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Obituary

It is with great sadness and sorrow that we have learnt about the sudden and

untimely death of our colleague, Prof. Dr. Tom Ziegler. Tom was a bright scientist

and one of the founders and pioneers of density functional theory. Tom has always

supported and encouraged new developments and always took an active part in

advancing and promoting them. Tom’s recent research on constricted variational

density functional theory holds considerable promise for the field of quantum

theoretical modeling of excited electronic states, and one of the latest accounts of

these developments is published in this book. Tom will be sorely missed by his

colleagues and the entire community of quantum theoretical chemists.



ThiS is a FM Blank Page



Preface

The rapidly expanding use of ultrafast laser spectroscopic methods to study the

photodynamics of chemical bonds underlines the importance of accurate theoretical

interpretation and modeling of experimental observations. To match this need there

was recent progress in the development and application of computational methods

based on density functional theory (DFT) designed to describe the excited elec-

tronic states and the related potential energy surfaces (PESs). These developments

are especially valuable as DFT methods enable one to study the properties of

excited states and to obtain on-the-fly the relevant dynamical parameters of large

molecular and condensed phase species occurring in natural as well as artificial

photoactive systems. As Kohn–Sham DFT is strictly formulated for ground elec-

tronic states only [1, 2], excited electronic states are typically accessed through the

use of linear response formalism implemented in time-dependent DFT (TD-DFT)

methodology [3, 4], which currently enjoys a wide popularity among theoretical

photochemists and photophysicists. The widespread use of TD-DFT, however,

revealed certain drawbacks and limitations of the methodology, which are being

constantly addressed through the development of improved computational pro-

tocols, new exchange-correlation density functionals, and conceptually new com-

putational approaches. Besides methodological developments in the domain of

linear response TD-DFT, there is growing activity in the field of development of

alternative time-independent DFT methods as well as the methods going beyond

the paradigm of electronic density and exploring the world of (one-electron) density

matrix functionals. Although a number of excellent reviews of TD-DFT formalism

can be found in the literature [5–9], the rate of new developments seems to outpace

the rate of review publishing. This book attempts to fill the gap by providing a

collection of chapters addressing the most recent developments in the realm of DFT

methodology for the excited electronic states written by leading experts in the field.

The opening chapter (p. 1) of the book gives a broad perspective on linear

response TD-DFT and its formal connection to many-body theory. By exploring

the latter, the authors expand on the possibilities to ameliorate some well-known

deficiencies of currently available TD-DFT methodology, especially with regard to

treatment of double (and, in general, multiple) excitations and proper description of



chemical bond dissociation. The dressed TD-DFT approach and its current and

potential capabilities are discussed in detail. An entirely different approach to

describing excited states in the context of DFT is taken in the following two

chapters, which expand on the use of time-independent methodologies. The

constricted-variational DFT method, presented in the second chapter (p. 61), has

the potential to outperform the currently available linear response TD-DFT when

describing excitations in large conjugated systems or charge transfer excitations,

both of which are notoriously difficult for the standard linear response TD-DFT

formalism. A practically accessible implementation of ensemble DFT formalism,

presented in the next chapter (p. 97), holds great promise for theoretical modeling

of non-adiabatic relaxation processes of excited electronic states, relevant to pho-

tochemistry and photovoltaics, and provides proper description of real and avoided

crossings between the ground and excited electronic states of large molecular

species. To complement these new developments, the fourth chapter (p. 125) gives

a wide perspective on the general background and practical aspects of a novel

quantum theoretical approach to the ground and excited states of electronic systems

– density matrix functional theory (DMFT). Although a younger methodology than

DFT, DMFT has the potential to overtake its counterpart once practically affordable

functionals of the one-body density matrix become available.

Methodological aspects of the theoretical description of excited electronic states

in the condensed phase and open quantum systems in the framework of TD-DFT are

amply discussed in the fifth and sixth chapters of the book. On p. 185 Ullrich and

Yang give a comprehensive survey of currently available exchange-correlation

kernels of TD-DFT, analyze their shortcomings, and outline possible remedies for

the description of excitonic states in condensed phase systems. A comprehensive

and pedagogical review of theoretical approaches, such as complex scaling and

open boundary conditions, for the description of time-dependent phenomena in

open quantum systems, especially with regard to resonance states photoemission

spectroscopy, is given in the chapter by Rubio et al. on p. 219. A contemporary and

encyclopedic presentation of various approaches for theoretical modeling of

nonlinear core and valence X-ray spectra is presented by Mukamel et al. on

p. 273 in the seventh chapter of the book. In this chapter the use of DFT/TD-DFT

methods to address the demands of nonlinear X-ray spectroscopy measurements are

analyzed in depth and the prospect of their use are outlined.

Practical aspects of using TD-DFT for computational description of molecular

electronic spectroscopy are reviewed in the chapter by Jacquemin and Adamo on

p. 347. Special emphasis was put on going beyond the vertical excitation approx-

imation in TD-DFT and including vibronic effects for realistic description of 0–0

transition energies in real-life molecular systems. The use of TD-DFT for compu-

tational modeling of absorption spectroscopy, emission properties, and ultrafast

intersystem crossing processes in transition metal complexes is surveyed by Daniel

(p. 377) in Chap. 8, where special attention is paid to the inclusion of spin-orbit and

vibronic effects in TD-DFT computations. The ability of the DFT/TD-DFT frame-

work to provide a proper description of dynamical effects on the spectroscopic and

photochemical properties of molecular species is analyzed in the chapters by

viii Preface



Barbatti and Crespo-Otero and Huix-Rotllant et al. A comprehensive survey of the

use of DFT and TD-DFT methods in the context of quasi-classical surface hopping

non-adiabatic molecular dynamics simulations is given in Chap. 10 on p. 415,

where the inability of the current linear response TD-DFT in the adiabatic approx-

imation to describe properly the real crossings between the ground and excited

electronic sates, the so-called conical intersections, was identified as the major

cause of spurious predictions for the photodynamics of excited states. This inability

of the standard TD-DFT to describe the conical intersections was analyzed further

in the following chapter (p. 445), where approaches represented by the spin-flip

TD-DFT and ensemble DFT methodologies were proposed as viable alternative to

the conventional TD-DFT calculations.

It is our sincere belief that these chapters, written by renowned experts in

quantum molecular and condensed phase theory and computational spectroscopy,

present the most contemporary state of affairs in the field of application of density

functional theory to the description of excited electronic states and lay down

guidelines for future developments, thus assisting the widespread community of

computational quantum scientists in extending the range of applicability and

improving the quality of predictions of this exciting theoretical methodology.

Nicolas Ferré

Michael Filatov

Miquel Huix-Rotllant
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Many-Body Perturbation Theory (MBPT)

and Time-Dependent Density-Functional

Theory (TD-DFT): MBPT Insights About

What Is Missing In, and Corrections To,

the TD-DFT Adiabatic Approximation

Mark E. Casida and Miquel Huix-Rotllant

Abstract In their famous paper, Kohn and Sham formulated a formally exact

density-functional theory (DFT) for the ground-state energy and density of a system

of N interacting electrons, albeit limited at the time by certain troubling

representability questions. As no practical exact form of the exchange-correlation

(xc) energy functional was known, the xc-functional had to be approximated,

ideally by a local or semilocal functional. Nowadays, however, the realization

that Nature is not always so nearsighted has driven us up Perdew’s Jacob’s ladder
to find increasingly nonlocal density/wavefunction hybrid functionals. Time-

dependent (TD-) DFT is a younger development which allows DFT concepts to

be used to describe the temporal evolution of the density in the presence of a

perturbing field. Linear response (LR) theory then allows spectra and other infor-

mation about excited states to be extracted from TD-DFT. Once again the exact

TD-DFT xc-functional must be approximated in practical calculations and this has

historically been done using the TD-DFT adiabatic approximation (AA) which is to

TD-DFT very similar to what the local density approximation (LDA) is to conven-

tional ground-state DFT. Although some of the recent advances in TD-DFT focus

on what can be done within the AA, others explore ways around the AA. After giving

an overview of DFT, TD-DFT, and LR-TD-DFT, this chapter focuses on many-body

corrections to LR-TD-DFT as one way to build hybrid density-functional/
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wavefunction methodology for incorporating aspects of nonlocality in time not

present in the AA.

Keywords Electronic excited states � Many-body perturbation theory �
Photochemistry � Time-dependent density-functional theory

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Brief Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Density-Functional Theory (DFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Time-Dependent (TD-) DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Linear Response (LR-) TD-DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Many-Body Perturbation Theory (MBPT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Diagram Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Dyson’s Equation and the Bethe–Salpeter Equation (BSE) . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Superoperator Equation-of-Motion (EOM) Polarization Propagator (PP) Approach 24

4 Dressed LR-TD-DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Practical Details and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Brillouin Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Effective Exchange-Correlation (xc) Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Localizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Appendix: Order Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1 Introduction

I have not included chemistry in my list [of the physical sciences] because, though

Dynamical Science is continually reclaiming large tracts of good ground from one side

of Chemistry, Chemistry is extending with still greater rapidity on the other side, into

regions where the dynamics of the present day must put her hand on her mouth. But

Chemistry is a Physical Science. . .
— James Clerk Maxwell, Encyclopaedia Britannica, ca. 1873 [1]

Much has changed since Maxwell first defended chemistry as a physical science.

The physics applied to chemical systems now involves as much, if not more,

quantum mechanics than classical dynamics. However, some things have not

changed. Chemistry still seems to extend too rapidly for first principles modeling

to keep up. Fortunately, density-functional theory (DFT) has established itself as a

computationally simple way to extend ab initio1 accuracy to larger systems than

1 The term ab initio is used here as it is typically used in quantum chemistry. That is, ab initio refers

to first-principles Hartree–Fock-based theory, excluding DFT. In contrast, the term ab initio used

in the solid state physics literature usually encompasses DFT.

2 M.E. Casida and M. Huix-Rotllant



where ab initio quantum chemical methods can traditionally be applied. The

reluctance to use DFT for describing excited states has even given way as linear

response (LR-) time-dependent (TD-) DFT has become an established way to

calculate excited-state properties of medium size and large molecules. One of the

strengths of TD-DFT is that it is formally an exact theory. However, as in traditional

DFT, problems arise in practice because of the need to make approximations.

Of course, from the point of view of a developer of new methods, when people

are given a little then they immediately want more. As soon as LR-TD-DFT was

shown to give reasonably promising results in one context, many people in the

modeling community immediately wanted to apply LR-TD-DFT in a whole range

of more challenging contexts. It then became urgent to explore the limits of

applicability of approximate TD-DFT and to improve approximations in order to

extend these limits. Much work has been done on this problem and there are many

success stories to tell about LR-TD-DFT. Indeed, many of the chapters in this book

describe some of these challenging contexts where conventional LR-TD-DFT

approximations do work. In this chapter, however, we want to focus on the cutting

edge where LR-TD-DFT finds itself seriously challenged and yet progress is being

made. In particular, what we have in mind are photochemical applications where

interacting excited states of fundamentally different character need to be described

with similar accuracy and where bonds may be in the process of breaking or

forming. The approach we take is to introduce a hybrid method where many-

body perturbation theory (MBPT) corrections are added on top of LR-TD-DFT.

We also use the tools we have developed to gain some insight into what needs to be

included in the TD-DFT exchange-correlation (xc) functional in order for it to

describe photochemical problems better.

Applications of LR-TD-DFT to photochemistry are no longer rare. Perhaps the

earliest attempt to apply LR-TD-DFT to photochemistry was the demonstration that

avoided crossings between formaldehyde excited-state curves could indeed be

described with this method [2]. Further hope for photochemistry from LR-TD-

DFT was raised again only a few years later [3, 4], with an example application to

the photochemistry of oxirane appearing after another 5 years [5, 6]. Casida

et al. [7] provides a recent review of the present state of LR-TD-DFT applied to

photochemistry and where some of the difficulties lie.

Let us try to focus on some key problems. Photophenomena are frequently

divided into photophysics, when the photoprocess ends with the same molecules

with which it started, and photochemistry, when the photoprocess ends with

different molecules. This is illustrated by the cartoon in Fig. 1. An example of a

typical photophysical process would be beginning at one S0 minimum, exciting to

the singly-excited S1 state, and reverting to the same S0 minimum. In contrast, an

example of a typical photochemical process would be exciting from one S0 mini-

mum to an S1 excited state, followed by moving along the S1 surface, through

avoided crossings, conical intersections, and other photochemical funnels, to end up

finally at the other S0 minimum. State-of-the-art LR-TD-DFT does a reasonable job

modeling photophysical processes but has much more difficulty with photo-

chemical processes. The main reason is easily seen in Fig. 1 – namely, that

MBPT Insights About and Corrections to TD-DFT 3



photochemical processes often require an explicit treatment of doubly excited states

and these are beyond the scope of conventional LR-TD-DFT. There are several

ways to remedy this problem which have been discussed in a previous review

article [8]. In this chapter we concentrate on one way to explore and correct the

double excitation problem using a hybrid MBPT/LR-TD-DFT approach.

The rest of this chapter is organized as follows. The next section (Sect. 2)

provides a small review of the current state of DFT, TD-DFT, and LR-DFT.

Section 3 begins with an introduction to the key notions of MBPT needed to derive

corrections to approximate LR-TD-DFT and derives some basic equations. Sec-

tion 4 shows that these corrections can be used in practical applications through an

exploration of dressed LR-TD-DFT. Ideally it would be nice to be able to use these

corrections to improve the xc functional of TD-DFT. However, this involves an

additional localization step which is examined in Sect. 5. Section 6 sums up with

some perspectives.

2 Brief Review

This section reviews a few concepts which in some sense are very old: DFT is about

50 years old, TD-DFT is about 30 years old, and LR-TD-DFT (in the form of the

Casida equations) is about 20 years old. Thus many of the basic concepts are now

well known. However, this section is necessary to define some notation and because

some aspects of these subjects have continued to evolve and so need to be updated.

Fig. 1 Typical curves for

the singlet photochemical

isomerization of ethylene

4 M.E. Casida and M. Huix-Rotllant



2.1 Density-Functional Theory (DFT)

Hohenberg and Kohn [9] and Kohn and Sham [10] defined DFT in the mid-1960s

when they gave formal rigor to earlier work by Thomas, Fermi, Dirac, Slater, and

others. This initial work has been nicely reviewed in well-known texts [11–13] and

so we do not dwell on details here but rather concentrate on what is essential in the

present context. Hartree atomic units (h ¼ me ¼ e ¼ 1) are used throughout unless

otherwise specified.

Kohn and Sham introduced orthonormal auxiliary functions (Kohn–Sham

orbitals) ψi(1) and corresponding occupation numbers ni which allow the density

to be expressed as

ρ 1ð Þ ¼
X
i

ni
��ψi 1ð Þ

��2 ; ð1Þ

and the electronic energy to be expressed as

E ¼
X
i

ni ψi

��t̂ s þ v
��ψi

� �
þ EH ρ½ � þ Exc ρ½ �: ð2Þ

Here we use a notation where i ¼ ri; σið Þ stands for the space ri and spin σi
coordinates of electron i, t̂ s ¼ � 1=2ð Þ∇2 is the noninteracting kinetic energy

operator, v is the external potential which represents the attraction of the electron

to the nuclei as well as any applied electric fields, EH ρ½ � ¼
ðð
ρ 1ð Þρ 2ð Þ=r12 d1d2 is

the Hartree (or Coulomb) energy, and Exc[ρ] is the xc-energy which includes

everything not included in the other terms (i.e., exchange, correlation, and the

difference between the interacting and noninteracting kinetic energies). Minimizing

the energy (2) subject to the constraint of orthonormal orbitals gives the Kohn–

Sham orbital equation:

ĥs ρ½ �ψi ¼ εiψi ; ð3Þ

where the Kohn–Sham Hamiltonian, ĥs[ρ](1), is the sum of t̂ s 1ð Þ þ v 1ð Þ, the

Hartree (or Coulomb) potential vH ρ½ � 1ð Þ ¼
ð
ρ 2ð Þ=r12d2, and the xc-potential

vxc ρ½ � 1ð Þ ¼ δExc ρ½ �=δρ 1ð Þ.
An important but subtle point is that the Kohn–Sham equation should be solved

self-consistently with lower energy orbitals filled before higher energy orbitals

(Aufbau principle) as befits a system of noninteracting electrons. If this can be

done with integer occupancy, then the system is said to be noninteracting v-
representable (NVR). Most programs try to enforce NVR, but it now seems likely

that NVR fails for many systems, even in exact Kohn–Sham DFT. The alternative is

to consider fractional occupation within an ensemble formalism. An important
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theorem then states that only the last occupied degenerate orbitals may be fraction-

ally occupied (see, e.g., [12] pp. 55–56). Suitable algorithms are rare, as

maintaining this condition can lead to degenerate orbitals having different occupa-

tion numbers which, in turn, may require minimizing the energy with respect to

unitary transformations within the space spanned by the degenerate occupied

orbitals with different occupation numbers. These points have been previously

discussed in somewhat greater detail in [8]. Most programs show at least an

effective failure of NVR when using approximate functionals, in particular around

regions of strong electron correlation, such as where bonds are being made or

broken (e.g., avoided crossing of the S0 surfaces in Fig. 1) which often shows up as

self-consistent field (SCF) convergence failures.

As no practical exact form of Exc is known, it must be approximated in practice.

In the original papers, Exc should depend only upon the charge density. However

our notation already reflects the modern tendency to allow a spin-dependence in Exc

(spin-DFT). This additional degree of freedom makes it easier to develop improved

density-functional approximations (DFAs). In recent years, this tendency to add

additional functional dependencies into Exc has led to generalized Kohn–Sham

theories corresponding to different levels of what Perdew has referred to as Jacob’s
ladder2 for functionals (Table 1). The LDA and GGA are pure DFAs. Higher levels

no longer fall within the pure DFT formalism [17] and, in particular, are subject to a

different interpretation of orbital energies.

Table 1 Jacob’s ladder for
functionals [14] (an updated

version is given in [15])

Quantum chemical heaven

Double-hybrid ρ(1), x(1), τ(1), ψi(1), ψa(1)
a

Hybrid ρ(1), x(1), τ(1), ψi(1)
b

mGGAc
ρ(1), x(1), τ(1)d, ∇2ρ 1ð Þe

GGAf ρ(1), x(1)g

LDAh ρ(1)

Hartree World
aUnoccupied orbitals
bOccupied orbitals
cMeta generalized gradient approximation
dThe local kinetic energy τ 1ð Þ ¼

X
p
n pψ p 1ð Þ∇2ψ p 1ð Þ

eThere is some indication that the local kinetic energy density

τ(1) and the Laplacian of the charge density ∇2ρ 1ð Þ contain

comparable information [16]
fGeneralized gradient approximation
gThe reduced gradient x 1ð Þ ¼

��∇ρ 1ð Þ
��=ρ4=3 1ð Þ

hLocal density approximation

2 “Jacob set out from Beersheba and went on his way towards Harran. He came to a certain place

and stopped there for the night, because the sun had set; and, taking one of the stones there, he

made it a pillow for his head and lay down to sleep. He dreamt that he saw a ladder, which rested

on the ground with its top reaching to heaven, and angels of God were going up and down it.” –

The Bible, Genesis 28:10–13
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Of particular importance to us is the hybrid level which incorporates some

Hartree–Fock exchange. Inspired by the adiabatic connection formalism in DFT

and seeking functionals with thermodynamic accuracy, Becke suggested a func-

tional of roughly the form [18]

Ehybrid
xc ¼ EGGA

x þ a EHF
x � EGGA

x

� �
þ EGGA

c : ð4Þ

The a parameter was initially determined semi-empirically but a choice of a ¼
0:25 was later justified on the basis of MBPT [19]. This is a global hybrid (GH), to

distinguish it from yet another type of hybrid, namely the range-separated hybrid

(RSH). Initially proposed by Savin [20], RSHs separate the 1/r12 interelectronic

repulsion into a short-range (SR) part to be treated by density-functional theory and

a long-range (LR) part to be treated by wavefunction methodology. A convenient

choice uses the complementary error function for the short-range part,

1=r12ð ÞSR ¼ erfc γr12ð Þ=r12, and the error function for the long-range part,

1=r12ð ÞLR ¼ er f γr12ð Þ=r12. In this case, γ ¼ 0 corresponds to pure DFT whereas

γ ¼ 1 corresponds to Hartree–Fock. See [21] for a recent review of one type

of RSH.

2.2 Time-Dependent (TD-) DFT

Conventional Hohenberg–Kohn–Sham DFT is limited to the ground stationary

state, but chemistry is also concerned with linear and nonlinear optics and mole-

cules in excited states. Time-dependent DFT has been developed to address these

issues. This section first reviews formal TD-DFT and then briefly discusses

TD-DFAs. There are now a number of review articles on TD-DFT (some of

which are cited in this chapter), two summer school multi-author texts [22, 23],

and now a single-author textbook [24]. Our review of formal TD-DFT follows [24],

which the reader may wish to consult for further details. Our comments about the

Frenkel–Dirac variational principle and TD-DFAs come from our own synthesis of

the subject.

A great deal of effort has been put into making formal TD-DFT as rigorous as

possible and firming up the formal underpinnings of TD-DFT remains an area of

active research. At the present time, formal TD-DFT is based upon two theorems,

namely the Runge–Gross theorem [25] and the van Leeuwen theorem [26]. They

remind one of us (MEC) of some wise words from his thesis director (John

E. Harriman) at the time of his (MECs) Ph.D. studies: “Mathematicians always

seem to know more than they can prove.”3 The Runge–Gross and van Leeuwen

3 This is formalized in mathematical logic theory by G€odel’s incompleteness theorem which

basically says that there are always more things that are true than can be proven to be true.
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theorems are true for specific cases where they can be proven, but we believe them

to hold more generally and efforts continue to find more general proofs.

2.2.1 Runge–Gross Theorem

This theorem states, with two caveats, that the time-dependent external potential

v(1) is determined up to an arbitrary function of time by the initial wavefunction

Ψ0 ¼ Ψ t0ð Þ at some time t0 and by the time-dependent charge density ρ(1). Here we
have enriched our notation to include time, i ¼ i; tið Þ ¼ ri; σi; tið Þ. The statement

that the external potential is only determined up to an arbitrary function of time

simply means that the phase of the associated wave function is only determined up

to a spatially-constant time-dependent constant. This is because two external

potentials differing by an additive function of time ev 1ð Þ ¼ v 1ð Þ þ c t1ð Þ lead to

associated wave functions eΨ tð Þ ¼ e�iα tð ÞΨ tð Þ where dα tð Þ=dt ¼ c tð Þ. A conse-

quence of the Runge–Gross theorem is that expectation values of observables Â(t)
are functionals of the initial wavefunction and of the time-dependent charge

density,

A ρ;Ψ0½ � tð Þ ¼ Ψ ρ;Ψ0½ � tð Þ
��Â tð Þ

��Ψ ρ;Ψ0½ � tð Þ
� �

: ð5Þ

The proof of the theorem assumes (caveat 1) that the external potential is

expandable in a Taylor series in time in order to show that the time-dependent

current density determines the time-dependent external potential up to an additive

function of time. The proof then goes on to make a second assumption (caveat 2)

that the external potential goes to zero at large r at least as fast as 1/r in order to

prove that the time-dependent charge density determines the time-dependent cur-

rent density.

2.2.2 van Leeuwen Theorem

Given a system with an electron–electron interaction w(1, 2), external potential
v(1), and initial wavefunction Ψ0, and another system with the same time-

dependent charge density ρ(1), possibly different electron–electron interactionew 1; 2ð Þ, and initial wavefunction eΨ0, then the external potential of the second

system ṽ(1) is uniquely determined up to an additive function of time. It should be

noted that we recover the Runge–Gross theorem when w 1; 2ð Þ ¼ ew 1; 2ð Þ and

Ψ0 ¼ eΨ0. However, the most interesting result is perhaps when ew 1; 2ð Þ ¼ 0because

this corresponds to a Kohn–Sham-like system of noninteracting electrons, showing

us that the external potential of such a system is unique and ultimately justifying the

time-dependent Kohn–Sham equation
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ĥ ρ;Ψ0; eΨ0

h i
1ð Þψi 1ð Þ ¼ i

∂
∂t

ψi 1ð Þ; ð6Þ

where

ĥ ρ;Ψ0; eΨ0

h i
1ð Þ ¼ t̂ s þ v 1ð Þ þ vH ρ½ � 1ð Þ þ vxc ρ;Ψ0; eΨ0

h i
1ð Þ: ð7Þ

The proof of the theorem assumes (caveat 1) that the external potential is expand-

able in a Taylor series in time and (caveat 2) that the charge density is expandable in
a Taylor series in time. Work on removing these caveats is ongoing [27–30] ([24]

provides a brief, but dated, summary).

2.2.3 Frenkel–Dirac Action

This is a powerful and widespread action principle used to derive time-dependent

equations within approximate formalisms. Making the action

A ¼
ðt1
t0

Ψ t 0ð Þ
��i ∂
∂t 0
� Ĥ t 0ð Þ

��Ψ t 0ð Þ
� �

dt 0; ð8Þ

stationary subject to the conditions that δΨ t0ð Þ ¼ δΨ t1ð Þ ¼ 0 leads to the time-

dependent Schr€odinger equation Ĥ tð ÞΨ tð Þ ¼ i∂Ψ tð Þ=∂t. Runge and Gross initially

suggested that A ¼ A ρ;Ψ0½ � and used this to derive a more explicit formula for the

TD-DFT xc-potential as a functional derivative of an xc-action, but this led to

causality problems. A simple explanation and way around these contradictions was

presented by Vignale [31] who noted that, as the time-dependent Schr€odinger
equation is a first-order partial differential equation in time, Ψ(t1) is determined

by Ψ(t0) so that, whereas δΨ(t0) may be imposed, δΨ(t1) may not be imposed.

The proper Frenkel–Dirac–Vignale action principle is then

δA ¼ i Ψ t1ð Þ
��δΨ t1ð Þ

� �
: ð9Þ

In many cases, the original Frenkel–Dirac action principle gives the same results

as the more sophisticated Frenkel–Dirac–Vignale action principle. Messud

et al. [32] gives one example of where this action principle has been used to derive

an xc-potential within a TD-DFA. Other solutions to the Dirac–Frenkel causality

problem in TD-DFT may also be found in the literature [33–37].

2.2.4 Time-Dependent Density-Functional Approximations (TD-DFAs)

As the exact TD-DFT xc-functional is unknown, it must be approximated. In most

cases we can ignore the initial state dependences because we are treating a system
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initially in its ground stationary state exposed to a time-dependent perturbation.

This is because if the initial state is the ground stationary state, then, according to

the first Hohenberg–Kohn theorem of conventional DFT, Ψ0 ¼ Ψ0 ρ½ � andeΨ0 ¼ eΨ0 ρ½ �.
The simplest and most successful TD-DFA is the TD-DFT adiabatic approxi-

mation (AA) which states that the xc-potential reacts instantaneously and without

memory to any temporal change in the time-dependent density,

vAAxc ρ½ � 1ð Þ ¼
δExc ρt1 1ð Þ

	 

δρt1 1ð Þ : ð10Þ

The notation is a bit subtle here: ρt1 1ð Þ is ρ 1ð Þ ¼ ρ 1; t1ð Þ at a fixed value of time,

meaning thatρt1 1ð Þ is uniquely a function of the space and spin coordinates, albeit at
fixed time t1. The AA approximation has been remarkably successful and effec-

tively defines conventional TD-DFT.

Going beyond the TD-DFT AA is the subject of ongoing work. Defining new

Jacob’s ladders for TD-DFT may be helpful here. The first attempt to do so was the

definition by one of us (MEC) of a “Jacob’s jungle gym” consisting of parallel

Jacob’s ladders for Exc, vxc(1), f xc 1; 2ð Þ ¼ δvxc 1ð Þ=δρ 2ð Þ, etc. [3]. This permitted

the simultaneous use of different functionals on different ladders on the grounds

that accurate lower derivatives did not necessarily mean accurate higher deri-

vatives. Of course, being able to use a consistent level of approximation across

all ladders could be important for some types of applications (e.g., those involving

analytical derivatives). With this in mind, the authors recently suggested a new

Jacob’s ladder for TD-DFT (Table 2).

Table 2 Jacobs ladder for

memory functionals [14]
Quantum chemical heaven

TD-RDMTa γ(1, 2, t)b, θi(t)c

TD-OEPd ψi(1)
e

L-TD-DFTf Fluid position and deformation tensor

TD-CDFTg ρ(1), j(1)h

TD-DFT ρ(1)

Hartree World
aTD reduced-density-matrix theory
bTD reduced-density matrix
cNatural orbital phases
dTD optimized effective potential
eTD occupied orbitals
fLagrangian TD-DFT
gTD current-density-functional theory
hThe current density
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2.3 Linear Response (LR-) TD-DFT

As originally formulated, TD-DFT seems ideal for the calculation of nonlinear

optical (NLO) properties from the dynamical response of the molecular dipole

moment μ(t) to an applied electric field ε tð Þ ¼ ε cos ωtð Þ,

Δμ tð Þ ¼
ð
α t� t 0ð Þε t 0ð Þdt 0 þ HOT; ð11Þ

using real-time numerical integration of the TD Kohn–Sham equation, but it may

also be used to calculate electronic absorption spectra. This section explains how.

In (11) “HOT” stands for “higher-order terms” and the quantity α is the dynamic

dipole polarizability. After Fourier transforming, (11) becomes

Δμ ωð Þ ¼ α ωð Þε ωð Þ þ HOT; ð12Þ

If the applied field is sufficiently small then we are in the LR regime where we

may neglect the HOT and calculate the dipole polarizability as

αi, j ωð Þ ¼ Δμi ωð Þ=ε j ωð Þ. Electrical absorption spectra may be calculated from

this because of the sum-over-states theorem in optical physics,

α ωð Þ ¼
X
I 6¼0

f I
ω2
I � ω2

; ð13Þ

where α ¼ 1=3ð Þ αxx þ αyy þ αzz
� �

. Here

ωI ¼ EI � E0; ð14Þ

is the excitation energy4 and

f I ¼
2

3
ωI

�� 0��r��I� ���2; ð15Þ

is the corresponding oscillator strength. This sum-over-states theorem makes good

physical sense because we expect the response of the charge density and dipole

moment to become infinite (i.e., to jump suddenly) when the photon frequency

corresponds to an electronic excitation energy. Usually in real-time TD-DFT pro-

grams, the spectral function is calculated as

4 Remember that h¼ 1 in the atomic units used here.
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S ωð Þ ¼ 2ω

π
ℑα ωþ iηð Þ ; ð16Þ

which generates a Lorentzian broadened spectrum with broadening controlled by

the η parameter. The connection with the experimentally observed molar extinction

coefficient as a function of v ¼ ω= 2πð Þ is

ε vð Þ ¼ πNAe
2

mec 4πε0ð Þln 10ð Þ S 2πvð Þ ð17Þ

in SI units.

So far this is fine for calculating spectra but not for assigning and studying

individual states. For that, it is better to take another approach using the

susceptibility

χ 1; 2ð Þ ¼ δρ 1ð Þ
δvappl 2ð Þ

; ð18Þ

which describes the response of the density to the applied perturbation vappl,

δρ 1ð Þ ¼
ð
χ 1; 2ð Þδvappl 2ð Þd2 : ð19Þ

The response of the density of the Kohn–Sham fictitious system of

noninteracting electrons is identical but the potential is now the Kohn–Sham

single-particle potential,

δρ 1ð Þ ¼
ð
χs 1; 2ð Þδvs 2ð Þd2 : ð20Þ

In contrast to the interacting susceptibility of (18), the noninteracting

susceptibility,

χs 1; 2ð Þ ¼ δρ 1ð Þ
δvs 2ð Þ

; ð21Þ

is known exactly from MBPT. Of course the effective potential is the sum of the

applied potential and the potential produced by the response of the self-consistent

field, vHxc:

δvs 1ð Þ ¼ δvappl 1ð Þ þ
ð
fHxc 1; 2ð Þδρ 2ð Þd2 ; ð22Þ

where fHxc 1; 2ð Þ ¼ δvHxc 1ð Þ=δρ 2ð Þ is the functional derivative of the Hartree plus
exchange-correlation self-consistent field. Manipulating these equations is
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facilitated by a matrix representation in which the integration is interpreted as a sum

over a continuous index. Thus,

δρ ¼ χδvappl ¼ χ s δvappl þ fHxcδρ
� �

; ð23Þ

is easily manipulated to give a Bethe–Salpeter-like equation (Sect. 3),

χ ¼ χ s þ χ s fHxcχ ; ð24Þ

or, written out more explicitly,

χ 1; 4ð Þ ¼ χs 1; 4ð Þ þ
ð
χs 1; 2ð Þ fHxc 2; 3ð Þχ 3; 4ð Þd2d3 : ð25Þ

Equation (23) may be solved iteratively for δρ. Alternatively δρmay be obtained

by solving

χ�1s � fHxc
� �

δρ ¼ δvappl ; ð26Þ

which typically involves iterative Krylov space techniques because of the large size

of the matrices involved.

This last equation may be manipulated to make the most common form of LR-

TD-DFT used in quantum chemistry [38].5 This is a pseudoeigenvalue problem,

A ωð Þ B ωð Þ
B* ωð Þ A* ωð Þ

� �
X

Y

 �
¼ ω 1 0

0 �1

� �
X

Y

 �
; ð27Þ

where

Aia, jb ωð Þ ¼ δi, jδa,bεa, i þ ia
�� fHxc ωð Þ�� jb� �

Bia,b j ωð Þ ¼ ia
�� fHxc ωð Þ��b j� �

: ð28Þ

Here,

pq
�� f ��rs� �

¼
ðð

ψ*
p 1ð Þψq 1ð Þ f 1; 2ð Þψ*

r 2ð Þψs 2ð Þd1d2 ; ð29Þ

is a two electron integral in Mulliken “charge-cloud” notation over the kernel

f which may be the Hartree kernel [ f H 1; 2ð Þ ¼ δσ1,σ2=r12 ], the xc-kernel, or the

sum of the two (Hxc). The index notation is i, j, . . . for occupied spin-orbitals, a,

5 This equation is not infrequently called the “Casida equation” in the TD-DFT literature (e.g., as

in [24], pp. 145–153.)
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b, . . . for virtual spin-orbitals, and p, q, . . . for unspecified spin-orbitals (either

occupied or unoccupied).6 We have also introduced the compact notation

εrs���,uv��� ¼ εr þ εs þ � � �ð Þ � εu þ εv þ � � �ð Þ : ð30Þ

Equation (28) has paired excitation and de-excitation solutions. Its eigenvalues

are (de-)excitation energies, the vectors X and Y providing information about

transition moments. In particular, the oscillator strength, of the transition with

excitation energy ωI may be calculated from XI and YI [38]. When the adiabatic

approximation (AA) to the xc-kernel is made, the A and B matrices become

independent of frequency. As a consequence, the number of solutions is equal to

the number of one-electron excitations, albeit dressed to include electron correla-

tion effects. Allowing the A and Bmatrices to have a frequency dependence allows

the explicit inclusion of two-electron (and higher) excited states.

The easiest way to understand what is missing in the AA is within the so-called

Tamm–Dancoff approximation (TDA). The usual AA TDA equation,

AX ¼ ωX ; ð31Þ

is restricted to single excitations. The configuration interaction (CI) equation [39],

H� E01ð ÞC ¼ ωC ; ð32Þ

which includes all excitations of the system, can be put into the form of (31), but

with a frequency-dependent A(ω) matrix. This can be simply done by partitioning

the full CI Hamiltonian into a singles excitations part (A1,1) and multiple-

excitations part (A2þ, 2þ) as

ACI
1,1 ACI

1,2þ
ACI

2þ, 1 ACI
2þ, 2þ

" #
C1

C2þ

 �
¼ ω C1

C2þ

 �
; ð33Þ

provided we can ignore any coupling between the ground state and excited states.

Applying the standard L€owdin–Feshbach partitioning technique to (33) [40],

we obtain

ACI
1,1 þ ACI

1,2þ ω12þ, 2þ � ACI
2þ, 2þ

� ��1
ACI

2þ, 1

h i
C1 ¼ ωC1 ; ð34Þ

in which it is clearly seen that multiple-excitation states arise from a frequency-

dependent term missing in the AA xc-kernel [39].

6 Sometimes we call this the FORTRAN index convention in reference to the default variable

names for integers in that computer language.
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In the remainder of this chapter we first show how MBPT may be used to derive

expressions for theACI
1,2þ,A

CI
2þ, 1, andA

CI
2þ, 2þ blocks and show how this may be used

in the form of dressed TD-DFT to correct the AA. Then we discuss localization of

the terms beyond the AA in order to obtain some insight into the analytic behavior

of the xc-kernel.

3 Many-Body Perturbation Theory (MBPT)

This section elaborates on the polarization propagator (PP) approach. As the PP was

originally inspired by the Bethe–Salpeter equation (BSE) and as the BSE often

crops up in articles from the solid-state physics community which are concerned

with both TD-DFT and MBPT [41–47], we try to make the connection between the

PP and BSE approaches as clear as possible. Although the two MBPT approaches

are formally equivalent, differences emerge because the BSE approach emphasizes

the time representation whereas the PP approach emphasizes the frequency repre-

sentation. This can and typically does lead to different approximations. In parti-

cular, it seems to be easier to derive pole structure-conserving approximations

needed for treating two-electron and higher excitations in the frequency represent-

ation than in the time representation. This and prior experience with the PP

approach in the quantum chemistry community [48–53] have led us to favor the

PP approach. We make extensive use of diagrams in order to give an overview of

our manipulations. Whenever possible, more elaborate mathematical manipulations

are relegated to the appendix.

3.1 Green’s Functions

Perhaps the most common and arguably the most basic quantity in MBPT is the

one-electron Green’s function defined by

iG 1; 2ð Þ ¼ 0
��T ψ̂H 1ð Þψ̂{

H 2ð Þ
n o��0D E

: ð35Þ

Here, the subscript H indicates that the field operators are understood to be in the

Heisenberg representation. Also T is the usual time-ordering operator, which

includes anticommutation in our case (i.e., for fermions),

T ψ̂H 1ð Þψ̂{
H 2ð Þ

n o
¼ θ t1 � t2ð Þψ̂H 1ð Þψ̂{

H 2ð Þ � θ t2 � t1ð Þψ̂{
H 2ð Þψ̂H 1ð Þ : ð36Þ

The two-electron Green’s function is (see p. 116 of [54])
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G 1; 2; 3; 4ð Þ ¼ �ið Þ2 0
��T ψ̂H 1ð Þψ̂H 2ð Þψ̂{

H 4ð Þψ̂{
H 3ð Þ

n o��0D E
: ð37Þ

The usual MBPT approach to evaluating the susceptibility, χ, uses the fact that it
is the retarded form,

iχ 1; 2ð Þ ¼ θ t1 � t2ð Þ 0
�� eρH 1ð Þ,eρH 2ð Þ½ �

��0� �
; ð38Þ

of the time-ordered correlation function,

iχ 1; 2ð Þ ¼ 0
��T eρH 1ð ÞeρH 2ð Þf g

��0� �
; ð39Þ

where

eρH 1ð Þ ¼ ψ̂{
H 1ð Þψ̂H 1ð Þ � 0

��ψ̂{
H 1ð Þψ̂H 1ð Þ

��0D E
ð40Þ

is the density fluctuation operator. (See for example [54] pp. 151, 172–175.)

We will also need several generalizations of the susceptibility and the density

fluctuation operator. The first is the particle-hole (ph) propagator [52], which we

chose to write as

iL 1; 2; 3; 4ð Þ ¼ 0
��T eγ 1; 2ð Þeγ 4; 3ð Þf g

��0� �
; ð41Þ

where

eγ 1; 2ð Þ ¼ ψ̂{
H 2ð Þψ̂H 1ð Þ � 0

��T ψ̂{
H 2ð Þψ̂H 1ð Þ

n o��0D E
ð42Þ

is a sort of density matrix fluctuation operator (or would be if we constrained t1 ¼ t2
and t3 ¼ t4). It should be noted that the ph-propagator is a four-time quantity.

[It may be useful to try to place L in the context of other two-electron propaga-

tors. The particle-hole response function [52]

R 1; 2; 3; 4ð Þ ¼ G 1; 2; 3; 4ð Þ � G 1; 3ð ÞG 2; 4ð Þ : ð43Þ

Then L is related to R by the relation

L 1; 2; 3; 4ð Þ ¼ iR 1; 4; 2; 3ð Þ :� ð44Þ

We also need the polarization propagator (PP) which is the two-time quantity,

Π 1, 2; 3, 4; t� t 0ð Þ ¼ L 1t, 2t; 3t 0, 4t 0ð Þ : ð45Þ

Written out explicitly,
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iΠ 1, 2; 3, 4; t� t 0ð Þ
¼ 0

��T ψ̂{
H 2tþð Þψ̂H 1tð Þψ̂{

H 3t
0þ� �

ψ̂H 4t 0ð Þ
n o��0D E

� 0
��T ψ̂{

H 2tþð Þψ̂H 1tð Þ
n o��0D E

0
��T ψ̂{

H 3t
0þ� �

ψ̂H 4t 0ð Þ
n o��0D E

:

ð46Þ

The second term is often dropped in the definition of the PP. It is there to remove

ω ¼ 0 excitations in the Lehmann representation. (See for example pp. 559–560 of

[54].) The retarded version of the PP is the susceptibility describing the response of

the one-electron density matrix,

γ 1; 2; tð Þ ¼ 0
��ψ̂{ 2tð Þψ̂ 1tð Þ

��0� �
; ð47Þ

to a general (not necessarily local) applied perturbation,

Π 1, 2; 3, 4; t� t 0ð Þ ¼ δγ 1; 2; tð Þ
δwapplð3, 4; t 0Þ

; ð48Þ

which is a convolution. After Fourier transforming,

δγ 1; 2;ωð Þ ¼
ð
Π 1; 2; 3; 4;ωð Þδwappl 3; 4;ωð Þd3d4; ð49Þ

or

δγ ωð Þ ¼ Π ωð Þδwappl ωð Þ ð50Þ

in matrix form.

3.2 Diagram Rules

The representation of MBPT expansions in terms of diagrams is very convenient for

bookkeeping purposes. Indeed, certain ideas such as the linked-cluster theorem [55]

or the concept of a ladder approximation (see, e.g., [54] p. 136) are most naturally

expressed in terms of diagrams. Diagrams drawn according to systematic rules also

allow an easy way to check algebraic expressions. This is how we have used

diagrams in our research. However, we introduce diagrams here for a different

reason, namely because they provide a concise way to explain our work.

Several types of MBPT diagrams exist in the literature. These divide into four

main classes which we call Feynman, Abrikosov, Goldstone, and Hugenholtz. Such

diagrams can be distinguished by whether they are time-ordered (Goldstone and

Hugenholtz) or not (Feynman and Abrikosov) and by whether they treat the

electron repulsion interaction as a wavy or dotted line with an incoming and an
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outgoing arrow at each end (Feynman and Goldstone) or in a symmetrized way as a

point with two incoming and two outgoing arrows (Abrikosov and Hugenholtz).

These differences affect how they are to be translated into algebraic expressions as

does the nature of the quantity being expanded (wave function, one-electron

Green’s function, self-energy, polarization propagator, etc.). Given this plethora

of types of diagrams and the difficulty of finding a clear explanation of how to read

polarization propagator diagrams, we have chosen to present rules for how our

diagrams should be translated into algebraic expressions. This is necessary because,

whereas the usual practice in the solid-state literature is to use time-unordered

diagrams with electron repulsions represented as wavy or dotted lines (i.e., Feyn-

man diagrams), the usual practice in the quantum chemistry literature is using time-

ordered diagrams with electron repulsions represented as points (i.e., Hugenholtz

diagrams).

We limit ourselves to giving precise rules for the polarization propagator

(PP) because these rules are difficult to find in the literature. The PP expressed in

an orbital basis is

Π 1, 2, 3, 4; t� t 0ð Þ ¼
X

pqrs
Πsr,qp t� t 0ð Þψ*

r 2ð Þψs 1ð Þψ*
q 3ð Þψ p 4ð Þ; ð51Þ

where

Πsr,q p t� t 0ð Þ ¼ �iθ t� t 0ð Þ 0
��r̂ {

H tð Þŝ H tð Þq̂ {
H t 0ð Þ p̂ H t 0ð Þ

��0D E
� iθ t 0 � tð Þ 0

��q̂ {
H t 0ð Þ p̂ H t 0ð Þr̂ {

H tð Þŝ H tð Þ
��0D E

ð52Þ

This makes it clear that the PP is a two time particle-hole propagator which

either propagates forward in time or backward in time. To represent it we introduce

the following rules:

1. Time increases vertically from bottom to top. This is in contrast to a common

convention in the solid-state literature where time increases horizontally from

right to left.

2. A PP is a two time quantity. Each of these twice is indicated by a horizontal

dotted line. This is one type of “event” (representing the creation/destruction of

an excitation).

3. Time-ordered diagrams use directed lines (arrows). Down-going arrows corre-

spond to holes running backward in time, i.e., to occupied orbitals. Up-going

arrows correspond to particles running forward in time, i.e., to unoccupied

orbitals.

At this point, the PP diagrams resemble Fig. 2. Fourier transforming leads us

to the representation shown in Fig. 3. An additional rule has been introduced:

4. A downward ω arrow on the left indicates forward ph-propagation. An upward ω
arrow on the right indicates backward ph-propagation.
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Diagrams for the corresponding position space representation are shown in

Fig. 4. Usually the labels ( p, q, r, and s or 1, 2, 3, and 4) are suppressed. If the ω
arrows are also suppressed, then there is no information about time-ordering and

both diagrams may then be written as a single time-unordered diagram as in

Fig. 5. Typical Feynman diagrams are unordered in time.

Perturbation theory introduces certain denominators in the algebraic expres-

sions corresponding to the diagrams. These may be represented as cuts between

events:

5. Each horizontal cut between events contributes a factor

�ωþ
X

p
ε p �

X
h
εh

� ��1
, where

X
p

X
h

� �
stands for the sum over all

particle (hole) lines that are cut. The omega line only appears in the sum if it is

also cut. It enters with a + sign if it is directed upwards and with a � sign if it is

directed downwards.

6. There is also an overall sign given by the formula �1ð Þhþl, where h is the number

of hole lines and l is the number of closed loops, including the horizontal dotted

event lines but ignoring the ω lines.

Diagrams are shown for the independent particle approximation in Fig. 6.

The first diagram reads

Πsr,qp(t; t′) = θ(t − t′) +θ(t − t′ )

r s

p q r s

p qFig. 2 Basic time-ordered

finite basis set

representation PP diagram

Πsr,qp(ω) = +

r s

p q

ω

r s

p q

ω

Fig. 3 Basic frequency and

finite basis set

representation PP diagram

Π(1 ; 2; 3; 4; ) = +

1 2

4 3

ω

1 2

4 3

ωω

Fig. 4 Basic frequency and

real space representation PP

diagram

Π(ω) =

Fig. 5 Time-unordered

representation PP diagram
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Πai,ai ωð Þ ¼
1

ωþ εi � εa
: ð53Þ

The second diagram reads

Πia, ia ωð Þ ¼
1

�ωþ εi � εa
¼ �1
ωþ εa � εi

: ð54Þ

These two equations are often condensed in the literature as

Π pq, rs ωð Þ ¼ δ p, rδq, s
nq � n p

ωþ εq � ε p
: ð55Þ

Let us now introduce one-electron perturbations in the form of M circles.

7. Each M circle in a diagram contributes a factor of p
��M̂ xc

��q� �
, where p is an

incoming arrow, q is an outgoing arrow, and M̂ xc is the “xc-mass operator”

which is the difference between the Hartree–Fock exchange self-energy and the

xc-potential – see (67). (Thus in
��M̂ xc

��out� �
.) For example, the term

corresponding to Fig. 7b contains a factor of a
��M̂ xc

��c� �
, whereas the term

corresponding to Fig. 7f contains a factor of k
��M̂ xc

��i� �
. This is a second type

of “event” (representing “collision” with the quantity Mxc).

For example, the term corresponding to Fig. 7j is

Πck,cb ωð Þ ¼
k
��M̂ xc

��b� �
ω� εk þ εcð Þ εk � εbð Þ : ð56Þ

This brings us to the slightly more difficult treatment of electron repulsions.

8. When electron repulsion integrals are represented by dotted lines (Feynman

and Goldstone diagrams), each end of the line corresponds to the labels

corresponding to the same spatial point. The dotted line representation may

be condensed into points (Abrikosov and Hugenholtz diagrams) as in Fig. 8. A

point with two incoming arrows, labeled r and s, and two outgoing arrows,

labeled p and q, contributes a factor of rs
���� pq� �

¼ r p
�� f H��sq� �

� rq
�� f H��s p� �

.

[Thus (in, in | | out, out)¼ (left in, right in | left in, right in) – (left in, right in |

left in, right in). The minus sign is not part of the diagram as it is taken into

account by other rules.] The integral notation is established in (29) and the

integral

Πsr,qp( ) = +i aω i aωω

Fig. 6 Zero-order PP

diagrams
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pq
����rs� �

¼
ð
ψ*

p 1ð Þψ*
r 2ð Þ 1

r12
1� P12ð Þψq 1ð Þψs 2ð Þd1d2: ð57Þ

9. To determine the number of loops and hence the overall sign of a diagram in

which electron repulsion integrals are expanded as dots, write each dot as a

dotted line (it does not matter which one of the two in Fig. 8 is chosen) and

apply rule 1. The order of indices in each integral rs
���� pq� �

should correspond to

the expanded diagrams. (When Goldstone diagrams are interpreted in this way,

we call them Brandow diagrams.)

Fig. 7 First-order time-ordered diagrams Hugenholtz for Π ωð Þ �Πs ωð Þ. a–i involve coupling

between the particle-hole space; g, h, m, and n involve coupling between particle-hole space and

particle-particle; i–l couple the particle-hole space with the hole-hole space
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10. An additional factor of 1/2 must be added for each pair of equivalent lines.

These are directed lines whose interchange, in the absence of further labeling,

leaves the Hugenholtz diagram unchanged.

For example, the term corresponding to Fig. 7a is

Πck,ai ωð Þ ¼ �
ka
����ic� �

�ωþ εk � εcð Þ �ωþ εi � εað Þ

¼
ak
����ic� �

�ωþ εk � εcð Þ �ωþ εi � εað Þ : ð58Þ

Additional information about Hugenholtz and other diagrams may be found,

for example, in [56].

3.3 Dyson’s Equation and the Bethe–Salpeter Equation
(BSE)

Two of the most basic equations of diagrammatic MBPT are Dyson’s equation for

the one-electron Green’s function and the BSE for the ph-propagator. Both require

the choice of a zero-order picture which we take here to be the exact or approximate

Kohn–Sham system of noninteracting electrons. We denote the zero-order quanti-

ties by the subscript s (for single particle).
Dyson’s equation relates the true one-electron Green’s function G to the zero-

order Green’s function Gs via the (proper) self-energy Σ,

G 1; 2ð Þ ¼ Gs 1; 2ð Þ þ
ð
Gs 1; 3ð ÞΣ 3; 4ð ÞG 4; 2ð Þd3d4 ; ð59Þ

or, more concisely,

G ¼ Gs þ GsΣG : ð60Þ

This is shown diagrammatically in Fig. 9. It is to be emphasized that these

diagrams are unordered in time as it is not possible to write a Dyson equation for

time-ordered diagrams. Also shown in Fig. 9 are typical low-order self-energy

approximations. Typical quantum chemistry approximations (Fig. 9b) involve

Fig. 8 Electron repulsion

integral diagrams
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explicit antisymmetrization of electron-repulsion integrals whereas solid-state

physics approximations (Fig. 9c) emphasize dynamical screening. Each approach

has its strength and its weaknesses and so far the two approaches have defied any

rigorous attempts at merger.

The BSE is “Dyson’s equation” for the ph-propagator,

L 1; 2; 7; 8ð Þ ¼ Ls 1; 2; 7; 8ð Þ

þ
ð
Ls 1; 2; 3; 4ð ÞΞHxc 3; 4; 5; 6ð ÞL 5; 6; 7; 8ð Þd3d4d5d6; ð61Þ

or

L ¼ Ls þ LsΞHxcL ; ð62Þ

in matrix notation. Here

iLs 1; 2; 3; 4ð Þ ¼ Gs 1; 3ð ÞGs 4; 2ð Þ ð63Þ

is the ph-propagator for the zero-order picture (in our case, the exact or approximate

Kohn–Sham fictitious system of noninteracting electrons), and the four-point quan-

tity,ΞHxc, may be deduced from a Feynman diagram expansion as the proper part of

the ph-response function “self-energy”. This is shown diagrammatically in Fig. 10.

Again, the quantum chemical approximations emphasize antisymmetrization of the

electron repulsion integrals which is needed for proper inclusion of double

Fig. 9 Time-unordered (Feynman and Abrikosov) one-electron Green’s function diagrams: (a)

Dyson’s equation; (b) second-order self-energy quantum chemistry approximation; (c) GW self-

energy solid-state physics approximation
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excitations whereas solid-state physics emphasizes use of a screened interaction.

Although no rigorous way is yet known for combining screening and antisymme-

trization, an interesting pragmatic suggestion may be found in [57].

3.4 Superoperator Equation-of-Motion (EOM) Polarization
Propagator (PP) Approach

We now concentrate on the PP and show how to obtain a “Casida-like” equation for

excitation energies and transition moments. This does not as yet give us correction

terms to AA LR-TD-DFT but it does give us some important tools to help us build

correction terms. The basic idea in this section is to take the exact or approximate

Kohn–Sham system of independent electrons as the zero-order picture,

Ĥ 0ð Þ ¼ ĥKS ; ð64Þ

to add the perturbation,

Fig. 10 Time-unordered (Feynman and Abrikosov) ph-propagator diagrams: (a) BSE; (b)

second-order self-energy quantum chemistry approximation; (c) GW self-energy solid-state phys-

ics approximation. Note in part (c) that the solid-state physics literature often turns the v and

w wiggly lines at right angles to each other to indicate the same thing that we have indicated here

by adding tab lines
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Ĥ 1ð Þ ¼ V̂ þ M̂xc: ð65Þ

and to do MBPT. Here, V̂ is the fluctuation operator,

V̂ ¼ 1

4

X
pqrs

pq
����rs� �

p̂ {r̂ {ŝ q̂ �
X
pqr

pr
����rq� �

p̂ {q̂ ; ð66Þ

M̂ xc ¼
X
pq

p
��Σ̂ HF

x � v̂ xc

��q� �
p̂ {q̂ ; ð67Þ

and Σ̂ HF
x is the HF exchange operator defined in terms of the occupied Kohn–Sham

orbitals. Heuristically this gives us a series of diagrams which we must resum

to have the proper analytic structure of the exact PP so we can take advantage

of this analytic structure to produce the desired “Casida-like” equation. Rigorously
we actually first begin with some exact equations in the superoperator equation-

of-motion (EOM) formalism to deduce the analytic structure of the PP. This

exact structure is then developed in a perturbation expansion so that we can

perform an order analysis of each of the terms entering into a basic “Casida-like”

equation. As we can see, not every diagram is generated by this procedure, either

because they are not needed or because of approximations which we have chosen

to make.

Our MBPT expansions are in terms of the bare electron repulsion (or more

exactly the “fluctuation potential” – see (66)), rather than the screened interaction

used in solid-state physics [41, 47]. The main advantage of working with the bare

interaction is a balanced treatment of direct and exchange diagrams, which is

especially important for treating two- and higher-electron excitations. Although

we automatically include what the solid state community refers to as vertex effects,

the disadvantage of our approach is that it is likely to break down in solids when

screening becomes important. The specific approach we take is the now well-

established second-order polarization propagator approximation (SOPPA) of Niel-

sen, Jørgensen, and Oddershede [48–51]. The usual presentation of the SOPPA

approach is based upon the superoperator equation-of-motion (EOM) approach

previously used by one of us [58]. However, the SOPPA approach is very similar

in many ways to the second-order algebraic diagrammatic construction [ADC(2)]

approach of Schirmer [52, 53] and we do not hesitate to refer to this approach as

needed (particularly with regard to the inclusion of various diagrammatic contri-

butions). The only thing really new here is the change from a Hartree–Fock to a

Kohn–Sham zero-order picture and the concomitant inclusion of (many) additional

terms. Nevertheless, it is seen that the final working expressions are fairly compact.

Before going into the details of the superoperator EOM approach, let us antici-

pate some of the results by looking at some of the diagrams which emerge from this

analysis. We have seen in (45) that the PP is just the restriction of the ph-propagator

to twice rather than four times. Thus, heuristically, it suffices to take the

ph-propagator diagrams, fix twice, and then take all possible time orderings.
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Defining order as the order in the number of times V̂ and/or M̂ xc appear, all of the

time-unordered first-order terms are shown in Fig. 11. Fixing twice and restricting

ourselves to an exchange-only theory gives the 14 time-ordered diagrams shown in

Fig. 7. As we can see below in a very precise mathematical way, dangling parts

below or above the horizontal dotted lines correspond respectively to Hugenholtz

diagrams for initial-time and final-time perturbed wavefunctions. (Two other first-

order Goldstone diagrams are found in [52] with the electron repulsion dot above or

below the two dotted lines; however a more detailed analysis shows that these terms

neatly cancel out in the final analysis.) The area between the dotted lines corre-

sponds to time propagation. In this case, there are only one-hole/one-particle

excitations between the two horizontal dotted lines. Our final results are in perfect

agreement with diagrams appearing in the exact exchange (EXX) theory as

obtained by Hirata et al. [59] which are equivalent to the more condensed form

given by G€orling [60].

Figure 12 shows all 13 second-order time-unordered diagrams. Although this

may not seem to be very many, our procedure generates about 140 time-ordered

Hugenholtz diagrams (and even more Feynman diagrams). A typical time-ordered

Hugenholtz diagram is shown in Fig. 13. The corresponding equation,

M M

Fig. 11 Topologically

different first-order time-

unordered Abrikosov

diagrams for the PP

Fig. 12 Second-order time-

unordered Abrikosov PP

diagrams. Not all of the

time-ordered Hugenholtz

diagrams are generated by

our procedure – only about

140 Hugenholtz diagrams
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Π diag
sr,q p ωð Þ ¼

X
a, b, c, i, k, l

pq
����ba� �

kl
����rs� �

εik,bc ω� εik,cað Þεil,ac
; ð68Þ

shows that this diagrams has poles at the double excitations εik,ca. Thus we see that
the polarization propagator does have poles at double excitations, but we are not

really ready to do calculations yet. There are two main reasons: (1) we need a more

sophisticated formalism which allows the single and double excitations to mix with

each other and (2) we would prefer a (pseudo)eigenvalue equation to solve. Thus

we still have to do quite a bit more work to arrive at a “Casida-like” equation with

explicit double excitations, but the basic idea is already present in what we have

done so far.

To do so, it is first convenient to express the PP in a molecular orbital basis as

Π 1, 2, 3, 4; t� t 0ð Þ ¼
X

pqrs
Πsr,qp t� t 0ð Þψ*

r 2ð Þψs 1ð Þψ*
q 3ð Þψ p 4ð Þ; ð69Þ

where

�Πsr,q p t� t 0ð Þ ¼ iθ t� t 0ð Þ 0
��r̂ {

H tð Þŝ H tð Þq̂ {
H t 0ð Þ p̂ H t 0ð Þ

��0D E
þ iθ t 0 � tð Þ 0

��q̂ {
H t 0ð Þ p̂ H t 0ð Þr̂ {

H tð Þŝ H tð Þ
��0D E

: ð70Þ

As explained in [54], this change of convention with respect to that of (46) turns out

to be more convenient. It should also be noted that, because the PP depends only

Fig. 13 An example of a

second-order time-ordered

Hugenholtz PP diagram
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upon the time difference, t� t 0, we can shift the origin of the time scale so that t 0 ¼ 0

without loss of generality.

Equation (70) can be more easily manipulated by making use of the

superoperator formalism. A (Liouville-space) superoperator X
^

is defined by its

action on a (Hilbert-space) operator Â as

X
^

Â ¼ X̂; Â
	 


¼ X̂ Â � Â X̂ : ð71Þ

When X
^

is the Hamiltonian operator, H
^

, one often speaks of the Liouvillian. An

exception is the identity superoperator, 1
^

, whose action is simply given by

1
^

Â ¼ Â : ð72Þ

The Heisenberg form of orbital creation and annihilation operators is easily

expressed in terms of the Liouvillian superoperator,

p̂ H tð Þ ¼ eiĤt p̂ e�iĤt ¼ eiH
^

t p̂ : ð73Þ

Then

�Πsr,q p tð Þ ¼ iθ tð Þ 0
�� eiH^t r̂ {ŝ

� �h i
q̂ { p̂

��0D E
þ iθ �tð Þ 0

��q̂ { p̂ eiH
^

t r̂ {ŝ
� �h i��0D E

: ð74Þ

Taking the Fourier transform (with appropriate convergence factors (not

shown)) gives,

�Πsr,q p ωð Þ ¼ p̂ {q̂
�� ω1^ þ H

^
� ��1��r̂ {ŝ

 �
; ð75Þ

where we have introduced the superoperator metric,7

Â
��X^ ��B̂� �

¼ 0
�� Â{; X̂; B̂

	 
	 
��0� �
: ð76Þ

[It may be useful to note that

7 Technically this is not a metric, because the overlap matrix is symplectic rather than positive

definite. However, we will call it a metric as it can be used in much the same way as a true metric.
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�Πsr,q p ωð Þ ¼ Πrs, pq ωð Þ; ð77Þ

follows as an easy consequence of the above definitions. Moreover, because we

typically use real orbitals and a finite basis set, the PP is a real symmetric matrix.

This allows us simply to identify Π as the superoperator resolvant,

Π pq, rs ωð Þ ¼ p̂ {q̂
�� ω1^ þ H

^
� ��1��r̂ {ŝ

 ��
: ð78Þ

Because matrix elements of a resolvant superoperator are harder to manipulate

than resolvants of a superoperator matrix, we transform (75) into the later form by

introducing a complete set of excitation operators. The complete set

T{� �
¼ T

{
1 ; T

{
2 ; . . .

n o
¼ â { î , î {â ; â { î b̂ { ĵ , î {â ĵ {b̂ ; . . .
� �

; ð79Þ

leads to the resolution of the identity (RI):

1
^

¼
��T{� T{

��T{� ��1�
T{
�� : ð80Þ

We have defined the operator space differently from the previous work of one of

us [38] to be more consistent with the literature on the field of PP calculations. The

difference is actually the commutation of two operators which introduces one sign

change. Insertion into (75) and use of the relation

T{
�� ω1^ þ H

^
� ��1��T{

 �
¼ T{

��T{
� �

T{
��ω1^ þ H

^ ��T{
� ��1

T{
��T{

� �
ð81Þ

then gives

�Πsr,q p ωð Þ ¼ p̂ {q̂
��T{� �

T{
��ω1^ þ H

^ ��T{
� ��1

T{
��r̂ {ŝ

� �
: ð82Þ

This shows us the analytical form of the exact polarization propagator.

The corresponding “Casida-like” pseudoeigenvalue equation is

T{
��H^ ��T{

� �
ZI ¼ ωI T{

��T{� �
ZI ; ð83Þ

and with normalization

Z
{
I T{

��T{� �
ZJ ¼ δI,J : ð84Þ

Let us also seek a sum-over-states expression for the polarization propagator.

Spectral expansion tells us that
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Γ ωð Þ ¼ ω T{
��T{� �

þ T{
��H^ ��T{

� �
¼
X
I

T{
��T{� �

ZI ωþ ωIð ÞZ{
I T{

��T{� �
; ð85Þ

and

Γ�1 ωð Þ ¼ ω T{
��T{� �

þ T{
��H^ ��T{

� �h i�1
¼
X
I

ZI ωþ ωIð Þ�1Z{
I : ð86Þ

So (82) reads

�Πsr,q p ωð Þ ¼
X
I

p̂ {q̂
��T{� �

ZI ωþ ωIð Þ�1Z{
I T{

��r̂ {ŝ
� �

: ð87Þ

This means that the PP has poles given at the pseudoeigenvalues of (83) and that

the eigenvectors may be used to calculate oscillator strengths via (87).

As the “Casida-like” (83) is so important, let us rewrite it as

A B
B* A*

� �
X

Y

 �
¼ ω SA,A SA,B

SB,A SB,B

� �
X

Y

 �
; ð88Þ

which is roughly

A B
B* A*

� �
X

Y

 �
¼ ω 1 0

0 �1

� �
X

Y

 �
: ð89Þ

The A and B matrices, as well as the X and Y, partition according to whether

they refer to one-electron excitations or two-electron excitations. In the Tamm–

Dancoff approximation the B matrices are neglected so we can write

A
0þ1þ2ð Þ
1,1 A

1ð Þ
1,2

A
1ð Þ
2,1 A2,2

" #
C1

C2

 �
¼ ω C1

C2

 �
ð90Þ

Here X has been replaced by C as is traditional and to reflect the normalization

C{C ¼ 1.

The superscripts in (91) reflect a somewhat difficult order analysis which is

carried out in the Appendix. This analysis consists of expanding the polarization

propagator algebraically and then matching each term to a set of diagrams to see

what order of each EOM matrix is needed to get a given order of polarization

propagator.

The result in the case of the A matrices is
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A
0þ1þ2ð Þ
1,1

� �
kc, ia
¼ δi,kF 0þ1þ2ð Þ

a,c � δa,cF 0þ1þ2ð Þ
i,k þ ai

����kc� �
A

1ð Þ
2,1

� �
kc, jbia

¼ �δi,k bc
����a j� �

þ δ j,k bc
����ai� �

� δb,c ai
����k j� �

þ δk, j bi
����k j� �

A
0ð Þ
2,2

� �
ldkc, jbia

¼ δi,kδc,aδd,bεab, i j ;

ð91Þ

whereF 0þ1ð Þ
r, s ¼ δr, sεr þMxc

r, s is the matrix of the Hartree–Fock operator constructed

with Kohn–Sham orbitals and

F 0þ1þ2ð Þ
a,c ¼ F 0þ1ð Þ

a,c þ
X
l

Ml,aMl,c

εl,a
� 1

2

X
l,m, d

ld
����mc� �

dl
����am� �

εlm,ad

F
0þ1þ2ð Þ
i,k ¼ F

0þ1ð Þ
i,k þ

X
d

Mk,dMd, i

εi,d
� 1

2

X
l, d, e

le
����kd� �

dl
����ei� �

εim,de
;

ð92Þ

include second-order corrections. (Note that extra factors of 1/2 occur in these

expressions when spin is taken explicitly into account.) In practice, a zero-order

approximation to A2,2 is insufficient and we must use an expression correct through

first order:

A
0þ1ð Þ
2,2

� �
aibj,ckdl

¼ δi,kδ j,l δa,cF 0þ1ð Þ
b,d þδb,dF 0þ1ð Þ

a,c

� �
�δa,cδb,d δ j,lF

0þ1ð Þ
i,k �δi,kF 0þ1ð Þ

d,l

� �
�δa,c f i, j,k,l b;dð Þ�δb,d f i, j,k,l a;cð Þþδa,d f i, j,k,l b;cð Þþδb,c f i, j,k,l a;dð Þ
�δa,cδb,d k j

����li� �
�δ j,lδk,i ad

����bc� �
;

ð93Þ

where

f i, j,k, l p; qð Þ ¼ δi,k l j
���� pq� �

þ δ j, l ki
���� pq� �

� δk, j li
���� pq� �

� δi, l k j
���� pq� �

: ð94Þ

We refer to the resultant method as extended SOPPA/ADC(2). It is immediately

seen that truncating to first order recovers the usual configuration interaction singles

(CIS) equations in a noncanonical basis set. We now have the essential tools to

proceed with the rest of this chapter.

4 Dressed LR-TD-DFT

We now give one answer to the problem raised in the introduction – how to include

explicit double excitations in LR-TD-DFT. This answer goes by the name “dressed

LR-TD-DFT” and consists of a hybrid MBPT/AA LR-TD-DFT method. We first

give the basic idea and comment on some of the early developments. We then go
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into the practical details which are needed to make a useful implementation of

dressed LR-TD-DFT. Finally, we introduce the notion of Brillouin corrections

which are undoubtedly important for photochemistry.

4.1 Basic Idea

As emphasized in Sect. 2, simple counting arguments show that the AA limits LR-

TD-DFT to single excitations, albeit dressed to include some electron correlation.

However, explicit double excitations are sometimes needed when describing

excited states. This was discussed in the introduction in the context of photo-

chemistry (Fig. 1). It is well known in ab initio quantum chemistry that double

excitations can be important when describing vertical excitations and the best

known example is briefly discussed in the caption of Fig. 14.

At first this may seem a little perplexing because the fact that the oscillator

strength is the transition matrix element of a one-electron operator – see (15) –

means that the oscillator strength of a double excitation relative to a single-

determinantal ground-state wavefunction should be zero – that is, the doubly

excited state should be spectroscopically dark. What happens is easily explained

by the two-level model shown in Fig. 15, which is sufficient to give a first

explanation of the butadiene case, for example. (In the butadiene case, the singly-

excited state to be used is already a mixture of two different one-hole/one-particle

Fig. 14 Doubles contribution to the 1Ag excited state of butadiene. Beecause the obvious two

lowest singly-excited singlets 1(1bg, 2bg) and
1(1au, 2au) are quasidegenerate in energy, they mix

to form new singly-excited singlets
�
1=

ffiffiffi�q
2
��	1

1bg, 2bg
� �

�1 1au, 2auð Þ


. One of these is

quasidegenerate with the doubly-excited singlet dark state 1(1b2g, 2a
2
u). The resultant mixing

modifies the energy and intensity of the observed 1Ag excited state
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states.) Figure 15 shows a bright singly-excited state with excitation energy ωS and

oscillator strength f S ¼ 1 interacting with a dark doubly-excited state with exci-

tation energy ωD and oscillator strength f D ¼ 0 via a coupling matrix element x.
The CI problem is simply

ωS x
x ωD

� �
CS

CD

 �
¼ ω CS

CD

 �
; ð95Þ

which can be formally solved, obtaining

ωS ¼ ωa cos
2θþ ωb sin

2θ

ωD ¼ ωa sin
2θþ ωb cos

2θ; ð96Þ

for some value of θ. It should be noted that the average excitation energy is

conserved in the coupled problem (ωa þ ωb ¼ ωS þ ωD) and that something similar

occurs with the oscillator strengths. This leads to the common interpretation that the

coupling “shatters the singly-excited peaks into two satellite peaks.”

Now let us see how this wavefunction theory compares with LR-TD-DFT and

how Maitra et al. [61] decided to combine the two into a hybrid method. Of course,

the proper comparison with CI is LR-TD-DFT within the TDA. Applying the

partitioning technique to (95), we obtain

ωS þ
x2

ω� ωD

 �
CS ¼ ωCS : ð97Þ

Comparing this with the diagonal TDA LR-TD-DFT within the two-orbital

model,

E

ωS

ωD

ωb

ωa

f

ωωS

1

ωD

f

ωωa

fa

fb

ωb

Fig. 15 Two-level model

used by Maitra et al. in their

heuristic derivation of

dressed TDDFT. See

explanation in text

MBPT Insights About and Corrections to TD-DFT 33



ω ¼ εa, i þ ia
�� fHxc ωð Þ��ia� �

; ð98Þ

shows that

ia
�� fHxc ωð Þ��ia� �

¼ ωS � εa, ið Þ þ x2

ω� ωD
: ð99Þ

Maitra et al. [61] interpreted the first term as the adiabatic part,

f AAHxc ¼ ωS � εa, i ; ð100Þ

and second term as the nonadiabatic correction,

fNAHxc ωð Þ ¼
x2

ω� ωD
: ð101Þ

Additionally, it is easy to show that

x2 ¼ ωSωD � ωaωb : ð102Þ

which is the form of the numerator used by Maitra et al. [61]. The suggestion of

Maitra et al., which defines dressed LR-TD-DFT, is to calculate the nonadiabatic

correction terms – see (101) – from MBPT [61]. Thus x and ωD in (95) are to be

calculated using MBPT rather than using DFT.

4.2 Practical Details and Applications

Applications of dressed LR-TD-DFT to the butadiene and related problems have

proven to be very encouraging [61–64]. Nevertheless, several things were missing

in these seminal papers. In the first place, they did not always use exactly the same

formalism for dressed LR-TD-DFT and not always the same DFAs. Moreover,

although the formalism showed encouraging results for a few molecules for those

excitations which were thought to be most affected by explicit inclusion of double

excitations, the same references failed to show that predominantly single exci-

tations were left largely unaffected by the dressing of AA LR-TD-DFT. These

questions were carefully addressed in [65], with some surprising answers.

The implementation of dressed LR-TD-DFT considered in [65] was to add just a

few double excitations to AA LR-TD-DFT and solve the TDA equation
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A
AAð Þ
1,1 A

1ð Þ
1,2

A
1ð Þ
2,1 A

0þ1ð Þ
2,2

" #
C1

C2

 �
¼ ω C1

C2

 �
: ð103Þ

Thus the calculation of the A1,1 block, which is one of the most difficult to

calculate in the extended SOPPA/ADC(2) theory, is very much simplified by using

AA LR-TD-DFT. The A2,2 block must, however, be calculated through first order in

practice. It was confirmed that adding only a few (e.g., 100) double excitations led

to little difference in calculated eigenvalues unless the double excitations were

quasidegenerate with a single excitation. There is thus no significant problem in

practice with double counting electron correlation effects when using this hybrid

MBPT/LR-TD-DFT method. Tests were carried out on the test set of Schreiber

et al. consisting of 28 organic chromophores with 116 well-characterized singlet

excitation energies [66].

Note that the form of (103) was chosen instead of the form

A
AAð Þ
1,1 þ KNA

1,1 ωð Þ
� �

C1 ¼ ωC1

KNA
1,1 ωð Þ ¼ A

1ð Þ
1,2 ω1� A

0þ1ð Þ
2,2

� ��1
A

1ð Þ
2,1 ;

ð104Þ

for computational simplicity. However, (104) is the straightforward extension of

the dressed kernel given at the end of the previous section and is easy to generalize

to the full response theory case (i.e., without making the TDA).

We confirm the previous report that using the LDA for the AA LR-TD-DFT part

of the calculation often gives good agreement with vertical excitation energies

having significant double excitation contributions [67]. However, most excitations

are dominated by singles and these are significantly underestimated by the AA

LDA. Inclusion of double excitations tended to decrease the typically already too

low AA LDA excitation energy. The AA LR-TD-DFT block was then modified to

behave in the same way as a global hybrid functional with 20% Hartree–Fock

exchange. The excitations with significant doubles character were then found to be

overestimated but the addition of the doubles MBPT contribution again gave good

agreement with benchmark ab initio results. This was consistent with previous

experience with dressed LR-TD-DFT [61–64]. The real surprise was the discovery
that adding the MBPT to the hybrid functional made very little difference for the
majority of excitations which are dominated by single excitation character. It thus
seems that a dressed LR-TD-DFT requires the use of hybrid functional.

4.3 Brillouin Corrections

So far, dressed LR-TD-DFT allows us to include explicit double excitations and so

to describe photochemical funnels between excited states. However, a worrisome

point remains, namely how to include doubles contributions to the ground state in
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the same way that we include doubles contributions to excited states so that we may

describe, for example, the photochemical funnel between S1 and S0 in Fig. 1. It is

not clear how to do this in LR-TD-DFT where the excited-state potential energy

surfaces are just obtained by adding the excitation energies at each geometry to the

ground-state DFT energies. Not only does such a procedure lead to the excited

states inheriting the convergence difficulties of the ground state surface coming

from places with noninteracting v-representability difficulties, but also there is no

coupling between the ground state and singly excited states. This is similar to what

happens with Brillouin’s theorem in CIS calculations and leads to problems

describing conical intersections. However, adding in the missing nonzero terms

(which we call Brillouin corrections) to dressed LR-TD-DFT is easy in the TDA.

It is good to emphasize at this point that we are making an ad hoc correction,

albeit one which is eminently reasonable from a wavefunction point of view.

Formally correct approaches might include: (1) acknowledging that part of the

problem may lie in the fact that noninteracting v-representability in Kohn–Sham

DFT often breaks down at key places on ground-state potential energy surfaces

when bonds are formed or broken, so that conventional Kohn–Sham DFT may no

longer be a good starting point; (2) examining nonadiabatic xc-kernels which seem

to include some degree of multideterminantal ground-state character in their

response such as that of Maitra and Tempel [68]; (3) introducing explicit

multideterminantal character into the description of the Kohn–Sham DFT ground

state. We return to this in our final section, but for now we just try the ad hoc

approach of adding Brillouin corrections to TDA dressed LR-TD-DFT. Note that

this also has an indirect effect on interactions between excited states, though the

primary effect is between excited states and the ground state.

It is sufficient to add an extra column and row to the TDA problem to take into

account the ground-state determinant in hybrid DFT. This gives

0 A0,1 A0,2

A1,0 A
AAð Þ
1,1 A

1ð Þ
1,2

A2,0 A
1ð Þ
2,1 A

0þ1ð Þ
2,2

264
375 C0

C1

C2

0@ 1A ¼ ω C0

C1

C2

0@ 1A : ð105Þ

where the extra matrix elements are calculated as

A0,1ð Þ jb ¼ j
��M̂ xc

��b� �
; ð106Þ

and

A0,2ð Þkcld ¼ 2 kc
����ld� �

� kd
����lc� �	 


: ð107Þ

Of course, we can also derive a corresponding nonadiabatic correction to the

xc-coupling matrix:
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A
AAð Þ
1,1 þ KNA

1,1 ωð Þ
� �

C1 ¼ ωC1

KNA
1,1 ωð Þ ¼ A1,0 A

1ð Þ
1,2

� � ω1 �A0,2

�A2,0 ω1� A
0þ1ð Þ
2,2

� ��1 A0,1

A
1ð Þ
2,1

 �
:

ð108Þ

The extension beyond the TDA is not obvious in this case.

4.3.1 Dissociation of Molecular Hydrogen

Molecular hydrogen dissociation is a prototypical case where doubly-excited con-

figurations are essential for describing the potential energy surfaces of the lowest-

lying excited states. The three lowest singlet states of Σþg symmetry can be

essentially described by three CI configurations, namely (1σ2g1σ
0
u2σ

0
g), (1σ

1
g1σ

0
u2σ

1
g),

and (1σ0g1σ
2
u2σ

0
g), referred to as ground, single, and double configuration,

respectively.

Obviously, the double configuration plays an essential role when a restricted

single-determinant is used as reference. On the one hand, the mixing of ground and

double configurations is necessary for describing the correct �1 Hartree dissoci-

ation energy of H2. On the other hand, the single and double configurations mix at

around 2.3 bohr, thus producing an avoided crossing. These features are shown in

Fig. 16, where we compare different flavors of TD-DFT with the CISD benchmark

(shown as solid lines in all graphs).

Adiabatic TD-DFT (shown in Fig. 16a) misses completely the double configu-

ration, and so neither the avoided crossing nor the dissociation limit is described

correctly. It should be noted, however, that CISD and adiabatic TD-DFT curves are

superimposed for states X 1Σþg and 1 1Σþg at distances lower than 2.3 bohr, where the

KS assumption is fully satisfied. At distances larger than 2.3 bohr, the 1 1Σþg state

corresponds to the CISD 2 1Σþg state. This is because the 1 1Σþg in TD-DFT is

Fig. 16 Potential energy surfaces of the ground and two lowest excited states of Σþg symmetry.

Comparison of CISD (solid lines) with adiabatic, dressed, and hybrid LR-TD-BH&HLYP/TDA

(dashed lines). All calculations have been performed with a cc-pVTZ basis set. All axes are in

Hartree atomic units (bohr for the x-axis and Hartree for the y-axis). Unlike the ethylene potential
energy curves (Fig. 17), no shift has been made in the potential energy curves
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diabatic, as it does not contain the doubly-excited configuration. The dissociation

limit is also overestimated as it is usual from RKS with common xc functionals.

Dressed TD-DFT (Fig. 16b) includes the double configuration. On the one hand,

the avoided crossing is represented correctly. However, the gap between the 11Σþg
and the 21Σþg is smaller than the CISD crossing. The dissociation limit, however, is

not correctly represented, as dressed TD-DFT does not include the ground- to

excited-state interaction. Therefore, the double configuration dissociates at the

same limit as the ground configuration.

Brillouin dressed TD-DFT (Fig. 16b) also includes the ground- and double

configuration mixture additional to the single- and double mixing of dressed

TD-DFT. On the one hand, the avoided crossing is represented more precisely,

with a gap closer to that of CISD. Now the dissociation limit is more correctly

described. Still there is a slight error in the dissociation energy limit, probably

because of the double counting of correlation. This could be alleviated by a

parameterization of the Brillouin-corrected dressed TD-DFT functional.

4.3.2 Ethylene Torsion

In Fig. 17 we show the potential energy surfaces of S0, S1, and S2 of ethylene along

the torsional coordinate. The static correlation of these three states can be essen-

tially represented by three configurations, namely the ground-state configuration

(π2π*,0), the singly-excited configuration (π1π*,1), and the doubly-excited configu-

ration (π0π*,2).
From the CASSCF(2,2)/MCQDPT2, we observe that the ground- and doubly-

excited configurations are heavily mixed at 90�, forming an avoided crossing. At

this angle, the S1 and S2 states are degenerate. These features are not captured by

adiabatic TD-DFT (Fig. 17a). Indeed, the doubly-excited configuration is missing,

Fig. 17 Potential energy cuts of the S0, S1, and S2 states of ethylene along the twisting coordinate:

x-axis in degrees, y-axis in eV. All the curves have been shifted so that the ground-state curve at

0� corresponds to 0 eV. The solid lines correspond to a CASSCF(2,2)/MCQDPT2 calculation, and

the dashed lines to the different models using the BH&HLYP functional and the Tamm–Dancoff

approximation. The 6-31++G(d,p) basis set have been employed in all calculations. (Note that

these curves are in good agreement with similar calculations previously reported in Fig. 7.3 of

Chap. 7 of [69], albeit with a different functional)
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and so the ground state features a cusp at the perpendicular conformation. The S1,

which is essentially represented by a single excitation, is virtually superimposed

with the CASSCF(2,2)/MCQDPT2 result. The dressed TD-DFT (Fig. 17b) includes

the double excitation, but the surfaces of S0 and S2 appear as diabatic states because

the ground- to excited-state coupling term is missing. This is largely fixed by

introducing the Brillouin corrections (Fig. 17c). The ground state is now in very

good agreement with the CASSCF(2,2)/MCQDPT2 S0 state, although the degen-

eracy of S1 and S2 at 90� is still not fully captured. Thus the picture given by

Brillouin-corrected LR-TD-DFT is qualitatively correct with respect to the multi-

reference results.

5 Effective Exchange-Correlation (xc) Kernel

We now have the tools to deduce an MBPT expression for the TD-DFT xc-kernel. It

should be emphasized that this is not a new exercise but that we seem to be the only

ones to do so within the PP formalism. We think this may have the advantage of

making a rather complicated subject more accessible to Quantum Chemists already

familiar with the PP formalism.

The problem of constructing xc-correlation objects such as the xc-potential vxc
and the xc-kernel fxc(ω) from MBPT for use in DFT has been termed “ab initio

DFT” by Bartlet [70, 71]. At the exchange-only level, the terms optimized effective

potential (OEP) [72, 73] or exact exchange [74, 75] are also used and OEP is also

used to include the correlated case [76, 77]. At first glance, nothing much is gained.

For example, the calculated excitation energies and oscillator strengths in ab initio

TD-DFT must be, by construction, exactly the same as those from MBPT. This

approach does not give explicit functionals of the density (though it may be thought

of as giving implicit functionals). However it does allow us to formulate expres-

sions for and to calculate purely (TD-) DFT objects and hence it can provide insight

into, and computational checks of, the behavior of illusive objects such as vxc and
fxc(ω).

Here we concentrate on the latter, namely the xc-kernel. Previous work along

these lines has been carried out for the kernel by directly taking the derivative of

the OEP energy expression with the constraint that the orbitals come from a

local potential. This was first done by G€orling in 1998 [60] for the full time-

dependent exchange-only problem. In 2002, Hirata et al. redid the derivation for

the static case [78]. Later, in 2006, a diagrammatic derivation of the static result was

given by Bokhan and Bartlett [71], and the functional derivative of the kernel gx
has been treated by Bokhan and Bartlett in the static exchange-only case [79].

In this section, we take a somewhat different and arguably more direct approach

than that used in the previously mentioned articles, in that we make direct use of the

fundamental relation
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χ 1; 2ð Þ ¼ L 1; 1þ; 2; 2þð Þ ¼ Π 1, 1, 2, 2, t1 � t2ð Þ ð109Þ

where iþ is infinitesimally later than i. This approach has been used by Totkatly,

Stubner, and Pankaratov to develop a diagrammatic expression for fxc(ω) [80, 81]. It
also leads to the “Nanoquanta approximation,” so named by Lucia Reining because

it was simultaneously derived by several different people [41–43, 46, 44] involved

in the so-called Nanoquanta group. (See also pp. 318–329 of [24].)

The work presented here differs from previous work in two respects, namely

(1) we make a direct connection with the PP formalism which is more common in

quantum chemistry than is the full BSE approach (they are formally equivalent but

differ in practice through the approximations used) and (2) we introduce a matrix

formulation based upon Harriman’s contraction Υ̂ and expansion operators Υ̂ {. This

allows us to introduce the concept of the localizer Λ(ω) which shows explicitly how
localization in space results requires the introduction of additional frequency

dependence. Finally, we recover the formulae of G€orling and Hirata et al. and

produce a rather trivial proof of the Gonze and Scheffler result [82] that this

additional frequency dependence “undoes” the spatial localization procedure in

particular cases.

We first seek a compact notation for (109). Harriman considered the relation

between the space of kernels of operators and the space of functions [83, 84].

In order to main consistency with the rest of this chapter, we generalize Harriman’s
notion from space-only to space and spin coordinates. Then the collapse operator is

defined by

Υ̂ A 1; 2ð Þ ¼ A 1; 1ð Þ ; ð110Þ

for an arbitrary operator kernel. The adjoint of the collapse operator is the so-called

expansion operator

Υ̂ { f 1ð Þ ¼ f 1ð Þδ 1� 2ð Þ ; ð111Þ

for an arbitrary function f(1). Clearly Υ̂ {Υ̂ A 1; 2ð Þ ¼ A 1; 1ð Þδ 1� 2ð Þ 6¼ A 1; 2ð Þ.
The ability to express these operators as matrices (Υ and Υ{) facilitates finite basis

set applications.

We may now rewrite (109) as

χ t1 � t2ð Þ ¼ ΥL t1; t
þ
1 ; t2; t

þ
2

� �
Υ{ ¼ ΥΠ t1 � t2ð ÞΥ{ ð112Þ

Comparing

χ t1 � t2ð Þ ¼ χ s t1 � t2ð Þ þ
ð
χ s t1 � t3ð Þ fHxc t3 � t4ð Þχ t4 � t2ð Þdt3dt4 ; ð113Þ

with the BSE
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L t1; t2; t3; t4ð Þ ¼ Ls t1; t2; t3; t4ð Þ

þ
ð
Ls t1; t2; t5; t6ð ÞΞHxc t5; t6; t7; t8ð ÞL t7; t8; t3; t4ð Þdt5dt6dt7dt8 ;

ð114Þ

or, more precisely, with

χ t1 � t2ð Þ ¼ ΥL t1; t
þ
1 ; t2; t

þ
2

� �
Υ{

¼ ΥLs t1; t
þ
1 ; t2; t

þ
2

� �
Υ{

þ
ð
ΥLs t1; t

þ
1 ; t5; t6

� �
ΞHxc t5; t6; t7; t8ð ÞL t7; t8; t2; t

þ
2

� �
dt5dt6dt7dt8

¼ χ s t1 � t2ð Þ
þ
ð
ΥLs t1; t

þ
1 ; t5; t6

� �
ΞHxc t5; t6; t7; t8ð ÞL t7; t8; t2; t

þ
2

� �
dt5dt6dt7dt8 ;

ð115Þ

then shows thatð
ΥL t1; t

þ
1 ; t3; t

þ
3

� �
Υ{ fHxc t3 � t4ð ÞΥL t4; t

þ
4 ; t2; t

þ
2

� �
Υ{ dt3dt4

¼
ð
ΥLs t1; t

þ
1 ; t5; t6

� �
ΞHxc t5; t6; t7; t8ð ÞL t7; t8; t2; t

þ
2

� �
dt5dt6dt7dt8 :

ð116Þ

If we take advantage of the Kohn–Sham reference giving us the exact density,

then the Hartree part cancels out so that we actually getð
ΥL t1; t

þ
1 ; t3; t

þ
3

� �
Υ{ fxc t3 � t4ð ÞΥL t4; t

þ
4 ; t2; t

þ
2

� �
Υ{ dt3dt4

¼
ð
ΥLs t1; t

þ
1 ; t5; t6

� �
Ξxc t5; t6; t7; t8ð ÞL t7; t8; t2; t

þ
2

� �
dt5dt6dt7dt8 :

ð117Þ

Although this is certainly a beautiful result, it is nevertheless plagued with four-

time quantities which may be eliminated by using the PP:

Π t1 � t2ð Þ ¼ Πs t1 � t2ð Þ þ
ð
Πs t1 � t3ð ÞKHxc t3 � t4ð ÞΠ t4 � t2ð Þdt3dt4 ; ð118Þ

where we have introduced the coupling matrix defined by

KHxc ¼ Π�1s �Π�1: ð119Þ

The price we have to pay is that the coupling matrix cannot be easily expanded in

Feynman diagrams, but that in no way prevents us from determining appropriate

algebraic expressions for it. We may then write
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ð
ΥΠs t1 � t3ð ÞΥ{ fxc t3 � t4ð ÞΥΠ t4 � t2ð ÞΥ{ dt3dt4 ¼ð
ΥΠs t1 � t3ð ÞΥ{Kxc t3 � t4ð ÞΥΠ t4 � t2ð Þdt3dt4;

ð120Þ

which Fourier transforms to remove all the integrations,

ΥΠs ωð ÞΥ{ fxc ωð ÞΥΠ ωð ÞΥ{ ¼
ð
ΥΠs ωð ÞΥ{Kxc ωð ÞΥΠ ωð ÞΥ{ ð121Þ

5.1 Localizer

Evidently,

fxc ωð Þ ¼ Λs ωð ÞKxc ωð ÞΛ{ ωð Þ ; ð122Þ

where we have introduced the notion of noninteracting (Λs) and interacting (Λ)
localizers,

Λs ωð Þ ¼ ΥΠs ωð ÞΥ{
� ��1

ΥΠs ωð ÞΥ{

Λ ωð Þ ¼ ΥΠ ωð ÞΥ{
� ��1

ΥΠ ωð ÞΥ{:
ð123Þ

The localizer arises quite naturally in the context of the time-dependent OEP

problem. According to the Runge–Gross theory [25], the exact time-dependent

xc-potential vxc(t) is not only a functional of the density ρ(t) but also of an

initial condition which can be taken as the wavefunction Ψ(t0) at some prior time

t0. On the other hand, linear response theory begins with the static ground state case
where the first Hohenberg–Kohn theorem tells us that the wavefunction is a

functional of the density Ψ t0ð Þ ¼ Ψ ρt0
	 


. G€orling has pointed out that this greatly

simplifies the problem [60] because we can then show thatð
Πs 1; 1; 2; 2;ωð Þvx 2;ωð Þd2 ¼

ð
Πs 1; 1; 2; 3;ωð ÞΣx 2; 3ð Þd2d3 ; ð124Þ

where Σx is the Hartree–Fock exchange operator. Equivalently, this may be written as

ΥΠs ωð ÞΥ{vx ¼ ΥΠs ωð ÞΣx; ð125Þ

or Σx,

vx ωð Þ ¼ Λs ωð ÞΣx : ð126Þ

Equations (122) and (126) are telling us something of fundamental importance,

namely that the very act of spatially localizing the xc-coupling matrix involves

introducing additional frequency dependence.
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For the special case of noninteracting susceptibility, we can easily derive an

expression for the dynamic localizer. Because

Πs 1; 2; 3; 4;ωð Þ ¼
Xocc
i

Xvirt
a

ψi 1ð Þψ*
a 2ð Þψ*

i 3ð Þψa 4ð Þ
ω� εa, i

�
Xocc
i

Xvirt
a

ψa 1ð Þψ*
i 2ð Þψ*

a 3ð Þψi 4ð Þ
ωþ εa, i

;

ð127Þ

we can express the kernel of ΥΠs(ω) as

ΥΠsð Þ 1; 2; 3;ωð Þ ¼
Xocc
i

Xvirt
a

ψi 1ð Þψ*
a 1ð Þψ*

i 2ð Þψa 3ð Þ
ω� εa, i

�
Xocc
i

Xvirt
a

ψa 1ð Þψ*
i 1ð Þψ*

a 2ð Þψi 3ð Þ
ωþ εa, i

:

ð128Þ

Also, the kernel of ΥΠs(ω)Υ
{ is just

ΥΠsΥ
{

� �
1; 2;ωð Þ ¼

Xocc
i

Xvirt
a

ψi 1ð Þψ*
a 1ð Þψ*

i 2ð Þψa 2ð Þ
ω� εa, i

�
Xocc
i

Xvirt
a

ψa 1ð Þψ*
i 1ð Þψ*

a 2ð Þψi 2ð Þ
ωþ εa, i

:

ð129Þ

As with the susceptibility, the two operators have poles at the independent

particle excitation energies ω ¼ �εa, i ¼ � εa � εið Þ.
In order to construct the dynamic localizer, the kernel (125) has to be inverted. It

is not generally possible to do this analytically, though it can be done in a finite-

basis representation with great care. However, Gonze and Scheffler have noted that

exact inversion is possible in the special case of a frequency, ω ¼ εb, j, of a pole

well separated from the other poles [82]. Near this pole, the kernels, ΥΠs(ω) and
ΥΠs(ω)Υ

{, are each dominated by single terms

ΥΠsð Þ �
ψ j 1ð Þψ*

b 1ð Þψ*
j 2ð Þψb 3ð Þ

ω� εb, j

ΥΠsΥ
{

� �
1; 2;ωð Þ �

ψ j 1ð Þψ*
b 1ð Þψ*

j 2ð Þψb 2ð Þ
ω� εb, j

:

ð130Þ

Thus (125) becomes
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ψ j 1ð Þψ*
b 1ð Þ

ω� εb, j
ψb

��vx εb, j� ���ψ j

D E
�

ψ j 1ð Þψ*
b 1ð Þ

ω� εb, j
ψb

��Σ̂ x

��ψ j

D E
; ð131Þ

with the approximation becoming increasingly exact as ω approaches εb,j. Hence,

ψb

��vx εb, j� ���ψ j

D E
¼ ψb

��Σ̂ x

��ψ j

D E
: ð132Þ

More generally for an arbitrary dynamic kernel, K(1, 2;ω),

ψbψ
*
j

��Λ εb, j� �
K εb, j
� �� �

¼ ψ j

��K εb, j
� ���ψb

� �
; ð133Þ

and we can do the same for �εb, j, obtaining

ψ jψ
*
b

��Λ �εb, j� �
K �εb, j
� �� �

¼ ψ j

��K �εb, j� ���ψb

� �
: ð134Þ

We refer to these last two equations as Gonze–Scheffler (GS) relations, because

they were first derived by these authors [82] and because we want to use them again.

These GS relations show that the dynamic localizer, Λs(ω), is pole free if the

excitation energies, εa,i, are discrete and nondegenerate and suggest that the

dynamic localizer may be a smoother function of ω than might at first be suspected.

Equation (132) is also very significant because we see that, at a particular fre-

quency, the matrix element of a local operator is the same as the matrix element

of a nonlocal operator. Generalization to the xc-kernel requires an approximation.

5.1.1 First Approximation

Equation (122) is difficult to solve because of the need to invert an expression

involving the correlated PP. However, it may instead be removed by using the

approximate expression

fxc ωð Þ ¼ Λs ωð ÞKxc ωð ÞΛþ1=2 ωð Þ ; ð135Þ

where a localizer is used which is half way between the noninteracting and fully

interacting form,

Λ1=2 ωð Þ ¼ ΥΠs ωð ÞΥ{� ��1
ΥΠ ωð ÞΥ{ : ð136Þ

Equation (135) then becomes
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fxc ωð Þ ¼ ΥΠs ωð ÞΥ{� ��1
Π ωð Þ �Πs ωð Þð Þ ΥΠs ωð ÞΥ{� ��1

: ð137Þ

Such an approximation is expected to work well in the off-resonant regime. As

we can see, it does give G€orling’s exact exchange (EXX) kernel for TD-DFT

[60]. On the other hand, the poles of the kernel in this approximation are a priori

the poles of the exact and independent particle PPs – that is, the true and single-

particle excitation energies – unless well-balanced approximations lead to fortui-

tous cancellations.

We can now return to a particular aspect of Casida’s original PP approach [58]

which was failure to take proper account of the localizer. This problem is rectified

here. The importance of the localizer is made particularly clear by the GS relations

in the case of charge transfer excitations. The single-pole approximation to the i
! a excitation energy is

ω ¼ εa, i þ ia
��Λ εa, ið ÞKxc εa, ið ÞΛ{ εa, ið Þ

��ai� �
¼ εa, i þ aa

��Π�1s εa, ið Þ � Π�1 εaið Þ
��ii� �

:
ð138Þ

Thus once again we see that the frequency dependence of the localizer has

transformed the matrix element of a spatially-local frequency-dependent operator

into the matrix element of a spatially-nonlocal operator. Had the localizer been

neglected, then we would have found, incorrectly, that

ω ¼ εa, i þ ia
��Π�1s εaið Þ � Π�1 εa, ið Þ

��ai� �
: ð139Þ

Although the latter reduces to just εai for charge transfer excitations at a distance
(because ψiψa ¼ 0), the former does not [85]. However, for most excitations the

overlap is non-zero. In such cases, and around a well-separated pole, the localizer

can be completely neglected.

5.1.2 Exchange-Only Case

In order to apply (137) we need only the previously derived terms represented by

the diagrams in Fig. 7. The resultant expressions agree perfectly with the expanded

expressions of the TD-EXX kernel obtained by Hirata et al. [59], which are

equivalent to the more condensed form given by G€orling [60].

Use of the GS relation then leads to

ω ¼ εKSa, i þ f xc ε
KS
a, i

� �
¼ εKSa, i þ a

��M̂ xc

��a� �
� i

��M̂ xc

��i� �
þ ai

����ia� �
¼ εHFa, i þ ai

����ia� �
;

ð140Þ

which is exactly the configuration interaction singles (CIS, i.e., TDHF Tamm–

Dancoff approximation) expression evaluated using Kohn–Sham orbitals.
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This agrees with a previous exact result obtained using G€orling–Levy perturbation

theory [82, 86, 87].

5.1.3 Second Approximation

A second approximation, equivalent to the PP Born approximation,

Π ωð Þ ¼ Πs ωð Þ þΠs ωð ÞKHxc ωð ÞΠs ωð Þ ; ð141Þ

is useful because of its potential for preserving as much as possible of the basic

algebraic structure of the exact equation at (122) although still remaining compu-

tationally tractable. This is our second approximation,

fHxc ωð Þ ¼ Λs ωð Þ Π�1s ωð Þ �Π�1 ωð Þ
� �

Λ{
s ωð Þ: ð142Þ

Equation (142) simply reads that fHxc(ω) is a spatially localized form of KHxc(ω).
This is nothing but the PP analogue of the basic approximation (117) used in the

BSE approach on the way to the Nanoquanta approximation [41–46].

6 Conclusion and Perspectives

Time-dependent DFT has become part of the photochemical modeler’s toolbox, at
least in the FC region. However, extensions of TD-DFT are being made to answer

the photochemical challenge of describing photochemical funnel regions where

double and possibly higher excitations often need to be taken into account. This

chapter has presented the dressed TD-D FT approach of using MBPT corrections to

LR-TD-DFT in order to help address problems which are particularly hard for

conventional TD-DFT. Illustrations have been given for the dissociation of H2 and

for cis/trans isomerization of ethylene. We have also included a section deriving the

form of the TD-DFT xc-kernel from MBPT. This derivation makes it clear that

localization in space is compensated for in the exact kernel by including additional

frequency dependences. In the short run, it may be that such additional frequency

dependences are easier to model with hybrid MBPT/LR-TD-DFT approaches. Let

us mention in closing the very similar “configuration interaction-corrected Tamm–

Dancoff approximation” of Truhlar and coworkers [88]. Yet another approach,

similar in spirit, but different in detail is multiconfiguration TD-DFT based upon

range separation [89]. In the future, if progress continues to be made at the current

rate, we may very well be using some combination of these, including elements of

dressed LR-TD-DFT, as well as other tricks such as a Maitra–Tempel form of the

xc-kernel [68], constricted variational DFT for double excitations [90], DFT multi-

reference configuration interaction (DFT-MRCI) [91], spin-flip theory [92–102],

and restricted open-shell or spin-restricted ensemble-referenced Kohn–Sham
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theory [97, 100, 101, 103–105] to attack difficult photochemical problems on a

routine basis. Key elements to make this happen are the right balance between rigor

and practicality, ease of automation, and last but not least ease of use if many users

are going to try these techniques and if they can be routinely applied at every time

step of a photochemical dynamics simulation.
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Appendix: Order Analysis

We have presented the superoperator PP procedure as if we simply manipulated

Feynman diagrams. In reality we expanded the matrices using Wick’s theorem with

the help of a home-made FORTRAN program. The result was a series of algebraic

expressions which were subsequently analyzed by drawing the corresponding

Feynman diagrams. This leads to about 200 diagrams which we ultimately resum

to give a more compact expression. It is the generation of this expression that we

now wish to discuss.

Let us analyze this expression for the PP according to the order of excitation

operator. Following Casida [58], we partition the space as

�Πsr,q p ωð Þ ¼ p̂ {q̂
��T{

1

� �
p̂ {q̂

��T{
2þ

� �� �
Γ�1 ωð Þ

T
{
1

��r̂ {ŝ
� �
T
{
2þ
��r̂ {ŝ

� �0@ 1A ; ð143Þ

whereT
{
2þ corresponds to the operator space of two-electron and higher excitations

and

Γ�1 ωð Þ ¼ Γ1,1 ωð Þ Γ1,2þ
Γ2þ, 1 Γ2þ, 2þ ωð Þ

� ��1
; ð144Þ

has been blocked:
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Γ i, j ωð Þ ¼ T
{
i

��ω1^ þ H
^ ��T{

j

 �
: ð145Þ

Using the well-known expression for the inverse of a two-by-two block matrix

allows us to transform (143) into

�Πsr,q p ωð Þ ¼ p̂ {q̂
��T{

1

� �
� p̂ {q̂

��T{
2þ

� �
Γ�12þ, 2þ ωð ÞΓ2þ, 1

h i
� P�1 ωð Þ T{

1

��r̂ {ŝ
� �

� Γ1,2þΓ�12þ, 2þ ωð Þ T{
2þ
��r̂ {ŝ

� �h i
þ p̂ {q̂

��T{
2þ

� �
Γ�12þ, 2þ ωð Þ T{

2þ
��r̂ {ŝ

� �
;

ð146Þ

where

P ωð Þ ¼ Γ1,1 ωð Þ � Γ1,2þΓ
�1
2þ, 2þ ωð ÞΓ2þ, 1 : ð147Þ

Although (146) is somewhat complicated, it turns out that P(ω) plays much the

same role in the smaller T{
1 space that Γ(ω) plays in the full T{ space. To see how

this comes about, it is necessary to introduce the concept of order in the fluctuation

operator – see (67) – and inMxc – see (69). We can now perform an order-by-order

expansion of (146). Through second order only the T{
2 part ofT

{
2þ contributes, so we

need not consider higher than double excitation operators. However, we make some

additional approximations. In particular, we follow the usual practice and drop the

last term in (146) because it contributes only at second order and appears to be small

when calculating excitation energies and transitions moments using the Hartree–

Fock approximation as zero-order [52, 106–109]. For response functions such as

dynamic polarizabilities, their inclusion is more critical, improving the agreement

with experiments [49]. We also have no need to consider the second term in

p̂ {q̂
��T{

1

� �
� p̂ {q̂

��T{
2þ

� �
Γ�12þ, 2þ ωð ÞΓ2þ, 1 : ð148Þ

This means that for the purposes of this chapter we can treat the PP in the present

work as given by

�Πsr,q p ωð Þ ¼ p̂ {q̂
��T{

1

� �
P�1 ωð Þ T{

1

��r̂ {ŝ
� �

: ð149Þ

Comparing with (82) substantiates our earlier claim that P(ω) plays the

same role in the T{
1 space that Γ(ω) plays over the full T

{ space.
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First-Order Exchange-Correlation Kernel

We now turn to the first-order exchange-correlation kernel. Our main motivation

here is to verify that we obtain the same terms as in exact exchange (EXX)

calculations when we evaluate Π �Πs [59, 60]. Because our approach is in some

ways more general than previous approaches to the EXX kernel, this section may

also provide some new insight into the meaning of the EXX equations.

Because we are limited to first order, only zero- and first-order wavefunction

terms need be considered. This implies that all the contributions from theT
{
2þ space

(the space of double- and higher-excitations) are zero and substantiates our claim

that (149) is exact to first-order. An order-by-order expansion gives

�Π 0þ1ð Þ
sr,q p ωð Þ ¼ p̂ {q̂

��T{
1

� � 1ð Þ
P 0ð Þ,�1 ωð Þ T{

1

��r̂ {ŝ
� � 0ð Þ

þ p̂ {q̂
��T{

1

� � 0ð Þ
P 0ð Þ,�1 ωð Þ T{

1

��r̂ {ŝ
� � 1ð Þ

þ p̂ {q̂
��T{

1

� � 0ð Þ
P 1ð Þ,�1 ωð Þ T{

1

��r̂ {ŝ
� � 0ð Þ

� Π s
sr,q p ωð Þ;

ð150Þ

where

�Π s
sr,q p ωð Þ ¼ p̂ {q̂

��T{
1

� � 0ð Þ
T{
1

��ω1^ þ h
^

KS

��T{
1

� � 0ð Þ,�1
T{
1

��r̂ {ŝ
� � 0ð Þ

: ð151Þ

The evaluation of each of first-order block is straightforward using the basic

definitions and Wick’s theorem.

Let us first consider the P parts. The zeroth-order contribution is

P
0ð Þ
kc, ia ωð Þ ¼ ω� εi,að Þδikδac ð152Þ

P
0ð Þ
ck, ia ωð Þ ¼ 0 ; ð153Þ

and the first-order contribution gives

P
1ð Þ
kc, ia ¼ ai

����kc� �
þMacδik �Mikδac ð154Þ

P
1ð Þ
ck, ia ¼ ci

����ak� �
: ð155Þ

(It should be noted that Pkc,ia is part of the A block, whereas Pck,ia is part of the B

block.) The sum of P 0ð Þ þ P 1ð Þ gives the exact pole structure up to first-order in the

SOPPA approach.

The zero-order contribution,
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p̂ {q̂
��T{

1

� � 0ð Þ
¼ T

{
1

��T{
1

� �
; ð156Þ

and the first-order contributions are given by

p̂ {q̂
��T{

1

� �h i 1ð Þ

kc, ji
¼ �M jc

ε j,c
δik ð157Þ

p̂ {q̂
��T{

1

� �h i 1ð Þ

ck, ji
¼ Mic

εi,c
δk j ð158Þ

p̂ {q̂
��T{

1

� �h i 1ð Þ

kc,ba
¼ Mka

εk,a
δbc ð159Þ

p̂ {q̂
��T{

1

� �h i 1ð Þ

ck,ba
¼ �Mkb

εk,b
δca : ð160Þ

The PP Π(ω) is now easily constructed by simple matrix multiplication

according to (150). Applying the first approximation from Sect. 5 and expanding

Πs ωð Þ �Π ωð Þ through first order allows us to recover G€orling’s TD-EXX kernel

[30]. The most convenient way to do this is to expand P 1ð Þ,�1 using

T
{
1

��ω1^ þ H
^ ��T{

1

� ��1
� T

{
1

��ω1^ þ H
^ 0ð Þ��T{

1

 ��1
þ T

{
1

��ω1^ þ H
^ 0ð Þ��T{

1

 ��1
T
{
1

��H^ 1ð Þ��T{
1

 �
T
{
1

��ω1^ þ H
^ 0ð Þ��T{

1

 ��1
:

ð161Þ

The result is represented diagrammatically in Fig. 7. The corresponding expres-

sions agree perfectly with the expanded expressions of the TD-EXX kernel

obtained by Hirata et al. [59] which are equivalent to the more condensed form

given by G€orling [60]. The diagrammatic treatment makes clear the connection

with the BSE approach. There are in fact just three time-unordered diagrams, shown

in Fig. 11, whose various time orderings generate the diagrams in Fig. 7. However

the “hanging parts” above and below the horizontal dotted lines now have the

physical interpretation of initial and final state wave function correlation. Had we

applied the second approximation of Sect. 5, then only diagrams in Fig. 7a–f would

have survived.

Use of the Gonze–Scheffler relation (see further Sect. 5) then leads to

ω ¼ εKSa, i þ f xc ε
KS
a, i

� �
¼ εKSa, i þ a

��M̂ xc

��a� �
� i

��M̂ xc

��i� �
þ ai

����ia� �
¼ εHF

a, i þ ai
����ia� �

;

ð162Þ
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which is exactly the configuration interaction singles (CIS, i.e., TDHF Tamm–

Dancoff approximation) expression evaluated using Kohn–Sham orbitals. This

agrees with a previous exact result obtained using G€orling–Levy perturbation

theory [82, 86, 87].

Second-Order Exchange-Correlation Kernel

Having verified some known results, let us go on to do the MBPT necessary to

obtain the pole structure of the xc-kernel through second order in the second

approximation. That is, we need to evaluate Π�1s ωð Þ �Π�1 ωð Þ through second

order in such a way that its pole structure is evident. The SOPPA/ADC strategy for

this is to make a diagrammatic Πs ωð Þ �Π ωð Þ expansion of this quantity and then

resum the expansion in an order-consistent way having the form

Πs ωð Þ �Π ωð Þ½ � 0þ1þ...þnð Þ
rs,q p ¼

Xn
k¼0

Xk
i¼0

Xk�i
j¼0

p̂ {q̂
��T{

1

� � ið Þ
P jð Þ,�1 ωð Þ T

{
1

��r̂ {ŝ
� � k�i� jð Þ

;

when the Born approximation is applied to the P(ω) in the same way as in Sect. 5.

The number of diagrams contributing to this expansion is large and, for the sake of

simplicity, we only give the resumed expressions for each block. Evidently, after

the calculation of each block there is an additional step matrix inversion in order to

apply the second approximation to the xc-kernel.

It should be emphasized that although the treatment below may seem simple,

application of Wick’s theorem is complicated and has been carried out using an

in-house FORTRAN program written specifically for the purpose. The result before

resummation is roughly 200 diagrams, which have been included as supplementary

material.

It can be shown that the operator space may be truncated without loss of

generality in a second-order treatment to only one- and two-electron excitation

operators [52]. The wavefunction may also be truncated at second order. This

truncation breaks the orthonormality of the T
{
1 space:

T
{
1

��T{
1

� �
� T

{
1

��T{
1

� � 0ð Þ
þ T

{
1

��T{
1

� � 2ð Þ
6¼ 1 0

0 �1

 �
: ð163Þ

This complication is dealt with by orthonormalizing our operator space. The new

operator set expressed in terms of the original set contains only second-order

corrections:
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â { î
	 
 2ð Þ ¼

X
b

1

4

X
kld

kd
����lb� �

dk
����al� �

εkl,bdεkl,da
þ
X
k

MkbMka

εk,bεk,a

 !
b̂ { î

þ
X
j

1

4

X
mcd

md
���� jc� �

ci
����dm� �

εm j,cdεim,cd
þ
X
d

M jdMdi

ε j,dεi,d

 !
â { ĵ :

ð164Þ

(It should be noted that we have used the linked-cluster theorem to eliminate

contributions from disconnected diagrams. For a proof for the EOM of the one- and

two-particle the Green’s function, see [55].)
We may now proceed to calculate

�Π 2ð Þ
sr,q p ωð Þ ¼ p̂ {q̂

��T{
1

� � 1ð Þ
P 1ð Þ,�1 ωð Þ T

{
1

��r̂ {ŝ
� � 0ð Þ

þ p̂ {q̂
��T{

1

� � 0ð Þ
P 1ð Þ,�1 ωð Þ T

{
1

��r̂ {ŝ
� � 1ð Þ

þ p̂ {q̂
��T{

1

� � 1ð Þ
P 0ð Þ,�1 ωð Þ T

{
1

��r̂ {ŝ
� � 1ð Þ

þ p̂ {q̂
��T{

1

� � 0ð Þ
P 2ð Þ,�1 ωð Þ T

{
1

��r̂ {ŝ
� � 0ð Þ

:

ð165Þ

The only new contributions which arise at this level are from the block P(2),

which is given by

P 2ð Þ ¼ Γ 2ð Þ
1,1 � Γ 1ð Þ

1,2Γ
0ð Þ,�1
2,2 ωð ÞΓ 1ð Þ

2,1 : ð166Þ

(We are anticipating the ω-dependence of the various Γ-blocks which are

derived below.) Because the block Γ ð2Þ1;1 is affected by the orthonormalization

procedure, it may be useful to provide a few more details. Expanding order-by-

order,
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Γ 2ð Þ
1,1 ¼ 0 1ð Þ�� T

{
1; ω1

^

þ H
^ 0ð Þ

,T
{
1

� �� ���0 1ð Þ
� �

þ 0 0ð Þ�� T
{
1; ω1

^

þ H
^ 0ð Þ

,T
{
1

� �� ���0 2ð Þ
� �
þ 0 2ð Þ�� T

{
1; ω1

^

þ H
^ 0ð Þ

,T
{
1

� �� ���0 0ð Þ
� �
þ 0 0ð Þ�� T

{ 2ð Þ
1 ; ω1

^

þ H
^ 0ð Þ

,T
{
1

� �� ���0 0ð Þ
� �
þ 0 0ð Þ�� T

{
1; ω1

^

þ H
^ 0ð Þ

,T
{ 2ð Þ
1

� �� ���0 0ð Þ
� �
þ 0 1ð Þ��	T{

1, Ĥ 1ð Þ;T{
1

h i��0 0ð Þ
D E
þ 0 0ð Þ��	T{

1, Ĥ 1ð Þ;T{
1

h i��0 1ð Þ
D E

;

ð167Þ

where T
{ ð2Þ
1 is the vector of second-order operators defined in (164). It is easily

shown that the first term cancels with the contributions coming from the second-

order operators, and that the contributions from second-order wave function are

exactly zero. Hence, that block is simply

Γ 2ð Þ
1,1 ¼ 0 1ð Þ��	T{

1, Ĥ 1ð Þ;T{
1

h i��0 0ð Þ
D E

þ 0 0ð Þ��	T{
1, Ĥ 1ð Þ;T{

1

h i��0 1ð Þ
D E

; ð168Þ

which makes it frequency-independent. Its calculation gives

Γ 2ð Þ
1,1

h i
kc, ia
¼ δac

X
d

MkdMdi

εi,d
þ δik

X
l

MlaMlc

εl,a
þ δac

2

X
lde

le
����kd� �

dl
����ei� �

εim,de

� δik
2

X
lmd

ld
����mc� �

dl
����ma� �

εlm,ad
; ð169Þ

Γ 2ð Þ
1,1

h i
ck, ia
¼ MakMid

εi,d
þMciMka

εk,a

þ 2
X
d

Mdk ad
����ci� �

εk,d
þ 2
X
l

Mlc lk
����ai� �

εl,c

�
X
md

ce
����ad� �

di
����em� �

εim,de
�
X
me

ce
����mi� �

ak
����me� �

εkm,ae

� 1

2

X
de

ce
����ad� �

dk
����ei� �

εik,de
� 1

2

X
ml

ik
����ml� �

ac
����ml� �

εlm,ac
:

ð170Þ

The block Γ1,2 and its adjoint is of at least first order because the space is

orthonormal. For that reason, it is not affected by the orthonormalization at this

level of approximation. Its calculation gives
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Γ 2ð Þ
2,1

h i
kc, jbia

¼ �δik bc
����a j� �

þ δ jk bc
����ai� �

� δbc ai
����k j� �

þ δac bi
����k j� �

Γ 2ð Þ
2,1

h i
ck, jbia

¼ 0 :
ð171Þ

Finally, the block Γ2,2(ω) gives

Γ 2ð Þ
2,2 ωð Þ

h i
ldkc, jbia

¼ ω� εi j,ab
� �

δ jlδikδcaδdb

Γ 2ð Þ
2,2 ωð Þ

h i
ckdl, jbia

¼ 0
ð172Þ

It should be noted that double excitations are treated only to zeroth-order in a

second-order approach. To obtain a consistent theory with first-order corrections to

double excitations, one should go at least to third order. This however becomes

computationally quite heavy.

It is interesting to speculate what would happen if we were to include the first-

order doubles correction within the present second-order theory. There are, in fact,

indications that this can lead to improved agreement between calculated and

experimental double excitations, though the quality of the single excitations is

simultaneously decreased because of an imbalanced treatment [110, 111].

We can now construct the PP necessary to construct the second approximation of

the xc-kernel (142) according to (149). Because the localizers of both left- and

right-sides are constructed from the noninteracting KS PP, we are only concerned

with ph and hp contributions. This means that the blocks involving pp or hh indices,

corresponding to density shift operators, can be ignored at this level of approxi-

mation. This simplifies the construction of P(ω) in (149), which, up to second order,
gives

Π 0þ1þ2ð Þ,�1 ωð Þ ¼ T{
1

��T{
1

� ��1
P 0þ1þ2ð Þ ωð Þ T{

1

��T{
1

� ��1
: ð173Þ

Separating ph and hp contributions, the PP takes the form of a 2� 2 block-matrix

in the same spirit as the LR-TD-DFT formulation of Casida,

Π 0þ1þ2ð Þ,�1 ωð Þ

¼
1 0

0 �1

0@ 1A P 0þ1þ2ð Þ ωð Þ P 0þ1þ2ð Þ ωð Þ
P 0þ1þ2ð Þ ωð Þ P 0þ1þ2ð Þ ωð Þ

0@ 1A 1 0

0 �1

0@ 1A
¼

P 0þ1þ2ð Þ ωð Þ �P 0þ1þ2ð Þ ωð Þ
�P 0þ1þ2ð Þ ωð Þ P 0þ1þ2ð Þ ωð Þ

0@ 1A :

ð174Þ

It follows that

54 M.E. Casida and M. Huix-Rotllant



Π�1s ωð Þ �Π 0þ1þ2ð Þ,�1 ωð Þ ¼
P 1þ2ð Þ ωð Þ �Γ 1þ2ð Þ

1,1

�Γ 1þ2ð Þ
1,1 P 1þ2ð Þ ωð Þ

0B@
1CA : ð175Þ

Note that the off-diagonal (ph,hp)- and (hp,ph)-blocks are frequency-

independent and that the diagonal blocks are given by (166). Ignoring localization

for the moment, we may now cast the present Kohn–Sham based second-order

polarization propagator approximation (SOPPA/KS) into the familiar form of

(27) with

Aia, jb ωð Þ ¼ δi, jδa,bεa, i þ P
1þ2ð Þ
ia, jb ωð Þ

Bia,b j ωð Þ ¼ � Γ 1þ2ð Þ
1,1

� �
ia,b j

:
ð176Þ

Localization – see (142) –complicates these formulae by mixing the P 1þ2ð Þ ωð Þ
and Γ 1þ2ð Þ

1,1 terms,

Aia, jb ωð Þ ¼ δi, jδa,b εa � εið Þ
þ Λsð Þhp,hp ωð ÞP 1þ2ð Þ ωð Þ Λ{

s

� �
hp,hp

ωð Þ
h i

ia, jb

þ Λsð Þhp,ph ωð ÞP 1þ2ð Þ ωð Þ Λ{
s

� �
ph,hp

ωð Þ
h i

ia, jb

� Λsð Þhp,ph ωð ÞΓ 1þ2ð Þ Λ{
s

� �
hp,hp

ωð Þ
h i

ia, jb

� Λsð Þhp,hp ωð ÞΓ 1þ2ð Þ Λ{
s

� �
ph,hp

ωð Þ
h i

ia, jb

Bia,b j ωð Þ ¼ Λsð Þhp,hpP 1þ2ð Þ ωð Þ Λ{
s

� �
hp,ph

h i
ia,b j

þ Λsð Þhp,phP 1þ2ð Þ ωð Þ Λ{
s

� �
ph,ph

h i
ia,b j

� Λsð Þhp,ph ωð ÞΓ 1þ2ð Þ Λ{
s

� �
hp,ph

ωð Þ
h i

ia,b j

� Λsð Þhp,hp ωð ÞΓ 1þ2ð Þ Λ{
s

� �
ph,ph

ωð Þ
h i

ia,b j
:

ð177Þ

Of course, this extra complication is unnecessary if all we want to do is to

calculate improved excitation energies and transition amplitudes by means of

DFT-based many-body perturbation theory. It is only needed when our goal is to

study the effect of localization on purely TDDFT quantities such as the xc-kernel

and the TDDFT vectors X and Y.
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1 Introduction

Excited states have been studied in wave function theory by both excited state

variational theories and ground state response methods [1, 2]. Either approach has

been used extensively and is considered complementary and, in principle, able to
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afford estimates to any desired degree of accuracy. Given the status of Kohn–Sham

density functional theory (KS-DFT) as a ground state theory, the natural path to

excited states in KS-DFT would seem to be the ground state response approach. In

fact, Runge and Gross [3] have formulated a time-dependent density functional

ground state response theory (TDDFT) which in principle should be able to

describe excited state properties without approximations. TDDFT in its exact

form requires knowledge of the “true” ground state functional and of the frequency

dependence of the energy response kernel corresponding to this functional. In

practical calculations, use is made of approximate ground state functionals and

the frequency dependence of the kernel is neglected in what has now become

known as the adiabatic TDDFT approach (ATDDFT) [4–9]. For more than two

decades the ATDDFT approach has remained the method of choice in DFT-based

studies of excited states and both its merits and limitations have been studied in

great detail [10–33]. Progress beyond the adiabatic approximation has, on the other

hand, been slow, although work in this direction is ongoing [34–36].

Long before TDDFT, Slater introduced a variational DFT approach to excited

states called ΔSCF [37, 38]. Excited states are reached in this scheme by promoting

electrons from occupied to virtual ground state levels followed by a KS calculation

on the new electron configuration. The ΔSCF approach has met with considerable

success for those lower excited states which can be represented by a single orbital

replacement (SOR) [39–49]. However, it is plagued by SCF-convergence problems.

Further, as it applies a ground state functional in a variational excited state

calculation, it is considered somewhat ad hoc [50] and without any theoretical

foundation [51–53]. Nevertheless, Van Voorhis et al. [39] have recently put for-

ward some theoretical justifications for ΔSCF and Besley et al. [42, 43] and Park

et al. [44] have addressed the SCF-convergence issue. Apart from ΔSCF, there are a
number of interesting variational DFT approaches to the study of excited states.

They include ensemble DFT [54–59], variation of bifunctionals [60], and excited

state perturbation theory [61]. They are discussed elsewhere in this volume.

The use of a ground state functional in variational excited state calculations

seems intuitively appealing from the point of view that electron correlation should

be quite similar in the ground and excited states, at least in the lower valence region.

In fact, based on this notion we introduced in 2009 the constricted variational DFT

method (CV-DFT) for excited states [29]. In this theory we allow for an admixture

of virtual ground state orbitals ψa; a ¼ 1, virf g into each of the occupied ground

state orbitals ψ j; j ¼ 1, occ
� �

, according to

ψ i ¼
Xvir
a

Uaiψa ð1Þ

The ansatz in (1) makes it possible to construct occupied excited state orbitals

and evaluate the corresponding excited state energies based on the ground state

functional to any desired order n in the variational mixing matrix U. Such a
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procedure gives rise to the nth order CV-DFT scheme designated as CV(n)-DFT
[26–28].

We start this review by an outline of the CV(n)-DFT theory. This framework

enables us to identify ATDDFT and ΔSCF as special cases of the CV(n)-DFT
scheme with ATDDFT being equivalent to CV(2)-DFT [29, 62] whereas ΔSCF
corresponds to CV(1)-DFT under the simplifying assumption that the excited state

under investigation can be described by a single orbital replacement i! að Þ [27,
44]. The theoretical exposition is followed by first assessing the general perfor-

mance of CV(n)-DFT in connection with applications to n! π* [26–67] and

π ! π* [27] transitions in organic molecules. After that we demonstrate that CV

(n)-DFT is able to deal with a number of transitions where the performance of

ATDDFT based on local and hybrid functionals is problematic. These transitions

involve π ! π* excitations in organic dyes [64, 65] as well as π ! π* transitions in
charge transfer adducts [30] and Rydberg excitations for atoms and small molecules

[66]. We finally discuss future directions for the development and application of the

CV(n)-DFT scheme.

2 Constricted Variational Density Functional Theory

We have recently introduced a variational approach based on density functional

theory for the description of excited states [29, 31]. In this constricted variational

density functional theory, CV-DFT, we carry out a unitary transformation among

occupied ϕi; i ¼ 1, occf g and virtual ϕa; a ¼ 1, virf g ground state orbitals:

Y
ϕocc

ϕvir

 �
¼ eU

ϕocc

ϕvir

 �
¼

X1
m¼0

Uð Þm

m!

 !
ϕocc

ϕvir

 �
¼ ϕ

0

occ

ϕ
0

vir

 �
ð2aÞ

Here ϕocc and ϕvir are concatenated column vectors containing the sets

ϕi; i ¼ 1, occf g and ϕa; a ¼ 1, virf gwhereas ϕ0occ and ϕ
0
vir are concatenated column

vectors containing the resulting sets ϕ
0

i; i ¼ 1, occ
� �

and ϕ
0

a; a ¼ 1, vir
� �

of

occupied and virtual excited state orbitals, respectively. The unitary transformation

matrix Y in (2a) is expressed in terms of a skew symmetric matrix U as

Y ¼ eU ¼ Iþ Uþ U2

2
þ � � � ¼

X1
m¼0

Um

m!
¼
X1
m¼0

U2
� �m
2m!

þ U
X1
m¼0

U2
� �m
2mþ 1ð Þ! ð2bÞ

If the summation in (2a) and (2b) over m is carried out tom¼ n we talk about nth
order CV-DFT or CV(n)-DFT. Above Uij ¼ Uab ¼ 0 where “i,j” refer to the

occupied set ϕi; i ¼ 1, occf g whereas “a,b” refer to ϕa; a ¼ 1, virf g. Further, Uai

are the variational mixing matrix elements of (1) which combines virtual and

occupied ground state orbitals in the excited state withUai ¼ �Uia. Thus the entire
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matrix U is made up of occ� vir independent elements Uai which can also be

organized in the column vectorU
!
. For a givenU

!
we can, by means of (2a) and (2b),

generate a set of “occupied” excited state orbitals:

ϕi

0 ¼
Xoccþvir
p

Ypiϕp ¼
Xocc
j

Yjiϕj þ
Xvir
a

Yaiϕa ð3Þ

which are orthonormal to any order in Uai.

2.1 Second Order Constricted Variational Density
Functional Theory

In the simple CV(2)-DFT theory [29] the unitary transformation of (2a) and (2b) is

carried out to second order in U. We thus obtain the occupied excited state orbitals

to second order as

ϕ
0

i ¼ ϕi þ
Xvir
a

Uaiϕa �
1

2

Xocc
j

Xvir
a

UaiUaj ð4Þ

from which we can generate the excited state Kohn–Sham density matrix to second

order as

ρ0 1, 10ð Þ ¼ ρ 0ð Þ 1, 10ð Þ þ Δρ0 1, 10ð Þ ¼ ρ 0ð Þ 1, 10ð Þ

þ
Xocc
i

Xvir
a

Uaiϕa 1ð Þϕ*
i 10ð Þ þ

Xocc
i

Xvir
a

U*
aiϕ

*
a 10ð Þϕi 1ð Þ

þ
Xocc
i

Xvir
a

Xvir
b

U*
aiUbiϕa 10ð Þϕ*

b 10ð Þ �
Xocc
i

Xocc
j

Xvir
a

U*
aiUajϕi 1

0ð Þϕ*
j 10ð Þ

ð5Þ

The expression for ρ 0 (1, 1 ’) now makes it possible to write down the

corresponding excited state Kohn–Sham energy to second order as

EKS ρ0 1, 10ð Þ½ � ¼ EKS ρ0½ � þ
X
ai

UaiU
*
ai ε

0
a� ε0i

� �
þ
X
ai

X
bj

UaiU
*
bjKai,bj

þ 1

2

X
ai

X
bj

UaiUbjKai, jbþ
1

2

X
ai

X
bj

U*
aiU

*
bjKai, jbþO U 3ð Þ

h i
:
ð6Þ
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Here EKS[ρ
0] is the ground state energy and “a,b” run over virtual ground state

canonical orbitals whereas “i,j” run over occupied ground state canonical orbitals.

Further,

Kru, tq ¼ KC
ru, tq þ KXC

ru, tq ð7Þ

where

KC
ru, tq ¼

ð ð
ϕ*
r 1ð Þϕu 1ð Þ 1

r12
ϕt 2ð Þϕ*

q 2ð Þdv1dv2 ð8Þ

whereas

K
XC HFð Þ
ru, tq ¼ �

ð ð
ϕ*
r 1ð Þϕt 2ð Þ

1

r12
ϕu 2ð Þϕ*

q 1ð Þdv1dv2 ð9aÞ

for Hartree–Fock exchange correlation and

K
XC KSð Þ
ru, tq ¼ δ msr;msuð Þδ mst;msq

� �ð
ϕ*
r r
!
1

� �
ϕu r

!
1

� �
f msr ;mstð Þ ρ0

� �h i
ϕt r

!
1

� �
ϕ*
q r
!

1

� �
dr
*

1

ð9bÞ

for DFT exchange correlation. In (9a) msr ¼ 1=2 for a spin orbital ϕr(1) of α-spin
whereas msr ¼�1=2 for a spin orbital ϕr(1) of β-spin. In addition, the kernel

f (τ,υ)(ρ0) is the second functional derivative of EXC with respect to ρα and ρβ:

f τ,υ ρ0α; ρ
0
β

� �
¼ δ2EXC

δρτδρυ

 �
0

τ ¼ α, β ; υ ¼ α, β: ð10Þ

Finally for KS exchange we have the case whereϕu r
!

1

� �
,ϕq r

!
1

� �
have the same

(α) spin whereas ϕr r
!

1

� �
,ϕt r

!
1

� �
are of the other (β) spin. In this case we have,

according to Wang and Ziegler [67–69],

K
KS XCð Þ
ru, tq

¼ 1

2

ð 	
ϕ
*

r r
!
1

� �
ϕu r

!
1

� �
ϕt r

!
1

� �
ϕ*
q r
!
1

� � 1

s0
δEXC

δρα
� δEXC

δρβ

 ! !
ρ0;s0ð Þ

24 35d r!1

ð11Þ

In (11) the integration is over space and ϕr r
!
1

� �
,ϕt r

!
1

� �
are the spatial parts of

orbitals with β-spin. The evaluation of K
KS XCð Þ
ru, tq

by numerical integration might lead

to numerical instabilities if s0 ¼ ρα� ρα � 0. We can, in that case, carry out a Taylor

expansion of ∂EKS
XC=∂ρα,∂E

KS
XC=∂ρβ from ρ¼ ραþ ρβ and s0 ¼ 0. Thus
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K
KS XCð Þ
ru,tq

¼1

2

ð
ϕ
*

r r1ð Þϕu r1ð Þϕt r1ð Þϕ*
q r1ð Þ

h i1
2

δ2EXC

δ2ρα
þδ

2EXC

δ2ρβ
�2

δ2EXC

δραδρα

 !
ρ0;s0ð Þ

24 35dr1
¼KKS,XC

ru,tq �KKS,XC
rt,uq

ð12Þ

where KKS,XC
ru,tq ,KKS,XC

rt,uq
are defined in (9a) and (9b). The expression in (12) is

numerically stable and has no singularities for s0¼0. Finally, ε0i ,ε
0
a in (6) are the

ground state orbital energies of ϕi(1) and ϕa(1), respectively.

2.2 Equivalence Between Adiabatic TDDFT and Second
Order Constricted Variational Density Functional
Theory

In second order variational density functional theory (CV(2)-DFT) we seek points on

the energy surface EKS[ρ ’] such that ΔEKS Δρ0½ � ¼ EKS ρ0½ � � EKS ρ0½ � represents

transition energy. Obviously, a direct optimization ofΔEKS[Δρ 0] without constraints
results in ΔEKS Δρ0½ � ¼ 0 and U ¼ 0. We [29] now introduce the constraint that the

electron excitation must represent a change in density Δρ 0 in which one electron in

(5) is transferred from the occupied space represented by Δρocc ¼ �
X

ija
UaiU

*
ajφi

1
0� �
φ*j 1ð Þ to the virtual space represented by Δρvir ¼

X
iab
UaiU

*
biφa 10ð Þφ*b 1ð Þ.

Integration of Δρocc and Δρvir over all space affords

�Δqocc ¼ Δqvir ¼
X

ai
UaiU

*
ai. We thus introduce the constraint

X
ai
UaiU

*
ai ¼ 1.

Constructing next the Lagrangian L ¼ EKS ρ0½ � þ λ 1�
X

ai
UaiU

*
ai

� �
with λ being a

Lagrange multiplier and demanding that L be stationary to any real variation in

U results in the eigenvalue equation

AKS þ BKS
� �

U
! Ið Þ
¼ λ Ið ÞU

! Ið Þ
ð13aÞ

where

AKS
ai,bj ¼ δabδij ε0a � ε0i

� �
þ KKS

ai,bj; BKS
ai,bj ¼ KKS

ai, jb: ð13bÞ

We can now from (13a) determine the sets of mixing coefficients

U
! Ið Þ

; I ¼ 1, occ� vir

� �
which make L stationary and represent excited states.

The corresponding excitation energies are given by λ(I ), as can be seen by
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substituting U
! Ið Þ

into (6) and making use of the constraint and normalization

condition U
! Ið Þþ

U
! Ið Þ
¼ 1 after multiplying on both sides with U

! Ið Þþ
.

Within the Tamm–Dancoff approximation [70], (13a) reduces to

AKSU
! Ið Þ
¼ λ Ið ÞU

! Ið Þ
ð14Þ

which is identical in form to the equation obtained from ATDDFT in its adiabatic

formulation [3–9] after applying the same Tamm–Dancoff [70] approximation

(ATDDFT-TD). We have recently shown [62] that CV(2)-DFT without the

Tamm–Dancoff approximation is equivalent to the full adiabatic TDDFT scheme

developed by Gross [3], Casida [4], and others [5–9].

2.3 Perturbative All Order Constricted Variational Density
Functional Theory

Having determined U
! Ið Þ

from (14) allows us [28] to turn to a discussion of how we

construct the proper energy expression for excited singlet states originating from a

closed shell ground state. We first consider a spin-conserving transition from a close

shell ground state and assume without loss of generality that the transition takes

place in the α-manifold. In this case we can write the occupied excited state

KS-orbitals generated from the unitary transformation of (2a) and (2b) as [28, 71]

ϕ
0

i ¼ cos ηγi½ �ϕoα
i þ sin ηγi½ �ϕvα

i ; i ¼ 1, occ=2 ð15Þ

and

ϕ
0

i ¼ ϕi; i ¼ occ=2þ 1, vir ð16Þ

whereas the corresponding KS-determinant is given by

ΨM ¼ ϕ
0

1ϕ
0

2 . . .ϕ
0

iϕ
0

j . . .ϕ
0

n

��� ��� ð17Þ

Here ΨM represents a mixed spin-state [40] which is half singlet and half triplet.

Further, γi i ¼ 1, occ=2ð Þ is a set of eigenvalues to

Vααð Þ{ Uααð Þ Wααð Þ ¼ 1γ ð18Þ

where γ is a diagonal matrix of dimension occ/2 whereas Uαα is the part of the

U matrix which runs over the occupied ϕi; i ¼ 1, occf g and virtual ϕa; a ¼ 1, virf g
ground state orbitals of α-spin [28, 71]. Further,
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ϕoα
i ¼

Xocc=2
j

�
Wαα

�
jiϕj ð19Þ

and

ϕvα
i ¼

Xocc=2
a

�
Vαα
�
aiϕa ð20Þ

Finally, η is determined in such a way that
Xocc=2

i¼1 sin 2
	
ηγi


¼ 1, corresponding to

the constraint that exactly one electron charge is involved in the transition [28]. The

orbitals defined in (19) and (20) have been referred to as Natural Transition Orbitals

(NTO) [72] because they give a more compact description of the excitations than

the canonical orbitals. Thus, a transition involving several i! a replacements

among canonical orbitals can often be described by a single replacementϕoα
i ! ϕvα

i

in terms of NTOs. We note again that the set in (16) is obtained from the unitary

transformation (2a) and (2b) among the occupied ϕi : i ¼ vir=2þ 1, virf g and

virtual ϕa; i ¼ 1, vir=2f g ground state orbitals of α-spin with U represented by Uαα.

For a spin-flip transition from a closed shell ground state the unitary transfor-

mation (2a) and (2b) among the occupied ground state orbitals ϕi; i ¼ 1, occ=2f g of
α-spin and the virtual ground state orbitals ϕa; i ¼ vir=2þ 1, virf g of β-spin yields

the occupied excited state orbitals

ϕ
00

i ¼ cos ηγ
0

i

h i
ϕoα
i þ sin ηγ

0

i

h i
ϕ
vβ
i ; i ¼ 1, occ=2 ð21Þ

and

ϕ
00

i ¼ ϕi ; i ¼ occ=2þ 1, vir ð22Þ

whereas the corresponding KS-determinant is given by

ΨT ¼ ϕ
00

1ϕ
00

1 . . .ϕ
00

iϕ
00

j . . .ϕ
00

n

��� ��� ð23Þ

Here ΨT represents a triplet state. Further, γi i ¼ 1, occ=2ð Þ are the eigenvalues to

Vβα
� �{

Uβα
� �

Wβα
� �

¼ 1γ0 ð24Þ

where Uβα is the part ofU which runs over the virtual ground state orbitals of β-spin
and occupied ground state orbitals of α-spin. Finally
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ϕoα
i ¼

Xocc=2
j

�
Wβα

�
jiϕj ð25Þ

and

ϕ
vβ
i ¼

Xa¼vir
a¼vir=2þ1

�
Vβα
�
aiϕa ð26Þ

With the excitation energy of ΨT given by ΔET and that of ΨM by ΔEM, we can

write the singlet transition energy as [40]

ΔES ¼ 2ΔEM � ΔET ð27Þ

provided thatUαα ¼ Uβα. This implies thatVαα ¼ Vβα,Wαα ¼Wβα, and γ ¼ γ0. As
a result, ϕoα

i of (19) and (25) become identical as do the spatial parts of ϕvα
i in (20)

and ϕ
vβ
i in (26). Straightforward manipulations [27, 28] allow us finally to write

down the mixed state transition energy to all orders in U in a compact and closed

form as

ΔEM ¼
Xocc=2
i¼1

sin 2
	
ηγi


εivα � εioαð Þ

þ 1

2

Xocc=2
i¼1

Xocc=2
j¼1

sin 2 ηγi½ � sin 2
	
ηγj


Kioα ioα joα joα þ Kivα ivα jvα jvα � 2Kioα ioα jvα jvα
� �

þ
Xocc=2
i¼1

Xocc=2
j¼1

sin ηγi½ � cos ηγi½ � sin
	
ηγj


cos ηγj
	 


Kioα ivα joα jvα þ Kioα ivα jvα joα
� �

þ 2
Xocc=2
i¼1

Xocc=2
j¼1

sin ηγi½ � sin ηγi½ � sin
	
ηγj


cos ηγj
	 


Kivα ivα joα jvα

� 2
Xocc=2
i¼1

Xocc=2
j¼1

sin ηγi½ � sin ηγi½ � sin
	
ηγj


cos ηγj
	 


Kioα ioα joα jvα

ð28Þ

for spin-conserving transition from a close shell ground state. More details are

given in Sect. 2.4. Here the indices ioα , joα , ivα , and jvα refer to α-spin orbitals with the
spatial parts ϕoα

i ,ϕoα
j ,ϕvα

i , and ϕvα
j , respectively. The expression for the

corresponding triplet transition energy reads
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ΔET ¼
Xocc=2
i¼1

sin 2
	
η0γ

0

i



εivβ � εioαð Þ

þ 1

2

Xocc=2
i¼1

Xocc=2
j¼1

sin 2 η0γ
0

i

h i
sin 2

	
η0γ

0

i



Kioα ioα joα joα þ Kivβ ivβ jvβ jvβ � 2Kioα ioα jvβ jvβ
� �

þ
Xocc=2
i¼1

Xocc=2
j¼1

sin η0γ
0

i

h i
cos η0γ

0

i

h i
sin
	
η0γ

0

j



cos η0γ

0
j

h i
Kioα ivβ joα jvβ

ð29Þ

Here the indices ivβ and jvβ refer to β-spin orbitals with the spatial parts ϕ
vβ
i and ϕ

vβ
i ,

respectively. More details are given in Sect. 2.4. From (28) and (29) we can readily

express ΔES using (27).

In perturbative all order constricted variational DFT (P-CV(1)-DFT) [27, 64]

we make use of the U matrix optimized to second order according to (14), which is

also the U obtained by ATDDFT-TD (CV(2)-DFT-TD). With this U we are able to

generate ΨM of (17) and ΨT of (23) by means of (2a) and (2b). From that we can

calculate ΔET and ΔES by means of (27)–(29).

2.3.1 Application of Perturbative All Order Constricted Variational

Density Functional Theory to π!π*

We have carried out ATDDFT-TD, (CV(2)-DFT-TD), and P-CV(1)-DFT calcu-

lations [27] on π! π* transitions in the series of polyenes depicted in Fig. 1 using

LDA. In the following we simplify the notation by referring to ATDDFT,

ATDDFT-TD, CV(2)-DFT-TD, and P-CV(1)-DFT-TD as TDDFT, TDDFT-TD,

CV(2)-TD, and CV(1)-TD, respectively, throughout Sect. 2.3.

The results are displayed in Table 1. We have divided theπ ! π* transitions into
a group A where each excitation is dominated by a single orbital replacement (γmax

> 1:0 ) and a group B where the excitation is best described by several orbital

replacements (γmax < 1:0). The group B transitions generally consist of two orbital

replacements involving the HOMO!LUMO+1 and the HOMO� 1!LUMO

transitions. It can be seen that the group B results for P-CV(1)-TD with a root

Ethene E-Butadiene E-Hexatriene E-Octatriene

Cyclopropene Cyclopentadiene Norbonadiene Naphthalene

Fig. 1 Molecules used in the study of π ! π* transitions based on P-CV(1)-DFT
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mean square deviation (RMSD) of 0.34 eV compared to the best [73] wave function

results constitute an improvement over the TDDFT-TD excitation energies with an

RMSD of 0.51 eV. For the group A transitions we also note an improvement in

going from TDDFT-TD with RMSD¼ 0.48 eV to CV(1)-TD with

RMSD¼ 0.35 eV. From experience so far [27, 64] it seems that CV(1) can be

used with advantage in studies of π ! π* transitions involving dyes employing

simple local functionals.

2.3.2 Application of Perturbative All Order Constricted Variational

Density Functional Theory to Acenes

The singlet 1La and
1Lb π ! π* excitations in linear polyacenes represent a set of

benchmark excitations which have been studied extensively both experimentally

Table 1 Results from TDDFT-TD and CV(1)-TD calculations on excitation energiesa for π to

π* transitions in polyenes using LDA

Group State Bestb TDDFT-TDc CV(1)-TD γmax
d

Ethene A B1u 7.80 8.44 8.39 1.177

Butadiene A Bu 6.18 6.16 6.10 1.174

B Ag 6.55 6.24 6.70 0.841

Hexatriene B Ag 5.09 5.03 5.36 0.787

A Bu 5.10 5.05 4.93 1.200

Octatetraene B Ag 4.47 4.17 4.42 0.799

A Bu 4.66 4.34 4.16 1.212

Cyclopropene A B2 7.06 6.30 7.55 1.253

Cyclopentadiene A B2 5.55 5.39 5.87 1.254

B A1 6.31 6.05 6.45 0.809

Norbornadiene A A2 5.34 4.52 5.10 1.158

B B2 6.11 4.95 5.36 0.942

Naphthalene B B3u 4.24 4.20 4.39 0.788

A B2u 4.77 4.25 4.71 1.103

B B1g 5.99 4.97 5.24 0.850

B Ag 5.87 5.80 6.02 0.854

A B2u 6.33 6.12 6.09 1.043

B Ag 6.67 6.21 6.71 0.904

B B3u 6.06 6.22 6.14 0.730

B B1g 6.47 6.47 6.36 0.791

RMSD Ae 0.48 0.35

RMSD B 0.51 0.34

RMSD A+B 0.50 0.35
aEnergies in eV
bAb initio benchmark calculations [73]
cIdentical to CV(2)-TD
dMaximum γ eigenvalue for this transition; see (18)
eRoot mean square deviation in eV
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[74] and theoretically [75–78]. Here the acenes consist of a number (nr) of fused
benzene rings; see Fig. 2.

The distinct properties [74] of the 1La and
1Lb states for the linear acenes have

already been described in the literature [75–78]. Essentially, the 1La (or
1B2u when

the x-axis corresponds to the long molecular axis state) is dominated by a single

electron transition HOMO!LUMO, while the 1Lb (or
1B3u) state results from a

combination of HOMO� 1!LUMO and HOMO!LUMO+1 transitions. Fur-

ther, excitations to 1La (
1B2u) are short axis polarized with high intensity whereas

the transitions to 1Lb (
1B3u) are long axis polarized with low intensity.

It follows from Fig. 3a that the experimental energy gapΔE ¼ ΔE 1B2u2u
� �

� Δ
E 1B3u3u
� �

starts out positive at naphthalene (nr¼ 2) with ΔE¼ 0.53 eV before

turning negative at anthracene (nr¼ 3) whereΔE¼ 0.04 eV:For larger linear acenes
ΔE becomes increasingly negative, reaching ΔE¼ 0.85 eV at hexacene. Thus,

experimentally, ΔE(1B2u) is seen to drop faster in energy than ΔE(1B3u).

Fig. 3 Excitation energies for the 1La and
1Lb transitions in linear acenes as a function of the

number of rings according to (a) experiment, (b) CV(2)-TD, (c) TDDFT, or (d) CV(1)-TD

Fig. 2 Linear acenes with up to six fused rings (nr¼ 6) considered in this study
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The ordering of the calculated CV(2)-TD (TDDFT-TD) excitation energies

based on LDA(VWN) is correct for naphthalene as well as for all other linear

acenes, although the gap differs from the experimental ΔE by almost 0.4 eV for

naphthalene, anthracene, and hexacene. This difference is smaller for naphthacene

and pentacene (Fig. 3b). It can be seen that the main contribution to this deviation

comes from the underestimation of ΔE(1B2u) Thus, the root mean square deviation

(RMSD) value for ΔE(1B2u) is 0.49 eV, while it is only 0.13 eV for ΔE(1B3u); see

Table 2.

As for the TDDFT results based on LDA(VWN), the deviation from the exper-

imental gaps is larger in absolute terms and the calculated ΔE has the wrong sign

for naphthalene (Fig. 3c). It happens because the ΔE(1B2u) values for TDDFT are

lower than those for CV(2)-TD while theΔE(1B3u) estimates for TDDFT are higher

than for CV(2)-TD. As a result, the RMSD value for ΔE(1B2u) increases for

TDDFT by approximately 0.2 eV and reaches 0.71 eV; see Table 2. On the other

hand, on average the TDDFT estimate of ΔE(1B3u) is as accurate as for CV(2)-TD

(TDDFT-TD). Thus, the TDDFT ΔE(1B3u) values for naphthacene, pentacene, and

hexacene are closer to experiment than those from CV(2)-TD while the opposite is

true for naphthalene and anthracene. The RMSD value for TDDFT is 0.14 eV

compare to 0.13 eV for CV(2)-TD; see Table 2.

It follows from the discussion given above that neither CV(2)-TD nor TDDFT

are able to give a quantitative description ofΔE as a function of nr with LDA, in line
with previous TDDFT studies [75–78], using both pure density functionals and

hybrids. The source of the error is in all cases primarily ΔE(1B2u) which is too low

compared to experiment. However, ΔE(1B3u) is also seen to be slightly too high.

We note finally from Table 3 and Fig. 3d that the CV(1)-TD results using LDA

[64] are in excellent agreement with experiment for both ΔE(1B3u) and ΔE(1B2u)

throughout the range of linear acenes (1–6 of Fig. 4). The RMSD for ΔE(1B2u) is

0.06 eV whereas that for ΔE(1B3u) is 0.13 eV; see Table 2. Thus, CV(1)-TD

clearly represents an improvement over TDDFT and CV(2)-TD for LDA. The

improvement is, as anticipated, most noticeable for ΔE(1B2u) where the RMSD

was 0.71 eV for TDDFT and 0.49 eV for CV(2)-TD. For ΔE(1B3u) all three

methods have a similar RMSD.

We have extended [64] our benchmark calculations to include the 15 nonlinear

acenes shown in Fig. 4. The RSMDs for the singlet transition energies involving 1La

Table 2 Root mean square deviations (dRMSD) from experiment for 1La and 1Lb π ! π*
excitations calculated by TDDFT, TDDFT-TD and CV(1)-TD for linear and nonlinear acenes

using LDA

Systems

RMSD 1B2u (
1La) RMSD 1B3u (

1Lb)

TDDFT TDDFT-TDa CV(1)-TD TDDFT TDDFT-TDa CV(1)-TD

Linearb 0.71 0.49 0.06 0.14 0.13 0.13

Nonlinearc 0.52 0.40 0.24 0.16 0.15 0.19
aIdentical to CV(2)-TD
bLinear acenes of Fig. 2
cNonlinear acenes of Fig. 4
dEv
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and 1Lb are given in Table 2 for TDDFT, CV(2)-TD, and CV(1)-TD based on

LDA. 1La CV(1)-TD with an RMSD of 0.24 eV is seen to perform better than CV

(2)-TD (RMSD¼ 0.40 eV) and especially TDDFT (0.52 eV). In fact our results are

of a similar quality to the best results obtained by long-range corrected (LRC)

functionals [79]. We note again that the 1La transitions involves a single

HOMO!LUMO orbital displacement with γi ¼ π=2. For 1Lb all three methods

perform equally well with RMSDs of 0.16 eV (TDDFT), 0.15 eV(CV(2)-TD), and

0.19 eV (P-CV(1)-DFT), respectively. It is interesting to note that the LRC-

functionals [79] in this case perform much more poorly with RMSDs around

0.4 eV. Thus, CV(1)-TD at the simple LDA level is the only scheme of the

methods discussed here which gives a balanced description of π ! π* transitions

involving a single orbital displacement (1La) and π ! π* transitions with more than

one displacement.

Table 3 CV(1)-TD singlet excitation energies (in eV) for linear acenes with LDA

Number of rings

Experimenta CV(1)-TD
1B2u

1B3u ΔEb 1B2u
1B3u ΔEb

2 4.66 4.13 0.53 4.73 4.39 0.34

3 3.60 3.64 �0.04 3.68 3.73 �0.05
4 2.88 3.39 �0.51 2.91 3.32 �0.41
5 2.37 3.12 �0.75 2.35 3.03 �0.68
6 2.02 2.87 �0.85 1.93 2.82 �0.89
aPlatt [74]
bΔE¼ΔE(1B2u)�ΔE(1B3u)

1 32 4 5

6 7 8 9 10

11 12 13 14 15

Fig. 4 Nonlinear acenes with up to six fused rings (nr¼ 6) considered in this study
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For the CV(1)-scheme we note that the singlet excitation energy for a transition

involving a single promotion i! a such as 1A1g1g! 1B2u2u according to (27)–

(29) has the simple form [27]:

ΔECV 1ð Þ
S i! að Þ ¼ εa � εi þ

1

2
Kaaaa þ

1

2
Kiiii þ 2Kaaii � Kiiaa

 �
ð30Þ

Here i is the HOMO π and a the LUMO π* in the current study. Further, a bar “–”

indicates an orbital of β-spin. For CV(2)-TD we obtain for the same transition

according to (14) and (27)

ΔECV 2ð Þ
S i! að Þ ¼ εa � εi þ 2Kaiai � Kaiai ð31Þ

For HF these two expressions are identical [27] because Kaaaa ¼ Kiiii ¼ 0 and

Kaiai ¼ �Kaaii. However, for any of the popular functionals this is not the case.

Thus, the two expressions give rise to different excitation energies for the same

functional. In the study at hand [27] on the 1A1g1g! 1B2u2u transition the sum of

the K-integrals in (30) is larger than the sum of the K-integrals in (31) by 0.5 eV,

giving rise to the better performance of CV(1)-TD compared to CV(2)-TD for the
1A1g1g! 1B2u2u transition. We note that acenes have also been well described by

the variational DFT-based spin-restricted ensemble referenced Kohn–Sham

(REKS) method [57].1

2.4 Self-Consistent All Order Constricted Variational
Density Functional Theory

Using the U matrix from TDDFT-TD or CV(2)-TD to calculateΔEM of (28) orΔET

of (29), as is done in P-CV(1)-TD, might be a good approximation. However,

ultimately, one would want to use a Umatrix which actually minimizesΔEM of (28)

or ΔET of (29). Such a procedure leads us to self-consistent CV(1)-DFT (SCF-CV

(1)-DFT) [27] which we discuss next. We note that the U matrix can also be

organized as a vector U
!
with pairs “ai” of occupied and virtual orbitals as running

numbers. The two formulations are used interchangeably in the following.

From the occupied excited state orbitals of (17) and (23) we can express the

electron density and spin matrices.2,3 Starting with a spin-conserving transition

from a close shell ground state, we can, without loss of generality, assume that it

1 See the chapter “Ensemble DFT approach to excited states of strongly correlated molecular

systems” by M. Filatov.
2 See Sect. 3.1 from part S1 of supporting information in Ziegler et al. [27].
3 See Sect. 3.3 from part S1 of supporting information in Ziegler et al. [27].
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takes place between orbitals of α-spin. Thus, for such a spin-conserving transition,

the excited state orbitals ϕ
0

i ¼ cos ηγi½ �ϕoα
i þ sin ηγi½ �ϕvα

i (15) are obtained by the

unitary transformation at (2a) and (2b) to all orders involving the part of the

U matrix (Uαα) which, according to (1), mixes occupied ground state orbitals of

α-spin with virtual ground state orbitals of α-spin. We can now write (see footnote

3) the change in density within the α-manifold caused by the excitation as

ΔρM 1; 1
0� �
¼
Xocc=2
j

sin 2 ηαγ αj

h i
φvαj 10ð Þφvαj 1ð Þ � φoαj 10ð Þφoαj 1ð Þ
h i

þ
Xocc=2
j

sin ηαγ αj

h i
cos ηαγ αj

h i
φvαj 1ð Þφoαj 10ð Þ þ φvαj 10ð Þφoαj 1ð Þ
h i

ð32aÞ

In (32a) the scaling factor ηα is introduced to ensure thatΔρα 1ð Þ 1, 10ð Þ represents
the transfer of a single electron from the occupied orbital space density

�
Xocc=2

j
sin 2 ηαγ αj

h i
φoαj 10ð Þφoαj 1ð Þ to the virtual orbital space densityXocc=2

j
sin 2 ηαγ αj

h i
φvαj 10ð Þφvαj 1ð Þ or

Xocc=2

j
sin 2 ηαγ αj

h i
¼ 1 ð32bÞ

Here the constraint of (32b) is a generalization of the corresponding second order

constraint
X

ai
UaiUai ¼ 1 used to derive (14). The change in densityΔρα 1ð Þ 1, 10ð Þ

now allows us to write the excitation energy for the spin conserving excitation

within the α-manifold as [27]

ΔEM 	 EKS ρ0=2þ ΔρM, ρ0=2½ � � EKS ρ0=2, ρ0=2½ �
¼
ð
FKS

	
ρ0=2þ 1=2ΔρM, ρ0=2

�

ΔρM

ð33Þ

Here the right hand side of (33) is derived by Taylor expanding [80]

EKS ρ0=2þ ΔρM, ρ0=2½ � and EKS[ρ
0/2, ρ0/2] from the intermediate point

ρ0=2þ ΔρM=2, ρ0=2ð Þ. Further, FKS ρ0=2þ ΔρM=2, ρ0=2ð Þ is a Kohn-Sham Fock

operator defined with respect to the intermediate point. The expression in (33) is

exact to third order in ΔρM which is usually accurate enough [80]. However, its

accuracy can be extended to any desired order [80]. Taylor expanding

FKS ρ0=2þ ΔρM=2, ρ0=2ð Þ to second order in ΔρM finally affords ΔEM of (28)

(see footnotes 2 and 3). The expression for ΔET of (29) can be derived along

similar routes.4,5

4 See Sect. 3.2 from part S1 of supporting information in Ziegler et al. [27].
5 See Sect. 3.4 from part S1 of supporting information in Ziegler et al. [27].
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2.4.1 Energy Gradient in SCF-CV(1)-DFT

We now find vectors U
! Ið Þ

which optimize ΔEM and ΔET. In either case there are

several which we order in terms of increasing energy with I¼ 1, 2. . .. To this end,

we need the energy gradient with respect to variations inU
!
. Considering first a spin-

conserving transition6 between orbitals of α-spin, we take as a starting point Uαα

which generates ϕ
0

i ¼ cos ηαγ αi
	 


ϕoα
i þ sin ηαγ αi

	 

ϕvα
i (15) the elements in

U
! Ið Þ

2ð Þ ¼ U
! Ið Þ

which have been found by solving (14) for a spin conserving transition

within the CV(2)-TD (TDDFT-TD) approximation for the Ith state. To the vector

U
! Ið Þ

corresponds the matrix Ũ0,αα and the set eγα, 0k ; k ¼ 1, occ
� �

. Next, scaling Ũ0,αα

and eγα, 0k ; k ¼ 1, occ
� �

by ηα such that
Xocc=2

j
sin 2 ηαγ αj

h i
¼ 1 affords U0,αα ¼ ηαeU0,αα and γα, 0k ¼ ηαeγα, 0k ; k ¼ 1, occ

� �
where now

Xocc=2

j
sin 2 ηαγ αj

h i
¼ 1. The

matrix Ũ0,αα is obtained from a CV(2)-TD (TDDFT-TD) calculation where Uαα and

�Uαα afford the same energy according to (14). However, in CV(1) with the

energy expression given by (28), the sign matters through the terms containing cos

[ηαγαi ]sin[η
αγαi ]. As we are dealing with a variational approach, we must pick the

sign affording the lowest energy. The same considerations apply to the P-CV(1)-

DFT approach.

Next, a Taylor expansion of ΔEM in (33) from U0,αα to Uαα ¼ U0,αα þ ΔUαα
affords

ΔEM Uααð Þ ¼ EM U0,αα
� �

þ
X
ai

dΔEM

dΔUααai

 �
0

ΔUααai

þ 1

2

X
ai

X
bj

d2ΔEM

dΔUααai dΔU
αα
bj

 !
0

ΔUααai ΔU
αα
bj

¼ ΔEM U0,αα
� �

þ
X
ai

gα,eai ΔU
αα
ai þ

1

2

X
ai

X
bj

Hα,αai,bjΔU
αα
ai ΔU

αα
bj þO 3ð Þ ΔU½ �:

ð34Þ

A component of the gradient gα;eai evaluated at U0,αα reads

6 See Sect. 4.1 from part S1 of supporting information in Ziegler et al. [27].
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g
!α,e
ai U0,αα
� �

¼ dΔEM

dΔUααai

� �
0
¼ δΔEM

δρα

� �
0

dΔρα
dΔUααai

� �
0

¼
ð
FKS

	
ρ0=2þ 1=2ΔραM, ρ

0=2

 ∂Δρ αM

dUααai

� �
0
dv1;

ð35Þ

Here ΔUααai is the change in Uααai in going from U0;αα
ai and Δρα is the corresponding

change in ρα. The subscript “0” in (35) indicates that the derivatives are evaluated at

Uααai ¼ U0,αα
ai . The calculation of g

!α,e
ai U0,αα
� �

in (35) requires closed form expres-

sions for dΔρα/dΔUααai (see footnote 6).7

2.4.2 Optimization of U in SCF-CV(1)-DFT

With the evaluation of g
!α,e
ai U0,αα
� �

we can now begin an iterative process from

U
0,αα generated by U

! Ið Þ

2ð Þ to the optimal Uαα matrix where ΔUαα ¼ 0. A differenti-

ation of (35) by ΔUαα affords

g
!e,α

U0,αα
� �

þHαα U0,αα
� �

ΔUαα ¼ 0 ð36Þ

from which we can find the next Uαα. In the initial steps where ΔU
!αα

���� ����
 δtresh1 the

Hessian is calculated approximately by assuming that Hαα U0,αα
� �

¼ εD with

εDð Þai,bj ¼ δijδab εa � εið Þ. Here εi, εa are the energies of the occupied and virtual

ground state orbitals, respectively. We thus get for each new step

ΔU
!αα
¼ εD
� ��1

g
!e,σ

U0,αα
� �

ð37Þ

If
Xocc=2

j
sin 2 ηαγ αj

h i
resulting from eU0,αα ¼ U0,αα þ ΔUαα does not satisfy (32b),

we introduce a new ηα scaling so that
Xocc=2

j
sin 2 ηαγ αj

h i
constructed from bU0,αα

¼ ηαeU0,αα satisfies (32b). After that we finally ensure that 0,αα satisfies

Tr bU0,ααUK,αα
� �

¼ 0 for the excited states K¼ 1,I� 1 which are below the excited

state I for which we are optimizing U. This is done by introducing the projection

U0,αα ¼ bU0,αα �
XI�1
k¼1

UK,ααTr UK,ααþbU0,αα
� �

=Tr UK,ααþUK,αα
� �

ð38Þ

7 See Sect. 3.0 from part S2 of supporting information in Ziegler et al. [27].
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After that, we go back to (37) for a new step with U0,αα defined in (38). When

δtresh1 � ΔU
!αα

���� ����
 δtresh2, the iterative procedure is resumed by the help of the

conjugated gradient technique described by Pople et al. [81]. It is not required in

this procedure explicitly to know the Hessian. Instead, use is made of the fact that

Hαα U0,αα
� �

ΔUαα ¼ g
!e,α

U0,αα þ ΔU
� �

� g
!e,α

U0,αα
� �

þ O 3½ � ΔUð Þ ð39Þ

The value for δtresh1 is typically 10�2 whereas δtresh2 ¼ 10�4. Convergence is

obtained when the threshold δtresh2 is reached. Typically 20–30 iterations are

required to reach δtresh1 and 5–10 to reach δtresh2. We have also attempted more

advanced Hessians for the first part of the optimization, such as the one suggested

by Fletcher [82] and implemented by Fischer and Almlöf [83]. However, it was

found to be less robust than the simple procedure in (37). The optimization

procedure outlined here for spin-conserving transitions can readily be formulated

for spin-flip transitions [27].

2.4.3 Application of SCF-CV(1)-DFT

We have applied SCF-CV(1)-DFT to a number of nσ ! π* transitions [63] where
an electron is moved from an occupied lone-pair orbital nσ to a virtual π * orbital in
the sample of molecules shown in Fig. 5. We present the results in Table. 4. For the

sample of nσ ! π* transitions studied here it can be seen that the perturbative P-CV
(1)-DFT approach with an RMSD of 1.14 eV is inadequate and one would hope

that a full optimization of U would improve the RMSD. In fact, applying SCF-CV

(1) with complete optimization of U drops the RMSD to 0.50 eV, which is still

poorer than CV(2)-TD (TDDFT-TD) with RMSD¼ 0.33 eV. At this point it is

important to note that all the excitations in Table 4 can be represented by a single

orbital replacement nσ ! π*. However, in going from P-CV(1)-DFT to SCF-CV

(1) the π * orbital is modified, leading to a lowering of the excitation energy and a

reduction of RMSD.

On the other hand, all the other orbitals remain in P-CV(1)-DFT and SCF-CV

(1) “frozen” as they are in the ground state. That this is a severe approximation can

be seen from the ΔSCF results in Table 4 where RMSD¼ 0.32 eV. In the ΔSCF
scheme we optimize not only nσ and π * but also all other occupied orbitals in the

excited state with respect to the (nσ)
1(π *)1 configuration. It is thus obvious that we

must carry out a similar relaxation. This is done next in our SCF-CV(1)-DFT

scheme where we introduce full orbital relaxation on top of optimizing U (SCF-CV

(1)-DFT.
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2.5 Self-Consistent All Order Constricted Variational
Density Functional Theory with Orbital Relaxation

In the description of the excited state by the SCF-CV(1)-DFT scheme all occupied

β-orbitals are unchanged (frozen) from the ground state and the same is the case for

a number of α-orbitals which do not directly participate in the transition. Thus in the
case of the nσ ! π* transitions, all α-orbitals other than nσ, π * are frozen. To

remedy this, we allow in the RSCF-CV(1)-DFT [26] scheme for a relaxation to

second order in the mixing matrix Rσσ σ ¼ α, βð Þ of all occupied orbitals in the

excited state [26]. Thus,

ψ σi 1ð Þ ! ϕσi 1ð Þ þ
Xvir=2
c

Rσσci ϕ
σ
c 1ð Þ � 1

2

Xvir=2
c

Xocc=2
k

Rσσci R
σσ
ckϕ

σ
k 1ð Þ þ O 3ð Þ Rσ½ � ð40aÞ

ψ σa 1ð Þ ! ϕσa 1ð Þ �
Xvir=2
k

Rσσakϕ
σ
k 1ð Þ � 1

2

Xvir=2
c

Xocc=2
k

RσσakR
σσ
ckϕ

σ
c 1ð Þ þ O 3ð Þ Rσσ½ � ð40bÞ

Replacing in (2a) the matrix Ũ which combines occupied and virtual orbitals of

the unrelaxed set ϕq; q ¼ 1, occþ vir
� �

with the corresponding matrix U which

mixes the occupied and virtual orbitals of the relaxed basis ψq; q ¼ 1, occþ vir
� �

leads to the unitary transformation

Fig. 5 Sample of molecules used in the study of nσ ! π* transitions [26]
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Table 4 Vertical singlet excitation energiesa in n! π* transitions based on B3LYP

Molecule State Bestb CV(2)c P-CV(1)c SCF-CV(1) RSCF-CV(1) ΔSCF

1 A00 6.81 5.38 6.80 6.86 5.86 5.76

2 B1 4.59 4.92 6.01 5.34 4.91 4.69

A2 5.11 5.17 7.20 6.26 5.10 5.15

3 B3u 3.95 4.09 4.08 3.99 3.88 3.85

Au 4.81 4.74 5.49 5.30 4.52 4.63

B2g 5.56 5.67 5.92 5.81 5.56 5.48

B1g 6.6 6.40 7.92 7.78 6.20 6.38

4 B1 4.55 4.37 4.94 4.72 4.19 4.14

A2 4.91 4.68 5.50 5.29 4.46 4.54

5 B1 3.78 3.74 4.50 3.99 3.64 3.55

A2 4.31 4.26 5.75 5.29 3.96 4.15

A2 5.77 5.55 5.93 5.67 5.44 5.35

6 B3u 2.29 2.41 2.43 2.30 2.11 2.15

Au 3.51 3.59 4.13 4.02 3.38 3.48

B1g 4.73 4.88 4.89 4.73 4.53 4.56

Au 5.5 5.20 5.22 5.16 4.92 4.96

B2g 5.2 5.40 5.34 5.31 5.16 5.17

7 A2 3.88 3.93 4.53 4.30 3.53 3.52

8 A2 4.4 4.41 5.19 4.84 4.01 4.02

9 B1g 2.76 2.54 2.78 2.62 2.52 2.40

Au 2.77 2.69 3.15 2.97 2.72 2.55

B3u 5.64 5.47 6.82 6.18 5.40 5.40

10 A00 5.63 5.58 6.85 6.42 5.32 5.28

11 A00 5.69 5.59 6.94 6.43 5.33 5.31

12 A00 5.72 5.60 6.94 6.37 5.33 5.34

13 A00 4.87 4.78 7.56 5.90 4.92 4.83

A00 5.26 5.17 7.32 6.43 5.58 –d

14 A00 4.82 4.74 6.75 5.73 4.78 4.59

A00 6.16 5.63 6.66 6.64 5.96 5.82

15 A00 4.80 4.66 6.83 5.74 4.75 4.54

A00 6.10 5.75 8.03 6.75 5.84 6.07

A00 6.56 5.85 6.88 6.76 6.15 –d

16 A00 5.12 5.01 5.86 5.52 4.85 4.91

A00 5.75 5.49 6.66 6.02 5.80 5.63

RMSD 0.33 1.14 0.50 0.32 0.32
aEnergies in eV
bTheoretical best estimates are from Schreiber et al. [73]
cTamm-Dancoff approximation [70]
dDid not converge
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Y
ψocc

ψvir

 �
¼ eU

ψocc

ψvir

 �
¼

X1
m¼0

Um

m!

 !
ψocc

ψvir

 �
¼ ψ

0
occ

ψ
0
vir

 �
ð41Þ

in which the sets of relaxed occupied ψ i; i ¼ 1, occf g and virtual ψa; a ¼ 1, virf g
ground state (reference) KS-orbitals are converted into the resulting sets

ψ
0

i; i ¼ 1, occ
� �

and ψ
0

a; a ¼ 1, vir
� �

of relaxed occupied and virtual excited state

orbitals, respectively. It should be noted that the relaxed orbital set is orthonormal

to second order in R.

We now obtain for a spin conserving transition the excited state KS determinant

which can be written as

ΨM ¼ ψ
0

1ψ
0

1 . . .ψ
0

iψ
0

j . . .ψ
0

n

��� ��� ð42Þ

The corresponding change in density ΔρM expanded in terms of the unrelaxed

ground state orbitals takes the form

ΔρM ¼ ΔρM Uααð Þ þ ΔρRM ð43Þ

where

ΔρM Uααð Þ ¼
Xvir αð Þ
a

Xocc αð Þ
i

ΔPai U
ααð Þ ϕαa 10ð Þϕαi 1ð Þ þ ϕαa 10ð Þϕαi 1ð Þ
	 


þ
Xvir αð Þ
ab

ΔPab Uααð Þϕαa 10ð Þϕαb
�
1
�
þ
Xocc αð Þ
ij

ΔPij U
ααð Þϕαi 10ð Þϕαj

�
1
� ð44Þ

is the change in density caused by Uαα alone and equivalent to (32a) but expressed

in terms of unrelaxed ground state orbitals. On the other hand

ΔρRM ¼
Xα, β
σ

Xvir σð Þ
a

Xocc σð Þ
i

T
1ð Þσσ
ai ϕαa 10ð Þϕαi 1ð Þ þ ϕαa 10ð Þϕαi 1ð Þ

	 

þ
Xvir σð Þ
ab

T
2ð Þσσ
ab ϕσa 10ð Þϕσb

�
1
�
þ
Xocc σð Þ
ij

T
2ð Þσσ
ij ϕσi 10ð Þϕσj

�
1
� ð45Þ

is the change in density caused by the relaxation. Here

T
1ð Þαα
ai ¼ Rααai þ

Xocc αð Þ
j

ΔPααij R
αα
aj ; T

1ð Þββ
ai ¼ Rββai ð46aÞ

82 T. Ziegler et al.



T
2ð Þαα
ab ¼

Xocc αð Þ
i

Rααai R
αα
bi þ

Xocc αð Þ
i

Xocc αð Þ
j

ΔPααij Uααð ÞRααai Rααbj

T
2ð Þββ
ab ¼

Xvir βð Þ
a

Rββai R
ββ
bi

ð46bÞ

T
2ð Þαα
ij ¼

Xvir αð Þ
a

Rααai R
αα
aj �

Xocc αð Þ
l

Xvir αð Þ
a

ΔPααil Uααð ÞRααal Rααaj

T
2ð Þββ
ij ¼ �

Xvir βð Þ
i

Rββai R
ββ
aj

ð46cÞ

We obtain for the excitation energy

ΔEM ¼ ΔEM Uααð Þ þ ΔER
M ð47Þ

where

ΔEM Uð Þ ¼
Xvir αð Þ
a

εαaΔP
αα
aa Uααð Þ2 �

Xocc αð Þ
i

� εαi ΔPααii Uααð Þ2

þ
Xvir αð Þ
ab

Xocc αð Þ
i

ΔPααai Uααð ÞΔPααbj Uααð Þ Kaαiαbαjα þ Kaαiαbαjα

	 

þ 1

2

Xocc αð Þ
ijkl

ΔPααij Uααð ÞΔPααkl Uααð ÞKiαjαkαlα

þ 1

2

Xvir
abcd

ΔPααab Uααð ÞΔPααcd Uααð ÞKaαbαcαdα

þ
Xvir αð Þ
ab

Xocc αð Þ
ij

ΔPααab Uααð ÞΔPααij Uααð ÞKaαbαiαjα

þ 2
Xvir αð Þ
abc

Xocc αð Þ
k

ΔPααab Uααð ÞΔPααck Uααð ÞKaαbαcαkα

þ 2
Xvir αð Þ
ijk

Xocc αð Þ
c

ΔPααij Uααð ÞΔPααck Uααð ÞKiαjαcαkα

ð48Þ

is the excitation caused by U
αα alone and equivalent to ΔEM for the SCF-CV(1)-

DFT scheme of (28) but expressed in terms of canonical and unrelaxed ground state

orbitals. Further

Constricted Variational Density Functional Theory Approach to the. . . 83



ΔER
M ¼

Xα, β
σ

Xvir σð Þ
a

T 2ð Þσσ
aa εσa �

Xvir σð Þ
i

T
2ð Þσσ
ii εσi

 !

þ
Xα, β
σ

Xα, β
μ

Xvir σð Þ
a

Xocc σð Þ
i

Xvir μð Þ
c

T
1ð Þσσ
ai T

1ð Þμμ
bj Kaσ iσbμjμ þ Kaσbμiσ jμ

h i
þ
Xα, β
σ

Xocc σð Þ
k

Xvir σð Þ
c

T
1ð Þσσ
ck

Xvir αð Þ
ab

ΔPααab Uααð ÞKaαbαcσkσ þ
Xocc αð Þ
ij

ΔPααij Uααð ÞKiαjαcσkσ

" #
ð49Þ

is the relaxation contribution to the excitation energy. The total energy for ΨM is

given as EM ¼ E0 ρ0ð Þ þ ΔEM Uð Þ þ ΔER
M where E0(ρ

0) is the ground state energy

expressed in terms of unrelaxed orbitals. The expression for ΔER
M is derived after

orthogonalization of ΨM to the ground state to second order in R.

We optimize ΔEM of (49) by first performing a Taylor expansion from the

starting point reference (U0,αα,R0,αα,R0,ββ) to Uαα;Rαα;Rββ
� �

¼ U0,αα þ ΔUαα,
�

R0,αα þ ΔRαα,R0,ββ þ ΔRααÞ:

EM Uαα;Rαα;Rββ
� �

¼EM U0,αα;R0,αα;R0,ββ
� �

þ
X
ai

dEM

dUααai

 �
0

ΔUααai þ
Xα,β
σ

X
ai

dEM

dRσσai

 �
0

ΔRσσai þ
1

2

X
ai

X
bj

d2EM

dUααai dU
αα
bj

 !
0

ΔUααai ΔU
αα
bj

þ1
2

X
ai

X
bj

Xα,β
σ

Xα,β
τ

d2EM

dRσσai dR
ττ
bj

 !
0

ΔRσσai ΔR
ττ
bjþ

X
ai

X
bj

Xα,β
σ

d2EM

dUααai dR
σσ
bj

 !
0

ΔUααai ΔR
σσ
bj

þO 3½ �

ð50Þ

Here the subscript “0” indicates that the derivative is evaluated at the reference

(U0,αα,R0,αα,R0,ββ). We can alternatively write the expansion in terms of energy

gradients and energy Hessians as

EM Uαα;Rαα;Rββ
� �

¼ EM U0,αα;R0,αα;R0,ββ
� �

þ ΔU
!αα

ΔR
!αα

ΔR
!ββ

� � g
!Uαα

g
!Rαα

g
!Rββ

0BB@
1CCA

þ 1

2 ΔU
!αα

ΔU
!αα

ΔU
!αα

� � HUαα,Uαα HUαα,Rαα HUαα,Rββ

HRαα,Uαα HRαα,Rαα HRαα ,Rββ

HRββ ,Uαα HRββ ,Rαα HRββ ,Rββ

0@ 1A HRββ ,Rββ

ΔR
!αα

ΔR
!ββ

0B@
1CAþO 3½ �

ð51Þ

where the expressions for the gradients g
!Uαα

, g
!Rαα

, g
!Rββ

and Hessians HUαα,Uαα ,

HRαα,Uαα , etc. can be obtained by a comparison between (50) and (51). Specific
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formula for g
!Uαα

, g
!Rαα

, and g
!Rββ

are also given in [26] for the spin-flip transition.

For the spin conserving transition, a differentiation of (51) with respect to the

individual components of ΔU
!αα

, ΔR
!αα

, and ΔR
!ββ

affords, after rearrangement,

g
!Uαα

0ð Þ
g
!Rαα

0ð Þ
g
!Rββ

0ð Þ

0BB@
1CCAþ HUαα,Uαα 0ð Þ HUαα,Rαα 0ð Þ HUαα,Rββ 0ð Þ

HRαα ,Uαα 0ð Þ HRαα ,Rαα 0ð Þ HRαα,Rββ 0ð Þ
HRββ ,Uαα 0ð Þ HRββ ,Rαα 0ð Þ HRββ ,Rββ 0ð Þ

0B@
1CA ΔU

!αα

ΔR
!αα

ΔR
!ββ

0B@
1CA ¼ 0 ð52Þ

from which we can find ΔU
!αα

,ΔR
!αα

,ΔR
!ββ

 �
iteratively. More details can be

found in [26] which also covers the case of spin-flip transitions.

2.5.1 Application of RSCF-CV(1)-DFT to nσ! π* Transitions

It follows from Table 4 that the RSCF-CV(1)-DFT scheme with full orbital

relaxation gives nσ ! π* transition energies which on average are within 0.15 eV

of the ΔSCF results. This is acceptable given the fact that the RSCF-CV(1)-DFT

scheme is only second order in relaxation and that it satisfies constraints not

fulfilled by ΔSCF. In comparison to the “Best” ab initio results [73], RSCF-CV

(1)-DFT fares as well as ΔSCF and CV(2)-TD (TDDFT-TD) with an RMSD of

0.32 eV. Thus, although RSCF-CV(1)-DFT is somewhat more costly (~twice) for

each transition, it does not fare much better than CV(2)-TD in those cases where the

latter is reliable and fares well. However, what we show shortly is that RSCF-CV

(1)-DFT has a similar accuracy (RMSD ~0.3–0.2 eV) where CV(2)-TD fails such

as Rydberg and charge transfer transitions.

2.5.2 Application of RSCF-CV(1)-DFT to Rydberg Transitions

We have benchmarked [66] the performance of RSCF-CV-DFT in studies on

Rydberg transitions employing five different standard functionals and a diffuse

basis; see Table 5. Our survey is based on 71 triplet or singlet Rydberg transitions

distributed over 9 different species: N2(5), CO (7), CH2O (8), C2H2 (8), H2O (10),

C2H4 (13), Be (6), Mg (6), and Zn (8). The best performance comes from the long

range corrected functional LCBP86 (ω¼ 0.4.) with an average root mean square

deviation (RMSD) of 0.23 eV. Of similar accuracy are LDA and B3LYP, both with

an RMSD of 0.24 eV. The largest RMSD of 0.32 eV come from BP86 and

LCBP86* (ω¼ 0.75). The performance of RSCF-CV-DFT is considerably better

than that of adiabatic time-dependent density functional theory (ATDDFT) and

matches that of highly optimized long range corrected functionals. However, it is

not as accurate as ATDDFT based on highly specialized functionals.
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The reasonable success of RSCF-CV-DFT is based on its well documented

ability to afford good estimates of ionization potentials (IP) and electron affinities

(EA) even for simple local functionals after orbital relaxation has been taken into

account [66]. In adiabatic time-dependent density functional theory (ATDDFT)

based on regular functionals, both IP and -EA are poorly described with errors of up

to 5 eV [66]. In the transition energy (ΔE ¼ IP� EA) these errors are cancelled to

some degree. However, ΔE still carries an error exceeding 1 eV [66].

2.5.3 Application of RSCF-CV(1)-DFT to Charge Transfer

Transitions

It has been demonstrated that regular adiabatic TDDFT employing the general

gradient approximation (GGA) as well as hybrid functionals with a fraction (α) of
exact Hartree–Fock exchange included 0:0 � α � 0:5ð Þ underestimate charge

transfer excitation energies by as much as 2–4 eV [24, 25, 33]. This failure has

been discussed and analyzed extensively [24, 25, 32, 33]. By contrast, ATDDFT in

conjunction with long range corrected (LC) functionals affords charge transfer

excitation energies in good agreement with experiment [33]. In these functionals,

Hartree–Fock exchange is given a growing weight towards longer inter-electronic

distances.

We have recently [30] applied the RSCF-CV(1)-DFT scheme to a series of

charge transfer molecular complexes (CTMC) of the type X-TCNE where an

aromatic molecule (X¼ benzene, toluene, o-xylene, naphthalene, anthracene) is

bound to tetracyanoethylene (TCNE) [33]. All of these complexes have one or more

distinct charge transfer transitions involving the excitation of an electron from an

Table 5 Root mean square deviations of Rydberg excitation energiesa calculated with RSCF-CV

(1)-DFT using five functionals with the extended basis set [66]

Species Nr. of States

Functionals

LDA BP86 B3LYP LCBP86b LCBP86*c

N2 5 0.27 0.34 0.05 0.23 0.62

CO 7 0.22 0.43 0.13 0.12 0.37

CH2O 8 0.21 0.28 0.12 0.20 0.34

C2H2 8 0.31 0.50 0.52 0.25 0.24

H2O 10 0.27 0.17 0.14 0.21 0.24

C2H4 13 0.15 0.20 0.28d 0.28 0.29

Be 6 0.45 0.60 0.47 0.31 0.23

Mg 6 0.18 0.35 0.19 0.13 0.12

Zn 8 0.18 0.25 0.27 0.34 0.46

Average root mean square deviation 0.24 0.32 0.24 0.23 0.32
aEnergies in eV
bRefers to LC functional combined with BP86 and ω¼ 0.4
cRepresents LC functional combined with BP86 and ω¼ 0.75
dComprised of 12 states
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occupied π-orbital on X to the empty π-orbital on TCNE. The X-TCNE complexes

were first introduced by Stein et al. [33] as a benchmark set for CT-transitions in

connection with their study on the performance of LC functionals.

The charge transfer spectrum for the series of adducts X-TCNE (X¼benzene,
toluene, o-xylene, and naphthalene, TCNE¼tetracyanoethylene) has been studied

extensively by experimental [84–88] and computational techniques [32, 89]. The

experimental investigations include both gas phase [88] and solvation studies

[85, 86] whereas the computational examinations have made use of high level ab

initio schemes [89] and methods based on density functional theory [24, 25, 32, 33].

The simple adduct between benzene and TCNE has in the ground state two

conformational minima of C2V symmetry given as 1 and 2 in Fig. 6. The minima are

calculated in both gas phase and solution to be separated by at most 0.7 kcal. Each

conformation gives rise to one allowed and one forbidden transition. These transi-

tions are to the same π * LUMO orbital of TCNE but originate from two different

HOMO orbitals on benzene; see π2 and π3 of Fig. 6. The four calculated transitions
from π2 and π3 in 1 and 2 differ by less than 0.05 eV.

It is thus not surprising that the experimental spectrum in both gas phase and

solution exhibits one (broad) CT-band at room temperature. The CT spectrum in

gas phase has a halfwidth of 0.8 eV and a maximum at 3.59 eV [88]. This maximum

is in a dichloromethane solution shifted to 3.25 eV. We exhibit in Table 6 [30] the

calculated CT-excitation energies for CV(2)-DFT, CV(1)-DFT, SCF-CV(1)-

DFT, and RSCF-CV(1)-DFT using LDA, BP86, B3LYP, BHLYP, LCBP86, and

HF.

We note in Table 6 for CV(2)-TD (ATDDFT-TD) that local functionals under-

estimate the experimental charge transfer excitation energy (3.59 eV [88]). The

calculated excitation energies are still too low for the hybrids B3LYP and BHLYP,

whereas the long range corrected functional LC-BP86 is now within 0.1 eV of

experiment. For the perturbative P-CV(1) approach, calculated ΔES values in

Table 6 are in general seen to be higher than the observed excitation energy by

more than 1 eV. This is understandable because the “excited state” determinants in

P-CV(1) are constructed from U vectors optimized with respect to CV(2)-TD.

Further, all relaxation is neglected. In the SCF-CV(1)-DFT scheme the excited

state energy is minimized with respect to U while relaxation is still neglected. This

leads to some improvement. However, the best results are obtained with RSCF-CV

Fig. 6 Conformations and frontier orbitals in the benzene-TCNE adduct
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(1)-DFT where the energy is minimized with respect to both R and U. After full
optimization in RSCF-CV(1)-DFT, the calculated excitation energies are lowered

from CV(1)-TD to values in reasonable agreement with experiment. The best fit is

provided by B3LYP (3.56 eV) and the largest deviation is observed for LC-BP86

(3.10 eV). We must conclude that the RSCF-CV(1)-DFT method in general gives

reasonably good agreement with experiment for the different DFT schemes. Thus

the RSCF-CV(1)-DFT energy expressions of (28) and (29) seem to be relatively

robust with respect to the choice of functional; see Table 6. The relaxation brings

the calculated excitation energy to 2.85 eV for RSCF-CV(1)-HF; see Table 6 [30].

We present in Table 7 [30] RSCF-CV(1) results for calculations on X-TCNE

adducts I-IV of Fig. 7 using both local functionals and hybrids together with long

range corrected (LC) functionals. We notice again that the standard functionals

LDA, BP86, B3LYP, and BHLYP all are close to experiment. The LC-BP86

functional fares somewhat worse here. However, we have not optimized the LC

parameter which usually improves the results [33]. It should be noted that the

corresponding ATDDFT results are off by 2 eV for LDA, BP86, 1 eV for B3LYP

and BHLYP [30, 33]. For optimized LC functionals the ATDDFT results are in

excellent agreement with experiment [33].

Table 6 Calculated

excitation energiesa for

benzene-TCNEf
CV(2)-TDb P-CV(1)c

SCF-CV

(1)d
RSCF-CV

(1)e

LDA 1.40 4.99 3.64 3.30

BP86 1.37 4.92 3.69 3.32

B3LYP 1.85 4.89 4.38 3.56

BHLYP 2.75 4.80 4.76 3.31

LC-

BP86

3.74 4.92 4.69 3.10

HF 4.70 4.72 4.53 2.85
aEnergies in eV
bSecond order energies identical to adiabatic TD-DFT within the

Tamm–Dancoff approximation
cEnergies to all orders in U. Matrix U taken from CV(2)
dEnergies to all orders in U. Matrix U optimized with respect to

the SCF-CV(1) energy expression
eSCF-CV(1) with orbital relaxation
fAllowed transition in conformation 2 involving the transition

from π2 of benzene to π * of TCNE

Table 7 RSCF-CV(1)

calculations on the TCNE

adducts I–IV from [30]

Functional I II III IV

LDA 3.30 2.91 2.70 2.40

BP86 3.32 2.93 2.73 2.42

B3LYP 3.56 3.19 3.05 2.44

BHLYP 3.31 3.10 2.84 2.40

LC-BP86 3.10 2.90 2.60 2.29

Exp 3.56 3.32 3.15 2.60
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In a method which predates RSCF-CV(1) we combined P-CV(n) with orbital

relaxation (RP-CV(n)) to study charge transfer transitions in a series of substituted

anthracene–TCNE systems with various groups in the meso position where n¼ 4

[31]. Our results for the series X-anthracene of Fig. 8 are given in Table 8.

Experimentally, X-anthracene with pure anthracene or alkyl substituted anthra-

cenes have smaller excitation energies than X-anthracene systems with polar

oxygen or a CN group. This order is more or less reproduced by R-CV(4)-DFT.

The functional dependence shown in Table 8 is minor. Excitation energies

Fig. 7 Adducts I–IV of Table 7

Fig. 8 Different anthracene complexes examined by the RP-CV(4)-DFT scheme

Table 8 Singlet excitation energies (in eV) for π (donor) to π* (TCNE) transitions in

X-anthracene complexes based on a TZP-basis and the RP-CV(4) scheme with different

functionals

Substituents(X) LDA BP86 BLYP BPErev SAOP GRAC SKB Exp.

None 1.69 1.71 1.66 1.73 1.60 1.71 1.82 1.73

9,10-Dimethyl 1.43 1.46 1.41 1.47 1.34 1.45 1.77 1.44

9-Carbo-methoxy 1.74 1.78 1.70 1.80 1.71 1.77 1.84 1.84

9-Chloro 1.74 1.78 1.71 1.80 1.66 1.78 1.82 1.74

9-Cyano 2.00 2.03 1.96 2.04 1.97 2.00 2.03 2.01

9-Formyl 10-chloro 2.02 2.06 1.99 2.08 1.80 2.06 1.96 1.96

9-Formyl 1.99 2.03 1.97 2.05 1.97 2.04 1.95 1.90

9-Methyl 1.48 1.50 1.45 1.51 1.44 1.49 1.71 1.55

9-Nitro 1.94 1.97 1.92 1.99 1.96 1.98 2.12 2.03

RMSD 0.06 0.07 0.08 0.07 0.10 0.07 0.10 1.73

VWN [90], BP86 [91, 92], BLYP [91, 93], revPBE [94–96], SAOP [97], SKB [33], GRAC [98]
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calculated by the GGA functionals BP86, BLYP, and revBEP differ on average by

less than 0.05 eV from LDA estimates and introducing SAOP or GRAC with the

right asymptotic 1/r behavior does not lead to any significant change. Charge

transfer transitions can also be described well by the variational DFT-based spin-

restricted ensemble referenced Kohn–Sham (REKS) method [57] (see footnote 1).

It is at this point important to note that the experimental excitation energies for

the anthracene systems were all obtained in solution with CH3Cl as the solvent. We

do not expect the solvent effect to be significant. In fact, theoretical calculations

[33] using a continuum model revealed that the excitation energies were lower by

only 0.05 eV. We have, as a consequence, decided to compare our gas-phase results

directly with the experimental solvent data. We obtain from such a comparison that

the RMSD is 0.06 for LDA followed by 0.07 for BP86, revPBE, and 0.08 for BLYP.

The two 1/r asymptotically corrected functionals afford 0.10 for SAOP and 0.07 for

CRAC. Stein et al. [33] “SKB” introduced in their DZP gas-phase study a uniform

correction of �0.32 eV to simulate solvation effects; see Table 8. The magnitude

and sign of this correction was given without much explanation [33]. After applying

their correction the authors obtained an RMSD of 0.1 which is quite similar to the

one found here for our gas-phase results without any solvent correction. It should be

noted that ATDDFT with the same functionals carries errors of up to 1 eV.

3 Concluding Remarks

We have here reviewed the theoretical foundation of constricted variational density

functional theory and illustrated its scope through applications. CV(n)-DFT encom-

passes adiabatic TDDFT and ΔSCF-DFT as special cases. Thus our variational

second order CV(2)-DFT is identical to adiabatic TDDFT ground state response

theory [29, 62] and ΔSCF-DFT is the same as RSCF-CV(1)-DFT in the case

where the transition is described by a single orbital replacement with γ of (18) equal
to π/2 [28]. CV(n)-DFT can be used as a natural extension of adiabatic TDDFT. The

first step in this direction is the perturbative P-CV(1)-DFT approach [64] in which

the U from CV(2)-DFT is used to calculate the all order energy in CV(1)-DFT [27,

64]. It is shown to work well for π ! π* transitions in conjugated systems. At a

higher level, U is optimized with respect to the all order energy in CV(1)-DFT

scheme leading to SCF-CV(1)-DFT [28]. Experience has shown [27, 63] that

optimization of U alone is insufficient. One also has to relax all the other occupied

orbitals which do not directly participate in the transition. This is done in SCF-CV

(1)-DFT by introducing orbital relaxation (RSCF-CV(1)-DFT) [26]. The RSCF-

CV(1)-DFT scheme differs from adiabatic TDDFT (CV(2)-DFT) by going to all

orders in U and by introducing orbital relaxation. The extra effort involved in

connection with RSCF-CV(1)-DFT compared to adiabatic TDDFT does not result

in improved accuracy for cases where adiabatic TDDFT fares well, such as for the

π ! π* transition [26]. However, it does not fail for charge transfer [30, 31] and

Rydberg transitions [66] in the way adiabatic TDDFT does for regular functionals.
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This is an important point in studies of absorption spectra where many different

types of transitions are present.

In CV-DFT we use approximate ground state functionals in a variational

description of the excited states. Such a procedure is consistent with AD-TDDFT

in that this theory is equivalent to CV(2)-DFT within the TD-approximation. Going

beyond the adiabatic approximation by introducing frequency-dependent kernels

consistent with the approximate ground state functional in TDDFT has proven

difficult. Here we go beyond CV(2)-DFT in a variational approach, still using an

approximate ground state functional but introducing an optimization of U based on

the KS-energy to all orders in U as well as relaxation of the inactive orbitals. It is

hoped that going beyond CV(2) in this way is equivalent to introducing a

frequency-dependent kernel in TDDFT. Obviously with such a kernel, inactive

orbitals would be different from those of the ground state and vary between excited

states as in the RSCF-CV(1) scheme. Further, with a frequency-dependent kernel

and related Hessian, the Umatrix obtained for each excited state should be different

from that determined by the ground state Hessian in AD-TDDFT, just as in the

SCF-CV(1)-DFT scheme. At present, CV-DFT has the same problems as TDDFT

with regards to bond dissociation. Work is under way to introduce doubles into the

description of one-electron transitions [99, 100]. This should ensure a prober bond

dissociation and provides for a better description of the electron spectra of polyenes

[36]. The perturbative P-CV(1)-DFT approach doubles the time required for each

excitation compared to TDDFT, whereas the increase is fivefold for RSCF-CV(1).

This might change with more efficient iterative procedures.
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Ensemble DFT Approach to Excited States

of Strongly Correlated Molecular Systems

Michael Filatov

Abstract Ensemble density functional theory (DFT) is a novel time-independent
formalism for obtaining excitation energies of many-body fermionic systems. A

considerable advantage of ensemble DFT over the more common Kohn–Sham

(KS) DFT and time-dependent DFT formalisms is that it enables one to account

for strong non-dynamic electron correlation in the ground and excited states of

molecular systems in a transparent and accurate fashion. Despite its positive aspects,

ensemble DFT has not so far found its way into the repertoire of methods of modern

computational chemistry, probably because of the perceived lack of practically

affordable implementations of the theory. The spin-restricted ensemble-referenced

KS (REKS) method is perhaps the first computationally feasible implementation of

the ideas behind ensemble DFT which enables one to describe accurately electronic

transitions in a wide class of molecular systems, including strongly correlated

molecules (biradicals, molecules undergoing bond breaking/formation), extended

π-conjugated systems, donor–acceptor charge transfer adducts, etc.

Keywords Charge transfer excitation energies � Ensemble density functional

theory � Excited electronic states � Non-dynamic electron correlation
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1 Introduction

The founding principles of density functional theory (DFT) were initially formu-

lated only for the ground states of fermionic many-body systems [1, 2]. It is

therefore commonly accepted that the excited states in the context of DFT can be

accessed by the use of some form of response formalism implemented, for instance,

in the time-dependent DFT (TD-DFT) methods [3, 4]. In principle, TD-DFT is a

rigorous formulation of the ground state DFT for time-dependent phenomena [5].

However the excitation energies of many-body systems are typically accessed with

the use of the linear response (LR) formalism, which assumes that the time

dependence stems from a weak (usually oscillatory) perturbing potential [3–5]. In

practice, LR-TD-DFT yields a very reasonable description of optical absorption

spectra with the use of the commonly available ground-state approximate density

functionals [3, 4]; however, some spectacular failures of the formalism are also

known. In particular, standard implementation of LR-TD-DFT relies on the adia-

batic approximation (i.e., locality of the exchange-correlation (XC) kernel in the

time domain) and consequently cannot take proper account of multiple excitations

[6, 7], which become important, e.g., for excited states of conjugated molecular

systems [8]. Yet another failure of the standard LR-TD-DFT to describe the excited

states of strongly correlated systems, e.g., H2 at stretched bondlength [9], can be

traced back to the use of the standard ground-state Kohn–Sham (KS) formalism [2]

which fails to take proper account of the non-dynamic electron correlation.

In the domain of wavefunction theory (WFT), the excited states of molecules can

be obtained from the ground-state response formalism as well as the variational

excited state formalism [10]. An appealing idea is to employ the (time-independent)

variational formalism to obtaining excitation energies in the context of DFT.

Indeed, the first attempts to calculate the excitation energies by taking the energy

differences between the variationally obtained ground state energy and the energy

of a state obtained by promoting an electron to unoccupied energy level, the so-

called ΔSCF approach,1 date back to the early 1970s [11, 12]. However, despite

some attempts to justify the ΔSCF approach for computing the energies of one-

electron transitions between the states of different spatial symmetry [13, 14], the

idea of variationally obtaining the energy of an individual excited state in the

context of DFT lacks firm theoretical background [15–17].

A rigorous way of developing time-independent formalism for obtaining exci-

tation energies in the context of DFT is offered by ensemble DFT [18, 19] which

1 For more details onΔSCF, see the chapter “A Constricted Variational Density Functional Theory

Approach to the Description of Excited States” by T. Ziegler, M. Krykunov, I. Seidu, and Y. C.

Park.
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operates with weighted sums (ensembles) of fractionally occupied (ground and

excited) states. The ensemble representation of the density and the energy for an

arbitrary many-body fermionic system was put on a firm theoretical ground by Lieb

[20] and Englisch and Englisch [21, 22], and was later extended to the domain of

excited states by Gross et al. [23–25].

A practical demonstration of the necessity to invoke the ensemble representation

for mapping the density of a strongly correlated system onto a non-interacting KS

reference was achieved by Baerends et al. [26, 27] in first-principles numeric

simulations employing the (nearly) exact molecular densities, which was later

confirmed by Morrison [28] in a series of first-principles atomic calculations.

Although the ensemble formalism enables one to obtain excitation energies in a

rigorous and computationally convenient way [5], the progress in this direction was

extremely slow [29–33], perhaps because of the perceived lack of suitable density

functionals capable to accommodate the densities with fractional occupation num-

bers (FONs).

A practically accessible approach to the calculation of the strongly correlated

ground and excited states of molecules which employs the ideas behind ensemble

DFT was achieved in the form of the spin-restricted ensemble-referenced KS

(REKS) method [34–41]. The method was initially developed for the ground states

of strongly correlated molecular systems [34–38] and was later extended to the

domain of excited state calculations [39–41]. Although the REKS method is

founded on a rigorous theoretical background [20, 21, 26] and was successfully

applied to study situations often intractable with the use of the conventional KS

DFT methods [37, 38, 40–61], the method has received a little attention in the

literature and has been largely overlooked by the computational chemistry com-

munity. In this chapter, an overview of the REKS methodology and its connection

to the ensemble DFT formalism is given with emphasis on the use of the method to

obtain excited states of molecular systems.

2 Ensemble DFT

The basic tenet of KS DFT is that any physical fermionic ground state density ρ(r)
can be uniquely mapped onto the ground state density ρs(r) of a fictitious system of

non-interacting particles moving in a suitably modified external potential vs(r). If
such a vs(r), which is also known as the KS potential, can be found, the respective

KS Hamiltonian Ĥs is minimized by a single Slater determinant (KS determinant)

constructed from the lowest-energy one-electron functions (KS orbitals) φs,i(r) and
the non-interacting density ρs(r) is

ρs rð Þ ¼
X
i

2
��φs, i rð Þ��2; 8εi � μ ; ð1Þ

where εi are the respective eigenvalues, μ is the Fermi level, and a closed electronic
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shell is assumed [1, 2]. The physical density ρ(r) which can be mapped onto such a

non-interacting density ρs(r) is said to be non-interacting pure state v-representable,
or PS-VR for brevity [21]. Naturally, in the case of non-interacting particles, such a

pure state wavefunction is represented by a single KS determinant and one may

speak of a determinantal v-representability (D-VR) as well [21].

A general proof of the existence of such a KS potential vs(r) and of the PS-VR

property has never been achieved for an arbitrary physical density. By contrast,

rigorous theoretical arguments have been given in favor of an alternative represent-

ation of an arbitrary fermionic density ρ(r) by an ensemble (weighted sum) of a

finite number (M ) of the densities ρK(r) originating from the same physical external

potential vext(r) [19–21]:

ρ rð Þ ¼
XM
K¼1
λKρK rð Þ, λK � 0,

XM
K¼1
λK ¼ 1 : ð2Þ

For the ensemble v-representable (E-VR) densities, the existence of a universal

density functional F[ρ] and its differentiability with respect to the density ρ(r) were
rigorously proved [20, 21], thus confirming the existence of the KS potential vs(r)
and the respective non-interacting KS system.

Initially, ensemble DFT was formulated for ground state ensembles [20, 21],

which implied that one could speak of averaging over degenerate electronic states.

It is natural to assume that the degeneracy is imposed by the symmetry of the

system. This seems a plausible assumption in the case of interacting particles,

although for the non-interacting fermions (such as the KS reference system) there

is a possibility of accidental degeneracy of several electronic configurations as was

demonstrated in first principles numeric experiments by Schipper et al. [26] and by

Morrison [28]. In these works it was shown that, when obtaining the KS potential

vs(r) from the known (nearly) exact density [62], the fractional occupation numbers

of several KS orbitals (i.e., the ensemble representation) have to be invoked. Thus,

certain physical (i.e., interacting) PS-VR densities (the target densities were

obtained from the accurate ab initio WFT calculations) can only be mapped onto

the non-interacting E-VR densities. Remarkably, these target densities were

obtained for molecular systems for which it was known that their electronic

structure is dominated by the non-dynamic electron correlation; [63] in particular,

the rectangular H2 +H2 system, the ground state of the C2 molecule [26], and the

ground state of a series of Be-like atomic ions [28] were investigated. For these

atomic and molecular systems it is well established that, at the ab initio WFT level,

their ground state wavefunctions require a multi-reference description, which is

typically associated with the strong non-dynamic correlation [63].

The ensemble representation of the non-interacting KS reference system leads

naturally to the fractional occupation numbers of KS orbitals:
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ρs rð Þ ¼
X
i

ni
��φs, i rð Þ��2; ð3Þ

where the FONs satisfy the conditions

n j ¼ 2, ε j < μ
0 � nk � 2, εk ¼ μX

i

ni ¼ N
; ð4Þ

that is, only a few KS orbitals which degenerate at the Fermi level μ are allowed to

have fractional occupations [26]. Alternatively, the ensemble density (3) can be

written down as in (2) as a weighted sum of the densities ρs,K (r) of several KS

determinants constructed from a common set of KS orbitals; the ensemble

weighting factors λK are then connected to the FONs in (3) via λK¼ nk/m where

m is the number of electrons in the KS orbitals degenerate at the Fermi level and all

the KS orbitals in the determinant yielding the ρs,K (r) density are set doubly

occupied. Recently, the degeneracy of the fractionally occupied KS orbitals at the

Fermi level was rigorously proved [64].

For the ensemble density (2), Lieb proved [20] that the ground state energy is

given by a weighted sum

E ρ½ � ¼
XM
K¼1

λKE ρK½ �; ð5Þ

of the energies E[ρK] of the ensemble components taken with the same weighting

factors as in (2). Englisch and Englisch proved the differentiability of the ensemble

energy E[ρ] with respect to the ensemble density, thus demonstrating the existence

of vs(r) and the ensemble KS reference system [21].

The energies of the non-interacting KS reference states constructed in [26] for

the C2 molecule and for the H2 +H2 system satisfy (5), provided that the ensemble

densities are allowed. If, however, one insisted on having PS-VR (or D-VR) KS

reference states for these molecular systems, holes below the Fermi level were

observed which implied the breakdown of the basic assumption behind the KS

method, namely that the density ρs(r) is constructed from the lowest one-particle
eigenstates of the non-interacting KS Hamiltonian. Besides that, the single deter-

minant KS states found in [26] (and in [28]) had somewhat higher energies than the

respective ensemble KS solutions. Thus, the ensemble KS solutions had to be

preferred on the grounds of the variational principle. These conclusions have

been fully confirmed by Morrison [28] in the study of Be isoelectronic series of

atomic ions, for which mapping of the exact densities onto the KS reference could

only be achieved with the use of ensemble densities, i.e., densities with the

fractional occupation numbers of the valence 2s and 2p atomic orbitals. An attempt

to formalize these observations and to develop ensemble variants of the KS theory
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was undertaken in [30]; however this did not materialize in the form of a practically

accessible computational scheme.

The ground-state ensemble DFT formalism was extended into the domain of

excited state calculations in the works of Theophilou [18] and Gross et al. [23] who

demonstrated that the Hohenberg–Kohn theorem is satisfied not only by the ground-

state density and the energy but also by the density and the energy of an ensemble of

several lowest energy states (i.e., the ground and excited states) of a many-body

fermionic system. In particular, Gross et al. [23] proved that the ensemble energy

(5) constructed from several lowest eigenstates of a many-body Hamiltonian Ĥ
satisfies the variational principle

XM
K¼1
λK ΦK

��Ĥ ��ΦK

� �
�
XM
K¼1
λKEK; 0 � λK � 1;

XM
K¼1
λK ¼ 1 ; ð6Þ

where Φk are the trial wavefunctions and EK are the exact eigenvalues of the

Hamiltonian Ĥ [23].

The variational character of the ensemble energy enables one to calculate

excitation energies rigorously using (formally ground-state) density functionals.

Considering only two state ensembles (the ground state E0 and the lowest excited

state E1), for which the energy and the density are given by (7) and (8),

Eω ¼ 1� ωð ÞE0 þ ωE1; ð7Þ
ρω rð Þ ¼ 1� ωð Þρ0 rð Þ þ ωρ1 rð Þ; ð8Þ

the excitation energy ΔE¼E1–E0 can be obtained in two ways [5]. The first obtains

ΔE for some fixed weighting factor ω, which trivially leads to

ΔE ¼ E1 � E0 ¼
Eω � E0

ω
; ð9Þ

and the second employs derivatives of Eω with respect to the weighting factor [5,

29]

ΔE ¼ dEω
dω

; ð10Þ

A practical exploration of (10) was attempted by Gross et al. [29] who used the

quasilocal density approximation (qLDA) [65] with fractional occupation numbers

of the KS orbitals, although the excitation energies obtained for the He atom were

unsatisfactory. Similarly poor results (with the errors on the order of a few eV) were

obtained in several other works by employing various approximations for the

exchange-correlation functional to calculate the excitation energies of atoms and

small molecules [66–68].
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Further theoretical developments of the ensemble DFT formalism for excited

states were recently undertaken in [31–33]. Pernal et al. [31] demonstrated that the

ensemble variational principle can be connected to the Helmholtz free-energy

variational principle of the statistical mechanics. Ullrich et al. [33] used the

ensemble formalism to construct the accurate exchange-correlation potentials for

ensembles of ground and excited states of He atoms and several model systems that

allow the exact solution (1D box and Hooke’s atom). Fromager et al. [32] derived

the generalized adiabatic connection formalism for ensemble DFT which can in

principle provide a framework for the development of a rigorous multi-determinant

DFT.

Perhaps the most significant realization in the aforementioned works on ensem-

ble DFT is that not only the total ensemble energy Eω but also its components

should be kept linear in the ensemble weighting factors. Indeed, starting from (7)

(or (5)) it is tempting to cast the ensemble energy into the traditional DFT form by

splitting the energy functional into the familiar non-interacting kinetic energy Ts,
the classical Hartree repulsion UH, and the exchange-correlation Exc terms, as in

(11):

Eω ¼ Ts,ω þ UH ρω½ � þ Exc ρω½ � þ
ð
d3rvext rð Þρω rð Þ; ð11Þ

where the Hartree electron–electron repulsion energy and Exc are calculated for the

total ensemble density,

UH ρω½ � ¼
1

2

ð
d3r

0
ð
d3r

ρω rð Þρω r
0� �

r� r
0j j ; ð12Þ

and a suitable approximate functional is employed for Exc [29]. As the UH energy

depends nonlinearly on the density, the dependence of (12) on the ensemble

weighting factors becomes nonlinear, which leads to the emergence of unphysical

“ghost” contributions, i.e., cross-terms between the ensemble components. These

terms are supposed to be eliminated by the XC functional, which should also

become nonlinear in the ensemble weighting factors [31, 33]. The commonly

available approximations for the XC functional were incapable of accurately

compensating for the “ghost” contributions and, consequently, the results obtained

with the use of these functionals were quite poor [29, 66–68].

Considerably better excitation energies from the ensemble DFT calculations

were obtained by Pernal et al. [31], who employed a “ghost”-free formulation for

the ensemble energy functional. The “ghost”-free Hartree electron–electron repul-

sion in [31] was calculated:
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UH ρω½ � ¼
1

2

X
I

ωI

ð
d3r

0
ð
d3r

ρI rð ÞρI r
0� �

r� r
0j j ; ð13Þ

where ρI are the densities of the individual components of the ensemble. In their

work, Pernal et al. separated the ensemble XC energy into the long-range (lr)

component which was treated at the multi-reference WFT level and the short-

range (sr) XC energy approximated by a density functional:

Eω ¼
X
I

ωI Ts, I þ UH ρI½ � þ
ð
d3r vext rð ÞρI rð Þ þ Elr

xc, I

 �
þ E sr

xc,DFT ρω½ �: ð14Þ

Although, with the use of this approach, the excitation energies of Be atom and LiH

and BH molecules were considerably improved, there still remained substantial

residual errors on the order of 0.6–0.8 eV. Furthermore, the sr-XC energy in (14)
still remained nonlinear in the ensemble weighting factors and inseparable into

the individual contributions of ensemble components. These shortcomings of the

currently available implementations of ensemble DFT are not present in the REKS

method which is described in the following section.

3 REKS Methodology

In this section the basic aspects of the REKS method are explained. The REKS

method was initially developed to deal with the non-dynamic correlation in the

ground electronic states of molecules [35, 38] and was later extended to treat the

excited states [39–41]. The latter method is known as the state-averaged REKS

(SA-REKS) [39] and the state interaction SA-REKS (SI-SA-REKS or SSR, for

brevity) [40, 41].

3.1 REKS Method for Ground States

The REKS method for ground states is a practical implementation of ensemble DFT

formalism that depends upon (2) and (5) [20]. Let us consider a situation that

requires the use of the ensemble formalism at the DFT level and the multi-reference

description at the WFT level. For instance, let us take two H2 molecules in a

rectangular arrangement as shown in Fig. 1. The H2 +H2 system was studied in

[26] with the use of both the multi-reference configuration interaction (MRCI)

method of WFT and the ensemble DFT formalism. In the latter case, the non-

interacting KS reference state and the KS potential vs(r) were constructed from the

MRCI density using the reverse engineering approach of Zhao, Morrison, and Parr

[62]. It was found that one has to use the ensemble representation and the fractional
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occupations of the frontier orbitals to obtain the non-interacting KS reference

system and vs(r) corresponding to the criteria behind the KS method of DFT;

only the ensemble representation guaranteed the lowest-energy ground state of

the KS system; otherwise there occurred holes below the Fermi level (not a ground

state) and the resulting single determinant state lied at a somewhat higher energy

[26].

At a long intermolecular separation R, the electronic structure of the system

is dominated by the (. . .ϕð2Þa ϕð0Þb ) configuration, where ϕa corresponds to the

b2u-symmetric molecular orbital (MO) and ϕb to b3u-symmetric MO (under the

D2h symmetry constraint). Such a situation is non-interacting PS-VR, i.e., it can be

faithfully represented by a single KS determinant [26]. As the two molecules get

closer, the gap between the highest occupied MO (HOMO) ϕa and the lowest

unoccupied MO (LUMO) ϕb narrows down and, at a certain distance between the

H2 molecules, the non-dynamic correlation sets in, which is reflected in the

character of the MRCI wavefunction which comprises two leading configurations,

(. . .ϕð2Þa ϕð0Þb ) and (. . .ϕð0Þa ϕð2Þb ), and, at the KS DFT level, one has to switch over to

the ensemble representation for the density. The frontier KS orbitals ϕa and ϕb
become fractionally occupied and degenerate at the Fermi level of the system [26].

Thus, the density of the H2 +H2 system near the square conformation is given by

a two-component ensemble (2) with the weighting factors λ1 and λ2 related to the

FONs of the frontier KS orbitals, λ1¼ na/2 and λ2¼ nb/2. The ensemble KS energy

is given by (5) with the same weighting factors. The FONs of the frontier orbitals

satisfy the condition of stationarity of the energy with respect to their variation [64].

Hence, the ensemble KS reference state obtained in [26] follows exactly theorems

4.2 and 4.3 and equations 4.5 and 4.7 of [20], and nicely illustrates the theoretical

arguments behind the ensemble approach in DFT.

Fig. 1 Definition of

geometry and frontier

orbitals for the H2+H2

system
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The ensemble KS solution obtained which comprises the densities and energies

of two electronic configurations, where each is represented by a single KS deter-

minant, corresponds to a system of non-interacting particles. To derive an energy

expression that would conform with the ensemble representation and would yield

the energy of a system of interacting electrons, let us make use of the adiabatic

connection formalism [69], i.e., let us gradually switch the electron–electron

interaction on and simultaneously modify the external potential in such a way

that the total density remains unchanged [70]; see the Hamiltonian

Ĥ α ¼
X
i

�1
2
∇2

i þ
X
i

vext,α rið Þ þ
X
i> j

α

ri j
; ð15Þ

where α is the variable coupling constant, 0� α� 1, rij is the interelectronic

distance, and the external potential vext,α satisfies the conditions vext,0¼ vs (the KS
potential) and vext,1¼ vext (physical system of interacting electrons). When the

electron–electron interaction is only infinitesimally switched on, such that it affects

only the electrons in the degenerate orbitals at the Fermi level, the total energy with

the Hamiltonian at α� 0 can be obtained from quasi-degenerate perturbation theory

[10] which leads to an expression which can be cast in the form of

Eα ¼
nαa
2
Eα . . .ϕaϕa

	 

þ nαb

2
Eα . . .ϕbϕb

	 

þ 1

2
nαa n

α
b

� �1=2
Eα . . .ϕaϕb½ � � Eα . . .ϕaϕb

	 

þ Eα . . .ϕaϕb

	 

� Eα . . .ϕaϕb

	 
� �
;

ð16Þ

where the energies of the electronic configurations are calculated using the Hamil-

tonian (15) and the barred orbitals and the unbarred orbitals are occupied with the

beta-spin and the alpha-spin electrons, respectively. The energy term in parentheses

in the second line of (16) represents the negative of the exchange integral

(ϕaϕb|ϕbϕa) expressed via the energy differences between the singlet and triplet

configurations.2

Using the coupling strength integration [69] and making an assumption that the

α-dependent occupation numbers nαa and nαb can be replaced by the respective

median values, one arrives at the formula

2Note that the kinetic energy is independent of the spin and the total densities of the electronic

configurations in the second line of (16) are identical.
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Eens ¼
na
2
EDFT . . .ϕaϕa

	 

þ nb

2
EDFT . . .ϕbϕb

	 

þ 1

2
nanbð Þ1=2

� EDFT . . .ϕaϕb½ � � EDFT . . .ϕaϕb

	 

þ EDFT . . .ϕaϕb

	 

� EDFT . . .ϕaϕb

	 
� �
;

ð17Þ

where EDFT denotes the total energy calculated for a single-determinant configu-

ration using the conventional KS DFT formalism. It is noteworthy that the paren-

thesized term in the second line of (17) does not contribute to the total density, as

the densities of these configurations cancel each other identically. Hence, the total

density of a strongly correlated state can be calculated using

ρens ¼
na
2
ρ . . .ϕaϕa

	 

þ nb

2
ρ . . .ϕbϕb

	 

þ 1

2
nanbð Þ1=2 ρ . . .ϕaϕb½ � � ρ . . .ϕaϕb

	 

þ ρ . . .ϕaϕb

	 

� . . .ϕaϕb

	 
� �
¼ na

2
ρ . . .ϕaϕa

	 

þ nb

2
ρ . . .ϕbϕb

	 
 ;

ð18Þ

which is the weighted sum of the densities of the configurations in (17) taken with

the same weighting factors.

To illustrate the derivation of (17), let us expand the ensemble energy (16)

obtained from quasi-degenerate perturbation theory near α¼ 0. Equation (16)

is obtained as the most negative eigenvalue of the secular matrix

Eα . . .ϕaϕa

	 

K α

ab

K α
ab Eα . . .ϕbϕb

	 
 �
; ð19Þ

where K α
ab ¼ �

1

2
Eα . . .ϕaϕb½ ��Eα . . .ϕaϕb

	 

þEα . . .ϕaϕb

	 

�Eα . . .ϕaϕb

	 
� ��
K α

ab¼α ϕaϕb

��ϕbϕa

� �
, for α!0

�
is the coupling element between the configu-

rations . . .ϕaϕa

�� �
and . . .ϕbϕb

�� �
(for a small α, the exchange integral between

the orbitals ϕa and ϕb). Expanding this matrix with respect to α and keeping

only the first term in the expansion, one obtains

(continued)
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Eα . . .ϕaϕa

	 

K α

ab

K α
ab Eα . . .ϕbϕb

	 
 �
¼ E0 . . .ϕaϕa

	 

0

0 E0 . . .ϕbϕb

	 
 �

þ α
dEα . . .ϕaϕa

	 

dα

dK α
ab

dα
dK α

ab

dα

dEα . . .ϕbϕb

	 

dα

0BB@
1CCA

þ O α2
� �

;

ð20Þ

the lowest energy solution of which is given by

Eα ¼ nαa
2
E0 . . .ϕaϕa

	 

þ nαb

2
E0 . . .ϕbϕb

	 

þ α nαa

2

dEα . . .ϕaϕa

	 

dα

þ nαb
2

dEα . . .ϕbϕb

	 

dα

� nαa n
α
b

� �1=2 dK α
ab

dα

 !
: ð21Þ

In (21), it was used thatE0 . . .ϕaϕa

	 

¼ E0 . . .ϕbϕb

	 

andnαa þ nαb ¼ 2, where

the occupation numbers nαa ¼ 2
��cα1 ��2 and nαb ¼ 2

��cα2 ��2 are obtained from the

lowest eigenvector (cα1, c
α
2) of the matrix in the second line of (20).

Assuming that the occupation numbers nαa and nαb can be replaced by their

respective median values, na and nb, and performing the usual coupling

constant integration [69, 70], one arrives at

Eens ¼
na
2
E0 . . .ϕaϕa

	 

þ nb

2
E0 . . .ϕbϕb

	 

þ
ð
ρens rð Þ νext,1 rð Þ � νext,0 rð Þð Þdr

þna
2
EHxc . . .ϕaϕa

	 

þ nb

2
EHxc . . .ϕbϕb

	 

þ 1

2
nanbð Þ1=2

� EHxc . . .ϕaϕb

	 

� EHxc . . .ϕaϕb

	 

þ EHxc . . .ϕaϕb

	 

� EHxc . . .ϕaϕb

	 
� � ;
ð22Þ

where the EHxc terms comprise the Hartree and the XC energy of the given

configuration. Equation (17) is obtained from (22) using the density ρens in
(18) and noting that the sum of the kinetic energy and the interaction with the

external potential vext,1 is the same for the four terms in parentheses in the

third line of (22). When deriving (17), it was also assumed that no further

degeneracies (except the point α¼ 0) occur along the adiabatic connection

path.

The formulae obtained for the density and the energy are valid for the case of

strong non-dynamic correlation, where the occupation numbers of the fractionally

occupied orbitals are close to unity, na� nb� 1. When the multi-reference
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character of the system subsides to a level commensurate with the pure-state

v-representability, the ensemble energy in (17) should collapse to the usual KS

DFT single-reference energy. Analyzing the dependence of the single-reference KS

DFT energy on the FONs of the frontier orbitals near, say, na� 2 and nb� 0,

an expression similar to (17) can be obtained with the difference that the factor

(nanb)
1/2 approaches (nanb)

1 [71, 72]. It is thus plausible to introduce a function that

interpolates between the two asymptotes, the strong and the weak non-dynamic

correlation, and to cast (17) in the form of [35]

EREKS 2;2ð Þ ¼ na
2
EDFT . . .ϕaϕa

	 

þ nb

2
EDFT . . .ϕbϕb

	 

þ f na;nbð Þ EDFT . . .ϕaϕb½ � �EDFT . . .ϕaϕb

	 

þEDFT . . .ϕaϕb

	 

�EDFT . . .ϕaϕb

	 
� � ;
ð23Þ

where f (na,nb) is the interpolating function defined in [38]:

f na; nbð Þ ¼ 1

2
nanbð Þ1�

1
2

nanbþδ
1þδ : ð24Þ

The damping factor in (24) is set to a value δ¼ 0.4 to provide for a stable

convergence of the REKS self-consistent field (SCF) iterations near the regime

when E-VR solution collapses to the PS-VR solution [73]. In the described version

of REKS, the FONs of the two frontier orbitals are restricted to sum up to two

electrons; hence the name REKS(2,2), which is similar to the notation adopted for

the complete active space SCF (CASSCF) method in multi-reference WFT.

In the strict implementation of KS theory, the derived REKS total energy should

be minimized with respect to the REKS density (naturally, the FONs too). As the

REKS energy is not an explicit functional of the density, such a minimization

should inevitably rely on a variant of the optimized effective potential (OEP)

approach [74], which is known to suffer from steep computation time scaling and

certain stability issues when used in connection with the localized basis sets for

expanding the KS orbitals [75]. Therefore, the REKS total energy is minimized

with respect to the orbitals, as is being commonly done in connection with the

hybrid and meta GGA density functionals, thus avoiding the need to tackle the

density–density response function3 used in the OEP formalism. The FONs are

obtained variationally by minimizing the energy (23) under the constraint

na+ nb¼ 2. The latter constraint is imposed explicitly, without using the method

of Lagrange multipliers. The REKS orbitals are optimized using the coupling

operator technique of the open-shell SCF theory [77]. For brevity, the REKS one-

electron equations are not presented here and the reader is referred to the original

publications [34, 35, 43]; see also a review article [73].

3 See [76] for the derivation of density–density response function for ensemble densities.

Ensemble DFT Approach to Excited States of Strongly Correlated Molecular Systems 109



The derived REKS energy expression is based on a number of assumptions, of

which the most severe is perhaps the assumption that the coupling strength depen-

dent occupation numbers nαi in (16) can be replaced by their median values ni in
(17) to avoid the need to carry out their integration with respect to α. Although the

coupling strength integration of the ensemble weighting factors for partially

interacting Hamiltonians was attempted by Fromager et al. when deriving the

generalized adiabatic connection for ensemble DFT [32], to keep the formalism

simple we prefer to stick to the above assumption and to verify whether it is

sufficiently accurate by comparing the results obtained using the REKS method

with the reference (exact) data. In the following, an example is presented that

illustrates the validity of the above assumptions.

The H2 +H2 reaction studied by Schipper et al. [26] is perhaps the simplest

example of a 2+2 symmetry forbidden cycloaddition reaction [78–80]. This reac-

tion was investigated using the MRCI/cc-pV5Z method and the ensemble KS

reference was obtained from the MRCI density [26]. The potential energy surface

(PES) profile along the direction of approach of the two H2 molecules (see Fig. 1 for

definitions) is shown in Fig. 2 along with the b2u orbital population as obtained in

the MRCI and DFT calculations. The DFT calculations in Fig. 2 employ the LC-ω
PBE [81–83] range-separated density functional and three different computational

techniques: the REKS method, the broken-symmetry spin-unrestricted KS (BS-

UKS) method, and the conventional single-reference spin-restricted KS (RKS)

method. All three DFT methods yield the same energy (�2.3574534 a.u.) for the

two H2 molecules at long distance from one another.

The RKS method fails to take proper account of the non-dynamic correlation

arising from (near) degeneracy of the (. . . b
ð2Þ
2u b

ð0Þ
3u ) and (. . . b

ð0Þ
2u b

ð2Þ
3u ) configurations

in the vicinity of the barrier summit and yields a cusp on the PES instead of a

smooth transition state. The BS-UKS and REKS methods yield a smooth transition

Fig. 2 Profile of the PES of

H2 +H2 reaction and

populations of the b2u
orbital as obtained from the

KS/CI (black), BS-UKS
(red), RKS (green), and
REKS (blue) calculations.
The relative energies are

calculated with respect to

two isolated H2 molecules.

Solid curves show the

energies and dashed curves
show the occupation

numbers as a function of R
(see Fig. 1 for definition).

DFT calculations employ

the LC-ωPBE functional
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between the configurations, although the BS-UKS curve deviates stronger from the

target MRCI PES and underestimates the reaction barrier height. The FONs of the

frontier orbitals (only the b2u FON shown in Fig. 2) obtained by the REKS method

are in a good agreement with the exact ensemble KS values, whereas the BS-UKS

occupations (the natural orbital’s occupation numbers are shown in lieu of FONs)

deviate strongly from the exact ones, suggesting that BS-UKS overestimates the

effect of the non-dynamic correlation. Furthermore, BS-UKS displays an abrupt

onset of the non-dynamic correlation (after ca. R¼ 2.75 bohr), whereas the REKS

method yields a smooth transition between the PS-VR and E-VR regimes and a

more accurate description of the reaction PES profile.

The comparison vis-�a-vis the exact ensemble KS results demonstrates the

validity of the approximations made in the REKS working equations. Besides the

H2 +H2 system, the REKS method was applied to study bond-breaking/bond-

formation reactions in several chemical systems as well as the electronic structure

of biradicals, magnetic coupling in metal complexes and organic charge transfer

crystals. The reader is advised to inspect the original publications [37, 38, 42–53,

56, 57] for more examples of the method performance.

3.2 REKS Method for Excited States: SA-REKS and
SI-SA-REKS

Let us consider a model system with two strongly correlated electrons in two

orbitals, such as the H2 molecule with the bond stretched beyond the Coulson–

Fischer point [84]. Near the equilibrium bondlength, the electronic structure of H2

is dominated by a single configuration 1σg1σg
�� �

and the doubly excited configu-

ration 1σu1σuj i lies high in energy (1σg is the bonding MO and 1σu the anti-bonding
MO). When the bond is stretched beyond the Coulson–Fischer point, the energy gap

between the two electronic configurations narrows to a limit that allows for an

efficient mixing of the configurations and the strong non-dynamic electron corre-

lation ensues. In the minimal basis of the two orbitals (the bonding 1σgMO denoted

to ϕa and the anti-bonding 1σu to ϕb), the ground-state wavefunction of stretched H2

can be represented by a two-configurational wavefunction:

Φ0 ¼
ffiffiffiffiffi
na
2

r
ϕaϕa

�� �
�

ffiffiffiffiffi
nb
2

r
ϕbϕb

�� �
; ð25Þ

where na and nb are the FONs of the orbitals ϕa and ϕb. Promoting a single electron

from ϕa to ϕb orbital leads to a singlet excited state Φ1 which can be represented by

the wavefunction
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Φ1 ¼
1ffiffiffi
2
p ϕaϕb

�� �
þ 1ffiffiffi

2
p ϕbϕa

�� �
; ð26Þ

For a homosymmetric molecule, such as H2, the two states belong in different

symmetry species and therefore do not interact with one another.

Using the ensemble DFT for excited states, described in Sect. 3.1, the excitation

energy can be obtained from the variational optimization of the energy of an

ensemble of the two states [5]. The ground state (25) can be described by the

REKS(2,2) method and the excited state (26) by the spin-restricted open-shell KS

(ROKS) method for an open-shell singlet (OSS) state [12, 34]. Within the latter

approach, the energy of the OSS state is given by [12, 34]

EROKS ¼ EDFT . . .ϕaϕb

	 

� 1

2
EDFT . . .ϕaϕb½ � þ EDFT . . .ϕaϕb

	 

� 1

2
EDFT . . .ϕaϕb

	 

: ð27Þ

The use of the REKS and ROKS energies in (7) leads to the SA-REKS energy

expression [39]:

ESA-REKS
ω ¼ 1� ωð ÞEREKS 2;2ð Þ þ ωEROKS; ð28Þ

which is to be variationally optimized with respect to the density of the ensemble of

the two states. Similar to the REKS(2,2) method, and to save the computational

effort, the minimization with respect to the density is replaced by the minimization

with respect to the orbitals and the orbitals’ FONs (in the REKS(2,2) energy) [39].

Typically, equal weighting factors, i.e., ω¼ 1/2, are employed in practical calcu-

lations with the SA-REKS method. Having completed the orbital optimization

(carried out by the same open-shell SCF method as used in the ground-state

REKS calculations) [73], the energies of the individual states are calculated using

the common set of orbitals and the excitation energy is obtained by (9).

Let us illustrate how the SA-REKS method works by applying it to the H2

molecule at varying bondlengths. Aryasetiawan et al. [9] found that the LR-TD-

DFT approach in the adiabatic approximation is incapable of correctly describing

the dependence of the 1Σþu 1Σþg excitation energy of H2 on the bondlength.

Figure 3 compares the exact excitation energy obtained from the data of [85]

with the results of the TD-DFT and SA-REKS calculations carried out using the

LC-ωPBE density functional and the cc-pV5Z basis set. Although the SA-REKS

excitation energy curve in the lower panel of Fig. 3 is slightly shifted down with

respect to the exact curve (the magnitude of the shift is dependent on the XC

functional employed), it follows the shape of the exact curve sufficiently accurately

and has a shallow minimum around RHH¼ 4.0 bohr, which is comparable to the

exact curve that minimizes at RHH¼ 4.1 bohr. The adiabatic TD-DFT excitation

energy curve does not have a minimum and, at long H–H bondlengths, goes
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gradually to zero. As seen in the upper panel of Fig. 3, the SA-REKS method

correctly describes the H–H bond dissociation, whereas the single-reference RKS

approach fails to yield the correct dissociation limit for the H2 molecule. Thus, it is

the failure of the conventional KS DFT approach to describe the non-dynamic

electron correlation for a dissociating covalent bond that is responsible for the

failure of TD-DFT to describe correctly the excitation energy of a dissociating

molecule.

The described SA-REKSmethod is capable of describing the ground and excited

states of a homosymmetric molecule when the mixing of the two states is prevented

by symmetry. In the case of a heterosymmetric molecule, e.g., dissociating LiH, the

two states in (25) and (26) are allowed to mix and therefore their representation as a

purely covalent state and a purely ionic state is no longer accurate. To correct for

this deficiency of the SA-REKS description and to construct an ensemble of two

decoupled states, one can obtain a pair of new states by solving a 2� 2 secular

problem with the Hamiltonian matrix that spans the EREKS(2,2) and the EROKS

energies as the diagonal elements and the off-diagonal (coupling) element given

in (29):

H01 ¼
ffiffiffiffiffi
na
p

ϕb

��naF̂ a

��ϕa

� �
� ffiffiffiffiffi

nb
p

ϕa

��nbF̂ b

��ϕb

� �
¼ ffiffiffiffiffi

na
p � ffiffiffiffiffi

nb
pð Þεab ð29Þ

which was obtained in [40, 41] by applying the Slater–Condon rules in the space of

the two CSFs Φ0 and Φ1 and the variational condition for the open-shell orbitals ϕa

Fig. 3 Potential energy

curves (upper panel) of the
1Σþg and 1Σþu states of H2

and the 1Σþu 1Σþg
excitation energy (lower
panel) as a function of the

H–H distance. Solid colored
curves (blue for the ground
state and red for the excited

state) represent the results

of the SA-REKS

calculations, dashed
colored curves refer to TD-

DFT, and the black curve is
the exact excitation energy

from [85]. DFT calculations

employ the LC-ωPBE
density functional and the

cc-pV5Z basis set
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and ϕb [34, 35, 77]. In (29), F̂ a and F̂ b are the Fock operators for the open-shell

orbitals and εab is the off-diagonal Lagrange multiplier4 in the open-shell Lagrang-

ian [73]. As the two states, Φ0 and Φ1, are mutually orthogonal, the average of the

new energies E0 and E1 obtained from the above secular problem remains the same

as the average of the REKS(2,2) and ROKS energies. This implies that the orbitals

for the new approach, dubbed SI-SA-REKS or SSR, can still be obtained from the

SA-REKS orbital optimization, provided that ω¼ 1/2 was employed in the latter. In

practical applications of the SI-SA-REKS method [40, 41, 59–61], it was found that

the described state-interaction scheme is important for obtaining the correct shape

of the ground and excited state PESs in the vicinity of conical intersections and near

avoided crossings. For other situations, when the energy gap between the ground

and excited states is sufficiently wide the SI-SA-REKS method yields nearly the

same excitation energies as the SA-REKS method [59].

The argument leading to the SI-SA-REKS method can be proposed based on

the adiabatic connection formalism for ensemble DFT as advocated by

Fromager et al. [32]. Setting the coupling strength α in the Hamiltonian

(15) to zero leads to the degeneracy of the states represented by (25) and

(26). Applying the quasi-degenerate perturbation theory results in a 2� 2

secular problem
Eα0 H α

01

H α
10 Eα1

 �
, where the off-diagonal elements are given by

(29) for the intermediate coupling strength. Employing the coupling strength

integration and invoking the assumptions used in (22) one arrives at the

energy expressions for the ground and excited states of the SI-SA-REKS

method (see the paragraph above). It should be noted that, for a

homosymmetric molecule, such as H
2

, the off-diagonal matrix element van-

ishes by symmetry and the SI-SA-REKS description collapses to the SA-

REKS one.

To illustrate how the SI-SA-REKS method describes dissociation of a

heteropolar chemical bond, let us briefly review the ground and the lowest excited

singlet states of the LiH molecule. Near the equilibrium bondlength, the ground

state of the LiH molecule has ionic character with ca. 0.3 ē shifted to the hydrogen

atom. When the Li–H bond dissociates, the ground state undergoes an avoided

crossing with the excited state, which has covalent character, and, at the dissoci-

ation limit, the ground state corresponds to a covalent configuration with two

electrically neutral atoms.

The potential energy curves of the ground x1Σ+ and the excited a1Σ+ states of

LiH are shown in Fig. 4. The results of the SI-SA-REKS calculations using the LC-

4 The matrix of Lagrange multipliers in open-shell SCF becomes Hermitian (but not diagonal)

upon convergence to the variational minimum [77].
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ωPBE functional and the aug-cc-pVTZ basis set are compared with the results of the

conventional TD-DFT calculations (with the same basis set and functional) and with

the literature data. The x1Σ+ a1Σ+ excitation energy of LiH was recently studied

using an ab initio restricted active space CI (RASCI) method with the aug-cc-pVTZ

basis set [86]. For the individual states, the x1Σ+ and the a1Σ+ states, the potential

energy curves along the dissociation path were obtained in [31] using the CCSD

method (presumably the EOM-CCSD was used to obtain the excited state curve).

As seen in Fig. 4, the SI-SA-REKS potential energy curves follow closely the ab

initio results, whereas the conventional KS DFT curves fail to reproduce the correct

dependence on distance. Near ca. RLiH¼ 7 bohr, the two states undergo an avoided

crossing as seen in the curves obtained by the ab initio WFT calculations and the SI-

SA-REKS calculations. The RKS ground-state curve does not converge to the

correct dissociation limit and the ground state remains ionic along the whole

dissociation path. The excitation energy from the SI-SA-REKS calculations closely

follows the RASCI excitation energy curve and correctly yields the avoided

crossing. The TD-DFT excitation energy, although close to the ab initio value

near the equilibrium distance, fails to display the correct distance dependence and

vanishes at the dissociation limit. This example illustrates yet another failure of the

conventional KS DFT/TD-DFT approach to describe the ground and excited state

potential energy surfaces of molecules with dissociating bonds (or, more generally,

strongly correlated molecular systems). By contrast, the SI-SA-REKS method

describes these situations with high accuracy and can be applied with confidence

to study the excited states of strongly correlated molecules.

Fig. 4 Potential energy

curves (upper panel) of the
x1Σ+ and a1Σ+ states of LiH

and the x1Σ+ a1Σ+

excitation energy (lower
panel) as a function of the

Li-H distance. Solid curves
– SI-SA-REKS results,

dashed curves – TD-DFT

results. DFT calculations

employ the LC-ωPBE
functional and aug-cc-

pVTZ basis set. Solid black
curve in the lower panel

shows the reference RASCI

excitation energy [86] and

the dotted black curves in
the upper panel show the

CCSD energies [31] of the

two states
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4 Applications of the REKS Method to Excited States

Although the application of the SA-REKS and SI-SA-REKS methods to diatomic

molecules in Sect. 3.2 illustrates their capabilities in comparison with the (nearly)

exact calculations, a more general benchmarking of the methods is needed to

establish them as generally applicable computational schemes. In [59], the accuracy

of the SI-SA-REKS method for valence excitations in ordinary (i.e., not strongly

correlated) organic molecules was studied. For a set of 15 π! π* and n! π*
excitations in aliphatic and aromatic hydrocarbons, it was found that SI-SA-

REKS describes these excitations on a par with the widely used linear response

methods, such as TD-DFT or ADC(2) [87–91] (second-order algebraic diagram-

matic construction; a method based on second-order perturbation expansion of the

linear-response polarization propagator).

Table 1 compares the results of the SI-SA-REKS calculations carried out with

the BH&HLYP and LC-ωPBE functionals in connection with the aug-cc-pVTZ

basis set with the traditional TD-DFT calculations and the best estimates of vertical

excitation energies from [92]. The mean absolute deviation (MAD) shown by SI-

SA-REKS is nearly the same as for the TD-DFT method with the same density

functional. The ab initio WFT technique ADC(2) shows for the same excitation

energies a mean deviation of 0.43 eV. These benchmarks show that the SI-SA-

Table 1 The π! π* and n! π* electronic excitation energies (eV) of organic molecules.

Symmetry of the excited state is given parenthetically. MAD stands for “mean absolute deviation.”

All calculations employ the aug-cc-pVTZ basis set

Molecule Transition Best estm.a
BH&HLYPb LC-ωPBEb

TD SSR TD SSR

Ethylene π! π*(1B1u) 7.80 6.93 7.37 7.61 7.61

Butadiene π! π*(1Bu) 6.18 5.75 5.59 5.95 5.98

Hexatriene π! π*(1Bu) 5.10 4.83 4.64 5.03 5.11

Octatetraene π! π*(1Bu) 4.66 4.21 4.01 4.43 4.54

Cyclopropene π! π*(1B2) 7.06 6.28 6.54 6.41 6.57

Cyclopentadiene π! π*(1B2) 5.55 5.05 5.13 5.25 5.23

Norbornadiene π! π*(1A2) 5.34 5.04 5.08 5.37 5.30

Furan π! π*(1B2) 6.32 5.82 6.02 6.20 6.28

Pyrrole π! π*(1B2) 6.57 6.08 6.03 6.35 6.48

Imidazole π! π*(1A0) 6.19 6.33 6.30 6.56 6.58

n! π*(1A00) 6.81 7.02 6.87 6.86 6.81

Pyridine π! π*(1B2) 4.85 5.64 5.91 5.54 6.24

n! π*(1B1) 4.59 5.26 5.18 5.17 5.04

Uracil π! π*(1A0) 5.35 5.54 5.53 5.49 5.71

n! π*(1A00) 4.80 5.26 5.13 5.12 5.20

MAD 0.47 0.43 0.28 0.30
aBest estimates of vertical excitation energies from [92]
bGeometries are taken from [92]
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REKS method can be used as a general purpose computational scheme for describ-

ing the valence excitation energies.

Obviously, the ability of the SI-SA-REKS method to describe electronic transi-

tions in strongly correlated molecules enables one to apply this method beyond the

realm of applicability of the conventional adiabatic linear-response TD-DFT. Thus,

the method was employed to study the optically bright 1La electronic transitions

(1B1u symmetry) in a series of linear n-acenes (1) [59].

These transitions can be accurately described as HOMO!LUMO one-electron

transitions and for a few members of the polyacene series the excitation energies

were obtained experimentally either in the gas phase (or in solution and corrected

for the solvent effects) or in inert gas matrices (see [59] and references cited

therein). It was estimated that, with the growing number of fused rings, the 1La

excitation energy flattens out at a value of 1.18� 0.06 eV extrapolated in [93] from

the matrix isolation values.

The results of the SI-SA-REKS calculations are compared in Table 2 with the

TD-DFT results and the available experimental data. The TD-DFT excitation

energies gradually approach zero as the number of fused rings increases. This

Table 2
1La (

1B1u) excitation

energy (eV) of polyacenes.

The6-311 +G(2d,p) basis set

is employed in DFT

calculations

Molecule Exp.a
BH&HLYPb CAM-B3LYPb

TD SSR TD SSR

Naphthalene 4.44 4.61 4.82 4.56 4.67

Anthracene 3.41 3.48 3.64 3.49 3.55

Tetracene 2.76 2.70 2.85 2.73 2.81

Pentacene 2.21 2.15 2.29 2.19 2.29

Hexacene 1.89 1.73 1.89 1.79 1.91

Heptacene 1.70 1.40 1.57 1.47 1.61

Octacene 1.54 1.11 1.35 1.20 1.40

Nonacene 1.43 0.89 1.20 1.00 1.26

Decacene 0.72 1.11 0.83 1.16

Dodecacene 0.45 1.00 0.59 1.05

Tetradecacene 0.22 0.95 0.40 0.99

Hexadecacene 0.10 0.92 0.29 0.95

Octadecacene 0.19 0.89 0.22 0.93

Icosacene 0.22 0.87 0.17 0.90
aExperimental gas phase or matrix isolation excitation energies

cited in [59]
bGeometries were optimized in [59] using the RE-B3LYP/6-

31G* method
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feature of TD-DFT excitation energies is independent of the density functional

employed (see [59] for more detail) and is another illustration of the failure of the

conventional KS DFT approach to strongly correlated systems.

Polyacenes are known to have a strongly correlated ground state and this is

illustrated by a sketch of the valence Lewis structures in the diagram above [94].

Therefore the use of multi-reference approaches is mandatory for proper description

of their ground state. The single-reference KS DFT is incapable of taking accurate

account of the non-dynamic correlation in the ground state of longer polyacenes and

the TD-DFT excitation energies become unrealistically low for these molecules. The

SI-SA-REKS method describes accurately the ground state of polyacenes and yields

excitation energies in good agreement with the experimental figures.

Another situation where the description of the non-dynamic correlation in the

ground state becomes important is the real crossing between the ground and lowest

excited states of the same spin and space symmetry, the so-called conical inter-

sections. The SI-SA-REKS method was successfully applied to study conical inter-

sections in a series of organic molecules and models of biological chromophores

[40, 41, 60, 95], molecular switches [55], and molecular motors [54, 58, 61]. In

these applications and benchmarks, the SI-SA-REKS method was capable of

describing the geometry at the minimum of the conical intersection seam (the so-

called minimum energy conical intersection, MECI) with an accuracy matching

high level ab initio multi-reference methods such as MRCI and CASPT2. The

results of the application of SI-SA-REKS to conical intersections are described in

another chapter of this book;5 here it is only mentioned that the root mean square

deviation of the SI-SA-REKS MECI geometries from the ab initio reference

geometries is less than 0.1 Å on average (0.0609 Å was obtained in [95] for a set

of 12 MECIs).

Besides being capable of describing excitations of strongly correlated molecular

species, the SI-SA-REKS method displays an outstanding performance in other

situations which proved to be difficult for standard linear response methods.

5 See the chapter “Description of conical intersections with density functional methods” by M.

Huix-Rotllant, A. Nikiforov, W. Thiel, and M. Filatov.
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In cyanine dyes (2), the lowest singlet 1B1 (in C2v symmetry) excited state

(π! π* transition) is notoriously difficult for linear response methods [96–98].

TD-DFT with the commonly available density functionals overestimates the exci-

tation energies by ca. 0.4–0.5 eV; this deviates from the trend typical for TD-DFT

which has a tendency to underestimate the valence excitation energies by ca. 0.3–

0.4 eV. The cyanine dyes do not have a strongly correlated ground state and it was

the incorrect description of the differential correlation effects between the ground

and excited states that was blamed for the poor performance of TD-DFT [99].

However, this conjecture was challenged by Ziegler et al. [100] who showed that

going beyond the linear response approximation leads to considerable improvement

of the calculated excitation energies.6

The 1B1 excitation energies in a series of cyanine dyes were studied in [59] with

the use of the SI-SA-REKS method in connection with a few commonly available

density functionals and the aug-cc-pVTZ basis set. The results of the SI-SA-REKS

calculations are compared in Table 3 with TD-DFT and with a number of high level

ab initio calculations, the second-order complete active space perturbation theory

(CASPT2), and the diffusion Monte–Carlo (DMC) calculations from [96]. The

results in Table 3 show that SI-SA-REKS noticeably outperforms TD-DFT in the

accuracy of description of the target excitation energies, thus demonstrating the

advantage of the ensemble formalism. Indeed, the KS orbitals in the SI-SA-REKS

method are variationally optimized for both states, the ground and the excited state,

and the good performance of SI-SA-REKS seems to agree with the conclusions of

Ziegler et al. [100, 102] drawn from the results of the application of the relaxed

constricted variational DFT (RSCF-CV(1)-DFT) method, a method that goes

beyond the linear response and affords a variational optimization of the orbitals

6 See the chapter “A Constricted Variational Density Functional Theory Approach to the Descrip-

tion of Excited States” by T. Ziegler, M. Krykunov, I. Seidu, and Y. C. Park.

Table 3 Lowest electronic excitation energy (eV) of cyanine dyes. The aug-cc-pVTZ basis set is

employed in DFT calculations

Molecule

BH&HLYPa CAM-B3LYPa

CASPT2b DMCbTD SSR TD SSR

CN5 5.35 4.87 5.19 4.71 4.69 5.03

CN7 4.19 3.72 4.07 3.65 3.52 3.83

CN9 3.49 3.06 3.39 3.03 2.81 3.09

CN11 3.02 2.62 2.93 2.62 2.46 2.62
aGeometries are taken from [96]
bCASPT2 and diffusion Monte–Carlo (DMC) data from [101]
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partaking in the electronic transition [100, 102]. The SI-SA-REKS method achieves

the same effect by using the ensemble formalism.

The use of ensemble formalism based on the variational principle also turns out

to be beneficial for the description of charge transfer transitions. Linear response

methods, such as TD-DFT, experience considerable difficulties when describing

this type of electronic excitation, especially when used in connection with the

commonly available approximate density functionals [103, 104]. Although it was

not designed with these particular excitations in mind, the SI-SA-REKS method

was found to be surprisingly accurate for charge transfer excitations, even when

used in connection with the stock parameterization of the commonly available

GGA and hybrid density functionals [105].

Table 4 reports excitation energies of the lowest charge transfer transitions of a

series of arene–TCNE (tetracyanoethylene) adducts, for which the gas phase optical

absorption spectra are available [106]. For these electronic transitions, the TD-DFT

excitation energies obtained with the use of the usual density functionals deviate

from the experimental figures by a wide margin and only the use of individually

tuned range-separated density functionals brings these errors down to an acceptable

level [101]. However, the accuracy achieved with the fine-tuned density functionals

is easily surpassed by the SI-SA-REKS method employed in connection with the

standard parameterizations of commonly available density functionals. Even when

used in connection with the GGA functional, such as BLYP, the SI-SA-REKS

method yields more accurate charge transfer excitation energies than does TD-DFT

with the use of range-separated hybrid functional (see Table 4). The observed

excellent performance of SI-SA-REKS is consistent with the analysis of the

description of various types of excitations undertaken by Ziegler et al. [100, 104]

who showed that it is the use of approximate density functionals in connection with

the adiabatic linear response approximation that is to blame for ludicrous perfor-

mance of the adiabatic TD-DFT and not the density functional alone.

To conclude this section, ensemble DFT for excited states as implemented in the

SI-SA-REKS method is a versatile and accurate approach to the calculation of

Table 4 Excitation energies (eV) of the lowest CT transitions of the Ar-TCNE adducts. The cc-

pVDZ basis set is employed in all DFT calculations

Arene

BLYPa BH&HLYPa LC-ωPBEa

Lit.b Exp.cTD SSR TD SSR TD SSR

Benzene 1.54 3.53 2.96 3.52 4.00 3.69 3.80 3.59

Naphthalene 0.34 2.28 1.84 2.46 3.01 2.74 2.70 2.60

Toluene 1.37 2.72 2.67 3.26 3.65 3.30 3.40 3.36

o-Xylene 1.47 2.61 2.42 2.85 3.40 3.01 3.00 3.15

MADd 2.00 0.39 0.70 0.15 0.34 0.11 0.13
aGeometries are taken from [101]
bLiterature data: results of TD-DFT calculations using the tuned range separated BNL functional

from [101]
cGas phase excitation energies of CT transitions from [106]
dMean absolute deviations from the experimental data
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various types of excitations in molecular systems. A wide range of excited states,

which are otherwise inaccessible with the use of TD-DFT, can be studied, including

the charge transfer excitations [105], excitations in extended π-conjugated systems

[59], excitations in molecules undergoing bond breaking/bond formation [39],

conical intersections between the ground and excited electronic states [40, 41, 54,

55, 58, 60, 61, 95], etc. It is also noteworthy that the SI-SA-REKS results can be

obtained at an essentially mean-field cost, avoiding a steeper scaling of the linear

response formalism of TD-DFT.

5 Conclusions and Outlook

Ensemble DFT [18, 20, 21, 23, 29] holds considerable promise for theoretical

description of the excited states of strongly correlated molecular systems. Although

it was conceived more than three decades ago, ensemble DFT still did not find its

way to the repertoire of the methods used by computational chemists on a daily

basis. Perhaps it is the perceived lack of practical implementations of ensemble

DFT that holds down its adoption by a wider computational chemistry community.

Although there is a renewed interest in developing ensemble DFT further [31–33]

and in implementing it in the form of practically affordable computational schemes,

these approaches are largely unknown to ordinary computational chemists.

The REKS computational method, reviewed in this chapter, makes ensemble

DFT affordable. The method has already been used to study various types of

electronic transitions occurring in usual as well as strongly correlated molecular

systems and its ability to describe excitation energies in these systems with a

remarkable accuracy has been demonstrated. Although the currently available

implementation of the REKS formalism is not free of certain limitations, in

particular the size of the active space and the number of excited states are restricted,

these limitations will be removed in the near future and this should considerably

improve the prospects for practical use of the method. Especially promising for

obtaining multiple excited states and for simulating the entire excitation spectra of

strongly correlated molecules appears to be a merger of the REKS methodology

with the variational constricted DFT formalism proposed by Ziegler et al. [102,

104] (see Footnote 6). The work in these directions is currently in progress and will

continue in the future.
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Abstract Recent advances in reduced density matrix functional theory (RDMFT)

and linear response time-dependent reduced density matrix functional theory

(TD-RDMFT) are reviewed. In particular, we present various approaches to

develop approximate density matrix functionals which have been employed in

RDMFT. We discuss the properties and performance of most available density

matrix functionals. Progress in the development of functionals has been paralleled

by formulation of novel RDMFT-based methods for predicting properties of

molecular systems and solids. We give an overview of these methods. The

time-dependent extension, TD-RDMFT, is a relatively new theory still awaiting

practical and generally useful functionals which would work within the adiabatic

approximation. In this chapter we concentrate on the formulation of TD-RDMFT

response equations and various adiabatic approximations. None of the adiabatic

approximations is fully satisfactory, so we also discuss a phase-dependent exten-

sion to TD-RDMFT employing the concept of phase-including-natural-spinorbitals

(PINOs). We focus on applications of the linear response formulations to

two-electron systems, for which the (almost) exact functional is known.
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1 Introduction

The most widely used methods in quantum chemistry are either wavefunction-

based or they exploit density functional theory (DFT). The former class of methods

offers high accuracy, but unfavorable scaling of the computational cost with system

size limits their scope of applicability to relatively small systems. Density func-

tional approximations are known to offer a good balance between computational

efficiency and accuracy. Nevertheless, most approximations to DFT are plagued by

generic problems related to the fact that DFT employs a simple local object – the

electron density. Accurate description of the electronic structure of multireference

systems or predicting multiple electronic excitations are examples of problems that

still await satisfactory solutions in DFT. There has recently been growing interest in

approaches embracing simplicity (in the sense that a wavefunction is not involved),

computational efficiency, and versatility of DFT, while lacking the drawbacks.

Functionals of one-electron reduced density matrix (1-RDM) γ, defined for an N-
electron wavefunction Ψ as

γ x; x0ð Þ ¼ N

ð
� � �
ð
Ψ x; x2; . . . ; xNð ÞΨ* x0; x2; . . . ; xNð Þdx2� � �dxN; ð1Þ

where x¼ (r, s) is a combined spatial and spin coordinate, should, in principle, lead

to formulating methods superior to existing density functional approximations,

especially when static electron correlation effects cannot be neglected. An imme-

diate advantage of using 1-RDM as a main variable instead of the electron density,

ρ, is that the kinetic energy is an explicit functional of γ but not of ρ. Thus, in
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reduced (one-electron) density matrix functional theory (RDMFT) there is no need

to introduce a fictitious noninteracting system. Moreover, orbitals present in

RDMFT are fractionally occupied so functionals of γ seem to be better suited

than their density counterparts to account for static correlation and, for example,

describe correctly a covalent bond-breaking process. As discussed in this chapter,

this presumption has been confirmed by a good performance of the most successful

density matrix functionals.

Although the theoretical foundations of RDMFT were set a long time ago [1–

11], functionals of practical usefulness which can compete with density functionals

in accuracy have only recently been proposed. In this section we present the main

ingredients of RDMFT (theorems, definitions, and conditions) and first approxi-

mate density matrix functionals proposed for electronic systems. In the following

sections more recent and successful developments in RDMFT are shown.

Self-adjointness of γ defined in (1) allows for its spectral representation, namely [12]

γ x; x0ð Þ ¼
X
p

n pφ p xð Þφ*p x0ð Þ: ð2Þ

Eigenvalues of 1-RDM, {np}, are called natural occupation numbers, whereas its

eigenfunctions, {φp}, are known as natural spinorbitals. Throughout the chapter we
assume a convention that the indices p, q, r, s pertain to natural spinorbitals and a, b,
c, d to arbitrary one-electron functions. Self-adjointness of γ implies orthonormality

of the natural spinorbitals. Additionally, because γ is assumed to be normalized to a

number of electrons N, cf. definition given in (1), the natural occupancies sum up to

N. Taking into account that each np is nonnegative and not greater than 1 [2, 3], the
overall properties of the natural spinorbitals and occupation numbers read

8 p,q

ð
φ*p xð Þφq xð Þdx ¼ δ pq; ð3Þ

8 p 0 � n p � 1; ð4ÞX
p

n p ¼ N: ð5Þ

Coleman [2] has proved that if a given Hermitian 1-RDM satisfies the conditions

(3)–(5) there exists an ensemble of N-electron antisymmetric wavefunctions that

yield γ. The conditions are called N-representability conditions. It should be noted

that similar sufficient and necessary conditions that would ensure pure-state N-
representability are not known, though some significant progress has been reported

by Klyachko [A.A. Klyachko, J. Phys. Conf. Ser. 36, 72–86 (2006), doi: 10.1088/

1742-6596/36/1/014].

A one-to-one mapping between pure-state v-representable 1-RDMs and

non-degenerate ground state wavefunctions has been demonstrated by Gilbert

who extended the Hohenberg–Kohn theorem to nonlocal potentials [1, 13]. This

establishes existence of a 1-RDM functional [1, 11]
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EHK
v γ½ � ¼ Tr ĥ γ̂

	 

þ Ψ γ½ � V̂ ee

�� ��Ψ γ½ �� �
; ð6Þ

where ĥ stands for a one-electron Hamiltonian comprising kinetic energy and

external potential operators,

ĥ ¼ t̂ þ v̂ ext; ð7Þ

V̂ ee ¼
XN

i> j

1

ri j
is an electron interaction operator (note that atomic units are

employed throughout the chapter), and Ψ[γ] denotes a ground state wavefunction

pertinent to a v-representable γ. A variational principle for the functional defined in

(6) exists and reads

8γ2v-rep Ev γ½ � � E0 ; ð8Þ

where “v-rep” denotes a set of pure-state v-representable 1-RDMs. The equality is

achieved for a ground state density matrix. Levy extended the domain of a density

matrix functional to all pure-state N-representable 1-RDMs by defining the electron

repulsion functional as [4, 5]

EL
ee γ½ � ¼ min

Ψ!γ
Ψ V̂ ee

�� ��Ψ� �
: ð9Þ

The minimization is carried out in a set of all physically admissible wavefunctions

Ψ that yield a given 1-RDM γ. Levy’s constrained search definition has been further
extended to ensemble N-representable 1-RDMs (belonging to a set “N-rep”) by
Valone [7, 8] and the exact functional reads

Eee γ½ � ¼ min
Γ Nð Þ!γ

Tr Ĥ Γ̂ Nð Þ
h i

; ð10Þ

where the minimization is carried out with respect to N-electron density matrices

Γ(N ) that yield γ. Because of the linearity of the map Γ(N )! γ and the fact that the

set of N-representable γ is convex, a functional Eee[γ] is also convex [6]. For a given
external potential v̂ ext, minima of the Hohenberg–Kohn functional given in (6), the

Levy functional Tr ĥ γ̂
	 


þ EL
ee γ½ � (9), and the functional Tr ĥ γ̂

	 

þ Eee γ½ � (10),

defined, respectively, for v-rep, pure-state N-representable, and ensemble N-repre-
sentable (N-rep) 1-RDMs, coincide [7, 9]. Therefore, taking into account a varia-

tional principle given in (8), one concludes that a functional defined for N-rep
1-RDMs yields a ground state energy at minimum, i.e.,

E0 ¼ min
γ2N-rep

Tr ĥ γ̂
	 


þ Eee γ½ �
� �

: ð11Þ
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A great advantage of working with functionals defined for (ensemble) N-represent-
able γs is that sufficient and necessary conditions for N-representability are known.
Equation (11) together with (3)–(5) are a foundation for RDMFT.

The definition of the exact functional (10) is of little practical use in developing

approximate functionals. However, in two cases exact forms of Eee[γ] are known,

providing some guidelines for developing generally applicable approximate func-

tionals. The first case corresponds to N-electron noninteracting systems. The

1-RDM corresponding to a single determinantal wavefunction is idempotent

which implies integer (0 or 1) values of the natural occupation numbers, i.e.,

γ̂ 2 ¼ γ̂ , 8 p n p ¼ 0
W

n p ¼ 1 : ð12Þ

A two-electron reduced density matrix Γ (2-RDM), defined for a general

wavefunction Ψ as

Γ x1, x2, x
0
1x
0
2

� �
¼ N N � 1ð Þ

ð
� � �
ð
Ψ x1; x2; x3; . . . ; xNð ÞΨ* x01; x

0
2; x3; . . . ; xN

� �
dx3� � �dxN ;

ð13Þ

is explicitly expressible in terms of 1-RDM if the wavefunction takes the form of a

Slater determinant, namely

Γ x1, x2, x
0
1x
0
2

� �
¼ γ x1; x

0
1

� �
γ x2; x

0
2

� �
� γ x1; x

0
2

� �
γ x2; x

0
1

� �
: ð14Þ

The electron interaction functional corresponding to such a noninteracting 2-RDM

reads

EHF
ee γ½ � ¼ EH γ½ � þ Ex γ½ �: ð15Þ

We refer to it as Hartree–Fock functional (thus the superscript HF) because

optimization of the functional which is a sum of the one-electron part and EHF
ee

with respect to N-representable γ leads to an idempotent density matrix coinciding

with the solution to the Hartree–Fock equations [14]. The HF functional (15)

comprises two components. The Hartree functional, EH, describes the classical

part of electron interaction, namely

EH γ½ � ¼
1

2

ðð
γ x; xð Þγ x0; x0ð Þ

r� r0j j dxdx0; ð16Þ

whereas the exchange functional, Ex, reads

Ex γ½ � ¼ �
1

2

ðð
γ x; x0ð Þγ x0; xð Þ

r� r0j j dxdx0: ð17Þ

Another paradigm case for which an exact density matrix functional is known, is a

two-electron closed-shell system. We discuss this case extensively in Sect. 2.1.
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The two cases, namely a noninteracting N-electron system and an interacting

two-electron species, cover two extreme regimes of electron correlation for an

electron pair: the former pertains to an uncorrelated pair, whereas the latter, applied

to electrons separated in space (e.g., H2 molecule in a dissociation limit), describes

strongly correlated electrons. In other words, exact density matrix functionals for an

uncorrelated and a strongly correlated electron pair are known. Ideally, a valid

approximate functional should reduce to exact functionals for both cases.

In developing approximate functionals it is convenient to separate out the

Hartree functional given in (16) from the electron repulsion Eee functional defined

in (10) and to search for approximations to the exchange-correlation complement

Exc defined as

Exc γ½ � ¼ Eee γ½ � � EH γ½ �: ð18Þ

The exchange-correlation functional can be further decomposed into an exchange

part given in (17) and the remainder called the correlation functional Ec

Ec γ½ � ¼ Exc γ½ � � Ex γ½ �: ð19Þ

A number of conditions satisfied by the exact Eee functional or its correlation

component Ec have been revealed, cf. [5, 15–17], and some of them are invoked

in this chapter.

The first realization of the approximate density matrix functional has been given

by Müller [18] and it was later independently derived from more physical argu-

ments by Buijse and Baerends [19, 20]. The exchange-correlation part of the

functional called either Müller functional or BB (we adhere to the latter name) reads

EBB
xc γ½ � ¼ �

1

2

X
pq

ffiffiffiffiffiffiffiffiffiffi
n pnq
p

pq
��qp� �

; ð20Þ

where the natural occupation numbers {np} and the spinorbitals {φp} are eigen-

values and eigenfunctions of γ and the exchange integrals {hpq|qpi} are written in

the representation of the natural spinorbitals. The following notation is adopted in

this chapter for two-electron integrals

pq
��rs� �
¼
ðð
φ*p x1ð Þφ*q x2ð Þ r1 � r2j j�1φr x1ð Þφs x2ð Þdx1dx2: ð21Þ

The BB functional is convex [21] and reduces to the exchange functional (17) for an

idempotent γ. It is not exact for two-electron systems, though. It has been shown

that this functional severely overestimates correlation energy of atoms and mole-

cules [22–27]. However, the BB functional has been successfully used as a base for

developing more sophisticated functionals, as discussed in Sect. 2.1.

Goedecker and Umrigar (GU) have modified the BB functional by removing

diagonal ( p¼ q) terms, called electron self-interaction, from the Hartree and the
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exchange-correlation BB functionals [28, 29], and thus the xc part of the GU

functional reads

EGU
xc γ½ � ¼ �

1

2

X
pq

ffiffiffiffiffiffiffiffiffiffi
n pnq
p

pq
��qp� �

þ 1

2

X
p

n p � n2p

� �
pp
��pp� �

: ð22Þ

GU offers an improvement to the BB functional for atoms and molecules around

their equilibrium geometries [28, 30] but it is in large error in the bond dissociation

region of diatomic molecules [22, 25, 27]. Another simple xc functional – corrected

Hartree–Fock (CHF) – has been proposed by Csanyi and Arias [31]

ECHF
xc ¼ �1

2

X
pq

n pnq þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n p 1� n p

� �
nq 1� nq
� �q �

pp
��pp� �

: ð23Þ

Even though the correlation part of the CHF functional satisfies the particle-hole

symmetry condition, cf. (30), which is also satisfied by the exact functional [15], it

provides little or no improvement over the HF method for molecules around the

equilibrium distances, and it breaks down in the dissociation limit [22, 32].

Although the aforementioned first generation of density matrix functionals has

not turned out to be overall competitive with DFT approximations, understanding

the origins of their failures has provided insight to developing more advanced and

successful functionals described in the next section.

2 Construction of Density Matrix Functionals

Because of the two-particle nature of the electron interaction, given a system

described by a ground state wavefunction |0i, the electronic repulsion energy Eee

results from contraction of the two-electron reduced density matrix elements Γabcd
with two-electron integrals hab|cdi, namely

Eee ¼
1

2

X
abcd

Γabcd cd
��ab� �

; ð24Þ

where, for a given basis set {χa} and the pertinent sets of the creation and

annihilation operators {â{}, {â}, the elements of the 2-RDM are defined as

Γabcd ¼ 0 ĉ {d̂ {b̂ â
�� ��0� �

: ð25Þ

Formally, the 2-RDM is a functional of the 1-RDM. Most approaches to approxi-

mating the electron–electron interaction functional (10) exploit the formula given

in (24) and assume that the elements of Γ are functions of the natural occupation

numbers {np}. Consequently, if natural spinorbitals {φp} are used as a basis set, the
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whole dependence of the Eee functional on the natural spinorbitals is included in

two-electron integrals, which gives rise to the form

Eee γ½ � ¼
1

2

X
pqrs

Γpqrs ntf g½ � rs
�� pq� �

: ð26Þ

This assumption is borrowed from the Hartree–Fock approximation, cf. (14), in

which elements of the 2-RDM in the representation of the natural spinorbitals are

given solely in terms of the occupation numbers, i.e.,

ΓHF
pqrs ¼ n pnq δ prδqs � δpsδqr

� �
: ð27Þ

The functional Eee[γ] in most approximations proposed so far is an explicit function

of the occupation numbers and the natural spinorbitals.

Developing an approximate correlation functional, cf. (19), begins with assum-

ing a cumulant expansion of 2-RDM [33] which consists of writing Γ as the

antisymmetrized product of γ and the cumulant part, λ being a functional of γ,

Γpqrs ¼ n pnq δ prδqs � δpsδqr
� �

þ λpqrs γ½ �: ð28Þ

A cumulant expansion gives rise to the following expression for Ec

Ec γ½ � ¼
1

2

X
pqrs

λpqrs γ½ � rs
�� pq� �

: ð29Þ

It has been shown that the exact correlation 1-RDM functional possesses a particle-

hole symmetry [15]

Ec γ½ � ¼ Ec 1� γ½ � ð30Þ

(this symmetry should be understood as invariance of Ec to the following replace-

ment 8p np! (1� np)) and scales linearly under homogeneous scaling of coordi-

nates in γ(x, x0) [5]

Ec γη
	 

¼ ηEc γ½ �; ð31Þ

where coordinates in γη are scaled with a real number η and the normalization is

preserved, i.e.,

γη x; x0ð Þ ¼ η3γ ηx, ηx0ð Þ: ð32Þ

Some density matrix functionals rely on the reconstruction scheme given in (28). In

other cases, the exchange-correlation functional (18) is not partitioned any further

and is modeled as a whole. Different approaches to approximating electron–elec-

tron density matrix functionals proposed in recent years are discussed in the

remaining part of this section.
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2.1 Functionals Based on a Paradigm Two-Electron Case

Homogeneous electron gas (HEG) is a paradigm system for density functionals.

This is because the exact form of the exchange density functional for this system is

known and a highly accurate correlation energy functional is available. Conse-

quently, electron gas has been a reference system for most approximate density

functionals and their forms are such that exact energy for a homogeneous electron

density is recovered. The situation is different in RDMFT because the exchange-

correlation density matrix functional for HEG is not known. However, the exact

density matrix functional is available for a two-electron system [29, 34], so it is now

considered to be a paradigm in RDMFT. A two-electron molecule seems to be even

a more adequate reference than the homogeneous electron gas if one aims at

developing a functional accurately describing electronic structure of molecules.

A form of the two-electron density matrix functional can be immediately

formulated based on the work of L€owdin and Shull (LS) [35] who showed that in

a basis of the natural spinorbitals {φp} a Slater-determinant-expansion of a singlet

wavefunction (assumed to be real-valued) is entirely given by “diagonal” determi-

nants composed of spinorbitals sharing spatial parts, i.e.,

ΨLS ¼
X
p

c p φ pφ p

�� ��; ð33Þ

where p and p are spinorbitals of the opposite spin and φ pφ p

�� ��denotes a normalized

Slater determinant. The normalization of the wavefunction imposes the following

condition of the expansion coefficients {cp}X
p

c2p ¼ 1: ð34Þ

Employing the LS wavefunction given in (33) in (1) defining 1-RDM, one imme-

diately obtains γ in its spectral representation, which indicates that squares of the

expansion coefficients are simply the natural occupation numbers, i.e.,

8 p n p ¼ c2p : ð35Þ

Taking the expectation value of the Hamiltonian with the LS wavefunction (33)

leads to a simple expression for the energy

E ¼
X
p

c2phpp þ
1

2

X
pq

c pcq pp
��qq� �

; ð36Þ

where the indices p, q correspond to indices of the natural spinorbitals. It should be
noted that (36) is valid for a closed-shell system so it is assumed that the coefficients

corresponding to spinorbitals of opposite spins and same spatial parts are equal.
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The exact ground state energy for a two-electron system follows by minimizing the

energy with respect to the expansion coefficients {cp} and the natural spinorbitals

{φp} under the orthonormality condition for the orbitals and a normalization

condition given in (34). An exact electron interaction density matrix functional

can be immediately written as

ELS
ee γ½ � ¼

1

2
min
f qf g

X
pq

f p f q
ffiffiffiffiffiffiffiffiffiffi
n pnq
p

pq
��qp� �

; ð37Þ

8 p f p ¼ �1 ; ð38Þ

where it has been taken into account that the orbitals are real so the integrals hpp|qqi
are equal to the exchange integrals hpq|qpi, and the relation (35) between expansion
coefficients in the LS wavefunction and the occupation numbers have been

exploited. It is known that for two-electron atoms and molecules at equilibrium

geometry the sign of the factor f1 corresponding to the highest occupation n1 is

predominantly opposite to signs {fp} of all other factors corresponding to weakly

occupied n p < 1
2

� �
orbitals [29]. It should be noted that cases when this rule is

violated are known and they include, for example, a hydrogen molecule far from

equilibrium bond distance [36–38] or a strongly correlated Hooke’s atom [39]. In

such cases, natural orbitals that violate the phase rule, i.e., those orbitals whose

phase factor coincides with f1, are very weakly occupied and their contribution to

the energy is small. Consequently, a two-electron functional explicitly depending

on the occupation numbers defined as

eELS
ee γ½ � ¼

1

2

X
pq

GLS
pq pq

��q p� �
; ð39Þ

GLS
pq ¼

n p p ¼ q
� ffiffiffiffiffiffiffiffiffiffi

n pnq
p

p ¼ 1, q > 1 or p > 1, q ¼ 1ffiffiffiffiffiffiffiffiffiffi
n pnq
p

otherwise

8<: ; ð40Þ

is not always fully equivalent to the exact LS functional (37) but it provides a very

good approximation to it. Inspecting the structure of the functional (39), it is evident

that terms corresponding to two weakly occupied orbitals ( p, q> 1) are treated

differently (enter the functional with a different signs) from products of strongly-

weakly occupied orbitals ( p¼ 1, q> 1 or p> 1, q¼ 1).

Evidently the form of the BB functional given in (20) does not reflect the orbital

structure of the functional for two electrons given in (39). Restoring this structure

and correcting for the overcorrelation by the BB functional have been motivations

behind proposing a number of corrections to it [27]. This has resulted in the

development of BB-corrected (BBC) functionals consisting of the Hartree part

(16) and the exchange-correlation functional comprising products of exchange

integrals and occupation number depending factors GBBC
pq , namely
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EBBC
ee γ½ � ¼ 1

2

X
pq

n pnq pp
��qq� �

þ 1

2

X
pq

GBBC
pq pq

��q p� �
: ð41Þ

In definitions of the BBC functionals, spinorbitals of the occupancies smaller than

1/2 are called weakly occupied, although those with occupation numbers exceeding

1/2 belong to a set of strongly occupied orbitals (it should be noted that only in the

limit of strong correlation are some natural occupation numbers exactly equal to

1/2). Note also that the BB functional is recovered from (41) upon setting

GBBC
pq ¼ �

ffiffiffiffiffiffiffiffiffiffi
n pnq
p

. A comparison of the orbital structure of the BB functional with

that of the accurate two-electron functional (39) has led to proposing a correction

restoring positive signs of cross products between weakly occupied natural

spinorbitals. Such a corrected BB functional, named BBC1, conforms to a general

form of (41) after assuming

GBBC1
pq ¼

ffiffiffiffiffiffiffiffiffiffi
n pnq
p

p 6¼ q, p, q 2 weak,

� ffiffiffiffiffiffiffiffiffiffi
n pnq
p

otherwise;

�
ð42Þ

where p, q 2 weak denotes that both spinorbitals are weakly occupied. Self-

consistent calculations revealed that, similar to BB, BBC1 overbinds diatomic

molecules, which indicates a need for further repulsive corrections [27]. The

BBC2 functional emerged after correcting interaction between two different

strongly occupied orbitals and replacing square roots of products of the pertinent

occupancies with products npnq. The third functional, BBC3, is a result of adding

another two corrections to the BBC2 functional. In the BBC3 functional a pair of

bonding and antibonding (both called frontier) spinorbitals which form a breaking

bond is distinguished. It is assumed that a bonding orbital belongs only to a set of

frontier orbitals, and that, at the same time, antibonding orbitals belong to sets of

frontier and weakly occupied orbitals. The first BBC3 correction, added on top of

the BBC1 and BBC2 corrections, replaces square roots of products of occupation

numbers with pertinent products if one occupancy corresponds to an antibonding

orbital and the other to a strongly occupied one. The replacement does not affect

pairs of antibonding-bonding orbitals. The second correction removes self-

interaction from all orbitals except the frontier (i.e., bonding and antibonding)

orbitals. The form of the Gpq elements in the BBC3 functional therefore read

GBBC3
pq ¼

ffiffiffiffiffiffiffiffiffiffi
n pnq
p

p 6¼ q, p, q 2 weak,

p 2 weak, q 2 frontier weakð Þ
p 2 frontier weakð Þ, q 2 weak

�n pnq

p 6¼ q, p, q 2 strong,

p 2 strong, q 2 frontier,

p 2 frontier, q 2 strong,

�n2p p ¼ q, p=2frontier,

� ffiffiffiffiffiffiffiffiffiffi
n pnq
p

otherwise;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð43Þ
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where the frontier (weak) spinorbitals are those that belong to a set of frontier

orbitals and their occupancy number is smaller than 1/2 (antibonding orbitals).

BBC3 functional possesses a correct orbital structure of the two-electron functional

(39) if applied to hydrogen molecule in the dissociating limit and it is able to

reproduce very accurately the whole dissociation curve [27]. Moreover, based on

examples of small atoms and diatomic molecules at equilibrium geometries and in

their dissociation limits, it has been shown that BBC3 accounts for both dynamic

and static correlation yielding correct potential energy and recovering most of the

correlation energy.

A difficulty with practical usage of the BBC3 functional is a need to select

bonding and antibonding orbitals. In a computer implementation a strongly occu-

pied orbital of the lowest occupancy is taken as bonding although a weakly

occupied orbital of the highest occupancy is taken as an antibonding with a

straightforward extension for this selection rule for molecules with more than one

bond. This, however, leads to numerical problems because in the optimization

procedure occupation numbers are varied and the antibonding character of orbitals

may change, which may cause problems with convergence or may result in

obtaining discontinuities in potential energy curves. To avoid the previously

described problems with selecting frontier orbitals and to improve the overall

accuracy of the BBC3 functional, it has been proposed to replace the elements

Gpq present in the BBC functional, cf. (41), with a function G(np,nq). The function

mimics the behavior of the GBBC3
pq elements but does it automatically, based on the

values of its arguments. The optimal function has been found by introducing two

parameters and fitting the resulting AC3 functional to accurate energies of two

molecules at equilibrium and stretched-bond geometries [40]. The AC3 functional

yields decent quality potential energy curves for ten-electron molecules, although

for some molecules a small hump in the curve is visible.

A two-electron wavefunction (33) is a special case of the more general closed-

shell N-electron ansatz (N assumed to be even) involving, apart from a reference

determinantΦ0, all determinants arising from diagonal double, diagonal quadruple,

etc., excitations; cf. (67). Taking the expectation value of the Hamiltonian with

such a wavefunction yields an energy expression involving only Coulomb,

exchange, and integrals of the hpp|qqi type [41]. In [42] the previously mentioned

ansatz for the wavefunction has been used in development of the extended L€owdin–
Shull (ELS) functional. The functional is applicable to systems for which a set of

the natural spinorbitals can be partitioned into “inner” orbitals localized on atoms

and the occupancies close to 1 and “outer” orbitals including a bonding orbital and

all weakly occupied orbitals, i.e., orbitals localized on a single bond. For N-electron
(N being even) systems (N/2� 1) strongly occupied orbitals (in a spin-restricted

formulation each orbital gives rise to two spinorbitals with opposite spins) would be

considered “inner” and the remaining strongly occupied orbital of the lowest

occupancy would belong to the “outer” orbital set. By analyzing a structure of the

energy expression resulting from the assumed ansatz, the following form of the ELS

functional has been proposed
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EELS
ee γ½ � ¼ 1

2

X
p, q2outer

f p f q
ffiffiffiffiffiffiffiffiffiffi
n pnq
p

pp
��qq� �

þ 1

2

X
p2inner

n p pp
��pp� �

þ
X
p2inner

X
q> p

q2inner

n pnq pq
�� pq� �

� pq
��qp� �� �

þ
X
p2inner

X
q2outer

n pnq pq
�� pq� �

� pq
��q p� �� �

þ FL n p; nq
� �

pp
��qq� �	 


;

ð44Þ

where the phase factors {fp} for the outer orbitals are set according to the rule valid
for two-electron systems, namely

8 p2outer f p ¼
1 if n p >

1

2

�1 if n p <
1

2

8<: : ð45Þ

Note that even though the exchange integrals hpq|qpi are identical to hpp|qqi if the
spinorbitals are real, the two types of integrals make different contributions to time-

dependent linear response equations so they are kept separately in the ELS func-

tional. It is evident that for a two-electron system the set of inner spinorbitals is

empty and, unlike the BBC3 or AC3 functionals, the ELS reduces to the accurate

functional given in (39). A few models have been tried for the function FL, which is

responsible for correlating inner and outer orbitals. The most successful ones

include one or two empirical parameters fitted to reproduce potential energy curves

of LiH, Li2, and BH+ molecules. Very accurate potential energy curves have been

obtained for these molecules [42]. Unfortunately, applications to other systems

have not been presented, because the functional has been designed to treat only

molecules with one single bond and no lone electron pairs. Nevertheless, ELS is a

promising step towards extending the L€owdin–Shull functional to more than two

electrons, aiming at providing a balanced description of the dynamic and static

correlation.

2.2 Functionals Based on Reconstruction of 2-RDM
in Terms of 1-RDM

One of the possible strategies towards development of novel one-electron density

matrix functionals consists of assuming the cumulant expansion for the 2-RDM

(28) and finding approximations for the cumulant part, γ, by imposing known

conditions which the exact cumulant satisfies. The first naive proposition one

might try is neglecting γ completely. This would result in the electron interaction

functional being just a sum of the Hartree (16) and exchange (17) functionals, with

no correlation part. One might then hope that some portion of correlation could still
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be recovered by allowing nonidempotent γ in the optimization, in other words by

allowing fractional occupancies of the natural orbitals. However, it has been shown

by Lieb, that for electronic systems the minimum of the functional involving only

Hartree and exchange contributions to the electronic repulsion, cf. (15), is achieved

at an idempotent 1-RDM [14]. Thus, the minimum of the functional free of the

correlation part simply coincides with the Hartree–Fock energy. To go beyond the

Hartree–Fock approximation requires not only admitting nonidempotent γ but also
including nonzero cumulant part in the reconstructed 2-RDM. Recently, Piris and

collaborators proposed a series of natural orbital functionals known as PNOFi
(i¼ 1–6) [43–48] by finding approximations to the cumulant matrix γ in terms of

the natural occupation numbers [49, 50]. In reconstructing RDM defined in (25) in

terms of 1-RDM the equality conditions satisfied by the N-representable 2-RDM are

such that Hermiticity

Γpqrs ¼ Γ∗
rspq; ð46Þ

antisymmetry

Γpqrs ¼ �Γqprs ¼ �Γpqsr; ð47Þ

and a sum rule X
q

Γpqrq ¼ N � 1ð Þn pδ pr ð48Þ

have been imposed. To narrow down the possible form of the 2-RDM as a function

of the occupation numbers, it has been required that the final correlation energy

functional includes only Coulomb integrals hpq|pqi, exchange integrals hpq|qpi,
and integrals of the type hpp|qqi. It should be noted that the last two sets are

identical if the orbitals are real, which is the case in practical calculations, but

they enter the time-dependent density matrix functional equations in different terms

as discussed in Sect. 5. Piris and Ugalde [49, 50] proposed the following structure of

the spin-blocks of the cumulant matrix in a spin-restricted formalism

λσσpqrs ¼ �Δσσpq δ prδqs � δpsδqr
� �

; ð49Þ

λαβpqrs ¼ �Δαβpqδ prδqs þ Πrpδ pqδrs; ð50Þ

where σ¼ α, β, the Δ matrices are symmetric, and the Π matrix is Hermitian. Such

an ansatz for the cumulant results in the 2-RDM given in (28) satisfying the

symmetry and antisymmetry conditions; cf. (46) and (47). For Systems in a singlet

state, for which n pα ¼ n pβ ¼ n p, and λααpqrs ¼ λββpqrs, PNOF functionals, resulting

from employing a reconstruction of Γ given in (28) with the ansatz (49) and (50),

are of the following spin-summed form:
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EPNOF
ee γ½ � ¼

X
pq

n pnq 2 pq
�� pq� �

� pq
��q p� �� �

�
X
pq

Δααpq þ Δαβpq
� �

pq
�� pq� �

� Δααpq pq
��q p� �h i

þ
X
pq

Π pq pp
��qq� �

;

ð51Þ

where the indices p, q pertain to spatial parts of the natural spinorbitals. Diagonal

elements of the Δαβ and Π matrices have been fixed by imposing conservation of

spin [51] which for high-spin states amounts to requiring that the expectation value

of the Ŝ 2 operator computed with the assumed form of the 2-RDM is equal to

Ms(Ms+ 1), with Ms¼ (Nα�Nβ)/2, Nα�Nβ. The pertinent diagonal elements read

[50]

Δαβpp ¼ nαpn
β
p; ð52Þ

Πpp ¼ nβp: ð53Þ

The final forms of the off-diagonal elements of the Δ and Π matrices have been

proposed by further imposing a sum rule given in (48) and exploiting the

so-called D, G, Q-conditions that state that 2-RDM, the electron–hole density

matrix G, and two-hole density matrix Q must be positive [50]. The first PNO

functional, PNOF1 [43], has been proposed for singlets after setting Δαα¼Δαβ,
assuming dependence of the cumulant matrix on two occupation numbers with

relevant indices, i.e.,

λ pq ¼ λ pq n p; nq
� �

; ð54Þ

and defining symmetric functions Πpq(np,nq)¼Πpq(nq,np). Three possible cases

have been considered for pairs of indices p, q: (1) p and q pertain to strongly

occupied spinorbitals of occupancies greater than 1/2, (2) p and q pertain to weakly
occupied spinorbitals of occupancies smaller than 1/2, and (3) one orbital is

strongly occupied while the other is weakly occupied. Each of the cases is treated

with a different function Πpq with the form deduced from the structure of the

2-RDM for two-electron systems. It is worth mentioning that the PNOF1 functional

has also been extended to high-spin multiplet states [51]. Despite the fact that

PNOF1 has been designed to resemble an exact functional for two-electron systems

in singlet state, its performance for potential energy curves is poor [40]. However, it

has to be admitted that despite its simple form PNOF1 has turned out to be reliable

in reproducing equilibrium bond distances, harmonic vibrational frequency, ioni-

zation potentials, and polarizabilities of small molecules [52].

A more involved form of the cumulant than that shown in (54) has been

employed in the PNOF3 functional [45]. The same-spin block of the Δ matrix

(49) was set to 0 and only the opposite-spin block, cf. (50), has been considered for

singlet and high-spin multiplet states. Analogously to the PNOF1 functional
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different forms of the λpq and Δαβpq functions of {np} have been proposed depending

on the values of occupation numbers of the pertinent spinorbitals p and q. The

elementsΔαβpq for the strongly-weakly occupied pair of orbitals p, q are functions not
only of the corresponding occupancies np and nq but also of the sum of occupation

numbers of all weakly occupied spinorbitals. PNOF3 has been applied to comput-

ing high/low-spin energy splitting of atoms and atomization energies of molecules

showing a remarkable agreement with the accurate coupled cluster accurate data

[45]. PNOF3 has also correctly reproduced potential energy surfaces of challenging

isomerization reactions [53]. Despite the proved usefulness of PNOF3 for systems

dominated by dynamic electron correlation it fails in describing near-degenerate

systems which has been illustrated by the breakdown of the functional in

reproducing the energy of the Li2 molecule with the stretched bond [46]. This

failure has been attributed to violation of the positivity condition of the electron–

hole density matrix G corresponding to the reconstruction scheme assumed in

PNOF3. This problem has been addressed in [46] and a new form of the

Πpq({nr}) function has been proposed which resulted in a PNOF4 functional.

PNOF4 accurately reproduces potential energy surfaces of diatomic molecules.

Unfortunately, it has been reported recently that the products of homolytic disso-

ciated molecules may have a non-integer number of electrons [50].

The PNOF5 functional formulated for closed-shell systems [47] can be seen as a

simplification to PNOF4, because both the elements Δpq and Πpq are functions of

only the occupation numbers np and nq (and not of the whole vector n), yet the

proposed ansatz for the two-electron reduced density matrix laying the foundation

for PNOF5 satisfies the symmetry conditions and the sum rule (46)–(48), as well as

the positivity conditions. This has been achieved by assuming that for an N-electron
system (N being even) only for N natural orbitals (2N natural spinorbitals) the

occupation numbers are different from zero, the rest of orbitals being unoccupied.

Additionally, the set of occupied orbitals has been partitioned into N/2 pairs. Each

orbital belongs to only one pair and for the p, q orbitals coupled in a pair P the

pertinent occupation numbers sum up to 1, i.e.,

8 p,q2P n p þ nq ¼ 1: ð55Þ

It should be noted that imposing the condition (55) immediately implies that the

normalization condition for 1-RDM, namely

2
XN=2
P¼1

X
p2P

n p ¼ N ð56Þ

is satisfied. In (56) the first summation runs over pairs of electrons and the condition

(55) has been employed. Analogously to other PNOF functionals, the diagonal

elements of the Δ and Π matrices employed in PNOF5 are given by (52) and (53),

whereas the off-diagonal elements for the coupled indices p and q have been

proposed to take the form
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8 p,q2P Δ pq ¼ n pnq; ð57aÞ
8 p,q2P Π pq ¼ �

ffiffiffiffiffiffiffiffiffiffi
n pnq
p

: ð57bÞ

The resulting spin-summed expression of the PNOF5 functional reads [47, 49]

EPNOF5
ee γ½ � ¼

XN=2
P 6¼Q

X
p2P

X
q2Q

n pnq 2 pq
�� pq� �

� pq
��qp� �� �

�
XN=2
P

X
p2P

X
q2P
q6¼ p

ffiffiffiffiffiffiffiffiffiffi
n pnq
p

pp
��qq� �

þ
X
p

n p pp
��pp� �

;

ð58Þ

where P and Q stand for indices of pairs of coupled orbitals. PNOF5 has

outperformed all its PNOF predecessors in describing multireference systems. In

particular it has been shown that it describes qualitatively correctly dissociation

curves yielding accurate dissociation energies [54–56] and products of dissociation

are of integer numbers of electrons [47, 56]. Dissociating of molecules with

multiple bonds, e.g., N2 or CO, leads to products of a correct high-spin symmetry

[56]. The ability of the PNOF5 functional to treat homolytic bond cleavage has been

exploited in its application to radical formation reactions [54]. Unfortunately, good

performance of PNOF5 in recovering static correlation in nearly degenerate sys-

tems is paralleled by its insufficient inclusion of the dynamic correlation [49, 57,

58]. Application of the PNOF5 functional for such challenging systems as Cr2, Mo2,

and W2 dimers revealed that, although it yields energies of an accuracy between

that of the CASSCF and CASPT2 methods, the lack of an important portion of

dynamic correlation energy spoils the results [55]. In order to add the missing

interpair dynamic correlation to PNOF5 Piris has considered a second-order

multiconfiguration perturbation theory [59] and has adopted it for a wavefunction

which leads to the PNOF5 energy expression [57]. The method has been named

PNOF5-SC2-MCPT. Quite unexpectedly, its application to description of the

helium dimer has led to a curve with multiple minima. Moreover, homolytic

dissociation of diatomic molecules with the perturbation method resulted in break-

down of the dissociation curves because of singularities in the second-order energy

appearing for quasi-degenerate systems. The former problem has been avoided by

excluding from the perturbative expansion determinants corresponding to double

excitations from spinorbitals of the same spatial parts, whereas singularities have

been eliminated by removing second-order terms corresponding to quasi-

degenerate orbitals [57]. Such a modified perturbation method has been called

PNOF5-PT2. Application of PNOF5-SC2-MCPT and PNOF5-PT2 to the G2/97

test set of molecules has shown that, on average, the methods recover, respectively,

around 80% and 70% of the correlation energy (with respect to Hartree–Fock

energies) [58].

Good performance of the uncorrected PNOF5 for chemical reactions is a con-

sequence of the observation that the functional can also be derived within the
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antisymmetrized product of strongly orthogonal geminals (APSG) theory

[60]. APSG has not only proven to be successful in describing dissociation curves

of singly-bonded molecules [61] but it is also very accurate in predicting equilib-

rium geometries, vibrational frequencies, and dipole moments of diatomic mole-

cules from G2/97 test set [62, 63]. In the APSG theory a wavefunction for an N-
electron system in a singlet state is given by the antisymmetrized product of

geminals {ψP(x2P�1,x2P)}

ΨAPSG x1; . . . ; xNð Þ ¼ Â
YN=2
P¼1

ψP x2P�1; x2Pð Þ; ð59Þ

which are strongly orthogonal, i.e., 8P 6¼Q
ð
ψP x1; x2ð ÞψQ x01; x2

� �
dx2 ¼ 0 [64, 65]. It

can be shown that if geminals are expanded in the natural orbitals {φp(r)}
corresponding to the 1-RDM obtained from the ansatz (59), then the expansion

for each geminal P is diagonal, i.e.,

ψP x1; x2ð Þ ¼ 2�1=2
X
p2P

c pφ p r1ð Þφ p r2ð Þ α 1ð Þβ 2ð Þ � α 2ð Þβ 1ð Þ½ �; ð60Þ

the coefficients {cp} are simply square roots of the corresponding occupation

numbers taken with “+” or “�” sign

8 p n p ¼ c2p ð61Þ

and the strong orthogonality of geminals implies that the sets of orbitals belonging

to individual geminals are disjointed, i.e., each natural orbital belongs to only one

geminal [66]. It should be noted that for a closed-shell two-electron system the

APSG wavefunction is exact and identical with the L€owdin and Shull function

given in (33). The expectation value of the Hamiltonian with the APSG

wavefunction yields the following spin-summed electron–electron repulsion energy

expression

EAPSG
ee f p

� �
; n p

� �
; φ p

� �	 

¼
XN=2
P

X
p, q2P

f p f q
ffiffiffiffiffiffiffiffiffiffi
n pnq
p

pp
��qq� �

þ
XN=2
P 6¼Q

X
p2P, q2Q

n pnq 2 pq
�� pq� �

� pq
��qp� �� �

;

ð62Þ

where {fp} are phase factors of the value +1 or �1. The APSG ground state energy

follows from optimization of the total energy with respect to phase factors, occu-

pation numbers, and the orbitals. Actually, it turns out that typically each geminal is

composed of one strongly occupied orbital of the occupation number greater than

1/2 and a pertinent phase factor f1¼ +1, and all other orbitals, which are weakly
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occupied (np< 1/2), of the corresponding phase factors fp¼�1 [61, 67]. As already
mentioned in Sect. 2.1 for two-electron singlet systems (described within the APSG

theory by one geminal), exceptions to this rule have been observed [36, 39], but

they occur for very weakly occupied orbitals. Practically, fixing the phases in the

APSG functional given in (62) according to the aforementioned rule, instead of

finding them variationally, has only a small effect on the APSG energy. The APSG

functional with the phase factors fixed can be seen as a density matrix functional.

Comparison of the PNOF5 functional defined by (58) and (55) with (62) immedi-

ately reveals that they are identical if the dimension of the expansion space for each

geminal in the APSG approach is limited to 2 and the phase factors of the two

orbitals which form a given geminal are opposite, i.e., f1¼�f2 [60]. Because

PNOF5 is equivalent to such constrained APSG approximation, it inherits its

features from the latter, which explains the good performance of the PNOF5

functional for predicting dissociation energy curves of molecules [47] and the

localized character of its optimal orbitals [68].

Lifting the restriction on the dimensionality of expansion spaces for the geminals

in PNOF5 functional should allow one to recover a part of the correlation energy

missing in this functional. This procedure has been proposed in [69] but clearly

such extended PNOF5 functional (PNOF5e) is identical to the APSG functional

(62) with fixed phases. For PNOF5 and PNOF5e functionals a systematic recon-

struction of the 2-RDM in terms of the 1-RDM has merged with a theory based on

the ansatz for the wavefunction [49]. On one hand this may seem to be a desirable

result – the functionals are N-representable and bound by the exact ground state

energy, but the drawback is that the functionals suffer from the same deficiencies as

the APSG approximation.

An interesting idea that leads to incorporating the dynamic correlation that

PNOF5 lacks has been proposed in [48]. The intrapair correlation is included in

PNOF5 by proposing the elements Δpq (57a) and Πpq (57b) corresponding to

uncoupled orbitals p and q (belonging to different pairs) to be nonzero and

expressing them as functions of the occupation numbers. The new functional,

PNOF6, employs, similarly to PNOF5, a paired-orbitals picture. Compared to

PNOF5, the PNOF6 functional underestimates the dissociation energies to a lesser

degree. Unlike its predecessor, PNOF6 yields delocalized orbitals and it avoids

spatial symmetry breaking of the benzene equilibrium geometry [48].

An ongoing development of natural orbital functionals, PNOF, originating from

reconstruction of 2-RDM in terms of 1-RDM, has already resulted in functionals

competing in accuracy with MP2 method for single-reference systems. Unlike the

MP2 method, the PNOF4, PNOF5, and PNOF6 functionals are useful in describing

potential energy surface also when bonds are stretched and dissociation potential

energy curves are often of the quality of the much more expensive CASSCF

approach.
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2.3 Going Beyond Explicit Density Matrix Functionals

Approximate density matrix functionals discussed so far are explicitly expressed in

terms of natural spinorbitals and natural occupation numbers. Ground state energy

results from minimization of a functional with respect to orbitals and occupancies

under N-representability conditions given in (3)–(5). To afford greater versatility,

over the years efforts have been made to develop functionals the forms of which

involve other quantities than only spectral components of 1-RDM. The quantities

(typically being parameters) are found for a given γ by solving some auxiliary

equations. The overall dependence of such functionals on γ is only implicit.

One of the first functionals of this kind has been proposed by Yasuda [15] who,

by considering a contracted Schr€odinger equation, derived a set of equations

yielding, for given sets {np} and {φp}, values of partially contracted products of

cumulant elements λ (28) and two-electron integrals {hpq|rsi}, i.e.,X
qrs

λpqrs γ½ � rs
�� pq� �

¼ ε p: ð63Þ

The resulting Yasuda correlation functional, cf. Eq.(29), Ec[γ]¼∑pεp[γ] is there-
fore implicitly dependent on spectral components of γ. Parameters {εp} are found

from a set of auxiliary equations. Despite the fact that the Yasuda correlation

functional possesses a number of desirable features, i.e., it satisfies the exact

conditions given in (30) and (31), it gives rise to dispersion interaction [70] and

recovers a logarithmic divergence of the correlation energy of the homogeneous

electron gas in high-density limit [71], its usefulness in practical electronic struc-

ture calculations has been undermined by showing that it does not seem to be bound

from below even for two-electron systems [72].

Quite a different approach has been assumed in [41, 73–76] where explicit

density matrix functionals have been derived by assuming a configuration interac-

tion (CI) ansatz for a wavefunction and parameterizing CI coefficient. In all cases

the CI wavefunctions were such that the resulting expression for the energy

involved only Coulomb and exchange two-electron integrals. Because the former

integrals are often denoted with the letter J and the latter with K, the functionals

involving only these two types of integrals are sometimes called “JK-only” func-

tionals. The idea of constructing functionals by parameterizing the CI ansatz is

evidently directly related to the Levy constrained search functional (9) which for

the CI wavefunction

Ψ ¼
X
I

CIΦI; ð64Þ

where {ΦI} is a set of Slater determinants, turns into

ECI
ee γ½ � ¼ min

C!γ
Ψ Cð Þ

��V̂ ee

��Ψ Cð Þ
� �

: ð65Þ
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C stands for a vector of all CI coefficients and the minimization in the functional

(65) is carried out with respect to all vectors C corresponding to the assumed ansatz

for a wavefunction (64) which yield a given density matrix γ. Were the expansion in

(64) complete, the functional (65) would be exact, i.e., it would be equivalent to the

Levy functional (9). Otherwise, for truncated CI expansion, the functional is only

approximate. The strategy adopted in [41, 73–76] was to use a CI ansatz leading to a

“JK-only” approximation and to replace the whole set of the CI parameters by

auxiliary variational matrices, say A and B, such that the functional (65) turns into

Eee n p

� �
; φ p

� �	 

¼ min

A,B!n

X
pq

A pq pq
�� pq� �

þ
X
pq

B pq pq
��q p� �( )

; ð66Þ

where the two-electron integrals are computed with the natural spinorbitals {φp}.
The minimization is done with respect to the matrices A, B constrained to yield a

given vector of occupation numbers n and to satisfy some conditions, for example

conditions imposing size-consistency on the functional. If the conditions are such

that there is a mapping from A and B to the CI coefficients C, the functional given

in (66) is variational, i.e., it constitutes an upper bound to the functional (65) and the

exact Levy functional (9). If, however, the matrices A, B are constructed to ensure

that the underlying 2-RDM only satisfies some of the necessary N-representability
conditions, the functional (66) is not necessarily variational. The main advantage of

replacing functionals (65) with approximations (66) is to obtain a more efficient

method than CI, because the complex objects (CI coefficients) are replaced by

matrices of much smaller dimensionalities. Moreover, if the starting CI ansatz (64)

is not size-consistent, the proposed reparameterization in terms of A, B could

restore this property (but then variationality is lost).

In [74] Kollmar and Hess considered a CI wavefunction being a combination of

a closed-shell reference Slater determinant Φ0 and determinants arising from Φ0 by

doubly exciting electrons from spinorbitals of the same spatial parts to virtual

orbitals also sharing spatial functions, i.e., Φaαaβ
iαiβ

, where i and a stand for, respec-

tively, occupied and unoccupied orbitals in the reference state. Such an ansatz leads

to an energy expression involving only Coulomb and exchange integrals but it lacks

size-consistency. To recover this property a normalization condition has been

replaced by a new condition on the CI coefficients. The resulting functional of

the form of (66) has been applied to the description of symmetric dissociation of

water molecule which has led to a potential energy curve of a reasonable shape. At

the same time, it became evident that the functional misses dynamic correlation.

In [41] the most general form of the closed-shell CI wavefunction which leads

only to Coulomb and exchange integrals in the energy expression has been consid-

ered. The wavefunction can be called pair-excited CI because it includes all

possible Slater determinants, each built of N/2 spatial orbitals entering a determi-

nant with the α and β spin component, i.e.,
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Ψ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=2ð Þ!

p X
QN=2

AQN=2
ϕq1
ϕq1
� � �ϕqN=2

ϕqN=2

��� ���; ð67Þ

where QN/2¼ q1,. . .,qN/2 is a string of indices, and ϕq1ϕq1� � �ϕqN=2ϕqN=2

��� ��� is a Slater
determinant built of N/2 elements from the set of one-electron spatial functions

{ϕp}. The coefficients AQN=2

n o
are symmetric with respect to exchanging two

indices in a string QN/2 and they satisfy a normalization condition. The

wavefunction (67) is size-consistent and it yields a diagonal 1-RDM, i.e.,

γ pq ¼ 2δ pqN
X
QN=2�1

A pQN=2�1

� �2
¼ 2δ pqn p: ð68Þ

Therefore one immediately recognizes that the orbitals {ϕp} are simply the natural

orbitals, i.e., φ p rð Þ	ϕ p rð Þ. As already mentioned, another property of the ansatz

(67) is that the spin-summed electron interaction part of the corresponding energy

reading

Eee ¼
X
pq

F pq 2 pq
�� pq� �

� pq
��q p� �	 


þ
X
pq

G pq pp
��qq� �

; ð69Þ

where

F pq ¼
N

2

N

2
� 1

 �X
QN=2�2

A pqQN=2�1

� �2
; ð70Þ

Gpq ¼
N

2

X
QN=2�1

A pQN=2�1AqQN=2�1 ; ð71Þ

takes a simple “JK-only” form. A reparameterization of the energy expression (69)

proposed in [41] consists of replacing the coefficients {AQN/2} by a new variational

object: an idempotent matrix ω having occupation numbers on its diagonal and

additional phase factors f QN=2

n o
(of values 1 or �1). The parameterization pre-

serves the variationality of the energy so the resulting functional

Eee γ½ � ¼ min
ω!n

min

f QN=2

n o X
pq

F pq ωð Þ 2 pq
�� pq� �

� pq
��qp� �	 
(

þ
X
pq

G pq ω; fQN=2

� �
pp
��qq� �) ð72Þ
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is a strict upper bound to the exact energy functional. A large number of possible

phase factors makes minimization of the functional practically impossible. Intro-

ducing some fixed pattern for signs of those factors could destroy variationality of

the functional. This has been called a “phase dilemma” in [41] and identified as a

serious bottleneck in constructing density matrix functionals. A functional free of

the phase factors has been obtained by Kollmar and Hess by reconstructing 2-RDM

in terms of 1-RDM by imposing N-representability condition (a strategy similar to

the one adopted in construction of PNOF functionals presented in Sect. 2.2

[75]). The Kollmar–Hess functional is identical to (72) if a simple approximation

for phase factor products is assumed [41]. The functional is therefore not variational

in general (except for two-electron systems for which the functional is exact).

Numerical applications showed that it is very accurate for four-electron systems

[75]. The results for water molecule undergoing symmetric dissociation are much

less satisfactory. They are very close, however, to those corresponding to the

closed-shell MC-SCF approach with the CI ansatz given in (67). One can therefore

conclude that the phase dilemma is not such a serious limitation if a proper model is

assumed for the phase factors. Another confirmation of this conclusion comes from

considering the exact functional for a two-electron closed-shell system which is a

special case of the functional given in (72) for N¼ 2. As has already been men-

tioned, fixing the signs of the phase factors corresponding to the weakly occupied

orbitals to be opposite to the sign of the phase factor associated with the strongly

occupied orbitals leads to only a small change in the energy.

In [76] it has been shown that a computationally hard MC-SCF problem can be

replaced by the optimization of a simple 1-RDM functional which parallels the

MC-SCF method in accuracy. However, it has also been pointed out that the ansatz

(67), i.e., the best possible wavefunction leading to a “JK-only” expression for the

energy (67), recovers only a small fraction of the correlation energy for systems as

small as a ten-electron molecule. Any variational (or based on an N-representable
2-RDM) “JK-only” functional suffers from the same deficiency. The density matrix

functionals tested in [76] developed by imposing basic necessary N-representability
conditions on the underlying 2-RDM do not recover more correlation than the

wavefunction-based approach, even though they are not variational. In other words,

results of parallel accuracy are obtained by minimizing the CI energy given by

(69)–(71) with respect to the CI coefficients and the orbitals {ϕp} and by optimizing

“JK-only” functionals proposed as approximations to (69) [76]. This poses a

question as to whether the pair-excited CI ansatz (67) is a good starting point for

developing functionals. This question is addressed in Sect. 6.

Apart from the implicit density matrix functionals discussed earlier which

involve some auxiliary parameters, cf. (66), a promising class of functionals

depending on γ and electron density ρ has been proposed by combining density-

functional and density matrix functional theory [77, 78]. The method is based on the

range-separation of electron–electron interaction operator, V̂ ee, into short- and

long-range parts, V̂ sr
ee and V̂ lr

ee, respectively [79, 80]. Dynamic correlation energy

should mostly be described by the short-range density functional, and static
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correlation energy by the long-range density matrix functional. A formal definition

of the exact range-separated functional is possible by exploiting Levy constrained-

search construction [4] and it reads [77]

E γ½ � ¼ T γ½ � þ Vext ργ
	 

þ Elr

ee γ½ � þ Fsr ργ
	 


; ð73Þ

where the long-range functional is defined analogously to the full-range functional

in (9), namely

Elr
ee γ½ � ¼ min

Ψ!γ
Ψ V̂ lr

ee

�� ��Ψ� �
; ð74Þ

ργ is a diagonal part of the density matrix γ and the definition of the short-range

universal density functional Fsr also employs Levy constrained search construction.

Partitioning the long- and short-range functionals into Hartree and exchange-

correlation parts results in obtaining the following srDFT-lrRDMFT energy

functional

E γ½ � ¼ T γ½ � þ Vext ργ
	 

þ EH ργ

	 

þ Elr

xc γ½ � þ E sr
xc ργ
	 


: ð75Þ

Ground state energy follows from minimizing the range-separated functional with

respect to N-representable γ. A short-range PBE exchange-correlation functional

[81] has been used for Esr
xc[ρ]. This is a short-range version of the PBE functional

derived for the error function employed in range-separation of electronic interac-

tion. The long-range density matrix functional, Elr
xc, has been approximated by the

long-range BB functional ElrBB
xc obtained by simply replacing two-electron integrals

in the full-range BB functional, cf. (20), by their long-range counterparts, namely

the spin-summed expression which reads

E lrBB
XC γ½ � ¼ �

X
pq

ffiffiffiffiffiffiffiffiffiffi
n pnq
p

pqjqph ilr; ð76Þ

pqjqph ilr ¼
ðð
φ*p r1ð Þφ*q r2ð Þ

erf μr12ð Þ
r12

φq r1ð Þφ p r2ð Þdr1dr2; ð77Þ

where r12¼ |r1� r2| and erf stands for the error function. Both short- (sr) and long-

range (lr) functionals involve a range-separation parameter μ, the value of which

has been empirically chosen to be 0.4 bohr�1. Such an obtained srPBE-lrBB

functional has been applied to a few diatomic molecules and, in contrast to full-

range BB or PBE functional, the range-separated density matrix functional turned

out to be capable of reproducing correct dissociation energy curves [78]. Another

direct advantage of range-separated functionals over full-range density matrix

functionals is that the former, unlike the latter, are weakly basis set dependent

which adds to their favorable computational efficiency.
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2.4 Empirical Density Matrix Functionals

Approximate density matrix functionals cannot be rigorously derived. Rather, the

form of the functional is proposed by taking into account properties of the exact

functional. The applicability of density matrix functionals is not limited to finite

systems (atoms and molecules); in principle, most of them could also be applied to

solids. However, functionals such as BBC, AC3, or the recent PNOF approxima-

tions account for a sophisticated interplay between orbitals which is necessary to

predict bond stretching and breaking. It is therefore not so surprising that perfor-

mance of BBC1 and BBC2 functionals for a model extended system, namely the

homogeneous electron gas (HEG), is quite poor. The accuracy of predicted corre-

lation energy and the quality of momentum distribution for the HEG described with

these functionals are unsatisfactory even for metallic densities. Admittedly, they

still perform better than the other simple density matrix functionals defined in (20)

and (23) such as BB or CHF [82, 83]. It should be noted that an exact exchange-

correlation density matrix functional working for the HEG is not known even for a

high-density limit, which is the reason why this system does not serve as a starting

point for developing new density matrix functionals. In order to develop functionals

for extended systems one could try introducing some empirical parameters into

known approximate functionals and fitting them to experimental data.

Such an approach has been tried in [82, 84–86]. Adopting plane-waves as natural

orbitals of the homogeneous electron gas turns a spectral representation of 1-RDM

into

γ r; r0ð Þ ¼ 2

V

X
k

n kð Þeik� r�r0ð Þ; ð78Þ

where k¼ |k|, n(k) is called momentum distribution, and V is the volume of the

system (V!1). BBC functionals, cf. (41)–(43), developed for molecules involve

in their definition partitioning natural orbitals into strongly and weakly occupied,

which is based on the value of the pertaining occupation number. A straightforward

generalization of the BBC functionals to extended systems would assume

establishing a type of the natural orbital (a plane wave) on the basis of the k-number

i.e., whether it is smaller or greater than some reference value kc [82]. The most

obvious choice would be kc¼ kF, where kF is the Fermi wave vector. As mentioned

before, this choice implemented in the BBC1 or BBC2 functionals does not lead to

accurate correlation energy of HEG. Lathiotakis et al. proposed two variants of the

BBC1 modifications [82]. In the first, kc was treated as a parameter, whereas the

second variant assumes keeping kc¼ kF, multiplying the exchange-correlation

terms of the BBC1 functional corresponding to two weakly occupied orbitals by a

parameter s (s-functional). In both cases, values of parameters were chosen to

reproduce the exact correlation energy of HEG. Unfortunately, momentum distri-

butions resulting from such proposed functionals obtained for metallic densities,

even though they show discontinuity, quantitatively still deviate strongly from the

Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time. . . 149



accurate references. Adaptation of the s-functional developed for the electron gas to
finite systems has led to surprisingly accurate values of energy for molecules at

their equilibrium geometry but it has been also revealed that the functional is not

size-consistent and it fails in the description of potential energy curves [85].

Motivated by the fact that the exchange-correlation functional (18) in many

density matrix functionals is approximated by an expression involving only

exchange integrals multiplied by factors depending on two pertinent occupation

numbers, i.e.,

Exc γ½ � ¼ �
1

2

X
pq

G n p; nq
� �

pq
��q p� �

; ð79Þ

Marques and Lathiotakis (ML) proposed to find the function G fully empirically by

using a Padé approximant depending on a variable x¼ npnq [87]. Coefficients in the
Padé approximant were found by minimizing the error of the correlation energies of

selected test-molecules. Computing the correlation energies of molecules in a G2

test with different methods has revealed that the empirical ML functional is on

average the most accurate of all functionals tested, competing with or being

superior to the MP2 method [87]. However, because the exchange-correlation

part depends only on products of two occupation numbers, it inevitably lacks the

structure needed to describe the breaking of a two-electron bond. The ML func-

tional is not appropriate for describing molecules at geometries far from their

equilibrium.

In the quest to develop a computationally efficient 1-RDM functional which is

useful for solids, a very simple idea has been proposed and leads to remarkable

results. The first and simplest approximate density matrix functional proposed is the

BB functional (also known as the Müller functional) [18, 19], cf. (20). Müller has

arrived at the particular form for the exchange-correlation functional given in (18)

by considering a generalization of the Hartree–Fock exchange functional (17),

which assumes replacing |γ(x, x0)|2 present in the HF two-particle density matrix

and, consequently, in the functional (17), by a product γ1�α(x, x0)γα(x, x0)*. The
power α was constrained to belong to the interval h0, 1i, to assure convexity of the

functional and integrating of the corresponding exchange-correlation hole to �1
[18]. The BB functional results from choosing α¼ 1/2. Sharma et al. proposed to

consider an approximate exchange-correlation functional of the form [84]

Eαxc γ½ � ¼ �
1

2

X
pq

n pnq
� �α

pq
��q p� �

; ð80Þ

that for α¼ 1 is just an exchange Hartree–Fock functional (17) whereas for α¼ 1/2

it turns into a BB form (20). It should be mentioned that a 2-RDM

Γpqrs ¼ n pnqδ prδqs � n pnq
� �α

δpsδqr; ð81Þ
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giving rise (via (26)) to the exchange-correlation power functional (80) satisfies the

sum rule (48) only for α¼ 1/2. Application of the power functional to the homo-

geneous electron gas revealed that momentum distribution resulting from the

functional optimization not only lacks a step structure but is very different from

the exact distributions in general [83, 88]. Even though the power functional does

not recover the exact high-density limit of the correlation energy of the HEG [83,

89], it has been shown that with a carefully chosen value of α it is possible to obtain
rather accurate values of the correlation energy for this system in the broad range of

densities [86]. Moreover, the power functional performs remarkably well in

predicting accurate band gaps of semiconductors and insulators [84]. The test set

included materials of covalent or ionic character with band gaps ranging from 1 to

14.2 eV. It is striking that all these systems are incorrectly predicted to be metallic if

described with the α¼ 1/2 power functional, whereas choosing α¼ 0.65 or α¼ 0.7

results in obtaining nonzero gaps deviating on average from experimental values by

less than 10%. Reducing α below the value 0.65 leads to zero energy gap for some

materials, so it seems the range of admissible values of α is quite narrow.

Performance of the simple power functional (80) with α 2 (0.65, 0.7) when

applied to transition metal oxides (TMO) is even more impressive. TMOs can be

regarded as prototypes of strongly correlated Mott insulators, the nonzero band gap

of which is a result of strong Mott–Hubbard correlations. Most approximate density

functionals incorrectly predict TMO to be metallic. The power density matrix

functional, however, yields finite values for band gaps of nonmagnetic TMOs,

although deviations of the computed gaps from their experimental counterparts

are larger than in the case of conventional insulators [84]. Sharma et al. also showed

that apart from band gaps the power functional is capable of accurately predicting

other properties of solids such as equilibrium lattice constants. Another successful

application of the power functional includes predicting the photoelectron spectra of

strongly correlated Mott insulators within a density matrix functional method

proposed in [90]. Despite its very simplistic form, the power functional has been

shown to be a useful tool for studying solids, including those for which most density

functionals provide unreliable results.

3 Predicting Properties of Electronic Systems with Density

Matrix Functionals

Reduced density matrix functionals give immediate access to total energies of

systems under investigation and, because the 1-RDM is known, to expectation values

of local or nonlocal one-electron operators. However, in recent years a number of

methods have been formulated within RDMFT allowing one to obtain properties of

systems which are not mere traces of products of 1-RDMwith one-electron operators.

The properties accessible within static RDMFT include second- and higher-order

static response properties, photoelectron spectra, or fundamental gaps.
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3.1 Response Properties

Response properties follow from RDMFT by considering a one-electron perturba-

tion of the strength λ

Ĥ 0 ¼
XN
i

ŵ λ; xið Þ; ð82Þ

where λ¼ 0 corresponds to the lack of perturbation [91]. Because 1-RDM is

obtained variationally, the Hellman–Feynman theorem is satisfied and the first-

order response properties result from taking a trace of 1-RDM with the first-order

perturbation, i.e.,

∂E γ½ �
∂λ
¼
X
p

n p φ p

∂ŵ
∂λ

���� ����φ p

� �
; ð83Þ

where the occupancies {np} and the natural spinorbitals {φp} correspond to

unperturbed γ. Second-order properties are given by the expression (valid for real

orbitals)

∂2
E γ½ �
∂λ2

¼
X
p

n p φp
∂2

ŵ

∂λ2

�����
�����φp

* +
þ
X
pq

n 1ð Þ
p δ pqþ nq�n p

� �
U 1ð Þ

pq

h i
φp

∂ŵ
∂λ

���� ����φp� �
; ð84Þ

where {n
ð1Þ
p } and U(1) are components of the first-order response of γ, namely

γ 1ð Þ
pq ¼ n 1ð Þ

p δ pq þ nq � n p

� �
U 1ð Þ

pq : ð85Þ

They can be found by solving a set of linear coupled-perturbed equations [91]. If the

perturbation is particle-number-conserving then a condition must be imposed that a

sum of perturbations {n
ð1Þ
p } vanishes. Applying the response equations to compute

the static polarizabilities has revealed that even functionals which perform well in

predicting energies of atoms and diatomic molecules, e.g., BBC3, do not provide

satisfactory results for the second-order response properties [91]. The values for

polarizabilities are of comparable or even worse quality than those obtained within

the coupled-perturbed Hartree–Fock method [91]. Much more encouraging results

have been obtained for hyperpolarizabilities of the H2 molecule using the PNOF5

functional within a finite field approach [92]. Good accuracy could have been

expected though, because the PNOF5 functional, cf. (58), is equivalent to the

two-electron functional (39) if the number of orbitals with nonzero occupancy is

restricted to two [60]. Despite this constraint, the PNOF5 functional captures the

right physics of two-electron systems.
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3.2 Ionization Potentials

A number of methods for predicting vertical ionization potentials (IPs) have been

proposed within RDMFT. The most straightforward approach involves performing

calculations of energies for a neutral and ionized species [93–95]. Apart from the

fact that such multiple calculations are time consuming, it has been pointed out in

[95] that inaccuracy may arise because of different treatment of closed- and open-

shell systems in RDMFT.

Another way of computing IPs is provided by the Extended Koopmans’ Theo-
rem (EKT) which connects 1- and 2-RDM of a Coulombic system with its ioniza-

tion potentials [96–98]. It has been shown in [99] that the Lagrangian matrix λ
related to imposing orthonormality of the natural orbitals in optimizing a density

matrix functional, reading

λ pq ¼ n phqp þ
ð
δEee γ½ �
δφ*p xð Þφ

*
q xð Þdx; ð86Þ

is equivalent to the generalized Fock matrix of the EKT equations. This implies that

diagonalization of a Hermitian matrix Λ defined as

Λ pq ¼ �
λ pqffiffiffiffiffiffiffiffiffiffi
n pnq
p ð87Þ

yields IPs as eigenvalues. For small molecules the BBC and GU functionals

employed in the EKT formalism yield ionization energies with errors with respect

to experimental references of the order of 4–6%. Similar accuracy has been

obtained with the PNOF functionals [93, 100]. On average the accuracy is higher

than that of the standard Koopmans’ theorem.

The EKT method is not practical for solids as it would require diagonalization of

a very large matrix. Sharma et al. proposed an alternative method [90]. This consists

of assigning to each natural spinorbital an orbital energy εp obtained as a derivative
of the total energy with respect to the pertinent occupation np. The derivative is

taken at np¼ 1/2 with the rest of occupation numbers set equal to their ground state

optimal values, i.e.,

ε p ¼
∂E γ½ �
∂n p

����
n p¼1=2

: ð88Þ

Employing orbital energies obtained in this way for predicting densities of states of

transition metal oxides has led to excellent agreement with experimental data. The

orbital energies defined in (88) have also been used as approximations to ionization

energies and electron affinities of molecules. Performance of density matrix func-

tionals within such an approach is satisfactory and for IPs the errors are of the same

order as those obtained from the much more theoretically grounded EKTmethod [95].
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A central feature of one-electron approximations such as Hartree–Fock or

Kohn–Sham DFT methods is existence of an effective Hamiltonian, the spectrum

of which provides approximate ionization potentials. In HF this approximation is

justified by Koopmans’ theorem. In the KS-DFT formulation, although only the

negative of the HOMO orbital energy yields the exact first IP if the exact potential is

employed, it has been shown and theoretically justified that other orbital energies of

occupied orbitals also approximate well ionization potentials, on condition that an

accurate potential with a correct asymptotics is employed in KS equations [101,

102]. In RDMFT the effective Hamiltonian whose eigenfunctions correspond to

natural spinorbitals also exists but its spectrum is infinitely degenerate [1, 103].

Recently, however, a local reduced density matrix functional method has been

proposed which, for a given functional, searches for an optimal local potential, such

that eigenfunctions of the corresponding effective Hamiltonian minimize a func-

tional (for a fixed set of the occupation numbers) [104]. Although formulation of the

local variant of RDMFT is not theoretically grounded, it offers at least two

advantages over the standard optimization of the density matrix functional via a

nonlocal potential. The first is better computational efficiency of the optimization of

the energy functional (see Sect. 4). The other advantage is that local RDMFT

formulation yields approximations to IPs as eigenvalues of the effective Hamilto-

nian with a local potential. Namely, it has been shown that photoelectron spectra of

molecular systems obtained from the local-RDMFT with the BB [19], BBC3 [27],

power [84], and empirical functional of Marques and Lathiotakis [87] compare well

with experiment and are superior to spectra obtained from the Hartree–Fock

Koopmans’ method [105].

3.3 Fundamental Gap

Another quantity of key importance for solids accessible in RDMFT is the band gap

or more generally the fundamental gap, which is defined as the difference between

the ionization potential I and the electron affinity A as

Δ ¼ I � A: ð89Þ

Helbig et al. proved that within exact formulation of RDMFT a Lagrange multiplier

μ, used to impose the normalization condition (5) on the occupation numbers in

variational equations, possesses a discontinuity at integer particle numbers. This

discontinuity amounts to the fundamental gap [106, 107], i.e.,

Δ ¼ lim
η!0

μ N þ ηð Þ � μ N � ηð Þ½ �: ð90Þ

A system with a fractional number of electrons N+ η should be understood as an

ensemble of N- and (N + 1)-electron states mixed with the corresponding weights

1� η and η so that the 1-RDM of the ensemble reads
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γNþη ¼ 1� ηð ÞγN þ ηγNþ1; ð91Þ

where 0� η� 1, and γN and γN+1 are one-electron reduced density matrices

corresponding to N- and (N+ 1)-electron states. γN+η is normalized to N + η. Nec-
essary and sufficient N-representability conditions for γN+η, i.e., conditions under
which there is a link between a density matrix γN+η with a fractional number of

electrons and an ensemble of N- and (N + 1)-states, have been a proved [108]. They

are of the same form as N-representability conditions for an integer-particle system,

namely ∑pnp¼N + η and 8p 0� np� 1.

To find a chemical potential (a Lagrange multiplier) μ(N + η) one just carries out
minimization of the density matrix functional under standard N-representability
conditions, imposing the normalization of {np} to N + η. Applying approximate

functionals to estimation of the fundamental gap of finite systems shows that μ does
not possess a discontinuity. However, for functionals with self-interaction removed,

e.g., the GU functional, μ plotted as a function of η displays a steep increase close to
η¼ 0. This increase usually begins with a kink of the function μ (η) which occurs for
η larger than 0 [106–108]. Its origin is related to the fact that by adding excess

charge η the “HOMO” natural orbital (the orbital whose occupation number is the

smallest among all strongly occupied orbitals) is filling up till its occupancy reaches

1. Increasing η further, the “LUMO” natural orbital (the orbital whose occupation

number is the largest among all weakly occupied orbitals) begins increasing its

occupancy which shows up on a μ(η) plot as a kink from which a steep increase of μ
begins. Taking into account the origin of the step-like structure of μ for approximate

functionals, it is rather surprising that a crude extrapolation of μ from large η (close
to 1) to small η (close to 0) provides very reasonable estimations for the gaps [106,

107]. Formulation of the method for computing Δ within the open-shell RDMFT

leads to obtaining a more pronounced step-like structure of the chemical potential

μ, which makes the process of estimating Δ by extrapolating less ambiguous [107].

As mentioned in Sect. 2.4, satisfactory band gaps have been obtained for semi-

conductors, insulators, and even Mott insulators by employing the aforementioned

method of finding approximate discontinuity of μ, cf. the formula (90), together

with the power functional (80) [84]. Clearly, for periodic solids, the energy and the

number of electrons are infinite and adding a charge η to each unit cell would result
in an infinitely charged unstable system. It has therefore been proposed in [84] to

find band gaps by adding excess charge η per unit cell and, at the same time, adding

a constant charge background to keep the total system charge neutral. A band gap

corresponds to a difference eμ η! 0þð Þ � eμ η! 0�ð Þ, where eμ ¼ ∂eEVþδv ηð Þ=∂η
and eEVþδv is the energy per volume unit computed self-consistently at the external

potential V with the charge neutralizing potential δv added. A chemical potential

obtained with the power functional lacks the discontinuity but its curvature changes

the sign around η¼ 0 for nonmetallic systems. It allows the estimation of band gaps

by constructing two tangent lines [84].
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4 Optimization of Density Matrix Functionals

As mentioned in the introduction, the RDMFT approximations, apart from being

accurate, are expected to be competitive with one-electron methods in terms of

computational efficiency. RDMFT is based on the variational principle given in

(11) according to which a ground state energy of a given system can be obtained by

minimizing the energy functional on the set of N-representable density matrices.

Thus, the optimization is of the constrained-type, because it must take into account

N-representability conditions provided in (3)–(5). Because the conditions are given
in the forms of equalities and inequalities involving eigenvalues and eigenvectors

of 1-RDM, it implies that imposing N-representability conditions would require

carrying out diagonalization of γ even for explicit functionals of γ.
An efficient algorithm offering optimization of the functional directly with

respect to the whole density matrix or its square root has been proposed

[109]. The N-representability of γ is imposed in each iteration step by projecting

γ resulting from unconstrained directional optimization onto the space of N-repre-
sentable 1-RDMs. An advantage of the proposed projected gradient algorithm is

that, because the gradient is taken with respect to the elements of γ, changes in

natural orbitals are coupled with variations of the occupancies which should lead to

faster convergence. The proposed projection algorithm has been shown to work

efficiently for Hartree–Fock (15) or BB (20) functionals. For other functionals,

which are given in terms of orbitals and occupation numbers and are not proper

functionals of γ (e.g., GU or BBC functionals), it is still possible to compute the

gradient with respect to γ but the projected gradient algorithm converges disap-

pointingly slowly [109].

The most robust and universal optimization approach consists of minimizing a

functional with respect to the natural orbitals and the natural occupation numbers

successively in separate steps. Natural orbitals are typically parameterized using,

for a given orthonormal basis set {χa}, the exponential function of a skew-

symmetric matrix X, i.e.,

φ ¼ eXχ ð92Þ

which assures orthonormality of the orbitals φ, cf. (3), [26, 27]. To satisfy the N-
representability condition given in (4) the natural occupation numbers may be

parameterized by cosine functions, namely 8p np¼ cos2(xp) where parameters

{xp} are unconstrained. The normalization condition (5) is taken into account by

means of a Lagrange multiplier. A bottleneck of a two-step procedure is optimiza-

tion of the orbitals. It takes many iterations to meet tight convergence criteria,

because energy is almost completely insensitive to variations of very weakly

occupied orbitals.

Because of unsatisfactory efficiency of the gradient orbital optimization algo-

rithms, efforts have been made to turn the optimization problem for orbitals into an

eigenproblem for an effective Hamiltonian [1, 103, 110–113]. For a given
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functional and a fixed set of the natural occupation numbers, a one-electron

Hamiltonian can be constructed in a self-consistent way such that its eigenfunctions

minimize the functional (for fixed occupancies) [103, 110, 112]. The problem is

that the self-consistent procedure of calculating orbitals from diagonalization of the

effective Hamiltonian is highly divergent [103]. Moreover, the spectrum of this

Hamiltonian is infinitely degenerate if it is constructed from optimal natural orbitals

and occupation numbers. However, by proper combination of level-shifting and

scaling off-diagonal elements of the Hamiltonian matrix, optimal orbitals can be

obtained from iterative diagonalization [103, 111]. Such an approach does not,

however, seem to surpass gradient methods significantly in terms of speed of

convergence.

It has recently been proposed to employ an optimal effective potential (OEP)

method formulated originally for optimization of orbital-dependent density func-

tionals [114, 115] in RDMFT [104]. For a given density matrix functional, a local

potential is sought such that its orbitals minimize the functional for fixed occupa-

tion numbers. The main difference from the above-mentioned scheme which

employs a nonlocal Hamiltonian is that in local-RDMFT the potential is

constrained to be local and to possess proper asymptotic behavior. Replacing a

nonlocal potential with a local one and employing the OEP approach formulated

originally for DFT (cf. [116]) leads to an efficient optimization method which

enlarges scopes of applicability of the density matrix functionals to larger mole-

cules and provides good estimations for the ionization potentials [105]. These

advantages notwithstanding, it should also be noted that there is no theoretical

justification for local-RDMFT. Moreover, by definition, the method does not

provide a solution to the original variational problem given in (11) and for a

given functional the optimal energy resulting from the local method is higher

(although not much) than that obtained by solving the “nonlocal” RDMFT optimi-

zation problem [104].

5 Time-Dependent RDMFT

The extension of ground state RDMFT to the time domain was recently considered

[117–121]. The main motivation to develop time-dependent RDMFT

(TD-RDMFT) is the poor performance of time-dependent DFT (TDDFT) in the

adiabatic approximation in combination with the approximate ground state density

functionals. The best known failure is the inability of approximate TDDFT to

capture charge transfer excitations [122, 123], though this deficiency has been

remedied with some success using range-separated hybrid functionals [123, 124]

and by an explicit reconstruction of the spatial divergence in the kernel [125,

126]. Other failures of adiabatic TDDFT are bond-breaking excitations which are

predicted to be too low in energy upon dissociation (they can even go to zero) [127,

128] and a lack of double excitations [128–130]. All these failures are connected to

the inability of approximate adiabatic density functionals to deal with static
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correlation effects. Because approximate 1-RDM functionals have been quite

successful in dealing with static correlation effects on the ground state level, we

also expect an improvement for the calculation of excitations when using the full

1-RDM in our formalism instead of only the density. It turns out, however, that the

formulation of a satisfactory adiabatic approximation in TD-RDMFT is not as

straightforward as in TDDFT. Most of the research has therefore been done on

formulating an adequate adiabatic approximation, so the formulation of an adia-

batic approximation forms the major content of this TD-RDMFT section.

5.1 Equation of Motion of the 1-RDM

The time-dependent 1-RDM is obtained by using the time-dependent wavefunction

in the definition of the 1-RDM (1)

γ x, x0; tð Þ ¼ N

ð
� � �
ð
Ψ
�
x, x2, . . . , xN; t

�
Ψ∗ x0; x; . . . ; xN; tð Þdx2� � �dxN: ð93Þ

The equation of motion for the 1-RDM is readily obtained from the time-dependent

Schr€odinger equation

i∂tγ x; x0; tð Þ ¼ ĥ x; tð Þ � ĥ x0; tð Þ
� �

γ x; x0; tð Þþð
1

r� r2j j �
1

r0 � r2j j

 �
Γ xx2, x

0x2; tð Þdx2;
ð94Þ

where ∂t denotes a time derivative and the time-dependent 2-RDM is defined as

Γ x1x2, x
0
1x
0
2; t

� �
¼ N N � 1ð Þ

ð
� � �
ð
Ψ x1; x2; x3; . . . ; xN; tð Þ

�Ψ* x01; x
0
2; x3; . . . ; xN; t

� �
dx3 . . . dxN:

ð95Þ

So we find that we need the 2-RDM to determine the evolution of the 1-RDM. It

turns out that the evolution of the 2-RDM is coupled to the 3-RDM and so on, till we

hit the full N-RDM. This chain of p-RDMs coupled to each other is known as the

Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy [131–137]. To be

of any practical use, the BBGKY hierarchy needs to be truncated at some level. In

TD-RDMFT the hierarchy is truncated already at the level of the 1-RDM and it is

assumed that the time-dependent 2-RDM is a functional of the 1-RDM, Γ[γ]. For
Hamiltonians with only local potentials, we know from the Runge–Gross theorem

[138] and its extension [139, 140] that this is indeed true, because all observables

are already functionals of the density, so they are also functionals of the 1-RDM.

The use of density for the formal foundations of TD-RDMFT is not satisfactory,

however, because we would have to limit ourselves to local-potential representable
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1-RDMs. The formulation of a solid foundation for TD-RDMFT which allows for

non-local potentials is still an open challenge.

The time-dependent 1-RDM can be diagonalized at each time t, allowing one to

consider the time-dependent natural spinorbitals, φp(xt), and time-dependent occu-

pation numbers, np(t). The equation of motion for the 1-RDM (94) can be trans-

formed to the time-dependent natural spinorbital basis, which gives the equations of

motion for the natural spinorbitals and occupation numbers separately [118, 119]

i nq tð Þ � n p tð Þ
� �

φ p tð Þj _φq tð Þ
� �

¼ nq tð Þ � n p tð Þ
� �

h pq tð Þ þ W{
pq tð Þ �W pq tð Þ

� �
8 p6¼q,

ð96aÞ

i _n p tð Þ ¼ W{
pp tð Þ �Wpp tð Þ

� �
; ð96bÞ

where the dot indicates a time-derivative and we introduced a short-hand notation

for the partial contraction of the 2-RDM with the two-electron integrals

W pq tð Þ ¼
X
rst

Γprst tð Þ st
��qr� �

tð Þ: ð97Þ

It should be noted that the two-electron integrals are also time-dependent here,

because they are evaluated with the time-dependent natural spinorbitals.

5.2 Time-Dependent Response Equations

The time-dependent response equations can be derived from the equation of motion

of the 1-RDM (96) by considering a small time-dependent perturbation to a

stationary system, with the stationary 1-RDM γ0. The first-order perturbation in

the 1-RDM is directly related to perturbation in the natural spinorbitals and

occupation numbers as [compare with (85)]

δγ pq tð Þ ¼ δn p tð Þδ pq þ nq � n p

� �
δUpq tð Þ; ð98Þ

where the indices refer to the natural spinorbital basis at t¼ 0 and

δUpq(t)¼hφp|δφq(t)i. Collecting the perturbations in all the quantities up to first

order, we obtain the first-order time-dependent response equation for the 1-RDM

iδ _γ pq tð Þ ¼
X
r

h pr tð Þδγrq tð Þ � δγ pr tð Þhrq tð Þ
� �

þX
rs

ð1
�1

K pq, rs γ
0

	 

t� t0ð Þδγrs t0ð Þdt0 þ nq � n p

� �
δv pq tð Þ:

ð99Þ
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The response matrix K[γ0](τ) is the coupling matrix defined as [117, 119, 121,

141, 142]

K pq, rs γ
0

	 

t� t0ð Þ ¼

δ W{
pq tð Þ �W pq tð Þ

� �
δγrs t0ð Þ

������
γ0

ð100Þ

and plays the same role as the Hartree-exchange-correlation kernel, fHxc (r, r0,
t� t0), in TDDFT [138, 143]. To obtain the frequency-dependent response equa-

tions, we simply need to take the Fourier transform of the time-dependent response

equations. Because the time-integral over the coupling matrix K(t� t0) and the

perturbation in the 1-RDM has the form of a convolution, the Fourier transform

turns this integral into a simple product. If we further assume that the natural

spinorbitals of the unperturbed 1-RDM can be chosen to be real (no magnetic

fields), the frequency-dependent response equations can be cast into a particular

simple matrix form

ω1M �AþMM ωð Þ 0

�N�1A� ωð ÞN�1 ω1M �N�1C ωð Þ
0 �AþmM ωð Þ ω1m

0@ 1A δγR ωð Þ
iδUI ωð Þ
δn ωð Þ

0@ 1A ¼ 0

δvR ωð Þ
0

0@ 1A ;

ð101Þ

where Npq,rs¼ (nq� np)δprδqs and 1M denotes an M�M unit matrix. The

sub-matrices δγR ωð Þ ¼ F Reγ½ � ωð Þ and δUR ωð Þ ¼ F ImU½ � ωð Þ denote the Fourier

transforms of the real and imaginary parts of the unique off-diagonal parts of δγ(t)
and δU(t), respectively, and likewise, δvR ωð Þ ¼ F Rev½ � ωð Þ denotes the Fourier

transform of the real part of the unique off-diagonal parts of the perturbing potential

δv(t). The matrix on the left is therefore an (M, M, m)� (M, M, m) matrix, where

m denotes the number of basis functions andM¼m(m� 1)/2 the number of unique

off-diagonal elements. The submatrix A+ has labels MM and mM to indicate which

parts of this matrix need to be used. The response matrices A(ω) and C(ω) combine

the one-body and two-body effects to the response of the 1-RDM and are defined as

A pq, rs ωð Þ ¼ ns � nrð Þ h prδsq � δ prhsq
� �

þ K pq, rs ωð Þ
� �

; ð102aÞ
Cpq, r ωð Þ ¼ h pq δrq � δr p

� �
þ K pq, rr ωð Þ: ð102bÞ

Positive and negative combinations of the response matrix A(ω) enter the

frequency-dependent RDMFT response equations (101) as

A�pq, rs ωð Þ ¼ A pq, rs ωð Þ � A pq, sr ωð Þ: ð103Þ
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5.3 Standard Adiabatic Approximation

To turn the frequency-dependent RDMFT linear response equations (101) into a

practical scheme, we need to be able to evaluate the coupling matrix K in some

manner. In the standard adiabatic approximation (the one also used in TDDFT), one

assumes that the history dependence for slow processes is not very important, so a

good approximation would be

K γ0
	 


t� t0ð Þ � K γ0
	 


δ t� t0ð Þ: ð104Þ

If the initial state of the system was the ground state, a ground state functional

would probably provide a reasonable approximation and the full standard adiabatic

approximation becomes

K γ0
	 


t� t0ð Þ � Kgs γ0
	 


δ t� t0ð Þ: ð105Þ

An additional advantage of the adiabatic approximation for the frequency-

dependent response RDMFT equations (101) is that all the response matrices A�

and C become frequency independent, which greatly simplifies the calculation of

response properties (excitation energies), because we only need to solve a linear

system of equations (eigenvalue equation), instead of a complicated set of coupled

nonlinear equations.

The standard adiabatic approximation, however, implies that the natural occu-

pation numbers do not change in time. This is a particularly disappointing result,

because the time-evolution of the natural occupation numbers is expected to be

important to handle strongly correlated systems such as stretched chemical bonds.

For “JK-only” approximate functionals the stationarity of the occupation numbers

is easily demonstrated [118, 120, 121]. The “JK-only” 2-RDM is of the general

form

Γpqrs ¼ FH n p; nq
� �

δ prδqs þ Fx n p; nq
� �

δpsδqr: ð106Þ

Using this approximate 2-RDM in the definition for W(t) (97), and inserting the

result into the equation of motion of the natural occupation numbers (96b), we find

that they are time-independent, i _n p tð Þ ¼ 0.

More work is needed to demonstrate that the use of a ground state functional for

the 2-RDM always leads to stationary occupation numbers in the standard adiabatic

approximation [117, 144, 145]. First we note that, because the natural orbitals are

the eigenfunctions of the self-adjoint kernel, γ(x,x0;t), their phases are undetermined

by the 1-RDM. Therefore, a 1-RDM functional formulated in terms of the natural

orbitals and occupation numbers is not allowed to depend on the phase of the natural

orbitals. Making the phase of the natural orbital explicit φ p xtð Þ ¼ eiα p tð Þϕ p xtð Þ, we
have the following condition on the derivative of any 1-RDM functional, F
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0 ¼ dF

dα p tð Þ ¼ i

ð
dx φ*p xtð Þ ∂F

∂φ*p xtð Þ �
∂F

∂φ p xtð Þφ p xtð Þ
 !

: ð107Þ

To connect these derivatives with the contractions W(t) (97) in the adiabatic

approximation, we express the exact ground state functional as [99]

W φ p

� �
; φ*p

n o
; n p

� �h i
¼ 1

2
min
ξif g

X
pqrs

Γpqrs ξif g; n p

� �	 

rs
�� pq� �

; ð108Þ

where the set of variables {ξi} indicates the additional degrees of freedom over

which we can vary the 2-RDM, keeping the 2-RDM ensemble N-representable and
such that it yields the prescribed 1-RDM (48). This expression assumes that only

the occupation numbers are part of the N-representability conditions for the 2-RDM
and not the natural orbitals. This is reasonable, because N-representability should

not depend on the particular orthonormal basis we are working in. An advantage of

expressing the exact interaction-energy function in this manner is that the func-

tionalW is even defined for non-orthogonal natural spinorbitals. Although the value

of the functionalW does not make any physical sense for non-orthonormal orbitals,

it allows us to define derivatives with respect to ϕp(x) and ϕq(x) separately in an

unambiguous manner and impose the orthonormality conditions afterwards with the

help of Lagrange multipliers or in other ways, e.g., (92).

The optimal 2-RDM parameters which attain the minimum are functionals of the

natural orbitals and occupation numbers, and we write these optimal value for the

parameters as ξi φ p

� �
; φ∗p

n o
; n p

� �h i
. Using ξi

� �
the exact interaction-energy

functional can also be written as

W φ p

� �
; φ*p

n o
; n p

� �h i
¼ 1

2

X
pqrs

Γpqrs ξi
� �

; n p

� �	 

rs
�� pq� �

; ð109Þ

where we suppressed the explicit dependence of the optimal 2-RDM parameters on

the natural spinorbitals and occupation numbers. Assuming that the gradient of

Γ[{ξi}, {np}] with respect to the parameters ξi exists, we can work out the functional
derivative of W with respect to the natural orbitals as

δW

δφt xð Þ
¼ 1

2

X
i

δξi
δφt xð Þ

X
pqrs

∂Γpqrs

∂ξi

����
ξ

rs
�� pq� �

þ 1

2

X
pqrs

Γpqrs

δ rs
�� pq� �

δφt xð Þ
: ð110Þ

Because we minimize over the parameters ξi in the functional W, the derivatives

with respect to ξi vanish at the minimum ξi
� �

, so the first term on the right-hand

side does not give any contribution. Projecting the functional derivative against

natural spinorbitals, we have
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ð
dx

δW

δφ p xð Þφq xð Þ ¼
X
rst

Γprst st
��qr� �
¼ W pq: ð111Þ

Using this result together with the phase invariance condition (107) in the equation

of motion for the occupation numbers (96b) in the standard adiabatic approxima-

tion, we find the claimed result

i _n p tð Þ ¼
ð
dx φ∗p xtð Þ ∂W

∂φ∗p xtð Þ �
∂W

∂φ p xtð Þφ p xtð Þ
 !

¼ 0: ð112Þ

A shorter, though more handwaving argument has been given in [146].

Because the occupation numbers are not perturbed in the standard adiabatic

approximation, they drop out of the response equations and the standard adiabatic

response equations reduce to

ω1M �AþMM

�N�1A�N�1 ω1M

 �
δγR ωð Þ
iδUI ωð Þ

 �
¼ 0

δvR ωð Þ

 �
: ð113Þ

Because no δn(ω) term is present, we find that even in the static limit ω! 0 the

occupation numbers are not perturbed, in contrast to the time-independent response
equations presented in Sect. 3.1 [120, 121, 142]. This discrepancy has been

demonstrated to be sizable by calculating the polarizability of HeH+ [117, 120,

144, 145]. The L€owdin–Shull functional has been exclusively used for these

calculations. There are two possible variants of this functional: one with the

exchange integrals (39) and one where we restore the original integrals hpp|qqi of
the singlet two-electron system (36) and replace products cpcq with GLS

pq given in

(40). For real natural spinorbitals there is no difference, but in the time-dependent

case the natural orbitals are complex and hence the two different integrals give rise

to different coupling matrices. The advantage of using exchange integrals is that the

functional is phase invariant, which is a requirement for a proper 1-RDM func-

tional. Therefore, this variant is called the density matrix LS (DMLS). The variant

with the original hpp|qqi integrals is not phase invariant, so not a proper 1-RDM

functional. Because of its phase dependence it is called the phase including LS

(PILS). Though the PILS is not a proper 1-RDM functional, its use is appealing,

because the breaking of phase invariance implies that the natural occupation

numbers do change.

One would expect that the DMLS functional should give superior results. This is

indeed the case for the polarizability of HeH+ if only a limited number of transitions

between the natural orbitals are taken into account [117, 144, 147], typically only

the transitions from the two highest occupied NOs to all the others. If all transitions

between the natural orbitals are taken into account, the DMLS functional has

spurious divergences in the polarizability at low frequencies [117, 145, 147],

severely deteriorating the DMLS result. Though the polarizability from the PILS
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functional does not follow the exact polarizability as closely as the DMLS, it has the

main advantage that no spurious divergences emerge, even when all natural orbital

transitions are taken into account in the response calculation [117, 121, 147].

Another disadvantage of the standard adiabatic approximation is that we effec-

tively lose excitation energies. Because the original frequency-dependent response

matrix has M+M+m¼m2 entries, the standard adiabatic approximation yields m2

excitation energies, because the response matrices A and C are frequency indepen-

dent. However, we only obtain 2M¼m(m� 1) sensible excitation energies and

m roots ω¼ 0, which are physically meaningless, so, effectively, these m excitation

energies are lost in the standard adiabatic approximation [142].

Test calculations on the excitation spectrum of the hydrogen molecule as a

function of the bond length have been carried out to test the performance of both

LS functionals. Because divergences in the polarizability correspond to excitations,

the spurious divergences of the DMLS functional already indicate that the perfor-

mance of the DMLS functional for the calculation of excitation energies is not very

good. Indeed, the test calculations on H2 have shown that the DMLS functional

predicts many spurious low lying excitations which completely clutter the excita-

tion spectrum when all natural orbital transitions are taken into account [117, 145,

148]. Reducing the number of transitions to only transitions from the two heaviest

occupied natural orbitals is very effective in cleaning up the DMLS excitation

spectrum [117]. Such an approach would not be desirable in practice, because it is

orthogonal to the idea that expanding a basis brings one closer to the desired result.

Because the PILS functional is dependent on the phase of the natural orbitals, the

occupation numbers are not necessarily stationary any more in the standard adia-

batic approximation. However, it can be demonstrated that there are still only

2M¼m(m� 1) non-trivial roots of the response equations (113) and m zero exci-

tations [117]. Nevertheless, the PILS functional gives a huge improvement over the

DMLS functional for excitation energies. Most notably, no spurious low lying

excitations appear when we exhaust the response basis by including more natural

orbital transitions. Furthermore, one can show that the 1Σþu ,
1Πg and

1Πu excitations

become equal to the full CI result when all natural orbital transitions are taken into

account [117, 141, 142]. This is caused by the fact that these excitations do not need

any perturbation in the natural occupation numbers to be described exactly, which

is related to symmetry. This also holds for excitations in other irreducible repre-

sentations (irreps) that do not couple to the completely symmetric irreducible part

of the response matrix, such as the xy component of the Δg excitations. The x
2� y2

component does couple to the occupation numbers, however, so the Δg excitations

of the H2 molecule is symmetry broken when using the PILS functional: the xy
components are equal to the full CI result and the x2� y2 components are not

[117]. Symmetry breaking does not occur for the DMLS functional, because the

occupation numbers are never involved in the standard adiabatic response.
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5.4 Alternative Adiabatic Approximation

Because the standard adiabatic approximation used in TD-RDMFT has the unde-

sirable features of stationary occupation numbers and a mismatch with the static

response equations (Sect. 3.1) in the ω! 0 limit, an alternative adiabatic approx-

imation has been proposed. The idea is to replace the dynamic equation for the

occupation numbers (96b) by its static counterpart and to make the perturbed

quantities frequency-dependent, which leads to the following equation

0 ¼ 2
X
r>s

CT
p, rsδγ

R
rs ωð Þ þ 2

X
r

W p, rδnr ωð Þ þ δvpp ωð Þ; ð114Þ

where we use

CT
p, rs ¼ Crs, p and W p,q ¼

1

2

∂2
W

∂n p∂nq
: ð115Þ

Though the occupation numbers are not determined by an equation of motion, but

follow instantaneously from δγR(ω) and the diagonal elements of the potential

δvD(ω), there is at least a response of the occupation numbers. The fact that this

alternative adiabatic approximation is an instantaneous relaxation of the natural

occupation numbers at each time t has been stressed in [149] where the more

descriptive name “instantaneous occupation number relaxation” was introduced.

The frequency-dependent response equations in this alternative adiabatic approxi-

mation become

ω1M �AþMM 0

�N�1A�N�1 ω1M �N�1C
�CTN�1 0 �W

0@ 1A δγR ωð Þ
iδUI ωð Þ
δn ωð Þ

0@ 1A ¼ 0

δvR ωð Þ
δvD ωð Þ=2

0@ 1A: ð116Þ

The correction for the ω! 0 limit to the standard adiabatic approximation proves to

be quite effective and improves the description of the polarizability for small

frequencies [117, 120, 121]. Additionally, because the frequency-dependent

response equations now reduce correctly to the static response equations in the

ω! 0 limit, both the DMLS and PILS functionals coincide at ω¼ 0. The general

trend from the standard adiabatic approximation remains: the DMLS is closer to the

exact polarizability, though has some spurious divergences which are absent in the

PILS calculations [117].

Because ω is only present in the upper twoM�M blocks, the determinant of the

response matrix is only a 2M¼m(m� 1) order polynomial in ω. We therefore find

that the alternative adiabatic approximation does not restore the lost roots in the

standard adiabatic approximation. Calculations on the H2 and HeH+ have demon-

strated that the excitation spectrum does not change much compared to the standard

adiabatic approximation for both the DMLS and PILS functionals [117]. The lowest
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excitation energies decrease somewhat when correcting the incorrect ω! 0 limit in

the adiabatic approximation and it depends on the particular system whether this is

an improvement. For H2 the results are slightly worse in the alternative adiabatic

approximation, whereas for HeH+ they are slightly better [117, 142].

Although the alternative adiabatic approximation is successful in correcting the

ω! 0 limit of the standard adiabatic approximation, this adiabatic approximation is

still not very satisfactory, because the occupation numbers are still not truly

dynamic variables and we still lose m excitations. These m excitations correspond

to excitations which require a significant response of the occupation numbers.

Because the response of the occupation numbers corresponds to the response of

the diagonal of the 1-RDM (98), so they are referred to as the diagonal double

excitations. Other double excitations related to perturbations in the off-diagonal

parts of the 1-RDM are well accounted for, as the excitation energies in the 1Σþu and
1Πu are perfectly accounted for [117, 142]. It turns out that these diagonal double

excitations are important for the correct description of the lowest 1Σþg excitation

energy in stretched H2 [141, 142], so including the diagonal double excitations is

important.

5.5 Phase Including Natural Orbitals

It is unlikely that the missing m diagonal double excitations can be restored with

any decent adiabatic approximation to the TD-RDMFT equations. The problem is

that the excitation energies should come out of the response equations in pairs +ω
and�ω. This pairing of the frequencies is dictated by an important symmetry of the

response function χ ωð Þ ¼ χ* �ωð Þ, which follows directly from the Lehmann [150]

(sum-over-states) representation. We therefore need to increase the number of roots

by m in some manner, because m is not necessarily even. Increasing the number of

roots to 2(M+m) results in an even number of roots, which in turn ensures that all

excitations are present in both the positive and negative parts of the spectrum.

This partially explains why we had m zero excitations in the standard adiabatic

approximation, because ω¼ 0 is the only number which is its own negative, so it

does not destroy theχ ωð Þ ¼ χ* �ωð Þ symmetry even if an odd number of these roots

is present. This does not explain why we could not have bm/2c excitation energies

occurring both at +ω and �ω in an adiabatic approximation. To explain this, we

observe that for a proper quantum evolution a quantity needs to be able to have a

complex phase. All the off-diagonal elements of the 1-RDM are able to obtain a

complex phase-factor, but because the diagonal is necessarily real, the occupation

numbers do not have a quantum phase [117]. This lack of a corresponding quantum

phase for the natural occupation numbers is not limited to the 1-RDM, but exists for

the diagonal of any p-RDM if the BBGKY hierarchy is truncated at the pth order [151].
The way to solve all these problems together is to include an additional set of

m complex phase factors which can act as the conjugate variables for the natural
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occupation numbers to facilitate a true quantum evolution. It is obvious that the

ideal candidate would be the phase factors of the natural orbitals, which is corrob-

orated by the reconstruction of the exact frequency-dependent coupling matrices of

the K(ω) for singlet two-electron systems [117, 142]. To distinguish these special

natural orbitals with a specific phase from those defined as eigenfunctions of the

1-RDM, we call them phase-including natural orbitals (PINOs) and give them their

own symbols, 6π p xtð Þ. Using PINOs, the functionals are also allowed to depend

explicitly on the phase of the orbitals, so the PILS functional becomes a legal

functional.

To derive equations of motion for the PINOs and their occupation numbers, we

start from the following quantum mechanical action [152]

A 6π p; n p

� �	 

¼
ð T
0

dt Ψ 6π p; n p

� �	 

tð Þ

� ��i∂t � Ĥ tð Þ Ψ 6π p; n p

� �	 

tð Þ

�� �
; ð117Þ

where we assume that the action can be considered as a functional of the PINOs and

occupation numbers. The equations of motion for the PINOs and their occupation

numbers follow by making the action stationary with respect to all variations.

However, we have to keep in mind that the action is now only a functional of the

PINOs and occupation numbers and not of the full many-body wavefunction.

Therefore, we cannot set the variation at the end-point t¼ T to zero and need to

take this term into account explicitly [153], so the variational principle becomes

δA ¼ i Ψ Tð Þ
��δΨ Tð Þ

� �
: ð118Þ

Neglect of the variations in the boundary term at t¼ T leads to violation of causality

as was shown by Vignale in [153], where he showed that explicit treatment of the

boundary term solves the causality paradox which has haunted TDDFT for so many

years [154].

To obtain more practical and explicit equations, we follow the same approach

as in TDDFT [138] and partition the action of the fully interaction system into a

non-interacting part, A0 and a remainder AHxc

A 6π p; n p

� �	 

¼ A0 6π p; n p

� �	 

� AHxc 6π p; n p

� �	 

: ð119Þ

Because the occupation numbers of non-interacting pure-states are stationary by

construction, we need to use the action for an ensemble for the non-interacting

system to allow for occupation numbers that vary in time

A0 6π p; n p

� �	 

¼
ð T
0

dt
X
P

dP tð Þ ΦP tð Þh ji∂t � Ĥ 0 tð Þ ΦP tð Þj i; ð120Þ

where 0� dP(t)� 1 are time-dependent weights, ΣPdP tð Þ ¼ 1, and Ĥ0(t) is the

one-body part of the fully interacting Hamiltonian, Ĥ(t), so corresponding to a
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noninteracting system. The states ΦP(t) are time-dependent Slater determinants

constructed out of the PINOs. Because the states ΦP(t) are constructed out of

PINOs, the expectation values can be worked out as

ΦP tð Þh ji∂t � Ĥ 0 tð Þ ΦP tð Þj i ¼
X
p2P
6π p tð Þ
� ��i∂t � ĥ tð Þ 6π p tð Þ

�� �
; ð121Þ

where p 2 Pmeans that the sum runs over all PINOs present in the determinant ΦP.

Because the 1-RDM of the ensemble should have the prescribed occupation num-

bers, all the weights of the states which contain a particular 6π p need to sum to the

corresponding occupation number, np(t). The non-interacting action therefore sim-

plifies even further to

A0 6π p; n p

� �	 

¼
ð T
0

dt
X
p

n p tð Þ 6π p tð Þ
� ��i∂t � ĥ tð Þ 6π p tð Þ

�� �
; ð122Þ

and the variational principle becomes

δA0 ¼ i
X
P

ΦP Tð Þ
��δΦP Tð Þ

� �
¼ i
X
p

n p Tð Þ 6π p Tð Þ
��δ6π p Tð Þ

� �
: ð123Þ

Considering variations in δA0 separately, we find the expected result that the PINOs

are solutions of one-electron Schr€odinger equations i∂t 6π p xtð Þ ¼ ĥ tð Þ 6π p xtð Þ and
that the occupation numbers (weights) are time-independent. We are not interested

in the solutions of the non-interacting system, however, but we want the solutions of

the interacting system. Therefore, we should add a “bath” term which takes into

account that the electrons do not behave independently but move in the “bath” of

other electrons. Hence, we subtract the following term

δW 6π p; n p

� �	 

¼ δAHxc 6π p; n p

� �	 

þ i Ψ 6π p; n p

� �	 

Tð ÞjδΨ 6π p; n p

� �	 

Tð Þ

� �
� i
X
p

n p Tð Þ 6π p Tð Þjδ6π p Tð Þ
� �

ð124Þ

from the left-hand side, to make the variational principle equal to the interacting

one (118)

δA0 6π p; n p

� �	 

� δW 6π p; n p

� �	 

¼ i
X
p

n p Tð Þ 6π p Tð Þjδ6π p Tð Þ
� �

: ð125Þ

Enforcing the orthonormality of the PINOs with the standard Lagrange multiplier

technique, we can work out the variations in the action produced by perturbations in

the PINOs [117, 145], which recovers the equation of motion for the 1-RDM in the

natural orbital basis (96)
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i _n p tð Þ þ nq tð Þ � n p tð Þ
� �

6π p tð Þj _6πq tð Þ
D Eh i

¼ nq tð Þ � n p tð Þ
� �

h pq tð Þ þ W6π{pq tð Þ �W6πpq tð Þ
� �

;
ð126Þ

where the effects of the electron–electron interaction are now expressed as varia-

tions δW produced by perturbations in the PINOs

W6πpq tð Þ ¼
ð
dx

δW
δ6π p xtð Þ 6πq xtð Þ: ð127Þ

An equation of motion for the phase factors of the PINOs is obtained by considering

variations produced by perturbations in the occupation numbers, which give [117,

144, 145]

i 6π p tð Þj _6π p tð Þ
D E

¼ hpp tð Þ þ δW
δn p tð Þ : ð128Þ

One can combine the equation of motion for the PINO phase factors with the

off-diagonal terms of the equation of motion for the 1-RDM (126) to write a

Schr€odinger equation for the PINOs with an effective potential,

v̂ PINO 6π p; n p

� �	 

tð Þ, [117, 144, 145]

i∂t 6π p xtð Þ ¼ ĥ tð Þ þ v̂ PINO 6πr; nrf g½ � tð Þ
� �

6π p xtð Þ; ð129Þ

where v̂ PINO 6π p; n p

� �	 

tð Þ is an effective potential which takes the two-body effects

into account and is defined via its matrix elements which can be read off from (126)

and (128)

vPINOpq 6πr; nrf g½ � tð Þ ¼

W6π{pq tð Þ �W6πpq tð Þ
nq tð Þ � n p tð Þ for p 6¼ q

δW
δn p tð Þ for p ¼ q

8>>><>>>: : ð130Þ

It is interesting to consider the effective time-dependent Schr€odinger equation for

the PINOs (129) in the case of a stationary (ground) state. In that case, the time-

dependence of the PINOs factors out as a simple exponential, 6π p xtð Þ ¼ e�iεpt 6π p xð Þ,
and the exponential factors, εp, are related to the time-independent Schr€odinger for
the PINOs

ĥ þ vPINOpq 6πr; nrf g½ �
� �

6π p xð Þ ¼ ε p 6π p xð Þ: ð131Þ

The degeneracy of the natural spinorbitals [103] mentioned in Sect. 4 can therefore

also be regarded as the complete in-phase time evolution of the PINOs. This makes
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complete sense, especially for the two-electron system, because the phase factors of

the PINOs can be used to reconstruct completely the two-electron wavefunction as

[117, 155]

Ψ x1; x2; tð Þ ¼ 1ffiffiffi
2
p
Xm
p¼1

ffiffiffiffiffiffiffiffiffiffiffi
n p tð Þ

q
6π p x1tð Þ6π� p x2tð Þ � 6π� p x1tð Þ6π p x2tð Þ
	 


; ð132Þ

so the PINOs are coupled in pairs in the two-electron wavefunction. This expression

is valid for an arbitrary spin state. In the case of a singlet state, the spin-up and spin-

down components of the same spatial part form the PINO pairs and, in the case of

triplet states, two PINO which are spatially different are coupled together [117]. It

is clear from this expression that for all np 6¼ 0, all the PINOs need to have the same

time-dependent phase factor in order for the full two-electron wavefunction to be a

stationary state, Ψ x1; x2; tð Þ ¼ e�iEtΨ x1; x2ð Þ.
The equations of motion can be used again to formulate time-dependent

response equations. Because the zeroth-order time-dependent PINOs already have

a (time-dependent) phase factor, we expand the perturbation in the PINO in the

order of the perturbation as

6π p xtð Þ ¼ eiεpt 6π p xð Þ þ δ 6π p xtð Þ þ � � �
� �

ð133Þ

The first order of the perturbation in the PINOs, δ 6π p xtð Þ is expanded in the time-

independent PINO basis as

δ 6π p xtð Þ ¼
X
r

6πr xð ÞδUrp tð Þ: ð134Þ

The advantage of expressing the first-order perturbation in this manner is that the

connection between and δγ(t) used in the TD-RDMFT response equations at (98) is

still valid. Following the same procedure as before, collecting all perturbations up

to first order and taking the Fourier transform, the frequency-dependent PINO

response equations in the standard adiabatic approximation, W � W can be cast

in the following form [117, 144, 145, 156]

ω1M 0 �AþMM �AþMm

0 ω1m �AþmM �Aþmm
�N�1A�N�1 �N�1C ω1M 0

�CTN�1 �W 0 ω1m

0BB@
1CCA

δγR ωð Þ
δn ωð Þ
iδUI ωð Þ

iδUD ωð Þ=2

0BB@
1CCA ¼

0

0

δvR ωð Þ
δvD ωð Þ=2

0BB@
1CCA: ð135Þ

These PINO response equations in the adiabatic approximation have all the desired

properties:

• Theω! 0 exactly coincides with the linear response equations of static RDMFT

(see Sect. 3.1)
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• The diagonal double excitations are properly accounted for without destroying

the important symmetry of the response function, χ ωð Þ ¼ χ* �ωð Þ
• The PILS functional is a proper PINO functional, so the exact PINO functional is

known for the two-electron system

The dimensionality of the response equations can be reduced by half by elim-

inating the imaginary components from the response equations, giving

ω2 � Aþ
N�1A�N�1 N�1C
CTN�1 W

 �� �
δγR ωð Þ
δn ωð Þ

 �
¼ Aþ

δvR ωð Þ
δvD ωð Þ=2

 �
; ð136Þ

which immediately demonstrates that indeed all the roots occur both at +ω and�ω.
The dimensionality of the TD-PINO response equations (m(m + 1)/2) is signifi-

cantly larger than in TDDFT, where only the transitions between the occupied and

unoccupied KS orbitals need to be taken into account (so the dimension would be

only m� 1 for two electrons). Though the results from the adiabatic TD-PINO

equations are far superior to those from adiabatic TDDFT, the computational cost is

equivalent to a full CI calculation. However, one would expect that the transitions

between all the low occupied PINOs are not important for the description of low

lying excited states. Test calculations have been performed where only transitions

from the k highest occupied PINOs to all other PINOs are taken into account. No

reduction was made in δn(ω), because its full treatment turned out to be important

for particle number conservation.

Indeed, calculations with low values of k demonstrated that the polarizabilities

[147], excitations [156], and oscillator strengths [157] are in excellent agreement

with the exact results. Taking transitions from only the highest occupied PINO into

account (k¼ 1) gives reasonable results for the low lying excitations of the hydro-

gen molecule at its equilibrium. To take properly into account the static correlation

effects on the excitation spectrum, one also needs transition from the 1σu PINO,

because that PINO also obtains a significant occupation when the bond is stretched.

The truncation to k¼ 2 already gives results very close to the exact ones along the

complete bond-breaking coordinate. Going to k¼ 3 only provides a small additional

improvement over k¼ 2.

The same idea has also been tested in the time-domain [155, 158]. The same

effect as in the frequency-domain has been observed: only a small number of the

highest occupied PINOs need explicitly to be taken into account to give a reliable

description of the physical processes. This is particularly interesting for the calcu-

lation of the double ionization yield of He in strong laser fields, which needs an

accurate description of non-sequential double ionization, a highly correlated pro-

cess [159, 160]. An accurate account of the non-sequential double ionization

process has only been given in one dimension by solving the full many-body

Schr€odinger equation for a one-dimensional He model [161]. A full three-

dimensional treatment is still out of reach, because the grid (number of basis

functions) needs to be very large to describe the electrons moving very far away

from the nucleus and coming back. In a one-dimensional pilot study it has been
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demonstrated that only ten PINOs are sufficient to give a quantitative prediction of

the double ionization yield [162], so an accurate three-dimensional calculation

should now come within reach.

The main challenge is to make the PINO approach applicable to systems with

more than two electrons. For the two-electron system it is clear how to define the

PINO phase factors which gives a very simple expression for the two-body effects,

W, and is even exact. For systems with more electrons, it is not so clear what a

suitable and convenient definition for the PINO phase would be and which prefer-

ably reduces to the exact functional for two electrons. For multi-electron systems

which only have one electron pair constituting a chemical bond (Li2 and LiH for

example), one can try to use a Hartree–Fock (HF) functional for the core electrons

and the PILS functional for the “HONO” which is the highest strongly occupied

natural orbital and some encouraging results have already been obtained for

diatomic molecules with a single chemical bond [163].

A different route is also explored by combining features from the PINO response

equations to the extended RPA equations [164, 165] obtained from Rowe’s equa-
tion of motion framework [166]. The advantage is that the response matrices are

now formulated as partial contractions of the 1-RDM and 2-RDM instead of

functional derivatives with respect to PINOs and occupation numbers. This

makes it easier to use other sources for approximate 2-RDMs such as the APSG

wavefunction or other correlated methods. However, the APSG wavefunction can

also be used to construct a PINO functional (62). The adiabatic PINO response

equations with the APSG functional are actually identical to those obtained by

applying time-dependent response theory to the APSG wavefunction directly

[165]. Calculations on small molecular systems have demonstrated that the lowest

excitation energies for the APSG functional (62) are in very good agreement with

more sophisticated approaches. Higher excitation energies seem to be less reliable.

Experiments using a range-separated version of the APSG functional indicate a

shortcoming of the APSG functional rather than an inherent limitation of the

adiabatic TD-PINO linear response equations [165]. However, more evidence

needs to be gathered before we can make any conclusive statement.

6 Summary and Outlook

Reduced density matrix functional theory is a promising approach to the problem of

electron correlation based on the existence of a functional of the one-electron

reduced density matrix (1-RDM). One-electron components of the total energy,

i.e. the kinetic part and the external potential interaction, are explicitly given in

terms of 1-RDM. The electron–electron interaction functional, the two-electron

part of the energy, is well defined, cf. (10), but its practical exact realization remains

unknown. A formalism that would lead to systematically more accurate and effi-

cient approximations to Eee[γ] is not available. By “efficient” we mean approxima-

tions that would avoid searching for minimizing wavefunctions or ensembles
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proposed in constructions given in (9) or (10), and would be competing in compu-

tational efficiency with one-electron methods. Over the years different approaches

to construct approximate functionals have been explored, some of them leading to

successful functionals. The first generation of functionals such as BB (20), GU (22),

or CHF (23) has turned out to be insufficiently accurate for molecules and extended

systems. Their failure in predicting potential energy curves of diatomic molecules

has led to realizing the importance of incorporating orbital structure of the exact

two-electron functional into approximate N-electron functionals. A series of BBC

(41)–(43) functionals and the recent ELS (44) functional have emerged as a result

of a careful analysis of the orbital structure of the energy expression obtained from a

size-consistent CI ansatz. The orbital structure of the most accurate BBC functional

– BBC3 – leads to accurate potential energy curves of simple molecules. Because of

numerical problems with selecting bonding and antibonding orbitals, assumed in a

definition of BBC3 [see (43)], an “automated” version has been proposed – the AC3

functional [40]. The orbital structures of the BBC3, AC3, and ELS functionals

account for that of the exact two-electron functional necessary to provide a correct

description of electron-pair dissociation.

Almost all approximate electron–electron interaction functionals proposed so far

are the so-called “JK-only” functionals, i.e., they include only two-electron inte-

grals of the Coulomb and exchange type. In [76] Kollmar addressed the question of

accuracy of the most general “JK-only” variational energy expression. Based on his
findings, one is driven to a conclusion of fundamental importance for functional

development. Namely, the limits of accuracy of the variational “JK-only” func-

tionals are set by a pair-excited CI ansatz (67) that leads to the best “JK-only”
energy expression [41]. This ansatz is known to be insufficiently accurate for

chemical problems. It has been shown in [76] that variational (bounded from

below by an exact ground state energy) “JK-only” functionals unavoidably miss a

significant portion of the dynamic electron correlation. Therefore, successful var-

iational functionals should include other than Coulomb and exchange integrals or

one should not try to impose variationality in developing accurate and versatile

“JK-only” functionals.
Another class of functionals – Piris natural orbital functionals (PNOF’s)

[cf. (51)] – are also of “JK-only” type. They have been proposed by employing a

cumulant expansion given in (28) and approximating two-electron reduced density

matrix elements in terms of the natural occupation numbers. Reconstruction of

2-RDM in terms of 1-RDM is guided by N-representability conditions for 2-RDM.

PNOFs, especially one of the latest ones, PNOF5, have been extensively tested for

predicting energy and different properties of molecules of diversified electronic

structure. PNOF5 is particularly successful in describing systems for which static

electron correlation is nonnegligible. At the same time, it has become apparent that

this functional misses an important part of dynamic correlation, which seriously

plagues its performance for some systems. These findings are perfectly understand-

able because, as a variational “JK-only” functional, PNOF5 inherits the aforemen-

tioned limitations of the best “JK-only” functional. Thinking about the possible

ways of developing functionals based on reconstructing 2-RDM in terms of
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1-RDM, it is evident that retaining solely Coulomb and exchange integrals in the

functional and reconstructing N-representable 2-RDM would lead to a variational

functional deficient in accounting for dynamic electron correlation. However, N-
representability conditions for 2-RDM employed in developing novel functionals

are of necessary but insufficient character. Consequently, functionals resulting from

employing a reconstructional approach are not necessarily variational. As a result,

they can yield lower energy than the best “JK-only” functional if the limited “JK-
only” form is properly compensated by the lack of N-representability of the

underlying 2-RDM.

BBC, ELS, or PNOF functionals are orbital-dependent and, by incorporating a

subtle orbital structure of the exact two-electron functional, they are more appro-

priate for molecular systems than for solids. A functional proposed to work mainly

for extended systems is the power functional (80) with the value of the power α
found empirically. Because of a simple form of the power functional its optimiza-

tion is highly efficient. Taking into account that its form has been proposed rather

ad hoc without imposing any exact conditions, it is remarkable how well it works

for solids. The most spectacular application of the power functional is for Mott

insulators which are properly predicted to be nonmetallic [84]. In general, power

functional cannot compete with the BBC3 or the recent PNOF functionals in

describing the electronic structure of molecular systems.

It should be mentioned that most of the functionals have been proposed in spin-

restricted formulation but extensions to open-shell systems are also available

[167]. So far, RDMFT for high-spin systems has been tested for only a limited

set of systems.

Size-consistency is another property that a useful functional should possess.

Apart from the BB or power functionals, most of the other available approximations

are, in principle, not size-consistent. However, in [168] it has been shown that

violation of size-consistency is negligible for BBC, AC3, and ML functionals.

Undoubtedly there has been significant progress in the last 10 years in the

development of methods in RDMFT. More accurate and versatile functionals

have been proposed. Surprisingly, the “JK-only” form has not yet been fully

exploited and the most recent functionals, ELS [42] and PNOF6 [48], still stay

within this form. As has been discussed, future functionals can either include other

integrals than Coulomb and exchange or stay within the “JK-only” form at the price

of abandoning variationality from the start. Unfortunately, development of

RDMFT-based methods is hindered by slow advances in improving computational

efficiency of optimization algorithms for density matrix functionals. The lack of

sufficiently fast methods has not allowed for application of the existing functionals

to systems consisting of more than a few tens of electrons. Only the very recently

proposed local-RDMFT approach [104] holds any promise of extending limits of

the size of systems that can be treated with RDMFT by at least one order of

magnitude.

The practical use of a time-dependent version of RDMFT has recently been

explored to calculate excitation energies and other frequency-dependent response

properties. A rigorous mathematical foundation for TD-RDMFT is still lacking,
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because the Runge–Gross proof [138] cannot straightforwardly be extended to

1-RDMs and non-local potentials. Not only is the mathematical foundation of

TD-RDMFT more challenging than in TDDFT, but also the formulation of a

satisfactory adiabatic approximation has turned out to be rather involved. The

standard adiabatic approximation (same as in TDDFT) leads to a mismatch between

the static response equations and the frequency-dependent response equations in

their ω! 0 limit. This problem can be mitigated by assuming an instantaneous

response of the natural occupation numbers. Nevertheless, important diagonal

double excitations are still missing and a justification for the use of the PILS

functional, which is not a proper 1-RDM functional, is still lacking. All these

problems are solved by augmenting the time-dependent 1-RDM with explicit

phase-factors for the natural spinorbitals. The TD-PINO equations have all the

desired properties of a decent adiabatic approximation. In contrast to TDDFT, even

in the adiabatic approximation, the TD-PINO response equations are able to

describe excitations of double and bond-breaking character and charge transfer

excitations are also recovered without difficulty. A confirmation of this statement

has been delivered by the results for the H2 and HeH+ molecules, obtained within

the adiabatic TD-PINO formalism with the PILS functional and the extended RPA

results with the APSG density matrices. The latter approach has been shown to be

equivalent to the adiabatic TD-PINO if the APSG functional is employed [165] and

has been tested on several small molecules. Even though it recovers certain double

excitations, its overall accuracy is not satisfactory. The main challenges in the time-

dependent direction are to formulate a general definition for the PINO phase factors

to develop functionals for N-electron systems and to establish a proper mathemat-

ical foundation.
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Excitons in Time-Dependent Density-

Functional Theory

Carsten A. Ullrich and Zeng-hui Yang

Abstract This chapter gives an overview of the description of the optical and

dielectric properties of bulk insulators and semiconductors in time-dependent den-

sity-functional theory (TDDFT), with an emphasis on excitons. We review the linear-

response formalism for periodic solids, discuss excitonic exchange-correlation ker-

nels, calculate exciton binding energies for various materials, and compare the

treatment of excitons with TDDFT and with the Bethe–Salpeter equation.
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1 Introduction

Time-dependent density-functional theory (TDDFT) is a universal approach to the

dynamical many-body problem. A detailed, up-to-date coverage of TDDFT can be

found in two books [1, 2]. An easy and concise introduction is given in a recent

review article by Ullrich and Yang [3].

At present, the majority of applications of TDDFT take place in the field of

computational (bio)chemistry, to obtain excitation energies and excited-state prop-

erties of molecules. However, applications in condensed-matter physics and mate-

rials science are emerging at a rapid rate. In this chapter we give an introduction and

overview of TDDFT for extended periodic systems, focusing on the optical prop-

erties of semiconducting and insulating systems. In particular, we address the

question of how TDDFT can be used to calculate excitonic binding energies and

optical spectra with excitonic features. The present state-of-the-art approach in this

field is given by Green’s function-based many-body techniques, most notably, the

combination of GW [4, 5] and the Bethe–Salpeter equation (BSE) [6–13]. We

compare and contrast this approach with TDDFT and discuss their performance and

the various pros and cons for bulk semiconductors and insulators.

TDDFT for periodic solids was reviewed a few years ago by Onida et al. [14] and

Botti et al. [15]. Since then, many new developments have occurred, and in this

chapter we attempt to cover the more recent progress in this field, including our own

recent work [16–19]. We use atomic units (ℏ¼m¼ e¼ 4πε0¼ 1) unless otherwise

indicated.

2 What Is an Exciton?

The optical properties of materials are determined by the way in which the electrons

and the ions respond to light. In this chapter we focus exclusively on the electronic

response and ignore the lattice dynamics or any effects related to the coupling of

electronic and lattice excitations (such as polarons; for details see, e.g., Yu and

Cardona [20]).

The response of a system of N electrons is often characterized as having either

“single-particle” or “collective” character. What do we mean by this? If a system

consists of noninteracting particles, the response is always purely single-particle, or

can be viewed as the sum of many individual, uncorrelated single-particle excita-

tions. In the presence of interactions this simple picture is no longer valid, because

any change of state of one electron has an immediate influence on all other electrons
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in the system; the response is collective and involves, in principle, all electrons. The

question is how dominant these effects are.

There are many situations where the interactions give rise to rather straightfor-

ward behavior. Imagine an experiment where we can turn off the interactions

between the electrons in a molecule, and measure the resulting excitation spectrum.

If we now gradually turn the interactions back on, all the while keeping an eye on

the excitation spectrum, we find that the peaks in the spectrum shift, but we can

keep track of each of them and hence can in principle interpret them as single

particle excitations of an effective system such as Kohn–Sham.

On the other hand, interacting systems have certain excitations without a coun-

terpart in any corresponding noninteracting system. A most drastic example is

plasmons in a metal, where all electrons respond collectively and with a fixed

phase relationship. A plasmon requires dynamical electron–electron interactions at

least at the level of the random-phase approximation (RPA).

An exciton is another example of a collective excitation, occurring in non-

metallic systems. The ideal exciton can be described [21] as an electrically neutral

quantum of electronic excitation energy travelling in the periodic structure of a

crystal. It can be viewed as a bound electron–hole pair and can hence be associated

with the transportation of energy, but not of net charge. Excitons are a crucial stage

in the photovoltaic process, where free carriers are generated after separation of the

electron–hole pairs.

Excitons come in different types [22]:

• Frenkel excitons [23, 24] are excitations localized at the atomic sites of wide-gap

insulators such as solid rare gases (neon, argon) or certain ionic solids (e.g., LiF).

• Davydov excitons [25] are found in molecular crystals with ring units, such as

benzene and anthracene. Because the excitations remain localized on the indi-

vidual molecules, Davydov excitons can be viewed as a subclass of Frenkel

excitons.

• Mott–Wannier excitons [26, 27] typically occur in semiconductors such as

GaAs, CdSe, or Cu2O. They tend to be delocalized over several atomic unit cells.

The concept of excitons was originally introduced in bulk crystals, but they also

exist in many lower-dimensional systems such as surfaces, quantum wells, quantum

wires, nanotubes, polymers, nanocrystals, and quantum dots [28–33]. In this chap-

ter we limit ourselves to three-dimensional periodic crystals.

Excitons are usually described as bound electron–hole pairs, i.e., as an effective

two-particle system. Within the effective-mass approximation [34, 35], where con-

duction band electrons have effective massme and valence band holes have effective

mass mh, we can define a reduced effective mass mr ¼ m*
em

*
h= m*

e þ m*
h

� �
. Next, we

separate center-of-mass and relative degrees of freedom. The former describes how

the exciton travels through the crystal, and the latter determines the exciton binding

energy according to the following hydrogen-like Schr€odinger equation:

� ℏ2∇2

2mr

� e2

4πε0εr

� �
ψ j rð Þ ¼ E jψ j rð Þ: ð1Þ
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Here, ε0 is the vacuum permittivity, e is the free electron charge, and ε is the

dielectric constant of the material (we talk about the dielectric constant in greater

detail in the following section). Equation (1) is also known as the Wannier equation.

It yields a Rydberg series of bound states as well as a continuum of unbound states

[36]. The lowest (1s) excitonic state determines the exciton binding energy Eex
0 and

the exciton Bohr radius a0. In GaAs, a material in which the Wannier equation

works particularly well, one obtains E ex
0 ¼ 4:6meV and a*0 ¼ 118Å, which clearly

shows that Wannier excitons are weakly bound and extend over many lattice

constants which, a posteriori, justifies the simplified treatment via (1).

The Wannier picture of excitons as bound electron–hole pairs, described by (1),

is generally not quantitatively accurate, and breaks down completely if the exciton

radius becomes comparable to a lattice constant. In this chapter we present an ab

initio approach, based on TDDFT and/or other many-body techniques, which is

universally valid and in principle exact. This approach reveals an alternative point

of view, in which excitons are described as collective excitations of the many-

electron system. This picture is schematically illustrated in Fig. 1.

The left panel of Fig. 1 shows a single-particle transition in a simple model of an

insulator, going vertically from the filled valence band to the empty conduction

band. The energy associated with this transition is just the difference between the

levels in the two bands. By contrast, an exciton arises from a superposition of many

single-particle transitions, as illustrated in the right panel of Fig. 1. Not all transi-

tions contribute with equal weight, as indicated by the different thicknesses of the

arrows, but all of them have a fixed phase relationship; hence, the exciton is a

collective excitation. The energy of the exciton (i.e., the energy of this collective

excitation) is lower than the lowest single-particle transition. This happens because
the collective behavior induced by the dynamical many-body effects is energeti-

cally favorable compared to any single-particle transition. We see later how the two

viewpoints of the nature of an exciton can be reconciled with each other [18].

a b

Fig. 1 Optical transitions in a two-band insulator, where the lower (valence) band is filled and the

upper (conduction) band is empty. The vertical direction is energy, the horizontal direction is

wavevector. (a) A single-particle transition, in which only one single-particle state gets excited

and all other states do not participate. The associated excitation energy is the difference of the

initial and final single-particle states. (b) Excitonic transition, which is a collective excitation in

which many states participate. The thickness of the arrows indicates that transitions close to the

band gap are dominant. The associated excitation energy can be lower than the band gap, because

the collective nature of the response is energetically favorable
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3 A Tale of Three Gaps

The defining characteristic of insulators and semiconductors is that they have an

electronic band gap (we only consider materials at zero temperature) which dom-

inates their optical and transport properties. Before we deal with the optical

response of solids, it is crucial to have a clear understanding and a good description

of the gap. However, it turns out that there are in fact three different kinds of gap

(for the nonmagnetic materials we are interested in), and it is important to distin-

guish carefully between them [37].

The fundamental band gap Eg of an N-electron system is defined as follows:

Eg Nð Þ ¼ I Nð Þ � A Nð Þ; ð2Þ

where I(N ) and A(N ) are the ionization potential and the electron affinity of the

system, respectively. These two quantities can be obtained in a straightforward

manner from ground-state DFT: the ionization potential is formally exactly given

by the highest occupied Kohn–Sham eigenvalue of the N-electron system, εN (N ),

and the electron affinity is the corresponding quantity of the N + 1-electron system.

Hence, we obtain

Eg Nð Þ ¼ εNþ1 N þ 1ð Þ � εN Nð Þ: ð3Þ

It is important to note that the right-hand side of (3) contains the highest occupied

Kohn–Sham eigenvalues of two different systems, namely with N and with N + 1

electrons. In a macroscopic solid with 1023 electrons, it would be impossible (or at

least highly impractical) to calculate the band gap according to this definition.

The band gap in the noninteracting Kohn–Sham system, also known as the

Kohn–Sham gap, is defined as

Eg, s Nð Þ ¼ εNþ1 Nð Þ � εN Nð Þ: ð4Þ

In contrast with the interacting gap Eg, the Kohn–Sham gap Eg,s is simply the

difference between the highest occupied and lowest unoccupied single-particle

levels in the same N-particle system. This quantity is what is usually taken as the

band gap in standard DFT band-structure calculations. We can relate the two gaps

by

Eg ¼ Eg, s þ Δxc; ð5Þ

which defines Δxc as a many-body correction to the Kohn–Sham gap. By making

use of the previous relations, we find Δxc ¼ εNþ1 N þ 1ð Þ � εNþ1 Nð Þ. It turns out
that the many-body gap correction Δxc can be related to a very fundamental

property of density functionals, known as derivative discontinuities [38–42].
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The so-called band-gap problem of DFT reflects the fact that in practice Eg,s is

often a poor approximation to Eg, typically underestimating the exact band gap by

as much as 50%. The reason for this is twofold: commonly used approximate xc

functionals (such as LDA and GGA) tend to underestimate the exact Kohn–Sham
gap Eg,s, and they do not yield any discontinuity correction Δxc. An extreme

example for the second failure is Mott insulators, which are typically predicted to

be metallic by DFT. This is no accident: in Mott insulators, the exact Kohn–Sham

system is metallic (i.e., Eg,s¼ 0) so that Eg¼Δxc. Clearly, standard xc functionals

(where Δxc vanishes) are unfit to describe Mott insulators.

It is important to distinguish between the fundamental band gap and the optical

gap [43]. The band gap describes the energy which an electron must have so that,

when it is added to an N-electron system, the result is an N + 1 electron system in its

ground state. The total charge of the system changes by �1 in this process. By

contrast, the optical gap describes the lowest neutral excitation of an N-electron
system: here, the number of electrons remains unchanged. The two gaps are

schematically illustrated in Fig. 2 together with the Kohn–Sham gap.

The band gap of insulators can be accurately obtained from the so-called

quasiparticle energies, which are defined as the single-particle energies of a

noninteracting system whose one-particle Green’s function is the same as that of

the real interacting system (it should be noted that this effective noninteracting

system is very different from the Kohn–Sham system, which is defined as that

noninteracting system which reproduces the exact density). In practice, quasiparti-

cle calculations are often done using the GWmethod [4, 5, 14]. GW calculations are

more demanding than DFT, but they produce band structures of solids which agree

very well with experiment.

En
er

gy

N

1N

Kohn-Sham gap

xc

Band gap
(QP gap) 

Optical gap

exE0

Fig. 2 Schematic illustration of the different types of gaps in DFT and TDDFT. The Kohn–Sham

gap is defined as the difference of the highest occupied and lowest unoccupied Kohn–Sham

eigenvalues of the N-electron system; see (4). The fundamental band gap [or quasiparticle

(QP) gap] is the Kohn–Sham gap plus the derivative discontinuity; see (5). The optical gap is

the band gap minus the lowest exciton binding energy Eex
0 . The Kohn–Sham gap can be viewed as

an approximation for the optical gap
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In recent years, generalized Kohn–Sham schemes [37, 44, 45] have become

quite popular for calculating band gaps of solids. Generalized Kohn–Sham theory

means, in essence, using exchange-correlation (xc) functionals which contain an

admixture of Hartree–Fock (HF) nonlocal exchange. These functionals (for

instance B3LYP [46] or PBE0 [47]) have been crucial for the enormous success

of DFT in theoretical chemistry. Hybrid xc functionals for solids are not

unproblematic: HF exchange is difficult to implement in periodic systems, and

B3LYP fails for metals [48]. However, for insulators, hybrid functionals generally

produce excellent results, comparable to what can be achieved by more sophisti-

cated many-body calculations [49–59]. Another promising approach is meta-GGA

functionals such as the Tran–Blaha exchange potential [60–64], which gives good

band structures and band gaps and is much less costly than hybrid functionals.

However, it has the drawback of not being derivable from an energy functional.

It should be emphasized that current implementations of hybrid xc functionals

do not actually calculate the Kohn–Sham gap (this would require a self-consistent

calculation with a local potential); instead, hybrid functionals yield an approxima-

tion to the quasiparticle gap. Local xc potentials can, in principle, be constructed

from hybrid functionals using the OEP (optimized effective potential) method,

which was successfully done for the case of exact exchange (see Betzinger

et al. [65] and references therein).

While the band gap can be measured using techniques in which electrons are

added or removed from the system (such as photoemission spectroscopy), the

optical gap refers to the lowest neutral excitation. The difference between quasi-

particle band gap and optical gap is the lowest exciton binding energy, Eex
0 . In the

previous section we have seen that excitons can be viewed as bound electron–hole

pairs, whose bound states form a Rydberg series, analogous to the hydrogen atom.

The band gap is given by the asymptotic limit of the excitonic Rydberg series [66]

(at least for direct-gap insulators and semiconductors).

4 Linear Response and Optical Properties in Periodic

Solids

4.1 Microscopic and Macroscopic Dielectric Functions

The interactions of electromagnetic fields and matter are governed by Maxwell’s
equations,

∇ � D ¼ n f ; ð6Þ

∇� E ¼ �∂B
∂t

; ð7Þ
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∇ � B ¼ 0; ð8Þ

∇�H ¼ j f þ
∂D
∂t

; ð9Þ

where all fields (D, E, B, and H) and all source terms (the density of free charges nf
and the free current density jf) are functions of position r and time t. We consider

situations where all time dependence is periodic, and we Fourier transform from

time t to frequency ω. Of main interest to us (because we are concerned with

nonmagnetic materials) is the relationship between the electric displacement D and

the total electric field E:

D r;ωð Þ ¼
ð
d3r0 ε¼ðr, r

0,ωÞEðr0,ωÞ; ð10Þ

where ε¼ ðr, r
0,ωÞ is the nonlocal, frequency-dependent dielectric tensor. In lattice-

periodic systems, translational symmetry implies ε¼ ðr, r
0,ωÞ ¼ ε¼ ðrþ R, r0 þ R,ωÞ,

where R is a lattice vector. We can then Fourier analyze ε¼ ðr, r
0,ωÞ and obtain

ε¼ r, r0,ωð Þ ¼ 1

V

X
k2BZ

X
G,G0

e�i kþGð Þ�rei kþG
0ð Þ�r0 ε¼ kþG,kþG0,ωð Þ; ð11Þ

where V is the crystal volume, k is a wave vector in the first Brillouin zone (BZ),

and G and G0 are reciprocal lattice vectors. In the following we use the notation

ε¼GG
0 k;ωð Þ ¼ ε¼ kþG, kþG0,ωð Þ: ð12Þ

Using these definitions, we can recast (10) into

DG k;ωð Þ ¼
X
G0
ε¼GG0

k;ωð ÞEG0 k;ωð Þ: ð13Þ

For comparison with experiment, one is usually interested in macroscopic quanti-

ties, i.e., quantities which are defined as averages over the unit cell of the crystal.

For instance, the macroscopic limit of (13) is defined as

Dmac ωð Þ ¼ ε¼mac
ωð ÞEmac ωð Þ: ð14Þ

An important observation from (13) is that the microscopic ε¼
GG0

k;ωð Þ is in general
nondiagonal in G and G0, for inhomogeneous systems. Therefore, even a uniform

external field induces nonuniform microscopic fluctuations in the solid; these are

called local-field effects. As a consequence, the macroscopic ε¼mac
ωð Þ cannot be

calculated directly; instead, one must take a detour via microscopic linear-response

theory. Otherwise, local-field effects would not be properly included.
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In the following we restrict the discussion to crystals with cubic symmetry

because this leads to the considerable simplification that the dielectric tensor

becomes isotropic in the long-wavelength limit and one can carry out a decompo-

sition into longitudinal and transverse components similar to that for the homoge-

neous case. It can then be shown that the macroscopic dielectric constant is given by

[67–69]

εmac ωð Þ ¼ lim
k!0

εGG0 k;ωð Þ�1
��
G¼0; G0¼0

h i�1
; ð15Þ

where εGG0 k;ωð Þ, the longitudinal component of the dielectric tensor for the cubic

system, is often called the dielectric matrix. Calculating the macroscopic dielectric

tensor without imposing cubic symmetry is technically more involved [70].

In the optical spectroscopy of materials, a central quantity is the complex

refractive index ~n, defined as [20]

εmac ωð Þ ¼ ~n2: ð16Þ

The real and imaginary parts of ~n determine two key optical properties of materials:

the refractive index n and the extinction coefficient κ, where

ℜεmac ¼ n2 þ κ2; ð17Þ
Jεmac ¼ 2nκ: ð18Þ

The extinction coefficient κ is proportional to the optical absorption coefficient;

therefore, optical absorption spectra are essentially determined by Jεmac ωð Þ.

4.2 Linear-Response Theory and TDDFT

We now make a connection between the dielectric function and the linear-response

formalism. The linear density response n1(r, ω) caused by a frequency-dependent

scalar perturbation v1 (r, ω) is given by

n1 r;ωð Þ ¼
ð
d3r0χðr, r0,ωÞv1ðr0,ωÞ; ð19Þ

where χ(r, r0,ω) is the density–density response function of the interacting many-

body system. In analogy with (10), the scalar dielectric function can be introduced

as follows [71]:
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v1 r;ωð Þ ¼
ð
d3r0ε r, r0,ωð Þ v1 r0,ωð Þ þ

ð
d3r00

n1ðr00,ωÞ
r0 � r00j j

� �
: ð20Þ

Combining (19) and (20), we obtain the inverse dielectric function as

ε�1 r, r0,ωð Þ ¼ δ r� r0ð Þ þ
ð
d3r00

χðr00, r0,ωÞ
r0 � r00j j ; ð21Þ

and for a periodic system we have

ε�1GG0 k;ωð Þ ¼ δGG0 þ vG kð ÞχGG0 k;ωð Þ; ð22Þ

where the Fourier transform of the 3D Coulomb potential is given by

vG kð Þ ¼ 4π��kþG
��2 : ð23Þ

Thus, the inverse dielectric function follows directly from the response function.

In linear-response TDDFT [72], the interacting response function χ can be

expressed in terms of the response function of the Kohn–Sham system χs and the

Hartree and xc kernels:

χ r, r0,ωð Þ ¼ χs r, r0,ωð Þ

þ
ð
d3x

ð
d3x0χs r; x;ωð Þ 1

x� x0j j þ f xc x, x0,ωð Þ
� �

χ x0, r0,ωð Þ: ð24Þ

Here, χs is the response function of the noninteracting Kohn–Sham system, given

by

χs r, r
0,ωð Þ ¼

X1
j, k¼1
ð f k � f jÞ

φ j rð Þφ*k rð Þφ*j r0ð Þφk r0ð Þ
ω� ω jk þ iη

; ð25Þ

where fj and fk are occupation numbers referring to the configuration of the Kohn–

Sham ground state (1 for occupied and 0 for empty Kohn–Sham orbitals), φj (r) are
the Kohn–Sham orbitals, and the ωjk are defined as the differences of the Kohn–

Sham eigenvalues,

ω jk ¼ ε j � εk: ð26Þ

The key quantity in linear-response TDDFT is the xc kernel, defined as the

functional derivative of the time-dependent xc potential with respect to the time-

dependent density, evaluated at the ground-state density:
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f xc r, t, r0, t0ð Þ ¼ δvxc n½ � r; tð Þ
δn r0; t0ð Þ

����
n0 rð Þ

: ð27Þ

The frequency-dependent xc kernel, fxc(r, r
0, ω), is the Fourier transform of this

with respect to (t–t0).
In lattice-periodic systems, (24) can be cast into the following form:

χGG0 k;ωð Þ ¼ χsGG0 k;ωð Þ

þ
X
G1,G2

χsGG1
k;ωð Þ vG1

kð ÞδG1G2
þ f xcG1G2

k;ωð Þ
� �

χG2G0 k;ωð Þ ;

ð28Þ

where the Kohn–Sham response function (25) is transformed into

χsGG0 kð Þ ¼
1

V

X
k02BZ

X1
j, l¼1

f lkþk0 � f jk0

ωþ ε jk0 � εlkþk0 þ iη

ð
d3rφ*jk0 rð Þe�i kþGð Þ�rφlkþk0 rð Þ

�
ð
d3r0φ*lkþk0 r

0ð Þei kþG0ð Þ�r0φ jk0 r
0ð Þ; ð29Þ

featuring the Kohn–Sham band structure εjk and Bloch functions φjk(r). The

so-called head (G¼G0 ¼ 0) of the xc kernel f xcGG0 k;ωð Þ gives the largest contri-
bution to the change from χs to χ; the contributions from bigger Gs decay rapidly.

Thus the sums in (28) can usually be restricted to a small number of reciprocal

lattice vectors, which reduces the computational effort significantly.

Let us now come back to the macroscopic dielectric constant. It can be shown

[1, 14, 15] that εmac(ω) takes on the following form:

εmac ωð Þ ¼ 1� lim
k!0

v0 kð Þχ00 k;ωð Þ: ð30Þ

Here, χGG0 k;ωð Þ differs from the full response function χGG0 k;ωð Þ, as defined in

(28), in the following way: instead of using the full Coulomb interaction vG(k) [see
(23)], it uses the modified Coulomb interaction

vG kð Þ ¼
0 for G ¼ 0,
4π��kþG

��2 for G 6¼ 0;

8<: ð31Þ

in which the long-range part v0(k)¼ 4π/k2 has been left out. This seemingly small

modification turns out to be quite important.
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5 TDDFT for Excitons in Solids

5.1 Why Are Excitons a Difficult Problem?

Until a few years ago, common wisdom held that TDDFT may be good for

molecular excitations but fails for excitons in solids. We now know better, as we

see in this section. However, let us first discuss why excitons are such a hard

problem for TDDFT.

Figure 3 shows the imaginary part of the macroscopic dielectric function of bulk

silicon [73], comparing experimental data with calculations using the RPA (where

fxc¼ 0) and the adiabatic local-density approximation (ALDA), which is the sim-

plest and most commonly used approximation of TDDFT. There are drastic devi-

ations between theory and experiment. First, the onset of absorption is red-shifted in

RPA and ALDA by about half an eV; this is not very surprising, and reflects the

“band gap problem” of ground-state DFT: as discussed in Sect. 3, the Kohn–Sham

gap of standard local and semilocal xc functionals is smaller than the quasiparticle

gap. One can correct for this error and shift the empty bands via a scissors operator

[74, 75] or one can use other methods to obtain band structures with a better gap,

such as GW or hybrid functionals (see Sect. 3).

The second deviation is more problematic: both RPA and ALDA lack the first

excitonic peak (labeled E1 in the experimental data), and instead only have a weak

shoulder. This discrepancy persists even if a better band structure (such as GW) is

used as input to calculate the noninteracting response function χs [14]. This failure
of the ALDA as well as the GGA xc functionals is by no means unique to silicon,

3 4 5 6

[eV]

Fig. 3 Optical absorption

spectrum of bulk Si. RPA

and ALDA fail to reproduce

the optical gap and the

excitonic peak. Reproduced

with permission from APS

fromBotti et al. [73].© 2004
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but systematically occurs in bulk insulators and semiconductors. The underlying

reason is the long-range behavior of the xc kernel: in reciprocal space, the head of

fxc should diverge as 1/q2 for small q, but semilocal approximations instead

approach a constant. In the next sections we explain this in more detail.

The main reason why excitons in TDDFT are a hard problem is thus that the

standard local and semilocal xc kernels don’t work, and one needs to resort to

nonstandard kernels or even develop new ones. We discuss this in Sect. 5.4 and

show some results.

Another reason is of a more practical nature. Even if very good approximations

for the xc kernel are available, the calculations can be numerically difficult because

convergence in reciprocal space can be slow. This problem also affects the standard

many-body approaches (GW-BSE) [76, 77].

5.2 Formalism: Direct Calculation of Exciton Binding
Energies

The Kohn–Sham response function χs has poles at the single-particle Kohn–Sham
excitation energies, which can be clearly seen in (25) and (29). On the other hand,

the full many-body response function χ has poles at the exact excitation energies of
the system [1, 71]. This is true for any type of system, finite or extended. The

Hartree and xc kernels in (24) and (28) are responsible for transforming the Kohn–

Sham excitation spectrum into the exact one; this includes the creation of excita-

tions which have no counterpart in the Kohn–Sham spectrum, such as plasmons in

metals or excitons in semiconductors and insulators.

It is convenient to describe electronic excitations as electronic eigenmodes of the

system. The associated mode frequencies – the excitation energies of the system –

are then obtained via the so-called Casida equation [78]:

A B

B A

 �
X

Y

 �
¼ Ω �1 0

0 1

 �
X

Y

 �
; ð32Þ

where the elements of the matrices A and B are

Aiaσ, jbσ0 ωð Þ ¼ εaσ � εiσð Þδi jδabδσσ0 þ KHxc
iaσ, jbσ0 ωð Þ; ð33Þ

Biaσ, jbσ0 ωð Þ ¼ KHxc
iaσ, jbσ0 ωð Þ; ð34Þ

with the Hartree-exchange-correlation (Hxc) matrix elements

KHxc
iaσ, jbσ0 ωð Þ ¼

ð
d3r

ð
d3r0φ*iσ rð Þφaσ rð Þ fHxc,σσ0 ðr, r0,ωÞφ jσ0 r

0ð Þφ*bσ0 r0ð Þ: ð35Þ

The indices i, j and a, b run over occupied and unoccupied Kohn–Sham orbitals,

respectively. fHxc denotes the sum of the Hartree and xc kernels.
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Most of the currently available xc kernels are frequency independent, in which

case (32) becomes a (pseudo-)eigenvalue problem. The excitation frequencies of

the system are explicitly given by the eigenvalues Ω. The eigenvector X together

with Y describes how the Kohn–Sham excitations combine to form the excitation in

the real system. The optical spectrum can be calculated with X and Y.

The widely used Tamm–Dancoff approximation (TDA) sets the matrix B to zero

and hence neglects the correlation between excitations and de-excitations. Within

the TDA and using the adiabatic approximation for the xc kernel, (32) becomesX
jbσ0

δi jδabδσσ0 εaσ � εiσð Þ þ KHxc
iaσ, jbσ0

h i
X jbσ0 ¼ ΩXiaσ: ð36Þ

The real space representation of the Hxc kernel is related to the momentum space

representation as

fHxcσσ0 r, r
0,ωð Þ ¼ 1

V

X
q2FBZ

X
G,G0

ei qþGð Þ�r fHxcσσ0 ðq,G,G0,ωÞe�i qþG0ð Þ�r0 : ð37Þ

With (37), the Hxc kernel in transition space, (35), becomes

KHxc
iaσ, jbσ0 ¼

1

V

X
q2FBZ

X
G,G0

ikiσh jei qþGð Þ�r akaσj i fHxcσσ0 ðq,G,G0Þ�

bkbσ
0h je�i qþG0ð Þ�r0 j jk jσ

0iδka�kiþq,G0
δ
kb�k jþq,G

0
0
; ð38Þ

with the matrix elements defined as

ikiσh jei qþGð Þ�r akaσj i 	
ð
d3rφ*ikiσ rð Þei qþGð Þ�rφakaσ rð Þ; ð39Þ

where the ks are the Bloch wavevectors of the corresponding wavefunctions, and

G0, G
0
0 can be any reciprocal lattice vector. The Kronecker-δs in (38) are a

consequence of Bloch’s theorem.

In the following, we do not consider any spin-dependent excitations (see Yang

and Ullrich [19] for a discussion of triplet excitons within TDDFT). Because we are

interested in optical absorption, only vertical single-particle transitions need to be

considered, so that ki¼ ka and kj¼ kb, which implies q¼ 0 in (38). Equation (36)

then becomes, in reciprocal space,X
jbk0

δik, jk0δak,bk0 εak � εikð Þ þ KHxc
iak, jbk0

h i
X jbk0 ¼ ΩXiak: ð40Þ
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Here, i, j and a, b denote occupied and unoccupied band indices, respectively. This

includes, in principle, all empty bands including continuum states; in practice,

however, only a limited number of valence and conduction bands in the vicinity

of the band gap need to be included if (40) is to be solved numerically.

The Hartree part of the coupling matrix is given by

KH
iak, jbk0 ¼

2

V

X
G 6¼0

4π��G��2 ikh jeiG�r akj i bk0h je�iG�r jk0j i: ð41Þ

The long-range part (G¼ 0) of the Coulomb interaction is omitted so that the

eigenvalues of (40) correspond to the poles in the macroscopic dielectric function,

as discussed at the end of Sect. 4.2. The xc part is given by

Kxc
iak, jbk0 ¼

2

V
lim
q!0

X
GG0

f xc,GG0 qð Þ ikh jei qþGð Þ�r akj i bk0h je�i qþGð Þ�r jk0j i: ð42Þ

The solutions of (40) can be used to calculate the macroscopic dielectric function,

using the following expression [l labels the lth eigenvalue of (40)]:

εmac ωð Þ ¼ 1� lim
q!0

4π

q2

X
l

X
iak ikh je�iq�r akj iX lð Þ

iak

��� ���2
ω� Ωl þ iη

: ð43Þ

5.3 Why Does ALDA Fail?

Now let us discuss the behavior of the head, wings, and body of the coupling matrix

(42). For G¼ 0, the matrix element ik
��ei qþGð Þ�r��ak� �

vanishes asO qð Þwhen q! 0,

and similarly for the other matrix element, bk0
��e�i qþG0ð Þ�r�� jk0� �

. This means that the

head (G¼G0 ¼ 0) of Kxc
iak, jbk0 vanishes unless the head of f xc,GG0 qð Þ diverges at

least as q�2. Likewise, the wings (G¼ 0 and G0 finite, or vice versa) vanish unless

the wings of the xc kernel diverge at least as q�1.
All local and semilocal xc kernels (ALDA and adiabatic GGAs) remain finite for

all G, G0, and q. This is easy to see for the ALDA, whose real-space form is

f ALDAxc r, r0ð Þ ¼ d2exc nð Þ
dn2

����
n�n0 rð Þ

δ r� r0ð Þ; ð44Þ

where exc (n) is the xc energy density of a homogeneous electron gas of uniform

density n and n0(r) is the ground-state density of the material. Carrying out the

Fourier transform we find that the q-dependence simply drops out [79]:
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f ALDAxc,GG0 qð Þ ¼
1

Vcell

ð
d3r e�i G�G

0ð Þ�r d2exc nð Þ
dn2

����
n¼n0 rð Þ

; ð45Þ

where the integral runs over one unit cell with volume Vcell. The adiabatic GGA xc

kernels exhibit similar behavior. If f ALDA
xc,GG

0 qð Þ is substituted into (42), then the

contribution from the head and wings of fxc to Kxc
iak, jbk0 vanishes. For ALDA and

GGA kernels, all changes to the Kohn–Sham spectrum can thus only come from the

body ofKxc
iak, jbk0 (where bothG 6¼ 0 andG0 6¼ 0), but these are not sufficiently strong

to produce excitons.

The case q! 0 in reciprocal space corresponds to r!1 in real space. The

long-range behavior of the xc kernel is relatively unimportant for low-lying exci-

tations in finite systems such as atoms and molecules, which means that local and

semilocal xc kernels work reasonably well (an exception to this statement are

charge-transfer excitations [80–86]). However, for extended and periodic systems

it is crucial to have xc kernels with the proper long-range behavior to obtain correct

optical spectra [14, 73]. Gonze et al. [87, 88] pointed out that the head of fxc has to
diverge as q�2 for q! 0 to describe correctly the polarization of periodic insulators.

With the q�2 divergence, the head of fxc contributes in the sum of (42), dominating

the other parts of fxc (the wings and the body). Local and semilocal xc kernels do not

have this long-range behavior, and there is no obvious and consistent way of

modifying them to include the long-rangedness. Hence, a different class of approx-

imate xc kernels – excitonic xc kernels – is needed.

5.4 Excitonic xc Kernels

Because TDDFT is formally rigorous, it should in principle yield exact optical

absorption spectra for insulators. However, even if we start from an exact ground-

state Kohn–Sham calculation (which would give the exact independent-particle

spectrum), the xc kernel f xcGG0 k;ωð Þ has to carry a heavy burden: it has to open the
gap and shift the Kohn–Sham band edge to the true band edge, and it has to cause an

effective electron–hole attraction, leading to excitonic features in the spectrum.

Formally, the xc kernel can be separated into a quasiparticle and an excitonic part
[89–91],

f xc ¼ f qpxc þ f exxc : ð46Þ

The two parts are responsible for the opening of the gap and the excitonic effects,

respectively. Further justification of (46) is given in Sect. 5.4.6. Let us now focus on

the excitonic part and give some examples of how it can be approximated.
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5.4.1 Contact Exciton

Let us begin with an apparent paradox, namely, the so-called contact exciton. Even

though we have stressed that the proper long-range behavior of the xc kernel is

crucial, an ultra-short-range xc kernel of the general form

f contxc ðr, r0Þ ¼ �Acontδ r� r0ð Þ ð47Þ

can produce excitonic features if the constant Acont is properly chosen [15, 18,

92]. By the same token, an ad hoc scaled ALDA,α f ALDAxc,GG0 , can, in principle, produce

excitons, although the scaling factor α would have to be rather absurdly large

(typically of the order of ~103).

The resolution of the contact-exciton paradox is that the contact kernel and the

scaled ALDA work via the body of the coupling matrixKxc
iak, jbk0 . In other words, the

missing long-range behavior is, somewhat unphysically, compensated by an

ultrastrong short-range electron–hole interaction. It is found [15, 90] that the

contact xc kernel can be tuned to reproduce certain features of the optical spectrum

(for instance, a bound-exciton peak) but at the cost of a poor description of other

parts of the spectrum.

5.4.2 Long-Range Corrected Kernel

Because we know from Sect. 5.3 that the long-range 1/q2 behavior of the head of the
xc kernel is the key to excitonic effects, it is straightforward to construct a simple ad

hoc approximation which captures the right physics for the right reason. The

resulting so-called long-range corrected (LRC) kernel has the following form:

f LRCxc,GG0 qð Þ ¼ �
ALRC��qþG

��2δGG0 ; ð48Þ

where ALRC is a system-dependent fitting parameter. Despite its simple form, LRC

spectra (with properly chosen ALRC) can be in good agreement with experiment

[73, 92] because the head contribution of the kernel tends to dominate over the

local-field effects contained in the contributions of the body of Kxc
iak, jbk0 . A simple

connection with the high-frequency dielectric constant ε1 has been suggested [73]:

ALRC ¼ 4:651ε�11 � 0:213: ð49Þ

The purpose of this empirical formula was to reproduce the continuum spectrum;

hence, it cannot be expected to (and, in fact, does not) perform well for bound

excitons (see Sect. 5.4.9).
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5.4.3 Exact Exchange

The frequency-dependent xc kernel can be formally constructed from many-body

perturbation theory, using a diagrammatic expansion [93, 94]. The first-order term

of this expansion is the exact exchange kernel fx(r, r
0, ω), which can be represented

as the sum of five diagrams (see Fig. 4a). Translated into formulas using the

standard diagrammatic rules, one obtains [95, 96]ð
d3r1

ð
d3r2χs r; r1;ωð Þ f x r1; r2;ωð Þχsðr2, r0,ωÞ

¼ RVðr, r0,ωÞ þ RΣðr, r0,ωÞ: ð50Þ

Rv is the first-order vertex diagram (third on the right-hand side in Fig. 4a),

RV r, r0,ωð Þ ¼ �2
X
ijkl

φi rð Þφ*j rð Þφ*k r0ð Þφl r0ð Þ ilh jw jkj i
ð f i � f jÞ f k � f lð Þ
z� ωi j

� �
z� ωlkð Þ

; ð51Þ

where z¼ω + i0+, and the fj are the usual occupation factors. RΣ denotes the sum of

all the remaining four diagrams (the self-energy diagrams):

RΣ r,r0,ωð Þ¼4
X
i jk

φi rð Þφ*i r0ð Þφ j rð Þφ*k r0ð Þ jh jΔ kj i
ωk j

f k� f ið Þωik

z2�ω2
ik

�
ð f j� f iÞωi j

z2�ω2
i j

( )
;

ð52Þ

where Δ(r1, r2)¼Σx(r1, r2)�νx(r1)δ(r1�r2). Here, Σx is the exchange part of the

self-energy, and νx is the exact exchange potential of DFT, defined as an orbital

functional via the optimized effective potential (OEP) method [45, 97]. It is also

xv

xv

xf

ex
xcf

a

b

Fig. 4 Diagrammatic representations of (a) the exact exchange kernel fx (50) and (b) the excitonic
xc kernel fexxc (61), the so-called nanoquanta kernel. Full lines represent noninteracting Kohn–Sham
Green’s functions and dashed lines represent quasiparticle Green’s functions. Thin wavy lines are

bare Coulomb interactions and the thick wavy line is a screened interaction
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possible to derive the exact exchange kernel directly as the functional derivative

fx(ω)¼δvx(ω)/δn(ω) [98, 99].
In periodic insulators, the exact-exchange kernel has the long-range behavior

necessary for the formation of excitons [100, 101]. However, the resulting

unscreened electron–hole interaction tends to lead to a dramatic overbinding of

the excitons; in extreme cases this causes a collapse of the optical spectra (i.e., the

exciton would be so strongly bound that it falls below the valence band edge). This

collapse can be prevented by a cutoff of the Coulomb singularity [100, 101]; this is

equivalent to an evaluation of the xc kernel with a screened interaction [15, 102].

5.4.4 Hybrid Functionals and Meta GGAs

Hybrid xc functionals [46–59] replace a portion of the semilocal exchange energy

with the exact exchange energy, so the long-range part of the corresponding xc

kernel resembles a screened exact exchange kernel; as we saw above, this can

produce bound excitons. In practice, however, hybrid functionals are used in a

different manner [103]: the exact exchange part is treated nonlocally, similar to the

time-dependent HF approach, instead of using the exact exchange kernel in (42).

The B3LYP hybrid functional has been used by Bernasconi et al. to calculate

optical spectra in several semiconductor materials [104–106]; they achieve a

generally good description of optical gaps, including excitonic features. Indeed,

we have obtained some preliminary results [107] which confirm that B3LYP can be

reasonably accurate for exciton binding energies in semiconductors, despite the fact

that the 0.2 mixing parameter of the exact exchange is optimized for finite

systems [46].

Range-separated hybrid functionals [50, 108, 109] are based on the idea of

separating the Coulomb interaction into different spatial ranges, which are then

treated differently, using either exact exchange or approximate semilocal exchange

functionals. Recent applications of range-separated hybrids to solids have produced

good quasiparticle gaps [51, 52, 54, 55, 57, 61]. In linear response, these functionals

are again closely related to the exact exchange kernel. However, if the range-

separated functional uses semilocal exchange for the long-range part, it cannot

produce bound excitons for the same reason as in ALDA. Therefore, the popular

HSE06 functional [50, 51, 110] cannot yield bound excitons, although it may still

produce decent looking optical spectra of insulators [111].

The so-called meta-GGA functionals [112–115] depend not only on the density

and its gradients but also on the kinetic-energy density, which is expressed in terms

of Kohn–Sham orbitals and, hence, depends nonlocally on the density. This

nonlocality produces good quasiparticle gaps in solids [60–64], and opens up the

possibility of describing excitonic interactions with meta-GGAs. Nazarov and

Vignale [116] tested two types of meta-GGAs, TPSS [112] and VS98

[113, 114]. They found TPSS to be unsuited for describing dielectric properties

of solids; VS98, on the other hand, performed rather well. Further tests are needed;
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however, the implementation of meta-GGAs for the linear response in solids turns

out to be technically rather difficult.

5.4.5 The PGG Kernel

The exact exchange kernel can be approximated in various ways. The simplest

approximation is known as the PGG kernel (after Petersilka, Gossmann, and Gross

[117, 118]). In real space, it is defined as

f PGGx r, r0ð Þ ¼ �
2
Xocc

i
φ*i rð Þφi r0ð Þ

��� ���2
r� r0j jn rð Þn r0ð Þ ; ð53Þ

where n is the ground-state electronic density. In this form, the PGG kernel has been

successfully applied to calculate atomic and molecular excitation energies as well

as plasmons in nanostructures [119]. Thus, one might be optimistic regarding its

performance for excitons.

We convert the PGG kernel into reciprocal space, assuming that the Kohn–Sham

orbitals have the form φik rð Þ ¼ N
�1=2
cell uik rð Þeik�r, where Ncell is the number of unit

cells in the crystal and uik(r) are Bloch functions. fPGGx can then be written as

f PGGx r, r0ð Þ ¼ �
Xocc
ik

Xocc
mk0

2e�i k�k
0ð Þ� r�r0ð Þ

r� r0j j Hikmk0 r, r
0ð Þ; ð54Þ

where Hikmk0(r, r
0) is periodic within one unit cell and defined as

Hikmk0 r, r
0ð Þ ¼ u*ik rð Þuik r0ð Þumk0 rð Þu*mk0 r0ð Þ

N2
celln rð Þn r0ð Þ

ð55Þ

The Fourier transform of f PGGx yields

f PGGx q,G,G0ð Þ ¼ � 8π

V

Xocc
ik

Xocc
mk0

X
G0

eHikmk0 G�G0,G
0 �G0ð Þ

q� k0 � kð Þ þG0j j2
; ð56Þ

where eH is obtained by numerical Fourier transform of expression (55) within one

unit cell. For simplicity, we ignore the local-field effects and only use the head of

the PGG kernel, which is given by

f PGGx q; 0; 0ð Þ ¼ � 8π

V

Xocc
i,m, k

eHikmk 0; 0ð Þ
q2

: ð57Þ
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Unfortunately, explicit calculations show that the performance of the PGG kernel is

disappointing for solids: it does not produce any bound excitons at all, despite

having a nonzero head contribution with the correct 1/q2 behavior [19]. How can

this be reconciled with the fact that the PGG kernel seems to work well in finite

systems such as atoms and molecules? Periodic systems are dominated by the head

of the xc kernel in reciprocal space; however, the situation is very different in finite

systems, where the electron dynamics can be viewed as coming entirely from local-

field effects. Thus, the strongly attractive nature of the PGG kernel in finite systems

would at most translate into a strong body of the xc matrix in periodic systems

(which, however, is irrelevant for excitons), but does not necessarily guarantee a

strong head. Indeed, if one fits the head of the PGG kernel to the LRC kernel (48),

one finds that the resulting constant APGG
LRC is orders of magnitude too weak [19].

The underlying reason for the failure of the PGG kernel for periodic insulators

can be inferred from its real-space definition (53), which can be written in the form

f PGGx ¼ �
��ρðr, r0Þ��2= 2

��r� r0
��n rð Þn r0ð Þ

	 

, where ρ(r, r0) is the Kohn–Sham density

matrix. For periodic solids, the long-range behavior of fPGGx is determined by both

the Coulomb singularity and the density matrix. It is a well-known fact [120–124]

that the one-particle density matrix in insulators decays exponentially as ρ(r, r0)
~ exp(�γ|r–r0|). This effectively cuts off the required long-range behavior and

explains why the head of the PGG kernel is so weak.

5.4.6 The “Nanoquanta” Kernel

Let us introduce the so-called proper response function eχ as

eχ ¼ χs þ χs f xceχ ð58Þ

(for simplicity, we drop all arguments and integrals). At the beginning of this

section we defined the quasiparticle and excitonic parts of the xc kernel; see (46).

It is then easy to write down the following relations for the two parts of fxc [91]:

χqp ¼ χs þ χs f qpxcχqp; ð59Þeχ ¼ χqp þ χqp f exxceχ : ð60Þ

Here, χqp is the quasiparticle response function, which uses quasiparticle states as

input. Hence, χqp has the quasiparticle gap built in by default, and the roles of fqpxc
and f exxc are clear from (59) and (60). Our focus here is on the excitons: all we need to

do, then, is start with a good approximation for χqp. Usually, one obtains it from the

GW approach (see Sect. 3), but other approximations that yield good quasiparticle

gaps (such as hybrids or the scissors operator) can be used as well.

The exact proper response function eχ is, of course, unknown. To construct an

approximation for f exxc from (60) one can proceed in two steps. First, replace
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χqp f
ex
xceχ � χqp f exxc χqp. Second, find a diagrammatic representation of eχ � χqp; the

details of this representation are quite technical and are not given here (in essence, it

involves two-particle Green’s functions and four-point vertex functions [1, 14, 15,

125]). The key point is that this diagrammatic representation can be very easily

approximated, and one ends up with the following expression:ð
d3

ð
d4χqp 1; 3ð Þ f exxc 3; 4ð Þχqp 4; 2ð Þ ¼

ð
d3

ð
d4Gqp 1; 3ð ÞGqp 4; 1ð ÞW 3; 4ð ÞGqp 3; 2ð ÞGqp 2; 4ð Þ:

ð61Þ

This is the xc kernel of Reining et al. [89] and many others [also known as the

“nanoquanta” kernel (http://www.cmt.york.ac.uk/nanoquanta/)]. Figure 4b shows

its diagrammatic representation. The numbers in (61) represent space-time argu-

ments, e.g., 1¼ (r1, t1).Gqp is a quasiparticle Green’s function, andW is a screened

interaction, formally defined as

W 1; 2ð Þ ¼ w 1; 2ð Þ þ
ð
d3

ð
d4w 1; 3ð Þeχ 3; 4ð ÞW 4; 2ð Þ; ð62Þ

where w(1,2) is the bare Coulomb interaction, and eχ is approximated by χqp.
The excitonic xc kernel fxc

ex of (61) has been widely applied in a variety of

systems [14, 89, 90, 102, 126–131]. Its performance is, in general, found to be

excellent, at par with results obtained from solving the full BSE. This provided an

important proof of concept that TDDFT is very well capable of capturing excitonic

properties. The price to be paid, however, is that the many-body xc kernel (61) is

not simple to implement and is computationally costly (it is, essentially, as expen-

sive as the BSE when it comes to calculating optical spectra, but somewhat more

favorable if the full dielectric matrix is needed).

5.4.7 The “Bootstrap” Kernel

Compared to the exact exchange and nanoquanta kernels, the simplicity of the LRC

kernel is desirable for practical use. The adjustable parameter ALRC requires prior

knowledge to the system, however, and therefore the LRC kernel cannot be used as

a black-box method. The bootstrap kernel proposed by Sharma et al. [132, 133] can

be seen as an attempt to determine the ALRC parameter (which now depends on q,

G, and G0) self-consistently while retaining the simplicity of the LRC kernel. The

original definition [132] is written in terms of symmetrized quantities to avoid

singularities: for example, f symxc ðq,G,G0Þ ¼ v
�1=2
G qð Þ f xcðq,G,G0Þv�1=2G0 qð Þ and

χsymðq,G,G0Þ ¼ v
1=2
G qð Þχðq,G,G0Þv1=2G0 qð Þ. In terms of regular, non-symmetrized

quantities, the kernel is defined as
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f bootxc q,G,G0ð Þ ¼
qj j2 δGG0 þ v

1=2
G qð Þv1=2G0 qð Þχðq,G,G0Þ

h i
qþGj j qþG0j jχs q; 0; 0ð Þ ; ð63Þ

where vG(q)¼ 4π/|q +G|2 is the Coulomb potential, χs is the Kohn–Sham linear

response function of (29), and χ is the TDDFT linear response function obtained via

(28). Equations (28) and (63) are solved self-consistently for the xc kernel. The

q! 0 behavior of χs(q, 0, 0) is O(q
2), and it is canceled by the |q|2 in the numerator.

Thus the bootstrap fxc has the correct q! 0 behavior because of the presence of

|q+G| |q +G0| in the denominator.

The bootstrap kernel has been reported to yield good continuum spectra (includ-

ing the enhancement of the band-edge spectra by continuum excitons) for a wide

range of materials [132]. Unfortunately, numerical applications of this xc kernel are

plagued by its slow convergence with respect to the total number of bands included

in χs. When convergence is finally achieved (which may require including dozens

of unoccupied bands), the results for bound excitons tend to be disappointing, with

exciton binding energies typically orders of magnitude smaller than the experimen-

tal values [19]. In fact, contrary to Sharma et al. [132], the bootstrap kernel does not

yield bound excitons for wide-gap insulators such as LiF and solid Ar (we present

numerical results in Sect. 5.4.9). Improving the performance of the bootstrap kernel

by suitable modification is a subject of ongoing research.

5.4.8 The Jellium-with-a-Gap Model

Trevisanutto et al. recently developed an xc kernel based on the jellium-with-a-gap

model (JGM) [134]. Although the JGM kernel depends on the local density, it

differs from local and semilocal xc kernels by having the correct 1/q2 and 1/q
behavior of head and wings as q! 0, and it can therefore in principle produce

bound excitons. The JGM kernel is an empirical kernel because it requires the band

gap as input. The kernel is defined as

f JGMxc q; n;Eg

� �
¼

4π B nð Þ þ Eg

	 

q2 1þ Eg

� � e�k n;Egð Þq2 � 1
� �

� 4πC nð Þ
3π2nð Þ2=3 1þ 1=q2ð Þ 1þ Eg

� � ; ð64Þ

where [135]

C nð Þ ¼ � π

2 3π2nð Þ1=3
d rsεc rsð Þ½ �

drs
; ð65Þ
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k n;Eg

� �
¼ � αn

β

B nð Þ þ
E2
g 1þ Eg

� �
4πq2n B nð Þ þ Eg

	 
 ; ð66Þ

and [136]

B nð Þ ¼ 1þ a1r
1=2
s þ a2r

3=2
s

3þ b1r
1=2
s þ b2r

3=2
s

: ð67Þ

Here, rs¼ [3/(4πn)]1/3, εc is the LDA correlation energy per particle [137], and

α¼�0.02552, β¼�0.6916, a1¼ 2.15, a2¼ 0.435, b1¼ 1.57, and b2¼ 0.409. The

performance of the JGM kernel is similar to that of the bootstrap kernel for continuum

spectra; unfortunately, it also severely underestimates exciton binding energies.

5.4.9 Some Results

We now present some results for exciton binding energies, obtained using (40), to

demonstrate the performance of several of the xc kernels we have discussed. All

TDDFT calculations are done on top of scissor-corrected [74, 75] LDA band

structures, so that only the excitonic part of the exact xc kernel is approximated

by the functionals that we consider. All calculations include only the head of the xc

coupling matrixKxc
iak, jkk0 . Ignoring the wings and the body of the xc coupling matrix

gives an estimated error of less than 5%. Other details specific to our numerical

implementation are described in Yang and Ullrich [19].

Experimental and calculated exciton binding energies for several materials are

collected in Table 1. We compare the performance of three different xc kernels: the

LRC kernel (48), evaluated using (49), the bootstrap kernel (63),1 and the JGM

1We find that the convergence of the bootstrap kernel strongly depends on the number of bands

used in the iterative calculation of the kernel. The results for solid Ar, solid Ne, and LiF are

obtained by calculating the bootstrap kernel with 30 bands. It turns out that some of our previous

results reported in Yang and Ullrich [19], where the bootstrap kernel seemed to work very well for

Ar, Ne, and LiF, were in fact not fully converged.

Table 1 Exciton binding energies calculated with different TDDFT xc kernels, compared with

experimental values (all energies in meV)

GaAs β-GaN α-GaN CdS CdSe Ar Ne LiF AlN ZnO MgO

Exp. 3.27 26.0 20.4 28.0 15.0 1,900 4,080 1,600 75 60 80

LRC 0.858 0.514 0 0.513 1.40 0.304 0.127 1.14 0 0.810 0.076

Boot 0.332 0.199 0 0.461 0.895 1.70 852 32.2 0 1.09 0.051

JGM 0.833 0.382 0 0.741 1.42 41.0 0.593 993 0 4.45 1.79
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kernel (64). Except for α-GaN and AlN, all three TDDFT methods produce a bound

exciton; however, the results are quantitatively not very accurate. By and large, the

excitons are significantly underbound, sometimes by up to two to three orders of

magnitude.

The LRC kernel contains the adjustable parameter ALRC, which can be fitted

to reproduce the experimental exciton binding energy. The fitted values of ALRC

are given in the first row of Table 2. From the head of the bootstrap and the JGM

xc coupling matrices, we can extract the corresponding ALRC parameters; the

results are given in the second and third rows of Table 2. Clearly, the bootstrap

and JGM kernels produce heads which are significantly too weak in comparison

with what would be needed to reproduce the experimental data. Clearly, the

exciton binding energy depends crucially on the strength of the head of the xc

coupling matrix.

Figure 5 shows optical absorption spectra of solid Ar. The spectra in the top

panel were calculated from the solutions of (40) using (43). The bottom panel

(adapted from Sottile et al. [128]) was calculated via (30). The top panel compares

RPA and LRC, both of them using a scissor-corrected LDA band structure as input.

The LRC kernel clearly produces a very strong bound exciton, but the continuum

part is too weak compared to the excitonic peak. The bottom panel compares

experimental results with calculations using GW-BSE and GW-TDDFT, using

the nanoquanta kernel. Clearly, BSE and the nanoquanta kernel are in excellent

agreement, and both agree well with the experimental data (the splitting of the

peaks is caused by spin-orbit coupling, which is not included in the calculations). It

should be noted that a second bound exciton is present, which is missing in the LRC

calculation. For comparison, the bottom panel of Fig. 5 also shows ALDA results,

based on an uncorrected LDA band structure. Clearly, the ALDA bears no resem-

blance whatsoever to experiment.

Table 2 Top row: fitted ALRC parameter which reproduces the experimental exciton binding

energies with the LRC kernel. Second and third rows: heads of the xc coupling matrix of the

bootstrap and JGM kernels

GaAs β-GaN α-GaN CdS CdSe Ar Ne LiF AlN ZnO MgO

Fit 0.595 2.409 3.6285 4.244 2.144 21.45 96.5 9.5 3.0006 1.6285 4.0405

Boot 0.0884 0.3048 0.2147 0.5895 0.3183 6.448 46.34 4.236 0.3412 0.3620 1.230

JGM 0.2056 0.5245 0.5782 0.7829 0.4631 9.685 10.76 7.78 1.568 0.8008 2.357
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6 Comparison of TDDFT and the BSE

Exciton binding energies in TDDFT are determined via (40). The Hxc coupling

matrix is given by

KHxc
iak, jbk0 ¼ KH

iak, jbk0 þ Kxc
iak, jbk0 ; ð68Þ

where the Hartree and xc matrices are defined in (41) and (42). It turns out that the

BSE leads to an equation for exciton binding energies which is formally identical to

(40), except that it features the coupling matrix
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Fig. 5 Absorption spectra of solid Ar obtained from (43) (top panel) and from (30) (bottom panel,
adapted from Sottile et al. [128]). Reproduced with permission from APS from Sottile

et al. [128]. ©2007
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KBSE
iak, jbk0 ¼ KH

iak, jbk0 þ KW
iak, jbk0 ; ð69Þ

where

KW
iak, jbk0 ¼ �

1

V

X
GG0

WGG0 qð Þ ikh jei qþGð Þ�r jkj i bk0h je�i qþG0ð Þ�r ak0j i: ð70Þ

The Hartree part is the same as in TDDFT, but the xc part is replaced by a coupling

matrix featuring the screened interaction (62). In practice, one ignores the fre-

quency dependence of W; explicitly, one finds

WGG0 q,ω ¼ 0ð Þ ¼ 4πε�1GG0 q,ω ¼ 0ð Þ
qþG0j j2

: ð71Þ

Let us now compare the two coupling matrices Kxc and KW. Two main differences

become apparent: first, the order of the band indices i, j, a, b is different; second, the
xc matrix only depends on the long-range (q¼ 0) behavior, while theWmatrix also

depends on other values of q.

Figure 6 shows contour plots of the xc andW coupling matrices, calculated for a

one-dimensional model insulator with a soft-Coulomb interaction [18]. The xc

kernel here is the long-range corrected kernel f LRCxc with a fitting parameter chosen

such that the lowest exciton binding energy in TDDFT and BSE is the same.

The two coupling matrices shown in Fig. 6 are strikingly different. This is not

surprising, because the screened interaction WGG0 (q) has an extra degree of

freedom over fxcGG0 (q¼ 0); hence, it cannot be expected that an adiabatic xc

kernel can be found that reproduces the full BSE coupling matrix. One can only

hope to reproduce a portion of the BSE coupling matrix, unless the xc kernel is

made frequency-dependent so that at least some of the information from the

Fig. 6 Contour plots of the coupling matrices Kxc (left panel) and KW (right panel). Reproduced
with permission from AIP from Yang et al. [18]. ©2012
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q-dependence in the screened interaction is mapped into the frequency dependence

of the xc kernel [89]. As a consequence, adiabatic xc kernels can be made to

produce a single bound exciton, but not an excitonic Rydberg series (at least, not

just with the head of the xc matrix) [18].

The question then arises how TDDFT can produce bound excitons at all, given

the fact that the xc and BSE coupling matrices are so drastically different. To

illustrate how this is possible, we now make a connection with the Wannier model

discussed in Sect. 2, and ask: what is the TDDFT and BSE analog of the Wannier

equation, (1)?

Let us consider, for simplicity, a two-band model in which there is only one

filled valence band (v) and one empty conduction band (c). We define an effective

two-body potential via the Fourier transform of the xc coupling matrix:

Vxc
e�hðR,R0Þ ¼

X
k, k02BZ

e�ik�RKxc
vck, vck0e

ik�R0 ; ð72Þ

where R, R0 are direct lattice vectors. Because Wannier exciton radii extend over

many lattice constants, one may replace R by a continuous spatial variable r.

Assuming, furthermore, parabolic valence and conduction bands, and using the

effective-mass approximation, (40) becomes, after Fourier transformation,

∇2

2mr
X rð Þ þ

ð
d3r0Vxc

e�hðr, r0ÞX r0ð Þ ¼ EX rð Þ; ð73Þ

where E is the exciton binding energy, and the integration goes over all space. This

shows that the TDDFT analog of the Wannier equation (1) is a nonlocal

Schr€odinger equation. With a proper choice of the xc kernel, the nonlocal effective

electron–hole interaction potential Vxc
e�h supports bound excitonic states.

Fig. 7 Contour plots of the effective nonlocal electron–hole interaction potentials in TDDFT (left
panel) and BSE (right panel). Reproduced with permission from AIP from Yang et al. [18].©2012
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Because of the formal similarity between BSE and TDDFT in the transition

space representation, we can also define a BSE effective electron–hole interaction

potential VBSE
e�h in analogy to (72), using the BSE kernel KW. Figure 7 shows a

comparison ofVxc
e�h andV

BSE
e�h for our one-dimensional model insulator. It can clearly

be seen that the nonlocal potentials in both cases are dominated by the diagonal

part; however, under further examination it turns out that Vxc
e�h is shallower than

VBSE
e�h , and hence is only able to sustain a single bound exciton.

7 Conclusions

There exist two alternative, complementary first-principles methods to calculate

optical spectra and excitonic effects in extended periodic solids. The more tradi-

tional approach is based on many-body Green’s function techniques, exemplified

by the GW-BSE method; the other approach is based on TDDFT. The Green’s
function approach is formally straightforward, in the sense that excitonic particle–

hole interactions are built in by construction; however, it is computationally costly.

TDDFT, on the other hand, is computationally cheaper (provided that the approx-

imate xc functionals are simple enough), but the price one has to pay is that

intrinsically nonlocal electron–hole interaction effects have to be described via

linearized local xc potentials; this is a somewhat unnatural way of dealing with

excitonic interactions, which makes it non-straightforward to construct good

approximations.

In this chapter we have focused on the TDDFT approach for excitons, and have

tried to bring across the following points:

• Excitons in TDDFT are a difficult problem, because they require an xc kernel

which has the long-range property fxc,00(q, ω) ~ q
�2 for q! 0. The popular local

and semilocal approximations such as ALDA and standard GGAs do not have

this property: although they work well for finite systems such as atoms and

molecules, they do not produce excitons in extended systems. New approxima-

tions are therefore required.

• There exist several approximate “excitonic” xc kernels, with various degrees of

sophistication. Some kernels involve adjustable parameters, others don’t. A
typical behavior of the simpler kernels is that they can reproduce some part of

the optical spectrum reasonably well (e.g., a bound exciton, or the continuum

part), but not all of it at the same time. The best excitonic xc kernel, the

“nanoquanta” kernel, is computationally not much simpler than the BSE.

• Adiabatic (i.e., frequency-independent) xc kernels cannot produce an excitonic

Rydberg series. At best, they can generate a single bound exciton (if only the

head of the xc coupling matrix is used). The TDDFT analog of the excitonic

Wannier equation features a nonlocal potential, which is too shallow to produce

more than one bound level.

Excitons in Time-Dependent Density-Functional Theory 213



Despite the difficulties of developing accurate and efficient TDDFT approaches

for excitons, much progress has been made over the past few years. The path

forward is most likely to bring TDDFT and traditional many-body theory even

closer together, the outcome being xc kernels that are functionals of occupied as

well as unoccupied bands, similar in spirit to the nanoquanta and bootstrap kernels.

Hybrid xc kernels are another promising way forward; however, this means

abandoning pure TDDFT and admitting nonlocal exchange. This has been an

extremely successful strategy for finite systems: indeed, standard hybrid functionals

are widely used for excitons in polymers and other nanoscale systems

[138–141]. For periodic solids, the standard hybrid functionals may have to be

suitably modified to describe excitonic properties; work along these lines is in

progress [107].
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Rignanese G-M, Gonze X (2013) Phys Rev B 87:075121

60. Tran F, Blaha P (2009) Phys Rev Lett 102:226401

61. Kim Y-S, Marsman M, Kresse G, Tran F, Blaha P (2010) Phys Rev B 82:205212

62. Koller D, Tran F, Blaha P (2011) Phys Rev B 83:195134

63. Koller D, Tran F, Blaha P (2012) Phys Rev B 85:155109

64. Jiang H (2013) J Chem Phys 138:134115
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106. Tomić S, Bernasconi L, Searle BG, Harrison NM (2014) J Phys Chem C 118:14478

107. Yang ZH, Sottile F, Ullrich CA, arXiv:1501.05631

108. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

109. Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109

110. Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124:219906

111. Paier J, Marsman M, Kresse G (2008) Phys Rev B 78:121201 (R)

112. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

113. Voorhis TV, Scuseria GE (1998) J Chem Phys 109:400

114. Voorhis TV, Scuseria GE (2008) J Chem Phys 129:219901

115. Becke AD, Johnson ER (2006) J Chem Phys 124:221101

116. Nazarov VU, Vignale G (2011) Phys Rev Lett 107:216402

117. Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212

118. Petersilka M, Gossmann UJ, Gross EKU (1998) In: Dobson JF, Vignale G, Das MP (eds)

Electronic density functional theory: recent progress and new directions. Plenum, New York,

p 177

119. Karimi S, Ullrich CA (2014) Phys Rev B 90:245304

120. Kohn W (1959) Phys Rev 115:809

216 C.A. Ullrich and Z.-h. Yang



121. des Cloiseaux J (1964) Phys Rev 135:A685; A698

122. Kohn W (1996) Phys Rev Lett 76:3168

123. Zhang W, Drabold DA (2001) Phys Rev B 63:233109

124. Taraskin SN, Drabold DA, Elliott SR (2002) Phys Rev Lett 88:196405

125. Stefanucci G, van Leeuwen R (2013) Nonequilibrium many-body theory of quantum sys-

tems. Cambridge University Press, Cambridge

126. Adragna G, Del Sole R, Marini A (2003) Phys Rev B 68:165108

127. Marini A, Del Sole R, Rubio A (2003) Phys Rev Lett 91:256401

128. Sottile F, Marsili M, Olevano V, Reining L (2007) Phys Rev B 76:161103

129. Gatti M, Olevano V, Reining L, Tokatly IV (2007) Phys Rev Lett 99:057401

130. Varsano D, Marini A, Rubio A (2008) Phys Rev Lett 101:133002

131. Sagmeister S, Ambrosch-Draxl C (2009) Phys Chem Chem Phys 11:4451

132. Sharma S, Dewhurst JK, Sanna A, Gross EKU (2011) Phys Rev Lett 107:186401

133. Sharma S, Dewhurst JK, Gross EKU (2014) Top Curr Chem 347:235

134. Trevisanutto PE, Terentjevs A, Constantin LA, Olevano V, Della Sala F (2013) Phys Rev B

87:205143

135. Constantin LA, Pitarke JM (2007) Phys Rev B 75:245127

136. Corradini M, Del Sole R, Onida G, Palummo M (1998) Phys Rev B 57:14569

137. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

138. Tretiak S, Igumenshchev K, Chernyak V (2005) Phys Rev B 71:033201

139. Kilina S, Badaeva E, Piryatinski A, Tretiak S, Saxena A, Bishop AR (2009) Phys Chem

Chem Phys 11:4113

140. Wong BM (2009) J Phys Chem C 113:21921

141. Zimmerman PM, Bell F, Casanova D, Head-Gordon M (2011) J Am Chem Soc 133:19944

Excitons in Time-Dependent Density-Functional Theory 217



Top Curr Chem (2016) 368: 219–272
DOI: 10.1007/128_2014_616
# Springer International Publishing Switzerland 2015
Published online: 10 April 2015

Dynamical Processes in Open Quantum

Systems from a TDDFT Perspective:

Resonances and Electron Photoemission

Ask Hjorth Larsen, Umberto De Giovannini, and Angel Rubio

Abstract We present a review of different computational methods to describe

time-dependent phenomena in open quantum systems and their extension to a

density-functional framework. We focus the discussion on electron emission pro-

cesses in atoms and molecules addressing excited-state lifetimes and dissipative

processes. Initially we analyze the concept of an electronic resonance, a central

concept in spectroscopy associated with a metastable state from which an electron

eventually escapes (electronic lifetime). Resonances play a fundamental role in

many time-dependent molecular phenomena but can be rationalized from a time-

independent context in terms of scattering states. We introduce the method of

complex scaling, which is used to capture resonant states as localized states in the

spirit of usual bound-state methods, and work on its extension to static and time-

dependent density-functional theory. In a time-dependent setting, complex scaling

can be used to describe excitations in the continuum as well as wave packet

dynamics leading to electron emission. This process can also be treated by using

open boundary conditions which allow time-dependent simulations of emission

processes without artificial reflections at the boundaries (i.e., borders of the simu-

lation box). We compare in detail different schemes to implement open boundaries,

namely transparent boundaries using Green functions, and absorbing boundaries in
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the form of complex absorbing potentials and mask functions. The last two are

regularly used together with time-dependent density-functional theory to describe

the electron emission dynamics of atoms and molecules. Finally, we discuss

approaches to the calculation of energy and angle-resolved time-dependent

pump–probe photoelectron spectroscopy of molecular systems.

Keywords Absorbing boundaries � Complex scaling � Photoemission � Resonances

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

2 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

2.1 Definition and Properties of Resonant States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

3 Calculation of Resonances from Complex Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

3.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

3.2 Bound States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

3.3 Continuum States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

3.4 Resonant States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

3.5 Exterior Complex Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

3.6 Example: Resonance in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

4 Density Functional Resonance Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

4.1 Complex Scaling and DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

4.2 Complex Scaling of Exchange and Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

4.3 Resonance Lifetimes in DFRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

4.4 Time-Dependence in Complex Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

5 Open Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

5.1 Transparent Boundary Conditions Using Green Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 244

5.2 Time-Dependent Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

5.3 Absorbing Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

5.4 Complex Absorbing Potentials (CAPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

5.5 Mask Function Absorbers (MFAs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

5.6 Time-Dependent Exterior Complex Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6 Electron Photoemission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

6.1 Sampling Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

6.2 Surface Flux Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

6.3 Mask Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

1 Introduction

All natural phenomena occur away from equilibrium. Non-equilibrium systems can

range in scale from microscopic (such as nanostructures and bacteria) to geological

phenomena, and away-from-equilibrium processes occur on timescales ranging

from nanoseconds to millennia. Despite the ubiquitous non-equilibrium systems

and processes, most of the current understanding of physical and biological systems

is based on equilibrium concepts. In fact, in interacting many-body systems, more
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often than not we face the fact that the electronic states have finite lifetimes because

of the coupling to the environment or to a continuum of states (resonance pro-
cesses). Even if we were able to prepare a perfectly isolated quantum system, we

would need to regard a measurement of the system as bringing the system into

contact with an environment. Already a single atom in vacuum cannot be regarded

as completely isolated, because the atom is embedded in the surrounding photon

field (spontaneous emission). Other examples where the coupling to the surround-

ing plays a prominent role include hot electron relaxation in bulk systems and

surfaces after laser irradiation, thermalization caused by electron–phonon coupling,

decoherence in pump–probe experiments, exciton propagation and relaxation in

biological chromophores, and vibrational relaxation in nanomaterials and molecu-

lar systems. Understanding these decay mechanisms provides important informa-

tion about electron correlations, quantum coherence, dissipative and decoherence

processes, and control of these processes has important implications. For instance,

this would make it possible to enhance the performance of molecular/solid-based

optoelectronic devices.

In this context, density-functional theory (DFT) provides an exact theoretical

framework which could yield observable quantities directly, by-passing the need to

calculate the many-body wavefunction Ψ. Hohenberg and Kohn [1] proved that all

observable properties of a static many-electron system can be extracted exactly

from the one-body ground-state density alone (density–potential mapping). Later,
Runge and Gross extended this theorem to time-dependent systems [2]. Time-

dependent density-functional theory (TDDFT) is a rigorous reformulation of the

non-relativistic time-dependent quantum mechanics of many-body systems. The

central theorem of TDDFT is the Runge–Gross theorem which proves a one-to-one

correspondence between the time-dependent external potential νext(r, t) and the

electronic one-body density n(r, t) for many-body systems evolving from a fixed

initial state Ψ0. This implies that the time-dependent electronic density determines

all properties of the interacting many-electron system: all observable properties of a

many-electron system can be extracted from the one-body time-dependent density

alone [2]. What has made both DFT and TDDFT so successful is the Kohn–Sham

scheme [3]: the density of the interacting many-electron system is obtained as the

density of an auxiliary system of non-interacting fermions, living in a one-body

potential. Because of the excellent balance between the computational load it

requires and the accuracy it provides, TDDFT is now a tool of choice for quite

accurate and reliable predictions for excited-state properties in solid state physics,

chemistry, and biophysics, in both the linear and nonlinear regimes. However, there

exist many situations where the electronic degrees of freedom are not isolated but

must be treated as a subsystem embedded in an environment, which influences it in

a non-negligible way. Those situations go beyond the realm of the original formu-

lation of TDDFT which is meant to tackle the isolated dynamics of electronic

systems. It is therefore clear that there is a need to extend density-functional

approaches to the realm of open quantum systems to allow us to treat the processes

described above.

Burke and co-workers recently introduced a TDDFT approach based on a Kohn–

Sham master equation [4], and in recent work this has been pursued by the group of
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Aspuru-Guzik [5–7]. This group also proposed a description of open quantum

systems in terms of a unitarily evolving closed Kohn–Sham system [7, 8]. The

theory of open quantum systems (OQS) mostly deals with the situation where the

environment exchanges energy and momentum with the system but particle number

is conserved ([9, Chap. 10]). What happens in the case when the environment

exchanges particles with the system is an equivalently important problem which

has been less developed. Here we intend to review methods developed to address

this kind of problem. We describe the theoretical frameworks and approximations

that can be used to describe particle exchange.

Solving the problem of describing a system which exchanges electrons with the

environment is only half the challenge. In fact, even in the ideal case where one is

able to calculate the correct time-dependent wavefunction, one is faced with the

additional problem that some observables may require the knowledge of the

complete wavefunction or of eigenstates in the continuum. This includes ionization

products such as photoelectron spectra and resonance lifetimes/widths, and is also

connected to the measurement process of an open system. These problems are even

more severe in the case of DFT and TDDFT, where the density is the only physical

object, and where finding the explicit density-functional linking to a physical

observable is a daunting task.

This review is structured as follows. We first introduce the general concept of

resonance in Sect. 2 and describe how it can be observed in many different physical

situations. Then in Sect. 3 we introduce the reader to the basic concepts of the

complex scaling theory which is one of the most important tools for studying shape

resonances in a static framework. In Sect. 4 we review the successful extension of

the complex scaling theory to the realm of DFT, including some recent work

adapting the method to the time-dependent realm. In Sect. 5 we review several

methods for the incorporation of boundary conditions with the TDDFT equations in

order to include the dynamic exchange of electrons with an environment/reservoir.

We discuss the strategies for describing specific observables in Sect. 6 where we

focus on the case of electron photoemission.

Unless otherwise specified, atomic units are used throughout

(�h¼me¼ e¼ 4πε0¼ 1).

2 Resonances

Consider a system acted upon by an external oscillating force characterized by

some energy and corresponding frequency. If the system responds particularly

strongly close to a particular frequency, we call that a resonance process. The

typical textbook case is that of a classical damped harmonic oscillator acted upon

by an external sinusoidal force. For each frequency the system responds by oscil-

lating with some amplitude, and the resonances appear as strong narrow peaks in

the amplitude.

This simple model has two important properties that are very general to any type

of resonance: First, if the oscillatory force is turned off, the resonant oscillation
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decays as governed by the damping force, and the rate of decay is proportional to

the width of the resonance peak. Second, if we consider the phase of the oscillation
of the system with respect to that of the external force, we see that it shifts quickly

by up to π as the energy passes that of the resonance. The rate with which it shifts is
inversely proportional to the decay rate.

We mention here a few commonly studied types of resonance in atomic,

molecular, and condensed-matter physics:

• Plasmon resonances where the whole electron charge density in a material

resonates with incoming light. Surface plasmon resonances are central to the

field of plasmonics.

• Scattering resonances where incident electrons interact with an atom or mole-

cule. Near a resonance energy, the electrons couple strongly and the scattering

cross-section shows a peak. The process may be understood as the incoming

electron becoming temporarily trapped in a metastable state before escaping.

• Asymmetric Fano resonances [10]. These occur when two coupled excitation

pathways interfere with each other.

• Autoionizing resonances, wherein a system such as an atom or molecule is

unstable with respect to the ejection of one or more electrons. These are similar

to those that would be observed in time-resolved spectroscopies and electron

scattering experiments as mentioned above.

• Electron transport processes with molecular junctions, where a bias voltage

causes electrons to jump from one metallic lead across a metastable state at a

molecule, then escapes through another lead. Such processes have, for example,

been studied using DFT plus non-equilibrium Green functions represented with

atomic basis sets [11–14].

• Adsorption of an atom onto a surface where the continuum states of the surface

couple with the discrete atomic states which then become unstable, broadening

into resonances. The Newns–Anderson model [15] describes this process for a

one-electron adsorbate.

There are many further classes of resonance which we do not mention here.

Below we consider only a small class of resonances, namely scattering or

autoionizing ones. In this context, a resonance is a metastable quantum mechanical

state that the system possesses, and which can be associated with a wavefunction.

Below we describe some mathematical properties of such resonances, with the

objective of eventually calculating them from static or time-dependent DFT.

2.1 Definition and Properties of Resonant States

Let us consider a typical scattering experiment where an incoming electron is

captured by atom and is temporarily trapped before it escapes again. Whereas

scattering processes are clearly time-dependent, resonances can nevertheless be

captured from time-independent methods as static properties of the system. A

conceptually simple method is to study the phase δ of the wavefunction in the
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asymptotic region, taking in one dimension the form cos(kx + δ). See for instance

the simple demonstration by Gellene [16] which we consider again later. A reso-

nance energy and width can be estimated by locating the energy where the phase

shift δ changes most rapidly, and the width can be estimated from the maximum rate

of change. This intuitively relates the resonance to a strong coupling of the system

with continuum states in a narrow energy interval, as we noted in the beginning.

A more mathematically precise way of identifying a resonance is, following the

work of Siegert [17], to search for complex energies corresponding to singularities

of the scattering cross section. A pole close to the real energy axis would produce a

peak in the scattering cross-section for real energies, consistent with a resonance.

As noted by Siegert, the corresponding condition on a wavefunction1 ψ(r) is that far
away from the scattering region:

dψ rð Þ
dr
¼ ikψ rð Þ; ð1Þ

with the energy

k2=2 ¼ ε� iΓ=2; ð2Þ

where ε> 0 is the real resonance energy, and Γ> 0 its width. This yields a discrete

set of resonant states characterized by being purely outgoing waves. States obeying

the boundary condition (1) are frequently called Siegert or Gamow–Siegert states,

and they diverge as r!1. See, for example, Hatano et al. [18] for a detailed

description of resonant states.

Most computational methods in quantum mechanics work in terms of square

integrable states, and thus cannot straightforwardly represent a resonance

wavefunction. An elegant solution to this problem is the complex scaling method,
where one uses complex spatial coordinates to suppress the exponential divergence.

One thus solves for functions that obey the usual boundary conditions, ψ(r)! 0 for

r!1. This also has the convenient advantage that the boundary conditions no

longer depend on k. The method relies on the properties of analytic functions to

transform the Hamiltonian into a non-Hermitian operator whose point spectrum

consists exactly of that of the bound states along the negative real axis plus the

complex resonance energies which have positive real part and negative imaginary

part. The wavefunctions of bound as well as resonance states are square integrable

analytic continuations of the original ones. These properties make the complex

scaling method a powerful computational tool as it can make use of many existing

methods which do not otherwise apply to unbounded scattering states.

1We mention for completeness that Siegert worked in a spherical system where the represented

quantity is really r times the wavefunction; this however happens to yield the same equation as in

the one-dimensional case.
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Although the complex scaling method clearly works with any kind of particles in

a finite system, here we explicitly assume that we are dealing with electrons

temporarily trapped by simple potentials representing atoms or molecules. The

electrons eventually tunnel out to a far-away region which we do not wish to

represent explicitly in the calculation. We are thus dealing with the specific case

of an open quantum system where we only have particles leaving the system.

3 Calculation of Resonances from Complex Scaling

The complex scaling method was initially developed by Aguilar, Balslev, Combes,

and Simon [19–21], and is based on a scaling r! reiθ of the position variable in the

Schr€odinger equation. This is referred to as uniform complex scaling. Here we

review uniform complex scaling in the simple case of independent particles. Most

recent work is based on a later generalization called exterior complex scaling [22],

which we consider later. The following is a rather informal description of complex

scaling, focusing on a few important cases. More information can be found in any of

the many existing reviews.[23–27]

3.1 Formalism

Consider the standard independent-particle time-independent Schr€odinger equation
for a finite system:

Ĥ ψ rð Þ ¼ εψ rð Þ: ð3Þ

The Hamiltonian is Ĥ ¼ �1
2
∇2 þ v rð Þ, where ν(r) is some reasonably well-behaved

potential which approaches zero as r!1. Formally, the potential has to be

dilation or dilatation analytic [19], but the method has been applied successfully

to potentials that are not, an example of which is the Stark effect [28–30]. For our

informal review we only insist that it be analytic in relevant parts of the complex

plane.

The spectrum of Ĥ consists of a negative point spectrum corresponding to the

bound states, and the continuum ε� 0. The goal of complex scaling is to identify

resonances associated with positive energies somewhere within the continuum.

The complex scaling operation is implemented by the operator R̂ θ defined by

R̂ θψ rð Þ ¼ eiNθ=2ψ reiθ
� �

; ð4Þ

where N is the number of spatial coordinates on which the scaling is applied (thrice

the number of particles in the 3D many-body case). θ, the scaling angle, is a fixed
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number formally supposed to lie within 0� θ� π/4, although this depends on the

analyticity of the potential. The scaling operation transforms the position and

momentum operators as x! xeiθ and d/dx! e�iθd/dx, wherefore the Hamiltonian

transforms to

Ĥ θψθ rð Þ ¼ εθψθ rð Þ ð5Þ

with

Ĥ θ ¼ R̂ θĤ R̂ �1θ ¼ �
1

2
e�i2θ∇2 þ v reiθ

� �
: ð6Þ

The transformation maps the potential to its analytic continuation on reiθ in the

complex plane. The interesting property of Ĥθ is how its spectrum and eigenstates

are related to that of Ĥ. First of all, Ĥθ is non-Hermitian and therefore admits

complex eigenvalues. The continuous spectrum “swings down” by an angle of 2θ as
shown in Fig. 1. Meanwhile, the energies of any bound states remain unaffected.

Finally, for sufficiently large θ, new eigenvalues materialize which are independent

of further increase of θ and which are taken to represent resonances. Let us have a

closer look at each of these three effects separately.

−4 −2 0 2 4

Re θ [a.u.]

−3

−2

−1

0

Im
θ

[a
.u

.]

Bound states

C
ontinuum

states

Resonances

θ = 0.1
θ = 0.3
θ = 0.5

Fig. 1 Effect of complex scaling on the spectrum for the 1D potential ν(x)¼ 3(x2� 2)exp(�x2/4).
Bound-state eigenvalues (bold circles) are independent of θ while the continuous spectrum rotates

by �2θ around the threshold 0. Because of the finite size of the simulation box, the numerically

calculated unbound states (uncircled) do not fall exactly on the line arg z¼�2θ. Resonances (thin
circles) are resolved when θ is sufficiently large for them to segregate from the continuum states.

Calculated using a uniform real-space grid from �18 to 18 a.u. with 250 points and fourth-order

Laplacian finite-difference stencil
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3.2 Bound States

Suppose ϕ(r) and ψ(r) are square-integrable and reasonably well-behaved states.

We consider first the scaling operation Ûη ψ(r)¼ eNη/2 ψ(reη) where η is a real

number. This operation is easily seen to be unitary; for example it preserves scalar

products:

ϕ Û {
ηÛ η

��� ���ψD E
¼
ð
ϕ* reηð Þψ reηð ÞdreNη ¼

ð
ϕ* r0ð Þψ r0ð Þdr0¼

D
ϕ
��ψE; ð7Þ

where we used the substitution r0 ¼ reη. A real scaling therefore preserves matrix

elements and eigenvalues.

The derivation of the complex scaling method starts with the unitarity of the real

scaling, then considers the extension to the complex plane of the scaling parameter

η. However, as we see, the situation becomes radically different when the scaling is

complex. In order for the method to be correct, the scaling operation must retain

some property resembling unitarity to make sure that observables do not arbitrarily

change with the scaling parameter. The analytic continuations of functions defined

originally on the real axis are not always within the Hilbert space (hence breaking

unitarity). However, for suitable states and operators, as we see later, the complex

scaling operation corresponds simply to a change of integration path which pre-

serves scalar products. Let us consider a matrix element of some local operator

ϕ Ô
��� ���ψD E

¼
ð
ϕ* rð ÞÔ rð Þψ rð Þdr: ð8Þ

This integral is taken for each coordinate axis over all real numbers �1 to 1.

Imagine now that we liberate each position coordinate and allow it to take complex

values. Then, instead, we take the integral over some complex path, such as the one

in Fig. 2 with three segments. If the diagonal segment is long enough (L!1 in the

L 0 L

Re(xeiθ)

0

Im
(x

ei
θ
)

Fig. 2 Complex integration path with directions indicated by arrows. If the integrand is suitably

localized and analytic on the integration path, the indicated path becomes equivalent to that over

the real axis from �1 to 1 as L!1. This ensures that the unphysical complex scaling angle

does not affect matrix elements or expectation values
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figure), and the integrand is analytic and sufficiently localized, then the integral

along the vertical segments is zero. Thus the integral over the diagonal z¼ xeiθ is
independent of θ and equal to that along the real line:ð

�dx ¼ lim
a!1

ðaeiθ
�aeiθ
�dx: ð9Þ

The substitution r0 ¼ reiθ then transforms the integral back so the integration

variable is (unlike the integrand) real:

ϕ Ô
��� ���ψD E

¼
ð
ϕθ rð ÞÔ θ rð Þψθ rð Þdr; ð10Þ

with

ψθ rð Þ ¼ eiNθ=2ψ reiθ
� �

¼ R̂ θψ rð Þ; ð11Þ

ϕθ rð Þ ¼ eiNθ=2ϕ* reiθ
� �

¼ R̂ �θϕ rð Þ
	 
*

; ð12Þ

Ô θ rð Þ ¼ Ô reiθ
� �

¼ R̂ θÔ R̂ �1θ : ð13Þ

Note how (1) the complex prefactors of eiNθ/2 from (4) serve to “absorb” exactly the

volume element eiNθ produced by the variable substitution, and (2) the left states or

bras are effectively rotated by�θ. Furthermore, if the unscaled state ϕ(r) is real, the
cumbersome notation for ϕθ rð Þ of (12) can be avoided:

ϕθ rð Þ ¼ ϕθ rð Þ if ϕ rð Þ is real: ð14Þ

We can then calculate the matrix element without conjugating anything.

What we have established is that the complex scaling operation corresponds to a

change of integration path when calculating matrix elements. For states and oper-

ators that produce a sufficiently localized integrand and do not possess poles that

interfere with the integration path, it preserves values of matrix elements.

In particular this guarantees that observables or eigenvalues of bound states under

complex scaling, at least for sufficiently small values of θ, are independent of θ.

3.3 Continuum States

The previous discussion does not apply to states that are not localized, such as

continuum states. Let us consider the complex-scaled Schr€odinger equation for a

free particle in one dimension:
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�1
2

d2ψθ xð Þ
dx2

e�i2θ ¼ εθψθ xð Þ: ð15Þ

We immediately see that this is the same differential equation as the unscaled one,

and thus has the usual set of solutions:

ψθ xð Þ ¼ Aexp ikxð Þ þ Bexp �ikxð Þ: ð16Þ

As per the standard procedure, let us say that the particle is confined to some finite

box. We then require that ψθ(x) be 0 on the boundaries, which quantizes k to a set of
real positive numbers. Taking the limit of large boxes, we see that solutions exist for

all k> 0. It follows that the energy εθ in (15) must become complex according to

εθ ¼
1

2
k2e�i2θ, k > 0: ð17Þ

Evidently the spectrum has been rotated by an angle of�2θ into the fourth quadrant
of the complex plane. Meanwhile, the solution wavefunctions for the free particle

have the same form as without the complex scaling operation.

What, then, is so interesting about the complex-scaled solutions ψθ(x)? Because
they are not normalizable, and because their energy depends on the scaling angle θ,
they are not of much use computationally. However, we can gain some insight by

scaling them back to θ¼ 0 to obtain

R̂ �θψθ xð Þ ¼ e�iθ=2 Aeikx cos θekx sin θ þ Be�ikx cos θe�kx sin θ
� �

: ð18Þ

For x!1 the right-going term diverges whereas the left-going one dies out. For

x!�1 it is the left-going one which survives. The solution ψθ(x) to the complex-

scaled problem therefore resembles an outgoing, exponentially diverging state. We

see intuitively that the complex scaling operation may have something to say about

the outgoing character of states. However, as mentioned, the states ψθ(x) are not

normalizable and their energies depend on θ. The main effect of the complex

scaling operation was to move the continuous spectrum of the Hamiltonian away

from the real axis, close to which we find the resonance eigenvalues as we see later.

If the system consists of a central, (almost) localized potential surrounded by

vacuum, an unbound state still has the form (16) almost everywhere in space.

Importantly and non-trivially, this also works with the Coulomb potential in spite

of its long range. The complex scaling transformation still causes the continuous

spectrum to rotate by exactly �2θ. In numerical representations this is only

approximately true because of incompleteness of the basis and in particular finite

simulation boxes as in Fig. 1.

We note here that the method cannot in general be combined with extended

(periodic) systems, because complex scaling fundamentally works in terms of the

asymptotic form of decaying functions. For example, a metal would possess

occupied continuum states which do not decay at the end of the cell. This makes
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their properties depend on the scaling angle θ as we saw for free particles. However,

from what we have seen so far, one could well imagine using complex scaling in

some directions and not others – for example, to describe electrons escaping in the

z direction from a surface which is periodic along x and y, or radially from a

one-dimensional nanowire.

3.4 Resonant States

From standard scattering theory we know that resonances are associated with

wavefunctions that diverge exponentially at increasing distances. If the resonance

is generated by a short-range potential, the resonance wavefunction must far away

equal or approach that of a free particle.

In one dimension the resonance wavefunction must therefore have the form

ψ xð Þ ¼ Aeikx ¼ Aei p�iqð Þx, x!1; ð19Þ

where we have used the complex wavenumber k¼ p� iq with positive p (so the

wave is outgoing) and q (so it diverges exponentially). Now apply the complex

scaling transformation to this function:

R̂ θψ xð Þ ¼ eiθ=2ei p�iqð Þxeiθ ¼ eiθ=2ei p cos θþq sin θð Þxe � p sin θþq cos θð Þx: ð20Þ

This function is square integrable if q< p tan θ. Physically we would expect a

resonance peak to be located at a positive energy, and that the resonance width is

much smaller than the resonance energy. The energy of this wave is ( p� iq)2/2¼
( p2� q2� 2ipq)/2, and we would thus expect p to be well greater than q for any

resonance. Some intermediate value of θ therefore easily ensures that q< p tan θ,
i.e., that the resonance wavefunction is square integrable.

We conclude from this that the Siegert wavefunction representing a resonant

state indeed becomes square integrable under adequate complex scaling. This

makes matrix elements with resonant states invariant to variations in θ, similarly

to bound states, as long as the variation of θ does not make them unbounded.2

The numerical convergence of resonance energies and widths is a non-trivial

issue with complex scaling. When using a numerical representation such as a finite

basis set, matrix elements are not perfectly independent of θ. For a given system it is

standard practice to compare calculated resonance energies and widths over a range

of different θ-values, looking for a stationary point or a cusp which, following the

2 The above discussion is, of course, very informal. Scrinzi and Piraux have presented a more

complete argument on the link between outgoing wavefunctions and square integrability after

complex scaling; see Scrinzi and Piraux [31], Appendix A.
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“complex virial theorem,” would best approximate the fully converged complex

energy [32, 33].

3.5 Exterior Complex Scaling

We established previously that the complex scaling operation preserves scalar

products of square integrable states because it corresponds to a change of integra-

tion contour of an analytic function. Suppose we want to calculate a resonance of a

molecule in the Born–Oppenheimer approximation. The nuclear point charges

cause poles in the Coulomb potential at each nuclear position. Uniform complex

scaling does not work because of these poles. A solution to this problem is to

change the integration contour to avoid the poles. From complex analysis we know

that we could have chosen many other integration paths, corresponding to other

definitions of the scaling operation R̂ θ, and those contours would equally well

preserve scalar products as long as the integration contours have the same start and

end points and do not enclose poles. This is the basis for exterior complex scaling
which was proposed by Simon [22] to solve exactly this problem. Another method

is to use the analytic continuation of matrix elements within a basis set represent-

ation [34–36], which effectively approximates the exterior complex scaling

approach [37].

We thus complex-scale the exterior of a region containing all the point charges

by an operation, here written in one dimension, of the form

R̂ a
θ ψ xð Þ ¼

ψ �aþ xþ að Þeiθ
� �

, x < �a,
ψ xð Þ, �a � x < a,
ψ aþ x� að Þeiθ
� �

, a � x:

8<: ð21Þ

The uniform and exterior scaling integration contours are shown in Fig. 3. The

important condition for exterior scaling is that the scaling retains the asymptotic

form x! xeiθ which ensures outgoing-wave boundary conditions. Because the

integration contour is not differentiable, neither is an exterior complex-scaled

function that corresponds to a smooth original function. Recall from uniform

scaling that we needed to multiply by eiθ/2 to “absorb” the now complex volume

element when integrating. We have not done anything to the volume element in

(21), and therefore we need to apply a factor of eiθ when calculating integrals over

the complex segments. Alternatively, most authors define the exterior scaling

operation so the wavefunction in the exterior segments includes the complex

prefactor; the functions then become discontinuous [38], but we do not need to

consider the volume element when integrating. Here we have followed the original

convention of Simon [22] where the function is always continuous. As long as the

discontinuities of the complex-scaled functions or their derivatives are well

incorporated into the numerical basis set used to represent them, they are harmless.
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If for numerical reasons we want smooth functions everywhere, we can equally

well choose a smooth integration contour. This is called smooth-exterior complex

scaling. The scaling operator here acts by applying a smooth function x! z¼F(x)
to the position coordinate, with F(x) ~ xeiθ for large |x|.

Once again we have the choice of where to include the smoothly varying volume

element: either in the definition of the scaling operation, or explicitly when inte-

grating. This yields different expressions which are given, for example, by

Moiseyev [39]. If we include the volume element in the scaling operation, it reads

R̂ F
smoothψ xð Þ ¼ F0 xð Þ½ �1=2ψ F xð Þð Þ: ð22Þ

The Hamiltonian subject to this transformation is

HF ¼ �1
2
F0 xð Þ½ ��2 ∂2

∂x2
þ VF

1 xð Þ ∂
∂x
þ VF

0 xð Þ þ V F xð Þ½ �; ð23Þ

where

VF
0 xð Þ ¼ 1

4
F0 xð Þ½ ��3F000 xð Þ � 5

8
F0 xð Þ½ ��4 F00 xð Þ½ �2; ð24Þ

VF
1 xð Þ ¼ F0 xð Þ½ ��3F00 xð Þ: ð25Þ

An example contour is shown in Fig. 3. The contour defined by F can be quite

general, but one would choose F(x)¼ x within the interior region such that VF
0 xð Þ

¼ VF
1 xð Þ ¼ 0 and [F0(x)]�2¼ 1. Note how (23) then reduces to the usual

Schr€odinger equation as it should. With this formulation we do not need to mind

−R0 0 R0

Re Fθ(x)

Im
F

θ
(x

)

θ

Uniform
Exterior
Smooth exterior

Fig. 3 Possible complex integration contours for uniform, exterior and smooth exterior complex

scaling. θ¼ 0.6. The contours must be continuously deformable (without crossing any poles) back

to the real axis in order for them to be equivalent to a real integration. Note that, as per basic

complex analysis, the contours themselves do not have to be differentiable – it is sufficient that the

integrand be analytic
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any discontinuities of wavefunctions, their derivatives, or the Jacobian, and stan-

dard methods such as finite-difference stencils can be applied straightforwardly as

long as F is adequately differentiable.

How do the different types of complex scaling discussed above compare com-

putationally? The basic equations of exterior and smooth exterior complex scaling

are clearly more complicated than those for uniform scaling. However, as men-

tioned, the purpose of exterior complex scaling is that it admits potentials that are

not analytic within the interior region. This includes any strictly localized function

such as most atomic pseudopotentials – a major advantage for advanced self-

consistent field methods such as DFT. One other advantage of exterior scaling is

that. within the interior region, quantities such as the density retain their true

physical values rather than a difficult-to-interpret complex continuation which is

also numerically difficult to rotate back to real space.

For real-space methods, an advantage of smooth exterior complex scaling is that

one can transparently use finite-difference stencils as per (23). Standard finite-

difference stencils, representing, for instance, the kinetic operator, do not work on

a non-differentiable contour although one can derive special stencils for this case

[40]. Basis sets should also make sure to take the discontinuity into account. Finite-

element representations involving some kind of basis are commonly used; see, for

example, Rescigno et al. [41] and Scrinzi and Elander [42]. Rescigno and

co-workers have reported that finite-element calculations with a basis set which

properly takes the discontinuity of “sharp” exterior scaling into account require less

functions than a purely analytic basis set using smooth scaling [41]. A more detailed

discussion of the numerical representations and basis sets can be found in work by

McCurdy et al. [24], who also argue that grid-based methods enjoy a similar

advantage with sharp exterior complex scaling, provided the scaling onset is exactly

on a grid point.3

3.6 Example: Resonance in One Dimension

Let us perform an analytic calculation of a resonance using complex scaling to see

how exactly the resonance emerges. We consider a barrier formed by the piece-wise

constant potential

3 This would be less of an advantage in Cartesian 3D calculations where a smooth scaling could be

applied spherically, whereas the sharp scaling would need a cube to align its boundary with

the grid.
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V xð Þ ¼
0, 0 � x < a,
V0, a � x < b,
0, b � x;

8<: ð26Þ

seen in Fig. 4. Both Gellene [16] and Simons [43] have considered this problem

previously. As the rectangular barrier is not an analytic function, we cannot use

uniform complex scaling. However, nothing stops us from using exterior scaling,

with the scaling transformation starting somewhere outside the barrier at x¼ c> b.
We thus use the contour

Fc
θ xð Þ ¼ x, 0 � x < c,

cþ eiθ x� cð Þ, c � x:

�
ð27Þ

For x� c the Hamiltonian is therefore�1
2
e�i2θ d2

dx2. This gives us four regions, within

each of which the wavefunction must be a solution to the Schr€odinger equation for a

free particle but with different local momenta k1, k2, and k
θ
3 which may be complex:

ψ1 xð Þ ¼ �iA eik1x � e�ik1x
� �

¼ 2A sin k1xð Þ, 0 � x < a; ð28Þ

ψ2 xð Þ ¼ Ceik2x þ De�ik2x, a � x < b; ð29Þ
ψ3 xð Þ¼ Feik1x þ Ge�ik1x, b � x < c; ð30Þ

ψ θ4 xð Þ ¼ Ieik
θ
3 x þ Je�ik

θ
3 x, c � x: ð31Þ

The expression for ψ1(x) has been chosen to fulfill the boundary condition ψ1(0)¼
0, and A eventually determines the normalization of the state. To relate the three

wavenumbers k1, k2, and kθ3, we note that applying the Hamiltonian to the

wavefunction must yield the same energy eigenvalue εθ ¼ k21=2 ¼ k22=2þ V0 ¼
e�iθk θ3
� �2

=2 within each segment. From this may take k θ3 ¼ k1e
iθ.

The segments must be joined continuously and differentiably, i.e., ψ1(a)¼ψ2(a)
and ψ1

0 að Þ ¼ ψ2
0 að Þ at x¼ a. Likewise ψ2(b)¼ψ3(b) and ψ2

0 bð Þ ¼ ψ3
0 bð Þ. At x¼ c,

0 a b c

x [a.u.]

0

V0

V
(x

)
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Fig. 4 Rectangular
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wavefunctions localize and
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the onset of the scaled exterior region, the derivative ψ 03(c) must match the

scaled derivative ψθ4
0 (c), so the derivative becomes discontinuous [22]:

ψ3 cð Þ ¼ ψ θ4 cð Þ; ð32Þ
ψ 03 cð Þ ¼ e�iθψ θ4

0 cð Þ: ð33Þ

(We have here, for esthetic reasons, chosen not to include the square root of the

volume element or Jacobian in the definition of ψθ4(x); if we had, the function itself

would have been discontinuous as discussed in Sect. 3.5.)

We thus have two equations at each of the points a, b, and c, for a total of six

equations. A seventh equation follows from the requirement that the function be

square integrable. These seven equations determine the six unknown coefficients C,
D, F, G, I, and J, and further quantize the energy so that we get solutions only for

specific wavenumbers k1, k2, and kθ3.
Gellene [16] provides expressions for the coefficients C, D, F, and G in terms of

A so that ψ1(x), ψ2(x), and ψ3(x) match at the points a and b. The resonances are

then found by considering the phase shift between the incoming and outgoing

coefficients F and G of ψ3(x). However, this is very different in our case using

complex scaling; here, the coefficients I and J of ψθ4(x) must ensure square

integrability.

Physically, we would expect of a resonance that its energy is much greater than

its width. The wavenumber k1 then has real and imaginary parts k1¼ p� iq such

that p
 q. The wavefunction can thus be written as

ψ θ4 xð Þ ¼ Ie � p sin θþq cos θð Þxei p cos θþq sin θð Þx

þJe p sin θ�q cos θð Þxe�i p cos θþq sin θð Þx:
ð34Þ

For scaling angles θ not too close to zero, the first term converges whereas the

second diverges as x!1, and so we conclude that J¼ 0. Relating the right and left

values and derivatives of ψ3(x) and ψθ4(x) at x¼ c we get

Feik1c þ Ge�ik1c ¼ Ieik1e
iθc, valuesð Þ ð35Þ

ik1 Feik1c � Ge�ik1c
� �

¼ ik1Ie
ik1e

iθc, derivativesð Þ ð36Þ

and it immediately follows that G¼ 0, i.e., there is no incoming wave component.

This is very different from the Hermitian treatment demonstrated by Gellene which

yields F¼G*, exactly balancing the outgoing and incoming flux. We see that,

as previously discussed, the square integrability requirement of the complex-scaled

solution ensures that waves are purely outgoing. In a simple model we could just as

easily have forgotten everything about complex scaling and set G¼ 0 immediately.

However, in a numerical calculation things are not so simple, and we have to rely on

the complex scaling transformation to ensure square integrability and to extract the

resonant states in a tractable form.
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In a more complicated potential generated by multiple atoms, the situation

would be similar sufficiently far away from the system. The asymptotic form of

the wavefunctions may differ slightly because of long-range interactions such as the

Coulomb interaction, but this doesn’t prevent the exponentially localizing effect of
the complex scaling operation from functioning.

However, let us get back to the determination of the resonance eigenvalues. The

requirement that G¼ 0 allows us to proceed, linking F, D, and C by means of the

differentiability and continuity requirements. Once all coefficients are eliminated,

the condition for resonance is

1� k2
k1

 �
tan k1a� i

k1
k2

 �
e2ik2 b�að Þ þ 1þ k2

k1

 �
tan k1aþ i

k1
k2

 �
¼ 0: ð37Þ

For any energy ε� iΓ/2, the wavenumbers k1 and k2 are uniquely determined. The

solutions can then be determined numerically. The three complex resonance ener-

gies closest to 0 are given by the real parts ε¼ 0.421, 1.65, 3.57, and half-widths

Γ/2¼ 0.00138, 0.0189, 0.138. Figure 5 shows the corresponding resonance

wavefunctions. The eigenvalues slightly disagree with those by Gellene who

works effectively on the real axis. This is because the two methods are different:

With complex scaling we find an eigenvalue in the complex plane which corre-

sponds exactly to an outgoing wave. Working on the real axis, we would find the

real energy which responds most strongly to that eigenvalue. However, as the

complex eigenvalue gets further away from the real axis, location and width soon

begin to differ.
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4 Density Functional Resonance Theory

As the complex scaling formalism is based on the many-particle Schr€odinger
equation, the method inherits the same exponential computational cost with respect

to the number of particles. The method in the original form is therefore practical

only for systems with very few particles, such as small atoms or molecules, using,

for example, correlated basis sets [44, 45]. However, larger systems require more

scalable computational methods, of which many have been investigated. Of parti-

cular interest are self-consistent field methods such as Hartree–Fock [46], post-

Hartree–Fock methods [47, 48], and DFT [49, 50]. DFT as always has the drawback

that it relies on a complicated formalism including an approximation of the

exchange and correlation effects which is difficult to control, but its inarguable

performance advantages nevertheless make it more than worthy of consideration.

Below we describe the extension of DFT with complex scaling.

4.1 Complex Scaling and DFT

DFT is based on the minimization of a functional of the real electron density. The

minimum of the functional and the corresponding electron density are the ground-

state energy and electron density [1, 3]. For practical calculations one uses a set of

single-particle states or Kohn–Sham states to facilitate evaluation of the kinetic part

of the functional. The Kohn–Sham energy functional contains the following contri-

butions: the kinetic energy, the Hartree energy, the exchange–correlation

(XC) energy, and the energy from a system-dependent external potential. The

kinetic energy functional depends explicitly on the Kohn–Sham wavefunctions

whereas the others depend on them only through the density. Either way, all the

terms can be understood as sums of matrix elements of operators. We know from

Sect. 3.2 how the complex scaling operation conserves matrix elements of states

that are spatially localized, provided that the operators are analytic. We can

therefore reasonably expect complex scaling to be made to work within DFT,

once we know how each term in the energy functional scales. The combination

has been dubbed density functional resonance theory (DFRT) [50].

One would thus propose a complex-valued energy functional

Eθ ¼ �
1

2
e�i2θ

X
n

f n

ð
ψθn rð Þ∇2ψθn rð Þdrþ 1

2
e�iθ

ð ð
ρθ rð Þρθ r0ð Þ

r� r0k k drdr0

þ E θxc nθ½ � þ
ð
vext re

iθ
� �

nθ rð Þdr
ð38Þ

with the complex-scaled density
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nθ rð Þ ¼
X
n

f nψθn rð Þψθn rð Þdr ¼ eiNθn reiθ
� �

; ð39Þ

where fn are occupation numbers, and N the number of dimensions in which the

coordinates are complex-scaled. In (38) the kinetic and external contributions are

complex-scaled as normal. In the Hartree energy, ρθ(r) denotes the complex-scaled

charge density which is the electron density nθ(r) plus any other contributions such
as pseudopotential charges (whose complex-scaled form is uniquely determined by

requiring that their Hartree potential scales as normal). The Hartree energy itself

scales as E θH nθ½ � ¼ e�iθEH nθ½ �, i.e., the standard Hartree functional is applied to the

complex density, with the factor e�iθ appearing because of the 1/r kernel. We

discuss the complex XC energy functional Eθxc[nθ] later.
Being complex, “minimizing” the energy functional (38) does not strictly make

sense. Nevertheless, the lowest-energy resonance is obtainable as a stationary point

of the complex energy functional [51]. An equation for the stationary point can,

as normal, be obtained by taking the derivative with respect to the wavefunctions

plus a set of Lagrange multipliers which ensure normalization. This yields the

complex scaled Kohn–Sham equations

H θ
KSψθn rð Þ ¼ �1

2
e�i2θ∇2 þ vθ rð Þ

� �
ψθn rð Þ ¼ εθnψθn rð Þ ð40Þ

for ψθn(r) and εθn, where we have taken the derivative with respect to the left states
ψθn rð Þ. If the unscaled Hamiltonian is real, the states can be chosen to be real so that

ψθn rð Þ ¼ ψθn rð Þ. In general, however, we could equally well have derived a

Hamiltonian for the left states ψθn rð Þ.
In the Kohn–Sham equations (40) we have introduced the effective potential

vθ rð Þ ¼ vθH rð Þ þ vθxc rð Þ þ vext re
iθ

� �
ð41Þ

defined as the density-derivatives of terms in the energy functional. The Hartree

potential is

v θH rð Þ ¼ e�iθ
δEH ρθ½ �
δρθ rð Þ ¼ e�iθ

ð
ρθ r0ð Þ
r0 � rk kdr

0; ð42Þ

which allows the potential to be determined from the charge density by solving a

complex Poisson problem using standard techniques. What remains to be discussed

now is the XC functional.
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4.2 Complex Scaling of Exchange and Correlation

The first DFRT calculations were carried out in a one-dimensional model potential

with two electrons in the same (singlet) state [50]. The method was demonstrated

using the exact KS potential, which in this case is

vθexact xð Þ ¼ e�i2θ
∇2ψθ xð Þ
2ψθ xð Þ þ εθ; ð43Þ

along with exact exchange (EXX) which, in this case, simply cancels out half the

Coulomb energy. However, for systems with more particles, and indeed for realistic

numerical calculations in the style of modern DFT software, the XC functional

would have to be one of the many commonly used approximations. For simplicity

we ignore any notion of spin below. The simplest functional is the local density

approximation (LDA), the complex scaling of which was studied by Larsen

et al. [49]. The first question is whether the functional is analytic. The exchange

energy is given by

Ex n½ � ¼ �
3

4

3

π

 �1=3ð
n4=3 rð Þdr; ð44Þ

where the fractional power n4/3 is three-valued on the complex numbers and we

must mind the branch cuts. Following the arguments of Sect. 3.2 for handling the

change in complex contour, the integral scales as follows as long as we do not run

into a branch cut:ð
n4=3 rð Þdr ¼

ð
n4=3 reiθ

� �
dreiNθ ¼

ð
e�iNθnθ rð Þ
	 
4=3

dreiNθ

¼ e�iNθ=3
ð
n
4=3
θ rð Þdr:

ð45Þ

The complex-scaled XC potential is naturally defined as

v θxc rð Þ ¼ δE
θ
xc nθ½ �

δnθ rð Þ : ð46Þ

Taking the derivative with respect to nθ(r) we get the exchange potential

vLDAxθ rð Þ ¼ � 3

π

 �1=3

e�iNθ=3n
1=3
θ rð Þ ¼ vLDAx reiθ

� �
; ð47Þ

i.e., the expression is consistent with analytically continuing the expression for the

unscaled potential.
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As already noted, the expressions are three-valued because of the fractional

power. In Larsen et al. [49] this was resolved by “stitching” the potential from the

three branches of the cube root: In the origin, the potential must be real as the spatial

co-ordinate is real. Further away, whenever the cube root encounters a branch cut,

one of the other branches is chosen to restore analyticity. This procedure is

illustrated in Fig. 6.

Following the Perdew–Wang parametrization of the LDA correlation functional

[52], the correlation potential is given by

vc rsð Þ ¼ εc rsð Þ �
1

3

dεc rsð Þ
drs

rs; ð48Þ

where

εc rsð Þ ¼ �2A 1þ α1rsð Þln 1þ 1=Q1 rsð Þð Þ; ð49Þ

Q1 rsð Þ ¼ 2A
X4
i¼1
βir

i=2
s ; ð50Þ

and rs is the Wigner–Seitz radius, i.e., rs(r)¼ [3/(4πn(r))]1/3. The complex log-

arithm can be stitched quite analogously to the cube root. Other XC functionals can

be stitched similarly, provided that they do not contain poles that get in the way of

the integration contour. With exterior complex scaling we avoid scaling the regions

of space where most of the action happens, potentially avoiding these problems. We

Fig. 6 “Stitching” branches of the cube root for the LDA exchange potential. The procedure starts

at x¼ 0 where we know that the potential must be real. When the density takes the value of a

branch cut of the cube root (indicated by arrows), the function must switch to a different branch to

retain analyticity. The stitched function, indicated by the shaded gray band, is analytic everywhere
and always follows one of the three branches of the cube root. In this example the density is a

Gaussian function. From Larsen et al. [49]
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mention a recent time-dependent study [53] which uses smooth exterior complex

scaling with the LB94 [54] XC model potential for spin σ:

vLB94xc,σ rð Þ ¼ vLDAxc,σ rð Þ � βx2σ rð Þn1=3σ rð Þ
1þ 3βxσ rð Þsinh�1xσ rð Þ

ð51Þ

with

xσ rð Þ ¼ ∇nσ rð Þk k
n
4=3
σ rð Þ

: ð52Þ

This expression also has several issues with analyticity as it involves both division

and fractional powers. In Telnov et al. [53] the exterior scaling contour was

probably chosen so as to avoid these, but unfortunately the issue was not mentioned.

4.3 Resonance Lifetimes in DFRT

In this section we present a few results from DFRT on physical systems. Figure 7

shows the ionization rate of a helium atom in an electric field as a function of field

strength calculated with different methods: LDA, EXX (Hartree–Fock), ADK [55],

and an accurate correlated-electron calculation by Scrinzi [45].

ADK is a simple approximation which is correct in the limit of weak fields. The

ionization potential of the atom entirely determines the form of the curve in this

limit. Precisely because low-field asymptotics are determined by the value of the

ionization potential, the utility of a functional in this limit is directly linked to the

Fig. 7 Ionization rates of the helium atom in static electric fields from different methods. The

accuracy at low field strengths is determined by how well the XC functional predicts the energy of

the highest occupied orbital, which LDA is known to greatly overestimate. From Larsen et al. [49]
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precision with which it estimates the ionization potential, i.e., which energy it

assigns to the highest occupied state.

LDA is well known to overestimate this energy, and therefore calculates too high

ionization rates for low fields. This problem is attributed to the wrong asymptotic

decay of the LDA potential [54]. Meanwhile, Hartree–Fock is known to produce

accurate orbital energies, and the decay of the exact exchange potential has the

correct asymptotic form. EXX also yields results that are close to the reference by

Scrinzi. This all suggests that a good XC functional for DFRT resonance lifetime

calculations is one retaining the correct asymptotic form of the potential, such as the

previously mentioned LB94 functional.

4.4 Time-Dependence in Complex Scaling

In this section we consider the extension of complex scaling to time-dependent

simulations. Most obviously, one could simulate the dynamics of a system whose

initial state is derived from a resonance. However, the method has been found

useful for another practical reason, namely that complex scaling can be used to

avoid the effects of waves reflecting from the boundaries. An early approach by

Parker and McCurdy [56] showed that a complex basis set, with properties closely

related to the complex scaling method, reduced the amount of basis functions

necessary to represent properly a Gaussian wave packet under time evolution.

The authors found that the representation avoided reflection effects produced by

incompleteness of the basis sets as the wave packet moved away from the central

region.

Exterior complex scaling is now widely used as a practical absorber to prevent

reflections of waves because of the finite size of the simulation box. Details of its

use in this context are given in Sect. 5.6.

Let us go back to the basic question of how to time evolve complex-scaled states.

Bengtsson and co-workers [57, 58] have considered this problem in detail. The time

evolution of a state vector and its corresponding functional (or bra) are determined

by

i
∂ψ rtð Þ
∂t

¼ Ĥ ψ rtð Þ: ð53Þ

We apply the complex rotation operator and get

i
∂ψθ rtð Þ

∂t
¼ iR̂ θ

∂ψ rtð Þ
∂t

¼ R̂ θĤ R̂ �1θ R̂ θψ rtð Þ ¼ Ĥ θψθ rtð Þ: ð54Þ

A general state ψθ(rt) can be time-evolved according to its expansion in

eigenstates. If ϕ0
θ(r) is an eigenstate with energy εθ, then

242 A.H. Larsen et al.



ϕθ rtð Þ ¼ e�iĤ θ tϕ0
θ rð Þ ¼ e�iεθ tϕ0

θ rð Þ: ð55Þ

If, further, the eigenstate represents a resonance, so that its energy has a negative

imaginary part, ϕθ(rt) decays exponentially while everywhere maintaining its

shape. To calculate a general expectation value after a certain time, we would,

according to (10), need to apply the left state ψθ rtð Þ ¼ ψ�θ rtð Þ½ �* as per (12). The
left state can be time evolved using (54) with �θ. The Hamiltonian Ĥ�θ is the

conjugate of Ĥθ so all eigenvalues are likewise conjugated. If ψθ(rt) contains

exponentially decaying components, the corresponding components of ψ�θ(rt)
exponentially increase at the same rate (one could equivalently say that they

propagate backward in time [59]). In principle the increase of the left state would

be cancelled by the decay of the right so that the norm, calculated using both left

and right states, is time independent, but any numerical error accumulates over the

course of the time evolution and eventually causes the procedure to break down.

Although Bengtsson and co-workers have demonstrated that a complex time

propagation path can be used to stabilize the time evolution [58], most applications

of complex scaling with time evolution have been handled differently. The typical

approach is to use exterior complex scaling and time evolve only the right states,

then calculate all physical quantities using only the right states although this in

general is not formally justified. This approach is discussed further in Sect. 5.6.

5 Open Boundary Conditions

In the previous sections we showed how it is possible to capture intrinsically time-

dependent properties such as the lifetime of a resonance using a static, time-

independent approach. Now we turn instead to the class of problems where the

explicit time-dependence must be taken into account. As we see, the concepts

introduced in the previous sections reemerge in the description of physical pro-

cesses where the total number of particles is no longer a conserved quantity.

In particular, insistence on describing an infinitely extended problem in a bounded

domain naturally results in dynamics governed by a non-Hermitian Hamiltonian.

Let us divide space into two parts as in Fig. 8 where we have a bounded region

we call A and its complement B. We want to solve the equations of motion in

A without having to describe explicitly the environment in B. In other words, the

problem we have is finding the appropriate boundary conditions for the equations in

A, such that the localized solution ΨA(t) is equal to the full solution Ψ(t) evaluated
in A at all times t.

The class of processes which can be described by the scheme in Fig. 8 includes

all the scattering problems where electrons enter A from one side and escape after

having interacted with the system. This encompasses, for instance, electron diffrac-

tion or molecular transport. It also includes scattering problems where electrons are

scattered by other kinds of particles such as photons or protons, thus leading to
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photoionization or proton impact ionization. This last class of processes is some-

times called half-scattering processes because, from the point of view of the

electron, the scattering happens with another kind of particle. The main difference

between scattering and half-scattering processes is that the boundary conditions for

describing the half process are simpler because there is no need to inject charge but

only to absorb it. We must, however, note that if nonlinear effects are dominant, for

instance when strong laser fields are involved, this distinction is less clear and one

may also need to account for incoming electrons for half-scattering problems.

Below we review some of the most notable methods in the literature that have

been employed to address this problem. We anticipate that, in all the approaches we

discuss, the boundary conditions are implemented by modifying the Hamiltonian

with the addition of a complex term that explicitly breaks Hermiticity.

5.1 Transparent Boundary Conditions Using Green
Functions

Transparent boundary conditions include, by definition, all boundary conditions

that allow an exact solution of the open boundary problem. As such, they allow

electrons to move back and forth between A and B without reflection. We examine

below the class of boundary conditions that can be defined in terms of Green

functions. This is not the only possible solution, and other instances of transparent

boundaries can be constructed, for example, by using time dependent exterior
complex scaling or split propagation schemes as we show in Sects. 5.6 and 6.3,

respectively. So-called decimation techniques have also been employed to describe

transparent boundaries; see, for instance, Garcı́a-Moliner and Flores [60] and

Kudrnovský et al. [61].

Green function boundary conditions are based on the idea of matching the inner

solutionΨA of the Schr€odinger equation with the outer oneΨB expressed in terms of

Green functions. Underlying this strategy is the hypothesis that the Hamiltonian

describing the system in B is easier to handle than the one describing the system in A.

Fig. 8 A system localized in a bounded region A exchanges electrons with the environment B. We

look for the correct boundary conditions for the TDSE in A such that the bounded wavefunction

ΨA(t) matches the complete wavefunction Ψ(t) at all times t
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In general, the problem of finding the Green function for an arbitrary system is hard

to solve. However, including in Amost of the atomic and molecular structure leaves

us in B with a problem which, in many cases, can be easily solved.

The simplest case consists of choosing B to represent the empty space, and the

method lends itself to the description of scattering or ionization [62, 63]. On a more

advanced level, one may choose B to represent a bulk system and, in conjunction

with a time-dependent potential, create a base model for electron transport [64,

65]. Alternatively, by mixing both bulk and empty space Green functions, the

frameworks can adapt to the description of ionization from surfaces [66, 67].

The approach is adaptable to a large variety of situations. This versatility has,

however, to face the fact that discretizing the otherwise exact equations often leads

to computationally demanding implementations with limited application. On the

practical level, either one introduces an approximation which affects the quality of

the results, or one just uses a simple time propagation of a full-dimensional system,

which represents a challenging task [68].

In spite of the technical limitations, the approach provides a fundamental and

illustrative description of the open boundary problem. Below we discuss two of the

most notable derivations present in the literature.

5.2 Time-Dependent Embedding

The original Green function embedding was developed in the context of surface and

solid state physics for the static Schr€odinger equation by Inglesfield [69]. It was

subsequently extended to the time-dependent case in Inglesfield [67, 70] by the

same author, but similar derivations have been proposed earlier in different fields,

for instance, to describe the interaction of a strong laser with atoms in Boucke

et al. [62] and Ermolaev et al. [63], and for electron transport in Hellums and

Frensley [64].

Below we introduce the theory following an approach similar to the one used to

describe molecular transport with TDDFT by Kurth [65].4 We first restrict our-

selves to the single-electron case and then discuss the extension to the many-

electron one with TDDFT.

Let us consider the case of a system in contact with a reservoir as shown in

Fig. 9. We want to find a closed set of conditions that have to be imposed on the

equations for a wavefunction in A such that it correctly matches its outer part in

B for all times. Following the division in the figure, we can write the time-

dependent Schr€odinger equation for the system A coupled with a reservoir/environ-

ment B using a block matrix representation:

4An analogous approach was first presented by Hellums [64] in a single-particle picture.
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i
∂
∂t

ψA r; tð Þ
ψB r; tð Þ

� �
¼ Ĥ A,A tð Þ Ĥ A,B tð Þ

Ĥ B,A tð Þ Ĥ B,B tð Þ

� �
ψA r; tð Þ
ψB r; tð Þ

� �
; ð56Þ

where ψA(r,t) and ψB(r,t) are the wavefunctions projected onto each separate

region. Here we consider the general case where the Hamiltonian is time-

dependent, and its components include two diagonal terms ĤA,A(t) and ĤB,B(t)
operating within each separate region and two coupling terms ĤA,B(t) and ĤB,A(t)
connecting the environment to the system.

To derive the embedded time-dependent equations we introduce the retarded

Green function G0 for the reservoir, defined as

i
∂
∂t
� Ĥ B,B tð Þ

� �
G0 r, r0, t, t0ð Þ ¼ δ r� r0ð Þδ t� t0ð Þ; ð57Þ

with boundary conditions G0(r,r
0,t+,t)¼�i, G0(r,r

0,t,t+)¼ 0, and where t+ repre-

sents a time approaching t from above. Because of the explicit time dependence of

ĤB,B(t), it generally depends on both the time variables t and t0. We note however

that the solution greatly simplifies if we consider B to represent empty space. In this

case, G0(r,r
0,t,t0) is the free propagator, which depends only on the time difference

t� t0 and is known analytically.

Using G0(r,r
0,t,t0) we can directly build the solution of the differential equations

in B. This corresponds to considering only the second row in (56), and results in5

Fig. 9 Time-dependent embedding. Embedding consists in modifying the Hamiltonian in A in

such a way that, solving the associated time-dependent Schr€odinger equation in A only, it

automatically imposes the matching of ψA(r,t) with ψB(r,t) for all t. The modification is made

using an embedding operator derived in terms of the Green function G0(r,r
0,t,t0) of the environ-

ment B

5 To simplify notation we avoid explicitly writing out all the coordinates. We also use the same

convention used in Kurth et al. [65] where operators are thought of as matrices with continuous

indices along the spatial coordinates. We thus omit explicit reference to r and r0 and interpret

operator products as integrals.

246 A.H. Larsen et al.



ψB tð Þ ¼ iG0 t; 0ð ÞψB 0ð Þ þ
ð t
0

Ĝ 0 t, t0ð ÞĤ B,A tð ÞψA t0ð Þdt0: ð58Þ

The final equation governing the time evolution for ψA(t) can be written in a closed
form simply by plugging (58) into the first row of (56). After that we obtain

i
∂ψΑ tð Þ

∂t
¼ Ĥ A,A tð ÞψA tð Þ þ Ĥ Σ ψA½ � tð Þ ð59Þ

with

Ĥ Σ ψA½ � tð Þ ¼
ð t
0

Σ̂ t, t0ð ÞψA t0ð Þdt0 þ iĤ A,B tð ÞĜ 0 t; 0ð ÞψB 0ð Þ: ð60Þ

In this equation, Σ̂ t, t0ð Þ ¼ Ĥ A,B tð ÞĜ 0 t, t0ð ÞĤ B,A t0ð Þ can be identified with the self-

energy responsible for the hopping in and out of the system, whereas the last term is

responsible for imposing the initial conditions in the reservoir. It is zero if the

wavefunction is completely localized in A at t¼ 0. The time evolution of ψA(t) is
thus governed by a modified Hamiltonian containing an additional time-dependent

embedding operator ĤΣ[ψA](t). The dependence on the wavefunction is written

in square brackets to stress the fact that ĤΣ[ψA](t) is not just a simple local potential

but involves a more general non-local action.

The kernel Σ̂ t, t0ð Þ of the time integral in (60) is, in the most general case, an

explicit function of t and t0. This is the case, for instance, when one wants to apply

this method to model molecular transport and B represents an electrode with a time-

dependent voltage bias. Evaluating (60) thus requires one to keep track of ψA(t) for
all times up to t. This is one of the biggest drawbacks of the approach as it restricts

the propagation to short times because of storage limitations. Direct approximations

of the kernel intended to mitigate this problem have to face the fact that the kernel is

often non-analytical and highly oscillating, especially for t! t0 [65]. However, we

note that when the Hamiltonian in B is not explicitly time-dependent, Σ̂ t; t0ð Þ
depends only on the time difference t� t0 and we are left with a much easier

convolution integral.

In this last case, i.e., when the Hamiltonian in B is time-independent, an

alternative but equivalent form for the embedding operator can be obtained follow-

ing the derivation of Inglesfield [67]. In this approach we are given two

wavefunctions ψA(r,t) and ψB(r,t) which have equal amplitude on the surface

S separating A and B, but arbitrary derivative as illustrated in Fig. 9. Assuming

that ψB(r,t) is a solution of the time-dependent Schr€odinger equation in B, we need
to find a closed set of equations for ψA(r,t) to connect perfectly to ψB(r,t) on S for

all t.
The problem is solved with the use of what in the field of partial differential

equations goes under the name of Dirichlet-to-Neumann and its inverse Neumann-

to-Dirichlet maps [68, 71, 72]. These maps allow one to transform Dirichlet
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boundary conditions, fixing the value of a function on a surface, into Neumann

boundary conditions, fixing the normal derivative over a surface, and vice versa.

The resulting time-dependent equations for ψA(r,t) can be written in the same way

as (59) with an embedding operator defined as [67, 70]

Ĥ ℰ ψA½ � tð Þ ¼ δ r� rSð Þ 1

2

∂ψA rS; tð Þ
∂nS

þ
ð
S

ð t
0

G
�1
0 rS, r

0
S, t� t0ð Þ∂ψA r0S; t

0ð Þ
∂t0

dt0dr0S

� �
;

ð61Þ

where ∂/∂ns denotes the directional derivative out of A and perpendicular to S, and

G
�1
0 rS; r

0
S; tð Þ ¼ 1

2π

ð1
�1

e�iεtG�10 rS; r
0
S; εð Þdε: ð62Þ

HereG�10 rS; r
0
S; εð Þ is the inverse of the Green function defined by (57) evaluated on

the boundary surface Swith rS, r
0
S 2 S. BecauseG0(r,r

0,t� t0) depends only on time

differences it is conveniently expressed in the energy domain ε with a Fourier

transform over the time domain. Because of the presence of the δ(r� rS), the

embedding operator (61) is non-zero only on the boundary surface and involves

normal and time derivatives of ψA(r,t) over that surface.
Because of the equivalence of Ĥℰ and ĤΣ defined in (60) and (61), we refer in the

following to an embedding operator with the symbol ℰ̂ ψA½ � tð Þ for simplicity. We are

now in the position to comment on the most characteristic features of ℰ̂ ψA½ � tð Þ. In
general, it involves complex quantities which make it an explicitly non-Hermitian

operator. This fact implies that the total number of electrons is no longer conserved

during the propagation. Furthermore, it contains a memory term in the form of a

time integral. In Frensley [73] it was postulated that transparent boundary condi-

tions should break time reversal symmetry. The presence of a memory term in (59)

turns the time propagation into a non-Markovian process and precisely breaks this

symmetry.

The extension to the many-electron case is straightforward using the same 2� 2

block structure of (56) with the difference that the entries must be interpreted as

operators acting on the N-body Hilbert space. The previous steps of the derivation

hold in a completely equivalent way up to (59) and (60) provided the interacting

many-body Green function G is used in place of G0.

Formulating this in the language of TDDFT, the OQS-TDDFT theory establishes

a one-to-one connection between potential and density for non-unitary dynamics

[5–7]. The evolution from an initial state is uniquely defined if we find a way to

write the coupling with the environment as a functional νB[n] of the total density n.
Once again the equations retain the block structure of (56) with entries interpreted

as multi-index tensors, each index being associated with a Kohn–Sham orbital. The

result is a set of equations equivalent to (59) for each orbital, where the exact

embedding operator ℰ̂ n½ � depends on the total density of the system (i.e., in A[B)
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through each orbital and the full many-body Green function G[n]. The total

embedding operator can thus be interpreted as the coupling functional νB[n] with
the environment. Obviously, this connection involving the full many-body Green

function is of little use in practical situations, but it provides a clear starting point

for further approximations.

5.3 Absorbing Boundaries

Describing charge transfer between a system and its environment implies a modifi-

cation of the isolated Hamiltonian. In the previous section we showed how the exact

condition requires the addition of an embedding operator ℰ̂ ψA½ � tð Þ that turns the
Hamiltonian non-Hermitian. The evaluation of such an operator can, however, be

very demanding and one needs to resort to simpler strategies.

Absorbing boundaries (ABs) or boundary absorbers are cheaper options. They

can be defined as any approximation of the form

Ĥ AB ψA tð Þ½ � tð Þ � ℰ̂ ψA½ � tð Þ ð63Þ

to an embedding operator such as the one given by (60) or (61). This approximation

is specific to the case where B represents the empty space and we only have to

absorb outgoing electrons. We know that ℰ̂ ψA½ � tð Þ can be spatially localized on the

boundary surface. The absorbing boundary operator is instead generally allowed to

act on the wavefunctions over a larger region close to the boundaries, as illustrated

in Fig. 10. In the large majority of approximations, this operator is taken to be a

local potential:

Ĥ AB ψA tð Þ½ � tð Þ¼V̂ AB tð ÞψA tð Þ: ð64Þ

Its purpose is to absorb completely any outgoing wave packet entering the region

(striped in the figure) of its support. The main goal here is to apply the absorber that

best simulates the exact embedding operator with the minimum computational cost.

From a TDDFT perspective, when we apply ĤAB to each Kohn–Sham orbital,

on top of all the approximations which might be involved in the description of the

embedding operator, we are also approximating the interaction between the system

and the environment by setting it to zero.

The absorbing properties of a boundary depend strongly on the numerical

implementation. We do not enter any specific implementation here but just point

out the fact that none of the absorbers presented in the literature are completely free

from reflections. We refer to De Giovannini et al. [74] for a recent review on the

reflection properties of members of each boundary family.

We discuss below two of the most popular families of absorbing boundaries: the

complex absorbing potentials (CAPs) and the mask function absorbers (MFAs).
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These families are substantially phenomenological approximations to the open

boundary problem for which the main point of attraction rests on their simplicity

of implementation and limited computational costs.

5.4 Complex Absorbing Potentials (CAPs)

We already noted above that the exact embedding potential has to be a complex

quantity to turn the Hamiltonian non-Hermitian, and the fundamental mechanism of

CAPs is precisely based on this observation. The idea was originally introduced

from a different standpoint by Neuhauser and Baer [75, 76] with the use of negative

imaginary potentials for the Schr€odinger equation. This was in connection with the

so-called optical potentials or perfectly matched layers developed for electro-

magnetic waves [77].

The effect of a CAP can be easily understood by observing the action of the

infinitesimal time evolution operator on a wavefunction

Û tþ dt, tð ÞψA tð Þ ¼ exp �i Ĥ tð Þ þ V̂ CAP

� �
dt

	 

ψA tð Þ; ð65Þ

when V̂ CAP is a negative imaginary potential with support on a region close to the

boundaries of A. In this case, the effect simply results in an exponential suppression

of the wavefunction in the absorbing region. In other words, the time evolution

operator associated with the non-Hermitian Hamiltonian modified with V̂ CAP is

non-unitary and no longer conserves the wavefunction norm. The norm decreases if

V̂ CAP is negative and increases if it is positive. In the latter case it becomes possible

to simulate charge injection, and this fact has been used to mimic reservoirs acting

as sinks or sources in the attempt to simulate electron transport [78–80].

CAPs are by no means restricted to purely imaginary potentials and there is a

huge body of literature describing their different forms and declinations [81]. We

Fig. 10 Absorbing boundaries. An absorbing boundary Hamiltonian ĤAB(t) acting on the striped

region is added to the original one Ĥ(t) to prevent reflections from the boundaries during time

propagation. The perfect absorber is the one that matches the full solution ψ(t) with ψA(t) in the

inner (non-striped) region for all times t
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stress the fact that their properties strongly depend both on their mathematical form

and the specific implementation, and, without exception, they all reflect in some

energy range [74]. For practical purposes it is thus very important to ensure that the

CAP we choose for our calculations has good absorption properties in the range of

interest.

As an example, in Fig. 11 we show the absorption cross-sections for argon and

neon in the continuum, above the first ionization threshold, calculated in linear

response with TDDFT and a CAP. The CAP is chosen to minimize reflections

around E¼ 93 eV for neon and E¼ 105 eV for argon. The spectra are in good

agreement with the experimental ones in a fairly large range around those energies

and reflections appear as oscillations.

What is interesting about this result is that we are able to calculate a quantity

involving transitions to infinitely extended continuum states just performing a time

propagation in a bounded volume. Although at first it might seem counterintuitive,

the explanation is actually quite intuitive. In fact, we are calculating here a quantity

involving the dipole matrix element between an initial state, the ground state of our

system Ψ0, to a final state, a continuum state ΨE>0 : Ψ0h jd̂ ΨE>0j i. The main

contribution to this matrix element comes from an integration over the overlap

region between the two wavefunctions and, because the ground state is bounded,

this region is safely included in A. The extent to which we manage to remove

reflection thus directly relates to the quality with which we calculate this integral

and, eventually, the quality of the absorption cross-section.

Fig. 11 Neon and argon atom absorption cross-sections above the first ionization threshold

calculated with TDDFT and different exchange and correlation functionals: LDA, CXD-LDA

[82], PBE [83], and LB94 [54]. A CAP is introduced to reduce reflections in an energy window

centered around E¼ 93 eV (Ne) and E¼ 105 eV (Ar). Adapted from Crawford-Uranga et al. [84]
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5.5 Mask Function Absorbers (MFAs)

MFAs are an alternative formulation of CAPs. They have been employed to study a

variety of phenomena including high harmonic generation [85], electron and proton

emission [86], and above-threshold ionization [87].

They are defined by directly modifying the infinitesimal time evolution operator

with a mask function M(r) as follows:

Û M tþ dt, tð Þ ¼ M rð ÞÛ tþ dt, tð Þ: ð66Þ

The effect of this modification can be easily understood by choosing M(r) to be a

real function equal to 1 in the inner part of A and smoothly decaying to zero close to

the boundaries. With this choice, recursive application of UM(t+ dt,t) to ψA(t)
directly suppresses the part of the wavefunction in the decay region.

This is only one of the possible choices of MFA and, in general, M(r) can be a

complex function. We illustrate the effect of using complex M(r) by showing the

equivalence between MFAs and CAPs. In fact, given a V̂ CAP, we can obtain the

corresponding MCAP(r) straightforwardly by expanding the exponential in (65).

To first order in dt the MFA M
ð1Þ
CAP associated with V̂ CAP is

M
1ð Þ
CAP rð Þ ¼ e�iVCAP rð Þdt: ð67Þ

The mask function can thus be a complex function, and becomes real when V̂ CAP is

purely imaginary. The inverse relation can be obtained in a similar way, and to first

order it reduces to

V
1ð Þ
MFA rð Þ ¼ i

dt
ln M rð Þ½ �: ð68Þ

In De Giovannini et al. [74] it was shown that the first-order relations above, for a

given pair of CAP and MFA, yield reflection properties in excellent agreement with

each other.

One important feature of the MFA approach is that by multiplying M(r) and

1�M(r) by a wavefunction it is possible to split its propagation in two different

components moving in separate regions. This property is fundamental for split-

domain propagation schemes initially derived in Chelkowski et al. [88] and Grobe

et al. [89] and later extended to the study of electron photoemission with TDDFT in

De Giovannini et al. [90]. We return to this point in Sect. 6.3.
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5.6 Time-Dependent Exterior Complex Scaling

In Sect. 3.5 we introduced exterior complex scaling as an extension of complex
scaling where the transformation is only applied outside a certain region. It was

noted that it shares an important feature with the global transformation: it naturally

imposes outgoing boundary conditions on the Schr€odinger equation. We discuss

here to what extent this property applies to the time-dependent case.

Let us consider a scaling transformation similar to those illustrated in Fig. 3. We

further select a path on the real axis deep into region A that departs for the complex

plane at some point close to the boundary and eventually reaches the asymptotic

form r! reiθ. Following this scaling transformation, the time-dependent

Schr€odinger equation can be formally cast into a set of equations:

i
∂ψθ r; tð Þ

∂t
¼ Ĥ ECS

θ tð Þψθ r; tð Þ ð69Þ

�i∂ψθ r; tð Þ
∂t

¼ Ĥ ECS
θ tð Þψθ r; tð Þ: ð70Þ

for left ψθ r; tð Þ and right states ψθ(r,t), where ĤECS
θ (t) represents the scaled

Hamiltonian. Extrapolating from the discussion in Sect. 4.4 we can interpret (69)

as imposing purely outgoing boundary conditions and (70) as the incoming

counterpart.

In the theory of complex scaling, the calculation of the expectation value of an

observable Ôθ on the scaled path as of (10) involves left and right states on an

equal footing. This extends to the time-dependent case with the requirement of

having both left and right states at the same time to calculate Ôθ. Hence, we need,
in principle, to solve (69) and (70) simultaneously.

The fact that the scaling path lies exactly on the real axis in a certain region

simplifies the equations. In fact, on the real axis, left and right states are complex

conjugates: ψθ r; tð Þ 	 ψ�θ r; tð Þ½ �* ¼ ψθ r; tð Þ* for r in the interior region. This is

particularly true when the system contains only a local potential and the propa-

gation is initialized with a state localized in the unscaled region at t¼ 0 and

propagating outward. If we restrict ourselves to observables in the unscaled region

and we want to describe a purely outgoing process, we resolve to use the right state

ψθ(r,t) only. This state can be obtained by propagating (69) which involves only

right states [38]. Following this, most applications of exterior complex scaling are

limited to a use with the decaying right states and observables evaluated in the

unscaled region.

Equation (69) perfectly describes problems where imposing purely outgoing

boundary conditions represents an exact condition similar to that, for example, in

ionization processes. In those cases it can be regarded as equivalent to a transparent

boundary condition described with a Green function. Here, because we are dealing

with purely outgoing conditions, we should note that the title of perfect absorber is
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more appropriate than that of transparent boundary, because electrons can flow in

only one direction.

However, we note an important difference between the two approaches.

Whereas the Green function embedding defines the exact matching conditions at

the boundary of a finite volume A, the scaled (69) acts on a wavefunction defined in
the full space A[B. This makes the size of the simulation box a weakness in

numerical simulations if a wave is capable of reaching the end of the box. The

scaling transformation imposes an asymptotic form which can be efficiently cap-

tured by exponential functions e�αr. By employing a finite element approach with

an element at infinity which captures the exponential tail, it was numerically shown

by Scrinzi [38] that exterior complex scaling indeed provides perfectly absorbing

conditions for numerical precision.

Restricting (69) to A otherwise implies a truncation which irrevocably breaks its

perfect properties. In this case the scaling transformation reduces to an absorbing

boundary which can be regarded as a simple CAP and, as such, presents reflections

[74, 91]. We should mention that the use of (69) restricted to A in combination with

a smooth exterior complex scaling in the literature has been going under the

misleading name of reflection-free CAP, in spite of presenting a certain degree of

reflection [39, 91–93].

In the context of TDDFT, exterior complex scaling has been applied purely as an
absorbing boundary [53, 94].

6 Electron Photoemission

We focus here on the approaches that can be employed in the description of multi-

electron ionization initiated by external electromagnetic fields within TDDFT. As

in previous sections, we are interested only in electronic processes, neglecting any

ionic motion, and we restrict ourselves to the class of methods that requires

knowledge of the wavefunctions only on a bounded region of space A much as in

Fig. 8.

We are interested in the family of problems characterized by time-dependent

electronic Hamiltonians with the structure

Ĥ tð Þ ¼ 1

2
�i∇�A tð Þ

c

� �2
þ vext þ vee; ð71Þ

where νee is the electron–electron Coulomb interaction, νext is the external potential
which generally consists of a static potential produced by the nuclei, A tð Þ is the
vector potential of the external field, and c is the speed of light. In writing (71) we

implied the choice of the velocity gauge to describe the action of the field. The

associated electric field can easily be obtained as a time derivative:

ℰ tð Þ ¼ � ∂tA tð Þ. Typically, one would want to perform a simulation by choosing
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a vector potential representing one or more laser pulses, then investigate the

induced dynamic.

Ionization takes place whenever the field is capable of inducing a bound-to-

continuum transition, resulting in electrons escaping with a given kinetic energy.

Calculation of observables characterizing these ionized electrons is at the center of

our interest here.

To some extent we already approached this problem in Sect. 5. In fact, total

ionization can be naturally described using only information contained in a

bounded volume A surrounding our system. The total number of electrons

contained in A can be simply calculated from the knowledge of the time-dependent

density as

N tð Þ ¼
ð
A

n r; tð Þdr: ð72Þ

Combined with the use of one of the boundary conditions described above, (72)

implements a practical strategy for the calculation of N(t). The total ionization

probability, i.e., the probability of ejecting an electron in the long-time limit, is thus

naturally obtained using only quantities defined in A as

P ¼ lim
t!1

N � N tð Þ
N

; ð73Þ

where N represents the total number of electrons in the system before ionization.

Being a direct functional of the density, P is an exact quantity within TDDFT and

does not present any further approximation besides the one involved with the use of

the boundary conditions.

In many situations the quantities containing relevant physical information are

more complex objects than the simple total ionization probability, and one would

wish to access differential probabilities with respect to energy or momentum:

P Eð Þ ¼ ∂P
∂E

, P kð Þ ¼ ∂3P
∂kx∂ky∂kz

: ð74Þ

The calculation of these observables within TDDFT is, however, not as straight-

forward as the evaluation of P.
The first reason is the intrinsic complexity of the ionization process already with

only one electron. There are situations, especially when strong laser fields are

involved, where the electron dynamics are so complex that one has to propagate

explicitly the wavefunction in time to account for the process. In principle, the

differential probabilities can then be obtained by projecting the scattering

wavefunction Ψs(t) onto the appropriate set of scattering wavefunctions ϕE as
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P Eð Þ ¼ lim
t!1

ϕE

��Ψs tð Þ
� ��� ��2 with E > 0: ð75Þ

Besides the issues related to the correct evaluation of the projecting set, owing to

their large spatial extension, the propagation of the total electronic wavefunction at

long times can be practically performed only for highly symmetrical systems, such

as atoms and small molecules, or for short times. Alternative approaches, such as

those we describe below, involve the knowledge of the wavefunction only in a

bounded region of space.

The second reason has to do with the multi-electron nature of ionization at the

TDDFT level. In fact, whereas the connection between P and the total density is

explicitly known, the differential quantities (74) cannot be easily expressed in terms

of the density. The derivation and the use of appropriate density functionals to

describe P(E) and P(k) from (74) are thus important and have to take into account

in our model.

In the following we discuss the methods that have been developed to tackle these

problems numerically.

6.1 Sampling Point Method

A simple scheme to evaluate the energy-resolved photoelectron distribution P(E)
was proposed by Pohl et al. [95]. Lacking clear theoretical foundations, this method

has some limitations to its range of applicability. We briefly review it here for

historical reasons connected to the fact that, together with the mask method of

Sect. 6.3, it is the only method that has been employed to calculate P(E) from (74)

for molecular systems with TDDFT.

The method consists in recording the time evolution of each Kohn–Sham orbital

ψ i(rS,t) at given points in space rS as shown in Fig. 12. This time evolution is then

turned into an energy dependence by Fourier transforming the time series

eψ i rS;Eð Þ ¼ 1ffiffiffiffiffi
2π
p

ð
e�iEtψ i rS; tð Þdt; ð76Þ

and the photoelectron energy distribution is postulated to be proportional to a sum

over the orbitals in the following fashion:

PrS Eð Þ / 1ffiffiffi
E
p
XN
i¼1

eψ i rS;Eð Þj j2: ð77Þ

Because photoelectrons are in general emitted with different probabilities at

different angles, a more accurate definition of the total probability is to sample the

boundary densely with points rS so that (77) becomes an integral over a surface

S enclosing the system
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P Eð Þ /
ð
S

PrS Eð ÞdrS: ð78Þ

In practical calculations, the integral over the S is of course still discretized, and

open boundary conditions, often in the form of absorbing boundaries, may be

employed. The choice of the absorber must be such that it efficiently removes

reflected wave packets in the energy range where photoelectrons are simulated.

In the original paper, (78) was introduced without the energy density factor 1=
ffiffiffi
E
p

and the surface integral [95]. The results where thus, in general, strongly dependent

on the choice of the sample point rs and applicable only in the situations where the

electrons are emitted as s-waves, hence not presenting any angular fluctuations. Even
taking into account the integral over S, the method is not free from problems. It

requires S to be placed at a distance from the parent system such that two conditions

are fulfilled: (i) the electronic wave packets can be considered to be composed of

outgoing waves only, and (ii) photoelectrons must hit the surface at a time for which

the external field is turned off. It was later realized that a time- and energy-dependent

phase eiΦ(E,t) must be included in the integral (76) to account for the wrong kinetic

energy reference when the external field is still active [96].

Although this method is straightforward and easy to implement in existing

TDDFT codes, the above drawbacks render it of limited use in many interesting

physical situations, especially when strong laser fields are employed.

6.2 Surface Flux Approach

This method is based on the idea that differential photoemission probabilities (74)

can be calculated by recording the electron flux through a surface. It was originally

introduced by Scrinzi and co-workers in Caillat et al. [97] in the context of multi-

configuration Hartree–Fock and then further developed in Scrinzi [98] and Tao and

Scrinzi [99] for one- and two-electron problems. Although no applications in the

context of TDDFT have been attempted so far, it presents an interesting approach

for the calculation of photoelectron differential probabilities in bounded volumes.

Let us consider the case of a one-electron system governed by a Hamiltonian

Ĥ(t) (71) such that at large distances it matches an exactly solvable one Ĥv(t),

Fig. 12 Electron

photoemission with the

sampling method. The

energy-resolved

photoelectron probability is

calculated by recording the

time evolution of the

wavefunction at the points
marked in red
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Ĥ tð Þ ¼ Ĥ v tð Þ for rj j � rs and all t; ð79Þ

as shown in Fig. 13. We are assuming here for simplicity that the surface S sepa-

rating the Hamiltonians is spherical, but what follows can be easily extended to a

generic surface. If we consider the case of a short range external potential νext(r)¼
0 for |r|> rs, Ĥv is the Volkov Hamiltonian, i.e., the Hamiltonian governing the

motion of free electrons in an external field:

Ĥ v tð Þ ¼ 1

2
�i∇�A tð Þ

c

� �2
: ð80Þ

Provided the external field has no spatial dependence, i.e.,A tð Þ is constant in space,
the associated TDSE can be solved exactly. The solutions can then be expressed as

plane waves with an additional time and momentum-dependent phase:

ϕk r; tð Þ ¼ 1

2πð Þ
3
2

eik�re�iΦ k;tð Þ, Φ k; tð Þ ¼ 1

2

ð t
�1

k�A tð Þ
c

� �2
dt0: ð81Þ

Let us imagine the situation where a laser pulse ionizes our system. In the long time

limit t> T, some time after the field as been turned off, A t > Tð Þ ¼ 0, the

electronic configuration is described by a scattering wavefunction which can be

partitioned into bound and scattering components,

Ψ r; tð Þ ¼ ΨA r; tð Þ þΨB r; tð Þ; ð82Þ

which are approximately localized in the bound and unbound regions A and B of

Fig. 8. The quality of this approximation is ultimately connected to rs and T, and the
time that it takes the slowest components of the scattering wave packet ΨB(r,t) to
cross S.

In order to calculate the emission amplitude, we just need to evaluate the

projection of Ψ(r,t) over the asymptotic wavefunctions ϕk(r) as in (75). The

information about the scattering process is contained only in ΨB(r,t). Because
ΨB(r,t) is exponentially vanishing in A for t� T, we can write the emission

amplitude as

Fig. 13 The setup for the

calculation of electron

photoemission with the

surface flux method. The

emission probability is

calculated by recording the

flux through the closed

surface S marked in red
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S k; Tð Þ ¼ ϕk Tð Þ θ r; rsð Þj jΨ Tð Þh i ¼ ϕk Tð Þ
��ΨB Tð Þ

� �
; ð83Þ

with θ(r,rs) being a step function with support in B defined as

θ r; rsð Þ ¼ 0 for rj j < rs
1 for rj j � rs

�
: ð84Þ

Equation (83) can be written as a time integral of the derivative of S(k,t). Combined

with the Ehrenfest theorem and the fact that both states in (83) evolve with the same

Hamiltonian Ĥv within the support of θ(r,rs) we obtain

S k; Tð Þ ¼ i

ð T
0

ϕk tð Þ Ĥ v, θ r; rsð Þ
	 
�� ��Ψ tð Þ

� �
dt: ð85Þ

The dependence on T of the emission amplitude S(k, T ) becomes negligible for

large values of T. The momentum-resolved probability is then defined by taking the

square modulus of the emission amplitude P(k)¼ |S(k, T )|2 and dropping the

dependence on T.
Equation (85) can be interpreted as the time integral of a surface flux, hence the

name of the method. This interpretation can be established by observing that the

commutator in (85) is non-zero only for |r|¼ rs, and that the expectation value

reduces to an integral over S. We can also proceed one step further and explicitly

write the emission amplitude as a flux integral

S k; Tð Þ ¼
ð T
0

ð
S

Jk tð Þ � drsdt ð86Þ

of the momentum-resolved current density

Jk tð Þ ¼ 1

2
Ψ tð Þi∇ϕ*

k tð Þ � ϕ*
k tð Þi∇Ψ tð Þ � 2

A tð Þ
c
ϕ*
k tð ÞΨ tð Þ

� �
: ð87Þ

In practical calculations the time propagation of Ψ(t) can be spatially truncated,

imposing open boundary conditions in the region outside S. The evaluation of P(k)
can then be safely performed in a bounded volume.

In order to obtain (85) we only need to find a Hamiltonian Ĥv that satisfies the

asymptotic condition (79). The method can, in principle, be extended to handle the

long-range Coulomb potential just by modifying (80) to match the Coulomb tails.

In this case, however, the calculation of ϕk(r,t) is complicated by the absence of an

exact solution for time-dependentA tð Þ and the Coulomb–Volkov solutions provide

a poor approximation [99]. In practical situations, the use of free Volkov

wavefunctions (81) as asymptotic solution combined with a convergence on the

surface radius rs is nevertheless enough to provide high-quality results.
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6.3 Mask Method

This mask method is based on the idea that the photoelectron emission probability

can be calculated by explicitly propagating the ionized electron wave packets as a

superposition of plane waves. The problem of matching inner and outer solutions is

solved here with the aid of a mask function [90]. This approach as been successfully

employed within TDDFT in situations involving atoms and molecules under the

influence of a variety of external fields ranging from strong and weak laser fields

[90] to pump and probe configurations [100, 101].

We begin here by introducing the equations governing time propagation for the

single-electron case and then turn to the many-electron one. Let us consider the case

where the Hamiltonian Ĥ(t) is of short range and satisfies the asymptotic condition

(79), i.e., it coincides with Ĥv(t) for |r|� rs as illustrated in Fig. 14a.

As discussed in the previous section, in the long-time limit of an ionization

process, we can assume the electronic wavefunction splits into two spatially

separated parts, namely the bound and the scattering parts (82). A practical way

to implement this splitting for a generic time t is to use a mask functionM(r) similar

to what was discussed in Sect. 5.5:

Ψ r; tð Þ ¼ M rð ÞΨ r; tð Þ þ 1�M rð Þ½ �Ψ r; tð Þ ¼ ΨA r; tð Þ þ ΨB r; tð Þ: ð88Þ

We consider here the case whereM(r) is a continuous function equal to 1 in an inner

part of A, where |r|� rs, equal to 0 in B, and smoothly decays over the intermediate

region as shown in Fig. 14b. The splitting defined with this procedure is smooth and

the wavefunctions ΨA(r,t) and ΨB(r,t) are not sharply separated but are allowed to

overlap in the region where the mask decays to zero, as illustrated in Fig. 14c. The

mask function M(r) is such that this overlap region is entirely contained in A.
The solution of the TDSE associated with the full Hamiltonian Ĥ(t) in the whole

space A [ B can be formally written as a set of coupled equations:

a b

c

Fig. 14 The main traits of the mask method. In this method, photoelectrons are time propagated

with a mixed real and momentum-space representation. A red striped area identifies the region

where the matching between the two representations is performed. (a) Spatial and Hamiltonian

partitioning. (b) The mask function. (c) A wavefunction Ψ is split into two parts,ΨA andΨB, using

the mask function
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ΨA t 0ð Þj i ¼ M̂ Û t 0; tð Þ ΨA tð Þiþj ΨB tð Þj i½ �
ΨB t 0ð Þj i ¼ 1� M̂

	 

Û t 0; tð Þ ΨA tð Þi þ ΨB tð Þj ij½ �

�
; ð89Þ

using the time evolution operator

Û t 0; tð Þ ¼ exp �i
ðt0
t

Ĥ τð Þdτ
( )

; ð90Þ

and imposing the boundary condition |ΨB(t¼ 0)i¼ 0. Here the mask operator is

given by rh jPM̂ r0j i ¼ M rð Þδ r � r0ð Þ.
Owing to the asymptotic condition (79) on the Hamiltonian, |ΨB(t)i evolves

under the action of Ĥv defined in (80). In what follows we indicate with Uv(t
0,t) the

evolution operator associated with Ĥv. Because Ĥv is diagonal in momentum, the

action of Uv(t
0,t) is easily described in this space. It is thus convenient to expand the

equations for |ΨB(t)i using plane waves: hr|ki¼ (2π)�3/2exp{ik�r}. On the other

hand, owing to the presence in Ĥ(t) of V(r), which has an explicit dependence on r,
the equations for |ΨA(t)i are better solved in real space. The use of a mixed real and

momentum space representation seems the more natural one for the problem.

Using a mixed representation we can integrate (89) by recursively applying the

discrete time evolution operator Û(Δt)	 Û(t+Δt,t) as

r ΨA tþ Δtð Þjh i ¼ r M̂ Û Δtð Þ
�� ��ΨA tð Þ

� �
þ r M̂ Û v Δtð Þ

�� ��ΨB tð Þ
� �

k ΨB tþ Δtð Þjh i ¼ k 1� M̂
	 


Û Δtð Þ
�� ��ΨA tð Þ

� �
þ k 1� M̂

	 

Û v Δtð Þ

�� ��ΨB tð Þ
� �(

;

ð91Þ

with initial condition hk|ΨB(t¼ 0)i¼ 0. These equations can be written in a closed

form for hr|ΨA(t)i and hk|ΨB(t)i by including the additional set

r M̂ Û Δtð Þ
�� ��ΨA tð Þ

� �
¼M rð Þ r Û Δtð Þ

�� ��ΨA tð Þ
� �

r M̂ Û v Δtð Þ
�� ��ΨB tð Þ

� �
¼M rð Þ

ð
r
��k� �

k Û v Δtð Þ
�� ��ΨB tð Þ

� �
dk

k 1�M̂
	 


Û Δtð Þ
�� ��ΨA tð Þ

� �
¼
ð

k
��r� �

1�M rð Þ½ � r Û Δtð Þ
�� ��ΨA tð Þ

� �
dr

k 1�M̂
	 


Û v Δtð Þ
�� ��ΨB tð Þ

� �
¼ k Û v Δtð Þ

�� ��ΨB tð Þ
� �

�
ð

k
��r� �

r M̂ Û v Δtð Þ
�� ��ΨB tð Þ

� �
dr

8>>>>>>>><>>>>>>>>:
:

ð92Þ

The equations in (92) have an intuitive interpretation in terms of electron flow. The

first and second equations account, respectively, for electrons leaving and returning

to A. The third equation is responsible for introducing charge in B whereas the

fourth is composed of a term of pure time evolution minus a term balancing

the backward flow of the second equation. In the limit of infinitesimal steps Δt¼dt,
the complete set defined by (91) and (92) is equivalent to (89), and it fully accounts
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for the description of outgoing and incoming particle flows. In this respect it

directly relates to the exact boundary conditions of Sect. 5.1.

Once (91) and (92) are propagated up to a time T such that the external field has

vanished and the bound and scattering components of Ψ(t) are well separated, the

momentum-resolved probability can be obtained just by taking the square modulus

of the wavefunction in B: P(k)¼ |hk|ΨB(T )i|2. This definition is consistent with that
of the surface flux method, noting that, at time T, Volkov and plane waves differ

only by a phase |ϕk(T )i¼ |ki exp{iΦ(k,T )}. Extending the mask method to the case

of infinite-range potentials incurs the same approximation errors as in the flux

method with Volkov states.

The extension of the method to the many-electron case, on the other hand, is less

trivial. It can be derived from a phase-space standpoint given the interpretation of

the Wigner transform of the one-body density matrix ρ(r,r0,t),

W R; k; tð Þ ¼
ð
eik�s

2πð Þ
3
2

ρ Rþ s

2
,R� s

2
, t

� �
ds with

R ¼ rþ r0ð Þ=2
s ¼ r� r0

�
; ð93Þ

as a quasi-probability distribution. With this interpretation it is natural to define the

photoemission probability as the integral over B of W(R,k,t), i.e.,

P kð Þ ¼ lim
t!1

ð
B

W R; k; tð ÞdR: ð94Þ

The connection with TDDFT can be established using the Kohn–Sham one-body

density matrix

ρKS r; r0; tð Þ ¼ 2
XN=2
i¼1
ψ*
i r; tð Þψ i r

0; tð Þ ð95Þ

in (93) to calculate the Wigner distribution. For simplicity we assume here a closed-

shell system where each orbital ψ i(r,t) is doubly occupied. There is no fundamental

restriction in extending to the more general case where spin polarization is taken

into account.

We now assume that it is possible to establish an approximate asymptotic

connection, similar to (79), between the Kohn–Sham Hamiltonian ĤKS(t) and

Ĥv(t) after a certain radius |r|> rs (see De Giovannini et al. [90]). Under this

assumption we can partition each orbital according to (88) and use (91) and (92)

to propagate them in time. By plugging the Wigner distribution obtained from

ρKS(r,r0,t) into (94) we then obtain that the momentum-resolved probability distri-

bution can be expressed as an sum of orbital densities
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P kð Þ ¼ 2
XN=2
i¼1

k
��ψ i,B Tð Þ

� ��� ��2: ð96Þ

The quality of this approximation is now limited by the error committed by

truncating the exchange and correlation potential contained in ĤKS(t) for r� rs.
In atoms and molecules this adds to the error from truncating the tails of the

Coulomb potential and strongly depends on the dynamics induced by the external

field. It should be noted that for independent electrons in short-range potentials the

method is exact. The validity of this approximation in more general situations may

be assessed on the basis of the success in reproducing experiments. The example

constituted by the strong field ionization of N2 in Fig. 15 offers a good argument in

favor of its success.

In numerical implementations the evaluations of the integrals in (92) must

undergo some level of discretization. In spite of the fact that the integrands can

be safely assumed to be well localized both in real and momentum space, the

discretization process turns out to be a limiting factor. In fact, substituting Fourier

integrals by Fourier series introduces unwanted periodic boundaries conditions that

reintroduce ionized wave packets into the simulation box. This results in a limit for

the maximum time a simulation can be carried on as the time needed for the fastest

wave packet to reenter A. For a more detailed discussion see the appendix of De

Giovannini et al. [90].

A more stable scheme can be obtained by simplifying (92) under the assumption

that the electron flow is only outward from A. In this case we can set to zero the term
responsible for the introduction of charge from B, and obtain a modified set of

equations:

a b

Fig. 15 Ionization of randomly oriented N2 molecules by a strong infrared laser field. Angle and

energy-resolved photoelectron probability P(E,θ) (log scale) obtained from the experiment [102]

(a) and with the theory (b) using the mask method of (91) and (92). The laser is a six-cycle pulse

with wavelength λ¼ 750 nm and intensity I¼ 4.3� 1013 W/cm2. Adapted from De Giovannini

et al. [90]
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r M̂ Û Δtð Þ
�� ��ΨA tð Þ

� �
¼ M rð Þ r Û Δtð Þ

�� ��ΨA tð Þ
� �

r M̂ Û v Δtð Þ
�� ��ΨB tð Þ

� �
¼ 0

k 1� M̂
	 


Û Δtð Þ
�� ��ΨA tð Þ

� �
¼
ð

k
��r� �

1�M rð Þ½ � r Û Δtð Þ
�� ��ΨA tð Þ

� �
dr

k 1� M̂
	 


Û v Δtð Þ
�� ��ΨB tð Þ

� �
¼ k Û v Δtð Þ

�� ��ΨB tð Þ
� �

8>>>><>>>>: : ð97Þ

Together with (91), it defines a modified scheme completely equivalent to the

previous one in the limit where rs is big enough to justify the outgoing flow

condition. The distance at which this condition is satisfied ultimately depends on

the electron dynamics induced by the external fields.

In (97) the first two equations, which govern the evolution of the real-space

components of the wavefunction in A, are no longer connected with the momentum-

space ones, and the propagation is thus equivalent to a time propagation with a

mask function absorber similar to that in (66). The new more stable scheme thus

comes at the price of introducing spurious reflections. Such reflections can, in

principle, be reduced by using the most appropriate MFA or a CAP connected via

equation (67). In the energy range where the MFA is absorbing, it is possible to

carry out stable simulations for long times. As an example, in Fig. 16 we show the

time-resolved photoelectron spectrum for an ethylene molecule where the ionic

degrees of freedom are included at a classical level [100].
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Fig. 16 Relaxation of a πz ! π*z excitation in ethylene observed with photoelectrons calculated

with (91) and (97). (a) Time-resolved photoelectron spectrum P(E, τ) as a function of electron

energy E and time delay τ from the initial excitation measured with an XUV probe pulse of energy

ω¼ 1.8 a.u., with a 40-cycle trapezoidal shape (8-cycle ramp), and an intensity of

I¼ 1.02� 1011 W/cm2. (b) Carbon–carbon bond length in red and torsion angle in blue as a

function of the time delay τ. Nuclear motion is modeled classically with an initial temperature of

300 K. Adapted from Crawford-Uranga et al. [100]
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7 Summary

We have discussed a selection of methods which in different ways allow the

calculation of properties of open quantum systems, with the objective of describing

electron emission processes.

In scattering experiments and spectroscopy, the concept of resonances is of

particular importance, and we have taken care to describe in detail the complex

scaling method which, by a transformation of the real-space coordinates, causes the

exponentially divergent resonant states to localize and become representable as

square integrable states which emerge as eigenstates of the transformed,

non-Hermitian Hamiltonian. This, to a large extent, makes them accessible using

standard bound-state methods. The extension of ordinary ground-state DFT with

complex scaling allows for a computationally tractable means of extracting reso-

nant states and properties such as energy and lifetimes in many-body systems.

Although resonances can be captured from static calculations reminiscent of

ground-state DFT, truly dynamic processes require explicit time propagation

approaches. We have subsequently examined several methods used to describe

dynamics leading to electron emission. We have studied these methods from the

perspective of a complex system Awhich is in contact with a different system B that

acts as a reservoir. Representing the wavefunction in B by means of Green functions

provides a flexible way of accessing the full open-boundary problem, allowing

transfer of particles into and out of a system. Using Green function embedding, one

can calculate the wavefunctions in A that automatically satisfy the boundary

conditions emulating their contact with B. However such embedding techniques

suffer the disadvantage of being computationally demanding when employed to

solve fully three-dimensional problems with first-principles methods.

Absorbing boundaries provide more computationally practical ways of

accessing ionization processes in which charge leaves the system. We have consi-

dered absorbing boundaries and mask functions which are simple methods to

absorb outgoing waves in time-dependent simulations. The boundary absorbers

are meant to absorb waves that leave the system, so that an outgoing wave

disappears rather than reflects on the simulation box. The complex scaling method

provides a particularly elegant way to absorb outgoing waves, allowing one,

in principle, to impose perfectly absorbing boundaries.

Having discussed the problem of describing total ionization with the appropriate

choice of boundary conditions, we turned to the problem of describing electron

photoemission probabilities with TDDFT. We examined three approaches suitable

for the task. The sampling point method, where the energy-resolved probability is

calculated by Fourier transforming the time evolution of each Khon–Sham orbital

in the energy domain; the surface flux method, where the photoelectron probability

is generated by recording the electron flux through a closed surface surrounding the

system; and finally we discussed the mask method where, by means of a mask

function, it is possible to generate a split real/momentum-space propagation scheme

where electrons, moving from a bounded volume into the empty space, seamlessly
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change from real space to momentum space representation. This scheme allows for

the description of a wide range of processes and time resolved pump–probe

spectroscopies.
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Abstract Measuring the nonlinear response of electrons and nuclei to attosecond

broadband X-ray radiation has become possible by newly developed free electron

lasers and high harmonic generation light sources. The design and interpretation of

these novel experiments poses considerable computational challenges. In this

chapter we survey the basic description of nonlinear X-ray spectroscopy signals

and the electronic structure protocols which may be used for their simulation.
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TS Transition state

TSH Trajectory surface hopping

TXAS Transient X-ray absorption spectroscopy
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XDQC X-Ray double-quantum-coherence
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1 Introduction

In linear spectroscopy experiments, the incident light field interacts with the studied

system only once and is relatively weak compared to the intrinsic interaction

potential of the system. The signal can be considered as the linear response of the

system to the perturbation of the light field. Linear spectroscopy provides useful

information about the atomic and electronic structure of the system. Nonlinear

spectroscopy techniques provide more detailed information. Nonlinear spectro-

scopy [1] employs multiple light fields to probe the correlations between different

spectral features. Many controlling factors, such as the frequencies, wavevectors,

and polarizations of the light fields and the time delays between them, can be varied

so that detection of the correlation between certain spectroscopy features and their

dynamics is possible.

Nonlinear optical spectroscopy became feasible soon after the invention of the

laser in the 1960s. With the development of laser technology, pulse durations were

reduced from picoseconds (1970s) to femtoseconds (1980s) [2], and now to

attoseconds [3]. Nonlinear infrared and optical spectroscopy techniques have

proved to be very successful for studying various excited state couplings and

dynamics in molecules and materials [4, 5]. Nonlinear spectroscopy techniques in

the X-ray regime made possible by new X-ray free electron lasers (XFEL) and high

harmonic generation (HHG) sources provide a unique window into the motions of

electrons, holes, and excitons in molecules and materials. Because of their broad

bandwidth (about 10 eV for a 100-attosecond pulse), X-ray pulses can create

coherent superpositions of many excited states localized at the target atoms. In

analogy to how optical pulses manipulate molecular vibrations, attosecond X-ray

pulses triggering and probing valence excited state dynamics have been considered

recently [6] and explored experimentally [7–10]. Sequences of coherent broadband

X-ray pulses can reveal the dynamics of nuclei and electrons in molecules with

attosecond temporal, and nanometer spatial resolution.

X-Ray pulses can be used in various ways:

• Off-resonant diffraction detects the charge density. This technique can be

extended to multiple dimensions to provide multipoint correlations of the charge

density [11, 12].
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• Core resonant spectroscopy offers a fast and versatile way to trigger valence

excitations at selected positions and times via a stimulated Raman process [6]

and to study their dynamics.

• Multiple cores can be excited at various delays, allowing the study of nonlinear

response of valence electrons.

The complex nature of excited state correlations and dynamics leads to charac-

teristic patterns in nonlinear spectroscopy signals, whose interpretation calls for

state-of-the-art theoretical simulation methods. The simulation of time-domain

nonlinear X-ray spectroscopy signals poses numerous challenges to quantum

chemists. First, resonant X-ray spectroscopy involves core excited state. Most

computational molecular electronic structure activity had focused on the ground

state and valence excitations. Core excitations received much less attention because

they do not participate in typical chemical processes. Core excited states lie well

above many valence excited states, and calculating them directly with bottom-up

algorithms is not practical. Core electrons also have special asymptotic behavior

(cusp condition) close to the nuclei and large relativistic effects. Second, signals

obtained by broadband X-ray pulses require many excited states. A state-by-state

calculation scheme is tedious and it is better to obtain all excited states with an

energy range in one shot. Third, resonant X-ray signals require not only the energies

of excited states but also the transition dipoles between them. It is usually necessary

to calculate high order excited state energy gradients to determine these quantities,

which complicates the simulation. Furthermore, multiple X-ray pulses can easily

create excited states with multiple core holes, which are not well described by

single-reference-based excited state quantum chemistry methods such as adiabatic

time-dependent density functional theory (TDDFT). Most of the discussions in this

chapter are based on adiabatic TDDFT. Non-adiabatic frequency-dependent kernels

are discussed in Sect. 4.3. Finally, many electrons may respond to the core hole

created by the X-ray pulses (e.g., shake-up and shake-off processes) [13], so that

many-body effects are very important in these signals. The single-particle picture

may break down and high level methods such as multireference configuration

interaction (MRCI) or multireference perturbation theory (MRPT) are often neces-

sary to account for electron correlation. These challenges are addressed in the

following sections. We focus on the theoretical methods (mainly DFT/TDDFT)

which have been extensively used in X-ray spectroscopy simulation. There are

excellent reviews on using TDDFT to simulate linear X-ray spectroscopy signals

[13–15]. Here we emphasize the specific issues associated with nonlinear X-ray

spectroscopy simulations and mainly discuss the methods applied to molecules.

This chapter is organized as follows. We first briefly describe the calculation of

various nonlinear X-ray spectroscopy signals, and then review existing quantum

chemistry simulation methods. We then discuss several key issues in nonlinear

X-ray spectroscopy simulation. Finally, conclusions and future directions are

outlined.
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2 Nonlinear X-Ray Spectroscopies

A system of interacting electrons is described by the Hamiltonian

Ĥ ¼
X
i

p̂ 2
i

2mi
þ 1

2

X
i j

V̂ ri � r j

�� ��� �
; ð1Þ

where p̂i is the momentum of the ith electron and V̂ is the Coulomb potential. In the

minimal-coupling Hamiltonian, the effects of an external electromagnetic field are

included by the substitution p̂i ! p̂i � qi
c Â where qi is the charge and Â is the

electronic magnetic vector potential [1, 16]. The minimal coupling is well-suited to

discuss X-ray diffraction, which arises from the A2 term, but it is often more

convenient to work with the electric and magnetic fields (which are gauge invari-

ant) rather than the vector potential. This is accomplished by the Power–Zienau

canonical transformation [1, 16]. The Hamiltonian of the system then becomes

ĤS tð Þ ¼ Ĥ þ Ĥint tð Þ; ð2Þ

where H is the material Hamiltonian and, in the dipole approximation, the inter-

action Hamiltonian is

Ĥint tð Þ ¼ �
ð
dr ℰ̂ r; tð Þ þ ℰ̂ {

r; tð Þ
� �

� μ̂ ; ð3Þ

with μ̂ the dipole operator and ℰ̂ þ ℰ̂ {
� �

	 Ê is the electric field which is separated

into positive and negative Fourier components. Within the rotating wave approxi-

mation, the dipole moment is also separated into positive and negative Fourier

components μ̂ ¼ V̂ þ V̂ { and only the terms ℰ̂ V̂ { þ ℰ̂ {
V̂ are retained [1]. Through-

out, we work in the interaction picture with respect to this Hamiltonian and in the

Hartree units, which simplifies the coefficients in the resulting expressions. The

detected quantity in the signals coincided here is the integrated photon number

S Λð Þ ¼
ð
dt _̂N tð Þ
D E

¼
ð
dtdrℑ ℰ̂ {

r; tð Þ � μ̂ tð Þh i
h i

; ð4Þ

where the last equality follows from the Heisenberg equation of motion for the

photon number operator and the signal is a function of the parameters defining the

pulse envelope (collectively denoted Λ). In the following, we take the field to be

polarized along the dipole and avoid the tensor notation (this restriction is easily

relaxed). Note that this form for the signal does not include any frequency- or time-

resolved detection. This could be done by adding gating functions [11, 17, 18] in

nonlinear spectroscopic applications; the electric field is a superposition of more
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than one externally applied pulses or continuous wave (CW) laser field. To simulate

such experiments, we calculate the propagated wavefunction of the driven system

ψ tð Þj i ¼ Û tð Þ ψ0j i; ð5Þ

where the time-evolution operator Û(t) follows from the Schr€odinger equation

i
∂
∂t
ψ tð Þj i ¼ Ĥint ψ tð Þj i ! Û tð Þ ¼ expþ


� i

ð t
0

dτĤint τð Þ
�
; ð6Þ

where eþ stands for the positive time-ordered exponential. As a reminder, we work

in the interaction picture where the states carry the interaction propagation and the

operators carry the field-free propagators so that the time-dependent dipole moment

is

μ̂ tð Þ ¼ eiĤtμ̂ e�iĤt; ð7Þ

and its expectation value is then written

μ̂ tð Þh i ¼ ψ tð Þ μ̂ tð Þj jψ tð Þh i ¼ ψ0 Û { tð Þμ̂ tð ÞÛ tð Þ
�� ��ψ0

� �
: ð8Þ

To analyze particular experiments, we expand the interaction propagator (time-

ordered exponential) perturbatively in powers of the electric field. Together with an

explicit form for the material Hamiltonian H, the previous equations form the basis

for the perturbative description of the nonlinear signals considered below.

2.1 Time-Resolved Four-Wave Mixing

Linear signals are determined by the first order Ĥint. In the X-ray regime, such

signals include X-ray absorption near edge structure (XANES) and extended X-ray

absorption fine structure (EXAFS) [19–21]. The third order techniques (four-wave

mixing) provide more detailed information [6, 22]. In this section, we describe a

class of techniques that utilize four pulses well-separated in time. The pulses

interact with the molecule sequentially and the signal is defined as the change in

transmission of the final pulse. In the limit of ultrashort pulses, the signal is

parameterized by the time delays between successive pulses. In the semiclassical

approximation (where the electric field is treated classically and the molecule is

quantum), we have
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E tð Þ ¼
X

p¼1, 2, 3, 4

~ℰ t� �τp
� �

eik p�r�iω p t��τpð Þþiϕ p þ c:c: ð9Þ

where ϕp is the phase of the pth pulse,�τp, ωp the central times and frequencies of the

temporal and spectral pulse envelopes and ~ℰ p tð Þ the temporal pulse envelopes

centered at t¼ 0. The system interacts once with each pulse and the signal can then

be plotted as a function of the pulse parameters. The terms in the perturbative

expansions are conveniently depicted diagrammatically. Besides facilitating

enumeration of all terms, this procedure allows one to write quickly the signal

corresponding to a particular diagram and to discern in which time periods parti-

cular coherences appear. For macroscopic samples longer than the relevant radi-

ation wavelength a delta function δ(�k4� k3� k2� k1) results. This is known as

phase matching for our level and dipole scheme. The ground state, singly excited

state and doubly excited state manifolds involved in these four-wave mixing

experiment are shown in Fig. 1. The three possible signals are denoted

kI	�k1 + k2+k3, kII	 k1� k2+k3, and kIII	 k1+k2� k3. Below we focus on

two techniques: the double quantum coherence four wave mixing, and the stimu-

lated Raman simulations, and analysis of these signals are given later. The diagrams

of other two four-wave mixing techniques are also provided in Fig. 2 for reference.

2.2 Double-Quantum-Coherence Signal

We focus on the DQC kIII signal, which is particularly sensitive to electron

correlations. The pulse order and the diagrams corresponding to the DQC signal

are depicted in Figs. 3 and 4, respectively. During the time period t2	 τ2� τ1, the
system is in a coherence between the doubly-excited states and the ground state.

Fig. 1 Schematic depiction

of the energy levels under

consideration. The g, e, and
f are ground state, single

core excitation, and double

core excitation manifolds.

The fine structures of the

manifolds are given by

valence excitations on top
of the core excited states

whereas in the optical

regime they represent

vibrational excitations on

top of the valence excited

states
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Fig. 2 Loop diagrams for the kI (top row) and kII (bottom row) signals. The system begins in the

ground state (or more generally, a distribution of states as in (30)) and then interacts once with each

of the four sequentially applied pulses. For diagram rules see [23]

Fig. 3 Schematic depiction of the double quantum coherence technique. Four time-ordered pulses

are shown impinging on the sample from different directions. The transmission of the final pulse is

recorded as a function of the delay times or their conjugate frequencies. Figure taken from [24]
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From the diagrams in Fig. 4, one can immediately obtain the time-domain

signals:

SkIII Λð Þ ¼ ℑ
ð
dt

ð1
0

dt3dt2dt1
~ℰ4 t� �τ4ð Þeiω4 t��τ4ð Þ ~ℰ3 t� t3� �τ3ð Þeiω3 t�t3��τ3ð Þ

�~ℰ2 t� t3 � t2 � �τ2ð Þeiω2 t�t3�t2��τ2ð Þ ~ℰ1 t� t3� t2� t1 � �τ1ð Þ
�e�iω1 t�t3�t2�t1��τ1ð Þ ψ0 Û { t1þ t2þ t3ð ÞV̂ Û t3ð ÞV̂ Û t2ð ÞV̂ {Û t1ð ÞV̂ {

�� ��ψ0

� �	
� ψ0 Û { t1þ t2ð ÞV̂ Û { t3ð ÞV̂ Û t2 þ t3ð ÞV̂ {Û t1ð ÞV̂ {

�� ��ψ0

� �

ei ϕ1þϕ2�ϕ3�ϕ4ð Þ

:

ð10Þ

It is important to note that this signal carries a phase ϕ1þϕ2�ϕ3�ϕ4 which,

when randomly averaged, causes the signal to vanish. Observing this signal there-

fore requires phase control of the pulses. For pulses of finite duration, the distinction

between the actual interaction times and delays between successive interaction

times (the τp and tp, respectively) and the central times of the pulse envelopes and

delays between successive central times (the �τp and�tp, respectively) must be made.

The former are dummy variables of integration whereas the latter are control

parameters which determine the signal. It is common to perform such experiments

with very short, well-separated pulses. The resulting impulsive signal is then well

parameterized by the interpulse delay times (�t1, �t2, and �t3).
To understand the impulsive signal better, we may replace all τ p by �τp and

t p by �tp in Fig. 4. The signal may be Fourier transformed with respect to any or

all of these delays. From the diagrams, we can see that transforming with respect

to �t2 �t1ð Þ reveals resonances at double (single) excitations from the ground state

Fig. 4 The two loop diagrams contributing to the kIII (DQC) signal. The system begins in

the ground state (or more generally, a distribution of states as in (30)) and then interacts

once with each of the four sequentially applied pulses. Note that the phase choice for this signal

(kIII¼+ k1 + k2� k3) guarantees that the second excitation manifold is reached and provides

resonances between the ground state and this manifold
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whereas the t3 resonances contain single excitations from the ground state or

double excitations from the single-excitation manifold depending on the dia-

gram. We can therefore fix one of �t1 or �t3 and transform with respect to the other

two time arguments to obtain a two-dimensional frequency plot which reveals

correlations between the double excitations and single excitations (either from

the ground state or the single-excitation manifold). We denote this impulsive

signal by a 0 superscript:

S0kIII
�t3; �t2; �t1ð Þ ¼ ℰ4ℰ3ℰ2ℰ1e

�iω1�t1�i ω1þω2ð Þ�t2�i ω1þω2þω3ð Þ�t3δ ω1 þ ω2 � ω3 � ω4ð Þ
� ψ0 Û { �t1 þ �t2 þ �t3ð ÞV̂ Û �t3ð ÞV̂ Û �t2ð ÞV̂ {Û �t1ð ÞV̂ {

�� ��ψ0

� �	
� ψ0 Û { �t1 þ �t2ð ÞV̂ Û { �t3ð ÞV̂ Û �t2 þ �t3ð ÞV̂ {Û �t1ð ÞV̂ {

�� ��ψ0

� �

:

ð11Þ

The signal is then Fourier transformed:

SkIII Ω3;Ω2;Ω1ð Þ ¼
ð
d�t3d�t2d�t1SkIII �t3;�t2;�t1ð Þei Ω3�t3þΩ2�t2þΩ1�t1ð Þ; ð12Þ

in order to reveal resonances better. Finite pulse envelopes may now be incorpo-

rated and, when the correlation functions are expanded in material eigenstates,

we obtain

SkIII, a Ω3;Ω2;Ω1ð Þ ¼
X
f e0e

eℰ∗
4 ω4 �ωe0g

� �
Vge0

eℰ∗
3 ω3 �ω f e0
� �

Ve0 f
eℰ2 ω3 �ω f e

� �
V fe

Ω3 �ωe0g þ iγe0g

� �
Ω2 �ωfg � iγfg

� �
�
eℰ1 ω1 �ωeg

� �
Veg

Ω1 �ωeg � iγeg

� � ;
ð13Þ

SkIII, b Ω3;Ω2;Ω1ð Þ ¼
X
f e0e

eℰ∗
4 ω4 �ω f e0
� �

Ve0 f
eℰ∗
3 ω3 �ωe0g

� �
Vge0

eℰ2 ω3 �ω f e

� �
V∗

f e

Ω3 �ω f e0 þ iγ f e0
� �

Ω2 �ωfg � iγfg

� �
�
eℰ1 ω1 �ωeg

� �
V∗
eg

Ω1 �ωeg � iγeg

� � ;
ð14Þ

where ωi j 	 εi � ε j and γij are the frequency and the dephasing rate of the i! j
transition, respectively. The contributions from diagrams a and b may be read

directly from Fig. 4. The numerator contains all transition dipoles as well as the

field-envelope factors which determine the material transitions permitted by the

bandwidths. The denominators contain the resonance factors for these material

transitions.
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At the level of Hartree theory, which assumes independent electrons, the DQC
signal vanishes because of interference. TDHF (or TDDFT) goes one step further

and provides a picture of independent transitions (quasiparticles). Here the signal

no longer vanishes, but shows a limited number of peaks. When correlation effects

are fully incorporated, the many-electron wavefunctions become superpositions of

states with different numbers and types of e-h pairs. The Ω2 and Ω3 axes then

contain many more peaks corresponding to all many-body states (in the frequency

range spanned by the pulse bandwidths), which project into the doubly-excited

states. Thus, along Ω2 the peaks are shifted, reflecting the level of theory used to

describe electron correlations. Along Ω3, the effect is even more dramatic and new

peaks show up corresponding to splittings between various levels. We show the

X-ray DQC signals of formamide as an example in Sect. 4.3. This highly-resolved

two-dimensional spectrum provides an invaluable direct dynamical probe of elec-

tron correlations (both energies and wavefunctions) [25, 26].

2.3 Stimulated X-Ray Raman Spectroscopy

Linear techniques contain the single-excitation spectrum whereas we have just seen

that the DQC (kIII) signal gives access to the double-excitation spectrum. Both of

these spectra thus characterize the intermanifold structure of the material (the

transitions between manifolds). We may obtain a window into the intramanifold

structure (transitions within the same manifold) by using the stimulated Raman

signal (SXRS in theX-ray regime) [2, 27, 28]. Aswith theDQC signal, this technique

is third-order (involving four interactions with the electromagnetic field). However,

rather than four sequential pulses, 1D-SXRS employs only two pulses, each of which

interacts twice with the material. This process is shown diagramatically in Fig. 5.

Note that, because the pair of interactions with each pulse are of opposite

Hermiticity, the overall absolute phase isϕ1 � ϕ1 þ ϕ4 � ϕ4 ¼ 0 and this technique

therefore does not require phase control to obtain a finite signal.

The first pulse in the SXRS process creates a superposition of excited states in

the ground state manifold. After a controlled delay period, the sample interacts with

the second pulse which returns the system to the original state.

For calculating this signal, we find it more convenient to work with the actual

interaction times τ rather than the time delays t j j ¼ 1, 2, 3ð Þ. It is straightforward
to write down a time-domain expression for the 1D-SXRS signal directly from the

diagrams in Fig. 5. Its form is similar to (10):
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SSXRS Λð Þ ¼ ℑ
ð
dτ4

ðτ4
�1

dτ3

ðτ3
�1

dτ2

ðτ2
�1

dτ1 ið Þ3ℰ*
2 τ4ð Þℰ τ3ð Þ

� ℰ*
1 τ2ð Þℰ1 τ1ð Þ ψ0 V̂ τ4ð ÞV̂ { τ3ð ÞV̂ τ2ð ÞV̂ { τ1ð Þ

�� ��ψ0

� �h
þ ℰ1 τ2ð Þℰ

*
1 τ1ð Þ ψ0 V̂ { τ1ð ÞV̂ τ2ð ÞV̂ τ4ð ÞV̂ { τ3ð Þ

�� ��ψ0

� �i : ð15Þ

Because the interactions are paired within a given pulse and the pulses are tempo-

rally well-separated, we may extend the upper limit for the τ2 integration to infinity.
This permits us to define formally the polarizability α̂ p induced by the pth pulse:

α̂ p Λ p

� �
	 i

ð1
�1

dτ

ðτ
�1

dτ0V̂ τð ÞV̂ { τ0ð Þℰ*
p τð Þℰ p τ

0ð Þ; ð16Þ

which is both a material operator and a function of Λp, the parameters of the pth
pulse. In the limit of ultrashort pulses, the primary Λp parameter is the central pulse

time �τp and the principal control variable for the 1D-SXRS signal is the interpulse

delay T ¼ �τ2 � τ1 and the signal is recast as

S Tð Þ ¼ ℜ α̂2 Tð Þα̂1 0ð Þh i þ α̂ *
1 0ð Þα̂2 Tð Þ

� �	 

; ð17Þ

where we have set �τ1 ¼ 0 as the origin of time. Taking matrix elements in the

Hamiltonian eigenbasis gives the sum-over-states expression

Fig. 5 Two contributing loop diagrams (labeled as a, b in the figure) for the 1D-SXRS technique.

As before, the system begins in the ground state but this time interacts twice with each of the two

sequentially applied pulses. Note that the phase for this signal (ϕ1�ϕ1 +ϕ2�ϕ2) automatically

vanishes, making the signal incoherent. The first pulse prepares a wavepacket of valence excita-

tions that evolves for the interpulse delay period before being probed with the second pulse
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α p,g0g00 	 i
X
e

Vg0eVeg00

ð1
�1

dτ2

ðτ2
�1

dτ1ℰ
*
p τ2ð Þℰ p τ1ð Þei ω p�ωeg0 þiγeð Þτ2�i

�
ω p�ωeg

00 þiγe
�
τ1 :

ð18Þ

Here, ωev is the frequency for the v! e transition, and γe is the inverse of the

excitation lifetime. In some applications, it may be more convenient to work in the

frequency domain where the spectral (rather than temporal) field envelopes are

used. This can be accomplished by explicitly writing the propagators in (16) and

replacing the temporal field envelopes by their Fourier transforms yielding

α̂ p ¼
ð
dωdω pdω0p

2πð Þ3
ℰ*

p ω
0
p

� �
ℰ p ω p

� �
1

ωþ ω p � ω0p � Ĥ0 þ iη
V̂

1

ωþ ω p � Ĥ0 þ iη
V̂ { 1

ω� Ĥ0 þ iη
:

ð19Þ

Expanding in eigenstates then gives the matrix elements

α p,g0,g00 ¼
X
e

Vg0eVeg00

2π

ð
dω

ℰ*
p ωð Þℰ p ωþ ωg0g00

� �
ωþ ω p � ωeg0 þ iγe

: ð20Þ

Starting from (20), we may now write the frequency-domain 1D-SXRS signal as

SSXRS Ωð Þ ¼ �
X
g0

ℜ α2;gg0α1;g0g
� �

γg0 � iΩ
� �

þ ℑ α2;gg0α1;g0g
� �

ωg0g

γ2g0 � 2iγg0Ω� Ω2 þ ω2
g0g

þ
ℜ α*1;gg0α2;g0g
� �

γg0 � iΩ
� �

þ ℑ α*1;gg0α2;g0g
� �

ωg0g

γ2g0 � 2iγg0Ω� Ω2 þ ω2
g0g

; ð21Þ

which is the Fourier transform of (15) with respect to the interpulse delay T. The
first term in (17) and (21) can be viewed as a valence wavepacket α1|ψ0i, created by
pulse 1, which propagates forward in time T and overlaps with a wavepacket hψ0|α2
created by pulse 2. The second term can be viewed as a wavepacket α2|ψ0i created
by pulse 2 propagating backward in time�T to overlap with the wavepacket hψ0|α

{
1

created by pulse 1. The SXRS technique creates a wavepacket of valence exci-

tations and, after a specified delay period T, probes this wavepacket so as to track its
evolution. A 2D extension of this 1D-SXRS in which three successive pulses are

employed is shown in Fig. 6. The resulting signal SSXRS(Ω1, Ω2) requires expansion

to fifth order in the field and carries information about correlations between

dynamics during the two delay periods which would not be available in

1D-SXRS [29]. This technique can also be applied following a pump pulse which

prepares the system by exciting a core hole. The subsequent SXRS process then
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creates a valence excitation and tracks its motion along the potential energy surface

produced by the core hole [30].

2.4 Correlation Function Expressions for SXRS Signals

In the previous section, we defined α̂p by combining two time-dependent dipole

interactions (excitation and de-excitation) as well as the pulse envelope (see (16)).

All time-dependence is then encoded into the polarizability α̂ p and the result (see

(17)) is compact but too complicated. Although perfectly suited to an expansion in

eigenstates, as shown in the previous section, this form of α̂ p suffers from some

drawbacks. Recalling the definition of operator time-dependence in the interaction

picture (see (7)), we see that there are three time propagation periods. This

definition for the polarizability therefore contains material propagation both for

interpulse and intrapulse time periods. Because these occur on two different time-

scales, a separation permits different treatments. In particular, it is then possible to

treat the intrapulse propagation perturbatively while preserving the full form of the

longer-time interpulse propagator.

That the two impinging fields are temporally well-separated guarantees that

there exist ~τ1i and ~τ1 f (~τ2i and ~τ2 f ), the initial and final times of the first (second)

pulse. The ~τpi and ~τ p f are used to bound the possible interaction times with the pth
pulse. They are a formal tool used to separate the interpulse propagation from the

intrapulse propagation and can be unambiguously defined as

Fig. 6 Four contributing loop diagrams (labeled as a, b, c, d in the figure) for the 2D-SXRS

technique. The system begins in the ground state then interacts twice with each of three sequen-

tially applied pulses. As with 1D-SXRS, the phase vanishes and the signal is incoherent. The

additional delay period allows information about couplings and correlations of valence excitations

that are not available in 1D-SXRS to be extracted
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~τpi 	 sup t : E p t0ð Þ ¼ 08 t0 < t
� �

~τ p f 	 inf t : E p t0ð Þ ¼ 08 t0 > t
� � ; ð22Þ

making the procedure unarbitrary. Explicitly writing the time propagators in an

exponential form, we can recast the material correlation function pertaining to

diagram a in Fig. 5 (diagram b in Fig. 5 follows similarly so we exclude it for the

sake of brevity) as

eiĤ0τ4 V̂e�i
~̂H0 τ4�τ3ð ÞV̂ {e�iĤ0τ3eiĤ0τ2 V̂e�i

~̂H0 τ2�τ1ð ÞV̂ {e�iĤ0τ1i:
D

ð23Þ

Inserting identities to separate the propagation at ~τ then gives

eiĤ0~τ2 f eiĤ0 τ4�~τ2 fð ÞV̂ e�i
~̂H0 τ4 � τ3ð ÞV̂ {e�iĤ0 τ3�~τ2ið ÞeiĤ0 ~τ2i�~τ1 fð Þ

D
�eiĤ0 τ2�~τ1fð ÞV̂ e�i

~̂H0 τ2 � τ1ð ÞV̂ {e�iĤ0 τ1�~τ1ið Þe�iĤ0~τ1i
E
:

ð24Þ

We thus define the polarizability as

α̂p ~τp f ;~τpi
� �

	 i

ð1
�1

dτ

ð τ
�1

dτ0eiĤ0 τ�~τp fð ÞV̂ e�i
~̂H0 τ�τ0ð ÞV̂ {e�iĤ0 τ0�~τpið Þℰ*

p τð Þℰ p τ
0ð Þ:

ð25Þ

where the properties of the pulse and the choice of the ~τ guarantee the appropriate
sign of the propagators. This is an operator in the valence excitation space. It may

be recast in the frequency domain as before:

α̂p ~τ p f ; ~τpi
� �

¼
ð
dωdω pdω0p

2πð Þ3
ℰ*

p ω
0
p

� �
ℰ p ω p

� �
e�iω ~τ p f�~τpið Þe�i ω p�ω0pð Þ~τ p f

� 1

ωþ ω p � ω0p � Ĥ0 þ iη
V̂

1

ωþ ω p � Ĥ0 þ iη
V̂ { 1

ω� Ĥ0 þ iη

;

ð26Þ

and may differ from (19) in the appearance of ~τ p -dependent phase-factors. Note
that, because the choice of the ~τ p is set by the pulse shape, their appearance on the

left hand side is not necessary and we merely include them for clarity. With this

definition, the contribution to the signal from diagram a in Fig. 5 is

Sa ¼ ℜ eiĤ0~τ2 f α̂2 ~τ2 f ; ~τ2i
� �

e�iĤ0 ~τ2i�~τ1 fð Þα̂1 ~τ1 f ; ~τ1i
� �

e�iĤ0~τ1i
D Eh i

: ð27Þ

Defining the duration of the pth pulse t p 	 ~τ p f � ~τpi and the interpulse delayT 	 ~τ2i
�~τ1 f we have, in the limit of well-separated pulses, T >> t p p 2 1; 2f g. Assuming

that, having accounted for the finite pulse duration in the definition of α, wemay take

t p ! 0 for the purposes of the free evolution in (27), the signal becomes
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Sa Tð Þ ¼ ℜ eiĤ0T α̂2e
�iĤ0T α̂1

D Eh i
¼ ℜ α̂2 Tð Þα̂1 0ð Þh i½ �; ð28Þ

where we have set ~τ1i ¼ τ1 f as the zero point of time and the last equality defines the

interaction picture polarizability αp(t). Note that this expression for Sa(T ) matches

the first term in (17) (with the second term standing for Sb(T )). Besides being

necessary for certain applications, the separation of interpulse and intrapulse

propagations prominently features the dependence on the key time parameter, the

interpulse delay T. All other parameters defining the pulses are encoded in the

definition of the α̂ p . We pause to recall that the only assumption necessary in

reaching (28) (just as for (17)) is that the interpulse delay be much larger than the

temporal pulse widths.

It is important to note that separating interpulse and intrapulse propagation

periods yields a formally identical expression and may seem an unnecessary arti-

fice, as indeed it is within an eigenstate representation. The utility then is manifest

when the eigenstates are prohibitively expensive to calculate. For example, in the

configuration interaction representation, states are expanded in a basis consisting of

the many-body ground state (the orbitals being filled up to some maximum energy

level) and excitations on this ground state obtained by successively higher orders of

electron creation-annihilation operator pairs:

ψj i ¼ gj i þ
X
i j

Ci jĉ
{
i ĉ j gj i þ . . . ð29Þ

Because the material may generally be taken to begin an experiment in the many-

body ground state, perturbative treatment of nonlinear spectroscopies naturally

produces such states. At low order, there are many fewer states in this treatment

than in the full eigenbasis and a significant numerical speedup can be achieved.

In order to exploit this form requires a similar recasting of the α̂ p and this is

explored in Sect. 4.2. Corresponding expressions for the 2D signal SSXRS(T2, T1)
(Fig. 6) are given in [29, 31].

2.5 Discussion of Signals

In the above sections we provided two different types of expressions for the DQC

and SXRS signals. The first ((10) and (15)) are given in terms of time correlation

functions of the dipole operator. This form is convenient for direct ab initio
dynamic simulations of electrons and nuclei [31, 32]. It can take into account,

e.g., in nonadiabatic dynamics, conical intersections, etc. Real-time time-dependent

density functional theory can then be applied to calculate the signal. Alternatively,

the second procedure ((13), and (17)–(20)) expands the correlation functions in

molecular eigenstates. This is convenient for simpler models when only a few

electronic states participate and for relatively small systems where the many-
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body states can be computed. The sum-over-states expansions also facilitate inter-

pretation of the resulting signal as the meaning of the various resonances is

transparent in this form. Both the correlation function and sum-over-states forms

may be displayed either in the time-domain (as a function of�t3,�t2,�t1) or the frequency
domain (as a function of the conjugate variables Ω3, Ω2, Ω1). It is often useful to

employ a mixed representation, e.g., S(Ω1, t2,Ω3), which is 2D in frequency and 1D

in time so that correlations between resonances observed at the two frequencies can

be observed and monitored as the time argument is allowed to vary. These tech-

niques can therefore provide a high degree of selectivity and carry a rich abundance

of information on the electronic and nuclear structure and dynamics.

Our correlation function expressions (10) and (15) are given by the expectation

values with respect to |ψ0i. Alternatively, we may describe the system using the

density matrix

ρ̂ ¼
X
i

Pi ψ ij i ψ ih j; ð30Þ

whose dynamics is determined by the Liouville equation

_̂ρ ¼ �i Ĥ ; ρ̂
	 


� i Ĥint; ρ̂
	 


: ð31Þ

Here Pi is the probability that the system is found in state |ψ ii. When all degrees of

freedom are treated at the Hamiltonian level, it is more convenient to remain in

Hilbert space rather than recasting in Liouville space (as is done in [1]). This

facilitates computations because Hilbert space has far fewer dimensions than the

associated Liouville space. In these cases, the above equations may still be utilized

formally with appropriate choice of the Pi. In terms of the density matrix, the

expectation value of the dipole is given by

μ̂ tð Þh i 	 Tr μ̂ tð Þρ̂ tð Þ½ �; ð32Þ

and we may expand ρ(t) perturbatively to arbitrary order in the interaction

Hamiltonian

ρ̂ nð Þ tð Þ ¼ ið Þn
ð
drn . . . dr1

ð t
t0

dτn . . .

ðτ2
t0

dτ1E rn; τnð Þ . . .E r1; τ1ð Þ

� μ̂ τnð Þ, . . . ; μ̂ τ1ð Þ, ρ̂½ �½ � . . .½ �:
ð33Þ

One can then include the effects of coupling to a bath by introducing further terms

to the equation of motion – see (30) – which represent the dissipation of system

excitations into the bath. One numerically inexpensive strategy to implement this

idea is the stochastic Liouville equation (SLE)
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_̂ρ ¼ �i Ĥ ; ρ̂
	 


þ L̂bρ̂ ; ð34Þ

where L̂b represents the stochastic Markovian dynamics of the bath. The SLE is an

equation for the field-free evolution of the joint system-bath density matrix and can

be used to write a reduced equation of motion for the system density matrix which

incorporates (perturbatively) the effects of the bath. This can, for example, be done

at the level of the Lindblad equation [33, 34]. The model for the bath and system-

bath coupling determines the form of L̂b. Examples are the n-state jump and

Brownian oscillator models [1, 35].

Equations (32) and (33) give one procedure for obtaining the nth order signal and
generates 2n terms when the commutators with the initial density matrix are fully

expanded. Equations (8) and (7) offer an alternative procedure which, upon

expanding the time-ordered exponentials in the Û({)(t), generates nþ 1 terms at

nth order. The latter procedure obviously involves less terms and it is often

numerically preferable to propagate the wavefunction rather than the density

matrix. On the other hand, only a density matrix based procedure can properly

account for system-bath interactions and the dephasing-effects these cause. More-

over, the real-time interpulse delays appear more naturally in a density-matrix

formulation. Equations (32) and (33) are therefore more expensive to implement

but provide a more intuitive picture and are necessary when a proper account of

system-bath dynamics is crucial [1].

As previously mentioned, the nth-order expansion of the density matrix as per

(33) generates 2n terms. Interpreting the resulting signal requires expanding

the interaction Hamiltonian into its constituent terms (which are, in the rotating

wave, (ℰ̂ {
V̂ and ℰ̂ V̂ {)). There are thus a total of 4n terms which may be depicted

diagrammatically (in the case of temporally overlapping fields, this is further

complicated and leads to an additional factor of up to (nþ 1)! representing per-

mutations of the temporal order of field interactions). These diagrams represent

different excitation and evolution pathways for the system density matrix and we

refer to them as Liouville space pathways. This proliferation of terms (64 at 3rd

order) with a variety of different resonances during different time periods makes the

general problem of interpreting a signal quite difficult. Fortunately, the diagrams

that contribute to an experimental signal can be reduced by various techniques

(additionally, some diagrams vanish when the material begins the process in the

ground state). Principally, experimentalists can exploit the phase-sensitivity of

nonlinear signals to control the pathways taken by the system. Conceptually, the

simplest method to accomplish this selectivity is to use a non-collinear beam

geometry as depicted for the DQC technique in Fig. 3. In the large sample (relative

to the light wavelength) limit, the spatial integrations give a delta function

δ(�k4� k3� k2� k1). This phase matching sets the directions along which a

nonlinear signal may be detected and naturally separates the diagrams that contri-

bute in particular directions [36]. Each wavevector k4 of the detected beam then

selects a subset of diagrams as shown in Figs. 2 and 4. Alternatively, the same
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degree of control can be achieved in a collinear beam geometry by controlling the

phases of the various beams. A linear combination of measurements with different

phases can then yield the desired signal withϕ4 ¼ �ϕ3 � ϕ2 � ϕ1 corresponding to

the equivalent spatial-phase selection in the non-collinear arrangement [37,

38]. This technique is known as phase cycling [39] and is always employed in

multidimensional NMR because the wavevectors are close to zero in radio frequen-

cies [40]. In the infrared, visible, and X-ray regimes, both phase matching and

phase cycling protocols for pathway selection are possible depending on experi-

mental convenience.

So far, we have been concerned with processes in which the system is initially in

the ground state. In the X-ray regime, techniques employed can then study reso-

nances of core excitations in relation to this ground state as well as the evolution of

valence excitations along the ground state potential surface. This procedure may be

generalized to account for a more general initial density matrix as may be obtained

from previous excitation or pumping of the system. A complete account of these

more general techniques involves explicit incorporation of the pumping process and

results in higher-order correlation functions [18, 30]. Although more complicated,

these techniques open up the possibility of studying excited state resonances

(as well their correlations) and tracking the motion of valence excitations in the

presence of core holes.

The present formalism may be further utilized in electronic spectroscopies such as

time-resolved photoelectron and Auger electron spectroscopy (TRPES and AES,

respectively). These techniques provide an alternative toolbox that complements and

supplements the optical techniques discussed here. In particular, TRPES has simpli-

fied selection rules compared to optical detection schemes (any orbital may be ionized

and the transition dipole to the continuum states does not depend much on the precise

continuum state and may be approximated as flat in certain regions). The probabilities

for excitation to various continuum states still depend sensitively on the final mole-

cular electronic state and one can therefore use knowledge of the continuum as a probe

[41, 42]. On the other hand, AES has entirely different selection rules, being based on a

Coulombmatrix element (rather than a transition dipole) and has been used to track the

radiationless decay of photoexcited molecules [43]. Despite these differences, a very

similar formalism can be applied, the only differences being in the operators in the

correlation functions. This then allows the use of the array of simulation procedures

discussed for electronic spectroscopies and, in particular, gives a straightforward way

to incorporate bath dynamics and dissipation effects without explicitly including

corresponding degrees of freedom at the Hamiltonian level [44].

3 Quantum Chemistry Methods

Signal expressions in Sect. 2 require the calculation of core excited states and

transition dipole moments. Here we review the quantum chemistry methods that

can be used in their simulation and present a few examples.
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3.1 ΔSCF-Based Methods

3.1.1 Different Core Hole Approximations

An X-ray photon usually excites a core electron leaving a core hole in the system.

Describing core holes properly is the primary task of resonant X-ray spectroscopy

simulation. In Fig. 7 we show the most widely used approximation schemes for core

holes [45]. The simplest is to represent a core hole as an additional nuclear charge.

This equivalent core hole (ECH) also known as (Zþ1) approximation [46, 47] is

adequate for deep core holes because for electrons in the exterior shells a deep core

hole behaves as does a positive nuclear charge. It is simple to apply (no additional

coding in standard quantum chemistry packages is necessary) and multiple core

holes can also be easily represented by additional nuclear charges. However, it is a

crude approximation which does not apply to shallow core holes. It further arti-

ficially changes the spin state of the system.

The ECH approximation was used in our early X-ray nonlinear spectroscopy

simulations [48–52]. The photon echo signal kI¼�k1þ k2þ k3 of the para and

ortho isomers of aminophenol was calculated in [48] (see Fig. 8). The second time

delay t2 is set to zero. The signals reveal the correlation between the O1s core

excitations (Ω1) and the N1s core excitations (�Ω3). The equivalent-core molecular

orbitals corresponding to the three strong O1s XANES peaks (marked A, B, and C)

are also shown. In a simple single orbital picture, orbital A is populated by the

excited O1s electron in the lowest O1s excitation. The XANES signals are not

sensitive to the corresponding core excited states, as can be seen from the top of

Fig. 8. Although the orbitals corresponding to peak Bs of the two isomers look very

Fig. 7 Approximation schemes for core hole excitations. ECH equivalent core hole (Zþ1)
approximation, FCH full core hole approximation, XCH excited core hole approximation, TS
transition state method, TP(HCH) transition potential method (half core hole approximation). Full
discs represent electrons and half discs represent half electrons. Numbers in circles at the bottom
represent nuclear charges, where Z is the number of electrons of the system
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different, the two peak Bs are similar in energy and lineshape. This is because

XANES only detects the local electronic structure of atoms. However, the photon

echo signals show many differences. In the para isomer, the orbital corresponding

to peak B is delocalized and extends from the O to N atom. So, the N1s and O1s

core excitations corresponding to this orbital affect each other and generate a

crosspeak (Fig. 8, left). However, in the ortho isomer, because the orbital

corresponding to peak B vanishes in the surroundings of the N atom, the N1s and

O1s core excitations corresponding to this orbital do not affect each other and thus

we cannot see a crosspeak (Fig. 8, right). Although it is much stronger in O1s

XANES of the para isomer, peak A contributes to a much weaker crosspeak than

peak B. This is because the orbital corresponding to peak A in the para isomer is

highly localized to the O atom and far away from the N atom. It is also understand-

able that peaks A and C produce much stronger crosspeaks of the ortho isomer than

those of the para isomer because O and N atoms are closer in the ortho isomer.

In all, photon echo signals carry detailed information about the wavefunctions of

the core excited states involved in the experiment.

More than four decades ago Slater had proposed the transition state (TS) method

for calculating core excitation energies. In this method the two orbitals involved in

the transition are occupied by a half electron and solved self-consistently. The

excitation energy is given by the difference between the two orbital energies

[53, 54]. The excitation energy obtained in this way is accurate up to second

Fig. 8 Simulated O1s XANES and O1s/N1s photon echo crosspeak (at t2¼ 0) of para- (left) and
ortho-aminophenol (right) with the ECH approximation. All single core excitation energies are

shown as ω�ωj, where ωj is the lowest O1s or N1s excitation energy. Molecular orbitals

populated by the promoted O1s electron for each of core-excited states contributing to the signal

are show on the top. The positions of N and O atoms are labeled. Figure adapted from [48]
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order in the occupation number changes of the transition orbitals. The transition

state method is convenient and sufficiently accurate in many cases, but it is not

suitable for calculating many excited states because of the nonorthogonality and

self-consistent field (SCF) collapse of the excited states. An alternative is the

transition potential method (TP) [55, 56], in which the potential corresponding to

the transition hole state (a half electron on the hole orbital; see Fig. 7) is used to

produce a set of orthogonal excited states. The excitation energy is determined by

the differences between transition potential orbital energies. TP is widely used in

X-ray absorption spectroscopy simulation [57].

Similar core hole approximations have been proposed in solid state physics. The

half core hole approximation (HCH; see Fig. 7) is similar to the transition potential

method, and the full core hole approximation (FCH; see Fig. 7) is similar to the

direct exchange method (STEX) [58–60] in quantum chemistry (this is explained in

detail in the next subsection). In FCH, the impact of the excited electron on the core

hole is neglected. If it is included, we obtain the excited core hole approximation

(XCH) [61]. We have used XCH combined with TDDFT to simulate X-ray double-

quantum-coherence spectroscopy [24].

3.1.2 Static Exchange Method (STEX)

In Hartree–Fock theory, occupied orbitals often provide an adequate description for

the ground state but virtual orbitals give a less satisfactory description of the excited

states. Hunt and Goddard proposed to use the Hartree–Fock virtual orbitals of an

(N�1)-electron system to represent the excited state orbitals of the corresponding

N-electron system. This is known as the improved virtual orbital or N�1 approxi-

mation [58]. In STEX, the occupied orbitals of an N-electron core-excited system

are also represented by the occupied orbitals of the (N�1)-electron ionic system

with the corresponding core hole. A core electron is removed and a restricted open-

shell Hartree–Fock (ROHF) calculation is carried out to obtain the occupied

orbitals of the ionic system. A major difficulty is that the electrons often collapse

to fill the core hole during the SCF calculation. This can be remedied by the

maximum overlap method (MOM) [62], which is explained in detail in the follow-

ing sections. However, even with MOM, the SCF iteration may converge to a

wrong electronic state or even may not converge at all. To guide the SCF iteration

towards the designated ionic state, a careful choice of the other SCF convergence

parameters such as the damping and level-shifting factors [63–65] and many trial-

and-error calculations with different initial guesses are usually necessary. New

convergence schemes are required to improve the SCF calculations of such ionic

states.

Once the occupied orbitals of the ionic state are obtained, a single electron is

placed in a virtual orbital and the resulting open-shell singlet reads
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��ΨN
j, li ¼

1ffiffiffi
2
p â {

lα

��ΨN�1
jα

� E
þ â {

lβ

��ΨN�1
jβ iÞ; ð35Þ

where
��ΨN�1

jσ i 	 â jσ

��ΨN
refi and σ ¼ α, β are spin states, j is the core orbital index, l is

the virtual orbital index,
��ΨN

refi is the N-electron neutral reference state, and â and â
{

are annihilation and creation operators, respectively. The excited orbitals within the

N�1 approximation satisfy the eigenvalue equations:

F̂ j
STEXψ

j
l ¼ ε

j
l ψ

j
l ; ð36Þ

where ψ j
l is the exited orbital and εjl is the corresponding orbital energy. The STEX

Fock operator

F̂ j
STEX ¼ ĥ þ

Xocc
i 6¼ j

2Ĵi � K̂i

� �
þ Ĵ j þ K̂ j; ð37Þ

is constructed using the orbitals of the (N�1)-electron ionic system. ĥ is the

single particle Hamiltonian (kinetic plus nuclear attraction part) and Ĵj and K̂j are

the Coulomb and exchange operators for the core orbital j, respectively:

Ĵ j 1ð Þ ¼
ð
dr2ψ*

j 2ð Þr�112 ψ j 2ð Þ,

K̂j 1ð Þψ l 1ð Þ ¼
ð
dr2ψ*

j 2ð Þr�112 ψ l 2ð Þ
� �

ψ j 1ð Þ:
ð38Þ

The eigenvectors of F̂ j
STEX are not orthogonal to the occupied orbitals of

the (N�1)-electron ionic system, and an orthogonalization procedure is necessary.

We can use the projection operator

P̂ j ¼
Xocc
k 6¼ j

��ψ j
k ihψ

j
k

��; ð39Þ

to project out all occupied orbitals of the (N�1)-electron ionic system and solve the

projected STEX equation

1̂� P̂ j
� �

F̂ j
STEX 1̂� P̂ j

� �
ψ j
l ¼ ε

j
l ψ

j
l : ð40Þ

The solutions of this equation should serve as a good approximation to the excited

orbitals. The core excitation energy is finally given by
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ω j, l ¼ IP j þ ε j, l; ð41Þ

where IPj is the ionization potential of the core electron j (determined from the

energy differences of the (N�1)-electron ionic system and the N-electron neutral

system).

STEX is a single excitation theory in which particle and hole are independent.

Channel interaction can be included by diagonalizing the configuration interaction

matrix in the space of linear combinations of different single excitation channels.

This extension is known as the STEX-CIS (configuration interaction singles)

method. Double excitations can also be treated with a STEX Hamiltonian based

on the (N�2)-electron ionic system, but the SCF convergence problem is more

serious and the spin coupling schemes are complicated [66].

State-to-state transition dipoles are necessary in order to simulate the nonlinear

X-ray spectroscopy signals. Because the STEX orbitals are not orthogonal to the

MOs of the N-electron system, L€owdin’s rule [67] may be used for calculating the

transition dipoles between two states with nonorthogonal single particle orbitals.

The transition dipoles for single excitations are

ΨA

��d̂ ��ΨB

� �
¼
XNconfig:

m, n
ambn

X
i, j
�1ð Þiþ jdmni j Minor Smnð Þi j; ð42Þ

where ΨA,B are two excited states with nonorthogonal single particle orbitals, d̂ is

the transition dipole operator, and am and bn are configuration interaction (CI)

coefficients for different single excitation configurations (m and n) of state A

and B, respectively.

dmnij ¼
X
p, q

c*ip,m,Ac jq,n,B

ð
ϕ*

pd̂ ϕqdτ; ð43Þ

is the transition dipole matrix between the single excitation configurations m and n,
cip,m,A and cj,q,n,B are MO coefficients for the configurations m and n of state A

and B, respectively, and

Smni j ¼
X
k, l

c*ik,m,Ac jl,n,B

ð
ϕ*
i ϕ jdτ; ð44Þ

is the overlap matrix between the MOs of the configurations m and n of state A

and B, respectively. ϕi,j in (43) and (44) are basis functions and i, j, p, q, k, l are
indices for these basis functions. Minor (Smn)ij denotes the (i, j) minor of the matrix

Smn.

We next present 1D and 2D SXRS signals calculated using STEX [29, 68]. Fig-

ure 9 shows the 2D-SXRS spectrum of N-methylacetamide (NMA) with the OOO

(O1s pump with two O1s probes) pulse sequence, together with 1D projections
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along several horizontal and diagonal traces. We also show the corresponding

traces from the OON 2D-SXRS signal in blue dashed lines for comparison. The

only difference between the two types of 1D signals are the third pulse. Peaks along

the diagonal line (Ω2¼Ω1, i in Fig. 9) resemble those from the 1D-SXRS spectrum

of the same molecule [29]. Peaks along the horizontal lines drawn at the represen-

tative valence excitation energies (Ω2¼ 8.95, 8.14 eV, ii and iii in Fig. 9) reveal the

interference of the two Liouville space quantum pathways represented by diagrams

a and d in Fig. 6, and peaks along the diagonal lines shifted with representative

valence excitation energies (Ω2¼Ω1� 6.91, 8.95, 12.68 eV, vi, v, and vi in Fig. 9)

reveal the interference of the other two quantum pathways represented by diagrams

b and c in Fig. 6. Figure 9 illustrates that multidimensional SXRS signals reveal

couplings of different valence excitations, and interferences of quantum pathways.

Comparison of STEX with another method for calculating core excited states,

the restricted excitation window time-dependent density functional theory

(REW-TDDFT), was given in [69]. Core excitation energies from both methods

must be shifted to match experiment. Because of the inclusion of core orbital

relaxation, the shifts of STEX core excitation energies (<10 eV) are usually smaller

Fig. 9 The 2D-SXRS signal SSXRS(Ω1, Ω2) and its 1D traces of NMA (right) from STEX

calculations. Left: the OOO spectrum. All these pulses are resonant with the O K-edge. Middle:
horizontal and diagonal slices of the 2D spectrum on the left (in red) plotted together with the

corresponding traces from the corresponding OON (dashed, blue) to highlight the effect of

changing the probe pulse in the three-pulse sequence. Figure adapted from [29]
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than those of TDDFT (>10 eV). However, being an independent particle and hole

theory, STEX cannot account for core hole mixing in X-ray spectroscopy, whereas

REW-TDDFT can. The SCF calculation of a core ionized state is often tricky.

Convergence is not guaranteed. In addition, because the STEX equation (40) is not

solved self-consistently, the occupied and virtual STEX orbitals are not variational

for the total energy. Evaluating core excited state properties, e.g., electron density,

thus become complicated [70]. State-to-state transition dipole calculations are

expensive.

3.1.3 ΔSCF-DFT Method

A straightforward extension of DFT to excited states (including core excitations) is

achieved by employing non-Aufbau occupations of Kohn–Sham orbitals and run-

ning SCF calculations to obtain the target excited states as is done in ground state

calculations [71–74]. This is known as the ΔSCF-DFT (or simply the ΔSCF)
method. The biggest difficulty is the collapse to the lower energy states below the

excited state during the SCF iterations. Special care must be taken to keep the

electrons in the designated excited configuration. The maximum overlap method

(MOM) [62] is widely used to avoid SCF collapse. Here, the new occupied orbitals

in the current SCF cycle are chosen as the orbitals which have a maximum overlap

with the occupied orbitals in the last cycle. The orbital overlap matrix is given by

O ¼ Cn�1� �{
SCn; ð45Þ

where Cn�1 and Cn are the molecular orbital coefficient matrices in the last and

current SCF iteration, respectively, S is the overlap matrix of basis functions, and

the matrix element Oij represents the overlap between the ith old orbital and the jth
new orbital. The projection of the jth new orbital onto the old occupied orbital space

may be defined as

P j ¼
Xocc
i

Oij ¼
Xocc
l

Xocc
k

Xocc
i

Cn�1
ik

 !
Skl

" #
Cn
lj : ð46Þ

The orbitals with the largest Pjs are chosen as the new occupied orbitals. In some

cases (46) is not robust when selecting new occupied orbitals. Alternative pro-

jections such as

Pj ¼
Xocc
i

��Oij

��; ð47Þ

and
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P j ¼
Xocc
i

��Oi j

��2; ð48Þ

have been implemented in the quantum chemistry packages Q-CHEM [75] and

GAMESS [76]. The same projection scheme as in (48) was also proposed by other

authors very recently [77]. When all Oijs do not have the same sign, or a number of

orbitals are nearly degenerate during the SCF iteration, (48) is believed to perform

better than (47) [77].

Unlike STEX, a spin-unrestricted scheme is employed in ΔSCF-DFT. Thus for a
system with a closed shell ground state, ΔSCF-DFT usually gives a broken-

symmetry spin state which is a mixture of a singlet and a triplet state. The singlet

excitation energy can be obtained through the spin-purification formula [72]

ES ¼ 2EBS � ET; ð49Þ

where ES is the energy of the open shell singlet, EBS is the spin broken-symmetry

state energy, and ET is the triplet energy from a separated ΔSCF-DFT calculation.

Spin-purification is necessary in valence excitation calculations [78, 79] but is less

important in core excitations, where EBS�ET so that ES�EBS.

ΔSCF-DFT can be easily extended to calculate various excited state properties

other than the excitation energy [79]. It also includes orbital relaxation upon

excitation, which is neglected in TDDFT. Note that the (N�1) approximation in

STEX may not be necessary for ΔSCF-DFT because the DFT virtual orbitals

experience the same potential as do the occupied orbitals. However, it has some

drawbacks. First, ΔSCF-DFT is a state-specific approach; one should calculate the

excited states one by one. This makes it unsuitable for broadband spectroscopy

simulations, where many excited states are needed. Second, it only gives excited

states which can be well described by a single determinant. Excited states with

strong configuration interactions are missed. Third, excited states from separated

ΔSCF-DFT calculations are not orthogonal, and there is no unique way to enforce

the orthogonality requirement. Finally, it is an open question how to run variational

DFT calculations of excited states because there is no Hohenberg–Kohn theorem

for a generic excited state [80]. Despite its drawbacks,ΔSCF-DFT has been revived

recently in charge-transfer excitation [81], Rydberg excitation [82], and excited

state potential energy surface calculations [83], and looks very promising in the

X-ray regime.

3.2 TDDFT Techniques

As explained in the introduction section, the discussions in this section are based on

adiabatic TDDFT. Although similar formulation for time-dependent Hartree-Fock

(TDHF) theory had existed for more than two decades [84], the time-domain
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extension of DFT was not possible until Runge and Gross established the one-to-

one mapping of electron density and time-varying external potential [85]. There are

two categories for applying TDDFT to calculate excited state properties: the

response theory based on perturbation in the frequency domain and the direct

real-time propagation methods in the time domain. The frequency-domain formal-

ism of TDDFT, which is based on linear response theory, became popular after

Casida proposed a density matrix response equation which is very similar to the

renowned random phase approximation (RPA) equation [86]. The Casida equation

can be derived by solving the equation of motion (EOM) of the single electron

reduced density matrix to the first order of external perturbation in the frequency

domain. Similar expressions have been obtained for TDHF in the collective elec-

tronic oscillator (CEO) method [87–89]. Nonlinear response functions of the

system can be calculated in CEO by applying high order perturbation theory [89].

Another way to obtain excited state properties is to solve the EOM of

single-electron reduced density matrix by direct propagation in the time domain.

Time-dependent properties of the system induced by the time-dependent external

perturbation can be calculated directly and Fourier transform can recover the

excited state information in the frequency domain.

In this section, we start with the linear-response formalism of Casida, and then

present a specific variant of linear-response TDDFT applied to core excited state

(restricted excitation window time-dependent density functional theory,

REW-TDDFT). Moreover, high order perturbation theory methods for nonlinear

response properties of the system are introduced and finally the real-time propa-

gation methods are discussed. It should be noted that the response and real-time

propagation methods are very general and not restricted to DFT/TDDFT, but we

focus on the DFT/TDDFT formalisms of these methods in this chapter.

3.2.1 Linear Response Theory

The Casida equation can be derived by calculating the linear response of the

density matrix or through an EOM approach. One may start with the EOM of the

one-particle transition density matrix PI ¼
��Iih0��:

Ĥ ;PI

	 

¼ i

∂PI

∂t
¼ ωPI; ð50Þ

where
��Ii and ��0i are the Ith excited state and ground state, respectively, Ĥ is the

Hamiltonian of the system, and ω is the excitation energy. Considering the idem-

potency property of density matrix, the transition density matrix can be expanded as
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PI ¼
X
i, a

Xiaâ
{ î þ Yiaî

{â
� �

; ð51Þ

where Xia and Yia are one-particle/one-hole (1p1h) excitation and de-excitation

amplitudes, respectively, and i, a represent an occupied and virtual orbital, respec-

tively. Substituting (51) into (50), after some algebraic manipulations, one can

obtain the Casida equation:

A B

B* A*

 �
X

Y

 �
¼ ω 1 0

0 �1

 �
X

Y

 �
; ð52Þ

where

Aiaσ, jbτ ¼ δi jδabδστ εaσ � εiτð Þ þ Kiaσ, jbτ,

Biaσ, jbτ ¼ Kiaσ,b jτ,

Kiaσ, jbτ ¼ iσaσ
�� jτbτ� �

þ iσaσ
�� f xc�� jτbτ� �

;
ð53Þ

and

iσaσ
�� jτbτ� �

¼
ð ð
ψ iσ rð Þ*ψaσ rð Þ 1

r� r0j jψ jτ r
0ð Þ*ψbτ r

0ð Þdrdr0,

iσaσ
�� f xc�� jτbτ� �

¼
ð ð
ψ iσ rð Þ*ψaσ rð Þ δ2EXC

δρσ rð Þδρτ r0ð Þ
ψ jτ r

0ð Þ*ψbτ r
0ð Þdrdr0:

ð54Þ

Here i, j and a, b represent occupied and virtual orbitals, respectively, σ, τ are spin
indices, ε is the orbital energy, and fxc is the exchange-correlation kernel which is

expressed as the second-order functional derivative of the exchange-correlation

energy with respect to electron density (54). In (52), X and Y should be considered

as column vectors. Alternatively, it is possible to derive these equations for

the reduced single electron density matrix. This has been done in the CEO method

[87–89] for both TDHF [89] rather than TDDFT [90, 91].

Because of its balance of accuracy and computational cost, and its robustness

and black-box character, linear-response TDDFT has become the method of choice

for computing excited states, including core excited states. We have also based our

nonlinear X-ray spectroscopy simulation work on TDDFT [24, 69, 92, 93]. Unlike

ΔSCF-DFT, linear-response TDDFT does not target a single excited state. Only

ground state orbitals are necessary in the calculation, so that a manifold of excited

states is obtained in one shot. However, linear-response TDDFT also has its

limitations. Usually based on a single-referenced Kohn–Sham state, linear-response

TDDFT cannot handle excited states calculations for a ground state with a heavy

multiconfigurational character. Orbital relaxation for different excited states is

missed. Approximate energy functionals do not have proper long-range asymptotic

behavior, and thus linear-response TDDFT has difficulties in handling charge-

transfer excited states [94] and Rydberg states. The same limitation applies to
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core excited states [14]. The long-range corrected density functionals are discussed

in Sect. 4.1. In addition, within the adiabatic (frequency-independent) exchange-

correlation kernels, linear-response TDDFT cannot properly describe double exci-

tations [95]. This is a major obstacle for simulating nonlinear spectroscopy experi-

ments, which directly access double or multiple excited states. Double excitations

and frequency-dependent exchange-correlation kernels are discussed in Sect. 4.3.

3.2.2 Restricted Excitation Window TDDFT

Calculating core excited states directly using (52) is prohibitively expensive

because there are numerous low energy excited states below the target high energy

core excited state. Any bottom-up matrix eigenvalue numerical algorithm becomes

very tedious. This difficulty can be circumvented by allowing electrons to move

only between a certain set of relevant occupied and virtual orbitals. This is the basis

for the restricted excitation window (REW) or restricted excitation channel

approach. This method was proposed by Stener and co-workers [96], and followed

by other authors [97–100]. One can select the orbitals in the restricted excitation

window by their orbital indices or energies. In the first scheme all molecular orbitals

(MO) are examined and then the relevant orbitals (e.g., the MOs dominated by the

target oxygen 1s atomic orbitals) are selected out. Alternatively, an orbital energy

or energy difference cutoff is used to filter out all relevant orbitals or transition

orbital pairs. Orbital index selection is intuitive but becomes cumbersome if there

are too many relevant orbitals. The orbital energy (energy difference) selection

scheme is convenient for building a large REW. If there are multiple target atoms of

the same type in the molecule, the target MOs would become degenerate or near-

degenerate. The orbital index selection scheme can explore the contribution of a

single target atom to the core excitation and the spectroscopy signal, whereas the

orbital energy selection scheme can study hole-mixing effects. Another method

with the same effect of building a REW is to shift the core excitation energy

difference. This was proposed by Schmidt et al. [101] very recently and is very

similar to Stener and co-workers’ early implementation in the ADF package. After

the REW is determined, trial excitation vectors are prepared in this REW and a

Davidson-type iterative solver [102] is usually employed to find the relevant matrix

eigenvalues and eigenvectors. REW-TDDFT has been implemented in standard

quantum chemistry packages such as ADF [103], Q-Chem [104], ORCA [105],

NWChem [106], and Gaussian [107].

Minimum inputs (relevant orbitals, number of excited states) are needed for

running a REW-TDDFT calculation. It is almost black-box and robust and can

handle all types of excited states with deep as well as shallow holes. It is a response

method and avoids the state-specific SCF convergence problem. Hole-mixing can

be observed, which is not possible with STEX or ΔSCF-DFT. Electron correlation

can be considered in the exchange-correlation functional. Moreover, REW-TDDFT

can easily calculate many core excited states. If unrelaxed CIS-type wave functions

(Tamm–Dancoff approximation, TDA) are used to represent the excited states, the
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state-to-state transition dipoles in REW-TDDFT reduce to sums of transition

dipoles between certain MOs because all MOs are mutually orthogonal. This

drastically reduces the computational cost compared to (42).

In order to calculate nonlinear X-ray spectroscopy signals, we developed a

computational approach based on REW-TDDFT implemented in the quantum

chemistry package NWChem. In a series of publications [6, 69, 108], we had

extended the conventional optical Raman spectroscopy techniques into the X-ray

regime. One- and two-dimensional stimulated X-ray Raman spectroscopy (1D- and

2D-SXRS) signals of the small amino acid cysteine were simulated and compared

to the conventional resonant inelastic X-ray scattering (RIXS) signals. Compared to

RIXS, which is a frequency domain technique, multi-color time domain SXRS

provide a better window to the electronic coupling dynamics in a molecule. We also

calculate the X-ray four-wave mixing kI¼�k1þ k2þ k3 and kII¼ k1� k2þ k3
signals. To compare these with the SXRS signals, we took the time delay t2 between
k2 and k3 longer than the lifetimes (<10 fs) of the core excited states in this system,

so that only the ground-state-bleach (GSB) terms in the signals survive. kI,II signals

have three frequency variables Ωj ( j¼ 1, 2, 3), where Ω1 and Ω3 correspond to core

excitations and Ω2 corresponds to valence excitations. We can cut some slices of

these 3D signals to interpret them. In Fig. 10 we show slices of the two-color kII
(OOSS) signal with constant Ω2 at different peaks in the two-color integrated

two-pulse SXRS signal. These plots show the correlation between core excitations

at different places in the molecule. We can find both the valence excitations at

Ω2¼ 6.6 and 8.9 eV are coupled to the S1s core excitation at Ω3¼ 2475.5 eV, but

they are coupled to different O1s core excitations at Ω1¼ 532.2 and 536.1 eV,

respectively. The valence excitation at Ω2¼ 11.4 is coupled to S1s core excitation

with higher energies. Moreover, the frequency dispersed two-pulse SXRS signals

can give the same information about electron correlation as do projected photon

echo signals [108], whereas the SXRS experiment is much simpler than the photon

echo. However, photo echo experiments have more control variables and can reveal

the correlation between core excitations directly (see Fig. 10), although SXRS can

only infer them through valence excitations.

The same simulation approach was applied to porphyrin dimers. Multiporphyrin

systems are good candidates for artificial photosynthesis or molecular electronics

applications, so understanding the detailed excitation energy transfer (EET) mecha-

nisms in these systems becomes very important. Simulated SXRS signals of various

porphyrin heterodimer systems were obtained [92, 93] using REW-TDDFT. In

Fig. 11 we show the time-domain 1D SXRS signals and the corresponding evolving

electron and hole densities in the Zn and Ni porphyrin heterodimer (structure shown

on the top of Fig. 11). We found an almost constant π/2 phase difference between

the one-color Zn2p pump and Zn2p probe (Zn2p/Zn2p) signal and the two-color

Zn2p pump and Ni2p probe (Zn2p/Ni2p) signal ((c) at bottom left in Fig. 11).

Because the SXRS signal can be considered as an overlap between the time-

dependent doorway wavepacket created by the pump pulse and the time-

independent window wavepacket created by the probe pulse [92], this phase

difference corresponds to a back-and-forth motion of the doorway wavepacket.
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Correlation between the motion of the doorway wavepacket and the fluctuations of

the SXRS signal profiles can be established. The time-domain signals provide a

real-time image of EET in the system, which is not possible for time-resolved

fluorescence anisotropy decay studies. SXRS could become a powerful tool in

revealing EET mechanisms in molecular systems. Further geometrical and struc-

tural factors that control EET in a series of porphyrin heterodimer systems were

studied in [93].

In another SXRS simulation study we investigated long-range electron transfer

(ET) in the small redox protein azurin [109]. Borrowing the ET kinetic parameters

from time-resolved infrared (IR) and optical measurements, time-resolved SXRS

signals at the electron donor, hopping intermediate and electron acceptor were

simulated with REW-TDDFT. We found that the SXRS signals depend sensitively

on the local electronic structure changes around the excited atoms, and could serve

as an excellent indicator for detecting electron transfer dynamics. The atomic

Fig. 10 Four-wave mixing and I2P-SXRS signals of cysteine (structure shown on the bottom
right) from REW-TDDFT calculations. Top: constatnt-Ω2 slices of the 3D kII signal SkII

(Ω1, Ω2¼ 6.6, 8.9, 11.4 eV, Ω3) using an OOSS pulse sequence with xxxx polarization. Bottom
left: the integrated two-pulse SXRS signal using an OS pulse sequence with xx polarization.

Figure adapted from [108]
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pinpoint spatial accuracy also makes SXRS a convenient tool in studying different

ET pathways. Such measurements are difficult for conventional IR or optical

techniques. SXRS should complement linear transient X-ray absorption [110] in

studying ultrafast ET molecular processes.

Fig. 11 Time-domain 1D SXRS signals that reveal excitation energy transfer in porphyrin

heterodimers fromREW-TDDFT calculations. Top: the molecular structure of the Zn-Ni porphyrin

heterodimer studied. Bottom left: (a, b) Spatially integrated hole and electron densities on the Ni

(red) and Zn monomer (blue). (c) The time-resolved integrated two-pulse SXRS signals of the

porphyrin dimer between 0 and 120 fs. The single color Zn2p/Zn2p signal is in blue and the

two-color Zn2p/Ni2p signal is in red. Bottom right: electron and hole densities of the Zn2p valence
superposition state prepared by SXRS for various times after excitation. The isosurfaces are colored

according to which monomer they reside on, red for Ni and blue for Zn. Figure adapted from [92]
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3.2.3 Perturbation Methods for High Order Responses

Nonlinear optical response properties can be obtained by going beyond the first

order of perturbation in equations similar to (50). Response equation (Sternheimer

equation) of wave functions instead of density matrix can also been considered

[111]. Following the standard time-dependent perturbation theory, Orr and Ward

derived the sum-over-state (SOS) expressions of the nonlinear optical polarizations

four decades ago [112]. The SOS expressions are general and excited states from

any level of theory could be used. Much TDDFT work has been done along these

lines [91, 111, 113–121]. A weak time-dependent external electric field is intro-

duced as a perturbation to the original Kohn–Sham system. Then the coupled-

perturbed TDDFT equations, which are similar to the coupled-perturbed Kohn-

Sham equations in DFT geometry optimization calculations, are solved at different

orders of the perturbation and nonlinear response properties are evaluated by

perturbed wave function or density matrix. Using the 2nþ 1 rule [122], third

order response properties can be obtained through the first perturbed wave function.

These approaches can also be used to calculate the nonlinear response to X-ray

pulses.

The complex polarization propagator (CPP) method for XANES simulation was

proposed by Norman and coworkers [123–125]. They first parameterized the orbital

rotation during time evolution, then started from an EOM of the state-transfer

operators with external perturbations and a phenomenological damping term.

With this damping term, decay of excited states can be considered in the

now-complex response functions and resonance divergences are eliminated. With

perturbation techniques, the EOM can be solved at different orders of perturbation

and the corresponding response properties can be calculated. For the linear polar-

izability, one has

αi j ωð Þ ¼ �μ 1½ �{
i E 2½ � � ωþ iγð ÞS 2½ �
h i�1

μ 1½ �
j ; ð55Þ

where i, j¼ x, y, z are coordinate axis indices, μ½1�i;j is the electric-dipole property

gradient along the coordinate axis i, j, respectively, E[2] is the electronic Hessian, γ
is the phenomenological damping parameter, and S[2] is the overlap matrix

[125]. The CPP method is general and when DFT orbitals are used, it gives

excellent XANES spectra of large molecules such as copper phthalocyanine

[126]. A constant shift (usually it is a blue shift) is still needed to match the

calculated XANES to experiment. The constant shift depends on the system and

functional used, e.g., for the water molecule the shifts are 15.15 and 4.0 eV for the

CAM-B3LYP and LB94 functional, respectively [125]. Nevertheless, third order

electronic Hessian is needed to calculate second-order response, making the calcu-

lation quite involved.

Coupled-perturbed TDDFT results in SOS expressions of nonlinear response

functions [127], which become increasingly more complex for higher order
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response. High order functional derivatives of the exchange-correlation energy

functional are necessary [111, 121]. Because many excited states and orbitals,

including virtual orbitals, are involved, high order perturbation methods are

unsuitable for simulations of large systems because of their unfavorable compu-

tational scaling.

3.2.4 Real-Time Propagation Methods

In the frequency domain, each relevant excited state must be explicitly calculated

when the SOS expressions of nonlinear X-ray spectroscopy signals are employed.

The calculation becomes very expensive when many excited states contribute to the

signals. In recent attosecond laser spectroscopy experiments [128–140], the orbital

relaxation as well as the nonadiabatic dynamics with significant geometry changes

involve many excited states. Real-time methods are then preferable.

In real-time time-dependent density functional theory (RT-TDDFT), rather than

solving for eigenstates, the wave function or the one-electron reduced density

matrix1 is directly propagated in the time domain. Spectroscopic signals can be

extracted from Fourier transform of time-dependent system properties such as the

polarization of the molecule driven by the external electric field. The entire

spectrum can be obtained at once and direct calculation of specific excited states

is avoided.

The Liouville–von Neumann equation of motion of the reduced single electron

density matrix σ(t) is [141]

i
∂σ tð Þ
∂t
¼ F tð Þ,σ tð Þ½ �; ð56Þ

where F(t) is the Fock matrix in DFT. The time-dependent electric dipole moment

μ(t), can be calculated by

μ tð Þ ¼ �Tr μσ tð Þ½ �: ð57Þ

Other time-dependent single electron molecular properties can be obtained in a

similar way. The unitary time evolution operator U(t2, t1) propagates the many-

electron wave function ψ(t1) at time t1 to the wave function ψ(t2) at time t2:

ψ t2ð Þ ¼ Û t2; t1ð Þψ t1ð Þ: ð58Þ

For the density matrix propagation, we have

1 Throughout this chapter we mean one-electron reduced density matrix for density matrix unless

explicitly explained with another meaning.
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σ tþ Δtð Þ ¼ U tþ Δt, tð Þσ tð ÞU{ tþ Δt, tð Þ; ð59Þ

where t is a time point and Δt is a time delay. Formally, the time evolution operator

can be expanded in time-ordered products:

U tþ Δt, tð Þ ¼ T̂ exp �i
ðtþΔt
t

F̂ τð Þdτ
 �

¼
X1
n¼0

�ið Þn

n!

ðtþΔt
t

dτ1

ðtþΔt
t

dτ2� � �
ðtþΔt
t

dτnT̂ F̂ τ1ð ÞF̂ τ2ð Þ� � �F̂ τnð Þ
� �

; ð60Þ

where T̂ is the time-ordering operator [1] and F̂ is the Fock operator.

There are excellent reviews on the numerical integrators in real-time propa-

gation calculations [142, 143]. Here we only give a brief summary of the major

methods.

Direct propagation of wavefunctions or density matrices using (58) and (59)

requires evaluating the time-ordered exponential of the Fock operator. Generally

the Fock operator is time-dependent, which complicates the problem. This time

dependence can be handled by dividing the time interval (t, tþΔt) into small

segments and considering the Fock operator fixed within each such segment

(short-time approximation). Then the task is to evaluate the exponential of the

time-independent Fock operator for short time intervals.

The most straightforward method to calculate the exponential of an operator is to

use the Taylor expansion of the exponential function. Practically, a truncation at

order four of this expansion works well [143, 144]. Alternatively, one can also

choose the Chebychev polynomial to approximate the exponential function [142,

145–147]. The Chebychev polynomial is optimal for approximating functions in the

range [�1, 1], but renormalization of the Fock operator is necessary.

Another popular approach to calculate the exponential of an operator is the

Krylov subspace method, e.g., the Lanczos iteration method [148–151]. In these

methods the operator is projected onto a subspace (Krylov subspace) generated by

consecutively applying the operator on the target vector. Any function of the

operator can be approximate within this subspace, whose dimension is much

smaller than that of the original operator.

The Fock operator consists of the kinetic energy operator, which is diagonal in

reciprocal space, and the potential energy operator, which is diagonal in real space.

This leads to the split-operator approach to calculate the exponential of the Fock

operator. The exponential of the Fock operator can be approximated as the product

of exponentials of the kinetic and potential energy operators [152, 153], which can

be calculated exactly. There are higher order extensions of this simple split-

operator scheme [154].

For time-dependent Fock matrices, integrating (56) numerically is not easy

because nonsymplectic integrators such as the common Runge–Kutta methods,

are numerically unstable for large scale simulations. One way to avoid such
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numerical difficulties is by using the Magnus (cumulant) expansion [1, 141, 155,

156]. The Magnus expansion of U(tþΔt, t) is

U tþ Δt, tð Þ ¼ T̂exp �i
ðtþΔt
t

F τð Þdτ
 �

¼ eΩ1þΩ2þ���; ð61Þ

and

Ω1 tþ Δt, tð Þ ¼ �i
ðtþΔt
t

F τð Þdτ; ð62Þ

Ω2 tþ Δt, tð Þ ¼ �1
2

ðtþΔt
t

ðτ1
t

F τ1ð Þ,F τ2ð Þ½ �dτ2dτ1: ð63Þ

The higher order Ω terms can be expressed with nested commutators of F at

different times [155]. If we truncate the exponential expansion at first order in

(61) and use the midpoint value F(tþΔt/2) to represent all F values in the time

interval t, t +Δt, we have

U tþ Δt, tð Þ ¼ eΩ1 ; ð64Þ
Ω1 tþ Δt, tð Þ ¼ �iF tþ Δt=2ð ÞΔt: ð65Þ

Equation (59) then becomes

σ tþ Δtð Þ ¼ e�iF tþΔt=2ð ÞΔtσ tð ÞeiF tþΔt=2ð ÞΔt: ð66Þ

One problem with using (66) in direct propagation is that F(tþΔt/2) is unknown at
time t. F(tþΔt/2) should be estimated by linearly extrapolating the F values at

previous times, or through some predictor-corrector technique [157]. However, the

latter breaks the time evolution symmetry. Alternatively, we can say backward time

propagation with the predictor-corrector cannot reproduce the original state of the

system at early time. The modified midpoint unitary transform method (MMUT)

[158, 159] maintains this time-reversibility. In this method, U(tþΔt, t�Δt) is
constructed from the eigenvectors C(t) and the eigenvalues ε(t) of F(t) at the time

midpoint:

U tþ Δt, t� Δtð Þ ¼ exp i � 2ΔtF tð Þ½ � ¼ C tð Þexp i � 2Δt ε tð Þ½ �C{ tð Þ: ð67Þ

The corresponding density matrix time propagation equation is

σ tþ Δtð Þ ¼ U tþ Δt, t� Δtð Þσ t� Δtð ÞU{ tþ Δt, t� Δtð Þ: ð68Þ

For other popular integrators such as the one combined split-operator with the

enforced time-reversal symmetry method, see [143]. Implementations of
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RT-TDDFT/TDHF are available in standard quantum chemistry packages such as

Gaussian [158, 160], NWChem [156], and Octopus [161].

RT-TDDFT has been used to calculate X-ray linear absorption spectroscopy

[100, 162]. The time-dependent perturbed Fock matrix is

F tð Þ ¼ F 0ð Þ � D � E tð Þ; ð69Þ

where D is the dipole matrix and E(t) is the time-dependent external electric field.

An impulsive external electric field is used in the calculation:

E tð Þ ¼ r̂ � kδ tð Þ; ð70Þ

where r̂ ¼ x, y, z, k is the perturbation strength, and δ(t) is the δ function. The

density matrix is then propagated under this perturbation and the time-dependent

dipole moment is calculated through (57). The molecular polarizability is propor-

tional to the Fourier transform of μ(t):

αi j ωð Þ ¼
~μi j ωð Þ
k

; ð71Þ

where i, j¼ x, y, z. The linear absorption spectrum can be obtained from the

imaginary part of the molecular polarizability:

S ωð Þ ¼ 4πω

c
� ImTr α ωð Þ½ �

3
; ð72Þ

where c is the speed of light.

An impulsive perturbation can excite electrons over a broad energy range (e.g.,

1,000 eV). So real-time methods have advantages if a large energy range is

requested and many excited states are involved in the signal. Real-time methods

avoid the diagonalization of a large matrix, but the numerical problem switches to

sampling the time interval properly in the Fourier transform. Signal post-processing

techniques such as window function are often necessary to obtain sharp core

excitation peaks [100].

Suppose the vectorial external electric field has multiple frequency components

along different coordinate axes:

Ei tð Þ ¼
X
ω

Eωi e
�iωt; ð73Þ

where i¼ x, y, z is the coordinate axis index and the summation runs over negative

and positive frequency domains to keep the external electric field real. Expansion of

the time-dependent dipole under this external field gives
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μi tð Þ ¼ μ0i þ
X
ω

αi j �ω;ωð ÞEωj e�iωtþ

1

2

X
ω1,ω2

βi jk �ωs;ω1,ω2ð ÞEω1

j E
ω2

k e�iωstþ

1

6

X
ω1,ω2,ω3

γijkl �ωs;ω1,ω2,ω3ð ÞEω1

j E
ω2

k Eω3

l e�iωst þ � � �;

ð74Þ

where μ0 is the permanent dipole; i, j, k, l¼ x, y, z are coordinate axis indices; and ωs

is the sum of frequencies: for β, ωs¼ω1þω2; and for γ, ωs¼ω1þω2þω3. In (74),

αij(�ω; ω) is the linear polarizability in (71); βijk(�ωs; ω1, ω2) is the first order

nonlinear hyperpolarizability, and γijkl(�ωs; ω1, ω2, ω3) is the second-order

nonlinear hyperpolarizability. β controls the second-order optical processes such

as the electro-optical Pockels effect and second-harmonic generation; whereas γ
determines third order optical processes such as the electro-optical Kerr effect,

intensity-dependent refractive index, and electric-field-induced second-harmonic

and third-harmonic generation. With the full knowledge of these nonlinear dyna-

mical hyperpolarizabilities, in principle one can calculate the nonlinear response of

the system under any sequence of laser pulses with different central frequencies and

time delays, so that the corresponding nonlinear spectroscopy signals can be

simulated. Thus calculating such nonlinear hyperpolarizabilities becomes the

major task for quantum chemists in nonlinear spectroscopy simulation studies.

RT-TDDFT has been used to calculate dynamical hyperpolarizabilities. Wang

et al. [121] adopted the filter diagonalization method [163–165] to extract compo-

nents at specific frequencies (e.g., double or triple the input frequency) of the time-

dependent dipole moment as a result of solving the EOM of (56). A careful choice

of the perturbation field strength was necessary. The strength can neither be too

weak nor too strong because a too weak perturbation field results in negligible

second and third order response, and a too strong perturbation field makes even

higher order response dominant. Moreover, the perturbation should be turned on

slowly to avoid nonadiabatic response. They also derived the EOM for the first and

second-order response of the density matrix, but evaluating dynamical hyperpolar-

izabilities using these equations is more costly than using (56). Takimoto

et al. [166] used a Gaussian enveloped quasimonochromatic perturbation to

approach a δ distribution in the frequency domain in their RT-TDDFT simulation.

With this choice, the response equation connecting hyperpolarizabilities and den-

sity matrix response at different orders can be easily reverted and dynamical

hyperpolarizabilities are determined. Recently, Li and coworkers [167] applied

the finite field (numerical differential) method to obtain the time-dependent dipoles

at different orders through RT-TDDFT calculations. The components with specific

frequencies were extracted by numerical fitting to sinusoidal waves with these

frequencies. This scheme avoids Fourier transform which requires a long time

simulation.

Two types of time bookkeeping protocols may be used in calculating nonlinear

spectroscopy signals. The first is based on the wavefunction. The signals can then
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be represented by loop diagrams where the ket moves first forward and then

backward to account for the bra [168]. The second protocol uses the density matrix

and can be represented by ladder diagrams [1]. The first protocol does not maintain

the bookkeeping of relative time ordering of bra and ket interactions and results in

nþ 1 basic terms for the nth order response. The second protocol fully keeps track

of time ordering. Both ket and bra move forward, yielding more 2n terms [1, 23]. 2

Even though the Casida (or CEO) equations of motion represent the reduced single

electron density matrix, this density matrix is simply used for parameterizing the

many electron wavefunction given by a single Slater determinant. The response

predicted by the equations of motion for the density matrix turns out to correspond

to the many-electron wavefunction rather than the density matrix [86, 89].

RT-TDDFT should have many advantages in nonlinear X-ray spectroscopy

simulation. Because it does not calculate individual states, it saves computing

time when many excited states are involved, which is the case for ultrashort

broadband X-ray pulse excitation. Direct propagation of the density matrix, only

involves occupied orbitals, so the computational scaling of RT-TDDFT is much

better than any SOS method [112], which involves a large number of virtual

orbitals. There are already many linear scaling algorithms both in both time [169]

and frequency domains [170] for RT-TDDFT in excited state calculations. Both

methods rely on the diagonal dominance of single-electron density matrices or

transition density matrices. The key issue is to calculate the highly nonlocal

exchange components in the popular hybrid density functionals efficiently, which

has only recently been addressed [171]. Unlike the perturbation method (to be

discussed in the next section), high order functional derivatives are not necessary in

RT-TDDFT calculations, so the well-behaved but complicated energy functionals,

such as the orbital-dependent functionals or the optimized effective potential (OEP)

functionals, can be readily used. In addition, RT-TDDFT has advantages for

nonlinear response because the calculations are no more difficult than for linear

response, whereas for the frequency domain methods such as SOS, they become

increasingly more complex for higher order response. Nuclear motions can also be

accounted for by Ehrenfest dynamics [159, 172]. RT-TDDFT offers a direct

simulation of nonlinear spectroscopy experiments with short pulses. However, we

still have some tradeoffs in using RT-TDDFT. Because individual excited states are

not available in RT-TDDFT, it is hard to interpret the spectral features. So far,

RT-TDDFT applications have been restricted to calculating standard dynamical

hyperpolarizabilities. Simulations of the signals presented in Sect. 2 constitute

challenges.

2 Each electronic oscillator which parameterizes the evolution of a single-electron density matrix

corresponds to a single electronic excited state appearing in the linear response regime. Nonlinear

SOS response calculations are then reformulated as sum-over-oscillator expressions, where mul-

tiply excited oscillators appear in the higher order responses leading to 2n terms. It is interesting

that the expressions for the TDHF CEO [89] (or equivalently the Casida TDDFT [86]) response

obtained from the equations of motion correspond to the wavefunction, not the density matrix.
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3.3 MCSCF Method

The multiconfigurational self-consistent-field (MCSCF) method, particularly of the

complete active space SCF (CASSCF) type, has become a practical tool for

studying systems with near-degenerate states, e.g., molecules with open-shell

character, conical intersections (CoIns), transition metal complexes, and bond

breaking molecules (see [173] for a recent review). It describes static correlation

in medium-sized molecules well with affordable computational cost, and serves as

the basis for more accurate methods which consider the dynamical correlation

better, such as MRPT, MRCI, or multireference coupled cluster (MRCC) methods.

CASSCF [174–176], which allows full CI expansion in the pre-selected active

orbital space, is the most common and successful MCSCF implementation. The

concept was introduced in the 1970–1980s by Ruedenberg et al. [177–179] under

the name full optimization reaction space (FORS) and it is now known as complete

active space, as coined by Roos, Tayler, and Siegbahn [174]. The essential step is

the choice of active orbitals. Starting orbitals include localized orbitals [180–183],

natural orbitals [184, 185], or pair natural orbitals [186–188], and the corresponding

guidance has been reviewed [189, 190]. As a variation to CASSCF, the restricted

active space (RASSCF) method [191, 192] decomposes the active space into three

subspaces (RAS1, RAS2, RAS3), which allows one to consider more orbitals. Full

CI is only allowed in RAS2 while a maximum number of holes and electrons are

enforced in RAS1 and RAS3, respectively. Many excellent reviews of the MCSCF

method exist (see [173] and references therein), but these mainly focus on the

ground and valence excited states. Below we discuss the calculation of core excited

states.

3.3.1 Manipulation of the Core Hole

MCSCF core state calculations were first performed in the 1980s by Ågren
et al. [193–196], who studied the state-specific low-lying single and double core

hole (DCH) states of a series of small molecules, systematically investigated the

influence of correlation and relaxation effects on energies, and computed the

effective transition dipole moments (TDMs) between separately optimized

MCSCF states. The method was rediscovered about 20 years later [197]. In recent

years it was employed for work on DCH states and spectra of various small

molecules by Tashiro et al. [198–201]. Odelius et al. [202] first employed the

state-averaged RASSCF (SA-RASSCF) method [192] in conjunction with the

state-interaction treatment of SO effects [203] for L-edge XANES and RIXS

spectra of transition-metal-based complexes, and soon calculations were performed

for various other similar systems [204–207]. Hua et al. applied it to study the O

K-edge ASRS signals of furan conical intersections in the photo-induced ring-

opening reaction [208].
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Core hole calculations require a RAS1 space for the core hole orbital with fixed

occupation number. The RAS2 space (and RAS3 space, if necessary) is used for

valence correlation. Optimization of the MCSCF wavefunction with core holes

must avoid the variational collapse. A rigorous treatment of orbital relaxation can

be realized by a two-step procedure [193, 196]. One first freezes the orbital with

core hole (RAS1) and relaxes the rest; the frozen core orbital is relaxed in the

second step. Different optimization algorithms may be used for the two steps, for

example, combining the second-order norm-extended optimization (NEO) algo-

rithm [209, 210] and a straight Newton–Raphson (NR) algorithm. The effect of the

second step can be illustrated by the resulting energy change (i.e., the core orbital

relaxation energy). Table 1 gives an example for single and double core hole

ionization of formamide [196]. The core orbital relaxation energy is a few electron-

volts. For a single core hole, it is almost 1 eV; for a one-site double core hole, it is

even less; whereas for two-site double core hole, it reaches about 2 eV. This gives

an estimate of the effect of freezing the core orbital.

The optimization in step two in practice is more difficult to implement, espe-

cially when a state-averaged MCSCF is used, because in this case the object

function to optimize is more complicated. It is usually sufficient to skip step two.

The underlying physics is that the core orbital is well separated in energy from the

valence orbitals, so core orbital relaxation hardly influences the nature of the

valence orbitals, but mainly leads to a few electronvolts red shift of transition

energies. The calibration can be obtained by aligning the main peak in the calcu-

lated XANES spectrum to experiment (this also covers relativistic effects and basis

set incompleteness). Because the relaxation energies are similar at the SCF and

MCSCF levels (Table 1), one can also estimate the shift value at the simpler SCF

level.

Table 1 SCF and MCSCF core hole orbital relaxation energies (eV) for single and double core

ionized states of formamide. Singlet energies are used although triplet energies are included in

parenthesis if different. Rebuilt based on [196]

Core hole SCF MCSCF

Single O1s�1 0.90 0.87

N1s�1 0.88 0.86

C1s�1 0.85 0.83

One-site double O1s�2 �0.28 �0.38
N1s�2 �0.23 �0.35
C1s�2 �0.17 �0.34

Two-site double O1s�1N1s�1 1.79 1.72 (1.73)

O1s�1C1s�1 1.78 (1.76) 1.69

N1s�1C1s�1 1.74 1.68 (1.67)

Nonlinear Spectroscopy of Core and Valence Excitations Using Short X-Ray. . . 315



3.3.2 Verification of the Active Spaces

A practical way to perform the core hole calculations is to run a valence CASSCF

calculation first. One chooses the most important orbitals (e.g., localized or natural

orbitals around a breaking bond, 3d orbitals of an excited transition metal) which

have flexible occupations in the active space. The converged wavefunction serves

as the initial guess for the RASSCF calculation. The original active space is

included in the RAS2 space, and the excited core orbital is placed in the RAS1

space. Overall, one extra orbital (the core orbital) and two additional electrons (two

core electrons) are added to the active space for core hole calculations to achieve

more consistency in valence and core excited states calculations. Including addi-

tional virtual orbitals in the RAS3 space can help get a broader energy range for

easier comparison with experimental XANES spectra, especially when the ionic

potential is relatively high. For example, while studying the metal L2,3-edge spectra

from the np shell, the RAS2 space should be the 3d orbitals of the metal, and some

ligand orbitals can be included in the RAS3 space to represent the ligand-to-metal

or metal-to-ligand charge transfer effects [202].

Even though there are general guidelines for choosing the active space [189,

190], it is still necessary to verify by checking the convergence of energy and/or

spectra with the active space size. Figure 12 gives an example for the “UV

absorption” and “O1s XANES” spectra of a furan CoIn in the photo-induced

ring-opening reaction, obtained from a non-adiabatic molecular dynamics trajec-

tory [208]. Such spectra may not be directly observed (because the system is in a

superposition of valence states instead of the ground electronic state), but serve as

good tests for the active space. They also give an estimate of the accuracy of the

calculated transition dipole moments (see next section) which are essential for

simulation of the time-domain nonlinear X-ray signals. In Fig. 12a, 10-state-

averaged CASSCF was used, and, as expected, a smaller active space expands a

broader energy range. Increase of the active space introduces more states with

smaller oscillator strengths, and 10 electrons in 10 orbitals (10, 10) is sufficient to

obtain essentially converged UV spectra. The optimized valence state wavefunction

serves as the initial guess for core hole calculations. In Fig. 12b, 50 states were

calculated using SA-RASSCF. Because core states have a higher density of states

than valence states, additional states are needed to get an energy range of several to

10 eV for spectral usage. The 10 valence orbitals (RAS2) plus 1 core orbital (RAS1)

[labeled as “(12, 1/10/0)”. Twelve electrons include the 10 valence electrons and

2 electrons originally in the O1s orbital; numbers separated by slashes refer to the

sizes of RAS1, RAS2, and RAS3] can give converged O1s XANES. Such active

space settings are enough to obtain accurate and consistent electronic structure for

both the valence and core-excited state manifolds. Note that here the convergence is

much faster than the valence level. A test that includes 20 more orbitals in the RAS3

space “(6, 1/4/20)” shows that it can generate more states in the higher-energy

region (534–540 eV) and modify the fine structure of spectra.
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3.3.3 Transition Dipole Moments Between Different Orbital Sets

Application of MCSCF to non-linear X-ray spectroscopy requires the computation

of transition dipole moments between the valence, single-core, and double-core

manifolds. This is more difficult than valence spectroscopy computations. In the

latter case, the ground and the low-lying valence states can be generated in a single

state-averaged MCSCF calculation using the same set of optimized orbitals, and the

TDMs can be easily obtained by applying the Slater–Condon rule directly. The

energies of states differ by one core hole are several tens to hundreds of

electronvolts apart, and should be obtained in separate MCSCF calculations. The

resulting orbitals are orthogonal within each set but non-orthogonal between

different sets. MCSCF is an extension of the TDDFT/TDA or CIS method, so a

similar simple solution can be applied. We denote the MCSCF wavefunctions of

valence state m and core states e, respectively, as

ba

Fig. 12 Simulated (a) UV absorption and (b) O1s XANES spectra of a furan conical intersection

(snapshot at T¼ 62.5 fs in trajectory 3 of the nonadiabatic MD simulation) at different active

spaces by using the state-averaged CASSCF or RASSCF method. Active spaces are labeled by

(n, m) in panel a or (n, m1/m2/m3) in panel b, where n, m are the number of electrons and orbitals in

the active space, and m1, m2, and m3 are the numbers of orbitals in the RAS1, RAS2, RAS3 spaces,

respectively. All core hole energies have been uniformly shifted by�3.05 eV. Inset in a: geometry

of the snapshot with C–O distances labeled in Å. Rebuilt based on [208]
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where |ϕm
j i and |θei i are Slater determinants, and λmj and κei are the CI coefficients.

The corresponding transition dipole matrix is given by
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Because the MOs of the two manifolds are non-orthogonal, terms of ϕm
j μ̂j jθ ei

D E
are

calculated using the L€owdin rules [67, 211]. Because this method is based on the

determinants, it has a lengthy expansion over configurations. The advantage is that

it is easy for programming and parallelization. This algorithm was employed to

compute the TDMs between the O1s core excited states and valence excited states

of furan [208].

A more efficient approach is the CAS or RAS state interaction (CASSI/RASSI)

method based on configuration state functions (CSFs) developed by Malmqvist and

Roos [212, 213]. Because a many-electron wavefunction can be equivalently

described in different sets of molecular orbitals, the orbitals are rotated (and the

coefficients are changed correspondingly) to be biorthonormal. We can then simply

use the Slater–Condon rule. Methods for including the spin-orbit (SO) coupling

have been developed [203]. This algorithm was employed in early effective TDMs

calculations between state-specific valence and core MCSCF states [195] and

widely used in recent L-edge XANES and RIXS calculations [202, 204–207].

3.3.4 Example: ASRS Signals as a Probe of Conical Intersections

in Furan

We use the furan ring-opening reaction as an example to illustrate the simulation of

nonlinear time-domain X-ray signals at the MCSCF level. The ASRS signal pro-

vides a sensitive probe of the photo-induced reaction in the vicinity of a CoIn.

CASSCF is employed to describe the near-degeneracy introduced by C–O bond-

breaking. We first performed a non-adiabatic molecular dynamics simulation by

using the trajectory surface hopping (TSH) method [214]; then representative

snapshots are chosen for valence and O1s core-excited states calculations by

using state-averaged CASSCF and RASSCF, respectively. TDMs were then deter-

mined and ASRS signals were calculated. Figure 13 displays the calculated ASRS

signals of furan during the passage of a V1/V0 CoIn (V0 and V1 stand for the ground

and lowest valence excited states, respectively) [208]. It is found that as time goes

from 27.5 to 33.0 fs, the molecule gradually goes from V1 to V0 (Fig. 13b). The
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Fig. 13 (a) Simulated ASRS signals of for furan during the passage of V1/V0 conical intersection

(T¼ 27.5–33.0 fs in MD trajectory 4) by using the MCSCF method. From left to right, total signals
and contributions from ρ00 and ρ11 populations, and from ρ01 + ρ10 coherence (0 and 1 refer to

states V0 and V1). (b) Absolute amplitudes of the two constituting states. (c) NTOs [215–217] for

the two main peaks in the ASRS signals (denoted by “o” and “+”). Dominant hole and particle

orbitals are plotted with contour isovalue¼ 0.08. Rebuilt based on [208]
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resulting signals are sensitive to the change in chemical and electronic structure

(Fig. 13a, left). Moreover, the contributions from ρ00 and ρ11 populations and ρ01
and ρ10 coherences may be separated. Below 29.0 fs the signals mainly come from

the V1 state and after 29.0 fs from the V0 state. At the transition point T¼ 29.0 fs

both V0 and V1 populations have comparable contributions to the signals, and

coherence terms have larger contributions than at any other time. We had further

analyzed two major peaks in the total signals (denoted as “o” and “+”, the former is

always lower in energy) and found that they can be tracked by varying time-

dependent strength: peak “o” is stronger before T¼ 29.0 fs, when peak “+”

becomes stronger. Both peaks correspond to transitions from the oxygen p orbital

to π* transitions, as indicated by the dominant natural transition orbital (NTO)

[215–217] pairs (Fig. 13c). As time increases, for peak “o” the hole orbital changes

from localized on the C–O bond to delocalized. For peak “+”, the particle orbital

changes from delocalized to localized on the C–O bond.

3.4 Other Core Hole State Simulation Techniques

Unlike most of the practical implementations of DFT, which contain empirical

parameters from numerical fitting to experimental data or results from higher level

theories, the Green’s function method based on many-body perturbation theory

provides a systematic way to achieve higher accuracy. Quasiparticle orbital ener-

gies can be obtained by solving a set of coupled Hedin equations [218]. These

orbital energies offer a much better estimation of the ionization potential and the

electron affinity of the system than do Kohn–Sham orbital energies. In Hedin’s
equations, the one-particle Green’s function is solved through a Dyson-like equa-

tion with a self-energy, which is complex and energy-dependent. Self-energy plays

a similar role as does exchange-correlation energy in DFT. The most popular

approximation of self-energy is the GW approximation, where the vertex operator

is simplified as product of δ-function and self-energy becomes the product of

single-particle Green’s function (G) and the dynamically screened Coulomb inter-

action (W) [218, 219]. Moreover, particle-hole interaction, which is neglected in

TDDFT, can be considered and another Dyson-like equation for the four-point

polarization function (two-particle Green’s function) can be derived [220]. This is

the Bethe–Salpeter equation (BSE). GW/BSE equations have to be solved iter-

atively in a self-consistent way. DFT orbitals and their energies can be used as

initial guesses, but the full self-consistent solutions are independent on the initial

guesses [221]. BSE can be recast into a form similar to the Casida equation in linear

response TDDFT (see (52)), but the kernel in BSE could be frequency-dependent

[222–224], which offers a model for designing non-adiabatic exchange-correlation

kernel in TDDFT. For a thorough comparison of GW/BSE and TDDFT, see
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[219]. The GW/BSE approach has been successfully applied to XANES calcula-

tions of solids [225–231]. Until now, GW/BSE is still a theory of heavy solid state

flavor. Adapting it to a molecular theory is currently in progress [232–234].

The many-body Green’s function techniques with algebraic diagrammatic con-

struction (ADC) [235] was also used to study core excited states [236] and the

dynamics of core holes and particles [237, 238]. So far, most applications of the

above many-body methods have been made to XANES, and their use to calculate

core excited states is limited to small systems because of computational cost.

Nonlinear X-ray spectroscopy simulation of large systems is an important

future goal.

Other theoretical methods were designed primarily for metal L-edge calcu-

lations. These are more challenging than the ligand or metal K-edge calculations

because of multiplet effects, spin-orbital coupling, and metal-to-ligand or ligand-to-

metal charge transfer. Such transition metal-based systems have attracted broad

interest because of the numerous applications in biology (e.g., metallic enzyme

centers) and artificial light harvesting (e.g., dye-sensitized solar cells). Because the

2p! 3d transitions are dipole-allowed, the metal L2,3-edge spectra can better

reflect the valence electron structure of the metal 3d orbitals which are more

essential to the chemistry. For metal K-edge spectra, the 1s! 3d transitions are

dipole forbidden. These methods have mainly been applied to XANES and RIXS

spectra. Nonlinear X-ray spectra require accurate transition dipole moments. To

obtain these, both the valence and core-excited states must be treated with consis-

tent accuracy.

Early theoretical efforts on transition metal L-edge X-ray spectra were based on

semi-empirical methods developed by de Groot and coworkers [239, 240], namely

the crystal field multiplet (CFM) and the charge transfer multiplet (CTM) models.

These methods start with the SO-coupled multiplets of the excited metal atom and

include the effect of ligands using ligand field theory (LFT). Adjustable parameters

include the crystal field splitting and the charge transfer energy. In recent years,

there are developments in ab initio theory including the ab initio CTM based on

DFT-CI [241], ab initiomultiplet ligand-field theory (MLFT) method with Wannier

orbitals [242], and method employing the Russel–Saunders coupling [243]. These

methods are usually computationally expensive and were employed for relatively

small systems with high symmetry. Neese and co-workers [244, 245] proposed an

efficient approach by combining DFT and the restricted-open-shell configuration

interaction singles (DFT/ROCIS). It introduces global empirical parameters for the

periodic table to scale the CI matrix and includes dynamic correlation and the SO

coupling effects. Excellent agreement with experiment was obtained for most

systems. Besides RASSCF, Odelius et al. [202] further tested the influence of

dynamic correlations by using the multiconfigurational second-order perturbation

theory (RASPT2) for a [NiII(H2O)6]
2+ complex. TDDFT has also been tested for

this topic. Although it is widely believed that TDDFT is only valid for transition

metal-based systems with closed-shell (e.g., the low spin form of FeII, S¼O) but

not to those open-shells (e.g., the high spin form of FeII, S¼ 2), it is still necessary

to examine its performance because of its high efficiency. It was found [246] that,
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for a SCO complex [FeII(tren(py)3)]
2+, the TDDFT approach can predict the Fe

L3-edge XANES spectra of both the low-spin and high-spin complexes which agree

well with experiment [247–249]. However, such agreement depends on the system.

When the same procedure was applied to a variety of FeII and FeIII complexes with

different spin states, the accuracy did not always persist (Hua et al., submitted).

Other post-HF methods have been employed for simulating the K-edge XES,

XAS, or RIXS spectra of very small molecules. The intentions are to examine the

effect of electron correlation, to include the effect of shake-up/shake-off processes,

and/or to consider the influence of bond breaking. Ågren and coworkers had

reported early CI studies of XAS [250, 251] and XES [252, 253] spectra of CO

and N2. Recently, Neese et al. [254] studied the vibrationally-resolved RIXS

spectra of CO2 using the MRCI method. Coupled cluster (CC)-based methods

have been developed for core state calculations, including single-reference

equation-of-motion CC (EOM-CC) [255, 256], state-specific multireference CC

(SS-MRCC) [257], and open-shell symmetry-adapted cluster configuration inter-

action (SAC-CI) methods [258, 259].

4 Other Computational Issues

4.1 Density Functionals for Core Excitations

Core excitation energies are often underestimated by TDDFT. It is often necessary

to shift the TDDFT core excitation spectrum by tens of electronvolts for light atom

excitations and hundreds of electronvolts for heavy atom core excitations to match

experiment. The corresponding shifts for ΔSCF type methods are much smaller,

with typical values< 2 eV [57] for light atom core excitations. Both ΔSCF and

TDDFT have relativistic and basis set errors. The large differences between their

shifts come from the self-interaction error of energy density functionals and the

absence of orbital relaxation in TDDFT. A constant (even large) shift to a simulated

linear X-ray absorption spectrum does not change the relative positions of spectro-

scopic features. This may not be the case for nonlinear X-ray spectroscopy spectra

because core excitations may interact with each other, and those shifts cannot be

considered as constants. Thus a proper choice of energy density functional is

essential for a successful TDDFT simulation of nonlinear X-ray spectroscopy

signals.

The failure of common generalized gradient approximation (GGA) or hybrid

functionals to capture long-range charge transfer excited states was analyzed

thoroughly [94], and is attributed to the self-interaction error in the functionals

used. Surprisingly, a simple Perdew–Zunger self-interaction correction (SIC)

scheme [260] applied to ΔSCF or TDDFT does not correct the core excitation

energies in the right direction [261]. This SIC scheme has already been combined

with the CPP method (explained in the previous section) to produce improved core
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excitation energies [262]. Core excitations share many similarities with long-range

charge transfer excitations, because the transition orbitals involved in these exci-

tations have negligible overlaps. This suggests that a similar strategy may be used

for designing energy functionals for core excitation as is done for long-range charge

transfer excitations. The range-separated functionals [263–277] are good choices.

In these functionals, the long-range part of the exchange energy is evaluated using

Hartree–Fock theory, and in the short-range DFT exchange is used. The 1/r12
operator is partitioned to two parts:

1

r12
¼ erf μr12ð Þ

r12
þ 1� erf μr12ð Þ

r12
; ð78Þ

where erf(r) is the error function and μ is a parameter to control the separation of the

long- and short-ranges. We had employed this type of long-range corrected func-

tionals in SXRS simulations [92, 109].

To improve the performance of these long-range corrected functionals, Hartree–

Fock exchange should be introduced because core orbitals are very localized. This

can be done by adding a Gaussian correction term in the 1/r12 operator partition

scheme:

1
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where k, a are additional parameters for introducing Hartree-Fock exchange in the

short-range. The above scheme can be used to obtain the LCgau-core-BOP func-

tional [278]. For light atoms, it can predict their core excitation energies with less

than 1 eV errors.

Similarly, Besley and coworkers had proposed the following partition scheme

[279]:

1

r12
¼ CSHF

1� erf μSRr12ð Þ
r12

þ CLHF

1� erf μLRr12ð Þ
r12

�

CSHF

1� erf μSRr12ð Þ
r12

þ CLHF

1� erf μLRr12ð Þ
r12

þ 1

r12
;

ð80Þ

where the CSHF and CLHF parameters control the Hartree–Fock exchange contri-

bution in the long- and short-range. In the above equation the terms in the first box

are evaluated with Hartree–Fock exchange and the second with DFT exchange. The

resulting SRC1 functional is
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ESRC1
xc ¼ CSHFE

SR-HF
x μSRð Þ þ CLHFE

LR-HF
x μLRð Þ �

CSHFE
SR-DFT
x μSRð Þ þ CLHFE

LR-DFT
x μLRð Þ þ EDFT

xc :
ð81Þ

An alternative form of the short-range corrected functional (SRC2) is

ESRC1
xc ¼ CSHFE

SR-HF
x μSRð Þ þ CLHFE

LR-HF
x μLRð Þ �

1� CSHFð ÞESR-DFT
x μSRð Þ þ 1� CLHFð ÞELR-DFT

x μLRð Þ þ EDFT
c :

ð82Þ

The two functionals coincide when μSR¼ μLR. Both functionals can predict light

atom core excitation energies with sub-1 eV accuracy [279].

Instead of partitioning the Coulombic operator in real space, Nakai and

coworkers had divided the electron density (orbitals) into the core and valence

groups. They proposed to use hybrid functionals with large Hartree–Fock exchange

components for core electrons and common hybrid functionals for valence elec-

trons. In the total energy expression, the hybrid scheme varies in the core–core,

core–valence, and valence–valence interaction terms. After numerical fitting of the

hybrid parameters, the resulting core–valence-(CV) B3LYP functional [280] gives

very good core excitation energies for light atoms (error less than 1 eV). In addition,

this scheme can be extended to Rydberg states [281]. Despite their success in core

excitation calculations, such orbital-specific functionals not only lead to a compli-

cated TDDFT implementation, but also bring some conceptual difficulties such as

the lack of a unique Fock operator.

In summary, exchange-correlation functionals specific for core excitations can

be designed along the same lines for long-range charge transfer excitations. The key

issue is that core excitation functionals cannot be too specific, because, in many

nonlinear X-ray spectroscopy experiments, both core and valence excited states are

involved and should be treated on the same footing. The core excitation functionals

discussed above should be tested in future nonlinear X-ray spectroscopy

simulations.

4.2 Expansion of the Polarizability in Electron–Hole
Operators

In vibrational Raman spectroscopy the polarizability can be expanded

perturbatively in the normal mode operators Q̂i of the system,
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α̂v ¼ α̂v0 þ
X
i

∂α̂v
∂Q̂i

Q̂i þ
X
i j

∂2α̂v

∂Q̂i∂Q̂ j

Q̂iQ̂ j þ � � �; ð83Þ

where

Q̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
h

2miωi

r
â {
i þ âi

� �
: ð84Þ

Here αv0 is the polarizability at the equilibrium geometry, and â{i (âi) is the ith
phonon creation (annihilation) operator.

In analogy to this, the effective polarizability in electronic X-ray Raman scat-

tering ((18) or (20)) can also be expanded as

α̂ p ¼ α pð Þ
0 þ

X
i, j

K
pð Þ
i j ĉ

{
i ĉ j þ

X
i, j, k, l

L
pð Þ
ijkl ĉ

{
i ĉ jĉ

{
k ĉl þ � � �; ð85Þ

where ĉ{i (ĉi) is the creation (annihilation) operator for an electron in the ith valence
orbital and i, j, k, l are valence orbital indices. The super- and subscript ps indicate
the pulse inducing the polarizability and appear on the right hand side as a super-

script for typographical convenience. α̂ pð Þ
0 is the effective polarizability responsible

for Rayleigh scattering. The electron–hole pairs created by ĉ{i ĉj play the same role in

X-ray Raman scattering as do the vibrational normal modes Q̂i in optical Raman

scattering.

The direct use of the sum-over-state expression of the effective polarizability

((18) or (20)) would require calculation of large number of many-body states and

the corresponding state-to-state transition dipoles, which is tedious for large sys-

tems. X-Ray Raman signals may be calculated alternatively by solving equations of

motion for the reduced, single-electron density matrix in the valence space [87–89,

158]. The polarizability should then be expanded in valence electron creation and

annihilation operators (see (85)) avoiding the eigenstate expansion. Core excita-

tions can be included approximately in the calculation of the expansion coefficients,

but then the X-ray response is calculated in the valence space. We can view the

valence (occupied and unoccupied) orbitals as an open system that exchanges

electrons with the core space. This is formally analogous to molecular junctions

and the same methods can be applied to the X-ray signals [282–288].

In the following we show how to calculate the expansion coefficients of α̂ p, K
ðpÞ
ij

and L
ðpÞ
ijkls, starting with a model Hamiltonian. In solid state applications it is

common to construct an electron-boson model Hamiltonian to represent all core

and valence excitations [289–293]. Model Hamiltonians can be obtained semi-

empirically by numerical fitting to experimental results, or from high level quantum

chemistry calculations of model systems. The model Hamiltonian is written in

terms of the creation and annihilation operators ĉ
ð{Þ
iðκÞ for single-particle valence
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(core) orbitals ϕi(κ) (where the anticommutation relations ĉ{i ; ĉj

n o
¼ δi j are satis-

fied). The following model Hamiltonian describes the valence and core orbitals and

their interaction:

H ¼
X
i

εiĉ
{
i ĉ þ

X
ijkl

Uijklĉ
{
i ĉ

{
jĉkĉl þ

X
κ

εκ ĉ
{
κ ĉκ þ

X
i jκ

Ui jκ ĉ
{
i ĉ jĉκ ĉ

{
κ ; ð86Þ

where εi is the energy of the orbital ϕi and Uijkl is a nonlinear-interaction matrix

element. This could, for example, be the coulomb interaction

Uijkl ¼
ð
drdr0ϕi rð Þϕ j r

0ð Þ 1

r� r0
ϕk r0ð Þϕl rð Þ: ð87Þ

We thus write the Hamiltonian of the valence electrons in the absence of core holes

Ĥ0 ¼
X
i

εiĉ
{
i ĉi þ

X
ijkl

Uijklĉ
{
i ĉ

{
jĉkĉl: ð88Þ

The transition dipole operator in the core-excitation regime is written

V̂
V̂ {

 �
¼
X
iκ

μ*iκ ĉ
{
κ ĉi

μiκ ĉ
{
i ĉκ

 �
; ð89Þ

where κ labels core orbitals. We may now treat the core-valence interaction term in

(86) perturbatively to obtain an effective Hamiltonian for the valence electrons in

the presence of a single core hole or by recalculating the orbitals of the model in the

presence of the core hole potential. In the latter case we must start on the basis of

1-hole orbitals (denoted by ϕa, etc.), in which the valence Hamiltonian is

~̂H 0 ¼
X
a

εaĉ
{
aĉa þ

X
abcd

Uabcdĉ
{
aĉ

{
bĉcĉd; ð90Þ

and then transform to the original orbitals with the overlap matrix T:

ĉ {ð Þ
a ¼

X
i

t
*ð Þ
ai ĉ

{ð Þ
i : ð91Þ

This immediately permits us to rewrite ~H0 on the basis of 0-hole orbitals ϕi:
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~̂H 0 ¼
X
i j

~εi jĉ
{
i ĉ j þ

X
ijkl

~Uijklĉ
{
i ĉ

{
jĉkĉl; ð92Þ

where we have defined the auxiliary parameters

~εi j 	
X
a

εat
*
aita j

~Uijkl 	
X
abcd

Uabcdt
*
ait

*
b jtcktdl : ð93Þ

These are the basic relations required to obtain an explicit second-quantized

representation for the polarizability α̂ p. α has been expanded in creation/annihila-

tion operators in (85). Although one may question the convergence of such a series

in general, we can see that higher order terms are proportional to successively

higher powers of the pulse duration and it is therefore useful in the limit of

ultrashort pulses. To obtain explicit expressions for the coefficients (Kij, etc.) in

(85), we expand the exponentials in (25) order by order and adopt a consistent

operator ordering. Although the ordering ĉ{ĉĉ{ĉ . . . is used here, normal ordering

with all c to the right is also possible. Because the indices are unrestricted over

valence orbitals (both occupied and virtual), there is not much reason to prefer one

or the other for low-order expansion and many-electron systems (in particular, this

holds because we are interested in a form for α̂ which is equally valid for arbitrary

valence excited states and not simply polarizability of the ground state). This is

important for nonlinear spectroscopies and monitoring of nonequilibrium pro-

cesses. In expanding the exponentials in (85), various time factors are brought

down as multiplicative constants. Integration over these factors with the field

envelopes defines a set of auxiliary functions:

f lmnð Þ
p Λð Þ 	

ð1
�1

dτ

ð τ
�1

dτ0
ℰ*

p τð Þℰ p τ0ð Þ
l!m!n!

τ0 � ~τpi
i

 �l τ � τ0
i

 �m ~τ p f � τ
i

 �n

; ð94Þ

which encode all time dependence and depend on the pulse parameters (collectively

denoted as Λ). This auxiliary function enters proportional to terms in (85) which

result from lth order expansion in the first propagator, mth order in the second, and

nth order in the third. Note that, because of the properties of the pulse and the

definition of the ~τ , the lower limits of integration may be truncated at ~τpi and the

upper limit of the dτ integration may be truncated at ~τ p f . These auxiliary functions

vanish in the limit of t p ! 0 and, moreover, higher order auxiliary functions

(resulting from higher-order terms in the exponential expansion) vanish progres-

sively faster so that the ratio of successive functions also vanishes and the series

converges for sufficiently short pulses (pulses shorter than the inverse of any

relevant material energy scales). Further insight is gained by considering flat pulses,

in which case f
ðlmnÞ
p is roughly proportional to a power of the pulse duration (Tp)

N

where N¼ lþmþ n (neglecting factors of i and factorials). Because this procedure
naturally separates the parametric field dependence from the material operators, we

can write the expansion coefficients (Kij, etc.) generically without specifying a
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pulse envelope. To simplify these expressions, we define μi j 	
X

κ
μ*iκμ jκ . A

straightforward but lengthy calculation then yields the first few terms in (85):

α pð Þ
0 ¼

X
i

μii þ f 010ð Þ
p Λð Þ

X
i

μii~εii; ð95Þ

K
pð Þ
i j ¼ �μi j þ f 100ð Þ

p þ f 001ð Þ
p

� � X
l

μll

 !
εiδi j þ

X
l

Uillj

 !

� f 010ð Þ
p

X
k

μ jk~εik þ μki~εk j
� �

þ
X
kl

μkl ~Ukijl

 ! ; ð96Þ

L
pð Þ
ijkl ¼ �

X
m

f 001ð Þ
p μi jUkmml þ f 010ð Þ

p μ jm
~Uiklm þ μmk ~Umijl

� �
þ f 100ð Þ

p μlkUimmj

n o
;

ð97Þ

where, in the first line, we have explicitly notated the dependence on the pulse

parameters via the auxiliary function f (omitting this dependence in further expres-

sions for brevity). Note that the above is an expansion up to first order roughly in the

product Tpε where ε is the material energy scale and higher order expansions

generate higher order terms in this quantity which contribute to every coefficient

in (85). Because the order of the expansion is determined by the sum lþmþ n,

expanding to second-order adds terms proportional to f
ð101Þ
p , f

ð110Þ
p , f

ð011Þ
p , f

ð200Þ
p etc.

4.3 Double Excitations and the X-Ray Double-Quantum-
Coherence Signal

Double core excitations or double excitations with a core hole and a valence hole

are directly probed by nonlinear X-ray four-wave mixing spectroscopy (e.g., photo

echo [48] and double-quantum-coherence [24]) and multidimensional SXRS [108]

experiments. Calculating double excitations is of essential importance in nonlinear

X-ray spectroscopy simulation. Double core states studied in X-ray two-photon

photoelectron spectroscopy can be considered as doubly core excited states of the

system with two electrons removed. These double core states are more sensitive to

the chemical environment and carry more pronounced electronic many-body

effects compared to singly core excited states [201, 294–297]. Strong double

excitations (shake-up) features can be found even in linear XANES signals [298].

A doubly excited state can be phenomenologically defined as an excited state

with energy close to the sum of two single excitation energies. This definitionmay be

misleading. First, near-degeneracy in energy does not mean the excited states share

the same character, and, second, there exists double excitations lower in energy than

any single excitation [299]. A proper definition for doubly excited states in quantum

chemistry relies on a single Slater determinant reference state. If an excited state can
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be well described by a multiple Slater determinant expansion based on this refer-

ence, and the CI coefficients of the double excitation configurations are dominant,

we call it a doubly excited state. According to this definition, different reference

states may lead to different double-excitation character [300, 301].

Double excitation remains one of the challenges in DFT and TDDFT

[301]. Maitra et al. showed that a frequency-dependent exchange-correlation ker-

nel, which is not available in the common implementation of adiabatic TDDFT, is

essential for accessing double excitations [95]. In contrast to early expectations

[302], quadratic response theory in adiabatic TDDFT only gives double excitation

frequencies as sums of two single excitation frequencies [91, 301, 303]. Adiabatic

TDDFT implicitly assumes that the double excited state wave functions are prod-

ucts of single excited state wave functions. This has been shown in [303]. These

trivial double excitations behave as harmonic oscillators and result in vanishing

double-quantum-coherence signals [24]. Originally dressed TDDFT was proposed

to remedy this double excitation issue, but information about the relevant double

excitation a priori hinders its practical application. Frequency-dependent exchange-

correlation kernels based on the Bethe–Salpeter equation were proposed [224, 304–

306], but they have only been tested in simple models or small molecular systems

because of complexity. The matrix elements of unknown exchange-correlation

kernel can also be extracted from the branching ratio of the experimental

L2,3-edge X-Ray absorption spectra of 3d transition metals [307]. Spin-flip

TDDFT (SF-TDDFT) may access some doubly excited states through a triplet

reference state [307–312]. Very recently, the constricted variational DFT

(CV-DFT) [313–315] was developed to address double excitations [316]. Imple-

mentation and testing of this method is under way. We have also combined the

ΔSCF method with REW-TDDFT to calculate doubly core excited state and apply

it in X-ray double-quantum-coherence (XDQC) signal simulation [24]. The main

difficulty with this approach is the unbalanced treatment of the two core holes: one

core hole was obtained with ΔSCF and the other with REW-TDDFT. Althgough the

two core holes are not symmetric, different calculation order (either ΔSCF first or

REW-TDDFT first) would lead to different simulation results [24]. Other high level

ab initio methods, such as CASSCF/CASPT2 [317], coupled cluster (CC) [318],

MRCI [319, 320], symmetry-adapted cluster configuration interaction (SAC-CI)

[321], algebraic diagrammatic construction (ADC) [299, 322, 323], and

multireference Møller–Plesset perturbation theory (MRMP) [324, 325], can accu-

rately capture double excitations, but their use is limited to small systems because

of high computational cost.

The DQC signal probes doubly excited states and strongly depends on the

coupling between single excitations. In the infrared regime, DQC signals detect

the couplings between vibrational modes, which determine their anharmonicities

[326]. In the optical regime, DQC signals were used to reveal quantitative infor-

mation about electron–electron interactions, many-body wave functions, and elec-

tron correlation in excitons [327]. The X-ray variant of this technique (XDQC) is

sensitive to correlation and exciton scattering in doubly core excited states, making

it an attractive experimental test for electronic structure theories of strongly
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correlated systems [328]. XDQC signals exist only when single core excitations

interact with each other and doubly core-excited states are not simply an outer

product of two singly core-excited states. XDQC signals vanish for noninteracting

single core excitations.

We have simulated the XDQC signals of formamide at the N and O K-edges

[24]. In Fig. 14 we show the 2-D projections (we set the last time delay to 5 fs) of

the XDQC signals for different pulse orders (ONNO and NONO). The Ω1 axis

represents the N1s or O1s single excitation energies and the Ω2 axis represents the

N and O1s double excitation energies. The intensity of the 2-D XDQC signal at the

position (Ω1, Ω2) represents the correlation between the single excitation at Ω1 and

the double excitation at Ω2. The (shifted) XANES spectra are also placed in the

marginals to help the signal analysis. In the plot of the ONNO (O excitation first,

and then N excitation; see the left column of Fig. 14) signal we can find features

scattered along several diagonal straight lines, which indicates almost uniform

interaction between the O1s and N1s single excitations, so that the double excita-

tions are almost sums of the single excitations with constant shifts. This can also be

confirmed by comparing the energy differences of spectroscopic features in the

XANES and XDQC spectra. Take peak A and A0 in the N1s XANES spectrum

(right marginal of the ONNO signal) for an example. The energy difference

between these two peaks is 1.29 eV in XANES and 1.34 eV in the ONNO spectrum,

which are very close to each other. This means the first O1s excitation shifts all N1s

excitations in almost the same way, so the energy differences between peaks would

not change too much. The same linear pattern is not observed in the NONO signal

(the right column of Fig. 14). This tells us the second O1s excitations are affected

very differently from each other by the first N1s excitations. From the ONNO signal

we can also find that peak B in the N1s XANES only correlates weakly with peak C

in the O1s XANES when the O1s electron is excited first, whereas if the N1s

Fig. 14 Comparison of the absolute values of the ONNO (left) and NONO (right) SXDQC (t3¼ 5 fs,

Ω2,Ω1) signals of formamide (structure shown on the top) from calculations combined ΔSCF with

REW-TDDFT. XANES spectra are shown in the marginals. Figure adapted from [24]
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electron is excited first, the N1s excitation which corresponds to peak B heavily

affects the following O1s excitation which corresponds to peak C (a strong feature

connecting peak B and C in the NONO spectrum). By comparing XDQC signals of

different pulse orders, we can understand the subtle many-body correlations

between core excitations. Generally, X-ray four-wave mixing signals including

the XDQC signals can measure double core excited states directly, thus providing

new experimental tests for the accuracy of the electronic structure methods and

offering a way to visualize projections of the complicated many-electron wave

functions [25, 26].

4.4 Ionization, Photoelectron Signals and Resonances

X-Ray photons with energies higher than the ionization threshold can excite the

system to a metastable resonance state, and then this resonance decays to a cationic

species and a leaving electron. In spectroscopy, either the cationic species or the

leaving electron can be detected, both providing us with windows into the elec-

tronic structure of the parent neutral system.

In addition to excitation, molecular ionization is another way to trigger impul-

sively rich electronic and nuclear dynamics such as geometry relaxation, molecular

dissociation [329], charge migration [330–334], and radiation emission [335]. Ion-

ization has advantages over excitation in pumping the system because there is no

selection rule to restrict which ionization is allowed, and there is usually a lower

number of energetically accessible cationic states compared to the large number of

high energy exited neutral states in excitation experiments. Moreover, after ioni-

zation, we have the freedom to detect the cationic states or the ejected electron,

which can provide more information about the parent neutral species. X-Ray

ionization and fragmentation have been used to probe transient molecular structures

during a photoinduced chemical reaction process [336]. Recently we studied the

cationic states of the amino acid glycine prepared by a sudden N1s core ionization

produced by an attosecond X-ray pulse [337]. The created superposition of cationic

states is probed by 2D transient X-ray absorption (TXAS) and 3D ASRS. Our

simulated ASRS results reveal the complex coupling of the valence and core

excited states of the cation.

X-Ray photoelectron spectroscopy (XPS) [338] is a powerful technique for

probing the chemical compositions and electronic states of molecular systems

and materials. By measuring the kinetic energy of the ejected photoelectrons, the

electronic energy levels of the ionized species can be determined. The photo-

electrons also carry momenta. Additional information about the initial and final

electronic wavefunctions can be obtained by measuring photoelectron angular

distributions (PAD) [339–341]. TRPES [342, 343] is also used to monitor the

electronic structure changes during a chemical reaction.
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The total TRPES signal STRPES (Ek, t) can be expressed as a sum of the proba-

bilities of transitions from the neutral electronic state I to the cationic electronic

state F and free electron state η PI!Fη Ek; tð Þ
� �

:

STRPES Ek; tð Þ ¼
X

I,F, η Ekð Þ
PI!Fη tð Þ; ð98Þ

where Ek is the kinetic energy of the ejected electron, and t is the observation time.

For the probability of a single transition, we have

PI!Fη tð Þ / Eprobe � ψFψη
��μ̂ ��ψ I

� ��� ��2δ hω� Ek ηð Þ � ΔEIFð Þ; ð99Þ

where Eprobe and ω are the polarization vector and frequency of the probe light field,

respectively, ψI, ψF, and ψη are the wavefunction of the neutral state I, the cationic
state F, and the free electron state η, respectively, and ΔEIF ¼ EF � EI is the

ionization energy corresponding to the neutral state I and cationic state F. Here
we employ the sudden ionization approximation [344, 345], in which the ionization

process is very fast and the leaving electron does not interact with the cation, so the

final state function can be written as a product of ψF and ψη. We can also assume

that ψη is orthogonal with ψ I, so (99) can be recast as

PI!Fη tð Þ / ψη
��Eprobe � μ̂

��ψ D
IF

� ��� ��2δ hω� Ek ηð Þ � ΔEIFð Þ: ð100Þ

Here we introduce a one-electron quantity called the Dyson orbital ψD
IF, defined as

the generalized overlap amplitudes between the neutral state I and the cationic state
F [345]:

ψ D
IF rNð Þ ¼

ffiffiffiffi
N
p ð

ψ*
F r1; r2; . . . ; rN�1ð Þψ I r1; r2; . . . ; rNð Þdr1dr2 . . . drN�1; ð101Þ

where N is the number of electrons in the system. If the polarization of the probe

field and the angular distribution of the photoelectron is ignored, (100) can be

simplified as [346, 347]

PI!Fη tð Þ / ψ D
IF

�� ��2�μ2ηδ hω� Ek ηð Þ � ΔEIFð Þ; ð102Þ

where �μη is an appropriate average value for the transition dipole matrix element

between the Dyson orbital ψD
IF and free electron state ψη. If all free electron states η

with a kinetic energy Ek are summed over in (100), we have

PI!F Ek; tð Þ / ψ D
IF

�� ��2 �μη Ekð Þ
	 
2

ρ Ekð Þδ hω� Ek � ΔEIFð Þ; ð103Þ

where �μη Ekð Þ represents an average transition dipole matrix element corresponding
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to a kinetic energy Ek, and ρ(Ek) is the density of the free electron state at the kinetic

energy Ek. Photoelectron experiments tell us that usually in the low kinetic energy

region, �μη Ekð Þ
	 
2

ρ Ekð Þ � const: [348], so (103) can be further simplified as

PI!F Ek; tð Þ / ψ D
IF

�� ��2δ hω� Ek � ΔEIFð Þ; ð104Þ

and the total photoelectron signal is

STRPES Ek; tð Þ ¼
X
I,F

wIFPI!F Ek; tð Þ; ð105Þ

where wIF is some weighting factor because different PI!F Ek; tð Þ has different

prefactors in (104). In a simplified treatment we can set all wIFs to be equal [349], or

treat them as adjustable parameters [347]. Accurate determination of those

weighting factors requires complicated electron-molecule scattering calculations

[350], which is beyond the scope of this chapter. Recently, we extended 2D TRPES

technique (see (105)) to multidimension by adding more pump pulses before the

probe ionization pulse [351]. The TRPES of thioflavin T in its photoisomerization

has also been studied with ab initio molecular dynamics (AIMD) and TDDFT

simulations [349].

The Dyson orbital defined in (101) can be considered as the diagonal element of

the one-electron reduced transition density matrix between the neutral and the

cationic states. Dyson orbitals are generally not normalized. Their norms reflect

the one-electron character of the ionization process. In the simplest case when the

neutral and cationic states are well described by Hartree–Fock orbitals and the

Koopmans theorem applies, the Dyson orbitals reduce to the canonical Hartree–

Fock orbitals and their norms are one. Dyson orbitals are solutions of an effective

single-particle equation with ionization energies as their eigenvalues [352–

354]. Dyson orbitals are widely used in calculating Compton profiles [355, 356]

and electron momentum spectra [357], and interpreting orbital imaging experi-

ments [358–360]. Krylov and coworkers [346] describe an implementation of

Dyson orbital calculation at the coupled cluster singles and doubles (CCSD) or

EOM-CCSD level of theory.

X-Ray photons often bring the molecule into a superexcited state (excitation

above the ionization threshold, or resonance). These resonances are usually short-

lived with strong coupling with the continuum leading to the final ionization or

dissociation of the system. Generally, resonances can be divided into shape reso-

nance and Feshbach type [361, 362]. Resonances are ubiquitous in radiation

damage studies of biomolecules [363], molecular electronic device design [364],

attosecond pulse generation [365], and X-ray ionization [13].

Resonances may not be captured by conventional quantum chemistry methods

because of their unbound nature and lack of variational principle. To compute these

unbound states with finite lifetimes, one must use a non-Hermitian Hamiltonian

[366]. One approach for calculating resonance is the complex absorbing potential
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(CAP) method [367, 368]. In the method, a complex potential is added to the

exterior region of the metastable system to absorb the scattering electron and

makes the wave function square-integrable, i.e.,

Ĥη ¼ Ĥ � iηW; ð106Þ

where Ĥ is the original molecular Hermitian Hamiltonian, W is a box potential

which only exists in the exterior region of the system, and η is the parameter to

control the strength of this absorbing potential. Ideally, the complex energy of the

resonance can be calculated by letting η! 0þ, whereas in practical calculations

with finite basis sets, one has to find the optimal η to stabilize the complex energy,

i.e., the trajectory calculation [367]. The CAP method was extensively used to

calculate resonances [369, 370] and was recently combined with DFT [371]. The

major problem of this method is that there are at least two parameters (strength and

box size) of the CAP to be determined. In some systems the trajectory calculations

cannot give certain results [371].

An alternative for resonance is the complex scaling method [372–375]. Other

than adding an arbitrary potential to the original Hamiltonian, one transforms the

Hamiltonian with a complex coordinate rotation:

r0 ! reiθ: ð107Þ

Here θ is the rotation angle. As in the CAP method, trajectory calculations are

necessary to find an optimal θ value. However, because this is the only parameter to

be determined, the degree of uncertainty is greatly reduced compared to the CAP

calculations. A DFT combined with the complexed scaling method has been

developed for resonances [376–379] and has been used to study Stark ionization

of atoms and molecules [380]. The trajectory calculation becomes tedious when the

system is large. Moreover, there are still some fundamental questions needs to be

answered in extending DFT to resonance. For example, the complex version of the

v-representability problem.

Quantum chemistry method development for resonance is still in its infancy.

Most applications so far are for resonance energy and lifetime calculations of model

or very small atomic and molecular systems. Recently, a non-Hermitian

RT-TDDFT study of near and above ionization excitations of small molecules

was reported [381]. In this study an absorption boundary condition was used to

emulate the continuum. This scheme has a potential to be used in the future for

X-ray ionization and photoelectron spectroscopy simulations.
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4.5 Vibronic Coupling

In the Frank–Condon (FC) region, nuclear motion acts as a bath for electronic

transitions. Including this effect introduces high-resolution fine structure to the

recorded spectra. Theoretical simulations are usually under the Born–Oppenheimer

(BO) and the harmonic oscillator approximations, which are usually good in the FC

region. The potential energy surfaces (PESs) of the ground and excited states are

well separated. The simplest approach to account for vibronic coupling is the linear

coupling model (LCM). It assumes the mode-k PES of excited state has the same

curvature as that of the ground state but only shifted by a displacement. This

approach is efficient and can be applied to medium and large molecules. It has

been well illustrated in various linear and nonlinear X-ray spectroscopy calcu-

lations including the XPS, XANES, RIXS, and SXRS spectra (see, e.g., [246,

382–388]). A more rigorous method is to include the Duschinsky rotation and/or

the non-Condon effects. For time-domain nonlinear spectroscopy, the nuclear and

electronic coordinates are mixed together. The response function can be evaluated

via the cumulant expansion [1] till truncated order. The vibrationally resolved

SXRS spectra were studied by Hua et al. [387] combining the LCM and cumulant

expansion till the second-order. With the inclusion of vibronic coupling, a faster

decay in the time domain signals, and new splitting and shoulder structures in the

frequency-domain were observed.

5 Conclusions and Perspectives

In this chapter we have surveyed some typical nonlinear X-ray spectroscopy signals

and the quantum chemistry methods used for their simulation. Because of their

balance in accuracy and computational cost, DFT/TDDFT methods are commonly

used in excited state calculations. With the fast development of new exchange-

correlation functionals and linear scaling algorithms, these methods provide a most

valuable quantum chemistry tool for nonlinear X-ray spectroscopy simulation.

DFT/TDDFT often provides an adequate zero order electronic structure at reason-

able cost, which paves the way for the application of high level methods. DFT/

TDDFT-based semiempirical methods such as density functional tight binding

(DFTB) [389–392] or time-dependent density functional tight binding (TDDFTB)

[393, 394], and their linear scaling forms [395] have been shown useful in spectro-

scopy simulations of large systems.

DFT/TDDFT works well in many cases but fails for double excitations, long-

range charge transfer excitations, and conical intersections. Much effort has been

made to address these difficulties by designing more elaborate functionals and

schemes. We believe that rather than putting the burden on the functionals, it

makes more sense to use DFT/TDDFT results as fast zero-order inputs to high

level wave-function approaches and many-body techniques. The recent
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developments of ab initio [396, 397] and many-body perturbation theory [398–401]

follow this route. The density matrix renormalization group (DMRG) method

should allow one to calculate core or doubly excited state properties with large

active spaces [402]. In addition, high-level methods for handling correlation-driven

hole delocalization dynamics are still restricted to small systems [403]. Ehrenfest

dynamics simulations for most of the systems, which can include nuclear motion,

are still formidably expensive [404]. Highly efficient real-time propagation algo-

rithms for large systems are needed to meet the demands of upcoming nonlinear

X-ray spectroscopy measurements.
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Corkum PB (2011) Phys Rev Lett 106(2):023001

129. Niikura H, W€orner HJ, Villeneuve DM, Corkum PB (2011) Phys Rev Lett 107(9):093004

130. W€orner HJ, Bertrand JB, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M,
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206. Bokarev SI, Dantz M, Suljoti E, Kühn O, Aziz EF (2013) Phys Rev Lett 111:083002

207. Atak K, Bokarev SI, Gotz M, Golnak R, Lange KM, Engel N, Dantz M, Suljoti E, Kühn O,
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337. Petrović VS, Siano M, White JL, Berrah N, Bostedt C, Bozek JD, Broege D, Chalfin M,

Coffee RN, Cryan J, Fang L, Farrell JP, Frasinski LJ, Glownia JM, Guhr M, Hoener M,

Holland DMP, Kim J, Marangos JP, Martinez T, McFarland BK, Minns RS, Miyabe S,

Schorb S, Sension RJ, Spector LS, Squibb R, Tao H, Underwood JG, Bucks-baum PH (2012)

Phys Rev Lett 108(25):253006

338. Zhang Y, Biggs JD, Hua W, Mukamel S, Dorfman KE (2014) Phys Chem Chem Phys 16:

24323

339. van der Heide P (2012) X-Ray photoelectron spectroscopy. Wiley, Hoboken, NJ

340. Wang K, McKoy V (1995) Annu Rev Phys Chem 46(1):275

341. Reid KL (2003) Annu Rev Phys Chem 54(1):397

342. Sanov A (2014) Annu Rev Phys Chem 65(1):341

343. Wu G, Hockett P, Stolow A (2011) Phys Chem Chem Phys 13(41):18447

344. Suzuki T (2012) Int Rev Phys Chem 31(2):265

345. Pickup B, Goscinski O (1973) Mol Phys 26(4):1013

346. Pickup BT (1977) Chem Phys 19(2):193

347. Melania Oana C, Krylov AI (2007) J Chem Phys 127(23):234106

348. Thompson AL, Martı́nez TJ (2011) Faraday Discuss 150:293

349. Rabalais JW (1977) Principles of ultraviolet photoelectron spectroscopy. Wiley, New York

350. Ren H, Fingerhut BP, Mukamel S (2013) J Phys Chem A 117(29):6096

351. Lucchese R, Raseev G, McKoy V (1982) Phys Rev A 25(5):2572

352. Rahav S, Mukamel S (2010) Phys Rev A 81(6):063810

353. Cederbaum LS, Domcke W (1977) Adv Chem Phys 36:205

354. Ortiz J (1999) Adv Quantum Chem 35:33
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Simone M, Kivimäki A, Coreno M (2014) J Chem Phys 141:044313

390. Porezag D, Frauenheim T, K€ohler T, Seifert G, Kaschner R (1995) Phys Rev B 51(19):12947

391. Seifert G, Porezag D, Frauenheim T (1996) Int J Quantum Chem 58(2):185

392. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G

(1998) Phys Rev B 58(11):7260

393. Zheng G, Lundberg M, Jakowski J, Vreven T, Frisch MJ, Morokuma K (2009) Int J Quantum

Chem 109(9):1841

394. Niehaus T, Suhai S, Della Sala F, Lugli P, Elstner M, Seifert G, Frauenheim T (2001)

Phys Rev B 63(8):085108

395. Trani F, Scalmani G, Zheng G, Carnimeo I, Frisch MJ, Barone V (2011) J Chem Theory

Comput 7(10):3304

396. Wang F, Yam C, Chen G, Wang X, Fan K, Niehaus T, Frauenheim T (2007) Phys Rev B 76

(4):045114

397. Thom AJ, Head-Gordon M (2009) J Chem Phys 131(12):124113

398. Sundstrom EJ, Head-Gordon M (2014) J Chem Phys 140(11):114103

399. van Aggelen H, Yang Y, Yang W (2013) Phys Rev A 88(3):030501

400. Yang Y, van Aggelen H, Steinmann SN, Peng D, Yang W (2013) J Chem Phys 139

(17):174110

401. Peng D, Steinmann SN, van Aggelen H, Yang W (2013) J Chem Phys 139(10):104112

402. Scuseria GE, Henderson TM, Bulik IW (2013) J Chem Phys 139(10):104113

403. Chan GKL, Sharma S (2011) Annu Rev Phys Chem 62(1):465

404. Kuleff AI, Cederbaum LS (2014) J Phys B At Mol Opt Phys 47(12):124002

405. Ding F, Chapman CT, Liang W, Li X (2012) J Chem Phys 137(22):22A512

Nonlinear Spectroscopy of Core and Valence Excitations Using Short X-Ray. . . 345



Top Curr Chem (2016) 368: 347–376
DOI: 10.1007/128_2015_638
# Springer International Publishing Switzerland 2015
Published online: 24 May 2015

Computational Molecular Electronic

Spectroscopy with TD-DFT

Denis Jacquemin and Carlo Adamo

Abstract In this chapter we present applications of TD-DFT aiming at reproducing

and rationalizing the optical signatures of molecules, and, more precisely, the

absorption and fluorescence spectra of conjugated compounds belonging to both

organic and inorganic families. We particularly focus on the computations going

beyond the vertical approximation, i.e., on the calculation of 0–0 energies and

vibronic spectra with TD-DFT, and on large applications performed for “real-life”

structures (organic and inorganic dyes, optimization of charge-transfer structures,

rationalization of excited-state proton transfer, etc.). We present a series of recent

applications of TD-DFT methodology for these different aspects. The main con-

clusions of TD-DFT benchmarks aiming at pinpointing the most suited exchange-

correlation functionals are also discussed.
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1 Introduction

By analyzing the continuously increasing number of quantum chemistry works

relying on Time-Dependent Density Functional Theory (TD-DFT) [1–5], it appears

that the vast majority of TD-DFT’s applications are devoted to the modeling of the

most widely available excited-state (ES) properties, namely optical spectra. One

can roughly split these works into two major categories. In the first, which contains

the majority of the TD-DFT investigations, the so-called vertical approximation is

applied, i.e., a frozen ground-state (GS) geometry is considered and transition

energies are determined without accounting for vibrational couplings [6]. This

approach is computationally very efficient, allows one to characterize the nature

of the relevant excited-states, and has been successfully used to design dyes or to

understand environmental effects, albeit the vertical energies cannot be experimen-

tally measured in most cases. However, more and more works of the second

category, looking for well-grounded theory-measurement comparisons, have

recently appeared. These studies, which imply higher computational efforts than

their vertical counterparts, aimed at determining the 0–0 energies and/or

vibrationally-resolved spectra [7–17]. Indeed, on the one hand, the 0–0 energies

can be directly measured in the gas-phase for small molecules, or taken as the

crossing point between absorption and emission curves (AFCP: absorption/fluores-

cence crossing point) in the experimental spectra of large solvates species [13],

whereas, on the other hand, vibronic couplings give access to both band shapes and

absolute intensities, which can also be directly correlated with measurements. The

calculation of these properties implies the determination of the ES Hessian. Thanks

to the development and implementation of analytic first and second derivatives [18–

22], TD-DFT has indeed become an efficient approach to explore the potential

energy surfaces (PES) of the ES in large compounds, the accuracy obtained being in

most cases reasonable, at least close to the Franck–Condon point [23]. TD-DFT can

therefore not only be used to probe the nature of the ES responsible for the

absorption and fluorescence spectra but also provide many other properties, e.g.,

ES geometries and dipole moments, which are difficult (or costly) to measure
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experimentally. Nevertheless, the application of TD-DFT to spectroscopic prob-

lems generally implies two major approximations: the use of the adiabatic approx-

imation (i.e., only a frequency-independent exchange and correlation kernel is

applied) and the selection of an adequate exchange-correlation functional (XCF).

These two drawbacks limit the final accuracy of the results obtained and numerous

works have been devoted to the appraisal of the most suited XCF [24], as well as to

schemes going beyond linear-response TD-DFT [5, 25] in the framework of the

simulation of optical spectra. Despite these limits, TD-DFT clearly remains the

most applied theory for evaluating the spectral properties of “real-life” structures

and this popularity can be ascribed to the simplicity and speed of use of this single-

reference approach and also to the modeling of environmental effects which can be

achieved with several theories [26, 27]. This general statement is particularly true

for solvation effects for which a panel of refined models is now accessible [28–32].

In this chapter we summarize several recent advances in the TD-DFT spectros-

copy field with a focus on recent works dealing with 0–0 energies, for which a

protocol is detailed in Sect. 2. We next present the results of several benchmarks

performed for these 0–0 energies (Sect. 3) before going through a series of

examples obtained in the dye chemistry field (Sect. 4).

2 Protocol to Determine the 0–0 Energies

In this section we present a popular approach to compute the 0–0 energies with

TD-DFT. This also allows us to define a series of different energies which are

subsequently used, and to propose an easy-to-follow protocol to obtain all the

relevant parameters which are represented in Fig. 1, in which RGS and RES stand

for the optimal geometries of the ground- and excited-states, respectively, whereas

EGS and EES are the total energies of these two states. Following [15], we first

explain the more straightforward gas-phase situation before extending the protocol

to the condensed phase.

2.1 Gas Phase

In the gas phase, the vertical absorption can simply be defined as the difference

between the ES and GS energies at the optimal ground-state geometry,

Evert�a ¼ EES RGS
� �

� EGS RGS
� �

; ð1Þ

whereas the vertical fluorescence is the corresponding data estimated at the optimal

geometry of the relevant excited-state,
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Evert� f ¼ EES RES
� �

� EGS RES
� �

: ð2Þ

We note that the second quantity implies a force minimization process

performed at the ES to define RES, and can be obtained efficiently with a wide

panel of quantum chemistry codes which include analytical TD-DFT gradients

(e.g., Gaussian, Turbomole, Q-Chem, and NWChem to cite a few) [18–20]. The

adiabatic energy can be obtained as a simple by-product of the two previous

equations,

Eadia ¼ EES RES
� �

� EGS RGS
� �

; ð3Þ

or, alternatively by combining vertical transition energies with the geometrical

reorganization energies,

Eadia ¼ 1

2
Evert� f þ Evert�a	 


þ 1

2
Ereorg�GS � Ereorg�ES	 


: ð4Þ

In this latter equation the first term tends to be dominant, and, in a first crude

approximation the second term can be neglected. Indeed, the second term is the

difference of reorganization energies between the two considered states, which is

significant only when there is a strong difference between RGS and RES. Next, one

needs to determine the difference of zero-point vibrational energy (ZPVE) between

the ES and GS,

ΔEZPVE ¼ EZPVE RES
� �

� EZPVE RGS
� �

; ð5Þ

a computationally demanding term, as second derivatives (Hessian) of the ES PES

need to be computed, either analytically [21, 22] or numerically. For small mole-

cules, at least, comparisons with the results obtained using wavefunction
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approaches, demonstrated that TD-DFT generally provides accurate ΔEZPVE

[17]. To reach the 0–0 energies, one adds the two previous terms:

E0�0 ¼ Eadia þ ΔEZPVE: ð6Þ

We note that ΔEZPVE is almost systematically negative, as the PES of the ES tends

to be flatter than its GS counterpart and, consequently, E0�0 is generally smaller

than Eadia. As stated above, E0�0 can be directly compared to the absorption-

fluorescence crossing point for solvated molecules, and it subsequently offers a

much more solid basis for theory–experiment comparisons thanEvert�a
, which often

has no straightforward experimental counterpart.

2.2 Condensed Phase

When considering an environment surrounding the molecule of interest (the com-

pound undergoing the electronic transition), it is crucial to determine how the

medium reacts to the change of electronic state of the photo-active compound.

Irrespective of the nature of the environment, one distinguishes the equilibrium

(eq) and non-equilibrium (neq) regimes [26]. In the former, a full (electrons and

nuclei) medium relaxation takes place, and such a regime is adapted to determine

“slow properties”, e.g., both RES and EZPVE(RES). Essentially, it implies that the

dye-environment interactions can be accounted for in a similar way as in the GS. In

the latter neq limit, only the electronic cloud of the medium can adapt to the new

electronic configuration of the chromophore, and this scheme is useful to model

rapid phenomena, typically transition energies. Indeed, the vertical transition ener-

gies now read

Evert�a neqð Þ ¼ EES RGS, neq
� �

� EGS RGS; eq
� �

; ð7Þ

for absorption, and

Evert� f neqð Þ ¼ EES RES; eq
� �

� EGS RES, neq
� �

; ð8Þ

for emission. For the former phenomenon, one starts from an eq GS and goes to a

neq ES, whereas for the latter phenomenon, the ES is in equilibrium whereas the GS

is in non-equilibrium, and a proper modeling of the latter process requires quite

advanced computational approaches [30–32]. Differences between eq and neq

vertical transition energies can be significant in polar solvents [26]. By definition,

both the adiabatic and 0–0 energies are equilibrium properties as they correspond to

a transition between two states at their respective minima:
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E0�0 eqð Þ ¼ Eadia eqð Þ þ ΔEZPVE eqð Þ: ð9Þ

However, this raises a difficulty, because the experimental absorption-

fluorescence crossing point corresponds to the intersection of two curves in the

experimental spectra, each being associated with a neq phenomenon. This cannot

be properly modeled by the use of (9). To resolve this inconsistency, it has been

proposed to correct the E0�0 eqð Þ in the following way [33]:

EAFCP neqð Þ ¼ E0�0 eqð Þ þ 1

2
ΔEvert�a þ ΔEvert� f
	 


; ð10Þ

where the correcting terms are

ΔEvert�a ¼ Evert�a neqð Þ � Evert�a eqð Þ; ð11Þ
ΔEvert� f ¼ Evert� f neqð Þ � Evert� f eqð Þ: ð12Þ

The rationale for this correction can be obtained by examining (4). Indeed, in (10),

the only approximations are the neglect of the difference between non-equilibrium

and equilibrium environmental effects on the difference between the reorganization

energies of the two states, a very small contribution, and the consideration of

equilibrium limit during the computation of ΔEZPVE, but the eq–neq variations

for this average term are generally trifling.

2.3 Further Comments

2.3.1 Calculations with the Polarizable Continuum Model

The most popular approach for modeling solvent effects is the Polarizable Contin-

uum Model (PCM) which treats the environment as a structureless material

presenting the macroscopic properties of the actual solvent. The solute is embedded

in a cavity inside this solvent, and charges located on the surface of this cavity are

determined self-consistently to account for the electrostatic interactions between

the solute and the solvent [26]. We briefly describe here the different variations of

the PCM model which have been developed for ES. In the (simplest) linear

response (LR) model [28, 29], the GS-to-ES transition densities are used to deter-

mine the variations of the charges localized on the cavity when the solute changes

its electronic configuration. In the corrected linear response (cLR) [30], the

one-particle TD-DFT density matrix (the actual density of the ES within the

selected approximation) is used in a perturbative approach, to evaluate the changes

of the charges of the cavity when the solute changes electronic state [30]. The use of

the one-particle TD-DFT density, rather than the transition density, advantageously

allows one to account for orbital relaxation, and this density is also used in the two
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self-consistent approaches, namely the state specific (SS) [31] and the vertical

excitation model (VEM) [32] approaches. One of the principal differences between

the two approaches is that the former implies a modification of the GS reference

during the self-consistent process, whereas the latter does not. When the change of

polarity of the chromophore between the GS and ES is large, e.g., for charge-

transfer (CT) transitions, going beyond the LR-PCM approximation is

recommended, though the most adequate model in that case remains a matter of

debate [34, 35].

We underline that, although all these approaches can be used to determine EES

analytically, analytic gradients (and hence efficient access to RES) are only avail-

able with the LR approach [20]. Subsequently, a popular approach is to determine

Evert�a, Evert� f , and Eadia with one of the three refined PCM approaches (cLR, SS,

and VEM) on geometries computed within the LR-PCM model. Likewise, ΔEZPVE

is often calculated at the LR-PCM level, so that the results of (10) are generally

obtained with mixed environmental models, the energy (geometry and vibrations)

being obtained with a refined (simpler) PCM level of theory [33].

2.3.2 0–0 Energies with Mixed DFT/Wavefunction Approaches

Besides TD-DFT, there is a wide panel of alternative and (very) accurate ab initio

methods with, on the one hand, multi-reference approaches, e.g., Complete Active

Space second-order Perturbation Theory (CAS-PT2) [36] and Multi-Reference

Configuration Interaction (MR-CI) [37], and, on the other hand, single-reference

(highly-)correlated schemes, e.g., Equation-of-Motion Coupled Cluster (EOM-CC)

[38–41], Symmetry Adapted Cluster CI (SAC-CI) [42], Algebraic Diagrammatic

Construction (ADC) [43], and Configuration Interaction singles with a perturbative

correction for double excitations [CIS(D)] [44, 45]. Despite the rapid developments

of these approaches and the implementations of efficient protocols (e.g., the reso-

lution of identity scheme), their less favorable scalings with system size than

TD-DFT generally limit their applications to vertical calculations but for rather

small molecules. Therefore, it has been proposed to combine TD-DFT’s ES geom-

etries and vibrations to Evert�a and Evert� f obtained with these more advanced

approaches. In the protocol proposed by Goerigk and Grimme [13], the experimen-

tal 0–0 energies are first transformed into “experimental” vertical energies by

applying successive corrections for solvation, vibration, and geometrical reorgani-

zation effects determined with TD-DFT. Alternatively, one can determine AFCP

energies through (10) and next correct them through wavefunction (Ψ) vertical
calculations performed on the DFT GS and TD-DFT ES geometries [46, 47]. For

approaches that can only be used for gas-phase vertical transition energies, the

corrected AFCP energy simply becomes
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EAFCP
BE neqð Þ ¼ EAFCP

TD�DFT neqð Þ þ E adia
Ψ gasð Þ � E adia

TD�DFT gasð Þ
	 


; ð13Þ

where BE stands for best estimates. Compared to (10), (13) only requires, for the

TD-DFT part, two additional vertical gas-phase calculations (one for each optimal

geometry) and the time-limiting step generally remains the wavefunction compu-

tation. The accuracy of the results obtained with (13) of course depends not only on

the quality of the wavefunction model but also partly on the “starting” accuracy

obtained with TD-DFT. When TD-DFT strongly underestimates the transition

energies, using (13) could be less efficient.

2.3.3 Band Shapes

Once the GS and ES vibrational signatures have been determined, for instance in

the course of computing the ΔEZPVE contribution to E0�0, it is possible to obtain

vibronic couplings and hence to estimate absorption and emission band shapes.

This requires the calculation of the coupling factors between the different vibra-

tional states of the GS and the ES, a task often achieved by the Franck–Condon (for

strongly dipole allowed transitions) and/or Herzberg–Teller (for forbidden or

weakly allowed transitions) approaches [7, 9, 12, 48–51]. Such schemes are now

implemented in several codes, and can also be used to gain access to absolute

intensities, i.e., the molar absorptivity (generally noted ε in the well-known Beer–

Lambert’s law). This offers additional direct comparisons with experimental data.

2.3.4 Choice of an Exchange-Correlation Functional

Though this topic is discussed in more detail in Sect. 3, is it probably worth giving

some general comments regarding the selection of an appropriate XCF. First, one

can select a hybrid functional, incorporating a fraction of the so-called exact
exchange: they generally yield much more accurate results than the typical LDA

or GGA approaches which tend to provide much too low transition energies in most

compounds. If valence ES are investigated, one should distinguish the localized ES,

typically resulting for n! π⋆ and π ! π⋆ transitions, for which standard global

hybrids such as B3LYP [52] or PBE0 [53] are well suited from charge-transfer

excited-states, for which the selection of range-separated hybrids which present an

amount of exact exchange increasing with the interelectronic distance, e.g.,

CAM-B3LYP [54] of ωB97X-D [55], generally provide more accurate transition

energies. Eventually, range-separated hybrids are also often a better choice for

Rydberg ES [56].
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2.3.5 Choice of an Atomic Basis Set

Similar to DFT, TD-DFT is relatively less sensitive to the size of the atomic basis

set than the corresponding highly-correlated wavefunction theories, though excep-

tions have been reported [57]. Irrespective of the agreement with experimental data,

reaching ES data which are converged with respect to the extension of the basis set

generally requires the selection of larger atomic basis sets than for GS properties.

For electronic transitions to low-lying excited-states in conjugated molecules, a

double-ζ (or, better, triple-ζ) polarized atomic basis set augmented with diffuse

orbitals appears to be a judicious choice. In other words, 6-31+G(d) or aug-cc-
pVDZ could be advised as reasonable compromises between computational cost

and accuracy for both Evert�a and Evert� f . Of course, for Rydberg ES, a much larger

basis set may be necessary, e.g., aug-cc-pVTZ. When optimizing the geometry of a

given ES, one should also be cautious as the PES are often quite flat and

diffusionless basis sets could yield rather poor results but in strongly constrained

fluorophores. The interested reader can find elsewhere longer discussions regarding

basis set effects for both small [58] and large [15] molecules in the context of

TD-DFT spectroscopic investigations.

3 Benchmarks

In this section we present the results obtained in several benchmarks aiming to

pinpoint the most adequate XCF. Both 0–0 energies and band topologies, obtained

through the calculation of vibronic couplings, are discussed. A general statement, at

least applicable to low-lying ES of organic molecules, is that pure XCF which do

not include exact exchange (e.g., BLYP [59, 60] or PBE [61]) tend to provide much

poorer results than hybrid XCF. In global hybrid functionals (e.g., B3LYP [52],

PBE0 [53, 62], and M06-2X [63, 64]) the main parameter affecting the computed

EAFCP is the mixing between the exact and DFT exchange, whereas in range-

separated hybrids (e.g., CAM-B3LYP [54] and ωB97X-D [55]), the attenuation

parameter which defines the rate at which one goes from DFT to exact exchange is

the key parameter. We redirect the interested readers to [24] for a longer and more

general review of existing TD-DFT benchmarks.

3.1 AFCP Energies

In this section we focus on investigations treating the EAFCP of large molecules [7,

13, 15, 65], though there are several works dealing with small gas-phase com-

pounds for which the 0–0 band can be accurately measured [17, 19, 66–69]. First, as

ΔEZPVE is the most computationally expensive term, let us discuss its magnitude
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and XCF dependence. For the 40 molecules displayed in Fig. 2, it has been found

that the variations when changing the XCF are weak (ca. �0.02 eV) [15], a

conclusion also reached in other studies on smaller systems [17, 66], indicating

that ΔEZPVE can, in general, be evaluated with any XCF. In addition, this term was
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found to be non-negligible, e.g., it is �0.08 eV on average for the set of molecules

shown in Fig. 2 [15]. Similar values have been obtained with other sets of molecules

[13, 66].

With coworkers, we have investigated the EAFCP of the compounds displayed in

Fig. 2 using (10) and 12 XCF [15, 70, 71]. More precisely, we have used the

LR-PCM model combined to the 6-31+G(d) atomic basis set for the geometrical

and (harmonic) vibrational parameters whereas the electronic energies were com-

puted at the cLR-PCM level with the 6-311++G(2df,2p) atomic basis set. The

results of these works are summarized in Table 1 together with other works. In

Table 1, the mean signed (MSE) and mean absolute (MAE) errors are given.

Overall, one finds a general correlation between the amount of exact exchange

included in the XCF and the MSE. Indeed, although PBE0 (25% exact exchange)

[53, 62] is on average on the experimental spot (MSE close to 0), XCF including a

larger fraction of exact exchange tend to yield positive MSE, i.e., they overestimate

the experimental EAFCP. This trend is quite general for low-lying ES: the larger the

fraction of exact exchange included in the XCF, the larger the transition energies.

However, the MAE tend to be quite similar for all approaches (ca. 0.25 eV), but for

the LC-PBE range-separate hybrid [72] this is obviously not the most adequate

approach in the present case. It should be noted that functionals such as M06-2X

Table 1 MSE and MAE obtained during benchmarks of EAFCP of large structures. All data in

eV. LC-PBE* and LC-PBE0* are optimally-tuned range-separated hybrid functionals

XCF Molecular set MSE MAE References

BP86 41 conjugated molecules �0.56 0.57 [7]

BLYP 12 large dyes �0.49 0.51 [13]

B3LYP 41 conjugated molecules �0.33 0.34 [7]

12 large dyes �0.22 0.31 [13]

40 dyes (Fig. 2) �0.14 0.27 [15]

APF-D 40 dyes (Fig. 2) �0.06 0.27 [71]

PBE0 40 dyes (Fig. 2) �0.03 0.22 [15]

M06 40 dyes (Fig. 2) 0.05 0.23 [15]

PBE0-1/3 40 dyes (Fig. 2) 0.14 0.22 [71]

BMK 12 large dyes 0.07 0.19 [13]

SOGGA11-X 40 dyes (Fig. 2) 0.21 0.24 [70]

M06-2X 40 dyes (Fig. 2) 0.25 0.26 [15]

BHHLYP 41 conjugated molecules �0.01 0.18 [7]

CAM-B3LYP 12 large dyes 0.11 0.18 [13]

40 dyes (Fig. 2) 0.24 0.25 [15]

ωB97X-D 40 dyes (Fig. 2) 0.30 0.30 [70]

LC-PBE 40 dyes (Fig. 2) 0.56 0.57 [15]

LC-PBE* 40 dyes (Fig. 2) 0.12 0.20 [70]

LC-PBE0* 40 dyes (Fig. 2) 0.25 0.26 [71]

B2PLYP 12 large dyes �0.11 0.20 [13]

B2GPPLYP 12 large dyes �0.01 0.16 [13]
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[63, 64] and CAM-B3LYP [54] provide more consistent values, i.e., larger corre-

lation coefficients with respect to experimental results (than B3LYP [52] or PBE0

[53, 62]) and can therefore be valued if design is sought: they overshoot the

transition energies in a rather systematic way. The best results for the set of

molecules of Fig. 2 are obtained with the optimally-tuned LC-PBE*, but at the

cost of a systematic (non-empirical) optimization of the attenuation parameter.

Grimme and coworkers also performed a series of benchmarks [7, 13, 65] with a

similar focus on “real-life” structures, and the results are collected in Table 1. In

their first contribution, they evaluated 3 XCF (BP86 [59, 73], B3LYP [52], and

BHLYP [74]) on 30 singlet–singlet and 13 doublet–doublet transitions in aromatic

and radical dyes, respectively. Solvent effects were empirically accounted for by

applying a standard correction to the experimental 0–0 energies. These authors

concluded that global hybrids with 30–40% exact exchange emerged the best

compromises [7]. More recently, the same group treated 12 molecules,

transforming the measured energies in reference vertical values thanks to

TD-DFT calculations. With this model, they could obtain deviations smaller than

0.2 eV with a recent global hybrid (BMK [75]), a range-separated hybrid

(CAM-B3LYP [54]), and their double hybrid (B2GPPLYP [65]).

In short, the typical TD-DFT errors for EAFCP are of the order of 0.2–0.3 eV,

when hybrid XCF are used. It should also be noted that XCF including a large share

of exact exchange (ca. 50%) deliver too large transition energies but tend to yield a

good consistency (large correlation coefficient) with experiment. The most accurate

results are obtained with double-hybrids or optimally-tuned range-separated XCF

but for an increased computational effort.

3.2 Band Shapes

The accuracy of the band topologies obtained with several XCF has been evaluated

by several groups [7, 16, 27, 71]. For the sake of consistency with the EAFCP works

presented above, we discuss here the two latter investigations which relied on a set

of 20 conjugated molecules belonging to the same families as the one shown in

Fig. 1. The selected protocol also relied on the 6-31+G(d) atomic basis set and

included environmental effects thanks to the PCM approach. Selected key statisti-

cal data are given in Table 2. As all vibronic calculations have been performed on

the basis of GS and ES vibrations obtained in the harmonic approximation, the clear

trend is to overestimate the separation between the different vibronic peaks,

irrespective of the selected XCF, an error which could be reduced by including

anharmonic effects [16, 76, 77]. It is also obvious that the average absolute errors

are smaller for absorption (ca. 100 cm�1) than for emission (ca. 250 cm�1). All

XCF, apart from LC-PBE, provide rather similar deviations, and it is therefore

difficult to select an unambiguously more accurate hybrid functional. Nevertheless,

it should be noted that the obtained accuracy is significantly system dependent, e.g.,

most XCF are able to reproduce accurately the characteristic multi-peak structure of
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fused aromatics but they fail to provide the correct height of the shoulder in

cyanines (see below for a discussion on the latter derivatives) [16]. For the relative

intensities (setting the intensity of the most intense peak to 1), the typical TD-DFT

error attains 10–15% for both absorption and emission, an average discrepancy

which is again rather independent of the selected XCF. Eventually, as for EAFCP,

optimally-tuned approaches vastly improve the original LC-PBE results, though

they do not outperform other XCF for band shapes. In other words, optimal tuning

improves the transition energies without deteriorating the accuracy of the computed

band shapes [71].

3.3 Challenging Cases

In this last part of this section, we consider a limited number of known TD-DFT

problems for low-lying singlet ES. In these cases, the accuracy of TD-DFT is either

worse than expected (cyanines) or can only be maintained with the selection of a

specific XCF (charge-transfer). It should also be noted that triplet ES and, conse-

quently, singlet-triplet splittings may be challenging for conventional TD-DFT

[78–81] but this particular error is beyond our scope here.

3.3.1 Cyanine Excited-States

Cyanine derivatives are (positively or negatively) charged π-conjugated derivatives
containing a linker possessing an odd number of sp2 carbon atoms capped by two

electronegative centers (typically, nitrogen, oxygen, or sulfur atoms). Both the

canonical streptocyanines and the fluoroborate dyes (e.g., boron-dipyrromethene,

BODIPY) belong to that class and it has been shown that they can hardly be

Table 2 MSE and MAE

obtained during benchmarks

of the band shapes of

absorption and emission

spectra. The errors are given

in cm�1 and correspond to

difference of separation with

the 0–0 peak which has been

set to 0 cm�1 in both the

theoretical and experimental

spectra. All data have been

taken in [16, 71]

XCF

Absorption Fluorescence

MSE MAE MSE MAE

B3LYP 51 80 80 225

APF-D 57 112 12 194

PBE0 63 117 115 263

M06 83 95 110 244

PBE0-1/3 89 134 47 227

SOGGA11-X 75 117 60 229

M06-2X 83 106 106 262

CAM-B3LYP 88 108 129 242

ωB97X-D 57 107 60 211

LC-PBE* 93 121 104 240

LC-PBE0* 120 139 87 235

LC-PBE 172 182 229 351
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modeled with adiabatic TD-DFT [33, 82–93]. Indeed, the TD-DFT transition

energies are too large (by ca. 0.3–1.0 eV) in cyanines, and this conclusion has

been reached through comparisons of both TD-DFT’s Evert�a with their highly-

correlated wavefunction counterparts [82, 87] and TD-DFT’s EAFCP with experi-

mental references for fluoroborate emitters [88, 89]. More puzzling is the fact that

the errors seem to be almost independent of the selected XCF and that this error is

not related to a multi-determinant nature. The fundamental reasons explaining this

failure of TD-DFT have been given in [90–92, 94, 95] and summarized in a recent

account [93]. A pragmatic approach to obtain accurate EAFCP is to apply (13)

selecting an appropriate variant of the CIS(D), ADC(2) or CC2 approaches as the

wavefunction method [47, 96]. Examples of applications of such mixed approach

are given in Sect. 4.

3.3.2 Energy and Geometry of Charge-Transfer States

One generally denotes as CT states, states in which the photon absorption or

emission induces a strong displacement of the electronic density, i.e., when the

electron and the hole are spatially separated. For those CT ES, it is now well

recognized that both pure and global hybrid XCF including a small fraction of

exact exchange tend to deliver (much) too small Evert�a, Evert� f , and EAFCP [97–

100]. For instance, Dreuw and Head-Gordon have shown that LDA [101], BLYP

[59, 60], and B3LYP [52] XCF yield errors of 1 eV or more for the

bacteriochlorophyll-spheroidene dyad. Within the adiabatic TD-DFT approxima-

tion, this error can be strongly reduced by using a range-separated hybrid XCF, e.g.,

CAM-3LYP [54], LC-BOP [102], or ωB97-X [103] which restores a correct

interaction between the electron and the hole [104–107] and therefore provides

an efficient answer to the CT challenge.

Additionally, the TD-DFT determination of the RES can be problematic for CT

ES. Tozer was the first to unravel the qualitatively incorrect PES obtained for

4-(dimethylamino)-benzonitrile with B3LYP [108]. Indeed, this popular XCF pre-

dicts that the twisted ES, in which the NMe2 terminal group becomes perpendicular

to the central phenyl ring, is more stable than the corresponding planar geometry,

whereas accurate wavefunction theories yield the opposite conclusion (more stable

planar structure). As for the transition energies, the use of range-separated hybrid

XCF restores a physically correct behavior. Similar conclusions to that of Tozer

have been obtained for several other compounds [15, 109, 110] and it indicates that

one should be particularly cautious when interpreting dual-fluorescence originating

from an equilibrium between planar and twisted intramolecular CT.

In short, for CT states, both the structures and transition energies are more

accurately evaluated using range-separated hybrid XCF.
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4 Illustrations

4.1 Organic Electronic Chromophores

As stated previously, one of the advantages of computing vibrationally-resolved

spectra is the access to both band topologies and absolute intensities, both data

being unreachable with vertical calculations. We recently illustrated these aspects

for a series of small organic chromophores used in organic electronics [111]. For

three compounds proposed by Bäuerle and collaborators, a dramatic effect of the

end groups was noted experimentally [112]. Indeed, adding terminal electro-

accepting groups induces strong variations of the position, intensity, and shape of

the optical curves. As illustrated in Fig. 3, the selected TD-DFT approach perfectly

restores: (1) the auxochromic displacements related to substitution for both absorp-

tion and emission; (2) the relative intensities which are in a 1.0:1.9:3.4 ratio (see

Fig. 3) for the black:blue:red spectra, matching the experimental values of

1.0:1.8:3.1; (3) the band shapes, especially the marked vibronic progression in the

unsubstituted dye and the presence of strong shoulders for the substituted struc-

tures. In [111], 8 additional compounds have been studied for a total of 11 dyes, and

the agreement between TD-DFT’s band topologies and experimental data was

found to be excellent in all cases but one. This is a remarkable result as the

measured spectra often result from the overlapping contributions of several ES.
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Fig. 3 Theoretical [cLR-PCM-M06/6-31+G(d)] absorption (left) and emission (right) band

shapes obtained for three dyes (bottom). The experimental graphs are shown as insets. Adapted
from [111] with permission from the Royal Society of Chemistry. No offset nor normalization was

applied to the theoretical data. Experimental spectra adapted, with permission from Wetzel

et al. [112]. Copyright 2014, American Chemical Society
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4.2 Inorganic Dyes

Although to date most applications of TD-DFT vibronic calculations have been

performed for organic structures, there have also been several simulations for

inorganic dyes [113–115]. An example of such successful work is given in Figure 4

that presents a direct comparison between measured and TD-DFT absorption and

emission spectra for a rhodacyclopentadiene chromophore [115]. The good agree-

ment is obvious: the AFCP energies are almost perfectly equal and the band

topologies are also very close. Indeed, for emission, there are two peaks of nearly

equivalent intensity followed by a shoulder whereas for the absorption, the 0–

0 band is significantly less intense than the second peak. This good match confirmed

that the complex experimental shapes originate from vibronic couplings and not

from several energetically close electronic states. This finding was helpful to

interpret several experimental outcomes [115]. For absorption (which is mostly

influenced by ES vibrations), modes 27, 149, 196, and 203 appear at 160, 1290,

1578 and 2191 cm�1, respectively. The second and third modes are mainly respon-

sible for the most intense band at ca. 22000 cm�1. These two vibrations correspond

to stretchings of the double and single CC bonds of the rhodacycle.

Fig. 4 Comparison between theoretical ( full lines) and measured (dashed lines) absorption (red)
and emission (black) band shapes of an inorganic complex. No shifting of the AFCP energies was

applied. For the theoretical absorption and emission spectra, both the convoluted and stick spectra

are displayed with numbering for the most contributing modes. Reproduced with permission from,

Steffen et al. [115]. Copyright 2014, American Chemical Society
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4.3 Fluoroborate Derivatives

BODIPY and other similar derivatives relying on a fluoroborate group to ensure the

chemical stability of the dyes constitute one of the most important classes of

organic emitters [116–118]. Indeed, they present sharp fluorescence emission

bands and large quantum yields. A large panel of chemical groups can be added

around the central chromogens so as to modify the absorption and emission

energies. These fluorophores present ES of cyanine nature, which is known to be

challenging for TD-DFT (see above). Figure 5 displays the EAFCP obtained with

TD-DFT for a set of 83 fluoroborates using (10). This large set was obtained by

putting together the panel of molecules considered in [47, 89, 96, 119] and was

modeled using the M06-2X XCF. It is obvious that TD-DFT overestimates the

EAFCP in an almost systematic way (TD-DFT underestimates this energy in only

1 out of 83 cases), and this error is significant, as the MAE attains 0.354 eV.

However, the variations of EAFCP with the chemical structures is well reproduced

by TD-DFT, and this can be seen by computing the linear determination coefficient,

R2, which attains 0.965 eV. This indicates that this protocol misses only 3.5% of the

total variability of the experimental energies. To obtain values in better absolute

agreement with experiment, it has been shown that applying a scaled opposite spin

(SOS) variant of the CIS(D) model [45], that is using (13) with Ψ¼ SOS-CIS(D), is

a very effective approach. Indeed, it allows the MAE to decrease by a factor of

3 (0.115 eV), at the same time inducing only a slight decrease of the R2 (0.949).

This is well illustrated in Fig. 5

Despite the systematic overestimation of the transition energy, it has been shown

that TD-DFT allows reproduction of the band shapes of both the absorption and

emission of fluoroborates with good to excellent accuracy [34, 35, 47, 88, 89,

120]. In other words, the PES provided by TD-DFT are reasonably accurate for
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this class of dyes. This is illustrated in Fig. 6 for a strongly conjugated BODIPY

designed to redshift the optical spectra. In Fig. 6 the band shape – which of course

remains unchanged when applying the SOS-CIS(D) correction to the energy –

clearly fits the experimental reference, with a marked shoulder displaced by

ca. 1,500 cm�1 from the 0–0 band. The accuracy of TD-DFT’s vibronic coupling

has also been confirmed by computing the Huang–Rhys factors which were used to

provide an estimation of the non-radiative deactivation vibrational pathways in

selected BODIPY [89]. These factors correlated well with the measured quantum

yields of emission: the larger the Huang–Rhys factors, the more efficient the

non-radiative pathways, and the smaller the emission quantum yields.

4.4 ESIPT and Dual Emitters

Excited-state intramolecular proton transfer (ESIPT) is an extremely fast

tautomerization process induced by photon absorption. ESIPT can take place in

dyes presenting a strong intramolecular hydrogen bond, when the most stable

isomer differs at the GS and ES. As illustrated in Fig. 7 for the typical enol/keto

tautomerism, the structures of the absorbing and emitting species are strongly

different, which advantageously yields very large Stokes shifts [121, 122]. Addi-

tionally, if the ES reaction is not quantitative, one can obtain emissions from both

tautomers and hence reach dual fluorescence with a single compound [123]. This

can be further optimized to design single-molecule white light emitting units [124],

as ESIPT quantum yield tends to increase when going from solution to solid state.

Fig. 6 Comparison between theoretical and experimental band topologies for a typical BODIPY

derivative. The impact of the SOS-CIS(D) correction which shifts the EAFCP is shown. Reproduced

with permissions from Chibani et al. [47]. Copyright 2014, American Chemical Society
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There are numerous applications of TD-DFT and wavefunction approaches to

rationalizing excited-state proton transfer [124–144] and, for the sake of consis-

tency, we summarize here some of the works that have been performed with an

approach similar to that used in the previous section, i.e., cLR-PCM/TD-M06-2X

[124, 139–141]. Houari et al. explored the GS and ES PES of two hydroxyphenyl-

benzoxazole (HBO) dyes, differing only by their end groups [123, 139]. The alkyl-

substituted system only shows emission from the keto tautomer experimentally,

whereas the amino-substituted compound displays (dual-)emission from both enol

and keto tautomers [123]. Houari et al. obtained the PES of both the GS and the ES

(see Fig. 8) which helped to rationalize the experimental trends. Indeed, for the dye

presenting sole ESIPT emission, the PES of the ES presents only a small transition

state which disappears when vibrational corrections are included. In other words,

after photon absorption there is a downhill slope for the ESIPT reaction on the free

energy scale and only the keto isomer corresponds to a true minimum and can emit

light. For the second dye (right panel in Fig. 8), the transition state is higher in

energy and the enol minimum on the ES surface applies once vibrational correc-

tions are included, indicating that dual emission is feasible. These conclusions fit

the corresponding experimental data perfectly [123]. Figure 8 also shows that the

transition states for the proton transfer are located at very different geometries for

the GS and the ES, e.g., at respective O–H distances of 1.410 and 1.185 Å, for the

first dye, indicating that a simple vertical TD-DFT calculation performed on the GS

transition state would fail to deliver valuable insights. In the same work [139], the

computed vibrationally-resolved emission spectra were compared to experiment to

allow an approximate determination of the relative quantum yields of enol and keto
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emission for a solvent in which the measured fluorescence bands for these two

tautomers overlap.

In a subsequent investigation [124], TD-DFT was used to rationalize the prop-

erties of seven large hydroxybenzofuranbenzoxazole (HBBO) derivatives differing

by their substitution patterns. A comparison between the experimental ratio of

ESIPT and normal emissions (Iketo/Ienol) with the theoretical relative stabilities of

the two tautomers determined for the ES (ΔGES) is given in Fig. 9. When the ΔGES

are smaller than �0.1 eV, the driving force is sufficient to yield a quantitative

proton transfer and only ESIPT emission is observed. Between �0.1 and 0.0 eV,

there is an equilibrium between the two forms which emit and dual emission can

only be obtained in this narrow energetic window. The correlation between the

measured relative fluorescence intensities and the computed driving force for

ESIPT is obvious in Fig. 9. This study led to the development of single-molecule

white organic light emitting diodes [124].

4.5 Caging Effects

As stated above, TD-DFT can be coupled with several models to reproduce the

impact of the environment on the spectral properties of a chromophore. Besides the

Fig. 8 Potential energy surfaces obtained for two HBO dyes. Left: alkyl substituted structure

presenting only ESIPT emission experimentally. Right: amino-substituted structure displaying

dual fluorescence in several solvents. For both dyes, the PES go from the enol (small O–H

distance) to the keto (large O–H distance). Adapted from Houari et al. [139] with permission

from the Royal Society of Chemistry
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most widely treated case of organic solvents, such an environment can involve a

biomolecule [145–148], a cage [149, 150] a metal [151–153], an inorganic solid

[154–156], or a molecular crystal [157] to cite a few examples. Depending on the

exact nature of the environment, one needs to set up a specific computational

protocol, but the general idea is to split the total system into two parts: the

chromophore where the electronic excitation takes place and which is treated

with TD-DFT whereas the surroundings are modeled with a simpler theoretical

model, typically Molecular Mechanics (MM). We illustrate here such a procedure

for an organic cage and redirect interested readers to a previous review on the topic

for other examples and references [27]. The selected system consists of a squaraine

dye encapsulated in a tetralactam macrocycle (see Fig. 10). Such an assembly was

experimentally investigated by Smith and coworkers [158] and later modeled

[149]. The macrocyclic cage aims to protect the dye from (bio-)chemical degrada-

tions and was not designed to tune the observed color. Indeed, the hallmark

absorption band of the dye is shifted after complexation by �0.06 eV only [158],

a bathochromic effect which can be almost perfectly reproduced by TD-DFT

calculations considering the full system quantum mechanically (�0.07 eV). How-

ever, such a brute force approach implies a large computational cost. As the

excitation is clearly localized on the squaraine, using a hybrid TD-DFT/MM is

justified. The first approach proposed in [149] was to account self-consistently for

the ground-state polarization by determining atomic point charges of the cage

equilibrated with the density of the dye. Such a procedure yields a qualitatively

incorrect hypsochromic shift of +0.10 eV. In a second approach, the response of the

cage density to the change of electronic state of the dye was modeled through a
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polarizable continuum model inspired from PCM. This second scheme, denoted

Electronic Response of the Surroundings, yields, for a negligible computational

cost, a shift of�0.09 eV, in good agreement with both experiment and full TD-DFT

calculation.

4.6 Charge-Transfer Optimization

Photoinduced charge-transfer excited states play a key role in several applications,

notably in dye sensitized solar cells (DSSC) [159–163]. In DSSC, the absorption of

light by a dye anchored on a semi-conducting surface, typically a metallic oxide,

induces a CT on the dye which eventually leads to charge separation, the electron

(or the hole) being injected into the semi-conductor. Charge transfer is therefore the

key step initiating the light-to-electricity conversion process [164]. To quantify CT,

several schemes have been proposed [56, 165–168] and we present here the dCT

index [165, 166]. This approach uses the ground- and excited-states electronic

densities (ρGS and ρES) to provide a CT distance (dCT), the amount of charge

transferred (qCT), and CT dipole (μCT). First one computes the difference of

densities between the excited and ground states:

O
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N
NH HN

OO

N
NH HN

OO

Fig. 10 Representation of the squaraine dye (top left) and cage (bottom left) used by Smith and

coworkers [158]. On the right hand side, a side view of the DFT (PBE0) optimized complex is

given [149]
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Δρ rð Þ ¼ ρES rð Þ � ρGS rð Þ: ð14Þ

Subsequently, one divides Δρ(r) into two parts according to the increase/

decrease of the density resulting from the electronic transition. For the former,

this reads

ρþ rð Þ ¼
Δρ rð Þ if Δρ rð Þ > 0

0 if Δρ rð Þ < 0

8<: ; ð15Þ

and similarly for ρ� rð Þ. The amount of charge transferred is obtained by integration

qCT ¼
ð
ρþ rð Þdr; ð16Þ

and an equivalent result is obtained by integrating ρ� rð Þ. One next computes the

barycenters corresponding to the ρþ rð Þ and ρ� rð Þ functions

rþ ¼ xþ; yþ; zþð Þ ¼ 1

qCT

ð
rρþ rð Þdr; ð17Þ

r� ¼ x�; y�; z�ð Þ ¼ 1

qCT

ð
rρ� rð Þdr: ð18Þ

The distance separating these two points is the CT distance

dCT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ � x�ð Þ2 þ yþ � y�ð Þ2 þ zþ � z�ð Þ2

q
; ð19Þ

whereas the CT dipole is ����μCT���� ¼ dCTqCT: ð20Þ

μCT is also equal to the difference of dipoles computed from the total GS and ES

densities. This procedure was applied to design rod-like dyes with a maximal CT

distance, using densities obtained with TD-DFT and more precisely with the

CAM-B3LYP functional [169]. The compounds considered in [169] consist of an

electron-donor group and an electron-acceptor moiety separated by a π-conjugated
linker. All parameters were investigated (nature of the donor, size and nature of the

linker, strength of the acceptor. . .). An illustration of the results obtained is given in
Fig. 11 for three typical push–pull systems. For the shortest system, one indeed

notices a typical CT state, the nitro (amino) group gaining (losing) density upon

electronic excitation and dCT is large. When the π-conjugated chain gets longer, one
observes, contrary to expectations, that dCT decreases. This can be qualitatively

understood from Fig. 11: as the chain gets longer the excited-state starts to be
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localized on the central part of the dye, with a minimal involvement of the terminal

groups and the CT character is lost, because the excited-state eventually corresponds

to a delocalized but symmetric π ! π⋆ transition. This means that, to maximize

CT, there is an optimal linker length. For α,ω-NMe2,NO2 oligomers, this maximal

CT is obtained for an oligomeric length of ca. 3–5 connecting rings, smaller (larger)

systems being limited by the lack of efficient delocalization (the ineffective com-

munication between the end groups). In [169] it was therefore concluded that there
is a systematic fine balance between the three elements of the rod-like compounds,
and simply increasing the strength of the terminal electro-active groups or improv-
ing the delocalizability by adding more π-electrons in the bridge does not neces-
sarily mean improvement of the CT properties.

5 Conclusions

Theoretical spectroscopy in general, and Time-Dependent Density Functional

Theory in particular, have now become mature tools to reproduce, predict, and

interpret both absorption and emission spectra of a wide range of “real-life”

molecules in “real-life” environments. TD-DFT is regularly applied as a black-

box model to complement experimental measurements. As illustrated in this

review, TD-DFT is now used not only to probe the nature of excited states within

the vertical approximation, but also to determine 0–0 energies and band shapes for

compounds containing up to ca. 150 atoms. These more demanding, but more

insightful, simulations will undoubtedly become increasingly popular in the near

future. Another key advantage of TD-DFT is that it can be coupled to several

models for describing several kinds of environmental effects (solvents, cages,

metals, surfaces. . .). Although some wavefunction approaches can be more accu-

rate for specific systems, their less favorable scaling with system size remains an

important limitation to their applicability to extended systems. The main weakness

Fig. 11 Representation of Δρ(r) for three oligomers (trimer, hexamer, and nonamer). The green
vector indicates the CT distance. The blue (red) regions indicate decrease (increase) of density

after photon absorption. Adapted with permission from Ciofini et al. [169]. Copyright 2012,

American Chemical Society
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of the adiabatic approximation to TD-DFT is its exacerbated dependency on the

selected XCF. Nevertheless, the know-how is actually so great in this field that one

can often easily select an adequate functional for the molecule and state considered.

In the following years, it should become a common approach to combine TD-DFT

geometries and vibrational frequencies to wavefunction vertical excitation energies

so as to improve the accuracy of the final results and decrease the functional

dependency. At the same time, the focus moves from the “static” spectral properties

to “dynamic” excited-state reactions (proton-transfer, energy transfer

photochromism. . .).
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146. Wanko M, Hoffmann M, Frähmcke J, Frauenheim T, Elstner M (2008) J Phys Chem B 112

(37):11468

147. Konig C, Neugebauer J (2011) Phys Chem Chem Phys 13:10475

374 D. Jacquemin and C. Adamo

http://pubs.acs.org/doi/abs/10.1021/ol403153z


148. Curutchet C, Kongsted J, Munoz-Losa A, Hossein-Nejad H, Scholes GD, Mennucci B (2011)

J Am Chem Soc 133:3078
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Abstract Absorption spectroscopy, emissive properties, and ultrafast intersystem

crossing processes in transition metal complexes are discussed in the light of recent

developments in time-dependent density functional theory (TD-DFT) , spin-orbit

coupling (SOC) effects, and non-adiabatic excited states dynamics. Methodological

highlights focus on spin-orbit and vibronic couplings and on the recent strategies

available for simulating ultra-fast intersystem crossings (ISC).

The role of SOC in the absorption spectroscopy of third-row transition metal

complexes is illustrated by two cases studies, namely Ir(III) phenyl pyridine and Re

(I) carbonyl bipyridine complexes.

The problem of luminescence decay in third-row transition metal complexes

handled by TD-DFT linear and quadratic response theories including SOC is

exemplified by three studies: (1) the phosphorescence of Ir(III) complexes from

the lowest triplet state; (2) the emissive properties of square planar Pt(II) complexes

with bidentate and terdentate ligands characterized by low-lying metal-to-ligand-

charge-transfer (MLCT) and metal-centered (MC) states; and (3) the ultra-fast

luminescence decay of Re(I) carbonyl bipyridine halides via low-lying singlet

and triplet charge transfer states delocalized over the bipyridine and the halide

ligands.

Ultrafast ISC occurring in spin crossover [Fe (bpy)3]
2+, in [Ru (bpy)3]

2+, and

[Re (Br)(CO)3(bpy] complexes are deciphered thanks to recent developments based

on various approaches, namely non-radiative rate theory within the Condon approx-

imation, non-adiabatic surface hopping molecular dynamics, and quantum wave

packet dynamics propagation.
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Abbreviations

AMFI Atomic mean field approximation

B3LYP Becke-3-parameter-Lee-Yang-Parr

BO Born–Oppenheimer

BP Breit–Pauli

CASPT2 Complete active space perturbation theory second order

CASSCF Complete active space self consistent field

COSMO Conductor-like screening model

DK Douglas Kroll

ECP Effective core potential

FC Franck Condon

GGA Generalized gradient approximation

HF Hartree–Fock

IL Intra-ligand

ISC Intersystem crossing

JT Jahn–Teller

KS Kohn–Sham

LC Ligand-centered

LLCT Ligand-to-ligand-charge-transfer

LVC Linear vibronic coupling
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MC Metal-centered

MCQDPT Multiconfiguration quasi-degenerate perturbation theory

MCTDH Multiconfiguration time-dependent Hartree

MLCT Metal-to-ligand-charge-transfer

MS-CASPT2 Multi-state CASPT2

PBE0 Perdew–Burke–Ernzerhof

PCM Polarized continuum model

PES Potential energy surfaces

PW91 Perdew–Wang 1991

RASSI Restricted active space state interaction

SOC Spin-orbit coupling

XANES X-Ray absorption near-edge structure

ZFS Zero field splitting

ZORA Zeroth order regular approximation

1 Introduction

Triplet electronic excited states play a central role in the spectroscopy, photochem-

istry, and photophysics of transition metal complexes. They perturb the fine struc-

ture of absorption spectra and are responsible for long-lived emission via low-lying

metal-to-ligand-charge-transfer (MLCT) states over a wide range of energy

domains [1–12]. They can quench emission by triggering electron transfer pro-

cesses via charge-separated (CS) states [13–15] or by inducing competitive disso-

ciation via metal-centered (MC) states [16–20]. Triplet sigma-bond charge transfer

states induce metal–alkyl bond homolysis [21, 22] sigma-bond sigma-bond excited

states are precursors of metal–metal bond homolysis [23] whereas intra-ligand

(IL) localized triplet states conduct isomerization pathways under visible irradia-

tion [24–26].

The kinetics of intersystem crossing (ISC) processes entirely control the popu-

lation of the low-lying triplet states after UV/visible absorption and strongly

influence the branching ratio between radiative and non-radiative decays. The

development of time-resolved spectroscopy, within femtosecond (fs)/picosecond

(ps) time scales, has opened the route to new experimental investigations in the field

of first-, second-, and third-row transition metal complexes photophysics

supporting evidence of ultra-fast ISC [27–32]. In order to understand the role of

the high spin states and to interpret these experimental findings, quantum chemistry

needs powerful methods able to describe correctly the excited states properties:

(1) electronic and geometrical structures; (2) transition energies; (3) spin-orbit

interaction between states of different multiplicities; and (4) multiplet spin-orbit

splitting. The electronic structure calculations should also figure out the shape of

the potential energy surfaces (PES) underlying the non-adiabatic excited states

dynamics. A direct correlation between the experimental data and the outcome of
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theory, namely branching ratio, time scales, or luminescence quantum yields, needs

simulation of the dynamics in real time. Obviously, whereas a complete quantum

treatment is possible for small molecules involving 5 or 6 atoms [33, 34] other

strategies have to be employed for large transition metal complexes with ~50–100

atoms and a metal center.

The purpose of this chapter is to review density functional theory (DFT)-based

methods for computing with reasonable accuracy excited states properties, includ-

ing spin-orbit coupling (SOC) in transition metal complexes, and to point to

pioneering strategies to simulate ultra-fast ISC processes in this class of molecules.

Whenever possible, the time-dependent DFT (TD-DFT) excited states properties

are compared either to the results obtained by more accurate ab initio methods or to

experimental data. The first section is devoted to methodological highlights ori-

ented to the computation of SOC and its interplay with vibronic coupling, and to the

simulation of ISC. The two next sections are dedicated to SOC effects on the

absorption and emission spectroscopies exemplified by recent theoretical studies

performed on third-row Ir(III), Re(I), and Pt(II) complexes. The last section reports

on recent pioneering simulations of ultra-fast ISC processes in various complexes

from first to third row on the basis of different approaches.

2 Methodological Highlights

Transition metal complexes cumulate most of the complexities inherent to theoret-

ical studies: size, electronic delocalization, near-degeneracy, high density of elec-

tronic states of various characters, multi-configurational electronic structures, long-

range charge transfer states, relativistic effects, especially spin-orbit coupling,

dissociative states, states mixing, and vibronic couplings.

Recent reviews and articles give the reader an idea of the latest developments

and applications related to excited states in large molecules and/or transition metal

complexes [18, 19, 35–43].

In spite of well-known drawbacks, the long-range charge transfer problem being

particularly pertinent in the case of transition metal complexes [35] (and references

therein), the TD-DFT approach remains a computationally simple and efficient

method. This approach, thanks to recent developments [44], can treat practical

problems in a reasonable time scale at low cost as compared to highly correlated ab

initio methods [45–54]. This section focuses on three issues, especially relevant for

transition metal complexes excited states: (1) the spin-orbit coupling (SOC) prob-

lem; (2) the vibronic coupling problem; (3) the simulation of ISC processes.
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2.1 Spin-Orbit Coupling

Molecules that contain heavy elements (in particular 5d transition metals) play an

important role in the photochemistry and photophysics of coordination compounds

with regard to their luminescent properties and their implication in catalysis and

energy/electron transfer processes. Whereas molecular properties and electronic

spectroscopy of light molecules can be studied in a non-relativistic quantum

chemical framework, one has to consider the theory of relativity when dealing

with elements that belong to the lower region of the periodic table. As far as

transition metal complexes are concerned, one has to distinguish between different

manifestations of relativity. Important but not directly observable manifestations of

relativity are the mass velocity correction and the Darwin correction. These terms

lead to the so-called relativistic contraction of the s- and p-shells and to the

relativistic expansion of the d- and f-shells. A chemical consequence of this is,

for instance, a destabilization of the 5d shells with respect to the 3d shells in

transition metals.

Other important evidence of relativity in electronic spectroscopy, photophysics,

and photochemistry is the spin-orbit coupling between states of different multiplic-

ities. Indeed, most light-induced processes in transition metal complexes involve a

change of spin state and are not allowed in non-relativistic quantum formalism. A

fully relativistic treatment based on the Dirac equation [55] and a four-component

Hamiltonian including scalar and spin-orbit contributions for many electrons sys-

tems is unrealistic and beyond the scope of the systems and problems of interest in

this review. The reduction of the Dirac equation and its extension to many-electron

problems has opened the route to several relativistic approaches based on approx-

imate Hamiltonians applied with success to chemistry [56]. The spin-orbit coupling

terms arise from one- and two-electron operators developed within the

two-component formalism of the relativistic theory obtained by transformation of

the four-component equation. The Douglas–Kroll (DK) [57, 58] and Breit–Pauli

(BP) [59–62] forms are the most popular relativistic two-component operators.

In most of today’s applications the SOC effects in large transition metal com-

plexes are included by means of two approaches: (1) the restricted active space state

interaction (RASSI) including SOC [63] developed on the basis of a one-electron

Fock-type spin-orbit Hamiltonian [64] within the atomic mean field approximation

(AMFI) [65]; and (2) the zeroth-order regular approximation (ZORA) to the full

relativistic Hamiltonian based on a one effective two-component regular Hamilto-

nian developed at the zeroth-order [66–68]. Both methods are derived from the BP

spin-orbit Hamiltonian and are a good approximation to the BP theory. Whereas

RASSI-SOC formalism has been developed for correlated wave functions, the

ZORA operator is better adapted to perturbation and Kohn–Sham (KS) theories.

Most ZORA applications are performed within the framework of DFT despite some

limitations [35, 69]. SOC has recently been evaluated by means of a full BP

Hamiltonian applied to multi-reference CI wave functions or combined with
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multiconfiguration quasi-degenerate perturbation theory (MCQDPT) and used with

success for transition metal complexes [70, 71].

Whereas in nonrelativistic theory the eigenstates form a basis for an irreducible

representation of the molecular point group, the eigenstates of the spin-orbit

operator form a basis for an irreducible representation of the molecular point double

group [72].

When introducing spin-orbit interaction, spin eigenfunctions are affected by

symmetry operations and cannot be described in general by any of the symmetry

operations permitted by the point group of the molecule. The extension of molec-

ular point group to molecular point double group representation by additional

symmetry elements associated with spin eigenfunctions allows the description of

multiplet non-degenerate eigenstates, so-called fine structure, generated by spin-

orbit splitting. For a discussion on the calculation of spin-orbit splitting in transition

metal atoms at various levels of approximation, one can refer to [73, 74].

Two ingredients are particularly important when discussing transition metal

complexes’ optical properties, namely the SOC terms and the spin-orbit splitting

of the triplet states. Whereas splitting is usually small and can appear as a pertur-

bation, the SOC values may vary from a few tens of cm�1 to 1,000 cm�1. However,

the heavy atom effect is not always operating simply because of the molecular

character of the electronic states that are delocalized over the ligands. This has

important consequences on the absorption spectroscopy and photophysics of tran-

sition metal complexes as illustrated in recent applications [26, 75–83] and exam-

ples discussed in Sects. 3–5.

2.2 Vibronic Couplings

An additional difficulty in transition metal complexes is the simultaneous treatment

of vibronic and spin-orbit couplings, sometimes together with Jahn–Teller

(JT) effects. Indeed, the interplay between these effects contributes to the structural

characteristics of the electronic spectra and cannot be neglected for a meaningful

comparison between experimental and computed absorption spectra [84, 85]. Of

course this is true for all kind of molecules but more crucial for transition metal

complexes as shown by the vibronic structure of the well-resolved experimental

spectrum of the permanganate anion MnO4
� already available in the 1960s, but

hardly assigned by the most accurate methods of quantum chemistry [86]. Another

illustration is given by the combined effects of Jahn–Teller (JT) and SOC on the

adiabatic PES and electronic spectra of a series of first-row transition metal halides

MF3 (M¼Mn, Co, Ti, Cr, and Ni) recently investigated from first-principles

methods based on the derivation of a Hamiltonian expanded up to linear, quadratic,

and higher order in normal modes displacements active for JT distortions and

including spin-orbits up to first order in these modes [87]. This original work has

put in evidence spin-orbit-induced JT distortions not detectable by the standard
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model in which SOC is considered as a static property independent of the nuclear

motion.

Spin-orbit and vibronic couplings directly influence the probability of elemen-

tary processes such as internal conversions and ISC. The interpretation of ultrafast

structural changes, time-resolved spectra, quantum yields, and time scales of

elementary processes or transient lifetimes not only needs robust theoretical tools

in quantum chemistry but developments in quantum dynamics for solving elec-

tronic and nuclear problems. Quantum dynamics has to treat dynamical processes

which are not confined to a single electronic PES and which violate the Born–

Oppenheimer (BO) separation of electronic and nuclear motions, taking into

account nonadiabatic coupling between two or more electronic states via several

vibrational modes [84].

In the applications discussed in the present contribution, running quantum

nuclear dynamics by wavepacket propagation on a set of adiabatic potential energy

hypersurfaces associated with excited states of different multiplicities coupled both

vibronically and by SOC is out of reach. The alternative is to construct a spin-

vibronic coupling model Hamiltonian based on selected relevant normal modes

which includes the electronic states of interest at the early stage of the dynamical

process, namely between 0 fs and 1 ps.

The Hamiltonian is expanded as a Taylor series in normal modes displacements:

Ĥ ¼ Ĥ 0 þ Ŵ 0ð Þ þ Ŵ 1ð Þ þ Ŵ 2ð Þ þ � � � ð1Þ

where the first term includes the kinetic energy operator and a harmonic term

representing the ground state Hamiltonian and Ŵ 0ð Þ is the zero-order diagonal

coupling matrix which contains the vertical excited state energies calculated at

the FC geometry. The first-order term Ŵ 1ð Þ contains the linear coupling elements

and the second-order non-adiabatic coupling term Ŵ 2ð Þ is included to take into

account the change of frequency in the electronic excited states. The truncation of

the Taylor expansion has to be adapted to the problematic and to the size of the

molecule.

The multi-state spin-vibronic interactions within a set of n electronic excited

states are deduced from the diabatic electronic representation including all pertinent

coupling terms. Explicitly, the intrastate κn and interstate λn,m vibronic coupling

constants between the n and m electronic states are derived from the gradient and

Hessian of the potential energy with respect to the nuclear coordinates. The δn,m

SOC and the necessary ingredients, potential energy and its derivatives, are

extracted from the electronic structure data obtained by means of wave function

or DFT approaches. Not all coupling elements survive to the integration because of

group symmetry constraints. For instance, within the linear vibronic coupling

(LVC) approximation the non-vanishing intrastate κn and interstate, λn,m coupling

constants are those for which the product of the irreducible representations of states

n and m and of the nuclear normal mode coordinate Qi contain the totally symmet-

ric representation. Recent applications to vibronic spectra of first-row transition
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metal trifluorides [88] and to ultra-fast excited states dynamics in Cu

(I) phenanthroline complexes [89] illustrate the potential of the (spin)-vibronic

coupling multimode quantum dynamics in this field of research.

2.3 Intersystem Crossings

Ultrafast intersystem crossing (ISC) processes coupled to nuclear relaxation and

solvation dynamics play a central role in the photophysics and photochemistry of a

wide range of transition metal complexes [27–32, 89–97]. These phenomena are

investigated experimentally by ultrafast picosecond (ps) and femtosecond

(fs) transient absorption or luminescence spectroscopies, and optical laser pump-

X-ray probe techniques using ps and fs X-ray pulses. Again, we are facing the

determination of multi-dimensional PES associated with various multiplet elec-

tronic excited states and with simultaneous treatment of vibronic and spin-orbit

couplings which control ultrafast intramolecular relaxation and photophysical

decays.

The qualitative rules such as El-Sayed [98] or energy gap law [99, 100] are of no

help for the determination of the kinetics of ISC in this context. The golden rule

approximation is adapted to organic systems with a limited number of interacting

states, typically S1/T1 where the SOC is small compared to their adiabatic energy

difference [56] (and references therein). Alternatively, ISC rates can be determined

assuming direct spin-orbit coupling with separation of electronic and vibrational

contributions within the Condon approximation based on harmonic potentials. In

contrast to the time-independent approach which requires the computation of the

Franck–Condon integrals, the recently developed time-dependent formalism [101,

102] is especially adapted to the treatment of ISC in large molecules with a high

number of degrees of freedom and large adiabatic electronic energy differences.

This is illustrated by recent applications, both in organic and inorganic systems [90,

103].

The determination of ultra-fast ISC kinetics by means of direct quantum dynam-

ical simulation of a cascade of transitions via several electronic states of different

multiplicities is based on wavepacket propagations on spin-vibronic coupled multi-

dimensional PES. Various methods of electronic structure theory available for

transition metal complexes, among them the most popular TD-DFT approach, are

able to compute electronic excited states and associated nuclear forces with rea-

sonable accuracy. The bottleneck is the computation of accurate multi-dimensional

PES, seat of the ultra-fast dynamics observed in time-resolved experiments. To

bypass these difficulties two strategies can be considered: (1) ab initio molecular

dynamics where efficient electronic structure methods are coupled to classical

trajectory-based approaches [104] (and reference therein); and (2) quantum dynam-

ics where both electronic and nuclear wave functions are treated exactly within a

given level of approximation [84, 105–107].

Molecular dynamics, usually coupled with DFT methods and extended recently

to the non-adiabatic regime [104, 108, 109] is adapted to large systems involving a
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restricted number of active electronic excited states in the dynamical process. The

lack of coherence and phase of the nuclei and the total time per trajectory are the

limiting factors of semi-classical trajectory surface hopping. The advantages are the

inclusion of all nuclear degrees of freedom, the use of on-the-fly calculated poten-

tials, and the ease of improving accuracy by including more trajectories.

The applicability of the full quantum approach is limited by the nuclear dimen-

sionality and requires very robust electronic structure methods for excited states

[70, 110]. The drawbacks of wavepacket dynamics are the complexity of setting up

an appropriate effective Hamiltonian, the use of approximate fitted potentials, and

the choice of selected vibrational modes.

The pioneering dynamical simulations performed on transition metal complexes

are far from being routine and need specific developments to be applicable to a wide

range of systems and ultra-fast phenomena circumscribed by spin-vibronic cou-

pling [111]. Recent applications to first-, second-, and third-row transition metal

complexes based on various approaches are developed in section 5 dedicated to

ultra-fast ISC processes.

3 Absorption Spectroscopy

The purpose of the next sections devoted to the absorption spectroscopy of third-

row transition metal complexes is to illustrate by recent examples the importance of

SOC in the computation of TD-DFT vertical electronic spectra using ZORA

approach. Whenever possible, the SOC-TD-DFT approach is compared to the

SOC-CASSCF/MS-CASPT2 method based on RASSI. In these examples the

electronic SOC effect is treated independent of any nuclear relaxation that could

influence its contribution to the absorption spectra.

3.1 Electronic Spectroscopy of Ir(III) Complexes

In this application the absorption spectra of [Ir (ppy)3] 1 and [Ir (ppy)2(CO)Cl)] 2

(ppy¼ tris(2-phenylpyridine) (Scheme 1) have been calculated by means of

TD-DFT methods based on optimized structures in vacuum and including spin-

orbit coupling [80].

Both TD-DFT/B3LYP and TD-DFT/PW91 “spin-free” absorption spectra have

been computed. The TD-DFT/B3LYP results shift the theoretical spectrum of

[Ir (ppy)3] 1 to the blue, as compared to the PW91 results, by 0.75 eV, with a

first transition calculated at 25,080 cm�1 of significant oscillator strength

( f¼ 0.023). Moreover, this overestimated transition is characterized by an impor-

tant unrealistic ligand-to-ligand-charge-transfer (LLCT) character which is only

minor in the TD-DFT/PW91.

Absorption Spectroscopy, Emissive Properties, and Ultrafast Intersystem. . . 385

Sec13


Whereas spin-orbit effects modify the spectrum of the tri-substituted

phenylpyridine reference complex 1 (Fig. 1), they do not change significantly the

absorption properties of the carbonyl/halide substituted complex 2 which is not

discussed in this contribution.

Scheme 1 Optimized structures of fac-[Ir (ppy)3] 1 and cis-[Ir (ppy)2(CO)(Cl)] 2 (data from [80])
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Fig. 1 TD-DFT/PW91 “spin-orbit” absorption spectrum of fac-[Ir (ppy)3] 1 compared to the

experimental one (in inset). The “spin-free” spectrum is represented by dotted line and the main

bands are assigned according to the An and En “spin-orbit” states generated by the splitting of the

lowest triplet states Tn and their mixing with the singlet Sn states (Table 2) (reprinted with

permission from Brahim and Daniel [80] Copyright 2014 Elsevier)
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The experimental absorption spectrum of fac-[Ir (ppy)3] 1 has been recorded in

various media such as neat film, THF, toluene, and CH2Cl2 [112]. Whatever the

medium, the absorption starts at about 17,500 cm�1 and is characterized by several

shoulders at 20,410, 21,740, and 24,390 cm�1, one peak at 26,315 cm�1, a shoulder

at 28,170 cm�1, and two intense bands centered at 34,840 and 40,820 cm�1,

respectively. This insensitivity to the media as well as the small effect on the

optimized geometry of fac-[Ir (ppy)3] [80] justifies the neglect of solvent correc-

tions in the theoretical approach.

The TD-DFT absorption spectrum of fac-[Ir (ppy)3] 1 depicted in Fig. 1 has been
assigned on the basis of the spin-orbit states and the emissive properties of the

complexes have been interpreted from the singlet/triplet mixing and spin-orbit

splitting of the lowest Sn singlet and Tn triplet states (Tables 1 and 2).

The theoretical absorption spectrum obtained in vacuum starts at about

17,360 cm�1 (Fig. 1) with states of low intensity not reported in Table 1 and is

Table 1 TD-DFT/PW91 “spin-free” states (in cm�1) of fac-[Ir (ppy)3] 1 and associated oscillator
strengths (adapted from Brahim and Daniel [80])

State Label Character

Transition

energy in cm�1
Transition

energy in eV fa

1A S2 MLCT 18,560 2.32 7� 10�3

1E S5 MLCT 20,720 2.59 0.015
1E S7 MLCT 21,760 2.72 0.041
3E T5 MLCT 22,080 2.76
1E S8 MLCT 22,720 2.84 0.013
1A S9 MLCT 23,280 2.91 0.033
3E T7 LC 27,440 3.43
3E T12 LC/MLCT 29,920 3.74
1A S12 LC 30,000 3.75 0.042
1A S17 LC 32,240 4.03 2� 10�3

1A S18 LC/MLCT 32,560 4.07 0.05
1E S21 LC/MLCT 33,280 4.16 0.040
1A S22 MLCT 33,440 4.18 0.046
1E S23 LC/MLCT 33,520 4.19 0.015
1A S24 MLCT 33,600 4.20 0.106
1E S33 MLCT 36,720 4.59 0.075
1A S34 MLCT 37,040 4.63 0.083
1A S35 MLCT 37,280 4.66 5� 10�3

3A T34 LC/MLCT 37,360 4.67
3A T36 LC 37,520 4.69
1A S36 LC/MLCT 37,600 4.70 0.012
1A S44 LC 39,520 4.94 0.109
3E T43 MLCT 39,920 4.99
1E S45 LC 40,000 5.00 0.023
aOnly the “spin-free” states of interest entering in the composition of the “spin-orbit” states

described in Table 2 are reported
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characterized by a series of low-lying MLCT states between 18,480 cm�1 (S1) and

23,280 cm�1 (S9). Above 30,000 cm
�1 the ligand-centered LC state’s contributions

become more important with two intense peaks calculated at 33,600 cm�1 (S24) and

39,520 cm�1 (S44). These LC states and the peripheral transitions calculated above

33,360 cm�1 contribute to the two intense experimental UV bands centered at

34,840 and 40,820 cm�1. Whereas the maximum observed at 34,840 cm�1 is well

reproduced by the theoretical “spin-free” spectrum, the maximum at 40,820 cm�1 is

red shifted by 0.5 eV by the calculation. Moreover, the theoretical maximum at

36,160 cm�1, not observed in the experimental spectrum, corresponds to a metal-

centered transition corresponding mainly to a dIr! 6 s excitation with a diffuse

Rydberg character. Knowing that TD-DFT is not the method of choice for describ-

ing the Rydberg excited states [113], this assignment has to be taken with care. The

quality of the upper part of TD-DFT spectrum could certainly be improved by

requesting more roots (actually 200).

The experimental and theoretical maxima of the first band observed between

20,000 and 25,000 cm�1 do not coincide exactly, the theoretical band being slightly

shifted to the red. However, several MLCT states with rather large oscillator

strengths are calculated in this region (Table 1). The accuracy of the calculations

performed in vacuum does not allow further comparison. The data reported in

Table 1 illustrate the high density of singlet and triplet excited states within

Table 2 TD-DFT/PW91 “spin-orbit” states (in cm�1) of fac-[Ir (ppy)3] and associated oscillator

strengths ( f> 0.005) (adapted from Brahim and Daniel [80])

State Compositiona
Transition

energy in cm�1
Transition

energy in eV f

E3 23% S5 12% S2 12% T5 20,080 2.51 0.011

E5 54% S5 22% S7 21,280 2.66 0.017

E6 41% S7 32% T7 22,720 2.84 0.017

E7 68% S8 23,120 2.89 0.014

A2 90% S9 23,440 2.93 0.030

A5 25% S17 20% T12 17% S12 29,680 3.71 0.010

A6 66% S17 16% S12 29,840 3.73 0.009

A11 38% S22 13% S24 10% T28 32,400 4.05 0.030

A12 74% S18 32,560 4.07 0.040

E12 27% S21 8% S23 33,280 4.16 0.015

E13 38% S24 20% S22 33,280 4.16 0.053

E25 25% S33 12% T36 37,040 4.63 0.019

A22 16% S36 14% T34 10% T36 37,120 4.64 0.017

A23 18% T36 15% S36 11% S35 37,200 4.65 0.027

A24 65% S34 37,440 4.68 0.054

A28 73% S44 39,520 4.94 0.080

E30 82% S45 40,000 5.00 0.019

A29 31% T43 10% S44 40,640 5.08 0.012
aThe label of the singlet (Sn) and triplet (Tn) states refer to Table 1
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3.4 eV specific to this class of molecules representative of highly luminescent

transition metal complexes.

From the results reported above for the reference molecule, namely the complex

fac-[Ir (ppy)3] 1, we can conclude that the chosen computational strategy is

reasonable, leading to realistic structural and spectroscopic properties. The quality

of the PW91 based on generalized gradient approximation (GGA) functional must

be pointed out for this class of compact nearly spherical molecules with bulky

ligands. This surprisingly good agreement between the TD-DFT/PW91 absorption

spectrum in vacuum and the experimental one could also be due of compensation of

errors. Solvent corrections could induce red shift whatever the functional is, and

could improve the TD-DFT/B3LYP spectrum as well [114]. However, the presence

of LLCT states in the lowest part of the TD-DFT/B3LYP theoretical spectrum

indicates a particular problem of charge transfer description in this class of mole-

cules with the hybrid functional. This failure of the B3LYP functional for this class

of molecules is not surprising and has already been observed for other Ir(III)

complexes with phenylisoquinoline phenylpyridine ligands [81].

When taking into account SOC, the density of states does increase drastically by

the splitting of the triplet states. The A and E “spin-orbit” states in C3 point group

reported in Table 2 are generated by the “spin-free” 1,3A and 1,3E states according to

the zero-field splitting. Each 3A state is split into A +E, each 3E state into E +E+A.
1A remains A and 1E remains E in the so-called double group representation.

As already observed in other theoretical studies [75–79] the singlet/triplet

mixing induces a decrease of the intensities and a red shift (1,600 cm�1) of the

visible part of the spectrum because triplet states gain weak oscillator strengths

(<10�3). Whereas a few states remain nearly pure singlet or triplet, most of the

“spin-orbit” excited states reported in Table 2 present mixed character. Another

consequence of the SOC effects on the absorption spectrum of fac-[Ir (ppy)3] 1a is

an increase of the MLCT/LC mixing in the lowest part of the spectrum.

Whereas the “spin-orbit” states A and E calculated between 19,120 cm�1 and

21,760 cm�1 remain essentially MLCT, the 1E (S7, f¼ 0.041), for instance, gains

32% of LC contribution by coupling with the 3E (T7) leading to the E6 “spin-orbit”

state calculated at 22,720 cm�1 of decreasing intensity ( f¼ 0.0017). The visible

band calculated between 17,000 and 25,000 cm�1 (Fig. 1) is enlarged and decreases

in intensity compared to the one calculated in the “spin-free” spectrum. This band is

composed essentially of MLCT states (E1–E7, A1, A2). Whereas the global

energetics and the shape of the absorption spectrum of fac-[Ir (ppy)3] 1 is only

slightly modified by SOC effects, the character of the transitions is affected. The

main consequence is an increase of mixed LC/MLCT character of the excited states

above 30,000 cm�1. The two intense LC peaks S24 ( f¼ 0.106) and S44 ( f¼ 0.109)

(Table 1) decrease in intensity, either by coupling with MLCT states or by coupling

with triplet states. The S44 state ( f¼ 0.109) is not affected energetically, remains

LC in character, but decreases in intensity by coupling with several triplet states,

leading to the “spin-orbit” state A28 ( f¼ 0.080).
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From the SOC/TD-DFT theoretical study of the absorption spectra of the

reference [Ir (ppy)3] 1 and CO/Cl substituted [Ir (ppy)2(CO)(Cl)] 2 complexes,

several conclusions have been reached.

Whereas the spin-orbit effects are significant for [Ir (ppy)3] 1, they do not modify

drastically the absorption spectrum of [Ir (ppy)2(CO)(Cl)] 2. The negligible spin-

orbit effects, especially the minor splitting of the lowest T1 state of mixed XLCT/

MLCT character in the CO/Cl substituted complexes, is responsible for distinct

emission properties which differ from those of the reference complex [Ir (ppy)3]

characterized by low-lying MLCT states.

This investigation of two molecules representative of Ir(III) phenyl pyridine

complexes with specific emissive properties confirms the experimental trends and

brings a detailed assignment of the absorption spectra including spin-orbit effects

by adding new elements to the recent theoretical studies performed on the refer-

ence [Ir(ppy)3] complex [115–119]. Introduction of spin-orbit interactions high-

lights the complexity of the absorption spectroscopy in third-row transition metal

complexes and gives a new interpretation of the emissive properties in this class of

molecules. This last point is emphasized in Sect. 4 dedicated to emission

spectroscopy.

3.2 Electronic Spectroscopy of Re(I) Complexes

In this joined experimental/theoretical study, the lowest lying spectral transitions in

[ReX(CO)3(bpy)] (X¼Cl, Br, I; bpy¼ 2,20-bipyridine) complexes (Scheme 2)

were calculated by means of SOC-TD-DFT in solvent and SOC multi-state com-

plete active space second order perturbation theory SOC-MS-CASPT2 in vacuum,

and compared with absorption spectra measured in different solvents [79].

This study is part of a more ambitious theoretical project dedicated to the

understanding and simulation of ultra-fast electronic-vibrational relaxation dynam-

ics that characterizes these complexes upon excitation at 400 nm [120–122].

Whereas both spin-free and spin-orbit quantum chemical calculations

(MS-CASPT2, TD-DFT) simulate UV–vis electronic spectra of [Re(X)

(CO)3(bpy)] complexes (Fig. 2) in reasonable agreement with experiment

Re
OC

OC

CO

N

N

X

Scheme 2 Schematic representation of the complexes [ReX(CO)3(bpy)] (X¼Cl, Br, I;

bpy¼ 2,20-bipyridine)
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(Fig. 3), they give a very different interpretation of the absorption bands and only

the SO treatment can account for all the observed spectral features, namely the

low-energy shoulders.

SO-TD-DFT transitions are spread over a broader energy range and have more

similar relative intensities than the SO-MS-CASPT2 ones. The SO-TD-DFT theo-

retical spectrum thus accounts better for the large widths and shoulders observed

experimentally. The SO-MS-CASPT2 and solvent corrected SO-TD-DFT transi-

tion energies calculated for the lowest states of [Re(I)(CO)3(bpy)] are reported in

Table 3. In contrast to the experiment, SO-MS-CASPT2 predicts an increase of the

lowest absorption band intensity on going from Cl to Br and I, with increasing

oscillator strengths of the strongest contributing transition in the order Cl

( f¼ 0.038)<Br (0.068)< I (0.082). On the other hand, SO-TD-DFT predicts

decreasing molar absorptivity of the lowest band Cl ( f¼ 0.047)>Br (0.036)> I

(0.013), in qualitative agreement with the experimental trend (Fig. 3). This differ-

ence between the two computational techniques is probably caused by a limited

active space, smaller MLCT-XLCT delocalization, and the neglect of solvent

effects in SO-MS-CASPT2.

Fig. 2 “Spin-orbit” TD-DFT/PBE0/COSMO-CH2Cl2 absorption spectra of [Re(X)(CO)3(bpy)]

(X¼Cl, Br, I] (left) and comparison between “spin-free” (right, top) and “spin-orbit” (right,
bottom) TD-DFT and MS-CASPT2 transitions of [Re(I)(CO)3(bpy)] (reprinted with permission

from Heydova et al. [79] Copyright 2012 American Chemical Society)
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Within the TD-DFT spin-free model, the lowest absorption band originates from

a single strong transition and two satellites occurring at higher and lower energy,

respectively. The spin-orbit analysis interprets the lowest band as resulting from a

whole series of weaker transitions and assigns the two lowest lying shoulders as

transitions to spin-mixed states. Notably, even the strongest transition contributing

to the lowest band possesses only partial singlet character which decreases in the

order Cl (88%)>Br(81%)>> I(58%) at the SO-TD-DFT level (Table 3).

A correlation diagram between “spin-free” and “spin-orbit” states of [ReI

(CO)3(bpy)] is shown in Fig. 4. Left and right columns show “spin-free” singlet

and triplet states, respectively, and the SO states are presented in the middle, with

dashed lines indicating the principal contributions. Figure 4 illustrates the spin-orbit

interactions of “spin free” singlet and triplet states in the formation of two sets of

“spin orbit” states. Transition to the fourth and sixth “spin orbit” excited states cA0

and dA0 have an oscillator strength of 0.0061 and 0.0018, respectively, explaining

the occurrence and relative intensities of the two low-energy bands in the experi-

mental spectrum of [ReI(CO)3(bpy)] and the presence of shoulders for the other two

complexes. These features cannot be accounted for by the “spin-free” calculations,

where the lowest transitions to 1,3A00 and 3A0 states are forbidden.
Including SOC explicitly not only improves the quantitative correspondence

with the experimental spectra but also provides a physically more correct insight

into the nature of the excited-states involved and their deactivation pathways.

Fig. 3 Comparison between experimental UV–vis spectra in different solvents (left) and ”spin-

free” TD-DFT/PBE0/COSMO-CH2Cl2 absorption spectra (right) of [ReX(CO)3(bpy)] (X¼Cl,

Br, I) (reprinted with permission from Heydova et al. [79] Copyright 2012 American Chemical

Society)
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Similar SOC effects have been put in evidence on the electronic spectroscopy of

[Re(imidazole)(CO)3(phen)]
+ [76] for which correlation diagrams between “spin-

free” and “spin-orbit” states become very complicated as illustrated in Fig. 5.

The lowest parts of the two correlation diagrams (Fig. 5) are qualitatively similar

with little differences because of solvent corrections not being included in the

MS-CASPT2 calculations. The lowest MLCT states (a3A00, a3A0, b3A00) remain

predominantly triplets but contribute to the “spin-orbit” spectrum by admixture of

singlets.

Table 3 “Spin orbit” MS-CASPT2 and solvent corrected (CH2Cl2) SO-TD-DFT transition

energies to the lowest excited states of [Re(I)(CO)3(bpy)], associated wavelengths, in nm and

oscillator strengths f

SO

state

Composition of the SO-states in terms

of spin-free states

Transition energies

in cm�1
Wavelength

in nm f

MS-CASPT2

2A0 a3A00 (87%) + b1A0 (9%) 21,085 474 0.0078

1A00 a3A00 (86%) + a3A0 (12%) 21,100 474

3A0 a3A00 (87%) + a3A0 (9%) 21,110 474 0.0031

2A00 a1A00 (84%) + a3A0 (14%) 21,400 467 0.0048

3A00 a3A0 (86%) + a3A00 (9%) 24,460 409 0.0002

4A0 a3A0 (86%) + a3A00 (12%) 24,500 408 0.0009

4A00 a3A0 (85%) + a1A00 (11%) 24,570 407 0.0008

5A0 b1A0 (86%) + a3A00 (12%) 24,930 401 0.082

6A0 b3A00 (90%) + c3A0 (7%) 27,800 360 0.0001

5A00 b3A00 (90%) + c3A0 (8%) 27,800 360

7A0 b3A00 (93%) 27,825 359 0.0011

TD-DFT

1A00 a3A00 (51%) + a3A0 (47%) 19,160 522

2A0 a3A00 (52%) + a3A0 (47%) 19,170 521 0.0001

2A00 a3A0 (55%) + a1A00(44%) 19,410 515 0.0003

3A0 a3A00 (65%) + a1A0 (31%) 19,560 511 0.0073

3A00 a3A0 (48%) + a3A00 (44%) 21,920 456

4A0 a3A0 (47%) + a3A00 (45%) 22,010 454 0.0019

4A00 a1A00 (51%) + a3A0 (44%) 22,200 450 0.0003

5A0 b1A0 (58%) + a3A00(30%) 22,535 444 0.013

5A00 b3A0 (84%) 24,960 400

6A0 b3A00 (84%) 24,970 400

7A0 b3A00 (94%) 25,120 398 0.0015

6A00 b3A00 (49%) 26,040 384 0.0001

7A00 b3A00 (95%) 26,205 382

8A0 b3A0 (30%) + c1A0 (26%) + c3A0 (14%) 26,320 380 0.0006

9A0 c3A0 (40%) + b3A0 (36%) + d1A0 (6%) 26,630 375 0.0036

Only the contributions of the “spin-free” states �5% are given (the “spin-free” and “spin orbit”

electronic ground state are labeled a1A0 and 1A0, respectively) (adapted with permission from

Heydova et al. [79] Copyright 2012 American Chemical Society)
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Fig. 4 Correlation of SO-TD-DFT/PBE0 lowest singlet (left) and triplet (right) “spin-free” states
with “spin-orbit” states (middle) of [Re(I)(CO)3(bpy)] in solvent. Red, blue, and black arrows
indicate transitions with oscillator strengths larger than 0.01, 0.001–0.01, and 0.0005–0.001,

respectively (reprinted with permission from Heydova et al. [79]. Copyright 2012 American

Chemical Society)

Fig. 5 Correlation of (a) SO-MS-CASPT2 and (b) SO-TD-DFT between singlet (left) and triplet

(right) “spin-free” states and “spin-orbit” states (middle) of [Re(imidazole)(CO)3(phen)]
+. Red,

blue, and black arrows indicate transitions with oscillator strengths larger than 0.01, 0.001–0.01,

and 0.0005–0.001, respectively (adapted from Bakova et al. [76])
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4 Emission Spectroscopy

This chapter is dedicated to the emissive properties of third-row transition metal

complexes determined on the basis of optimized structures of the low-lying singlet

and triplet states. Whereas the S0! Sn electronic absorption spectra are easily

obtained by means of TD-DFT with or without solvent corrections, the emissive

properties originating from Sn, Tn! S0 transitions have been difficult to analyze

until now because the determination of the degree of mixing between the singlet

and triplet states by SOC and the systematic search for nuclear distortions in several

close-lying excited states is still a challenge for computational chemistry. We may

distinguish between two categories of complexes, the first represented by Ir(III)

complexes seats of long-lived luminescence, most of the time attributed to the

lowest triplet T1 state. The second class of molecules represented by Re

(I) complexes is characterized by shorter lived signals following a cascade of

ultra-fast luminescence processes attributed to Sn as well as Tn states. Obviously

all in-between luminescent behaviors may occur in transition metal complexes. The

Pt(II) square planar complexes are a pertinent example. The purpose of this section

is to present three case studies illustrating the contribution of TD-DFT and linear

and quadratic response theories including SOC to the problematic of luminescent

processes in third-row transition metal complexes.

4.1 Phosphorescence of Ir(III) Complexes

The dipole moment of T1! S0 spin-forbidden phosphorescent transition in Ir(III)

complexes with large π-conjugated ligands may acquire some non-negligible

strength by means of strong SOC. In a series of theoretical studies based on

TD-DFT and using linear and quadratic response theory, Minaev et al. [42, 81,

123] investigated the SOC effects and radiative lifetimes to elucidate and compare

the mechanism of phosphorescence in fac-[Ir(ppy3)] (Scheme 1, 1) and fac-[Ir
(piq)x(ppy)3�x] (ppy¼ 2-phenlypyridine; piq¼ 1-phenylisoquinoline; n¼ 3,4)

complexes 3, 4, and 5 (Scheme 3).

In this study a semi-empirical effective single electron SOC operator [73, 74]

combined with effective core potentials (ECP) is used, whereas the τk phosphores-
cence lifetime from the three spin-orbit sub-levels of T1, |T

k
1i (k¼ 1,2,3) is calcu-

lated from

1

τk
¼ 4

3t0
α30 ΔEk
� �3 X

α2 x;y;zf g
Mk
α

�� ��2; ð2Þ

where t0 ¼ 4πε0ð Þ2h3=mee
4, α0 is the fine-structure constant, ΔEk is the transition

energy from S0 to |Tk
1i, and Mk

α is the α-axis projection of the electric dipole
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moment between the ground state and the k-spin sub-levels of the triplet T1. Both

the S0 electronic ground state and triplet T1 states were fully optimized at the

DFT/B3LYP level.

In the pioneering study performed on the reference complex [Ir (ppy)3], and the

piq-substituted complexes depicted in Scheme 3, neither solvent nor vibronic

coupling effects have been included. The electric dipole moments associated with

the transitions between T1 and the ten lowest Tn triplets and between S0 and the ten

lowest Sn singlets, as well as SOC matrix elements between T1, S0, and the ten

lowest Sn singlet states have been computed [123].

From this detailed investigation it has been shown that at vertical S0!T1

transition the T1 state is highly delocalized over the three ligands with a mixed

LC/MLCT character. When relaxed to its minimum potential energy, T1 becomes

Scheme 3 Structure of the [Ir (piq)x(ppy)3�x] complexes
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localized on a single ligand. The zero-field splitting (ZFS) spin sub-levels and their

spontaneous emission characteristics have been obtained at some intermediate

geometry between S0 and T1 structures because of the anharmonicity of the

potential associated with T1. The large SOC between T1 and the S5 singlet MLCT

state together with large dipole interactions between S5 and S0 are responsible for

the intense phosphorescence of the reference complex [Ir (ppy)3]. The ZFS

sub-levels of T1 calculated at S0 and T1 geometries are reported in Table 4

The values reported in Table 4 and the lowest position of the Tz
1 sub-level, as

well as the calculated lifetimes originated from these spin-orbit sub-levels agree

rather well with the data obtained by temperature-dependent refined spectroscopic

experiments [124]. Moreover, the theoretical model, despite the neglect of vibronic

coupling effects, recovers the overall phosphorescence experimental lifetime of

~2 μs in the high temperature limit as soon as the S0 geometry is chosen in the

phosphorescence rate calculation.

On the basis of the same computational strategy, the photophysical properties of

[Ir (piq(ppy)2] 5, [Ir (piq)2(ppy)] 4, and [Ir(piq)3] 3 have been elucidated and

successfully compared to the accurate experimental data available for this class

of molecules [81]. It has been shown that increasing the number of piq ligands shifts

the emission maximum to the red by about 10 nm and enhances radiative rate

constants by 60% within the range of the experimental trends. Interestingly, the

SOC strength and the radiative rate constant are diminished by the presence of

fluorine atoms in [Ir(Fnppy)3] complexes [42] resulting from the inverse heavy-

atom effect also observed in the [Re (X)(CO)3(bpy)] complexes discussed in

Heydova et al. [79], Cannizzo et al. [120], and Gourlaouen et al. [121].

4.2 Emissive Properties of Square Planar Pt(II) Complexes

A recent systematic study of the optical properties of a series of five Pt(II) planar

complexes with bidentate ligands, namely [Pt (bpy)Cl2] (bpy¼ 2,20-bipyridine) 6
and [Pt (ppy)Cl2]

� (ppy¼ 2-phenylpyridine) 7 and terdentate ligands, namely

[Pt (tpy)Cl]+ (tpy¼ 2,20:60,200-terpyridine) 8, [Pt (phbpyR)Cl] (phbpy¼ 6-phenyl-

2,20-bipyridine; R¼H) 9, and [Pt (dpybR)Cl] (dpyb¼ 2,6-di(2-pyridyl)benzene;

R¼CH3) 10 (Scheme 4) by means of TD-DFT including solvent correction has

allowed us to rationalize the puzzling emissive behavior of this class of

molecules [75].

Table 4 ZFS sub-levels (in cm�1) of T1 state of [Ir (ppy)3] at the DFT/B3LYP/6-311G*/SDD

level (reprinted with permission Jansson et al. [123] Copyright 2007 Elsevier)

T1 spin-orbit sub-levels S0-geom T1-geom

Tz
1 19,989.06 16,609.87

T
y
1

20,021.79 16,663.47

Tx
1 20,092.98 16,678.48
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In this example, SOC has been included only for the computation of the

absorption spectra and has been neglected for the determination of the emission

wavelengths reported in Table 5. The nearly pure triplet character of the “spin-

orbit” states and the negligible singlet/triplet mixing in these molecules justify this

choice [75].

On the basis of fully optimized structures and energetics, we have shown that the

structures remain nearly planar in the low-lying singlet and triplet excited states of

charge transfer character, namely MLCT and XLCT, whereas a significant distor-

tion corresponding to the out-of-plane-bending of the Pt–Cl bond characterizes the

geometry of the metal-centered (MC) states. The presence of these strongly

distorted non-radiative MC states minima, situated well below the charge transfer

states minima (ΔE¼�0.3 to �0.8 eV) and easily accessible upon irradiation in the
visible, explains the poor luminescence of the bipyridine and terpyridine

non-cyclometalated complexes 6 and 8 at room temperature.

In contrast, the minima of the emissive states of mixed MLCT/XLCT/LC

character are efficiently populated in 7, 9, and 10, especially in the terdentate

complexes. The luminescence of complex 10, cyclometalated in axial position, is

particularly efficient because the minimum of the lowest emissive state is well

separated from those of the MC states (ΔE¼ +0.23 eV) in contrast to its analog,

complex 9, cyclometalated in lateral position where the emissive MLCT/LC state

minimum is nearly degenerate with the lowest MC state minimum (Δ¼ +0.01 eV).

Whereas SOC correction probably overstabilizes the MC states with respect to the

charge transfer states, it should not overturn the relative order of the minima

Scheme 4 Structures of [Pt (bpy)Cl2] 6, [Pt (ppy)Cl2]
�
7, [Pt (tpy)Cl]+ 8, [Pt (phbpyR)Cl] 9, and

[Pt (dpybR)Cl] 10
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reported in Table 5. Indeed, when calculating the triplet spin-orbit sub-levels by

applying SOC correction at their optimized geometries the stabilization of the

minima never exceeds 0.1 eV as illustrated by the results obtained for Re(I) car-

bonyl α-diimine complexes discussed in the next section.

The presence of MC states situated well above the MLCT/XLCT/LC emissive

states, needing strong structural stabilizing out-of-plane deformation for being

populated, ensures the effectiveness of luminescence in this class of Pt

(II) molecules. This study has shown that the usual oversimplified picture of a

single T1 triplet state for explaining luminescent properties of the Pt(II) square

planar complexes is far from realistic.

4.3 Luminescence of Re(I) Complexes

In the following example, emissive properties of [ReX(CO)3(bpy)] (X¼Cl, Br, I;

bpy¼ 2,20-bipyridine) complexes (Scheme 2) have been interpreted on the basis of

TD-DFT Tn! S0 transition energies calculated at the fully optimized geometries of

the six low-lying singlet and triplet excited states and corrected by SOC

(Table 6) [121].

The “spin-free” and “spin-orbit” excited states reported in Table 6 are of mixed

either MLCT/XLCT (X¼Cl and Br; complexes 11 and 12) or XLCT/MLCT

(X¼ I; complex 13) character and potentially emissive after absorption at

Table 5 TD-DFT/B3LYP vertical Tn!S0 transition energies (in eV) and corresponding emis-

sion wavelengths (in nm) of complexes 6 to 10 depicted in Scheme 4 (adapted with permission

from Gourlaouen and Daniel [75] Copyright 2014 Royal Society of Chemistry)

State

Vertical Tn!S0
transition energy (eV)

Emission

wavelength (nm)

[Pt (bpy)Cl2] 6 T1 MC �0.36 –

T2 MC/XLCT 0.92 1,355

[Pt (tpy)Cl]+ 8 T1 MC 0.41 3,012

T2 MLCT/LC 1.92 645

[Pt (ppy)Cl2]
� 7 T1 MLCT/XLCT/LC 2.34 530

T2 MC/LC 2.28 544

T3 MC 2.33 531

T4 MC/LMCT/MLCT 2.41 515

[Pt (phbpyH)Cl] 9 T1 MLCT/LC 2.02 613

T2 MC 0.43 2,852

S1 MLCT/LC 2.35 527

T3 MLCT/XLCT/LC 2.71 458

[Pt (dpybR)Cl] 10

(R¼CH3)

T1 MLCT/LC/XLCT 2.42 513

T2 MLCT/LC/XLCT 2.48 500

T3 MC 0.98 1,271

T4 MC 1.47 846
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Table 6 SOC-TD-DFT vertical Sn, Tn!S0 transition energies (in eV) and corresponding

emission wavelengths (in nm) of the lowest relaxed singlet and triplet states of [Re(Cl)

(CO)3(bpy)] 11, [Re(Br)(CO)3(bpy)] 12, and [Re(I)(CO)3(bpy)] 13 calculated in CH3CN (adapted

from Gourlaouen et al. [121])

State

Vertical Sn, Tn!S0
transition energy (in eV)

Emission wavelength (in nm)

with SOC

X¼Cl 11

a3A00 2.048 610 (A00)

2.049 610 (A0)

2.060 607 (A0)

a3A0 2.171 575 (A00)

2.172 576 (A0)

2.191 570 (A00)

a1A00 2.173 575 (A00)

b1A0 2.521 496 (A0)

b3A00 2.593 482 (A0)

2.648 472 (A00)

2.681 466 (A00)

X¼Bra 12

T1 a
3A00 2.054 609 (A00)

2.055 608 (A0)

2.069 604 (A0)

T2 a
3A0 2.130 587 (A00)

2.130 587 (A0)

2.145 583 (A00)

S1 a
1A00 2.169 576 (A00)

S2 b
1A0 2.475 505 (A0)

T3 b
3A00 2.565 487 (A0)

2.675 467 (A00)

2.675 467 (A0)

X¼ I 13

a3A00 2.017 620 (A00)

2.018 619 (A0)

2.043 612 (A0)

a3A0 2.016 620 (A00)

2.017 620 (A0)

2.027 617 (A00)

a1A00 2.102 595 (A00)

b1A0 2.164 577 (A0)

b3A00 2.443 512 (A0)

2.589 483 (A0)

2.609 479 (A00)
aThe labels Sn and Tn are used in Sect. 5.3 dedicated to the ultra-fast luminescence decay of

[Re (Br)(CO)3bpy]
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400 nm. We may notice a very small spin-orbit splitting of the triplets. The

structural deformations when going from the electronic ground state to the relaxed

low-lying excited states are quite small. After nuclear relaxation into the potential

wells of the excited states, the Re–X shortening does not exceed 0.097 Å in the

singlet states and 0.043 Å in the triplet states. This deformation is accompanied by

an elongation of the Re–Cax bonds (<3%) together with a minor shortening of the

Re–N bonds in all excited states.

According to the calculations, the luminescence should start from the b1A0 state
calculated at 505 nm (or 496 nm with SOC) and 522 nm (or 505 nm with SOC) for

the chloride 11 and bromide 12 complexes, respectively. These values lead to

theoretical Stokes shifts of 5,640 (5,200) cm�1 and 5,880 (5,640) cm�1, respec-

tively, in agreement with the experimental data (~6,000 cm�1). Accordingly, the

two complexes behave similarly and the small calculated red shift is also observed

on the experimental luminescence spectra when going from Cl to Br [120].

The emission wavelengths reported in Table 6 correlate nicely with the three

domains of luminescence detected by ultra-fast resolved spectroscopy [120],

namely in the ranges 500–550, 550–600, and 600–620 nm for the three molecules.

It is noteworthy that both b3A00 and b1A0 states participate in the early short-lived

emission whereas both a1A00 and a3A0 contribute to the intermediate band. The only

purely phosphorescent process is the long-lived emission generated by a3A00 in the

chloride and bromide complexes and by both a3A0 and a3A00 in the iodide complex,

these states keeping a nearly pure triplet character.

5 Ultra-Fast Intersystem Crossings

This chapter is devoted to the simulation of ultra-fast ISC processes in first-,

second- and third-row transition metal complexes by means of various approaches,

namely the time-dependent formalism within the Condon approximation, the

non-adiabatic surface-hopping semi-classical method, and the quantum wavepacket

dynamics propagation.

5.1 Excited States Dynamics in Spin Crossover Fe (bpy)3]
2+

Complex

A recent promising approach, applied to the spin crossover complex [Fe (bpy)3]
2+

[90] has been developed by C. M. Marian et al. [101, 102]. This method is based on

time-dependent calculations of ISC rates in the multi-mode harmonic oscillator and

Condon approximations and beyond, where the electronic spin-orbit matrix ele-

ments depend linearly on the nuclear coordinates within a spin-vibronic coupling

scheme. The ISC rate can be decomposed into three contributions, namely direct,

mixed direct vibronic, and vibronic.
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The deactivation mechanism of light-induced spin crossover of [Fe (bpy)3]
2+

from the 1MLCT state to the metastable high spin 5T2g state has been the subject of

a number of various experimental and theoretical studies [90] (and references

therein). Ultra-fast optical and X-ray spectroscopy in solution [95, 96] pointed to

the population of the high spin state within 200 fs, starting with an ultra-fast
1MLCT! 3MLCT ISC occurring in less than 30 fs (Scheme 5). Moreover, X-ray

absorption near-edge structure (XANES) measurements put in evidence interme-

diate 3MC states the role of which in the mechanism is still uncertain. The life time

of the high spin state is relatively short, being of the order of 650 ps.

The purpose of this recent theoretical investigation [90] based on previous

quantum chemical studies by the same authors [125] is to focus on the role of

SOC and ultra-fast ISC in the deactivation mechanism of [Fe (bpy)3]
2+. Geometries

and vibrational frequencies obtained from TD-DFT calculations combined with

CASPT2 relative energies of the different spin states and SOC matrix elements

calculated at the RASSI level are used in a subsequent investigation of the excited

states dynamics. The ISC rate constants are computed from Fermi’s golden rules in
the Condon approximation within a time-dependent approach [101, 102]:

kISC ¼ ϕih jĤ SO ϕ f

�� ��� ��2ð1
�1

dtG tð Þeit ΔEifþ1=2TrΩiÞð ð3Þ

Scheme 5 Schematic

diagram of the
1MLCT! 5T2g

deactivation channel in

[Fe (bpy)3]
2+ (adapted from

Bressler et al. [95, 96])
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where ϕi and ϕf are the initial and final electronic states, respectively, Ωi is a matrix

that contains vibrational frequencies of the initial state, andG(t) is a time-dependent

correlation function which contains information about the vibrational frequencies

and normal coordinates of the initial and final states.

The SOC matrix of 144� 144 dimension generated by the 16 lowest electronic

states in each multiplicity contains nearly 4,500 non-zero elements. This illustrates

the complexity of the spin-orbit interactions in transition metal complexes charac-

terized by a high density of various electronic states. The 1MLCT/3MLCT and
1MLCT/3MC SOC do not exceed 200 cm�1 and the 3MLCT/5T2g is very small

(~6 cm�1). In contrast, the 3MC/5T2g and 3MC/1A1g are characterized by large

values (~500 cm�1). The calculated 1MLCT! 3MLCT and 1MLCT! 3MC ISC

rates are reported in Table 7.

The 3MLCT! 5T2g ISC rate has been estimated to be greater than 10 ps,

whereas the 3MC! 5T2g ISC process is fast with a rate estimated to be 62 fs.

This gives an overall time scale qualitatively comparable to the experimental

one [95].

This theoretical study has pointed to a step-by-step mechanism showing that the
3MC states play a key role in the deactivation process from the initially populated
1MLCT state.

The interest of the method is that spin-orbit and vibrational contributions to the

ISC rates can be easily extracted. However, some drawbacks should be pointed out.

In this approach the vibrational relaxation at Franck–Condon and the variation of

SOC as a function of the normal modes are not considered. The validity of the

Fermi golden rule approximation is questionable because we are facing ultra-fast

non-BO processes which need to be described by spin-vibronic coupling model

Hamiltonians [84, 87, 88]. An alternative is to run semi-classical trajectories on

PES computed on the fly, coupled non-adiabatically and by SOC. Such a tentative

proposal, under some approximation, is presented in the next example dedicated to

the 1MLCT! 3MLCT ISC in [Ru (bpy)3]
2+ [126]. This type of simulation is based

on TD-DFT calculations of the energies valid for second- and third-row transition

metal complexes but hardly applicable to first-row transition metal complexes such

as [Fe (bpy)3]
2+ because of electron correlation and multireference electronic

configurations.

Table 7 Calculated 1MLCT! 3MLCT and 1MLCT! 3MC intersystem-crossing rates in

[Fe (bpy)3]
2+

ϕi ϕf kISC (s�1) τ (fs)
1MLCT 3MLCT 3.31� 108 28
1MLCT 3MC 2.28� 108 23
1MLCT 3MCa 2.26� 107 718

Reprinted with permission from Sousa et al. [90] Copyright 2013 Wiley
aThis 3MC state is the lowest one in Scheme 5
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5.2 Ultra-Fast Relaxation Processes in [Ru (bpy)3]
2+

Complex

The first simulation based on TD-DFT energies and forces (gradient and Hessian)

computed on-the-fly and introducing both vibronic and SO coupling effects has

been able to reproduce semi-quantitatively the ultra-fast relaxation of the photo

excited 1MLCT state of [Ru (bpy)3]
2+ (bpy¼ 2,20-bipyridine) followed by ISC to

the lowest 3MLCT state [126].

This study focuses on the ultra-fast excited states dynamics of [Ru (bpy]2+ in

water with emphasis on the ISC processes through the seven low-lying singlet and

triplet states. Time-resolved spectroscopy [127, 128] has shown a fast decay within

less than 100 fs after absorption leading to a long-lived 3MLCT state during a few

hundreds of ps.

The non-adiabatic dynamics of the early events (50 fs) is simulated on the fly by

means of linear response TD-DFT-based trajectories surface hopping according to

the Tully algorithm [129]. SOC between qualitatively selected singlet and triplet

states is obtained from a perturbative approach [130].

In order to take into account the solvent effects, the initial system constituted of

the Ru(II) complex surrounded by 3,298 water molecules and the counter ions Cl�

is heated at 300 K. The non-BO dynamics represented by the panels in Fig. 6 show

that the internal conversion processes through the individual singlet states manifold

occur within a few to 10 fs, showing strong singlet triplet SOC occurring within the

Fig. 6 Non-adiabatic molecular dynamics of [Ru (bpy)3]
2+ in water represented by the population

of the low-lying seven singlet (in gray) and seven triplet states (in red) as function of time. The

SOC at states crossing are represented by white (weak SOC), gray (medium SOC), and black
(strong SOC) filled circles (reprinted with permission from Tavernelli et al. [126] Copyright 2011

Elsevier)
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first 40–50 fs. The largest SOC is predicted between the lowest 1MLCT and its

associated triplet state. The importance of solvation dynamics is also emphasized.

The drawback of this pioneering promising approach is the limited number of

trajectories and the qualitative estimation of the SOC, the value of which should be

determined quantitatively on the fly as well. However, this strategy opens the route

to new applications in large transition metal complexes as soon as the electronic

structure can be described correctly by means of TD-DFT.

5.3 Ultra-Fast Luminescence Decay in [Re (Br)(CO)3(bpy)]
Complexes

In this very recent application we focus on the excited states decay of [Re (Br)

(CO)3(bpy)] within the first 500 fs by means of non-adiabatic quantum dynamics

including spin vibronic couplings within the linear approach and based on TD-DFT

energies and frequencies [122]. For this purpose we have constructed a model

Hamiltonian including five electronic states, namely S2 which absorbs at 400 nm,

S1 and the three lowest triplet states T3, T2, and T1 (Scheme 6) and up to six

vibrational normal modes. The five states are coupled by SOC and vibronically. The

SOC values are assumed to be constant as functions of the nuclear displacements.

This is justified in a first approximation, for the bromide-substituted complex in

which the calculated SOC remain nearly constant as function of the Re–Br

stretching bond [121]. The calculated emission wavelengths of these five excited

states, including SOC, are reported in Table 6 (Sect. 4.3). To validate the PES

generated within the LVC harmonic model starting from Franck–Condon geome-

try, we have computed the TD-DFT PES as function of the mass and frequency

weighted Re–Br stretching normal mode [121].

Scheme 6 proposes a qualitative correlation between the experimental data

obtained from time-resolved luminescence spectroscopy and the state diagram

built on the basis of the calculated emission wavelengths reported in Table 6

(Sect. 4.3).

The purpose of the simulation based on wave packet propagations with multi-

configuration time-dependent Hartree MCTDH [131, 132] is to recover the

populations of the involved electronic states as function of time within the first

500 fs and to interpret the ultra-fast luminescent decay observed

experimentally [120].

The interplay between SOC and vibronic coupling, based on symmetry rules,

controlled entirely the ISC process. Indeed, when including SOC matrix elements

together with four normal modes of symmetry a0, namely two modes associated

with the Re–Br stretching and two modes associated with the Re–CO stretching, we
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observe a fast and efficient population of T1 and T3 (Fig. 7, top) with a rapid decay

of the S2 population to less than 40% within 20 fs. The nearly instantaneous

population of T1 is because of a large value of SOC between this state and S2
(600 cm�1), whereas the population of T3 is controlled by the significant degree of

spin-orbit mixing and the small energy gap between this state and S2.

When two additional normal modes of symmetry a00 corresponding to out-of-

plane bending of the bpy ligand are taken into account (Scheme 7), the population

of T1 and T3, controlled mainly by SOC, is not modified but we observe a modest

population of S1 and T2 starting after a few tens of fs and increasing until a

maximum of 20% at 350 fs (Fig. 7, bottom, black dashed and red). Interestingly,

the population of T3 optimum within 25 fs decays rapidly to less than 20%. This

confirms the participation of T3 together with S2 to the early signal observed in the

500–550 nm domain of energy (Scheme 6).

The increase in population of S1 and T2 coupled by spin-orbit (>600 cm�1) and

activated by vibronic coupling follows the decay of S2 until about 300 fs, but most

of the triplet population is trapped into T1 which remains stable around 20%. As

expected from the luminescent static properties analyzed in Sect. 4.3, both S1 and

T2 should contribute to the intermediate signal observed within a few hundred of fs

Scheme 6 State diagram representing the low-lying potentially emissive singlet and triplet states

of [Re (Br)(CO)3(bpy]. Experimental data are reported on the left side (adapted from Cannizzo

et al. [120])
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Fig. 7 Non-adiabatic quantum dynamics of [Re (Br)(CO)3(bpy)] including SOC with four normal

modes associated to Re-Br and Re-CO a0 stretching modes (top) and SOC with six modes

including two normal modes associated to bpy a00 out-of-plane-bending modes (bottom). The
population of S2 (in black), S1 (dashed line), T1 (in blue), T2 (in red), and T3 (in sienna) are
represented as function of time
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between 550 and 600 nm (Scheme 6). The states population analysis at longer time

scale is meaningful because of the restricted number of active normal modes

included in the simulation. After 300 fs we observe an exchange of population,

mainly between S2 and T1 strongly coupled with SOC.

This study, which does not take into account the anharmonicity of the excited

states potentials and keeps constant the SOC values as function of the nuclear

displacements, points to the importance of spin vibronic effects in describing ISC

processes. The interplay between geometry distortion and SOC has also been

shown in the phosphorescence decay of [Ir (ppy)3] complexes described in

Sect. 4.1 and in the excited states dynamics of spin crossover complex

[Fe (bpy)3]
2+ in Sect. 5.1 of the present contribution, as well as in the pioneering

work by Domcke et al. [87].

6 Concluding Remarks

Whereas the simulation of vertical electronic absorption spectra of transition metal

complexes by TD-DFT including solvent effects via polarized continuum models

(PCM) has been consistently performed with success since the beginning of the

2000s, the coverage of spin orbit and vibronic coupling effects in this field is far

from being routine. This contribution reviews the methods available within the

TD-DFT framework for taking into account with reasonable accuracy these impor-

tant effects. Indeed, they modify the shape of the theoretical spectra and, more

importantly, revise the interpretation of the experimental features.

Whereas the absorption spectra are easily obtained by means of TD-DFT, the

emissive properties originating from Sn, Tn! S0 transitions have been difficult to

analyze until now because the determination of the degree of mixing between the

singlet and triplet states by SOC and the systematic search for nuclear distortions in

several close-lying excited states is still a challenge for computational chemistry.

The applications reported in this chapter have shown three cases for which different

computation strategies have to be developed. The first class of molecules is

represented by Ir(III) complexes, seats of long-lived luminescence, most of the

Scheme 7 Out-of-plane bending normal modes displacements of the bpy ligand of symmetry a00

calculated at 557 cm�1 (left) and 820 cm�1 (right)
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time attributed to the lowest triplet T1 state. In this case, a detailed study of spin-

induced ZFS and vibronic effects may result in a direct comparison with accurate

experimental findings. The second category of molecules represented by Re

(I) complexes is characterized by shorter lived signals following a cascade of

ultra-fast luminescence decays attributed to Sn and Tn states. The interpretation of

the processes underlying emissive properties has to be based on non-adiabatic

excited states dynamics, either within a full quantum method from first principle

or following surface hopping trajectories within a semi-classical approach. Never-

theless, a TD-DFT static approach based on the optimized structures of the key

emissive states is very useful for deciphering the mechanism as preamble to the

dynamical study. The in-between luminescent behaviors exemplified by flexible Pt

(II) square planar complexes have to be treated with care, some basic approxima-

tion such as Kasha rules being meaningless in that case as illustrated by the

applications reported in the present contribution.

The simulation of ISC processes by means of wave packet propagations on spin-

vibronic coupled multi-dimensional PES is out of reach for large transition metal

complexes. Pioneering studies based on recent methodological developments have

been able to reproduce with reasonable accuracy ultrafast luminescent time scales

observed in first-, second- and third-row transition metal complexes. Counterintu-

itive heavy atom effects on ISC kinetics observed experimentally have found

explanations in detailed theoretical analysis.

Whereas TD-DFT absorption spectra have been validated by a number of joined

experimental/theoretical studies or by comparison with accurate ab initio methods

in the past decade, we do not have the benefit of hindsight as far as the emissive

properties are concerned.

The interpretation of ultra-fast time-resolved spectroscopy outcomes is espe-

cially challenging because both spin-orbit and vibronic coupling effects have to be

considered. In the systems investigated so far involving mostly singlet and triplet

states, the standard level of approximation used for SOC assessment seems realistic.

For higher multiplicities or situations with large mixing between electronic states of

different multiplicities, a more refined treatment of spin-orbit interactions could be

mandatory. The newly developed perturbational treatment for generally applicable

high-level multireference methods is one useful approach [133].

The simulation and computation of ISC rates in pioneering applications are

based on different strategies: (1) non-adiabatic molecular dynamics where

TD-DFT is coupled to classical trajectory-based methods; (2) quantum dynamics

where both electronic and nuclear wave functions are treated exactly within a given

level of approximation; and (3) time-dependent non-radiative rate theory in the

multi-mode harmonic oscillator and Condon approximations, where the electronic

spin-orbit matrix elements depend linearly on the nuclear coordinates within a spin-

vibronic coupling scheme. As illustrated by the examples developed above for first-

, second- and third-row transition metal complexes, each approach has its strengths

and weaknesses. Several important aspects have to be considered in this expanding

field, namely the solvation dynamics, the variation of spin-vibronic couplings with

nuclear relaxation, the construction of realistic model Hamiltonians, and the
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anharmonicity of excited states potentials. One additional difficulty is the selection

of appropriate active normal modes in large complexes with metal atoms, the

nuclear flexibility of which cannot be inferred from experience gained from organic

molecules.
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24. Vlček A Jr, Busby M (2006) Coord Chem Rev 250:1755

25. Busby M, Hartl F, Matousek P, Towrie M, Vlček A Jr (2008) Chem Eur J 14:6912
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Chem Soc 133:305

33. Schinke R (1995) Photodissociation dynamics spectroscopy and fragmentation of small

polyatomic molecules, Cambridge monograph on atomic, molecular and chemical physics.

Cambridge University Press, Cambridge

34. Hochlaf M (2013) Spectroscopy and dynamics of medium sized molecules and clusters. Phys

Chem Chem Phys 15:9967

35. Daniel C (2015) Coord Chem Rev 282–283:19

36. Neese F (2009) Coord Chem Rev 253:526
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141:074105

Absorption Spectroscopy, Emissive Properties, and Ultrafast Intersystem. . . 413



Top Curr Chem (2016) 368: 415–444
DOI: 10.1007/128_2014_605
# Springer International Publishing Switzerland 2014
Published online: 24 February 2015

Surface Hopping Dynamics with DFT

Excited States

Mario Barbatti and Rachel Crespo-Otero

Abstract Nonadiabatic dynamics simulation of electronically-excited states has

been a research area of fundamental importance, providing support for spectros-

copy, explaining photoinduced processes, and predicting new phenomena in a

variety of specialties, from basic physical-chemistry, through molecular biology,

to materials engineering. The demands in the field, however, are quickly growing,

and the development of surface hopping based on density functional theory

(SH/DFT) has been a major advance in the field. In this contribution, the surface

hopping approach, the methods for computation of excited states based on DFT, the

connection between these methodologies, and their diverse implementations are

reviewed. The shortcomings of the methods are critically addressed and a number

of case studies from diverse fields are surveyed.

Keywords Density functional theory • Excited states • Nonadiabatic dynamics •

Photochemistry • Surface hopping
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Abbreviations

ADC Algebraic diagrammatic construction

ALDA Adiabatic local density approximation

CASSCF Complete active space self-consistent field

CC Coupled cluster

CI Configuration interaction

CIS CI with single excitations

CPA Classical path approximation

DFT Density functional theory

DFTB Density functional based tight binding

DISH Decoherence-induced surface hopping

GFSH Global-flux surface hopping

LR Linear response

KS Kohn–Sham

MCSCF Multiconfigurational self-consistent field

MRCI Multireference CI

MR-CISD MRCI with singles and doubles

MRPT Multireference perturbation theory

REKS Spin-restricted ensemble-referenced KS

ROKS Restricted open-shell KS

RPA Random phase approximation

SDKS Single determinant KS

SH Surface hopping

SH/DFT Surface hopping with DFT excited states

TD Time-dependent

TDA Tamm–Dancoff approximation

TDHF Time-dependent Hartree–Fock

UBS Spin-unrestricted broken symmetry

1 Introduction

Motivated by the advances in computational capabilities and algorithms, compu-

tational research on dynamics simulations of electronically-excited molecular sys-

tems has been quickly developing in the last decade. Larger and more complex

systems are reported from groups all over the world on a daily basis, providing

fundamental information to interpret excited-state phenomena revealed by

advanced spectroscopic techniques, to explain the photochemical process occurring
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in different fields, and to predict new properties with potential technological

applications.

There are a relatively large number of methods for excited-state calculations

available. They include wavefunction-based and density-functional-based methods

derived from different approaches, such as configuration interaction, perturbation

theory, and coupled cluster; and providing different approximation levels, from

semiempirical to fully first principles, from single-reference to multireference, from

short truncated spaces to complete configurational expansions. Each of these

methods and their hybrid combinations has its own domain of applicability

depending on the nature and size of the molecular system. For this very reason,

none of them can be expected to perform equally well for every problem without

exception.

Extensive benchmarks of excitation energies have shown that most of methods

present mean deviation errors of about 0.2–0.3 eV for vertical excitation energies

[1–5]. Not only are such values of the order of magnitude of many reaction barriers,

but also these errors are unevenly distributed among several states for the same

method and tend to grow bigger out of the Franck–Condon region. Well known

examples are the relatively large errors of the energy of ionic states predicted by

truncated ab initio configuration interaction [6] or of the energy of charge-transfer

states of time-dependent density functional theory with conventional

functionals [7].

The root of this problem rests on the very nature of electronic excitations.

Electronically-excited states lie close to each other in the energy spectrum and

relatively small variations in the molecular geometry may lead to their reordering.

Moreover, the characters of these states may be extremely different: from diffuse

Rydberg, through charge-transfer, to spatially localized densities.

Given these features, a basic requirement for a proper computational description

of an excited-state phenomenon is that the theoretical model should describe

different types of states for different nuclear geometries on the same footing. At

this moment, this is a requirement that no single method can fully and affordably

satisfy. The consequence is that the simulations often deliver an unbalanced

description of the electronic states, with deep implications on the reliability of

predictions.

This problem is under relative control in static simulation of reaction pathways,

where only a few degrees of freedom are considered. In dynamics simulations,

however, it may grow out of control because of the much greater number of degrees

of freedom and variables (now, time among them) to tackle.

Besides the question of the accuracy of the potential energy surfaces, dynamics

simulations add two new layers of potential complications to the simulations: first,

nonadiabatic phenomena [8, 9], originated by the coupling of nuclear and electronic

degrees of freedom during the dynamics propagation, must be taken into account;

second, the dynamics propagation itself multiplies the computational costs.

Again, several methods are available for nonadiabatic excited-state dynamics

simulations, from full propagation of the electronic wavefunctions [10], which

requires predefinition of multidimensional potential energy surfaces, to
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semiclassical approximations, which reduce the wavefunction propagation to

ensembles of independent trajectories based only on local properties [11]. In

particular, the independent-trajectory approximation, essential to the surface hop-

ping approach, cannot predict nonlocal quantum effects, such as tunneling, quan-

tum phases, or decoherence [8, 12, 13]. Moreover, the statistical ensembles are

often of too reduced size to comply with the computational capabilities, leading to

high statistical uncertainties [14]. (For recent discussions on nonadiabatic dynamics

beyond the independent-trajectories approach, see [15–17].)

From the point of view of semiclassical nonadiabatic excited-state dynamics

simulations, the ideal method for electronic structure calculations should satisfy the

following criteria:

1. Be computationally fast

2. Provide energies for excited states of different natures with similar accuracy

3. Provide reliable (preferentially analytical) gradients for excited states

4. Allow the computation of electronic structures near intersection seams with the

ground state

5. Allow the computation of electronic structures near intersection seams between

excited states

6. Be independent of human intervention for running large ensembles of different

geometries

With different accuracies, methods for excited-states computation based on DFT

comply with most of these criteria, especially computational efficiency. These

methods, however, usually fail criterion 4, the description of the crossing seam

with the ground state. Nevertheless, still considering the pros and cons, surface
hopping based on DFT excitations (SH/DFT) is a good alternative for nonadiabatic

simulations, on condition that it is applied critically, bearing in mind all these

restrictions and limitations.

In this contribution, we examine the current situation of the SH/DFT methods,

starting with a review of surface hopping in Sect. 2. In Sect. 3 we address the

methods for computing the excited state in the DFT framework, especially focusing

on the linear-response time-dependent methodology and its relation to lower-level

methods (Sect. 3.1). In Sect. 3.2 we review the computation of nonadiabatic

couplings in DFT. In Sect. 3.3 the limitations of the method in the context of

dynamics simulations are critically addressed. In Sect. 4 the elements from Sects. 2

and 3 are put together to discuss the different SH/DFT implementations. Finally, in

Sect. 5 we present a series of case studies showing the potentials and limitations of

using SH/DFT in diverse fields.
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2 Surface Hopping Overview

In surface hopping, the time propagation of the quantum wavepacket is approxi-

mated by a swarm of semiclassical trajectories evolving on Born–Oppenheimer

surfaces of multiple electronic states. Nonadiabatic events (wavepacket density

transfer between states; see [8] for an excellent review on this topic) are simulated

by a stochastic algorithm which allows each trajectory to jump to other states during

the propagation. Thus, the statistics over the ensemble of trajectories in terms of

fraction of trajectories in each electronic state in each time step is expected to be an

approximated representation of the wavepacket density distribution among the

excited states as a function of time. The method was conceptually proposed by

Nikitin [18] and was used first by Tully and Preston [19]. It has been recently

reviewed in [11, 20–22].

In the most common surface hopping approach, all nuclear coordinates are

driven by Newton’s equations of motion on a single adiabatic electronic state K.
For the coordinates Rm with the associated nuclear mass Mm, they are given by

d2Rm

dt2
¼ � 1

Mm

∂EK

∂Rm
; ð1Þ

where EK is the adiabatic potential energy of the current state K. Given a set of

initial positions and velocities, (1) is numerically integrated.

Along with the Newton’s equations, the probability for the system to hop to

another state L is evaluated. Diverse schemes for the evaluation of such probabil-

ities have been developed [19, 23–30]. The most successful and popular approach

has been the fewest switches proposed by Tully in the early 1990s [28].

In the fewest switches, the number of hopping events within one time step Δt is
minimized. Under this condition, the hopping probability between states K and L is

PK!L ¼
Population increment in L due to flux from K during Δt

Population of K
: ð2Þ

The population of each electronic state L is given in terms of the coefficients

cL(t) of the time-dependent wavefunction written as a linear combination of elec-

tronic time-independent electronic wavefunctions ΨL:

φ r;R; tð Þ ¼
X
J

cJ tð ÞΨJ r;R tð Þð Þ: ð3Þ

The coefficients cJ are obtained by solving a local approximation for the time-

dependent electronic Schrödinger equation, given in the adiabatic representation by

[28]
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dcL
dt
þ i

�h
ELcL þ

X
J

σLJ cJ ¼ 0: ð4Þ

In this equation, the coupling terms between any pair of states L and M are

σLM 	 ΨL
∂
∂t
ΨM

����� �
¼ τLM � v; ð5Þ

where τLM is the first-order nonadiabatic coupling vector

τLM 	 ΨL ∇RΨMjh i: ð6Þ

and v is a vector collecting the nuclear velocities.

When explicit nonadiabatic coupling vectors τLM are not available (and this is

often the case for excited states based on DFT), the coupling terms σLM can be

computed by finite differences as [31]

σLM tð Þ � 1

2Δt
ΨL t� Δt

2

 �
ΨM tþ Δt

2

 ������ �
� ΨL tþ Δt

2

 �
ΨM t� Δt

2

 ������ �� �
� 1

4Δt
3SLM tð Þ � 3SML tð Þ � SLM t� Δtð Þ þ SML t� Δtð Þ½ �;

ð7Þ

where SLM tð Þ 	 ΨL t� Δtð Þ ΨM tð Þjh i are wavefunction overlaps between different

time steps. This method can be generally used for any electronic-structure method,

provided that a configuration interaction representation of the electronic

wavefunction can be worked out [32–35]. In the last part of (7), the coupling is

conveniently written in terms of full time steps (t, t�Δt, t� 2Δt) rather than in

terms of midpoints (t+Δt/2, t�Δt/2) as in the original model. This shift is

explained in [33]. Comparisons between couplings computed with the finite-

difference approach and with analytical derivatives are made in [33, 35, 36].

Alternatively, cL can still be obtained by the local diabatization approach [37]. In
this case, instead of integrating (4), the array of coefficients after one time step is

given by

c tþ Δtð Þ ¼ T�1exp �i�h�1 E tð Þ þ TE tþ Δtð ÞT�1
2

Δt
 �

c tð Þ; ð8Þ

where E is a diagonal matrix containing the adiabatic energies and T is an

adiabatic-to-diabatic transformation constructed by a Löwdin orthogonalization

of the S(t) wavefunction overlap matrix:
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SLM tð Þ ¼
X
J

D
ηL t� Δtð Þ

���ηJ tð Þ
E
TJM tð Þ: ð9Þ

In this equation, {jηi} represents the diabatic basis, which is obtained along the

trajectory as explained in [37]. It has been shown that this method is more stable in

the presence of weak nonadiabatic couplings than conventional algorithms [38]. An

alternative surface-hopping diabatization method is discussed in [39].

Either via (4) or (8), as soon as the coefficients cL are obtained, the hopping

probability can be computed and within the fewest switches approach in the

adiabatic representation it is given by

PK!L ¼ max 0,
�2Δt
cKj j2

Re cKc
*
L

� �
σLK

" #
: ð10Þ

In the most recent implementations of the fewest switches, the coefficients cL are
corrected for decoherence effects [8, 40–42] before probabilities are computed [43,

44].

Jaeger, Fischer, and Prezhdo recently proposed the decoherence-induced surface

hopping (DISH) method, a hopping algorithm which relies entirely on the

decoherence times of each adiabatic state to determine the state branching

[30]. Another recently proposed alternative to the fewest switches is global-flux

surface hopping (GFSH) [23], which computes the hopping probability between

groups of states with reduced or increased population. In this way, hops can occur

even between indirectly coupled states (super-exchange).

With hopping probabilities at a time t, a stochastic algorithm is invoked to decide

in which state the dynamics continue to be in the next time step. A hopping from

state K to state L occurs if a uniformly selected random number rt in the [0, 1]

interval is such that

XL�1
J¼1

PK!J tð Þ < rt �
XL
J¼1

PK!J tð Þ; ð11Þ

and the energy gap between the final and initial states satisfies [22]

EL Rð Þ � EK Rð Þ � Ekin: ð12Þ

Equation (12) ensures that, if the nuclear kinetic energy (Ekin) cannot compensate

the variation of potential energy, the hop is rejected (“frustrated hop”). If the state

changes, the momentum is changed accordingly to ensure conservation of total

energy. Normally, the momentum adjustment is carried out in the direction of the

nonadiabatic coupling vector. When the vector direction is not available, as in the

case of computation of the coupling terms via (7), then the adjustment may be

carried out in the linear momentum direction.
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Surface hopping is not restricted to internal conversion, and other types of

nonadiabatic transitions may be considered, such as those induced by spin-orbit

couplings (intersystem crossing) [45, 46] or electromagnetic fields [47–50]. From a

general standpoint, to consider these effects it is sufficient to redefine the coupling

term in (5). For instance, a σKL including simultaneously internal conversion,

intersystem crossing, and an electromagnetic field may appear as

σLM 	 ΨL
∂
∂t
ΨM

����� �
� i

�h
HSO

LM �
EM � EL

�h2c
μML � A0e

�iωt; ð13Þ

where HSO
LM are the spin-orbit couplings [46] and the last term accounts for the

dipole interaction of the molecule with the field (μML is the transition dipole

moment between the L and M and A0 is the vector potential) [49]. In Sect. 3.2,

we discuss how these couplings can be computed within the DFT framework.

3 Excited States in DFT

3.1 Excitation Energies in DFT

In this section, different approximations for the computation of excited states based

on DFT are analyzed. We start from a general description of the popular linear-

response (LR) TDDFT. A number of other methods for computing excitation

energies based on DFT have been used for surface hopping as well. They are also

described here, highlighting the hierarchic relations between them. Methods other

than linear response – such as real-time TDDFT [51, 52] – or beyond linear

response [53] can also be used to study excited states, but discussion of these is

beyond of the scope of this chapter as these methods have not yet been generally

applied for surface hopping. Multiconfigurational DFT is briefly addressed in

Sect. 3.3.

The excitation energies ωL in the LR-TDDFT are given by [54]

ΩF
!

L ¼ ω2
LF
!
L; ð14Þ

where

Ω ¼ A� Bð Þ1=2 Aþ Bð Þ A� Bð Þ1=2; ð15Þ

and the elements of A and B are

Aia, jb ¼ δijδabΔεjb þ Kia, jb; ð16Þ
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Bia, jb ¼ Kia,bj: ð17Þ

In these equations, i and j denote occupied orbitals and a and b denote virtual

orbitals. A and B are defined here for a restricted approach, single excitation, and a

functional without any fraction of Hartree–Fock exchange. For more general

expressions, see Eq. (4.33) of [54]. For hybrid functionals, see Eqs. (95) and

(96) of [55].

In (16) and (17),

Δεjb ¼ εb � εj; ð18Þ

is the difference between the KS energies of the orbitals and

Kia, jb ¼ ia
��jb� �
þ ia

�� fXC��jb� �
; ð19Þ

is given in terms of the two-electron integrals

ia jbjð Þ ¼
ð ð

drdr0ψ i rð Þψa rð Þ r� r0ð Þ�1ψ j r
0ð Þψb r0ð Þ; ð20Þ

ia
��fXC��jb� �

¼
ð ð

drdr0ψ i rð Þψa rð ÞfXCψ j r
0ð Þψb r0ð Þ; ð21Þ

for real KS orbitals ψk and within the adiabatic local density approximation

(ALDA) [54]:

fXC ¼
δ2EXC

δρ rð Þδρ r0ð Þ ; ð22Þ

where EXC is the exchange-correlation energy.

If fXC is neglected, the time-dependent Hartree–Fock (also known as the random

phase approximation, RPA) is recovered [55]. If B¼ 0, we have the Tamm–

Dancoff approximation (TDA) [55], which has often been used for surface hopping

(see Sect. 4). Another approximation also often used in SH/DFT is the time-

dependent density-functional-based tight binding (TD-DFTB) [56]. TD-DFTB is

based on a second-order expansion of the KS total energy with respect to charge-

density fluctuations, followed by a time-dependent linear-response procedure,

where the transition densities ψ iψa in the coupling matrix Kia,jb (see (19)–(21))

are approximated by atom-centered contributions [57].

To understand the next DFT methods for computing excitation energies and to

have a better insight of the meaning of the TDDFT solutions, we may explicitly

check the structure of the TDDFT energies for a simple case of one occupied orbital

p and two virtual orbitals r and s (Fig. 1). For this minimal system, the eigenvalue

problem in (14) can be written as
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Ωpr,pr Ωpr,ps

Ωps,pr Ωps,ps

� �
F1

F2

� �
¼ ω2 F1

F2

� �
: ð23Þ

The eigenvalues of this Hermitian problem are

ω2
2,1 ¼

Ωpr,pr þ Ωps,ps

2

 �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωpr,pr � Ωps,ps

2

 �2

þΩ2
pr,ps

s
: ð24Þ

If the nondiagonal terms of Ω are null (which occurs when Kpr,ps ¼ Kps,pr ¼ 0,

see (26)), the excitations energies are simply

ω1 ¼ Ω1=2
pr,pr ω2 ¼ Ω1=2

ps,ps; ð25Þ

implying that the energy of each state is associated with a unique singly-excited

determinant (for instance, p! r) and independent from the remaining

determinants.

The matrix elements of Ω can be explicitly written as (see Eq. (4.33) of [54])

Ωia, jb ¼ δijδabΔε2jb þ 2
ffiffiffiffiffiffiffiffiffi
Δεia

p
Kia, jb

ffiffiffiffiffiffiffiffiffi
Δεjb

p
: ð26Þ

With (26), the lowest excitation energy in (25) becomes

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δε2pr þ 2ΔεprKpr,pr

q
: ð27Þ

An equivalent equation holds for ω2 caused by p! s excitation. If Kpr,pr � Δεpr,
the excitation energy can be approximated by

ω1 ’ Δεpr þ Kpr,pr: ð28Þ

This result corresponds to the excitation energy computed with density functional

perturbation theory to the first order [58] and it is also directly obtained with TDA

(B¼ 0).

If Kpr,pr is completely neglected, the excitation energy is given simply by the

bare energy gap between orbitals

p

r

s

GS p→r p→s

Fig. 1 Schematic illustration of a reduced system with one occupied and two virtual orbitals. The

ground state (GS) determinant can give an origin to two single excitations
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ω1 ’ Δεpr ¼ εr � εp: ð29Þ

corresponding to the zeroth order of the perturbative expansion [59].

One realistic situation where Kpr,pr is near zero occurs in charge-transfer states.

In such cases, ψp and ψ r are localized in different parts of the molecules with little

overlap. The excitation energy reduces to (29), which does not have the expected

1/R Coulomb attraction term, rendering the well known underestimation of the

charge-transfer excitation energies [55].

The LR-TDDFT excitation energies given by (14) are derived by an analytic

treatment of the poles of the dynamic polarizability of KS orbitals dynamically

perturbed by an external field [54, 55]. We have seen that LR-TDDFT improves the

bare KS energy gap, (29), through two kinds of corrections: first, with diagonal

terms which shift the energy of the uncoupled single excitation, (28), and, second,

with nondiagonal terms, which bring contributions from all other single excitations

in the KS orbital space, (24) [60].

A series of methods based on independent propagation of non-interacting

orbitals through the time-dependent KS equation have been proposed to be used

in connection with surface hopping [61–64]. In such methods, derived aiming at

large systems with high density of states, the excited states are computed from

single determinants or spin-adapted single configurations using KS orbitals, with

energies given by the bare KS gaps. Equation (29) is a particular case for an excited

state represented by a singly-excited determinant. For more general cases, see

Eq. (20) of [61]. Throughout this chapter we refer to this class of methods for

determining DFT excitation energies as single-determinant Kohn–Sham (SDKS).

A two-determinant DFT excitation method, the restricted open-shell Kohn–

Sham (ROKS) by Frank and co-authors [65], was often employed in the earliest

investigations of SH/DFT [66–68]. In that approximation, the ground state is taken

as the usual closed-shell KS determinant, while the first excited state is represented

by a spin-adapted singly-excited singlet configuration. The two determinants

forming the configuration are formed from excited-state KS orbitals, which are

obtained by optimizing an ad hoc energy functional designed to represent the

singlet-triplet split in a two-electron/two-orbital configuration. Other formulations

of restricted open-shell Kohn–Sham formalism have also been proposed in [69–71],

but, as far as we know, they have not been used in surface hopping simulations.

3.2 Nonadiabatic Couplings in DFT

Nonadiabatic couplings between different electronic states are needed for propa-

gation of surface hopping dynamics. While analytical energy gradients for excited

states computed with TDDFT are well established [72] and implemented in diverse

computational-chemistry programs, analytical nonadiabatic couplings are still

mostly unavailable.
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The theoretical background for computation of these couplings has been

established by Chernyak and Mukamel [73] and, alternatively, by Baer [51]. Hu

and co-workers have further developed the Chernyak–Mukamel approach for

computation of first-order nonadiabatic coupling vectors between the ground state

and the first excited state [74–76]. Send and Furche have shown that the previous

result neglects molecular orbitals derivatives [77]. Their own derivation, including

such terms but still limited to couplings between the ground and the first excited

states, is implemented in Turbomole [78].

Because of the lack of analytical couplings between excited states in standard

quantum-chemistry programs, finite-difference couplings have been largely used in

surface hopping [32–34]. They are usually based on the approach proposed by

Hammes-Schiffer and Tully [31], who showed that the couplings can be written in

terms of wavefunction overlaps between sequential time steps during the dynamics –

see (7).

A particular problem with using TDDFT in this approach is the lack of an

explicit wavefunction for the electronic states. A common solution has been to

take the Casida’s ansatz for the state assignment [54] as an approximation to the

wavefunctions. In this case, the ground- and excited-state wavefunctions are given

(for a local functional) by

Ψ0 ¼ KSj i; ð30Þ

ΨL ¼
X
j, b

ffiffiffiffiffiffiffiffiffi
Δεjb
ωL

r
Fjb
L jbj i; ð31Þ

where |KSi is the ground-state KS determinant and jjbi is the determinant with a

single excitation from j to b. With these wavefunctions, which are analogous to a

CIS expansion, the coupling terms σLM can be evaluated according to (7) in terms of

atomic orbital overlap integrals [33]. Although the validity of Casida’s ansatz for

computation of couplings approach still needs to be extensively tested, it has been

shown that TDDFT dynamics computed with these couplings compares well with

dynamics based on CASSCF [79] and MRCI [80].

Equation (31) forms a non-orthogonal set, which can have consequences for the

evaluation of the couplings. Werner et al. [81] recommended the use the linear-

response coefficients without the square-root term in (31) as the CIS coefficients,

which forms an orthogonal set within TDA. An alternative solution is to orthogo-

nalize the approximate wavefunctions given by (31) before computing the cou-

plings. In practical terms, far from conical intersections with the ground state, either

of these approximations provides similar dynamical pictures. In some cases, neg-

ative excitation energies are obtained (see Sect. 3.3), and consequently the

wavefunctions are complex and imaginary couplings may be obtained. In such

situations, as we discuss later, it is not recommended to continue the SH/TDDFT

propagation.

The Casida wavefunctions given in (30) and (31) have been employed by

Tavernelli and co-workers to derive analytical nonadiabatic coupling vectors
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between the ground and the first excited states [82] and also between excited states

[83]. They are given by

τ0L ¼
X
ia

ffiffiffiffiffiffiffiffiffi
Δεia
ωL

r
Fia
L ψ i ∇RHKSj jψah i; ð32Þ

τLM ¼
X
iab

ffiffiffiffiffiffiffiffiffi
Δεia
ωL

r ffiffiffiffiffiffiffiffiffi
Δεib
ωM

r
Fia{
L Fib

M ψa ∇RHKSj jψbh i

�
X
ija

ffiffiffiffiffiffiffiffiffi
Δεia
ωL

r ffiffiffiffiffiffiffiffiffi
Δεja
ωM

r
Fia{
L Fja

M ψ i ∇RHKSj jψ j

� �
:

ð33Þ

(As in the previous section, ψk corresponds to the molecular orbitals, i, j run over

occupied orbitals, and a, b over virtual orbitals.)

In [84] it is shown that τ0L in (32) is equivalent to the analytical coupling vector

derived by Hu et al. in [74], but, also as the Hu et al.’s result, it does not fully agree
with Chernyak–Mukamel [73]. Ou et al. [36] have pointed out that in the formalism

leading to (32) and (33), only the KS Fock matrix is differentiated, omitting the full

coupling induced by the second derivative of the exchange-correlation functionals.

Still working with a CIS expansion based on TDA amplitudes, these authors have

derived nonadiabatic coupling vectors (including excited-excited terms) fully con-

sistent with Chernyak–Mukamel [36].

Apart from their limitations, (32) and (33) are general results, which are still

valid by replacing the operator∇RHKS by any single-body operator Ô [83], such as,

for example, the electronic dipole operator, to obtain the transition dipole moment

μLM.

Recently, spin-orbit coupling elements [85] were also derived based on the

Casida wavefunctions, opening the possibility of performing surface hopping

between surfaces with different multiplicities within the TDDFT approach. The

coupling between singlet and triplet states, for instance, is given by

HSO
ST ¼

X
iaρ, jbρ0

ffiffiffiffiffiffiffiffiffiffiffi
Δεiaρ
ωS

r
Fiaρ
S

ffiffiffiffiffiffiffiffiffiffiffi
Δεjbρ0
ωT

r
Fjbρ0

T iaSh jHSO jbTj i; ð34Þ

where ρ and ρ0 are spin indexes. In [85], HSO is approximated by the one-electron

Breit–Pauli operator [86]. The computation of the two-electron operator is

discussed by Chiodo and Russo in [87, 88].

In [89], the computation of Dyson orbitals based on Casida wavefunctions is

discussed. These Dyson orbitals were used to evaluate photoionization cross-

sections during the dynamics and to simulate time-dependent photoelectron imag-

ing spectra.

In SDKS methods, the computation of the couplings is largely simplified by the

singe-determinant approximation. As shown in (21) of [61], the couplings in such
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cases are reduced to derivatives of KS orbitals, which can be inexpensively

computed by finite differences during dynamics propagation.

For a discussion about the computation of the nonadiabatic couplings with

ROKS, see [90]. For a discussion about computation of these couplings with

REKS, see [91].

3.3 Critical Appraisal

One of the main challenges in excited-state dynamics simulations is that trajectories

span large regions of the configuration space. Thus, the electronic structure method

used to compute energies, energy gradients, couplings, and other properties should

be able to deal with the large variety of electronic densities induced by different

conformations.

A good deal of the problem arises from a bad description of the ground state (see

Fig. 2). Strictly speaking, DFT should be valid even at the crossing seam between

the ground and the first excited state, as the Hohenberg–Kohn theorems [92] can be

generalized to degenerate ground states [93, 94]. However, the KS formulation of

DFT needs to fulfill two basic conditions [95]: (1) the reference state should be a

single-determinant state to compute exchange energy and (2) the correlation hole

should be reasonably described by homogenous (or weakly inhomogeneous) elec-

tron gas to compute the correlation energy. In diverse cases, for instance in

biradicals species, where nondynamic electron correlation plays a strong role, one

or both conditions are not satisfied, rendering a bad description of the ground state

Diagonal XC kernel for CT states
has wrong behavior 

Single-determinant KS
approxima�on fails; 
self-interac�on errors

Linear response and 
ALDA approxima�ons 
may fail

No problem, 
in principleFunc�onal-dependent

predic�ons

DFT is, in principle,
valid

Func�onal-dependent
predic�ons

Energy

x y Linear response fails for
mul�ple excita�ons

Fig. 2 Illustration of the main problems with DFT and TDDFT occurring in different regions of

the ground- and excited-state surfaces
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and, consequently, of the excited-states based upon. In particular, the methods for

computing excitation energies discussed in Sect. 3.1 have in common the assump-

tion that the ground state can be described by a single KS determinant. (For a

conceptual discussion of nondynamic electron correlation in DFT, see [95]. For a

discussion about conical intersection in DFT, see [96]).

The development of a density functional theory including nondynamic

(or “strong”) electron correlation – which Becke designated as the “last frontier”

in DFT [97] – has been pursued by many groups following different approaches.

Among these approaches, we may cite the use of restricted open-shell ground-state

representations [98], configuration ensembles with fractional occupations [91, 99–

101], configuration interaction [102, 103], multiconfigurational DFT [104], hybrid

multiconfiguration/(TD)DFT [105, 106], and spin-unrestricted broken-symmetry

(UBS) [107] approaches. Unfortunately, analytical energy gradients are not avail-

able for most of these methods, which rules out their use in surface hopping

dynamics.

All the troubles caused by nondynamic electron correlation are rather restricted

to the crossing between the ground and the first excited state. In the case of crossing

between excited states, however, if each of these states is well represented by single

excitations from a well-behaved ground state, the description of the crossing does

not present further problems.

SH/DFT has other potential problems (Fig. 2) besides nondynamical electron

correlation. First, the results are deeply dependent on the functional. Second,

double and higher excitations are not properly described by LR-TDDFT. Third,

diffuse and charge-transfer states may be poorly described by conventional func-

tionals. All these problems, though, are not exclusive of dynamics simulations and

are part of routine investigations of excited states based on DFT. As such, they are

addressed in the same way, by systematic test of functionals, methodological

comparisons, and use of range-separated functionals.

To illustrate the current situation of excited state description for SH/DFT, we

show in Fig. 3 the potential-energy surfaces for the S1 state and for the S1/S0 gap of

ethylene along two important reaction coordinates, H2CCH2-torsion (θ) and CCH2-

pyramidalization (φ). All other coordinates are kept at their ground-state values

optimized at the same level as used for energy calculations. These surfaces were

computed with several different DFT-based methods and with ab initio MR-CISD,

which is taken as the reference method. With the exception of the DFT-MRCI

[102], computed with the SV(P) basis set [108], all other DFT-based surfaces were

computed with the 6-31G* basis set [109]. LC-BLYP [110–112] was computed

with μ¼ 0.2 a0
�1 [113]. TD-DFTB was based on analytic expressions for the matrix

elements [114]. MR-CISD was based on a small (two electron, two orbital)-space

[115] with the aug-cc-pVTZ basis set [116] assigned to C and cc-pVDZ assigned

to H.

Ethylene S1 surface is a specially challenging problem, starting from (i) the

adequate computation of the excitation into the V state [6], then (ii) the description

of the right topography of the state, which includes a crossing with the Z state near

the twisted structure and a conical intersection at twisted-pyramidalized geometries
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[115], to finally (iii) the dynamics evolution itself, which has motivated a long

debate between theorists and experimentalists [117–119]. In fact, Levine

et al. [120] have used maps similar to those in Fig. 3 (but computed for stretched

CC distances) to discuss the qualitative deficiencies in the excited-state description

provided by TDDFT.

The MR-CISD result in Fig. 3 has two main features which dominate the

topography and the dynamics in the S1 state: (a) there is an S1 minimum near

θ¼ 90� and φ¼ 60� and (b) there is a conical intersection at θ¼ 90� and φ¼ 110�.
Among all tested methods, the only ones able to reproduce both features are the

DFT-MRCI [102] and REKS [91, 99, 101], which makes clear the importance of

having a multiconfigurational description of the ground state. TDDFT-UBS, which

is usually considered a good alternative for qualitatively recovering nondynamic

electron correlation near a degeneracy [71], can describe reasonably well the

Fig. 3 S1 and S1/S0 potential-energy surfaces of ethylene computed with diverse methods. Green
regions indicate the crossing seam. Red/orange regions are negative energy gaps. In the illustra-

tion, ethylene has θ¼ 90� and φ¼ 45�
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conical intersection, but the topography along the θ¼ 90� line shows diverse

spurious minima.

Spurious minima were also observed in TDDFT and TDA with B3LYP [121,

122]. The minimum is at a qualitatively wrong position at TDDFT-B3LYP with

restricted open shell (TDDFT-RO). The same happens for TDDFT-BLYP. TDA

can qualitatively predict the conical intersection (θ¼ 90�, φ> 70�). Somewhat

surprisingly, the simple HOMO–LUMO gap is the only other method predicting a

twisted-pyramidalized conical intersection (at θ¼ 90�, φ¼ 70�). All other methods

wrongly predict an extended S1/S0 seam along the θ¼ 90� line, starting from

φ¼ 0�.
A disturbing feature which can be observed in TDDFT-B3LYP, TDDFT-UBS-

B3LYP, TDA-B3LYP, and TDDFT-LC-BLYP is that the excitation may become

negative near the crossing seam. This is not an exclusive problem with DFT-based

methods; it can be observed in other single-reference methods as well, such as

coupled cluster with either equation-of-motion or linear-response approaches.

As discussed in [123], near the degeneracy, self-interaction errors may cause the

HOMO to be less stable than the LUMO, leading to imaginary excitation energies

in TDDFT – see (27). This does not happen at TDA because the excitation energy is

given by terms such as those in (28). This feature has been said to represent an

improved stability of the TDA-based dynamics in comparison to that based on

TDDFT [123]. Nevertheless, as we can see in the negative gap regions in Fig. 3,

both methods are still unstable near the degeneracy. These negative excitations are

clearly caused by the mixing with the other singly-excited determinants, which

cannot be avoided either in TDDFT or in TDA.

In SDKS methods, the excitation energies are given by the bare KS gaps [61]. In

the case of the ethylene, we can see in Fig. 3 that the bare KS energy (given by the

HOMO–LUMO gap and neglecting double excitations near the twisted structure)

gives an adequate representation of the S1 state and of the S1/S0 gap. This good

behavior, however, should not be taken for granted. Maitra [60], in a critical

discussion of these approximation in the context of surface hopping, showed that

the bare KS energies may be far from adiabatic and closer to diabatic energies.

Ethylene is admittedly too harsh a case for DFT-based methods, as its dynamics

is deeply controlled by coordinates involved in the nonadiabatic events. SH/DFT

methods have been developed to deal with large molecular systems and in these

cases the dynamics may evolve in the configurational space spanning regions

relatively far from any muticonfigurational ground state. Under such situation, the

excited-state dynamics involving a large manifold of excited states can be well

simulated with DFT-based methods.

Take, for instance, the schematic dynamics illustrated in Fig. 4 (top). The

dynamics starts at a high excited state (here, the second state to simplify the

picture). Using a multireference method such as MRCI, we would observe a

relaxation to the first excited state (a), then oscillation around the minimum of

this state (b). From this minimum, the molecule can eventually fluoresce to the

ground state (c) or cross a barrier (d) to reach a conical intersection, from where it

relaxes to the ground state minimum (e).
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In principle, SH/TDDFT can adequately describe most of this process (Fig. 4,

bottom). The relaxation through the manifold of excited states (a) can be described

if these states are dominated by single excitations from a well-behaved ground state

and if the functional allows the description of special features such as charge-

transfer states. The oscillation around the excited minimum (b) is also not a

problem, at least if this minimum is not on the top of a multiconfigurational ground

state. Neither the radiative process (c) nor the barrier crossing (d) presents any

special problems, apart from functional dependencies. Even the relaxation until

near the crossing with the ground state (e) can in principle be described. In fact, this

whole process may be better described with TDDFT and other correlated single-

reference methods such as the algebraic diagrammatic construction to the second

order (ADC(2) [124, 125]), than with an uncorrelated multiconfigurational method

such as CASSCF [35]. The real problem starts very close to the state crossing

(usually for energy gaps smaller than 0.1 eV), where the convergence of the KS

equations tends to fail and, even if convergence is achieved, regions with negative

excitation energies may be reached. Besides that, as discussed by Levine et al.[120],

the lack of nonadiabatic interactions between the ground and the excited states may

lead in some cases to the wrong dimensionality of the intersection seam with the

ground state. (See [126] for a comparative discussion of the shape of the crossing

seam computed with different methods.)

Although diverse groups working with SH/DFT choose to compute hops to the

ground state, it is our opinion that the results obtained from this procedure are not

reliable. We have adopted a strategy to stop the dynamics simulations as soon as a

certain energy-gap threshold is reached, usually 0.15 eV (see, for instance, [127]).

This last time step is then taken as an estimate of the time for internal conversion to

the ground state. This strategy, which we apply not only for TDDFT, but also for

ADC(2) [35, 128], allows the computation of excited-state lifetimes and the early

split of population between different reaction channels, but unfortunately it does not

provide enough information for computation of reaction yields in the ground state.

Fig. 4 Schematic

comparison of a trajectory

computed with surface

hopping based on

multireference method (top)
and on TDDFT (bottom)
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4 Surface-Hopping/DFT Implementations

One of the reasons for the popularity of the surface hopping method is that its

implementation is straightforward. This has given rise to several home-made

private codes to simulate SH/DFT [62, 63, 81, 129]. There are also a few general

programs of public access (either commercial or non-commercial) with SH/DFT

capability, including Newton-X [130, 131], PYXAID [61, 132], Turbomole [78],

and CPMD (www.cpmd.org).

The main difference between the several implementations of SH/DFT is exactly

which DFT method is being used for computing the electronic-structure quantities.

The main features of the most common implementations are summarized in

Table 1.

The most computationally efficient implementation of SH/DFT available is

based on SDKS approximations [134], such as that implemented in the PYXAID

program using plane waves. Variants of this method have also been developed by

Fischer, Handt, and Schmidt [50, 62, 135] using Gaussian functions, by Gao and

co-workers using DFTB KS orbitals [63], and by Shenvi, Roy, and Tully based on a

model Hamiltonian parameterized by DFT data [64, 136]. SDKS has been used to

investigate diverse problems, especially in condensed matter (see Sect. 5). Besides

the computational efficiency granted by the single-determinant approximation,

Shenvi and co-workers [64] have pointed out that, while in TDDFT the electronic

Hilbert space must be truncated to include only a relatively small number of states,

this restriction does not apply to SDKS, being a big advantage for the treatment of

systems with large density of states. Moreover, SDKS also allows the inclusion of

double and higher excitations [61]. On the down side, the bare KS energy gaps may

Table 1 Survey of diverse implementations of SH/DFT. Excited states can be computed with

linear response time-dependent (LR-TD) theory, single determinant KS (SDKS), or restricted open

shell KS (ROKS); single (SS) or multiple (MS) excited states can be included; states can be

restricted to single (SE) or multiple (ME) excitations; propagation can be done in terms of

Gaussian functions (GF) or plane waves (PW)

DFT

excitations

Number of

states

Excitation

level

Basis

type Refs.

Public

implementation

LR-TDDFT MS SE GF [32] Newton-X

LR-TDDFT SS SE GF [77] Turbomole

LR-TD-DFTB MS SE GF [133]

TDA MS SE GF [38] Newton-X

TDA MS SE PW [34, 83] CPMD

ROKS SS SE PW [68] CPMD

SDKS MS ME GF [63]

SDKS MS ME GF [62]

SDKS MS ME PW [61,

134]

PYXAID
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not only deviate strongly from the exact energies, but also provide a poor approx-

imation for adiabatic surfaces [60].

Still aiming at maximum computational optimization, Prezhdo and co-workers

have also introduced the so-called “classical path approximation” (CPA) in

PYXAID [61]. The CPA implies that the nuclear dynamics is supposed to evolve

independently of the electrons, driven by kinetic effects. In practical terms, it means

that the nuclear dynamics is propagated in the ground state and then is used to

compute the nonadiabatic electronic events in the excited states using either the

fewest switches surface hopping or one of the other surface hopping algorithms

developed by the Prezhdo group [132]. The CPA may be especially inadequate for

systems undergoing significant chemical changes such as photofragmentation and

chemical reactions.

Another efficient implementation of SH/DFT is based on ROKS and was

developed by Doltsinis and Marx [137]. The spin-adapted wavefunctions and the

KS orbitals optimized for the excited-state density should in principle be an

improvement over the SDKS. SH/ROKS, however, is limited to a single excited

state, which is a very strong limitation for most realistic problems. Such an

approach is implemented in the CPMD program.

SH/LR-TDDFT has been pioneered by Tavernelli and Rothlisberger [34] and by

Mitrić and Bonačić-Koutecký [81]. Linear response should provide a better descrip-

tion of the excited-state surfaces than single determinant and ROKS approaches, at

higher computational costs naturally (see Sect. 3.1). TDDFT is also not limited to a

single surface as ROKS, but it cannot describe multiple excitations. In the frame-

work of linear response, surface hopping dynamics has been investigated with

TDDFT, TDA, and TD-DFTB (see Sect. 5). In the CPMD program, this approach

is implemented based on plane waves, while in Newton-X, it is implemented on a

localized basis. It is also implemented in Turbomole, but limited to couplings

between the ground state and the first excited state. Ehrenfest dynamics [138],

another related semiclassical nonadiabatic dynamics method, can be performed

with TDDFT using the Octopus program [139].

In the case of Newton-X, the coefficients cL to compute the hopping probabilities

(10) can be obtained either by integrating (4) or by using the local diabatization

method (8). The program also allows the computation of surface hopping through

interfaces with different programs (Turbomole, Gaussian [140], Columbus [141,

142], Gamess [143]) and using different methods (TDA, TDDFT, ADC(2), CC2,

CASSCF, MRCI), making it particularly convenient for comparative analysis.

5 Case Studies

There are a large number of molecular systems which have been investigated with

SH/DFT. This section does not aim at providing a comprehensive review of them,

but instead at pointing out the main classes of problems in different fields, from

where the reader can search for more information.
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SH/DFT has been developed mainly for the treatment of large systems, for

which wavefunction-based methods are computationally too expensive. It is possi-

ble, however, to find a series of investigations for photoreactions of small molecules

(see Table 2), which has been useful to gauge the quality of these simulations.

Table 2 Survey of case studies with SH/DFT

System Method Refs. System Method Refs.

Basic processes in small molecules Systems of biological interest

Pyrrole, imidazole,

furan

TDDFT [80,

89,

144]

Diphenyldibenzofulvene SDKS [63]

Pyrazine TDDFT [81,

145]

Riboflavin TDDFT [146]

Pyrrole ROKS [147] Kynurenine TDDFT [129]

CH2¼NH ROKS [68] Adenine TDDFT [35,

148]

CH2¼NH2
+ TDA,

SDKS

[79,

149]

Adenine gas and in water TDDFTB [133]

CH2Cl–CF3 TDDFT [150] Guanine, cytosine, uracil, ROKS [66,

151–

153]

Oxyrane TDA [123] Guanine-cytosine pairs ROKS [154]

Indole in water TDDFT [155] Protonated tryptophan TDA [156]

O(3P) +C2H2 (ISC) ΔUDFT [157] Acetylphenylalaninylamide TDDFT [158]

Photoinduced proton transfer,
isomerization

Systems of interest for materials sciences,
surfaces

Hydroxyquinoline-NH3 TDA [159] Carbon nanotubes SDKS [160,

161]

Methylformamide

dimer

TDDFT [127] Graphene SDKS [162]

Bridged azobenzene ROKS [163] Cd33Se33, Si29H24 (quan-

tum dot)

SDKS [23,

149]

Azobenzene gas and in

water

ROKS [164] NO/Au(111) SDKS [64,

136]

Azobenzene, stilbene SDKS [165] Pentacene crystal SDKS [61]

Diphenydibenzofulvene SDKS [63] Pentacene/C60 SDKS [166]

Catalysis Reviews

Cr(CO)6 TDDFT [167] Nonadiabatic phenomena [8,

126,

168]

Ru (II) trisbipyridine in

water

TDA [169] Surface hopping [11,

138,

170]

Chromophore-TiO2 SDKS [134] Dynamics/TDDFT [20,

171]

Water splitting on GaN SDKS [172] DFT excited states [54,

55,

173]
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CH2NH2
+, for instance, has been used as a test case of SH/TDA [34, 79] and

SH/SDKS [149]. In both cases, qualitative agreement with surface SH/CASSCF

[174] is observed. We should note, however, that this agreement may be accidental,

as CH2NH2
+ is a very small system with only two relevant excited states, a single

dominant reaction path, and a lifetime shorter than 100 fs. More impressive is the

semi-quantitative agreement observed between SH/TDDFT [80] and SH/MRCI

[175] for pyrrole. In this case, TDDFT dynamics with ten excited states has

successfully predicted the excited-state lifetime and the split of population among

several reaction paths.

A more applied class of systems investigated with SH/DFT excitations involves

photoinduced proton transfer and photoinduced isomerization in medium-sized

molecules. A typical example of such a class is azobenzene, which has been studied

with SH/ROKS [164] and SH/SDKS [165]. Dynamics based on both provides a

good description of the cis-trans isomerization of azobenzene in the gas phase in

comparison to other semiempirical and ab initio wavefunction-based surface hop-

ping simulations [176–180]. Azobenzene has been chosen by a number of groups,

including ours, as a standard test case for methods. We should consider, however,

that this molecule may not be challenging enough to be a good test case. After S1
excitation, azobenzene evolves adiabatically until finding the intersection to the

ground state, approaching the crossing seam along torsional coordinates. These

features imply that neither nonadiabatic effects between excited states nor the

dimensionality of the crossing seam can be really tested with this system. On the

other hand, azobenzene is an excellent system to probe the topography of S1 and the

S1/S0 coupling strength, which can be done through simulations of excited-state

lifetime and isomerization yield.

One of the main problems with SH/DFT is the deep dependence on the chosen

functional. This can be illustrated with an example we have recently investigated,

the excited-state dynamics of N-methylformamide dimer (NMF) [127]. These

simulations showed that NMF dimers are protected against photodissociation by a

proton-transfer mechanism. The excited-state proton transfer occurs according the

Sobolewski–Domcke mechanism [181], where an electron is transferred first,

followed by the proton (see Fig. 5). For properly describing the charge-transfer

state, SH/TDDFT was done with the range-separated LC-BLYP functional [110–

112]. The range-separation parameter was fixed at μ¼ 0.2 a0
�1, a value based on a

non-empirical parameterization [113]. Our tests with diverse other values of μ
showed that the ratio between dissociation and proton transfer was deeply depen-

dent on this parameter. Not surprisingly, larger values favored dissociation by

under-stabilizing the charge-transfer state. (In the Gaussian program [140], for

instance, the default value of μ is 0.47 a0
�1.) Lower values favored proton transfer

for the opposite reason.

Diverse systems of biological interest have also been investigated with SH/DFT

(see Table 2). In this class, a challenging case has been the description of purine

nucleobases. An indication of the problem was already in the earliest simulations of

9Me-keto guanine with SH/ROKS [151, 152], whose trajectories did not reveal any

conical intersection with the ground state. At that point, the internal conversion of
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guanine was attributed to an enhanced nonadiabatic coupling promoted by out-of-

plane vibrations. Later, SH/TD-DFTB [133] predicted an excited-state lifetime of

11 ps for adenine gas, ten times longer than the experimental result. The deviation

was then attributed to the distribution of initial energies. More recently, systematic

investigations of adenine gas with SH/TDDFT with several functionals once more

led to very long excited-state lifetimes [35, 148]. These results are conveniently

plotted in Fig. 6 in terms of the S0 population 1 ps after photoexcitation. Even the

most optimistic SH/TDDFT simulation at the limit of the error bar is inferior to

40%, while the experimental result reaches 68%. The root of the problem seems to

be connected to an overstabilization of the ground state energy along planar

distortions in comparison to nonplanar distortions. This unbalanced ground state

profile leads to a wrong description of the excited-state minimum [148].
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15 fs8 fs

Fig. 5 Evolution of the

(S1�S0) electron density

difference during a single

surface-hopping trajectory

of N-methylformamide
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TDDFT with LC-BLYP
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(orange) indicates electron
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SH/SDKS has allowed the limits of the simulations to be stretched much beyond

what can currently be done with TDDFT or wavefunction-based methods. In

particular, it has allowed one to investigate large organic chromophores [63],

adsorbance of molecules on metal [64, 136] and semiconductor [134, 172] surfaces,

Auger dynamics in quantum dots [23], carbon nanostructures [160, 162], and

organic crystals [61, 166].

An interesting example in this class of systems related to condensed matter and

materials science is the recently published simulations for a P3HT/carbon-nanotube

heterojunction [161]. Organic heterojunctions have been intensively explored for

the development of organic photovoltaics based on photoinduced electron transfer

[183, 184]. P3HT (poly(3-hexylthiophene)) is a standard organic polymer used as

chromophore and electron donor [185], while carbon nanotubes (CNT) are

electron-acceptor materials with enhanced charge-transport properties [186]. Not-

withstanding the limitations of DFT to approach this type of system [187], dynam-

ics with SH/SDKS predicts that there is a strong asymmetry between the electron

and hole transports in P3HT/CNT interface (Fig. 7). While photoexcitation of P3HT

leads to an electron transfer within 100 fs, the hole transfer takes much longer,

occurring on the few picoseconds scale.

6 Conclusions

In the last decade, surface hopping dynamics has become an essential tool for the

investigation of nonadiabatic processes in diverse fields, providing fundamental

information to interpret data from time-resolved spectroscopy, to explain photo-

chemical processes, and to predict new properties with potential technological

applications. Motivated by the advances in computational capabilities and algo-

rithms, such simulations are under constant pressure to address ever larger and more

complex systems. The development of SH/DFT has opened possibilities to go far

beyond where wavefunction ab initio methods could achieve.

Fig. 7 Decay of the

population of the electron

and hole donor states in a

P3HT (donor) – nanotube

(acceptor) interface.

(Reprinted with permission

from [161]. Copyright 2014

American Chemical

Society)
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In most implementations reported in the literature so far, DFT excitations used

for surface hopping are obtained either from linear-response time-dependent theory

or from bare KS gaps. Currently, we observe great effort from different research

groups to generalize the methods for different kinds of nonadiabatic interactions, to

provide better theoretical foundations, and to improve the hopping algorithms. The

availability of SH/DFT in a small amount of public computational-chemistry

software has also helped to popularize the method.

SH/DFT very successfully expanded the range of systems which can be

approached for nonadiabatic dynamics investigations. We should, however, be

aware that many methodological restrictions remain and must still be properly

addressed. Such restrictions involve intrinsic limitations in the semi-classical

local approach for nonadiabatic dynamics, in the sampling of statistical ensembles,

and, more fundamentally, in the quality of the DFT excited-state predictions. In

particular, the multireference character of regions of energy crossing between the

excited and the ground states is still a challenge waiting for better solutions than

those so far available.
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Description of Conical Intersections

with Density Functional Methods

Miquel Huix-Rotllant, Alexander Nikiforov, Walter Thiel,

and Michael Filatov

Abstract Conical intersections are perhaps the most significant mechanistic fea-

tures of chemical reactions occurring through excited states. By providing funnels

for efficient non-adiabatic population transfer, conical intersections govern the

branching ratio of products of such reactions, similar to what the transition states

do for ground-state reactivity. In this regard, intersections between the ground and

the lowest excited states play a special role, and the correct description of the

potential energy surfaces in their vicinity is crucial for understanding the mecha-

nism and dynamics of excited-state reactions. The methods of density functional

theory, such as time-dependent density functional theory, are widely used to

describe the excited states of large molecules. However, are these methods suitable

for describing the conical intersections or do they lead to artifacts and, conse-

quently, to erroneous description of reaction dynamics? Here we address the first

part of this question and analyze the ability of several density functional

approaches, including the linear-response time-dependent approach as well as the

spin-flip and ensemble formalisms, to provide the correct description of conical

intersections and the potential energy surfaces in their vicinity. It is demonstrated

that the commonly used linear-response time-dependent theory does not yield a

proper description of these features and that one should instead use alternative

computational approaches.
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1 Introduction

The molecular potential energy surface (PES) is perhaps one of the most significant

concepts in molecular physics which enables one to model molecular structure in

terms of specific spatial arrangements of atoms (molecular geometries) [1]. Defining

(meta)stable molecular conformations (local minima) and transient species (saddle

points or transition states) in terms of the molecular electronic energy–molecular

geometry relationship [2], the PES concept is a basis for theories of molecular

structure and reactivity and serves as a starting point for even more approximate

models, such as force-field molecular mechanics [3]. Rooted in the Born–Oppen-

heimer approximation [4], the PES concept is naturally valid in situations where the

coupling between the motion of the nuclei and electrons is negligibly weak, that is,

when the separation between the electronic states is much greater than the charac-

teristic energy of nuclear motion [5]. This assumption breaks down in the vicinity of

points where two (or more) PESs corresponding to distinct electronic states become

degenerate, the surface crossing points [5–8]. Near these points, the non-adiabatic

coupling between the electronic and nuclear degrees of freedom becomes decisive

for the dynamics of transformations occurring in the excited states [9–12] as well as

in the ground state [13, 14] of molecules.

Especially interesting and at the same time especially challenging for their

accurate theoretical description are situations of accidental (that is, not

symmetry-imposed) crossing of PESs of states of the same spatial and spin sym-

metry, the conical intersections (CIs) [6, 15–19]. Such crossings occur in the

subspace ofM�2 internal molecular degrees of freedom (for a nonlinear molecule,

M¼ 3N� 6, N – the number of atoms). The degeneracy between the electronic

states is lifted along the two remaining directions, which span the branching plane
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(BP) of the CI [6]. At a CI, the non-adiabatic coupling between the nuclear and

electronic degrees of freedom becomes divergent [6, 9]; hence, the manifold of CI

points, the CI seam, plays a decisive role for the dynamics of the electronic states by

providing funnels for the efficient population transfer [9–12, 20]. As the BP defines

all possible directions of exiting the strong non-adiabatic coupling region [6], it

becomes a very important descriptor of the CI which, very similar to the transition

vector in transition state theory [21, 22], determines the branching of possible

products of the reaction occurring through the CI [23].

The correct theoretical description of CIs requires the use of computational

methods capable of describing various electron correlation effects in the ground

and the excited states with high and unbiased accuracy [10, 12, 24]. Naturally, since

the first realization of the importance of CIs for the dynamics of excited states [9,

10], the computational investigation of CIs has been the realm of multi-reference

(MR) methods of wavefunction theory (WFT), such as the complete active space

self-consistent field (CASSCF) [25–28], the CAS-based second-order perturbation

theory (CASPT2) [29], and the MR configuration interaction (MRCI) [30] methods.

Although capable of delivering highly accurate results, these methods are compu-

tationally demanding and can be used routinely to calculate small molecular

systems limited to just a handful of atoms. To go beyond this limitation and to

match the challenges presented by the rapidly expanding use of ultrafast spectros-

copy in photochemistry and photobiology [31, 32] one needs to employ computa-

tional methods capable of realistically describing large molecules. As the methods

of density functional theory (DFT) [33, 34] offer a reasonably accurate description

of electron correlation effects (which are vital for molecular bonding and structure)

at a typical mean-field computational cost, these methods seem to represent a

viable alternative to MR-WFT approaches.

However, there is a caveat. Originally [33], DFT was formulated for ground

states only, and it was deemed inappropriate to apply it to variational calculation of

individual excited states [35–37]. A way around this problem is offered by the

response formalism implemented in the currently widely used linear-response

(LR) time-dependent DFT (TD-DFT) approach [38, 39]. LR-TD-DFT (or TD-DFT

for brevity) enables one to obtain the excitation energies from the poles of the

ground-state density-density response function [38, 39], thus enabling the use of

ground-state theory for obtaining excited states. Although capable of describing

crossings between excited states correctly, TD-DFT may experience difficulties

with the S0/S1 Cls as the ground electronic state (S0) is the variationally optimized

reference state for the response calculation and is thus described on a different

footing than the excited state (S1), which is a response state. In particular, there is no
coupling between the ground and excited states in most approximate LR-TD-DFT

methods, which results in a wrong dimensionality of the S0/S1 crossing seam,M�1
instead of M�2 [40–43].

An interesting modification of the original LR-TD-DFT formalism is

implemented in the spin-flip (SF) TD-DFT method which employs a variationally

optimized high-spin open-shell reference state (e.g., triplet state) to access lower

spin states (e.g., singlets) by allowing one-electron transitions with simultaneous
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inversion of the spin (spin-flip transitions) [44–47]. In SF-TD-DFT, the ground

singlet state and the excited singlet states are obtained on the same footing as

response states. This enables some interaction between these states and reinstates

the correct dimensionality of the S0/S1 conical intersection [40, 43, 48]. However,

the downside of SF-TD-DFT is a substantial spin-contamination of the so-obtained

singlet state, which may lead to the occurrence of mixed spin-symmetry states, thus

complicating the identification of physically meaningful excited states [48].

An alternative to the response formalism, for obtaining excited states in the

context of DFT, is offered by the ensemble DFT approaches [39, 49–52]. Ensemble

DFT, formulated in the seminal works of Lieb [53] (ground-state ensembles) and of

Gross, Oliveira, and Kohn [49] (ensembles of ground and excited states) enables

one to obtain excitation energies from the variational calculation, as contrasted with

the response states of LR-TD-DFT and SF-TD-DFT. A practical implementation of

ensemble DFT in the form of a generally applicable computational scheme was

achieved in the spin-restricted ensemble-referenced Kohn–Sham (REKS) method

[54–56] and its state-averaged (SA) extensions, SA-REKS [57] and SI-SA-REKS

[42, 58] (SI: state-interaction). In particular, the SI-SA-REKS method has proved

its ability to describe properly the S0/S1 CIs by yielding the correct dimensionality

of the CI, M�2 [43, 58, 59]. Being a spin-restricted method which employs the

same spatial orbitals for electrons with opposite spins, REKS is free from the spin-

contamination which infests the SF-TD-DFT description, and yields a spin and

space (if present) symmetry adapted description of ground and excited states.

The aforementioned computational approaches (LR-TD-DFT, SF-TD-DFT, and

REKS) cover all the practically accessible implementations of DFT for describing

the ground and excited states of molecules. In this chapter, the ability of these

computational methods to describe CIs, and particularly S0/S1 CIs, of molecules is

assessed in relation to probably the best description that the MR-WFT world can

offer, namely MRCISD (MRCI with single and double excitations). When using

approximate density functionals, LR-TD-DFT often yields good results for the

energies of one-electron valence transitions and it seems tempting to believe that

TD-DFT should be capable of yielding PES crossings as well. Although its inability

to do so was clearly spelled out in the past [40, 41], the use of TD-DFT for modeling

photodynamics and the underlying mechanistic features, such as CIs, seems to be

gaining ground [60–73]. The consequences of using TD-DFT for photodynamics

are reviewed in another chapter of this book;1 here, we focus on the ability (or, more

precisely, the inability) of this formalism to provide a proper description of CI

topography while yielding seemingly reasonable geometries and relative energies

of the minimum-energy crossing points.

As an alternative to TD-DFT, we investigate the performance of SF-TD-DFT

and REKS methodologies which are known to yield the proper dimensionality of

the CI seam [43]. Besides the molecular geometry at the minimum-energy CI

1 See the chapter “Surface Hopping Dynamics with DFT Excited States” by M. Barbatti and

R. Crespo-Otero.
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(MECI) and its relative energy, we focus on the BP of the intersection and compare

the BP vectors obtained in the DFT calculations with the corresponding MRCISD-

derived vectors [59]. When benchmarking the DFT methods, we address a set of

CIs of diverse topography occurring in unsaturated molecules during double-bond

torsion; however, the conclusions drawn from these benchmarks should remain

valid for other CIs as well, such as those in cyclic molecules or in nucleobases. The

reason why we focus on relatively small molecules is that it would be extremely

difficult to carry out MRCISD calculations with good-quality basis sets for larger

molecules.

2 Conical Intersections

CIs are manifolds of points at which there is a real crossing (degeneracy) between

two (or more) adiabatic Born–Oppenheimer PESs of electronic states of the same

spatial and spin symmetry. The fundamental conditions for the occurrence of such

intersections have been known since the early days of quantum mechanics [15,

17]. For two adiabatic electronic states Ψm and Ψn, which can be represented by the

solutions of a 2� 2 secular problem

Hmm Hmn

Hnm Hnn

 �
Cmm Cmn

Cnm Cnn

 �
¼ Em 0

0 En

 �
Cmm Cmn

Cnm Cnn

 �
; ð1Þ

formulated in terms of (in general, arbitrary) diabatic orthogonal states Φm and Φn

as Ψm¼CmmΦm+CnmΦn and Ψn¼CmnΦm+CnnΦn, the crossing occurs whenever

the two conditions

Hmm � Hnn ¼ Em � En ¼ 0; ð2aÞ
Hmn ¼ Hnm ¼ 0; ð2bÞ

are fulfilled [6, 9, 11, 17–19, 74]. In the above equations, Hmn are the matrix

elements, Hmn¼hΦm|Ĥ |Φni, of the Hamiltonian Ĥ in Born–Oppenheimer approx-

imation evaluated with respect to the diabatic states. As was pointed out in the

Introduction, these conditions can be fulfilled in the space of M�2 internal molec-

ular coordinates; thus, the CIs may occur in molecules with three or more atoms.

2.1 Branching Plane Vectors

The degeneracy of the two electronic states is lifted in the subspace of the two

coordinates which can be found expanding the Hamiltonian in (1) around the point

of degeneracy through the first order in internal nuclear coordinates Q,
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Hmm Hmn

Hnm Hnn

 �
� I2∇QH:δQ

þ
1

2
∇Q Hmm � Hnnð Þ ∇QHnm

∇QHmn �1
2
∇Q Hmm � Hnnð Þ

0B@
1CA � δQ; ð3aÞ

¼ I2s � δQþ
g h

h �g

 �
� δQ; ð3bÞ

where H ¼ Hmm þ Hnnð Þ=2 is the average diagonal element, δQ is the nuclear

displacement vector, ∇Q denotes differentiation with respect to nuclear coordi-

nates, and I2 is a 2� 2 unit matrix. The normalized vectors

x1 ¼
g

gk k; ð4aÞ

x2 ¼
h

hk k; ð4bÞ

span the branching plane of the CI which contains all the nuclear displacements

lifting the degeneracy of the electronic states Ψm and Ψn. In the vicinity of a CI,

the adiabatic PESs depend linearly on the nuclear displacements and have the

topography of a double cone [6, 17]; hence the name.

The definition of the BP vectors of a CI given in (3) and (4) is not unique [74];

the vectors spanning the same plane can be defined via the adiabatic states Ψm and

Ψn, which leads to the following definition:

x
0

1 ¼
g
0

g0k k
; g

0 ¼ ∇Q Em � Enð Þ; ð5aÞ

x
0

2 ¼
h
0

h
0�� �� ; h

0 ¼ Ψm

��∇QĤ
��Ψn

� �
: ð5bÞ

Although the planes spanned by the (x1, x2) and (x
0
1, x

0
2) vector pairs are the same,

the individual vectors are not necessarily aligned with each other. Furthermore, as

was first demonstrated by Ruedenberg et al. [6], the vectors (x
0
1, x

0
2) are rigidly

rotated within the plane when traveling along a loop around a CI. This leads to a

certain arbitrariness in the directions of the (x
0

1, x
0

2) vectors obtained from CI

optimization carried out with finite numerical accuracy. As the crossing point at

which the optimization stops may be infinitesimally close to the CI, but not exactly

at the CI, the BP vectors (x
0
1, x

0
2) obtained in a series of CI optimizations utilizing
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the same computational method but started from different initial conditions may not

coincide with each other.2

When comparing BP vectors (x
0

1, x
0

2) obtained using different computational

schemes, the arbitrariness in their orientation within the BP can be bypassed by

aligning the vector pairs such as to maximize the projection of one of the vectors,

e.g., x
0
1, obtained using computational method A onto the matching vector (x

0
1 or x1)

obtained using method B [59, 76]. As proposed recently [59], such an alignment can

be carried out by a similarity transformation SRS�1 that spans a 2D orthogonal

rotation R and a shear transformation S. The latter transformation is necessary

because the BP vectors are not, in general, orthogonal with respect to one another,

i.e., the inner products x
0

1 � x
0

2

� �
and (x1 · x2) are not zero. The shear transformation

leaves the inner product invariant upon rotation within the plane. The same publica-

tion [59] also introduced a number of useful measures to compare the BPs obtained

using different computational methods. Thus, projections pB xA
k

� �
, k ¼ 1, 2 of the

vectors xk (or x
0

k) obtained using method A onto the BP obtained by method B and

the projection rAB of a rectangle spanned by the vector pair (x
A
1 , x

A
2 ) onto the (x

B
1 , x

B
2 )

rectangle were introduced to quantify the similarity (or discrepancy) between the

BP vectors produced by different computational methods [59]. These measures are

used in the following, when comparing the computational methods addressed in

this chapter.

The use of the alignment procedure and the numerical measures described above

for comparing BP vectors become especially useful when addressing computational

schemes for which the BP vectors cannot be obtained using definitions (4) or (5),

such as the TD-DFT or SF-TD-DFT methods. For these methods, only the x
0
1 vector

can be determined explicitly by differentiation of the respective electronic energies.

The x
0

2 vector is obtained during optimization for a CI using the branching space

update method of Maeda et al. [77] as an orthogonal complement to x
0

1 in a plane

that iteratively converges to the BP of the CI. The (x
0
1, x

0
2) vector pairs so obtained

have been shown to approximate sufficiently accurately the true BPs of the opti-

mized CIs [77]. However, the resulting vectors are strictly orthogonal, a property

not shared by the explicitly calculated vectors. In the context of the REKS method,

the BP vectors are defined by (4), which uses diabatic states and, therefore, yields a

unique orientation of the vectors. This feature becomes especially important when

analyzing the Cls and their BPs in chemical terms.

2As shown by Yarkony [74, 75], a rotation of the crossing states which orthogonalizes the BP

vectors brings the vectors to a unique orientation, especially when symmetry is present. Applica-

tion of such a prescription, however, modifies the BP vectors, while leaving the BP unchanged.
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2.2 Double Bond Torsion and Conical Intersections

In this chapter, we focus on the Cls arising during double-bond torsion in unsatu-

rated molecules; thus, let us look more closely at this situation. The origin of Cls for

double-bond torsion can be traced back to a crossing between the electronic states

caused by homolytic and heterolytic breaking of the π-component of the double

bond [78]. The homolytic bond breaking results in a diradicaloid electronic con-

figuration, whereas the heterolytic bond breaking leads to an ionic (or zwitterionic)

electronic configuration. According to the sign-change theorem of Longuet-Higgins

[19], a CI should be present inside a loop connecting the conformations that

correspond to the two bond-breaking mechanisms [12, 79–81]; see Fig. 1.

Let us now assume a nuclear movement in the direction of the x1 vector while

keeping the interstate coupling element Hmn at zero. When passing through the CI,

the S0 wavefunction experiences a sudden switch from ionic to diradical (or vice

versa) and the S1 wavefunction does precisely the opposite. It is therefore natural to
associate with the x1 vector a direction that corresponds to the transition between

the uncoupled ionic and diradical states; it is these two electronic states that are

included into the ensemble averaging in the SI-SA-REKS method; see Sect. 3.1.

Conversely, a displacement along the x2 vector while keeping the energy difference

Hmm–Hnn at zero should correspond to increasing (decreasing) the coupling

between the states; hence, this motion should contain the torsion about the double

bond axis. Indeed, when the two fragments connected by the double bond attain an

Fig. 1 Schematic representation of conical intersection for double bond isomerization.

Reproduced with permission from [81]. Copyright © (2014) American Chemical Society
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approximately orthogonal orientation during the torsion, the interaction between

the fragment wavefunctions vanishes and this results in a vanishing Hmn element.

Thus, the gradient of the interstate coupling element in the SI-SA-REKS method

(see Sect. 3.1) can be conveniently associated with the x2 vector.

From this brief discussion, the advantage of the specific orientation of the BP

vectors as in Fig. 1 is that it offers a simple chemical interpretation of the CI and the

factors influencing its occurrence. In particular, the relative electronegativity of the

fragments connected by the double bond and, consequently, the relative preference

for one of the bond breaking mechanisms define the molecular geometry at a CI [58,

81]. For example, in alkenes, the homolytic π-bond breaking is energetically

preferred over the heterolytic bond breaking, and this results in a pronounced

pyramidalization at a CI which is needed to stabilize the ionic structure and

(along with the torsion) to reach the point of surface crossing. By contrast, in

organic molecules with strongly electron-withdrawing (or electron-donating) func-

tional groups, the two bond breaking mechanisms may become nearly isoenergetic

and a CI can be reached without requiring pyramidalization; in this case, the

molecular geometry at the CI corresponds to double bond torsion combined with

stretching/compression of the other single and double bonds, hence a bond length

alternation (BLA) distortion [81]. Because the BP vectors obtained in the SI-SA-

REKS calculations have a unique orientation and a transparent chemical interpre-

tation, the vectors obtained by other methods, TD-DFT, SF-TD-DFT, and

MRCISD, are aligned with them by using the recently introduced similarity

transformation [59].

3 Computational Methods

In the following, we give a brief overview of the computational methods used to

study the CIs in this chapter. A complete description of these computational

schemes can be found in other chapters of this book, and so we recapitulate only

those features most relevant for PES crossings. The interested reader is advised to

consult the other chapters in this book and the literature references cited therein for

more detail on the computational methodologies.

3.1 REKS Method

The REKS method [54–56] employs the ideas behind ensemble DFT to describe the

non-dynamic correlation in the ground and excited states of molecules and to access

the excited states through the application of the variational principle [42, 57,

58]. Perhaps the most important realization in ensemble DFT that was rigorously

proved by Lieb [53] and computationally verified by Schipper et al. [82, 83] and by

Morrison [84] is that the density and the ground-state energy of a strongly
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correlated fermionic system is to be exactly represented by a weighted sum

(ensemble) of the densities (and energies) of several electronic configurations

(ensemble components). In the REKS method, the ensemble representation of the

non-interacting Kohn–Sham reference system is used to describe the non-dynamic

correlation arising because of near degeneracy of several electronic configurations;

such as in situations with dissociating chemical bonds, near transition states of

symmetry-forbidden reactions, biradicaloid species, etc. The ensemble representa-

tion leads to fractional occupation numbers (FONs) of several frontier Kohn–Sham

orbitals, which are obtained simultaneously with the orbitals from the variational

optimization of the total ground-state energy.

The excited states are accessed within the REKS methodology by applying the

ensemble variational principle proved by Gross et al. [49]:

XM
K¼1
λK ΦK

��Ĥ ��ΦK

� �
�
XM
K¼1
λKEK; 0 � λK � 1;

XM
K¼1
λK ¼ 1 ; ð6Þ

which states that the energy of an ensemble of trial wavefunctions ΦK representing

several lowest states of the many-body Hamiltonian Ĥ is always bounded from

below by the weighted sum of the exact eigenenergies of this Hamiltonian taken

with the same (positive definite) weighting factors λK. Restricting the ensemble

averaging to two states, S0 and S1, the ground and the lowest excited states of an

atom or a molecule, one obtains the excitation energy from the variational optimi-

zation of an ensemble

Eω ¼ 1� ωð ÞE0 þ ωE1; ð7Þ

of the two states by taking the energy difference

ΔE ¼ E1 � E0 ¼
Eω � E0

ω
; ð8Þ

where 0�ω� 1 is a fixed (that is, not variationally optimized) weighting factor.

For a system with two strongly correlated electrons in two orbitals (e.g., a

biradical or a dissociating bond), the ground state as described by the REKS(2,2)

method corresponds to a two-configurational model wavefunction [85],

Φ0 ¼
ffiffiffiffiffi
na
2

r �� . . .ϕaϕai �
ffiffiffiffiffi
nb
2

r �� . . .ϕbϕbi; ð9Þ

where ϕa and ϕb are the fractionally occupied frontier orbitals, na and nb are the

respective FONs, and the unbarred and barred orbitals are occupied with α- and β-
spin electrons, respectively. When the two active orbitals belong to two different

irreducible representations of the molecular symmetry group (e.g., a

homosymmetric biradical, H2 with stretched bond, double bond torsion in C2H4,
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etc.), the lowest singlet excited state arising from a one-electron excitation in the

space of the two orbitals ϕa and ϕb can be approximated by an open-shell singlet

(OSS) wavefunction [85],

Φ1 ¼
1ffiffiffi
2
p
�� . . .ϕaϕbi þ

1ffiffiffi
2
p
�� . . .ϕbϕai:: ð10Þ

The OSS state can be described by the spin-restricted open-shell Kohn–Sham

(ROKS) method [86, 87].

Combining the two energies, EREKS(2,2) and EROKS in an ensemble as in (7) and

variationally optimizing the KS orbitals and the FONs of the active orbitals in

REKS, one obtains the state-averaged energy Eω from which the excitation energy

is obtained by (8). In the SA-REKS method described, the same set of KS orbitals is

used to construct the two energies, EREKS(2,2) and EROKS. Typically, the weighting
factor ω is set to 1/2, which corresponds to an equi-ensemble of the S0 and S1 states.

The SA-REKS method [57] treats S0 and S1 as uncoupled states, e.g., as in a

homosymmetric biradical where the interaction between the states is prevented by

symmetry. When the two states belong to the same symmetry species, e.g., as in a

heterosymmetric biradical, the states approximated by the wavefunctions in (9) and

(10) interact with each other and this interaction should be taken into account when

calculating the energies of the individual ensemble components in (7) and (8).

Within the REKS formalism, the uncoupled S0 and S1 states can be obtained by

diagonalizing a 2� 2 secular matrix

EREKS 2;2ð Þ H01

H01 EROKS

 �
; ð11Þ

where the coupling matrix element H01:

H01 ¼
ffiffiffiffiffi
na
p

ϕa

��naF̂ a

��ϕa

� �
� ffiffiffiffiffi

nb
p

ϕa

��nbF̂ b

��ϕb

� �
¼ ffiffiffiffiffi

na
p � ffiffiffiffiffi

nb
pð Þεab; ð12Þ

is obtained by the application of Slater–Condon rules and the variational condition

for the SA-REKS orbitals. In (12), F̂ a and F̂ b are the Fock operators for the open-

shell orbitals and εab is the off-diagonal Lagrange multiplier in the open-shell

Lagrangian [54]. Equations (11) and (12) constitute the state-interaction SI-SA-

REKS method [42, 58]. Provided that the weighting factor ω in (7) is set to 1/2, the

state-averaged energy Eω in the SA-REKS and SI-SA-REKS methods remains the

same and the SA-REKS orbitals can be used in the SI-SA-REKS method. Note that

(11) and (12) can also be obtained by using the adiabatic connection argument for

an ensemble of two states [52].3

3 See also the chapter “Ensemble DFT approach to excited states of strongly correlated molecular

systems” by M. Filatov.
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In the framework of the SI-SA-REKS method, a CI occurs when the two

energies EREKS(2,2) and EROKS become equal and the coupling matrix element H01

vanishes. Hence, the BP vectors x1 and x2 of the CI can be obtained by the

differentiation of the respective energy differences and matrix elements as in (4),

where the g and h vectors are given by (13) [59, 81]:

g ¼ ∇Q EREKS 2;2ð Þ � EROKS
� �

; ð13aÞ

h ¼ ∇QH01: ð13bÞ

The BP vectors as defined in the SI-SA-REKS method are in accord with the

chemical interpretation presented in Sect. 2 [81]. Indeed, the x1 (or g) vector points

in the direction of the difference of the gradients of the energies of the non-
interacting states S0 and S1, exactly as it should be when moving along the x1
vector in Fig. 1. The same is true for the x2 vector as well. As the SI-SA-REKS

energy formula can be obtained by the adiabatic connection argument, and hence

within the domain of DFT, the BP vectors given in (13) can be regarded as

approximations to the true DFT BP vectors, had these vectors been known from

the exact theory.

Thus, when using the SI-SA-REKS method, the excited states are obtained from

a variational calculation in strict correspondence with the ensemble variational

principle of DFT [49]. The variational calculation of excited states is also

implemented in constricted variational DFT (CV-DFT) [88, 89] reviewed in

another chapter of this book. The use of the SI-SA-REKS method offers markedly

improved accuracy when describing certain types of excitations, particularly exci-

tations of extended π-conjugated molecular systems [90], charge-transfer excita-

tions in donor-acceptor systems [91], and excitations of strongly correlated ground-

state systems (biradicals, molecules with broken bonds, etc.) [90]. With regard to

CIs, the SI-SA-REKS method yields the correct dimensionality (M� 2) of the CI

seam and the correct shape of the S0 and S1 PESs in its vicinity [43, 59]. This

follows not only from the numerical tests presented below in this chapter but also

from the general theoretical argument that the coupling between the S0 and S1 states
is consistently taken into account in the SI-SA-REKS method.

3.2 Linear-Response Methods

In linear-response methods with local potentials, the excitation energies are

obtained from the residues of the exact Fourier-transformed density-density

response function χ [38],

δρ r;ωð Þ ¼
ð
χ r; r

0
;ω

� �
δvext r

0
;ω

� �
dr
0
; ð14Þ
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where vext(r, ω) corresponds to the Fourier-transformed time-dependent external

potential. Separating the time-dependent Hamiltonian into time-independent

(zeroth-order) and time-dependent (first-order) parts, one arrives, after a few

steps, at the linear-response equation

χLR r; r
0
;ω

� �
¼ χs r; r

0
;ω

� �
þ
ðð
χs r; r1;ωð Þ fHxc r1; r2;ωð ÞχLR r2; r

0
;ω

� �
dr1dr2; ð15Þ

where χLR(r,r0,ω) is the LR function, χs(r,r0,ω) is the zeroth-order response func-

tion, and fHxc(r1,r2,ω)¼ |r1 – r2|
�1 + fxc(r1,r2,ω) is the Hartree plus the exchange-

correlation (xc) kernel. All LR approaches extract the poles of some form of (15),

differing mainly in the choice of the zeroth-order density used to construct the

non-interacting response function and the xc kernel.

3.2.1 LR-TD-DFT

In LR-TD-DFT, the poles of the LR function (15) are cast in matrix form

A ωð Þ B ωð Þ
B* ωð Þ A* ωð Þ

� �
X

Y

� �
¼ ω 1 0

0 �1

� �
X

Y

� �
; ð16Þ

where the matrices A(ω) and B(ω) are defined as

A ωð Þ½ �ai,b j ¼ εKSa � εKSi
� �

δi jδab þ ai
�� fHxc ωð Þ��b j� �

; ð17aÞ

B ωð Þ½ �ai,b j ¼ ia
�� fHxc ωð Þ��b j� �

: ð17bÞ

In (17), i, j, . . ., a, b,. . . and p, q,. . . are the indices for occupied, virtual, and general

(occupied or virtual) spin-orbitals, and εKSp are the eigenvalues of the KS

Hamiltonian.

Adiabatic LR-TD-DFT based on a KS initial density employs the XC kernel

taken in the adiabatic approximation (i.e., implying locality of the exchange-

correlation (XC) kernel in the time domain),

f AAxc r; r
0

� �
¼ δ2Exc ρ½ �
δρ rð Þδρ r

0ð Þ : ð18Þ

The fact that the xc kernel is frequency independent makes it impossible to account

properly for doubly excited states within the adiabatic approximation [92,

93]. These reasons are believed to be the major causes of the failure of LR-

TD-DFT methods to describe correctly the low-lying excited states in
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highly-conjugated systems [94]. Recent advances in LR-TD-DFT beyond the

adiabatic approximation are surveyed in another chapter of this book.4

When using the conventional closed-shell KS reference state, the LR-TD-DFT

description in the adiabatic approximation breaks down near an S0/S1 conical

intersection. Indeed, the assumption of pure-state v-representability employed in

the traditional KS theory fails near the surface crossing points where the two

electronic states become (nearly) degenerate. This is usually reflected in severe

convergence problems of the KS self-consistent field iterations, which can be

alleviated by either allowing holes below the Fermi level [82] or using a more

general density Ansatz, such as in ensemble DFT [53, 82]. Furthermore, the

interaction between the ground and the excited states is missing in adiabatic

LR-TD-DFT, which results in a linear crossing instead of a conical intersection

[40]. Surprisingly, it was observed by Levine et al. [40] and by Cordova et al. [95]

that, even though the PESs are defective, the geometries and branching planes of

minimal energy crossing points may look reasonable in comparison with other,

theoretically justified, methods. The topography of conical intersections between

different excited states is expected to be correct even at the adiabatic LR-TD-DFT

level; however because of the missing effect of doubly-excited configurations its

geometry and energy level may be incorrect [40].

3.2.2 Spin-Flip TD-DFT

Several schemes have been developed that attempt to ameliorate some of the

problems arising in the adiabatic LR-TD-DFT description of S0/S1 conical inter-

sections. Among them, one of the most successful is the spin-flip time-dependent

DFT, SF-TD-DFT. In SF-TD-DFT, electronic configurations arising from the

excitation operators with ΔMs¼�1 are coupled, unlike the usual formulation of

TD-DFT in which only spin-preserving excitation operators with ΔMs¼ 0 are

allowed. Several formulations of SF-TD-DFT appear in the literature [44–

47]. Ziegler and Wang’s formulation of SF-TD-DFT [45] relies on the

non-collinear spin DFT framework, which operates with the KS spinors, rather

than spin-free orbitals. In this formulation, the xc kernel is given by

f SFxc r; r
0

� �
¼ ν

α
xc rð Þ � νβxc rð Þ
ρα r

0ð Þ � ρβ r
0ð Þ ; ð19Þ

where νσxc and ρσ(r0) are the xc potential and the electronic density of spin σ,
respectively.

The configurations arising from the spin-flip αβ and βα excitations are

decoupled. Starting from an open-shell triplet reference in a two-electron

4 See the chapter “Current status and recent developments in linear response time-dependent

density-functional theory” by Mark E. Casida and Miquel Huix-Rotllant.
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two-orbital model, this gives rise to two closed-shell configurations (a double

excitation and a ground state) and two open-shell configurations which can be

coupled to a singlet or a triplet configuration (see Fig. 2). Beyond this model, open-

shell spin-uncompensated configurations are present so that spin-contaminated

excitation energies are obtained, which can be partially purified by an a posteriori

correction scheme [96].

The SF-TD-DFT approach has several advantages over adiabatic LR-TD-DFT,

especially when describing a conical intersection region involving the ground state.

First, the reference state is a triplet, which satisfies more easily the KS condition of

non-interacting pure state v-representability. Second, SF-TD-DFT includes some

extra double-excitation character in the excited states because of the configuration

arising from the a{βiα excitation. Thus, ground and excited states are coupled in

SF-TD-DFT, and this yields the correct dimensionality of the conical intersection

region. This is a clear advantage over the usual spin-preserving TDDFT, in which

the ground state and the excited states are decoupled [40].

SF-TD-DFT is able to introduce the ground and excited state coupling correctly,

albeit only within the restricted configuration space represented in Fig. 2. In

general, most CIs are well represented by SF-TD-DFT, but more complicated

intersections are described only approximately [48]. One of the most important

problems is that SF-TD-DFT states are frequently spin-mixed. In order to correct

this problem, an a posteriori spin purification scheme has been proposed [96]. How-

ever, when using this scheme, the correct dimensionality of the CI seam is lost [43].

Within the two LR approaches, TD-DFT and SF-TD-DFT, CIs can be located

using the branching space update method of Maeda et al. [77] which employs a

projected gradient algorithm for optimizing the branching plane. The x
0
1-vector is

calculated by (5) and the x
0
2-vector is approximated by an iterative update scheme.

Note that in this approach the x
0
1 and x

0
2 vectors are strictly orthogonal, although the

exact BP vectors need not necessarily have this property [6].

Fig. 2 Spin-flip excitations

from an open-shell triplet

reference
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4 Application of DFT Methods to Conical Intersections

In this section we discuss the application of the computational methods described

above to study Cls in a number of organic molecules and organic and biological

chromophores [59]. The geometries of the MECIs optimized using the SI-SA-

REKS (denoted for brevity as SSR), SF-TD-DFT (abbreviated to SF), and LR-

TD-DFT (abbreviated to TD) methods are superimposed with the MRCISD geom-

etries in Fig. 3. All the calculations reported here employed the 6-31+G** basis set

and the BH&HLYP density functional (DFT calculations), with the exception of

stilbene and anionic HBI, for which the MRCISD calculations employed a smaller

6-31G** basis set. The results of the MRCISD, SSR, and SF calculations are taken

from [59] and the TD calculations were carried out using the same settings as in the

SF calculations. In particular, the Tamm–Dancoff approximation (TDA) was used

in the SF and TD calculations and both methods applied the algorithm by Maeda

et al. [77] to locate the MECI points.

The majority of CIs arising in the molecules in Fig. 3 originate from a crossing

between diradical and ionic electronic configurations along the reaction coordinate

which corresponds to double bond torsion [12, 78, 79]. As discussed in Sect. 2,

these CIs can be classified as twist-pyramidalization CIs (tw-pyr, for brevity), for

Fig. 3 Superimposed geometries at the respective MECI points optimized using MRCISD/6-31

+G** (standard colors), SSR-BH&HLYP/6-31 +G** (solid blue), SF-TD-DFT-BH&HLYP/6-

31 +G** (solid green), LR-TD-DFT-BH&HLYP/6-31 +G** (solid red). MRCISD calculations

employed the 6-31G** basis set for stilbene and anionic HBI. The MRCISD, SSR, and SF

geometries are taken from [59]
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situations where the homolytic breaking of the π-bond is energetically preferred,

and as twist-bond_length_alternation (tw-BLA) CIs, for cases when the two π-bond
breaking mechanisms, homolytic and heterolytic, either become nearly isoenergetic

or the latter mechanism is preferred [81]. An accurate description of this type of CI

requires a balanced description of the relative stability of diradical and ionic

electronic configurations; thus the ability of computational methods to deliver

such a description is probed by this type of CI.

Another type of CI shown in Fig. 3 can be described as n/π* CIs that originate

from the crossing between an electron configuration with a doubly occupied lone

pair orbital (n2π*0) and a singly excited configuration (n1π*1) [97]. These CIs occur
in ketene, ethylene (ethylidene or methylcarbene CI), and methyliminium cation

(methylimine CI) as shown in Fig. 3. This type of CI probes the accuracy of

description of lone-pair excitations by the tested theoretical methods.

The set of CIs shown in Fig. 3 misses some other types, in particular those found

in cyclic molecules, such as nucleobases; however, good-quality reference

MRCISD data for these CIs would be extremely difficult to obtain because of the

large size of these molecules. We therefore omit these CIs from comparisons and

focus instead on the ability of the DFT computational schemes to reproduce the

molecular geometry and relative energy of the MECI points and the shape of the S0
and S1 PESs in their vicinity. To this end, we compare the BP vectors obtained using

the DFT approaches with the respective MRCISD vectors, and we investigate the S0
and S1 PESs around the optimized MECI points by scanning the PESs (1) in the

direction of the BP vectors and (2) along a closed path around the MECI point

[98]. The latter scans enable us to evaluate the ability of the respective theoretical

methods to describe the correct dimensionality of the CI seam [43, 98].

As is evident from Table 1, all the DFT methods are capable of describing the

vertical excitations at the Franck–Condon (FC) point sufficiently accurately as

compared to the best estimates of these energies. The accuracy of the MRCISD

description is sometimes inferior to the DFT methods, probably because of certain

restrictions with regard to the primary active space and the basis set employed

[59]. The TD method tends to overestimate the vertical excitation energies as

compared to the other two DFT methods. The relative energies of the MECI points

obtained in the DFT calculations are in semi-quantitative agreement with the

MRCISD energies; deviations of ca. 0.5 eV or slightly more (e.g., for ketene or

PSB3) are observed in Table 1. However, the MRCISD energies in Table 1 cannot

be regarded as highly accurate benchmark reference data because of the aforemen-

tioned basis set and active space restrictions; these data illustrate what is currently

achievable at the computationally affordable MR-WFT level of calculation [59].

The accuracy of the optimized molecular geometries at the MECI points is

characterized in Fig. 3 in graphical form and in Table 2 in terms of root-mean-

square-deviations (RMSDs) between the optimized Cartesian coordinates. With the

exception of the PSB3 cation, for which the SF and TD methods predict a much too

strong pyramidalization of the C3 atom, there are no conspicuous differences

between the DFT and MRCISD geometries. This is reflected in the DFT vs
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MRCISD RMSDs in Table 2, which vary in the range between 0.061 Å (SSR) and

0.079 Å (TD). An even better agreement is seen between the geometries obtained

by the different DFT methods, especially for the SF and TDmethods (0.030Å). The
BP projections in Table 2 indicate that all methods produce nearly the same BP

vectors at the MECI geometries. The very good agreement between the DFT

methods and MRCISD seems to indicate that these much simpler methods can be

confidently used in lieu of MRCISD for locating CIs and analyzing the S0 and S1
PESs in their vicinity. However, there is a caveat: despite the seemingly good

agreement with the high-level MR-WFT approach, not all the DFT methods

produce the correct dimensionality of the CI seam. In the following, we focus on

three molecules and their respective CIs, ethylene and its tw-pyr MECI, cationic

PSB3 and its tw-BLA MECI, as well as ketene molecule and its n/π* MECI, as

representatives of the specific types of CIs discussed above.

4.1 Ethylene

On the S0/S1 CI seam in ethylene there are two distinct MECI points that correspond

to a tw-pyr MECI (the major photorelaxation funnel) and to a MECI point with

partial transfer of a hydrogen atom; see the tw-pyr and ethylidene MECIs of C2H4

in Fig. 3 [105–108]. The tw-pyr MECI originates from a crossing between the PESs

for homolytic and heterolytic π-bond breaking along the double bond torsion mode.

As the heterolytic π-bond breaking is strongly disfavored in ethylene, the tw-pyr

MECI features a strong pyramidalization of one of the carbon atoms to stabilize the

ionic electronic configuration.

All the DFT methods employed here predict the vertical excitation energy at the

FC point in a good agreement with the best theoretical estimate of 7.8 eV. The energy

level of the tw-pyr MECI is much lower than the FC point. The DFT methods yield

tw-pyr MECI energies varying between 4.96 eV (SSR) and 4.73 eV (TD), in good

agreement with the MRCISD value 4.79 eV; see Table 1. The BP vectors predicted

by the DFT methods are in very good agreement with the MRCISD BP vectors, as

can be seen from a visual comparison of the vectors in Fig. 4 and from the BP

projections (see Sect. 2) which lie in the range 0.99–0.97 in each case.

From these results it seems that all the DFT methods are capable of describing

the tw-pyr MECI in ethylene correctly. However, a closer look at the S0 and S1 PESs
near the MECI point reveals that the surface crossing predicted by adiabatic LR-

TD-DFT is not actually a conical intersection but is rather a linear crossing. As seen

in Fig. 5, the S1 PES produced by adiabatic LR-TD-DFT falls below the S0 PES
when moving along the x1 direction.

5 Furthermore, the shape of the S0 and S1 PESs

5 The conventional KS DFT/LR-TD-DFT calculations experienced severe convergence problems

in the vicinity of the MECI point, which are reflected in the shape of the S1 PES in the upper right

panel of Fig. 5.
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along the x2 direction as predicted by adiabatic LR-TD-DFT is inconsistent with the

SSR and SF PESs. It appears as though the S0 state is unaware of the proximity to

the S1 state. The SSR and SF methods yield some interaction between these states

which is reflected in the shapes of the S0 and S1 PESs; the latter appear to be

(approximately) symmetrically split around some median level, whereas no such

(quasi) symmetric splitting can be seen in the adiabatic LR-TD-DFT PESs; see the

lower right panel of Fig. 5. Thus, adiabatic LR-TD-DFT predicts a linear S0/S1 PES
crossing, as expected from the vanishing off-diagonal matrix element in (1); hence,

only one degree of freedom is sufficient to make the PESs cross, which leads to the

M� 1 dimensionality of the crossing seam in adiabatic LR-TD-DFT [40, 41, 43].

These observations are corroborated by the plot in Fig. 6, which shows the S0–S1
energy difference along a loop with a radius of 0.002Å around the MECI point. The

SSR and SF energy differences always remain finite which means that there is a

finite gap at all geometries which lift the degeneracy of the S0 and S1 states at the
MECI point. By contrast, the adiabatic LR-TD-DFT energy difference curve

crosses the zero level twice when going around the loop. It is also noteworthy

that the shape of the energy difference curve as produced by adiabatic LR-TD-DFT

is markedly different from those of the other two methods. The angle θ that

parameterizes the loop is taken from the direction of the x1 vector. This implies

that the coupling between the S0 and S1 states should vanish at the points θ¼ 0� and

Fig. 4 BP vectors of

twisted-pyramidalized

MECI of ethylene

calculated using MRCISD,

SSR-BH&HLYP, SF-TD-

BH&HLYP, and LR-TD-

BH&HLYP methods
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Fig. 5 S0 (blue) and S1 (red) PES profiles near the tw-pyr MECI of ethylene. Upper panels –
profiles along the x1 BP vector, lower panels – along the x2 BP vector. Leftmost panels – profiles

obtained using the SSR-BH&HLYP/6-31 +G** method, middle panels – obtained by the SF-TD-

BH&HLYP/6-31 +G** method, rightmost panels – using the TD-BH&HLYP/6-31 +G** method.

For each computational method, the MECI energy level is taken as the origin of the energy scale

(in kcal/mol). The variable x corresponds to displacement (in Å) from the MECI geometry in the

direction of the x1 or x2 vector, respectively

Fig. 6 The S0–S1 energy difference (in kcal/mol) along a loop around the MECI point of ethylene.

The solid line corresponds to the SSR-BH&HLYP/6-31 +G** method, the dashed line to the

SF-TD-BH&HLYP/6-31 +G** method, and the dotted line to the TD-BH&HLYP/6-31 +G**

method. The loop radius is 0.002 Å. For each method, the angle θ (in deg) is taken from the

direction of the x1 vector
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θ¼ 180�; note that the off-diagonal elementHmn in (1) is supposed to zero out when

moving along the x1 direction. The SSR and SF methods predict the maximum S0–
S1 splitting in the x1 direction, whereas adiabatic LR-TD-DFT yields the maximum

splitting approximately in the x2 direction (θ� 0�).
As found by Gozem et al. [43, 98] for the example of PSB3, the multi-state

CASPT2 and MRCISD methods yield energy difference curves around a MECI

which are similar in shape to those predicted by SSR and SF and dissimilar to

TD-DFT. Therefore, in spite of its seemingly good predictions for the geometry and

energy of the tw-pyr MECI of ethylene, TD-DFT fails to give the correct conical

topography of the crossing and yields the wrong shape of the two PESs in the

vicinity of the crossing point. As discussed by Barbatti and Crespo-Otero (see

Footnote 1) this has severe consequences for the description of the dynamics near

the crossing points, rendering TD-DFT practically useless for modeling

non-adiabatic population transfer through PES crossings.

4.2 Penta-2,4-Dieniminium Cation, PSB3

In the protonated Schiff base PSB3 (penta-2,4-dieniminium), which is often used as

the simplest model of the Schiff base retinal chromophore, the presence of a strong

electron-withdrawing substituent, the cationic nitrogen, leads to the occurrence of a

tw-BLA MECI which originates from a crossing between the diradical and ionic

electronic configurations obtained by homolytic and heterolytic breaking of the

central π-bond along the torsion mode [42, 43, 81, 109, 110]. The ionic configura-

tion is stabilized by the presence of the electron-withdrawing group and no

pyramidalization is needed to reach the crossing point with the diradical

configuration.

The SSR and SF methods predict the vertical excitation energy at the FC point in

good agreement with the available theoretical best estimate, the quantum Monte–

Carlo excitation energy of 4.2 eV for the cis-conformation. The TD-DFT FC

excitation energy is in error by more than 0.7 eV, which is typical of this method

when applied to extended π-conjugated systems, such as, e.g., cyanine dyes

[90]. Despite the discrepancy at the FC point, the tw-BLA MECI of PSB3 is

predicted by all the DFT methods to lie at approximately the same energy level

of ca. 3 eV; see Table 1. The BP vectors of PSB3 correspond to the BLA distortion

(the x1 vector) and to the torsion mode (the x2 vector) in good agreement with the

MRCISD vectors; see Fig. 7.

The shape of the S0 and S1 PESs in the vicinity of the MECI point (see Fig. 8)

exhibits the same trend as for ethylene; the SSR and SF methods yield a sole

crossing point at the MECI and the surfaces are (approximately) symmetrically split

when moving along the x2 direction within the branching plane. The adiabatic LR-

TD-DFT surfaces do not show any interaction between the S0 and S1 states along the
x2 direction (see right lower panel of Fig. 8) and there are several crossing points

between the states when moving along the x1 direction, which indicates that the
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Fig. 7 BP vectors of the twisted-BLA MECI of PSB3 calculated using MRCISD,

SSR-BH&HLYP, SF-TD-BH&HLYP, and LR-TD-BH&HLYP methods

Fig. 8 S0 (blue) and S1 (red) PES profiles near the tw-BLA MECI of PSB3. See caption of Fig. 5

for the legend
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surface crossing has a linear rather than conical character. Furthermore, the adia-

batic LR-TD-DFT method experiences severe convergence problems in the vicinity

of the crossing point which prevented us from obtaining a reasonable S0–S1 energy
difference plot along a loop around the MECI. Nevertheless, the curves in Fig. 8

corroborate the fact that the adiabatic LR-TD-DFT method is incapable of yielding

the correct topography of the S0/S1 crossing point and that the other two DFT

methods, SSR and SF, are thus preferred for studying the non-adiabatic dynamics of

the excited state of PSB3 and related molecules.

4.3 Ketene

Ketene displays an S0/S1 CI along the C–C–O bending mode which, as first

analyzed by Yarkony [97], originates from a crossing between the 1A’ and 1A”

electronic states. This crossing is linear under the Cs symmetry constraint; however,

it becomes conical when the symmetry restriction is lifted, as there emerges another

direction which lifts the degeneracy between these states. Hence, the BP vectors of

this CI correspond to the a0-symmetric C–C–O bending mode (x1) and the out-of-

plane H–C–C–O torsional mode (x2).

As shown in Fig. 9, the DFT methods yield BP vectors in very good agreement

with the MRCISD vectors. However, all the DFT methods predict the MECI point

Fig. 9 BP vectors of

twisted MECI of ketene

calculated using MRCISD,

SSR-BH&HLYP, SF-TD-

BH&HLYP, and LR-TD-

BH&HLYP methods
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at a somewhat higher, by ca. 0.4–0.8 eV, energy level than MRCISD. This differ-

ence may likely be caused by a somewhat stiffer C–C bond predicted by the DFT

calculations. This can be asserted from the x1 vectors in Fig. 9, which describes a

C–C bond stretching combined with the C–C–O bending motion: there is a notably

greater degree of bond stretching in the MRCISD vector. As can be seen from

Fig. 10, which shows the S0 and S1 PES profiles along the BP vectors, this motion

noticeably destabilizes the S0 (1A0) state in which the C–C π-bonding orbital is

doubly occupied. It is therefore plausible that MRCISD somewhat underestimates

the strength of the C–C bond in ketene because of the rather small basis set and the

limited active space employed in the calculations [59].

Although the DFT methods agree with one another on the strength of the C–C

bond in ketene, the TD-DFT method differs from the other two methods as to the

character of the S0/S1 crossing; whereas SSR and SF predict it to be conical, TD

yields a linear crossing. This is confirmed by the plots of the S0–S1 energy

difference along a loop around the minimal energy crossing point in Fig. 11. In

this plot, a loop with a greater radius, 0.02 Å, was chosen to bypass certain SCF

convergence problems in the DFT calculations with a smaller radius (0.002 Å was

used in Fig. 6). The adiabatic LR-TD-DFT energy difference in Fig. 11 (dotted

curve) again crosses the zero line twice which indicates a linear crossing. The same

linear character of the S0/S1 PES crossing can be seen in the rightmost plots in

Fig. 10, which show the PES profiles along the BP vectors. Similar to the cases of

ethylene and PSB3, there is no coupling between the crossing states in the adiabatic

LR-TD-DFT curves. By contrast, the SSR and SF methods correctly predict

(nearly) the symmetric splitting of the states which indicates a proper description

of the coupling and therefore a correct conical character of the PES crossing point.

Fig. 10 S0 (blue) and S1 (red) PES profiles near the MECI of ketene. See caption of Fig. 5 for the

legend
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5 Conclusions and Outlook

In this chapter we have analyzed the ability of practically available computational

schemes based on density functional theory to describe conical intersections and the

ground- and excited-state potential energy surfaces in their vicinity. We have

investigated three DFT-based methods, namely the popular LR-TD-DFT approach

as well as the less common SF-TD-DFT and SI-SA-REKS methods, and have

evaluated their performance by comparing with reference results from standard

MRCISD-WFT calculations.

In accord with previous analysis from the literature [40, 41, 43], we find that the

LR-TD-DFTmethod is incapable of properly describing the topography of the S0/S1
crossing point, yielding a linear instead of a conical intersection seam (i.e., M� 1

rather than M� 2 dimensionality). In LR-TD-DFT, the excited states are obtained

as the response states and thus do not couple with the ground state (the reference

state), which leads to the observed linear character of the intersection. In addition,

there are generally serious SCF convergence problems near the crossing point in the

conventional DFT calculation, which often result in aborted TD-DFT calculations.

These shortcomings render the LR-TD-DFT method largely useless for modeling

non-adiabatic relaxation processes.

The other two methods considered here, SF-TD-DFT and SI-SA-REKS, do not

suffer from the erratic SCF convergence near the crossing point and yield the

correct dimensionality of the CI seam and the correct shape of the S0 and S1 PESs
in its vicinity. Being based on ensemble DFT, the SI-SA-REKS method is capable

of correctly treating the multi-reference character of the nearly degenerate crossing

states. This method has the further advantage of not suffering from the erroneous

spin-contamination which plagues the SF-TD-DFT states. Although the use of the

high-spin (triplet) state as the reference state in SF-TD-DFT removes the SCF

convergence issues near the surface crossing points, the spin contamination inher-

ent in this approach often complicates the identification of proper excited

Fig. 11 The S0–S1 energy
difference (in kcal/mol)

along a loop around the

MECI point of ketene. See

text for details of the loop.

See caption of Fig. 6 for the

legend
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configurations and results in the occurrence of unphysical mixed-spin states. The

use of ad hoc spin-purification procedures [96] should be discouraged as it destroys

the correct dimensionality of the CI seam [43].

In view of the widespread availability of the LR-TD-DFT method in quantum

chemical codes, we would like to raise concerns about using this method for

investigating the dynamics of excited states. It is our hope that the arguments

presented in this chapter can help researchers in this area to make reasonable

choices when selecting the computational methodology for applications.

References

1. McNaught AD, Wilkinson A (1997) IUPAC. Compendium of chemical terminology, 2nd

edn. (The ”Gold Book”). Blackwell, Oxford

2. Mezey PO (1987) Potential energy hypersurfaces. Elsevier, New York

3. Allinger NL (1976) In: Gold V, Bethell D (eds) Advances in physical organic chemistry, vol

13. Academic, London, pp 1–82

4. Born M, Oppenheimer R (1927) Ann Phys 84:457

5. Baer M (2006) Beyond Born–Oppenheimer: electronic nonadiabatic coupling terms and

conical intersections. Wiley, Hoboken

6. Atchity GJ, Xantheas SS, Ruedenberg K (1991) J Chem Phys 95:1862

7. Domcke W, Yarkony DR, K€oppel H (eds) (2004) Conical intersections. Electronic structure,

dynamics and spectroscopy. Advanced series in physical chemistry, vol 15. World Scientific,

Singapore

8. Domcke W, Yarkony DR, K€oppel H (eds) (2011) Conical intersections. Theory, computation

and experiment. Advanced series in physical chemistry, vol. 17 World Scientific, Singapore

9. Yarkony DR (1996) Rev Mod Phys 68:985

10. Bernardi F, Olivucci M, Robb MA (1996) Chem Soc Rev 25:321

11. Yarkony DR (2004) In: Domcke W, Yarkony DR, K€oppel H (eds) Conical intersections.

electronic structure, dynamics and spectroscopy. Advanced series in physical chemistry, vol
15. World Scientific, Singapore, pp 41–127

12. Migani A, Olivucci M (2004) In: Domcke W, Yarkony DR, K€oppel H (eds) Conical

intersections. electronic structure, dynamics and spectroscopy. Advanced series in physical

chemistry, vol 15. World Scientific, Singapore, pp 271–320

13. Butler LJ (1998) Annu Rev Phys Chem 49:125

14. Soto J, Arenas JF, Otero JC, Pelez D (2006) J Phys Chem A 110:8221

15. Hund F (1927) Z Phys 40:742

16. von Neumann J, Wigner E (1929) Physik Z 30:467

17. Teller E (1937) J Phys Chem 41:109

18. Herzberg G, Longuet-Higgins HC (1963) Discuss Faraday Soc 35:77

19. Longuet-Higgins HC (1975) Proc R Soc Lond Ser A 344:147

20. Truhlar DG, Mead CA (2003) Phys Rev A 68:032501

21. Polanyi JC (1972) Acc Chem Res 5:161

22. Polanyi JC (1987) Science 236:680

23. Sellner B, Barbatti M, Lischka H (2009) J Chem Phys 131:024312

24. Robb MA (2011) In: Domcke W, Yarkony DR, K€oppel H (eds) Conical intersections.

Theory, computation and experiment. Advanced series in physical chemistry, vol 17.

World Scientific, Singapore, pp 3–50

Description of Conical Intersections with Density Functional Methods 473



25. Docken KK, Hinze J (1972) J Chem Phys 57:4928

26. Ruedenberg K (1976) K.R. Sundberg. In: Calais JL, Goscinski O, Linderberg J, Öhrn J (eds)

Quantum science. Plenum, New York, pp 505–515

27. Ruedenberg K (1979) In: Report on the NRCC 1978 workshop on post-Hartree–Fock

quantum chemistry. Lawrence Berkeley Laboratory, Univ. of California, Report LBL 8233,

UC4, CONF 780883, pp 46–64

28. Roos BO (1987) In: Lawley KP (ed) Ab initio methods in quantum chemistry II. Wiley,

New York, pp 399–446

29. Andersson K, Malmqvist P, Roos BO (1992) J Chem Phys 96:1218

30. Shavitt I (1977) In: Schaefer HF III (ed) Modern theoretical chemistry, vol 3. Methods of

electronic structure theory. Plenum, New York, pp 189–275

31. Zewail AH (2000) J Phys Chem A 104:5660

32. Zewail AH (2010) Chem Phys 378:1

33. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

34. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

35. Gaudoin R, Burke K (2004) Phys Rev Lett 93:173001

36. Gaudoin R, Burke K (2005) Phys Rev Lett 94:029901

37. Ziegler T, Krykunov M, Autschbach J (2014) J Chem Theory Comput 10:3980

38. Casida ME, Jamorski C, Bohr F, Guan JO, Salahub DR (1994) In: Karna SP, Yeates AT

(ed) Nonlinear optical materials: theory and modeling, ACS symposium series, vol 628,

Div Comp Chem, 1996. Symposium on nonlinear optical materials – theory and modeling,

at the 208th national meeting of the American-Chemical-Society, Washington, DC,

Aug 21–25, 1994, pp 145–163

39. Marques MAL, Gross EKU (2003) In: Fiolhais C, Nogueira F, Marques MAL (eds) A primer

in density-functional theory. Lecture notes in physics, vol 620. Springer, Berlin, pp 144–184

40. Levine BG, Ko C, Quenneville J, Martı́nez TJ (2006) Mol Phys 104:1039

41. Yang S, Martı́nez TJ (2011) In: Domcke W, Yarkony DR, K€oppel H (eds) Conical intersec-

tions. Theory, computation and experiment, advanced series in physical chemistry, vol 17.
World Scientific, Singapore, pp 347–374

42. Huix-Rotllant M, Filatov M, Gozem S, Schapiro I, Olivucci M, Ferré N (2013) J Chem
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Angeli C, Krylov AI, Granovsky AA, Lindh R, Olivucci M (2014) J Chem Theory Comput

10:3074

44. Shao Y, Head-Gordon M, Krylov AI (2003) J Chem Phys 118:4807

45. Wang F, Ziegler T (2004) J Chem Phys 121:12191

46. Rinkevicius Z, Vahtras O, Ågren H (2010) J Chem Phys 133:114104

47. Bernard YA, Shao Y, Krylov AI (2012) J Chem Phys 136:204103

48. Huix-Rotllant M, Natarajan B, Ipatov A, Wawire CM, Deutsch T, Casida ME (2010) Phys

Chem Chem Phys 12:12811

49. Gross EKU, Oliveira LN, Kohn W (1988) Phys Rev A 37:2805

50. Gross EKU, Oliveira LN, Kohn W (1988) Phys Rev A 37:2809

51. Oliveira LN, Gross EKU, Kohn W (1988) Phys Rev A 37:2821

52. Franck O, Fromager E (2014) Mol Phys 112:1684

53. Lieb EH (1983) Int J Quant Chem 24:243

54. Filatov M, Shaik S (1999) Chem Phys Lett 304:429

55. Filatov M, Shaik S (2000) J Phys Chem A 104:6628

56. Moreira IDPR, Costa R, Filatov M, Illas F (2007) J Chem Theory Comput 3:764

57. Kazaryan A, Heuver J, Filatov M (2008) J Phys Chem A 112:12980

58. Filatov M (2013) J Chem Theory Comput 9:4526

59. Nikiforov A, Gamez JA, Thiel W, Huix-Rotllant M, Filatov M (2014) J Chem Phys

141:124122

474 M. Huix-Rotllant et al.



60. Send R, Sundholm D (2007) J Phys Chem A 111:8766

61. Tapavicza EE, Tavernelli I, R€othlisberger U, Filippi C, Casida ME (2008) J Chem Phys

129:124108

62. Baranovskii VI, Sizova OV (2008) J Struct Chem 49:803

63. Delchev VB, Ivanova IP (2012) Monatshefte Chem 143:1141

64. Mališ M, Loquais Y, Gloaguen E, Biswal HS, Piuzzi F, Tardivel B, Brenner V, Broquier M,
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