by

JA D dA

�
@A

@X

ˇ̌̌
ˇ
XD0

C zAA0
@ 

@X

ˇ̌̌
ˇ
XD0

�

JB D dB

�
@B

@X

ˇ̌
ˇ̌
XD0

C zBB0
@ 

@X

ˇ̌
ˇ̌
XD0

�

JC D dC

�
@C

@X

ˇ̌
ˇ̌
XD0

C zCC0
@ 

@X

ˇ̌
ˇ̌
XD0

�
:

(13.65)

Since JB and JC are equated to zero, their diffusion coefficients can be left out.
These boundary conditions form the F functions at the boundaries. The other Fi are
the left-hand sides of Eqs. (13.60)–(13.63), to be updated at every Newton step.

The unknowns are taken in a large vector in the order ŒA0;B0;C0;  0;A1;B1;C1;
 1; : : : ;AN ;BN ;CN ;  N 


T but are lumped into the vector of four-point vectors Ui �
ŒAi;Bi;Ci;  i


T ; i D 0 : : :N. The system of equations (13.60)–(13.62) is nonlinear,
and the Newton method is used to solve it. At each index i we have three 4�4 blocks
in the Jacobian matrix: Li, the left-hand block for the elements at index i � 1; Mi,
the middle block for index i, and Ri, the right-hand block for index i C 1.
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The F functions, for the solution F D 0 are in fact Eqs. (13.60)–(13.63)
themselves, as the right-hand sides are all zero. At the outer boundary there are
fixed concentrations, so that

FA;N D 1

FB;N D 2S

FC;N D 1C S

F ;N D 0

(13.66)

and here, ıUN is zero. The system to be solved at every Newton step is

JıU D �F : (13.67)

or in detail2
666666666664

L0 M0 R0

L1 M1 R1

: : :
: : :

Li Mi Ri

: : :
: : :

LN�1 MN�1 RN�1
I

3
777777777775

2
666666666664

ıU0

ıU1

:::

ıUi
:::

ıUN�1
ıUN

3
777777777775

D

2
666666666664

�F0
�F1
:::

�Fi
:::

�FN�1
0

3
777777777775

(13.68)

with I being the 4 � 4 unit matrix.
Again using the notation (13.17) on page 347, and differentiating equa-

tions (13.60)–(13.62) and the boundary conditions, yields the blocks, starting at
the electrode

L0 D

2
664
1 0 0 0

0 ˇ1 C zB� 0 0 ˇ1zBB0
0 0 ˇ1 C zC� 0 ˇ1zCC0
2 1 �2 0

3
775 I

M0 D

2
664
0 0 0 0

0 ˇ2 0 ˇ2zBB0
0 0 ˇ2 ˇ2zCC0
0 0 0 0

3
775 I

R0 D

2
664
0 0 0 0

0 ˇ3 0 ˇ3zBB0
0 0 ˇ3 ˇ3zCC0
0 0 0 0

3
775

(13.69)
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and for i D 1; : : :N � 1, we then have

Li D

2
666666666666664

0
@˛1 C K0

A.X/ˇ1

CzAˇ1� 

1
A 0 0 zA .˛1Ai C ˇ1�A/

0

0
@˛1 C K0

B.X/ˇ1

CzBˇ1� 

1
A 0 zB .˛1Bi C ˇ1�B/

0 0

0
@˛1 C K0

C.X/ˇ1

CzCˇ1� 

1
A zC .˛1Ci C ˇ1�C/

0 0 0 0

3
777777777777775

MiD

2
666666666666664

0
@ ˛2CK0

A.X/ˇ2

CzA.�2 Cˇ2� /

1
A 0 0 zA .˛2AiCˇ2�A/

0

0
@ ˛2CK0

B.X/ˇ2

CzB.�2 Cˇ2� /

1
A 0 zB .˛2BiCˇ2�B/

0 0

0
@ ˛2CK0

C.X/ˇ2

CzC.�2 Cˇ2� i/

1
A zC .˛2CiCˇ2�C/

2 1 �2 0

3
777777777777775

Ri D

2
666666666666664

0
@˛3 C K0

A.X/ˇ3

CzAˇ3� 

1
A 0 0 zA .˛3Ai C ˇ3�A/

0

0
@˛3 C K0

B.X/ˇ3

CzBˇ3� 

1
A 0 zB .˛3Bi C ˇ3�B/

0 0

0
@˛3 C K0

C.X/ˇ3

CzCˇ3� 

1
A zC .˛3Ci C ˇ3�C/

0 0 0 0

3
777777777777775

(13.70)

At the end point, i D N, there is only a single block, the unit matrix. The
linearised system is solved using the block-Thomas algorithm. Starting at the far
end where ıUN D 0, leading directly to the same substitution as in (13.49), the
algorithm works its way backward up the i index, ending at substitutions for ıU2

and ıU1, which can be applied to the very first equation,

L0ıU0 C M0ıU1 C R0ıU2 D �F0 (13.71)

and it is solved for ıU0, after which all other ıUi can be evaluated. The example
program CuRDE.f90 in Appendix E does this.
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Fig. 13.4 Ratio i=id of the
steady state copper deposition
current at an RDE to the
current in the presence of
excess sulphuric acid, against
the concentration of added
sulphuric acid
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Figure 13.4 shows the computed ratio i=id, that is of the current to that in the
presence of excess sulphuric acid as a function of the concentration of sulphuric acid
S. Newman [40] computed this ratio, plotting it against

p
r, with r D ŒHC
=ŒSO2�

4 


and stating in a following table that the theoretical value for no added sulphuric acid
is 1.8852, without providing more information on this number. The figure in that
publication is reproduced in the new edition of his book [19], now with a coauthor.
Figure 13.5 shows the profiles along X of the three species’ concentrations as well as
the potential for the simulation for S D 1, that is, sulphuric acid added at the same
concentration as the copper sulphate itself. The plot of potential spans the X range
0 : : : 18:06, because using (13.59), this is the result. At that X value, the potential is
set to zero.

13.5.1 Note on Normalisations

The pde (13.53) is normalised by the reference diffusion coefficient D� (i.e. d D
D=D�), the reference concentration c� as usual and the diffusion length ı0 as defined
in (13.55) (i.e. X D x=ı0). In the first step this gives, for some unspecified species C,

d

ı20

@2C

@X2
� vx

D�ı0
@C

@X
C zd

ı20

�
C
@2 

@x2
C @C

@X

@ 

@X

�
D 0 ; (13.72)

and dividing by d and multiplying by ı20 ,
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� ı0vx

d D�
@C

@X
C z

�
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@x2
C @C

@X

@ 

@X

�
D 0 ; (13.73)

leading to Eq. (13.57).
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Fig. 13.5 Profiles along X of the three species’ concentrations and the potential (all dimensionless)
for S D 1

Newman [19, 40] takes a different approach. He normalises his y, corresponding
to our x, as

� D y
� a�

3D�
�1=3 �!

�

�1=2
(13.74)

and we therefore have different scalings of the distance. Yen and Chapman [46] also
used this normalisation. Doing this amounts to normalising distance y by 1:1199ı0.
The number corresponds to 1=	 .4=3/. Proceeding as before, this leads to the same
normalised equation as (13.57), now with K D 3:000.

A simulation of (13.57) with K D 2:13593 and no migration produces a steady
state flux equal to 1.00, whereas using K D 3, the flux becomes 1.12, or 1=	 .4=3/.
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Chapter 14
Convection

Convection has long been coupled with electrochemistry, and the name hydro-
dynamic voltammetry has become standard. The standard work is the book by
Levich [1] although he did not use that term. In electroanalytical chemistry we
mainly seek reproducible conditions. These are almost always attained by systems
in which a steady convective state is achieved, although not always. Thus, the once
popular dropping mercury electrode (see texts such as [2, 3]) has convection around
it, but is never in steady state; it might be called a reproducible periodic dynamic
state.

The focus in this chapter is on channel electrodes, which are still popular and the
way to simulate these illustrates the method generally.

14.1 Some Fluid Dynamics

Fluid flow, since it transports material, is enmeshed with diffusion in electrochemi-
cal cells. Some basics are therefore in order here.

Useful fluid dynamic systems are partially enclosed systems. Consider the open
system consisting of an infinite solid plate at the bottom of a semi-infinite fluid, all at
rest. Now, at t D 0, let the plate start moving with a certain velocity, in the direction
of its plane. If one follows the fluid velocity this generates as a function of time and
distance from the moving plate, it is seen that the equation governing this process
is of the same form as the diffusion equation, and the solution is mathematically
the same as for the Cottrell system, as is shown in the first few pages of standard
texts dealing with fluid flow [4, 5]. This, then, is not a system of great use to
electrochemists, since it does not lead to a steady state flow distribution. Consider
now Fig. 14.1. It shows a sideways view of a channel or slit, of height 2h, and a
depth (into the paper) so great that there are assumed to be no gradients in that
direction. The y-axis has its origin in the central plane, indicated by the dashed line.
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Fig. 14.1 Flow through a channel

If we ignore entry effects at the inlet end of this channel (see below) and if the flow
is laminar (that is, not turbulent), then there is a steady state flow, with no velocity
components in the y-direction. The component vx in the x-direction will then be a
known function of y. At the walls (y D ˙h), the fluid clings to the solid surface, that
is vx.˙h/ D 0. As can be shown [4, 5], the velocity profile is of the parabolic form

vx.y/ D v0

�
1 �

� y
h

�2�
(14.1)

where v0 is the velocity along the central plane at y D 0. It is the maximum velocity
in the channel, and is given by

v0 D h2

2�

dp

dx
; (14.2)

in which � is the fluid’s viscosity and dp=dx is the pressure gradient driving the
flow. Another quantity of interest is the mean flow velocity vm through the slit,

vm D 2
3
v0 : (14.3)

The above holds only for laminar flows, that is, the Reynolds number is
sufficiently small. It is defined as

Re D vmL

�
(14.4)

where � is the kinematic viscosity, equal to�=�,� being the fluid viscosity and � the
fluid density. L is a characteristic length pertaining to the flow, here equal to 2h, the
channel height. For the flow to be laminar, the Reynolds number should be smaller
than a few 1000 in such a channel. This is to some extent uncertain, depending on
the smoothness of the walls and the way in which the fluid enters the slit. In fact,
the phenomenon of relaminarisation of pipe and channel flow [6, 7] indicates that in
theory there may not be a limit to Re for laminar flow in an ideally smooth pipe.
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For electrochemical purposes, where electrodes are (usually) embedded in the
channel bottom, it is convenient to shift the y coordinate so that y D 0 at the channel
bottom. The equation for the velocity profile then changes to

vx.y/ D v0

 
1 �

�
y � h

h

�2!
(14.5)

(v0 of course remaining the same but now called vx.h/, as in (14.2)).
Since the velocity of flow has a parabolic function, the velocity profile near the

walls is nonlinear. However, in many works, this is approximated by a linearised
form, as the gradient right at the walls. This makes the mathematical analysis of
diffusion near one of the walls easier. Differentiating (14.1) and setting y D �h
(that is, considering the bottom surface), we obtain

dvx
dy

ˇ̌
ˇ̌
yD�h

D 2v0

h
D h

�

dp

dx
(14.6)

so that near the channel bottom (y D 0, having now moved the y-axis) the profile is

vx.y/ � 2v0

h
y (14.7)

for very small y. This system is currently one of the most used hydrodynamic cell
types, with electrodes embedded in the surfaces.

There was intense early work on the theory of channel flow systems [8–14].
Another geometry, not quite as popular for practical reasons but perhaps equally

useful, is a tube, shown in Fig. 14.2. Here the center is the axial line r D 0 and the
walls are at r D R. The laminar flow for this is given by

vx.r/ D v0

�
1 �

� r
R

�2�
(14.8)

Fig. 14.2 Flow through a cylindrical tube
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where v0 is the velocity along the axis, r D 0. It is

v0 D R2

4�

dp

dx
(14.9)

and the average flow velocity through the tube is

vm D 1
2
v0 : (14.10)

The Reynolds number is here defined by setting L in (14.4) equal to the tube
diameter, 2R. As for the channel, Re must not exceed about 1500 (in practice) for
the flow to be laminar. The velocity gradient at the wall is very similar to that for
the slit (14.6), with y replaced by r and h by R.

When using a tube or channel to establish a laminar flow, one must be aware
of entry effects. At the entry point of the tube or channel, the flow velocity profile
will be even across the cross section of the tube. As the flow moves into the tube,
the profile gradually becomes parabolic. So, if we rely on its being parabolic, the
electrodes must be placed sufficiently far downstream for that to be true. Kay and
Nedderman [15] and Schlichting [5] both provide (almost) the same formula for
this, expressed here as

L D 0:06RRe ; (14.11)

so that electrodes must be at least a distance L into the tube. The situation in
a channel is similar, with h replacing R, as has been shown [16]. The value of
the constant depends on the extent to which the profile is to be established. At
0.06, this is about 95 % in terms of the flow velocity at the centre of the tube or
channel. Prandtl and Tietjens [17] state a much larger constant, 0.6, based on a 99 %
convergence to fully parabolic flow.

Another flow system that has had some use in the past is a jet impinging on a
flat wall, shown in Fig. 14.3. There is a narrow jet of fluid flowing downwards out
of an orifice in the top wall, hitting the bottom plate. The figure shows some flow
lines, which go both in the vertical and horizontal directions. At the point P there
is no flow; this is the stagnant point. Electrodes can be placed on or around this
point. The flow distribution has been mathematically solved by Glauert [18], whose
solutions were extended by Albery and Brett [19], with an empirical constant being
provided by Yamada and Matsuda [20]. The profiles are quite complex and will
not be gone into here. Other theoretical work is seen in [20–24], with Shukla and
Orazem [22] considering a jet impinging on a hemisphere, which provides—unlike
impingement on a disk—even material access over the electrode surface.

Other convective systems have been used in electroanalytical chemistry. The
oldest one is the dropping mercury electrode [2, 3]. Convection here arises by
virtue of the expansion of the growing mercury drop, and the transport equation is
pleasantly simple and unidimensional for the simplified case, assuming a spherical
drop that is not falling downwards, and assuming that the sphere is large compared



14.1 Some Fluid Dynamics 373
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Fig. 14.3 Flow in the wall jet system

with the diffusion later thickness. This electrode is no longer used very much and
will not be further mentioned here.

Another system is the family of rotating electrodes. These are disks and/or rings
mounted concentrically with the axis at the end of a cylindrical rod, rotating in an
electrolyte. Making some reasonable simplifications, this system also gives rise to
a unidimensional transport equation [1], and the velocity distributions around the
end of the rod were first derived by von Kármán [25] and Cochran [26], later to
be improved by Sparrow and Gregg [27]. Levich solved the case of steady state
limiting current (see [1]), using some approximations, later corrected by Gregory
and Riddiford [28]. Details can be seen in Bard and Faulkner [2].

The somewhat intractable area of natural convection has been the subject of some
analysis [29–35].

14.1.1 Layer Relations

In Chap. 2, the concept of the diffusion layer was established. It is a thickness,
within which a large fraction of diffusional changes take place, and at a distance of
several times this thickness, practically no more diffusional changes are observed.
This layer will here be given the symbol ıD (D for diffusion). In fluid dynamics,
there is a similar layer, within which most of the velocity changes occur. This
is the hydrodynamic layer ıh. It turns out that for diffusive mass transfer, ıD is
usually much smaller than ıh. This is fortunate, because it justifies to some extent
the linearised velocity profiles often assumed near walls, making analysis easier.
These relations are very lucidly discussed by Vielstich in a classic paper [36].
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14.2 Electrodes in Flow Systems

Electrodes have been placed in many flow system geometries. The rotating disk or
ring-disk electrodes are well known. Narrow rings have been mounted flush inside
tubes [37–40], on rotating electrodes such as the classical rotating disk electrode
(RDE) mentioned above, treated by Levich [1] and the rotating ring-disk electrode
(RRDE) extensively described by the Albery group [41–45] and other variants and
applications, too numerous to mention here. Reviews such as that of Albery et
al. [46], Penar [47] and Williams and MacPherson [48] (on modulated flows) discuss
these, providing many references. Electrodes, both singly [19, 20, 49], as ring-disk
[50] or (for the wall jet case) even groups of separate electrodes [23] have been
mounted as targets of the flow.

Single electrodes in a flow where a steady state is attained act much like the DME
or RDE, in that a sigmoid current/voltage curve is measured, from which informa-
tion about the electrochemical reaction can possibly be gleaned. Heterogeneous rate
constants can, for example, be measured if the flow is sufficiently fast. This was the
intent of Bernstein et al. [37] and their turbulent flow in a tube with a ring electrode,
and equally intense turbulence is generated at an electrode positioned close to an
ultrasonic horn [51]. There are too many references of this kind to mention here.
Another intent can also be a reverse of the usual electrochemical aim: so-called
electrochemical probes have been used to measure flow rates [52–54].

Double electrodes were suggested, as an added ring outside the central disk on
an RDE, by Frumkin et al. [50] and as a second embedded strip downstream of
the first in a channel, suggested first by Gerischer et al. [11]. Here, the idea is to
produce a substance by electrolysis at the upstream electrode, and to detect it at the
other electrode downstream. One speaks of the collection factor N, the ratio of the
detector current to the generator current. The symbol N was first used by Frumkin
et al. Much theory has been presented for the many possible geometries. A very
general theory was worked out by Matsuda [12], and also, for what they called the
“dimicroelectrode”, by Kermiche et al. [55]. Gerischer et al. also attempted a rough
first treatment [11], using (as did Kermiche et al.) a linearised velocity profile near
the electrode for simplicity. Solutions are not easy to obtain in this area, so this is
an intense application of digital simulation.

Another application of double, generator/collector, electrodes is what is called
diffusion layer titration. This can be used for a quantitative analysis of some species
in solution. The technique was first suggested by Bruckenstein and Johnson [56],
and has been followed up since then, with theory [44, 57] and simulations [57–60]
(naming just a selection of works).

It may be added that generator/collector cells can be implemented without
convection. Double ultramicrobands [61] and interdigitated bands [62–64] have
been considered for this purpose, for titrations [57, 60] and for studies in elec-
trochemically generated chemiluminescence (ECL) [65]. See also the review by
Amatore [66] with more references therein; see also Chap. 12.
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14.3 Simulations

The earliest simulations of convective systems were those of the DME [67–70] and
the RDE and RRDE. Prater and Bard performed the first simulations of the RRDE
[71–73], using the explicit box method. Maloy et al. simulated ECL at an RRDE.
Margarit et al. simulated a ring-ring electrode [74, 75] and studied collection factors
by simulation; Clarenbach et al. [76, 77] simulated their own modification of the
RRDE, also simulating fluid flow around it, as did Mandin et al. [78], using a
program package. Feldberg [79] used hopscotch on an RRDE, Nolan [80] used OC.
Balslev and Britz [81] used a brute force method to compute the steady state at
an RDE with a complex reduction mechanism. Dan et al. [82] applied CN and what
they called MDUM, a multigrid method, simulating transients at an RDE, which had
been done earlier by Strutwolf [83, 84]. Gooch et al. review a number of simulation
methods for hydrodynamic systems [85, 86]. This list is by no means exhaustive;
only some representative examples have been cited here.

In flow systems that necessitate consideration of two-dimensional geometry,
Flanagan and Marcoux’s work is an early example [38]. They examined a variety
of conditions, among them the importance of axial diffusion in a tube. They found
that neglecting axial diffusion is justified for most flows except the slowest. This is
because transport due to the flow dominates in the axial direction, and this holds for
electrode lengths that are small compared with the tube radius. This is often called
the Levich approximation. Levich [1] related the diffusion layer thickness, which is
a function of distance along the electrode and flow velocity, to the tube radius. The
condition can then be reduced to the condition

xD

v0R2
� 1 (14.12)

which limits the length of the electrode along the length coordinate x. This is
referred to in Wu [40] and the same condition was given by the early simulation
papers of Albery and coworkers [87, 88], who however do not cite Levich. Albery
et al. [87] are interesting in that they present an early finite difference simulation in
this context, and use some coordinate stretching by transformation as well.

Among the many papers written on the simulation of band electrodes embedded
in a channel flow system, Anderson and Marcoux [89] was the first, followed by the
early work by Compton and coworkers [90–93]. Anderson and Marcoux simulated
a single band in a channel, and experimented with the explicit, trapezoidal (CN)
and BI techniques. They concluded that BI is probably the best. This has since
been the most used technique in the papers to follow. There are good reasons
for this, as outlined clearly by Fletcher [94] and Strikwerda [95]. Fletcher shows
that discretisation of convective transport yields stable forms only if what fluid
dynamicists call upwinding is used. This amounts to backwards implicit, in the x
direction (along the flow), rather than, as in previous chapters, in the time direction.
Other algorithms may however be better, as shown by Alhunaizi [96], who considers
a certain high-order explicit method the best.
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Most of the flow systems used in these channel experiments attain steady state,
and, as will be seen below, the x direction can take the place of time. There is a
multitude of works on the simulation of the channel electrode system, dominated to
a large extent by the Compton school but many others have simulated these systems,
and this work continues to the present [65, 85, 97–141], of which [100–103, 115,
121, 122] were published in the last 10 years or so.

Tube electrodes have inspired simulations since 1974 [38, 46, 87, 88, 107, 142–
144], and the wall-jet or impinging jet electrode, following the theory works
mentioned above, has been simulated by many [46, 91, 145–158].

14.4 A Simple Example: The Band Electrode in a Channel
Flow

There is clearly a large number of hydrodynamic systems of interest, and the focus
here is on the channel flow system with a single narrow band embedded in the
channel floor. The ways to discretise this system point the way to other systems.
Consider Fig. 14.4. We want the current over a short band in a low wide channel,
as shown in the figure. The channel is of height 2h and the band has width l in the
x-direction, the direction of flow. The band’s length (into the paper) is a, and it is
assumed that a 	 l. The flow is laminar with velocity vx.y/, a function of y and is
given by (14.5). The mean flow velocity is given by (14.3). If the flow is sufficiently
fast (as is assumed), then we can ignore diffusion in the direction of the flow, as the
flow will dominate transport. The transport equation is then

@c

@t
D D

@2c

@y2
� vx

@c

@x
: (14.13)

Fig. 14.4 Band electrode in a rectangular channel
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14.5 Normalisations

The following normalisations are used. The characteristic time � is chosen as the
time it takes the mean flow vm to traverse the length of the electrode, l. Thus,

� D l

vm
(14.14)

and so time becomes the normalised T,

T D t=� D vm

l
t : (14.15)

Distances are normalised by l, so

X D x=l ; (14.16)

Y D y=l ; (14.17)

H D h=l : (14.18)

Concentrations are referred to the initial (upstream) bulk value cb,

C D c=cb : (14.19)

This leads to the new transport equation,

@C

@T
D 1

Pe

@2C

@Y2
� VX

@C

@X
: (14.20)

with

VX D 3

2

(
1 �

�
Y � H

H

�2)
: (14.21)

and

Pe D vm l

D
: (14.22)

Pe is the Péclet number, analogous to the Reynolds number, which is defined for
this flow as

Re D 2vmh

�
: (14.23)

Whereas Re is the measure of the relative magnitudes of the inertial forces to
the viscous forces in the flow, the Péclet number is the measure of the relative
magnitudes of transport by convection and diffusion (citing Kay [15]). The length
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scales used for the two numbers are different (the channel height 2h for Re, l for
Pe).

We need to know how far away, normal to the electrode, we must compute
concentration changes, that is, what value of Y D Ymax is sufficient. This can be
estimated in the following manner. The mean flow goes past the electrode in time � ,
and in that time, a diffusion layer of height about equal to

p
D� can be attained at

the downstream end of the electrode. Taking, as usual, six times this length, we get
a maximum ym of 6

p
D� . Normalising this by l so that YM D ym=l and substituting

for � from (14.14), we have

Ymax D 6

s
D

lvm
D 6=

p
Pe : (14.24)

We now have two situations, with two different boundary conditions. If 2H <

6=
p

Pe, then Ymax must be set equal to 2H, and we apply a no-flux condition
to the channel roof. If however 2H > 6=

p
Pe, then we can apply the constant

concentration (bulk value) to the level Ymax.
Figure 14.5 shows a rather coarse grid drawn on the system, for the case 2H >

6=
p

Pe. If one wishes only to compute the current, then points downstream from
the electrode need not be computed. If concentrations downstream are of interest,
the grid must be extended in that direction. The range in direction X is divided into
NX intervals spaced apart by ıX, starting from the left-hand boundary one interval
upstream of the leading electrode edge. The vertical direction is divided into NY C1

horizontal lines spaced apart by ıY. Giving indices j and i, respectively, to the X
and Y direction, we have a working grid as shown in Fig. 14.6. Note that there are
two independent dimensionless variables that must be stated for a given simulation.
They are the Péclet number Pe and H, the half-height of the channel in electrode
length units l.

Fig. 14.5 Band electrode system with grid superimposed
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Fig. 14.6 Band electrode system with indexed grid

We have two situations. The simpler one is that we only want the steady state
current, in which case the time derivative drops out of (14.20), leaving only

VX
@C

@X
D 1

Pe

@2C

@Y2
: (14.25)

Boundary conditions are then

X < 0 W C D 1

0 � X � 1; Y D 0 W C D 0 (14.26)

Y D Ymax W
(

C D 1 .2H 
 6=
p

Pe/
@C
@Y D 0 .2H < 6=

p
Pe/

:

(14.27)

Note that (14.25) is a parabolic pde, there being a term on the left-hand side in
@C=@X. This suggests a solution analogous to a time march, that is, an X-march,
starting from “initial conditions” at the grid line just upstream of the electrode, at
j D 0 in Fig. 14.6, and moving to the right from there, successively computing
each vertical row of points. This was done by Anderson and Moldoveanu [89].
As mentioned earlier, it can be shown that the left-hand term in (14.25) is best
discretised as a backward difference (upwinding). It is tempting to apply a central
difference form here but this causes oscillations [94, 95].

Equation (14.25) is now discretised in the following manner,

VX
Ci;j � Ci;j�1

ıX
D 1

Pe

Ci�1;j � 2Ci;j C CiC1;j
ıY2

: (14.28)

Writing

i D ıX

VXıY2Pe
(14.29)
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(recall that VX is a function of Y and thus varies with index i), we have the discrete
form

Ci;j � Ci;j�1 D i
�
Ci�1;j � 2Ci;j C CiC1;j

�
(14.30)

which is of the form seen in the time-march procedure in Chap. 8 (albeit simpler
because here, equal intervals in Y were used), and the solution, by the Thomas
algorithm, described in Sect. 8.3, can be used.

The dimensionless current is then given by the integral over the length of the
electrode,

I D
Z 1

0

@C

@Y

ˇ̌̌
ˇ
YD0

dX (14.31)

which can be implemented by the trapezium or Simpson’s rule.
The example program CHANNEL_BAND (Appendix E) is a simple implementa-

tion of the above, using two-point upwinding and equal intervals. The system has
a known solution, by Levich [1, 11, 159, 160] which, normalised, implies that the

current should be proportional to Pe
1
3 . This is tested in the program, and found, for

a number of runs, to be true for some ranges of parameters.
If time dependence is desired, then the full transport equation (14.20) must be

discretised, and a time-march performed. The problem is then a 2D one. As in the
previous chapter on 2D systems, one would spread the grid points into one long
vector of unknowns, either by stacking the horizontal grid lines end on end, starting
(as for the UMDE system in the previous chapter) with the bottom row, or perhaps
the verticals. Given the above description and those in Chap. 12, the development of
this is straight-forward and will not be further pursued here.

A remark on the linearisation of the velocity profile VX is in order. It clearly
applies only for YM � H. Given that one would in any case pre-compute the Ny VX

values, there seems little point in linearisation as in (14.7). This is of greater interest
in mathematical analyses but not for simulations.

The procedure as described above, both for the steady state and the time-
dependent system, can be extended to the channel with two bands, in generator-
collector mode, as shown in Fig. 14.7. There are more boundary conditions, but

Fig. 14.7 Channel flow with two bands
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they are straight-forward to apply. For details, the reader is referred to a series of
articles by the Compton group [90, 92, 110, 112, 135, 161] and more recent works
by others [107, 115, 121, 122] (citing just a selection of a large opus).
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70. Ružić I, Smith DE (1974) On the influence of electrode curvature and growth in d.c. and a.c.
polarography: the e.e. mechanism with amalgam formation. J Electroanal Chem 57:129–139

71. Prater KB, Bard AJ (1970) Rotating ring-disk electrodes. 1. Fundamentals of the digital
simulation approach. Disk and ring transients and collection efficiencies. J Electrochem Soc
117:207–213

72. Prater KB, Bard AJ (1970) Rotating ring-disk electrodes. II Digital simulation of first and
second-order following chemical reactions. J Electrochem Soc 117:335–340

73. Prater KB (1972) Digital simulation and modelling. Chem Instrum 3:259–269
74. Margarit J, Lévy M (1974) Étude theéoretique d’une électrode tournante á double anneau.

Partie I. Recherche du facteur d’efficacité par une méthode de simulation numérique. J
Electroanal Chem 49:369–376

75. Margarit J, Dabosi G, Lévy M (1975) Étude d’une électrode tournante á double anneau. Partie
II. Vérification expérimentale des resultats obtenus par voie de simulation numérique. Bull
Soc Chim Fr 7–8:1509–1512

76. Clarenbach S, Grabner EW, Brauer E (1973) Digital simulation of a rotating double-ring-
electrode. Ber Bunsenges Phys Chem 77:908–913

77. Clarenbach S, Grabner EW (1976) Application of digital simulation to a mass transport
problem: calculation of the velocity of flow at a rotating disk. Ber Bunsenges Phys Chem
80:115–121

78. Mandin P, Pauporte T, Fanouillère P, Lincot D (2004) Modelling and numerical simulation of
hydrodynamical processes in a confined rotating electrode configuration. J Electroanal Chem
565:159–173

79. Feldberg SW, Bowers ML, Anson FC (1986) Hopscotch-finite-difference simulation of the
rotating ring-disc electrode. J Electroanal Chem 215:11–28

80. Nolan JE, Plambeck JA (1990) The EC-catalytic mechanism at the rotating disk electrode.
Part II. Comparison of approximate theories for the second-order case and application to
the reaction of bipyridinium cation radicals with dioxygen in non-aqueous solutions. J
Electroanal Chem 294:1–20

81. Balslev H, Britz D (1992) Direct digital simulation of the steady-state limiting current at a
rotating disk electrode for a complex mechanism. Acta Chem Scand 46:949–955

82. Dan C, Van den Bossche B, Bortels L, Nelissen G, Deconinck J (2001) Numerical simulation
of transient current responses in diluted electrochemical ionic systems. J Electroanal Chem
505:12–23

83. Strutwolf J (1995) Digitale Simulation elektrochemischer Systeme: Untersuchungen zeitab-
hängiger Phänomene an rotierenden Scheibenelektroden und Analyse von Cyclovoltammo-
grammen durch direkte Simulation. Ph.D. thesis, Universität Bielefeld, Bielefeld

84. Strutwolf J, Schoeller WW (1996) Linear and cyclic sweep voltammetry at a rotating disk
electrode. A digital simulation. Electroanalysis 8:1034–1039

85. Gooch KA, Fisher AC (2002) Computational electrochemistry: the simulation of voltammetry
under hydrodynamic modulation control. J Phys Chem B 106:10668–10673

86. Gooch KA, Qiu FL, Fisher AC (2003) The digital simulation of voltammetry under stagnant
and hydrodynamic conditions. In: Bard AJ, Stratmann M, Unwin PR (eds) Encyclopaedia
of electrochemistry, volume 2, Instrumentation and electroanalytical chemistry. Wiley-VCH,
Weinheim, pp 122–142

87. Albery WJ, Chadwick AT, Coles BA, Hampson NA (1977) The tube electrode and E.S.R.:
second order kinetics. J Electroanal Chem 75:229–239

88. Albery WJ, Compton RG, Chadwick AT, Coles BA, Lenkaits JA (1980) Tube electrode and
electron spin resonance. First-order kinetics. J Chem Soc Faraday Trans I 76:1391–1401



References 385

89. Andersen JL, Moldoveanu S (1984) Numeral simulation of convective diffusion at a
rectangular channel flow electrode. J Electroanal Chem 179:107–117

90. Compton RG, Pilkington MBG, Stearn GM (1988) Mass transport in channel electrodes. The
application of the backwards implicit method to electrode reactions (EC, ECE and DISP)
involving coupled homogeneous kinetics. J Chem Soc Faraday Trans I 84:2155–2171

91. Compton RG, Fisher AC, Latham MH, Brett CMA, Brett AMCFO (1992) Transient
measurements at the wall-jet ring disc electrode. J Appl Electrochem 22:1011–1016

92. Compton RG, Coles BA, Fisher AC (1994) Chronoamperometry at channel electrodes.
Theory of double electrodes. J Phys Chem 98:2441–2445

93. Compton RG, Coles BA, Gooding JJ, Fisher AC (1994) Chronoamperometry at channel
electrodes. Experimental applications of double electrodes. J Phys Chem 98:2446–2451

94. Fletcher CAJ (1991) Computational techniques for fluid dynamics, vol I, 2nd edn. Springer,
Berlin

95. Strikwerda JC (1989) Finite difference schemes and partial differential equations. Wadsworth
and Brooks/Cole, Pacific Grove, CA

96. Alhumaizi K (2004) Comparison of finite difference methods for the numerical simulation of
reacting flow. Comput Chem Eng 28:1759–1769

97. Alden JA, Compton RG (1996) Hydrodynamic voltammetry with channel microband elec-
trodes: axial diffusion effects. J Electroanal Chem 404:27–35

98. Alden JA, Cooper JA, Hutchinson F, Prieto F, Compton RG (1997) Channel electrode
voltammetry and reversible electro-dimerisation processes. The reduction of the methyl-
viologen di-cation in aqueous solution. J Electroanal Chem 432:63–70

99. Alden JA, Feldman MA, Hill E, Prieto F, Oyama M, Coles BA, Compton RG (1998) Channel
microband electrode arrays for mechanistic electrochemistry. Two-dimensional voltammetry:
transport-limited currents. Anal Chem 70:1707–1720

100. Amatore C, Oleinick A, Svir I (2004) Simulation of diffusion-convection processes in
microfluidic channels equipped with double-band microelectrode assemblies: approach
through quasi-conformal mapping. Electrochem Commun 6:1123–1130

101. Amatore C, Da Mota N, Lemmer C, Pebay C, Sella C, Thouin L (2008) Theory and experi-
ments of transport at channel microband electrodes under laminar flows. 2. Electrochemical
regimes at double microband assemblies under steady state. Anal Chem 80:9483–9490

102. Amatore C, Lemmer C, Sella C, Thouin L (2011) Channel microband chronoamperometry:
from transient to steady-state regimes. Anal Chem 83:4170–4177

103. Amatore C, Lemmer C, Perrodin P, Sella C, Thouin L (2011) Theory and experiments of
microelectrodes performing as concentration probes within microfluidic channels with high
temporal resolution. Electrochem Commun 13:1459–1461

104. Bidwell MJ, Alden JA, Compton RG (1996) Channel microband electrodes: a complete
working surface for potential step transients. J Electroanal Chem 414:247–251

105. Bidwell MJ, Alden JA, Compton RG (1996) Hydrodynamic voltammetry with channel
microband electrodes: the simulation of voltammetric waveshapes. J Electroanal Chem
417:119–128

106. Bidwell MJ, Alden JA, Compton RG (1997) Electroanalysis in flowing systems - the prop-
agation of depletion effects downstream of a channel micro-band electrode. Electroanalysis
9:383–389

107. Bieniasz LK (2013) Automatic solution of the Singh and Dutt integral equations for channel
or tubular electrodes, by the adaptive Huber method. J Electroanal Chem 693:95–104

108. Bortels L, Deconinck J, Bossche BVD (1996) The multi-dimensional upwinding method
as a new simulation tool for the analysis of multi-ion electrolytes controlled by diffusion,
convection and migration. Part 1. Steady state analysis of a parallel plane flow channel. J
Electroanal Chem 404:15–26

109. Cooper JA, Alden JA, Oyama M, Compton RG, Okazaki S (1998) Channel electrode
voltammetry: the kinetics of the complexation of the chloranil radical anion with M2C ions
by waveshape analysis. J Electroanal Chem 442:201–206

110. Cooper JA, Compton RG (1998) Channel electrodes - a review. Electroanalysis 10:141–155



386 14 Convection

111. Ferrigno R, Brevet PF, Girault HH (1997) Finite element simulation of the amperometric
response of recessed and protruding microband electrodes in flow channels. J Electroanal
Chem 430:235–242

112. Fisher AC, Compton RG (1991) Chronoamperometry at channel electrodes: a general
computational approach. J Phys Chem 95:7538–7542

113. Fisher AC, Compton RG (1992) A general computational approach to linear sweep voltam-
metry at channel electrodes. J Appl Electrochem 22:38–42

114. Fisher AC, Compton RG (1992) The EC’ mechanism: split waves at the channel electrode.
Electroanalysis 4:311–315

115. Fuhrmann J, Zhao H, Holzbecher E, Langmach H, Chojak M, Halseid R, Jusys Z, Behm J
(2008) Experimental and numerical model study of the limiting current in a channel flow cell
with a circular electrode. Phys Chem Chem Phys 10:3784–3795

116. Fulian Q, Stevens NPC, Fisher AC (1998) Computer-aided design and experimental applica-
tion of a novel electrochemical cell: the confluence reactor. J Phys Chem B 102:3779–3783

117. Fulian Q, Fisher AC, Riley DJ (2000) The computer aided design and experimental devel-
opment of a new device for the measurement of electrochemiluminescence. Electroanalysis
12:503–508

118. Gooch KA, Williams NA, Fisher AC (2000) The computer-aided design of a new hydrody-
namic device for studying mechanisms of chemical transfer across the liquid|liquid interface.
Electrochem Commun 2:51–55

119. Harriman K, Gavaghan DJ, Houston P, Süli E (2000) Adaptive finite element simulation of
currents at microelectrodes to a guaranteed accuracy. An E reaction at a channel microband
electrode. Electrochem Commun 2:567–575

120. Henstridge MC, Rees NV, Compton RG (2012) A comparison of the Butler-Volmer and
asymmetric Marcus-Hush models of electrode kinetics at the channel electrode. J Electroanal
Chem 687:79–83

121. Holm T, Sunde S, Seland F, Harrington DA (2015) A semianalytical method for simulating
mass transport at channel electrodes. J Electroanal Chem 745:72–79

122. Klymenko OV, Oleinick AI, Amatore C, Svir I (2007) Reconstruction of hydrodynamic flow
profiles in a rectangular channel using electrochemical methods of analysis. Electrochim Acta
53:1100–1106

123. Leslie WM, Alden JA, Compton RG, Silk T (1996) ECE and DISP processes at channel
electrodes: analytical theory. J Phys Chem 100:14130–14136

124. Ma S, Wu Y, Wang Z (1999) Spectroelectrochemistry for a coupled chemical reaction in the
channel cell. Part I. Theoretical simulation of an EC reaction. J Electroanal Chem 464:176–
180

125. Miles AB, Compton RG (2001) Simulation of square-wave voltammetry at a channel
electrode: E, EC and ECE processes. J Electroanal Chem 499:1–16

126. Moldoveanu S, Anderson JL (1985) Numerical simulation of convective diffusion at a
microarray channel electrode. J Electroanal Chem 185:239–252

127. Ou TY, Moldoveanu S, Anderson JL (1988) Hydrodynamic voltammetry at an interdigitated
electrode array in a flow channel. Part II. Chemical reaction succeeding electron transfer. J
Electroanal Chem 247:1–16

128. Pastore P, Magno F, Lavagnini I, Amatore C (1991) Digital simulation via the hopscotch algo-
rithm of a microelectrode-based channel flow-through amperometric detector. J Electroanal
Chem 301:1–13

129. Prieto F, Aixill WJ, Alden JA, Coles BA, Compton RG (1997) Voltammetry under high mass
transport conditions. The high-speed channel electrode and transient measurements. J Phys
Chem B 101:5540–5544

130. Prieto F, Oyama M, Coles BA, Alden JA, Compton RG, Okazaki S (1998) Mechanistic
determination using arrays of variable sized channel microband electrodes. The oxidation
of 2,3,7,8-tetra-methoxythianthrene in the presence of pyridine in acetonitrile solution.
Electroanalysis 10:685–690



References 387

131. Qiu F, Compton RG, Coles BA, Marken F (2000) Thermal activation of electrochemical
processes in a Rf-heated channel flow cell: experiment and finite element simulation. J
Electroanal Chem 492:150–155

132. Rajendran L (2000) Padé approximation of ECE and DISP processes at channel electrodes.
Electrochem Commun 2:186–189

133. Rajendran L (2000) Padé approximation of EC’ processes at channel electrodes. J Electroanal
Chem 487:72–74

134. Rajendran L (2006) Two-point Padé approximation of mass transfer rate at microdisk
electrodes in a channel flow for all Péclet numbers. Electrochim Acta 51:5407–5411

135. Rees NV, Klymenko OV, Maisonhaute E, Coles BA, Compton RG (2003) The application
of fast scan cyclic voltammetry to the high speed channel electrode. J Electroanal Chem
542:23–32

136. Somov SI, Brainin MI, Baraboshkin DA (1996) Mass transfer in gas channels of electrochem-
ical cells based on solid-oxide electrolyte at small concentrations of electrochemically active
components in the gas: II. Results of numerical calculations. Russ J Electrochem 32:1103–
1107

137. Stevens NPC, Fisher AC (1998) Transient voltammetry under hydrodynamic conditions.
Electroanalysis 10:16–20

138. Svir IB, Klimenko AV, Compton RG (2000) Two approaches for digital simulation of the
channel flow cell problem. Radioelek Informatika 2:29–33

139. Tait RJ, Bury PC, Finnin BC, Reed B, Bond AM (1993) An explicit finite difference
simulation for chronoamperometry at a disk microelectrode in a channel flow solution. J
Electroanal Chem 356:25–42

140. Ueno K, Kim HB, Kitamura N (2003) Characteristic electrochemical responses of polymer
microchannel-microelectrode chips. Anal Chem 75:2086–2091

141. Unwin PR, Compton RG (1989) The use of channel electrodes in the investigation of
interfacial reaction mechanisms. In: Compton RG, Hancock G (eds) Comprehensive chemical
kinetics, vol 29. Elsevier, Amsterdam, pp 173–296

142. Engblom SO, Cope DK, Tallman DE (1996) Diffusion current at the tubular band electrode
by the integral equation method. J Electroanal Chem 406:23–31
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Chapter 15
Performance

In this chapter, the performance of the various methods that have been described
is examined. This involves convergence, stability and economy of computer time.
Some of the more sensible simulation methods are compared. Sensitivity analysis is
briefly mentioned.

15.1 Convergence

The aim of a simulation is to approximate the underlying exact solution as accurately
as desired in a minimum of computer time. Solution is achieved by some discrete
formula, which has truncation errors, due to neglect of some (higher) Taylor terms
in the discretisation formulae, as well as machine roundoff errors. Truncation errors
must become smaller as we make the intervals both in time and space smaller and
the errors must, at least, not grow in the course of a number of steps. This property is
called convergence. In the limit, as ıT and ıX (that is, H) approach zero, the errors
must also do so. In order for this to happen, two conditions must hold. The first
is that the discretisation expression used must be consistent with the differential
equation it approximates. The second is that the expression must be stable. This
means that an error in the solution at a given step is not amplified by subsequent
steps. These two issues will be examined separately.

Generally, it can be said that consistency is not as great a problem as stability,
as pointed out by Lapidus and Pinder [1]. Inconsistent discretisations have been
devised, but they are rather rare.

Another way of viewing convergence is not whether a given solution converges
towards the exact solution, but how it does so. Does it approach smoothly, the errors
keeping on one side of the zero line, or does it approach with oscillations? Not
all regard oscillations as a bad thing [2]. In electrical engineering, for example, an
optimal control circuit is often the one that responds to a step change in an input
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with a strongly damped oscillation, a smooth response being slower. However, if
the oscillations persist for a long time, they are again not optimal. This is mirrored
in simulation in the ways some stable methods behave. BI has what some regard as
a pleasant, smooth, approach to the solution, while CN, when using large  values,
oscillates. CN is, however, the method with higher-order of accuracy, and if the
oscillations are damped quickly, it is the better method. It is possible to prevent the
CN oscillations by damping them in the first few steps [3–6], see Chap. 8.

To illustrate the above, consider Fig. 15.1. For the figure, equal intervals were
used, a time interval of 0.01 and as seen, three different values of  (which determine
N, the number of spatial intervals). The current was computed as a five-point
approximation using our G0FUNC, and the error is relative to the known Cottrell
solution. As  increases to 0.5 (its maximum value for stability with EX) EX is
seen to oscillate more and more but in a damped manner, while the error for BI
is damped smoothly, although it is comparable with that of method EX (perhaps
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Fig. 15.1 Relative errors in the simulated Cottrell current, using methods EX and BI, for the
indicated  values. The top curves are for BI
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Fig. 15.2 Relative errors in the simulated Cottrell current, using the indicated methods, with
 D 3

slightly larger). At  D 0:5 EX has not stopped oscillating at the time limit of
unity, which no doubt is the reason that those using EX often choose  at 0.45 [7, p.
794], or somewhere between 0.4 and 0.49 [8–10]. Figure 15.2, on the other hand,
now shows the relative error, still using equal spatial intervals and a time interval
of 0.01 and the five-point current approximation for three implicit methods, all for
 D 3. At this  value, EX is of course unstable but the implicit methods are not. CN
was run with 10 Pearson pre-steps to damp out its oscillations, and BI was coupled
with second order extrapolation; three-point BDF was used with the rational start,
that is, starting with a single BI step. All three methods quickly converge to a very
small relative error, so that only a short time span is shown, and appear to converge
roughly equally well after some largish swings during the first few steps. This is
seen in the left-hand figure. The right-hand figure shows the values close to T D 1

to compare the methods’ convergence. It was necessary to increase the outer spatial
limit from the usual 6 to 8, because the relative errors are now so small that the usual
limit affects them. We note that CN is the most accurate, closely followed by BDF,
followed by BI/extrap.

In what follows, the issues of consistency, stability and efficiency are addressed.

15.2 Consistency

In the present context we have two intervals: ıT in time, and H in space. A given
discretisation is said to be consistent if, as both of these intervals approach zero,
the discretisation approaches the pde it is meant to approximate. Take the simple
explicit discretisation on equal intervals, in Eq. (5.2), which we rearrange into the
form

C0
i D Ci�1 C .1 � 2/Ci C CiC1 : (15.1)
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The three terms at a small interval away from Ci can be Taylor-expanded around
the value Ci. We have (dropping the index i for the derivatives)

C0
i D Ci C ıT

@C

@T
C ıT2

2

@C2

@T2
C O.ıT3/

Ci�1 D Ci � H
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@X
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where the O.::/ terms indicate where the Taylor series were cut off. Inserting these
in (15.1) and tidying up, this becomes

@C

@T
C ıT

2

@2C

@T2
C O.ıT2/ D @2C

@X2
C H2

12

@4C

@X4
C O.H4/ (15.2)

and it is clear that as both ıT and H approach zero, the equation approaches the pde
we are in fact trying to approximate.

Most discrete approximations that have been mentioned in this book are consis-
tent, except one. This is the DuFort–Frankel method [11], described on page 185 in
Chap. 9. It is stable for all , yet has a consistency problem. Giving Eq. (9.18) the
same treatment as above, one ends with

@C

@T
C ıT2

6

@3C

@T3
C O.ıT3/ D @2C

@X2
C H2

12

@4C

@X4
� ıT2

H2

@2C

@T2
C O.H4/ : (15.3)

It is seen that again, two of the three remaining Taylor terms vanish as the intervals
approach zero, but the one containing ıT2

H2
does not. As pointed out by Shih [12]

and Strutwolf [13], what is happening here is that the approximation is consistent
not with the parabolic pde, but with a hyperbolic one instead. For large  (leading
also to large ıT2

H2
), the DuFort–Frankel method is not suitable for the simulation of

parabolic problems. The method has been suggested [14] for use in electrochemical
simulations but since Rudolph [15] pointed out problems with it, it has not been
used again in electrochemistry (as far as we know).

15.3 Stability

The stability of a given simulation method can be defined rigorously mathematically,
or more loosely. A loose description might be that given in Smith [16, p. 47], namely
that the amplification of initial conditions be limited. This means that if, due to
truncation or roundoff, there be errors in, say, the concentration values at a given
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step, these errors are not amplified without bound in subsequent steps. There are
various categories of stability, to be seen in the relevant texts [1, 16, 17] (to cite only
three of a multitude of such texts). Below, a rather brief and less technical treatment
will be given than is provided in these texts. Several methods for determining
stability are described, and some special conditions that can affect stability.

From the range of methods for determining stability of a given algorithm such as
EX, CN, BI or BDF, etc., this chapter restricts itself to the heuristic, the Neumann
and the matrix methods, as well as a fourth that makes use of the stability function.

Stability can be divided into a number classes. We refer to conditional and
unconditional stability. EX is a conditionally stable method, because there is a
restriction on the value of , whereas CN and Laasonen are unconditionally stable.
There is, however, a difference between their stabilities. Dahlquist [18, 19] and
Henrici [20] refer to weak and strong stability. This has since been tightened to a
number of sub-cases of stability, with a rough division between those methods that
show A-stability and those that show L-stability. For more details, see such texts
as Smith [16] and Hairer and Wanner [21]. Here it will suffice to describe them in
less detail. Methods that are A-stable (such as CN) have some error propagators
close to (but less than) unity in magnitude for large  (for error propagation, see
the Neumann method, below). L-stable methods, on the other hand, have error
propagators that all approach zero as  grows larger. Laasonen (BI) is one such
method. One prefers methods to be L-stable.

15.3.1 Heuristic Method

Lapidus and Pinder [1] describe the simplest of all stability determinations and call
it the heuristic method. With this method, one tries to compute a few steps in time
from a perturbation in initial conditions, and sees how the perturbation is propagated
after a number of steps. In Fig. 15.3, the explicit method is used, Eq. (15.1), setting
 D 0:5. At some time level NıT, an error is placed at a point along X in Fig. 15.3,
following Dahlquist [22, p. 386] (the value unity planted among a row of zeroes).
Points marked in the figure without numbers are assumed to have zero values. It
is seen that in subsequent steps after the Nth, the error is spread along X, but with
decreasing magnitude. It is known that for  � 0:5, this method is stable, and the
figure suggests this. Now consider Fig. 15.4, where the same calculation has been
done using  D 1. Obviously, the error is quickly amplified, and the method is
unstable.

Planting a perturbation in a simulation can be a useful way of testing the stability,
especially under special conditions.
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Fig. 15.3 Propagation of a single error for EX with  D 0:5

Fig. 15.4 Propagation of a single error for EX with  D 1

15.3.2 Von Neumann Stability Analysis

A more analytical method of stability analysis is the method of von Neumann [23,
24] (note that [24] is mostly incorrectly cited as being of the year 1951 [25]). The
method focusses on an interior point along X in the grid and looks at the propagation
of an error at that point, making certain reasonable assumptions, using Fourier series
(which is why the method on occasion is called the Fourier series method).

We need first to develop an argument that allows us to separate concentrations
from their errors. Let the vector C of concentrations along a space coordinate X be
the sum of a vector OC of exact values, with an error vector – added:

C D OC C – : (15.4)

We are interested in what happens to the errors, and the linear nature of (15.4)
allows us to subtract the concentrations out of the diffusion equations, leaving only
the errors. These have simpler boundary conditions; for example, errors far away
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from the electrode are zero. This simplifies the form of the equations describing the
changes in errors. The diffusion equation for the errors is then

@�

@T
D @2�

@X2
(15.5)

with either a Dirichlet or derivative (Neumann) boundary condition at the electrode,
and �.X ! 1/ D 0. The equation is discretised, using equal intervals, at the point
with index i, as usual. For example, using method EX, we have

�0
i D �i C  .�i�1 � 2�i C �iC1/ : (15.6)

Two substitutions are now made. Firstly, it is assumed that at a given point, the value
of � there changes with time in a general exponential manner,

� D �0 e˛T (15.7)

in which ˛ is some complex constant and �0 is an initial value. Setting, for
convenience, exp.˛ıT/ D �, so that we can substitute for �0, as in

�.T C ıT/ D � �.T/ : (15.8)

� is an amplification factor, and the object of the exercise is now to find out under
what conditions it is less than unity in magnitude, which is the condition for stability.

The other substitution is for the whole vector of errors, which is expressed as a
Fourier series along the space coordinate (N points along X):

�.X/ D
NX
iD0

aiejˇiXi ; (15.9)

where Xi D iH; i D 1 : : :N and ˇi are “frequencies” as inverse intervals along
X, j here being the imaginary number

p�1. The coefficients ai are unknown. The
error vector is thus a sum of a number of Fourier components, and we can limit our
view to any one of them. Writing simply ˇ for any one of the range of values, and
substituting both (15.8) and (15.9) in (15.6), we have for the point at index i, going
from time step k to k C 1,

�kC1ejˇiH D �kejˇiH C �k
�
ejˇ.i�1/H � 2ejˇiH C ejˇ.iC1/H

�
(15.10)

(taking the common �k term on the right-hand side outside the bracket). Division by
�k and ejˇiH produces

� D 1C 
�
e�ˇH � 2C eˇH

�
(15.11)
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leading to

� D 1 � 4 sin2
�
iˇ

2

�
: (15.12)

Since the maximum value for the sin2 term is unity, this equation leads to the
condition for j�j � 1, that  � 1

2
. This is the well-known  limit for the method EX.

Repeating this for the method BI, where the discrete equation at point i is

�0
i D �i D 

�
�0
i�1 � 2�0

i C �0
iC1
�
: (15.13)

leads to

� D 1

1C 4 sin2. iˇ
2
/

(15.14)

which satisfies the stability condition for all values of . What is more, the greater
 is, the closer � approaches zero.

A similar analysis for CN results in

� D
1 � 2 sin2

�
iˇ
2

�

1C 2 sin2
�
iˇ
2

� (15.15)

which also sets no limits on , fulfilling the condition. In this case, however, as 
increases, � ! �1, which explains the oscillatory behaviour of the method CN.

This sort of analysis can be applied to other methods. Britz and Strutwolf [26]
applied it to the BDF method using five-point discretisation along X, and, also
for five-point approximations, Strutwolf and Britz [27] applied it to extrapolation.
For a multilevel method such as BDF, the analysis results in a polynomial in �,
and complex roots are possible. For example, Lapidus and Pinder [1] treat the
Dufort/Frankel method; it results in a quadratic equation in � but it is clear that
it is unconditionally stable (even though we have seen that it is not consistent).

15.3.3 Matrix Stability Analysis

The von Neumann method described above usually works well, and is reasonably
easy to apply. One reason it works well, despite the fact that it totally ignores
conditions at the boundaries, is that errors often arise at interior points away from the
boundaries and spread from there [private communication with O. Østerby, 1996].
However, boundary conditions can affect stability, especially if there are derivative
(or mixed) boundary conditions [28–32]. It might be safer to consider all points in
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space in some way. The following somewhat brief treatment is described in greater
mathematical detail in such texts as Smith [16] or Lapidus and Pinder [1].

15.3.3.1 Using Eigenvalues

Equation (15.5), when discretised for, say, a potential jump experiment (Cottrell),
gives rise to a system of odes, depending on the method of discretisation used. For
example, using the EX method, we have for the ith equation

�0
i � �i D 

�
�i�1 � 2�i C �iC1

�
(15.16)

and recalling that at the electrode and the outer boundary in the bulk, � is zero, we
can write the whole system (15.16) in the form

–0 � – D A– (15.17)

with concentrations (or errors) now represented as vectors, and A being the matrix
of coefficients, in this case given by

A �

2
666664

�2 1

1 �2 1
: : :

: : :
: : :

1 �2 1

1 �2

3
777775
: (15.18)

The equation can be rearranged explicitly for –0,

–0 D P– (15.19)

with

P D ŒI C A
 : (15.20)

One way of describing the simulation is as a series of multiplications of the error
vector with the propagation matrix P. The matrix method of stability analysis
focusses on P and its effect on the whole error vector. That vector must not grow
without limit, and to ensure this, there are some related conditions. One of them
is, that that eigenvalue of P having the largest magnitude must not exceed unity in
magnitude. In fact, in this particular case (see Smith [16] or any similar text), the
eigenvalues are known in analytical form, and this leads again to the condition on
, that is,  � 0:5. Not all cases of simulation methods lead to propagation matrices
with analytical eigenvalues, and in these cases, they must be found numerically.
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They can be complex, as is the case, for example, for methods like BDF using 3 or
more points. Some examples are now given.

One convenient way to illustrate stability is to plot the eigenvalue of maximum
magnitude in the complex plane for a number of  values. This provides the so-
called spectral radius of the method. In the following examples, a value of N D 20

was used throughout. The actual number of spatial points makes little difference
to the look of the diagrams to follow, and the chosen value was small enough for
short computation times. Generally, the range of  was chosen as 10�6 �  � 106,
in a geometric sequence, except for method EX, where the range was narrowed
to around the stability limit, 0:49 �  � 0:51. Consider Fig. 15.5. Maximum-
magnitude eigenvalues were calculated for matrix P as in (15.20). The points on
the right of the figure are those for  up to (and including) 0.5. For greater values,
the eigenvalues jump to the negative real end and fall outside the unity circle. That
is, in the parlance of numerical analysis, the spectral radius exceeds unity. This
means that errors will increase in magnitude, and also oscillate as they do so. This
is exactly what one sees in practice, where increasing oscillations in concentrations
are observed.

A method known to be stable is BI. The discretisation for the errors is

�0
i � �i D 

�
�0
i�1 � 2�0

i C �0
iC1
�

(15.21)

which forms the system

ŒI � A
�0 D P– (15.22)

leading to the propagation matrix

P D ŒI � A
�1 : (15.23)

Fig. 15.5 Maximum
absolute eigenvalues for EX
for 0:49 �  � 0:51
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Fig. 15.6 Maximum
absolute eigenvalues for BI
for 10�6 �  � 106
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Fig. 15.7 Maximum
absolute eigenvalues for CN
for 10�6 �  � 106
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Figure 15.6 shows the spectral radii for this, for the range 10�6 �  � 106, in a
logarithmic sequence. For increasing  the points move from right to left in the
figure, towards the centre (0,0). All eigenvalues are real, and all fall inside the
unit circle, confirming the stability of BI. Since the eigenvalues approach zero with
increasing , errors will be damped more effectively for high  values.

Another method worth considering is CN, and Fig. 15.7 shows the result. Here,
discretisation is

�0
i � �i D 

2

�
�0
i�1 � 2�0

i C �0
iC1
�C 

2

�
�i�1 � 2�i C �iC1

�
(15.24)
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which forms the system

ŒI � 

2
A
–0 D ŒI C 

2
A
– (15.25)

leading to the propagation matrix

P D ŒI � 

2
A
�1ŒI C 

2
A
 : (15.26)

Again, for small  values, the points move from the right, being close to unity,
towards the left. Unlike with BI, however, they do not approach zero but at some
 value, depending on N, they cross to the negative side and approach �1. This
underlines the oscillatory behaviour of CN, especially for large .

The methods considered above all show purely real eigenvalues. One method for
which they are complex is BDF. For three-point BDF, the discretisation is

0�i � 4�i C 3�0
i D 2

�
�0
i�1 � 2�0

i C �0
iC1
�

(15.27)

(recalling that 0� stands for �.T � ıT/). This is a slightly more complex situation.
The system can be written in vector-matrix form as

Œ3I � 2A
–0 D 4– �0– (15.28)

and clearly, propagation is now not simply a matter of multiplying a single vector
by a propagation matrix; we have two old vectors to deal with, 0– and –. First we
write (15.28) in the usual form,

–0 D Œ3I � 2A
�1.4– �0–/ : (15.29)

which we write, letting B D Œ3I � 2A
�1, as

–0 D B.4– �0–/ : (15.30)

This will be needed later. We now need another equation. First, consider that when
using BDF, we calculate the new vector from the two old ones, and the previous
present one becomes the previous older one. This can be expressed as a vector of
vectors operation. Let the new double-length vector e � Œ– 0–
T , consisting of the
two known vectors, and the new one, e0 � Œ–0 –
T , the present one and the new
one, to be calculated. To express this mathematically as a propagation from e to e0,
we need one more equation, and augment system (15.29) to the system of systems

e0 D B.4– �0–/

e D e : (15.31)
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The seemingly redundant second equation now enables us to write this in matrices-
in-matrix form:

�
e0� D


4B �B
I 0

�
e (15.32)

where clearly the propagation matrix P is the 2 � 2 matrix of matrices. This can
be expanded into a larger 2N � 2N matrix, and eigenvalues computed. Figure 15.8
shows the result. As with BI, the eigenvalues for small  are at the right of the
figure, close to unity and real initially and move left as  increases. At some 
value, depending on N, the eigenvalues become complex and pair up into complex
conjugates, following, with increasing , a circular path towards the centre of the
circle. So, as for BI, high  means effective error damping, but the damping factor
is complex. Complex propagation factors imply the possibility of oscillations with
periods perhaps of several time intervals. For higher-point BDF variants, the points
do not follow a circular path, but pairs of arcs with increasing magnitude, with
some values in the left-hand plane; and eventually, for more than 7 points, reaching
outside the unit circle, indicating instability [33].

This illustrates how diagrams of spectral radii can provide information on the
stability of a given method.

So far, the analysis has been for the Cottrell method. It is of interest to see how
it changes for derivative boundary conditions. This only changes a single line in
the discrete system of equations. For constant current, for example, we might use a
two-point expression

�1 � �0 D 0 (15.33)

Fig. 15.8 Maximum
absolute eigenvalues for
three-point BDF for
10�6 �  � 106 (N D 20)
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(there is no current for errors at the electrode) or

�0 D �1 (15.34)

and this changes the first equation for EX to

�0
1 D �1 C .�1 � 2�1 C �2/ (15.35)

which makes the corresponding coefficient matrix

A �

2
666664

�1 1

1 �2 1
: : :

: : :
: : :

1 �2 1

1 �2

3
777775
: (15.36)

The analysis is otherwise the same, but the effects are not, as will be discussed
below. Extension to a greater number of points to express the derivative is obvious.

15.3.3.2 Using the Matrix Norm

A different but mathematically equivalent way to perform the matrix analysis is to
use matrix norms rather than eigenvalues. Smith [16] states that the condition for
all eigenvalues not to exceed unity in magnitude is equivalent to the demand that
the infinity norm of the propagation matrix P does not exceed unity. That norm
can be more easily computed than eigenvalues. In fact, all norm definitions can be
used for this purpose. The infinity norm of a matrix is defined as the largest of the
sums of the moduli of the row values. So this is another criterion for stability. It
is, however, a little more complicated than the use of eigenvalues. For a method
such as BI, we find that for all  values, the norms are a little less than unity.
For CN and BDF3, however, the norms can be greater than unity and this might
cause concern. However, a slightly more relaxed condition for stability is that the
norms of increasing multiples of the propagation matrix do not increase indefinitely.
The limit of this series of norms may be greater than unity, but it must exist. If
this condition holds, then errors will not build up indefinitely, and the method is
stable. Such norms exceeding unity have been found for certain electrochemical
simulations [31], for CN under mixed boundary conditions. So, although norms are
easier (and faster) to compute than eigenvalues, their use is not as straight-forward
as the use of eigenvalues.
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15.3.4 Some Special Cases

There are some special conditions in electrochemical simulations that have an effect
on stability.

Bieniasz and Britz [34–37] investigated the effect of the presence and rate of
homogeneous chemical reaction (hcr) accompanying electron transfer and found
some effects. Writing � D KıT (K being the dimensionless first-order hcr rate
constant as in Chap. 5, Eq. (5.12)), Bieniasz found [36] that for method EX, using
the parallel discretisation as in (5.13), the upper permissible  value for stability
decreases linearly with �, and reaches zero for � D 2. For larger � values and this
discretisation, EX is always unstable. For the sequential discretisation (see Sect. 5.4,
page 93 and Appendix C, page 455), in which the chemical reaction is allowed to
act on concentrations that have undergone diffusional changes, the situation is more
complex but the same upper limit on � holds. A similar stability decrease and the
same limit on � was found for explicit RK. Stable methods such as CN or Saul’yev
were unaffected by a hcr in the sense that they remained stable for all � values.
These findings were then confirmed numerically [37].

Another factor affecting stability is a derivative boundary condition. Keast
and Mitchell pointed out potential problems with CN in this regard [32], and
investigations in the electrochemical context revealed some problems with methods
otherwise thought to be unconditionally stable, such as CN and Saul’yev [28–30].
The CN method was found to become unstable for  > 4 if a heterogeneous
rate constant setting a derivative boundary condition decreased with time [28], as
happens, for example, in linear sweep experiments on a quasireversible system.
Also, certain (unusual) ways to discretise the derivative boundary conditions can
render CN unstable [31]. Fortunately, these effects are seen under somewhat extreme
conditions; indeed, they are difficult to demonstrate numerically, so they might be
considered of only academic interest.

15.4 The Stability Function

Another way of investigating stability, that at the same time provides information on
the behaviour of a given method, is what Gourlay and Morris [38] call the symbol
of the algorithm, also called the symbol of the method [16] or, more logically
perhaps, the stability function [17]. The various authors employ various ways of
expressing the function (or symbol), all equivalent. It is developed from Padé
approximations to the general solution of the diffusion equation. Equation (15.5)
can be semidiscretised to the system of odes as

d–

dT
D 1

H2
A– (15.37)
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with A defined in (15.18) for the Cottrell experiment. At this stage, a particular
simulation method, that is, a time-integration algorithm, has not been specified. The
general solution of this, analogously with the plain ode y0 D �ay is

–.T/ D exp. T
H2

A/ (15.38)

where the exponential is understood as its series definition, for some matrix M,

exp.M/ D I C M C M2

2Š
C M3

3Š
C : : : : (15.39)

This leads, for a given step of length ıT, to the solution

–0 D exp.A/– : (15.40)

It is at this point that the various Padé approximations to the exponential functions
come in. One of them is simply the sequence on the right-hand side of (15.39) cut
off after the first two terms, producing the propagation equation,

–0 D .I C A/– (15.41)

which is clearly the method EX, and the truncated series is the (0,1) Padé approx-
imation. Smith [16] tabulates a number of these approximations. For example, the
(1,0) variant generates

–0 D 1

.I � A/
– (15.42)

which is seen to be the BI method. There are a number of approximants, the (1,1)
one leading to CN. The various algorithms have in this way been unified under one
system.

The next step is to consider the eigenvalues of A in the propagation formulae
such as (15.41) and (15.42). These are all negative, and we set z D �! following
Gourlay and Morris [38] and Strutwolf and Schoeller [39], where ! are the
eigenvalues, all negative. Since �! can have any value greater than zero, we can
dissect a particular propagation equation in terms of z. Thus, for method EX, we
have for the stability function R.z/,

R.z/ D 1 � z (15.43)

which decreases linearly with z and goes below �1 for z > 2. For a maximum
magnitude eigenvalue equal to �4 (which is the case), this goes back to the known
stability criterion  � 0:5.
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For BI, (15.42) becomes the stability function

R.z/ D 1

1C z
(15.44)

and for CN (using the (1,1) Padé form [16]), it is

R.z/ D 1 � z
2

1C z
2

: (15.45)

An interesting case is extrapolation, and we consider the simplest variant, the
second-order case. It is a number of steps using BI. First one takes two successive
steps with half step size, and subtracts from twice the result of this the result of one
whole step. Thus, we can directly write [39].

R.z/ D 2�
1C z

2

�2 � 1

1C z
(15.46)

which expands to

R.z/ D 1C z � 1
4
z2

1C 2z C 5
4
z2 C 1

4
z3
: (15.47)

Figure 15.9 shows the result for the three methods BI, CN and second-order
extrapolation. Note first the smooth but rather slow decline to zero of BI. Note next
that CN crosses zero at some z, and therefore, some , and approaches �1 for large
arguments. This illustrates what we know about CN, that is it becomes more and
more oscillatory for large . Finally, second-order extrapolation also crosses zero,
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1

0 10 20 30 40 50
z

BI

extrap-2

CN

R(z)

Fig. 15.9 Stability function R.z/ for the marked methods
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but then approaches zero again, and of the three methods, it converges most rapidly
to zero. This is an attractive feature. It remains to be seen, however, how the method
compares with others in terms of efficiency.

15.5 Accuracy Order

In other chapters, the order of accuracy of various methods is referred to. Here this
concept is defined and two methods of calculating the order are presented.

A simulation results in a number (or a vector of numbers) at some time.
Depending on the dimensionality of the problem, the simulation uses intervals in
time ıT and one or more space intervals. Often there is only one space interval, here
given the symbol H. A result—a current, or a concentration, for example—will, due
to truncation errors, have an error associated with it, that can be expressed in the
following way. The discussion is, for the moment, restricted to an ode with interval
size h. Then the simulated result at time t can be written as a polynomial

u D Ou C a h C b h2 C : : : (15.48)

where Ou is the underlying true solution (known or not, see below), and a; b; : : : are
constants. For a given method, the polynomial will be dominated by a certain power
term. Let this term be the power p, so that the above equation can be written as

u D Ou C O.hp/ : (15.49)

The number p is of great interest, more so than the constants, which are generally
unknown and are usually unimportant when deciding on a given method. This is
because high order accuracy means that if we decrease h, we dramatically improve
the accuracy. Conversely, this is not the case for a small p. So, first-order methods
such as EX or BI mean that we must decrease the intervals greatly in order to achieve
some target accuracy, implying perhaps unacceptable computing time. However,
this is not always the only criterion; a given high-order method might require so
much computing time, that a lower-order method is preferable.

15.5.1 Order Determination

There are two ways of determining the order of a method, depending upon whether
we have an exact solution to compare with, or not.

If we know an exact solution, Method 1 is used. First a result u1 is calculated,
using interval size h. From (15.48), we have

u1 D Ou C a h C b h2 C : : : : (15.50)
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The simulation is then repeated at a new interval size, ˛h, so that the new result is

u2 D Ou C a˛ h C b˛2 h2 C : : : : (15.51)

Usually, ˛ is chosen equal to 2. We can now calculate errors associated with the
approximate solutions,

e1 D u1 � Ou D a h C b h2 C : : : (15.52)

and similarly for e2. Dividing e2 by e1, we have

e2
e1

D a˛ h C b˛2 h2 C : : :

a h C b h2 C : : :
: (15.53)

If the dominant term is that with h, the ones in higher powers can be dropped and
we get

e2
e1

� ˛ : (15.54)

If the dominant term is that in h2, all others are dropped and we get

e2
e1

� ˛2 : (15.55)

The order, expressed as the power in h, is then equal to log˛.e2=e1/. As mentioned
above, usually the factor 2 is conveniently chosen for ˛.

If we do not know an exact solution, we can still estimate the error order by
Method 2, as described by Østerby [40]. We must use one more interval size, ˛2h.
We then have a third result:

u3 D Ou C a2˛ h C b˛4 h2 C : : : : (15.56)

Instead of using errors (we do not know them), we use

u3 � u2
u2 � u1

D ˛.˛ � 1/ ah C ˛2.˛2 � 1/ bh2

.˛ � 1/ ah C .˛2 � 1/ bh2
(15.57)

and again, we obtain the factor ˛ for a first-order result and ˛2 for a second-order
result, etc. The unknown exact solution is subtracted out in this process. Often, this
method yields less clear results than the first method requiring only two simulations,
particularly if the actual errors are large.

In the preceding, only a single interval has been considered. In electrochemical
simulations, there are at least two: in time and space; and there may be more, if
the simulation is in more than one dimension. In such cases, the various intervals
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might affect the accuracy to different orders. Thus, both methods EX and BI have
concentration accuracies of order O.ıT;H2/, while CN has O.ıT2;H2/. It is clear
now that EX and BI lack a high-order time derivative. It is also clear that the order
does not tell the whole story; we know that CN has a higher accuracy order than both
EX and BI, but we also know that it is oscillatory for the first so many steps. The
order tells us nothing about this. When measuring the order of a method with several
different interval sizes, one must (obviously) not only vary the one being measured,
keeping the others constant; one must also ensure that the other interval sizes are
rather small, so that the accuracy of the result is not limited by them. Otherwise, the
order calculation will not be as clear.

One might also suspect that a higher-order method might still have large
errors compared with some lower-order method, because we ignore the polynomial
constants, and they are surely different for different methods. This is so but in all
practical cases, the constants do not affect the accuracy as strongly as the order
itself, so a higher-order method always leads to smaller errors. It might, however,
do so at the expense of more computing time, and this is gone into next.

Another aspect is that of starting a given method with another. For example,
one way to start BDF is to use BI for the first step. A single BI step (see
Chap. 3) is second-order accurate with respect to the time interval. The next step
is BDF3 (three-point BDF), and so on. One might expect that the second-order
error introduced by the first BI step can be “diluted” by subsequent higher-order
steps. However, this is not so. Normally, the largest errors appear at the start of a
simulation, and remain to contaminate the result. So the described procedure, the
rational start, yields second-order accuracy, no matter what order BDF one uses.
This is why, when using this start, one might as well use three-point BDF. Higher-
order BDF forms do not improve the result, as is seen in Table 15.1. In that table, the
simple ode, y0 D �y was simulated, using 100 steps of interval size 0.01. Four ways
of handling BDF were used: the simple start without any time correction (“simp”);
the simple start with correction by half a time interval (“simp+”); the rational start,
working up from BI as described (“rat”), and lastly, adapting the Kimble and White
(KW) method to provide a high-order start, as described on page 76. The orders
were calculated using Method 1. Method 2 was also used and gave the same results.
The actual errors are also shown. The same problem was then simulated using
extrapolation (here meaning specifically BI with extrapolation) with orders 2 : : : 4,
as described in Sect. 4.9 on page 72, with the same interval size and number of steps.

Table 15.1 Error orders for some BDF starts, for the ode y0 D �y

Start k D 2 (BI) k D 3 k D 4 k D 5

simp 1.00 (�2.7) 1.01 (�2.7) 1.00 (�2.7) 1.00 (�2.7)

simp+ 1.99 (�5.2) 2.01 (�4.7) 1.98 (�5.1) 2.00 (�4.1)

rat 1.00 (�2.7) 2.00 (�4.8) 1.99 (�4.6) 2.00 (�4.6)

KW – (�2.3) 1.98 (�4.9) 3.00 (�7.0) 3.97 (�9.1)

The numbers in brackets are the log(abs(errors))
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Table 15.2 Calculated
orders for the ode y0 D �y
using extrapolation at various
orders and log(abs(errors)) in
brackets

Extrapolation order Accuracy order (error)

2 1.99 (�5.2)

3 2.99 (�7.6)

4 3.97 (�10.2)

Table 15.2 shows the results. In Table 15.1, there is one anomaly, for BI (k D 2)
with the time correction. This is not expected to be a good method but turned out
second-order accurate with a comparatively very small error. This must be regarded
as fortuitous, due to time-varying time shifts [41] and perhaps to the particular ode
used as test case. The other results are as expected. Note the order 2 for the rational
start for all orders BDF, and the impressive high orders for KW, and corresponding
increasingly smaller errors, for the KW start. Note also that the calculated orders
are not exact integers, due to some uncertainties, or due to terms other than the
dominant order terms playing a small part. Table 15.2 also shows expected results,
and shows that extrapolation at high order results in conveniently small errors.

Finally, for two-dimensional (UMDE) simulations, Gavaghan found [42] an
O.h1=2/ for errors in concentration at edge points.

15.6 Sensitivity Analysis

Very briefly, this rather large subject in the general area of chemical kinetics [43–45]
was carried into electrochemistry in the studies by Bieniasz et al. [46–48]. It asks
the question, when fitting some parameter to a proposed mechanism by means of
simulation using some simulation output (concentrations or current or some other
result), how sensitive to the changes in the output is the value of the fitted parameter.
This is expressed in the form of a sensitivity function s. If the simulation yields, for
example, an array of concentrations c.x; t; p/, where x are positions in space, t the
time (which may enter the problem) and the parameter(s) p, then the function is
defined [46] as s D @c=@p, which is an expression of the sensitivity to changes in
concentration. This can be useful in estimating the reliability of fitted parameters by
a series of simulations. This subject will not be persued further here.

15.7 Accuracy, Efficiency and Choice

We come now to the choice of method. There are no hard and fast rules here, the
final choice depending to a large extent on personal preference and the inclination
towards programming. Computers are now so fast that all but hard simulation
problems such as CVs of, say, 2D problems or 3D problems execute in a very
short time—usually just a few seconds. In such a case, the main bottleneck will
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be the programming itself, including finding the initial programming errors. If a
given method results in a savings of a second or so, it might not be worth the extra
effort in terms of paper work and programming. However, there are some rough
guidelines we can provide here.

First of all, we must be clear about what we mean by accuracy, or what we wish
to be accurate. Usually, the result of a simulation is a current function of time, so
one argument might be, that we do not care about concentrations, but the current
must be accurate [49]. There is the possibility of error cancelling, which can lead
to small errors in a current, while the concentration errors are larger (in a relative
sense). This may not be reliable for all parameter choices. Empirical adjustments
have also been known. Thus, Feldberg in his seminal chapter [9] introduced the
doubtful device of subtracting half a time interval from all t values in a simulation
using the box method (EX). Although there was—and is—no justification for this, it
seemed to give better results. The practice has been followed by others, for example
in the text of Bard and Faulkner [7], as a sort of tradition. If one uses better methods
than explicit, then it becomes clear that this device is not appropriate—except in
the case of BDF, using the simple start. In their original work on the BDF method,
Mocak and Feldberg advocated the subtraction of half a time interval. This was
examined in some detail [41, 50], and it was found that it indeed leads to a dramatic
improvement in accuracy (see also Table 15.1). This indicated that there was in
fact a justification for the device, and it was then shown to be so [51, 52]. This
is a remarkable coincidence, and the only case in which this device is reasonable.
For other cases such as method EX the device must be regarded as an empirical
adjustment, and positive results from using it as fortuitous.

The numerical solution produces concentration values, and one must therefore
strive to obtain as accurate values for these as possible, so that currents calculated
from them might also be accurate. Bieniasz now makes a practice of showing
errors across the whole concentration profile, when reporting a new simulation
method [53–55], or at least a few samples from the profile [56].

Accuracy alone is not a sufficient criterion for a good method, however. One can,
for example, usually drive method EX to any target accuracy, by simply refining
the time and spatial intervals sufficiently. The result may then require excessive
computer time, but not always. The target accuracy itself is subject to discussion.
It must be kept in mind that the computed currents are normally compared with
experimentally measured values, in order to obtain some experimental parameters.
The measurements can rarely be carried out with better than 1 % accuracy, because
they rely on components such as resistors, etc. which have, at best, that level of
accuracy. So one might set a target accuracy at a relative 10�3. Then, one measures
the computing time needed to achieve that target accuracy. The most efficient
method is then the one using the least computing time. This will rarely be the method
that provides the best accuracy for a given space/time grid. For example, the KW
start for BDF (see Table 15.1 and Sect. 4.10.1) clearly provides a high-order start
and results in impressively small errors for the higher-order BDF variants. However,
applied to electrochemical digital simulation, it was found to be inefficient [50],
and it was found that for BDF, the most efficient method is the simple start with



15.7 Accuracy, Efficiency and Choice 411

subsequent subtraction of half a time interval. Thus, we seek efficient methods that
minimise computing time for a target accuracy.

Another factor is programming effort, including planning on paper. The KW start
mentioned above is a case in point. It is not trivial to implement for a pde in a
computer program, and we might consider ourselves lucky that it was shown to
be inefficient. The same might be thought of the Rosenbrock methods, which are
less easy to program than, say, BDF or the extrapolation variants, and also for OC.
This is to a large extent subjective. Someone who has worked with these harder
methods such as Rosenbrock and OC might not consider them hard to program, and
will then achieve good execution efficiency from them, whereas others will stick
to easier methods. Here, the discussion will be restricted to a chosen few methods,
regarded, by the present authors, as good compromises between programming effort
and efficiency.

CN is not among this group. As described earlier in Chap. 8, CN leads to initial
oscillations. These can be damped by several devices [3, 6], but these are either
not very effective, or demand increased programming effort. Thus, the Pearson
method [57], in which the first step is simply subdivided into a number of equal
substeps such that each one corresponds to a  value of around unity, will obviously
mean very many substeps for large , although it is easy to implement from a
programming point of view. Less easy is the use of unequal substeps, but here
some experience is necessary in order to choose the most suitable expansion
factor [3] (and may necessitate an LU decomposition at every substep). Lastly,
the effective device of taking one or more steps using BI, then following with
CN as suggested [3, 58], necessitates the addition of the BI method to a given
CN program. Some might consider this too much effort. Given that there are other
implicit methods, as easy to program as CN, that are also as efficient, we can exclude
CN from our menu of choices.

The two methods that stand out in terms of efficiency and convenience are BDF
and BI with extrapolation. Both require minimal programming effort, and can be
extended to higher-order spatial derivatives. However, in the case of BDF, a limit
is encountered. For the most convenient start-up methods such as the simple or the
rational start, the accuracy from BDF is limited to O.ıT2/. This means for one
thing that one need not go beyond three-point BDF (which is O.ıT2/ in itself),
but that no marked improvement can be gained from higher-order spatial derivative
approximations, because there will then be a mismatch between the accuracy orders
with respect to the time and spatial intervals.

BI with extrapolation does require extra concentration arrays (as does BDF) lead-
ing to less convenient programming, but higher-order extrapolation can rather easily
be achieved, and thus the use of higher-order spatial derivative approximations can
be used to advantage.

It has been found by numerical experiment [50] that these two methods are about
the most efficient, when combined (especially in the case of extrapolation) with
higher-order spatial derivative approximations. The variants found to be best are
three-point BDF using the rational start or the simple start and with subtraction of
half a time interval, and extrapolation, possibly with the higher spatial derivative
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orders. We find the simple start for BDF a little awkward however, as it produces
values at offset time points, so we prefer the rational start with BI for BDF. This is
a matter of choice.

A single example of a comparison is now presented. The Cottrell system was
simulated, using unequal intervals with 40 points and a smallest spatial interval
equal to 0.01. This gives an expansion factor � of 1.11, quite moderate. Two
simulation methods were chosen. Second-order extrapolation was chosen, being
quite simple to program, as well as second-order BDF, using the rational start. The
simulation was run with various time intervals (expressed as NT , the number of
steps to T D 1), and the error in the current at that time measured, as a three-
point approximation on the nonuniform grid. The second spatial derivative was
approximated by a four-point formula, which allows the use of a modified Thomas
algorithm, see Sect. 8.4 on page 151. In the figures, this is given as the logarithm of
the relative absolute error. That is, if the simulated current be isim and the analytically
known value be ianal, then what is plotted (marked in the figures as "log|err|")
is the quantity log10 ..isim � ianal/=ianal/. Figure 15.10 shows the results. Note that
both curves show a similar accuracy at small NT . If one measures the gradient there,
it verifies the expectation of an accuracy order of O.ıT2/. However, extrapolation
then shows a sharp dip, followed by an approach to a constant error. The dip is due
to the actual error crossing the zero line. BDF simply flattens out and approaches
a slightly smaller constant error. This arises because with decreasing time intervals
per step, the error from the second spatial derivative approximation makes itself felt
more and more. The curve for BDF does not show the dip. Looking at the two
curves, one might consider both methods as roughly equal, BDF perhaps being
a little better, in terms of accuracy. However, what interests us is the computing
time (cpu) used. This was also measured and is shown in Fig. 15.11. The times are
very short, measured in milliseconds, so they were measured by letting the working
parts of the programs repeatedly execute a sufficient number of times, so that an
accurate time could be measured. Now a difference is noted: for very small NT the
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Fig. 15.10 log10 ..isim � ianal/=ianal/ vs NT for BI with extrapolation and BDF (both second-order)
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Fig. 15.11 log10 ..isim � ianal/=ianal/ vs cpu time for extrapolation and BDF (both second-order)

two methods reach the 10�3 mark at about the same cpu time, but for larger NT

BDF is more accurate and BI/extrap never reaches 10�4. This low error level might,
however, be uninteresting to most. If we choose some target accuracy, for example
10�3 or �3 on the log-scale, then both methods are equally good.

15.7.1 Determining Accuracy

If we do not have an analytical solution, but still wish to estimate the error of a
simulation, convergence runs might be the answer. Having established that a given
program works (see the next chapter), it can be run with increasingly finer intervals
in both time and space until the results do not change significantly further, and use
these values as a standard. This was done for the diffusion limited potential step
simulation at an ultramicrodisk, ultramicroband and a capped or finite cylinder [59–
61], providing tables of reference current values over large ranges of time, from
which values at any time can be obtained by interpolation. The relevant subroutines
are provided in Appendix E. Bieniasz has recently published [62] his method of
solution for currents near a band edge and a band, which can provide values
with machine accuracy, albeit at the cost of extensive computations. This work
was followed by another providing approximation constants, making it possible to
compute such currents in a very short time, with the same accuracy [63].

Another way is what has been called algorithms with guaranteed accuracy, by
estimating the error by a process similar to extrapolation, subdividing intervals and
estimating the error from the change in the output. Nann and Heinze pioneered this
approach for the disk [64] and scanning tunnelling electrochemical microscope [65].
Harriman et al. published a series of papers describing their FEM method doing
this for the disk level with the insulating plane [66, 67], for recessed or elevated
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disks [68], the channel [69] and band [70], as well as the LSV experiment [71], and
Gavghan et al. followed with another study in 2006 [72]. The work of Bieniasz on
his patch-adaptive strategy, estimating the local error by means of repeatedly locally
halving intervals, until the estimated errors all are small enough, falls into the same
category, providing values of approximately known accuracy [73–78].

15.8 Two- (and Three-)Dimensional Problems

The above applies largely to one-dimensional problems, but two-dimensional
simulations are more and more the norm. All the methods described can be applied
to these, but there are some sensible choices. For the ultramicrodisk electrode case,
the present authors have recently done a detailed study and concluded [79] that one
of the more useful transformations such as the Verbrugge/Baker [80] (see Chap. 12
for this and others) is best, combined with multipoint approximations (optimally
using five or seven points), and either BI with extrapolation or BDF with the BI
start.

Another popular method (almost always with a transformation) is ADI, as this
allows solution by a tridiagonal Thomas algorithm separately for the rows and
columns. An ADI variant was also the choice for the three-dimensional problem
of a rectangular electrode [81]. See Chap. 12 for more details.

For more complex geometries in two- and three-dimensional space FEM or BEM
might be a choice, especially if one has access to commercial FEM software such
as ANSYS® or COMSOL Multiphysics®. In any case, for commercial packages,
convergency tests are still necessary to gain insight into the quality of the simulation.

15.9 Summary of Methods

Here, a brief summary is given of all those methods that might be of interest, with
their advantages and disadvantages, as seen by the present authors. References are
not given, as they are provided in the sections of the book that are referred to.

– EX Chap. 5. EX has limited stability and is accurate only to O.ıT/. It is easy to
program, but inefficient.

– Explicit RK: Chap. 4, Sect. 4.5. RK has limited stability and is marginally more
efficient than EX. It is easy to program.

– BI: Chap. 4, Sect. 4.6 and Chap. 8, Sect. 8.1. BI is unconditionally stable but has,
like EX, an accuracy of only O.ıT/. It has a smooth response to initial transients
and can be valuable as a first step before three-point BDF (p. 69) or as one or
more first steps before CN to damp oscillations (p. 148), and is the basis for
higher-order methods such as extrapolation and BDF.
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– CN: Chap. 8, Sect. 8.2. CN has an accuracy of O.ıT2;H2/, and is unconditionally
stable. CN oscillates, however, with initial transients. With large , these
oscillations persist over many steps, rendering CN useless. The oscillations can
be damped (Sect. 8.5.1) but this defeats to some extent the simplicity of the
method. For LSV or chronopotentiometry simulations, however, where no sharp
initial transients occur, this might be a good method.

– BDF: Chaps. 4 and 8. BDF is a stable and non-oscillatory method that can
be driven to higher-orders with respect to the time interval. Realistic starting
strategies reduce the order to O.ıT2/, so the three-point variant is recommended,
using the “rational” start of a single BI step, see Sect. 4.8.1. It is reasonably easy
to program.

– Extrapolation Chap. 4, Sect. 4.9 and Chap. 8, Sect. 8.5.2.2. Like BDF, this is
based on BI driven to a higher-order. Up to O.ıT4/ is feasible to program,
and there are no starting problems. Extra steps are, however, required, and the
preferred second-order method is about as efficient as second-order BDF.

– Unequal intervals Chap. 7. These are essential for most programs. The sec-
ond spatial derivative requires four points if second-order is wanted (and is
recommended). With four-point discretisation, an efficient extended Thomas
algorithm can be used, obviating the need for a sparse solver. Very few points can
then be used across the concentration profile. For two-dimensional simulations,
direct three-point discretisation on the unequally spaced grid was shown to be
comparable with using transformation and discretisation in transformed space.

– Hopscotch Chap. 9, Sect. 9.2.5. Hopscotch is stable and explicit but has the
problem of “propagational inadequacy”, so the ability to use large  values is
lost. Nevertheless, hopscotch continues to be used.

– Rosenbrock Chap. 4, Sect. 4.12 and Chap. 9, Sect. 9.4. It is a stable implicit
RK method, and using ROS2 or ROWDA3, it can be computed explicitly.
ROWDA3 is exceptionally accurate at O.ıT3/ and is especially useful for
nonlinear boundary conditions (e.g. page 203), where it obviates the need for
Newton iterations. Rosenbrock is not, however, trivial to program and might be
best left to programmers of professional simulation packages.

– Higher-order methods Chap. 9, Sect. 9.2.2 for multipoint discretisations. The
four-point variant with unequal intervals is probably optimal; the system can be
solved using an extended Thomas algorithm without difficulty. Numerov meth-
ods (Sect. 9.2.7) can achieve higher-orders with only three-point approximations
to the spatial second derivative. They are not trivial to program.

• DuFort/Frankel Chap. 9, Sect. 9.2.3. It is stable and explicit but inconsistent and
shares the propagational inadequacy problem.

– Saul’yev Chap. 9, Sect. 9.2.4. Saul’yev is stable and is calculated explicitly. If
the RL and LR variants are combined, it produces results equal in accuracy and
order to those from CN, including its propensity to oscillate in response to an
initial transient. So like CN, this might be a good method for LSV simulations.

– OC Chap. 9, Sect. 9.6. OC produces impressively accurate results with only a few
spatial points. It can be regarded as a kind of MOL, and although practitioners
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tend to propose advanced techniques for solving the set of odes, other methods
can be used, such as a Rosenbrock method or BDF. The method is not used as
much as one might expect.

– MOL/DAE Chap. 9, Sect. 9.3. A set of pdes is only spatially discretised, leaving
a set of odes to solve. Adding the boundary conditions then produces a set of
DAEs, usually solved using a professional package such as DASSL. MOL seems
to be more difficult to program than some other methods. It will probably find its
greatest use in general simulation packages.

– Box method Chap. 9, Sect. 9.1. This is the original electrochemical simulation
method. With boxes, most of the above techniques can be applied. There is
an unresolved issue of whether this method is inherently better than the point
method, or not.

– FEM and the like Chap. 9, Sect. 9.5. These are possibly the most efficient
methods for more complex geometries, can be made adaptive to changing
conditions, but are not trivial to program. Commercial packages (not specially
dedicated to electrochemical systems) are available.
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Chapter 16
Programming

In Appendix E selected downloadable example modules, functions, subroutines and
programs are discussed. All have been tested in the form in which they appear.
Nevertheless, this does not guarantee that there are no remaining bugs. The word
“bug” encompasses the spectrum from “cosmetic, of little consequence”, through
“potentially serious under certain input conditions” to “fatal”. The middle of the
spectrum is, of course, the region causing the programmer the greatest trouble.

16.1 Language and Style

There are, at the time of writing, two strong contenders for the choice of a compiled
language for digital simulation programs: Fortran and C, including C++. The
Fortran standard is maintained and extended by an international working group [1]
and recent versions are Fortran 90, 95, 2003 and 2008. Despite the unfavourable
comments computer scientists reserve for Fortran, that language—certainly since
the Fortran 90 standard and especially even later versions—is eminently suitable for
numerical analysis. This is partly because of the large volume of existing Fortran
scientific subroutines (and intrinsic functions), although most of these are now also
available for C and C++. Especially C++ appears to be more powerful but also
harder to learn, and the code is not as readily understandable as that for Fortran
90 and later versions. Most of the past criticism of Fortran is now unfounded.
Thus, one can have structures (collection of different data types under one name),
pointers (enabling linked lists, for example) and recursion, a powerful tool for some
applications. Another very useful feature since Fortran 90 is whole-array operations
and array sections, which make programs more compact (eliminating many loops)
and thus more easily readable. Dynamic memory allocation is supported since
Fortran 90. One might say that Fortran is more for the occasional programmer,
while C++ is more suitable for writing general programs such as packages to solve
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a variety of simulation problems (see Chap. 17). There are free Fortran compilers
available such as gfortran [2], G95 [3] and (at least in the past, free for Linux
operating systems), Intel Fortran 95 [4]. The Fortran 95/2003/2008 compiler of the
GNU project, gfortran, originally developed for Linux/Unix has been ported to MS
Windows and MacOS. Present day Fortran includes object-oriented programming
support such as type extension and inheritance, polymorphism, dynamic type
allocation, and type-bound procedures, providing complete support for abstract data
types. The latest Intel compiler is described [4] as having “Full language Fortran 95,
full Fortran 2003, plus significant Fortran 2008 features”. The present authors have
been using gfortran (JS) and Intel Fortran 95 (DB) for some time.

Other languages can of course be used, such as Pascal or Basic or even
Java, but the former two are rarities in digital simulation these days. There is an
extensive text book on electrochemical digital simulation using Mathematica [5]
by Honeychurch [6]; unfortunately, the book is difficult to access. Batchelor et al.
used Python and Julia [7], both script languages. MATLAB [8] has seen some use,
in conjunction with COMSOL Multiphysics® (formerly called FEMLAB®) [9–14].
Even Excel has been used for simulation [15, 16].

Having decided on Fortran, one strong recommendation is the use only of
standard Fortran as far as practicable. Then, programs will be transportable. The
example programs in the Appendices should all run on any computer with a standard
Fortran 90/95/2003/2008 compiler. A useful text, one of many on Fortran 95/2003,
is that by Metcalf et al. [17].

16.2 Debugging

It is well known that more time is spent correcting programs than actually planning
or typing them in. With very large system programs, it is assumed [18] that some
errors remain, and this is probably true for large simulation packages. However, the
relatively short programs written for single applications by an electrochemist should
be free of errors, and these are mostly rather easy to find.

Syntax errors are flagged by the compiler and are quickly eliminated. When a
program is syntactically correct and compiled (and linked) successfully, it may still
contain errors and these are harder to find. The use of implicit none is strongly
recommended, as it allows the detection of typing errors in variable names. Clearly
structured, modular programming also helps avoid errors or helps to localise them
when they occur.

All variables must be given a value before being used. Some implementations
start a program with all variables set to zero. It is tempting but dangerous to use
this, as other installations leave previous values in all memory locations. Also it
is good practice to set the compiler to checking array bounds. Some compilers
allow a program to go beyond array bounds, and this can cause strange errors that
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are otherwise hard to trace. Checking slows down the program execution, but the
check can be switched off when the program is finally considered correct. This
can be called error prevention. Programming style can also help. There should be
comments explaining the less obvious lines, but not too many, or they will distract.
The use of array sections, whenever arrays are addressed or passed to subroutines,
is strongly recommended. For example, copying one array into another can be done
simply by the statement

D = C

if they have the same declared dimensions, but it is better to explicitly indicate the
index ranges with

D(1:N) = C(1:N)

This may be a little tedious but is good practice.
Finding program bugs is an art but certain techniques will help. The simplest

method, after unsuccessfully reading through the problem program, is to explain
the program to someone else. Often, one sees the error while doing this. This is
called “egoless programming” [19]. Then there are diagnostic tools. Most Fortran
implementations have a debugging facility which, when enabled, allows running a
program with stops at strategic places, at which one can display and even change
some variable values. These tools can be a little unwieldy. A simpler method is to
insert print statements at suspect places, narrowing them down until the error
has been cornered. These days, extensive output is no problem, since we work at
screen terminals and thus do not have to handle large volumes of paper. One very
useful method is to display concentration values. One need not print them all, a
select number usually being enough. For example, concentrations at all the edges of
a domain are of interest (and are “the usual suspects”). Often, one sees obviously
incorrect values, which then point to the part of the program containing the error.

A difficult situation is a new simulation, with unknown results. How can we
be sure that the results are correct? Often, the simulated system has special cases
with known results; these should of course be checked. If we are developing a
new simulation method, it can be checked against others known to work. For
critical work, it may be necessary to write several different programs—perhaps
written by different people—and to make sure that all converge to the same results
as simulation intervals approach zero. The present authors have for some years
programmed both using finite difference programs and the commercial package
COMSOL Multiphysics®, demanding that the two should produce essentially the
same results. This can detect errors, if the two differ by more than the expected
round-off differences.

A new program should be treated with suspicion, as if it were certain to contain
bugs, even (or especially) if the results look “good”. It is often possible to reduce
the input parameters such that the results are known.
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16.3 Libraries

One finds that a number of subroutines are used repeatedly in different programs
and these are best placed into a library, possibly already compiled (object library),
or in the form of a text library. There is a number of such routines discussed
in Appendix E. The code stuff.f90 is a module that the present authors use
with every program by naming it in the compilation. As is seen, it defines some
precision types, gives � to two different precision levels, etc. This makes the types
in all programs and subroutines compatible with each other. The functions and
subroutines are all in a large precompiled object library. These routines are all
thoroughly tested.
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Chapter 17
Simulation Packages

Not every electrochemist wishes to write his or her own simulation programs, and
there are a number of ready-made programs that can be obtained through the Internet
or otherwise, some commercial, some free, and some that are online programs.
These can be convenient but all have some limitations of various kinds. There have
been several reviews describing these packages [1–5].

The following contains a number of Internet addresses. These are all active at the
time of writing (January 2016) but some of them may not remain so indefinitely.

If using the MOL approach (Chap. 9), one needs to solve a set of odes, if the
boundary conditions can be incorporated into the differential equations. This will
be the case with some simple boundary conditions such as those for the potential
jump experiment. There are a number of freely available ode solvers, among them
VODE [6], LSODE [7] and PSODE [8]. Some of these have been compared for
efficiency [9, 10], where also the sparse solvers MA28 [11, 12] and Y12M [13] were
compared. Many of these routines can be downloaded from the netlib site [14].
If the boundary conditions (as is usual) are discretised in the form of algebraic
equations, then they form, together with the system of odes, a system of DAEs,
as also mentioned in Chap. 9. For these, there is the program DASSL, described first
by Petzold in 1983 [15], and again in the text of Brenan et al. [16], and can be
downloaded from [17]. It uses BDF to solve the system.

There are some non-electrochemical pde solvers that some find convenient, such
as PHREEQC [18] or the elliptic equation solver (useful for potential field or
steady state computations) PLTMG [19], using the multigrid algorithm [20–23] for
increased speed.

The Spanish Horno group (see Chap. 9, Sect. 9.9 for many references to this)
casts the electrochemistry into an electrical model and uses SPICE and later
PSPICE [24] to solve the resulting network model. The same method is used by a
Chinese group [25–28], who in fact have written a general purpose electrochemical
simulator around this technique (see below). Possibly the earliest use of a general
simulator was that by Klinger et al. [29], who used the simulator S/360 CSMP of
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IBM, written for the IBM/360 machine. CSMP was meant to simulate control pro-
cesses. The authors used it to simulate CV of an adsorbed species. ESTYM_PDE is
a program based on orthogonal collocation (see Sect. 9.6) on moving finite elements
[30]. ESTYM_PDE was applied to simulate CVs complicated by homogeneous
reactions [31–36], metal deposition and dissolution processes[37–39], hydrogen
evolution and dissolution [40] and amalgam formation [41].

There are general purpose commercial simulation packages using FEM. Some
workers in Switzerland [42–48] preferred Flux Expert. Recent years have seen
increased use of COMSOL Multiphysics® [49] for simulating electrochemical
systems; some references have been mentioned in Chap. 12. A short review has
been published [50] and more references can be found there. Refinement strategies
of predefined meshes (in contrast to adaptive meshing) for a few electrochemical
examples have been discussed [51]. ANSYS® [52], another commercial general
purpose FEM package, has its strength in computational fluid dynamics (CFD)
and has mainly been applied to simulate flow problems in electrochemistry, such
as in fuel cells [53, 54] and turbulent flow at electrodes [55], to name just a few
examples. Both program packages provide modules (“add-on products”) which
facilitate the input (pdes, boundary conditions) for certain problems. For example
for COMSOL’s version 5.1 (the current version at the time of writing) modules
for batteries and fuel cells, electrodeposition, corrosion and electrochemistry are
available, to mention just modules related to electrochemistry. An important feature
of both FEM packages is the ability to perform multiphysics simulations, i.e. the
combination of multiple physical phenomena in one model. One example is the
design and optimization of thermo-electrochemical cells [56], where equations for
mass and heat transfer, fluid dynamics and electrokinetics are solved by COMSOL
Multiphysics®.

Of greatest interest here is the group of programs that to a lesser or greater degree
solve a variety of electrochemical simulation problems. There are quite a number of
these, a few of them somewhat prominent and commercial, and some more or less
private but accessible to others.

ELSIM [57–59] is freely available from the author [60]. It has been updated since
its earliest version around 1992, but is still DOS-based, that is, there is no Windows
version as yet. A transfer to a current operating system would be welcomed. ELSIM
accepts input in the form of reaction equations, in which case the program itself
generates the governing equations; or the user can enter the governing equations
directly. ELSIM is not limited to a discrete number of mechanisms or experiments,
these being determined by what the user enters. Even the method used for simulation
can be chosen (within some limits, indicated by the program when necessary).
The reaction-diffusion equations (also convection) are solved by finite difference
methods. Boundary conditions are implemented in the form of a set of differential-
algebraic equations (DAEs, see Chap. 9, e.g. page 198), allowing a very general
formulation of the dynamics for the interfacial species. Indeed, it is possible to
simulate an interfacial process in the absence of dynamical transport of a bulk
species. Besides finite-difference simulation, ELSIM allows the solution of user
defined integral equations related to electrochemical systems [61]. This has been
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used to solve the nonlinear integral equation describing a CV experiment at partially
blocked electrodes [62]. ELSIM is written mostly in C using a C++ compiler and
the source code is available and can be modified by the user.

DigiSim [63], sold by Bioanalytical Systems, Inc. [64], is also a general
simulator, although it only offers (one space dimensional) CV simulations. It is
general in the sense that any mechanism can be entered by the user and the program
does the rest. It can be “tricked” into a few other simulation cases such as a
potential step (by making the sweep very fast and applying a long holding time
after the sweep) or even an electrochemical luminescence experiment by setting a
huge diffusion coefficient for a fictitious species that in fact is the light source [65].
However, CV is DigiSim’s forte. The program is Windows-based and easy to use,
but can be led into accepting nonsensical input, as reported in a review [66]. This
has possibly since been rectified. The program is written in C++.

One of the authors of DigiSim has produced his own separate program,
DigiElch [67] which is now distributed by Gamry Instruments [68]. Besides
one-dimensional diffusion DigiElch is also capable of two-dimensional diffusion
simulations for UMBEs and UMDEs. CV, chronoamperometry, square wave
voltammetry and electrochemical impedance spectroscopy can be simulated.

Another well-known simulator is attached to the textbook by Gosser [69] on a
diskette. It has also been reviewed [70, 71].

The program ELECTROCHEMIST.com, formerly called Polar and Polarograph,
has been vigorously promoted by its author. The commercial program can simulate
voltammetry and chronoamperometry. A description of the program can be found
on a webpage [72]. We are not aware of the algorithms used in this program.

Speiser et al. began in 1989 to write general simulation code EASI (for
ElectroAnalytical SImulation), extended to EASIEST, as parameter estimation was
added. These are described in a series of papers [73–76], and the code, which was
in C++ and meant to run under the Unix operating system, was available from the
author. The project has now been terminated, in favour of a new, more general one,
EChem++ [77–85]. The project is established as a long-term project based on an
object-oriented design written in the C++ programming language. In the long run,
the task of EChem++ is not only to serve as a framework for simulation, but also
to control electrochemical experiments in real time as well as data analysis. The
aim is to create a very general “problem solving environment” for electrochemistry.
The object-oriented design allows a breakdown of complex structures into small
reusable parts, which, among other advantages, facilitates the step-by-step extension
of the project. For example, one of the the first steps in the EChem++ project was
the development of a C++ class collection of electrochemical excitation functions
[78], e.g. potential-time curves for LSV and CV or of almost any other shape. The
excitation functions can be used to drive an experiment or as part of dynamical
boundary conditions in numerical simulations. The simulation part of EChem++ is
based on adaptive FEM for spatial integration and adaptive time integration using
Rosenbrock schemes [81]. Echem++ is an open source project under the Gnu Public
Licence (GPL) [86]. The software runs (currently) under Linux and the source code
and further information are available from sourceforge [87].
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There is at present one online simulator to the authors’ knowledge, that of
Ohta [88], which can be used by anyone for a set of simulation situations.

Apart from the above, there is a plethora of more or less publically accessible
electrochemical simulators. Carlo Nervi continues with his ESP package [89].
CONDESIM [90] is a commercial software package for simulating several exper-
iment types. There is also CONDECON [90], a data treatment package for
convolution/deconvolution analysis of voltammograms. Other packages are TRAN-
SIENT [91], SIMULA, described in [92] as part of the “Seraphim project” but
without any details being given. A Chinese group developed a package called
EEGNA (exponentially expanded grid network approach) [25–28]. The local ECL-
PACKAGE (not accessible to others) is used by Svir and coworkers [93] for
simulations of electrochemical luminescence experiments. Similar local general
programs are presented by Penar et al. [94] for rotating electrode simulations and
finally, there is an OC package for LSV by Villa et al. [95]. Both the two last
programs are available from the authors of these articles.

17.1 Kinetic Compilers

The user has a certain model in mind which he or she wants to simulate using one
of the ready-made program packages. The model may consist of a set of param-
eters and variables. First, the geometry itself and the transport mode (diffusion,
diffusion-migration, convection) have to be specified. Afterward the program has
to be informed about several parameters and variables concerning the kinetics of
the model, like number of species, initial concentrations, diffusion coefficients,
heterogeneous reactions with their rate constants, formal potentials and transfer
coefficients, homogeneous reactions with their rate constants, equilibrium constants,
adsorption isotherms, adsorption rates, etc., and combinations of all of these.

A simulation program intended for others than just its programmer needs to
provide a more or less convenient interface for the complex input by the user.
Usually a symbolic input (using ASCII characters) is required. A simple example,
often encountered in electrochemistry would be the reaction AC Ce� • B together
with values of E0; k0; ˛ (formal potential, heterogeneous rate constant, transfer
coefficient) for an electrode reaction according to the Butler–Volmer formalism.
The input has to be translated into governing equations which can be handled by the
implemented solver routines of the program. Here the kinetic compiler (synonymous
expressions are reaction compiler or chemical compiler) comes into play. Generally
speaking, a kinetic compiler automatically translates the user input describing the
kinetic part of a model into mathematical equations which can be handled by the
solver. A kinetic compiler might also check for consistency of the input. Such
compilers are part of ELSIM [96], DigiSim [97], DigiElch and EChem++ [80]
(see also errata [79]). It should be mentioned that outside the electrochemical
context, reaction compilers and translators have a longer history, see [96] for a
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comprehensive list. However, these are mostly designed for simulations independent
of space, involving only odes.

The kinetic compiler of DigiSim [97] allows for an intuitive input of heteroge-
neous (single) electron transfer reactions and first and second-order homogeneous
reactions. Thermodynamically superfluous reactions (TSRs) [97] are detected and
the user will be informed about parameters which are automatically adjusted for
consistency. A TSR is a reaction whose equilibrium constant and formal potential
is determined by previously specified values for equilibrium constants and formal
potentials of one or more other reactions. DigiSim is designed for the simulation
of potential sweep experiments and the kinetic compiler has some limitations, as
mentioned in [80, 96, 97]. DigSim is a commercial program and the kinetic compiler
cannot be modified or extended, nor has the user access to the internal problem
presentation, though it can be “tricked” into some work-arounds, see above.

DigiElch’s kinetic compiler is an extension of the compiler used by DigiSim in
order to address the wider spectra of experiments possible to simulate with DigiElch.

The kinetic compiler used with the ELSIM program has been described in
detail [96] and the integration into ELSIM has been outlined [59]. ELSIM’s kinetic
compiler translates the reaction mechanism given by the user into a target text
of the governing equations and problem description files are created which can
be checked and modified by the user. Thus, ELSIM’s compiler allows for more
flexibility regarding the simulation of more complex kinetics, though the input is
more complex compared to DigiSim or DigiElch. A check of the presence of TSRs
and violation of mass balance is performed. In a second stage, a formula translator
generates the equations for the internal solver.

Ecco, Electro Chemical COmpiler [80], see also Errata [98], is the kinetic
compiler component of the EChem++ project [80] and enables the modelling of
homogeneous and surface reactions and heterogeneous electron transfers as well
as adsorption processes. Following the EChem++ philosophy, Ecco is separated
from the subsequent simulation procedure and can therefore be combined with any
numerical method. This ensures a high reuseability of the kinetic compiler. As part
of the EChem++ project, the source code of Ecco is available [87] under the GPL
[86].

17.2 Parameter Estimation

One motivation of performing simulations is the interpretation of experimental
data, e.g. voltammograms or chronoamperometric data, by estimation of physical
parameters. This can be achieved by fitting simulated curves to experimental ones in
a nonlinear regression analysis process. The user provides a model to the simulation
program and an objective function is then minimized by systematic variation of the
model parameter. The best fit is achieved when a global minimum of the object
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function has been found. This function is usually the sum of the squared residuals
(least squares)

�.a/2 D
NX
iD1

wi .yi � f .a; xi//
2 (17.1)

where N is the total number of data points, wi is their individual weight, the vector
a contains M model parameter .a1; a2; : : : aM/, xi is the independent variable, yi
is the i’th (experimental) data point and f .a; xi/ is the model function, i.e. the
value of the simulated curve for a parameter set a at xi. For example, in analysing
(fitting) of an experimental CV or LSV, a model of a species undergoing an
electrode reaction according to the Butler–Volmer formalism is assumed. Then yi
is the current, xi is the potential and the parameter vector a may contain k0, ˛,
E0

0

; : : :. The function f .a; xi/ is the simulated value of the current for a certain
parameter set a and a voltage xi. DigiSim, DigiElch, ELSIM and the program of
Gosser [69] from his out of print book provide an option of least squares fitting of
experimental data. The �2 function spans an M dimensional hypersurface, where M
is the number of model parameters to estimate. Search algorithms are used to locate
a minimum by varying the model parameter set. There are two principal ways. A
direct search does not make use of the gradients of the hypersurface but varies
the parameters according to certain heuristic rules. The downhill simplex method
by Nelder and Mead [99] is a direct search algorithm and is implemented in the
program CVSIM by Gosser [69], and in a modified version [100] in ELSIM [59].
Other methods like Newton–Raphson or Newton iteration (see [101] or textbooks on
numerical mathematics, e.g. [102, 103]) and Levenberg–Marquardt [101, 104, 105]
use the information obtained from partial derivatives of the �2 function with
respect to the parameters for the search of a minimum of the object function.
The Newton–Raphson method is used by DigiSim [63, 106] and DigiElch [67].
The simulation program ELECTROCHEMIST.com [72] provides data fitting of
experimental curves (we have no information about the method). A comparison
of the downhill simplex and Levenberg–Marquardt method for fitting voltammetric
data has been published and the authors favour the Levenberg–Marquardt algorithm
as a good compromise between robustness and convergence rate [107]. Not relying
on partial derivatives during a search contributes to the robustness and stability of
the downhill simplex method. However, in our experience [108] it also decreases the
efficiency, i.e. the speed of the search. By direct comparison of both methods to fit
an experimental CV, using a D Œk0; ˛;E0

0

;Ru;Cd

T (Ru and Cd are uncompensated

resistance and capacity of the double layer, respectively) as the vector of the model
parameters, a modified version of the Levenberg–Marquardt algorithm presented
in the Numerical Recipes book [101] was more efficient than a downhill simplex
search [108].

By its nature, the downhill simplex lacks statistical information about the
estimated parameter. This information is obtained from the shape or gradients of the
�2 hypersurface at the minimum. A suitable way to overcome this situation is to fit
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a quadratic function to the vertices of the final simplex, as first suggested by Nelder
and Mead [99] and later investigated by Phillips and Eyring [109] and Brumby
[110, 111]. This final step adds quadratic convergence to the downhill simplex
method and enables the calculation of statistical information about the quality of
the fit. In an electrochemical context this has been done [108] using the strategy of
Brumby [110, 111]. Statistical information is necessary to judge the quality of a fit.
A good agreement between a simulated and an experimental voltammogram, that
is a minimum value of the �2 function is a criterion which cannot be trusted alone.
Statistical information like parameter uncertainties, confidence intervals, confidence
regions, covariance matrices and residual plots are necessary to judge the validity of
the model and to examine parameter coupling. Coupled parameters are parameters
that are not independent in the sense that combinations of different values of the
parameters lead to identical or almost identical values of the �2 function. A typical
example for coupled parameters in cyclic voltammetry is the heterogeneous rate
constant k0 and uncompensated resistance Ru, as has been shown by statistical
analysis [108].

Finally, during the procedure of minimizing the object function (17.1), simula-
tions are repeated perhaps a thousand times with systematic variation of the model
parameters. Therefore the importance of the efficiency of the simulation method
should not be underestimated.
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Chapter 13: Migrational Effects
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Appendix A
Tables and Formulae

A.1 First Derivative Approximations

In Table A.1, the coefficients are multiplied by m (given in the first coefficients
column), so as to get whole numbers.

A.2 Current Approximations

These are simply obtained by using the appropriate coefficients in Table A.1, for the
y0
1.n/ form chosen. For example, the two-point form is (3.23)

G � 1

H
.�C0 C C1/ (A.1)

while the three-point formula is (3.24),

G � 1

2H
.�3C0 C 4C1 � C2/ : (A.2)

Note that all these have been cast as the function G.C; n;H/, defined in Chap. 3,
page 45.

A.3 Second Derivative Approximations

Table A.2 shows the coefficients for these. As in Table A.1, the coefficients are
multiplied by m (given in the first coefficients column), so as to get whole numbers.

© Springer International Publishing Switzerland 2016
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Table A.1 mˇ (Eq. 3.14) for multi-point first derivatives on equally spaced points

m y1 y2 y3 y4 y5 y6 y7 Order

y0

1.2/ 1 �1 1 h

y0

2.2/ 1 �1 1 h

y0

1.3/ 2 �3 4 �1 h2

y0

2.3/ 2 �1 0 1 h2

y0

3.3/ 2 1 �4 3 h2

y0

1.4/ 6 �11 18 �9 2 h3

y0

2.4/ 6 �2 �3 6 �1 h3

y0

3.4/ 6 1 �6 3 2 h3

y0

4.4/ 6 �2 9 �18 11 h3

y0

1.5/ 12 �25 48 �36 16 �3 h4

y0

2.5/ 12 �3 �10 18 �6 1 h4

y0

3.5/ 12 1 �8 0 8 �1 h4

y0

4.5/ 12 �1 6 �18 10 3 h4

y0

5.5/ 12 3 �16 36 �48 25 h4

y0

1.6/ 60 �137 300 �300 200 �75 12 h5

y0

2.6/ 60 �12 �65 120 �60 20 �3 h5

y0

3.6/ 60 3 �30 �20 60 �15 2 h5

y0

4.6/ 60 �2 15 �60 20 30 �3 h5

y0

5.6/ 60 3 �20 60 �120 65 12 h5

y0

6.6/ 60 �12 75 �200 300 �300 137 h5

y0

1.7/ 60 �147 360 �450 400 �225 72 �10 h6

y0

2.7/ 60 �10 �77 150 �100 50 �15 2 h6

y0

3.7/ 60 2 �24 �35 80 �30 8 �1 h6

y0

4.7/ 60 �1 9 �45 0 45 �9 1 h6

y0

5.7/ 60 1 �8 30 �80 35 24 �2 h6

y0

6.7/ 60 �2 15 �50 100 �150 77 10 h6

y0

7.7/ 60 10 �72 225 �400 450 �360 147 h6

The notation y0

i .n/ means the approximation at point i using n points numbered 1 : : : n

A.4 Unequal Intervals

For arbitrarily spaced point sequences, the very general subroutines FORNBERG
and FORN, referred to in Appendix E, can provide both the derivatives and the
coefficients. However, the reader may wish to restrict the expressions to those
involving only up to four points (for which there are some good arguments, see
Chap. 8, Sect. 8.4). This can be coupled with current approximations using up to
four points. For this number of points, the expressions are not unreasonably long,
and we present them here. These should in principle be slightly more accurate than
those derived from FORN, as these use approximate methods, whereas the following
are exact solutions.
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Table A.2 Coefficients for some chosen multi-point second derivatives on equally spaced points

m y1 y2 y3 y4 y5 y6 y7 Order

y00

1 .3/ 1 1 �2 1 h

y00

2 .3/ 1 �1 �2 1 h2

y00

3 .3/ 1 1 �2 1 h

y00

1 .4/ 1 2 �5 4 �1 h2

y00

2 .4/ 1 1 �2 1 0 h2

y00

3 .4/ 1 0 1 �2 1 h2

y00

4 .4/ 1 1 4 �5 2 h2

y00

1 .5/ 12 35 �104 114 �56 11 h3

y00

2 .5/ 12 11 �20 6 4 �1 h3

y00

3 .5/ 12 �1 16 �30 16 �1 h4

y00

4 .5/ 12 �1 4 6 �20 11 h3

y00

5 .5/ 12 11 �56 114 �104 35 h3

y00

1 .6/ 12 45 �154 214 �156 61 �10 h4

y00

2 .6/ 12 10 �15 �4 14 �6 1 h4

y00

3 .6/ 12 �1 16 �20 16 �1 0 h4

y00

4 .6/ 12 0 �1 16 �30 16 �1 h4

y00

5 .6/ 12 1 �6 14 �4 �15 10 h4

y00

6 .6/ 12 �10 61 �156 214 �154 45 h4

y00

1 .7/ 180 812 �3132 5265 �5080 2970 �972 137 h5

y00

2 .7/ 180 137 �147 �255 470 �285 93 �13 h5

y00

3 .7/ 180 �13 228 �420 200 15 �12 2 h5

y00

4 .7/ 180 2 �27 270 �490 270 �27 2 h6

y00

5 .7/ 180 2 �12 15 200 �420 228 �13 h5

y00

6 .7/ 180 �13 93 �285 470 �225 �147 137 h5

y00

7 .7/ 180 137 �972 2970 �5080 5265 �3112 812 h5

As in Chap. 3, the notations u0
i.n/ and u00

i .n/ are for a number n of positions
x1 : : : xn, at which some function values, respectively u1 : : : un are defined, and the
derivatives refer to point i out of the n. We also have a set of displacements hk D xk�
xi, in each case the zero displacement hi missing from the set. Some of the following
formulae have been given previously by Gavaghan [1] and Rudolph [2] but with
different notation and different convention for the displacements. The method used
to derive these is that described in Chap. 3 on page 56.

Table A.3 shows the first derivative coefficients, while Table A.4 those for second
derivatives.
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Table A.3 First derivative approximations u0

i .n/ for arbitrarily spaced n points (n D 3; 4) at
positions x1 : : : xn, each point at an offset hk D x.k/ � x.i/ with respect to the reference point
at index i

Form Parameter Expression

u0

1.3/ � h2h3.h3 � h2/

ˇ1 �.ˇ2 C ˇ3/

ˇ2 h23=�

ˇ3 �h22=�

u0

2.3/ � h1h3.h3 � h1/

ˇ1 h23=�

ˇ2 �.ˇ1 C ˇ3/

ˇ3 �h21=�

u0

3.3/ � h1h2.h2 � h1/

ˇ1 h22=�

ˇ2 �h21=�

ˇ3 �.ˇ1 C ˇ2/

u00

1 .4/ � h2h23h
2
4.h4 � h3/� h3h22h

2
4.h4 � h2/C h4h22h

2
3.h3 � h2/

ˇ1 �.ˇ2 C ˇ3 C ˇ4/

ˇ2 h23h
2
4.h4 � h3/=�

ˇ3 h22h
2
4.h2 � h4/=�

ˇ4 h22h
2
3.h3 � h2/=�

u00

2 .4/ � h1h
2
3h
2
4.h4 � h3/� h3h

2
1h
2
4.h4 � h1/C h4h

2
1h
2
3.h3 � h1/

ˇ1 h23h
2
4.h4 � h3/=�

ˇ2 �.ˇ1 C ˇ3 C ˇ4/

ˇ3 h21h
2
4.h1 � h4/=�

ˇ4 h21h
2
3.h3 � h1/=�

u00

3 .4/ � h1h22h
2
4.h4 � h2/� h21h2h

2
4.h4 � h1/C h21h

2
2h4.h2 � h1/

ˇ1 h22h
2
4.h4 � h2/=�

ˇ2 h21h
2
4.h1 � h4/=�

ˇ3 �.ˇ1 C ˇ2 C ˇ4/

ˇ4 h21h
2
2.h2 � h1/=�

u00

4 .4/ � h1h
2
2h
2
3.h3 � h2/� h21h2h

2
3.h3 � h1/C h21h

2
2h3.h2 � h1/

ˇ1 h22h
2
3.h3 � h2/=�

ˇ2 h21h
2
3.h1 � h3/=�

ˇ3 h21h
2
2.h2 � h1/=�

ˇ4 �.ˇ1 C ˇ2 C ˇ3/

The symbol � denotes the determinant of the generating matrix. All three-point forms are O.h2/
and all four-point forms are O.h3/
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Table A.4 Second derivative approximations u00

i .n/ for arbitrarily spaced n points (n D 3; 4) at
positions x1 : : : xn , each point at an offset hk D x.k/ � x.i/ with respect to the reference point at
index i

Form Parameter Expression

u00

1 .3/ � h2h3.h3 � h2/

˛1 �.˛2 C ˛3/

˛2 �2h3=�
˛3 2h2=�

u00

2 .3/ � h1h3.h3 � h1/

˛1 �2h3=�
˛2 �.˛1 C ˛3/

˛3 2h1=�

u00

3 .3/ � h1h2.h2 � h1/

˛1 �2h2=�
˛2 2h1=�

˛3 �.˛1 C ˛2/

u00

1 .4/ � h2h23h
2
4.h4 � h3/� h3h22h

2
4.h4 � h2/C h4h22h

2
3.h3 � h2/

˛1 �.˛2 C ˛3 C ˛4/

˛2 2h3h4.h23 � h24/=�

˛3 2h2h4.h
2
4 � h22/=�

˛4 2h2h3.h
2
2 � h23/=�

u00

2 .4/ � h1h
2
3h
2
4.h4 � h3/� h3h

2
1h
2
4.h4 � h1/C h4h

2
1h
2
3.h3 � h1/

˛1 2h3h4.h23 � h24/=�

˛2 �.˛1 C ˛3 C ˛4/

˛3 2h1h4.h
2
4 � h21/=�

˛4 2h1h3.h
2
1 � h23/=�

u00

3 .4/ � h1h22h
2
4.h4 � h2/� h21h2h

2
4.h4 � h1/C h21h

2
2h4.h2 � h1/

˛1 �2h2h4.h24 � h22/=�

˛2 2h1h4.h
2
4 � h21/=�

˛3 �.˛1 C ˛2 C ˛4/

˛4 �2h1h2.h22 � h21/=�

u00

4 .4/ � h1h
2
2h
2
3.h3 � h2/� h21h2h

2
3.h3 � h1/C h21h

2
2h3.h2 � h1/

˛1 �2h2h3.h23 � h22/=�

˛2 2h1h3.h
2
3 � h21/=�

˛3 �2h1h2.h22 � h21/=�

˛4 �.˛1 C ˛2 C ˛3/

The symbol � denotes the determinant of the generating matrix. All three-point forms are O.h/
and all four-point forms are O.h2/
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A.5 Jacobi Roots for Orthogonal Collocation

Tables A.5, A.6, and A.7 provides the roots of the Jacobi polynomials used as node
points in orthogonal collocation, for some values of N. Values for X D 0 .i D 0/

and X D 1 .i D NC1/ (0 and 1, resp.) are not included. The roots were computed
using the subroutine JCOBI, modified from the original of Villadsen and Michelsen
[3], discussed in Appendix E, using for a given N the call

CALL JCOBI (N+1, N, 0, 0, 0.0_dbl, 0.0_dbl, ...)

Roots for higher N, if required, can be computed using this subroutine.

Table A.5 Jacobi polynomial roots, N D 3 : : : 6

N D 3 N D 4 N D 5 N D 6

0.11270166537926 0.06943184420297 0.04691007703067 0.03376524289842

0.50000000000000 0.33000947820757 0.23076534494716 0.16939530676687

0.88729833462074 0.66999052179243 0.50000000000000 0.38069040695840

0.93056815579703 0.76923465505284 0.61930959304160

0.95308992296933 0.83060469323313

0.96623475710158

Table A.6 Jacobi polynomial roots, N D 7 : : : 10

N D 7 N D 8 N D 9 N D 10

0.02544604382862 0.01985507175123 0.01591988024619 0.01304673574141

0.12923440720030 0.10166676129319 0.08198444633668 0.06746831665551

0.29707742431130 0.23723379504184 0.19331428364970 0.16029521585049

0.50000000000000 0.40828267875218 0.33787328829810 0.28330230293538

0.70292257568870 0.59171732124782 0.50000000000000 0.42556283050918

0.87076559279970 0.76276620495816 0.66212671170190 0.57443716949082

0.97455395617138 0.89833323870681 0.80668571635030 0.71669769706462

0.98014492824877 0.91801555366332 0.83970478414951

0.98408011975381 0.93253168334449

0.98695326425859
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Table A.7 Jacobi polynomial roots, N D 11 : : : 14

N D 11 N D 12 N D 13 N D 14

0.01088567092697 0.00921968287664 0.00790847264071 0.00685809565159

0.05646870011595 0.04794137181476 0.04120080038851 0.03578255816821

0.13492399721298 0.11504866290285 0.09921095463335 0.08639934246512

0.24045193539659 0.20634102285669 0.17882533027983 0.15635354759416

0.36522842202383 0.31608425050091 0.27575362448178 0.24237568182092

0.50000000000000 0.43738329574427 0.38477084202243 0.34044381553606

0.63477157797617 0.56261670425573 0.50000000000000 0.44597252564633

0.75954806460341 0.68391574949909 0.61522915797757 0.55402747435367

0.86507600278702 0.79365897714331 0.72424637551822 0.65955618446394

0.94353129988405 0.88495133709715 0.82117466972017 0.75762431817908

0.98911432907303 0.95205862818524 0.90078904536665 0.84364645240584

0.99078031712336 0.95879919961149 0.91360065753488

0.99209152735929 0.96421744183179

0.99314190434841

A.6 Rosenbrock Constants

The Rosenbrock method is described for odes in Chap. 4 and for electrochemical
simulations, that is, DAEs, in Chap. 9. There are four variants, two of them second-
order with respect to the time interval, and two of them third-order, that are
considered in these chapters. Although only two variants recommend themselves,
the constants for all four are given here. For the notation and the meaning of the
variant names, see these chapters. The notation is in some cases not that of the
(cited) sources. Constants that are left out can be taken as zero.

RO2, Ref. [4], see Sect. 4.12
� D 1 � 1

2

p
2

a21 D 1
2
.
p
2 � 1/; ˛2 D a21

m1 D 0I m2 D 1

ROS2, Ref. [5]
� D 1:707106781186547

�1 D � I �2 D ��
˛1 D 0I ˛2 D 1

a21 D 0:5857864376269050

c21 D �1:171572875253810
m1 D 0:8786796564403575I m2 D 0:2928932188134525

ROWDA3, Refs. [6, 7]
� D 0:4358665215084590

�1 D �

�2 D 0:6044552840655590

�3 D 6:379788799344883
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˛2 D 0:7I ˛3 D 0:7

a21 D 1:605996252195329

a31 D a21I a32 D 0

c21 D 0:8874044410657833

c31 D 23:98747971635036

c32 D 5:263722371562129

m1 D 2:236727045296590

m2 D 2:250067730969644

m3 D �0:2092514044390320
ROS3P, Refs. [5, 8]
� D 0:7886751345948129

�1 D �

�2 D �0:2113248654051871
�3 D �1:077350269189626
a21 D 1:267949192431123I a31 D a21
c21 D �1:607695154586736
c31 D �3:464101615137755
c32 D �1:732050807568877
m1 D 2

m2 D 0:5773502691896258

m3 D 0:4226497308103742
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Appendix B
Transforming the Diffusion Equation
into Curvilinear Coordinates

B.1 Introduction

The method can be found in Morse and Feshbach [1, p. 115]. The description
is simpler than in Bland [2], although the two are in principle the same method.
Boas [3] details the way the method comes about. It rests on a general expression
of the pde in a new coordinate system, and expressions for the scaling factors
for the displacement of a point in the original coordinate system expressed as a
corresponding displacement in the new system. In this way, transformations into a
new coordinate system can be performed with ease, in contrast to the way Verbrugge
and Baker did it [4], which is very laborious.

In Cartesian coordinates, if a given point is moved a small distance in all three
coordinates, the net displacement ds is given by

ds2 D dx2 C dy2 C dz2 : (B.1)

In another coordinate system with coordinates q1; q2; q3, the same displacement can
be expressed as

ds2 D h21 dq21 C h22 dq22 C h23 dq23 (B.2)

where the h’s are scaling factors to be determined from the transformation. They
are determined in the following manner. For transformation into the new coordinate
system .q1; q2; q3/, we can write

dx D @x

@q1
dq1 C @x

@q2
dq2 C @x

@q3
dq3 (B.3)

© Springer International Publishing Switzerland 2016
D. Britz, J. Strutwolf, Digital Simulation in Electrochemistry, Monographs
in Electrochemistry, DOI 10.1007/978-3-319-30292-8
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and so on for dy and dz. Substitution in (B.1) results in an expression in the three
new differentials, with scaling factors hn, n D 1; 2; 3, given by [1]

h2n D
�
@x

@qn

�2
C
�
@y

@qn

�2
C
�
@z

@qn

�2

D
 �

@qn
@x

�2
C
�
@qn
@y

�2
C
�
@qn
@z

�2!�1
(B.4)

and the final Laplacian by

r2C D 1

h1h2h3

X
n

@

@qn

�
h1h2h3
h2n

@C

@qn

�
; (B.5)

which is the key to all solutions.
Starting from a curvilinear coordinate system .p1; p2; p3/ with its own scaling

factors .g1; g2; g3/, the new equation for ds2 has scaling factors given by (B.4)
but each one multiplied by its corresponding prior gn. This comes into play when
starting from cylindrical coordinates where we have the existing scaling factor R, as
will be seen below.

B.2 A Simple Example: Cartesian to Cylindrical

This serves as a simple example, and establishes the base for the transformations
of the equation for the disk system. Coordinates .X;Y;Z/ to .R; �;Z/ (� being the
rotational angle around the vertical axis) are mapped into new coordinates

X D R cos�

Y D R sin� (B.6)

Z D Z

(note that Z, pointing upwards, is not changed). Going directly to the scaling factors,
using (B.4) obtains

h21 D
�
@X

@R

�2
C
�
@Y

@R

�2
C
�
@Z

@R

�2

D cos2.�/C sin2.�/C 0 (B.7)

D 1 ; (B.8)
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h22 D
�
@X

@�

�2
C
�
@Y

@�

�2
C
�
@Z

@�

�2

D R2 sin2.�/C R2 cos2.�/C 0 (B.9)

D R2 (B.10)

and

h23 D
�
@X

@Z

�2
C
�
@Y

@Z

�2
C
�
@Z

@Z

�2

D 0C 0C 1 (B.11)

D 1 :

These yield the displacement equation

ds2 D dR2 C R2d�2 C dZ2 (B.12)

which will serve as a base for the disk transformations with g2 D R. The Laplacian
for this system is then

r2C D 1

R


@

@R

�
R
@C

@R

�
C @

@�

�
1

R

@C

@�

�
C @

@Z

�
R
@C

@Z

��
(B.13)

which develops to

r2C D 1

R

�
R
@2C

@R2
C @C

@R
C 1

R

@2C

@�2
C R

@2C

@Z2

�
(B.14)

or, finally, in view of @C=@� D @2C=@�2 D 0,

r2C D @2C

@R2
C 1

R

@C

@R
C @2C

@Z2
: (B.15)

In general, in the following, the final equation in the new coordinates .�; �; 	 /
will be represented in the form

r2C D 1

F

�
a�
@2C

@�2
C b�

@C

@�
C a	

@2C

@	 2
C b	

@C

@	

�
(B.16)

so it remains to identify the coefficients (the coefficients for derivatives in � (disk)
or y (band) are zero). Also, for the development it is helpful to write the general
form of the equation to be derived as

r2C D 1

h1h2h3


@

@�

�
u
@C

@�

�
C @

@	

�
w
@C

@	

��
: (B.17)
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(there is a v-term for � or y but that whole term is zero and therefore left out). The
three terms u, v and w are evident from (B.5).

B.3 Transformations for the Band Electrode

A concrete example is the transformation from Cartesian to curvilinear coordinates
for the band, using two chosen transformations. The new coordinates are .�;Y; 	 /.

B.3.1 Cartesian to MWA

Here we have X across the band, Y along the (relatively long) band length (along
which there are no gradients) and Z pointing up, normal to the band. The MWA
transformations are

X D cos � cosh	

Y D Y (B.18)

Z D sin � sinh	

and (B.4) easily leads to

h1 D
p

sin2 � C sinh2 	

h2 D 1 (B.19)

h3 D
p

sin2 � C sinh2 	 :

and so immediately (noting that u D w D 1)

r2C D 1

sin2 � C sinh2 	

�
@2C

@�2
C @2C

@	 2

	
: (B.20)

B.3.2 Extension to VB

MWA itself is not very efficient, as noted in Chap. 12, and it is advantageous to
extend it to VB, using the method of Verbrugge and Baker [4] (their (A6) and (A7))
(this is much easier than going directly to VB!). We need only transform the above
	 to the new � ,

	 D �

1� �
: (B.21)
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and the converse

� D 	

1C 	
(B.22)

and replace d2=d	 2 with the corresponding expression in � . We note

d�

d	
D 1

.1C 	 /2
: (B.23)

We have for some u

du

d	
D d�

d	

du

d�
(B.24)

and using (B.21) and (B.23), this becomes

du

d	
D 1

.1C 	 /2
du

d�
D .1 � �/2 du

d�
: (B.25)

Differentiating again

d2u

d	 2
D d

d	

�
du

d	

�
D d�

d	

�
d

d�

�
du

d	

��
(B.26)

which in view of (B.23) and (B.25) becomes

d2u

d	 2
D .1 � �2/

d

d�

�
.1 � �2/

du

d�

�

D .1 � �2/

 
d.1 � �/2

d�

du

d�
C .1 � �/2

d2u

d�2

!

D .1 � �/4
d2u

d�2
� 2.1� �/3 du

d�

(B.27)

now all in terms of � .

B.4 Disk Electrode Transformations

In all cases, we proceed from the cylindrical equation for the disk, and using (B.12)
as start, there is a prior g2 D R (the other two g factors are unity).
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The equations for MWA are

R D cos � cosh	

� D � (B.28)

Z D sin � sinh	

(� being the rotation angle, along which there are no gradients). The scale factors
are

h1 D
p

sin2 � C sinh2 	

h2 D cos � cosh	 (B.29)

h3 D
p

sin2 � C sinh2 	

(note that h1 and h3 are the same as for the band with MWA; the different h2 term
is of course due to the multiplication with g2 D R from (B.12)). So, letting � Dp

sin2 � C sinh2 	 , we have

h1h2h3 D � cos � cosh	 ; (B.30)

u D cos � cosh	 ; (B.31)

v D �2

cos � cosh	
; (B.32)

w D cos � cosh	 ; (B.33)

leading to

@C

@T
D 1

sin2 � C sinh2 	


@2C

@�2
� tan �

@C

@�
C @2C

@	 2
C tanh	

@C

@	

�
: (B.34)

Again, this can to advantage be extended to VB using the same equations (B.21)
and (B.22), resulting in the form already presented in Table 12.1 on page 283 (where
� is written as 	 ).

B.5 Transforming the Current

For the UMDE, the dimensionless current I is given by the integral

I.T/ D �

2

Z 1

0

R
@C

@Z

ˇ̌
ˇ̌
ZD0

dR (B.35)
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in cylindrical coordinates and needs to be transformed along with the pde, depending
on the transformation used. This is done as follows. R is simply substituted by its
transformation in terms of � and 	 . Then one writes

dR D dR

d�
d� C dR

d	
d	 (B.36)

and for the derivative we have going from Z to 	 ,

@C

@Z
D @C

@	

@	

@Z
: (B.37)

These are evaluated and substituted, and setting 	 D 0 the expressions given in
Sect. 12.3.3.4 are obtained.

For example, for transforming for the MWA coordinates, repeated here,

R D cos � cosh	 ;

Z D sin � sinh	 ; (B.38)

this results in

dR D � sin � cosh	 d� C cos � sinh	 d	 (B.39)

and

@C

@Z
D @C

@�

1

sin � cosh�
(B.40)

and substituting these and noting that 	 D 0, which eliminates the term in d	 , and
for 	 D 0, cosh	 D 1, and noting that we must switch the integration limits which
go from 0 : : : 1 along R to �=2 : : : 0 along � , we obtain

I D �

2

Z �=2

0

cos �
@C

@�

ˇ̌̌
ˇ
�D0

d� : (B.41)

Similarly for the other transformations.
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Appendix C
Some Mathematical Proofs

C.1 Consistency of the Sequential Method

As described in Chap. 5, the simulation of a first order homogeneous chemical
reaction (hcr) coupled to diffusion such as the Reinert-Berg mechanism (5.11) we
have the governing equation

@C

@T
D @2C

@X2
� KC (C.1)

and for the explicit point method it discretises to

C0
i D Ci C  .Ci�1 � 2Ci C CiC1/� KıTCi (C.2)

containing, on the right-hand side, a term for diffusion and one for the hcr. The
sequential method calculates first an intermediate new concentration, for which only
diffusion has caused a change,

C�
i D Ci C  .Ci�1 � 2Ci C CiC1/ (C.3)

and then allows the hcr to act on this

C0
i D C�

i � KıTC�
i (C.4)

giving, after combining the two,

C0
i D .1 � KıT/ fCi C  .Ci�1 � 2Ci C CiC1/g : (C.5)

© Springer International Publishing Switzerland 2016
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The proof of the consistency of this procedure [1] goes as follows. Multiply (C.1)
by eKT :

@C

@T
eKT D eKT

@2C

@X2
� KCeKT : (C.6)

Now, since

@

@T

�
CeKT

� D @C

@T
eKT C KCeKT ; (C.7)

(C.6) can be written as

@

@T

�
CeKT

� D eKT
@2C

@X2
: (C.8)

The left-hand side can be approximated as the forward difference (at point i along
X)

@

@T

�
CeKT

� � C0
ie

K.TCıT/ � CeKT

ıT
(C.9)

(recalling that Ci is Ci.T/ and that C0
i D Ci.T C ıT/) and combining this with (C.8)

and discretising the second derivative as usual (Eq. (5.2), page 90), this leads to

C0
ie

K.TCıT/ D Cie
KT C eKT .Ci�1 � 2Ci C CiC1/ (C.10)

which becomes, upon dividing throughout by eK.TCıT/ and rearranging,

C0
i D e�KıT fCi C  .Ci�1 � 2Ci C CiC1/g : (C.11)

This converges to Eq. (C.5) as KıT ! 0. The sequential method is therefore
mathematically consistent and this is the reason that it works rather well, within
the limits of the approximation e�KıT � 1 � KıT.

C.2 The Feldberg Start for BDF

The simple start for BDF, as adopted by Mocak and Feldberg [2] coupled with the
subsequent subtraction of half a time interval, as described in Chap. 4, Sect. 4.8.1.1,
was found [3, 4] to be mathematically consistent. This is proved as follows.

The proof is given for a general ode. It also applies to a system of odes and thus
to the system of equations resulting from the discretisation of a pde. Let the equation
to be solved be

u0 D f .u/; u.0/ D u0 (C.12)
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with f .u/ being some unspecified function. This is solved using BDF (see Chap. 4).
The contention is that after a number n time steps each of length h the time, which
should be equal to nh, has in fact been shifted by a fraction s of the time step length h,
that is, by s�h, and that this converges, after a number of steps, to �0:5h, justifying
the Feldbergian correction.

The numerical solution yields a sequence of approximations to u.t/ at the times
t D h; 2h; : : : denoted, respectively as u1; u2; : : : . For convenience, we write fn to
denote f .un/.

In what follows here, in order to be consistent with [5] (and normal computer
science usage), BDF is described on a number of levels, rather than the number of
points in time. Thus, the symbol k now refers to levels, and is less by 1 than the k
used in other parts of this book. So, three-point BDF corresponds to k D 2, etc.

First, the expression to be solved is developed, for a simple case. We seek a
solution to the ode (C.12), using 2-level BDF. The BDF expression at the nth step is

un�2 � 4un�1 C 3un
2h

D f .un/ (C.13)

or

un D � 1
3
un�2 C 4

3
un�1 C 2

3
hf .un/ : (C.14)

For the very first step, n D 1, u�1 is lacking, and with the simple start (see
Chap. 4, Sect. 4.8.1) one simply substitutes u0. The result is then

u1 D u0 C 2
3
hf1 (C.15)

(writing f1 instead of f .u1/). This is clearly equivalent to a BI step of length 2
3
h, and

thus, one-third of an interval has been “lost”, and s1 D � 1
3
.

At step 2, using (C.13) and substituting for u1 as from (C.15), the equation is

u2 D u0 C 8
9
hf1 C 2

3
hf2 (C.16)

and we now have a total advance of 14
9
h, or shift s2 D � 4

9
.

At step n � 1, let the expression be

un�1 D u0 C p1hf1 C p2hf2 C � � � C pn�1hfn�1 (C.17)

and denote the total advance (given in units of h) in t as

an�1 D
n�1X
iD1

pi : (C.18)

At the next step, we have a new series

un D u0 C q1hf1 C q2hf2 C � � � C qnhfn (C.19)
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(with qn D 2=3) and a new sum of advances

an D
nX

iD1
qi : (C.20)

From (C.13), we note that generation of un is a linear combination of the p and q
sequences, with the added last term, 2

3
hfn. Thus, we have the recursive expression

for the advances,

an D � 1
3
an�2 C 4

3
an�1 C 2

3
: (C.21)

There is no advance before the first step, so that

ai D 0; i � 0 : (C.22)

By definition,

sn D an � n (C.23)

and this makes, given (C.22)

si D �i; i � 0 : (C.24)

Substituting (C.23) into (C.21) finally yields the recursive expression for all sn,

3sn � 4sn�1 C sn�2 D 0 (C.25)

with starting values for sn obtained from (C.24). The above treatment can be
extended to higher-level forms, see below.

Up to this point, this has been presented in [3]. In that paper, this was then
followed by computer calculations showing that for k D 2; 3; 4, the sn values
converge to �0:5. There is, however, a mathematical proof [4].

The first few further recursive equations to be solved are

kD3 W 11sn � 18sn�1 C 9sn�2 � 2sn�3 D 0 (C.26)

kD4 W 25sn � 48sn�1 C 36sn�2 � 16sn�3 C 3sn�4 D 0 (C.27)

kD5 W 137sn � 300sn�1 C 300sn�2 � 200sn�3 C 75sn�4 � 12sn�5
D 0 (C.28)

kD6 W 147sn � 360sn�1 C 450sn�2 � 400sn�3 C 225sn�4 � 72sn�5

C10sn�6 D 0 (C.29)
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covering all the stable cases. The general form is

˛0sn C ˛1sn�1 C ˛2sn�2 C � � � C ˛ksn�k D 0; (C.30)

starting with values s0; s�1, etc., as given above in (C.24). Consider the generating
function

˛0 �
1X
nD0

snt
n D

k�1X
nD0

˛0snt
n C

1X
nDk

˛0snt
n

D
k�1X
nD0

˛0snt
n �

1X
nDk

kX
iD1

˛isn�it
n

D
k�1X
nD0

˛0snt
n �

kX
iD1

˛it
i

1X
nDk�i

snt
n

D
k�1X
nD0

˛0snt
n �

kX
iD1

˛it
i

1X
nD0

snt
n C

k�1X
iD1

˛it
i
k�i�1X
nD0

snt
n

D
k�1X
iD0

˛it
i
k�i�1X
nD0

snt
n �

kX
iD1

˛it
i

1X
nD0

snt
n (C.31)

Thus

1X
nD0

snt
n D

k�1X
iD0

˛it
i
k�i�1X
nD0

snt
n

kX
iD0

˛it
i

(C.32)

We now want to find a single power series in t to replace the expression on the
right-hand side of Eq. (C.32), and its terms will then be equivalent with those of
the left-hand side and yield the desired sn. This is done by splitting Eq. (C.32) into
partial fractions. An example follows here, namely the case k D 2 from Eq. (C.25)
above. We now solve the recursive equations for sn�1, for all n 
 2. We have

1X
nD0

sn�1tn D

1X
iD0

˛it
i
1�iX
nD0

sn�1tn

2X
iD0

˛it
i

D 3s�1 � 4s�1t C 3s0t

3 � 4t C t2
; (C.33)
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i.e.,

1X
nD0

sn�1tn D 1

2

�s�1 C 3s0
1 � t

C 9

2

s�1 � s0
3 � t

(C.34)

Hence, expanding as a power series in t,

1X
nD0

sn�1tn D 1

2

1X
nD0

��s�1 C 3s0 C 3.s�1 � s0/
1

3n

�
tn (C.35)

and sn�1 is obtained by identifying the coefficients of the two sums. The solution
to (C.25) is then

sn D 1

2
.�s�1 C 3s0/C 1

2
.s�1 � s0/

1

3n
: (C.36)

With increasing n, the second term on the right-hand side vanishes and together
with Eq. (C.23) above (that is, s�1 D 1 and s0 D 0); sn converges to �1=2. The
same procedure applied to the higher k values yields the following solutions:

kD3 W sn D 1

6
.2s�2 � 7s�1 C 11s0/C O.2:35�n/ (C.37)

kD4 W sn D 1

12
.�3s�3 C 13s�2 � 23s�1 C 25s0/C O.1:78�n/ (C.38)

kD5 W sn D 1

60
.12s�4 � 63s�3 C 137s�2 � 163s�1 C 137s0/

CO.1:41�n/ (C.39)

kD6 W sn D 1

60
.�10s�5 C 62s�4 � 163s�3 C 237s�2 � 213s�1

C147s0/C O.1:16�n/ (C.40)

The numbers 3, 2.35, 1.78, 1.41, 1.16 are the numerically smallest of the
polynomial roots, all of which are shown in Table C.1, extending the range of k.

Now, si D �i for i � 0, so

lim
n!1 s.k/n D �1

2
: (C.41)

for all five values of k, shown above, that is, k � 6.
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Table C.1 Roots of the
polynomials for k D 1 : : : 8

k

1 1

2 1 3:00

3 1 2:35 2:35

4 1 2:61 1:78 1:78

5 1 2:39 2:39 1:41 1:41

6 1 2:46 2:11 2:11 1:16 1:16

7 1 2:35 2:35 1:85 1:85 0:98 0:98

8 1 2:37 2:18 2:18 1:64 1:64 0:85 0:85

The general solution to Eq. (C.30) is of the form

sn D
kX

iD1
Pi.n/

�n
i (C.42)

where the i coefficients are the complex roots of the polynomial

˛0 C ˛1t C ˛2t
2 C � � � C ˛kt

k D ˛0

kY
iD1

�
1 � t

i

�
(C.43)

See [6, Chap. 4] for a proof of this.
The convergence for k � 6 is due to the fact that the roots of the five polynomials

3 � 4t C t2 (C.44)

11 � 18t C 9t2 � 2t3 (C.45)

25� 48t C 36t2 � 16t3 C 3t4 (C.46)

137� 300t C 300t2 � 200t3 C 75t4 � 12t5 (C.47)

147� 360t C 450t2 � 400t3 C 225t4 � 72t5 C 10t6 (C.48)

all are numerically equal to or greater than 1.
The coefficients in the above polynomials are those for the BDF forms, given in

Appendix A, as the last entry in each group in Table A.1.
Note that in the cases k > 6 there appears at least one polynomial root which

is numerically smaller than 1. The form of the general solution (C.42) therefore
implies that the values sn then do not converge to a finite value, as n tends towards
infinity. This is in accord with the known instability of BDF for k > 6 [7].

Table C.2 shows a few shifts sn for some k, and the convergence is clearly seen.
Convergence is slower for higher k, as is also implied by the values of the

polynomial roots in Table C.1.
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Table C.2 sn values n k D 2 k D 3 k D 4

1 �0:333 �0:455 �0:520
2 �0:444 �0:562 �0:598
3 �0:481 �0:548 �0:520
4 �0:494 �0:519 �0:470
5 �0:498 �0:503 �0:474
6 �0:499 �0:499 �0:494
7 �0:500 �0:499 �0:504
8 �0:500 �0:499 �0:504
9 �0:500 �0:500 �0:501
10 �0:500 �0:500 �0:499

C.3 Similarity of the Exponential Expansion
and Transformation Functions

In Chap. 7, two ways of implementing unequal intervals were described. These
were the Seeber and Stefani [8] and Feldberg [9] approach, in which exponentially
expanding boxes are placed along the X-axis (Eq. (7.16)), and the transformation
method (Eq. (7.3)). Here it will be shown that they are approximately equivalent,
and the relation between their respective expansion parameters will be given.
The exponential expansion consists of a starting (first) box length of length H1.
Subsequent boxes are then defined such that box number i has length ˇi�1 H1.
See Fig. C.1 for this and the points spacing. Points spacing uses the transformation
relations

Y D ln.1C aX/ (C.49)

and the reverse

X D .eY � 1/=a : (C.50)

We have at any point,

Xn D H1 C H1ˇ C H1ˇ
2 C � � � C H1ˇ

n�1

D H1

n�1X
kD0

ˇk (C.51)

D H1

n�1X
kD0

exp.k lnˇ/ :
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Fig. C.1 Points and box unequal spacing

For large n, the sum approaches the integral and we have

Xn D H1

Z n

0

exp.k lnˇ/ dk (C.52)

and this is readily integrated to yield

Xn D H1
ln.ˇ/

.exp.n lnˇ/ � 1/ : (C.53)

This is of the form of (C.50), thus establishing the equivalence. Also, we can read
off the relation between the parameters, being

a � lnˇ=H1 (C.54)

and also since Yn D nıY,

ıY � lnˇ : (C.55)

It is noted that the derivation is an approximation, resting on the approximate
equality of the sum and integral, and holding better for larger n. However, it might
be useful, given the information of the values of, say, H1 and ˇ in a paper using the
box method, to be able to translate it into the corresponding values of a and ıY.

The second way of establishing the parameter relations focusses on three points
(encompassing two boxes), Xn�1;Xn;XnC1 obtained from (C.50). If they also obey
the box expansion formula, then a definite expression for ˇ should be obtained from
the ratio of the two box lengths,

ˇ D XnC1 � Xn

Xn � Xn�1
(C.56)

which, substituting from (C.50), and reducing, becomes

ˇ D eıY � 1

1 � e�ıY (C.57)

which reduces to

ˇ D eıY (C.58)
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the same as (C.55). Then using

ıY D ln.1C aH1/ D lnˇ (C.59)

and the approximation ln.1 C aH1/ � aH1 holding for aH1 << 1 (which will
usually be the case), relation (C.54). If aH1 << 1 does not hold, then the more
correct relation will be

ˇ D 1C aH1 : (C.60)
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Appendix D
Finding �max

We proceed from .R;Z/ space, where it is easy to define an envelope that encloses
the diffusion field to a good approximation. This is the length L, defined, for times
T other than very large (see below), by

L D 6
p
T : (D.1)

For the Cottrell system, this is the distance, beyond which changes greater than 10�4
relative to the bulk concentration are no longer observed. Figure D.1 shows this line.
In the range 0 � R � 1, it is simply the line

Z D L ; (D.2)

and for 1 < R � 1C L, it is a quarter-circle defined by

Z2 C .R � 1/2 D L2 : (D.3)

Fig. D.1 Diffusion limit line
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As will be seen, the line generates a corresponding line of 	 values by inversion of
a given transformation; and one chooses the maximum value, to be on the safe side.
That value lies at the point .R;Z/ D .1CL; 0/, as will now be shown.

To find the maximum 	 value, we first find the maximum value along the
straight line segment, defined by (D.2). This equation is substituted in the equation
for Z in the given transformation. For example, for the MWA transformation, this
leads to

sinh.	 / D L

sin.�/
: (D.4)

This is maximum for a minimum � , meaning the point .1;L/, at which the line
joins the quarter-circle. It remains to search that arc for 	 values. Equation (D.3) is
substituted by the transformed expressions. The VB limit is obtained by

	 0
m D arccosh.1C L/

D ln
�
1C L C

p
.1C L/2 � 1

�
; (D.5)

and then

	max(VB) D 	 0
m

1C 	 0
m

: (D.6)

The above implies that 	max generally increases indefinitely with T. However,
this ignores the fact of a steady state at the UMDE at long times, so for long times,
	max might be an overestimate. The choice of L in (D.1) is made on the basis of the
Cottrell experiment at a planar shrouded electrode, and defines the point where the
concentration deviates from that in the bulk by no more than some small number,
such as 10�4 (which leads to the factor 6). At the steady state for the UMDE, we
have the analytical solution for the concentration profile [1, 2]:

C D 1 � 2

�
arcsin

 
2p

Z2 C .1C R/2 Cp
Z2 C .1 � R/2

!
(D.7)

and if we substitute C D 0:9999 in this equation, we obtain a curve very close to a
quarter-circle, with a maximum 	 value corresponding to the point .R;Z/ D 2�104

�
.

This means that for roughly T > 1000, little is to be gained by not including the
whole 	 range.
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Appendix E
Procedure and Program Examples

Here some modules, procedures and whole programs are described, that may be
useful to the reader, as they have been to the authors. They are all in Fortran
90/95 and invoke a generally useful module, that will be used in all procedures
and programs in the examples, and another module useful for programs using a
Rosenbrock variant. The source texts (except for the two modules) are not all
reproduced here, but can be downloaded from the web site http://extras.springer.
com.

E.1 Example Modules

E.1.1 Module STUFF

In this module, the two kinds of real values, respectively single precision (6
decimals or a little better) and what used to be called double precision (here defined
as 14 decimals or a little better) are given the names sgl and dbl, and the constant
pi is made a parameter. As well, the (real) parameter small is set up. This is
useful in those cases where something is tested for being very small.

module STUFF
! General-purpose module.

implicit none
integer, parameter :: sgl=selected_real_kind(6),&

dbl=selected_real_kind(14)
real(kind=dbl), parameter :: small = 1.0E-08
real(kind=dbl), parameter :: pi = 3.14159265358979

end module STUFF

© Springer International Publishing Switzerland 2016
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E.1.2 Module ROSTUFF

Rosenbrock methods require a set of constants, and as these are needed in several
subroutines in a given program, it is convenient to gather them in a module.
Experiments have shown that the two Rosenbrock variants, ROS2 and ROWDA3 (see
Chap. 9), are about the best in the present context, responding without oscillations.
Only these two have been included in the module. Readers wanting the constants for
the two other methods RO2 and ROS3P can find them in Appendix A, in the same
unified notation as these two preferred variants.

module ROSTUFF
! Module for the Rosenbrock coefficients.

use STUFF; implicit none
real(kind=dbl) :: gamma, gamma1, gamma2, gamma3, &

alpha1, alpha2, alpha3, &
a21, a31, a32, &
c21, c31, c32, m1, m2, m3

CONTAINS
subroutine ROCOEFFS (order)
! Sets the Rosenbrock coeffs for orders 2 or 3,
! accessing the module ROSTUFF where they are.
! Order 2 is ROS2, order 3 is ROWDA3.
use STUFF; implicit none
integer :: order

gamma1 = 0 ! Zero defaults
gamma2 = 0
gamma3 = 0
alpha1 = 0
alpha2 = 0
alpha3 = 0
a21 = 0
a31 = 0
a32 = 0
c21 = 0
c31 = 0
c32 = 0
m1 = 0
select case (order)

case (2)
gamma = 1.707106781186547_dbl
gamma1 = 0
gamma2 = - gamma
alpha2 = 1
a21 = 0.5857864376269050_dbl
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c21 = - 1.171572875253810_dbl
m1 = 0.8786796564403575_dbl
m2 = 0.2928932188134525_dbl

case (3)
gamma = 0.435866521508459_dbl
gamma1 = gamma
gamma2 = 0.6044552840655588_dbl
gamma3 = 6.3797887993448800_dbl
alpha2 = 0.7_dbl
alpha3 = 0.7_dbl
a21 = 1.605996252195329_dbl
a31 = a21
a32 = 0
c21 = 0.8874044410657823_dbl
c31 = 23.98747971635035_dbl
c32 = 5.263722371562130_dbl
m1 = 2.236727045296589_dbl
m2 = 2.250067730969645_dbl
m3 = -0.209251404439032_dbl

end select
end subroutine ROCOEFFS

end module ROSTUFF

E.2 Procedures

A few functions and subroutines that recur in simulation programs, are presented
here, not in alphabetic order.

E.2.1 File Names Routine

The routine FILSPC conveniently reads in a file name and opens the file. For
personal historical reasons (DB), logical unit numbers (LUNs) either equal to or
ending with 3 are input files to be read from, while those ending with 4 are output
files, to be written into. Thus there are a possible ten of each of these two types. The
files are all ASCII.
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E.2.2 The Error Functions

In test programs, where the numerical solution is compared with the analytical
solution, the latter often involves the error function erf or the complementary error
function erfc. The latter could be obtained simply by subtracting erf from unity but a
better approximation is obtained by the direct algorithm. The two routines, ERF and
ERFC, were given to one of us (DB) by a colleague, who probably obtained them
from an IBM collection. They have been adapted to Fortran 90/95 by the authors,
and use the module STUFF. The comments in capitals are the original comments.

E.2.3 Current Approximations

The current value is obtained from the concentrations at any time as the dimension-
less quantity G, the gradient dC=dX at X D 0 as an n-point forward difference (see
Appendix A, or Sect. 3.4). For concentrations represented at equal intervals, this is
conveniently computed by the function G0FUNC.

G0FUNC can be inverted to calculate C0, givenG; this is useful in the formulation
of derivative boundary conditions. For example, to take a simple case, in chronopo-
tentiometry, one has constant G and computes C0 from that and the concentration
profile. The function C0FUNC does this job. Both G and H are needed, but they
appear as the product GH, which is passed to the function.

Both these functions call on G0BETA for the coefficients. It is also useful in other
contexts, such as the setting up of boundary value calculations for coupled systems.

For unequal intervals, there are equivalent functionsG0FORN and C0FORN, both
using the Fornberg algorithm [1]. These two need the X array to operate.

E.2.4 Matrix Inversion

In some programs such as CV_CAT and the migration programs in Chap. 13, matrix
inversion is needed. This is best done by using LU decomposition, as described in
Press et al. [2]. The subroutine MATINV does this, inverting the passed matrix in
place; that is, the matrix is returned inverted. If one does not want it altered, the
other routine MAT_INV returns the inverse in a new matrix, leaving the original one
unchanged. In fact, MATINV calls MAT_INV. Both assume a square matrix, of the
exact size given, so the best way to call them is by using a section of that size, for
example

call MATINV (mat(1:N,1:N), N)

For matrices up to 4�4, inversion is done “manually” for speed. The two subroutines
DEC and SOL are the usual LU decomposition routines, of which there are a number,
freely available.
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E.2.5 MINMAX

This subroutine is useful in linear sweep simulations, for calculating peak (or
trough) current values and where they occur, from a trio of currents, in which the
second is either larger, or smaller, than the other two. A parabola is fitted to the three
points,

y D a0 C a1x C a2x
2 (E.1)

and the parabola’s maximum or minimum is computed, as well as its position. The
positions are assumed (by the subroutine) to be, respectively, at �1, 0 and +1, so
that it is up to the calling program unit to scale the minmax position. Needless to
say, X must be equally spaced.

For arbitrarily spaced intervals, we require procedures for first and second
derivatives, and some other subroutines, as well as routines for setting the sequence
of points according to the expansion desired.

E.2.6 EE_FAC

There is a need in some situations to generate a series of points, with the intervals
between them exponentially expanding from a base value. This can be both in time
or in space. It is often most convenient (see Chap. 7) to start with the base interval,
H1 (which is also the first value X1 after zero), the last value, L, and the number of
points N to be generated in that range. The expansion factor � then makes

hi D �hi�1 (E.2)

or, as in Chap. 7,

xi D � i � 1
� � 1

: (E.3)

The task is then to find the ˛ that fits the requirements. This can easily be done using
a binary search, and the function EE_FAC is provided for this.

E.2.7 DAMPED_EXPANSION

This routine computes the base �1 for a damped exponentially expanding sequence,
where � is damped for increasing X, as described in Chap. 7, page 130. It then
computes and returns, besides this �1 value, the position sequence X.
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E.2.8 SV_FAC

There is another sequence of point positions of potential use, the S&V sequence,
discussed in Chap. 7, page 129. This sequence is described by the recursion

hi D hi�1.1C ˛Hi�1=H1/ : (E.4)

As with the exponentially expanding sequence, we start with a first interval H1,
decide on a furthest point L and how many points there should be in the sequence.
The function SV_FAC computes the expansion factor, here called ˛. The task is
then to find the ˛ that fits the requirements. See page 129 for why this might be
considered interesting.

E.2.9 Gradient Routine FORNBERG and FORN

In many 2D programs, there are derivative boundary conditions requiring gradient
approximations in the form of the weighting coefficients. These are best obtained
by the routine FORNBERG which, unlike the simpler FORN, returns the derivative
as well as the weighting coefficients, which then can be applied in the discretisation
expressions. FORN only returns the coefficients. FORNBERG naturally requires the
values at the points in order to operate.

E.2.10 Current Integration on an Unequally Gridded Surface

In the case of the ultramicroelectrodes such as the disk electrode, it is necessary to
integrate over the surface, and sometimes there will be unequally spaced points
along the surface, as for example, in direct discretisation on an unequal grid
in the example program UME_DIRECT. The routine U_TRAP does a trapezium
integration, usually sufficiently accurate, given the inaccuracies in the gradients.
It integrates local current densities, precalculated by using the routine G0FORN. If
better accuracy is wanted, the Simpson-like U_SIMP can be used.

E.2.11 Reference Fluxes and Errors

For 2D simulations testing new algorithms, and where there are no proper analytical
solutions it is convenient to have reliable reference flux values to compare with. We
have provided some of these: UMDE_REF_FLUX for the ultramicrodisk electrode,
BAND_REF_FLUX for the band, and CYL_REF_FLUX for the cylinder electrode.
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These are described in detail in [3–5]. Two of them are accompanied by subroutines
that compute the error in simulated flux values, calling on these routines for
comparison, UMDE_ERROR and BAND_ERROR. We have not had occasion to
produce a routine for errors in the current at a cylinder but extension of the other
routines to this is evident.

A recent paper by Bieniasz [6] presented a method for computing machine-
precision current values for the ultramicroband electrode, using MATLAB, but not
the values themselves. The method requires heavy computing, and a follow-up paper
provides equally accurate polynomial approximations in the form of coefficients [7].

E.2.12 JCOBI

In Chap. 9, the method orthogonal collocation is described. It makes use of certain
Jacobi polynomials, whose roots become the node points X, at which concentrations
are defined. The subroutine JCOBI is an adaptation of the subroutine reproduced in
the book by Villadsen and Michelsen [8], converting it to Fortran 90 and making
use of the module STUFF. There is a number of options in the subroutine. In
using the subroutine to generate Tables A.5, A.6, and A.7, the recommendations
of Whiting and Carr [9] were followed, setting both parameters ˛ and ˇ to zero,
and not including the boundary points indexed zero and N C 1. See the book by
Villadsen and Michelsen for the details.

E.2.13 I1I2

The small routine I1I2, although performing a very simple job, has been useful to
the authors in simulations. When using multi-point derivative approximations on a
window of m points somewhere along the whole stretch indexed with 1 : : :N, it is
clearly necessary to know the window start and end indices, especially if it is close to
one of the ends of the whole stretch, where the approximation will be asymmetrical.
This entails two IF statements and the routine relieves the programmer of the
tedium of writing this at every occurrence in the program.

E.3 Example Programs

E.3.1 Program COTT_EX

This program simulates the Cottrell experiment, as discussed in Chap. 5. The
output, upon running this for NT=100 and lambda=0.45 and three-point current
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approximation, is

iT T G log10(error)
1 0.010 4.025 -0.54
2 0.020 4.100 -1.56
4 0.040 2.876 -1.71
8 0.080 2.005 -2.28

16 0.160 1.411 -3.16
32 0.320 0.998 -3.26
64 0.640 0.706 -3.34

100 1.000 0.564 -3.48

Ordinarily, there would be some header information, echoing the input data and data
derived from it. Also, the prompts produced by the program have been deleted.

E.3.2 Program CHRONO_EX

This program is much the same as COTT_EX, but with the derivative boundary
condition, see Chap. 5 for background information. Note that C0 is calculated at
the start, so that it conforms to the rest of the initial concentration profile, so as to
satisfy the boundary condition. This calculation is repeated after every run of the
innermost loop in which all concentrations C1; : : :CN are recalculated. In this way,
the old concentrations always include the proper C0 value. This must always be the
case, no matter what the boundary conditions are.

This produces, again for NT=100 and lambda=0.45, the (trimmed) output

iT T C(0) C(0)(analyt) log10(err)
1 0.010 0.887 0.900 -1.88
2 0.020 0.849 0.859 -2.00
4 0.040 0.792 0.800 -2.10
8 0.080 0.711 0.717 -2.22

16 0.160 0.596 0.600 -2.37
32 0.320 0.431 0.434 -2.52
64 0.640 0.198 0.200 -2.67

100 1.000 -0.002 0.000 -2.77

E.3.3 Program CV_EX

This is a simple simulation of a CV experiment, using the explicit method EX, and
assuming a quasireversible reaction,

A C e� • B (E.5)
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with dimensionless heterogeneous rate constant K0, as defined in (2.28). If this
constant is input as K0 > 1000, the system is assumed reversible and the Nernst
boundary condition is applied. See Sect. 5.5 for the details of how to apply the
boundary conditions. Here, an important point needs to be made. When carrying
out a step forward in time using method EX, the old C-arrays are used to explicitly
generate the new arrays at the new time. Again, the old C-arrays must include the
boundary values corresponding to the arrays, so that the boundary conditions hold.

The program draws on several subroutines and functions, already described, such
as G0FUNC, G0BETA and MINMAX to calculate peak and trough currents and at
what potentials they occur.

This produces the following example output in a particular run:

CV_EX
Lambda = 0.450
H = 0.149
nT per p = 100
N = 278
K0 = 1001.000
1190 points written into plot file.

Top current and -p = 0.4462 -1.1083
Bot current and -p = -0.3334 1.1326

Being an explicit method, the program uses 278 points in space, even though H is
rather large at 0.149. The peak current is surprisingly accurate (to all four decimals)
but the peak potential is not (it should be �1.1090 for the K0 value set here at 1001
to force the Nernst boundary condition). Generally, one finds that the peak potential
is a more sensitive indicator of how well a given simulation method works.

E.3.4 Program COTT_CN

This program does the same work as the earlier one, COTT_EX, but uses Crank–
Nicolson (with equal intervals). It also includes the choice of M Pearson substeps
within the first step, to damp the oscillations, as discussed in Chap. 8, Sect. 8.5.1.

Using similar parameters as for the earlier program, but making use of CN’s
stability with respect to , that parameter is set to 3, giving more points in the X-
range. Here is a sample output from a run (again omitting the dialog part):

CN Cottrell simulation.
NT = 100
Lambda = 3.00
N = 104 pts along X.
10 Pearson substeps within first step.

iT T Gsim log10(err)
2 0.020 3.878 -1.56
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4 0.040 2.802 -2.16
8 0.080 1.992 -2.87

16 0.160 1.410 -3.84
32 0.320 0.997 -4.16
64 0.640 0.705 -4.15

100 1.000 0.564 -4.27

Note the improved accuracy, using 10 Pearson steps, despite using only 100 steps in
time. The explicit program gave rise to errors in the third decimal at the end of the
simulation, but here they lie at around the fourth or better.

E.3.5 Program CHRONO_CN

A chronopotentiometry program, using CN, is shown here, again, as with the above
COTT_CN, with equal intervals. The two programs are in fact very similar, differing
only in the boundary conditions in the CN routine, and the initialisation. As before,
old known concentrations always include a conforming C0.

Note also that although the Pearson option has been included, it is not really
needed here. CN does not oscillate with the constant current start.

A sample output follows, again using  D 3 as for Cottrell above.

CN chronopot. simulation.
NT = 100
Lambda = 3.00
N = 104 pts along X.
1 Pearson substeps within first step.

iT T C(0) log10(err)
2 0.020 0.859 -3.65
4 0.040 0.800 -3.45
8 0.080 0.717 -3.46

16 0.160 0.600 -3.66
32 0.320 0.434 -3.85
64 0.640 0.200 -4.03

100 1.000 0.000 -4.14

As with Cottrell, note the accuracy compared with CHRONO_EX. Note also that a
single “Pearson” step has been used, meaning no subdivision of the first step.

E.3.6 Program CHRONO_CN_HERM

Another version of chronopotentiometry using CN, but here using Hermitian
gradient approximations of the 2(2) and 2(3) form, see Chap. 3, page 46.
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E.3.7 Program LSV_CN

The following shows a CN program with unequal intervals, simulating a single LSV
sweep for a reversible system. Apart from writing out the .G; p/ results for plotting,
the program also detects the peak value and the potential at which it peaks. The
boundary condition part is described in Chap. 6, page 110.

An example output, apart from the data file for plotting, was

LSV_CN_UN:
nT = 100 per p-unit
pstart = 12.000
pstop = -12.000
X(1) = 0.00100
N = 50
Xlim = 29.394
G, using 5 points.
gamma = 1.18811 (found by iteration)

G-peak of 0.4471 found at p = -1.1092

This program uses exponentially expanding intervals in X, and we started here with
a first interval of 0.001 and demanded 50 points across the diffusion space. This set
the � value as seen above. The peak current is a little off (it should be 0.4463) but
the peak potential is quite good (the exact value is �1.1090).

E.3.8 Program COTT_EXTRAP

This is an example of a Cottrell simulation using second-order extrapolation
based on the BI (Laasonen) method and unequal intervals. Three-point spatial
discretisation is used here.

E.3.9 A Nonlinear System: Programs for the Birk/Perone
Reaction

One of the problems mentioned in Chap. 8 is that of second-order homogeneous
chemical reactions, which give rise to nonlinear terms in the transport equations.
One such system is the Birk and Perone reaction [10, 11], in which a light flash
produces an electroactive substance in solution, which decays with a second-order
reaction while it is electrolysed. If CN is used to simulate this, the term in C2i can
be linearised to a good, second-order approximation. If one does not choose or is
prevented from linearisation, a Newton approach, as described in that chapter, must
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be used. The three programs below are examples of both approaches as well as the
Rosenbrock method. These programs not only illustrate the handling of nonlinear
equations, but also of the time-dependent outer boundary values, due to the decaying
substrate. There is an analytical solution for this value and its time derivative,
and both are made use of in the programs. The system simulated is a Cottrell
experiment (potential jump) on the decaying substance using CN and Rosenbrock.
The first program, BP_LIN, uses linearisation, the second, BP_NONLIN, the
Newton method. The two programs produce almost, but not quite the same, results,
the Newton version being slightly more accurate. Both programs make automatic
use of the Pearson start, by subdividing the first step in that number of substeps that
gives a unity value to ıT=H2

1 . In this way, negative concentrations are avoided.
A third program, BP_ROS, uses two Rosenbrock methods, discussed in Chaps. 4

and 9, which handle nonlinear equations without iteration or linearisation, and thus
suggest themselves for the solution of nonlinear systems. The program provides
the choice of two Rosenbrock methods. It works about as well as the above two
and illustrates the Rosenbrock approach. The program also makes use, besides the
usual STUFF, of the special Rosenbrock module ROSTUFF, see above. The module
contains the subroutine ROCOEFFS, which sets the Rosenbrock constants. Only
the Rosenbrock variants ROS2 and ROWDA3 are allowed for in the program. The
inconsistency at T D 0, mentioned in Sect. 9.4 page 203, is overcome by the simple
trick of setting C0 to zero initially.

E.3.10 EC Reaction, Cyclic Voltammetry: CV_EC

The programCV_EC uses CN to simulate the rather simple EC reaction as described
in Chap. 8. There are no complications here. The output is in the form of a data file
for plotting. It makes use of the simple subroutine MATINV to solve the small 2� 2
system of equations for the boundary values. This could have been done directly
but when we already have this routine, why not use it? Note that the a0 coefficients
are different for the two species but are constant throughout the simulation and are
therefore precalculated. This system is not coupled, so that the (scalar) Thomas
algorithm can be used. Figure E.1 shows the result of some runs of this program.
The fat curve is for K D 0, that is, plain reversible CV without a chemical reaction,
and the numbers marked on the curves show the K values input to the program. As
expected, as K increases, the negative-going peak (at the top) shifts in the positive
direction and the trough (on the reverse sweep) becomes smaller, to disappear
entirely for large K.
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Fig. E.1 CV of the EC reaction, K values as marked

E.3.11 CV of the EC’ Reaction: Program CV_CAT

The coupled system arising from the EC’ or catalytic system, described in
Chap. 8, was programmed using CN and the block-Thomas method. That is, the two
concentration vectors were gathered into a vector of two-element vectors, and the
usual coefficients in the discrete system of equations become a number of coefficient
matrices. For this system, the A matrices are constant over the whole simulation and
could be precomputed. In fact, one finds that one does not need these but rather the
inverse of the A0 matrices that are the result of reducing the system to two variables
(vectors) for each row; and it is these that are precomputed and stored. The program
outputs a data file for plotting. The routine MATINV is used more extensively here.
Figure E.2 shows a family of CV curves, the fat curve again being that for the plain
reversible case, and the others with rate constants K as marked. As K increases, the
curve becomes increasingly sigmoid-shaped, with a plateau of height equal to

p
K.

E.3.12 LSV Simulation with iR Drop and Capacitance:
Program LSV4IRC

The program LSV4IRC is a simulation of a reversible reaction with input values
of � (dimensionless uncompensated resistance) and �c (dimensionless double layer
capacity). Unequal intervals are used, with asymmetric four-point second spatial
derivatives, and second-order extrapolation in the time direction. The nonlinear set
of six equations for the boundary values is solved by Newton–Raphson iteration.
Some results are seen in Chap. 11.
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E.3.13 Program UMDE_DIRECT

This program simulates a Cottrellian potential jump at a UMDE, using three-
point BDF for the time integration (starting it with a single BI step), and m-point
asymmetric spatial discretisation (m variable), on an .R;Z/ grid with exponentially
expanding intervals expanding upwards in Z, and away from the electrode edge at
R D 1 in both directions. This is discussed in Chap. 12, Sect. 12.3.2. The sparse
solver MA28 is used.

E.3.14 Program UMDE_VB

This is a version of the disk simulator but using a grid in the conformal space given
by the Verbrugge/Baker transformation, as discussed in Chap. 12, page 279.

E.3.15 Program UMDE_ARRAY

This program is patterned after UMDE_DIRECT, with the difference that the R axis
is limited by the diffusion domain radius Rd, at some given multiple of the disk
radius, as discussed in Chap. 12, Sect. 12.5. Effectively, at this radius, there is a
cylindrical wall around the electrode, across which there is no flux, so we have a
zero gradient boundary condition there.
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The program simulates an LSV experiment for a reversible electrode reaction.
The first output file contains dimensionless potential/current values, and the second
output file contains the final concentration field. The program was used to calculate
the LSVs shown in Fig. 12.15 of Sect. 12.5. A typical input file to start the program
is

out1.dat
cprofile.dat
18, -18, 50 #Pstart, Pstop, nT
0.207957, 2.82 #pscan, Rd
100, 30, 70 #nZ, nA, nR
5E-5, 5E-5, 2.82 #dZ1, dR1
5 #m
20 #fa

The number of points of the finite difference approximations to the derivatives of
the pde and boundary conditions is given by the parameter m. Here, m=5 implies the
use of symmetrical u00

3.5/ and u0
3.5/ formulae for inner grid points and asymmetric

five-point formulae close to and at the boundaries. The parameter pscan is the
dimensionless scan rate for a UMDE, as defined by Eq. (12.28). The factor fa is for
memory allocation of the sparse matrix solver MA28. The input list given above was
used to simulate the voltammogram for array A4 in Fig. 12.15.

E.3.16 Programs LIQU_JUNC, RPC, CURDE

The three example programs for migration as described in detail in Chap. 13 are
included in the collection.

E.3.17 Program CHANNEL_BAND

This program does a steady state simulation of the current at a narrow band electrode
at the bottom of a channel with laminar flow of electrolyte through it, as discussed
in Chap. 14, page 376. It is done as a march along X, the direction of flow.
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EX, 96
micrcroelectrode array, 302
quasireversible case, 30
reversible case, 302

MA28, 271, 427
Maclaurin expansion, 272
Mathematica, 422
mathematical proofs, 455–464
Maximum 	 , 465–466
maximum distance, 18, 91
MDUM, 207
method of lines, 191, 427
method of lines (MOL), 198–200

midpoint rule, 67, 73
migration, 5, 9–10, 339–364

electroneutrality condition (ENC), 341
examples

copper deposition at RDE, 358
liquid junction, 342
RPC, 352

flux, 340
Poisson equation, 340
simulations, 342–364
theory, 340

mixed boundary conditions, 30, 101
model systems, 15–31

constant current, 26
Cottrell, 16
LSV, 27
potential step, 15

module source texts, 469
MOL, 61, 191, 427
MOL/DAE, 198–200

summary, 416
monitor function for regridding, 135
Monte Carlo method, 221
moving grids, 135
multidimensional upwinding method, 207
multigrid method, 170

negative concentrations, 23
Nernst diffusion layer, 15
Nernst equation, 13, 29, 110, 116

dimensionless, 15
Nernst-Planck equation, 5
Nernstian boundary condition, 15
network method, 220
Neumann boundary condition, 15, 26, 92, 102
Newton method, 480
Nicholson & Shain solution, 28
nonlinear ode, 80
nonlinear pdes, 163
nonlinear boundary conditions

capacity, 241
iR, 241

nonlinear terms
linearising, 164–169
Newton iteration, 167–169

normalisation, 13–15, 19
diffusion coefficient, 106

numerical method of lines (NUMOL), 198
Numerov method, 46, 160
Numerov/Douglas, 192–195

extended Numerov method, 195
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OC, see orthogonal collocation
ode

autonomous, 81
example, 62
nonautonomous, 81
nonlinear, 80
solvers, 427
standard form, 61
systems, 77–85

Rosenbrock, 80
odes, 61–85
order of approximation, 39
orthogonal collocation, 207–215

boundary values, 212
current calculation, 214
example, 214
Jacobi polynomial roots, 444, 475
normalisation, 208–209
solving the system, 213
spline collocation, 208
summary, 416

oscillations, 389, 391, 396
outer boundary, 102

Padé approximants, 403
parallel method for hcrs, 94
parameter fitting, 431–433
Pascal, 422
patch-adpative intervals, 138
Pearson method, 133, 156, 264, 297, 411, 477,

478
pentadiagonal system, 184
point method, 2
Poisson equation, 340
potential, 14

dimensionless, 14
potential field effects, see migration
potential step, 15–26

catalytic system, 25
homogeneous reactions, 22–26
irreversible system, 21–22
quasireversible system, 21–22
reversible system, 19

programming, 421
debugging, 422, 423
effort, 411
error prevention, 423
language choice, 421
style, 421, 423
use of libraries, 424

proofs, 455–464
propagation matrix, 400–402
propagational inadequacy, 186, 263

DuFort-Frankel, 186
hopscotch, 190

pseudo-first-order reaction, 25
PSPICE, 221
Péclet number, 377, 378

quadradiagonal system, 152
quasireversible system, 15, 109, 116

Randles–Ševčík function, 28
Randles-Ševčík function, 219, 305
random walk, 221
reaction compiler, 430–431
reaction layer, 11, 25, 95, 123, 135
reference species, 19
regridding, 135, 136
Reinert-Berg reaction, 22, 93, 102, 201
reversible system, 15, 116
Reynolds number, 370, 372, 377
RK, see Runge-Kutta
Robin boundary conditions, 101
Rosenbrock method, 80, 200–206, 242, 411,

470
adsorption kinetics, 237
application to simple ode, 83
Birk-Perone, 201
Birk-Perone example, 203
constants tables, 445–446
error estimates, 83
example, 480
nonlinear system, 201
Reinert-Berg, 201
ROS2, 82
ROWDA3, 82
summary, 415
UME, chronopotentiometry, 265

rotating electrode, 373
disk, 9, 374
disk normalisations, 363
pde, 358
ring-disk, 374

roundoff, 392
Runge-Kutta, 64–66, 191–192

hcr, 94
summary, 414
systems of odes, 78

Sand equation, 26
Saul’yev method, 186–189

boundary values, 187
stability, 403
summary, 415
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scanning electrochemical microscope (SECM),
262, 265, 267

second derivative approximations, 50
tables, 439

semi-implicit methods, 80
sensitivity analysis, 409
sequential method for hcrs, 94, 191

consistency proof, 455
simulation methods

summary, 414
simulation packages, 427–430

CVSIM, 429
DigiElch, 429
DigiSim, 429
EASI/EASIEST, 429
Echem++, 429
ELECTROCHEMIST.com, 429
ELSIM, 428
ESTYM_PDE, 428
PHREEQ, 427
PLTMG, 427
PSPICE, 427
SIMULA, 430
SPICE, 427

singularity correction, 159
SIP, 170
solution resistance, see iR effects
solving the implicit system, 149–154
sparse solvers, 427
spectral radius, 398, 401
spherical coordinates, 7
SPICE, 221
spline collocation, 208
stability, 392–406

-function, 403
BI, 405
CN, 404, 405
EX, 404
extrapolation, 405

-function from Padé approximants, 403
analysis for BI, 396
analysis for CN, 396
analysis for EX, 396
BDF, 396
condition, 395
DuFort-Frankel, 396
Fourier analysis, 394
heuristic analysis, 393
matrix analysis, 396–403

BDF, 400
BI, 398
eigenvalues, 397
EX, 398
norm, 402

propagation matrix, 402
special cases, 403

CN, 403
derivative boundary conditions, 403
homogeneous reactions, 403
Saul’yev, 403

spectral radius, 398, 401
symbol, 403
Von Neumann analysis, 394–396

starting BDF, see BDF
strongly implicit procedure, 170
summary of simulation methods, 414
Sundqvist & Veronis expansion function, 129
sweep rate, 29
symbol convention, 4
systems of odes, 77–85

BI, 78
trapezium method, 79

tables, 439
current approximations, 439
first derivative approximations, 439
Jacobi polynomial roots, 444
second derivative approximations, 439
unequal intervals approximations, 440

target accuracy, 410
Taylor expansion, 40, 43, 52, 64
Thomas algorithm, 103, 111, 149

extension to quadradiagonal, 152, 412
three-dimensional systems, see 3D systems
time

dimensionless, 13
time of flight, 312, 314
time shifts, 70, 410

proof(, 456
proof), 461

transfer coefficient, 12
transformation method, 447
transformations

band electrode, 450
extension to VB, 450
MWA, 450

Cartesian to cylindrical, 448
current, 452
disk electrode, 451

extension to VB, 452
MWA, 452

TRANSIENT, 430
transition time, 26
transport equation, 5

total, 10
trapezium method, 67, 148

ode system, 79
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Treanor method, 221
tridiagonal system, 149

block-, 182
truncation errors, 389, 392
tube flow, 371

entry length, 372
two-dimensional systems, see 2D systems
two-point current approximation, 105, 106
two-point derivative condition, 110–111
two-species boundary conditions, 106–119

u-v device, 102–106, 195
coupled systems, 111–117
matrix-vector case, 113
two species, 107

ultramicrodisk electrode, see UMDE
ultramicroelectrode array, 297

direct discretisation, 304
generator-collector mode, 307
hexagonal lattice, 299
interdigitated, 306
parallel mode, 306
randomly distributed, 298
regular, 298
square lattice, 299
ultramicroband electrode, 306

UMDE, 251–260
ADI, 266
array, 289, 298
axis problem, 272
boundary conditions, 254, 257
current, 254, 257
current integration, 275
direct discretisation, 270
discretisation on mapped space, 276–289
grid mapping, 271
hopscotch, 266
insulating plane problem, 272
LSV, 259
normalisations, 256–257
points grid, 270
Saito solution, see Soos-Saito solution
simulation, 265–289

determining maximum R and Z, 268
direct discretisation, 268

Soos-Saito solution, 254
steady state, 254
theory, 252–260

UME
array, 298
band, 260
Crank-Nicolson, 264
hemicylindrical, 262
hemispherical, 262
integral equation method, 264
other types, 264
rectangular, 289
Rosenbrock, 265
simulation, 263–265
square, 289
theory, 252–265

uncompensated resistance
see iR effects, 241

unequal diffusion coefficients, 106
unequal intervals, 51–57, 118, 123–139, 146,

479
adaptive, 135–139
arbitrary grid, 128–132
by transformation, 124–128
current approximation, 55
derivative approximations, 440–441
discretisation, 126
four-point derivatives, 151
in time, 133–134
parameter choice, 127, 131
procedures for, 473
summary, 415

upwinding, 375, 379

velocity profile, 370, 371
Volterra equation, 33

wall jet, 372, 374
web site, 469
Wu-White method, 197

Y12M, 271, 427
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