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Preface

In this new century mankind faces ever more challenging environmental and
public health problems, such as pollution, invasion by exotic species, the emer-
gence of new diseases or the emergence of diseases into new regions (West Nile
virus, SARS, Anthrax, etc.), and the resurgence of existing diseases (influenza,
malaria, TB, HIV/AIDS, etc.). Mathematical models have been successfully
used to study many biological, epidemiological and medical problems, and
nonlinear and complex dynamics have been observed in all of those contexts.
Mathematical studies have helped us not only to better understand these
problems but also to find solutions in some cases, such as the prediction and
control of SARS outbreaks, understanding HIV infection, and the investiga-
tion of antibiotic-resistant infections in hospitals.

Structured population models distinguish individuals from one another ac-
cording to characteristics such as age, size, location, status, and movement, to
determine the birth, growth and death rates, interaction with each other and
with environment, infectivity, etc. The goal of structured population models
is to understand how these characteristics affect the dynamics of these models
and thus the outcomes and consequences of the biological and epidemiologi-
cal processes. There is a very large and growing body of literature on these
topics. This book deals with the recent and important advances in the study
of structured population models in biology and epidemiology. There are six
chapters in this book, written by leading researchers in these areas.

In Chap. 1, Population Models Structured by Age, Size, and Spatial Posi-
tion, Glenn Webb systematically introduces population models with age, size,
and spatial structure. The theory of semigroups of linear and nonlinear oper-
ators in Banach spaces is used to analyze these models and many numerical
simulations are included to illustrate the theoretical results, as an aid to read-
ers. A brief and historical introduction on age structured models is given in the
Introduction. Section 1.1 focuses on population models structured by two fac-
tors, size and spatial position. Basic assumptions and definitions, illustrative
examples, and simulations are presented. Fundamental theorems are stated
and proved. Results are then established for population models structured by
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age and spatial position in Sect. 1.2. In Sect. 1.3 population models structured
by all three factors, namely, age, size, and spatial position, are studied. As
an example, a model of tumor growth with cell age corresponding to the cell
cycle, cell size corresponding to cell growth and division, and cell position in
space corresponding to cell motility and migration is discussed.

An important class of spatial models deals with metapopulations. A
metapopulation is a group of populations of the same species that occupy
separate patches and are connected by dispersal. Spatially implicit metapopu-
lation models with discrete patch-size structure lead to infinite systems of ordi-
nary differential equations, as do host-macroparasite models which distinguish
hosts by their parasite loads, and prion proliferation. In Chap. 2, Infinite ODE
Systems Modeling Size-structured Metapopulations, Macroparasitic Diseases,
and Prion Proliferation, Maia Martcheva and Horst Thieme develop a general
theory on the properties of the solution semiflows generated by infinite sys-
tems of ordinary differential equations. The chapter consists of 14 sections. In
Sect. 2.2, homogeneous linear Kolmogorov systems are discussed. Section 2.3
addresses semilinear systems. Sections 2.4–2.11 focus exclusively on metapop-
ulation models. Boundedness of solutions of general metapopulation models
is studied in Sect. 2.4, while Sect. 2.5 focuses on how the absence of migration
or colonization of empty patches can cause extinction. In Sects. 2.6–2.11, a
more specific metapopulation model is studied. Topics addressed include the
existence of compact attractors, stability of equilibria, metapopulation per-
sistence, etc. Finally, results are applied to analyze specific metapopulation
models, specific host-macroparasite models, and prion proliferation models in
Sects. 2.12, 2.13, and 2.14, respectively.

In the classical diffusive epidemic models introduced in Chap. 1, the spatial
domains are usually assumed to be homogenous. However, in reality that is
not the case – one needs to consider heterogeneous environments. In Chap. 3,
Simple Models for the Transmission of Microparasites between Host Pop-
ulations Living on Non-coincident Spatial Domains, William E. Fitzgibbon
and Michel Langlais focus on modeling the direct and indirect transmission
of a microparasite between host populations living on non-coincident spa-
tial domains. The goal is to provide a mathematical approach to model the
environmentally driven transmission of microparasites between host popula-
tions living on distinct spatial domains. A key assumption is the possibility
for the microparasite to persist in the environment once it is released by in-
fective individuals. Besides criss-cross transmission, indirect transmission oc-
curs through contacts between susceptible hosts and the contaminated part of
the environment. A critical example is the indirect contamination of human
populations by animals when the parasite is benign for animals but lethal
to humans. This is actually the case for Hantaviruses for which rodents are
the main reservoir population, and more generally for many emerging infec-
tious diseases. Various deterministic models can be developed, ranging from
unstructured populations – basic ODE systems – to spatially structured multi-
patch and reaction–diffusion models to handle heterogeneous environments.
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Age structures, as introduced in Chap. 1, are also important to consider both
from a chronological point of view – juveniles vs. adults – and from an epi-
demiological point of view – variable virulence.

The emergence of diseases that are transmitted by vectors, such as the
West Nile virus and Dengue fever, raises challenging issues not only epidemi-
ologically but also mathematically. In Chap. 4, Spatiotemporal Patterns of
Disease Spread: Interaction of Physiological Structure, Spatial Movements,
Disease Progression and Human Intervention, Stephen A. Gourley, Rongsong
Liu, and Jianhong Wu are concerned about the effects of demographic and
disease ages and spatial movements of hosts on the spatiotemporal spread
patterns of certain diseases, with special emphasis on West Nile virus. They
start with a short review of some standard models for the transmission dy-
namics of vector-born diseases in homogeneous environments and populations.
In Sect. 4.2 they focus on structured vector-borne diseases with particular ref-
erence to West Nile virus. As the juvenile and adult birds (the hosts) have
different spatial movement behaviors, the main model is of the McKendrick–
von Foerster type for age-structured bird populations. Various sufficient con-
ditions are given for the system to evolve to the disease-free state and for
the stability of this equilibrium. Age-structured control measures are consid-
ered in Sect. 4.3, and appropriate mathematical models are derived and used
to asses the effectiveness of culling as a tool to eradicate WNV. The results
show that eradication of WNV is possible by culling the mosquitoes at ei-
ther the immature or the mature phase, even though the size of the mosquito
population is oscillating and stays above a certain level. The interaction of
individual movement and physiological status is considered in Sect. 4.4 with
an application to the spatial spread of WNV. Finally, patchy models for the
spatial spread of WNV are formulated and analyzed in Sect. 4.5.

To describe the complex dynamics of ecological systems, mathematical
models frequently have a large number of variables. In Chap. 5, Aggregation
of Variables and Applications to Population Dynamics, attention is directed
to aggregation of variables in population and community dynamics. Pierre
Auger, Rafael Bravo de la Parra, Jean-Christophe Poggiale, Eva Sanchez, and
T. Nguyen-Huu introduce aggregation methods for different types of models,
such as ordinary differential equations, discrete equations, delay differential
equations, and partial differential equations based on the method of separa-
tion of time scales. In Sect. 5.2 the aggregation of variables for ODE systems
is developed, geometric singular perturbation theory and normally hyperbolic
manifolds are introduced, along with slow and fast systems, aggregation and
emergence, and illustrative examples are given. Section 5.3 addresses aggre-
gation methods for discrete models. In Sect. 5.4 the method of aggregation is
also applied to partial differential equations and delay equations. Section 5.5
presents several applications in population and community dynamics.

In 1983, R. Freter and collaborators developed a simple chemostat-based
model of competition between two bacterial strains, one of which is capa-
ble of wall-growth, to illuminate the role of bacterial wall attachment on the
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phenomenon of colonization resistance in the mammalian gut. In Chap. 6, The
Biofilm Model of Freter: A Review, Mary Ballyk, Don Jones, and Hal Smith
have re-formulated the model in the setting of a tubular flow reactor, extended
the interpretation of the model as a biofilm model, and provided both mathe-
matical analysis and numerical simulations of solution behavior. In Sects. 6.1
and 6.2, the original Freter model is introduced and then is generalized and re-
formulated as a chemostat-based model. In Sect. 6.3, the one-dimensional thin
tube flow reactor model with biofilm is proposed and analyzed, and special
cases such as an advection dominated flow reactor and mobile wall-adherent
cells, are considered. The three-dimensional flow reactor models are studied
in Sect. 6.4. Section 6.5 focuses on mixed culture models, the associated eigen-
value problems are considered, and simulations are carried out.

This book can be used for various purposes. It is suitable as a textbook
for a mathematical biology course or a summer school at the advanced un-
dergraduate and graduate level. It can also be used as a reference book by
researchers looking for either interesting and specific problems to work on or
useful techniques and discussions of some particular problems. Since the book
contains the most recent developments in some fields of mathematical biology
and epidemiology, we hope that researchers at all levels will find the book
inspiring and useful for their research and study.

September 2007 Pierre Magal
Shigui Ruan
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1

Population Models Structured by Age, Size,
and Spatial Position

G.F. Webb

Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA
glenn.f.webb@vanderbilt.edu

Summary. Population models incorporating age, size, and spatial structure are an-
alyzed. The methods use the theory of semigroups of linear and nonlinear operators
in Banach spaces. An illustration is given of a model of tumor growth, with cell age
corresponding to the cell cycle, cell size corresponding to cell growth and division,
and cell position in space corresponding to cell motility and migration.

I know that in the study of material things number, order, and position are
the threefold clue to exact knowledge: and that these three, in the mathemat-
ician’s hands furnish the first outlines for a sketch of the Universe.

D’Arcy Thompson, Growth and Form (1917)

1.1 Introduction

Mathematical models of populations incorporating age structure, or other
structuring of individuals with continuously varying properties, have an ex-
tensive history. The earliest models of age structured populations, due to
Sharpe and Lotka in 1911 [104] and McKendrick in 1926 [92] established a
foundation for a partial differential equations approach to modeling continuum
age structure in an evolving population. At this early stage of development,
the stabilization of age structure in models with linear mortality and fertil-
ity processes was recognized, although not rigorously established [85], [86].
Rigorous analysis of these linear models was accomplished later in 1941 by
Feller [51], in 1963 by Bellman and Cooke [20], and others, using the meth-
ods of Volterra integral equations and Laplace transforms. Many applica-
tions of this theory have been developed in demography: Coale [34], In-
aba [75], Keyfitz [77], Pollard [97], biology: Arino [12], Ayati [14], Bell and
Anderson [19], Cushing [36], Gyllenberg [66], Von Foerster [117], and epidemi-
ology: Busenberg and Cooke [26], Castillo-Chavez and Feng [30], Feng, Huang,
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Castillo-Chavez [52], Feng, Li, Milner [53], Hoppensteadt [69], Kermack and
McKendrick [76], to name only a few.

A new impetus of research in age structured models arose with the pio-
neering work of Gurtin and MacCamy in 1974 [64] for nonlinear age structured
models. Their technology, which utilized a nonlinear Volterra integtral equa-
tions approach, established the existence, uniqueness, and convergence to equi-
librium of solutions to nonlinear versions of the Sharpe–Lotka–McKendrick
model. A rapid expansion of research in nonlinear models ensued in both
theoretical developments and biological applications. A comprehensive treat-
ment of this approach is given by Iannelli [73]. The increasingly complex
mathematical issues involved in nonlinearities in age structured models led to
the development of new technologies, and one of the most useful of these has
been the method of semigroups of linear and nonlinear operators in Banach
spaces. This functional analytic approach was developed by many researchers,
including [17,24,33,42,44,61,62,74,88,89,98–100,109–115,122].

In the semigroup approach, an evolving age structured population is
viewed as a dynamical system in a state space such as Y = L1((0, a1);R),
where a1 ≤ ∞ is the maximum age of individuals. The initial state at time
t = 0 is a given age distribution φ(a), a ∈ (0, a1), where φ ∈ Y . The age distri-
bution at a later time t > 0 is given by (S(t)φ)(a), where S(t), t ≥ 0 is a linear
or nonlinear semigroup of operators in Y . The function p(a, t) = (S(t)φ)(a)
is viewed as the age density of the population at time t, in the sense that the
total population at any time t in a specific age range (ã, â) ⊂ (0, a1) is∫ â

ã

p(a, t)da.

If the initial state φ is sufficiently smooth, then p(a, t) satisfies the linear
partial differential equation model (M.I.1):

∂

∂t
p(a, t) +

∂

∂a
p(a, t)︸ ︷︷ ︸

aging

= −µ(a) p(a, t)︸ ︷︷ ︸
mortality

, a ∈ (0, a1), t > 0

p(0, t) =
∫ a1

0

β(a)p(a, t)da︸ ︷︷ ︸
birth rate at time t

, t > 0

p(a, 0) = φ(a), a ∈ (0, a1), φ ∈ Y

The mortality process is controlled by the age-dependent mortality modulus
µ(a). The reproductive process is controlled by the age dependent fertility
modulus β(a). If the initial state φ ∈ Y is not sufficiently regular, then the
formula p(a, t) = (S(t)φ)(a) is viewed as a generalized solution of (M.I.1).
The advantage of the semigroup approach is that it enables description of the
population processes as a dynamical system in the state space Y . Nonlinear
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versions of (M.I.1), as first investigated in [64], allow the mortality and fertility
moduli to depend on the density p(a, t) or a functional of the density, such as
the total population

∫ a1

0
p(a, t)da at time t [43, 46,122,123,127].

Size structured models have also been developed separately or in combina-
tion with age structured models [36,44,67,93,106,116]. In these models size is
viewed as a continuum variable s specific to individuals, such as mass, volume,
length, maturity, bacterial or viral load, or other physiologic or demographic
property. It is assumed that size increases in the same way for all individuals
in the population, as controlled by a growth modulus g(s). The interpretation
of the growth modulus is that ∫ ŝ

s̃

1
g(s)

ds

is the time required for an individual to increase size from s̃ to ŝ, where s0 ≤
s̃ < ŝ ≤ s1, with s0 ≥ 0 as the minimum size and s1 ≤ ∞ as the maximum size
of individuals. If size structure is added to the age structured model (M.I.1),
then the state space is Y = L1((0, a1)×(s0, s1);R), and the partial differential
equation model for a nonlinear age-size structured population is (M.I.2):

∂

∂t
p(a, s, t) +

∂

∂a
p(a, s, t)︸ ︷︷ ︸
aging

+
∂

∂s
(g(s)p(a, s, t))︸ ︷︷ ︸

growth

= −µ(a, s, p(a, s, t)) p(a, s, t)︸ ︷︷ ︸
mortality

, a ∈ (0, a1), s ∈ (s0, s1), t > 0

p(0, s, t) =
∫ a1

0

∫ s1

s0

β(a, ŝ, s)p(a, ŝ, t)dŝda︸ ︷︷ ︸
birth rate at time t

, s ∈ (s0, s1), t > 0

p(a, s, 0) = φ(a, s), a ∈ (0, a1), s ∈ (s0, s1), φ ∈ Y

where the total population at any time t in a specific age range (ã, â) ⊂ (0, a1)
and a specific size range (s̃, ŝ) ⊂ (s0, s1) is∫ â

ã

∫ ŝ

s̃

p(a, s, t)dsda.

Many versions of the age-size structured model (M.I.2), both linear and non-
linear, have been investigated, and seminal treatments of such models are
given by Metz and Diekmann [93] and Tucker and Zimmerman [116].

Our objective here is to extend age and size models to models incorpo-
rating spatial structure. Spatial structure in linear and nonlinear age or size
structured models has also been investigated by many researchers, includ-
ing [3–6,13–15,25,31,32,37,39–41,54,55,58,65,70–72,78–82,87,90,101,102,108,
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120,121]. In these models individuals occupy position in a spatial environment
Ω ⊂ Rn, and spatial movement is typically controlled by diffusion or taxis
processes. An example of a nonlinear model with age-size-spatial structure is
model (M.I.3):

∂

∂t
p(x, a, s, t) +

∂

∂a
p(x, a, s, t)︸ ︷︷ ︸

aging

+
∂

∂s
(g(s)p(x, a, s, t))︸ ︷︷ ︸

growth

= α(x)� p(x, a, s, t)︸ ︷︷ ︸
diffusion

− � · (χ(x)p(x, a, s, t))︸ ︷︷ ︸
taxis

−µ(x, a, s, p(x, a, s, t))︸ ︷︷ ︸
mortality

, x ∈ Ω, a ∈ (0, a1), s ∈ (s0, s1), t > 0

p(x, 0, s, t) =
∫ a1

0

∫ s1

s0

β(x, a, ŝ, s)p(x, a, ŝ, t)dŝda︸ ︷︷ ︸
birth rate at time t

, x ∈ Ω, s ∈ (s0, s1), t > 0

p(x, a, s, 0) = φ(x, a, x), x ∈ Ω, a ∈ (0, a1), s ∈ (s0, s1), φ ∈ Y

where the total population at any time t in an age range (ã, â) ⊂ (0, a1), a
size range (s̃, ŝ) ⊂ (s0, s1), and a subset Ω ′ ⊂ Ω is∫ â

ã

∫ ŝ

s̃

∫
Ω ′
p(x, a, s, t) dx ds da.

In model (M.I.3) the state space is Y = L1((0, a1)× (s0, s1);Z), where Z is a
Banach space of functions defined on Ω. The mortality modulus µ in (M.I.3)
is a function of the density p(x, a, s, t), which allows the influence of crowding
and the limitation of resources.

Our objective is to develop a semigroup approach to investigate linear
and nonlinear versions of model (M.I.3). We consider first in Sect. 1.1 models
with size and spatial structure, then in Sect. 1.2 models with age and spatial
structure, and last in Sect. 1.3 models with age, size, and spatial structure.
These models are mathematically complex, and their scientific applicability
depends on extensive parametric input. Nevertheless, mathematical descrip-
tion of many biological processes requires elaborate mathematical formulation
and intensive scientific validation. We discuss one such application in a model
of tumor growth in Sect. 1.3. The growth of tumors in spatial environments
is extremely complex, and there is an extensive literature of models, includ-
ing [1, 2, 7, 9, 10, 18, 22, 27–29, 35, 38, 47, 48, 56, 57, 60, 83, 84, 95, 105, 107, 126].
A tumor grows in a characteristic way: by cell division as two daughter cells
replace a dividing mother cell (a cell age dependent process), by individual
cell growth and volume displacement (a cell size dependent process), and by
occupation of available position in the tissue environment (a spatial dependent
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process). These processes, coupled to interaction with constituents in the spa-
tial environment, transend molecular, cellular, and tissue scales, and are all
important in the understanding of tumor pathology and therapy. Mathemati-
cal models such as (M.I.3), which incorporate age, size, and spatial structure,
have the potential to advance this understanding.

1.2 Population Models Structured by Size
and Spatial Position

Individuals are distinguished by a structure variable s ∈ (s0, s1) corresponding
to size, and a spatial position variable x ∈ Ω ⊂ Rn. We seek a density function
p(x, s, t) that describes the distribution of population at time t with respect
to size s and position x. The total population of individuals with size between
ŝ and s̃, 0 ≤ s0 ≤ ŝ < s̃ ≤ s1 ≤ ∞ and position x ∈ Ω̂ ⊂ Ω at time t is∫ s̃

ŝ

∫
Ω̂

p(x, s, t)dxds.

If s1 < ∞, individuals may attain size s1, but they are no longer tracked in
the model. We assume that all individuals increase their size s over time in
the same way, as governed by a growth function g(s) satisfying the following
hypotheses:

(H.1.1) s1 < ∞, g : [s0, s1] → [0,∞) is continuous on [s0, s1], positive on
(s0, s1), and (a) g(s0) > 0 and g(s1) > 0, (b) g(s0) = 0 and g(s1) > 0, (c)
g(s0) > 0 and g(s1) = 0, (d) g(s0) = 0 and g(s1) = 0.

(H.1.2) s1 =∞, g : [s0,∞) → [0,∞) is uniformly continuous and bounded on
[s0,∞), positive on (s0,∞), and (a) g(s0) > 0, (b) g(s0) = 0.

The interpretation of the growth function g(s) is as follows:
∫ s̃

ŝ
1

g(s)ds is
the time required for an individual to increase size from ŝ to s̃. The cases in
Hypotheses (H.1.1) and (H.1.2) distinguish the following possibilities:

For Hypothesis (H.1.1a): Individuals may grow from any size ŝ greater than
the minimum size s0 to the maximum size s1 in finite time bounded indepen-
dently of ŝ by

∫ s1

s0

1
g(s)ds;

For Hypothesis (H.1.1b): If
∫ s1

s0

1
g(s)ds < ∞, then individuals may grow from

any size ŝ greater than the minimum size s0 to the maximum size s1 in finite
time bounded by this integral; if

∫ s1

s0

1
g(s)ds =∞, then the time to grow from

ŝ to the maximum size s1 is unbounded as ŝ ↓ s0.

For Hypothesis (H.1.1c): If
∫ s1

s0

1
g(s)ds < ∞, then individuals may grow from

any size ŝ greater than the minimum size s0 to the maximum size s1 in finite
time bounded by this integral; if

∫ s1

s0

1
g(s)ds = ∞, then individuals approach,

but never attain the maximum size s1, as time goes to ∞.
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The interpretations of Hypotheses (H.1.1d) and (H.1.2a), (H.1.2b) are similar.
It is assumed that individuals move in Ω as governed by a semigroup of

bounded linear operators in a Banach space Z of functions defined on Ω,
such as L1(Ω;R) or C(Ω;R). General treatments of semigroups of linear or
nonlinear operators in Banach spaces are given in [33,49,59,91,94,96,103,122].
We define

Definition 1.1. A family of linear (or nonlinear) operators T (t), t ≥ 0 in
the Banach space Z is a strongly continuous semigroup iff T (0) = I and (i)
T (t)T (s)z = T (t+ s)z for all z ∈ Z and t, s ≥ 0, and (ii) T (t)z is continuous
in t for each z ∈ Z. The infinitesimal generator of T (t), t ≥ 0 is the linear (or
nonlinear) operator A defined as Az = limt→+0

T (t)z−z
t , with domain D(A)

all z ∈ Z for which this limit exists.

If the operators T (t), t ≥ 0 are bounded linear operators in Z, then T (t), t ≥ 0
is a linear semigroup in Z. If the operators T (t), t ≥ 0 are nonlinear operators
in Z, then T (t), t ≥ 0 is a nonlinear semigroup in Z. In a typical application
to our problem, A is a diffusion operator or a chemotaxis operator or a
combination of the two. We assume the following hypothesis:

(H.1.3) T (t), t ≥ 0 is a strongly continuous semigroup of bounded linear
operators in Z with infinitesimal generator A.

If T (t), t ≥ 0 is a strongly continuous semigroup of bounded linear operators
in Z, it is known [96] that there exist constants M ≥ 1 and ω ∈ R such that

|T (t)| ≤Meωt, t ≥ 0. (1.1)

The population density p(x, s, t) may be viewed as a Z-valued function
evaluated at s ∈ (s0, s1): p(x, s, t) = p(t)(s)(x), x ∈ Ω, where p(t) ∈ Y =
L1((s0, s1);Z) for t ≥ 0. We first consider the case without mortality. If

lim
s→s +

0

∫ s

s0

1
g(s)

ds = 0, (1.2)

then Model (M.1.1) consists of the equations

∂

∂t
p(s, t) +

∂

∂s
(g(s) p(s, t)) = Ap(s, t), s0 < s < s1, t > 0 (1.3)

p(s, 0) = φ(s), s0 < s < s1, φ ∈ Y (1.4)

p(s0, t) = 0, t > 0 (1.5)

If
lim

s→s +
0

∫ s

s0

1
g(s)

ds =∞, (1.6)

then Model (M.1.2) consists only of the (1.3) and (1.4) (there is no boundary
condition (1.5) in this case).
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We will obtain generalized solutions of these model equations in the Ba-
nach space Y = L1((s0, s1);Z) by constructing a strongly continuous semi-
group of bounded linear operators S(t), t ≥ 0 in Y , where Y is the Banach
space of Bochner integrable Z-valued functions on (s0, s1), as in [68], Sect. 3.7.
The idea of the construction uses the method of characteristics to find curves
in the (s, t) coordinated system such that p(s, t) satisfies ordinary differential
equations along these curves ([23], Sect. 3.4). Define

σ(v, s) =
∫ v

s

1
g(v̂)

dv̂, s, v ∈ (s0, s1) (1.7)

and at the end-points s0, s1 if the integrals exist there. Then, for fixed s ∈
(s0, s1), σ−1(u, s) exists, under Hypothesis (H.1.1) or (H.1.2). Also, for fixed
t ≥ 0, define τ(v, t) = v − t, v ≥ t, and σ−1(u, s) and τ−1(u, t) = u+ t satisfy
the initial value problems

d

du
σ−1(u, s) = g(σ−1(u, s)), σ−1(0, s) = s, s ∈ (s0, s1) (1.8)

and
d

du
τ−1(u, t) = 1, τ−1(0, t) = t, t ≥ 0 (1.9)

Example 1.1. Let s0 = 1, s1 = 3, and let g(s) =
√
s− 1 (3− s), 1 ≤ s ≤ 3. For

this g(s) Hypothesis (H.1.1d) holds. Observe that∫ s

1

1
g(ŝ)

dŝ <∞, 1 < s < 3,
∫ 3

s

1
g(ŝ)

dŝ =∞, 1 < s < 3.

For v, s ∈ [1, 3),

σ(v, s) =
√

2ArcTanh
[√
v − 1√

2

]
−
√

2ArcTanh
[√
s− 1√

2

]
,

and for s ∈ [1, 3), σ(1, s) ≤ u <∞,

σ−1(u, s) = 1 + 2
(
Tanh

[
1
2

(√
2u + 2ArcTanh

[√
s− 1√

2

])])2

The functions σ(v, s) and σ−1(u, s) in Example 1.1 are illustrated in Fig. 1.1.

Example 1.2. Let s0 = 0, s1 = 1, and let g(s) = s, 0 ≤ s ≤ 1. For this g(s)
Hypothesis (H.1.1b) holds. Observe that∫ s

0

1
g(ŝ)

dŝ =∞, 0 < s ≤ 1,
∫ 1

s

1
g(ŝ)

dŝ <∞, 0 < s ≤ 1.

For v, s ∈ (0, 1), σ(v, s) = log(v
s ), and for s ∈ (0, 1),−∞ ≤ u < σ(1, s) =

log( 1
s ), σ−1(u, s) = s eu. The functions σ(v, s) and σ−1(u, s) in Example 1.2

are illustrated in Fig. 1.2.
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Fig. 1.1. For Example 1.1: (a) The graphs of σ(v, s) for various values of s ∈ (1, 3).
(b) The graphs of σ−1(u, s) for various values of s ∈ (1, 3)

0.2 0.4 0.6 0.8 1
v
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a

σ v,.9

σ v,.01

σ v,.1

−4 −2 2 4
u

0.2

0.4

0.6

0.8

1
b

σ−1 u,.01

σ−1 u,.1

σ−1 u,.9

Fig. 1.2. For Example 1.2: (a) The graphs of σ(v, s) = log( v
s
) for various values of

s ∈ (0, 1). (b) The graphs of σ−1(u, s) = s eu for various values of s ∈ (0, 1)

Fix s ∈ (s0, s1) and t > 0 and define w(u) = p(σ−1(u, s), τ−1(u, t)). If
p(s, t) satisfies (1.3) and g(s) is differentiable, then w(u) satisfies

d

du
w(u) =

d

du
p(σ−1(u, s), τ−1(u, t)) (1.10)

= σ−1 ′(u, s)
∂

∂s
p(σ−1(u, s), τ−1(u, t)) +

∂

∂t
p(σ−1(u, s), τ−1(u, t))

= −g ′(σ−1(u, s))p(σ−1(u, s), τ−1(u, t)) +Ap(σ−1(u, s), τ−1(u, t))

= −g ′(σ−1(u, s))w(u) +Aw(u)

Define ŵ(u) = w(u− t), and (1.10) yields

d

du
ŵ(u) = w′(u− t) (1.11)

= −g′(σ−1(u− t, s))w(u− t) +Aw(u− t)

= −g′(σ−1(u− t, s))ŵ(u) +Aŵ(u)
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Integration of (1.11) from 0 to u yields

ŵ(u) = exp

[
−
∫ u

0

g′(σ−1(û− t, s))dû
]
T (u)ŵ(0) (1.12)

= exp

[
−
∫ u−t

−t

g′(σ−1(ũ, s))dũ
]
T (u)ŵ(0)

Change the variable of integration in (1.12) to v = σ−1(ũ, s), dv/dũ = g(v) to
obtain

ŵ(u) = exp

[
−
∫ σ−1(u−t,s)

σ−1(−t,s)

g′(v)
g(v)

dv

]
T (u)ŵ(0) (1.13)

=
g(σ−1(−t, s))
g(σ−1(u− t, s))T (u)ŵ(0)

If σ−1(−t, s) > s0 ⇔ t < σ(s, s0) ⇔ σ−1(t, s0) < s, set u = t in (1.13) to
obtain

p(s, t) = ŵ(t) = w(0) =
g(σ−1(−t, s))

g(s)
T (t)w(−t) (1.14)

=
g(σ−1(−t, s))

g(s)
T (t)p(σ−1(−t, s), 0)

=
g(σ−1(−t, s))

g(s)
T (t)φ(σ−1(−t, s)).

If σ−1(−t, s) < s0 ⇔ t > σ(s, s0) ⇔ σ−1(t, s0) > s, set p(s, t) = 0. Note that
if (1.6) holds, then σ−1(−t, s) > s0 ⇔ σ−1(t, s0) < s for all s ∈ (s0, s1), t > 0.

For Example 1.1 the characteristic curves in the (s, t) coordinate system
are illustrated in Fig. 1.3 and for Example 1.2 the characteristic curves in the
(s, t) coordinate system are illustrated in Fig. 1.4.

From (1.14), we obtain the following formula for the generalized solutions
of the size and spatial structured models (M.1.1) and (M.1.2): for φ ∈ Y, t ≥ 0,

p(s, t) =

{
g(σ−1(−t,s))

g(s) T (t)φ(σ−1(−t, s)), σ−1(t, s0) < s < s1
0, s0 ≤ s < σ−1(t, s0)

(1.15)

We define a semigroup of linear operators S(t), t ≥ 0 in Y by (S(t)φ)(s) =
p(s, t), φ ∈ Y, t ≥ 0, s0 < s < s1 where p(s, t) is given by the formula in (1.15).

Theorem 1. Let (H.1.1) or (H.1.2) and (H.1.3) hold. Let φ ∈ Y, t ≥ 0. If
(1.2) holds, define for almost all s in (s0, s1)

(S(t)φ)(s) =

{
g(σ−1(−t,s))

g(s) T (t)φ(σ−1(−t, s)), σ−1(t, s0) < s < s1
0, s0 ≤ s < σ−1(t, s0)

(1.16)
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Fig. 1.3. The characteristic curves in the (s, t) coordinate system for Example 1.1
are (σ−1(u, s), u + t), where u is a parameter such that −σ(s, s0) = σ(s0, s) ≤ u <
σ(s1, s) if σ(s, s0) ≤ t, and −t ≤ u ≤ σ(s1, s) if σ(s, s0) > t. The dark curve is
t = σ(s, s0)

0.2 0.4 0.6 0.8 1
s

1
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Fig. 1.4. The characteristic curves in the (s, t) coordinate system for Example 1.2
are (σ−1(u, s), u + t) = (s eu, u + t), where u is a parameter such that −t ≤ u <
σ(s1, s) = −log(s) for all s ∈ (0, 1], t > 0

and if (1.6) holds, define

(S(t)φ)(s) =
g(σ−1(−t, s))

g(s)
T (t)φ(σ−1(−t, s)), s0 < s < s1 (1.17)
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S(t), t ≥ 0 is a strongly continuous semigroup of bounded linear operators
in Y satisfying ‖S(t)φ‖Y ≤ M eωt ‖φ‖Y , φ ∈ Y, t ≥ 0. If (1.2) holds and
σ(s0, s1) < ∞, then S(t) ≡ 0 for t ≥ σ(s1, s0). If Z is a Banach lattice
and T (t), t ≥ 0 is a positive semigroup in Z, then S(t), t ≥ 0 is a positive
semigroup in Y .

Proof. First consider the case that (1.2) holds. We first show that S(t)φ ∈ Y
for t ≥ 0, φ ∈ Y . For φ ∈ Y, t ≥ 0, (1.16) yields

‖S(t)φ‖Y =
∫ s1

s0

‖(S(t)φ)(s)‖Zds (1.18)

=
∫ s1

σ−1(t,s0)

g(σ−1(t, s))
g(s)

‖T (t)φ(σ−1(t, s))‖Zds

Change the variable of integration in (1.18) ŝ = σ−1(−t, s) ⇔ σ(ŝ, s) = −t⇒∫ s

ŝ
1/g(v)dv = t⇒ ds/dŝ = g(s)/g(ŝ), to obtain

‖S(t)φ‖Y ≤
∫ σ−1(−t,s1)

s0

‖(T (t)φ)(ŝ)‖Zdŝ (1.19)

≤ M eωt ‖φ‖Y .

From (1.19) we see that S(t)φ ∈ Y , i.e.
∫ s1

s0
(S(t)φ)(s)ds exists in Z ( [68],

Theorem 3.7.4) and |S(t)| ≤ Meωt, t ≥ 0. If t ≥ σ(s1, s0), S(t) ≡ 0, since
σ−1(σ(s1, s0), s0) = s1 (all individuals present initially have attained the max-
imum size for t > σ(s1, s0)). ��

We next show that S(t), t ≥ 0 satisfies Definition 1.1(i). Let φ ∈ Y, 0 <
t1 < t2, and s0 < s < s1.

Case 1. σ−1(−t2, s) > s0 ⇔ σ−1(t2, s0) < s. Observe that σ−1(−t1, s)
> σ−1(−t2, s) > s0, since σ−1(u, s) is increasing in u. Also, σ−1(u+v, s)=σ−1

(u, σ−1(v, s)), since if c1 = σ−1(u+ v, s) ⇔ u+ v = σ(c1, s), c2 = σ−1(v, s) ⇔
v = σ(c2, s), and c3 = σ−1(u, c2) ⇔ u = σ(c3, c2), then

u + v =
∫ c3

c2

1
g(v̂)

dv̂ +
∫ c2

s

1
g(v̂)

dv̂ =
∫ c1

s

1
g(v̂)

dv̂

implies c1 = c3. Thus,

(S(t1)S(t2))φ(s) = S(t1)
g(σ−1(−t2, s))

g(s)
T (t2)φ(σ−1(−t2, s)) (1.20)

=
g(σ−1(−t2, s))

g(s)
g(σ−1(−t1, σ−1(−t2, s)))

g(σ−1(−t2, s))
×T (t1)T (t2)φ(σ−1(−t1, σ−1(−t2, s)))

=
g(σ−1(−(t1 + t2), s))

g(s)
T (t1 + t2)φ(σ−1(−(t1 + t2), s))

= (S(t1 + t2)φ)(s)
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Case 2. σ−1(−t2, s) ≤ s0 ⇔ σ−1(t2, s0) ≥ s. A calculation similar to (1.20)
shows that

(S(t1)S(t2)φ)(s) = (S(t1 + t2)φ)(s) ≡ 0.
We next show that S(t), t ≥ 0 satisfies Definition 1.1(ii). Let Y0 be a dense

subset of Y consisting of continuous functions from [s0, s1] to Z (if s1 = ∞,
then let these functions also have compact support in [s0,∞)) ([68], Sect. 3.7).
Let φ ∈ Y0 and t ≥ 0. From (1.16)

‖S(t)φ− φ‖Y =
∫ s1

s0

‖(S(t)φ)(s)− φ(s)‖Zds (1.21)

≤
∫ s1

σ−1(t,s0)

‖g(σ
−1(−t, s))
g(s)

(
T (t)φ(σ−1(−t, s))− φ(σ−1(−t, s))

)
‖Zds

+
∫ s1

σ−1(t,s0)

‖
(
g(σ−1(−t, s))

g(s)
− 1
)
φ(σ−1(−t, s))‖Zds

+
∫ s1

σ−1(t,s0)

‖φ(σ−1(−t, s)) − φ(s)‖Zds

+
∫ σ−1(t,s0))

s0

‖φ(s)‖Zds

= I + II + III + IV

As above, change the integration variable ŝ = σ−1(−t, s) ⇔ s = σ−1(t, ŝ) in
I and II to obtain

I =
∫ σ−1(−t,s1)

s0

g(ŝ)
g(σ−1(t, ŝ))

‖T (t)φ(ŝ) − φ(ŝ)‖Zdŝ,

II =
∫ σ−1(−t,s1)

s0

∣∣∣∣ g(ŝ)
g(σ−1(t, ŝ))

− 1
∣∣∣∣ ‖φ(ŝ)‖Zdŝ

Then I, II, III, IV → 0 as t → 0, since σ−1(−t, ŝ) → ŝ as t → 0 uniformly
for ŝ ∈ supp(φ) ⊂ (s0, s1), T (t), t ≥ 0 is uniformly strongly continuous on
compact subsets of Z, φ is continuous, and the range of φ on supp(φ) has
compact closure in Z. Thus, S(t), t ≥ 0 is strongly continuous in Y0, and since
(1.19) holds and Y0 is dense in Y , S(t), t ≥ 0 is strongly continuous in Y .

The positivity of S(t), t ≥ 0 in Y follows immediately from (1.16), if
T (t), t ≥ 0 is a positive semigroup in the Banach lattice Z [11, 33, 49]. The
case that (1.6) holds is similar.

We give an example with size structure, but without spatial structure to
illustrate Theorem 1.

Example 1.3. Let s0, s1, and g(s) be defined as in Example 1.1. Let Z = R,
let Y = L1((1, 3);R), let T (t) = I, t ≥ 0, and let φ ∈ Y be defined as

φ(s) =

⎧⎪⎨
⎪⎩

10(s− 1.1)2(1.4− s)2 1.1 ≤ s ≤ 1.4
(s− 2.0)2(2.5− s)2 2.0 ≤ s ≤ 2.5
0 otherwise

(1.22)
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Fig. 1.5. The solution p(s, t) = (S(t)φ)(s) of the size structured model (without
spatial structure) in Example 1.3 for the initial value φ(s) in (1.22). The largest
individuals grow the slowest. The two peaks ultimately merge, and all individuals
approach, but never attain, the maximum size 3. Since no individuals are lost or
gained, the total population is conserved for time t ≥ 0

The generalized solution p(s, t)=(S(t)φ)(s) obtained from (1.16) in Theorem 1
is graphed in Fig. 1.5.

An illustration of Theorem 1 with size structure and spatial structure is
given in Example 1.4.

Example 1.4. Let s0, s1, and g(s) be defined as in Example 1.3, and let φ be
defined as in (1.22). Let Z = L1((x0, x1);R) with x0 = 0 and x1 = 4, let
Y = L1((1, 3);Z), and let T (t), t ≥ 0, be the strongly continuous semigroup
in Z with infinitesimal generator the diffusion operator A in Z with Neumann
boundary conditions:

Az(x) = α
d2z

dx2
(x), x0 < x < x1, (1.23)

D(A) =
{
z ∈ Z :

d2z

dx2
∈ Z, dz

dx
(x0) =

dz

dx
(x1) = 0

}
where α = .1. For this semigroup the constants in (1.1) are M = 1 and ω = 0.
The initial value is Φ(s)(x) = φ(s)ψ(x), where φ(s) is given by (1.22) and

ψ(x) =

{
40000(x− 1.5)2(2.5− x)2 1.5 ≤ x ≤ 2.5
0 otherwise

(1.24)

The generalized solution p(x, s, t) = (S(t)Φ)(s)(x) obtained from (1.16) in
Theorem 1 is graphed in Figs. 1.6 and 1.7.

The size structured models (M.1.1) and (M.1.2) can be extended to allow
mortality, or more generally, linear or nonlinear gain or loss of individuals,
by perturbation of the semigroup S(t), t ≥ 0 in Theorem (1). The model
equations have the following form (M.1.3):
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Fig. 1.6. The densities p(x, s, t) = (S(t)Φ)(s)(x) of the size and spatial structured
model in Example 1.4 with initial value Φ(s)(x) for various times t. The largest
individuals grow the slowest, and all individuals converge as t → ∞ to the maximum
size 3. The two initial concentrations are spread out in the spatial variable x by the
diffusion process, and merged in the size variable as s → 3 by the singularity of the
grow rate 1/g(s) at s = 3. The total population is conserved both in the size and
spatial variables

∂

∂t
p(s, t)+

∂

∂s
(g(s) p(s, t)) = Ap(s, t)+F (p(·, t))(s), s0 < s < s1, t > 0 (1.25)

p(s, 0) = φ(s), s0 < s < s1 (1.26)

p(s0, t) = 0, t > 0. (1.27)

Again, if (1.2) holds, then Model (M.1.3) consists of (1.25), (1.26), (1.27),
and if (1.6) holds, then Model (M.1.4) consists of (1.25), (1.26) (there is no
boundary condition in this case). Here F is a linear or nonlinear operator in
Y satisfying the following global Lipschitz continuity hypothesis:
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Fig. 1.7. The density plots in the (x, s) coordinate system of the distributions
in Fig. 1.6

(H.1.4) F : Y → Y and there exits L > 0 such that ‖F (φ1) − F (φ2)‖Y ≤
L ‖φ1 − φ2‖Y , for all φ1, φ2 ∈ Y .
Models (M.1.3) and (M.1.4) can be written abstractly as an ordinary differ-
ential equation in Y :

d

dt
p(t) = Ap(t) + F (p(t)), t ≥ 0, p(0) = φ ∈ Y (1.28)

where p : [0,∞) → Y, p(t)(s) = p(s, t), A : Y → Y ,

(Aφ)(s) = − d
ds

(g(s)φ(s)) +Aφ(s),

with D(A) consisting of φ ∈ Y such that − d
ds (g(s)φ(s)) + Aφ(s) ∈ Y , and,

if (1.2) holds, φ(s0) = 0.
The proof of the following theorem is standard and may be found in

[59,91,96] or [103]:

Theorem 2. Let (H.1.1) or (H.1.2) and (H.1.3), (H.1.4) hold. Let S(t), t ≥ 0
be the strongly continuous semigroup of bounded linear operators in Y =
L1((s0, s1);Z) in Theorem 1 and let φ ∈ Y . There is a unique solution
U(t)φ, t ≥ 0 to the integral equation

U(t)φ = S(t)φ +
∫ t

0

S(t− u)F (U(u)φ)du, t ≥ 0 (1.29)

Further, U(t), t ≥ 0 is a strongly continuous semigroup of Lipschitz continuous
linear or nonlinear operators in Y satisfying

‖U(t)(φ1)− U(t)(φ2)‖Y ≤Me(ML+ω)t ‖φ1 − φ2‖Y , t ≥ 0, φ1, φ2 ∈ Y (1.30)
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If Z is a Banach lattice and T (t), t ≥ 0 is a positive semigroup in Z, then
U(t), t ≥ 0 is a positive semigroup in Y .

An illustration of Theorem 2 is given in Example 1.5 below.

Example 1.5. Let s0 = 0, s1 = 1, and g(s) = s (as in Example 1.2). Let

φ(s) =

⎧⎪⎨
⎪⎩

10, 000 s2(.2− s)2 0 ≤ s ≤ .2
20, 000 (s− .4)2(.6− s)2 .4 ≤ s ≤ .6
0 otherwise

(1.31)

First, consider the case without spatial structure. Let Z=R, let T (t)=I, t ≥ 0,
let Y = L1(0, 1);R), and let F : Y → Y be defined as F (φ)(s) = βφ(s), φ ∈
Y, s ∈ (0, 1), where β = 2.0. We view F as a linear process associated with
population gain at a constant rate β. The generalized solution p(s, t) =
(U(t)φ)(s) = e(β−1)tφ(e−ts) obtained from (1.16) in Theorem 1 and (1.29)
in Theorem 2 is graphed in Fig. 1.8. We remark that this linear semigroup
U(t), t ≥ 0 for this example is known to exhibit chaotic behavior for β > 1
[125]. We next consider the case with spatial structure. Let Z = L1((0, 1);R),
let Y = L1((0, 1);Z), and let T (t), t ≥ 0, be the strongly continuous linear
semigroup in Z with infinitesimal generator the diffusion operator A in Z with
Neumann boundary conditions as in (1.23), with α = .01, x0 = 0, x1 = 1.0.
Let the population source F : Y = L1((0, 1);Z) → Y be spatially dependent:
for φ ∈ Y, s ∈ (s0, s1),

(Fφ(s))(x) =

{
50(x− .5)(1.0− x)φ(s) 0.5 ≤ x ≤ 1.0
0 0.0 ≤ x < 0.5

(1.32)

Fig. 1.8. The solution p(s, t) = (U(t)φ)(s) of the size structured model (without
spatial structure) in Example 1.5 for the initial value φ(s) in (1.31). All individuals
attain the maximum size 1 in finite time, and the time to reach size 1 from size s
is −log(s). Since there are individuals present initially with arbitrary small positive
size s, the population is never extinguished, and grows without bound as t → ∞
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Fig. 1.9. The solution p(s, t) = (U(t)Φ)(s) of the size structured model (with spatial
structure) in Example 1.5 for the initial value Φ(s) for various time values. The
behavior with respect to the size distribution is similar to Fig. 1.8, with diffusion
acting to spread the population in space. Since the source term Fp(·, t)(s)(x) is
dependent on the spatial variable x through (1.32), there is a bias in the growth of
the population over time in the right half of the spatial domain (0, 1)

Let Φ(s)(x) = φ(s)ψ(x), where φ(s) is given by (1.31) and

ψ(x) =

{
40,000(x− .3)2(.6− x)2 .3 ≤ x ≤ .6
0 otherwise

(1.33)

The generalized solution p(s, t) = (U(t)Φ)(s) for this case, obtained from
(1.16) in Theorem 1 and (1.29) in Theorem 2, is graphed in Figs. 1.9 and 1.10.

An application of Theorem 2 to a linear model of a size structured prolif-
erating cell population is given in Example 1.6.

Example 1.6. We first consider the case without diffusion. This case has been
analyzed in [62] (see also [33, 44, 127]). Let s0 = 1.0, s1 = 3.6, g(s) = 5.0− s,
and let Y = L1(s0, s1);R). It is assumed that the minimum size of a mother
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Fig. 1.10. The density plots in the (x, s) coordinate system of the distributions
in Fig. 1.9

cell at division is 2s0 and the maximum is s1. The condition s1/2 < 2s0
assures that every newborn cell must grow for some time before it can divide.
The density p(s, t) of the population with respect to size s satisfies the initial-
boundary value problem

∂

∂t
p(s, t) +

∂

∂s
(g(s)p(s, t)) = −(β(s) + µ(s))p(s, t) + 4β(2s)p(2s, t) (1.34)

p(s0, t) = 0, t ≥ 0 (1.35)

p(s, 0) = φ(s), φ ∈ Y, s0 < s < s1 (1.36)

The factor 4 in (1.34) arises from the assumption that size is conserved during
the division process, and each daughter cell inherits exactly one-half the size
of the mother cell. The division modulus is

β(s) =

{
5(s− 2.0)(3.6− s) 2.0 ≤ s ≤ 3.6
0 otherwise

(1.37)

The mortality modulus is µ(s) ≡ .4. The generalized solution of this model is
obtained from Theorem 1, (1.16) with T (t) = I, t ≥ 0, and Theorem 2 with
F : Y → Y defined as F (φ)(s) = −(β(s)+µ(s))φ(s) + 4β(2s)φ(2s), φ ∈ Y, s ∈
(s0, s1). The generalized solution p(s, t) = (S(t)φ)(s) for

φ(s) =

{
.5(s− 2.4)(2.8− s) 2.4 ≤ s ≤ 2.8
0 otherwise

(1.38)

is graphed in Fig. 1.11. The model with spatial diffusion is obtained from
Theorem 2 with Z, T (t), t ≥ 0 , A, α = .5 as in Example 1.4, Y = L1
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Fig. 1.11. The solution p(s, t) = (S(t)φ)(s) of the proliferating cell population
model structured by cell size (without spatial structure) in Example 1.6 for the
initial value φ(s) in (1.38). Since some cells present initially are large enough to
divide at time t = 0, some newly divided daughter cells appear immediately. As
the population grows exponentially in time, the initial size synchronization at time
t = 0, with a concentration centered at 2.6, is gradually dispersed

((s0, s1);Z), and s0, s1, g, β, µ, F as above. The solution p(s, t) = (S(t)Φ)(s),
is graphed at various time points in Figs. 1.12 and 1.13 for the initial value
(Φ(s))(x) = φ(s)ψ(x), with φ as in (1.38) and ψ as follows:

ψ(x) =

{
400(x− 1.5)(2.5− x) 1.5 ≤ x ≤ 2.5
0 otherwise

(1.39)

The asymptotic behavior of the linear semigroup in Example 1.6 in the case
without spatial structure has been analyzed in [44] and [62]. This behavior is
known as asynchronous or balanced exponential growth [113,114,122,124,127].

Definition 1.2. Let T (t), t ≥ 0 be a strongly continuous semigroup of
bounded linear operators in the Banach space Z with infinitesimal genera-
tor A. T (t), t ≥ 0 has asynchronous exponential growth with intrinsic growth
constant λ0 if and only if there is a nonzero finite rank projection P0 in Z
(the spectral projection) such that

lim
t→∞ e

−λ0tT (t) = P0. (1.40)

Asynchronous exponential growth means that the semigroup stabilizes as
t→∞ to a finite-dimensional image of the state space of initial values, after
multiplication by an exponential factor in time. If the state space Y is infinite
dimensional, then any synchronization of information in the initial value is
retained only in the finite dimensional space P0Y , and is thus asynchronized
over time.

In [62] it is proved that if g is continuously differentiable and strictly
positive on (s0, s1), 2g(s) �= g(2s) for some s ∈ (s0, s1) and s0 < s1/2 < s2,
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Fig. 1.12. The solution p(s, t) = (U(t)Φ)(s) of the size structured model (with
spatial diffusion) in Example 1.6 for the initial value Φ(s) for various time values. In
the last plot for time t = 3.0, the size and spatial structure have almost completely
dispersed from the initial value, and the size structure is essentially uniform in x

where s2 is the minimum age of division, then the linear semigroup S(t), t ≥ 0
(without spatial dependence) in Example 1.6 has asynchronous exponential
growth with P0 in (1.40) having rank 1. If 2g(s) ≡ g(2s) for s ∈ (s0, s1), then
this semigroup has periodic exponential growth [45, 62,127].

For the semigroup S(t), t ≥ 0 in Theorem 1, we can prove

Theorem 3. Let (H.1.1) or (H.1.2) and (H.1.3) hold. Let S(t), t ≥ 0 be
the linear semigroup in Theorem 1 with T (t), t ≥ 0 as in (H.1.3). Let
S1(t), t ≥ 0 be the linear semigroup in Theorem 1 obtained with T (t) ≡ I
in Z as in (H.1.3). If S1(t), t ≥ 0 has asynchronous exponential growth in
Y = L1((s0, s1);Z) with intrinsic growth constant λ1 and with spectral pro-
jection P1, and T (t), t ≥ 0 has asynchronous exponential growth in Z with in-
trinsic growth constant λ0 and with spectral projection P0, then S(t), t ≥ 0 has
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Fig. 1.13. The density plots in the (x, s) coordinate system of the distributions in
Fig. 1.12

asynchronous exponential growth in Y with intrinsic growth constant λ0 + λ1

and with spectral projection (Pφ)(s) = P0(P1φ(s)), φ ∈ Y, s ∈ (s0, s1).

Proof. From (1.16) and (1.17), (S(t)φ)(s) = T (t)(S1(t)φ(s)), which means
that

lim
t→∞ e

−(λ0+λ1)t (S(t)φ)(s) = lim
t→∞ e

−λ0tT (t) e−λ1t(S1(t)φ)(s)

= P0(P1(φ(s)), φ ∈ Y, s ∈ (s0, s1).

Also, P is linear, bounded, and a projection in Y , since

P 2φ = P ( lim
t→∞ e

−(λ0+λ1)tS1(t)φ)

= lim
t̂→∞

e−(λ0+λ1)t̂S1(t̂ )
(

lim
t→∞ e

−(λ0+λ1)tS1(t)φ
)

= lim
t+t̂→∞

e−(λ0+λ1)(t+t̂)S1(t+ t̂)φ

= Pφ.

Further, P has finite rank, if P0 and P1 have finite rank. ��

1.3 Population Models Structured by Age
and Spatial Position

Individuals are distinguished by age a ∈ (0, a1), where a1 ≤ ∞ is the maxi-
mum age (if a1 <∞, individuals may attain age greater than a1, but they are
no longer tracked in the model), and spatial position variable x ∈ Ω ⊂ Rn. As
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in Sect. 1.1, the density function at time t with respect to age a and position
x describes the total population of individuals with age between â and ã and
position x ∈ Ω̂ ⊂ Ω at time t:∫ ã

â

∫
Ω̂

p(x, a, t)dxda.

We again assume Hypothesis (H.1.3), so that spatial movement is governed
by a linear semigroup T (t), t ≥ 0 with infinitesimal generator A in the Banach
space Z. Let Y = L1((0, a1);Z) and view the density p(x, a, t) = p(a, t)(x) as
a function from [0, a1) to Z. For an age-structured population, it is assumed
that individuals born (with age 0) at time t arise from a birth process de-
pendent on the existing fertile population at time t. We assume the hypothesis

(H.2.1) β ∈ C([0, a1);R+) and there exists ā > 0 and β̄ ∈ (0, a1) such that
β(a) ≡ 0 for a ∈ [ā, a1) and β(a) ≤ β̄ for 0 ≤ a ≤ ā .

We again first consider the case without mortality. The model equations
are (M.2.1):

∂

∂t
p(a, t) +

∂

∂a
p(a, t)) = Ap(a, t), a ∈ (0, a1), t > 0 (1.41)

p(a, 0) = φ(a), a ∈ (0, a1), φ ∈ Y (1.42)

p(0, t) =
∫ a1

0

β(a)p(a, t)da, t > 0. (1.43)

The analysis of Sect. 1.1 applies to model (M.2.1). Define w(u) = p(a+ u, t+
u), u ≤ 0. Then, w(0) = p(a, t) and

d

du
w(u) =

∂

∂t
p(a+ u, t+ u) +

∂

∂a
p(a+ u, t+ u) (1.44)

= Ap(a+ u, t+ u)

= Aw(u)

As in Sect. 1.1, if a > t, then

p(a, t) = w(0) = T (t)w(−t) = T (t)p(a− t, 0) = T (t)φ(a− t) (1.45)

and, if 0 < a < t, then

p(a, t) = w(0) = T (a)w(−a) = T (a)p(0, t− a) (1.46)

Thus,

p(a, t) =

{
T (t)φ(a− t), t < a < a1

T (a)p(0, t− a), 0 < a < t
(1.47)
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To obtain p(a, t) for a < t, we must solve the boundary condition (1.43) using
(1.47):

p(0, t) =
∫ a1

0

β(a)p(a, t)da (1.48)

=
∫ t

0

β(a)T (a)p(0, t− a)da+
∫ a1

t

β(a)T (t)φ(a− t)da

(where the last integral in (1.48) is 0 if t > a1). Set bφ(t) = p(0, t), t ≥ 0, and
(1.48) is a linear Volterra integral equation for bφ in Z:

bφ(t) =
∫ t

0

β(a)T (a)bφ(t− a)da+ T (t)
∫ a1−t

0

β(a+ t)φ(a)da (1.49)

A unique solution bφ of (1.49), continuous from [0,∞) to Z, is obtained by
standard arguments [63]. To obtain generalized solutions of model (M.2.1),
we define a semigroup S(t), t ≥ 0 in Y as follows: for φ ∈ Y, t ≥ 0, almost all
a ∈ (0, a1),

(S(t)φ)(a) =

{
T (t)φ(a− t), t < a < a1

T (a)bφ(t− a), 0 < a < t
(1.50)

Theorem 4. Let (H.1.3) and (H.2.1) hold. S(t), t ≥ 0 is a strongly contin-
uous semigroup of bounded linear operators in Y satisfying ‖S(t)φ‖Y ≤ M
e(β̄M+ω)t ‖φ‖Y , φ ∈ Y, t ≥ 0. If Z is a Banach lattice and T (t), t ≥ 0 is a
positive semigroup in Z, then S(t), t ≥ 0 is a positive semigroup in Y .

Proof. We first observe that for φ ∈ Y, t ≥ 0,

‖bφ(t)‖Z ≤
∫ t

0

β̄Meω(t−a)‖bφ(a)‖Zda + Meωtβ̄

∫ a1

0

‖φ(a)‖Zda

which implies

e−ωt‖bφ(t)‖Z ≤ β̄M
∫ t

0

e−ωa‖bφ(a)‖Zda + Mβ̄

∫ a1

0

‖φ(a)‖Zda

By Gronwall’s inequality

‖bφ(t)‖Z ≤ β̄Me(β̄M+ω)t‖φ‖Y (1.51)

Thus, (1.51) implies

‖S(t)φ‖Y =
∫ a1

0

‖(S(t)φ)(a)‖Zda

=
∫ t

0

‖T (a)bφ(t− a)‖Zda+
∫ a1

t

‖T (t)φ(a− t)‖Zda

≤
∫ t

0

MeωaMβ̄e(β̄M+ω)(t−a)‖φ‖Y da+Meωt‖φ‖Y

= Me(β̄M+ω)t‖φ‖Y
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To prove the semigroup property (i) in Definition 1.1, we next prove that
for φ ∈ Y ,

bS(t1)φ(t) = bφ(t+ t1), t1, t > 0 (1.52)

Observe from (1.49) and (1.50) that

bS(t1)φ(t) =
∫ t

0

β(t− a)T (t− a)bS(t1)φ(a)da (1.53)

+
∫ a1−t

0

β(a+ t)T (t)(S(t1)φ)(a)da

Also,

bφ(t+ t1) =
∫ t1

0

β(t+ t1 − a)T (t+ t1 − a)bφ(a)da (1.54)

+
∫ t+t1

t1

β(t+ t1 − a)T (t+ t1 − a)bφ(a)da

+
∫ a1−t−t1

0

β(t+ t1 + a)T (t+ t1)φ(a)da

=
∫ t1

0

β(a+ t)T (a+ t)bφ(t1 − a)da

+
∫ t

0

β(t− a)T (t− a)bφ(a+ t1)da

+
∫ a1−t

t1

β(a+ t)T (t)T (t1)φ(a− t1)da

=
∫ t

0

β(t− a)T (t− a)bφ(a+ t1)da

+T (t)
∫ a1−t

0

β(a+ t)(S(t1)φ)(a)da

By the uniqueness of solutions to (1.49), we then obtain (1.52), which
implies (S(t)S(t1)φ)(0) = (S(t+ t1)φ)(0), t, t1 ≥ 0.

For φ ∈ Y, 0 ≤ t < t1, and t+ t1 < a,

(S(t)S(t1)φ)(a) = T (t)(S(t1)φ)(a− t) (1.55)
= T (t)T (t1)φ(a− t− t1)
= T (t+ t1)φ(a− (t+ t1))
= (S(t+ t1)φ)(a)

For t < a < t+ t1,

(S(t)S(t1)φ)(a) = T (t)(S(t1)φ)(a− t) (1.56)
= T (t)T (a− t)(S(t1 − (a− t))φ)(0)
= T (a)(S(t+ t1 − a)φ)(0)
= (S(t+ t1)φ)(a)
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For a < t, by (1.52)

(S(t)S(t1)φ)(a) = T (a)(S(t− a)(S(t1)φ)(0) (1.57)
= T (a)(S(t+ t1 − a)φ)(0)
= (S(t+ t1)φ)(a)

Thus, (1.55)–(1.57) imply S(t+ t1) = S(t)S(t1) for t, t1 ≥ 0.
To prove the strong continuity property (ii) in Definition 1.1, we let Y0

be a dense set of continuous functions in Y with compact support in (0, a1).
Then,

‖S(t)φ− φ‖Y =
∫ a1

0

‖(S(t)φ)(a)− φ(a)‖Zda (1.58)

=
∫ t

0

‖T (a)(S(t− a)φ)(0)− φ(a)‖Zda

+
∫ a1

t

‖T (t)φ(a− t)− φ(a)‖Zda

The last term in (1.58) → 0 as t→ 0 as in the proof of Theorem 1. The next
to last term in (1.58) → 0 as t → 0, since ‖T (a)(S(t − a)φ)(0) − φ(a)‖Z is
integrable in a.

The positivity of S(t), t ≥ 0 in Y follows immediately from (1.49) and
(1.50), if T (t), t ≥ 0 is a positive semigroup in the Banach lattice Z, since
β(a) ≥ 0 for a ∈ (0, a1).

The age structured model (M.2.1) can be extended to allow nonlinear
gain or loss of individuals by perturbation of the semigroup S(t), t ≥ 0 in
Theorem 4. The model equations have the following form (M.2.2):

∂

∂t
p(a, t) +

∂

∂a
p(a, t) = Ap(a, t) + F (p(·, t))(a), a ∈ (0, a1), t > 0 (1.59)

p(a, 0) = φ(a), a ∈ (0, a1), φ ∈ Y (1.60)

p(0, t) =
∫ a1

0

β(a)p(a, t)da, t > 0 (1.61)

where F satisfies hypothesis (H.1.4). Model (M.2.2) can be written abstractly
as an ordinary differential equation in Y :

d

dt
p(t) = Ap(t) + F (p(t)), t ≥ 0, p(0) = φ ∈ Y (1.62)

where p : [0,∞) → Y, p(t)(a) = p(a, t), A : Y → Y ,

(Aφ)(a) = − d

da
φ(a) +Aφ(a),

with D(A) consisting of φ ∈ Y such that − d
daφ(a) + Aφ(a) ∈ Y , and φ(0) =∫ a1

0
β(a)φ(a)da.
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The following theorem is analogous to Theorem 2:

Theorem 5. Let (H.1.3), (H.1.4), (H.2.1) hold. Let S(t), t ≥ 0 be the strongly
continuous semigroup of bounded linear operators in Y = L1((0,∞);Z) in
Theorem 4 and let φ ∈ Y . There is a unique solution U(t)φ, t ≥ 0 to the inte-
gral equation (1.29). Further, U(t), t ≥ 0 is a strongly continuous semigroup
of Lipschitz continuous nonlinear operators in Y satisfying

‖U(t)(φ1)− U(t)(φ2)‖Y ≤Me(M(β̄+L)+ω)t ‖φ1 − φ2‖Y , t ≥ 0, φ1, φ2 ∈ Y
(1.63)

If Z is a Banach lattice and T (t), t ≥ 0 is a positive semigroup in Z, then
U(t), t ≥ 0 is a positive semigroup in Y .

We give a linear example with age structure, with mortality, but without
spatial structure, to illustrate Theorem 5.

Example 2.1. Let Z = R, Y = L1((0, a1);R), T (t) = I, t ≥ 0, let φ ∈ Y be
defined as

φ(a) =

{
(a− .4)(1.4− a) .4 ≤ a ≤ 1.4
0 otherwise

(1.64)

and let the fertility modulus β(a) be defined as

β(a) =

{
6.0(a− 2.0)(4.0− a)e(−3.0(a−2.0)) 2.0 ≤ a ≤ 4.0
0 otherwise

(1.65)

Let the mortality of individuals be given by µ(a) = .05a, (i.e., the probability
that an individual survives to age a1 from age a2 is e−µ(a2−a1)). Let F : Y →
Y be defined by F (φ)(a) = −µ(a)φ(a), a ∈ (0, a1), φ ∈ Y . The generalized
solution p(a, t) = (U(t)φ)(a) to the model (M.2.2) obtained from S(t), t ≥ 0
in Theorem 4 and U(t), t ≥ 0 in Theorem 5, is graphed in Fig. 1.14.

For Example 2.1 (without spatial structure) it is known that the linear
semigroup U(t), t ≥ 0 of this linear age structured model exhibits asynchro-
nous exponential growth under the hypothesis β(a), µ(a) ∈ L∞

+ ((0, a1);R)
with β(a) not identically 0 on (0, a1) [33, 122, 127]. The intrinsic growth con-
stant λ0 in Definition 1.2 is the unique real-valued solution of the characteristic
equation

1 = 2
∫ a1

0

e−λ0aπ(a, 0)β(a)da (1.66)

where

π(a, b) = exp

(
−
∫ a

b

(β(u) + µ(u))du
)
.

The projection P0 in Definition 1.2 has 1-dimensional range and is given by
the formula

P0(φ)(a) =
e−λ0aπ(a, 0)

∫ a1

0
β(b)e−λ0b

(∫ b

0
eλ0uπ(b, u)φ(u)du

)
db∫ a1

0
β(b)be−λ0bπ(b, 0)db

(1.67)
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Fig. 1.14. The solution p(a, t) = (U(t)φ)(a) of the linear age structured model
(without spatial structure) in Example 2.1 for the initial value φ(a) in (1.64). Since
the initial population all has age a ≤ 1.4, and the minimum reproductive age is
a = 2.0, no individuals are born until time t = .6. The initial sychronization of
the population, centered at a = .9, is dispersed over time. The population grows
exponentially to ∞, and exhibits asynchronous exponential growth with intrinsic
growth constant λ0 = .0072 satisfying (1.66), and spectral projection P0 as in (1.67)
with rank 1

Asynchronous exponential growth means that the proportion of the popula-
tion in any age range (â, ã) stabilizes as t→∞ in the sense that

limt→∞

∫ ã

â
p(a, t)da∫ a1

0
p(a, t)da

=

∫ ã

â
(Pφ)(a)da∫ a1

0
(Pφ)(a)da

.

Since the projection P0 above has rank 1, the limit above is independent of
the initial age distribution φ(a). This property is observed in proliferating
cell cultures, which lose synchrony of the initial age distribution after a few
generations. The loss of the initial synchronization results from the hypothesis
that not every cell divides at exactly the same age, and there is a dispersion
of the ages of division controlled by the division modulus β(a).

An illustration of Theorem 5 with spatial structure is given in Example 2.2.
The assumptions on the age structure are the same as in Example 2.1, except
that the mortality also depends on the spatial variable x.

Example 2.2. Let Z = L1((0, 4);R), Y = L1((0, a1);Z), a1 = 4, let T (t), t ≥ 0,
be the strongly continuous linear semigroup in Z with infinitesimal generator
the diffusion operator A in Z with Neumann boundary conditions as in (1.23),
with α = .2, x0 = 0.0, x1 = 4.0. Let the fertility modulus β(a) be as in (1.65),
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and let S(t), t ≥ 0 be the linear semigroup in Y as in Theorem 4. Let the
mortality modulus be defined as follows: for a ∈ (0, a1),

µ(x, a) =

{
.05a+ 2.0(x− 2.5)(3.5− x) 2.5 ≤ x ≤ 3.5
.05a otherwise

(1.68)

so that individuals located in the right side of the spatial domain (0, 4) have
higher mortality. Let F : Y → Y be defined as Fφ(a)(x)=µ(x)φ(a), φ∈Y, a ∈
(0, a1), x ∈ (0, 4). Let Φ(a)(x) = φ(a)ψ(x), where φ(a) is given by (1.64) and

ψ(x) =

{
4(x− 1.0)2(3.0− x)2 1.0 ≤ x ≤ 3.0
0 otherwise

(1.69)

The generalized solution p(a, t) = (U(t)Φ)(a) to the model (M.2.2) obtained
from S(t), t ≥ 0 in Theorem 4 and U(t), t ≥ 0 in Theorem 5, is graphed in
Figs. 1.15 and 1.16.

A nonlinear illustration of Theorem 5 (without spatial structure) is given
in Example 2.3. The assumptions are the same as in Example 2.1, except that
the mortality depends nonlinearly on the density.

Example 2.3. Let Z, Y, T (t), t ≥ 0, S(t), t ≥ 0, let

β(a) =

{
10.0(a− 2.0)(4.0− a)e(−2.0(a−2.0)) 2.0 ≤ a ≤ 4.0
0 otherwise

(1.70)

let φ ∈ Y be defined as

φ(a) =

{
5.0 a (1.0− a) 0.0 ≤ a ≤ 1.0
0 otherwise

(1.71)

and let F : Y → Y be defined as

F (φ)(a) = −
(
µ(a) + γ

∫ a1

0

φ(â)dâ
)
φ(a), φ ∈ Y, a ∈ (0, a1),

where µ(a) = .1 a and γ = .1. It is known that for this nonlinear age structured
model, where the mortality is influenced by crowding, nonlocally through the
total population density, the solutions converge to a unique globally attracting
equilibrium φ0(a) ([46,123]). This equilibrium solution has the form

φ0(a) =
λ0 P0(a)

γ
∫ a1

0
(P0φ(a))da

, a ∈ (0, a1), (1.72)

where λ0 = .139 is the solution of the characteristic equation (1.66), P0 is the
rank 1 projection in Y given by (1.67), with β(a) as in (1.70) and µ(a) = .1 a
as above. The generalized solution p(a, t) = (U(t)φ)(a) to the model (M.2.2)
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Fig. 1.15. The solution p(a, t) = (U(t)Φ)(a) of the linear age structured model
with spatial structure in Example 2.2. The initial structure of the population is
asynchronized in age as in Example 2.1, but also in space, as the population grows
exponentially over time. The spatial distribution shows higher mortality over time
for individuals located in the right side of the spatial domain Ω = (0, 4)

obtained from S(t), t ≥ 0 in Theorem 4 and U(t), t ≥ 0 in Theorem 5, is
graphed in Fig. 1.17.

A nonlinear illustration of Theorem 5 with spatial structure is given in
Example 2.4.

Example 2.4. Let Z = L1((x0, x1);R), Y = L1((0, a1);Z), a1 = 4, let
T (t), t ≥ 0, be the strongly continuous linear semigroup in Z with infinitesimal
generator the diffusion operator A in Z with Neumann boundary conditions
as in (1.23), with α = .2, x0 = 0.0, x1 = 4.0. Let the fertility modulus β(a)
be as in (1.70), let F : Y → Y be defined as
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Fig. 1.16. The density plots in the (x, a) coordinate system of the distributions
in Fig. 1.15

Fig. 1.17. The solution p(a, t) = (U(t)φ)(a) of the nonlinear age structured model
(without spatial structure) in Example 2.3. The initial structure of the population
is asynchronized in age and converges over time to a globally attracting equilibrium
φ0(a) given by (1.72)

F (φ)(a)(x) = −
(
ξ(x) + µ(a) + γ

∫ a1

0

φ(â)dâ
)
φ(a),

φ ∈ Y, x ∈ (x0, x1), a ∈ (0, a1),

where ξ(z) = .2 (4.0 − x), µ(a) = .1 a, and γ = .1. Let Φ(a)(x) = φ(a)ψ(x),
where φ(a) is given by (1.71) and
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ψ(x) =

⎧⎪⎨
⎪⎩

10.0(x− .5)2(1.5− x)2 .5 ≤ x ≤ 1.5
5.0(x− 2.5)2(3.5− x)2 2.5 ≤ x ≤ 3.5
0 otherwise

(1.73)

Let S(t), t ≥ 0 be the linear semigroup in Y as in Theorem 4. The generalized
solution p(a, t) = (U(t)Φ)(a) to the model (M.2.2) obtained from S(t), t ≥ 0
in Theorem 4 and U(t), t ≥ 0 in Theorem 5, is graphed in Figs. 1.18 and 1.19.

Fig. 1.18. The solution p(a, t) = (U(t)Φ)(a) of the nonlinear age and spatial struc-
tured model in Example 2.4. The initial structure of the population, with two con-
centrations of juveniles in the spatial domain Ω = (0, 4), is asynchronized in age
and space, and converges to a globally attracting equilibrium. The global attractor
has age structure with decreasing density as individuals age, and spatial structure
with higher density in the right side of Ω
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Fig. 1.19. The density plots in the (x, a) coordinate system of the distributions
in Fig. 1.18

1.4 Population Models Structured by Age, Size,
and Spatial Position

The analysis of Sects. 1.1 and 1.2 can be combined to treat age-size-space
structured models. As in Sects. 1.1 and 1.2, the density function at time t,
with respect to age a, size s, and position x, describes the total population
of individuals with age between â and ã, size between ŝ and s̃ and position
x ∈ Ω̂ ⊂ Ω at time t: ∫ ã

â

∫ s̃

ŝ

∫
Ω̂

p(x, a, s, t)dxdsda.

We again assume Hypothesis (H.1.3), so that spatial movement is governed
by a linear semigroup T (t), t ≥ 0 with infinitesimal generator A in the Banach
space Z. We first consider the case that the density p(a, s, t) is in the state
space Y = L1((0, a1) × (0, s2);Z), where a1 ≤ ∞ is the maximum age and
s2 ≤ ∞ is the maximum size. Further, we assume that the growth modulus
g(s) = 1 for s ∈ [0, s2). The equations for the model (M.3.1) are:

∂

∂t
p(a, s, t) +

∂

∂a
p(a, s, t) +

∂

∂s
p(a, s, t) (1.74)

= Ap(a, s, t), a ∈ (0, a1), s ∈ (0, s2), t > 0

p(a, s, 0) = φ(a, s), a ∈ (0, a1), s ∈ (0, s2), φ ∈ Y (1.75)

p(0, s, t) =
∫ a1

0

∫ s2

0

β(a, ŝ, s)p(a, ŝ, t) dŝ da, s ∈ (0, s2), t > 0 (1.76)



1 Population Models Structured by Age, Size, and Spatial Position 33

p(a, 0, t) = 0, a ∈ (0, a1), t > 0 (1.77)

where β(a, ŝ, s) satisfies the following hypothesis:

(H.3.1) β : [0, a1) × [0, s2) × [0, s2) → [0,∞), β is continuous, and there
exists ā ∈ (0, a1), s̄ ∈ (0, s2) such that β(a, ŝ, s) = 0 for ā < a < a1, and
s̄ < ŝ, s < s2.

As in Sects. 1.1 and 1.2, the method of characteristics yields the following
formula for the density p(a, s, t):

p(a, s, t) =

⎧⎪⎨
⎪⎩
T (t)φ(a− t, s− t), 0 < t < a, 0 < t < s
T (a)p(0, s− a, t− a), 0 < a < t, 0 < a < s
0 a > t, s < t or a < t, a > s

(1.78)

As in Sect. 1.2, we use (1.76) and (1.78) to obtain an equation for the birth-
rate function bφ(s, t) := p(0, s, t), where bφ : (0, s2)× (0,∞) → Z satisfies the
following integral equation:

bφ(s, t) =
∫ t

0

∫ s2

a

β(a, ŝ, s)T (a)p(0, ŝ− a, t− a)dŝda (1.79)

+T (t)
∫ a1

t

∫ s2

t

β(a, ŝ, s)φ(a− t, ŝ− t)dŝda

=
∫ t

0

∫ s2

a

β(a, ŝ, s)T (a)bφ(ŝ− a, t− a)dŝda

+T (t)
∫ a1−t

0

∫ s2−t

0

β(a+ t, ŝ+ t, s)φ(a, ŝ)dŝda

(where the last integral in (1.79) is 0 if t > a1 or t > s2).
Let V = {f ∈ C([0, s2);Z) : lims→s2f(s) = 0}, let W = C([0, t1];V ),

where t1 > 0. Let

cφ(s, t) =

{
T (t)

∫ a1−t

0

∫ s2−t

0
β(a+ t, ŝ+ t, s)φ(a, ŝ)dŝda, t < a1 and t < s2

0, otherwise

Let Cφ(t)(s) = cφ(s, t), 0 ≤ t ≤ t1, s ∈ (0, s2), and then Cφ ∈ W . Define
K : [0,∞) → B(V ) (the space of bounded linear operators in V ) by

(K(a)f)(s) = T (a)
∫ s2

a

β(a, ŝ, s)f(ŝ− a)dŝ, f ∈ V, a ∈ (0, a1).

Then, K(a) is well-defined, since T (t), t ≥ 0 is uniformly strongly continuous
on compact sets of Z, and β and f are continuous. Equation (1.79) may now
be written as an abstract linear Volterra integral equation in V:

Bφ(t) =
∫ t

0

K(a)Bφ(t− a)da+ Cφ(t), t ≥ 0 (1.80)
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where Bφ ∈W and Bφ(t)(s) = bφ(s, t). The existence of a unique solution to
(1.80), and thus to (1.79), is obtained by standard arguments ([63]). We thus
define the family of linear operators S(t), t ≥ 0 in Y by the following formula:

(S(t)φ)(a, s) =

⎧⎪⎨
⎪⎩
T (t)φ(a− t, s− t), 0 < t < a, 0 < t < s
T (a)bφ(s− a, t− a), 0 < a < t, 0 < a < s
0 a > t, s < t or a < t, a > s

(1.81)

The proof of the following theorem is very similar to the proof of Theorem 4:

Theorem 6. Let (H.1.3) and (H.3.1) hold. S(t), t ≥ 0 defined in (1.81), is a
strongly continuous semigroup of bounded linear operators in Y = L1((0, a1)×
(0, s2);Z) satisfying ‖S(t)φ‖Y ≤ M e(β̄M+ω)t ‖φ‖Y , φ ∈ Y, t ≥ 0. If Z is a
Banach lattice and T (t), t ≥ 0 is a positive semigroup in Z, then S(t), t ≥ 0
is a positive semigroup in Y .

As in Sects. 1.1 and 1.2, the model (M.3.1) can be extended to a nonlinear
model allowing population loss or gain (M.3.2):

∂

∂t
p(a, s, t) +

∂

∂a
p(a, s, t) +

∂

∂s
p(a, s, t) (1.82)

= Ap(a, s, t) + F (p(·, ·, t))(a, s), a ∈ (0, a1), s ∈ (0, s2), t > 0

p(a, s, 0) = φ(a, s), a ∈ (0, a1), s ∈ (0, s2), φ ∈ Y (1.83)

p(0, s, t) =
∫ a1

0

∫ s2

0

β(a, ŝ, s)p(a, ŝ, t) dŝ da, s ∈ (0, s2), t > 0 (1.84)

p(a, 0, t) = 0, a ∈ (0, a1), t > 0 (1.85)

The following theorem is analogous to Theorem 5:

Theorem 7. Let (H.1.3), (H.1.4), (H.3.1) hold. Let S(t), t ≥ 0 be the
strongly continuous semigroup of bounded linear operators in Y = L1((0, a1)×
(0, s2);Z) in Theorem 6 and let φ ∈ Y . There is a unique solution U(t)φ, t ≥ 0
to the integral equation (1.29). Further, U(t), t ≥ 0 is a strongly continuous
semigroup of Lipschitz continuous nonlinear operators in Y satisfying (1.63).
If Z is a Banach lattice and T (t), t ≥ 0 is a positive semigroup in Z, then
U(t), t ≥ 0 is a positive semigroup in Y .

The models (M.3.1) and (M.3.2) can be used to treat the following model
allowing variable growth rates in size (M.3.3):

∂

∂t
p̂(a, s, t) +

∂

∂a
p̂(a, s, t) +

∂

∂s
(g(s)p̂(a, s, t)) (1.86)

= Ap̂(a, s, t) + F̂ (p̂(·, ·, t))(a, s), a ∈ (0, a1), s ∈ (s0, s1), t > 0

p̂(a, s, 0) = φ̂(a, s), a ∈ (0, a1), s ∈ (s0, s1), φ̂ ∈ Ŷ (1.87)
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p̂(0, s, t) =
∫ a1

0

∫ s1

s0

β̂(a, s̃, s)p̂(a, s̃, t) ds̃ da, s ∈ (s0, s1), t > 0 (1.88)

p̂(a, 0, t) = 0, a ∈ (0, a1), t > 0 (1.89)

The model (M.3.3) can be transformed to model (M.3.2) under the following
hypothesis:

(H.3.2) g : [s0, s1) → [0,∞), 0 ≤ s0 < s1 ≤ ∞, g is positive on [s0, s1), g is
continuously differentiable on [s0, s1), g′ is bounded on [s0, s1), and

s2 := lims→s1

∫ s

s0

1
g(ŝ)

dŝ ≤ ∞.

Let σ(s, s0) =
∫ s

s0

1
g(v)dv, s ∈ (s0, s1) as in (1.7). Let Z be a Banach space,

let Y = L1((0, a1) × (0, s2);Z) and let Ŷ = L1((0, a1) × (s0, s1);Z). Define
J : Ŷ → Y and J−1 : Y → Ŷ by

(Jφ̂)(a, s) = φ̂(a, σ−1(s, s0)), φ̂ ∈ Ŷ , a ∈ (0, a1), s ∈ (0, s2)
(J−1φ)(a, s) = φ(a, σ(s, s0)), φ ∈ Y, a ∈ (0, a1), s ∈ (s0, s1).

Model (M.3.3) can be written abstractly as an ordinary differential equation
in Ŷ :

d

dt
p̂(t) = Âp̂(t) + F̂ (p̂(t)), t ≥ 0, p̂(0) = φ̂ ∈ Ŷ (1.90)

where p̂ : [0,∞) → Ŷ , p̂(t)(a, s) = p̂(a, s, t), Â : Ŷ → Ŷ ,

(Âφ̂)(a, s) = − ∂

∂a
φ̂(a, s)− ∂

∂s
(g(s)φ̂(a, s)) +Aφ̂(a, s),

with D(Â) consisting of φ̂ ∈ Ŷ such that − ∂
∂a φ̂(a, s) −

∂
∂s (g(s)φ̂(a, s)) +

Aφ̂(a, s) ∈ Ŷ , and

φ̂(0, s) =
∫ a1

0

∫ s1

s0

β̂(a, ŝ, s)φ̂(a, ŝ)dŝda, s ∈ (s0, s1), φ̂(a, s0) = 0, a ∈ (0, a1).

The transformation of (M.3.3) to (M.3.2) is accomplished through the formula
p̂(a, s, t) = p(a, σ(s, s0), t), a ∈ (0, a1), s ∈ (s0, s1), t > 0. We first consider the
case F̂ ≡ 0. Let β̂ satisfy

(H.3.3) β̂ : [0, a1) × (s0, s1) × (s0, s1) → [0,∞), β is continuous, and there
exists â ∈ (0, a1), ŝ ∈ (s0, s1) such that β̂(a, s̃, s) = 0 for â < a < a1, or
ŝ < s, s̃ < s1.

Theorem 8. Let (H.1.3), (H.3.2), and (H.3.3) hold. Let β : (0, a1)× (0, s2)×
(0, s2) → [0,∞) be defined for a ∈ (0, a1) and 0 < s̃, s < s2, by

β(a, s̃, s) = g(σ−1(s̃, s0)) β̂(a, σ−1(s̃, s0), σ−1(s, s0)) (1.91)
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and let F : Y → Y be defined by Fφ (a, s) = −g′(σ−1(s, s0))φ(a, s), φ ∈ Y,
a ∈ (0, a1), s ∈ (0, s2). Let U(t), t ≥ 0 be the strongly continuous semi-
group of bounded linear operators in Y as in Theorem 7 for this β and F .
Then, Ŝ(t), t ≥ 0 is a strongly continuous semigroup of bounded linear op-
erators in Ŷ , where Ŝ(t) = J−1U(t)J, t ≥ 0. Let φ̂ ∈ Ŷ and let p(a, s, t) =
(U(t)JŶ )(a, s), a ∈ (0, a1), s ∈ (0, s2), t > 0. If p(a, s, t) is a classical solution
of (M.3.2), then p̂(a, s, t) = p(a, σ(s, s0), t), a ∈ (0, a1), s ∈ (s0, s1), t > 0, is a
classical solution of (M.3.3) with F̂ ≡ 0.

Proof. That Ŝ(t), t ≥ 0 is a strongly continuous semigroup of bounded linear
operators in Ŷ , is immediate. For 0 < a1, s0 < s < s1, t > 0,

∂

∂t
p̂(a, s, t) +

∂

∂a
p̂(a, s, t) +

∂

∂s
(g(s)p̂(a, s, t))

=
∂

∂t
p(a, σ(s, s0), t) +

∂

∂a
p(a, σ(s, s0), t)

+ g(s)
∂

∂s
p(a, σ(s, s0), t)

d

ds
σ(s, s0) + g′(s)p(a, σ(s, s0), t)

= Ap(a, σ(s, s0), t) + F (p(a, σ(s, s0), t) + g′(s)p(a, σ(s, s0), t)

= A p̂(a, s, t)

For s ∈ (s0, s1), t > 0, the definition of β in (1.91), and a change of integration
variable s′ = σ−1(s̃, s0) ⇔ σ(s′, s0) = s̃, ds̃/ds′ = 1/g(s′) yields

p̂(0, s, t) = p(0, σ(s, s0), t)

=
∫ a1

0

∫ s2

0

β(a, s̃, σ(s, s0))p(a, s̃, t) ds̃da

=
∫ a1

0

∫ s2

0

g(σ−1(s̃, s0))β̂(a, σ−1(s̃, s0), s)p(a, s̃, t) ds̃da

=
∫ a1

0

∫ s1

s0

g(s′)β̂(a, s′, s)p(a, σ(s′, s0), t)
ds′

g(s′)
da

=
∫ a1

0

∫ s1

s0

β̂(a, s′, s)p̂(a, s′, t)ds′da

Further, p̂(a, s0, t) = p(s, σ(s0s0), t) = p(a, 0, t) = 0, a ∈ (0, a1), t > 0 and
p̂(a, s, 0) = p(a, σ(s, s0), 0) = Jφ̂(a, σ(s, s0)) = φ̂(a, s), a ∈ (0, a1), s ∈ (s0, s1).
Thus, p̂(a, s, t) is a classical solution of (M.3.3) with F̂ ≡ 0.

The generalized solutions of the model (M.3.3) for the case F̂ �= 0 are
obtained from the following theorem:
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Theorem 9. Let (H.1.3), (H.3.1) hold, let Ŷ = L1((0, a1) × (s0, s1);Z) and
let F̂ satisfy (H.1.4) in Ŷ . Let Ŝ(t), t ≥ 0 be the strongly continuous semigroup
of bounded linear operators in Ŷ as in Theorem 8 and let φ̂ ∈ Ŷ . There is a
unique solution Û(t)φ̂, t ≥ 0 to the integral equation

Û(t)φ̂ = Ŝ(t)φ̂ +
∫ t

0

Ŝ(t− u)F̂ (Û(u)φ̂) du, t ≥ 0 (1.92)

Further, Û(t), t ≥ 0 is a strongly continuous semigroup of Lipschitz continuous
nonlinear operators in Y satisfying

‖Û(t)(φ̂1)− Û(t)(φ̂2)‖Ŷ ≤Me
(M(β̄+L)+ω)t ‖φ̂1 − φ̂2‖Ŷ , t ≥ 0, φ̂1, φ̂2 ∈ Ŷ

(1.93)

If Z is a Banach lattice and T (t), t ≥ 0 is a positive semigroup in Z, then
Û(t), t ≥ 0 is a positive semigroup in Ŷ .

We give an illustration of age, size, and spatial structure in a model of
tumor growth. The model is derived from the hybrid discrete-continuous tu-
mor invasion model of Anderson [8]. The model we present is continuous in
all variables, and the individual processes of cells are modeled according to
cell age and cell size. As in [8], the model is based on the population den-
sities of proliferating and quiescent tumor cells, the density of surrounding
tissue macromolecules, the concentration of matrix degradative enzyme, and
the concentration of oxygen. The tumor is contained in a region of tissue Ω
in 1, 2 or 3 dimensions. The proliferating and quiescent cells are distinguished
by type i = 1, 2, . . . , n corresponding to a sequence of mutations, by position
x ∈ Ω, by age a ≥ 0 (newly divided cells have age 0), and by cell size s
between s0 and s1. The cell types correspond to increasingly aggressive phe-
notyes, through a progression of mutations. Higher indexed phenotypes may
have higher mutation rates, shorter cycle times, lower death rates, decreased
transition from proliferation to quiescence, increased recruitment from qui-
escence to proliferation, and reduced cell–cell adhesion. Age for proliferating
cells corresponds to position in the cell cycle. Age for quiescent cells corre-
sponds to arrested position in the cell cycle (the age of a quiescent cell is fixed
at the age it had when it transitioned from proliferation to quiescence, and
if a quiescent cell transitions back to quiescence, then it aging resumes). Size
can be interpreted appropriately as mass, diameter, volume, DNA content, or
any other quantifiable property of individual cells that is conserved with cell
division.

The dependent variables of the model are as follows:

pi(x, a, s, t) = proliferating tumor cells of type i in the tumor at position x,
age a, and size s at time t, where i = 1, 2, 3, . . . , n corresponds to a linear
sequence of mutated phenotypes of increasing aggressiveness;

qi(x, a, s, t) = quiescent tumor cells of type i in the tumor at position x,
arrested age a, and size s at time t;
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Fig. 1.20. The proliferating cell compartments pi(x, a, s, t) and quiescent cell com-
partments qi(x, a, s, t), i = 1, 2, . . . n of increasingly aggressive mutated cell types.
Transition from proliferation to quiescence occurs at rate σi, transition from quies-
cence to proliferation occurs at rate τi, proliferating cells die at rate ρi, and quiescent
cells die at rate νi. The fraction of proliferating cells of type pi that mutate to type
pi+1 during mitosis is ψi, i = 1, 2, . . . , n − 1

m(x, t) = matrix degradative enzyme (MDE) concentration at position x at
time t;

f(x, t) = surrounding tissue macromolecule (MM) concentration at position
x at time t;

c(x, t) = oxygen concentration at position x at time t.

The proliferating and quiescent phenotype cell compartments pi(x, a, s, t),
and qi(x, a, s, t), i = 1, 2, . . . , n, are illustrated in Fig. 1.20.

Let

p(x, t) =
n∑

i=1

∫ a1

0

∫ s1

s0

pi(x, a, s, t)dsda

be the total population densities in x of proliferating cells of all types at time
t, let

q(x, t) =
n∑

i=1

∫ a1

0

∫ s1

s0

qi(x, a, s, t)dsda

be the total population densities in x of quiescent cells of all types at time t,
and let n(x, t) = p(x, t) + q(x, t).

The model equations are as follows (M.3.4):

∂

∂t
f(x, t) = − δ(x)m(x, t)f(x, t)︸ ︷︷ ︸

degradation

(1.94)
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∂

∂t
m(x, t) = � · (ξ(x)�m(x, t))︸ ︷︷ ︸

diffusion

+ µ(x)p(x, t)︸ ︷︷ ︸
production

− λ(x)m(x, t)︸ ︷︷ ︸
decay

(1.95)

∂

∂t
c(x, t) = � · (η(x)� c(x, t))︸ ︷︷ ︸

diffusion

+ β(x)f(x, t)︸ ︷︷ ︸
production

(1.96)

− ω(x, p(x, t))c(x, t)︸ ︷︷ ︸
uptake

− ε(x)c(x, t)︸ ︷︷ ︸
decay

∂

∂t
pi(x, a, s, t) +

∂

∂a
pi(x, a, s, t)︸ ︷︷ ︸
cell aging

+
∂

∂s
(gi(s)pi(x, a, s, t))︸ ︷︷ ︸

cell growth

(1.97)

= � · (αi(x)� pi(x, a, s, t))︸ ︷︷ ︸
diffusion

− χi � ·(pi(x, a, s, t)� f(x, t))︸ ︷︷ ︸
haptotaxis

− ρi(x, a, s, c(x, t), n(x, t))pi(x, a, s, t)︸ ︷︷ ︸
cell death from insufficient oxygen

− θi(x, a, s, c(x, t), n(x, t))pi(x, a, s, t)︸ ︷︷ ︸
loss of mother cells from division

−σi(x, a, s, c(x, t), n(x, t))pi(x, a, s, t)︸ ︷︷ ︸
exit to quiescence

+ τi(x, a, s, c(x, t), n(x, t))qi(x, a, s, t)︸ ︷︷ ︸
entry from quiescence

pi(x, 0, s, t)︸ ︷︷ ︸
newborn type i cells

(1.98)

= 2(1− ψi)
∫ a1

0

∫ s1

s0

κi(ŝ, s)θi(x, a, ŝ, c(x, t), n(x, t))pi(x, a, s, t)dŝda︸ ︷︷ ︸
division rate of type i cells

+ 2ψi−1

∫ a1

0

∫ s1

s0

κi(ŝ, s)θi−1(x, a, ŝ, c(x, t), n(x, t))pi−1(x, a, s, t)dŝda︸ ︷︷ ︸
division rate of type i−1 cells

∂

∂t
qi(x, a, s, t) = � · (γi(x)� qi(x, a, s, t))︸ ︷︷ ︸

diffusion

(1.99)

− νi(x, a, s, c(x, t), n(x, t))qi(x, a, s, t)︸ ︷︷ ︸
cell death from insufficient oxygen

+σi(x, a, s, c(x, t), n(x, t))pi(x, a, s, t)︸ ︷︷ ︸
entry from proliferation

− τi(x, a, s, c(x, t), n(x, t))qi(x, a, s, t)︸ ︷︷ ︸
exit to proliferation



40 G.F. Webb

pi(x, a, s0, t) = qi(x, a, s0, t) = 0 (1.100)
These equations are combined with initial conditions and no-flux boundary
conditions on the boundary ∂Ω of Ω.

The diffusion terms in equations (1.97) and (1.99) account for cell–cell ad-
hesion and cell movement due to random motility. The diffusion coefficients
αi and γi can be allowed to depend on decreased cell–cell adhesion and in-
creased motility for progressively more aggressive phenotypes i = 1, 2, . . . , n.
The proliferation-quiescence transition rates σi, quiescence-proliferation tran-
sition rates τi, proliferating cell death rates ρi, and quiescent cell death rates νi

depend on the supply of oxygen c(x, t) and the population density n(x, t). In
equations (1.97),(1.98), θi(x, a, ŝ, c(x, t), n(x, t)) is the rate at which cells of
type i, age a, and size ŝ divide at position x per unit time, where it is assumed
that a mother cell divides into two daughter cells of unequal size. The factor
ψi is the fraction of daughter cells of dividing mother cells of type i with type
i+1 mutation (we set ψ0 = 0). The birth rate κi(ŝ, s)θi(x, a, ŝ, c(x, t), n(x, t))
of daughter cells of size s from mother cells of size ŝ depends on the supply
of oxygen c(x, t), and also the availability of space, through the density of
cells of all phenotypes n(x, t). The kernel κi(ŝ, s) is the probability that a
daughter cell of size s results from the division of a mother cell of size ŝ. This
kernel satisfies the symmetry condition κi(ŝ, s) = κi(ŝ, ŝ− s). If it is assumed
that all dividing cells divide into 2 daughter cells of equal size, then κi(ŝ, s)
is the delta function κi(ŝ, s) = δ(s− ŝ

2 ), and (1.98) is replaced by

pi(x, 0, s, t)︸ ︷︷ ︸
newborn type i cells

(1.101)

= 4(1− ψi)
∫ ∞

0

θi(x, a, 2s, c(x, t), n(x, t))pi(x, a, 2s, t)da︸ ︷︷ ︸
division rate of type i cells

+ 4ψi−1

∫ ∞

0

θi−1(x, a, 2s, c(x, t), n(x, t))pi−1(x, a, 2s, t)da︸ ︷︷ ︸
division rate of type i−1 cells

The movement of cells results not only from random motion due to cell
motility, but also from directed motion due to haptotaxis. The haptotatic
motion is induced by the matrix degradation enzyme MDE, which is produced
by the proliferating cells, diffuses in the tumor environment, and provides
oxygen and available space by degradation of the environmental tissue macro-
molecules MM. In this model the properties of individual cells are viewed as
dynamic rates, based on cell age, size, and position, rather than as probabili-
ties of movement on a discrete spatial lattice, as in [8].

Example 3.1. Consider model (M.3.4) in a special case, with homogeneous
matrix degradation enzyme (m(x, t) ≡ 1, ξ(x) ≡ 0, µ(x) ≡ 0, λ(x) ≡ 0),
without haptotaxis (χi = 0), with only one phenotype class (n = 1), with
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constant diffusion coefficients (η(x) ≡ η, α(x) ≡ α, γ(x) ≡ γ), and linear birth
rate (θi(x, a, s), i = 1, 2, . . . , n independent of c(x, t) and n(x, t) in (1.98) and
(1.101)). The model equations in this special case are (M.3.5):

∂

∂t
f(x, t) = − δ(x)f(x, t) (1.102)

∂

∂t
c(x, t) = η� c(x, t) + β(x)f(x, t) − ω(x, p(x, t))c(x, t) (1.103)

∂

∂t
p(x, a, s, t) +

∂

∂a
p(x, a, s, t) +

∂

∂s
(g(s)p(x, a, s, t)) (1.104)

= α� p(x, a, s, t) − ρ(x, a, s, c(x, t), n(x, t))p(x, a, s, t)

− θ(x, a, s) p(x, a, s, t) − σ(x, a, s, c(x, t), n(x, t))p(x, a, s, t)

+ τ(x, a, s, c(x, t), n(x, t))q(x, a, s, t)

p(x, 0, s, t) = 2
∫ a1

0

∫ s1

s0

κ(ŝ, s)θ(x, a, ŝ)p(x, a, s, t)dŝda (1.105)

∂

∂t
q(x, a, s, t)=γ � q(x, a, s, t)− ν(x, a, s, c(x, t), n(x, t))q(x, a, s, t) (1.106)

+σ(x, a, s, c(x, t), n(x, t))p(x, a, s, t)− τ(x, a, s, c(x, t), n(x, t))q(x, a, s, t)

p(x, a, s0, t) = q(x, a, s0, t) = 0 (1.107)

Let Z, T (t), t ≥ 0, and A be as in Example 1.4, and let Ŷ be as in Theorem 9.
The system of equations (1.102)-(1.107) can be written abstractly in the Ba-
nach space X = Z × Z × Ŷ × Ŷ as

d

dt

⎡
⎢⎢⎣
f(t)
c(t)
p(t)
q(t)

⎤
⎥⎥⎦ = A

⎡
⎢⎢⎣
f(t)
c(t)
p(t)
q(t)

⎤
⎥⎥⎦ + F

⎛
⎜⎜⎝
⎡
⎢⎢⎣
f(t)
c(t)
p(t)
q(t)

⎤
⎥⎥⎦
⎞
⎟⎟⎠ ,

⎡
⎢⎢⎣
f(0)
c(0)
p(0)
q(0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
f0
c0
p0
q0

⎤
⎥⎥⎦

where A : X → X ,

A

⎡
⎢⎢⎣
f
c
p
q

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−δf
η� c

− ∂
∂ap−

∂
∂s (g(s)p) + α�− θp

γ � q

⎤
⎥⎥⎦ ,

D(A) = {[f, c, p, q]T ∈ X : c, p, q ∈ D(A),

p(0, s) =
∫ a1

0

∫ s1

s0

κ(ŝ, s)θ(a, ŝ)p(a, ŝ)dŝda, p(a, s0) = q(a, s0) = 0}
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and F : X → X , D(F) = X ,

F

⎛
⎜⎜⎝
⎡
⎢⎢⎣
f
c
p
q

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

0
βf − ω(p)c

− ρ(c, n)p − σ(c, n)p + τ(c, n)q
− ν(c, n)q + σ(c, n)p − τ(c, n)q

⎤
⎥⎥⎦ .

With an appropriate Lipschitz continuity condition on F , the generalized so-
lutions of (M.3.5) are given by the strongly continuous semigroup of nonlinear
operators U(t), t ≥ 0 in X satisfying

U(t)Φ = S(t)Φ +
∫ t

0

S(t− u)F(U(t− u)Φ)du, Φ ∈ X , t ≥ 0,

where Φ = [f0, c0, p0, q0]T is the initial condition,

S(t)

⎡
⎢⎢⎣
f0
c0
p0
q0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
e−δtf0
T (η t)c0
Ŝ(t)p0
T̂ (t)q0

⎤
⎥⎥⎦ ,

Ŝ(t), t ≥ 0 is the strongly continuous linear semigroup in Ŷ as in Theorem 8,
and T̂ (t), t ≥ 0 is the linear semigroup in Ŷ defined by (T̂ (t)φ̂)(a, s) =
T (γ t)φ̂(a, s), φ̂ ∈ Ŷ , a ∈ (0, a1), s ∈ (s0, s1), t ≥ 0.

The analysis of the general model (M.3.4) presents many difficulties. The
haptotaxis term in (1.97), which is nonlinearly dependent on the proliferat-
ing cell density through the matrix degradative enzyme MDE, is particularly
difficult to handle. Model (M.3.4) allows nonlinearities of the division moduli
θi(x, a, s), i = 1, 2, . . . , n in (1.98) and (1.101), which are dependent on the
oxygen concentration c(x, t) and the total cell population density n(x, t). The
methods developed here can be extended to treat this nonlinear dependence,
which is important in understanding tumor growth. In [119] a special case of
(M.3.4), with haptotaxis, but without age or size dependence, is analyzed and
the global existence of unique solutions is proved. In [16] a numerical treat-
ment of (M.3.4) is given in the case with haptotaxis and age dependence in
2-dimensional spatial regions, but without size dependence, and without mu-
tated phenotype classes. In [118] an analysis of (M.3.4) with age structure, but
without size structure and with only one phenotype class is given. Treatment
of the general age-size-space structured model (M.3.4) offers major challenges,
both analytically and computationally, and is the objective of further study.

In this chapter population models involving continuum age, size, and spa-
tial structuring have been developed. The analysis of these models requires
a broad range of mathematical techniques to treat the effects of individual
constituents on total population behavior. Models such as these, which in-
corporate detailed information about individual behavior, have great poten-
tial to inform scientific issues in biology. Modern biological research produces
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immense quantities of data, which is amenable to mathematical modeling
and computer simulation. The models developed in the other chapters of this
volume are also based on highly detailed, multi-scaled, and intricately struc-
tured formulations: discrete spatial patch-size structure and host parasite-load
structure in models of macroparasitic disease transmission (Chap. 2); spatial
structuring in models of microparasitic disease transmission (Chap. 3); physio-
logical and age structure in models of the spatial spread of infectious diseases
(Chap. 4); multi-variable models relating macro and microvariables in ecol-
ogy (Chap. 5); and models of multiple-species competition in flow reactors
(Chap. 6).
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Summary. Infinite systems of ordinary differential equations can describe:

• Spatially implicit metapopulation models with discrete patch-size structure
• Host-macroparasite models that distinguish hosts by their parasite loads
• Prion proliferation models that distinguish protease-resistant protein aggregates

by the number of prion units they contain

It is the aim of this chapter to develop a theory for infinite ODE systems in
sufficient generality (based on operator semigroups) and, besides well-posedness, to
establish conditions for the solution semiflow to be dissipative and have a compact
attractor for bounded sets. For metapopulations, we present conditions for uniform
persistence on the one hand and prove on the other hand that a metapopulation
dies out, if there is no emigration from birth patches or if empty patches are not
colonized.

2.1 Introduction

Infinite systems of ordinary differential equations,

w′ = f(t, w, x),

x′j =
∞∑

j=0

αjkxk + gj(t, w, x), j = 0, 1, 2, . . . .
(2.1)

where x(t) is the sequence of functions (xj(t))∞j=0, can describe:
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• Spatially implicit metapopulation models with discrete patch-size struc-
ture [2, 5, 7, 38,42]

• Host-macroparasite models which distinguish hosts by their parasite loads
[6, 13,24,25,33,34,48,49]

• Prion proliferation models which distinguish protease-resistant protein ag-
gregates by the number of prion units they contain [41,45]

Spatially Implicit Metapopulation Models

A metapopulation is a group of populations of the same species which occupy
separate areas (patches) and are connected by dispersal. Each separate pop-
ulation in the metapopulation is referred to as a local population. Metapop-
ulations occur naturally or by human activity as a result of habitat loss and
fragmentation.

In system (2.1), xj denotes the number of patches with j occupants and
w the average number of migrating individuals, or wanderers. The coefficients
αjk describe the transition from patches with k occupants to patches with
j occupants due to deaths, births and emigration of occupants. The func-
tion f gives the rate of change of the number of dispersers due to patch
emigration, immigration and disperser death. The functions gj describe the
rate of change of the numbers of patches with j occupants due to the im-
migration of dispersers. The coefficients αjk have the properties typical for
infinite transition matrices in stochastic processes with continuous time and
discrete state (continuous-time birth and death chains, e.g., see [1] and the ref-
erences therein). Since they form an unbounded set, existence and uniqueness
of solutions to (2.1) is non-trivial. It is the aim of this chapter to develop a
this-related theory in sufficient generality and also establish conditions for the
solution semiflow to be dissipative [26], have a compact attractor for bounded
sets [26, 52], and be uniformly persistent [5, 27, 56, 58]. We also prove that a
metapopulation dies out, if nobody emigrates from its birth patch or if empty
patches are not colonized.

It is worth mentioning that, though the linear special case x′j =
∑∞

k=0

αjkxk can be interpreted as a stochastic model for a population that is not
distributed over patches [39], the model (2.1) is a deterministic model. It
inherits the property though that subpopulations on individual patches can
become extinct at finite time which is an important feature of real metapop-
ulations. As a trade-off, the metapopulation model (2.1) is spatially implicit
and not able to take spatial heterogeneities into account. A spatially explicit
metapopulation model would be a finite system of ordinary differential equa-
tions y′j =

∑N
j=1 djkyk + fj(t, y), j = 1, . . . , N , where N is the number of

patches and yj the size of the local population on patch j. The coefficients djk

would describe the movement from patch k to patch j and the non-linearities
fj the local demographics on patch j due to births and deaths. An example
of a spatially explicit metapopulation model (underlying an epidemic model)
can be found in Chap. 4. Spatially explicit models can take account of how
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the patches are situated relatively to each other and of differences between
the patches, but do not have the property that a local population can become
extinct in finite time. The most basic spatially implicit metapopulation model
is the Levins model [36,37] which only considers empty and occupied patches.
Incorporating a structure which distinguishes between patches according to
local population size makes it possible, e.g., to compare emigration strategies
which are based on how crowded a patch is [38].

Alternatively, spatially implicit metapopulation models can be structured
by a continuous rather than a discrete variable. This leads to non-local par-
tial differential equations or integral equations [23]. The partial differential
equations one obtains are similar to those considered in Chap. 1, but have
non-linear terms in the derivative with respect to the size-structure vari-
able. For general information on mathematical metapopulation theory we refer
to [20,28,38].

Host-Macroparasite Models

The connection between metapopulation and host-macroparasite models is
not incidental as a macroparasite population is a metapopulation with the
hosts being the patches and the parasites in single hosts forming the local
populations. In the epidemiology of infectious diseases, the Levins metapopu-
lation model corresponds to a prevalence model that only considers suscepti-
ble and infective individuals. Such models (possibly after adding classes which
take account of incubation and immunity) are quite adequate for micropara-
sitic (viral, bacterial, fungal) diseases where the infectious agents multiply
rapidly and it basically only matters whether a host is infectious or not.
Macroparasitic (worm, e.g.) diseases, however, are characterized by highly
variable parasite loads in individual hosts with very different effects on host
health. Models like (2.1), called density models in [13], can take these into ac-
count with xj denoting the number of hosts with j parasites and w denoting
the average number of free-living parasites. The coefficients αjk describe the
transition from hosts with k parasites to hosts with j parasites due to deaths,
births and release of parasites. The function f gives the rate of change of the
number of free-living parasites due to death and the entry into or exit from
hosts. The functions gj describe the rate of change of the numbers of hosts
with j parasites due to the acquisition of parasites from the pool of free-living
parasites.

Since parasite loads often depend on the age of the host, host age has
been included into density models [6, 13, 24, 25, 34, 49]. This leads to an infi-
nite system of partial differential equations. The analysis of these models uses
moment generating functions. The use of a generating function would convert
the system (2.1) into a single partial differential equation. An infinite system
of partial differential equations incorporating age dependence would also be
converted into a single partial differential equation, however with one more
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variable and partial derivative. This approach yields impressive and illuminat-
ing results, but requires the transition matrix to correspond to a simple birth
and death process (possibly with catastrophes). Levins type metapopulation
models with patch age have been considered in [19].

Models for Prion Proliferation

Prion proteins have been linked to fatal diseases called transmissible spongi-
form encephalopathies (TSE) including Creutzfeldt–Jakob disease (CJD),
kuru, scrapie, and bovine spongiform encephalopathy (BSE, “mad cow dis-
ease”). The prion diseases in an individual host are associated with the
accumulation of single prion proteins (monomers) into prion protein aggre-
gates (polymers). An aggregate is a stringlike formation possibly containing
several thousand units with each unit being a former monomer. Monomers
are considered healthy because they can easily be degraded by proteinase
while polymers are much more proteinase-resistant and are neurotoxic. The
system (2.1), with some modification, covers the models of prion proliferation
suggested in [41, 45]. Since a detailed derivation of a special metapopulation
model can already be found in [38] (cf. Sect. 2.12), we explain the prion model
in some more detail here.

The amount of aggregates which contain j prion units (former monomers)
is represented by xj while the amount of (healthy) prion monomers is w. We
assume that aggregates grow by adding one monomer at a time, the respective
rate is σj for an aggregate to grow from j to j + 1 units. This process is
sometimes called polymerization. An aggregate of size k can break into two
pieces of sizes j and k − j: the respective per unit rate is bjk if j ≤ k − j and
bk−j,k if j ≥ k − j. Aggregates of size j are chemically degraded at a rate κj

while single monomers are degraded at a rate δ. Monomers are produced at
a constant rate Λ. The model in [41] has the form

w′ = Λ− w
∞∑

k=1

σkxk − δw,

x′j = w(σj−1xj−1 − σjxj)− κjxj +
∞∑

k=j+1

(bjk + bk−j,k)xk − xj

j−1∑
k=1

bkj ,

j = 1, 2, . . . , σ0 = 0.

(2.2)

Notice that the polymerization rate is of mass action type as it involves the
product of the amount of monomers w and the amount of polymers containing
j − 1 or j units respectively. There is no equation for x0 because aggregates
containing 0 units do not exist, differently from empty patches in metapop-
ulations or hosts without worms in macroparasite diseases. To fit (2.2) into
(2.1), without an x0-equation, we set
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αjk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
bjk + bk−j,k, 1 ≤ j ≤ k − 1,

−κk −
k−1∑
i=1

bik, 1 ≤ j = k,

0, j > k ≥ 1.

(2.3)

The model in [45] (see also [41, App.A]) allows for the fact that small
aggregates below a certain minimum size, m, are unstable. So, if an aggregate
splits and one of the pieces has a size less than m, it immediately disintegrates
into monomers,

w′ = Λ− w
∞∑

k=1

σkxk − δw +
m−1∑
j=1

j
∞∑

k=m

(bjk + bj−k,k)xk,

x′j = w(σj−1xj−1 − σjxj)− κjxj +
∞∑

k=j+1

(bjk + bk−j,k)xk − xj

j−1∑
k=1

bkj ,

j = m,m+ 1, . . . , σm−1 = 0.

(2.4)

The system (2.1) can be adapted to this model by striking the equations
for x0, . . . , xm−1 and defining the coefficients (αjk)∞j,k=m as in (2.3) with the
modification that j ≥ m and k ≥ m. Analogous models where the amount
of units in an aggregate are modeled by a continuous rather than a discrete
variable have been considered in [15, 21, 35, 47, 53, 61]. Saturation effects in
polymerization have been incorporated in [22].

The system (2.4) includes the special case that bjk is constant for 1 <
m ≤ j < k which may be a reasonable approximation of reality, while the as-
sumption that bjk is constant for 1 ≤ j < k is clearly unrealistic. This special
case allows a moment closure which reduces the infinite system of ODEs to a
system of three ODEs which can been completely analyzed (cf. [47]). Since we
consider the case of variable bjk here, it is not clear whether to favor system
(2.2) or system (2.4). Notice that there is another conceptual difference be-
tween the systems. System (2.2) distinguishes between monomers which have
been part of an aggregate before (in other words aggregates consisting of one
unit), represented by the variable x1, and the “virgin” monomers represented
by w. Only virgin monomers are attached to the aggregates. Such a distinc-
tion between monomers and single unit aggregates is not made in system
(2.4) where the monomers resulting from aggregate disintegration return to
the monomer class represented by w. A drawback of system (2.4) may be that
it could be very difficult to assign a specific value to m. Thinking along the
lines that polymer splitting can result in complete disintegration, it seems to
be more realistic (and mathematically more difficult) to assume that for each
j ∈ N there is a probability qj ∈ [0, 1] of a piece of j units to disintegrate into
monomers after polymer splitting,
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w′ = Λ− w
∞∑

k=1

σkxk − δw +
∞∑

j=1

jqj

∞∑
k=j+1

(bjk + bj−k,k)xk,

x′j = w(σj−1xj−1 − σjxj)− κjxj

+ (1− qj)
∞∑

k=j+1

(bjk + bk−j,k)xk − xj

j−1∑
k=1

bk,

j = 1, 2, . . . , σ0 = 0.

(2.5)

Obviously this system encompasses the two previous ones.

Outline of the Mathematical Approach

For the mathematical treatment of (2.1), we choose a somewhat more abstract
approach than the ones in [2] and [5] from which we have received much in-
spiration in order to include a variety of models (in Sect. 2.12 and [38] we
assume that only juveniles migrate) and to include state transitions which are
not of nearest-neighbor type like in the prion proliferation models. The biolog-
ical interpretation (restricted here to metapopulation and host-macroparasite
systems) gives us guidance how to choose the appropriate state space. As-
suming that meaningful solutions are non-negative, the number of patches
(hosts) is given by

∑∞
j=0 xj and the number of occupants (in-host parasites)

by
∑∞

j=1 jxj . Recall the sequence space

�1 =
{

(xj)∞j=0; xj ∈ R,
∞∑

j=0

|xj | <∞
}

(2.6)

with norm

‖x‖ =
∞∑

j=0

|xj |, x = (xj)∞j=0. (2.7)

We introduce the subspace

�11 =
{

(xj)∞j=0; xj ∈ R,

∞∑
j=0

j|xj | <∞
}

(2.8)

which becomes a Banach space of its own under the norm

‖x‖1 =
∞∑

j=0

(1 + j)|xj |, x = (xj)∞j=0. (2.9)

Other, equivalent, choices are possible, of course. We treat (2.1) as a semilinear
operator differential equation

w′ = f(t, w, x), x′ = A1x+ g(t, w, x)
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on the non-negative cone of the Banach space R× �11 where A1 is the infini-
tesimal generator of a positive C0-semigroup on �11 and the functions f and
g(�) =

(
gj(�)

)∞
j=0

are locally Lipschitz continuous.

The main body of the chapter is structured as follows.

2.2. The homogeneous linear system: Kolmogorov’s differential equation
2.3. Solution to the semilinear system
2.4. General metapopulation models and boundedness of solutions
2.5. Extinction without migration or colonization of empty patches
2.6. A more specific metapopulation model
2.7. Compact attractors
2.8. Towards the stability of equilibria
2.9. Instability of every other equilibrium: general result

2.10. Existence of equilibria and instability of every other equilibrium
2.11. Stability of the extinction equilibrium versus metapopulation persis-

tence
2.12. Application to special metapopulation models
2.13. Special host-macroparasite models and existence of solutions
2.14. Application to prion proliferation

A. Non-differentiability of the simple birth process semigroup

2.2 The Homogeneous Linear System: Kolmogorov’s
Differential Equation

The linear special case of (2.1),

x′j =
∞∑

k=0

αjkxk, j ∈ Z+, (2.10)

is known as Kolmogorov’s differential equation [31] and has been widely stud-
ied [17, XVII.9] [18, XIV.7] [29, Sects. 23.10–23.12] [16, 30, 50, 51]. See [4]
and [59] for more references. We write Z+ for the set of non-negative inte-
gers and N for the natural numbers starting at 1, Z+ = N ∪ {0}. We review
results proved in [39].

Assumption 1 We make the following assumptions concerning the coeffi-
cients αjk, j, k ∈ Z+.

(a) αjj ≤ 0 ≤ αjk, k �= j.

(b)α� := sup∞
k=0

∞∑
j=0

αjk <∞.
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(c) There exist constants c0, c1 > 0, ε > 0 such that

∞∑
j=1

jαjk ≤ c0 + c1k − ε|αkk| ∀k ∈ Z+.

Notice that the sequence |αjj | may be unbounded and is so in many ap-
plications. Let �1 denote the Banach space of real sequences x = (xk)∞k=0 with
‖x‖ :=

∑∞
k=0 |xk| <∞. �1+ denotes the cone of non-negative sequences in �1.

Recall that a C0-semigroup on a Banach space X is a family of bounded
linear operators on X, {S(t); t ≥ 0}, such that S(t + s) = S(t)S(s) for all
t, s ≥ 0 and S(t)x t→0−→ x = S(0)x for all x ∈ X. It follows that S(t)x is a
continuous function of t ≥ 0 for all x ∈ X.

The infinitesimal generator of the C0-semigroup S, A, is defined by

A = lim
h→0+

1
h

(S(h)x− x), x ∈ D(A),

whereD(A) is the subspace of elements x where this limit exists.D(A) is dense
in X and A is a closed operator. If x ∈ D(A), then S(t)x is differentiable in
t ≥ 0 and

d

dt
S(t)x = AS(t)x = S(t)Ax.

Notice that the first equation can be interpreted as an abstract linear differ-
ential equation. For this and more see the textbooks [4,9,14,29,32,40,46,52].

Theorem 2. Let x[n] = (x[n]
j )∞j=0 be the unique componentwise solution of the

(essentially finite) linear system of ordinary differential equations

d

dt
x

[n]
j =

n∑
k=0

αjkx
[n]
k , j = 0, . . . , n,

d

dt
x

[n]
j = αjjx

[n]
j , j > n,

(2.11)

with initial data x[n](0) = x̆. Then S[n](t)x̆ = x[n](t) defines a sequence of
C0-semigroups S[n] on �1. There exists a C0-semigroup S on �1 such that
S[n](t)x̆ → S(t)x̆ in �1 for every x̆ ∈ �1, t ≥ 0. If x̆ ∈ �1+, S[n](t)x̆ ∈ �1+,
S(t)x̆ ∈ �1+, and the convergence of S[n](t)x̆ to S(t)x̆ as n→∞ is monotone
increasing. The domain of the infinitesimal generator A[n] of S[n] is

D(A[n]) =
{
x ∈ �1;

∞∑
j=0

|αjj | |xj | <∞
}

=: D0, (2.12)

and A[n]x =
( ∞∑

k=0

α
[n]
jk xk

)∞
j=0
, x = (xk)∞k=0, with
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α
[n]
jk =

⎧⎨
⎩
αjk; j, k ≤ n
αjj ; j = k > n
0; otherwise

⎫⎬
⎭ , j, k ∈ Z+. (2.13)

The following estimates hold

‖S[n](t)‖ ≤ ‖S(t)‖ ≤ eα�t, t ≥ 0.

On the subspace D0 introduced in (2.12) we define a linear operator Ă,

Ăx =
( ∞∑

k=0

αjkxk

)∞
j=0
, x ∈ D0. (2.14)

Lemma 1. Let the Assumption 1 be satisfied. Then D0 is dense in �1, Ă :
D0 → �1 is well-defined and linear and ‖(λ − Ă)x‖ ≥ (λ − α�)‖x‖ for all
x ∈ D0, λ ∈ R. The closure of Ă is the infinitesimal generator of the semigroup
S in Theorem 2 and

∑∞
j=0(Ăx)j =

∑∞
k=0

(∑∞
j=0 αjk

)
xk for all x ∈ D0.

Remark 1. That S is generated by the closure of Ă is proved in [59]. Without
part (c) in Assumption 1, the semigroup S still exists and its infinitesimal
generator extends Ă [59] but it may no longer coincide with the closure of
Ă [4, Theorem 7.11]. Further, without (c), solutions to (2.10) may no longer
be uniquely determined by their initial data [50, Sect. 6].

In our context, the space of main interest is

�11 =
{
x ∈ �1;

∞∑
j=1

j|xj | <∞
}

with norm ‖x‖1 = ‖x‖ +
∑∞

j=1 j|xj | which allows us to address the total
number of patch occupants in the context of metapopulations or the total
number of in-host parasites in the context of macroparasitic diseases.

Theorem 3. Let the Assumption 1 be satisfied. Then the following hold:

(a)The semigroup S in Theorem 2 leaves �11 invariant and the restrictions of
S(t) to �11, S1(t), form a C0-semigroup on �11 which is generated by the
part of Ă in �11, denoted by A1, i.e. A1 is the restriction of Ă to

D(A1) = {x ∈ �11 ∩D0; Ăx ∈ �11}.

Further ‖S1(t)‖1 ≤ eωt for all t ≥ 0, with ω = max{c1, α� + c0}.
(b) The semigroups S[n] in Theorem 2 leave �11 invariant. Their restrictions

to �11, S[n]
1 , form C0-semigroups on �11 and also satisfy the estimate

‖S[n]
1 (t)‖1 ≤ eωt for all t ≥ 0. Their infinitesimal generators, A[n]

1 , have
the same domain
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D
(
A

[n]
1

)
=
{
x ∈ �11;

∞∑
j=1

j|ajj ||xj | <∞
}

=: D1.

Finally, for all x̆ ∈ �11, S[n]
1 (t)x̆ → S1(t)x̆ in �11, with the convergence

being uniform in bounded intervals in R+.

Lemma 2. Let the Assumption 1 be satisfied. Then D1 ⊆ D(A1) and∑∞
k=0

(∑∞
j=1 j|αjk|

)
|xk| <∞ for all x ∈ D1.

Several other approximations of the semigroups S and S1 have been sug-
gested [4, 16, 30, 50, 60]; the one used here has the advantage that it is easy
to show that the approximating semigroups are differentiable. It is closely re-
lated to the approach in [51], but the construction there does not really yield
approximating semigroups on the same Banach space.

Lemma 3. Let the Assumption 1 be satisfied. Then the semigroups S[n](t) on
�1 and S[n]

1 (t) on �11 are differentiable for t > 0. Further there exist constants
cn > 0 such that

‖ d
dtS

[n](t)‖ ≤ cn + (et)−1,

‖ d
dtS

[n]
1 (t)‖1 ≤ cn + (et)−1

}
∀t ∈ (0, 1). (2.15)

Proof. We only give the proof for S[n]; the proof for S[n]
1 is completely anal-

ogous. Equivalently we show that S[n](t) maps �1 into D(A[n]). By construc-
tion, (2.11), [S[n](t)x]j = eαjjtxj for j > n. Hence, with appropriate constants
cn > 0, for t > 0,

∞∑
j=n+1

|αjj |
[
S[n](t)x

]
j
≤

∞∑
j=n+1

|αjj |e−|αjj |txj ≤
1
et
‖x‖.

By (2.12) and (2.13), S(t) maps �1 into D(A[n]) for t > 0 and

‖A[n]S[n](t)x‖ ≤
n∑

j,k=1

|αjk||S[n](t)x|+
∞∑

j=n+1

|αjj |
[
S[n](t)x

]
j

≤ cn‖x‖+ (et)−1‖x‖ ∀t ∈ (0, 1),

with appropriate constants cn > 0. ��

We conjecture that the semigroups in Lemma 3 are analytic, but the esti-
mate in the proof does not completely match [46, Chap. 2, Theorem 5.2(d)].
In general, neither the semigroup S nor the semigroup S1 are differentiable
for all t > 0. As an example we consider the simple death process,

αk−1,k = k = −αkk, k ∈ N, αjk = 0 otherwise. (2.16)
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Let e[n] = (δkn)∞k=0 (the Kronecker symbols) be the sequence where all
terms are 0 except the nth term which is 1. It is well-known [1, 6.4.2] that
[S(t)e[n]]j = 0 for j > n and

[S(t)e[n]]j =
(
n
j

)
e−jt(1− e−t)n−j , j = 0, . . . , n. (2.17)

Since e[n] is an element of both D0 and D(A1) (notice ‖e[n]‖ = 1 and ‖e[n]‖1 =
n+ 1), we can differentiate S(t)e[n] and S1(t)e[n] and

[ d
dt
S(t)e[n]

]
j

=

⎧⎨
⎩

0; j > n,[
S(t)e[n]

]
j

ne−t − j
1− e−t

; j = 0, . . . n.
(2.18)

We choose t̄ = ln 2 such that e−t = 1/2 for t = t̄. As we show in the appendix

2

∥∥∥ d
dtS1(t̄)e[2n]

∥∥∥
1

‖e2n‖1
≥
∥∥∥ d
dt
S(t̄)e[2n]

∥∥∥ = 2n
(2n
n

)
2−2n (2.19)

≥
√
n− 1e−1/2, t̄ = ln 2, n ≥ 2. (2.20)

This implies that S(t) is not strongly differentiable at any t ≤ ln 2. Otherwise
S′(t̄) = AS(t̄) would be a bounded linear operator [46, 2.4] contradicting
this estimate because ‖e[2n]‖ = 1. Similarly, S1(t) is not differentiable at any
t ≤ ln 2.

2.3 Solution to the Semilinear System

We can formally rewrite (2.1) as a semilinear Cauchy problem

w′ = f(t, w, x),
x′ = A1x+ g(t, w, x),

(2.21)

where
g(t, w, x) = (gj(t, w, x))∞j=0

and A1 is the infinitesimal generator of the semigroup S1 considered in
Theorem 3. Since in general the semigroup S1 is not differentiable (see the
discussion at the end of the previous section), we cannot expect to find a so-
lution of (2.21) in the strict sense if x(0) = x̆ ∈ �11+ rather than x(0) ∈ D(A1).
The pair of continuous functions w : [0, τ) → R+ and x : [0, τ) → �11+ is called
an integral solution of (2.21) with initial condition w(0) = w̆, x(0) = x̆ if

w′ = f(t, w, x), t ∈ [0, τ), w(0) = w̆,

x(t) = x̆+A1

∫ t

0

x(s)ds+
∫ t

0

g(s, w(s), x(s))ds, t ∈ [0, τ),
(2.22)
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with the understanding that
∫ t

0
x(s)ds ∈ D(A1) for all t ∈ [0, τ). Equivalently

to the second equation in (2.22), x is a mild solution of x′ = A1x+ g(t, w, x),
if it satisfies the integral equation

x(t) = S1(t)x̆+
∫ t

0

S1(t− s)g(s, w(s), x(s))ds, t ∈ [0, τ), (2.23)

where S1 is the C0-semigroup generated by A1 on �11 [4, Proposition 3.31].

2.3.1 Local Existence

A standard approach to local existence of solutions consists in assuming that
the non-linearities satisfy a Lipschitz condition. We also need assumptions
which make the solutions preserve positivity.

Assumption 4 f : R
2
+× �11+ → R and g : R

2
+× �11+ → �11 are continuous and

have the following properties:

(a) f(t, 0, x) ≥ 0 for all x ∈ �11+ , t ≥ 0.
(b) For every j ∈ Z+, gj(t, w, x) ≥ 0 whenever w ≥ 0, x ∈ �11+ , xj = 0, t ≥ 0.
(c) For every r > 0 there exists a Lipschitz constant Λr such that

|f(t, w, x)− f(t, w̃, x̃)|
‖g(t, w, x)− g(t, w̃, x̃)‖1

}
≤ Λr(|w − w̃|+ ‖x− x̃‖1),

whenever t ∈ [0, r], w, w̃ ∈ [0, r], x, x̃ ∈ �11+ , ‖x‖1, ‖x̃‖1 ≤ r.

Theorem 5. Under the Assumptions 1, and 4, for every w̆ ∈ R+ and x̆ ∈ �11+ ,
there exists some τ ∈ [0,∞] and a unique continuous solution w : [0, τ) →
[0,∞), x : [0, τ) → �11+ of (2.22).

Remark 2. τ ∈ [0,∞) can be chosen in such a way that the solution (w, x)
cannot be extended to a solution on a larger open interval.

Since we want our solutions to preserve positivity, we do not refer for the
proof to general results which use Banach’s fixed point theorem [46, Chap. 6
Theorem 1.2] [52, Theorem 46.1], but to results which use generalizations of
the explicit Euler approximation to solve ordinary differential equations [11,
Chap. 1 Theorem 1.1].

Proof. We apply [40, VIII.2, Theorem 2.1] (or [55, Sect. 2]). We set D =
R+ × �11+ . Notice that (2.23) can be rewritten in terms of y(t) = (w(t), x(t))
and y̆ = (w̆, x̆) as

y(t) = S̄(t)y̆ +
∫ t

0

S̄(t− s)f̄(s, y(s))ds
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with the C0-semigroup S̄(t)y̆ = (w̆, S1(t)x̆) on R × �11 and the non-linearity
f̄(s, y̆) = (f(s, y̆), g(s, y̆)). The local existence of solutions with values in D
follows once we have checked the subtangential condition

1
h
d
(
y + hf̄(t, y), D

)
→ 0, h→ 0+, y ∈ D,

where d(z,D) is the distance from the point z to the set D. This subtangential
condition can be broken up into two tangential conditions,

1
hd
(
w + hf(t, w, x),R+

)
→ 0

1
hd
(
x+ hg(t, w, x), �11+

)
→ 0

⎫⎬
⎭ h→ 0+, w ∈ R+, x ∈ �11+ .

In a Banach lattice Z with positive cone Z+,

d(z, Z+) ≤ ‖z − z+‖ = ‖z−‖,

where z+ and z− are the positive and negative part of the vector z. Since, for
z ∈ Z+, ‖z−‖ = 0,

lim sup
h→0+

1
h
d(z + hz̃, Z+) ≤ lim sup

h→0+

1
h

∥∥[z + hz̃]−
∥∥

= lim
h→0+

1
h

(∥∥[z + hz̃]−
∥∥− ‖z−‖)

= : D+‖z−‖z̃,

which is the right derivative of the convex functional z �→ ‖z−‖ at z in the
direction of z̃ [40, II.5]. If Z = R,

D+‖z−‖ z̃ = D+z
−z̃ = lim

h→0+

1
h

(
[z + hz̃]− − z−

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
h→0+

1
h

(0− 0); z > 0

lim
h→0+

1
h

[hz̃]−; z = 0

lim
h→0+

1
h

(−z − hz̃ + z); z < 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎨
⎩

0; z > 0
z̃−; z = 0
−z̃; z < 0

⎫⎬
⎭ .

For z ∈ R+ z̃ ∈ R,

lim sup
h→0+

1
h
d(z + hz̃,R+) ≤

{
0; z > 0,
z̃−; z = 0.

For z, z̃ ∈ �1,

D+‖z−‖z̃ =
∞∑

j=0

lim
h→0+

1
h

(
[zj + hz̃j ]− − z−j

)
=

∞∑
j=0

D+z
−
j z̃j .
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For z, z̃ ∈ �11,

D+

∥∥z−∥∥
1
z̃ =

∞∑
j=0

(1 + j)D+z
−
j z̃j .

We summarize. For w ∈ R+ and x ∈ �11+ ,

lim
h→0+

1
h
d
(
w + hf(t, w, x),R+

)
≤
{

0; w > 0
[f(t, w, x)]− ; w = 0

}

and

lim
h→0+

1
h
d
(
x+ hg(t, w, x), �11+

)
≤

∞∑
j=0

(1 + j)
{

0; xj > 0
[gj(t, w, x)]

− ; xj = 0

}
.

By Assumption 4 (a) and (b), these expressions are 0 and the subtangential
condition is satisfied. ��

2.3.2 Global Existence

In order to establish global existence we make the following additional as-
sumptions. Recall D1 in Theorem 3,

D1 =
{
x ∈ �11;

∞∑
j=1

j|αjj | |xj | <∞
}
.

Assumption 6 There exist constants c2, c3 ≥ 0 such that for all t ≥ 0, w ≥ 0
and x ∈ �11+ ∩D1 the following hold:

•
∞∑

j=0

gj(t, w, x) ≤ c3‖x‖.

• f(t, w, x) +
∞∑

j=1

jgj(t, w, x) ≤ c2(w + ‖x‖1).

Theorem 7. Let Assumptions 1, 4, and 6 be satisfied. Then, for every w̆ ∈
[0,∞) and x̆ ∈ �11+ , there exists a unique continuous solution w : [0,∞) → R+,
x : [0,∞) → �11+ of (2.22). The solution satisfies the estimates

‖x(t)‖ ≤ ‖x̆‖eα�t, |w(t)|+ ‖x(t)‖1 ≤(w̆ + ‖x̆‖1)eω2t

where α� is from Assumption 1 and ω2 ∈ R is an appropriate constant.

Remark 3. On every bounded subinterval of [0,∞), the solution x is the uni-
form limit of solutions x[n] on [0,∞) with values in �11+ which solve the system
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d

dt
w[n](t) =f(t, w[n](t), x[n](t)), w[n](0) = w̆,

d

dt
x

[n]
j (t)−gj

(
t, w[n](t), x[n](t)

)
=

⎧⎪⎨
⎪⎩

n∑
k=0

αjkx
[n]
k (t), j = 0, . . . , n,

αjjx
[n]
k (t), j > n,

x[n](0) = x̆,

(2.24)

and satisfy
∞∑

j=1

j|ajj |
∫ t

0

x
[n]
j (s)ds <∞. (2.25)

The following estimates will be used frequently for m = 0, 1 and 00 := 1,
∞∑

j=0

jmx
[n]
j (t) ≤

∞∑
j=0

jmx̆j +
∞∑

k=0

( ∞∑
j=0

jmαjk

)∫ t

0

x
[n]
k (s)ds

+
∫ t

0

∞∑
j=0

jmgj
(
s, w[n](s), x[n](s)

)
ds.

(2.26)

Proof. In order to derive the estimates which imply global existence of solu-
tions we consider the approximating problems where the infinite matrix (αjk)
is replaced by the infinite matrices (α[n]

jk ) in (2.13) because this will allow us
to interchange the order of summation freely. The matrices also satisfy the
assumptions of Theorem 5. So, for every n ∈ N, there exists some τn ∈ [0,∞]
and a solution on [0, τn) of

d

dt
w[n] = f

(
t, w[n], x[n]

)
, w[n](0) = w̆,

x[n](t) = x̆+A[n]
1

∫ t

0

x[n](s)ds+
∫ t

0

g
(
s, w[n](s), x[n](s)

)
ds,

with the understanding that
∫ t

0
x[n](s)ds ∈ D(A[n]

1 ) = D1. (2.25) follows from
the definition of D1.

Again τn ∈ [0,∞] can be chosen such that the solution (w[n], x[n]) cannot
be extended to a solution on a larger interval.

If we spell the equation for x[n] out componentwise for x, we see that
w[n] and x[n]

j can be differentiated and satisfy (2.24). Since the x[n] are non-
negative, for m = 0, 1,

∞∑
j=0

jmx
[n]
j (t)

=
∞∑

j=0

jmx̆j +
n∑

j=0

jm
( n∑

k=0

αjk

∫ t

0

x
[n]
k (s)ds

)
+

∞∑
j=n+1

jmαjj

∫ t

0

x
[n]
j (s)ds

+
∞∑

j=0

jm
∫ t

0

gj(s, w[n], x[n])ds.
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We can change the order of summations, use that αjk ≥ 0 for j �= k, and
obtain the estimate (2.26) which implies

w[n](t) +
∥∥x[n](t)

∥∥
1

≤ w̆ + ‖x̆‖1 +
∫ t

0

f(s, w[n](s), x[n](s))ds

+
∞∑

k=0

( ∞∑
j=0

(1 + j)αjk

)∫ t

0

x
[n]
k (s)ds

+
∫ t

0

∞∑
j=0

(1 + j)gj(s, w[n], x[n])ds.

By Assumptions 1, 4, and 6,

w[n](t) +
∥∥x[n](t)

∥∥
1

≤ w̆ + ‖x̆‖1 + (α� + c0 + c3)
∫ t

0

‖x[n](s)‖ds

+ c2
∫ t

0

w[n](s)ds+ (c1 + c2)
∫ t

0

‖x[n](s)‖1ds
)

≤ ω2

(∫ t

0

w[n](s)ds+
∫ t

0

‖x[n](s)‖1ds
)

with an appropriate ω2 > 0. By Gronwall’s inequality,

w[n](t) +
∥∥x[n](t)

∥∥
1
≤ eω2t

(
w̆ + ‖x̆‖1

)
.

Suppose τn < ∞. The growth bounds in Assumption 6 imply that g(t, w[n],
x[n]) and f(t, w[n], x[n]) are bounded on [0, τn). It follows from the variation
of parameters formula,

w[n](t) = w̆ +
∫ t

0

f
(
s, w[n](s), x[n](s)

)
ds,

x[n](t) = S
[n]
1 (t)x̆+

∫ t

0

S
[n]
1 (t− s)g

(
s, w[n](s), x[n](s)

)
ds,

that w[n] and x[n] can be continuously extended to [0, τn]. By the local exis-
tence theorem they can be extended to an interval larger than [0, τn], contra-
dicting the maximality of the solution.

We return to the solution (w, x) in Theorem 5 which, by (2.23), is given
by

w(t) = w̆ +
∫ t

0

f
(
s, w(s), x(s)

)
ds,

x(t) = S1(t)x̆+
∫ t

0

S1(t− s)g
(
s, w(s), x(s)

)
ds.
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We subtract this system of equations from the previous,

∣∣w(t)− w[n](t)
∣∣ ≤ ∫ t

0

∣∣∣f(s, w(s), x(s))− f
(
s, w[n](s), x[n](s)

)∣∣∣ds
and ∥∥x(t)− x[n](t)

∥∥
≤
∥∥[S1(t)− S[n]

1 (t)
]
x̆
∥∥

1

+
∫ t

0

∥∥∥[S1(t− s)− S[n]
1 (t− s)

]
g(s, w(s), x(s))

∥∥∥
1
ds

+
∫ t

0

∥∥S[n]
1 (t− s)

∥∥
1

∥∥g(s, w(s), x(s))− g
(
s, w[n](s), x[n](s)

)∥∥
1
ds.

We use ‖S[n]
1 (t)‖1 ≤ eωt (Theorem 3) and the Lipschitz conditions for f and

g in Assumption 4. For every r ∈ (0, τ), we find a Lipschitz constant Λr such
that ∣∣w(t)− w[n](t)

∣∣+ ∥∥x(t)− x[n](t)
∥∥

1

≤
∥∥[S1(t)− S[n]

1 (t)]x̆
∥∥

1

+
∫ t

0

∥∥[S1(t− s)− S[n]
1 (t− s)]g(s, w(s), x(s))

∥∥
1
ds

+ Λr

∫ t

0

eω(t−s)
(∣∣w(s)− w[n](s)

∣∣+ ∥∥x(s)− x[n](s)
∥∥

1

)
ds.

Since ∥∥[S[n](t)− S(t)
]
x̆
∥∥

1
→ 0, n→∞, t ≥ 0, x̆ ∈ �11+

by Theorem 3, Lebesgue’s theorem of dominated convergence implies that
second summand on the right hand side of the last inequality converges to 0
for all t ≥ 0. A Gronwall argument implies that∣∣w(t)− w[n](t)

∣∣+ ∥∥x(t)− x[n](t)
∥∥

1
→ 0, n→∞,

uniformly for t in every compact subinterval of [0, τ). This implies that

w(t) + ‖x(t)‖1 ≤ eω2t(w̆ + ‖x̆‖1), t ∈ [0, τ).

A similar argument as before implies that τ = ∞. ��

2.3.3 A Semiflow

A map Φ : R+×�11+ → �11+ is called a semiflow on �11+ if Φ(t+s, x̆) = Φ(t, Φ(s, x̆))
for all t, s ≥ 0 and Φ(0, x̆) = x̆ whenever x̆ ∈ �11+ . If Φ is continuous, it is called
a continuous semiflow. The following theorem is essentially proved in the same
way as the continuous dependence of solutions of ODEs on initial data with
the Gronwall inequality playing a crucial role [52, Theorem 46.4] [55, Sect. 3].



68 M. Martcheva and H.R. Thieme

Theorem 8. Let the assumptions of Theorem 7 be satisfied and f and gj not
depend on time t. Then the map Φ : R+ × R+ × �11+ → R+ × �11+ defined by
Φ(t, (w̆, x̆)) = (w(t), x(t)) with x being a solution of (2.22) is a continuous
semiflow.

2.4 General Metapopulation Models and Boundedness
of Solutions

In the following we concentrate on metapopulations to derive boundedness
results. A special feature of a certain class of metapopulation models is that
the number of patches (islands) does not increase.

2.4.1 Decrease or Constancy of Patch Number

We formulate the Assumption that guarantees this feature.

Assumption 9 (a)
∞∑

j=0

αjk ≤ 0 for all k ∈ Z+

(b)
∞∑

j=0

gj(t, w, x) ≤ 0 for all t ≥ 0, w ≥ 0, x ∈ �11+ .

Proposition 1. Let the Assumptions of Theorem 7 and Assumption 9 be sat-
isfied. Then ‖x(t)‖ ≤ ‖x̆‖ for all t ≥ 0 for every non-negative solution of
(2.22).

Proof. Recall that x solves

x(t) = x̆+A1

∫ t

0

x(s)ds+
∫ t

0

g(s, w(s), x(s))ds.

Since x(t) ∈ �11+ ,

‖x(t)‖ =
∞∑

j=0

xj(t)

= ‖x̆‖+
∞∑

j=0

(
A1

∫ t

0

x(s)ds
)

j

+
∫ t

0

∞∑
j=0

gj(s, w(s), x(s))ds.

By Lemma 1 and Assumption 9, ‖x(t)‖ ≤ ‖x̆‖ because α� ≤ 0. ��

The same proof yields the following result.

Corollary 1. Let the Assumptions of Theorem 7 be satisfied and
∑∞

j=0 αjk =0
for all k ∈ Z+ and

∑∞
j=0 gj(t, w, x) = 0 for all t, w ≥ 0, x ∈ �11+ . Then

‖x(t)‖ = ‖x(0)‖ for all t > 0 and all solutions of (2.22).
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2.4.2 Uniform Eventual Boundedness of Solutions

Assumption 10 There exist constants c4, c5, ε4 > 0 such that, for all w ≥ 0,
x ∈ D1 ∩ �11+ ,

f(t, w, x) +
∞∑

k=0

( ∞∑
j=1

jαjk

)
xk +

∞∑
j=1

jgj(t, w, x)

≤ c4‖x‖+ c5 − ε4
(
w +

∞∑
j=1

jxj

)
.

By Lemma 2, the series in the second term exist. If the previous assump-
tions are added, the solutions of the model equations are uniformly eventually
bounded and the solution semiflow is called dissipative.

Theorem 11. Let Assumptions 1, 4, 9, and 10 be satisfied. Then, with the
constants c4, c5, ε4 from Assumption 10,

w(t) +
∞∑

j=1

jxj(t) ≤
(
w̆ +

∞∑
j=1

jx̆j

)
e−ε4t +

c4‖x̆‖+ c5
ε4

for all solutions (w, x) of (2.1) with initial data w̆ ≥ 0, x̆ ∈ �11+ .

Proof. The Assumptions 9 and 10 imply Assumption 6, and we have global
solutions for the initial values in question by Theorem 7. By Proposition 1,
‖x(t)‖ ≤ ‖x̆‖ for all t ≥ 0. We consider the functions x[n] on [0,∞) in (2.24)
which approximate x by Remark 3. By estimate (2.26),(

w[n](t) +
∞∑

j=1

jx
[n]
j (t)

)

≤ w̆ +
∞∑

j=1

jx̆j +
∫ t

0

f
(
t, w[n](s), x[m](s)

)
ds

+
∞∑

k=0

( ∞∑
j=0

jαjk

)∫ t

0

x
[n]
k (s)ds+

∫ t

0

∞∑
j=0

jgj
(
s, w[n](s), x[n](s)

)
ds.

By Lemma 2, the double series exists absolutely. Since the functions x[n]
k are

non-negative, we can interchange the series and the integral. By Assump-
tion 10 (notice that

∫ t

0
x[n](s)ds ∈ D1),

w[n](t) +
∞∑

j=1

jx
[n]
j (t) ≤ w̆ +

∞∑
j=1

jx̆j + c4
∫ t

0

‖x[n](s)‖ds+ c5t

− ε4
(∫ t

0

w[n](s)ds+
∫ t

0

( ∞∑
j=1

jx
[n]
j (s)

)
ds

)
.
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By Gronwall’s inequality,

w[n](t) +
∞∑

j=1

jx[n](t) ≤ e−ε4t

(
w̆ +

∞∑
j=1

jx̆j

)
+
c5
ε4

+ c4
∫ t

0

‖x[n](t− s)‖e−ε4sds.

We take the limit n→∞, use ‖x(t)‖ ≤ ‖x̆‖ and obtain the statement of this
theorem. ��

2.5 Extinction Without Migration or Colonization
of Empty Patches

If there is no emigration from the patches, we can assume that the average
number of migrating individuals (wanderers), w(t), is exponentially decreas-
ing, more generally, w is bounded on [0,∞),

∫∞
0
w(t)dt < ∞. In this section

we derive conditions such that this implies that the solutions of (2.22) satisfy

∞∑
j=1

jxj(t) → 0 as t→∞,

i.e., the occupant part of the population goes extinct together with its migrat-
ing part. We also show that the occupant population goes extinct if empty
patches are not colonized.

Assumption 12 (a)
∞∑

j=0

αjk ≤ 0, k = 0, 1, 2, . . . .

(b) For all k ∈ N there is some j ∈ Z+, j < k, such that αjk > 0.
(c) gj(0, x) = 0 for all x ∈ �11+ , j = 0, 1, . . . .

(d)
∞∑

j=0

gj(w, x) ≤ 0 for all w ≥ 0, x ∈ �11+ .

(e) There exists a constant c > 0 such that

∞∑
j=1

jgj(w, x) ≤ cw‖x‖ for all w ≥ 0, x ∈ �11+ .

(f) lim sup
k→∞

∞∑
j=0

jαjk

k
< 0.

If the Assumptions 1, 4 (for g), 10, and 12 are satisfied, then also the
Assumption 9 is satisfied and unique solutions exist to (2.22) which are defined
and bounded on [0,∞).
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Proposition 2. Let the Assumptions 1, 4, 10, and 12 be satisfied. Let c > 0
be the number in Assumption 12. Then there exist m ∈ N and ε1 > 0 such
that for every solution x of (2.22) with x̆ ∈ �11+ ,

∞∑
j=1

jxj(t) ≤ e−ε1t
∞∑

j=1

jx̆j +
∫ t

0

e−ε1(t−s)
m−1∑
k=0

ξkxk(s)ds

+ c‖x̆‖
∫ t

0

e−ε1(t−s)w(s)ds,

where ξk =
∑∞

j=1 αjk + ε1k.

Proof. Let x[n] be the solutions of (2.24) which approximate x. By (2.26),

‖x[n](t)‖ ≤ ‖x̆‖,
∞∑

j=1

jx
[n]
j (t) ≤

∞∑
j=1

jx̆j +
∞∑

k=0

ξ̃k

∫ t

0

x
[n]
k (s)ds

+
∫ t

0

( ∞∑
j=1

jgj
(
w(s), x[n](s)

))
ds.

By part (f) of Assumption 12, ξ̃k ≤ −ε1k for k ≥ m with appropriate ε1 > 0,
m ∈ N, and, by part (e),

∞∑
j=1

jx
[n]
j (t) ≤

∞∑
j=1

jx̆j +
m−1∑
k=0

ξ̃k

∫ t

0

x
[n]
k (s)ds− ε1

∞∑
k=m

k

∫ t

0

x
[n]
k (s)ds

+
∫ t

0

( ∞∑
j=0

cw(s)x[n]
j (s)

)
ds

=
∞∑

j=1

jx̆j +
m−1∑
k=0

ξk

∫ t

0

x
[n]
k (s)ds− ε1

∞∑
k=0

k

∫ t

0

x
[n]
k (s)ds

+
∫ t

0

cw(s)‖x[n](s)‖ds,

with ξk = ξ̃k + ε1k. We take the limit as n→∞, obtain ‖x(t)‖ ≤ ‖x̆‖ and

∞∑
j=1

jxj(t) ≤
∞∑

j=1

jx̆j +
m−1∑
k=0

ξk

∫ t

0

xk(s)ds− ε1
∫ t

0

∞∑
k=1

kxk(s)ds

+
∫ t

0

cw(s)‖x̆‖ds.

Gronwall’s inequality implies the assertion. ��
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Next we show that the size of the occupant population tends to zero as
t → ∞ if there is no emigration from patches and the migrating part of the
metapopulation decreases exponentially as a result.

Theorem 13. Let Assumptions 1, 4, 10, and 12 be valid. Further let α00 = 0.
Let w, x be a solution of (2.22) on [0,∞) such that w is bounded on R+ and∫∞
0
w(t)dt <∞. Then

∞∑
k=1

k

∫ ∞

0

xk(s)ds <∞ and
∞∑

k=1

kxk(t) → 0, t→∞.

We mention that the assumption α00 = 0 together with the other assump-
tions on the coefficients αjk implies that αj0 = 0 for all j ∈ Z+.

Proof. Recall that x is an integral solution,

x(t)− x̆ = A1

∫ t

0

x(s)ds+
∫ t

0

g(w(s), x(s))ds.

For the single terms this means that

xj(t)− x̆j =
∞∑

k=1

αjk

∫ t

0

xk(s)ds+
∫ t

0

gj(w(s), x(s))ds.

Recall that xk is non-negative, αjk ≥ 0 for j �= k, and xj(t) ≤ ‖x̆‖. By
Theorem 11, the functions w and x (with values in �11+ ) are bounded. Since
gj(0, x) = 0 and gj are locally Lipschitz continuous, there exist constants
Λj > 0 such that, for all j, k ∈ Z+, j �= k, t ≥ 0,

αj,k

∫ t

0

xk(s)ds ≤ |αjj |
∫ t

0

xj(s)ds+ ‖x̆‖+ Λj

∫ t

0

w(s)ds.

Let k ∈ N be arbitrary. By successive application of Assumption 12 (b) we
find numbers k0 < · · · < km such that k0 = 0, km = k and αki,ki+1 > 0 for
i = 0, . . . ,m− 1. Since α00 = 0,

α0k1

∫ t

0

xk1(s)ds ≤ ‖x̆‖+ Λ0

∫ t

0

w(s)ds.

Since
∫∞
0
w(s)ds < ∞, also

∫∞
0
xk1(s)ds < ∞. Since αki,ki+1 > 0, we obtain

step by step that ∫ ∞

0

xki
(s)ds <∞ ∀i = 1, 2, . . . ,m,

in particular
∫∞
0
xk(s)ds < ∞ where k ∈ N has been arbitrary. The claims

now follow from the inequality in Proposition 2, the first by integrating it,
the second by applying Lebesgue’s theorem of dominated convergence. Notice
that ξ0 = 0 because αj0 = 0 for all j ∈ Z+. ��
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We turn to the case that empty patches are not colonized. This is mathe-
matically captured in the assumption that the function g0 is non-negative.

Theorem 14. Let Assumptions 1, 4, 10, and 12 be valid. Further let α00 = 0
and g0(w, x) ≥ 0 for all w ≥ 0, x ∈ �11+ . Let x be a solution of (2.22) on [0,∞)
with values in �11+ . Then

∞∑
k=1

k

∫ ∞

0

xk(s)ds <∞ and
∞∑

k=1

kxk(t) → 0, t→∞.

Proof. We revisit the proof of Theorem 13. From the integral equation for x0,
we obtain the inequality,

α01

∫ t

0

x1(s)ds ≤ ‖x̆‖ −
∫ t

0

g0(w(s), x(s))ds ≤ ‖x̆‖ ∀t ≥ 0.

Except for this modification, the proof proceeds in exactly the same way. ��

2.6 A More Specific Metapopulation Model

For the rest of the chapter we restrict our considerations which concern qual-
itative aspects of metapopulation models (compact attractors, (in)stability of
equilibria, persistence) to a somewhat more specific model framework in order
to cut down on obscuring technicalities,

w′ =
∞∑

k=1

ηkxk − w
∞∑

k=0

σkxk − δw,

x′j =
∞∑

k=0

αjkxk + w
∞∑

k=0

γjkxk, j = 0, 1, . . . .

(2.27)

The coefficients γjk describe the transition from patches with k occupants
to patches with j occupants due to immigrating dispersers. The terms σk

describe the average loss rate of dispersers due to settlement on a patch with
k occupants. Below we will impose a balance equation or inequality linking
γjk and σk. The coefficients ηk describe the rate at which individuals emigrate
from a patch with k occupants. δ > 0 is the per capita mortality rate of
dispersers. We assume the following.

Assumption 15 (a) αjj , γjj ≤ 0 ≤ αjk, γjk for j �= k, j, k ∈ Z+. Further
∞∑

j=0

αjk ≤ 0 and
∞∑

j=0

γjk ≤ 0 for all k ∈ Z+.

(b) There exist constants c0, c1 > 0, ε > 0 such that

∞∑
j=1

jαjk ≤ c0 + c1k − ε|αkk| ∀k ∈ Z+.
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(c) There exists a constant c7 > 0 such that 0 ≤ ηk, σk ≤ c7k for all k ∈ N.

(d) There exists a constant c8 > 0 such that
∞∑

j=1

j|γjk| ≤ c8(1 + k) for all

k ∈ Z+.

(e)
∞∑

j=1

jγjk ≤ σk for all k ∈ Z+.

Part (e) of the last assumption expresses a balance law which guarantees
that the rate at which a patch with k occupants gains new occupants through
immigration of dispersers does not exceed the rate at which dispersers leave
the disperser pool to settle on a patch with k occupants. A strict inequal-
ity means that some dispersers die during the immigration. Mathematically
part (e), together with part (c), implies that the second part of Assumption 6
is satisfied. The first part of that assumption, with c3 = 0, is satisfied by
Assumption 15 (a). The other parts of Assumption 15 either repeat the As-
sumption 1 or make sure that the functions f and g in Assumption 4 are
well-defined and satisfy the Lipschitz conditions. Theorem 7 implies the fol-
lowing result.

Theorem 16. Let the Assumption 15 be satisfied. Then, for every w̆ ∈ [0,∞)
and x̆ ∈ �11+ , there exists a unique integral solution w : [0,∞) → R+, x :
[0,∞) → �11+ of (2.27),

w′ =
∞∑

k=1

ηkxk − w
∞∑

k=0

σkxk − δw,

xj(t)− x̆j =
∞∑

k=0

αjk

∫ t

0

xk(s)ds+
∞∑

k=0

γjk

∫ t

0

w(s)xk(s)ds,

j = 0, 1, . . .

(2.28)

The solution satisfies the estimates

‖x(t)‖ ≤ ‖x̆‖, |w(t)|+ ‖x(t)‖1 ≤ (w̆ + ‖x̆‖1)eω2t

with some ω2 > 0.

We add an assumption to obtain uniform eventual boundedness of
solutions.

Assumption 17 There exists constants c4 > 0 and ε4 > 0 such that

ηk +
∞∑

j=1

jαjk ≤ c4 − ε4k ∀k ∈ Z+.



2 Infinite ODE Systems Modeling Size-Structured Metapopulations 75

In order to check Assumption 10, we observe that, by Lemma 2, for x ∈ D1,

∞∑
k=0

ηkxk +
∞∑

k=0

( ∞∑
j=1

jαjk

)
xk =

∞∑
k=0

(
ηk +

∞∑
j=1

jαjk

)
xk

≤ c4‖x‖ − ε4
∞∑

k=1

kxk.

If we combine this inequality with the one in Assumptions 15(e), 10 follows
with c5 = 0. One readily checks that the other assumptions of Theorem 11
are satisfied.

Theorem 18. Let the Assumptions 15 and 17 be satisfied. Then, with the
constants c4 and ε4 > 0 from Assumption 17,

w(t) +
∞∑

j=1

jxj(t) ≤
(
w̆ +

∞∑
j=1

jx̆j

)
e−ε4t +

c4‖x̆‖
ε4

for all solutions (w, x) of (2.1) with initial data w̆ ≥ 0, x̆ ∈ �11+ . Further
‖x(t)‖ ≤ ‖x̆‖ for all t ≥ 0.

2.6.1 Extinction Without Migration or Colonization

The metapopulation in system (2.27) dies out, if there is no emigration from
the patches or if empty patches are not colonized.

Corollary 2. Let Assumptions 15 and 17 be valid. Assume that α00 = 0 and
that for all k ∈ N there is some j ∈ Z+, j < k, such that αjk > 0. Further
let (σj) be a bounded sequence and lim supk→∞

∑∞
j=1

jαjk

k < 0. Finally and
most importantly let γ00 = 0 or ηj = 0 for all j ∈ N. Then, for model (2.27),

∞∑
k=1

k

∫ ∞

0

xk(s)ds <∞ and lim
t→∞

∞∑
k=1

kxk(t) = 0.

Proof. If γ00 = 0, the statement follows from Theorem 14. If ηj = 0 for all
j ∈ N, then w′ ≤ −δw by (2.27) and

∫∞
0
w(t)dt < ∞ and w is bounded on

R+. The statement now follows from Theorem 13. ��

2.6.2 An a Priori Estimate for Equilibria

An equilibrium of (2.27) is a time-independent solution of (2.27). Equivalently
it is a time-independent solution of (2.28). In either case, an equilibrium (w, x),
w ≥ 0, x = (xk) ∈ �11+ satisfies x ∈ D(A1) and
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δw =
∞∑

k=1

ηkxk − w
∞∑

k=0

σkxk,

0 = A1x+ wΓx,

(2.29)

where [A1x]j =
∑∞

k=0 αjkxk, x ∈ D(A1), and [Γx]j =
∑∞

k=0 γjkxk, x ∈ �11.
Γ maps �11+ into �11+ by Assumption 15.

Theorem 19. Let the Assumptions 15 and 17 be satisfied. Then, for every
solution x ∈ D(A1) ∩ �11+ of 0 = A1x + wΓx, where w ≥ 0 is given, we have
the estimate ∞∑

k=1

ηkxk − w
∞∑

k=0

σkxk ≤ c4,

with c4 from Assumption 17. If (w, x) is an equilibrium of (2.27), we also have
δw ≤ c4.

Proof. Let x ∈ �11+ ∩D(A1) satisfy A1x+ wΓx = 0. Then∫ t

0

S1(s)wΓxds = −
∫ t

0

S1(s)A1xds = x− S1(t)x.

By Theorem 3, for every t ≥ 0, x = limn→∞ x[n](t) where

x[n](t) = S
[n]
1 (t)x+ w

∫ t

0

S
[n]
1 (s)Γxds.

Since the semigroups S[n]
1 are differentiable (Lemma 3), we can differentiate

x[n](t) in �11 for t > 0 and

d

dt
x[n](t) = A

[n]
1 x

[n](t) + wΓx.

By (2.11), Assumptions 15 and 17,

d

dt

∞∑
j=1

jx
[n]
j (t)

=
n∑

k=0

( n∑
j=1

jαjk

)
x

[n]
k (t) +

∞∑
j=n+1

jαjjx
[n]
j (t) + w

∞∑
k=0

( ∞∑
j=1

jγjk

)
xk

≤
∞∑

k=0

( ∞∑
j=1

jαjk

)
x

[n]
k (t) + w

∞∑
k=0

σkxk

≤
∞∑

k=0

(c4 − ε4k − ηk)x[n]
k (t) + w

∞∑
k=0

σkxk.

We integrate this inequality,
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n∑
j=1

jx
[n]
j (t) ≤

n∑
j=1

jxje
−ε4t +

c4
ε4
−
∫ t

0

n∑
k=0

ηkx
[n]
k (t− s)e−ε4sds

+ w
∫ t

0

∞∑
k=0

σkxke
−ε4sds.

We first take the limit n→∞ and then the limit t→∞,

∞∑
j=1

jxj ≤
c4
ε4
− 1
ε4

∞∑
k=0

ηkxk +
w

ε4

∞∑
k=0

σkxk.

In particular,
∞∑

k=1

ηkxk − w
∞∑

k=0

σkxk ≤ c4.

��

2.7 Compact Attractors

We continue to study the metapopulation model (2.27) under the Assump-
tions 15 and 17. We now fix the number of initial patches to be N ∈ N and
choose the state space

XN = {(w, x) ∈ R+ × �11+ ; ‖x‖ ≤ N}.

We let f and g be independent of time. By Theorems 8 and 16,

Φ(t, (w̆, x̆)) = (w(t), x(t)), t ≥ 0,

is a continuous semiflow on XN . In the following it is convenient to introduce
the notation Φt(x) = Φ(t, x) for t ≥ 0, x ∈ XN . This way we obtain a family
of maps {Φt; t ≥ 0} on XN with the property Φt ◦ Φs = Φt+s in non-linear
analogy to operator semigroups.

Let B ⊆ XN . A non-empty compact invariant subset C of XN is called
a compact attractor of B if for every open set U , C ⊆ U ⊆ XN , there exists
some r ≥ 0 such that Φt(B) ⊆ U for all t ≥ r.

Equivalently, d(Φt(x), C) → 0 as t → ∞, uniformly in x ∈ B. Here
d(y,B) = inf{d(y, z); z ∈ B} is the distance from the point y to the set B.

A non-empty compact invariant subset C of XN is called the compact at-
tractor of bounded subsets of XN if C is a compact attractor of every bounded
subset B of XN . Obviously, by its invariance, a compact attractor of bounded
subsets is uniquely determined.

General results concerning compact attractors of bounded sets can be
found in [26] and [52]. They involve concepts like dissipativity and asymp-
totic smoothness of the semiflow. For this particular semiflow a more direct
approach seems to work better. We need some additional assumptions.
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Assumption 20 (a) sup
k∈N

|αjk|
k

<∞ for all j ∈ Z+.

(b) sup
k∈N

|γjk|
k

<∞ for all j ∈ Z+.

(c) sup
k∈N

σk <∞.

Our main tool is the separation measure of non-compactness [3, II.3], αs,
which has the following sequential characterization in a metric space (X, d).
If Y ⊆ X,

αs(Y ) = inf
{
c > 0; each sequence (xn) in Y has a

subsequence (xnj
) with lim sup

j,k→∞
d(xnj

, xnk
) ≤ c

}
. (2.30)

It is related to the Kuratowski and the Hausdorff measures of non-
compactness, αK and αH , by

αH(Y ) ≤ αs(Y ) ≤ αK(Y ) ≤ 2αH(Y ), Y ⊆ X. (2.31)

We will use the following two of its properties:

Lemma 4. (a) αs(B)=αs(B̄) for any bounded subsetB ofX and its closure B̄.
(b) Let (X, d) be a complete metric space. If Bt is a family of non-empty,

closed, bounded sets defined for t > r that satisfy Bt ⊆ Bs whenever s ≤ t and
αs(Bt) → 0 as t→∞, then ∩t>rBt is a non-empty compact set.

(a) follows from (2.30), while (b) is a consequence of the inequality (2.31)
and the fact that αH and αK satisfy (b) [3, II.2].

Lemma 5. Let Φ be a semiflow and B a bounded set and r ≥ 0 such Φt(B) ⊆
B for all t ≥ r, αs(Φt(B)) → 0 for r ≤ t → ∞. Then B has a compact
attractor, namely

ω(B) =
⋂
t≥0

⋃
s≥t

Φs(B).

This result holds for any measure of non-compactness.

Proof. Let Bt =
⋃

s≥t Φs(B). Then Bt ⊆ B for t ≥ r. By definition Bt is a
decreasing family of subsets of B0. For t ≥ r,

Bt = Φt−r

(⋃
s≥t

Φs+r−t(B)
)
⊆ Φt−r(B).

By Lemma 4 (a),

αs(Bt) ≤ αs(Φt−r(B)) → 0, r ≤ t→∞.



2 Infinite ODE Systems Modeling Size-Structured Metapopulations 79

By Lemma 4 (b), ω(B) =
⋂

t≥0Bt is non-empty and compact. Suppose that
ω(B) does not attract B. Then there exist sequences xn ∈ B and tn →∞ as
n→∞ and ε > 0 such that d(Φ(tn, xn), ω(B)) > ε. Define

Cm = {Φ(tn, xn);n ≥ m}.

Then Cm+1 ⊆ Cm for all m ∈ N. Further

Cm = Φtm−r({Φ(tn + r − tm, xn);n ≥ m}) ⊆ Φtm−r(B).

By assumption, αs(Cm) → 0 as m → ∞. So
⋂

m∈N
Cm is non-empty and

compact. Choose z in this intersection. Then z ∈ ω(B) and d(Φ(tn, xn), z) < ε
for some n ∈ N, a contradiction. Since ω(B) is compact and attracts B, it is
invariant [26, Lemma 3.3.1]. ��

Theorem 21. Let the Assumptions 15, 17, and 20 be satisfied. Then the semi-
flow Φ on XN induced by the solutions of (2.27) has a compact attractor of
all bounded subsets of XN .

Proof. Let B0 be the following bounded set.

B0 =
{

(w, x) ∈ XN ;w +
∞∑

j=1

jxj ≤
c4N

ε4
+ 1
}
,

where c4 and ε4 are the constants from Theorem 18. By Theorem 18, for every
bounded set B there exists some r > 0 such that Φt(B) ⊆ B0 for all t ≥ r. So
it is sufficient to prove that the set B0 has a compact attractor. There exists
some r0 > 0 such that Φt(B0) ⊆ B0 for all t ≥ r0. By Lemma 5 it is sufficient
to show that αs(Φt(B0)) → 0.

Let y, ỹ ∈ R. Then, for sufficiently small |h|,

|y + hỹ| − |y| =

⎧⎨
⎩

hỹ, y > 0,
|h||ỹ|, y = 0,
−hỹ, y < 0.

We divide by h and take the limit h→ 0 either from the right or the left,

D±|y|ỹ := lim
h→0±

|y + hỹ| − |y|
h

=

⎧⎨
⎩

ỹ, y > 0,
±|ỹ|, y = 0,
−ỹ, y < 0.

In particular,

D−|y|ỹ ≤ ỹ sign0(y) where sign0(y) =

⎧⎪⎨
⎪⎩

1, y > 0,
0, y = 0,
−1, y < 0.
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Let x̆, x̌ ∈ B0 and x[n] and x̃[n] be the approximating solutions of Φ(�, x̆) and
Φ(�, x̌) as in Remark 3. By [40, VI.4],

d−
dt

∣∣x[n]
j (t)− x̃[n]

j (t)
∣∣ = D−

∣∣x[n]
j (t)− x̃[n]

j (t)
∣∣( d
dt
x

[n]
j (t)− d

dt
x̃

[n]
j (t)

)

≤
( d
dt
x

[n]
j (t)− d

dt
x̃

[n]
j (t)

)
sign0

(
x

[n]
j (t)− x̃[n]

j (t)
)
.

Here d−
dt denotes the left derivative. Notice that y sign0(y) = |y|. By (2.24)

and (2.27), for j = 1, . . . , n,

d−
dt

∣∣x[n]
j (t)− x̃[n]

j (t)
∣∣ ≤ n∑

k=0

αjk

∣∣x[n]
k (t)− x̃[n]

k (t)
∣∣

+ w[n](t)
∞∑

k=0

γjk

∣∣x[n]
k (t)− x̃[n]

k (t)
∣∣

+
∣∣w[n](t)− w̃[n](t)

∣∣ ∞∑
k=0

|γjk|
∣∣x̃[n]

k (t)
∣∣.

We multiply this inequality by j, add over j = 1, . . . , n, change the order of
summation and use αjk ≥ 0 for j �= k,

d−
dt

n∑
j=1

j
∣∣x[n]

j (t)− x̃[n]
j (t)

∣∣

≤
n∑

k=0

( ∞∑
j=1

jαjk

)∣∣x[n]
k (t)− x̃[n]

k (t)
∣∣

+ w[n](t)
∞∑

k=0

( n∑
j=1

jγjk

)∣∣x[n]
k (t)− x̃[n]

k (t)
∣∣

+
∣∣w[n](t)− w̃[n](t)

∣∣ ∞∑
k=0

( ∞∑
j=1

j|γjk|
)∣∣x̃[n]

k (t)
∣∣.

Notice that
∑∞

j=1 j|γjk| ≤ c8(k + 1) for all k ∈ Z+ by Assumption 15(d). By
Assumption 17, we can choose ε > 0 and m ∈ N such that

∑∞
j=1 jαjk ≤ −εk

for all k > m. Set ξk =
∑∞

j=1 jαjk + εk. For n > m,
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d−
dt

n∑
j=1

j
∣∣x[n]

j (t)− x̃[n]
j (t)

∣∣
≤

m∑
k=0

ξk
∣∣x[n]

k (t)− x̃[n]
k (t)

∣∣− ε n∑
j=1

j
∣∣x[n]

j (t)− x̃[n]
j (t)

∣∣
+ w[n](t)

∞∑
k=0

( n∑
j=1

jγjk

)∣∣x[n]
k (t)− x̃[n]

k (t)
∣∣

+
∣∣w[n](t)− w̃[n](t)

∣∣ ∞∑
k=0

c8(1 + k)
∣∣x̃[n]

k (t)
∣∣.

We integrate this differential inequality,
n∑

j=1

j
∣∣x[n]

j (t)− x̃[n]
j (t)

∣∣
≤ e−εt

n∑
j=1

j
∣∣x[n]

j (0)− x̃[n]
j (0)

∣∣+ ∫ t

0

e−ε(t−s)
m∑

k=0

ξk
∣∣x[n]

k (s)− x̃[n]
k (s)

∣∣ds
+
∫ t

0

e−ε(t−s)w[n](s)
∞∑

k=0

( n∑
j=1

jγjk

)∣∣x[n]
k (s)− x̃[n]

k (s)
∣∣ds

+
∫ t

0

e−ε(t−s)
∣∣w[n](s)− w̃[n](s)

∣∣ c8∥∥x̃[n](s)
∥∥

1
ds.

The infinite matrices (α[n]
jk ) satisfy the same assumptions as the infinite ma-

trix (αjk) with the same constants. So w[n], x[n] satisfy the estimates in
Theorem 18 with the same constants as w, x. By Lebesgue’s theorem of dom-
inated convergence (first applied to the sum and then to the integral), we can
take the limit as n→∞,

∞∑
j=1

j
∣∣xj(t)− x̃j(t)

∣∣
≤ e−εt

∞∑
j=1

j
∣∣xj(0)− x̃j(0)

∣∣+ ∫ t

0

e−ε(t−s)
m∑

k=0

ξk
∣∣xk(s)− x̃k(s)

∣∣ds
+
∫ t

0

e−ε(t−s)w(s)
∞∑

k=0

( ∞∑
j=1

jγjk

)∣∣xk(s)− x̃k(s)
∣∣ds

+
∫ t

0

e−ε(t−s)|w(s)− w̃(s)|c8
∥∥x̃(s)∥∥

1
ds.

By Assumptions 15(e) and 20(c), there exists some c9 > 0 such that∑∞
j=1 jγjk ≤ c9 for all k ∈ Z+. We split up the last but one sum in the

last inequality at k = i where i ∈ N is arbitrary. Then
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∞∑
j=1

j
∣∣xj(t)− x̃j(t)

∣∣
≤ e−εt

∥∥x(0)− x̃(0)
∥∥

1
+
∫ t

0

e−ε(t−s)
m∑

k=0

ξk
∣∣xk(s)− x̃k(s)

∣∣ds
+
∫ t

0

e−ε(t−s)w(s)
i∑

k=0

c9
∣∣xk(s)− x̃k(s)

∣∣ds
+
c9
i

∫ t

0

e−ε(t−s)w(s)
∥∥x(s)− x̃(s)∥∥

1
ds

+
∫ t

0

e−ε(t−s)|w(s)− w̃(s)|c8
∥∥x̃(s)∥∥

1
ds.

Let ((w̆{n}, x̆{n})) be a sequence in B0 and (w{n}(t), x{n}(t)) = Φ(t, (w̆{n},
x̆{n})). It follows from (2.28), Assumption 20(a, b), and Theorem 18 that
w{n} and, for each j ∈ Z+, x{n}

j are equi-bounded and equi-continuous with
respect to n on every finite interval in R+. By the Arzela–Ascoli theorem
and a diagonalization procedure, after choosing subsequences, w{n}, x{n}

j are
Cauchy sequences for each j uniformly on every finite interval in R+. We set
x = x{l} and x̃ = x{n} in the inequality above. Then

lim sup
l,n→∞

∞∑
j=1

j
∣∣x{l}

j (t)− x{n}
j (t)

∣∣
≤ e−εt lim sup

l,n→∞

∥∥x{l}(0)− x{n}(0)
∥∥

1

+
c9
i

lim sup
l,n→∞

∫ t

0

e−ε(t−s)w{l}(s)
∥∥x{l}(s)− x{n}(s)

∥∥
1
ds.

Since this estimate holds for every i ∈ N and each x{n} satisfies the estimates
in Theorem 18, with the same constants, we can take the limit i→∞ and

lim sup
l,n→∞

∞∑
j=1

j
∣∣x{l}

j (t)− x{n}
j (t)

∣∣ ≤ e−εt lim sup
l,n→∞

∥∥x{l}(0)− x{n}(0)
∥∥

1
.

Since ‖x‖1 ≤ |x0|+ 2
∑∞

j=1 j|xj |,

lim sup
l,n→∞

‖Φt(x̆{l})− Φt(x̆{n})‖1 ≤ 2e−εt‖x̆{l} − x̆{n}‖1 ≤ 4e−εt‖B0‖1

where ‖B0‖1 = supx̆∈B0
‖x̆‖1. By (2.30), αs(Φt(B0)) ≤ 4e−εt‖B0‖1 → 0 as

t→∞. This finishes the proof. ��
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2.8 Towards the Stability of Equilibria

For the metapopulation model (2.27) we make assumptions which guarantee
that the number of patches does not change in time.

Assumption 22 Assume

(a) For all k ∈ N there is some j ∈ Z+, j < k, with αjk > 0, α00 = 0, and
∞∑

j=0

αjk = 0 =
∞∑

j=0

γjk ∀k ∈ Z+.

(b) lim sup
k→∞

∞∑
j=0

jαjk

k
< 0.

Occasionally we will also assume the following.

Assumption 23 (a) The sequence (σn) is bounded.
(b) There exist positive constants c0, c1, ε such that

∞∑
j=1

jγjk ≤ c0 + c1k − ε|γkk| for all k ∈ N.

By Corollary 1, ‖x(t)‖ = ‖x̆‖. We fix the initial patch number to be N
and obtain

∑∞
j=0 xj(t) = N . We will use this equality to eliminate x0. Notice

that Assumption 15(a) and 22(a) imply that αj0 = 0 for all j ∈ Z+. We
equivalently rewrite (2.27) as

w′ =
∞∑

k=1

ηkxk − w
∞∑

k=1

(σk − σ0)xk −
(
Nσ0 + δ

)
w,

x′j =
∞∑

k=1

αjkxk + w
(
γj0N +

∞∑
k=1

(γjk − γj0)xk

)
, j = 1, 2, . . .

(2.32)

This system can be cast in more condensed notation,

w′ = 〈x, x∗〉 − ξw + w〈x, y∗〉, x′ = Ãx+ wz + wΓ0x, (2.33)

with x(t) = (xj(t))∞j=1.

Remark 4. x(t) takes values in �̃11, the space of sequences x = (xj)∞j=1 with
norm ‖x‖∼1 =

∑∞
j=1 j|xj |. Further

ξ = Nσ0 + δ, u = (γj0)∞j=1, z = Nu,

x∗ and y∗ in the dual space of �̃11,

〈x, x∗〉 =
∞∑

k=1

ηkxk, 〈x, y∗〉 =
∞∑

k=1

(σ0 − σk)xk.
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Finally

Ãx =
( ∞∑

k=1

αjkxk

)∞
j=1
, Γ0x = Γ̃ x− 〈x, z∗〉u

with

〈x, z∗〉 =
∞∑

k=1

xk, Γ̃ x =
( ∞∑

k=1

γjkxk

)∞
j=1
.

2.8.1 Stability of Equilibria

Let (w̃, x̃) be an equilibrium, i.e. a constant solution of (2.33). (w̃, x̃) = (0, 0)
is an equilibrium, e.g., called the extinction equilibrium. Any other equilibrium
in R+ × �̃11+ is called a persistence equilibrium. To study the stability of the
equilibrium (w̃, x̃), we expand the system about the equilibrium. We set w =
w̃+ v and x = x̃+ y and obtain the following equation for v and y, where we
have replaced x̃ by x and w̃ by w,

v′ = 〈y, x∗〉 − ξv + v〈x, y∗〉+ w〈y, y∗〉+ v〈y, y∗〉,
y′ = Ãy + vz + wΓ0y + vΓ0x+ vΓ0y.

(2.34)

This is an abstract Cauchy problem (evolution equation)

(v, y)′ = A(v, y) + g(v, y), (2.35)

where A is the linear operator defined in �11 by

A(v, y) =
(
〈y, x∗〉 − ξv + v〈x, y∗〉+ w〈y, y∗〉, Ãy + vz + wΓ0y + vΓ0x

)
,

v ∈ R, y ∈ �̃11,
(2.36)

and g the non-linear map on �11 defined by

g(v, y) =
(
v〈y, y∗〉, vΓ0y

)
. (2.37)

Proposition 3. Let the Assumptions 15 and 22 be satisfied. Let Ã and Γ̃ be
as in Remark 4. Let w ≥ 0. If w > 0 also assume Assumption 23. Then
Ãw = Ã + wΓ̃ , with appropriate domain, is the generator of a positive C0-
semigroup S̃ on �̃11 with strictly negative growth bound.

Proof. Define βjk = αjk + wγjk for j, k ∈ Z+. The operator Ãw is associated
with the infinite matrix (βjk)∞j,k=1. For k ∈ N,

∞∑
j=1

βjk = −α0k − wγ0k

which is non-positive for k ∈ N and strictly negative for k = 1. Also the
other assumptions of [39, Proposition 6.3] are satisfied. It follows that Ãw

with domain {x ∈ �̃11;
∑∞

j=1 |βjj ||xj | < ∞, Ãwx ∈ �̃11} is the generator of a
C0-semigroup S̃(t) on �̃11 and there exist ε > 0, M ≥ 1 such that ‖S̃(t)‖∼1 ≤
Me−εt. ��
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Proposition 4. Let w ≥ 0 and x ∈ �̃11. Let Γ0y = Γ̃ y + 〈y, z∗〉u with the
ingredients as in Remark 4. Let the Assumptions 15 and 22 be satisfied and,
if w > 0, also Assumption 23. Then A is the generator of a C0-semigroup T
with strictly negative essential growth bound (essential type).

Proof. A = B + C where

B(v, y) = (−ξv, Ãwy),
C(v, y) = (〈y, x∗〉+ v〈x, y∗〉, vz − w〈y, z∗〉u+ vΓ0x)

By Proposition 3, Ãw is the generator of a C0-semigroup S̃ on �̃11 with strictly
negative growth bound. B is the generator of the semigroup S(t)(v, y) =
(e−ξtv, S̃(t)y). S also has a strictly negative growth bound. The linear op-
erator C on �11 has finite-dimensional range and therefore is compact. The
perturbation A = B+C generates a C0-semigroup T such that T (t)−S(t) is
compact for every t ≥ 0. So the essential growth bound of T does not exceed
the growth bound of S and is strictly negative [14, Chap. 4 Proposition 2.12].

��
Theorem 24. Let the Assumptions 15 and 22 be satisfied and w̃, x̃ be an
equilibrium of (2.32). If w̃ �= 0, also make Assumption 23.

Then the following hold:
(a) If all eigenvalues of A = B + C have strictly negative real part, then

the equilibrium (w̃, x̃) is locally asymptotically stable in the following sense.
There exist M ≥ 1 and r > 0 such that∥∥(w(t), x(t))− (w̃, x̃)

∥∥
1
≤Me−rt

∥∥(w(0), x(0))− (w̃, x̃)
∥∥

1
∀t ≥ 0,

for all solutions of (2.32).
(b) If A = B + C has at least one eigenvalue with strictly positive real

part, then the equilibrium (w̃, x̃) is unstable in the following sense: there exist
some ε > 0 and a sequence 0 < tn → ∞ as n → ∞ and a sequence of
solutions wn, xn of (2.32) such that wn(0) → w̃, xn(0) → x̃ as n → ∞ and∥∥(wn(tn), xn(tn))− (w̃, x̃)

∥∥
1
≥ ε for all n ∈ N.

Proof. We notice that the non-linearity g in (2.35) and (2.37) satisfies ‖g(v,y)‖1
‖(v,y)‖1

→ 0 as v → 0, y → 0. Let Φ(t, w̆, x̆) be the semiflow induced by the solutions
of (2.32) with initial data w̆ and x̆. It follows from standard arguments (es-
sentially from Gronwall’s inequality, cf. [55, Sect. 3], e.g.) that, for each t ≥ 0,
Φ(t, ·) is differentiable at (w̃, x̃) with derivative T (t) from Proposition 4. The
results now follow from [12] along the lines of [55, Sect. 4]. ��

2.9 Instability of Every Other Equilibrium:
General Result

The following derivation of an instability condition for equilibria is more ef-
ficiently done on a somewhat more abstract level and may apply to other
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situations where an unstructured (part of the) population [in our case the
dispersers] is paired with a structured (part of the) population [in our case
the occupants]. We consider the system

w′ = f(w, x), x′ = Λx+ g(w, x). (2.38)

Here Λ is a closed linear operator in an ordered Banach space X with cone
X+ and f : R+ ×X+ → R, g : R+ ×X+ → X are continuously differentiable.

We assume that R+ is contained in the resolvent set of Λ and also in the
resolvent set of Λ+ gx(w, x) for each w ≥ 0 and x ∈ X+.
gw and gx denote the partial derivatives of g(w, x) with respect to w and

x. Since Λ−1 exists and is bounded, -1 is in the resolvent set of Λ−1gx(w, x)
and

(I + Λ−1gx(w, x))−1Λ−1 = (Λ+ gx(w, x))−1. (2.39)

2.9.1 The Equilibria

A pair (w, x) is an equilibrium solution of (2.38) if and only if 0 = f(w, x)
and x satisfies the fixed point equation

x = −Λ−1g(w, x). (2.40)

Assume that for every w > 0 there exists a solution x = φ(w) of (2.40). If
follows from our assumptions and the implicit function theorem [8, Chap. 2,
Theorem 2.3] that φ is differentiable (analytic if g is analytic) and

φ′(w) = −Λ−1
(
gw(w, φ(w)) + gx(w, φ(w))φ′(w)

)
. (2.41)

By our assumptions and (2.39),

φ′(w) =−
(
I + Λ−1gx(w, φ(w))

)−1
Λ−1gw(w, φ(w))

=−
(
Λ+ gx(w, φ(w))

)−1
gw(w, φ(w)).

(2.42)

We substitute the solution x = φ(w) of (2.40) into 0 = f(w, x),

0 = f(w, φ(w)) =: F (w). (2.43)

Theorem 25. A pair (w, x) with w ∈ R+ and x ∈ X+ is an equilibrium
if and only if F (w) = 0 and x = φ(w). In particular there is a one-to-one
correspondence between equilibria and zeros of F . F is analytic if f and g are
analytic.

For later use we differentiate the function F ,

F ′(w) = fw(w, φ(w)) + fx(w, φ(w))φ′(w).

We substitute (2.42),

F ′(w) = fw(w, x)− fx(w, x)
(
Λ+ gx(w, x)

)−1
gw(w, x). (2.44)
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2.9.2 The Eigenvalue Problem of the Linearized System

We linearize (2.38) around an equilibrium (w, x),

v′ = fw(w, x)v + fx(w, x)y, y′ = Λy + gw(w, x)v + gx(w, x)y. (2.45)

The associated eigenvalue problem has the form

λv = fw(w, x)v + fx(w, x)y,
λy = Λy + gw(w, x)v + gx(w, x)y.

(2.46)

Consider λ ≥ 0. We solve the second equation for y,

y = (λ− Λ− gx(w, x))−1gw(w, x)v = v(λ− Λ− gw(w, x))−1gw(w, x).

We notice that (v, y) �= (0, 0) if and only if v �= 0. We substitute the expression
for y into the first equation of (2.46) and divide by v,

λ = fw(w, x) + fx(w, x)(λ− Λ− gw(w, x))−1gw(w, x).

This leads to the following characteristic equation,

0 = Q(λ) := λ− fw(w, x)− fx(w, x)
(
λ− Λ− gw(w, x)

)−1
gw(w, x).

We evaluate Q(λ) for λ = 0 and compare it to (2.44),

Q(0) = −fw(w, x) + fx(w, x)
(
Λ+ gw(w, x)

)−1
gw(w, x) = −F ′(w).

Notice that Q(λ) → ∞ as λ → ∞. If Q(0) < 0, the characteristic equation
has a root λ > 0 by the intermediate value theorem.

Theorem 26. Let (w, x) be an equilibrium of (2.38) and F ′(w) > 0. Then
the associated linear operator has a strictly positive eigenvalue.

By Theorem 25, we can order the equilibria (w, x) according to their
w-component provided that the zeros of F are isolated which is the case,
e.g., if f and g and so F are analytic.

Corollary 3. Assume that the zeros of F are isolated and there is no w > 0
with both F (w) = 0 and F ′(w) = 0. Then, for every other equilibrium, the
associated linear operator has a strictly positive eigenvalue.

Proof. If the zeros of F are isolated, then, for every b > 0, then we have
finitely many equilibria (wj , xj) with 0 ≤ wj ≤ b and can order them like
w1 < w2 < · · · . Since F ′(wj) �= 0, F changes sign at each wj . So F ′(wj) > 0
for every other j and the associated linear operator has a strictly positive
eigenvalue by Theorem 26. ��
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2.10 Existence of Equilibria and Instability
of Every Other Equilibrium

After eliminating the equation for the empty patches, our system can be
rewritten in the form (2.32) and then in a more condensed form for w(t) ∈ R+

and x(t) = (xj(t))∞j=1 ∈ �̃11+ ,

w′ = 〈x, x∗〉 − w〈x, y∗〉 − w(σ0N + δ),

x′ = Ãx+ wΓ̃x+ w
(
N − 〈x, z∗〉

)
u,

(2.47)

which is the same as (2.33). Here u and x∗, y∗, z∗ are as in Remark 4 as are
the bounded linear quasi-positive operator Γ̃ on �̃11 and Ã, the generator of
a positive C0-semigroup on �̃11. The system (2.33) fits into the framework of
(2.38) by setting Λ = Ã and

f(w, x) = 〈x, x∗〉 − w〈x, y∗〉 − w(σ0N + δ),

g(w, x) = wΓ̃x+ w
(
N − 〈x, z∗〉

)
u.

(2.48)

For each w ≥ 0, Ãw = Ã+wΓ̃ is also the infinitesimal generator of a positive
C0-semigroup S̃ on �̃11. Notice that we obtain the operator A in (2.36) when
we linearize (2.47) about an equilibrium.

We make the Assumptions 15, 22 and 23. By Proposition 3, S̃ has strictly
negative growth bound and so, for each w ≥ 0, Ãw has positive resolvents
(λ − Ãw)−1 for all λ ≥ 0. We take the partial derivative of g in (2.48) with
respect to x,

gx(w, x)y = wΓ̃y − w〈y, z∗〉z, z = Nu. (2.49)

Lemma 6. If λ−Ãw has a bounded positive inverse for λ ≥ 0, λ−Ã−gx(w, x)
has a bounded inverse and

(λ− Ã− gx(w, x))−1x̃ = (λ− Ãw)−1x̃− wζ(λ− Ãw)−1z

where

ζ =
〈(λ− Ãw)−1x̃, z∗〉

1 + w〈(λ− Ãw)−1z, z∗〉
.

Proof. In order to find x̂ = (λ− Ã− gx(w, x))−1x̃, we solve the equation

λx̂− Ãx̂− wΓ̃ + w〈x̂, z∗〉z = x̃.

See (2.48). This can be rewritten as

(λ− Ãw)x̂ = x̃− w〈x̂, z∗〉z.

Since the resolvent exists for Ãw,



2 Infinite ODE Systems Modeling Size-Structured Metapopulations 89

x̂ = (λ− Ãw)−1x̃− w〈x̂, z∗〉(λ− Ãw)−1z.

We apply the functional z∗,

〈x, z∗〉 = 〈(λ− Ãw)−1x̃w, z
∗〉 − w〈x, z∗〉〈(λ− Ãw)−1z, z∗〉.

We solve for ζ := 〈x, z∗〉 and substitute ζ into the equation for x. This yields
the assertion. ��

Since f and g are analytic, (w, x) is an equilibrium of (2.47) if and only
if x = φ(w) and F (w) = 0 where φ and F are analytic functions on R+

(see Theorem 25).

2.10.1 Equilibria

To find a concrete expression for the solutions x = φ(w) of the equation
Λx+ g(w, x) = 0, which is identical to

0 = Ãx+ wΓ̃x+ w
(
N − 〈x, z∗〉

)
u = Ãwx+ w

(
N − 〈x, z∗〉

)
u,

we apply the inverse of Ãw to the second equation in (2.33),

x = −w
(
N − 〈x, z∗〉

)
Ã−1

w u. (2.50)

In order to calculate 〈x, z∗〉, we apply the functional z∗ to this equation,

〈x, z∗〉 = −w
(
N − 〈x, z∗〉

)
〈Ã−1

w u, z∗〉.

We solve for 〈x, z∗〉,

〈x, z∗〉 = −wN 〈Ã−1
w u, z∗〉

1− w〈Ã−1
w u, z∗〉

.

Notice that the denominator is positive because −Ã−1
w is a positive operator.

Further
〈x, z∗〉 ∈ [0, N). (2.51)

We rewrite
〈x, z∗〉 = N

(
1− 1

1− w〈Ã−1
w u, z∗〉

)
. (2.52)

We substitute this expression into the one for x = φ(w), recall Nu = z from
Remark 4, and find

φ(w) = wψ(w),

ψ(w) = − 1
1− w〈Ã−1

w z, z∗〉
Ã−1

w u ∈ X+.
(2.53)
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By (2.43),
F (w) = f(w, φ(w))

= 〈φ(w), x∗〉 − w〈φ(w), y∗〉 − σ0wN − δw.
(2.54)

At this point, we need an estimate for φ(w). We recall that there is a one-to-
one correspondence between equilibria of (2.32) and equilibria of the original
system (2.27) with ‖x‖ = 1. This means that φ(w) = (xj)∞j=1 where x ∈ �11+ ,
A1x+ wΓx = 0 and x0 = N −

∑∞
j=1 xj . By Theorem 19,

∞∑
k=1

ηkxk − w
∞∑

k=0

σkxk ≤ c4.

After eliminating x0 = N −
∑∞

k=1 xj this reads

∞∑
k=1

ηkφk(w)− w
∞∑

k=1

[σk − σ0]φk(w)− wσ0N ≤ c4.

By Remark 4 and (2.54), F (w) ≤ c4 − δw and F (w) < 0 for large w > 0.
We substitute φ(w) = wψ(w) into F . For w > 0, equation F (w) = 0 then

takes the form
F̃ (w) = δ

with
F̃ (w) =

F (w)
w

+ δ

being analytic in w > 0 and F̃ (w) < δ for large w > 0 and

F̃ (0) = 〈ψ(0), x∗〉 − σ0N, ψ(0) = −Ã−1z.

We combine Theorems 24 and 26. The associated linear operator in Theorem 26
coincides with the operator A in Theorem 24. Notice that, for w > 0, F̃ (w) = δ
and F̃ ′(w) = 0 is equivalent to F (w) = 0 and F ′(w) = 0.

Theorem 27. Let the Assumptions 15, 22, and 23 be satisfied, ξ = σ0N + δ.
(a) If ξ < −〈Ã−1z, x∗〉, the extinction equilibrium is unstable and there

exists a persistence equilibrium. For all but finitely many ξ < −〈Ã−1z, x∗〉,
there exists an odd number of persistence equilibria (wj , xj), w1 < w2 < · · · .
Every even-indexed persistence equilibrium is unstable.

(b) If ξ > −〈Ã−1z, x∗〉, the extinction equilibrium is stable. For all but
finitely many ξ > −〈Ã−1z, x∗〉, there exists no persistence equilibrium or an
even number of persistence equilibria (wj , xj), w1 < w2 < · · · . Every odd-
indexed persistence equilibrium is unstable.

Proof. Assume that F̃ (w) = δ has a solution. Since F̃ (w) < δ for large w > 0,
F is not constant. F is analytic and so is F ′. Since F ′ is not zero everywhere,
there is no accumulation of arguments w with F̃ ′(w) = 0. Since F̃ (w) < δ for
large w > 0 there are only finitely many w > 0 such that F̃ (w) = −δ and
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F̃ ′(w) = 0. So for all but finitely many δ, we have F̃ ′(w) �= 0 for all w > 0
with F̃ (w) = δ.

(a) Here we consider the case δ < F̃ (0).
As F̃ (w) < δ for large w, there exists an w > 0 such that F̃ (w) = δ by

the intermediate value theorem. For all but finitely many δ, F̃ ′(w) �= 0 for
all w with F̃ (w) = δ. Choose such a δ. Since F̃ (w) < δ for sufficiently large
w > 0, F̃ (w) crosses the line F̃ = δ an odd number of times, the first time
with a negative derivative, the second time with a positive derivative etc.
By Theorems 24 and 26, every w with F̃ ′(w) > 0, i.e., every even-indexed
equilibrium, is unstable. (b) is proved similarly. The stability proof for the
extinction equilibrium is postponed to Theorem 33. ��

Application of these results to special metapopulation models can be
found in [38].

2.11 Stability of the Extinction Equilibrium
Versus Metapopulation Persistence

The total population size of the metapopulation is given by the sum of the
number of dispersers and the total number of patch occupants,

P (t) = w(t) +
∞∑

j=1

jxj(t).

The extinction equilibrium is characterized by P = 0. The stability of the
extinction equilibrium can be formulated in terms of the total population
size.

The extinction equilibrium is locally stable if, for every ε > 0, there exists
some δ > 0 such that P (t) ≤ ε whenever P (0) < δ. The extinction equilibrium
is locally asymptotically stable, if in addition there exists some δ0 > 0 such
that P (t) → 0 as t→∞ whenever P (0) < δ0.

The following two concepts imply the instability of the extinction
equilibrium.

The metapopulation is called weakly uniformly persistent if there exists
some ε > 0 (independent of the initial conditions) such that

lim sup
t→∞

P (t) > ε whenever P (0) > 0.

The metapopulation is called (strongly) uniformly persistent if there exists
some ε > 0 (independent of the initial conditions) such that

lim inf
t→∞ P (t) > ε whenever P (0) > 0.

Obviously uniform persistence implies weak uniform persistence. The converse
holds under additional assumptions the most crucial of which is the existence
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of a compact attractor. Actually we will establish uniform persistence in a
stronger sense. Material on persistence theory for semiflows on infinite dimen-
sional spaces can be found in [27,56,58,62].

2.11.1 Local Asymptotic Stability of the Extinction Equilibrium

We turn to the stability of the extinction equilibrium for the specific metapop-
ulation model (2.27). After elimination of the empty patches, this is the equi-
librium w̃ = 0, x̃ = 0 for (2.32) or rather its abstract formulation (2.33).
Throughout this section, we make the Assumptions 15 and 22. We define
a linear operator B0 (on appropriate domain in �11) and a bounded linear
operator C on �11 by

B0(w, x) = (−ξw, Ãx), C(w, x) = (〈x, x∗〉, wz). (2.55)

and a non-linear map g on �11 by

g(w, x) = (w〈x, y∗〉, wΓ0x), Γ0x = Γ̃ x− 〈x, z∗〉 1
N
z. (2.56)

Then (2.33) can be written as (w, x)′ = (B0 +C)(w, x)+g(w, x). The domain
of B0 is the same as the one of the operator A1, D(B0) = D(A1), D1 ⊆
D(B0) ⊆ D0. For each ε ≥ 0, (2.32) can be written as the Cauchy problem

(w, x)′ = Aε(w, x) + gε(w, x),

with

Aε = B0 − εI + (1− ε)C, gε = εI + εC + g. (2.57)

Differently from g, the modified non-linearity gε, for ε > 0, is positivity pre-
serving in a neighborhood of the origin (the size of which depends on ε).

Lemma 7. Let the Assumptions 15 and 22 hold. Then, for any ε > 0, there
exists some ε0 > 0 such that gε(w, x) ≥ 0 whenever w ∈ [0, ε0], x ∈ �̃11+
‖x‖∼1 ≤ ε0.

Proof. Let w ∈ [0, ε0], x ∈ �̃11+ , ‖x‖∼1 ≤ ε0. We look at the first component of
gε(w, x). By (2.56), (2.57), Remark 4, and Assumption 15(c),

εw + ε〈x, x∗〉+ w〈x, y∗〉

≥ εw − w
∞∑

k=1

σkxk ≥ w(ε− c7‖x‖∼1 ) ≥ w(ε− c7ε0) ≥ 0,

if ε0 is chosen small enough. We look at the second component of gε. By (2.57)
(2.56), and (2.55),
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εx+ εwz + wΓ0x = εx+ wΓ̃x+ w
(
ε− 〈x, z∗〉 1

N

)
z.

The term in (·) can be estimated by

≥ ε− ‖x‖∼1
1
N
≥ ε− ε0

1
N
≥ 0,

if ε0 > 0 is chosen small enough. As for the other term,

(εx+ wΓ̃x)j ≥ (ε− wγjj)xj ≥ (ε− wc8)xj

where c8 is the constant in Assumption 15(d). The last expression is non-
negative if w ≤ ε0 and ε0 > 0 is chosen small enough. ��

The operators (1 − ε)C are compact for every ε ≥ 0. By Proposition 3,
Ã is the generator of a C0-semigroup S̃ on �̃11 with strictly negative growth
bound. The operators B0 − εI generate C0-semigroups Sε on �11 which have
the form

Sε(t)(w, x) =
(
e−(ε+ξ)tw, e−εtS̃(t)x̃

)
.

Obviously the semigroups Sε have strictly negative growth bounds. For each
ε ≥ 0, the operator Aε = B0−εI+(1−ε)C generates a C0-semigroup {T ε(t); t ≥
0} on �11. Since (1− ε)C is compact, T ε(t)− Sε(t) is compact for every t ≥ 0
and the essential growth bound of T ε equals the essential growth bound of
Sε [14, Chap. 4, Proposition 2.12] and is strictly negative. For all ε ∈ [0, 1],
the operators (1 − ε)C are positive, i.e, they map �11+ into itself. Since the
semigroup Sε is positive, the standard perturbation formula implies that the
semigroup T ε is positive.

Proposition 5. Let the Assumptions 15 and 22 be satisfied. Assume that
there is a spectral value of A0 with non-negative real part. Then there exists
some λ0 ≥ 0 with the following properties:

(i) λ0 is a pole of the resolvent of A0, is isolated in the spectrum of A0 and
an eigenvalue of A0 with finite algebraic multiplicity.

(ii) λ0 ≥ �λ̃ for every λ̃ in the spectrum of A0.
(iii) λ0 is associated with positive eigenvectors of A0 and A∗

0.

Proof. By assumption, the spectral bound of A0,

λ0 = sup{�λ;λ ∈ σ(A0)},

is non-negative. Since T (t) − S(t) is compact for every t > 0, (λ − A0)−1 −
(λ−B0)−1 is compact for sufficiently large λ > 0, i.e., A0 is resolvent compact
relatively to B0 [57, Def.3.7]. Then the spectral bound λ0 is non-negative and
has the asserted properties [57, Proposition 3.10]. ��
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Theorem 28. Let the Assumptions 22 and 15 be satisfied. Assume that there
is no element v ∈ �11+ ∩ D(A0) such that v �= 0 and A0v ≥ 0. Then the
extinction equilibrium is locally asymptotically stable.

Proof. It follows from the assumptions and (2.56) that g is continuously dif-
ferentiable in �11+ and g′(0) = 0. Suppose that the spectral bound of A0,

λ0 = sup{�λ;λ ∈ σ(A0)},

is non-negative. Then the same arguments as in the proof of Proposition 5
imply that λ0 has the properties (i), (ii), (iii) asserted in Proposition 5, in
particular A0v = λ0v ≥ 0 with some v ∈ �11+ ∩D(A0), in contradiction to our
assumption. Hence λ0 < 0 and all eigenvalues of A0 +g′(0) = A0 have strictly
negative real parts. The assertion follows from Theorem 24. Recall w̃ = 0. ��

2.11.2 Instability of the Extinction Equilibrium

Theorem 29. Let the Assumptions 22 and 15 be satisfied. Assume that there
is an element v ∈ �11+ ∩D(A0) such that v �= 0 and A0v ≥ 0. Further assume
that there is no element v ∈ �11+ ∩D(A0) such that v �= 0 and A0v = 0. Then
the extinction equilibrium is unstable.

Remark 5. Under the assumptions of Theorem 29, there exists an eigenvalue
λ0 > 0 of A0 which is associated with positive eigenvectors of A0 and A∗

0.

Proof. We choose some v ∈ �11+ , v �= 0, such that A0v ≥ 0. For λ > 0,
(λ − A0)v ≤ λv. For sufficiently large λ, (λ − A0)−1 exists and is a bounded
positive operator. We apply it to the previous inequality arbitrarily many
times, v ≤ λn(λ−A0)−nv. This implies that the spectral radius of λ(λ−A0)−1

is greater than or equal to 1. Hence the spectral bound of A0, λ0, satisfies λ0 ∈
[0,∞) [57, Cor. 3.6]. By Proposition 5, λ0 is an eigenvalue of A0 associated
with an eigenvector v ∈ �11+ of A0 and a positive eigenvector of A∗

0. Since
A0v �= 0 for all v ∈ �11+ , v �= 0, λ0 > 0. So A0 has a positive eigenvalue and,
by Theorem 28 (notice that A = A0 because w = w̃ = 0), the extinction
equilibrium (0, 0) is unstable. ��

2.11.3 Persistence of the Metapopulation

Since persistence is a stronger property than instability of the extinction equi-
librium, it is not surprising that we uphold the assumptions of Theorem 29.
Then the operator A0 = B0 +C has a positive eigenvalue which is associated
with a positive eigenvector of A∗

0. We need this eigenvector to be strictly pos-
itive in an appropriate sense. To this end we make irreducibility assumptions
for the transition matrix (αjk).
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Definition 1. The infinite matrix (αjk)j,k∈N is called irreducible if, for every
j, k ∈ N, j �= k, there exist n ∈ N and i1, . . . , in ∈ N such that i1 = k, in = j
and αil+1,il

> 0 for l = 1, . . . , n− 1;
If k0 ∈ N, the finite matrix (αjk)k0

j,k=1 is called irreducible if the analogous
statement holds with the set N be replaced by {0, . . . , k0}.

A number k0 ∈ N is called the irreducibility bound of the infinite matrix
(αjk), if the matrix (αjk)k0

j,k=0 is irreducible, αjk = 0 whenever j > k0 and
k = 0, . . . , j − 1, and αkk < 0 for k > k0.

Analogously the irreducibility of an infinite matrix (ᾰjk)j,k∈Z+ or its irre-
ducibility bound are defined.

Notice that the irreducibility together with the assumptions
∑∞

j=0 αjk ≤ 0,
αjk ≥ 0 for j �= k, implies that αkk < 0 for all k ∈ N. It is easy to see that
the irreducibility bound (if there is one) is uniquely determined.

Assumption 30 Let one of the following be satisfied:

(a) The infinite matrix (αjk)j,k∈N is irreducible and γj0 > 0 for some j ∈ N

and ηk > 0 for some k ∈ N.
or

(b) The matrix (αjk)j,k∈N has the irreducibility bound k0, γj0 > 0 for some
j ∈ {1, . . . , k0} and ηk > 0 for some k ∈ {1, . . . , k0}.

Proposition 6. Let Assumption 22, 15 and 30 be satisfied. Then the eigen-
value λ0 of A0 in Proposition 5 is associated with a strictly positive eigenvector
v∗ of A∗

0, 〈x, v∗〉 > 0 for all x ∈ �11+ , x �= 0.

Proof. Let us first assume (a) in the Assumption 30. The operator A0 =
B0 + C, with B0 and C in (2.55) and x∗, z in Remark 4, is associated with
the infinite matrix

(βjk)∞j,k=0 =

⎛
⎜⎜⎜⎝
−ξ η1 η2 · · ·
γ10N α11 α12 · · ·
γ20N α21 α22 · · ·

...
...

...
...

⎞
⎟⎟⎟⎠ . (2.58)

By Assumption 30(a) this infinite matrix is irreducible and the semigroup T
generated by A0 is strictly positive on �11+ , i.e., [T (t)x]j > 0 for every t > 0,
j ∈ Z+, x ∈ �11+ , x �= 0. This implies that the eigenvector v∗ of A0 associated
with λ0 is strictly positive, i.e. 〈x, v∗〉 > 0 for all x ∈ �11+ , x �= 0. Let us now
assume (b) in the Assumption 30. v∗ can be identified with a sequence (yj)∞j=0

with yj = 〈ej , v∗〉 ≥ 0 for all j ∈ Z+. Here ej is the sequence which has 1 in
the jth term and only zeros otherwise. Suppose that yj = 0 for j = 0, . . . , k0.
Let k > k0 be the smallest natural number for which yk > 0. Since k > 1, by
the form of (2.58),

〈ek,A∗v∗〉 =
∞∑

j=k

yjαjk.
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Since αjk = 0 for j > k > k0 by Definition 1,

〈ek,A∗v∗〉 = αkkyk.

But also 〈ek,A∗v∗〉 = λ0yk which implies 0 < λ0 = αkk ≤ 0, a contradiction.
Hence yj > 0 for at least one j ∈ {0, . . . , k0}. Since the matrix (βjk)k0

j,k=0 is
irreducible, [T (t)x]j > 0 for all t > 0, j = 0, . . . , k0, x ∈ �11+ , x �= 0. Hence, for
each x ∈ �11+ , x �= 0,

0 < 〈T (t)x, v∗〉 = eλ0t〈x, v∗〉.

��

Theorem 31. Let Assumptions 22, 15, and 30 be satisfied. Assume that there
is an element v ∈ �11+ , v �= 0, such that A0v = (B0 +C)v ≥ 0. Further assume
that there is no element v ∈ �11+ , v �= 0, such that (B0 + C)v = 0.

Then the metapopulation is uniformly weakly persistent, i.e., there exists
some ε0 > 0 such that

lim sup
t→∞

(
w(t) +

∞∑
j=1

jxj(t)
)
≥ ε0

for all solutions of (2.27) with w̆ ≥ 0, x̆ ∈ �11+ , w̆ +
∑∞

j=1 jx̆j > 0.

Proof. By Remark 5, A0 has an eigenvalue λ0 > 0. We first show that the op-
erators Aε also have positive eigenvalues provided that ε > 0 is small enough.
Let λ be a resolvent value of B0. Then

λ−Aε =
[
I + ε(λ−B0)−1 − (1− ε)C(λ−B0)−1

]
(λ−B0).

If λ > 0 is chosen large enough,∥∥ε(λ−B0)−1 − (1− ε)C(λ−B0)−1
∥∥ < 1

for all ε ∈ [0, 1] and the operator in [ ] has a bounded inverse. Thus λ − Aε

has a bounded inverse and

(λ−Aε)−1 = (λ−B0)−1
[
I + ε(λ−B0)−1 − (1− ε)C(λ−B0)−1

]−1

ε→0−→(λ−B0)−1
[
I− C(λ−B0)−1

]−1 = (λ−A0)−1.

As λ0 > 0 is an eigenvalue of A0 and an isolated point of the spectrum of A0

by Proposition 5, we can choose ε > 0 so small that λε > 0 for the spectral
bound λε of Aε [32, Chap. 4, Theorem 2.25 and Sect. 3.5]. Then Propositions 5
and 6 hold for Aε and λε rather than A0 and λ0. Once ε > 0 has been chosen,
by Lemma 7 there exists some ε0 > 0 such that gε(x) := εx + εCx + g(x) ≥ 0
for all x ∈ �11+ , ‖x‖1 ≤ ε0. Assume that there exists a non-negative solution
w, (xj)∞j=0 of (2.27) with w̆ ≥ 0, x̆ ∈ �11+ , w̆ +

∑∞
j=1 jx̆j > 0 and
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lim sup
t→∞

(
w(t) +

∞∑
j=1

jxj(t)
)
< ε0.

If we set x(t) = (xj(t))∞j=1, w and x satisfy (2.33). Then x = (w, x) in �11+ with
x(0) �= 0 and lim supt→∞ ‖x(t)‖1 < ε0. By Propositions 5 and 6, λε = s(Aε) is
an eigenvalue of Aε and there exists v∗ε ∈ X∗

+, X = �11, such that 〈x, v∗ε 〉 > 0
for all x ∈ �11+ , x �= 0. By making a time shift forward and using the semiflow
property, we can assume that 〈x(t), v∗ε 〉 > 0 and ‖x(t)‖1 ≤ ε0 for all t ≥ 0.
Then, for all t ≥ 0,

x(t) = x(0) + Aε

∫ t

0

x(s)ds+
∫ t

0

gε(x(s))ds ≥ x(0) + Aε

∫ t

0

x(s)ds.

Let x̂(λ) denote the Laplace transform of x,

x̂(λ) =
∫ ∞

0

e−λtx(t)dt.

We take the Laplace transform of the equation above,

x̂(λ) ≥ 1
λ
x(0) +

1
λ

Aεx̂(λ).

We multiply by λ and apply the functional v∗ε ,

λ〈x̂(λ), v∗ε 〉 ≥ 〈x(0), v∗ε 〉+ λε〈x̂(λ), v∗ε 〉.

For λ = λε we obtain the contradiction, 0 ≥ 〈x(0), v∗ε 〉 > 0. ��

If the solution semiflow has a compact attract, a stronger persistence re-
sults can be obtained.

Theorem 32. Let the Assumptions 15, 17, 20, 22, and 30 be satisfied.
Assume that there is an element v ∈ �11+ , v �= 0, such that (B0 + C)v ≥ 0.

Further assume that there is no element v∈�11+ , v �=0, such that (B0+C) v=0.
Then the metapopulation is uniformly strongly persistent in the following

sense: Under Assumption 30(a), for every j ∈ Z+, there exists some εj > 0
such that

lim inf
t→∞ w(t) ≥ ε0, lim inf

t→∞ xj(t) ≥ εj ∀j ∈ N

for all integral solutions of (2.27) with w̆ ≥ 0, x̆ ∈ �11+ , w̆ +
∑∞

j=1 jx̆j > 0.
Under Assumption 30(b), such a result holds for w and x1 . . . , xk0 .

Proof. We define ρ : R+× �11+ → R+ by ρ(w, x) = w+
∑∞

j=1 jxj , x = (xj)∞j=0.
By Theorem 31, the semiflow induced by the solutions of (2.27) is uniformly
weakly ρ-persistent in the language of [58, A.5] and has a compact attrac-
tor by Theorem 21. We apply [58, Theorem A.34]. In order to show the
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persistence result for xj , fix j ∈ N for (a) and j ∈ {1, . . . , k0} for (b)
and define ρ̃(x) = xj , x = (xj)∞j=0. In order to show the persistence re-
sult for w define ρ̃ by ρ̃(w, x) = w. Let Φ be the semiflow induced by the
solutions of (2.28), Φt(w̆, x̆) = (w(t), x(t)) with w, x = (xj)∞j=0 satisfying
(2.28). A total orbit (w(t), x(t)) of Φ is defined for all t ∈ R and satisfies
(w(t), x(t)) = Φt−r(w(r), x(r)) for all t, r ∈ R, t ≥ r. This is equivalent to

w′ =
∞∑

k=1

ηkxk − w
∞∑

k=0

σkxk − δw on R,

xj(t)− xj(r) =
∞∑

k=0

αjk

∫ t

r

xk(s)ds+
∞∑

k=0

γjk

∫ t

r

w(s)xk(s)ds,

j ∈ Z+, r, t ∈ R, t > r.

(2.59)

Cf. (2.28). The assumptions of [58, Theorem A.34] are satisfied by the follow-
ing Lemma. ��

Lemma 8. Let the assumptions of Theorem 32 be satisfied. Let w(t), x(t) =
(xj(t))∞j=0 be a non-negative solution of (2.59) which exists on R such that
w(t) + ‖x(t)‖1 ≤ c for all t ∈ R with some constant c > 0 and ‖x(t)‖ = N for
all t ∈ R.

Then w(t) > 0 and xj(t) > 0 for all t ∈ R and all j ∈ N, whenever
w(t) +

∑∞
k=1 kxk(t) > 0 for all t ∈ R.

Proof. By (2.59), integrating the equation for w, for t > r,

w(t) = w(r)
φ(t)
φ(r)

+
∫ t

r

∞∑
k=1

ηkxk(s)
φ(t)
φ(s)

ds,

φ(t) = exp
(∫ t

0

[ ∞∑
k=0

σkxk(s)− δ
]
ds
)
> 0,

xj(t) = xj(r)
φj(t)
φj(r)

+
∫ t

r

∞∑
k 
=j,k=1

[αjk + γjkw(s)]xk(s)
φj(t)
φj(s)

ds,

φj(t) = exp
(∫ t

0

[
αjj + γjjw(s)

]
ds
)
> 0.

(2.60)

The irreducibility assumptions are now combined with the following kind of
arguments.

Case 1: Suppose that xk(r) > 0 for some r, k ∈ N. By (2.60), xk(t) ≥
xk(r)φj(t)

φ(r) > 0 for all t ≥ r. Now let j ∈ N, αjk > 0. By (2.60),

xj(t) ≥
∫ t

r

αjkxk(s)
φj(t)
φj(s)

ds > 0 ∀t > r.
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If we combine this argument with the respective irreducibility properties of the
matrix (αjk)j,k∈N we obtain that xj(t) > 0 for t > r and j ∈ N or j = 1, . . . , k0
respectively.

By Assumption 30, there exists some k ∈ N such that ηk > 0. Then

w(t) ≥
∫ t

r

ηkxk(s)
φ(t)
φ(s)

ds > 0 ∀t > r.

Case 2: Now assume that w(r) > 0 for some r ∈ R. By (2.60), w(t) > 0 for
all t > r. Since

∑∞
k=0 xk(r) = N there are two cases, x0(r) > 0 or xk(r) > 0

for some k ∈ N. If the second is the case, the considerations for case 1 imply
that xj(t) > 0 for all t > r and all j ∈ N or j = 1, . . . , k0 respectively. So let
us assume that x0(r) > 0. Then x0(t) > 0 for all t ≥ r. By Assumption 30,
there exists some j ∈ N (or j ∈ {1, . . . , k0}) such that γj0 > 0. By (2.60),

xj(t) ≥
∫ t

r

γj0w(s)x0(s)
φj(t)
φj(s)

ds > 0 ∀t > r.

By Case 1, xj(t) > r for all t > r, j ∈ N. ��

We conclude this section by emphasizing that there is a distinct threshold
condition (though we can only express it in abstract terms) which separates
local stability of the extinction equilibrium on the one hand from existence of
a persistence equilibrium and (weak or strong) persistence of the metapopu-
lation on the other hand.

Theorem 33. Let the Assumptions 15 and 22 be satisfied. Let z, x∗, ξ and
the operator Ã be as in Remark 4. Then the following hold:

(a) Let ξ > −〈Ã−1z, x∗〉. Then the extinction equilibrium is locally asymptot-
ically stable.

(b) Let ξ < −〈Ã−1z, x∗〉. Then the extinction equilibrium is unstable and there
exists a persistence equilibrium. If in addition, Assumption 30 holds, the
metapopulation is uniformly weakly persistent in the sense of Theorem 31.
If we also add Assumptions 17 and 20, then the metapopulation is uni-
formly strongly persistent in the sense of Theorem 32.

Proof. (a) We apply Theorem 28. Suppose that the assumptions of this the-
orem are not satisfied. Then there exists an element v ∈ �11+ ∩D(A0), v �= 0,
such that A0v ≥ 0. By definition of A0 in (2.57) and by (2.55), v = (w, x)
with w ≥ 0, x ∈ �̃11+ , with

0 ≤ −ξw + 〈x, x∗〉, 0 ≤ Ãx+ wz. (2.61)

By Proposition 3, −Ã−1 exist and is a positive bounded linear operator. We
apply it to the second inequality in (2.61), x ≤ −wÃ−1z. If w = 0, x ∈ −�̃11+
and so x = 0 and v = 0. Since v �= 0, w > 0. We substitute x ≤ −wÃ−1z in
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the first inequality in (2.61), 0 ≤ −ξw−w〈Ã−1z, x∗〉. We divide by w > 0 and
obtain a contradiction to the assumption ξ > −〈Ã−1z, x∗〉. So the assumptions
of Theorem 28 are satisfied and the local asymptotic stability of the extinction
equilibrium follows.

(b) The existence of a persistence equilibrium has already been established
in Theorem 27 (a). (Notice that Assumption 23 is only needed for the instabil-
ity statements in Theorem 27 (a).) Similarly as in (a), we show that existence
of an element v ∈ �11+ , v �= 0, A0v = (B0 +C)v = 0, leads to ξ = −〈Ã−1z, x∗〉
which is ruled out by assuming ξ < −〈Ã−1z, x∗〉. Set x = −Ã−1z and w = 1.
Then 0 = Ãx+wz and 0 ≤ −ξw+ 〈x, x∗〉 which translates into (B0 +C)v ≥ 0
for v = (w, x) by (2.55). The respective assumptions of Theorems 29, 31 and
32 are satisfied and uniform weak or uniform strong persistence follow. ��

2.12 Application to Special Metapopulation Models

In [38], we consider the following metapopulation model,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′ =
∞∑

n=1

(1− qn)βnxn(t)−
[
δ +

∞∑
n=0

σnxn(t)
]
w,

x′0(t) = µ1x1(t) +
∞∑

n=1

κnxn(t)− σ0w(t)x0(t),

x′n(t) =
[
qn−1βn−1 + σn−1w(t)

]
xn−1(t) + µn+1xn+1(t)

−
[
qnβn + σnw(t) + µn + κn

]
xn(t),

n = 1, 2, . . . .

(2.62)

βn and µn are the birth and death rates in local populations of size n, qn is
the probability that a juvenile stays on its birth patch if the local population
size is n, κn is the rate at which a local population of size n is completely
wiped out, and σn the rate at which an average migrating individual settles
on a patch with local population size n. Migrating individuals are assumed to
not reproduce, their per capita death rate is δ.

In comparison to (2.27), we identify⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αk+1,k = qkβk, k ∈ N,
αk−1,k = µk, k ∈ N,
αkk = −(qkβk + µk + κk), k ∈ N,
α0k = κk, k ∈ N,
αk0 = 0, k ∈ Z+,
αjk = 0, |j − k| > 1,

(2.63)

and ⎧⎨
⎩
γk+1,k = σk, k ∈ Z+,
γk,k = −σk, k ∈ Z+,
γjk = 0, j, k ∈ Z+ otherwise

(2.64)
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and ηk = (1− qk)βk. Then
∞∑

j=0

αjk = 0, k = 0, 1, . . . .

For k ∈ N,
∞∑

j=1

jαjk = (k + 1)qkβk + (k − 1)µk − k(qkβk + µk + κk)

= qkβk − µk − kκk,

ηk +
∞∑

j=1

jαjk = βk − µk − kκk.

For k = 0,
∞∑

j=1

jαj0 = 0. For k ∈ Z+,

∞∑
j=0

γjk = 0,
∞∑

j=1

jγjk = σk,

∞∑
j=1

j|γjk| ≤ 2(1 + k)σk.

Assumption 34 (a) βn, κn ≥ 0, µn > 0 for all n ∈ N.
(b) 0 ≤ qn ≤ 1 for all n ∈ N.
(c) σn ≥ 0 for all n ∈ Z+,

∞
sup
n=0

σn <∞.

Theorem 35. Let the Assumption 34 be satisfied. Further, if ε > 0 is chosen
small enough, let sup∞

n=1
(1+ε)βn−µn

n < ∞. Then, for every w̆ ≥ 0, x̆ ∈ �11+ ,
there exists a unique integral solution of on [0,∞). Further ‖x(t)‖ ≤ ‖x̆‖ for
all t ≥ 0.

Theorem 36. Let the assumptions of Theorem 35 be satisfied. Further as-
sume that there exist constants c4, ε4 > 0 such that βn − µn − nκn ≤ c4 − ε4n
for all n ∈ N. Then

w(t) +
∞∑

j=1

jxj(t) ≤
(
w̆ +

∞∑
j=1

jx̆j

)
e−ε4t +

c4‖x̆‖
ε4

for all solutions (w, x) of (2.62) with initial data w̆ ≥ 0, x̆ ∈ �11+ . Further
‖x(t)‖ ≤ ‖x̆‖ for all t ≥ 0.

We apply Theorem 21.

Theorem 37. In addition to the Assumption 34 assume that
∞
inf
n=1

µn

n
> 0, lim sup

n→∞
βn

µn
< 1, and

∞
sup
n=1

κn

n
<∞.

Then the semiflow induced by the solutions of (2.62) on R+×�11+ has a compact
attractor for bounded sets.
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2.12.1 Scenarios of Extinction

The population goes extinct without emigration from the patches or coloniza-
tion of empty patches.

Theorem 38. Let the Assumptions of Theorem 37 be satisfied. If qk = 1 for
all k ∈ N (i.e. there is no patch emigration) or if σ0 = 0 (empty patches are
not colonized), the total population size, w(t) +

∑∞
j=1 jxj(t), is integrable on

[0,∞) and converges to 0 as t→∞.

Proof. This follows from Corollary 2, γ00 = −σ0, and ηk = (1− qk)βk. ��

The population also goes extinct if on every patch the birth rate is smaller
than the death rate.

Corollary 4. Let the assumptions of Theorem 35 be satisfied. Assume that
there exists some ε > 0 such that βk − µk − kκk ≤ −εk for all k ∈ N. Then
the total population size, w(t) +

∑∞
j=1 jxj(t), converges to 0 as time tends to

infinity.

Proof. The assumptions of Theorem 36 are satisfied with c4 = 0. ��

2.12.2 Persistence

We assume that the metapopulation is not subject to catastrophes, κn = 0,
and introduce the following number which can be interpreted as the basic
reproduction ratio of the metapopulation [38],

R0 =
σ0N

σ0N + δ

( ∞∑
j=1

(1− qj)
βj

µj

j−1∏
k=1

qkβk

µk

)
. (2.65)

Theorem 39. Let σ0 > 0, κn = 0 for all n ∈ N and
∞
inf
n=1

µn

n
> 0,

lim supn→∞
βn

µn
< 1. Then the following hold:

(a) Let R0 < 1. Then the extinction equilibrium is locally asymptotically stable.
(b)Let R0 > 1. Then there exists a persistence equilibrium.
(c) Let R0 > 1 and one of the following be satisfied:

(c1) qjβj > 0 for all j ∈ N and (1− qk)βk > 0 for some k ∈ N,
or
(c2) There exists some k0 ∈ N such that qjβj > 0 for j = 1, . . . , k0 − 1,
qjβj = 0 for all j ≥ k0, and that (1−qj)βj > 0 for some j ∈ {1, . . . , k0}.

Under (c1), for every j ∈ Z+, there exists some εj > 0 such that

lim inf
t→∞ w(t) ≥ ε0, lim inf

t→∞ xj(t) ≥ εj ∀j ∈ N

for all solutions of (2.62) with w̆ ≥ 0, x̆ ∈ �11+ , w̆ +
∑∞

j=1 jx̆j > 0. Under
Assumption (c2), such a result holds for w and x1 . . . , xk0 .
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Proof. We apply Theorem 33. Let x = −Ã−1z. Then
∑∞

k=1 αjkxk + zj = 0
for j ∈ N where x ∈ D(Ã). By Remark 4, zj = γj0N . So z1 = Nσ0 and zj = 0
for j ≥ 2 by (31). By (2.63),

µ2x2 − q1β1x1 = µ1x1 − σ0N,

µj+1xj+1 − qjβjxj = µjxj − qj−1βj−1xj−1, j ≥ 2.
(2.66)

Since x ∈ D(Ã),
∑∞

j=1 |αjj |xj < ∞ and (2.63) implies that the series∑∞
j=1 µjxj and

∑∞
j=1 qjβjxj converge. So we can add the second equality in

(2.66) from j to infinity and obtain that xj = qj−1βj−1
µj

xj−1 for j ≥ 2. The first
equation in (2.66) implies µ1x1 = σ0N . This recursive equation is solved by

xj =
j−1∏
l=1

qlβl

µl

σ0N

µj
. (2.67)

with the understanding that
∏0

j=1 = 1. By Remark 4, 〈x, x∗〉 =
∑∞

j=1 ηjxj

with ηj = (1 − qj)βj , ξ = Nσ0 − δ. This implies that ξ + 〈Ã−1z, x∗〉 has the
same sign as 1− R0. ��

We refer to [38] for existence of multiple persistence equilibria, the spe-
cial case of obligatory juvenile emigration, and a bang-bang principle of
persistence-optimal emigration.

2.13 Special Host-Macroparasite Models
and Existence of Solutions

Let xn denote the number of hosts with n parasites and w the average number
of free-living parasites,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′ =
∞∑

n=1

(1− qn)βnxn −
[
δ +

∞∑
n=0

σnxn

]
w,

x′0 =
∞∑

n=0

γn(x)xn + µ1x1 +
∞∑

n=1

κnxn − σ0wx0 − ν0x0,

x′n =
[
qn−1βn−1 + σn−1w

]
xn−1 + µn+1xn+1

−
[
qnβn + σnw + µn + κn + νn

]
xn,

n = 1, 2, . . . .

(2.68)

2.13.1 Explanation of Parameters

In a host with n parasites, parasites die at a rate µn ≥ 0 and are born at a
rate βn ≥ 0. With probability qn ∈ [0, 1], newborn parasites stay within the
birth host.
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Hosts with n parasites are found and entered by an average free-living
parasite at a per capita rate σn. They look for treatment and are completely
delivered of their parasite load at a per capita rate κn ≥ 0. Hosts with n
parasites die at a per capita rate νn ≥ 0 and give birth at a per capita rate
γn. To be specific, we choose a Ricker type per capita reproduction function,

γn(x) = γ̃n exp
(
−

∞∑
k=0

ηnkxk

)
with γ̃n, ηnk ≥ 0. Notice that no vertical transmission has been assumed, i.e.,
newborn hosts have no parasites.

2.13.2 Unique Existence of Solutions

To fit the host-parasite model into the general framework we identify⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk+1,k = qkβk, k ∈ N,
αk−1,k = µk, k = 2, 3, . . . ,
α01 = µ1 + κ1,
α0k = κk, k = 2, 3, . . . ,
αkk = −(qkβk + µk + κk + νk), k ∈ N,
α00 = −ν0,
αjk = 0, otherwise,

(2.69)

f(w, x) =
∞∑

n=1

(1− qn)βnxn −
[
δ +

∞∑
n=0

σnxn

]
w,

g0(w, x) =
∞∑

n=0

γn(x)xn − σ0wx0,

gj(w, x) = w(σj−1xj−1 − σjxj), j ∈ N.

(2.70)

We calculate ∞∑
j=0

αjk = −νk, k = 0, 1, . . . .

For k ∈ N,
∞∑

j=1

jαjk = (k + 1)qkβk + (k − 1)µk − k(qkβk + µk + κk + νk)

= qkβk − µk − k(κk + νk).

For k = 0,
∞∑

j=1

jαj0 = 0. For k ∈ Z,

∞∑
j=0

gj(w, x) =
∞∑

k=1

γk(x)xk and
∞∑

j=1

jgj(w, x) = w
∞∑

k=0

σkxk.
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Theorem 40. Let the Assumptions 34 be satisfied and νk, δ ≥ 0. Then, for all
w̆ ∈ R+ and x̆ ∈ �11+ , there exists a unique solution w, x on [0,∞) of (2.22).

Per capita host mortality rates that depend on host density and parasite
burden would realistically not lead to a bounded perturbation, but require a
different approach.

2.14 Application to Prion Proliferation

We focus on model (2.2) and leave the models (2.4) and (2.5) for future
work. We assume that the coefficients bjk, σj , and κj are all non-negative and
the parameters δ and Λ are positive. While the infinite matrices (αjk) have
been sparse (basically tri-diagonal with an additional full first row) in the
special metapopulation model in Sect. 2.12 and the host-macroparasite model
in Sect. 2.13, the matrix (αjk) in (2.3) has a full array above the diagonal.
The coefficients αjk in (2.3) satisfy Assumption 1(a) (modified for the missing
x0-equation). By (2.3), for k ≥ 2,

∞∑
j=1

αjk = κk +
k−1∑
j=1

(bjk + bk−j,k)− κk −
k−1∑
i=1

bik =
k−1∑
j=1

bk−j,k.

We substitute k − j = i, ∞∑
j=0

αjk =
k−1∑
i=1

bik. (2.71)

Assumption 1(b) is satisfied if we assume

∞
sup
k=1

k−1∑
i=1

bik <∞. (2.72)

We cannot determine from the literature whether or not such an assumption
is biologically reasonable. It seems to be mainly for mathematical reasons that
the coefficients bjk = b are assumed to be constant in [45, App. A] because it
allows a moment closure which transforms the infinite system to three ordinary
differential equations which can be completely analyzed [47]. In this special
case

∑k−1
i=1 bik = b(k − 1) and Assumption 1(b) is not satisfied. As for part

(c),
∞∑

j=1

jαjk =
k−1∑
j=1

j(bjk + bk−j,k)− kκk − k
k−1∑
i=1

bik.

Again we substitute i = j − k,
∞∑

j=0

jαjk = −kκk +
k−1∑
j=1

jbjk +
k−1∑
i=1

(k − i)bik − k
k−1∑
i=1

bik = −kκk. (2.73)
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This shows that Assumption 1(c) also follows from (2.72). Let �̃1 = {x =
(xj)∞j=1; ‖x‖∼ <∞} with ‖x‖∼ =

∑∞
j=1 |xj |. Then Theorem 2 and Lemma 2

hold mutandis mutatis under (2.72).
Since the state space of the non-linear equations involves �̃11+ rather than

�̃1+, �̃11 = {x = (xj)∞j=1; ‖x‖∼1 < ∞} with ‖x‖∼m =
∑∞

j=1 j
m|xj |, it is suf-

ficient, though, that the infinite matrix (αjk) is associated with a positive
C0-semigroup on �̃11 which follows from (2.73) by the same construction as
in [39] or in [59]. In order to get a handle on the generator in a analogous
fashion as in Lemma 1, we investigate

∞∑
j=1

j2αjk =
k−1∑
j=1

j2(bjk + bk−j,k)− k2κk − k2
k−1∑
i=1

bik.

With the usual substitution j = k − i,
∞∑

j=1

j2αjk =
k−1∑
j=1

j2bjk +
k−1∑
i=1

(k − i)2bik − k2κk − k2
k−1∑
i=1

bik

=− 2
k−1∑
j=1

j(k − j)bjk − k2κk.

If we do not want to impose (2.72), we can alternatively add the following
boundedness and positivity assumptions.

Assumption 41 (a)
∞

sup
k=2

k−1
max
j=1

bjk <∞ and
∞

sup
j=1

κj

j
<∞.

(b)
∞
inf
j=1

κj > 0 or
∞
inf
k=2

1
k

k−1
min
j=1

bjk > 0.

It follows from these assumptions that there exist constants c0, c1, ε > 0
such that ∞∑

j=1

j2αjk ≤ c0 − εk2 − εk|αkk| ∀k ∈ Z+.

The same proofs as in [39] or [59] provide the following result.

Lemma 9. Let the Assumption 41 be satisfied. Then the operator Ă1 on �̃11

defined by

Ă1x =
( ∞∑

k=1

αjkxk

)∞
j=1
, x = (xk)∞k=1,

D(Ă1) =
{
x ∈ �̃11;

∞∑
k=1

k|αkk| |xk| <∞
}

is closable and its closure generates a positive contraction C0-semigroup S̃ on
�̃11. S̃ leaves �̃12 = {x = (xj); ‖x‖∼2 <∞} invariant.
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We set

f(t, w, x) = Λ− w
∞∑

k=1

σkxk − δw,

gj(t, w, x) = w(σj−1xj−1 − σjxj).

Then the Assumption 4 are satisfied. Further

∞∑
j=1

gj(t, w, x) = 0,

∞∑
j=1

jgj(t, w, x) ≤ w
∞∑

j=1

σjxj ,

f(t, w, x) +
∞∑

j=1

jgj(t, w, x) ≤ Λ.

By (2.73), by similar proofs as in Theorems 5 and 7, we obtain that solutions
with non-negative initial data are defined and non-negative for all t ≥ 0 and
satisfy

w(t) ≤ w(0)e−δt + Λ
δ (1− e−δt)

w(t) +
∞∑

j=1

jxj(t) ≤ w(0) +
∞∑

j=1

jxj(0) + Λt

⎫⎪⎬
⎪⎭ ∀t ≥ 0.

If inf∞j=1 κj > 0, then

lim sup
t→∞

(
w(t) +

∞∑
j=1

jxj(t)
)
≤ Λ

ζ
, ζ = min

{
δ,

∞
inf
j=1

κj

}
> 0.

If we additionally assume that the polymerization rates (σj) are bounded, a
similar procedure as in Sect. 2.7 shows that the semiflow on R+×�̃11+ associated

with system (2.2) has a compact attractor for bounded sets. If
∞
inf
j=1

κj = 0 but

∞
inf
k=2

1
k

k−1
min
j=1

bjk > 0, we conjecture that the semiflow has a compact attractor for

bounded sets if it is restricted to the positive cone of the invariant subspace
R× �̃12 with the stronger norm (w, x) = |w|+

∑∞
j=1 j

2|xj |2.

A. Non-Differentiability of the Simple Death
Process Semigroup

We prove formulas (2.19) and (2.20) which imply that the semigroups S on �
and S1 on �11 associated with the simple birth process are not differentiable
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at any t ∈ (0, ln 2]. Recall that we have chosen t̄ = ln 2 such that e−t̄ = 1/2.
By (2.17) and (2.18),

∥∥∥ d
dt
S(t̄)e[2n]

∥∥∥ = 2
2n∑

j=0

(2n
j

)
2−2n|n− j|

= 2
n−1∑
j=0

(2n
j

)
2−2n(n− j) + 2

2n∑
j=n+1

(2n
j

)
2−2n(j − n).

We substitute j = 2n− k in the last sum and use
(
2n
k

)
=
(

2n
2n−k

)
,

∥∥∥ d
dt
S(t̄)e[2n]

∥∥∥ = 4
n−1∑
j=0

(2n
j

)
2−2n(n− j). (2.74)

By the binomial theorem,

22n =
2n∑

j=0

(2n
j

)
= 2

n−1∑
j=0

(2n
j

)
+
(2n
n

)
. (2.75)

By rearranging the binomial coefficients,

n−1∑
j=0

(2n
j

)
j = 2n

n−1∑
j=1

(2n− 1
j − 1

)
= 2n

n−2∑
j=0

(2n− 1
j

)
. (2.76)

Again by the binomial theorem,

22n−1 =
2n−1∑
j=0

(2n− 1
j

)
=

n−2∑
j=0

(2n− 1
j

)
+

2n−1∑
j=n−1

(2n− 1
j

)
.

In the second sum we substitute j = 2n− 1− k. Then

22n−1 =
n−2∑
j=0

(2n− 1
j

)
+

n∑
k=0

( 2n− 1
2n− 1− k

)

= 2
n−2∑
j=0

(2n− 1
j

)
+
(2n− 1

n

)
+
(2n− 1
n− 1

)
.

We combine this formula with (2.76),

n−1∑
j=0

(2n
j

)
j = n

(
22n−1 −

(2n
n

))
.

We combine this last formula with (2.75),
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2
n−1∑
j=0

(2n
j

)
(n− j) = n

(
22n −

(2n
n

))
− 2n

(
22n−1 −

(2n
n

))
= n
(2n
n

)
.

By (2.74), we obtain the equation in (2.19). One checks by induction that(2n
n

)
2−2n =

(1− 1
2 ) · · · (n− 1

2 )
1 · · ·n .

(Cf. [17, II.(12.5)] and [17, II.(4.1)].) By (2.19), for n ≥ 2,∥∥∥ d
dt
S(t̄)e[2n]

∥∥∥ =
(1 + 1

2 ) · · · (n− 1 + 1
2 )

1 · · · (n− 1)
=

n−1∏
j=1

j + 1
2

j
=

n−1∏
j=1

(
1 +

1
2j

)
.

We take the logarithm,

ln
∥∥∥ d
dt
S(t̄)e[2n]

∥∥∥ =
n−1∑
j=1

ln
(
1 +

1
2j

)

≥
∫ n−1

1

ln
(
1 +

1
2x

)
dx =

1
2

∫ 2(n−1)

2

ln
(
1 +

1
y

)
dy

≥ 1
2

∫ 2(n−1)

2

(1
y
− 1

2y2

)
dy ≥ 1

2
(
ln 2(n− 1)− ln 2− 1

)
=

1
2
(
ln(n− 1)− 1

)
.

We exponentiate this estimate and obtain (2.20). As for the inequality in
(2.19),∥∥∥ d

dt
S(t̄)e[2n]

∥∥∥
1
−
∥∥∥ d
dt
S(t̄)e[2n]

∥∥∥
=

∞∑
j=1

j
∣∣∣ d
dt

[
S(t̄)e[2n]

]
j

∣∣∣ = 2
2n∑

j=1

(2n
j

)
2−2nj|n− j|

= 2
n−1∑
j=1

(2n
j

)
2−2nj(n− j) + 2

2n∑
j=n+1

(2n
j

)
2−2nj(j − n)

= 2
n−1∑
j=1

(2n
j

)
2−2nj(n− j) + 2

n−1∑
k=0

( 2n
2n− k

)
2−2n(2n− k)(n− k)

= 21−2n2n2 + 4n
n−1∑
j=1

(2n
j

)
2−2n(n− j).

Here we have used that
( 2n
2n− k

)
=
(2n
k

)
. By (2.74),

∥∥∥ d
dt
S(t̄)e[2n]

∥∥∥
1

= 2−2n2n2 + (n+ 1)
∥∥∥ d
dt
S(t̄)e[2n]

∥∥∥.
This implies the inequality in (2.19).
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Summary. The goal of this chapter is to provide a simple mathematical approach
to modeling the transmission of microparasites between two host populations liv-
ing on distinct spatial domains. We shall consider two prototypical situations (1),
a vector borne disease and, (2), an environmentally transmitted disease. In our
models direct horizontal criss-cross transmission from infectious individuals of one
population to susceptibles of the other one does not occur. Instead parasite trans-
mission takes place either through indirect criss-cross contacts between infective
vectors and susceptible individuals and vice-versa in case (1), and through indirect
contacts between susceptible hosts and the contaminated part of the environment
and vice-versa in case (2). We shall also assume the microparasite is benign in one
of the host populations, a reservoir, that is it has no impact on demography and
dispersal of individuals. Next we assume it is lethal to the second population. In
applications we have in mind the second population is human while the first one is
an animal – avian or rodent – population. Simple mathematical deterministic mod-
els with spatio-temporal heterogeneities are developed, ranging from basic systems
of ODEs for unstructured populations to Reaction–Diffusion models for spatially
structured populations to handle heterogeneous environments and populations liv-
ing in distinct habitats. Besides showing the resulting mathematical problems are
well-posed we analyze the existence and stability of endemic states. Under some
circumstances, persistence thresholds are given.

3.1 Introduction

This chapter fits into the general framework of invasion and persistence of
parasites through spatially distributed host species. Within this fairly general
setting for which a large literature is already available we shall be more specif-
ically interested into two prototypical generic situations of emerging diseases:
a vector borne disease and an environmentally transmitted disease.
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In both cases a first host population, H1, living in a spatial domain Ω1 is
a reservoir to a microparasite population. This parasite is benign in popula-
tion H1, meaning that it has no impact on fertility, mortality and dispersal
of individuals. Now this parasite is fatal to a second host population, H2,
distributed over a neighboring spatial domain Ω2 with Ω1 �= Ω2. One also
assumes the parasite cannot be horizontally criss-cross transmitted by direct
contacts from infectives of H1 to susceptibles of H2, and vice-versa. A first
and natural question to answer to is whether introduction of the parasite
into the first host population yields its invasion and persistence in the second
host population. A further question not answered to in this chapter would be
assessing its impact on this second host population.

Such a dramatic epidemic pattern is quite common for vector transmitted
microparasites and host populations living on either distinct spatial domains,
i.e., Ω1 ∩ Ω2 = ∅, or noncoincident spatial domains, i.e., Ω1 ∩ Ω2 �= ∅ and
Ω1 ∩Ω2 �= Ωi, i = 1, 2.

Recent outbreaks of epidemic diseases in the United States of America
such as West Nile virus, cf. Rutledge et al. [55], or Saint–Louis encephalitis,
cf. Shaman et al. [61], are related to the accidental introduction of an infected
arthropod population or to the environmentally induced dramatic increase in
numbers of permanently infective arthropod populations. These vectors were
responsible for the transmission from avian species, behaving as amplifiers for
the virus, to human populations of fatal arboviruses. Dengue and malaria are
similarly transmitted fatal diseases mostly affecting underdeveloped countries.

Such vector transmitted epidemic diseases causing severe damages have
always been a threat for humans. The spreading of the black plague through
Europe in the mid fourteenth century, cf. Murray [51], killed one fourth of
Europeans. The dramatic scenario depicted in Acuna-Soto et al. [2] gives a
further explanation to the collapse of the Mexican population in the sixteenth
century. In both cases rodents and their arthropods are thought to be respon-
sible for the mass killing of humans.

Another situation occurs for macroparasites releasing eggs through the
intestine and then feces of their hosts. Eggs and larvae are thus spatially
distributed. Indirect criss-cross transmission between the two host populations
occurs through the contaminated spatial subdomain Ω1 ∩Ω2.

A typical situation concerns the transmission of brain worm infection from
white-tailed deer populations (Odocoilus virginianus) to moose populations
(Alces alces) described in Schmitz and Nudds [59]. The disease is benign in
the deer population but fatal to moose and other cervid. Brain worm infection
was used as a weapon for competition: it has caused populations to decline in
areas where deer have invaded the range of other cervid.

The case of environmentally transmitted microparasites is somewhat simi-
lar to the previous one. Under some circumstances parasites released by infec-
tives through their excrements survive for a certain time in the environment.
Then indirect criss-cross transmission between the two host populations oc-
curs through the contaminated subdomain Ω1 ∩Ω2.
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The domestic cat (Felis catus) – Feline Panleucopenia Virus (FPLV) sys-
tem is a simple example of such a system with a single host population.
Typically FPLV can survive up to one year in the environment, i.e., in the
feces of cats, while the duration of the infective stage for exposed hosts is a
few weeks. This difference in scaling is one explanation to the success of us-
ing FPLV to eradicate an invading cat population threatening local sea birds
species in Marion Island, cf. Berthier et al. [12] and the bibliography therein.

A more complex system is related to the growing concern about hantavirus
spreading and its transmission to humans, both in Europe and in the USA, cf.
Schmaljohn and Hjelle [58]. Rodents are recognized as the more likely reser-
voir. In most cases hantaviruses have no impact on rodent demography and
their social structures, cf. Olsson et al. [54], or dispersal patterns. Human
contamination by the Puumala hantavirus occurs mainly through inhalation
of contaminated dust. Bank vole (Clethrionomys glareolus) is the host of the
Puumala virus strain causing epidemic nephropathia, a mild form of hemor-
rhagic fever with renal syndrome (HFRS), in human populations from Eura-
sia with a 0.1–20% fatal rate, cf. Sauvage et al. [56]. Deer mice (Peromyscus
maniculatus) is the host of the American hantavirus “Sin Nombre” causing
hantavirus pulmonary syndrome (HPS) in human populations from the USA
with a 20–40% fatal rate.

Spatio-temporal heterogeneities are of interest when modeling the spatial
propagation of infectious diseases. Spatial heterogeneities may affect local pop-
ulation densities and demography. Temporal heterogeneities may also affect
population dynamics by producing large amplitude oscillations in carrying
capacities. In both cases intraspecific and interspecific contacts between indi-
viduals may greatly differ depending on time and spatial locations.

One obvious point to be settled is whether a parasite can take advantage
of these heterogeneities to invade a host population and persist, or vice-versa.

Our chapter is organized as it follows:

• In Sect. 3.2 we introduce deterministic population dynamics models – the
disease free case – for mildly structured populations, this is with either
time periodic or spatially dependent coefficients.

• In Sect. 3.3 we outline the derivation of basic SEIRS epidemic models for a
single species host population; this yields systems of ODES for nonspatially
structured populations and of PDEs for spatially structured ones.

• In Sect. 3.4 we consider unstructured host populations. We proceed to the
derivation and analysis of, (1), a generic vector borne disease, referred to
as Model H1VH2, and, (2), of an environmentally transmitted disease,
referred to as Model H1GH2. We give stability results for the stationary
states of the resulting systems of ODEs in the autonomous case. In the
case of time periodic coefficients we prove the existence of periodic endemic
states emerging from stable stationary states.

• In Sect. 3.5 we extend our analysis from Sect. 3.4 to the case of spa-
tially distributed populations over distinct spatial domains. For Model
H1VH2 this yields a system of Reaction–Diffusion equations posed on
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three distinct spatial domains, while for Model H1GH2 this yields a sys-
tem of Reaction–Diffusion equations posed on two distinct spatial domains
coupled to an ODE for the environment.

3.2 Demography and Population Dynamics

In order to assess the impact of a microparasite on the dynamics of a given
host species it is important to first carefully model the dynamics of the host
population under consideration in the disease free case. Even for unstructured
populations a scaling problem is also to be handled: comparing the average
life expectancy of susceptible hosts to the duration of the infective stage for
infected hosts, infected vectors and/or the contaminated part of the envi-
ronment. Then various classical population dynamics models may be intro-
duced: models ignoring demography, or models with a Malthusian growth, a
logistic regulation or an Allee effect, cf. the books of Edelstein–Keshet [26],
Murray [51] or Thieme [66].

Let us first consider a homogeneous and unstructured population and let
P (t) ≥ 0 be its density at time t ≥ 0.

A simple situation is the case of a constant population density, see (3.1),
used to model the outbreak of an epidemic disease on a short time range,
cf. [46],

P (t) ≡ P (0), t ≥ 0. (3.1)

Malthusian growth, see (3.2), may be used to study the impact of a lethal
microparasite on an exponentially growing population on a meso-scale time
range,

P ′(t) = (b−m)P (t), t ≥ 0, (3.2)

cf. [12]; herein, b > 0 and m > 0, are the constant birth and death rates,
b−m > 0 being the natural growth-rate.

Simple logistic regulation models, also known as monostable dynamics,
require the introduction of a carrying capacity, K > 0. Then starting from
P (0) > 0 one has P (t) → K as t → +∞ with various transient behaviors
depending on the size of the initial condition P (0) with respect to K or K/2,
see Fig. 3.1.
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Fig. 3.1. Simple logistic regulation with b = 5, m = 1 and k = 0.02 or K = 200
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Fig. 3.2. Allee effect with K = 40 and Ks = 10, left: a = 0.001 and right a = 0.0002

A prototypical model is

P ′(t) = (b− [m+ kP (t)])P (t) = r(1− P (t)/K)P (t), t ≥ 0, (3.3)

with a density-dependent effect, k > 0, a natural growth-rate r = b −m > 0
and a carrying capacity, K = (b − m)/k. Note that the trivial state 0 is
unstable. It becomes stable as soon as r = b−m < 0. Generic logistic models
have a density dependent growth-rate r(p) = b(p) −m(p) with p → r(p)p a
quadratic shaped concave function vanishing at p = 0,K.

To complete the description of simple population models for homogeneous
and unstructured populations models with a strong Allee effect, also known as
bistable models, require the introduction of both a carrying capacity, K > 0,
and an intermediate threshold population density, Ks > 0 with 0 < Ks < K.
Then starting from 0 < P (0) < Ks one has P (t) → 0 as t → +∞, while
starting from Ks < P (0) one has P (t) → K as t → +∞; various transient
behaviors are depicted in Fig. 3.2. A prototypical model is

P ′(t) = a(P (t)−Ks)(K − P (t))P (t), t ≥ 0, (3.4)

a > 0 being a scaling parameter related to the speed at which stabilization
occurs, see Fig. 3.2; cf. the books of [15] and [26], and also [19].

Simple parametric forms for birth and death rates yielding (3.4) are b(p) =
−P 2 + (K + Ks + e)P + c and m(p) = eP + KKs + c, cf. [41]. Generic
models with a strong Allee effect have a density dependent growth-rate r(p) =
b(p)−m(p) with p→ r(p)p a cubic shaped function vanishing at p = 0,Ks,K,
r(0) < 0.

In many circumstances vital dynamics as well as carrying capacities are
not constant, but offer spatio-temporal heterogeneities that may be favorable
or not to the persistence of an introduced microparasite. We now consider two
typical situations for an underlying logistic regulation dynamic.
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3.2.1 Logistic Regulation with Temporal Variations

Let us assume that vital dynamics and carrying capacity are time dependent.
The previous model in (3.3) becomes

P ′(t) = (b(t)− [m(t) + k(t)P ])P (t), t ≥ 0. (3.5)

A calculation, cf. [11], using z = 1/P as a new state variable yields

Lemma 1. Let b, m and k be nonnegative and time periodic functions of
period T > 0. Assume both k(t) �= 0 and

∫ T

0
(b(t)−m(t))dt > 0.

Then (3.5) has a unique nonnegative and periodic solution, Pperiodic, of
period T and any solution of (3.5) starting from P (0) > 0 is such that P (t) →
Pperiodic(t) as t→ +∞.

From both modeling and dynamical points of view two typical transient dy-
namical behaviors are of interest (i) populations with yearly periodical vital
dynamics and, (ii) populations with oscillating to periodic carrying capaci-
ties. Figures 3.3 and 3.4 depict these two situations with data consistent with
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Fig. 3.3. Logistic regulation with one year periodic seasonal variations: b = 5 +
3.5 sin(2π(t − 0.25)), m = 1 and k = 0.02
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Fig. 3.4. Logistic regulation with a five years periodic carrying capacity: b = 5,
m = 1 and k = 0.02/(1.025 − sin(2πt/5))
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Fig. 3.1. Oscillations in population densities driven in Fig. 3.4 by the carry-
ing capacity are much larger than in Fig. 3.3 where they are produced by the
birth-rate. The outcome of the introduction of a parasite may thus be different
in the three situations exhibited in Figs. 3.1, 3.3 and 3.4.

A case study with field data from bank vole populations is found in Sauvage
et al. [56, 57], Wolf et al. [70]; cf. also Yoccoz et al. [72].

3.2.2 Logistic Regulation with Spatial Heterogeneities

Let us consider a population spatially distributed over a n-dimensional domain
of Rn, n = 1, 2 or 3. State variable P (x, t) will represent the time dependent
population spatial density with respect to x ∈ Rn. Reaction–Diffusion equa-
tions and multi-patch systems are the most two popular deterministic continu-
ous models used for modeling heterogeneous spatially structured populations.
In this chapter we shall only consider models built upon using Reaction–
Diffusion equations.

Spatially Structured Models Using Reaction–Diffusion Equations

In that setting let Ω be a bounded domain in Rn with smooth boundary
∂Ω such that locally Ω lies on one side of ∂Ω. One assumes that host in-
dividuals disperse by means of Fickian diffusion through their habitat and
let −d(x)∇P be the population flux, d(x) being the positive and spatially
dependent diffusivity. A simple logistic model with spatially dependent vital
dynamics and carrying capacity can be expressed as a semilinear evolution
equation of parabolic type,

∂

∂t
P (x, t)−∇ · d(x)∇P (x, t) = (b(x)− [m(x) + k(x)P (x, t)])P (x, t), (3.6)

for x ∈ Ω and t > 0. The usual assumption of an isolated population translates
as a no flux boundary condition

d(x)∂P/∂η(x, t)) = d(x)∇P (x, t) · η(x) = 0, x ∈ ∂Ω, t > 0, (3.7)

η being the unit outward normal vector to Ω along its boundary ∂Ω. Last an
initial population distribution is prescribed at time t = 0,

P (x, 0) = P0(x) ≥ 0; P0(x) �= 0, x ∈ Ω. (3.8)

Various other boundary conditions can be used in the modeling process such
as prescribed densities

P (x, t) = Pboundary(x, t) ≥ 0, x ∈ ∂Ω, t > 0,

Pboundary(x, t) ≡ 0 corresponding to an unfavorable or inhospitable boundary.
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More general population fluxes may also be of interest, such as density
dependent ones, −d(x, P )∇P , or fluxes with an additional advection term,
−d(x, P )∇P + V (x, P ).

We refer to the books of Murray [51], Okubo and Levin [53], and also
Cantrell and Cosner [15] or Edelstein-Keshet [26], for details and model deriva-
tion.

The Constant Coefficient Case

Let us first assume that (b,m, k) and d are positive constants. Then the large
time behavior of solutions to system (3.6), (3.7) and (3.8) is identical to that
of solutions to (3.3): as t→ +∞ then P (·, t) → K = (b−m)/k when b−m > 0
while P (·, t) → 0 when b−m < 0, cf. [18].

Hence for constant coefficients nothing is gained from the ODE model
in (3.3).

The Genuinely Spatially Heterogeneous Case

In order to mathematically handle spatial heterogeneities and define suitable
solutions to system (3.6), (3.7) and (3.8) a set of conditions has to be placed
on (b,m, k) and d.

Hyp 2.1 (b,m, k) and d are nonnegative elements of L∞(Ω); there exists
positive numbers (dmin, dmax) and kmin such that

0 < dmin ≤ d(x) ≤ dmax, 0 < kmin ≤ k(x) x ∈ Ω.

Hyp 2.2 There exists open subregions of Ω, (Ω∗
i )1≤i≤κ, with Ω∗

i ⊂ Ω and
Ω∗

i ∩ Ω∗
j = ∅ for i �= j having the same smoothness properties as Ω. Set

Ω∗ = Ω∗
1 ∪ · · · ∪Ω∗

κ and Ω∗
0 = Ω \Ω∗. See Fig. 3.5.

Then we assume (b,m, k) ∈ C0,α(Ω∗
i ) and d ∈ C2,α(Ω∗

i ), for i = 0, · · ·, κ.
Condition Hyp 2.2 includes the case of a set of piecewise constant coefficients
(b,m, k) and d. Spatially discontinuous reaction terms cannot be avoided when
it comes to model interacting species living on distinct habitats, see Sect. 3.5.
This will generate spatial discontinuities in derivatives of solutions.

Fig. 3.5. A spatially heterogeneous domain with κ subdomains
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These conditions Hyp 2.1 and Hyp 2.2 mean we consider a diffusion
of compartmental or diffractive type, cf. the book Ladyzenskaja et al. [48],
Seftel [60] and Stewart [63–65]. A suitable mathematical existence theory of
weak or strong solutions can be developed, cf. [48], Horton [44], also Fitzgib-
bon and Morgan [34] and Fitzgibbon et al. [28].

In this work we are more interested in taking mathematically care of spatial
heterogeneities than in looking at smoothness of weak or strong solutions.
Hence we shall only consider classical solutions to system (3.6)–(3.8).

Definition 1. A classical solution to system (3.6)–(3.8) is a continuous map-
ping P (·, t) : [0,+∞) → C0(Ω) with P (·, t) ∈ C2,1(Ω�×(0,∞) for � = 0, . . . , κ
such that the initial condition in (3.8), the exterior boundary condition
in (3.7), the compatibility conditions on the interface between Ω� and Ω0,
� = 1, . . . , κ

[d∂P/∂η�]∂Ω�
= 0 on ∂Ω�, � = 1, . . . , κ,

where [ξ]∂Ω�
is the saltus of a function ξ across ∂Ω�, η� is a unit normal vector

to ∂Ω�, and the differential equation in (3.6) are satisfied.

Available results can be summarized in the following statement

Theorem 1. Let conditions Hyp 2.1 and Hyp 2.2 hold. Assume P0 ∈ C0(Ω)
is nonnegative. Then system (3.6)–(3.8) has a unique nonnegative global clas-
sical solution with 0 ≤ P (x, t) ≤ max(‖P0‖∞,Ω , ‖b‖∞,Ω/kmin).

Furthermore there exists a unique nonnegative classical stationary solution
P∞ such that for any nonnegative P0 ∈ C0(Ω), P0(x) �= 0, one has P (·, t) →
P∞(·) as t→ +∞ in C0(Ω).

Note that P∞ being a nonnegative stationary state solution to system (3.6)–
(3.8), it is a nonnegative solution to

−∇ · d(x)∇P∞(x) = (b(x)− [m(x) + k(x)P∞(x)])P∞(x), (3.9)

for x ∈ Ω, with a no flux boundary condition

d(x)∂P∞/∂η(x) = d(x)∇P∞(x) · η(x) = 0, x ∈ ∂Ω. (3.10)

Proof. Local existence in some maximal time interval (0, Tmax(P0)) follows
from results in Horton [44]. More precisely there exists a Tmax(P0) such that
either Tmax(P0) = +∞ yielding global existence or Tmax(P0) < +∞ in which
case introducing ‖ · ‖∞,Ω the norm in L∞(Ω) one has

‖P (·, t)‖∞,Ω → +∞ as t↗ Tmax(P0).

To prove global existence one first check that local solutions remain non-
negative; this follows from a weak minimum principle, cf. [48], this is 0 is a
subsolution. Next to prevent finite time blow-up we introduce a supersolution,
y+, as a solution of a basic logistic-like ODE
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y′+ = (‖b‖∞,Ω − kmin y+) y+, y+(0) = ‖P0‖∞,Ω , t ≥ 0.

Hence from a weak maximum principle, cf. [48], one gets

0 ≤ P (x, t) ≤ y+(t) ≤ max(‖P0‖∞,Ω , ‖b‖∞,Ω/kmin),

for x ∈ Ω and 0 ≤ t ≤ Tmax(P0); this implies Tmax(P0) = +∞.
For the large time behavior one can use Lyapunov functionals as in [16,18,

37], or a result in [49]. Using the smoothing effect of parabolic equations with
time independent coefficients, cf. [48], one has ∂P/∂t ∈ L2((τ, τ +T )×Ω) for
τ > 0 and T > 0, and ∇P (·, t) ∈ L2(Ω) for t > 0. Set

F1(p, ·) =
∫ p

0

((b(·)− [m(·) + k(·)q])qdq, p ∈ R,

L1(p) =
∫

Ω

(
|∇p(x)|2 −F1(p(x), x)

)
dx, p ∈ H1(Ω);

herein H1(Ω) is the standard Sobolev space of order 1, cf. [47]. Then taking
the product of (3.6) with ∂P/∂t and integrating over (τ, τ + T )×Ω one gets∫

(τ,τ+T )×Ω

(
∂P

∂t

)2

(x, t)dxdt = L1(P (·, τ))− L1(P (·, τ + T )).

As a consequence L1 is a Lyapunov function and the semi-orbits {P (·, t), t >
0} are bounded in H1(Ω) ∩ L∞(Ω). L1 is decreasing along the semi-orbits
{P (·, t), t > 0}, and a constant over the compact, in L2(Ω), connected and
forward invariant ω-limit set

{P∞ ∈ H1(Ω) ∩ L∞(Ω),
there exists a sequence (tn)n≥0, tn → +∞ as n→ +∞,

P (·, tn) → P∞ in L2(Ω) as n→ +∞}.

This implies any element in the ω-limit set is a stationary solution, cf. [37].
It remains to show the ω-limit set is made of a single element. Let µ0 be

the dominant eigenvalue of the eigenvalue problem (µj , ξj)j≥0

−∇ · d(x)∇ξj(x) = (b(x)−m(x))ξj(x) + µjξj(x), x ∈ Ω,
d(x)∂ξj/∂η(x) = d(x)∇ξj(x) · η(x) = 0, x ∈ ∂Ω.

(3.11)

Standard sub-super solutions techniques, cf. [18], show that when µ0 < 0 there
is no nontrivial nonnegative stationary solutions while when µ0 > 0 there is
a unique positive one.

A concavity argument applied to the reaction term p → (b(·) − [m(·) +
k(·)p]p in (3.6) shows that P∞ ≡ 0 when µ0 < 0 while P∞ is the positive –
stationary – solution of (3.9) and (3.10) when µ0 > 0, cf. [15, 18,49]. ��
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Fig. 3.6. Spatially heterogeneous stationary state solution of (3.9) and (3.10) with
κ = 4 subdomains, see Fig. 3.5; see the text for the data set

In the constant coefficient case, this is (b,m, k) and d are positive constants
P∞ is a constant, the globally asymptotically stationary state of equation
(3.3). As a consequence when b ≤ m then P∞ = 0 while when b > m one gets
P∞ = K and, again, nothing is gained from the ODE model.

For genuinely spatially heterogeneous coefficients P∞ ≡ 0 is still a station-
ary solution. System (3.9) and (3.10) has a unique nonconstant and stable
solution when the dominant eigenvalue µ0 is positive, cf. [15, 18].

A numerical experiment is supplied in Fig. 3.6 with d = 1, κ = 4 while the
carrying capacity is piecewise constant: K = 40 on Ω� for � = 1, · · · , 4 and
K = 16 in Ω0.

Satellite imagery is used in Abramson et al. [1] to derive heterogeneous
carrying capacities for rodent populations, and in Tran et al. [67,68] for human
populations.

Further Comments

Similar analysis can be carried out for the solution-set to models (3.5) or
(3.6)–(3.8) based on (3.1), (3.2) or (3.4) with spatio-temporal heterogeneities.

Ignoring demography: For models based on (3.1) nonconstant time periodic
solutions do not exist while solutions to (3.6)–(3.8) with b = m = k = 0
stabilize as t→ +∞ toward the spatial average of their initial condition.

Malthusian growth: For models based on (3.2) nonconstant time periodic so-
lutions do not exist unless

∫ T

0
b(t)dt =

∫ T

0
m(t)dt in which case there are

infinitely many periodic solutions, P0 exp(
∫ t

0
(b(τ) −m(τ))dτ). The large

time behavior of solutions to (3.6)–(3.8) with k = 0 depends on the signum
of the dominant eigenvalue of (3.11), µ0; as t→ +∞ nonnegative solutions
may either stabilize toward 0 or become unbounded, or else converge to
c0ξ0 for some nonnegative constant c0 when µ0 = 0.
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Allee effect: A more involved analysis is required for models (3.5) or
(3.6)–(3.8) based on (3.4); free boundary value problems arise for the
PDE problem.

3.3 Deterministic Modeling Background for the Spread
of Infectious Diseases

An important literature is devoted to the derivation and analysis of deter-
ministic mathematical models for the spread of an infectious diseases in un-
structured or structured host populations, cf. the books [6,7,13,14,16,24,51]
or the review paper in [40], and references therein. Earlier pioneering models
go back to Bernoulli [11], as quoted in [7], and Kermack and McKendrick,
reprinted in [46], among others.

In these models commonly referred to as – SI, SIR, SEIR, . . . , models –
a host population is split into several subpopulations according to the status
of their individuals with respect to the infectious disease, but also to their
chronological age or to any additional and relevant structuring variable, i.e,
space, gender, social status.

Typically a nonstructured SEIRS model reads as follows, cf. Fig. 3.7. A
susceptible class, S, is made of individuals capable of contracting the dis-
ease. After a suitably “efficient” contact with an infectious individual, newly
infected individuals will enter an exposed class, E, for a latent period of du-
ration 1/θ. Then they become infectious and will join an infective class, I.
Depending of the infectious disease under consideration infected individuals
may either remain life long permanently infectious, or die from the disease at
a rate 1 − ε, 0 ≤ ε ≤ 1 being the survival rate, or else surviving individuals
recover in which case they enter a resistant or immune class, R, at a rate λ,
1/λ being the duration of the infective stage. Resistant individuals do not par-
ticipate to the spread of the infectious disease anymore; they may lose their
immunity after a period of time 1/γ and reenter the susceptible class.

Then P = S + E + I +R is the total population density from Sect. 3.2.
An important issue is horizontal transmission, that is understanding and

modeling the recruitment of newly infected individuals from the susceptible

Fig. 3.7. A basic SEIRS compartmental model without demography
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class by direct contacts with infectious individuals. This is the incidence term
σ(S,E, I,R) or the force of infection FI(S,E, I,R) = σ(S,E, I,R)/S. Two
incidence terms are widely used in the literature:

• A density dependent or mass action form in which setting

σ(S,E, I,R) = σSI;

an underlying assumption requires a contact rate between individuals lin-
early increasing with population densities.

• A frequency dependent or proportionate mixing form in which setting

σ(S,E, I,R) = σ
SI

S +E + I +R
;

a similar underlying assumption requires a constant contact rate between
individuals.

The choice of a realistic incidence term is somewhat problematic. It heavily
relies on the specific host–parasite system under consideration as well as on
social and spatial structures, resource availability or environmental conditions,
cf. [9, 12–14,16,23,24,36,40] and references therein.

A further issue is vertical transmission, that is transmission at birth of
the disease from an infected mother to offsprings. In most models the birth-
rate in the susceptible class is b, see (3.2) or (3.3), while each of the E, I
and R subclasses has a specific birth-rate bZ with 0 ≤ bZ ≤ b, Z = E, I,R.
A reduced birth-rate in subclass Z, this is 0 ≤ bZ < b, indicates the parasite
affects demography. Next a proportion πZ of offsprings from the subclass Z
remains in Z, Z = E, I or R, the proportion 1−πZ being susceptible at birth.
A positive πZ indicates actual vertical transmission.

When the parasite has no impact on its host population one has bZ = b
and πZ = 0 for Z = E, I,R. This will be the case in Sect. 3.4 below for the
reservoir populations where the parasite is benign.

An Unstructured SEIRS Model

A simple deterministic SEIRS model based on the disease free model (3.3) is
a four component system of ODEs; it reads

d

dt

⎛
⎜⎜⎝
S
E
I
R

⎞
⎟⎟⎠ = Φ(S,E, I,R) = (Φi(S,E, I,R))1≤i≤4, (3.12)

wherein

Φ1(S,E, I,R) = bS +
∑

Z=E,I,R

(1− πZ)bZZ − (m+ kP )S − σ(S,E, I,R) + γR

Φ2(S,E, I,R) = πEbEE − (m+ kP )E + σ(S,E, I,R)− θE
Φ3(S,E, I,R) = πIbII − (m+ kP )I + θE − λI
Φ4(S,E, I,R) = πRbRR− (m+ kP )R+ ελI − γR,
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together with a set of nonnegative initial data

(S,E, I,R)�(0) = (S0, E0, I0, R0)� ∈ R4
+.

A ε = 0 corresponds to a benign parasite while a 0 ≤ ε < 1 corresponds to a
lethal one.

A Spatially Structured SEIRS Model

Assuming individuals in each of the subpopulations S, E, I and R disperse
by means of a Fickian diffusion a spatially structured deterministic SEIRS
model based on the disease free model (3.6) and on model (3.12) reads

d

dt

⎛
⎜⎜⎝
S
E
I
R

⎞
⎟⎟⎠ = D(S,E, I,R) + Φ(S,E, I,R), (3.13)

with a diagonal diffusivity matrix

D(S,E, I,R) =

⎛
⎜⎜⎜⎝
∇· dS(x)∇S(x, t)
∇· dE(x)∇E(x, t)
∇· dI(x)∇I(x, t)
∇· 7dR(x)∇R(x, t)

⎞
⎟⎟⎟⎠

to which must be added a suitable set of nonnegative initial data

(S,E, I,R)�(x, 0) = (S0(x), E0(x), I0(x), R0(x))� ∈ R4
+, x ∈ Ω,

and boundary conditions, such as no-flux boundary conditions,

dZ(x)∇Z(x, t) · η(x) = 0, x ∈ ∂Ω, t ≥ 0, Z = S,E, I,R.

Diffusivities may differ between subclasses, depending on the impact of the
parasite on individual dispersal. In Sect. 3.5 below we shall assume identical
diffusivities in reservoir populations where the parasite is benign.

R0

A question of paramount interest when considering a host–parasite system is
a question of invasion and persistence: assuming parasites are introduced in
a host species will the parasite population eventually persist?

For epidemic problems this is usually reformulated into the following one:
assuming a single infectious individual is introduced into a naive disease free
host population at equilibrium what is the number of secondary cases caused
by this infectious over its life time?
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This number, labeled R0, is referred to as the basic reproduction number,
cf. the books [6,7,13,14,16,24,51] or the review paper in [40], and references
therein. When R0 < 1 the epidemic dies out while when R0 > 1 one or more
endemic states may exist with simple to more involved dynamics occurring,
including a possible extinction of the host population.

Autonomous deterministic mathematical models such as the ones derived
here can be useful in estimating R0. A basic strategy relies on looking at the
stability of the disease free equilibrium, i.e., (K, 0, 0, 0) for models (3.3)–(3.12)
with time independent coefficients, in which case one has to determine the sign
of the real parts of the eigenvalues of the Jacobian matrix of Φ(S,E, I,R)
evaluated at (K, 0, 0, 0).

For highly structured models R0 is usually expressed as the dominant
eigenvalue of a suitable linear operator, cf. [22].

Further Comments

Models (3.12) and (3.13) can be adapted to disease free models devised in
Sect. 3.2. For a model wherein demography is ignored one may set b = bz =
m = k = 0. A model with k = 0 corresponds to a disease free Malthusian
growth. Models with an Allee effect on the host dynamics require density
dependent birth rates, bZ for Z = S,E, I,R, and a density dependent death
rate: see the parametric forms in Sect. 3.2; cf. [25, 41] for a simple SI model.

Models with time periodic coefficient are devised accordingly.
Models (3.12) and (3.13) are obviously oversimplified albeit flexible models

that can be adapted to a wide range of applications, i.e., diseases with waning
immunity wherein early reinfection of temporary resistants will reinforce their
immunity before they retrieve a susceptible status, cf. [35], or diseases where
exposed individuals either enter the infectious stage and die afterward, this is
ε = 0, or directly enter a recovered stage, cf. [36].

The discrete structure with respect to the status of individuals can be
transformed into a continuous one upon introducing the age of the disease
within an individual, cf. [27, 43,45,69].

Prophylaxis and control methods can also be added to these models, cf. [5].

3.4 Two Simple Basic Unstructured Epidemic Models
with Two Host Populations

In this section we consider two simple models for the transmission of a
microparasite between two unstructured host populations under simple cir-
cumstances (1) the case of a vector borne disease and, (2) the case of an
environmentally transmitted disease.

In both cases a first host population, H1, plays the role of a reservoir
wherein the microparasite is benign while the microparasite is lethal in a
second host population,H2. An important feature concerns characteristic time
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scales and vital dynamics. In applications we have in mind the first host
population is an animal population, i.e., birds or rodents, while the second
host population is a human population.

Due to rather different time scales between life expectancies of individuals
from H1 and H2 demography is ignored in H2 whereas constant or time pe-
riodic logistic regulations in H1 will have an important impact on the global
dynamics of the full system.

Modified results are outlined for other constant to time periodic disease
free population dynamics models in H1 and V based on (3.1), (3.2) or (3.4)

3.4.1 A Simple Model for Vector Borne Diseases

Our model assumes two independent host populations, H1 and H2, and a
vector population, V. Host populations are subdivided into three subclasses:
susceptibles, Si, infectives, Ii, and temporary or permanently recovered, Ri,
for i = 1, 2. To simplify the vector population is split into susceptible, Sv and
infective, Iv, subpopulations; this is equivalent to assuming infected vectors
remain life long infectious. See Fig. 3.8.

The main departure from the basic SEIRS model in Fig. 3.7 arises in trans-
mission modes. One assumes neither direct – horizontal – transmission of
the disease from infective individuals Ii to susceptibles Si in population Hi,
i = 1, 2, nor criss-cross transmission from infective individuals Ii from popu-
lation Hi to susceptibles Sj in population Hj , i, j = 1, 2 and i+ j = 3.

Fig. 3.8. A simple H1 − V − H2 compartmental model without demography
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Infectious vectors Iv will transmit infection to susceptibles of both host
populations, H1 and H2. Conversely susceptible vectors Sv are infected by
infectious from either host population H1 or H2.

Concerning vital dynamics populations H1 and V are run by a logistic
growth with respective birth and death rates (b1,m1) and (bm,mm), and
density dependent effects k1 and km. It is assumed that the parasite has no
impact on fertility: infective and recovered individuals have identical birth-
rates to those of susceptibles in bothH1 and V populations; there is no vertical
transmission at birth. The infectious disease is benign in populations H1 and
V , that is there is no additional mortality due to infection. Then 1/λ1 is the
duration of the infective stage in H1, a proportion ω1 of infective becoming
resistant and a proportion 1 − ω1 going back to the susceptible class. Last
1/λm is the duration of the infective stage in the vector population, infectives
retrieving a susceptible status afterwards.

Natural demography is not taken into account in population H2. Infectives
I2 surviving the disease become permanently resistant; ε2 is the survival rate
and 1/λ2 the duration of the infective stage in H2.

Let us now define state variables: (ϕ,ψ, χ)� represent the (S1, I1, R1) host
densities in population H1 and P1 = ϕ + ψ + χ, (u, v, w)� represent the
(S2, I2, R2) host densities in population H2 and P2 = u+ v+w, while (α, β)�

is the (Sv, Iv) vector densities and P3 = α+ β.
The last point to be settled concerns the incidence terms. In this note we

choose a density dependent form for each of the interactions between suscep-
tible and infectious individuals. This is σm1ϕβ is the recruitment of infectives
I1 from susceptibles S1 in H1 via infective vectors Iv, σm2uβ is the recruit-
ment of infectives I2 from susceptibles S2 in H2 via infective vectors Iv and
(σ1mψ + σ2mv)α is the recruitment of infectives Iv from susceptibles Sv in V
via infective hosts I1 and I2.

The analysis developed below carries over to frequency dependent inci-
dence terms. Actually given that the parasite is benign in H1 and V it has no
impact on their population densities that eventually stabilize to their carrying
capacities, K1 and Km, see the proof of Lemma 3. Thus a frequency depen-
dent incidence model would lead to similar results with transmission rates σij

replaced by σij/Pi, i, j = 1,m and i �= j, and the persistence threshold in
Lemma 8 modified accordingly, this is σij replaced by σij/Ki.

Putting together all of these assumptions transmission of the disease within
the unstructured H1−V −H2 model in Fig. 3.8 is modeled by a set of nonau-
tonomous ordinary differential equations,
Model (H1VH2,U)

ϕ′ = −σm1(t)βϕ+ (1− ω1)λ1ψ + b1(t)P1 − (m1(t) + k1(t)P1)ϕ,

ψ′ = +σm1(t)βϕ− λ1ψ − (m1(t) + k1(t)P1)ψ,

χ′ = +ω1λ1ψ − (m1(t) + k1(t)P1)χ,

u′ = −σm2(t)βu,
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v′ = +σm2(t)βu− λ2v,

w′ = +ε2λ2v,

α′ = −(σ1m(t)ψ + σ2m(t)v)α+ λmβ + bm(t)P3 − (mm(t) + km(t)P3)α,

β′ = +(σ1m(t)ψ + σ2m(t)v)α− λmβ − (mm(t) + km(t)P3)β,

supplemented with a set of nonnegative initial conditions such that each of
the three populations is present at time t = 0 – this is P1(0) > 0, P2(0) > 0
and P3(0) > 0 – and such that at least one infective is also present at time
t = 0 – this is ψ(0) + β(0) + v(0) > 0.

Lemma 2. Let the coefficients in Model (H1VH2,U) be either nonnegative
constants or nonnegative smooth and bounded functions of time, 0 ≤ ε2 ≤ 1.

Then for each set of nonnegative initial conditions, Model (H1VH2,U)
has a unique global solution (ϕ(t), ψ(t), χ(t), u(t), v(t), w(t), α(t), β(t))� with
nonnegative components.

Proof. Local existence and uniqueness of a solution on some maximum time
interval, (0, Tmax), depending on the initial conditions hold because the right-
hand side of Model (H1VH2,U) is locally Lipschitz continuous. Then either
Tmax = +∞ yielding global existence or Tmax < +∞ in which case one of the
components ζ of the solution is such that |ζ(t)| → +∞ as t↗ Tmax.

These local solutions have nonnegative components because the nonneg-
ative orthant R8

+ is forward invariant by the flow in Model (H1VH2,U),
cf. [42].

We now prove that finite time blow-up cannot occur, yielding global ex-
istence. Adding the first three equations in Model (H1VH2,U) one gets
P ′

1(t) ≤ b(t)P1(t), t ∈ (0, Tmax); hence 0 ≤ P1(t) ≤ P1(0) exp(b1,maxt), t ∈
(0, Tmax) with b1,max = max(b1(t), t ≥ 0). Next along the same lines one finds
0 ≤ P3(t) ≤ M(0) exp(bm,maxt), t ∈ (0, Tmax) with bm,max = max(bm(t), t ≥
0). Last 0 ≤ P2(t) ≤ P2(0), t ∈ (0, Tmax). This shows Tmax = +∞. ��

Stability Analysis for the Autonomous Model (H1VH2,U)

We look for qualitative properties of the solution set to Model (H1VH2,U).
Let us now assume

Hyp 4.1 Coefficients λ1, ω1, λm are nonnegative constants while other coef-
ficients in Model (H1VH2,U) are positive constants with b1 −m1 > 0,
bm −mm > 0 and 0 < ε2 ≤ 1.
P1(0) > 0, P2(0) > 0 and P3(0) > 0.

Along the lines of [31, 33] we use the methodology of ω-limit sets for ODEs
systems, see [14, 37–39, 42], to reduce the stability analysis of Model
(H1VH2,U) in the autonomous case to the stability analysis of a much
simpler system, see (3.17) below.

In the setting of Lemma 2 given a set of nonnegative initial conditions the
ω-limit set for Model (H1VH2,U) is defined as
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ω0 = {(ϕ∞, ψ∞, χ∞, u∞, v∞, w∞, α∞, β∞)� ∈ R8
+, such that

there exists a sequence (tn)n≥0, tn → +∞ as n→ +∞,
(ϕ(tn), ψ(tn), χ(tn), u(tn), v(tn), w(tn), α(tn), β(tn))� →

(ϕ∞, ψ∞, χ∞, u∞, v∞, w∞, α∞, β∞)� as n→ +∞}.

Lemma 3. Let condition Hyp 4.1 hold. Set

K1 =
b1 −m1

k1
, Km =

bm −mm

km
.

For each set of nonnegative initial conditions there exists a compact, connected
and forward invariant nonempty ω-limit set ω0 = ω(ϕ,ψ, χ, u, v, w, α, β) in
R8

+. Any element in ω0 is of the form (K1 − ψ∗ − χ∗, ψ∗, χ∗, u∗, 0, w∗,Km −
β∗, β∗)�, wherein u∗ ≥ 0 and w∗ > 0 are constants depending solely on the
set of initial conditions.

Proof. State variables (ϕ,ψ, χ) are nonnegative. Upon adding the first three
equations in Model (H1VH2,U) one retrieves a basic logistic equation,

P ′
1(t) = (b1 − [m1 + k1P1(t)])P1(t), t ≥ 0.

Assuming both b1 −m1 > 0 and k1 > 0 one may conclude that P1(t) → K1

as t→ +∞, exponentially, as soon as P1(0) > 0. One also has

0 ≤ ϕ(t), ψ(t), χ(t) ≤ P1(t) ≤ max(P1(0),K1), t ≥ 0. (3.14)

Along the same lines states variables (α, β) are nonnegative and P3 is a so-
lution of a basic logistic equation P ′

3(t) = (b1 − [m1 + k1P3(t)])P3(t), t ≥ 0.
Assuming both bm−mm > 0 and km > 0 one may conclude that P3(t) → Km

as t→ +∞, exponentially, as soon as P3(0) > 0. One also has

0 ≤ α(t), β(t) ≤ P3(t) ≤ max(P3(0),Km), t ≥ 0. (3.15)

Last state variables (u, v, w) are nonnegative, hence P ′
2(t) ≤ 0 because P ′

2(t) =
−(1− ε2)λ2v(t) ≤ 0, t ≥ 0; as a consequence

0 ≤ u(t), v(t), w(t) ≤ P2(t) ≤ P2(0), t ≥ 0. (3.16)

Conditions (3.14)–(3.16) and the resulting boundedness of the time derivatives
of the state variables show the existence of an ω-limit set. It is slightly less
straightforward to prove the existence of (u∗, w∗).

Lemma 4. There exists constants (u∗, w∗), u∗ ≥ 0 and w∗ > 0, such that
(u(t), v(t), w(t)) → (u∗, 0, w∗) as t→ +∞ as soon as P2(0) > 0.

Furthermore one has u∗ > 0 if and only if
∫∞
0
σm2(s)β(s)ds < +∞.
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Proof. It resembles the corresponding proof for the original Kermack and
McKendrick model in [46]. Integrating over time the ODE for u one gets

u(t) = u(0) exp
(
−
∫ t

0

σm2(s)β(s)ds
)
↘ u∗ ≥ 0, as t→ +∞.

Adding the equations for u and v and integrating over time one finds

0 ≤ u(t) + v(t) + λ2

∫ t

0

v(s)ds = u(0) + v(0), t ≥ 0.

As a consequence one has both
∫ +∞
0

v(s)ds < +∞ and v(t) → v∗ ≥ 0 as
t→ +∞. This together with the boundedness of {v′(t), t ≥ 0} show v∗ = 0.

Last integrating over time the ODE for w yields

w(t) = ε2λ2

∫ t

0

v(s)ds→ w∗ > 0 as t→ +∞.

��
This completes the proof of Lemmas 4 and 3. ��

The stability analysis simplifies: any element in the ω-limit set ω0 being of
the form (K1 − ψ∞ − χ∞, ψ∞, χ∞, u∗, 0, w∗,Km − β∞, β∞)� we can reduce
the analysis for the autonomous Model (H1VH2,U) to flows on ω0 with
(u(t), v(t), w(t)) ≡ (u∗, 0, w∗), this is to the reduced system

ψ′ = +σm1β(K1 − ψ − χ)− (λ1 + b1)ψ,

χ′ = ω1λ1ψ − b1χ,
β′ = +σ1mψ(Km − β)− (λm + bm)β,

(3.17)

Concerning the stability analysis for (3.17) one has

Lemma 5. Set
T0,v =

σm1K1σ1mKm

(λ1 + b1)(λm + bm)
.

Then (3.17) has one or two stationary states with nonnegative components:

1. When T0,v < 1 the trivial state (0, 0, 0) is globally asymptotically stable.
2. When T0,v > 1 the trivial state (0, 0, 0) is unstable and there exists a

unique nontrivial stationary state (ψ∗, χ∗, β∗) with ψ∗ > 0, χ∗ ≥ 0, 0 <
ψ∗ + χ∗ ≤ K1 and 0 < β∗ ≤ Km that is locally asymptotically stable;
furthermore χ∗ > 0 ⇐⇒ ω1λ1 > 0.

Proof. Let us assume T0,v < 1. Set L2(ψ, χ, β) = (λm + bm)ψ + (σm1K1 +
θm)β + θ1χ, for positive and small enough (θ1, θm). Then straightforward
calculations yield dL2/dt(t) ≤ −θ2L2(t) for some small and positive θ2. Hence
L2 is a Lyapunov functional and (ψ(t), χ(t), β(t)) → (0, 0, 0) as t → +∞,
exponentially.
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Let us now assume T0,v > 1. The Jacobian matrix of (3.17) evaluated
at the trivial equilibrium, (0, 0, 0), has a positive determinant yielding local
instability of (0, 0, 0). Let (ψ∗, χ∗, β∗) be a stationary state with nonnegative
components. From the second and the third equations in (3.17) at equilibrium
one gets

χ∗ =
ω1λ1

b1
ψ∗, β∗ =

σ1mKmψ
∗

σ1mψ∗ + λm + bm
.

Substituting this back into the first equation in (3.17) at equilibrium and
simplifying by ψ∗ > 0 leads to finding a root, 0 < ψ∗ < K1, of an equation,
Fm(ψ∗) = b1 + λ1, wherein

Fm(ψ) =
[

σm1σ1mKm

σ1mψ + λm + bm

] [
K1 −

(
1 +

ω1λ1

b1

)
ψ

]
.

Fm is a decreasing function within the range (0, K̂1), K̂1 = (1 + ω1λ1
b1

)−1K1,
satisfying Fm(K̂1) = 0; as a consequence there is a unique solution ψ∗ in the
desired range if and only if Fm(0) > b1 + λ1, this is T0,v > 1. Then one may
check that ψ∗ > 0, χ∗ ≥ 0, 0 < ψ∗ +χ∗ ≤ K1 from the first equation in (3.17)
at equilibrium, and 0 < β∗ ≤ Km from its closed form found above.

Local stability for (ψ∗, χ∗, β∗) follows from the analysis of the Jacobian
matrix of (3.17) evaluated at (ψ∗, χ∗, β∗), using the Routh–Hurwicz criterion,
cf. [26, 51]. Algebraic calculations are found in Sect. 3.7 where it is shown
that the eigenvalues of the Jacobian matrix are negative or have negative real
parts. ��

We now go back to the stability analysis of solutions to Model
(H1VH2,U) in the logistic autonomous case.

Proposition 1. Let condition Hyp 4.1 hold.
Then the solution-set (ϕ,ψ, χ, u, v, w, α, β)� for Model (H1VH2,U)

satisfies:

– When T0,v < 1 as t → +∞ (ϕ(t), ψ(t), χ(t), u(t), v(t), w(t), α(t), β(t))�

goes to (K1, 0, 0, u∗, 0, w∗,Km, 0)�, for some positive u∗ and w∗

– When T0,v > 1 let (ψ∗, χ∗, β∗) be the unique nontrivial stationary state
for (3.17) with ψ∗ > 0, χ∗ ≥ 0, 0 < ψ∗ + χ∗ ≤ K1 and 0 < β∗ ≤
Km; then as t → +∞ (ϕ(t), ψ(t), χ(t), u(t), v(t), w(t), α(t), β(t))� goes to
(K1−ψ∗−χ∗, ψ∗, χ∗, 0, 0, w∗,Km−β∗, β∗)�, for some positive w∗ provided
(ψ(0), χ(0), β(0)) be close to (ψ∗, χ∗, β∗)

As a consequence T0,v in Lemma 5 is the threshold parameter for the
invasion and persistence of the parasite in the logistic autonomous Model
(H1VH2,U).
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Further Comments

Simple modifications of the logistic regulation condition Hyp 4.1 lead to mod-
ified dynamics for the autonomous Model (H1VH2,U), in the spirit of the
foregoing Proposition 1. This is derived upon adapting the proof of Lemma 3.

Ignoring demography: Assuming bi = mi = ki = 0, i = 1,m then both host
population H1 and vector population V remain constant in time. It is
straightforward to derive a stability result depending on whether ω1 = 0
or ω1 > 0; cf. [31] for a simpler model without recovered class in H1.

Malthusian growth: When k1 = km = 0 the parasite cannot control either
populations H1 or V because there is no additional mortality due to the
disease. Hence Pi(t) → +∞ as t→ +∞, i = 1, 3.

Allee effect: The birth rate is nonlinear, see Sect. 3.2. Still assuming a parasite
benign in H1 and V the large time behavior of P1 and P3 is again known.
For i = 1, 3 as t → +∞, Pi(t) → 0 when P0,i lies below the intermediate
threshold density Ks,i while Pi(t) → Ki when P0,i > Ks,i. Then the com-
plete system can be reduced to a simpler one, see (3.17) with bi changed
into bi(Ki) when P0,i > Ks,i, yielding a modified threshold for initial con-
ditions such that P0,i > Ks,i; cf. [25,41] for a single host–parasite system
with an Allee effect within the host population and a lethal parasite.

Model (H1VH2,U) with Time Periodic Coefficients

We follow the techniques designed in Wolf et al. [70] to prove the existence of
periodic solutions for Model (H1VH2,U) emerging from stable stationary
states. More precisely let us assume

Hyp 4.2 Coefficients � = bj ,mj , kj for j = 1,m, and � = σmj , σjm for j = 1, 2
in Model (H1VH2,U) are nonnegative time periodic functions of period
T of the form

�(t) = <�>+ ε�(t), <�> =
1
T

∫ T

0

�(t)dt > 0, �(t) ≥ 0, t ≥ 0,

for ε > 0, while λ1, ω1, λm are nonnegative constants, λ2 is a positive
constant and 0 < ε2 ≤ 1.

Proposition 2. Let condition Hyp 4.2 hold. Assume <bj − mj> > 0 for
j = 1,m and set

K1 =
<b1 −m1>

<k1>
, Km =

<bm −mm>

<km>
. (3.18)

Set
T �

0,v =
<σm1>K1<σ1m>Km

(λ1 +<b1>)(λm +<bm>)

When T �
0,v > 1 for small enough ε > 0 there exists a nonnegative time periodic

solution of period T to Model (H1VH2,U) with (u(t), v(t), w(t)) ≡ (0, 0, w∗)
and w∗ > 0.
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Proof. The first part of the proof follows our proof of Proposition 1.
Let (ϕ(t), ψ(t), χ(t), u(t), v(t), w(t), α(t), β(t))� be a time periodic solu-

tion with nonnegative components. Using the time periodic logistic equations
satisfied by P1 and P3 and the result in Lemma 1 one gets the existence and
uniqueness of nonnegative and time periodic functions, (K�

1,K
�
m), of period

T such that
P1(t) ≡ K�

1(t), P3(t) ≡ K�
m(t), t ≥ 0.

Next the semi-orbit {(ϕ(t), ψ(t), χ(t), u(t), v(t), w(t), α(t), β(t))�, t > 0} is
bounded in R8

+, see the proof of Lemma 3. Last the conclusion of Lemma 4
still holds: assuming P2(0) > 0 there exists (u∗, w∗) ∈ R2

+

(u(t), v(t), w(t)) → (u∗, 0, w∗) as t→ +∞,

and u∗ = 0 ⇐⇒ β(t) �= 0. As a consequence in the time periodic model
Model (H1VH2,U) we can reduce the search for nonnegative periodic solu-
tions to solutions of the form (K�

1(t)−ψ(t)−χ(t), ψ(t), χ(t), u∗, 0, w∗,K�
m(t)−

β(t), β(t))�. To prove the existence of time periodic solutions of period T one
may thus as well consider the reduced system with periodic coefficients de-
pending on ε > 0,

ψ′ = +σm1(t)β(K�
1(t)− ψ − χ)− (λ1 +m1(t) + k1(t)K

�
1(t))ψ,

χ′ = ω1λ1ψ − (m1(t) + k1(t)K
�
1(t))χ,

β′ = +σ1m(t)ψ(K�
m(t)− β)− (λm +mm(t) + km(t)K�

m(t))β.

(3.19)

Let us first assume ε = 0. System (3.19) reduces to system (3.17) with
coefficients < σm1 >, <b1>, <σ1m>, <bm> and carrying capacities given by
(3.18). Assuming T �

0,v > 1, and ε = 0, system (3.19) has a unique nontrivial
stationary state, (ψ∗, χ∗, β∗) with ψ∗ > 0, χ∗ ≥ 0 and β∗ > 0, that is locally
asymptotically stable. The eigenvalues of the Jacobian matrix evaluated at
(ψ∗, χ∗, β∗) are negative or have negative real parts, see the proof of Lemma 5
supplied in Sect. 3.7. This prevents the linearized system at (ψ∗, χ∗, β∗) to
have nontrivial periodic solutions.

One may now use a theorem from Poincaré, cf. [39], asserting that for small
enough ε > 0 system (3.19) possesses a unique time periodic solution of period
T , (ψ�(t, ε), χ�(t, ε), β�(t, ε)), with (ψ�(t, 0), χ�(t, 0), β�(t, 0)) near (ψ∗, χ∗, β∗),
the mapping ε > 0 → (ψ�(t, ε), χ�(t, ε), β�(t, ε))� ∈ R3 being continuous.

When ω1λ1 > 0 then χ∗ > 0; this together with ψ∗ > 0 and β∗ > 0 show
that for possibly smaller ε > 0 the periodic solution (ψ�(t, ε), χ�(t, ε), β�(t, ε))
remains nonnegative.

Now ω1λ1 = 0 means the recovered class R1 does not exist, equivalently
χ(t) ≡ 0, say χ�(t, ε) ≡ 0, and the conclusion concerning nonnegativity follows
as above.

From the proof of Lemma 4 one finds u∗ = 0 and w∗ > 0. ��
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Fig. 3.9. A time periodic Model (H1VH2,U) numerical simulation: data from
Fig. 3.3 for vectors, simple logistic regulation model for H1 with K1 =40, P2(0)=100

Numerical simulation results are shown in Fig. 3.9. With this parameter
data set large amplitude oscillations driven by one year periodic seasonal
variations are observed in the vector population, data from Fig. 3.3, most
vectors being infectives. It has a weak impact on the reservoir host population
H1 but a strong one in populationH2: all susceptibles become quickly infected,
surviving ones enter the recovered class.

Further Comments

For nonlogistically regulated and time periodic disease free population dy-
namics models of Sect. 3.2 modified Model (H1VH2,U) can be analyzed.

3.4.2 A Simple Model for Environmentally Transmitted Diseases

Our model assumes two independent host populations, H1 and H2. Host pop-
ulations are subdivided into three subclasses: susceptibles, Si, infectives, Ii,
and temporary or permanently recovered, Ri, for i = 1, 2.

The main departure from the basic SEIRS model in Fig. 3.7 and Model
(H1VH2,U) in Fig. 3.8 arises in transmission modes. One assumes direct or
horizontal transmission of the disease is feasible from infective individuals I1
to susceptibles S1 in population H1. But neither horizontal transmission in
population H2, nor criss-cross transmission from infective individuals Ii from
population Hi to susceptibles Sj in population Hj , i, j = 1, 2 and i + j = 3
are possible.

Instead indirect transmission through the environment drives the inter
specific transmission. Infectious individuals Ii, i = 1, 2, will contaminate the
environment through excrements and feces, cf. [12, 56]. Susceptibles of both
host populations, H1 and H2, are contaminated by the environment. The
environment has a natural decontamination rate, δ > 0, 1/δ > 0 being the
average duration of microparasite survival in the environment.

Concerning vital dynamics population H1 is run by a logistic growth with
birth and death rates (b1,m1) and a density-dependent effect k1. It is assumed
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that the disease has no impact on fertility: infective and recovered individuals
have birth-rates identical to those of susceptibles in H1; there is no vertical
transmission at birth. The infectious disease is benign in H1, this is there is
no additional mortality rate due to infection. Last 1/λ1 is the duration of the
infective stage in H1, a proportion ω1 of infective becoming resistant and a
proportion 1− ω1 going back to the susceptible class.

Natural demography is not taken into account in population H2. Infectives
I2 surviving the disease become permanently resistant; ε2 is the survival rate
and 1/λ2 the duration of the infective stage in H2.

The last point to be settled is the incidence term. Again we choose a
density dependent form for each of the interactions between susceptible or
infectious individuals and the environment.

As it is pointed out for Model (H1GH2,U) as long as the microparasite
is benign in the reservoir population H1 a frequency dependent incidence
for horizontal transmission in H1 would lead to minor modifications in the
analysis and derivation of the threshold parameter for parasite persistence.

Let us now define state variables: (ϕ,ψ, χ) represent the (S1, I1, R1) host
densities in population H1 and P1 = ϕ + ψ + χ, (u, v, w) represent the
(S2, I2, R2) host densities in population H2 and P2 = u+ v + w.

A new variable, c with 0 ≤ c(t) ≤ 1, is to be interpreted as a normalized
variable representing the proportion of contaminated habitat, cf. [12, 56].

Putting together all of these assumptions transmission of the disease within
the unstructured H1 − G − H2 model in Fig. 3.10 is modeled by a set of
nonautonomous ordinary differential equations,

Fig. 3.10. A simple H1 − G − H2 compartmental model without demography
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Model (H1GH2,U)

ϕ′ = −σ11(t)ψϕ− σg1(t)cϕ+ (1− ω1)λ1ψ + b1(t)P1 − (m1(t) + k1(t)P1)ϕ,

ψ′ = +σ11(t)ψϕ+ σg1(t)cϕ− λ1ψ − (m1(t) + k1(t)P1)ψ,

χ′ = +ω1λ1ψ − (m1(t) + k1(t)P1)χ,

u′ = −σg2(t)cu,

v′ = +σg2(t)cu− λ2v,

w′ = +ε2λ2v,

c′ = (σ1g(t)ψ + σ2g(t)v)(1− c)− δc.

supplemented with a set of nonnegative initial conditions such that each of the
two populations is present at time t = 0 – this is P1(0) > 0, P2(0) > 0 – and
such that infection is also present at time t = 0 – this is ψ(0)+β(0)+c(0) > 0.

Lemma 6. Let the coefficients in Model (H1GH2,U) be either nonnegative
constants or nonnegative smooth and bounded functions of time, 0 ≤ ε2 ≤ 1.

Then for each set of nonnegative initial conditions, 0 ≤ c(0) ≤ 1, Model
(H1GH2,U) has a unique global solution (ϕ(t), ψ(t), χ(t), u(t), v(t), w(t),
c(t))� with nonnegative components and 0 ≤ c(t) ≤ 1.

Proof. Compared to the proof of Lemma 2 the only difference lies in the
equation for c: now the interval 0 ≤ c ≤ 1 is forward invariant by the flow
in Model (H1GH2,U) as soon as state variables (ψ, β) remain nonnegative.
Hence R6

+ × [0, 1] is forward invariant by the flow in Model (H1GH2,U).

��

Stability Analysis for the Autonomous Model (H1GH2,U)

Let us assume

Hyp 4.3 Coefficients λ1 and ω1 are nonnegative constants while other coef-
ficients in Model (H1GH2,U) are positive constants with b1 −m1 > 0
and 0 < ε2 ≤ 1.
P1(0) > 0 and P2(0) > 0.

We still use the methodology of ω-limit sets. In the setting of Lemma 6 given
a set of nonnegative initial conditions with 0 ≤ c(0) ≤ 1 the ω-limit set for
Model (H1GH2,U) is defined as

ω0 = {(ϕ∞, ψ∞, χ∞, u∞, v∞, w∞, c∞)� ∈ R6
+ × [0, 1], such that

there exists a sequence (tn)n≥0, tn → +∞ as n→ +∞,
(ϕ(tn), ψ(tn), χ(tn), u(tn), v(tn), w(tn), c(tn))� →

(ϕ∞, ψ∞, χ∞, u∞, v∞, w∞, c∞)� as n→ +∞}.

Along the lines of the previous system Model (H1VH2,U) one has
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Lemma 7. Let condition Hyp 4.3 hold. Set

K1 =
b1 −m1

k1
.

For each set of nonnegative initial conditions with 0 ≤ c(0) ≤ 1 there exists a
compact, connected and forward invariant ω-limit set ω0 = ω(ϕ,ψ, χ, u, v, w, c)
in R6

+ × [0, 1].
Any element in ω0 is of the form (K1 − ψ∞ − χ∞, ψ∞, χ∞, u∗, 0, w∗, c∞)�,
u∗ and w∗ being nonnegative constants depending on the initial conditions.

We can reduce the stability analysis for the autonomous Model (H1GH2,U)
to flows on ω0 with (u(t), v(t), w(t)) ≡ (u∗, 0, w∗), this is to the reduced system

ψ′ = +(σ11ψ + σg1c)(K1 − ψ − χ)− (λ1 + b1)ψ,

χ′ = ω1λ1ψ − b1χ,
c′ = +σ1gψ(1− c)− δc,

(3.20)

Concerning the stability analysis for (3.20) one has

Lemma 8. Let condition Hyp 4.4 hold. Set

T0,g =
(σ11 + σ1gσg1/δ)K1

λ1 + b1
.

Then (3.20) has one or two stationary states with nonnegative components:

1. When T0,g < 1 the trivial state (0, 0, 0) is globally asymptotically stable.
2. When T0,g > 1 the trivial state (0, 0, 0) is unstable and there exists a

unique nontrivial stationary state (ψ∗, χ∗, c∗) with ψ∗ > 0, χ∗ ≥ 0, 0 <
ψ∗ + χ∗ ≤ K1 and 0 < c∗ < 1 that is locally asymptotically stable.

Proof. Let us assume T0,g < 1. Set L3(ψ, χ, c) = δψ + (σg1K1 + θg)c + θ1χ,
for positive and small enough (θ1, θg). Then straightforward calculations yield
dL3/dt(t) ≤ −θ2L3(t) for some small and positive θ2. Hence L3 is a Lyapunov
functional and (ψ(t), χ(t), c(t)) → (0, 0, 0) as t→ +∞, exponentially.

Let us now assume T0,g > 1. The Jacobian matrix of (3.20) evaluated
at the trivial equilibrium, (0, 0, 0), has a positive determinant yielding local
instability of (0, 0, 0). Let (ψ∗, χ∗, c∗) be a nontrivial stationary state with
0 < c∗ < 1. From the second and the third equations in (3.20) at equilibrium
one gets

χ∗ =
ω1λ1

b1
ψ∗, c∗ =

σ1gψ
∗

σ1gψ∗ + δ
.

Substituting this back into the first equation in (3.20) at equilibrium and
simplifying by ψ∗ > 0 leads to finding a root, 0 < ψ∗ < K1, of an equation,
Fg(ψ∗) = b1 + λ1, wherein

Fg(ψ) =
[
σ11 + σg1

σ1g

σ1gψ + δ

] [
K1 −

(
1 +

ω1λ1

b1

)
ψ

]
.
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Fg is a decreasing function within the range (0, K̂1), K̂1 = (1 + ω1λ1
b1

)−1K1,
satisfying Fg(K̂1) = 0; as a consequence there is a unique solution ψ∗ in the
desired range if and only if Fg(0) > b1 + λ1, this is T0,g > 1. Then one can
check that ψ∗ > 0, χ∗ ≥ 0, 0 < ψ∗ + χ∗ ≤ K1 and 0 < c∗ < 1.

Local stability for (ψ∗, χ∗, c∗) follows from the analysis of the Jacobian
matrix of (3.20) evaluated at (ψ∗, χ∗, c∗), see Sect. 3.7. Eigenvalues of the
Jacobian matrix are negative or have negative real parts. ��

We now complete the stability analysis of solutions to Model (H1GH2,U)
in the autonomous case.

Proposition 3. Let condition Hyp 4.3 hold.
Then the solution-set (ϕ,ψ, χ, u, v, w, c) to Model (H1GH2,U) satisfies:

– When T0,g < 1, as t→ +∞, (ϕ(t), ψ(t), χ(t), u(t), v(t), w(t), c(t))� goes to
(K1, 0, 0, u∗, 0, w∗, 0)�, for some positive u∗ and nonnegative w∗.

– When T0,g > 1 let (ψ∗, χ∗, c∗) be the unique nontrivial stationary
state for (3.20), ψ∗ > 0, χ∗ ≥ 0, 0 < ψ∗ + χ∗ ≤ K1 and
0 < c∗ < 1; then, (ϕ(t), ψ(t), χ(t), u(t), v(t), w(t), c(t))� goes to
(K1 − ψ∗ − χ∗, ψ∗, χ∗, 0, 0, w∗, c∗)� as t → +∞ for some nonnegative
w∗ provided (ψ(0), χ(0), c(0)) be close enough to (ψ∗, χ∗, c∗).

As a consequence T0,g in Lemma 8 is the threshold parameter for the
invasion and persistence of the parasite in the autonomous logistic Model
(H1GH2,U).

Further Comments

Simple modifications of condition Hyp 4.3 yield modifications in dynamical
behaviors for the autonomous Model (H1GH2,U): see the comments related
to Model (H1VH2,U) following Proposition 1 concerning models ignoring
demography, and models with Malthusian growth or Allee effect.

Model (H1GH2,U) with Time Periodic Coefficients

We still follow the methodology designed for Model (H1VH2,U), cf. Wolf
et al. [70], to prove the existence of periodic solutions for Model (H1GH2,U)
emerging from stable stationary states. Let us now assume

Hyp 4.4 Coefficients � = b1,m1, k1 and σgj , σjg for j = 1, 2 in Model
(H1GH2,U) are nonnegative time periodic functions of period T of the
form

�(t) =< � > +ε�(t), < � >=
1
T

∫ T

0

�(t)dt > 0, �(t) ≥ 0, t ≥ 0,

for ε > 0, while λ1, ω1 are nonnegative constants, λ2, δ are positive con-
stants and 0 < ε2 ≤ 1.
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Proposition 4. Let condition Hyp 4.4 hold. Assume < b1−m1 >> 0 and set

K1 =
<b1 −m1>

<k1>
.

Set

T �
0,g =

(< σ11 > + < σ1g >< σg1 > /δ)K1

λ1+ < b1 >

When T �
0,g > 1 for ε > 0 small enough there exists a nonnegative time

periodic solution of period T to Model (H1GH2,U) with (u(t), v(t), w(t)) ≡
(0, 0, w∗) and w∗ > 0.

Proof. It is quite identical to the proof of the corresponding result for Model
(H1VH2,U), see Proposition 2, and therefore omitted. ��

Numerical simulation results are shown in Figs. 3.11 and 3.12. With this
parameter data set large amplitude oscillations driven by a five year periodic
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Fig. 3.11. A time periodic Model (H1GH2,U) numerical simulation: data from
Fig. 3.4 for host population H1 and P2(0) = 100
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Fig. 3.12. A time periodic Model (H1GH2,U) numerical simulation: data from
Fig. 3.4 for host population H1 and a decontamination rate δ = 10 of the
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carrying capacity are observed in host population H1, data from Fig. 3.4. It
has a strong impact on the contamination of the environment, see Fig. 3.12,
and also a strong impact on host population H2, see Fig. 3.11. Note that the
periodic outbreaks of infectives in H1 are followed by epidemic outbreaks in
population H2 and the environment.

Much more realistic numerical simulations using field data for a bank vole–
Human–hantavirus system are found in [57], cf. [56, 70].

Further Comments

For nonlogistically regulated and time periodic disease free population dy-
namics models of Sect. 3.2 modified versions of Model (H1GH2,U) can be
devised, and suitable threshold parameters for parasite persistence exhibited.

3.5 Spatially Structured Epidemic Models
on Noncoincident Spatial Domains

In this section we study systems of Reaction–Diffusion equations modeling
the transmission of a microparasite between two host populations spatially
distributed over distinct spatial habitats: a population H1 is distributed over
a spatial domain Ω1 while a population H2 is distributed over a spatial do-
main Ω2 with Ω1 ∩Ω2 �= Ωi, i = 1, 2. Epidemiological models are those from
Sect. 3.4: a vector borne disease model with a vector population distributed
over a spatial domain Ωm such that Ωm ∩ Ωi �= ∅, i = 1, 2, and an environ-
mentally transmitted disease model in which case Ω1 ∩Ω2 �= ∅.

3.5.1 A Simple Model for Vector Borne Diseases

Let Ωi, i = 1, 2,m, be bounded domains in Rn with smooth boundary ∂Ωi,
such that locally Ωi lies on one side of ∂Ωi. Suppose Ωm ∩Ωi �= ∅, i = 1, 2.

Spatial heterogeneities arise into two manners: similarly to those from
Sect. 3.2.2, but – and mostly – because incidence terms have supports in Ωm∩
Ωi, i = 1, 2, yielding spatial discontinuities in coefficients along the boundaries
of Ωm∩Ωi – see Fig. 3.13 andDset,v in Hyp. 5.2 below – that prevent solutions
to be smooth there.

Fig. 3.13. Spatial domains for simple vector borne disease model
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State variables represent time dependent spatial densities: (ϕ,ψ, χ) are the
(S1, I1, R1) densities for population H1 in Ω1 and P1 = ϕ + ψ + χ, (u, v, w)
represent the (S2, I2, R2) densities for populationH2 in Ω2 and P2 = u+v+w,
while (α, β) are the (Sm, Im) vector densities in Ωm and P3 = α+ β.

All individuals disperse by means of Fickian diffusion through their habi-
tat. Let −dij(x)∇ξij be population fluxes, dij being the positive diffusivity of
species i, i = 1, 2,m and sub population j, j = 1, 2, 3, j = 1 corresponding to
susceptibles, j = 2 to infectives and j = 3 to recovered.

A simple Reaction–Diffusion model with spatially dependent coefficients
based on (3.6) can be derived from the unstructured Model (H1VH2,U) as
a system of semilinear evolution equations of parabolic type,
Model (H1VH2,S)

∂ϕ/∂t−∇ · d11(x)∇ϕ = −σm1(x)βϕ
+(1− ω1)λ1ψ + b1(x)P1 − (m1(x) + k1(x)P1)ϕ,

∂ψ/∂t−∇ · d12(x)∇ψ = +σm1(x)βϕ
−λ1ψ − (m1(x) + k1(x)P1)ψ,

∂χ/∂t−∇ · d13(x)∇χ = +ω1λ1ψ − (m1(x) + k1(x)P1)χ,

(3.21)

for (x, t) ∈ Ω1 × (0,+∞),

∂u/∂t−∇ · d21(x)∇u = −σm2(x)βu,

∂v/∂t−∇ · d22(x)∇v = +σm2(x)βu− λ2v,

∂w/∂t−∇ · d23(x)∇w = +ε2λ2v

(3.22)

for (x, t) ∈ Ω2 × (0,+∞), and

∂α/∂t−∇ · dm1(x)∇α = −(σ1m(x)ψ + σ2m(x)v)α
+λmβ + bm(x)P3 − (mm(x) + km(x)P3)α,

∂β/∂t−∇ · dm2(x)∇β = +(σ1m(x)ψ + σ2m(x)v)α
−λmβ − (mm(x) + km(x)P3)β,

(3.23)

for (x, t) ∈ Ωm × (0,+∞).
The requirement that each population Pi remains confined to Ωi, i =

1, 2,m, for all time translates as the following no flux boundary conditions,
see (3.7),

d11(x)∂ϕ/∂η1 = d12(x)∂ψ/∂η1 = d13(x)∂χ/∂η1 = 0,

d21(x)∂u/∂η2 = d22(x)∂v/∂η2 = d23(x)∂w/∂η2 = 0

dm1(x)∂α/∂ηm = dm2(x)∂β/∂ηm = 0

(3.24)

for (x, t) ∈ ∂Ωi × (0,+∞), ηi being the unit outward normal vector to Ωi

along its boundary ∂Ωi, i = 1, 2,m. Finally we specify initial conditions
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ξ(x, 0) = ξ0(x), ξ = ϕ, ψ, χ, u, v, w, α, β (3.25)

that are continuous and nonnegative on their respective spatial domains of
definition: Ω1 for (ϕ0, ψ0, χ0), Ω2 for (u0, v0, w0) and Ωm for (α0, β0).

Generic Results

We place assumptions on the coefficients of Model (H1VH2,S) in the spirit
of Hyp. 2.1 and Hyp. 2.2. See Figs. 3.5 and 3.13 for Hyp. 5.2.

Hyp. 5.1 (bi,mi, ki) are nonnegative elements of L∞(Ωi), i = 1,m, and dij

are nonnegative elements of L∞(Ωi), i = 1, 2,m and j = 1, 2, 3; there
exists positive numbers (dmin, dmax) such that

0 < dmin ≤ dij(x) ≤ dmax, x ∈ Ωi.

Hyp. 5.2 Let Dset,v be the set of spatial discontinuities for incidence terms,
that is Dset,v = (Ω1 ∩ ∂Ωm) ∪ (Ω2 ∩ ∂Ωm) ∪ (Ωm ∩ ∂Ω1) ∪ (Ωm ∩ ∂Ω2).
We suppose there exists open subregions of Ωi, (Ω∗

i�)1≤�≤κ(i), with Ω∗
i� ⊂

Ωi, Ω∗
i� ∩Dset,v = ∅, Ω∗

i� ∩Ω∗
ij = ∅ for � �= j having the same smoothness

properties as Ωi, i = 1, 2,m.
Set Ω∗

i = Ω∗
i1 ∪ · · · ∪Ω∗

iκ(i) and Ω∗
i0 = Ωi \ (Ω∗

i ∪Dset,v).
Then we assume (bi,mi, ki) ∈ C0,α(Ω∗

i�) and dij ∈ C2,α(Ω∗
i�), for � =

0, · · · , κ(i), i = 1, 2,m and j = 1, 2, 3.
Hyp. 5.3 Coefficients σij are nonnegative elements of C0,α(Ωi ∩Ωj), i =

1, 2,m and j = 1, 2,m, vanishing in Ωj \Ωi.
λ1, ω1 and λm are nonnegative constants while 0 < ε2 ≤ 1.

Condition Hyp. 5.2 still includes the case of piecewise constant coefficients.
The set Dset,v in Hyp. 5.2 takes care of structural spatial discontinuities
caused by incidence terms in Model (H1VH2,S), see Hyp. 5.3.

We now state a generic existence/uniqueness result for classical solutions
defined – componentwise – according to Hyp. 5.2 and Definition 1. We refer
to [29–31,33] for a proof of related mathematical problems.

Theorem 2. Let conditions Hyp. 5.1 to Hyp. 5.3 hold. Assume (ϕ0, ψ0, χ0)�

∈ (C0(Ω1))3, (u0, v0, w0)� ∈ (C0(Ω2))3 and (α0, β0)� ∈ (C0(Ωm))2 are com-
ponentwise nonnegative. System Model (H1VH2,S) has a unique compo-
nentwise nonnegative and global classical solution (ϕ,ψ, χ, u, v, w, α, β)�.

Furthermore there exists a constant K2 such that 0 ≤ ‖P2(·, t)‖Ω2,∞ ≤ K2,
t ≥ 0, and a continuous positive function K : R+ → R+ such that

0 ≤ ‖P1(·, t)‖Ω1,∞, ‖P3(·, t)‖Ωm,∞ ≤ K(t), t ≥ 0.

Uniform bounds for solutions to system Model (H1VH2,S) are derived upon
assuming suitable conditions on vital dynamics.
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Hyp. 5.4 For i = 1,m there exists positive numbers ri and ki,min such that

0 < ri ≤ bi(x)−mi(x), 0 < ki,min ≤ ki(x), x ∈ Ωi.

Proposition 5. Let conditions Hyp. 5.1 to Hyp. 5.3 hold. Assume either
condition Hyp. 5.4 hold or bi(x) = mi(x) = ki(x) ≡ 0 for i = 1,m. For each
set of componentwise nonnegative initial condition (ϕ0, ψ0, χ0)� ∈ (C0(Ω1))3,
(u0, v0, w0)� ∈ (C0(Ω2))3 and (α0, β0)� ∈ (C0(Ωm))2 there exists a positive
constant K such that the solution to Model (H1VH2,S) satisfies

0 ≤ ‖P1(·, t)‖Ω1,∞, ‖P2(·, t)‖Ω1,∞, ‖P3(·, t)‖Ωm,∞ ≤ K, t ≥ 0.

We refer to [29–31, 33] for a proof of the foregoing result. These uniform
bounds together with regularity results for parabolic equations, cf. [48], yields
compactness. Given a set of nonnegative initial conditions the ω-limit set ω0

for Model (H1VH2,S) is defined as

ω0 = {(ϕ∞, ψ∞, χ∞, u∞, v∞, w∞, α∞, β∞)�, such that
there exists a sequence (tn)n≥0, tn → +∞ as n→ +∞,

(ϕ(tn), ψ(tn), χ(tn))� → (ϕ∞, ψ∞, χ∞)� in (C0(Ω1))3,

(u(tn), v(tn), w(tn))� → (u∞, v∞, w∞)� in (C0(Ω2))3,

(α(tn), β(tn))� → (α∞, β∞)� in (C0(Ωm))2,
as n→ +∞}.

We still refer to [29–31,33] for a proof of the following one

Proposition 6. Assume conditions listed in Proposition 5 are satisfied.
Then trajectories {(ϕ(·, t), ψ(·, t), χ(·, t), u(·, t), v(·, t), w(·, t), α(·, t), β(·, t))�,
t ≥ 0} are precompact in (C0(Ω1))3 × (C0(Ω2))3 × (C0(Ωm))2. Each set
of componentwise nonnegative initial condition (ϕ0, ψ0, χ0)� ∈ (C0(Ω1))3,
(u0, v0, w0)� ∈ (C0(Ω2))3 and (α0, β0)� ∈ (C0(Ωm))2 has a compact con-
nected and forward invariant ω-limit set ω0.
Moreover the semidynamical system in Model (H1VH2,S) has a global at-
tractor in ((C0(Ω1))3 × (C0(Ω2))3 × (C0(Ωm))2)+.

The actual form of the ω-limit set seems out of reach of analysis in the general
case, except for the second host population H2.

Proposition 7. Assume conditions listed in Proposition 5 are satisfied.
There exists two nonnegative constants (u∗, w∗) such that as t → +∞
(u(·, t), v(·, t), w(·, t))� converges to (u∗, 0, w∗)� in (C0(Ω2))3.

Proof. Set

ξ(t) =
1
|Ω2|

∫
Ω2

ξ(x, t) dx, ξ = u, v, w, t ≥ 0.

We first show the existence of a set of nonnegative constants (u∗, v∗, w∗) such
that ξ(t) → ξ∗ as t → +∞, ξ = u, v, w. This follows from a mere integration
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over Ω2 of the equations for the nonnegative state variables (u, v, w) in (3.22).
Typically from the equation for u one gets

u(T ) +
1
|Ω2|

∫ T

0

∫
Ω2

σm2(x, t)β(x)u(x, t) dxdt = u(0).

This proves the existence of u∗ as well as∫ ∞

0

∫
Ω2

σm2(x, t)β(x)u(x, t) dxdt < +∞.

From the equation for v one has

v(T )+
λ2

|Ω2|

∫ T

0

∫
Ω2

v(x, t) dxdt =
1
|Ω2|

∫ T

0

∫
Ω2

σm2(x, t)β(x)u(x, t) dxdt+v(0).

This proves the existence of v∗ as well as v ∈ L1(Ω2× (0,∞)) or v ∈ L1(0,∞)
and the existence of w∗ follows.

We now prove v∗ = 0. Noting that

d

dt
v(t) =

1
|Ω2|

∫
Ω2

(σm2β(x)u(x, t)− λ2v(x, t)) dx

it follows the time derivative v′(t) is uniformly bounded over (0,∞). This
together with v ∈ L1(0,∞) shows v∗ = 0.

Next we strengthen these convergence results and show

Lemma 9.
lim

t→∞ ‖ξ(·, t)− ξ(t)‖H1(Ω2) = 0, ξ = u, v, w.

Proof. We establish the desired result for u; the result for variables v and w
follows by virtually the same arguments. Let us multiply the first equation in
(3.22) through by u and integrate on Ω2 to see that∫ ∞

0

∫
Ω2

‖∇u‖2dxdt < +∞. (3.26)

Let us now multiply the first equation in (3.22) through by ∂u/∂t and integrate
on Ω2 to get∫

Ω2

(∂u/∂t)2dx+
1
2
d/dt

(∫
Ω2

d21(x) | ∇u |2 dx
)

=
∫

Ω2

(∂u/∂t)σm2βu(x, t)dx.

If we apply Young’s inequality we may observe that,∫
Ω2

(∂u/∂t)2dx+ d/dt
(∫

Ω2

d21(x) | ∇u |2 dx
)
≤
∫

Ω2

(σm2βu)2(x, t)dx.

As a result we may integrate on (τ, T ) for any 0 < τ < T <∞ to obtain,
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τ

∫
Ω2

(∂u/∂t)2dx+ dmin

∫
Ω2

| ∇u(x, T ) |2 dx)

≤
∫

Ω2

| ∇u(x, τ) |2 dx+ ‖σm2‖∞,Ω2 (K)2
∫ T

τ

∫
Ω2

| σm2βu | (x, t)dx.

(3.27)
By virtue of (3.26) above, we are assured of the existence of an increasing
sequence {τk}k≥0 with τk →∞ as k →∞ such that

lim
k→∞

∫
Ω2

| ∇u(x, τk) |2 dx = 0. (3.28)

One also has
∫∞

τ

∫
Ω2
| σm2βu(x, t) | dx → 0 as τ → ∞. Coupling this with

(3.27) and (3.28) yields,

lim
t→∞

∫
Ω2

| ∇u(x, t) |2 dx = 0. (3.29)

Moreover, the Poincaré–Wirtinger Inequality, cf. [47], implies that there exists
a constant Λ > 0 so that

Λ‖u(·, t)− u(t)‖2,Ω2 ≤ ‖ | ∇u(x, t) | ‖2,Ω2 .

for all t > 0. Combining the above with (3.29) yields the desired convergence
result in H1(Ω2) for the state variable u. ��

Convergence in C0(Ω2) follows from the H1(Ω2) convergence and Proposi-
tion 6. This completes the proof of Proposition 7.

A Simplified System Model (H1VH2,S)

This corresponds to our motivating problem wherein the microparasite has
no impact on the host populations H1 and the vector population. We now
assume it has no impact on individual dispersals.

Hyp. 5.5 there exists d1 and dm satisfying conditions Hyp. 5.1 and Hyp.
5.2 such that d11 = d12 = d13 = d1 and dm1 = dm2 = dm.

Upon adding the equations for (ϕ,ψ, χ) in Model (H1VH2,S) one finds a
spatially heterogeneous equation for the total population P1,

∂P1/∂t−∇ · d1(x)∇P1 = + b1(x)P1 − (m1(x) + k1(x)P1)P1,

d1(x)∂P1/∂η1(x, t) = 0,
P1(x, 0) = ϕ0(x) + ψ0(x) + χ0(x),

(3.30)

Assuming conditions Hyp. 5.1 to Hyp. 5.5 hold one may use the statement
in Theorem 1 to conclude to the existence of a nonnegative function K1 with

P1(·, t) → K1(·) as t→ +∞, in C0(Ω1).
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Along the same lines, from the equations for (α, β) one may conclude to the
existence of a nonnegative function Km such that

P3(·, t) → Km(·) as t→ +∞, in C0(Ωm).

These two stabilization results and the one in Proposition 7 allows to simplify
Model (H1VH2,S).

Proposition 8. Assume conditions Hyp. 5.1 to Hyp. 5.5 hold.
Let (ϕ0, ψ0, χ0)� ∈ C0(Ω1))3, (u0, v0, w0)� ∈ C0(Ω2))3 and (α0, β0)� ∈
C0(Ωm))2 be a set of componentwise nonnegative initial conditions.
Then any element in the ω-limit set of (ϕ0, ψ0, χ0, u0, v0, w0, α0, β0)� is of the
form (K1(·)− ψ∗ − χ∗, ψ∗, χ∗, u∗, 0, w∗,Km(·)− β∗, β∗)�.

It remains to calculate the triple (ψ∗, χ∗, β∗), solutions to the reduced system,

Model (H1VH2,S,reduced)

∂ψ∗/∂t−∇ · d1(x)∇ψ∗ = +σm1(x)β∗(K1(·)− ψ∗ − χ∗)
−(λ1 +m1(x) + k1(x)K1)ψ∗,

∂χ∗/∂t−∇ · d1(x)∇χ∗ = +ω1λ1ψ
∗ − (m1(x) + k1(x)K1)χ∗,

for (x, t) ∈ Ω1 × (0,+∞),

∂β∗/∂t−∇ · dm(x)∇β∗ = +σ1m(x)ψ∗(Km(x)− β∗)
−λmβ

∗ − (mm(x) + km(x)Km(x))β∗,

for (x, t) ∈ Ωm × (0,+∞) with no flux boundary conditions:

d1(x)∂ψ∗/∂η1 = d1(x)∂χ∗/∂η1 = 0, x ∈ ∂Ω1, t ≥ 0,

dm(x)∂β∗/∂ηm = 0, x ∈ ∂Ωm, t ≥ 0,

and a set of componentwise nonnegative initial conditions (ψ∗
0 , χ

∗
0, β

∗
0)

(ψ∗
0 , χ

∗
0, β

∗
0)� ∈ (C0(Ω1))2 × C0(Ωm).

A comprehensive analysis of the large time behavior of solutions to Model
(H1VH2,S, reduced) in the genuinely spatially heterogeneous case is diffi-
cult to derive. Numerical results from Fitzgibbon et al. [32] show that for
distinct spatial domains, Ω1 �= Ωm, the threshold for persistence depends
on a complicated manner of Ω1 ∩ Ωm. Hence the conjecture from [31] is not
correct.

For spatially structured populations this turns out to be one of the main
differences between the vector borne transmitted model Model H1VH2 and
the environmentally transmitted model Model H1GH2 handled below.

For constant coefficients and identical spatial domains, Ω1 = Ω2 = Ωm,
(0, 0, 0) and (ψ∗, χ∗, β∗) from Lemma 5 are the two constant stationary states
with nonnegative components. A linear stability analysis can be carried out
from which it follows that T0,v remains a threshold parameter for persistence
of the microparasite; see the proofs of Lemmas 5 and 10 below.
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3.5.2 A Simple Model for Environmentally Transmitted Diseases

Let Ωi, i = 1, 2, be bounded domains in Rn with smooth boundary ∂Ωi such
that locally Ωi lies on one side of ∂Ωi. Suppose Ω1 ∩Ω2 �= ∅.

Again spatial heterogeneities arise into two manners: similarly to those
from Sect. 3.2.2, but – and mostly – because incidence terms for the con-
tamination of the environment in Ω1 ∪ Ω2 have supports in either Ω1 or Ω2

yielding spatial discontinuities in coefficients along the boundaries of Ω1∩Ω2 –
see Fig. 3.14 and Dset,g in Hyp. 5.7 below – that prevent the c component of
the solution-set to be smooth there.

State variables will now represent time dependent spatial densities:
(ϕ,ψ, χ) are the (S1, I1, R1) densities for population H1 in Ω1 and
P1 = ϕ + ψ + χ, (u, v, w) represent the (S2, I2, R2) densities for population
H2 in Ω2 and P2 = u+ v+w, while c(x, t) is the proportion of contaminated
environment at location x ∈ Ω1 ∪Ω2 and time t ≥ 0.

All host individuals disperse by means of Fickian diffusion through their
habitat. Let −dij(x)∇ξij be the population fluxes, dij being the positive dif-
fusivity of species i, i = 1, 2 and sub population j, j = 1, 2, 3, j = 1 corre-
sponding to susceptibles, j = 2 to infectives and j = 3 to recovered.

A simple Reaction–Diffusion model with spatially dependent coefficients,
based on (3.6), can be expressed as a system of semilinear evolution equations
of parabolic type,
Model (H1GH2,S)

∂ϕ/∂t−∇ · d11(x)∇ϕ = −σ11(x)ψϕ− σg1(x)cϕ
+(1− ω1)λ1ψ + b1(x)P1 − (m1(x) + k1(x)P1)ϕ,

∂ψ/∂t−∇ · d12(x)∇ψ = +σ11(x)ψϕ+ σg1(x)cϕ
−λ1ψ − (m1(x) + k1(x)P1)ψ,

∂χ/∂t−∇ · d13(x)∇χ = +ω1λ1ψ − (m1(x) + k1(x)P1)χ,

(3.31)

for (x, t) ∈ Ω1 × (0,+∞),

∂u/∂t−∇ · d21(x)∇u = −σg2(x)cu,

∂v/∂t−∇ · d22(x)∇v = +σg2(x)cu− λ2v,

∂w/∂t−∇ · d23(x)∇w = +ε2λ2v

(3.32)

Fig. 3.14. Spatial domains for simple environmentally transmitted disease model
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for (x, t) ∈ Ω2 × (0,+∞), and

∂c/∂t = σ1g(x)(1− c)ψ + σ2g(x)(1− c)v − δ(x)c. (3.33)

for (x, t) ∈ Ω1 ∪Ω2 × (0,+∞).
The requirement that populations Hi remain confined to Ωi, i = 1, 2, for

all time translates as the following no flux boundary conditions, see (3.7),

d11(x)∂ϕ/∂η1 = d12(x)∂ψ/∂η1 = d13(x)∂χ/∂η1 = 0,

d21(x)∂u/∂η2 = d22(x)∂v/∂η2 = d23(x)∂w/∂η2 = 0.
(3.34)

ηi being the unit outward normal vector toΩi along its boundary ∂Ωi, i = 1, 2.
Finally we need to specify that the initial conditions

ξ(x, 0) = ξ0(x), ξ = ϕ, ψ, χ, u, v, w, c (3.35)

are continuous and nonnegative on their respective spatial domains of defini-
tion: Ω1 for (ϕ0, ψ0, χ0), Ω2 for (u0, v0, w0) and Ω1∪Ω2 for c0, 0 ≤ c0(x) ≤ 1.

Generic Results

We place assumptions on the coefficients of Model (H1GH2,S) in the spirit
of Hyp. 2.1, Hyp. 2.2 and Hyp. 5.2. See Figs. 3.5 and 3.14 for Hyp. 5.7.

Hyp. 5.6 (b1,m1, k1) are nonnegative elements of L∞(Ω1), and dij are non-
negative elements of L∞(Ωi), i = 1, 2 and j = 1, 2, 3; there exists positive
numbers (dmin, dmax) such that

0 < dmin ≤ dij(x) ≤ dmax, x ∈ Ωi.

Hyp. 5.7 Let Dset,g be the set of spatial discontinuities for the contamination
of the environment, that is Dset,g = (Ω1 ∩ ∂Ω2) ∪ (Ω2 ∩ ∂Ω1).
We suppose there exists open subregions of Ωi, (Ω∗

i�)1≤�≤κ, with Ω∗
i� ⊂ Ωi,

Ω∗
i1,�∩Dset,g = ∅ and Ω∗

i�∩Ω∗
ij = ∅, for � �= j, having the same smoothness

properties as Ωi, i = 1, 2.
Set Ω∗

i = Ω∗
i1 ∪ · · · ∪Ω∗

iκ and Ω∗
i0 = Ωi\(Ω∗

i ∪Dset,g).
Then we assume (b1,m1, k1) ∈ C0,α(Ω∗

i�) and dij ∈ C2,α(Ω∗
i�), for � =

0, · · · , κ, i = 1, 2 and j = 1, 2, 3.
Hyp. 5.8 Coefficients σ1j are nonnegative elements of C0,α(Ω1) vanishing in

Ω2 \Ω1, j = 1, g; coefficients σ2g and σg2 are nonnegative elements of
C0,α(Ω2) vanishing in Ω1\Ω2.
λ1, ω1 and λm are nonnegative constants while λ2 > 0, δ > 0 and 0 <
ε2 ≤ 1 are constants.

Condition Hyp. 5.7 includes the case of piecewise constant diffusivities. The
set Dset,g in Hyp. 5.7 takes care of structural discontinuities caused by the
incidence terms in equation (3.33), see Hyp. 5.8.
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We now state a generic existence/uniqueness result for classical solutions.
These are defined – componentwise – according to Hyp. 5.7 and Definition 1
for the (ϕ,ψ, χ, u, v, w) components. The last one, c, requires a specific treat-
ment due to spatial discontinuities on the right-hand side of (3.33). Set

C(Ω1, Ω2) = {� : Ω1 ∪Ω2 → [0, 1], � ∈ C0((Ω1 ∪Ω2)\Dset,g)}. (3.36)

The c component is a continuous mapping c(·, t) : [0,+∞) → C(Ω1, Ω2) with
c′ ∈ L∞((0,+∞);Ω1 ∪ Ω2)), a solution to the ordinary differential equation
in (3.33) and such that the initial condition in (3.35) is satisfied.

Theorem 3. Let conditions Hyp. 5.6 to Hyp. 5.8 hold. Assume (ϕ0, ψ0, χ0)�

∈ (C0(Ω1))3, (u0, v0, w0)� ∈ (C0(Ω2))3 and c0 ∈ C(Ω1, Ω2) are compo-
nentwise nonnegative with 0 ≤ c0(x) ≤ 1. System Model (H1GH2,S)
has a unique componentwise nonnegative and global classical solution
(ϕ,ψ, χ, u, v, w, c)� with 0 ≤ c(x, t) ≤ 1.

Furthermore there exists a constant K2 such that 0 ≤ ‖P2(·, t)‖Ω2,∞ ≤ K2,
t ≥ 0, and a continuous positive function K : R+ → R+ such that

0 ≤ ‖P1(·, t)‖Ω1,∞,≤ K(t), t ≥ 0.

We refer to [29–31,33] for a proof of related mathematical problems.
Uniform bounds forH1 solution components to system Model (H1GH2,S)

are derived upon assuming suitable conditions on vital dynamics of H1.

Hyp. 5.9 There exists positive numbers r1 and k1,min such that

0 < r1 ≤ b1(x)−m1(x), 0 < k1,min ≤ k1(x), x ∈ Ω1.

Proposition 9. Let conditions Hyp. 5.6 to Hyp. 5.8 hold. Assume either
condition Hyp. 5.9 holds or b1(x) = m1(x) = k1(x) ≡ 0. For each set
of componentwise nonnegative initial condition (ϕ0, ψ0, χ0)� ∈ (C0(Ω1))3,
(u0, v0, w0)� ∈ (C0(Ω2))3 and c0 ∈ C(Ω1, Ω2) with 0 ≤ c0(x) ≤ 1 there exists
a positive constant K such that the solution to Model (H1VH2,S) verifies

0 ≤ ‖P1(·, t)‖Ω1,∞ ≤ K, t ≥ 0.

We still refer to [29–31,33] for a proof of the foregoing result.
These uniform bounds together with regularity results for parabolic equa-

tions, cf. [48], yields compactness for H1 and H2 solution components.
Given a set of nonnegative initial conditions the ω-limit set ω0 for Model

(H1GH2,S) is now defined as

ω0 = {(ϕ∞, ψ∞, χ∞, u∞, v∞, w∞, c∞)�, such that
there exists a sequence (tn)n≥0, tn → +∞ as n→ +∞,

(ϕ(tn), ψ(tn), χ(tn))� → (ϕ∞, ψ∞, χ∞)� in (C0(Ω1))3,
(u(tn), v(tn), w(tn))� → (u∞, v∞, w∞)� in (C0(Ω2))3,
c(tn) → c∞ in C(Ω1, Ω2), as n→ +∞}.

We still refer to [29–31,33] for a proof of the following one
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Proposition 10. Assume conditions of Proposition 9 are satisfied.
Then the trajectories {(ϕ(·, t), ψ(·, t), χ(·, t), u(·, t), v(·, t), w(·, t), c(·, t))�, t ≥
0}, are precompact in (C0(Ω1))3 × (C0(Ω2))3 × C(Ω1, Ω2).
Each set of componentwise nonnegative initial condition (ϕ0, ψ0, χ0)� ∈
(C0(Ω1))3, (u0, v0, w0)� ∈ (C0(Ω2))3 and c0 ∈ C(Ω1, Ω2) with 0 ≤ c0(x) ≤ 1
has a compact connected and forward invariant ω-limit set ω0 with 0 ≤
c(x, t) ≤ 1.

Moreover the semidynamical system in Model (H1VH2,S) has a global
attractor in ((C0(Ω1))3 × (C0(Ω2))3 × C(Ω1, Ω2).

The actual form of the ω-limit set seems out of reach of analysis in the general
case, except for the second host population H2 and the contaminated part of
the environment in Ω2\Ω1.

Proposition 11. Assume the conditions of Proposition 9 are satisfied.
There exists two nonnegative constants (u∗, w∗) such that as t → +∞
(u(·, t), v(·, t), w(·, t))� converge to (u∗, 0, w∗)� in (C0(Ω2))3 and c(·, t) → 0
in C0(Ω2\Ω1).

Proof. Compared to the proof of Proposition 7 the main modification lies in
the behavior of c(t)). Point-wise integration of equation (3.33) for c yields the
large time behavior of c(t) over Ω2\Ω1.

A Simplified System Model (H1GH2,S)

This corresponds to our motivating problem wherein the microparasite has
no impact on the host populations H1. We now assume it has no impact on
individual dispersals.

Hyp. 5.10 there exists d1 satisfying conditions Hyp. 5.1 and Hyp. 5.2 such
that d11 = d12 = d13 = d1.

In that setting we can reduce our generic system Model (H1GH2,S) to a
simpler one. Upon adding the equations for (ϕ,ψ, χ) in Model (H1GH2,S)
one finds a spatially heterogeneous equation for the total population P1,
see (3.30), and conclude to the existence of a nonnegative function K1 with
P1(·, t) → K1(·) as t→ +∞ in C0(Ω1). Thus we now have

Proposition 12. Assume conditions Hyp. 5.6 to Hyp. 5.10 hold.
Let (ϕ0, ψ0, χ0)� ∈ (C0(Ω1))3, (u0, v0, w0)� ∈ (C0(Ω2))3, c0 ∈ C(Ω1, Ω2) be
a set of componentwise nonnegative initial conditions with 0 ≤ c0(x) ≤ 1.
Then any element in the ω-limit set of (ϕ0, ψ0, χ0, u0, v0, w0, c0)� is of the
form (K1(·)− ψ∗ − χ∗, ψ∗, χ∗, u∗, 0, w∗, c∗)�.

It remains to calculate the triple (ψ∗, χ∗, c∗), solutions to the reduced system
Model (H1GH2,S, reduced)
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∂ψ∗/∂t−∇ · d1(x)∇ψ∗ = +σ11(x)ψ∗(K1(x)− ψ∗ − χ∗)
+σg1(x)c∗(K1(x)− ψ∗ − χ∗)− (λ1 +m1(x) + k1(x)K1(x))ψ∗,

∂χ∗/∂t−∇ · d1(x)∇χ∗ = +ω1λ1ψ
∗ − (m1(x) + k1(x)K1)χ∗,

∂c∗/∂t = +σ1g(x)ψ∗(1− c∗)− δc∗,

(3.37)

for (x, t) ∈ Ω1 × (0,+∞) with no flux boundary conditions:

d1(x)∂ψ∗/∂η1 = d1(x)∂χ∗/∂η1 = 0, x ∈ ∂Ω1, t ≥ 0, (3.38)

and a set of componentwise nonnegative initial conditions (ψ∗
0 , χ

∗
0, c

∗
0)

�

(ψ∗
0 , χ

∗
0, c

∗
0)

� ∈ (C0(Ω1))3. (3.39)

Compared to Model (H1VH2,S, reduced) a huge simplification arises
because (3.37)–(3.39) are now posed on a single spatial domain, Ω1.

A fairly simple situation occurs when Model (H1GH2,S, reduced) has
positive constant coefficients.

Hyp. 5.11 Coefficients (b1,m1, k1, d1) are positive constants with r1 = b1 −
m1 > 0, (σ11, σ1g, σg1) and δ are positive constants while (λ1, ω1) are
nonnegative constants.

When condition Hyp. 5.11 holds one gets K1(x) ≡ K1, see Sect. 3.2. Then

Lemma 10. Assume conditions Hyp. 5.10 and Hyp. 5.11 hold. Set

T0,g =
(σ11 + σ1gσg1/δ)K1

λ1 + b1
, see Lemma 8.

Then:

1. When T0,g < 1 the trivial state (0, 0, 0) is globally asymptotically stable
for Model (H1GH2,S, reduced).

2. When T0,g > 1 the trivial state (0, 0, 0) is unstable for Model (H1GH2,S,
reduced). Let (ψ∗, χ∗, c∗) be the unique nontrivial stationary state for
(3.20) with ψ∗ > 0, χ∗ ≥ 0, 0 < ψ∗ + χ∗ ≤ K1 and 0 < c∗ < 1; then
(ψ∗, χ∗, c∗) is linearly stable for Model (H1GH2,S, reduced).

Proof. Assume first T0,g < 1. For positive and small enough (θ1, θg) set

L5(ψ, χ, c) =
∫

Ω1

(δψ + (σg1K1 + θg)c+ θ1χ)(x, t)dx.

Then, see the proof of Lemma 8, L5 is a Lyapunov functional decreasing along
the orbits of Model (H1GH2,S, reduced); the state variables (ψ, χ, c) ex-
perience an asymptotical exponential decay in L1(Ω1) and

0 ≤
∫ ∞

0

∫
Ω1

(ψ + χ+ c)(x, t) dxdt < +∞.
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We now proceed as in the proof of Proposition 7. Integrating over Ω1 yields∫ ∞

0

∫
Ω1

(| ∇ψ |2 + | ∇χ |2)dxdt <∞,

cf. (3.26), and we conclude to the decay of ψ and χ toward 0 inH1(Ω1). Noting
that no spatial discontinuity arises in the right-hand side of the equation for
c a straightforward calculation shows that in Ω1 one has

d/dt(| ∇c |2) ≤ 2σ12 | ∇c | | ∇ψ | −2δ | ∇c |2

and ‖ | ∇c | ‖2,Ω1×(0,+∞) < +∞; we conclude to the decay of c towards 0.
Let us now assume T0,g > 1. The trivial state (0, 0, 0) is unstable for

Model (H1GH2,S, reduced) because it is already unstable for the under-
ling system of ODEs in (3.20).

Linear stability of (ψ∗, χ∗, c∗) for Model (H1GH2,S, reduced) is found
in Sect. 3.7 below; it uses the nonnegative eigenvalues (µj)j≥0 and eigenfunc-
tions (ξj)j≥0 of the no flux boundary value problem

−d1∆φj = µjφj , in Ω1, d1∂φj/∂η1 = 0, on ∂Ω1. (3.40)

��

As a consequence for the environmentally transmitted disease and Ω1 �=
Ω2, in the constant coefficient case one may conclude that the dynamical
behavior of the PDEs system is similar to the behavior of the ODEs system,
a main difference from the dynamical behavior of the vector borne disease.

Proposition 13. Let conditions Hyp. 5.5 to Hyp. 5.11 hold.
Assume initial conditions (ϕ0, ψ0, χ0)� ∈ (C0(Ω1))3, (u0, v0, w0)� ∈
(C0(Ω2))3 and c0 ∈ C(Ω1, Ω2) are componentwise nonnegative with
0 ≤ c0(x) ≤ 1,

∫
Ω1
ψ(x, 0)dx > 0 and

∫
Ω2
u(x, 0)dx > 0.

Then the solution-set (ϕ,ψ, χ, u, v, w, c)� to Model (H1GH2,S) satisfies:

– When T0,g < 1 as t → +∞ (ϕ(·, t), ψ(·, t), χ(·, t))� converges to
(K1, 0, 0)� in

(
C0(Ω1)

)3
, (u(·, t), v(·, t), w(·, t))� converges to (u∗, 0, w∗)�

in
(
C0(Ω2)

)3
, for some positive u∗ and nonnegative w∗ constants, while

c(·, t) goes to 0 in C(Ω1, Ω2).
– When T0,g > 1 let (ψ0, χ0, c0) be a set of initial data close enough to the

nontrivial stationary state (ψ∗, χ∗, c∗) of (3.20) with ψ∗ > 0, χ∗ ≥ 0, 0 <
ψ∗ + χ∗ ≤ K1 and 0 < c∗ < 1. Then, as t → +∞ (ϕ(·, t), ψ(·, t), χ(·, t))�

goes to (K − ψ∗ − χ∗, ψ∗, χ∗)� in
(
C0(Ω1)

)3
, (u(·, t), v(·, t), w(·, t))� goes

to (0, 0, w∗)� for some nonnegative constant w∗ in
(
C0(Ω2)

)3
, and c(·, t)

goes to c∗ in C0(Ω1) and 0 in C0(Ω2\Ω1).
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3.6 A Short Conclusion

We provided a simple deterministic mathematical approach to modeling the
transmission of microparasites between host populations living on noncoinci-
dent spatial domains in two prototypical cases: a vector borne disease and an
environmentally transmitted disease. Direct horizontal criss-cross transmis-
sion from infectious individuals of one population to susceptibles of the other
one does not occur in our models. Instead microparasite transmission takes
place via indirect criss-cross contact between infective vectors and susceptible
individuals of either populations and vice-versa, or through indirect contacts
between susceptible hosts and the contaminated part of the environment and
vice-versa. An important assumption is the microparasite under considera-
tion is benign in one of the host species while it is lethal to the other one.
This is the case for applications to interspecific transmission of micropara-
sites wherein the second population is Human while the first one is an avian
or rodent population.

Simple models with spatio-temporal heterogeneities were devised: basic
systems of ODEs for unstructured populations with time periodic vital dy-
namics or carrying capacities and Reaction–Diffusion models to handle spa-
tially heterogeneous domains. The assumption concerning host species living
on distinct spatial domains causes spatial discontinuities in the reaction terms,
preventing solutions to be smooth. We proved these mathematical problems
are well-posed in a suitable functional setting and then gave thresholds para-
meters for the persistence of endemic states.

Many features are not included in our models leaving room for further
researches:

Chronological age and age of the disease: an important literature is devoted
to age dependent models in epidemiology, cf. the books [14] and [66];
here “age” means either chronological age for any individuals or age since
infection for exposed individuals. See also [43], [45], [69] or [71], and also
chapters 1, 4 and 5 in this book and their references.

Homogenization problems: In many circumstances spatial heterogeneities
may exhibit periodical structures, cf. [62]. This leads to complex dynam-
ics at the local spatial scale while simpler “homogenized” dynamics may
emerge at the global spatial scale, cf. [29] or [3] and references therein.
See also related aggregation methods from Chapter 4 in this book.

Travelling front solutions: Invasion and persistence of parasites can be mod-
eled using travelling waves, cf. [51] for the fox–rabies model. Extension to
spatially heterogeneous environments is found in [62]. A sound mathemat-
ical analysis is devised in [10] for population dynamics models in period-
ically fragmented environments. See [41] and [25] for a dual – numerical
simulations and mathematical analysis – approach of a simple SI model,
and also Chapter 4 of this book.

L1–solutions: This is a convenient and natural abstract functional setting to
handle models with spatio–temporal heterogeneities; see Chapter 1 of this
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book and its references for a theory using semi–groups, and [8] for a direct
approach using a limiting process starting from classical smooth solutions.

Discrete age or/and spatial structures: cf. the books [17] and [20], and refer-
ences in the book [23]. One side advantage of these discrete models is they
look simplistic to simulate from a numerical point of view. This is not to-
tally correct many computational problems arising due to the complexity
of the simulations for large size models, cf. [52] or [50]. See also chapters
1, 2, 4 and 5 in this book.

Numerical methods and simulations: Specific efficient numerical methods are
to be designed for epidemic models, i.e., discretization techniques must
preserve basic features of the model: nonnegativity of state variables is to
be preserved, updating between two time steps must be adapted to the
dynamics of both host and parasite populations, e.g., S → E → I → R→
S, spatial heterogeneities have to be handled carefully. This is necessary
to numerically estimate threshold parameters, e.g., R0.

Stochastic models: cf. [4] or [21] and references in the book [24] for model
derivation and analysis of stochastic epidemic models. This alternate ap-
proach to deterministic modeling is not considered in this Chapter, nor
in this book. In some circumstances a sensitivity analysis, cf. [17], is effi-
ciently supplemented by probabilistic methods.

3.7 Appendix: Technical Proofs

End of the Proof of Lemma 5

We prove the local stability of the unique stationary state (ψ∗, χ∗, β∗) of (3.17)
with ψ∗ > 0, χ∗ ≥ 0, 0 < ψ∗ + χ∗ ≤ K1 and 0 < β∗ < Km.

The Jacobian matrix, J(ψ∗, χ∗, β∗) = (θij)1≤i,j≤3, of system (3.17) evalu-
ated at (ψ∗, χ∗, β∗) reads⎛

⎝−σm1β
∗ − (λ1 + b1) −σm1β

∗ σm1(K1 − ψ∗ − χ∗)
ω1λ1 −b1 0

σ1m(Km − β∗) 0 −σ1mψ
∗ − (λm + bm)

⎞
⎠ . (3.41)

Its characteristic polynomial P (ρ) is a third order polynomial

P (ρ) = ρ3 + a1ρ
2 + a2ρ+ a3,

wherein, using θ23 = θ32 = 0,

a1 = −trace(J(ψ∗, χ∗, β∗)) = −θ11 − θ22 − θ33,
a3 = det(J(ψ∗, χ∗, β∗)) = −θ31θ22θ13 + θ33[θ21θ12 − θ11θ22],
a2 = −θ13θ31 + θ33θ11 + θ33θ22 + θ22θ11 − θ21θ12.

Routh–Hurwicz criterion asserts the eigenvalues of J(ψ∗, χ∗, β∗) are negative
or have negative real parts if and only if one has
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a1 > 0, a3 > 0, a1a2 − a3 > 0, (3.42)

cf. [26, 51]. First trace(J(ψ∗, χ∗, β∗)) is obviously negative so that a1 > 0.
Next det(J(ψ∗, χ∗, β∗)) reads

σ1m(Km − β∗)b1σm1(K1 − ψ∗ − χ∗)
−[σ1mψ

∗ + (λm + bm)][b1(σm1β
∗ + (λ1 + b1)) + ω1λ1σm1β

∗].

At equilibrium stationary states of system (3.17) satisfy

σ1m(Km − β∗) = (λm + bm)
β∗

ψ∗ , σm1(K1 −ψ∗ − χ∗) = (λ1 + b1)
β∗

ψ∗ ; (3.43)

the first term in det(J(ψ∗, χ∗, β∗)) simplifies into (λm +bm)b1(λ1 +b1). Hence
det(J(ψ∗, χ∗, β∗)) < 0, this is a3 > 0. Last, one can express a1a2 − a3 as

[−θ11 − θ22 + σ1mψ
∗ + (λm + bm)]

×[−θ13θ31 + θ33θ11 + θ33θ22 + b1(σm1β
∗ + (λ1 + b1)) + ω1λ1σm1β

∗]
−θ31θ22θ13 − [σ1mψ

∗ + (λm + bm)][b1(σm1β
∗ + (λ1 + b1)) + ω1λ1σm1β

∗];

the last term cancels out while one may check, see (3.43), that

−θ31θ13 + θ11θ33 = −(λm + bm)(λ1 + b1) + θ11θ33 > 0.

As a consequence a1a2 − a3 > 0 and local stability holds.

End of the proofs of Lemmas 8 and 10

The end of the proof of Lemma 8 is derived upon setting µk = 0 in the
algebraic calculations following (3.45) below because J(ψ∗, χ∗, c∗) = Θ0.

Assume conditions Hyp. 5.10 and Hyp. 5.11 hold. Linearizing Model
(H1GH2,S, reduced) about the stationary state (ψ∗, χ∗, c∗) of (3.20)
one gets

∂ψ/∂t− d1∆ψ = σg1(K1 − ψ∗ − χ∗)c− (σ11ψ
∗ + σg1c

∗)χ
+ [σ11(K1 − ψ∗ − χ∗)− (λ1 + b1)− (σ11ψ

∗ + σg1c
∗)]ψ,

∂χ/∂t− d1∆χ = +ω1λ1ψ − b1χ,
∂c/∂t = +σ1g(1− c∗)ψ − (σ1gψ

∗ + δ)c,

(3.44)

for (x, t) ∈ Ω1 × (0,+∞) with no flux boundary conditions:

d1∂ψ/∂η1 = d1∂χ/∂η1 = 0, x ∈ ∂Ω1, t ≥ 0.

Looking for solutions to this linear system of the form

ψ(x, t) =
∑
k≥0

ψk(t)φk(x), χ(x, t) =
∑
k≥0

χk(t)φk(x), c(x, t) =
∑
k≥0

ck(t)φk(x),
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see (3.40) for φk, and substituting these into (3.44) one gets an infinite set of
linear systems of ODEs,

ψ′
k = + [σ11(K1 − ψ∗ − χ∗)− (λ1 + b1 + µk)− (σ11ψ

∗ + σg1c
∗)]ψk

−(σ11ψ
∗ + σg1c

∗)χk + σg1(K1 − ψ∗ − χ∗)ck,
χ′k = +ω1λ1ψk − (b1 + µk)χk,

c′k = +σ1g(1− c∗)ψk − (σ1gψ
∗ + δ + µk)ck,

(3.45)

with µk ≥ 0 by (3.40). For each k ≥ 0 (3.45) reads

(ψ′
k, χ

′
k, c

′
k)� = Θk(ψk, χk, ck)�,

wherein each 3 × 3 matrix Θk = Θ0 + µkI3 has a structure similar to the
matrix in (3.41); I3 is the 3× 3 identity matrix.

We use the Routh–Hurwitz criterion to show eigenvalues of Θk are negative
or have negative real parts, keeping notations from (3.42). First at equilibrium
stationary solutions of (3.20) satisfy

σ11(K1 − ψ∗ − χ∗)− (λ1 + b1) = −σg1
c∗

ψ∗ (K1 − ψ∗ + χ∗) < 0, (3.46)

see the first equation in (3.20), so that σ11(K1 − ψ∗ − χ∗) < (λ1 + b1). As a
consequence θk

11 < 0 and trace(Θk) < 0 or a1 > 0. Next det(Θk) reads

σ1g(1 − c∗)(b1 + µk)σg1(K1 − ψ∗ − χ∗)
+(σ1gψ∗ + δ + µk){σ11(K1 − ψ∗ − χ∗)−(λ1 + b1 + µk)−(σ11ψ

∗ + σg1c
∗)}{b1+µk}

−(σ1gψ∗ + δ + µk)ω1λ1{σ11ψ
∗ + σg1c

∗};
at equilibrium stationary solutions satisfy σ1g(1 − c∗) = δ c∗

ψ∗ , see the third
equation in (3.20). From this and (3.46) we see the first term in det(Θk)
simplifies into −δ(b1 +µk)[σ11(K1−ψ∗−χ∗)− (λ1 + b1)]. Hence det(Θk) < 0
or a3 > 0. Last, one can express a1a2 − a3 as

[−θk
11 − θk

22 + σ1gψ
∗ + δ + µk]

×[−θk
13θ

k
31 + θk

33θ
k
11 + θk

33θ
k
22 − (b1 + µk)θk

11 + ω1λ1(σ11ψ
∗ + σg1c

∗)]

−θk
31θ

k
22θ

k
13 − [σ1gψ

∗ + δ + µk)][−(b1 + µk)θk
11 + ω1λ1(σ11ψ

∗ + σg1c
∗)]

the last term cancels out while one has −θk
31θ

k
13 + θk

11θ
k
33 > 0, see (3.46). As

a consequence a1a2 − a3 > 0. The nontrivial stationary state (ψ∗, χ∗, c∗) is
locally stable for (3.20) and linearly stable for (3.37).
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Summary. In this article we review some recent literature on the mathematical
modelling of vector-borne diseases with special reference to West Nile virus and
with particular focus on the role of the developmental stages of hosts in determin-
ing the transmission dynamics, the effectiveness of different approaches to control-
ling the vector and the spatial spread of an epidemic. A possible model incorporating
the developmental stages of avian hosts is discussed which consists of equations for
infective and susceptible juvenile and adult hosts and infected adult vectors. Condi-
tions for the system to evolve to the disease free state are presented. These elucidate
the role of, for example, the various death rates involved. We also review a mathe-
matical model which incorporates culling the vector at either the larval or the adult
stage and the effectiveness of the two approaches is compared. Conditions are given
that are sufficient for eradication and this leads insights into the required minimum
frequency of culling. Very infrequent culling is no better than no culling at all and
can actually increase the time average of the number of infected vectors. We also
review a reaction-diffusion extension of the model which can be used to estimate the
speed at which an epidemic moves through space. Finally, we review some recent
work on the use of patch models of a West Nile virus epidemic. These models are
arguably easier to relate to surveillance data which is organised according to admin-
istrative regions or landscape. The patch model is used to study the situation when
the dispersal of birds is not symmetric.
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4.1 Introduction

There are many factors contributing to the complicated and interesting spa-
tiotemporal spread patterns of diseases. In this article we focus on two ma-
jor factors: the demographic and disease ages and the spatial movement of
the disease hosts. These factors in isolation have been intensively studied
using various models, but their correlation and interaction require extreme
care in modeling and analysis and can lead to models with different levels of
complexity.

Demographic and disease ages and spatial movement interweave in many
ways, a few of which will be addressed in this article. In particular, we observe
that:

(i) The spatial movement patterns of species involved in the disease trans-
mission cycle depend on the demographic age, an example being the
much higher mobility of adult birds than the nestlings and young birds
in a vector-borne disease in which birds are reservoirs.

(ii) Spatial movement is influenced by the environment including the weather
and therefore is not completely random but is asymmetric in terms of di-
rection and the degree of the environmental influence on the spatial move-
ment may vary according to the maturation status of the individuals.

(iii) Disease management measures are often age-dependent and their effec-
tiveness may also be dependent on the mobility status of the species
involved, such as larvicides and insecticide sprays for mosquito-borne
diseases used to control the mosquito population at different levels of
their maturity.

(iv) The spatial movement patterns of disease hosts may depend on the dis-
ease status, for example disease-induced random movement of the in-
fected in a population in which the susceptibles are territorial.

This article aims to address some of the above issues and the relevant model-
ing and analysis techniques in the case of the invasion and spread of West Nile
virus in North America. Models to be formulated and discussed include patch
models with both long-range and short-range dispersal, delay differential sys-
tems, nonlocal delayed reaction–diffusion equations and impulsive differential
equations. We shall review some of the mathematical results and numerical
simulations describing the spatiotemporal patterns of disease spread whose
transmission dynamics is modeled by the aforementioned nonlinear dynami-
cal systems.

Spatial movement and reaction time lags are two important features in
many ecological systems. Their interaction is one of the many factors for
possible complicated spatiotemporal patterns in a single species population
without an external time-dependent forcing term. Modeling this interaction
is nevertheless a highly nontrivial task, and recent progress indicates diffusive
(partial or lattice) systems with nonlocal and delayed reaction nonlinearities
arise very naturally. Such systems were investigated in the earlier works of



4 Spatiotemporal Patterns of Disease Spread 167

Yamada [36], Pozio [19,20] and Redlinger [21,22]. The modeling and analysis
effort in the work by Britton [3], Gourley and Britton [4] and Smith and
Thieme [27] marked the beginning of the systematic study of a new class of
nonlinear dynamical systems directly motivated by consideration of biological
realities. See, for example, the two recent review articles [5, 6].

This new class of nonlinear dynamical systems can be derived from the
classical structured population model involving maturation dependent spatial
diffusion rates and nonlinear birth and natural maturation processes. More
specifically, if we use u(t, x) to denote the total number of matured individuals
in a single species population, and if we assume the maturation time is a fixed
constant τ , then we have

∂

∂t
u(t, x) = D

∂2

∂x2
u(t, x)− du(t, x) + j(t, τ, x), (4.1)

where D and d are the diffusion and death rates of the adult population (as-
sumed constants here), and j(t, τ, x) is the maturation rate at (t, x) which is
basically the birth rate at the earlier time t− τ , corrected for juvenile mortal-
ity, for individuals that are at position x upon maturation (these individuals
having been born at various other spatial locations). This maturation rate is
thus regulated by the birth process and the dynamics of the individual during
the maturation phase. In the work of So, Wu and Zou [28], this is derived
from the structured population model

( ∂
∂t

+
∂

∂a

)
j(t, a, x) = DI

∂2

∂x2
j(t, a, x)− dIj(t, a, x) (4.2)

for the density j(t, a, x) of the immature individual with a ∈ (0, τ ] as the vari-
able for the demographic age, subject to some (spatial) boundary conditions
(if the space is bounded) and the following boundary condition at age a = 0:

j(t, 0, x) = b(u(t, x)), (4.3)

where b(·) is the birth rate function, which is assumed to depend on the total
matured population at (t, x),DI and dI are the diffusion and death rates of the
immature individual (these rates are allowed to be functions of a in [28]). The
maturation rate j(t, τ, x) can be obtained by solving the linear hyperbolic–
parabolic equation (4.2) subject to the boundary condition (4.3). In the case
of an unbounded one-dimensional space, we have

j(t, τ, x) = e−dIτ

∫
R

b(u(t− τ, y))f(x− y) dy. (4.4)

In other words, the maturation rate at time t and spatial location x is the
sum (integral) over all possible birth locations, of the birth rate at time t− τ
at location y, times the probability f(x− y) of an individual born at position
y at time t− τ moving to position x at time t, times the probability e−dIτ of
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surviving the entire maturation phase. Incorporating (4.4) into (4.1) furnishes
a reaction–diffusion equation with a nonlocal delayed nonlinearity, namely

∂

∂t
u(t, x) = D

∂2

∂x2
u(t, x)−du(t, x)+ e−dIτ

∫
R

b(u(t− τ, y))f(x−y) dy. (4.5)

There has been some rapid development towards a qualitative theory for
the asymptotic behaviors of solutions to (4.5) with various types of assump-
tions on the birth functions. Notably, in comparison with analogue reaction–
diffusion equations without delay, there are more prototypes than the so-called
monostable and bistable cases. See [6] for more details.

The analytic form for f is given in [28]. It is possible to obtain such an
analytic form here since the dynamical process during the maturation phase
is governed by a linear hyperbolic–parabolic equation with time-independent
constant coefficients. Such a possibility disappears in an ecological system
consisting of multiple species with age or stage-dependent diffusion rates when
these species interact during their maturation phases. This is also the case for
the spread of a disease (even if its main carrier involves only a single species),
since the model describing the infection process must involve the transfers
of individuals from one compartment to another and some of these transfers
such as the force of infection from the susceptible compartment to the infective
compartment are nonlinear. This issue substantially complicates the modeling
and may in fact make the derivation of a system of reaction–diffusion equations
analogous to (4.5) impossible, although in fact an approximate system can
sometimes be derived that is valid in the vicinity of an equilibrium of interest
such as a disease-free equilibrium. These issues were very much apparent in
the recent works of Ou and Wu [18] on rabies, and Gourley, Liu and Wu [7]
on vector borne diseases such as West Nile virus.

4.2 Vector-Borne Diseases with Structured
Population: Implications of Nonlinear Dynamics
During the Maturation Phase

Vector borne diseases such as malaria, dengue fever and West Nile virus
(WNV) are infectious diseases that are carried by insects from one host to
another. In many of these diseases it is the mosquito that carries the virus
but ticks, fleas and midges can also be responsible. The diseases can be spread
to humans, birds and other animals.

This article will focus mainly on the mathematical modeling of West Nile
virus but there are many other insect-borne diseases which currently consti-
tute significant public health issues worldwide, and the mathematical mod-
eling of some of these raises issues not covered in this article at all. Malaria
is undoubtedly the best known vector-borne disease of all, with hundreds of
millions of cases each year, and control of it has been complicated by wide-
spread drug resistance of the parasites and insecticide resistance. Another of
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the more serious mosquito-borne diseases is dengue fever, epidemics of which
are becoming larger and more frequent. Dengue has a global distribution com-
parable to that of malaria and up to 100 million cases per year, with a fatality
rate in most countries of about 5% (though with proper treatment this can
be reduced to below 1%). Dengue is caused by one of four closely related
virus serotypes. Infection with one of these confers immunity for life but only
to that particular serotype. Thus in principle a person can experience four
dengue infections. Airline travel makes it possible for the viruses to disperse
rapidly (in fact air travel to virtually any place in the world can take place
nowadays in less time than the incubation period of most infectious diseases).
In former times dengue could only be spread between continents if viruses
and mosquito vectors could survive the long sea journeys, leading to long
intervals between epidemics. There is currently no vaccine for dengue. Yel-
low fever is another example of a mosquito borne disease, endemic in South
America and parts of Africa. A vaccine has been available for it for several
decades.

Ticks can act as the vector for certain diseases, notably Lyme disease.
Bluetongue is a midge-borne disease that can affect all ruminants with sheep
being the most severely affected. Cattle act as an important reservoir species.
Bluetongue appears to have originated in South Africa but has been reported
in many European countries (including as far north as the Netherlands and
Belgium), in the USA and in British Columbia and other places. Northern
Europe is currently at the limits of the climatic conditions favorable for the
spread of the disease (13–35◦C) but climate change has the potential to change
this. Since midges can be carried considerable distances by wind, it has been
speculated that, in areas where bluetongue occurs only sporadically, it origi-
nates from the carriage by wind of midges from distant endemic areas.

It is widely accepted that climate change has considerable potential im-
plications for the world wide distribution of vector-borne diseases in general,
and that global warming is likely to create suitable new vector habitats. Other
issues potentially contributing to the resurgence of some vector borne diseases
are the excessive use of insecticide sprays to kill adult mosquitoes, the prob-
lem of insecticide and drug resistance and the general decline of the worldwide
infrastructure for the surveillance, prevention and control of vector-borne dis-
eases because the public health threat was perceived to have dropped due to
previous control programs (for example, malaria had been nearly eliminated
in Sri-Lanka in the 1960s).

Much has been done in terms of the mathematical modeling and analy-
sis of the transmission dynamics and spatial spread of vector-borne diseases.
However, one important biological aspect of the hosts, the stage structure,
seems to have received little attention although structured population models
have been intensively studied. In the context of population dynamics and spa-
tial ecology the interaction of stage-structure with spatial dispersal has been
receiving considerable attention as discussed in the last section.
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The developmental stages of hosts have an important impact on the trans-
mission dynamics of vector-borne diseases. In the case of West Nile virus the
transmission cycle involves both mosquitoes and birds (the crow, jay and
raven species being particularly important). Nestling crows are crows that
have hatched but are helpless and stay in the nest, receiving more or less
continuous care from the mother for up to two weeks and less continuous
care thereafter. Fledgling crows are old enough to have left the nest (they
leave it after about five weeks) but they cannot fly very well. After three or
four months these fledglings will be old enough to obtain all of their food by
themselves. As these facts demonstrate, the maturation stages of adult birds,
fledglings and nestlings are all very different from a biological and an epidemi-
ological perspective and a realistic model needs to take these different stages
into account. For example, in comparison with grown birds, the nestlings and
fledglings have much higher disease induced death rate, much poorer ability
to avoid being bitten by mosquitoes, and much less spatial mobility [1,15,24].

Recently, Gourley, Liu and Wu [7] developed a model for the evolution of
a general vector-borne disease with special emphasis on the transmission dy-
namics and spatial spread of West Nile virus. They started with the classical
McKendrick von-Foerster equations for an age-structured reservoir population
(birds, in the case of WNV) divided into two epidemiological compartments of
susceptible and infected (and infectious), coupled with a scalar delay differen-
tial equation for the adult vector (mosquito) population under the assumption
that the total vector population is maintained at a constant level. As a re-
sult, they obtained a system of delay differential equations describing the
interaction of five sub-populations, namely susceptible and infected adult and
juvenile reservoirs and infected adult vectors, for a vector-borne disease with
particular reference to West Nile virus.

4.2.1 Model Derivation and Biological Interpretation

To discuss the model in [7] we can imagine a more general mosquito-borne
disease with similar characteristics to WNV. We will also refer to the reservoir
as the host, and assume that the host population is age-structured. We start
with a simple division of the host population as susceptible hosts s(t, a) and
infected hosts i(t, a) at time t and age a. These host populations are assumed
to evolve according to the McKendrick von-Foerster equations for an age-
structured population:

∂s

∂t
+
∂s

∂a
= −ds(a)s(t, a)− β(a)s(t, a)mi(t), (4.6)

and
∂i

∂t
+
∂i

∂a
= −di(a)i(t, a) + β(a)s(t, a)mi(t), (4.7)

where mi(t) is the number of infected adult mosquitoes, the functions ds(a)
and di(a) are the age-dependent death rates of susceptible and infected hosts.
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A host becomes infected when it is bitten by an infected mosquito. Here and
in what follows, we use mass action though other incidences can be used.

The host population is split into juveniles and adults, defined respectively
as those of age less than some number τ , and those of age greater than τ . We
assume:

ds(a) =
{
dsj a < τ
dsa a > τ,

di(a) =
{
dij a < τ
dia a > τ,

(4.8)

and
β(a) =

{
βj a < τ
βa a > τ.

(4.9)

The subscripts in these quantities refer to disease and juvenile/adult status;
thus for example the per capita death rates for susceptible juveniles and in-
fected adults would be dsj and dia respectively. The above choices enable us
to formulate a closed system of delay differential equations involving only the
total numbers of hosts classified as adult susceptibles, adult infected, juvenile
susceptibles and juvenile infected. These total numbers are given respectively,
using self explanatory notation, by

As(t) =
∫ ∞

τ

s(t, a) da, Ai(t) =
∫ ∞

τ

i(t, a) da, Js(t) =
∫ τ

0

s(t, a) da,

Ji(t) =
∫ τ

0

i(t, a) da.

(4.10)
We consider the situation when the number of offsprings produced by

infected adult hosts can be ignored, and the offsprings are therefore always
susceptible. We also assume:

s(t, 0) = b(As(t)), i(t, 0) = 0, (4.11)

where b(·) is the birth rate function for hosts.
Differentiating the expression for As(t) and using integration along char-

acteristics of equation (4.6) to find s(t, τ), we find that

dAs

dt
=b(As(t−τ)) exp

(
−
∫ t

t−τ

(dsj + βjmi(u)) du
)
−dsaAs(t)−βami(t)As(t).

(4.12)
In a similar way,

dJs

dt
= b(As(t))− b(As(t− τ)) exp

(
−
∫ t

t−τ

(dsj + βjmi(u)) du
)

−dsjJs(t)− βjmi(t)Js(t),
(4.13)

dAi(t)

dt
= −diaAi(t) + βami(t)As(t)

+ βjb(As(t − τ))

∫ t

t−τ

mi(ξ)e
−dij(t−ξ) exp

(
−
∫ ξ

t−τ

(dsj + βjmi(v)) dv

)
dξ,

(4.14)
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dJi(t)

dt
= −dijJi(t) + βjmi(t)Js(t)

− βjb(As(t − τ))

∫ t

t−τ

mi(ξ)e
−dij(t−ξ) exp

(
−
∫ ξ

t−τ

(dsj + βjmi(v)) dv

)
dξ.

(4.15)

Let mT (t) be the total number of (adult) mosquitoes, divided into infected
mosquitoes mi(t) and susceptible mosquitoes mT (t) − mi(t). Death and re-
productive activity for mosquitoes is assumed not to depend on whether they
are carrying the disease or not, and so the total number of adult mosquitoes
is assumed to obey

dmT (t)
dt

= e−dlσB(mT (t− σ))− dmmT (t), (4.16)

where dl and dm denote the death rates of larval and adult mosquitoes respec-
tively and σ is the length of the larval phase from egg to adult. It is possible
but unnecessary to write down a differential equation for larval mosquitoes.
Infected adult mosquitoes mi(t) are assumed to obey

dmi(t)
dt

= −dmmi(t) + βm(mT (t)−mi(t))(Ji(t) + αAi(t)). (4.17)

Thus, the rate at which mosquitoes become infected is given by mass action
as the product of susceptible mosquitoes mT (t) − mi(t) and infected hosts
(birds) which may be either juvenile or adult. The factor α accounts for the
possibility that juvenile and adult birds might not be equally vulnerable to
being bitten.

Despite the complications of equations (4.12)–(4.14), the epidemiology and
ecological interpretation of the integral term appearing in (4.14) and (4.14)
seems to be straightforward. The last term in (4.14) tells us the rate at which
infected immatures become infected adults having contracted the disease while
immature. This term is the rate at which infected individuals pass through
age τ . An individual that is of age τ at time t was born at time t−τ . However,
all individuals are born as susceptibles, which is why the birth rate b(As(t−τ))
is involved. The individuals we are presently discussing have each acquired the
infection at some stage during childhood, so assume a particular individual
acquires it at a time ξ ∈ (t − τ, t). This particular individual remained sus-
ceptible from its birth at time t − τ until time ξ, and the probability of this
happening is

exp

(
−
∫ ξ

t−τ

(dsj + βjmi(v)) dv

)
.

The other exponential term, namely e−dij(t−ξ), in (4.14) is the probability that
the individual will survive from becoming infected at time ξ until becoming
an adult at time t. The product βjmi(ξ) is the per capita conversion rate
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of susceptible juveniles to infected juveniles at time ξ, and ξ running from
t− τ to t totals up the contributions from all possible times at which infected
individuals passing into adulthood might have acquired the infection.

4.2.2 Disease Free Equilibrium

The following assumptions on the birth function B(·) for mosquitoes are min-
imal in the sense that they ensure that the mosquito population mT (t) does
not tend to zero even in the absence of the disease:

B(0) = 0, B(·) is strictly monotonically increasing, there exists m∗
T > 0

such that e−dlσB(m) > dmm when m < m∗
T and e−dlσB(m) < dmm when

m > m∗
T .

⎫⎬
⎭

(4.18)

The quantitym∗
T > 0 in (4.18) is an equilibrium of (4.16), andmT (t) → m∗

T as
t→∞ provided mT (θ) ≥ 0 and mT (θ) �≡ 0 on θ ∈ [−σ, 0]. Accordingly, (4.17)
is asymptotically autonomous and we may replace mT (t) by m∗

T in (4.17),
thereby lowering the order of the system to be studied, which now consists of
(4.12)–(4.14) together with

dmi(t)
dt

= −dmmi(t) + βm(m∗
T −mi(t))(Ji(t) + αAi(t)). (4.19)

This system does not explicitly involve the delay σ, but this delay is still
involved via the quantity m∗

T . The appropriate initial data for the abovemen-
tioned system is

As(θ) = A0
s(θ) ≥ 0, θ ∈ [−τ, 0],

mi(θ) = m0
i (θ) ∈ [0,m∗

T ], θ ∈ [−τ, 0],

Ai(0) = A0
i (0) ≥ 0,

Js(0) =
∫ 0

−τ

b(A0
s(ξ)) exp

(
−
∫ 0

ξ

[dsj + βjm
0
i (u)] du

)
dξ,

Ji(0) =
∫ 0

−τ

b(A0
s(ξ))

{∫ 0

ξ

βjm
0
i (η)e

dijηe
−
∫ η

ξ
[dsj+βjm0

i (v)] dv
dη

}
dξ,

(4.20)

where A0
s(θ),m

0
i (θ) and A0

i (0) are prescribed. The last two conditions in (4.20)
are compatibility conditions on the initial data. It is common to impose such
conditions in stage structured population modeling. Ecologically, the need for
such conditions is obvious. If the number of adult hosts on the initial interval
[−τ, 0] is known, then so is the number of juvenile hosts at time t = 0, being
given by the formulae above for Js(0) and Ji(0). For example, Js(0) is the
number of juvenile susceptibles at time t = 0. Each of these susceptibles was
born at some time ξ ∈ [−τ, 0], hence the presence of the birth rate b(A0

s(ξ)),
and each has to have survived and remained susceptible until time 0, hence the
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exponential term which represents the probability of this actually happening.
The interpretation of the expression for Ji(0) is similar but more complicated.
Of the infected juveniles Ji(0) at time 0, each one was born at some time
ξ ∈ [−τ, 0] as a susceptible, and each of these newborns at time ξ then became
infected at some subsequent time η ∈ [ξ, 0].

From a mathematical point of view, the compatibility conditions in (4.20)
make it possible to show that solutions remain nonnegative. A theorem to this
effect was proved in [7].

Notice that Js, Ji can be solved as:

Js(t) =
∫ t

t−τ

b(As(ξ)) exp
(
−
∫ t

ξ

[dsj + βjmi(u)] du
)
dξ, (4.21)

Ji(t) =
∫ t

t−τ

b(As(ξ))
{∫ t

ξ

βjmi(η)e−dij(t−η)e
−
∫ η

ξ
[dsj+βjmi(v)] dv

dη

}
dξ,

(4.22)
therefore, by (4.19), mi satisfies the following equation:

dmi(t)
dt

= −dmmi(t) + βm(m∗
T −mi(t))

×
(∫ t

t−τ

b(As(ξ))
{∫ t

ξ

βjmi(η)e−dij(t−η)e
−
∫ η

ξ
[dsj+βjmi(v)] dv

dη

}
dξ+αAi(t)

)
.

(4.23)

In [7], sufficient conditions were obtained for the system to evolve to the dis-
ease free state (i.e. conditions that ensure Ai, Ji and mi go to zero as t→∞).
Since the differential equations (4.13) and (4.14) can be solved to give (4.21)
and (4.22) respectively, it is sufficient to study the system consisting of equa-
tions (4.12), (4.14) and (4.23), with initial data taken from (4.20). These equa-
tions form a closed system for As(t), Ai(t) and mi(t). The key is to establish
using these three equations a differential inequality for the variablemi(t) only,
and to use this to find conditions which ensure that mi(t) → 0 as t → ∞.
Note that if mi(t) → 0 then, from (4.22) it follows immediately that Ji(t) → 0
and, furthermore, (4.14) then becomes an asymptotically autonomous ODE
from which we find that Ai(t) tends to zero.

In [7] the following reasonable assumptions were made concerning the birth
rate function b:

b(0) = 0, b(A) > 0 when A > 0, bsup := supA≥0 b(A) < ∞, there exists
A∗

s > 0 such that e−dsjτ b(A) > dsaA when A < A∗
s and e−dsjτ b(A) <

dsaA when A > A∗
s.

⎫⎬
⎭

(4.24)

The quantity A∗
s in (4.24) is a nonzero equilibrium value for As(t) in the case

when the disease is absent. Assumptions (4.24) ensure that the population
As(t) of adult susceptible hosts will not go to zero even without the disease,
otherwise the model is not interesting.
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Under further conditions involving the following functions:

a1(ε) = dmdia + dmdij + diadij

−βmm
∗
T bsupβj

dsj
− βmm

∗
Tαβa

(
bsupe

−dsjτ

dsa
+ ε
)

−e−dsjτ

(
1− e−τ(dij−dm−dsj)

dij − dm − dsj

)
βmm

∗
Tαβjbsup

(4.25)

and

a0(ε) = dmdiadij −
diaβmm

∗
T bsupβj

dsj
− dijβmm

∗
Tαβa

(
bsupe

−dsjτ

dsa
+ ε
)

−dije
−dsjτ

(
1− e−τ(dij−dm−dsj)

dij − dm − dsj

)
βmm

∗
Tαβjbsup,

(4.26)

with bsup = supA≥0 b(A), the following theorem on disease eradication was
proved in [7]:

Theorem 1 Let (4.18) and (4.24) hold, and let As(t), Ai(t) and mi(t) sat-
isfy (4.12), (4.14) and (4.23), with initial data taken from (4.20). Assume
further that

a1(0) > 0, a0(0) > 0 and (dm + dia + dij)a1(0) > a0(0), (4.27)
where the functions a1, a0 are defined by (4.25) and (4.26). Then
(Ai(t),mi(t)) → (0, 0) as t→∞.

If (4.24) holds then the model (4.12)–(4.14) and (4.19) has a disease-free
equilibrium (DFE), obtained by substituting Ji = 0, Ai = 0 and mi = 0 into
the right hand sides of those equations and setting them to zero, given by

E0 = (A∗
s , J

∗
s , 0, 0, 0), (4.28)

where A∗
s > 0 and J∗

s > 0 are given by⎧⎪⎨
⎪⎩
b(A∗

s)e
−dsjτ − dsaA

∗
s = 0,

J∗
s =

b(A∗
s)

dsj
(1− e−dsjτ ).

(4.29)

Using specific features of the spectral theory of positive semiflows, [7] ob-
tained the following theorem which gives a sufficient condition for linear stabil-
ity of the disease free state, that turns out also to be the necessary condition.

Theorem 2 Let (4.18) and (4.24) hold and assume that dsa > |b′(A∗
s)|e−dsjτ

and that

dm > βmm
∗
T

{
b(A∗

s)βj

dij − dsj

[
1− e−dsjτ

dsj
− (1− e−dijτ )

dij

]
+
α

dia

[
βaA

∗
s + βjb(A∗

s)e
−dsjτ (1− e−(dij−dsj)τ )

dij − dsj

]}
.

(4.30)

Then the disease free equilibrium E0 given by (4.28) is linearly asymptotically
stable as a solution of the full model (4.12)–(4.14), (4.19).
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4.2.3 Numerical Simulations

If we introduce the new variable W1 defined by

W1(t) =
∫ t

t−τ

mi(ξ)e−dij(t−ξ) exp

(
−
∫ ξ

t−τ

(dsj + βjmi(v)) dv

)
dξ,

then the model (4.12)–(4.14) and (4.19) can be recast in the form:

dJs(t)
dt

= b(As(t))− b(As(t− τ))e−dsjτe
−
∫ t

t−τ
βjmi(v)dv

− dsjJs(t)− βjmi(t)Js(t),
dAs(t)
dt

= b(As(t− τ))e−dsjτe
−
∫ t

t−τ
βjmi(v)dv − dsaAs(t)− βami(t)As(t),

dJi(t)
dt

= −dijJi(t) + βjmi(t)Js(t)− βjb(As(t− τ))W1(t),

dAi(t)
dt

= −diaAi(t) + βami(t)As(t) + βjb(As(t− τ))W1(t),

dmi(t)
dt

= −dmmi(t) + (mT (t)−mi(t))βm(Ji(t) + αAi(t)),

dW1(t)
dt

= W1(t)(dsj − dij + βjmi(t− τ)) +mi(t)e−dsjτe
−
∫ t

t−τ
βjmi(v)dv

− e−dijτmi(t− τ). (4.31)

In the simulations reported below, we take the birth function of mosquitoes
and that of birds as

B(mT ) = bmmT e
−ammT , b(As) = bbAse

−abAs , (4.32)

respectively. These forms for the birth function have been used, for example,
in the well-studied Nicholson’s blowflies equation [9].

Various parameter values are given in Table 4.1, taken from [2, 14, 15, 35]
with reference to West Nile virus. We took the initial conditions to be

As(t) = 700, MI(t) = 0,

for t ∈ [−τ, 0] and Ai(0) = 2. This, together with the matching condi-
tion (4.20), gives Js(0) = 5470 and Ji(0) = 0.

In Fig. 4.1, parameter values are βj = 4.7015× 10−6, βa = 2.3705× 10−6,
βm = 1.1853 × 10−6, αβm = 4.3657 × 10−7 and other parameters have the
values shown in Table 4.1. In this case dm is larger than the right hand side
of (4.30) which equals 0.0382. One can check the condition (4.30) is satisfied
and the infected populations go to zero. However, as we increase the contact
rates, i.e., parameter values are βj = 6.7021×10−6, βa = 3.3792×10−6, βm =
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Table 4.1. Meaning of parameters of model (4.31)

Para. Meaning of the parameter Value

bb Maximum per capita daily birds production rate 0.5
1/ab Size of birds population at which 1,000

the number of new born birds is maximized
bm Maximum per capita daily mosquito egg production rate 5
1/am Size of mosquito population at which egg laying is maximized 10,000
dsj Mortality rate of uninfected juveniles (per day) 0.005
dij Mortality rate of infected juveniles (per day) 0.05
dsa Mortality rate of uninfected adults (per day) 0.0025
dia Mortality rate of infected adults (per day) 0.015
dm Mortality rate of mosquito (per day) 0.05
βj Contact rate between uninfected juvenile and infected mosquito Variable
βa Contact rate between uninfected adult and infected mosquito Variable
βm Contact rate between uninfected mosquito and infected juvenile Variable
αβm Contact rate between uninfected mosquito and infected juvenile Variable
τ Duration of more vulnerable period of bird (day) 160
σ Maturation time of mosquito (day) 10
dl Mortality rate of larva mosquito (per day) 0.1

1.6896 × 10−6, αβm = 6.2234 × 10−7 and other parameters have the values
shown in Table 4.1, dm is larger than the right hand side of (4.30) which equals
0.0777. In this case, the condition (4.30) fails and the disease sustains in the
bird and mosquito population as shown in Fig. 4.2. If we continue to increase
the contact rates: parameter values are βj = 1.8× 10−5, βa = 9.0756× 10−6,
βm = 4.5378 × 10−6, αβm = 1.6714 × 10−5 and other parameters have the
values shown in Table 4.1, dm is less than the right hand side of (4.30) which
equals 0.5605. We eventually find oscillatory behaviors as shown in Fig. 4.3
suggesting the possibility of a Hopf bifurcation to periodic solutions.

4.3 Age-Structured Control Measure: Interaction
of Delay, Impulse and Nonlinearity

Culling has been a common method for pest control and ecosystem manage-
ment. Despite different formats such as shooting, trapping and crop spraying,
culling often takes place at certain particular times only. These culling times
are regulated by many factors including the maturation status of individuals
of the species involved. For example, crop spraying may be exercised at certain
times coinciding with critical stages in the insects’ development.

Culling has also been a widely adopted tool to control vector-borne diseases
in the hope that culling the vector at carefully chosen times may intervene the
transmission cycle and reduce the infection. A specific example is larvicides
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and insecticide sprays as techniques in the war against mosquitoes, the vector
for many mosquito-born diseases including West Nile virus and dengue fever.

Larvicides are substances that destroy mosquito larva, the pre-adult in-
sects that breed and mature in standing water. Biological larvicides are made
from the bacteria Bacillus thuringiensis israaelensis or Bacillus sphaericus.
The bacteria produce a crystal which is poisonous to mosquito larvae but
virtually harmless to other forms of aquatic life. Unfortunately, as with many
insect species, the larva can be difficult to find. An alternative to larvicides
is insecticide sprays to kill adult mosquitoes. Called adulticides and used in
many residential areas, some kill both mosquitoes and “good insects” that eat
mosquitoes. Another drawback, in addition to limited effect, is the perceived
public health implication. Large numbers of mosquitoes survive adulticide
sprays by flying away or finding shelter in gutter downspouts and eaves, under
foliage, and other protected areas. Therefore, it is highly desirable to develop
appropriate models so that we can qualitatively examine the effectiveness of
larvicides and insecticide sprays.

In Gourley, Liu and Wu [8], appropriate mathematical models were derived
and utilized to assess the effectiveness of culling as a tool to eradicate vector-
borne diseases. The model, focused on the culling strategies determined by
the stages during the development of the vector, becomes either a system
of autonomous delay differential equations with impulses (in the case where
the adult vector is subject to culling) or a system of nonautonomous delay
differential equations where the time-varying coefficients are determined by
the culling times and rates (in the case where only the immature vector is
subject to culling). Sufficient conditions were derived to ensure eradication of
the disease, and simulations provided to compare the effectiveness of larvicides
and insecticide sprays for the control of West Nile virus. Their results show
that eradication of vector-borne diseases is possible by culling the vector at
either the immature or the mature phase, even though the size of the vector
is oscillating and above a certain level. The work [8] is based on the study of
Simons and Gourley [26] of a time dependent stage structured population in
which the adults (but not juveniles) are subject to culling or trapping which
occurs only at certain particular times t1, t2, t3, . . .. Their model equation is

u′m(t) = e−µτ b(um(t− τ))− d(um(t))−
∞∑

j=1

bjum(t−j )δ(t− tj), t > 0 (4.33)

where µ > 0 represents juvenile mortality, um(t) is the total number of adults
at time t, um(t−j ) is the population just before the impulsive cull at time tj , τ
is the maturation time, bj is the proportion of the mature species trapped or
culled at time tj and δ denotes the Dirac delta function. In (4.33), b(um(t)) is
a function representing the birth rate of the immature species while d(um(t))
is the natural death rate of the mature species.



182 S.A. Gourley et al.

4.3.1 Impulsive Systems and Analytic Results

The idea in Simons and Gourley [26] was developed further in [8] with the
development of a stage-structured model for a single species population in
which only the immatures are culled. This strategy can result in eradication
as long as the unculled adults have some intrinsic death rate. To describe the
work [8], we follow Simons and Gourley [26] and assume culling occurs only
at certain discrete times tj . At this stage, we assume that the immatures are
culled. Let u(t, a) be the density of individuals of age a at time t. Then

∂u

∂t
+
∂u

∂a
= −µ(a)u−

∞∑
j=1

bj(a)u(t−j , a)δ(t− tj), 0 < a < τ (4.34)

where τ is the age at which an individual becomes a mature reproducing adult,
µ(a) is the natural death rate for immatures, bj(a) ∈ [0, 1] is the fraction of
individuals of age a that are removed at the cull at time tj and δ is the Dirac
delta function. The superscript − on the variable tj in u(t−j , a) denotes the
limit of u(t, a) as t approaches tj from below (in other words, the population
just prior to the cull at time tj). We shall frequently also need the right limit,
denoted using a superscript +, to refer to the situation immediately after a
cull. We assume that

u(t, 0) = b(um(t)), (4.35)

where b(·) is the birth function and um(t) is the total number of adults,
given by

um(t) =
∫ ∞

τ

u(t, a) da. (4.36)

The solution of (4.34) will be continuous in time except for discontinuous
jumps at the particular times tj when culls occur. To see that bj(a) does indeed
have the interpretation of being the fraction of age a removed at time tj ,
integrate (4.34) from time t−j to t+j to obtain

u(t+j , a) = (1− bj(a))u(t−j , a). (4.37)

We assume (for now) that the adults are not subject to culling and also
that their intrinsic death rate is a constant, µm. Thus

∂u

∂t
+
∂u

∂a
= −µmu for a > τ, (4.38)

where µm is some constant. Recall that um(t) is defined by (4.36). Differenti-
ating this expression and assuming that u(t,∞) = 0 gives

dum(t)
dt

=
∫ ∞

τ

(
−∂u
∂a
− µmu(t, a)

)
da = u(t, τ)− µmum(t) (4.39)
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and so we need u(t, τ) in terms of the function um. This is a little tricky in that
the culls do not have to be equally spaced in time, and so as time progresses
the issue is mainly one of keeping track of how many culls have occurred in the
previous τ units of time.

For a general time t let

i(t) = max{i : ti ≤ t} (4.40)

and
k(t) = min{i : ti > t− τ}. (4.41)

Then, for a given t, relevant culls are those at the times tj with j between k(t)
and i(t) inclusive. The expression for u(t, τ) is shown in [8] to be the following,
in which the exponential term is the probability of not dying a natural death
during the maturation phase from age 0 to τ :

u(t, τ) = b(um(t− τ)) exp
(
−
∫ τ

0

µ(s) ds
) i(t)∏

j=k(t)

(1− bj(τ − (t− tj))). (4.42)

Therefore the delay differential equation (4.39) for the total number of adults
um(t) becomes

dum(t)
dt

= S(t) exp
(
−
∫ τ

0

µ(s) ds
)
b(um(t− τ))− µmum(t), (4.43)

where

S(t) =
i(t)∏

j=k(t)

(1− bj(τ − (t− tj))), (4.44)

with i(t) and k(t) given by (4.40) and (4.41). Each term in this product rep-
resents the probability of surviving a particular cull. All information relating
to culling is contained in the function S(t) and features nowhere else.

With the above preparation, we can now formulate a mathematical model
for the situation when only immature (larval) mosquitoes are culled. By solv-
ing the von Foerster equation for the larval mosquitoes, we can formulate a
model involving only three state variables: MS(t), MI(t) and BI(t) which de-
note respectively the total numbers of susceptible adult mosquitoes, infected
adult mosquitoes and infected birds.

Larval mosquitoes, whose densities are denoted by l(t, a), are assumed not
to interact with the adults or the birds. The larval stage (considered as the
only stage prior to adulthood) is of duration τ . Larvae are culled and so,
following the modeling described above, their evolution equation is taken to
be of the form

∂l

∂t
+
∂l

∂a
= −µ(a)l −

∞∑
j=1

bj(a)l(t−j , a)δ(t− tj) 0 < a < τ, (4.45)
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where the tj are the times at which culls happen. Both susceptible and infected
mosquitoes may lay eggs but the virus is not passed on to offspring. The birth
rate l(t, 0) of mosquitoes is therefore assumed to be a function of the total
number of adult mosquitoes MS(t) +MI(t), so that

l(t, 0) = b(MS(t) +MI(t)), (4.46)

where b(·) is the birth rate function. Susceptible adult mosquitoes are assumed
to satisfy an equation of the form

dMS

dt
= l(t, τ)− γBIMS − dSMS ,

where l(t, τ) is the rate at which mosquitoes become mature. In this equa-
tion, γBIMS is the rate at which susceptible mosquitoes become infected
mosquitoes (a mosquito becomes infected when it bites an infected bird) and
dSMS is the death rate for susceptible mosquitoes. By analogy with the ear-
lier analysis for a single species, we may derive an equation for the susceptible
mosquitoes MS(t) of the form

dMS

dt
= S(t) exp

(
−
∫ τ

0

µ(s) ds
)
b(MS(t−τ)+MI(t−τ))−γBIMS−dSMS ,

(4.47)

with S(t) again defined by (4.44). This equation is then coupled with the
following equations for the infected mosquitoes and the infected birds:

dMI

dt
= γBIMS − dIMI , (4.48)

dBI

dt
= β(NB −BI)MI − dBBI . (4.49)

The meaning of the terms in (4.48) is obvious. As regards (4.49), we are
assuming that the total number of birds is some constant NB > 0, so that
NB −BI is the number of susceptible birds. Thus β(NB −BI)MI is the rate
at which susceptible birds become infected birds, assumed to be given by the
law of mass action. A bird becomes infected when it is bitten by an infected
mosquito. Systems (4.47)–(4.49) for t > 0 is supplemented with the initial
data

MS(θ) = M0
S(θ) ≥ 0, θ ∈ [−τ, 0],

MI(θ) = M0
I (θ) ≥ 0, θ ∈ [−τ, 0],

BI(0) = B0
I ∈ [0, NB ]

(4.50)

with M0
S(θ), M0

I (θ) and B0
I prescribed.

It is shown in [8] that if the birth function b(·) satisfies b(0) = 0 and
b(M) > 0 for all M > 0, then the solution of systems (4.47)–(4.49) for t > 0,
subject to (4.50), satisfies MS(t) ≥ 0, MI(t) ≥ 0, BI(t) ∈ [0, NB ] for all t > 0.

The following theorem, proved in [8], provides conditions sufficient for the
eradication of the disease.
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Theorem 3 Consider system (4.47)–(4.49) for t > 0, subject to (4.50). Sup-
pose the birth function b(·) satisfies b(0) = 0 and b(M) > 0 for all M > 0, and
let S(t) be defined by (4.44). Let S∞ = lim supt→∞ S(t). Assume that either

min(dI , dS) > S∞b′max exp
(
−
∫ τ

0

µ(s) ds
)
, (4.51)

or

dIdB >
γβNBbmaxS

∞ exp
(
−
∫ τ

0
µ(s) ds

)
min(dI , dS)

, (4.52)

where bmax = supm≥0 b(m) and b′max = supm≥0 b
′(m). Then BI(t) → 0 and

MI(t) → 0 as t→∞.

Note that S∞ describes the accumulated effect of culling. Since 0 < bj < 1,
it becomes evident that the more frequent culling occurs, the smaller S∞ is;
and the higher the culling rate, the smaller S∞. Theorem 3 shows that high
culling frequency or rate can both eradicate the disease.

Let us now discuss the issue of culling of mature mosquitoes. We continue
to assume that the total number of birds in an area is some constant NB .
If birds are divided into two classes: uninfected BS and infected BI , then
BS = NB − BI . Then the change rate of infected birds is increased through
infection of uninfected birds when they are bitten by infected mosquitoes and
reduced by the natural death and disease-induced death (at a rate dB). Thus,

dBI

dt
= β(NB −BI)MI − dBBI , (4.53)

where β is the contact rate between infected mosquitoes and uninfected birds.
As far as mosquitoes are concerned, we assume now that only the adults

are subject to culling. Adult mosquitoes are divided into two classes: unin-
fected MS and infected MI . Since it would be difficult in practice to cull only
infected ones, culling will be applied equally to both classes. The total number
of adult mosquitoes will be denoted MT = MS +MI . Culling occurs only at
the particular prescribed times tj , j = 1, 2, 3, . . ., satisfying the assumptions
below. At the cull which occurs at time tj a proportion cj of the adult mosquito
population is culled, causing a sharp decrease in the population and conse-
quently a discontinuity in the evolution of MS(t) and MI(t) at each time tj .
The following assumption is made:

0 < t1 < t2 < · · · < tj < · · · with tj →∞ as j →∞,

infj≥1 δj > 0, where δj = tj − tj−1,

cj ∈ (0, 1] for each j = 1, 2, 3, . . ..

(4.54)

Note that no cj is allowed to be zero (we can of course eliminate any “null
culls” by relabelling the sequence tj to include only “genuine” culls with cj>0,
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and we are assuming that this has been done). The evolution of BI(t) (infected
birds) will remain continuous in time, but its derivative will have discontinu-
ities at the times tj .

Let l(t, a) be the density of larval mosquitoes at time t of age a, and as-
sume that a mosquito becomes mature on reaching the age τ . Since immature
mosquitoes are not subject to culling but only to natural death, we have

∂l

∂t
+
∂l

∂a
= −dLl, t > 0, 0 < a < τ (4.55)

with dL > 0 constant. The birth rate l(t, 0) is a function of the total number
of adult mosquitoes, so that

l(t, 0) = b(MT (t)). (4.56)

We assume there is no vertical transmission between mosquitoes, so the un-
infected mosquito population is increased via the maturation rate l(t, τ). It is
diminished by infection, which may be acquired when uninfected mosquitoes
feed from the blood of infected birds, by natural death at a rate dM and by
culling at the times tj , j = 1, 2, 3, . . .. Thus

dMS

dt
= l(t, τ)− γMSBI − dMMS −

∞∑
j=1

cjMS(t−j )δ(t− tj), (4.57)

where γ is the contact rate between uninfected mosquitoes and infected birds.
The infected mosquito population is generated via the infection of unin-

fected mosquitoes by infected birds and diminished by natural death at a rate
dM and culling at the times tj , j = 1, 2, 3, . . .. Thus,

dMI

dt
= γMSBI − dMMI −

∞∑
j=1

cjMI(t−j )δ(t− tj). (4.58)

It is assumed that the uninfected mosquitoes and infected mosquitoes are
equally mixed, so that at each cull the proportions of each class removed are
the same.

From (4.55) and (4.56),

l(t, τ) = b(MT (t− τ))e−dLτ .

So the model equations assume the form⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dBI

dt
= β(NB −BI)MI − dBBI ,

dMS

dt
= b(MT (t− τ))e−dLτ − γMSBI − dMMS −

∞∑
j=1

cjMS(t−j )δ(t− tj),

dMI

dt
= γMSBI − dMMI −

∞∑
j=1

cjMI(t−j )δ(t− tj)

(4.59)
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for t > 0 subject to initial conditions of the form (4.50). The model may also
be written⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dBI

dt
= β(NB −BI)MI − dBBI ,

dMS

dt
= b(MT (t− τ))e−dLτ − γMSBI − dMMS , t �= tj ,

MS(t+j ) = (1− cj)MS(t−j ),
dMI

dt
= γMSBI − dMMI , t �= tj ,

MI(t+j ) = (1− cj)MI(t−j )

(4.60)

again subject to (4.50).
It was shown in [8] that if we assume (4.54) holds and if the birth function

b(·) satisfies b(0) = 0 and b(M) > 0 for all M > 0, then the solution of
system (4.60) for t > 0, subject to (4.50), satisfies MS(t) ≥ 0, MI(t) ≥ 0,
BI(t) ∈ [0, NB ] for all t > 0.

Henceforth we assume the birth function satisfies

b(0) = 0, b(·) is strictly monotonically increasing, there exists M∗
T > 0 such

that e−dLτ b(M) > dMM when M < M∗
T and e−dLτ b(M) < dMM when

M > M∗
T .

⎫⎬
⎭

(4.61)
From system (4.60), note that the total number MT (t) of adult mosquitoes
obeys

dMT

dt
= b(MT (t− τ))e−dLτ − dMMT (t),

MT (t+j ) = (1− cj)MT (t−j ).
(4.62)

In the absence of culling, the quantity M∗
T > 0 referred to in (4.61) is an

equilibrium of (4.62) and MT (t) → M∗
T as t → ∞ (see Kuang [11]). Due to

the assumptions in (4.61) which imply that the differential equation in (4.62)
has the properties of a monotone system, solutions of (4.62) with culling are
bounded above by the corresponding solutions without culling. It is therefore
easy to appreciate that, with culling, there exists a finite time beyond which
MT (t) ≤ M∗

T , and hence also MS(t) ≤ M∗
T . In [8], it was shown that this

estimate can be improved to involve cj and an upper bound δsup on the amount
of time that elapses between two successive culls. More precisely, they proved
that

Theorem 4 Assume (4.54) and (4.61) hold, and let

cinf = inf
j≥1

cj , δsup = sup
j≥1

(tj+1 − tj)

and assume cinf > 0 and δsup <∞. Then solutions MT (t) of (4.62) satisfy

MT (t) ≤M∗∗ := M∗
T (1− cinfe

−dM δsup) (4.63)

for all t sufficiently large. Consequently, MS(t) ≤M∗∗ for t sufficiently large.
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This result then yields some useful sufficient conditions for disease
eradication.

Theorem 5 Suppose (4.54) and (4.61) hold, and that

dBdM > γβNBM
∗∗, (4.64)

where M∗∗ is defined by (4.63). Then BI(t) → 0 and MI(t) → 0 as t → ∞,
where BI(t) and MI(t) satisfy (4.60) subject to (4.50).

Condition (4.64) predicts disease eradication when death rates are high,
contact rates are low, the total number of birds is low, and the quantity
M∗∗ is low. Recall that this latter quantity, being defined by (4.63), involves
information about the culling and is low when large fractions are removed at
each cull and the culls are frequent. The following theorem shows that even
if condition (4.64) is violated, eradication of the disease is still possible. Its
proof can be found in [8].

Theorem 6 Suppose (4.54) and (4.61) hold, that δsup = supj≥1(tj+1− tj) <
∞ and that cinf > 0 where cinf = infj≥1 cj. Suppose also that dBdM ≤
γβNBM

∗∗ and

supj≥1

[
(λ2(1− cj)− λ1)eλ1δj + (λ2 + (cj − 1)λ1)eλ2δj +cjdM (eλ2δj − eλ1δj )

− (λ2 − λ1)(1− cj)e−(dB+dM )δj
]
< λ2 − λ1,

(4.65)
where λ1 < 0 and λ2 ≥ 0 satisfy

λ2 + (dB + dM )λ+ (dBdM − γβNBM
∗∗) = 0. (4.66)

Then BI(t) → 0 and MI(t) → 0 as t → ∞, where BI(t) and MI(t) sat-
isfy (4.60) subject to (4.50).

4.3.2 Simulations and Discussion

In this section we present the results of some numerical simulations to com-
pare the effectiveness of larval culling versus adult culling. Larval culling is
described by system (4.47)–(4.49), and let us recall that for larval culling
all information about the culling is embodied in the function S(t) defined
by (4.44). Culling of adults is described by system (4.60).

In the simulations we take the birth function of mosquitoes as

b(M) = bMe−aM (4.67)

which we feel to be an ecologically reasonable choice, being linear inM only for
small densities M , levelling off as a consequence of intraspecific competition
working to reduce per capita fecundity, and then actually dropping at very
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large densities M due to the available resources in these circumstances being
utilised by the adults only for their own physiological maintenance and not
reproduction.

Figures 4.4–4.6 are intended to compare larval culling with adult culling
in a variety of culling regimes. Each figure contains nine plots in all; these
being the variables MS(t), MI(t) and BI(t) in each of the situations of no
culling, culling of adult mosquitoes and culling of larval mosquitoes. Where
a simulation is of a variable with adult mosquito culling, the simulation is of
model (4.60) with the cj value shown in the caption. Where larval culling is
mentioned the simulation is of system (4.47)–(4.49) with the bj given in the
caption. In all simulations the culls are at equally spaced times, although we
do examine the effect of different spacings, i.e. different frequencies of culling.
The interval between two consecutive culls we shall denote as ∆t. The cull
times are given by tj = t0 + j∆t, j = 1, 2, 3, . . . with t0 = 4. The initial
conditions were taken to be

MS(t) = 5, 000, MI(t) = 600, BI(t) = 100

for t ∈ [−τ, 0]. Table 4.2 gives the meanings and the values used for the various
parameters. Note that the parameter b is that which appears in our choice for
the birth rate function (4.67) and equals the maximum daily egg production
per adult mosquito.

We made the following general observations which are based on the results
of numerous simulations:

• Under the same culling rates (i.e. if bj = cj) and frequencies, adulticide
seems to be more effective than larvicide. However, for the reasons given
below, adulticide is more difficult in practice. Larvicide alone is perfectly
capable of eradicating the disease. If the culling frequency is such that
a typical larval cohort is likely to experience only one cull, then a large
fraction of the larvae have to be killed at each cull.

• If we increase the culling frequency (i.e. decrease ∆t), the effect of both
larvicide and adulticide increases. If the culling frequency is high enough
the disease dies out.

• In the cases of both larvicide and adulticide, the disease dies out for suffi-
ciently large proportions bj and cj respectively.

• When the infected mosquitoes disappear under some culling regime,
whether the susceptible mosquitoes die out depends on the death rate
of infected birds. If the death rate of infected birds is large enough, the
disease will die out in both mosquito and bird population. While if the
death rate of infected birds is small (i.e., the disease has no impaction on
birds), the WNv will sustain in the mosquito and bird population except
all mosquitoes die out.

The purpose of Figs. 4.5 and 4.6 is to illustrate what happens if the in-
terval between successive culls is larger than the maturation delay τ = 10, a
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Fig. 4.4. Parameter values are bj = 0.95, cj = 0.35, ∆t = 7 and other parameters
have the values shown in Table 4.2
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Fig. 4.5. Parameter values are bj = 0.99, cj = 0.95, ∆t = 15 and other parameters
have the values shown in Table 4.2
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Fig. 4.6. Parameter values are bj = 0.75, cj = 0.75, ∆t = 42 and other parameters
have the values shown in Table 4.2
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Table 4.2. Parameter values used for the simulations. Those that vary from simu-
lation to simulation are shown in the figure captions. Literature used [2, 14,35]

Para. Meaning Value

dL Per capita death rate of mosquito larva (per day) 0.1
τ Maturation time of mosquito larva (days) 10

dM Per capita natural death rate of mosquito (per day) 0.05
dB Disease-induced death rate of infected bird (per day) 0.1
NB Total number of birds 500
β Contact rate between infected mosquito and susceptible birds 0.0144/NB

γ Contact rate between susceptible mosquito and infected birds 0.0792/NB

b Maximum per capita daily egg production rate 10
1/a Size of mosquito population at which egg laying is maximized 2,500
bj Fraction of larva removed at the cull at time tj Variable
cj Fraction of adult mosquito removed at the cull at time tj Variable

1/∆t Culling frequency Variable

situation that is not really covered by the analytical results. If this happens,
certain larva cohorts may completely escape a cull. Figure 4.5 shows that, as
a consequence of this, the disease can persist even when larva culling is max-
imized (bj = 0.99). The disease can still be eradicated via adult culling but
only with a very high proportion cj = 0.95 removed each time. The number
of susceptible mosquitoes oscillates wildly. Figure 4.6 illustrates that if the
interval between culls is very high indeed compared to the maturation delay
(we have used ∆t = 50 with τ = 10), then the culling is not having any useful
effect at all. Indeed, with culling of adults, the number of infected mosquitoes
appears to oscillate with an even higher mean than the oscillation with no
culling at all.

Let us remark that condition (4.52), though only a sufficient condition
for disease eradication, seems close in at least some parameter regimes to
being a necessary condition as well. If we take b = 10, ∆t = 7 and other
parameter values given in Table 4.2, then condition (4.52) predicts disease
eradication if bj > 0.9676 for each j. Condition (4.52) is a sufficient condition.
Trial and error numerical simulation indicates that a necessary and sufficient
condition for eradication is approximately bj > 0.949 so that the critical bj is
close to the analytical estimate of 0.9676. Figure 4.4 gives the results when
bj = 0.95, showing that the disease slowly disappears in this case. This further
emphasizes our point that if the disease is to be eradicated via larval culling
only, then very large fractions of larvae have to be destroyed at each cull if we
cull at a frequency of once every 7 days (∆t = 7). We chose this frequency to
ensure that every larval cohort (we have taken the larval stage as lasting 10
days) is subject to at least one cull with some cohorts experiencing two (the
function S(t) defined by (4.44) takes care of this automatically). However,
one could of course increase the culling frequency. The function S(t), and
therefore the number S∞ in (4.52), goes down quickly as the culling becomes
more frequent, leading to vastly less stringent conditions on the bj .
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Mosquito control programs often emphasize larval control, possibly due
to the greater difficulty in organising spraying of adults. One knows where
to look for mosquito breeding activity (a pool cover, ornamental pool, bird
bath, gutter or even an old tire is all they need). Larvicides can provide up
to a month of control (adulticides only a few hours) and larvicides can be
applied in such a way that there is less human exposure. In WNv endemic
areas of the US the use of mosquito adulticides is in fact usually a measure of
last resort because of health risks associated from exposure to the insecticide,
which is released into the atmosphere in the form of very fine droplets. People
need to be advised in advance and to be given precautions such as remaining
indoors during spraying and to take other precautions. To justify the use of
adulticides public health officials have to have reached the view that the risks
from WNv are higher than those associated with exposure to the insecticide,
and they need to inform the public and advise on precautions.

4.4 Spatial Spread: Interaction of Individual Movements
and Physiological Status

We now address the issue of spatial spread of vector-borne diseases involving
age-structure. In this sectionwe summarise thework byGourley, Liu andWu [7].
Adding spatial diffusion using Fick’s law into equations (4.6) and (4.7) gives

∂s

∂t
+
∂s

∂a
= Ds(a)

∂2s

∂x2
− ds(a)s(t, a, x)− β(a)s(t, a, x)mi(t, x) (4.68)

and

∂i

∂t
+
∂i

∂a
= Di(a)

∂2i

∂x2
− di(a)i(t, a, x) + β(a)s(t, a, x)mi(t, x) (4.69)

on a one-dimensional spatial domain x ∈ (−∞,∞), where mi(t, x) is the
number of infected adult mosquitoes at (t, x) satisfying a reaction–diffusion
equation mentioned below. We assume that the age-dependent diffusivities
Ds(a), Di(a) have the special form

Ds(a) =
{
Dsj a < τ
Dsa a > τ,

Di(a) =
{
Dij a < τ
Dia a > τ.

(4.70)

If the diffusivities are chosen as above, we may derive a system of reaction–
diffusion equations, valid near the disease-free region x ≈ −∞ only, for the
quantities

As(t, x) =
∫ ∞

τ

s(t, a, x) da, Ai(t, x) =
∫ ∞

τ

i(t, a, x) da,

Js(t, x) =
∫ τ

0

s(t, a, x) da, Ji(t, x) =
∫ τ

0

i(t, a, x) da.
(4.71)
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The derivation of such an equation for As involves computing the quantity
s(t, τ, x), which in turn involves solving the following equation for the function
sξ(a, x) := s(ξ + a, a, x):

∂sξ
∂a

= Ds(a)
∂2sξ
∂x2

− ds(a)sξ(a, x)− β(a)sξ(a, x)mi(ξ + a, x). (4.72)

Unfortunately (4.72) cannot be solved explicitly for sξ(a, x) because of the
presence of the variable mi which satisfies a separate nonlinear partial dif-
ferential equation (see below). However, the analysis to be summarised here
concerns the spatial spread of the disease in the form of a traveling wave so-
lution which moves leftwards through the spatial domain x ∈ (−∞,∞) and
which constitutes a connection between the disease free state and an endemic
state. It is possible to derive a system of partial differential equations that are
valid in the spatial region of interest, i.e. the region far ahead of the advancing
epidemic (x → −∞). We assume that the linearised equations in this region
determine the speed of the epidemic wave. In the disease free region x ≈ −∞,
the variables Ai(t, x), Ji(t, x) andmi(t, x) are all close to zero. Equation (4.72)
is therefore solved in the case when mi is zero. The solution subject to the
first condition appearing below:

s(t, 0, x) = b(As(t, x)), i(t, 0, x) = 0 (4.73)

is, for a ≤ τ and ξ ≥ 0,

sξ(a, x) = s(ξ + a, a, x) =
∫ ∞

−∞
Γ (Dsja, x− y)b(As(ξ, y))e−dsjτ dy (4.74)

where
Γ (t, x) =

1√
4πt

e−x2/4t. (4.75)

From (4.74) an expression for s(t, τ, x) can be found and we deduce that for
t ≥ τ the partial differential equation for As(t, x):

∂As

∂t
=
∫ ∞

−∞
Γ (Dsjτ, x− y)b(As(t− τ, y))e−dsjτ dy

+Dsa
∂2As

∂x2
− dsaAs(t, x)− βami(t, x)As(t, x)

(4.76)

is valid in the far left of the spatial domain x ∈ (−∞,∞). Similarly, we find
an approximate equation for Js(t, x), also valid only in the far field x→ −∞:

∂Js

∂t
= b(As(t, x))−

∫ ∞

−∞
Γ (Dsjτ, x− y)b(As(t− τ, y))e−dsjτ dy

+Dsj
∂2Js

∂x2
− dsjJs(t, x)− βjmi(t, x)Js(t, x).

(4.77)
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The derivation of a partial differential equation for Ai(t, x) involves comput-
ing i(t, τ, x), which involves solving the following equation for the function
iξ(a, x) := i(ξ + a, a, x):

∂iξ
∂a

= Dij
∂2iξ
∂x2

− dijiξ(a, x) + βjmi(ξ + a, x)s(ξ + a, a, x).

The solution of this equation satisfying the second condition in (4.73) is

iξ(a, x)=βj

∫ a

0

e−dij(a−ζ)

∫ ∞

−∞
Γ (Dij(a−ζ), x−y)mi(ξ+ζ, y)s(ξ+ζ, ζ, y) dy dζ

where Γ is given by (4.75). For s(ξ + ζ, ζ, y) we use expression (4.74). Then,
setting a = τ and ξ = t− τ in the above expression gives us i(t, τ, x) and we
find that the variable Ai(t, x) representing the number of adult infected hosts
satisfies, for t ≥ τ ,
∂Ai

∂t
= Dia

∂2Ai

∂x2
− diaAi(t, x) + βami(t, x)As(t, x)

+βj

∫ τ

0

e−dij(τ−ζ)

∫ ∞

−∞
Γ (Dij(τ − ζ), x− y)mi(t− τ + ζ, y)

×
∫ ∞

−∞
Γ (Dsjζ, y − η)b(As(t− τ, η))e−dsjζ dη dy dζ

(4.78)

which is again valid only in the far field x→ −∞, since we have used expres-
sion (4.74). The last term in the right hand side of (4.78) is the rate at which
infected immatures become infected adults and has a similar interpretation to
a term in the right hand side of (4.14). The term involves additional integrals
because of diffusion, but in some respects is a little simpler than one might
expect. This is because of the approximations that have been made due to
restricting to the x ≈ −∞ zone. The interpretation of the term we are dis-
cussing is as follows. Each individual that reaches adulthood at point x at
time t as an infected individual was born as a susceptible at time t − τ at
some other point η. For an amount of time ζ that individual drifted around
as a susceptible individual with diffusivity Dsj until reaching a point y where
it became infected at time t− τ + ζ. For an amount of time τ − ζ, constituting
the remainder of its childhood, it drifted around as an infected individual with
diffusivity Dij to reach point x at time t where it becomes an adult. The two
exponential factors represent the probability of surviving the susceptible and
infected portions of childhood.

The partial differential equation for Ji(t, x) is

∂Ji

∂t
= Dij

∂2Ji

∂x2
− dijJi(t, x) + βjmi(t, x)Js(t, x)

− βj

∫ τ

0

e−dij(τ−ζ)

∫ ∞

−∞
Γ (Dij(τ − ζ), x− y)mi(t− τ + ζ, y)

×
∫ ∞

−∞
Γ (Dsjζ, y − η)b(As(t− τ, η))e−dsjζ dη dy dζ.

(4.79)
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It is assumed that the infected adult mosquitoes mi(t, x) satisfy
∂mi

∂t
= Dm

∂2mi

∂x2
− dmmi(t, x) + βm(m∗

T −mi(t, x))(Ji(t, x) + αAi(t, x)).

(4.80)

The complete system to be solved consists of equations (4.76)–(4.79)
and (4.80), and in [7] solutions were considered which have the form of a
leftward moving traveling wave-front, constituting invasion into what was
formerly a disease-free zone. So, as x → −∞, the variables tend to the
disease-free values in which Ai, Ji and mi are zero while A∗

s > 0 and J∗
s > 0

are given by (4.29), assuming that (4.24) holds (if (4.24) does not hold then
the host population is eradicated even in the absence of the disease).

In fact, [7] looked at wave-front solutions that constitute a transition from
the disease free state to an endemic steady state. The endemic state cannot
be found explicitly but a condition for its existence is known. This condition
is the opposite of (4.30), so it is assumed in the subsequent discussion that

dm < βmm
∗
T

{
b(A∗

s)βj

dij − dsj

[
1− e−dsjτ

dsj
− (1− e−dijτ )

dij

]
+
α

dia

[
βaA

∗
s + βjb(A∗

s)e
−dsjτ (1− e−(dij−dsj)τ )

dij − dsj

]}
.

(4.81)

If the equations for Ai, Ji and mi ((4.78)–(4.80)) are converted into traveling
wave form, with z = x + ct (and c ≥ 0) as the independent variable, and
linearised in the region x → −∞ where As → A∗

s, Js → J∗
s and the other

variables approach zero, nontrivial solutions of the traveling wave equations of
the form (Ai, Ji,mi) = (q1, q2, q3) exp(λz) can be sought. The characteristic
equation for λ is rather complicated.

An epidemiologically feasible wave-front is one in which all the variables
remain nonnegative as x → −∞ (i.e. as z → −∞ in the traveling wave
variable formulation). The decay of Ai, Ji and mi to zero as z → −∞ must
not be oscillatory. It is therefore necessary that there should exist at least one
strictly positive real root λ of the characteristic equation with the property
that the corresponding eigenvector (q1, q2, q3) points into the positive octant
in R3. This happens only for c above some minimum value cmin > 0. The
need to examine carefully the eigenvectors as well as the eigenvalues makes the
problem especially nontrivial, and the reader is referred to [7] for all the details.

For the case when the birth functions b(·) and B(·) are chosen as in (4.32)
the minimum speed of spread, according to the predictions of the linearised
analysis, was computed in [7] to be about 2.62 km per day, i.e. about 956 km
per year. This is roughly consistent with the speed at which West Nile virus
has spread across the USA. The disease first emerged in New York in 1999
and had reached the West coast five years later. There is, however, great
uncertainty about some of the parameter values, especially the diffusivities.
It seems to be difficult to find good data on diffusion coefficients for bird
species generally. Both fledgling and adult crows are involved in the model
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being summarised here, and good data on their respective diffusivities is not
really available. It was nevertheless noted in [7] that the speed of spread is
not particularly sensitive to the values of certain particular parameters (e.g.
the diffusivity of mosquitoes) but very sensitive to others (particularly the
contact rates).

There also remains the issue of whether it is correct to compute the min-
imum speed according to the predictions of the linearised analysis, and then
declare that solutions starting from realistic initial data will evolve to that
speed. The mathematical theory of the speed of spread in reaction–diffusion
equations with functional terms is still far from complete, especially for cou-
pled systems such as those being described here. Considerable progress in this
area has, however, taken place recently for scalar equations (see Thieme and
Zhao [30]).

4.5 Spatial Spread in Patches: Asymptotic Dispersal

To tie the model simulations to the surveillance data, it is sometimes desir-
able to develop patchy models, since a public surveillance system is normally
organized by medical and administrative regions and landscape. Also, the
surveillance seems to indicate the jump or discontinuous spatial spread pat-
terns in the establishment phase of WNv, as shown in the 2000–2003 Health
Canada map of dead birds submitted for WNv diagnosis by health region.
This discontinuous spatial spread seems to be the consequence of the combi-
nation of the local interaction and spatial diffusion of birds and mosquitoes
and long-range dispersal of birds, and this also motivated the use of patchy
models instead of the reaction–diffusion model.

In [13], a patchy model for the spatial spread of West Nile virus was for-
mulated and analyzed, with a goal to see how the interaction of the ecology
of birds and mosquitoes, the epidemiology of bird–mosquito cycles, and the
diffusion and immigration patterns of birds affect the long-term and transient
transmission of the diseases within the whole region consisting of multiple
patches. This was partially achieved by calculating the basic reproduction
number of the region as a function of the basic reproduction number of each
patch, the spatial dispersal rates and patterns of birds, and the spatial scale
of the birds’ flying range in comparison with the mosquitoes’ flying range.

The work focused on the one-dimensional patch model, which can only be
regarded as a theoretical approximation of the West Nile virus landscape in
a given region and better understanding of the West Nile virus spread in a
real medical landscape can be achieved only by extending this work to a two-
dimensional model and by incorporating more spatiotemporal heterogeneities.

To formulate the patchy model in [13] for the spatial spread of the West
Nile virus, we assume that there are N patches under consideration where, de-
pending on the purpose of modeling, availability of data, and implementation
of surveillance, control, and prevention measures, the partition of the whole
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region into nonoverlapping patches changes. In the modeling and simulations
in [13], the average distance a female mosquito can fly during its lifetime was
used as a measuring unit for the partition. Therefore, if we assume the region
is one-dimensional and we use 1, . . . , N to denote the corresponding patches,
then mosquitoes belonging to the ith patch can fly only to their nearest neigh-
boring patches i− 1 and i+ 1, while birds belonging to the i-th patch fly to
their mth neighbor patches i−m, . . . , i− 1, i+ 1, . . . , i+m, with m ≥ 1.

We also make the following assumptions (i) the virus does not have any
adverse effect on mosquitoes and vertical transmission in mosquitoes can be
ignored; (ii) most birds will recover from the virus and become immune to
further infection and new-born birds have no immunity; and (iii) birds and
mosquitoes have fixed recruitment rates in each patch.

We denote the number of individuals of birds and mosquitoes on the ith
patch at time t respectively by

BSi : the susceptible birds in patch i
BIi : the infectious birds in patch i
MSi : the susceptible mosquitoes in patch i
MIi : the infectious mosquitoes in patch i

The model formulated in [13], based on the model set up in [2] for the dynamics
between birds and mosquitoes within a patch and linear spatial dispersal
among patches, and takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dBSi

dt = bi − dbiBSi +
m+i∑

(j=−m+i
j �=i )

DbjiBSj −
m+i∑

(j=−m+i
j �=i )

DbijBSi −
CmbiMIiBSi

NBi
,

dBIi

dt =−db2iBIi +
CmbiMIiBSi

NBi
+

m+i∑
(j=−m+i

j �=i )
DbjiBIj −

m+i∑
(j=−m+i

j �=i )
DbijBIi,

dMSi

dt =mi − dmiMSi+
∑

|k−i|=1

DmkiMSk−
∑

|k−i|=1

DmikMSi −
CbmiMSiBIi

NBi
,

dMIi

dt =−dmiMIi +
∑

|k−i|=1

DmkiMIk −
∑

|k−i|=1

DmikMIi +
CbmiMSiBIi

NBi
,

(4.82)
with 1 ≤ i ≤ N . The total number of birds in patch i is NBi = BSi + BIi.
All parameters are defined in Table 4.3. Based on the biological fact that the
death rate of infected birds is greater than that of susceptible birds, we assume
db2i ≥ dbi for all i.

We assume the dispersion rates of birds depend on the distance from the
starting patch to their destination, but these rates may depend on the direc-
tion, thus {

Dbij = 0, Dbji = 0, if |i− j| > m,
Dbji = gb(i− j), if 0 < |i− j| ≤ m, (4.83)
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Table 4.3. Definitions for parameters in the model (4.82)

Parameter Meaning

bi Recruitment rate of birds in patch i

dbi Death rate of birds in patch i

Cmbi Effective contact rate between susceptible birds
and infectious mosquitoes in patch i

db2i Death rate of infectious birds in patch i

mi Recruitment rate of mosquitoes in patch i

Cbmi Contact rate between susceptible mosquitoes
and infectious birds in patch i

dmi Death rate of mosquitoes in patch i

Dbij Diffusion rate of birds from the ith patch to the jth patch

Dmij Diffusion rate of mosquitoes from the ith patch to the jth patch

where gb : {−m, . . . ,−1, 1, . . . ,m} −→ [0,∞) is the dispersion function. We
assume Neumann boundary conditions; namely, if j < 0 or j > N , then
Dbji = Dbij = 0.

The dispersal rates of mosquitoes are given by{
Dmik = 0, Dmki = 0, if |k − i| �= 1,

Dmki = dm12, if |k − i| = 1,
(4.84)

where dm12 > 0 is a constant. Again, we assume that if k < 0 or k > N , then
Dmki = Dmik = 0.

The disease-free equilibrium (DFE) is given by solving the vector equation{
Bb
−→
BS =

−→
b ,

Mm
−−→
MS = −→m,

(4.85)

where
−→
BS = (BS1, . . . , BSN )T ,

−→
b = (b1, . . . , bN )T ; Bb is a N×N matrix with

Bbii = dbi +
m+i∑

j=−m+i,j 
=i

Dbij ,

and Bbij = −Dbji for 0 < |i − j| ≤ m and 1 ≤ j ≤ N , otherwise Bbij = 0;
−−→
MS = (MS1, . . . ,MSN )T , −→m = (m1, . . . ,mN )T ; Mm is a tridiagonal matrix
with

Mmii = dmi +
∑

|k−i|=1

Dmik,

and if |i− j| = 1 and 1 ≤ j ≤ N , Mmij = −Dmji, otherwise Mmij = 0.
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Simple matrix analysis shows that (4.85) has exactly one positive solution,
denoted by −→

BS = (B∗
S1, . . . , B

∗
SN )T ,

−−→
MS = (M∗

S1, . . . ,M
∗
SN )T .

(4.86)

The basic reproduction number, denoted by R0, is “the expected num-
ber of secondary cases produced, in a completely susceptible population, by
one typical infectious individual”. If R0 < 1, then on average an infected
individual produces less than one new infected individual over the course of
its infectious period, and the infection cannot grow. Conversely, if R0 > 1,
then each infected individual produces, on average, more than one new in-
fection, and the disease can invade and spread in the population. In [13], the
formula in [33] was used to calculate the reproduction number R0. Namely,
R0 = ρ(FV −1), where

F =
(

F1

F2

)
and V =

(
B
M

)
,

with an empty element or block in a matrix meaning zero (number or matrix),
and

F1 = diag(Cmb1, . . . , CmbN ),

F2 = diag(Cbm1M
∗
S1/B

∗
S1, . . . , CbmNM

∗
SN/B

∗
SN ),

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B11 . . . B1,m+1

. . .

Bm+1,1
. . . . . .

. . . BN,N−m

. . . . . .
BN−m,N BNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with

Bii = db2i +
m+i∑

( j=−m+i
j �=i,1≤j≤N)

Dbij ,

Bij = −Dbji, if 0 < |i− j| ≤ m and 1 ≤ j ≤ N,

and

M =

⎛
⎜⎜⎜⎜⎝
M11 M12

M21
. . . . . .
. . . . . . MN,N−1

MN−1,N MNN

⎞
⎟⎟⎟⎟⎠ ,
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with
M11 = dm1 + dm12,

Mii = dmi + 2dm12, i = 2, . . . , N − 1,

MNN = dmN + dm12,

Mik = −dm12, if |i− k| = 1 and 1 ≤ i, k ≤ N.
Unfortunately, it is a nontrivial task to find the explicit form of R0 in the

general case. [13] considered the special case where all patches are identical
from the aspect of ecology and epidemiology:

bi = b, dbi = db, db2i = db2, dmi = dm,
mi = m̃, Cmbi = Cmb, Cbmi = Cbm Dbij = Dbji.

In this case, a straightforward calculation gives the coordinates for the DFE as

−→
BS = (B∗

S1, . . . , B
∗
SN )T =

(
b

db
, . . . ,

b

db

)T

,

−−→
MS = (M∗

S1, . . . ,M
∗
SN )T =

(
m̃

dm
, . . . ,

m̃

dm

)T

.

(4.87)

An explicit expression for the reproduction number R0 is given by

R0 =

√
CbmCmbM∗

S

db2dmB∗
S

.

This shows that a region consisting of identical patches coupled by symmetric
dispersal of birds has the same reproduction number as if each patch is isolated
from the others.

This conclusion is not true anymore, however, if the dispersal of birds is not
symmetric, as shown next. [13] considered the case where the dispersal rates
of birds depend on the direction, using the perturbation theory to calculate
the basic reproduction number of model (4.82) in the special case of three
identical patches.

To describe the results in [13], we denote the diffusion rate of birds to the
left by Dbl and to the right by Dbr. To address the impact of the direction-
selective dispersal of birds on R0, we write Dbr = Dbl + ε, where ε is a small
positive number. Note that ε = 0 implies the symmetric dispersal of birds.

Let

p2 =
8db2B

∗
S(db2 − db + 2Dbl)

9(db + 3Dbl)2Dbl
. (4.88)

Then, [13] obtained

R0 =
1√

db2dmB∗
S

CbmCmbM∗
S

+ ε2p2 +O(ε3)
. (4.89)
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Note that if we fix Dbl > 0, p2 is always positive. Therefore the breaking
of symmetry in spatial dispersal of birds always decreases R0.

Reference [13] also reported some numerical simulation results to demon-
strate the effect of different dispersal patterns of birds on the spatial spread
of WNv, and to illustrate possible discrepancy between surveillance data and
the model-based simulations in different time scales. Their focus is on the time
when a particular patch has recorded WNv activities, namely, when at least
one bird has died of WNv infection. This allows them to compare the simula-
tion results with surveillance data in Canada, since dead birds with WNv was
used as an indicator for determining whether a region has WNv activities.

The ranges of parameters involved were obtained in biological literatures
[2, 15, 23, 31, 32, 35]. It was also assumed that all patches are identical from
the aspect of ecology and epidemiology as discussed before, and the dispersal
rates of birds are a decreasing function of the distance from the origin, but
the spatial dispersal may be nonsymmetric in terms of spatial direction (left
vs. right, in the case of one-dimensional space). For the sake of simplicity, the
dispersal rate of birds gb(k), with k = i− j, from patch i to j, is a piecewise
linear function, was given by

gb(k) =

{
h1
m (m− |k|), if 0 < k ≤ m,
h2
m (m− |k|), if −m ≤ k < 0,

(4.90)

where m ± i are the furthest patches that a bird can fly during the average
life span of female mosquitoes and h1 measures the diffusivity rate of birds
to the left, while h2 measures the diffusivity rate of birds to the right. The
net rate at which a bird flies out of a given patch should be less than 1;
therefore, 0 ≤ (h1 + h2)m/2 < 1. Notice that h1 = h2 corresponds to the
bidirectional dispersal symmetric with respect to the spatial direction, while
h1 �= h2 corresponds to the nonsymmetric spatial direction selective dispersal
that seems to be closer to the ecological reality of birds in Canada within the
time scale under consideration.

On average, birds can fly 13.4 km per day or 1,000 km per year [17]. During
the average life span of 30 days, most female mosquitoes remain within 1.6 km
of their breeding site. A few species may range up to 10 km or more. Thus in
the average lifespan of female mosquitoes, the flying range of a bird is about
40 times that of mosquitoes. Hence, m = 40 is assumed.

The distance from British Columbia to South Ontario is about 3,000 km,
and hence, the total number of patches is assumed N = 300. In the simulation
of [13], the time unit is one day. Since WNv is a seasonal disease, we consider
the period from late April to early October to be a total of about 180 days.

The simulations in [13] with h1 = h2 = 0.005 give the spread speed of
WNv about 1,000 km per year, which coincides with the observed spread rate
in North America [12]. Increasing h2 slightly while keeping h1 unchanged
yielded nonsymmetric dispersal of birds, but this minor breaking of symmetry
has limited impact on the number of infected birds and their spatial spread.
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However, if h2 is further increased to h2 = 0.01, the spread speed of the disease
is much faster and the magnitude of outbreaks is higher compared to the cases
with symmetry or with minor symmetric breaking. Naturally, we notice that
the spatial spread is continuous in the sense that there is no patch i escaping
from WNv if patch j > i has WNv activities (i.e., had infected birds). This is
due to the continuous spread of birds.

In reality, birds may skip some patches during their long-range dispersal.
To model this special dispersal pattern, a dispersal function of the following
form considered was

gb(k) =

⎧⎪⎨
⎪⎩

h1
m (m− |k|), if |k|mod 4 = 0 and 0 < k ≤ 40,
h2
m (m− |k|), if |k|mod 4 = 0 and − 40 ≤ k < 0,

0, otherwise.

(4.91)

In other words, the birds in patch i jump to patches i± 4, . . . , i± 4J , where
J is the integer part of m/4.

Note that the model (4.82) is still a continuous model even though the
dispersal function of birds is not continuous. Simulation results in [13] using
the above jump dispersal function and in the case h1 = h2 = 0.01 show
obvious jumps in the transmission of WNv and the disease spread speed is
about 1,000 km per year. In this case, some patches avoid the disease because
of the discontinuous dispersal of birds.

4.6 Discussion

We will briefly describe some aspects of mosquito and bird behavior, and
control, that might benefit from further mathematical work.

Much work remains to be done in the modeling of mosquito dispersal
behavior, which varies from one species to another. Although mosquitoes are
capable of flying significant distances, they usually only go far enough to find
a blood meal. Wind and air turbulence play an important role in mosquito
movement. For example, species that are active during the day may be more
likely to be carried into the upper air, by turbulence and convection, and con-
veyed long distances than species that are active at night (see Service [25]).
Large scale weather events can be associated with large scale migration of
insects in general and mosquitoes in particular. Wind can have other more
indirect implications for the mosquito life cycle too, since the larvae require
water that is relatively unaffected by wave action (they need slow moving or
stagnant water). Indeed, a reason for the preference for water containing veg-
etation is that this reduces wave action. It has been suggested that mosquito
memory may limit oviposition in unsuitable habitats (McCall and Kelly [16]).

There is a need for models that incorporate aspects of bird dispersal be-
havior not considered in the works we have summarised here. It is really only
in the breeding season that crows, once paired, seek to establish individual



4 Spatiotemporal Patterns of Disease Spread 205

territories to raise their broods. In the nonbreeding season crow activities
tend to be centered around large communal roosts, which may contain tens
of thousands of birds, to which they return in the evenings after searching
for food during the day. Recent work by Ward et al. [34] suggests that roost-
ing behavior may be an important component in regulating West Nile virus
transmission because of the nocturnal feeding behavior of Culex mosquitoes.
Moreover, large roosts are often in mosquito-friendly habitats: areas with large
trees protected by wetlands. An extension of the model we have described in-
volving simple Fickian diffusion might be used to incorporate the fact that
in the final days of a crow’s life after contracting the virus the crow is effec-
tively a sitting duck for feeding mosquitoes. An additional compartment of
nondiffusing crows which are in the final stages of disease might constitute
an appropriate extension of the modeling described here. It should be noted
that although crows are particularly susceptible to West Nile virus, there are
numerous other bird species including House Sparrows and Cardinals which
are vulnerable to the disease but have lower disease induced mortality rates.
Some bird species do not become ill from the virus but harbor high levels of
it in their blood and therefore serve as reservoirs. Although birds seem to be
the primary hosts for West Nile, the virus has been known to infect horses,
cats, dogs, squirrels and rabbits.

Biological control methods provide an alternative to the use of larvicides
to kill mosquito larvae. For example, the mosquitofish Gambusia affinis is a
small surface feeding minnow that can be stocked seasonally in water sites
where mosquitoes are known to be active. These fish can eat over 100 larvae
per day, have short gestation periods and their young can begin eating larvae
immediately. However, there can be problems associated with the introduction
of fish to areas where they would not normally occur. For example, the fish
may have an undesirable impact on native species that already exist, and once
introduced can be hard to remove. In parts of the southwestern United States
the use of another predator of mosquito larvae and pupae, the arroyo chub
Gila orcutti, is presently being investigated.

Biological control of adult mosquitoes seems to be more difficult than
biological control of larvae. The use of birds and bats is sometimes suggested,
but some bird species can make matters worse by eating dragonflies, which are
important predators of both larval and adult mosquitoes (dragonflies can also
be killed by the adulticide sprays that are aimed at killing adult mosquitoes).

In the case of West Nile virus the transmission dynamics is determined
mainly by the behavior of mosquitoes and birds. Humans are considered as
dead-end hosts, in the sense that they are incapable of continuing the virus
transmission cycle. However, based on a study of the Aedes aegypti mosquito
in Puerto Rico and Thailand, Harrington et al. [10] have suggested that people
rather than mosquitoes are the primary mode of dengue virus dissemination.

Finally, there is undoubtedly a need for more work on the spread of mos-
quito borne diseases between countries and continents via air and sea travel.
Recently, Tatem et al. [29] used a database of international ship and aircraft
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traffic movements in a study of the spread of the mosquito Aedes albopic-
tus, which is known to be a vector of numerous arboviruses including dengue,
yellow and West Nile fever.
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Summary. Ecological modelers produce models with more and more details, lead-
ing to dynamical systems involving lots of variables. This chapter presents a set of
methods which aim to extract from these complex models some submodels contain-
ing the same information but which are more tractable from the mathematical point
of view. This “aggregation” of variables is based on time scales separation methods.
The first part of the chapter is devoted to the presentation of mathematical aggre-
gation methods for ODE’s, discrete models, PDE’s and DDE’s. The second part
presents several applications in population and community dynamics.

5.1 Introduction

Ecology aims to understand the relations between living organisms and their
environment. This environment constitutes a set of physical, chemical and
biological constraints acting at the individual level. In order to deal with the
complexity of an ecosystem, ecology has been developed on the basis of a wide
range of knowledge starting from the molecular level (molecular ecology) to
the ecosystem level. One of the current aims of ecological modelling is to use
the mathematical formalism for integrating all this knowledge.
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On the other hand, mathematical ecology provided a large amount of rather
simple models involving a small number of state variables and parameters.
The time continuous Lotka–Volterra models, published in the beginning of the
twentieth century [59, 60, 94] as well as the discrete host–parasite Nicholson–
Bailey models [69, 70] are classic examples and can be found in many bio-
mathematical textbooks as the book by Edelstein-Keshet [48] and the book
by Murray [66] in which many other examples and references are given. In
such population dynamics models, the state variables are often chosen as the
population densities and the model is a set of nonlinear coupled ordinary dif-
ferential equations (ODE’s) or discrete equations. The models describe the
time variation of the interacting populations. Of course, mathematical ecolo-
gists proposed also more realistic models taking account of some populations
structures (space, age, physiology, etc.). Mathematical methods have been de-
veloped to deal with these structured population models, but which may fail
to get robust results for high dimensional systems.

During the last decades, supported by the fast development of computers,
a new generation of ecological models has appeared. Nowadays, lots of ecolog-
ical models consider more and more details. Lots of populations are involved
in a community and in food webs. Furthermore, each population is not ho-
mogeneous in the sense that all individuals are identical but each individual
has changing properties (physiology, metabolism, behaviour), according to its
environment. For instance, functional ecology considers functional groups cor-
responding to the different functions of living organisms in the ecosystems. It
follows that lots of models consider populations structured in subgroups.

Incorporating more details in models is necessary to advance toward a
more realistic description of ecological systems and to understand how living
organisms respond to the forcing imposed by their environment changes. The
drawback of a detailed description of systems is the fact that models become
more complex, involving an increasing number of variables and parameters.
A mathematical study with general and robust results is then difficult to
perform. For this reason, it is important to find which details are really rel-
evant and must be incorporated in a model. An important goal of ecological
modelling should thus be to describe tractable models.

In the context of terrestrial ecology, if we consider a forest dynamics for
instance, we can just consider the total forest surface or how trees are dis-
tributed among species or globally. But the dynamics of these variables or
indicators depend on the individuals properties of the trees (height, weight,
basal area, metabolism, etc.). Should we take into account all the details?
Is there a trade-off between the amount of details to be integrated and the
relative simplicity required for understanding forest dynamics? In this case,
the surface or the spatial structure indicators are global variables that we
call macro or aggregated variables. These variables actually depend on the
individuals descriptors, which we call the micro-variables.

The same approaches are considered in marine ecology. The simplest way
should be to consider the concentrations of mineral matter, primary produc-
ers, zooplankton, top-predators and microbial loop with bacteria and detritus
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as the variables of the model. This point of view permits to summarize the
biological components of a marine ecosystem with only a few macro-variables.
However, each variable describes a set of lots of populations having different
properties. This is the main reason to split them into different micro-variables,
leading to a set of differential systems involving typically dozens of variables
and parameters.

In ecology, the problem of aggregation of variables may be set in this way:
when considering a detailed system with various interacting organization lev-
els, is there a way to find, at each level, a reduced set of variables describing
the dynamics of this level? How to find such variables? How to find the rela-
tions between these macro-variables and the micro-variables associated with
the detailed description? Under which assumptions these questions could be
dealt with? Do these assumptions have a realistic basis? This chapter aims to
describe some mathematical methods of aggregation of variables which help
to answer parts of these questions. Two main goals of variables aggregation
are dealt with in this chapter. The first one is to reduce the dimension of
the mathematical model to be handled analytically. The second one is to un-
derstand how different organization levels interact and which properties of a
given level emerge at other levels.

Aggregation of variables is coming from economy and has been introduced
in ecology by Iwasa, Andreasen and Levin, in [52]. In general, the aggregation
of a system consists of defining a small number of global variables, functions
of its state variables, and a system describing their dynamics. When the ag-
gregated dynamics are consistent with the original dynamics in the sense that
the global variables behave identically both in the initial system and in the
aggregated one, it is called perfect aggregation [52]. Perfect aggregation is a
very particular situation which is rarely possible since it requires very drastic
conditions. Consequently, methods for approximate aggregation have been de-
veloped [53]. Approximate aggregation deals with methods of reduction where
the consistency between the dynamics of the global variables in the complete
system and the aggregated system is only approximate.

This chapter is devoted to approximate aggregation methods that are
based on the existence of different time scales. It is common in ecology to
consider different ecological levels of organization, the individual, popula-
tion, community and ecosystem levels. In general, different characteristic time
scales are associated with these levels of organization. For example, a fast time
scale corresponds to individual processes while a slow time scale is associated
with demographic ones. It is possible to take advantage of these two time
scales in order to reduce the dimension of the initial complete model and to
build a simplified system which describes the dynamics of a small number of
global variables. Such methods originated in Auger [3] and were presented in
a rigorous mathematical form for ODEs in Auger and Roussarie [16] and in
Auger and Poggiale [12], extended to discrete models in Sanchez et al. [82]
and in Bravo de la Parra et al. [29], to PDEs in Arino et al. [1] and to DDEs in
Sanchez et al. in [81]. There are lots of examples in various applications fields
where the intuitive ideas of the methods are used implicitly. It is for instance
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the case in epidemiology, when population dynamics is ignored at the epi-
demiological scale since the latter is much faster, see for example Chap. 3
Sect. 4 in this book. It is often correct but we shall give some examples where
the intuitive ideas are not sufficient and the mathematical developments are
useful.

The chapter is organized as follows. Three sections are devoted to mathe-
matical aggregation methods associated to different mathematical formalisms
while the last section illustrates these methods on particular ecological ex-
amples. The methods described in this chapter are not intended to be ex-
haustive and just address partially the problems suggested by the questions
arisen above. Some open problems are discussed along the chapter. In the
next section, we focus on aggregation methods for ODE’s systems involving
at least two different time scales. The third section proposes an approach
for discrete time models. The fourth section is devoted to aggregation meth-
ods for Partial Differential Equation (PDE’s) and Delayed Differential Equa-
tions (DDE’s) systems involving different time scales. Finally, we illustrate
the different methods presented in the previous sections by means of a set of
examples from population dynamics and community dynamics.

5.2 Aggregation of Variables for ODE’s Systems

5.2.1 Notation and Position of the Problem

Let us consider a population dynamics model describing the interactions be-
tween A populations and let us assume that each population is structured in
subpopulations. We denote by nα

i the abundance of subpopulation i in popu-
lation α, α = 1, . . . , A and i = 1, . . . , Nα where Nα is the number of subpopu-
lations in population α. We now assume that the dynamics of the subpopula-
tion i in population α results from the interactions of a set of processes among
which some are much faster than the other ones. The complete model reads:

dnα
i

dτ
= Fα

i (n) + εfα
i (n) (5.1)

where n is the vector(
n1

1, n
1
2, . . . , n

1
N1
, n2

1, n
2
2, . . . , n

2
N2
, . . . , nα

1 , n
α
2 , . . . , n

α
Nα
, . . . , nA

1 , n
A
2 , . . . , n

A
NA

)
Fα

i describes the fast processes affecting nα
i and εfα

i describes the slow
processes affecting nα

i . The parameter ε is small and means that the speed
of the processes described in fα

i are slow. This model is assumed to contain
all the details that we want to include in the description. It governs the so
called micro-variables nα

i which are those associated to a detailed level. We
denote by k the number of micro-variables, that is the dimension of n. More
precisely, we have:
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k =
A∑

α=1

Nα

We want now to build a model which describes the system at the macro-
level. We thus define a set of macro-variables. In this framework, a macro-
variable is a variable varying slowly, that is a first integral of the fast dynamics.
More precisely, let us define Yj , j = 1, . . . , N the macro-variables. A such
variable can be defined as a function of n. The fact that Yj is a slow variable
means that its derivative with respect to τ is of order ε:

Yj = Φj (n) , j = 1, . . . , N (5.2a)

dYj

dτ
=

A∑
α=1

Nα∑
i=1

∂Φj (n)
∂nα

i

dnα
i

dτ
= O (ε) (5.2b)

The second equation (5.2b), associated with the equation (5.1), implies the
following equality:

A∑
α=1

Nα∑
i=1

∂Φj (n)
∂nα

i

Fα
i (n) = 0, j = 1, . . . , N (5.3)

Finally, the equations for the macro-variables read:

dYj

dτ
= ε

A∑
α=1

Nα∑
i=1

∂Φj (n)
∂nα

i

fα
i (n) (5.4)

Since the system is more detailed at the micro-level, we should have N <<
k. In order to use the macro-variables, we replace N micro-variables in the
complete model (5.1) by some expressions depending of the macro-variables
and this can be done under the following conditions. We suppose that the set
of N equations (5.2a) permits to write N variables among the micro-variables
nα

i , α = 1, . . . , A, i = 1, . . . , Nα, as functions of the N macro-variables Yj ,
j = 1, . . . , N . We thus have to deal with k variables among which N are
macro-variables and k − N are micro-variables. This system is formed by
k − N equations of system (5.1) and the N equations of system (5.4). In
other words, we perform a change of variables (X,Y ) �→ n (X,Y ) where X is
a k−N vector for which the coordinates are taken among the micro-variables
nα

i . With this change of variables, the complete system reads:

dXi

dτ
= Fi (X,Y ) + εfi (X,Y ) , i = 1, . . . , k −N (5.5a)

dYj

dτ
= εGj (X,Y ) , j = 1, . . . , N (5.5b)

where

Gj (X,Y ) =
A∑

α=1

Nα∑
i=1

∂Φj (n (X,Y ))
∂nα

i

fα
i (n (X,Y ))
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In this form, the model (5.5) is a so-called slow-fast system of differential
equations, or slow-fast vector field. The Geometrical Singular Perturbation
(GSP) theory provides some results to deal with such systems and the most
important point is that, under some conditions, we can reduce the complete
model to an aggregated model governing only the macro-variables. We now
first recall some important points of this theory and then explain the condi-
tions for the reduction and their consequences.

5.2.2 Normally Hyperbolic Manifolds and GSP Theory

There exists lots of results concerning the reduction of the dimension of a
dynamical system in order to facilitate its study. For instance, we can find
several statements of the centre manifold theorem in various contexts (or-
dinary differential equations, partial differential equations, delay differential
equations, difference equations). Carr’s book [32] gives a detailed description
of the theorem with many applications. The centre manifold theorem states
some conditions under which there exists a regular manifold containing the
non trivial part of the dynamics. This kind of manifolds are associated to
non hyperbolic singularities and are local ones. In 1971, Fenichel [49] stated
a theorem which provides conditions under which an invariant manifold per-
sists to small enough perturbations, in the case of vector fields. In the same
time, Hirsch et al. in [50] gave some necessary conditions for the persistence
and developed the normally hyperbolic manifolds theory. The perturbations
of invariant manifolds theory originates from the works of Krylov and Bogoli-
ubov [56]. Nowadays, this theory has lots of applications and some illustrations
can be found in Pliss and Sell [72]. Furthermore, Wiggins [95] gives a com-
plete description of the theory in finite dimension, this book is based on the
Fenichel original paper. In these references, the conditions of normal hyper-
bolicity are based on geometrical considerations, which are not always useful
in applications. Sakamoto [80] gave similar conditions by using eigenvalues of
Jacobian matrices. His proof may also be obtained by Fenichel’s methods. Our
reduction method is based on this approach, see Auger et al. [9,11], and Auger
and Poggiale [12–15]. Note that the Fenichel theorem has been extended to
semi-groups on Banach spaces by Bates et al. [19, 20].

5.2.3 Reduction Theorem

In order to perform the analysis, we add to system (5.5) the equation dε
dτ = 0:

dXi

dτ
= Fi (X,Y ) + εfi (X,Y ) , i = 1, . . . , k −N (5.6a)

dYj

dτ
= εGj (X,Y ) , j = 1, . . . , N (5.6b)

dε

dτ
= 0 (5.6c)
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The system (5.6) can be considered as an ε -perturbation of the system
obtained with ε = 0. The situation where ε = 0 refers to the unperturbed
problem. The conditions for the reduction are:

– (C1) When ε is null in system (5.6), then Y is a constant. We assume that,
for each Y ∈ IRN , there exists at least one equilibrium (X = X∗ (Y ) , Y, 0),
defined by Fi (X∗ (Y ) , Y ) = 0, i = 1, . . . , k −N . We define the set:

M0 = {(X,Y, ε) ;X = X∗ (Y ) ; ε = 0}

This invariant set for the unperturbed system shall play the role of the
invariant normally hyperbolic manifold mentioned in the GSP theory.

– (C2) Let us denote J (Y ) the linear part of system (5.6) around the equilib-
rium (X∗ (Y ) , Y, 0). We assume that the Jacobian matrix J (Y ) has k−N
eigenvalues with negative real parts and N + 1 null eigenvalues. With this
condition, the set M0 is normally hyperbolic since, at each point in M0,
the restriction of the linear part to the M0 normal space has negative
eigenvalues. We now give the statement of the main theorem.

Theorem 1. Under the conditions (C1) and (C2), for each compact subset
Ω in IRN and for each integer r > 1, there exists a real number ε0 and a Cr

function Ψ ,
Ψ : Ω × [0; ε0] → IRk−N

(Y, ε) �−→ X = Ψ (Y, ε)

such that:
(1) Ψ (Y, 0) = X∗ (Y );
(2) The graphW of Ψ is invariant under the flow defined by the vector

field (5.6);
(3) At each (X∗ (Y ) , Y, 0) ∈ M0, W is tangent to the central

eigenspace Ec associated with the eigenvalues of J (Y ) with null real parts.

This means that we can consider the restriction of the vector field to the
invariant manifold which allows us to reduce the dimension of the model. The
reduced system, called aggregated model, is:

dYj

dt
= Gj (Ψ (Y, ε) , Y )

where t = ετ . Usually, since ε is small, we approximate the previous system by:

dYj

dt
= Gj (Ψ (Y, 0) , Y )

Moreover, since Ψ is Cr, we can calculate a Taylor expansion of the invari-
ant manifold with respect to the small parameter ε in order to increase the
accuracy of the reduced system. The reduction and the Taylor expansion are
illustrated in the following example. In this example, the zero order term in the
expansion leads to a non structurally stable system. It means that the ε term
is important to understand the real dynamics. This term is then calculated
and the dynamics of the complete and reduced models are compared.
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Nontrivial Example of Application

This example has been completely studied in Poggiale and Auger [77]. It
illustrates the application of the previous theorem in a nontrivial case where
a Taylor expansion of the application Ψ with respect to the small parameter ε
is needed to understand how the reduced model is similar to the complete one.
We consider a two patches predator–prey system. The prey can move on both
patches while the predator remains on patch 1. The patch 2 is a refuge for the
prey. We denote by ni the prey density on patch i, i = 1, 2. We denote by p
the predator density. On each patch, the prey population growth rate and the
predator population death rate are linear, the predation rate is bilinear, that
is proportional to prey and predator densities and the predator growth rate
is proportional to the predation rate. The model is given by the following set
of three ordinary differential equations:

dn1

dτ
= m2n2 −m1n1 + εn1(r1 − ap) (5.7a)

dn2

dτ
= m1n1 −m2n2 + εn2r2 (5.7b)

dp

dτ
= εp(bn1 − d) (5.7c)

where mi are respectively the proportions of prey populations leaving patch i
by displacement per unit time, ri is the prey population growth rate on patch
i, d is the predator population death rate, a is the predation rate on patch 1
and bn1 is the per capita predator growth rate. ε << 1 is a small parameter
which means that movements have a larger speed than that associated to
growth and death processes.

Let n = n1 + n2 be the total amount of prey. It follows that u1 = n1
n and

u2 = n2
n are the proportions of prey on patch 1 and patch 2 respectively. With

these variables, we can write the system (5.7) in the following equivalent way:

du1

dτ
= m2 − (m1 +m2)u1 + εu1(1− u1)(r1 − r2 − ap) (5.8a)

dn

dτ
= εn

(
r1u1 + r2u2 − au1p

)
(5.8b)

dp

dτ
= εp

(
bu1n− d

)
(5.8c)

We now build a two dimensional system governing the dynamics of the total
populations densities n and p. Moreover, this system gives the same dynamics
as that obtained for n and p in the system (5.8). This will facilitate the
mathematical study of system (5.7).

Let us start to calculate the fast equilibrium, that is the equilibrium value
of the fast variables ui, i = 1, 2. In order to get this equilibrium value, we put
ε = 0 in system (5.8). The result is:



5 Aggregation of Variables and Applications to Population Dynamics 217

u∗1 =
m2

m1 +m2
and u∗2 =

m1

m1 +m2
(5.9)

By replacing ui by u∗i in (5.8b) and in (5.8c), we get the following two dimen-
sional system:

dn

dt
= n(r − a1p) (5.10a)

dp

dt
= p(b1n− d) (5.10b)

where t = ετ , r = r1u
∗
1 + r2u∗2, a1 = au∗1 and b1 = bu∗1.

The system (5.10) is a classical Lotka–Volterra model. All the solutions of
this system with initial conditions in the positive quadrant are periodic. There
is a positive equilibrium which is a center (see Murray’s book for instance,
[66]). However, the dynamics of n and p in the system (5.7) do not match
with the Lotka–Volterra dynamics, as illustrated on Figs. 5.1 and 5.2. Indeed,
when we replace the fast variable by its equilibrium value, we make an error
of order of ε. Since the Lotka–Volterra model is not structurally stable, the
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Fig. 5.1. Comparison between the dynamics of x and y given by the complete
system (5.7) (black line) and that obtained with the two dimensional system (5.10)
(thick grey line). Above are the prey densities and below are the predator densities.
On the left column, the term of order of ε is neglected while on the right column,
this term is taken into account, which improve the similarity between the reduced
and complete systems simulations. The parameters values used in the simulation
are: m1 = 2, m2 = 1, r1 = 1, r2 = 2, a = 1, d = 2, b = 0.9 and ε = 0.1
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Fig. 5.2. Comparison between the dynamics of x and y given by the complete
system (5.7) (black line) and that obtained with the two dimensional system (5.10)
(thick grey line). Above are the prey densities and below are the predator densities.
On the left column, the term of order of ε is neglected while on the right column,
this term is taken into account, which improve the similarity between the reduced
and complete systems simulations. The parameters values used in the simulation
are: m1 = 2, m2 = 1, r1 = 1, r2 = 2, a = 1, d = 2, b = 0.9 and ε = 0.05

ε-error plays an important role in the dynamics. The Fenichel theorem claims
that there is an invariant manifoldMε = {u1 = u1(n, p, ε)} in the phase space
(u1, n, p, ε). Since the fast equilibrium is hyperbolically stable, the manifold
M0 is normally hyperbolically stable. The previous approximation we made
is thus a zero order approximation of the manifold Mε.

We now get a first order approximation of the manifold. Let us write:

u1(n, p, ε) = u∗1 + εw1(n, p) + o(ε) (5.11)

We have to determine w1 and then to replace u1 by its expression (5.11) in
the system (5.7) in order to improve the approximate two dimensional model
(5.10). We can note that the asymptotic expansion of the derivative du1

dτ with
respect to the small parameter ε, can be written in two different ways. The
first one consists in replacing u1 by the expression (5.11) in the equation
(5.8a). The second way consists in writing:

du1

dτ
=
∂u1

∂n

dn

dτ
+
∂u1

∂p

dp

dτ
= O

(
ε2
)

(5.12)
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Then we identify the terms of order of ε in both formulas, we get:

−(m2 +m1)w1(n, p) + u∗1(1− u∗1)(r1 − r2 − ap) = 0 (5.13)

which allows us to conclude, in this case, that w1 is a function depending only
on p:

w1(p) =
u∗1(1− u∗1)
m2 +m1

(r1 − r2 − ap) (5.14)

It follows that the system on the invariant manifold is reduced to:

dn

dt
= n(r − a1p) + εnw1(p)

(
r1 − r2 − a1p

)
(5.15a)

dp

dt
= p(b1n− d) + εnpb1w1(p) (5.15b)

A numerical simulation has been performed and is shown on Figs. 5.1 and 5.2,
in order to illustrate that this reduced model provides a good approximation
of the dynamics of the total population densities governed by the four di-
mensional system (5.7). Those figures show that a decrease of ε increases the
similarity between the complete and aggregated model.

5.2.4 Limits of the Method and Possible Extensions

How to Define the Slow and Fast Variables in a Given System

An ecosystem involves a large number of variables and processes. It is largely
recognised that some processes are much faster than others. However, each
variable may be affected by fast and slow processes. It follows that, when
we write a model, the slow and fast processes are mixed in the differential
systems and it is not clear that some variables are faster than other ones.
According to the previous notations, the problem is, given the system (5.1), is
there an algorithm allowing to define the slow variables Y ? This is generally a
crucial problem. From the mathematical point of view, a such algorithm per-
mits to transform system (5.1) into system (5.5). Moreover, from the applied
point of view, it would permit to define the variables of interest for the long
time dynamics on the basis of the detailed description. In our framework, the
slow variables are defined by the fact that they are first integrals of the fast
processes. But it is not always easy to find such functions and this problem
can limit practical applications.

Loss of Normal Hyperbolicity and Multiaggregated Models

There is an interesting phenomenon, which has a wide range of possible appli-
cations. It occurs when the invariant manifold loses its normal hyperbolicity.
For instance, we can easily imagine that the normal attraction of the manifold
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is more or less important depending on the position of the manifold: some re-
gions of the manifold are more attractive than other ones. We can even have
the situation where there are some regions on the manifold in which it is
normally repulsive. Let us now assume that a trajectory starting from an
initial point in the phase space is going toward the invariant manifold in a
region where it is normally hyperbolic and attracting. According to the pre-
vious theorems, the trajectory will stay along the invariant manifold but then
it can reach a region where the manifold is normally repulsive. Before that
region, the trajectory shall cross a line where the manifold is not normally
hyperbolic, the normal hyperbolicity is lost. The precise description of the
trajectory behavior is no longer trivial: shall the trajectory leave or stay for a
while along the manifold? In the case of leaving, what is the global dynamics?
Some works have been dedicated to this kind of analysis and the exchange
lemma can be a useful tool for this [54]. In some situations, this loss of normal
hyperbolicity leads to a strange process named delayed bifurcation. Indeed,
a region of the invariant manifold where it is normally hyperbolic and at-
tracting corresponds to the case where the Jacobian matrix associated to the
linearised vector field at a point in the region has eigenvalues in the negative
complex half plane in the normal directions. The loss of normal hyperbolicity
corresponds to a situation where at least one of these eigenvalues is vanish-
ing, leading to a bifurcation. A priori, if the trajectory close to the manifold
enters into a region where it is normally repulsive (positive real parts of the
previous eigenvalues), it should leave the vicinity of the manifold. However,
in some cases, the trajectory stays along the manifold for a transient time
and leaves it only after a while, leading to a delayed bifurcation. This phe-
nomenon has also been named “canard” and has been described by Benoit
in [21,22] and Diener [43,44] and [23]. More recently, a geometrical approach
of this process has been provided by Dumortier and Roussarie [46,47]. In these
works, the method, based on blowing up of singularities, is presented through
some examples but it is very general and can be extended. It provides an GSP
theory approach of the “canard” phenomenon. A large number of possible ap-
plications of this method can be found in ecological works [42, 65, 91, 92], for
instance).

This loss of normal hyperbolicity has another interesting consequence. In-
deed, let us consider that the normally hyperbolic manifold is everywhere
normally stable and contains an omega limit set. If a trajectory is entering in
a small vicinity of the manifold, it can reach the above omega limit set and
then stays close to the invariant manifold for an infinitely long time. In this
case, the reduction applies without time limitation and the dynamics of the
complete system can be analysed by the study of the dynamics reduced to the
manifold. However, let us now suppose that the invariant manifold contains
a region R1 where it is normally hyperbolically attracting and another region
R2 where it is normally hyperbolically repulsive. If a trajectory approaches
the manifold in the region R1, it shall stay close to the manifold as long as it
remains in R1. We can apply the reduction method as long as the trajectory
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is close to the invariant manifold. But if, after a transient time, the trajectory
leaves the vicinity of R1 and enters in the vicinity of R2, then it may leave
the neighborhood of the manifold. The reduction loses its validity.

If there are several invariant normally hyperbolic manifolds, a trajectory
of the complete system can visit the neighborhood of each of them succes-
sively. For each invariant manifold, we can define a reduced system. Then
the complete system shall be approximated by different aggregated models
when time is running. This means that even if the study of the complete
model is simplified by considering reduced systems, the whole dynamics may
remain complex. For example, the oscillation–relaxation phenomenon can be
approached by this way, refer to [10] for an example.

Note that the method can easily be extended to the situation where the
fast dynamics exhibits a limit cycle instead of an equilibrium [78].

5.2.5 Aggregation and Emergence

Relation Between Aggregation and Emergence

Aggregation not only provides a reduction of the dimension of the initial model
and its simplification, but it also provides interesting information about the
emergence of fast processes at a global level in the long run. Indeed, the
invariant manifold on which the reduction is performed is a graph on the slow
variables X = Ψ (Y, ε). In other words, at a fast time scale, the fast variables
reach an attractor, for instance an equilibrium, which depends on the slow
variables. From the practical point of view, the reduced model is obtained
by replacing the fast variables by Ψ (Y, ε) in the slow variables equations.
Consequently, if the fast part of the model is changed, then Ψ is modified
and the aggregated model as well. This application Ψ contains the effects of
the fast part on the long term dynamics. These effects can lead to emerging
properties. The concept of emergence has been widely developed in ecology.
We provide here two kinds of emergence properties by using the aggregation
approach. These properties are then compared and we show that there are
differences.

Functional and Dynamical Emergences

Let us consider a system in which the equations governing the slow variables
have, for each of them, the same mathematical form. It means that if we do not
consider the fast part, the models for the slow variables are identical, maybe
with different parameters values. Now, by considering the fast processes, we
shall find an aggregated model governing the slow variables. We shall say that
there is functional emergence if the equations in the aggregated model do not
have the same mathematical form as the slow part of the complete system.
More precisely, let us consider the following complete system:
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dXi

dτ
= Fi (X,Y ) + εfi (X,Y ) , i = 1, . . . , k −N

dYj

dτ
= εGj (X,Y ) , j = 1, . . . , N

We suppose that, for each fixed X, the functions Y �→ fi (X,Y ) are the
same functions f , with potentially different parameters values. The aggregated
model reads:

dYj

dt
= Gj (Ψ (Y, ε) , Y )

Definition 1. There is functional emergence if at least one of the functions
Y �→ Gj (Ψ (Y, ε) , Y ) do not have the same mathematical expressions as f .

We now provide two examples, one without functional emergence, the other
one with functional emergence.

Example 1. Let us consider a population on two patches. We denote by
X1 and X2 the amount of individuals on patch 1 and 2 respectively. On each
patch, we assume that the subpopulation has a logistic growth. The model
reads:

dX1

dτ
= m2X2 −m1X1 + εrX1

(
1− X1

K

)
dX2

dτ
= −m2X2 +m1X1 + εrX2

(
1− X2

K

)

where m1 and m2 are the migration rates from patch 1 to patch 2 and from
patch 2 to patch 1 respectively, r and K are the intrinsic growth rate and
the carrying capacity respectively. It follows that the f function is a second
degree polynomial of the form:

f (x) = rx
(
1− x

K

)
Let Y = X1 +X2, the previous system can be written as follows:

dX1

dτ
= m2Y − (m1 +m2)X1 + εrX1

(
1− X1

K

)
dY

dτ
= εr

(
Y − 2X2

1 + Y 2 − 2X1Y

K

)

The aggregated model is obtained by considering the equilibrium of the
fast part:

X1 =
m2

m1 +m2
Y

and by replacing X1 by this expression in the slow part, which gives the
following aggregated model:
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dY

dτ
= εr

(
Y − 2u2

1Y
2 + Y 2 − 2u1Y

2

K

)
= εrY

(
1− Y

K̃

)

where u1 = m2
m1+m2

and K̃ = K
2u2

1+1−2u1
= K

1−2u1(1−u1)
. The aggregated model

is a logistic equation thus it has the same mathematical formulation as those
on each patch. In this case, there is no functional emergence.

Example 2. For the sake of simplicity, we shall consider a purely theoretical
example similar to the previous one. The complete model reads:

dX1

dτ
= m2X2 −m1X1 + εr1X1

dX2

dτ
= −m2X2 +m1X1 + εr2X2

Let us suppose that the individuals have a repulsive behaviour on patch
1. This can be formulated by assuming that the migration rate from patch
one to patch two is proportional to the amount of individuals on patch one,
that is m1 = αX1, making the individuals leave patch 1 faster when their
number on this patch is higher. In this case, the equilibrium of the fast part
is obtained by solving the equation:

m1X1 = m2 (Y −X1)

where Y = X1 +X2. By writing m1 = αX1, this equation reads:

αX2
1 +m2X1 −m2Y = 0

This is a second order equation for which the discriminant is always pos-
itive (∆ = m2

2 + 4αm2Y ). Thus the equation has two distinct roots among
which only one is positive and is the equilibrium:

X1 =
−m2 +

√
m2

2 + 4αm2Y

2α

We get the aggregated model by replacing the fast variable X1 by its
equilibrium value given above in the slow variable equation:

dY

dτ
= ε (r1X1 + r2 (Y −X1)) = ε

(
(r1 − r2)

−m2 +
√
m2

2 + 4αm2Y

2α
+ r2Y

)

The aggregated model is not linear while the mathematical models on each
patch are linear. As a consequence, a new formulation occurs and it describes
the impact of the repulsive behaviour of the individuals on the population
dynamics. We call this functional emergence.

The previous definition describes the emergence of a new formulation for
the long term processes induced by the fast processes.

We shall now give another definition which considers the situation where
there is a new dynamics of the slow variables when the fast processes are taken
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into account. This is the dynamical emergence. More precisely, we consider
the following system:

dYj

dτ
= εGj (X,Y ) , j = 1, . . . , N

where X is a fixed vector in Rk−N .

Definition 2. There is dynamical emergence if the previous system is not
topologically equivalent to the aggregated model.

We now provide two examples, one without dynamical emergence, the
other one with dynamical emergence.

Example 3. In the above Example 1, there is no dynamical emergence since
on each patch there is a logistic growth and the slow variable also has a logistic
growth and two logistic dynamics are topologically equivalent.

Example 4. In Example 2, if r1 < r2, there is a positive equilibrium while
the dynamics on each patch are linear. Thus, if r1 < r2, there is dynamical
emergence.

Despite the results presented on the previous examples, there is no direct
link between functional and dynamical emergence. We can exhibit examples
with functional emergence and no dynamical emergence and examples without
functional emergence and with dynamical emergence (see [12] for instance).

5.3 Aggregation Methods of Discrete Models

Let us suppose in this section a population in which evolution is described
in discrete time. Apart from that, the population is generally divided into
groups, and each of these groups is divided into several subgroups. We will
represent the state at time t of a population with q groups by a vector n(t) :=
(n1(t), . . . ,nq(t))T ∈ R

N
+ where T denotes transposition. Every vector ni(t) :=

(ni1(t), . . . , niNi

(t)) ∈ R
Ni

+ , i = 1, . . . , q, represents the state of the ith group
which is divided into N i subgroups, with N = N1 + · · · +Nq. Following the
terminology of the previous section nij are the micro-variables.

In the evolution of the population we will consider two processes which
corresponding characteristic time scales, and consequently their projection
intervals, that is their time units, are very different from each other. We will
refer to them as the fast and the slow processes or, still, as the fast and the slow
dynamics. We will start with the simplest case by considering both processes
to be linear and go on with the presentation of a general nonlinear setting.

5.3.1 Linear Discrete Models

We present in details the results concerning the basic autonomous case as
developed in Sánchez et al. [82] and Sanz and Bravo de la Parra [85].
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We represent fast and slow processes by two different matrices F and S.
The characteristic time scale of the fast process gives the projection interval
associated to matrix F , that is, the state of the population due to the fast
process, after one fast time unit, is Fn(t). Analogously, the effect of the slow
process after one slow time unit is calculated by multiplying by matrix S. In
order to write a single discrete model combining both processes, and therefore
their different time scales, we have to choose its time unit. Two possible
and reasonable choices are the time units associated to each one of the two
processes. We use here as time unit of the model the one corresponding to the
slow dynamics, i.e., the time elapsed between times t and t+1 is the projection
interval associated to matrix S. We then need to approximate the effect of the
fast dynamics over a time interval much longer than its own. In order to do so
we will suppose that during each projection interval corresponding to the slow
process matrix F has operated a number k of times, where k is a big enough
integer that can be interpreted as the ratio between the projection intervals
corresponding to the slow and fast dynamics. Therefore, the fast dynamics
will be modelled by F k and the proposed model will consist in the following
system of N linear difference equations that we will call general system:

nk(t+ 1) = SF knk(t). (5.16)

In order to reduce the system we must make some assumptions on fast
dynamics. We suppose that for each group i = 1, . . . , q the fast dynamics
is internal, conservative of a certain global variable, macro-variable, for the
group and with an asymptotically stable distribution among the subgroups.
These assumptions are met if we represent the fast dynamics for each group
i by an N i × N i projection matrix Fi which is primitive with 1 as strictly
dominant eigenvalue, for example a regular stochastic matrix. The matrix
F that represents the fast dynamics for the whole population is then F :=
diag(F1, . . . , Fq). Every matrix Fi has, associated to eigenvalue 1, positive
right and left eigenvectors, vi and ui, respectively column and row vectors,
verifying Fivi = vi, uiFi = ui and ui · vi = 1. The Perron–Frobenius theorem
applies to matrix Fi and we denote F̄i := limk→∞ F k

i = viui, where F k
i is the

k-th power of matrix Fi. Denoting F̄ := diag(F̄1, . . . , F̄q), we also have that:

F̄ = lim
k→∞

F k = V U. (5.17)

where V := diag(v1, . . . , vq)N×q and U := diag(u1, . . . , uq)q×N .
If we think that the ratio of slow to fast time scale tends to infinity, i.e.

k →∞, or, in other words, that the fast process is instantaneous in relation to
the slow process, we can approximate system (5.16) by the following so-called
auxiliary system:

n(t+ 1) = SF̄n(t), (5.18)

which using (5.17) can be written as

n(t+ 1) = SV Un(t).
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Here we see that the evolution of the system depends on Un(t) ∈ R
q, what

suggests that dynamics of the system could be described in terms of a smaller
number of variables, the global variables or macro-variables defined by

Y (t) := Un(t). (5.19)

The auxiliary system (5.18) can be easily transformed into a q-dimensional
system premultiplying by matrix U , giving rise to the so-called aggregated
system or macro-system Y (t + 1) = USV Y (t), where we denote S̄ = USV
and obtain

Y (t+ 1) = S̄Y (t). (5.20)

The solutions to the auxiliary system can be obtained from the solutions to
the aggregated system. It is straightforward that the solution {n(t)}t∈N of
system (5.18) for the initial condition n0 is related to the solution {Y (t)}t∈N

of system (5.20) for the initial condition Y0 = Un0 in the following way:
n(t) = SV Y (t − 1) for every n ≥ 1. The auxiliary system is an example of
perfect aggregation in the sense of Iwasa et al. [52].

Once the task of building up a reduced system is carried out, the impor-
tant issue is to see if the dynamics of the general system (5.16) can also be
studied by means of the aggregated system (5.20). In Sánchez et al. [82] it
is proved that the asymptotic elements defining the long term behaviour of
system (5.16) can be approximated by those of the corresponding aggregated
system when the matrix associated to the latter is primitive.

Hypothesis (H): S̄ is a primitive matrix.
Assuming hypothesis (H), let λ > 0 be the strictly dominant eigenvalue

of S̄, and w̄l and w̄r its associated left and right eigenvectors, respectively.
We then have that, given any non negative initial condition Y0, system (5.20)
verifies

lim
t→∞

Y (t)
λn

=
w̄l · Y0

w̄l · w̄r
w̄r

Concerning the asymptotic behaviour of the auxiliary system (5.18), it is
proved that the same λ > 0 is the strictly dominant eigenvalue of SF̄ , UTw̄l

its associated left eigenvector and SV w̄r its associated right eigenvector.
The asymptotic behaviour of the general system (5.16) could be ex-

pressed in terms of the asymptotic elements of the aggregated system (5.18)
by considering SF k as a perturbation of SF̄ . To be precise, let us order
their eigenvalues of F according to decreasing modulus in the following way:
λ1 = . . . = λq = 1 > |λq+1| ≥ . . . ≥ |λN |. So, if ‖ ∗ ‖ is any consistent
norm in the space MN×N of N × N matrices, then for every α > |λq+1| we
have ‖SF k − SF̄‖ = o(αk) (k → ∞). This last result implies, see [93], that
matrix SF k has a strictly dominant eigenvalue of the form λ + O(αk), an
associated left eigenvector UTw̄l +O(αk) and an associated right eigenvector
SV w̄r + O(αk). Having in mind that α can be chosen to be less than 1, we
see that the elements defining the asymptotic behaviour of the aggregated
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Fig. 5.3. Transition graph of a population structured in two age classes and two
patches

and the general systems can be related in a precise way as a function of the
separation between the two time scales.

Example 5. We consider a population with juveniles (age class 1) and
adults (age class 2) in a two-patch environment. Let nij(t) be the density of
the subpopulation aged i on patch j at time t. On each patch, the population
grows according to a Leslie model. Individuals belonging to a given age-class
also move from patch to patch, see Fig. (5.3).

Let sj be the survival rate of juveniles on patch j and fij the fertility
rate of age class i on patch j. The matrix describing the demography of the
population in both patches is the following:

L =

⎛
⎜⎜⎝
f11 0 f21 0
0 f12 0 f22
s1 0 0 0
0 s2 0 0

⎞
⎟⎟⎠ .

The migration of individuals of age i is described by the following migration
matrix

Pi =
(

1− pi qi
pi 1− qi

)
,

where pi (respectively qi) is the migration rate from patch 1 to patch 2 (re-
spectively from patch 2 to patch 1) for individuals of age i. So the matrix
describing the migration process of the population is:

P =

⎛
⎜⎜⎝

1− p1 q1 0 0
p1 1− q1 0 0
0 0 1− p2 q2
0 0 p2 1− q2

⎞
⎟⎟⎠
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Furthermore, it is assumed that the migration process is fast in comparison
to the demographic process.

The dynamics of the four variables n11, n12, n21 and n22 is thus described
by a discrete system of four equations which reads as follows:

n(t+1)=LP kn(t)=

⎛
⎜⎜⎝
f11 0 f21 0
0 f12 0 f22
s1 0 0 0
0 s2 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1− p1 q1 0 0
p1 1− q1 0 0
0 0 1− p2 q2
0 0 p2 1− q2

⎞
⎟⎟⎠

k

n(t).

(5.21)

where k represents the ratio between the projection intervals corresponding
to the slow and fast processes.

We now proceed to reduce system (5.21). For that we need the matrices U
and V used in expression (5.17) which are composed of left and right eigen-
vectors of matrices Pi associated to eigenvalue 1. So they can be expressed in
the following way:

U =
(

1 1 0 0
0 0 1 1

)
and V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1
p1 + q1

0

p1
p1 + q1

0

0
q2

p2 + q2

0
p2

p2 + q2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The aggregated system governing the total populations of juveniles and adults
is the system of two equations Y (t+ 1) = ULV Y (t).

Y (t+ 1) =
(

1 1 0 0
0 0 1 1

)⎛⎜⎜⎝
f11 0 f21 0
0 f12 0 f22
s1 0 0 0
0 s2 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1
p1 + q1

0

p1
p1 + q1

0

0
q2

p2 + q2

0
p2

p2 + q2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Y (t)

which is a classical two ages Leslie model.

Y (t+ 1) =
(
F1 F2

S 0

)
Y (t)

where Y (t) = (Y1(t), Y2(t)), Y1(t) = n11(t)+n12(t) and Y2(t) = n21(t)+n22(t).
In the following we use specific values for all the coefficients appearing in
system (5.21):
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n(t+ 1) =

⎛
⎜⎜⎝

0 0 3 0
0 0.5 0 2

0.3 0 0 0
0 0.7 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0.3 0.4 0 0
0.7 0.6 0 0
0 0 0.5 0.8
0 0 0.5 0.2

⎞
⎟⎟⎠

k

n(t)

the corresponding aggregated system is:

Y (t+ 1) =

⎛
⎜⎜⎝

7
22

34
13

61
110

0

⎞
⎟⎟⎠Y (t)

To illustrate the method we include below a table where we can see the dom-
inant eigenvalue associated to the complete model for different values of k as
well as the dominant eigenvalue associated to the aggregated model.

k Dominant Eigenvalue
2 1.3641662953971971997
5 1.3740916698468009220
10 1.3738576343292195643
20 1.3738581986146791779
30 1.3738581986180111511

Aggregated 1.3738581986180111707

In Sanz and Bravo de la Parra [85] these results are extended to more gen-
eral linear cases where the projection matrices Fi defining the fast dynamics
in each group need not be primitive.

In Blasco et al. [25] the fast process is still considered linear but changing
at the fast time scale. The fast dynamics is described by means of the first k
terms of a converging sequence of different matrices. This case is called the
fast changing environment case. Under certain assumptions the limit of the
sequence of matrices plays the same role as the matrix F̄ in (5.17) obtaining
an aggregated system. Similar results to the already described relating the
asymptotic properties of the complete and the aggregated systems are proved.

It is also possible to build the general system using as time unit the pro-
jection interval of the fast dynamics, see Sánchez et al. [82], Bravo de la Parra
et al. [28, 29] and Bravo de la Parra and Sánchez [30]. As we are using the
projection interval associated to matrix F we need, therefore, to approximate
the effect of matrix S over a projection interval much shorter than its own.
For that we use matrix Sε = εS + (1− ε)I where I is the identity matrix and
ε a positive small number reflecting the ratio of slow to fast time scale. Ma-
trix Sε has the following property: if S has a dominant eigenvalue λ with an
associated eigenvector v̄, then Sε has ελ+ (1− ε) as strictly dominant eigen-
value and v̄ is also its associated eigenvector; what implies that the dynamics
associated to S and Sε have the same asymptotically stable stage distribution
but S has a much greater growth rate than Sε because ελ + (1− ε) is closer
to 1 than λ.
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The complete model reads now as follows

nε(t+ 1) = SεFnε(t), (5.22)

the auxiliary system, supposing that fast dynamics has already attained its
asymptotic state, is

n̄ε(t+ 1) = SεF̄ n̄ε(t). (5.23)

and the aggregated system, for the same global variables Y (t) = Un(t),
becomes

Yε(t+ 1) = USεV Yε(t) = S̄εYε(t) (5.24)

where S̄ε = εUSV + (1 − ε)I = εS̄ + (1 − ε)I Assuming hypothesis (H), if
λ > 0 is the strictly dominant eigenvalue of S̄, and w̄l and w̄r its associated
left and right eigenvectors, we have that ελ+ (1− ε) is the strictly dominant
eigenvalue of S̄ε, and w̄l and w̄r its associated left and right eigenvectors. For
the auxiliary system (5.23), we conclude that the strictly dominant eigenvalue
of SεF̄ is also ελ + (1 − ε), and UTw̄l and V w̄r its associated left and right
eigenvectors. Finally, we obtain that the elements defining the asymptotic
behaviour of the complete system (5.17) can be expressed in terms of those of
the aggregated system in the following way: the strictly dominant eigenvalue
of matrix SεF is of the form ελ+ (1− ε) +O(ε2) and the corresponding left
and right eigenvectors UTw̄l +O(ε) and V w̄r +O(ε).

The approximate aggregation methods for time discrete linear models have
been extended to non-autonomous and stochastic cases. The complete model
in all these extensions is written using the slow time unit.

The case of time varying environments, non-autonomous case, is treated
in Sanz and Bravo de la Parra [84] where the variation in time is periodic
or tending to a steady state. These two cases admit similar results to the
autonomous case. In Sanz and Bravo de la Parra [87] it is studied the case of
a general non-autonomous complete system. The property of weak ergodicity,
which has to do with the capacity of a system to become asymptotically
independent of initial conditions, is compared for the complete and aggregated
systems. Related to that work, Sanz and Bravo de la Parra [88] obtained
different bounds for the error we incur in when we describe the dynamics of
the complete system in terms of the aggregated one. Finally the results in [87]
are extended for fast changing environments in Blasco et al. [26].

Two papers of Sanz and Bravo de la Parra [86, 89] are devoted to extend
previous results to simplify the study of discrete time models for populations
that live in an environment that changes randomly with time. They present
the reduction of a stochastic multiregional model in which the population,
structured by age and spatial location, lives in a random environment and in
which migration is fast with respect to demography. However, the technique
could work in much more general settings. The state variables of the complete
system and the global variables of the aggregated system are related in the case
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the pattern of temporal variation is Markovian. Strong stochastic ergodicity
for the original and reduced systems are compared, as well as the different
measures of asymptotic population growth for these systems.

5.3.2 Nonlinear Discrete Models

The previous framework can be extended to include general nonlinear fast and
slow processes. We present the complete model which will be reduced. Both
processes, fast and slow, are defined respectively by two mappings

S, F : ΩN → ΩN ; S, F ∈ C1(ΩN )

where ΩN ⊂ R
N is a nonempty open set.

We first choose a time step of the model that corresponds to the slow
dynamics as we did in the linear case, see Sanz et al. [90]. We still assume
that during this time step the fast process acts k times before the slow process
acts. Therefore, denoting by nk(t) ∈ R

N the vector of state variables at time
t, the complete system is defined by

nk(t+ 1) = S(F k(nk(t))) (5.25)

where F k denotes the k-fold composition of F with itself.
In order to reduce the system (5.25), we have to impose some conditions

to the fast process. In what follows we suppose that the following hypotheses
are met. For each initial condition X ∈ ΩN , the fast dynamics tends to an
equilibrium, that is, there exists a mapping F̄ : ΩN → ΩN , F̄ ∈ C1(ΩN ) such
that for each X ∈ ΩN , limk→∞ F k(X) = F̄ (X). This equilibrium depends on
a lesser number of variables in the following form: there exists a non-empty
open set Ωq ⊂ R

q with q < N and two mappings G : ΩN → Ωq, G ∈ C1(ΩN ),
and E : Ωq → ΩN , E ∈ C1(Ωq), such that F̄ = E ◦G.

Now, we proceed to define the so-called auxiliary system which approxi-
mates (5.25) when k →∞, i.e., when the fast process has reached an equilib-
rium. Keeping the same notation as in the linear case, this auxiliary system is

n(t+ 1) = S(F̄ (n(t))) (5.26)

which can be also written as n(t+ 1) = S ◦ E ◦G(n(t)).
The global variables in this case are defined through

Y (t) := G(n(t)) ∈ R
q. (5.27)

Applying G to both sides of (5.26) we have Y (t + 1) = G(n(t + 1)) = G ◦
S ◦ E ◦ G(n(t)) = G ◦ S ◦ E(Y (t)) which is an autonomous system in the
global variables Y (t). Summing up, we have approximated system (5.25) by
the reduced or aggregated system defined by

Y (t+ 1) = S̄(Y (t)) (5.28)
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where we denote S̄ = G ◦ S ◦ E.
Now we present some results relating the behavior of systems (5.25) and

(5.28), for big enough values of parameter k. All the results in this section
are presented in more general setting in [90]. First we compare the solutions
of both systems for a fixed value of t. The next theorem states that the
dynamics of the auxiliary system is completely determined by the dynamics
of the reduced system and that the solution to the complete system, given
mild extra assumptions, for each t fixed can be approximated by the solution
to the aggregated model.

Theorem 2. Let n0 ∈ ΩN and let Y0 = G(n0) ∈ Ωq. Then:

(i) The solution {n(t)}t=1,2,.. to (5.26) corresponding to the initial condition
n0 and the solution {Y (t)}t=1,2,.. to (5.28) corresponding to the initial
condition Y0 are related by the following expressions

Y (t) = G(n(t)) and n(t) = S ◦ E(Y (t− 1)), n = 1, 2, . . . (5.29)

(ii) Let t be a fixed positive integer and let us assume that there exists a non-
empty bounded open set Ω such that Ω̄ ⊂ ΩN , Ω contains the points n(0),
n(i + 1) = S ◦ E(Yi) (i = 0, . . . , n − 1), and such that limk→∞ F k = F̄
uniformly in Ω. Then the solution nk(t) to (5.25) corresponding to the
initial condition n(0) and the solution Y (t) to (5.28) corresponding to the
initial condition Y0 are related by the following expressions

Y (t) = lim
k→∞

G(nk(t)) and lim
k→∞

nk(t) = S ◦ E(Y (t− 1)).

Now we turn our attention to the study of some relationships between the
fixed points of the original and reduced systems. Concerning the auxiliary sys-
tem, relations (5.29) in Theorem 2 yield straightforward relationships between
the fixed points of the auxiliary and reduced systems: if n∗ ∈ ΩN is a fixed
point of (5.26) then Y ∗ = G(n∗) ∈ Ωq is a fixed point of (5.28); conversely, if
Y ∗ is a fixed point of (5.28) then n∗ = S ◦ E(Y ∗) is a fixed point of (5.26).
The corresponding fixed points in the auxiliary and aggregated systems are
together asymptotically stable or unstable.

In the following result, it is guaranteed that, under certain assumptions,
the existence of a fixed point Y ∗ for the aggregated system implies, for large
enough values of k, the existence of a fixed point n∗

k for the original system,
which can be approximated in terms of Y ∗. Moreover, in the hyperbolic case
the stability of Y ∗ is equivalent to the stability of n∗

k and in the asymptotically
stable case, the basin of attraction of n∗

k can be approximated in terms of the
basin of attraction of Y ∗.

Theorem 3. Let us assume that F̄ ∈ C1(ΩN ) and that limk−→∞ F k = F̄ ,
limk−→∞DF k = DF̄ uniformly on any compact set K ⊂ ΩN .

Let Y ∗ ∈ R
q be a hyperbolic fixed point of (5.28) which is asymptotically

stable (respectively unstable). Then there exists k0 ∈ N such that for each
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k ≥ k0, k ∈ N, there exists a hyperbolic fixed point n∗
k of (5.25) which is

asymptotically stable (respectively unstable) and that satisfies limk→∞ n∗
k =

S ◦ E(Y ∗).
Moreover, let n0 ∈ ΩN , if the solution Y (t) to (5.28) corresponding to

the initial condition Y0 = G(n0) is such that limt→∞ Y (t) = Y ∗ then for
each k ≥ k0, k ∈ N, the solution nk(t) to (5.25) corresponding to n0 verifies
limt→∞ nk(t) = n∗

k.

Particular models where this last result applies are presented in Bravo de
la Parra et al. [31] and the review paper Auger and Bravo de la Parra [8].

As in the linear case we can build the general system using as time unit the
one of fast dynamics. In Bravo de la Parra et al. [28] and Bravo de la Parra
and Sánchez [30] a system with linear fast dynamics and general nonlinear
slow dynamics is reduced by means of a center manifold theorem.

The mapping representing fast dynamics is expressed in terms of a matrix
F , F (X) = FX, where we are naming equally the map and the matrix.
Matrix F is considered to have the same properties stated in the linear case,
in particular the asymptotic behaviour associated to it is reflected in the
following equality F̄ = limk→∞ F k = V U . So, for each initial condition X ∈
R

N , the fast dynamics tends to limk→∞ F k(X) = limk→∞ F kX = F̄X =
F̄ (X) and we have G : R

N → R
q, G(X) = UX and E : R

q → R
N , E(Y ) =

V Y , such that F̄ = E ◦G.
Concerning the slow dynamics we represent it by a general mapping S :

ΩN → ΩN , S ∈ C1(ΩN ). To approximate the effect of mapping S over the
projection interval of fast dynamic we use mapping Sε(X) = εS(X)+(1−ε)X.
The complete model reads now as follows

nε(t+ 1) = Sε(Fnε(t)) (5.30)

In Bravo de la Parra et al. [28] it is developed a center manifold theorem
which applies to system (5.30). It suffices to write it in the following form

nε(t+ 1) = Fnε(t) + ε(S(Fnε(t))− Fnε(t)) (5.31)

For any small enough fixed ε there exists a locally attractive invariant man-
ifold that allows us to study the dynamics of system (5.31) by means of its
restriction to it. The system restricted to the center manifold is what we call
the aggregated system. Though, in general, it is not possible to find out ex-
plicitly the map defining the aggregated system we can calculate its expansion
in ε powers. Using the expansion to the first order we get the simplest form
of the aggregated system,

Yε(t+ 1) = Yε(t) + ε(US(V Yε(t))− Yε(t)) +O(ε2) (5.32)

in common applications, for instance when studying hyperbolic fixed points,
the term O(ε2) is negligible and the reduced system to be analysed is

Yε(t+ 1) = ε(US(V Yε(t)) + (1− ε)Yε(t) = S̄ε(Yε(t)) (5.33)

which has much the same aspect as its linear counterpart, system (5.24).
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5.4 Aggregation of Partial Differential Equations (PDE)
and Delayed Differential Equations (DDE)

In this section we will apply the aggregation of variables method in the linear
case to structured population dynamics models formulated in terms of partial
differential equations and to models formulated in terms of delayed differential
equations. The different time scales introduce into the model a small para-
meter ε > 0 which gives rise to a singular perturbation problem. Although
both contexts are mathematically very different, the underlying ideas in the
construction of the aggregated model are similar in both cases, due to the
structure of the fast dynamics: it is supposed that this dynamics is repre-
sented by a matrix K whose spectrum allows the decomposition of the space
RN in a direct sum of the eigenspace kerK associated to the eigenvalue 0 and
generated by a vector ν, plus a complementary stable subspace S correspond-
ing to the remaining part of the spectrum, which are eigenvalues with negative
real part. The aggregated model is constructed by projecting the global dy-
namics onto kerK. The theory of semi-groups allows a unified formulation of
both situations aimed at obtaining approximation results for the solutions Xε

to the perturbed global model by the solutions s0 to the aggregated model,
using the same technique in both cases. Projecting the global system onto
the subspaces kerK and S and using a variation-of-constants formula, this
perturbed system can be transformed into a fixed point problem for the pro-
jection of Xε onto kerK. Roughly speaking, in both contexts the conclusion
is reached that Xε = s0ν +O(ε), (ε→ 0+).

5.4.1 Aggregation in Structured Population Models

In this section we apply aggregation of variables methods to a general linear
structured population dynamics model with both a continuous age structure
and a finite spatial structure. It is assumed that discrete migration processes
take place between spatial patches at a frequency much higher than the de-
mographic events, so high that one almost cannot see them. The impression is
that of a spatially homogeneous age-dependent population governed by a Von
Foerster equation with birth and death coefficients averaged from the origi-
nal patch-dependent coefficients through a weighted average. The weights are
computed in terms of a migration matrix and are in fact the mark of the
hidden underlying spatial structure. See [1, 2, 27] for the details.

The Model

We consider an age-structured population, with age a and time t being
continuous variables. The population is divided into N spatial patches. The
evolution of the population is due to the migration process between the dif-
ferent patches at a fast time scale and to the demographic process at a slow
time scale.
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Let ni(a, t) be the population density in patch i (i = 1, . . . , N) so that∫ a2

a1
ni(a, t) da represents the number of individuals in patch i whose age a ∈

[a1, a2] at time t and

n(a, t) := (n1(a, t), . . . , nN (a, t))T .

Let µi(a) and βi(a) be the patch and age-specific mortality and fertility rates
respectively and

M(a) := diag {µ1(a), . . . , µN (a)}; B(a) := diag {β1(a), . . . , βN (a)}.

Let kij(a) be the age-specific migration rate from patch j to patch i, i �= j,
and

K(a) := (kij(a))1≤i,j≤N with kii(a) := −
N∑

j=1,j 
=i

kji(a).

A crucial assumption is that the jump process is conservative with respect
to the life dynamics of the population, that is, no death or birth is directly
incurred by spatial migrations.

The model based upon the classical McKendrick-Von Foerster model for
an age-structured population is as follows:
Balance law:

∂n
∂t

(a, t) +
∂n
∂a

(a, t) =
[
−M(a) +

1
ε
K(a)

]
n(a, t) (a > 0 , t > 0) (5.34)

Birth law:

n(0, t) =
∫ +∞

0

B(a)n(a, t) da (t > 0) (5.35)

where ε > 0 is a constant small enough and completed with an initial age
distribution

n(a, 0) = Φ(a) := (Φ1(a), . . . , ΦN (a))T , (a > 0)

In what follows we assume that

Hypothesis 1 The matrix K(a) is irreducible for every a > 0.

As a consequence 0 is a simple eigenvalue larger than the real part of any
other eigenvalue. The left eigenspace of matrixK(a) associated with the eigen-
value 0 is generated by vector 1 := (1, . . . , 1)T ∈ RN . The right eigenspace is
generated by vector ν(a) := (ν1(a), . . . , νN (a))T and is unique if we choose it
having positive entries and verifying 1T ν(a) = 1.

For each initial age distribution Φ ∈ X := L1(R+;RN ), the problem
(5.34)–(5.35) has a unique solution nε. Moreover we can associate with it a
strongly continuous semi-group of linear bounded operators (C0-semi-group)
{Tε(t)}t≥0 on X, defined by Tε(t)Φ := nε(·, t).
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The Aggregated Model

We build up a model which describes the dynamics of the total population:

n(a, t) :=
N∑

i=1

ni(a, t) (global variable).

The exact model satisfied by the new variable n(a, t) is obtained by adding
up the variables ni(a, t) in system (5.34) and (5.35):

∂n

∂t
(a, t) +

∂n

∂a
(a, t) = −

N∑
i=1

µi(a)ni(a, t), (a, t > 0)

n(0, t) =
∫ +∞

0

(
N∑

i=1

βi(a)ni(a, t)

)
da, (t > 0)

together with the initial condition n(a, 0) = ϕ(a) :=
∑N

i=1 Φi(a) (a > 0).
In order to obtain a system with the global variable as the unique state

variable, we propose the following approximation:

νi(a, t) :=
ni(a, t)
n(a, t)

≈ νi(a) i = 1, . . . , N

which implies that

N∑
i=1

µi(a)ni(a, t) ≈
(

N∑
i=1

µi(a)νi(a)

)
n(a, t) := µ∗(a)n(a, t)

N∑
i=1

βi(a)ni(a, t) ≈
(

N∑
i=1

βi(a)νi(a)

)
n(a, t) := β∗(a)n(a, t).

The aggregated model for the density of the total population is the following

∂n

∂t
(a, t) +

∂n

∂a
(a, t) = −µ∗(a)n(a, t), (a, t > 0) (5.36)

n(0, t) =
∫ +∞

0

β∗(a)n(a, t) da, (t > 0) (5.37)

together with the initial condition n(a, 0) = ϕ(a), (a > 0).
It is a classical Sharpe–Lotka–McKendrick linear model to which the gen-

eral theory applies. Under some technical conditions which are specified in [1]
the solutions to this problem define a C0-semi-group on L1(R+), which has
the so-called asynchronous exponential growth property, namely
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Proposition 1. There exists a unique λ0 ∈ R (malthusian parameter)
such that

lim
t→+∞ e

−λ0tn(a, t) = c(ϕ)θ0(a)

where c(ϕ) > 0 is a constant depending on the initial value ϕ ∈ L1(R+) and

θ0(a) := e−λ0ae
−
∫ a

0
µ∗(σ) dσ

is the asymptotic distribution.

Approximation Result

Let us say a few words about the nature of the convergence of the solutions
to the perturbed problem (5.34) and (5.35) when ε → 0+ to the solutions to
the aggregated model (5.36) and (5.37).

To this end, let us consider the following direct sum decomposition, whose
existence is ensured by Hypothesis 1:

RN = [ν(a)]⊕ S (5.38)

where [ν(a)] is the one-dimensional subspace generated by the vector ν(a) and
S := {v ∈ RN ; 1T ·v = 0}. Notice that S is the same for all a, and moreover
KS(a), the restriction of K(a) to S is an isomorphism on S with spectrum
σ(KS(a)) ⊂ {λ ∈ C ; Reλ < 0}.

We decompose the solutions to the perturbed problem according to (5.38),
that is

nε(a, t) := pε(a, t)ν(a) + qε(a, t); qε(a, t) ∈ S

giving

∂pε

∂t
(a, t) +

∂pε

∂a
(a, t) = −µ∗(a)pε(a, t)− 1TM(a)qε(a, t) (5.39)

∂qε

∂t
(a, t) +

∂qε

∂a
(a, t) = −[MS(a)ν(a) + ν′(a)]pε(a, t)

+
[
1
ε
KS(a)−MS(a)

]
qε(a, t) (5.40)

pε(a, t) =
∫ +∞

0

β∗(a)pε(a, t) da+
∫ +∞

0

1TB(a)qε(a, t) da (5.41)

qε(0, t) =
∫ +∞

0

BS(a)ν(a)pε(a, t) da+
∫ +∞

0

BS(a)qε(a, t) da (5.42)

whereMS(a), BS(a) are the projections ofM(a) and B(a) respectively onto S.
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Notice that the solutions to the homogeneous problem

∂q
∂t

(a, t) +
∂q
∂a

(a, t) =
[
1
ε
KS(a)−MS(a)

]
q(a, t)

q(0, t) =
∫ +∞

0

BS(a)q(a, t) da

define a C0-semi-group {Uε(t)}t≥0 which satisfies the estimation

‖Uε(t)‖ ≤ C1e
(C2−C3/ε)t, t ≥ 0, (C1, C2, C3 > 0).

Under some technical conditions and using a variation-of-constants formula,
we can express the solution to the nonhomogeneous system (5.40)–(5.42) in
terms of Uε(t) and pε. Then substituting this expression in (5.39)–(5.41), we
can transform these equations into a fixed point problem for pε which can be
solved giving the following result of approximation:

Theorem 4. For each ε > 0 small enough, we have

nε(a, t) = n(a, t)ν(a) + (Uε(t)q0)(a) +O(ε)

where n(a, t) is the solution to the aggregated model corresponding to the initial
age distribution p0 and Φ := p0ν + q0 (q0 ∈ S) is the initial age distribution
for the perturbed system.

We point out that the above formula is of interest mainly in the case
when λ0 ≥ 0. In this case, it can be concluded from the above formula that
nε(·, t) ≈ n(·, t)ν(·) as t→ +∞ uniformly with respect to ε > 0 small enough.
Also, if λ0 < 0 then nε(·, t) → 0 as t → +∞ and this is again uniform
with respect to ε > 0 small enough. In this case, however, n(·, t)ν(·) does not
dominate in general the terms O(ε).

See [1] for the details. In this chapter it is also shown that the semi-
group {Tε(t)}t≥0 has the asynchronous exponential growth property. Roughly
speaking, it is shown that for ε > 0 small enough, each solution nε(a, t) of the
perturbed system is such that

nε(a, t) ≈ C(Φ)eλεtΨε(a) (t→ +∞)

where C(Φ) > 0 is a constant depending on the initial age distribution and

lim
ε→0+

λε = λ0; lim
ε→0+

Ψε = νθ0

where λ0 and θ0 are, respectively, the Malthus parameter and the associated
asymptotic distribution of the aggregated system mentioned in Proposition 1.
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5.4.2 Aggregation of Variables in Linear Delayed Differential
Equations

Let us describe in some detail the aggregation of variables method in a simple
linear model with a discrete delay. On one side, this case is interesting in
itself and clarifies other abstract formulations while on the other, it has its
own methods for the step-by-step construction of the solution.

The Model

The model consists of the following system of linear delayed differential equa-
tions, depending on a small parameter ε > 0, that we call the perturbed
system: {

X ′(t) = (1/ε)KX(t) +AX(t) +BX(t− r), t > 0
X(t) = Φ(t) , t ∈ [−r, 0] ; Φ ∈ C([−r, 0];RN ) (5.43)

where X(t) := (x1(t), . . . ,xq(t))
T , xj(t) :=

(
x1

j (t), . . . , x
Nj

j (t)
)T

, j = 1, . . . , q.
K, A and B are N ×N real constant matrices with N = N1 + · · · +Nq.

As usual, C([−r, 0];RN ) represents the Banach space of RN -valued con-
tinuous functions on [−r, 0], (r > 0), endowed with the norm ‖ϕ‖C :=
supθ∈[−r,0] ‖ϕ(θ)‖.

System (5.43) can be solved by the classical step-by-step procedure.
Throughout this section, we suppose that matrix K is a block-diagonal

matrix
K := diag{K1, . . . ,Kq}

in which each diagonal block Kj has dimensions Nj × Nj , j = 1, . . . , q and
satisfies the following hypothesis

Hypothesis 2 For each j = 1, . . . , q, the following holds:

(i) σ(Kj) = {0} ∪ Λj, with Λj ⊂ {z ∈ C; Re z < 0}, where σ(Kj) is the
spectrum of matrix Kj.

(ii) 0 is a simple eigenvalue of Kj.

As a consequence, kerKj is generated by an eigenvector associated to
eigenvalue 0, which will be denoted vj . The corresponding left eigenspace is
generated by a vector v∗

j and we choose both vectors verifying the normaliza-
tion condition: (v∗

j )T vj = 1.

The Aggregated Model

In order to build the aggregated system of system (5.43), we define the follow-
ing matrices:

V∗ := diag{(v∗
1)

T , . . . , (v∗
q)T }; V := diag{v1, . . . ,vq}.
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As a consequence of Hypothesis 2, we can consider the following direct
sum decomposition of space RN :

RN = kerK ⊕ S (5.44)

where kerK is a q-dimensional subspace generated by the columns of matrix
V and S := ImK = {v ∈ RN ; V∗v = 0}.

We now define the q aggregated variables:

s(t) := (s1(t), . . . , sq(t))T = V∗X(t)

which satisfy a linear differential system obtained by premultiplying both sides
of (5.43) by V∗. We get the aggregated variables on the left-hand side but we
fail on the right-hand side. To avoid this difficulty, we write X(t) according
to the decomposition (5.44) so that X(t) = Vs(t) +XS(t) and then

s′(t) = V∗AVs(t) + V∗BVs(t− r) + V∗AXS(t) + V∗BXS(t− r).

Let us observe that for t ∈ [0, r] we have

s′(t) = V∗AVs(t) + V∗AXS(t) + V∗BΦ(t− r).

Therefore, we propose as aggregated model the following approximated system

s′(t) = As(t) +Bs(t− r), t > r (5.45)

where A := V∗AV, B := V∗BV, and

s′(t) = As(t) + V∗BΦ(t− r), t ∈ [0, r]. (5.46)

Equation (5.45) is a delayed linear differential system of equations which can
be solved by a standard step-by-step procedure from an initial data in [0, r]
which is the solution to (5.46), that is:

s(t) = etA
[
V∗Φ(0) +

∫ t

0

e−σAV∗BΦ(σ − r) dσ
]
. (5.47)

Comparison Between the Solutions to Systems (5.43) and (5.45)

Decomposing the system (5.43) according to the direct sum decomposition
(5.44) and solving it with the help of a variation-of-constants formula in a
similar way of the previous section, we can obtain a comparison between the
solutions of both systems (5.43) and (5.45). See [81] for the details.

Theorem 5. Under Hypothesis 2, for each initial data Φ ∈ C([−r, 0];RN ),
Φ = Vψ+ϕ, the corresponding solution Xε to system (5.43) can be written as:

∀t ≥ r, Xε(t) = Vs0(t) + rε(t)
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where s0 is the solution to the aggregated system (5.45) for t ≥ r, with the
initial data defined ∀t ∈ [0, r] by (5.47).

Moreover, there exist three constants C > 0, C∗ > 0, γ > 0, such that

∀t ≥ r, ‖rε(t)‖ ≤ ε(C + C∗eγt)‖Φ‖C .

Therefore, for each T > r, limε→0+ Xε = Vs0 uniformly in the interval [r, T ].

This approximation result is similar to that obtained in the previous sec-
tion for continuous time structured models formulated in terms of partial
differential equations, but we have to point out that the delay introduces sig-
nificant differences due to the influence of the initial data on the solution in
the interval [0, r]. In fact, the approximation when ε→ 0 is valid only for t ≥ r
and hence the initial data in [0, r] for the aggregated system is V∗Xε(t), which
is the projection on kerK of the exact solution to system (5.43), constructed
in [0, r] from an initial data Φ ∈ C([−r, 0];RN ).

The above procedure can be generalized to the following perturbed system
of linear delayed differential equations:{

X ′(t) = L(Xt) + (1/ε)KX(t), t > 0
X0 = Φ ∈ C([−r, 0];RN ) (5.48)

where L : C([−r, 0];RN ) −→ RN is a bounded linear operator andXt, (t ≥ 0),
is the section of function X at time t, namely, Xt(θ) := X(t+ θ), θ ∈ [−r, 0].

The aggregated model is

s′(t) = L(st), t ≥ r

where L is the linear bounded operator defined by:

L : C([−r, 0];Rq) −→ Rq, L(ψ) := V∗L(Vψ).

As in the previous case, the initial data in [0, r] should be constructed, but
in this abstract setting it presents higher mathematical difficulties. In partic-
ular, we should use the Riesz representation theorem of bounded linear op-
erators on C([−r, 0];RN ). Operator L can be written as a Riemann–Stieltjes
integral:

∀Φ ∈ C([−r, 0];RN ); L(Φ) =
∫

[−r,0]

[dη(θ)]Φ(θ)

where η(θ) is a bounded variation N × N matrix-valued function. It can be
shown that the contributions of sections of the initial data Φ = Vψ+ϕ to the
aggregated model in [0, r] is given by the Riemann–Stieltjes integral:

I(t, ϕ) :=
∫

[−r,−t]

[dη(θ)]ϕ(t+ θ).
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5.5 Applications to Population Dynamics

In this section, we present several examples which illustrate how to use the
methods described above and what kind of results can be expected with these
methods. We have chosen examples where the fast and the slow parts are usual
models which are combined. For instance, if we are interested in the effect of
the behaviour of predator individuals on the population dynamics, we choose
in this section a classical model for the behaviour of the predators and a
classical model for the population dynamics and we analyse their interaction.
The aggregation methods permit to analyse the models and to understand how
the behavioral interaction emerges at the population level. All our examples
are simple enough to make the calculations rather easy. However, some of them
are not trivial and give an idea of the problems which occur when playing with
these time scales arguments. In order to illustrate the whole chapter, we gave
examples corresponding to the different sections. Other applications can be
found in the literature. We would like to say that the method described in the
ODE’s section may for instance be applied to get some general results on the
model proposed in Sect. 6 of Chap. 4, even if some of the dispersal rates are
null or small. Indeed, only some of the dispersal rates must be high enough
to satisfy the reduction conditions.

5.5.1 Aggregation for Ordinary Differential Equations

In this subsection, we give two examples which show the effect of prey or
predator individuals behaviours on the populations dynamics. The first case
deals with the assumption under which the prey individuals attract the preda-
tors. This is done by considering that the predator movements are prey density
dependent. By using the aggregated model ,we show that a supercritical Hopf
bifurcation can occur at the population level. The second example illustrates
the situation where the prey avoids the predator, by considering that the prey
movements are predator dependent. In this case, there is also a Hopf bifur-
cation. However, the bifurcation is degenerate for the aggregated model and
it is not obvious a priori that the bifurcation has the same properties for the
complete model. We show that this is the case. Thus these examples illus-
trates how to deal with bifurcation analysis for the complete model by using
the bifurcation analysis of the aggregated model.

Preys Attracting Predators

In Auger et al. [10] and in Auger and Lett [6], a single population dynamics
in a two-patch environment connected by fast migrations was studied. We
extended this approach to the case of a predator–prey community in a two-
patch environment. In a series of papers, Mchich et al. [62–64] we investigated
the effects of density dependent dispersal of prey (respectively predator) with
respect to predator (respectively prey) density on the global stability of the
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system. Let us consider a predator–prey system in a two-patch environment.
This example is based on the paper Mchich et al. [64]. The model reads as
follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dn1
dτ = (k12n2 − k21n1) + ε

(
r1n1(1− n1

K1
)− a1n1p1

)
dn2
dτ = (k21n1 − k12n2) + ε

(
r2n2(1− n2

K2
)− a2n2p2

)
dp1
dτ = (m12(n2)p2 −m21(n1)p1) + ε (−µ1p1 + b1n1p1)
dp2
dτ = (m21(n1)p1 −m12(n2)p2) + ε (−µ2p2 + b2n2p2)

(5.49)

where the prey migration rates k12 and k21 are constant and predator dispersal
rates are assumed to be prey density dependent:

m21(n1) =
1

k0 + kn1
(5.50)

and:
m12(n2) =

1
k0 + kn2

(5.51)

where k0 and k are positive parameters. These prey density dependent dis-
persal rates for predators assume that:

– If few preys are present in a patch, predators leave this patch
– If many preys are available in a patch, predators remain on that patch

The slow part of the model assumes a Lotka–Volterra model on each patch
with logistic growth of the prey. ri andKi are respectively the growth rate and
the carrying capacity of the prey on patch i. µi is the death rate for predator
on patch i. ai and bi are predation parameters on patch i. These assumptions
can be justified as follows: we consider the heterogeneous environment as a
set of homogeneous patches and then the interaction on each homogeneous
patch are based on the Mass Action Law, which claims that the reaction rates
are proportional to the meeting rates. Using aggregation methods described
in the first section, this model can be aggregated as follows:{

dn
dt = rn(1− n

K )−A(n)np+O (ε)
dp
dt = −µ(n)p+B(n)np+O (ε)

(5.52)

where r and K are global growth rate and carrying capacity for the prey.
A(n), µ(n) and B(n) are not constant but depend on total prey density ac-
cording to functions which are not given here. For details we refer to [64]. This
case shows an example of functional emergence and of qualitative emergence.
Indeed, it can be shown, [64], that the dynamics of the aggregated model is
qualitatively different from the local dynamics on each patch. The local model
predicts either predator extinction or predator–prey coexistence at a positive
gas equilibrium. The aggregated model predicts the same situations but also
periodic solutions for the total prey and predator densities. A stable limit
cycle can occur via a supercritical Hopf bifurcation, see Fig. 5.4.
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Fig. 5.4. Phase portrait of the aggregated model (5.52) exhibiting a limit cycle

Repulsive Effects of Predators on Preys

Let us consider a predator–prey system in a two-patch environment. The
complete model, proposed in [62], reads as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dn1
dτ = (k12(p2)n2 − k21(p1)n1) + ε (r1n1 − a1n1p1)
dn2
dτ = (k21(p1)n1 − k12(p2)n2) + ε (r2n2 − a2n2p2)

dp1
dτ = (m12p2 −m21p1) + ε (−µ1p1 + b1n1p1)
dp2
dτ = (m21p1 −m12p2) + ε (−µ2p2 + b2n2p2)

(5.53)

where the prey dispersal rate is assumed to be predator density dependent:

k21(p1) = α0 + αp1 (5.54)

and:
k12(p2) = α0 + βp2 (5.55)

where m0 and m are positive parameters. This predator density dependent
dispersal rate for preys assumes that:

– If few predators are present in a patch, preys remain on this patch.
– If many predators are located in a patch, preys leave this patch.

The slow model is a classical Lotka–Volterra model with linear growth
rate on each patch for the prey. All parameters have the same meaning as in
previous section.

Using aggregation methods, this model can be aggregated as follows:{
dn
dt = 1

d0+dp (rn+ anp− bnp2) +O (ε)
dp
dt = −µp+ 1

d0+dp (bnp+ cnp2) +O (ε)
(5.56)
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Fig. 5.5. This figure illustrates the degenerate Hopf bifurcation of the complete
model. (a) corresponds to a stable focus, (b) is a centre and (c) is an unstable focus.
One curve is obtained with the complete model while the other curve is obtained
with the aggregated model. The set of parameters used for these simulations is:
α0 = 1, α = 1, β = 0.5, m12 = 2, m21 = 1, r1 = 1.1, r2 = 1.2, a1 = 1, a2 = 0.9,
µ1 = 0.9, µ2 = 0.8, b1 = 1, b2 = 1 and ε = 0.1

where global parameters r, a, b, c, d0 and d are expressed in terms of local
parameters. For details we refer to [62]. This case also shows an example of
functional emergence and of qualitative emergence. It can be shown that the
dynamics of the aggregated model is qualitatively different from the local
dynamics on each patch. The local model is a classical Lotka–Volterra models
and therefore predicts periodic solutions according to center trajectories. For
the aggregated model, [62], one can show that there is a degenerate Hopf
bifurcation. Therefore, as it is presented on Fig. 5.5 and according to the
parameters values:

– Prey and predator can coexist at constant densities
– The predator–prey system is not persistent
– At bifurcation, there exists periodic solutions (centers)

To conclude this section devoted to spatial predator–prey dynamics, let us
mention that the most general case combining the two previous effects (attrac-
tion of predators by preys and repulsion of preys by predators) is under study.
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We mention here a series of articles where the effects of different individual de-
cisions on the global dynamics of a prey–predator system, in an heterogeneous
environment, have been studied [4, 24,40,61,79].

Effects of Competitive Behaviour of Predators on a Predator–Prey
System Dynamics

In a previous contribution [7], we investigated the effects of contests between
predators disputing preys on the stability of a predator–prey Lotka–Volterra
model. Roughly, it was assumed that when a predator captures a prey, another
predator is coming and the two predators come into contest. Predators can
be aggressive (hawk) or non aggressive (dove).

In another article [5], we considered a detailed version of a predator–prey
model with hawk-dove contests between predators at the fast time scale.

On the individual level, predator individuals [51] have three possible states
of behaviour: they can be searching for prey, finding a prey or defending it.
Individuals in each of these subpopulations can play the hawk or dove tactics.
We denote by pSD, pFD, pDD, pSH , pFH and pDH the biomass of searching
and dove predators, finding and dove predators, defending and dove predators,
searching and hawk predators, finding and hawk predators and defending and
hawk predators respectively. The individuals can change their tactics only in
the defending subpopulation. Let:

pS = pSD + pSH , (5.57a)

pF = pFD + pFH , (5.57b)

pD = pDD + pDH , (5.57c)

be the biomass of searching predators, finding predators and defending preda-
tors, respectively. We denote n the prey density.

In this model, searching predators can capture preys according to the mass
action law. When a predator has captured a prey, it comes into the finding
state. It takes some time for a finding predator to manipulate a prey before
returning to the searching state (1/β). However, another searching predator
can find a predator when it manipulates its prey. We assume the mass action
law for searching and finding predators encountering rates. When a manip-
ulating predator is found by a searching one, both predators come into the
defending state, come into contest and dispute for the prey. Defending preda-
tors play against each other using hawk and dove strategies. After some time
(1/γ), defending predators return to the searching state. The complete model
is thus a set of seven ODE’s governing the prey and six predator densities,
obtained by coupling the predator behavioural model at a fast time scale, see
Fig. 5.6, to a predator–prey model at a slow time scale as follows:



5 Aggregation of Variables and Applications to Population Dynamics 247

Fig. 5.6. Scheme of the possible states for the predator individuals and flux between
these states

dpSD

dτ
= −bpF pSD − anpSD + βpFD + γpDD

+ ε
(
α (βpFD + (Au)DpDD)− µpSD

)
, (5.58a)

dpFD

dτ
= −bpSpFD + anpSD − βpFD − εµpFD, (5.58b)

dpDD

dτ
= bpF pSD − γpDD + bpSpFD + cpDD

(
(Au)D − uT Au

)
− εµpDD,

(5.58c)
dpSH

dτ
= −bpF pSH − anpSH + βpFH + γpDH

+ ε
(
α (βpFH + (Au)HpDH)− µpSH

)
, (5.58d)

dpFH

dτ
= −bpSpFH + anpSH − βpFH − εµpFH , (5.58e)

dpDH

dτ
= bpF pSH − γpDH + bpSpFH + cpDH

(
(Au)H − uT Au

)
− εµpDH ,

(5.58f)
dn

dτ
= ε
(
rn(1− n

K
)− anpS

)
. (5.58g)

where (Au)D and (Au)H respectively represent the gain of dove and hawk
individuals. The meaning of the different parameters of the fast part of the
model can be understood from the flows shown in Fig. 5.6. The slow part of
the model, of order ε, contains a logistic growth for preys, a type I func-
tional response, a constant predator natural mortality and a predator growth
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depending on the consumption of preys either in the finding state or in the
defending state. For more details see [5].

Using aggregation methods, this complete model can be aggregated into
two different systems of 2 ODE’s governing the prey and the total predator,
denoted p, densities. At fast equilibrium, gain is γ and cost is δ. These two
systems correspond either to the mixed hawk-dove fast equilibrium or to the
pure hawk fast equilibrium:

– If γ < δ then we have the dimorphic case (mixed hawk and dove predators)
which we call model I:

dn

dt
= rn

(
1− n

K

)
− anp∗S , (5.59a)

dp

dt
= −µp+ α

(
βp∗F +

γ

2
(1− γ

δ
)p∗D

)
. (5.59b)

– If γ > δ then we have the monomorphic case (only hawk predators) which
we call model II:

dn

dt
= rn

(
1− n

K

)
− anp∗S , (5.60a)

dp

dt
= −µp+ α

(
βp∗F +

γ

2
(1− δ

γ
)p∗D

)
, (5.60b)

where the values of p∗S , p∗F and p∗D are fast equilibrium values which can
be expressed in terms of n and p.

The aggregated model has been studied by bifurcation analysis. Two im-
portant parameters have been chosen, the cost of an escalated contest C and
the carrying capacity of the prey K. Using these two parameters, all other
parameters being fixed, one can capture the essential of the dynamics, see
Fig. 5.7.

As expected in a prey–predator model, at constant cost, when the carrying
capacity of the prey increases, predator invades (TC), and then, for small and
large cost values where there is no coexistence of two limit cycles, there is a
supercritical Hopf bifurcation with the appearance of a stable limit cycle [5].
This is the so called “paradox of enrichment”. However, if one assumes that
the prey carrying capacity K is bounded above, there always exists a cost-
window in which there is no “paradox of enrichment”. Indeed, as shown on
Fig. 5.7, there is a cost-domain where for any value of K, predator and prey
can coexist at constant densities. This stability domain occurs for pure hawk
as well as for a mixed predator population. This last result shows that contests
between predators can make the predator–prey system more stable.

We also mention earlier articles on the dynamics of a population of two
competing populations using fast game dynamics (Auger and Pontier [17],
Sánchez et al. [83], Auger et al. [18]).
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Fig. 5.7. Bifurcation diagram in the parameters space (C, K). Note that there is a
domain around C = 1 where, for every K, the prey and its predator coexist at fixed
densities

5.5.2 Discrete Models

We provide two discrete models examples. We have chosen examples for which
aggregation methods presented in the previous section of discrete models can
be applied. The first example is linear (linear fast model and linear slow
model) and, the second one is nonlinear (linear fast model but, nonlinear slow
model). The first one concerns the effects of habitat fragmentation on an in-
sect population dynamics. It is based on the article by Pichancourt et al. [71].
The second example deals with the problem of spatial synchrony of a host–
parasitoid systems. It is based on two articles by Nguyen Huu et al. [67, 68].
In this second example, we analyze the effect of the time scale factor, that
is the ratio between fast time scale unit and slow time scale unit, on spatial
synchrony which is needed to proceed to spatial aggregation. Among other
results, we show that this ratio does not need to be very high and that ag-
gregation methods can thus be useful in very realistic and concrete ecological
situations.

Effects of Habitat Fragmentation on Insect Population Dynamics

In Pichancourt et al. [71], we studied the effect of habitat fragmentation on in-
sect population dynamics, Abax parallelepipedus (coleoptera, carabidae). This
insect population is considered to have a metapopulation structure in the
agricultural landscape in Brittany. Roughly speaking, the landscape can be
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represented by a network of patches of four different kinds, the agricultural
matrix, pieces of woods, lanes and hedgerows. The agricultural matrix usu-
ally represents a large proportion of about 0.80 of the total landscape and
is an unfavorable habitat for insects which cannot survive for a long time in
this habitat (as well as in hedgerows). On the contrary, woods and lanes are
favorable habitats.

The complete model reads as follows:

n(t+ 1) = LP kn(t) (5.61)

where n(t) is the population vector structured by age and habitat at time
step t. k is a parameter which represents the number of dispersal events that
are performed during one time step. This number can be assumed to be large
and thus migration between patches is assumed to be fast with respect to
demography. The time step of the model corresponds to one year which is
also the duration of each stage. We considered three stages, larvae (L), adults
aged 1 (A1) which do not reproduce and adults aged 2 and more (A2) which
can reproduce. There are four different types of habitat, agricultural matrix
(M), wood (W), lane (L) and, hedgerow (H). As we consider 3 stages and 4
habitats, the complete model deals with 12 variables.
P = diag [I, PA, PA] is a migration matrix between different types of habi-

tat. It is a block diagonal matrix. Each block matrix represents the migration
process between the different types of habitats for individuals belonging to a
given stage, with constant proportions of migrants from patch to patch: I is
the identity matrix corresponding to the larvae L which do not move, while
PA corresponds to both A1 and A2 movements. Therefore, the fast model is
linear.
L is a Leslie multiregional matrix (Caswell [33]) which describes the insect

life cycle in each type of habitat. The matrix L incorporates survival as well
as fecundities for each stage and for each habitat. All parameters of the Leslie
matrix have been obtained from experimental data and for details we refer
to [71].

To summarize the life cycle of Abax parallelepipedus in the different habi-
tats, insects cannot reproduce in agricultural matrix and hedgerows. Fecundity
is high in woods and lanes. Larvae cannot survive in agricultural matrix and
hedgerows. Larvae can survive only in woods and lanes in proportion up to
0.50 from year to year. Adult insects cannot survive in agricultural matrix.
Adult insects survive in a proportion up to 0.45 in woods and lanes. Survival
as well as fecundity are constant. Therefore, the slow model is also linear.
Figure 5.8 shows life cycles in (a) favorable and (b) unfavorable habitats.

In [71], we investigated the effects of habitat fragmentation on viability
of the overall insect population. In this model, two parameters allow to take
into account an increase of habitat fragmentation. First, the landscape is
more fragmented when the overall proportion of favorable habitat decreases.
Secondly, for a constant proportion of each habitat, fragmentation increases
when the average size of a favorable habitat decreases. In other words, at
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Fig. 5.8. Life cycles in (a) favourable and (b) unfavourable habitats for Abax paral-
lelepipedus. SL, SA1 and SA2 , represent respectively the proportions of larvae, adults
aged 1 and adults aged 2 of a generation which survive to the next generation. FA2

is the fecundity of adults aged 2

constant total wood proportion, a landscape with many small pieces of woods
is more fragmented than a landscape with a single large piece of wood.

The first effect can be taken into account in the model because migration
rates, for example from wood to agricultural matrix, depend on the propor-
tion of the different habitats, for details see [71]. The second effect can also
be taken into account by increasing parameter k of the complete model pre-
sented below. Indeed, if the average size of a patch of favorable habitat is
small, insects come more frequently to a boundary with another habitat and
are more likely to change habitat. Thus, parameter k represents at constant
proportion of habitats, the degree of fragmentation of the landscape, from
small fragmentation (small k) to high fragmentation (large k).

In the limit case, k >> 1, which corresponds to a highly fragmented land-
scape, one can perform a “spatial aggregation”. Indeed, let us first consider
the fast system which reads as follows, na being either adults 1 or adults 2 of
Abax parallelepipedus:

na(t+ 1) = PAna(t) (5.62)

This fast model is conservative because the total insect population does
not vary at the fast time scale. Therefore, it has a dominant eigenvalue equal
to 1. The corresponding eigenvector has non negative components. When nor-
malized to 1, these components represent constant proportions of insects of
the different stages in the different habitats. Following the method presented
in the previous section of aggregation of discrete models, we can build an ag-
gregated model governing two global variables representing the overall adult
1 and adult 2 densities, obtained by summation over all habitats of the land-
scape, and two more variables for larvae densities in the two habitats where
they can survive, i.e (W) and (L).

The aggregated model reads as follows:

n(t+ 1) = L̄n(t) (5.63)



252 P. Auger et al.

where n(t) is a dimension 4 population vector structured by stage at time
step t. L̄ is an aggregated matrix with dimension 4. Thus, using aggregation
methods, we reduced the dimension from 12 (complete model) to 4 (aggre-
gated model). As shown in the above section about aggregation of discrete
models, when k tends to infinity, dominant eigenvalues of complete and ag-
gregated models tend to the same value. Therefore, the aggregated model can
be used to find the asymptotic behavior of the complete model. Remember
that the dominant eigenvalue has a significant ecological interpretation, as it
represents the asymptotic growth rate of the overall insect population. When
the dominant eigenvalue is bigger than 1, the total population grows, when
it is smaller than 1, the total population goes extinct. In [71], we have shown
that the dominant eigenvalues of complete and aggregated models are close at
less than 0.05 for a k-value larger than 12, which corresponds to one dispersal
event per month and is rather realistic for insects in Brittany landscape.

In [71], we studied the particular case of only two types of habitats, a
favorable habitat (W) and an unfavorable one (L), see Fig. 5.9. Figure 5.10

Fig. 5.9. Life cycles of Abax parallelepipedus for the aggregated model with two
habitats (W) and (L). νW∗

and νL∗
are the proportion of adults on habitat (W) and

(L) respectively. S̄A1 and S̄A2 represent the proportion of adults 1 and 2 surviving
to the next generation, and SW

L and SL
L the survival of larvae in both habitats

Fig. 5.10. Effect of W-fragmentation on asymptotic population growth rate λ for
landscapes with only W and M
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shows domains where the overall asymptotic growth rate of the insect popula-
tion is bigger than 1 (global survival) and smaller than 1 (global extinction) as
a function of global proportion of favorable habitat (W) and of parameter k.
Results showed that fragmentation has a negative effect on overall population
viability. For large k-values, a proportion of 1/3 of woods is needed for insect
persistence. Below this critical wood proportion, insect population goes ex-
tinct. Moreover, for very small k-values, the insect population can survive even
for small proportion of woods. This is due to the fact that a very large patch
of wood (even with small overall wood proportion) can promote viability be-
cause insects can always remain in the favorable patch from year to year and
never go to the matrix where they die. The article [71] had also investigated
several other cases with four types of habitats in different proportions.

Aggregation of a Spatial Model for a Host–Parasitoid Community

We investigated the effects of fast migration on the global stability of a host–
parasitoid community in a two patch model [57] and in the case of a linear
chain of patches [58]. We have also been studying the case of a host–parasitoid
community in a 2-Dimensional network of patches ([67] and [68]).

Let us consider the Nicholson–Bailey model with logistic growth of the
hosts: {

n(t+ 1) = n(t) exp
(
r
(
1− n(t)

K

))
exp (−ap(t))

p(t+ 1) = cn(t) (1− exp (−ap(t)))
(5.64)

where r is the host growth rate, K its carrying capacity. a is a positive pa-
rameter, the searching efficiency of the parasitoid. c is a positive parameter,
the average number of hosts merging from a single infected host. This model
has a unique positive equilibrium which can be stable or unstable according
to parameters values. The model can exhibit periodic solutions and chaotic
dynamics. Trajectories can also tend asymptotically to an invariant curve,
see [48].

Now, we consider a two-dimensional network of patches on a square lattice.
The size of the network is A2. We further assume that individuals can move
to the eight neighbouring patches according to the following dispersal model
at any patch (i, j) of the network:{

n(t+ 1) = (1− µn)n(t) + µn

8

∑
n(t)

p(t+ 1) = (1− µp) p(t) + µp

8

∑
p(t)

(5.65)

where the sum holds for the eight nearest patches around a given patch. For
simplicity, we omit the patch index position (i, j). µn (respectively µp) is
the proportion of host (respectively parasitoid) which disperses during a time
step of dispersal. Numerical simulations are made by considering that during a
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generation, individuals first disperse according to the dispersal submodel and
then locally interact according to the logistic Nicholson–Bailey submodel. The
dynamics of this spatial host–parasitoid community has been widely studied
and we refer to an early paper [41]. According to mobility values, after some
transient dynamics, the system can exhibit crystal structures, spirals or else
chaotic dynamics.

In order to introduce time scales, fast dispersal with respect to local dy-
namics, we are going to consider a new complete model written in the same
form as in equation (5.25):

X(t + 1) = S
(
F kX(t)

)
(5.66)

where X(t) = (n(t),p(t)) is the spatial host and parasitoid population density
vector. n(t) (respectively p(t)) is the host (respectively parasitoid) density
vector with A2 components. In the previous system, S represents the local
Nicholson–Bailey dynamics. F is the dispersal matrix corresponding to the
previous dispersal submodel. k is an integer which is assumed to be large,
k >> 1. During one generation, individuals disperse k times and interact
locally one time. Therefore, when k is large, the dispersal process becomes
fast in comparison to local interactions.

Figure 5.11 shows the effect of an increase of k on the spatial distribution
which is “Gaussian” centered on the initial position with a variance increasing

Fig. 5.11. Distribution of the distance from an initial position after one generation
with respect to the parameter k when a proportion of 1/2 of the individuals leave
the patch
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with k. Hosts and parasitoids are flying insects and it is realistic to assume
that during one generation an insect can fly not only to the nearest patches
but farther.

Using aggregation methods, one can obtain an aggregated model for the
total density of host (N(t) =

∑
n(t)) and parasitoids (P (t) =

∑
P (t)), where

the sum holds for any patch of the network. This aggregated model assumes
that a fast dispersal equilibrium is reached. This fast dispersal equilibrium
corresponds to a situation of spatial synchrony with constant and equal pro-
portions of insects on any patch which is simply 1

A2 , i.e. the inverse of the
total number of patches. The use of the aggregated model implies that the
local insect density is proportional to the total density at each patch. In that
case, the aggregated model reads:⎧⎨

⎩N(t+ 1) = exp
(
r
(
1− N(t)

KA2

))
exp
(
−aP (t)

A2

)
P (t+ 1) = cN(t)

(
1− exp

(
−ap(t)

A2

)) (5.67)

The aggregated model depends on the size of the two-dimensional network.
We compare the aggregated model and the complete model with parameters
r = 0.5, a = 0.2, K = 14.47, c = 1, A = 50, µn = 0.2 and µp = 0.89
leading to a stable equilibrium. We use an initial condition with a few hosts
and parasitoids located on the same patch at t = 0.

This example illustrates that even with a low value of k, the dynamics of
the aggregated model and the complete model are very close. Both dynamics
tend toward the same equilibrium, as shown in Fig. 5.12.

Fig. 5.12. Dynamics of the complete model (in black) and the aggregated model (in
grey) for k = 10 and parameters r = 0.5, a = 0.2, K = 14.47, c = 1, A = 50, µn = 0.2
and µp = 0.89. To make the figure more readable, points near the equilibrium have
not been represented
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5.5.3 Aggregation of Variables in Linear Delayed Differential
Equations

Example: A Structured Model of Population Dynamics
with Two Time Scales

Let us consider a continuous-time two-stage structured model of a population
living in an environment divided into two different sites. Let us refer to the
individuals in the two stages as juveniles and adults, so that ji(t) and ni(t) de-
note the juvenile and adult population respectively at site i, i = 1, 2. Changes
in the juvenile population at site i occur through birth, maturation to the
adult stage and death. Therefore, in absence of migrations, the growth rate
is expressed as βini(t) − e−µ∗

i riβini(t − ri) − µ∗i ji(t) where βi, µ
∗
i , µi ≥ 0 are

the fecundities and per capita death rates of juveniles and adults respectively
and ri > 0 is the juvenile-stage duration in site i. Without loss of generality,
we suppose 0 < r1 < r2.

In a similar way, the adult population growth rate in site i must con-
tain recruitment and mortality terms so that in absence of migrations reads
e−µ∗

i riβini(t− ri)− µini(t).
We consider a model which includes the demographic processes described

below, together with a fast migration process between sites for the adult
population defined by two parameters: m1 > 0 represents the migration rate
from site 1 to site 2 and m2 > 0 is the migration rate from site 2 to site 1.

The difference between the two time scales: slow (demography) and fast
(migration) is represented by a small parameter ε > 0:⎧⎪⎪⎨

⎪⎪⎩
j′1(t) = β1n1(t)− e−µ∗

1r1β1n1(t− r1)− µ∗1j1(t)
j′2(t) = β2n2(t)− e−µ∗

2r2β2n2(t− r2)− µ∗2j2(t)
n′1(t) = (1/ε)[m2n2(t)−m1n1(t)] + e−µ∗

1r1β1n1(t− r1)− µ1n1(t)
n′2(t) = (1/ε)[m1n1(t)−m2n2(t)] + e−µ∗

2r2β2n2(t− r2)− µ2n2(t)

As we notice, the last two equations of the above system are autonomous, so
we can reduce the system into them:

n′(t) =
1
ε
Kn(t) +An(t) +B1n(t− r1) +B2n(t− r2) (5.68)

where

n(t) :=
(
n1(t)
n2(t)

)
; K :=

(
−m1 m2

m1 −m2

)
; A =

(
−µ1 0

0 −µ2

)

B1 :=
(
e−µ∗

1r1β1 0
0 0

)
; B2 :=

(
0 0
0 e−µ∗

2r2β2

)
together with an initial condition Φ(t) := (Φ1(t), Φ2(t))

T , t ∈ [−r2, 0].
Matrix K satisfies Hypothesis 2 and in order to build the aggregated model

of (5.68) we choose the right and left eigenvectors associated to eigenvalue
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λ = 0 ofK as v := 1/(m1+m2) (m2,m1)
T , v∗ := (1, 1)T , so that we construct

an aggregated model for the total adult population:

n(t) := (v∗)T n(t) = n1(t) + n2(t).

Due to the two different delays this model does not fit in the formulation given
by (5.43). Therefore we apply (5.48) so that we have

∀Φ ∈ C([−r2, 0];R2), L(Φ) := AΦ(0) +B1Φ(−r1) +B2Φ(−r2)

and then, ∀ψ ∈ C([−r2, 0];R):

L(ψ) := −µ∗ψ(0) + ν∗1ψ(−r1) + ν∗2ψ(−r2)

with

µ∗ :=
µ1m2 + µ2m1

m1 +m2
; ν∗1 :=

e−µ∗
1r1β1m2

m1 +m2
; ν∗2 :=

e−µ∗
2r2β2m1

m1 +m2
.

The aggregated model is, for t ≥ r2:

n′(t) = −µ∗n(t) + ν∗1n(t− r1) + ν∗2n(t− r2) (5.69)

together with the initial condition defined by:

n(t) = Φ1(t) + Φ2(t), t ∈ [−r2, 0]
n′(t) = µ∗n(t) + e−µ∗

1r1β1Φ1(t− r1) + e−µ∗
2r2β2Φ2(t− r2), t ∈ [0, r1]

n′(t) = µ∗n(t) + ν∗1n(t− r1) + e−µ∗
2r2β2Φ2(t− r2), t ∈ [r1, r2]

We have reduced the initial complete system of four equations to a single
equation governing the total adult population. If the solution to this equation
is given, then the juvenile population densities can be derived from it.

It can be shown that, for each T > r2, the solution to system (5.68) satisfies

lim
ε→0+

(
n1ε(t)
n2ε(t)

)
=

1
m1 +m2

(
m2

m1

)
n(t)

uniformly in [r2, T ], n(t) being the solution to the aggregated model (5.69).

5.6 Perspectives and Conclusions

Regarding applications to population dynamics, aggregation methods have
also been used in the following cases:

– Modelling the effect of migrations processes on the population dynamics
(Poggiale et al. [73–77]).
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– Modelling a trout fish population in an arborescent river network com-
posed of patches connected by fast migrations (Charles et al. [34–36],
Chaumot et al. [37–39]).

– Modelling a sole larvae population with a continuous age with fast migra-
tion between different spatial patches (Bravo et al. [27]).

– Modelling food chain structures (Kooi et al. [55]).

In this chapter, we have presented aggregation methods in several contexts,
ODE’s, Discrete models, PDE’s and DDE’s. However, there are still works to
be done to show that a complete detailed mathematical model can be replaced
by a reduced aggregated model. For example, there is no doubt that more work
should be devoted to the case of stochastic models.

In our opinion, a major problem relates to the understanding of mecha-
nisms which are responsible for the emergence of individual behaviour at the
population and community level. In many cases, biologists prefer to use an
Individual Based Model (IBM) because they want to take into account many
individuals of different kinds and to model how they interact at the individ-
ual level. The IBM is then simulated with a computer and is used to look for
global emerging properties at the level of the population and of the commu-
nity. However, it can be difficult to obtain robust and general results from a
complete and detailed IBM.

In this chapter, we have shown that in some cases, interactions between
individuals can also be taken into account by classical models with differential
equations. When two time scales are involved in the model, aggregation meth-
ods allow to proceed to a significant reduction of the dimension of the model
and sometimes to a complete analysis of the aggregated model. This reduced
model is useful to understand how the individual behaviour can influence the
dynamics of the total population and its community (Dubreuil et al. [45]).
Therefore, aggregation methods can be considered as a new and promising
tool for the study of emergence of global properties in complex systems with
many potential applications in ecological dynamics.
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Summary. R. Freter et al. (1983) developed a simple chemostat-based model of
competition between two bacterial strains, one of which is capable of wall-growth,
in order to illuminate the role of bacterial wall attachment on the phenomenon of
colonization resistance in the mammalian gut. Together with various collaborators,
we have re-formulated the model in the setting of a tubular flow reactor, extended
the interpretation of the model as a biofilm model, and provided both mathematical
analysis and numerical simulations of solution behavior. The present paper provides
a review of the work in [4–6,31–35,45,46].

6.1 Introduction

The ability of bacteria to colonize surfaces forming biofilms and thereby to
create a refuge from the vagaries of fluid advection has stimulated a great deal
of recent research in a variety of disciplines. The importance of wall growth
was first made apparent to us from the work of microbiologist Rolf Freter
and his colleagues [23–26]. Their mathematical models of the phenomenon
of colonization resistance in the mammalian gut showed that bacterial wall
attachment could play a crucial role in the observed stability of the natural
microflora of the gut to invasion by non-indigenous microorganisms. The au-
thors had the pleasure of learning of this work first hand from a lecture by
Freter at the Microbial Ecology Workshop organized by Frank Hoppensteadt
and Smith at Arizona State University in 1997. Our own work can be traced
to a collaboration that began at this workshop.

While Freter’s model was formulated in a CSTR (chemostat) setting which
is natural since this reactor mimics the mouse cecum, the animal model for
gut research, we felt that another natural setting was the plug flow reactor
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(PFR) where bacterial motility, fluid advection, and other spatial effects could
play a larger role. The flow reactor more accurately reflects the environment
of the large intestine of humans. Thus, Ballyk and Smith formulated a family
of models for microbial growth and competition for limiting substrate and
wall-attachment sites in our first work [5]. This paper focused on describing
the model equations which consist of a system of parabolic partial differential
equations for a diffusing substrate and for randomly motile bacteria in the fluid
environment of a thin (one-dimensional) tube coupled to a system of ordinary
differential equations for the immobile, wall-attached bacteria growing on the
tubular surface. It was natural to begin a mathematical analysis of the model
by considering only a single bacterial strain in the reactor in [6].

The phenomena of colonization resistance in the gut remained the pri-
mary motivation for our early work in [4–6, 45, 46]. However, we quickly be-
came aware of the rapidly developing literature on biofilms and began to view
our models in this more general context. Our subsequent work [29, 31–35]
was largely motivated by our view that the Freter model is a crude model of
a biofilm. A biofilm is simply a layer of material coating a surface, usually
immersed in a fluid environment, made up of bacteria and an extra-cellular
matrix exuded by the bacteria which provides an environment for growth.
From the bacterial point of view, a biofilm is a comfortable refuge. Examples
of a biofilm include the scum that grows on a rock in a stream, dental plaque
on teeth, the surface slime that forms on the inside surface of water pipes,
and a similar coating of the surface of the large intestine of mammals. These
bacterial layers can have serious negative consequences in many man made
environments. They contaminate medical devices such as contact lenses, im-
plants, catheters, and stints; they can contaminate food and medicinal pro-
duction facilities and air-conditioning and water circulation systems. Biofilms
are notoriously difficult to eradicate once established.

The study of biofilms has exploded in the last two decades, largely driven
by recent advances in noninvasive microscopy, staining techniques, and genetic
probes. Contributing to this explosion of interest was the realization that
many human disease processes are essentially biofilm infections of organs, e.g.,
Periodontitus in teeth and gums, Otitus media in the ear, and Cystic fibrosis
pneumonia in the lung, to name only a few [27]. In ways not yet completely
understood, these biofilm infections are difficult to treat using antibiotics [47].
It is hoped that increased understanding of the biofilm environment will lead
to improved modes of therapy for these diseases.

From this recent attention focused on biofilms has come the realization
that what scientists had learned about bacteria, based on more than a cen-
tury of studying them in suspension as isolated cells, e.g. in a chemostat,
or in simplified batch culture environments, did not prepare them for the
observed level of complexity these organisms display in the biofilm setting.
It is now recognized that almost all bacteria live in biofilm communities of
remarkable structure which are attached to surfaces and in which individ-
ual bacteria are capable of expressing whole suites of genes not previously
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known that allow them to communicate and coordinate their activities. Quo-
rum sensing, a bacterial communication mechanism based on the exchange of
an internally produced small molecule and the detection of its extracellular
concentration, has been shown to control aspects of biofilm formation and
development and, in cases of biofilm infections of tissue, to control the expres-
sion of genes controlling virulence factors. For example, it is advantageous for
bacteria not to express virulence until a suitable defence, a mature biofilm
environment, has been established. The reader interested in more background
information concerning biofilms should consult the many review articles of
Costerton et al. [15–18] and the monograph of Bryers [11]. For an update on
current directions in the study of biofilms consult the special issue (January
2005) of the journal Trends in Microbiology devoted to biofilm research.

Along with this increase in the interest in biofilms there has been increas-
ing interest in mathematical models of biofilms. Below we give a necessarily
limited review of some of this literature. A classical but now somewhat dated
reference is the volume “Biofilms” edited by Characklis and Marshall [12]
where partial differential equations are used to model steady state (time inde-
pendent) bacterial densities. An updated edited volume “Biofilms II” [11]
indicates some recent directions of research. Most recent modeling in the
field has been directed towards understanding the mechanisms underlying the
remarkable variety of spatial structure observed in different biofilms. These
structures can be as simple as flat layers with little or no structure to fields
of mushroom-like structures protruding from the surface. Modeling the evolu-
tion of a biofilm in detail requires dealing with the physical forces giving rise
to fluid motion, advection and diffusion of nutrients and wastes, the forces
acting on the moving interface between the biofilm and bulk fluid on the one
hand and also including the biological aspects including growth, production
of extra-cellular matrix, and attachment and detachment of cells and matrix
from the biofilm. Classically, these considerations lead naturally to large sys-
tems of partial differential equations. Recent papers of Cogan and Keener [14],
Eberl et al. [22], Dockery and Klapper [21], examine various aspects of biofilm
morphology using continuum models that lead to systems of partial differen-
tial equations with a moving biofilm-fluid interface for the growing biofilm.
Cellular automaton models and related Individual-based models have recently
been used by Wimpenny and Colasanti [51], Kreft et al. [36], and Laspidou
and Rittmann [38] to model biofilm development. Hybrid models employing a
mixture of continuum modeling and cellular automata have been employed by
Picioreanu et al. [41] and Noguera et al. [40]. Dillon et al. [20] combine partial
differential equations for fluid flow, chemical densities with individual-based
modeling of cells moving in response to forces to model biofilm formation. An
up to date review of biofilm modeling by Noguera et al. [39] is useful. With
the exception of [14, 21], most of these models are so complex that they can
be investigated only using sophisticated numerical simulations.

There are few simple, conceptual biofilm models which are amenable to
mathematical analysis yet which yield significant and useful results. Simple
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models do not attempt to provide much detail on the spatial structure of
biofilms but aim to provide information on conditions suitable for biofilm
establishment and maintenance and which model the formation of biofilms
directly, starting from an inoculum of planktonic bacteria. Among the more
widely known of these, we mention Topiwala and Hamer [49], Baltzis and
Fredrickson [7], Bakke et al. [8], and Pilyugin and Waltman [42]. Less known
is the work of Freter and his group (Freter [23, 24] and Freter et al. [25, 26]),
who formulated a mathematical model to understand the phenomena of col-
onization resistance in the mammalian gut (stability of resident microflora to
colonization). Essentially, their model can be viewed as a crude biofilm model.
In contrast to state of the art biofilm models cited above, the Freter model
completely ignores the three-dimensional spatial structure of the biofilm.

Our view is that the Freter model provides a useful yet mathematically
tractable model of a biofilm which focuses primarily on the bacterial in-
teractions. The present chapter provides an overview of our previous work
in [4–6, 31–35, 45, 46]. More recent work on gene transfer in biofilms [29, 30],
based on the biofilm models considered here is reviewed in [30]. The authors
wish to acknowledge collaborators Dung, Kojouharov, Stemmons, Zhao who
have contributed substantially towards portions of the work presented here.

As our models use nonlinear partial differential equations to capture ran-
dom motility of cell populations and diffusion of nutrients, we will employ
some of the same techniques used in Chaps. 3 and 4 where spatial movement
also plays an important role.

6.2 The Freter Model

The Freter model describes a microbial population in a fluid environment
with a bounding surface, a portion of which may be colonized by the bacteria
forming a biofilm. At any given moment of time, the bacterial population can
be viewed as consisting of cells suspended in the fluid, usually called planktonic
cells, and those adhering to the surface, called adherent cells. Planktonic cells
can adhere to the biofilm becoming adherent cells and adherent cells may
detach from the biofilm becoming planktonic cells. The Freter model is based
on the following assumptions:

1. There are a finite number of available colonization sites on the wall and
thus a maximum attainable areal density of adherent bacteria.

2. Planktonic bacteria are attracted to the wall at a rate proportional to
planktonic cell density and the fraction of unoccupied colonization sites
on the wall.

3. Adherent cells are sloughed off into the fluid at a rate proportional to their
density.

4. Daughter cells of adherent bacteria compete for space on the wall: A frac-
tion G of the daughter cells find attachment sites and the fraction 1 − G
do not and are forced into the fluid. G is a decreasing function of wall
occupancy.
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Table 6.1. Model parameters and functions

Symbol Description Dimension

u Biomass concentration of planktonic bacteria ml−3

w Areal biomass density of adherent bacteria ml−2

wmax Maximum areal biomass density of adherent bacteria ml−2

W = w/wmax Wall occupancy fraction –
G(W ) Fraction of daughter cells that find wall sites –
β Sloughing rate of adherent bacteria t−1

α Rate constant of adhesion t−1

S Concentration of limiting substrate ml−3

S0 Concentration of the substrate in the feed ml−3

γ Yield constant –
fu(S) Specific growth rate of planktonic bacteria t−1

fw(S) Specific growth rate of adherent bacteria t−1

k Planktonic cell death rate t−1

kw Adherent cell death rate t−1

Model parameters are described in the Table 6.1.
If w denotes the areal density of wall-adherent bacteria and wmax the

maximum attainable density, then the wall occupancy is given by

W = w/wmax .

Planktonic cells, with density u, are attracted to the wall at rate αu(1−W ),
proportional to their density and to the unoccupied fraction 1 −W of wall
sites (see also Baltzis and Fredrickson [7]). It is reasonable to assume that
G = G(W ) is a decreasing function of the occupation fraction W because a
more fully saturated wall provides less chance for a daughter cell to find space
on it. Freter [24] employs the rational function

G(W ) =
1−W

1.1−W .

Bacteria consume substrate S at (per unit biomass) rate

fu(S) =
muS

au + S
, planktonic cells, (6.1)

fw(S) =
mwS

aw + S
, adherent cells, (6.2)

with conversion to biomass with yield constant γ. Cell death rates are intro-
duced for later use when anti-microbials are considered.

6.3 The Chemostat-Based Model

The Freter model was originally proposed in the setting of a CSTR of volume
V , colonizable surface area A and flow rate F (Freter [24], Freter et al. [25])
where it takes the form (D = F/V , δ = A/V ):
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Biofilm Layer

Planktonic Cells

Fresh Growth Medium In Eff luent Out 

Fig. 6.1. Wall growth in the chemostat. Planktonic cells reside in well-mixed fluid;
wall-adherent cells reside in the biofilm layer

S′ = D(S0 − S)− γ−1[ufu(S) + δwfw(S)]
u′ = u[fu(S)−D − k] + βδw + δwfw(S)[1−G(W )]− αu[1−W ] (6.3)
w′ = w[fw(S)G(W )− β − kw] + αu[1−W ]δ−1 .

The meaning of the terms in (6.3) are now described. Nutrient S enters the
chemostat in the feed stream at rate DS0 and unused nutrient leaves at rate
DS. Inside the chemostat (Fig. 6.1), nutrient is consumed by both planktonic
cells and wall attached cells. Planktonic cells u grow in response to the uptake
of nutrient, are washed out of the chemostat at rate Du and suffer cell death
rate k. Wall attached cells slough into the fluid at rate βδw and a fraction
1 − G(W ) of the output fw(S)w of daughter cells of wall attached bacteria
fail to find wall sites and thus enter the fluid. Finally, planktonic cells attach
to the wall at rate αu[1−W ]. Wall attached cells grow (finding wall sites) at
rate fw(S)G(W ), suffer cell death kw, are lost due to sloughing at rate β, and
gain via the attachment of planktonic cells at rate αu[1−W ].

The classical Monod (no wall attachment) model for planktonic cell growth
(see e.g. Herbert et al. [28]; Smith and Waltman [44]; Bailey and Ollis [2]) is
recovered on setting α = w = 0 = k = kw.

If we set wmax = ∞ making W = 0, then we remove the hypothesis
that the wall environment is finite and that daughter cells of wall adherent
bacteria compete for wall sites. If also G(0) = 1 then the model reduces to
that of Pilyugin and Waltman [42].

S′ = D(S0 − S)− γ−1[ufu(S) + δwfw(S)]
u′ = u[fu(S)−D − k] + βδw − αu (6.4)
w′ = w[fw(S)− β − kw] + αuδ−1 .

A similar reduction can be made in the setting of a flow reactor in the sections
to follow.
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A mathematical analysis of the system (6.3) is given in Stemmons and
Smith [46] in the case that fu = fw, k = kw = 0. The more general model
considered here allows for different substrate uptake rates for planktonic and
adherent cells and for nontrivial cell death rates.

The washout steady state

(S, u,w) = (S0, 0, 0)

always exists. Its stability, is determined by linearizing (6.3) about this equi-
librium. The three-by-three Jacobian has one-one entry −D below which are
zeros. Therefore, stability depends on the eigenvalues of the 2× 2 lower-right
sub-matrix of the Jacobian given by

A =
(
fu(S0)−D − k − α fw(S0)(1−G(0)) + β

α fw(S0)G(0)− kw − β

)
. (6.5)

This matrix is quasipositive (nonnegative off-diagonal entries), as are other
matrices encountered throughout this work, and hence we will find it conve-
nient to employ Perron–Frobenius theory [10]. The washout state is locally
asymptotically stable if its eigenvalues have negative real part (they are real)
and unstable if at least one is positive. We use the notation s(A) for the largest
eigenvalue of A. With this notation, the washout steady state is stable when
s(A) < 0 and unstable when s(A) > 0. Although an exact (and ugly) expres-
sion may be written for s(A) in terms of the entries, the following inequalities,
the result of simple estimates, shed more light on the biology:

max{fu(S0)−D − k − α, fw(S0)G(0)− kw − β}

< s(A) ≤ max{fu(S0)−D − k, fw(S0)− kw} .
(6.6)

Therefore, s(A) < 0 and the washout state is (globally) stable if both

fw(S0)− kw < 0 and fu(S0)− k −D < 0 ; (6.7)

s(A) > 0 and the washout state is unstable if either

fw(S0)G(0)− kw − β ≥ 0 (6.8)

or if
fu(S0)− k −D − α ≥ 0 . (6.9)

Also, s(A) > 0 if both

fu(S0)− k −D > 0 and fw(S0)− kw ≥ 0 (6.10)

because if both (6.8) and (6.9) fail yet (6.10) holds, then the determinant of
A is negative.
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The following result is proved in [34], relying on earlier work of [46].

Theorem 1. If s(A) < 0, then the washout state is stable. It is globally
attracting if, in addition to s(A) < 0, either (6.7) or fw(S0) − kw >
fu(S0)− k −D or fu = fw holds.

If s(A) > 0 then at least one nontrivial steady state (S∗, u∗, w∗) exists and
any nontrivial steady state satisfies

u∗ > 0, wmax ≥ w∗ > 0, 0 < S∗ < S0 .

If fu(S) − k − D > 0 implies fw(S) − kw ≥ 0 or if fu = fw, then at most
one nontrivial steady state may exist. Finally, s(A) > 0 implies that u and
w persist: there exists ε > 0, independent of initial data, such that if w(0) +
u(0) > 0, there is a T > 0 (depending on the initial data) such that

u(t) + w(t) > ε, t > T .

In the case considered by Stemmons and Smith [46], sufficient conditions
are given for the unique nontrivial steady state to attract all nontrivial initial
data. The Pilyugin and Waltman system (6.4) is considerably simpler and
global stability of the unique nontrivial equilibrium can be deduced in the
special case that fu = fw [42]. Unfortunately, this condition is not realistic.

Persistence of u,w means that there is an initial-condition-independent
lower bound for the ultimate bacterial density. In view of our inability to
show that a nontrivial steady state is globally attracting, this says that at
least the microbial population survives when s(A) > 0. The proof of this
assertion follows that given in Proposition 7.9 of [46].

Diekmann and Heesterbeek [19] (see Theorem 6.13) show that the stability
modulus of A can be related to the spectral radius of a related matrix and
that this relation can be used to define a basic reproductive ratio which is
more useful for interpreting our results. Specifically, they show that

sign s(A) = sign [ρ(GT ∗)− 1] (6.11)

where ρ denotes spectral radius and T ∗ denotes the transpose of T . Here,

G =
(
fu(S0) fw(S0)(1−G(0))

0 fw(S0)G(0)

)
(6.12)

and

T =
1
∆

(
kw + β α
β D + k + α

)
(6.13)

and
∆ = (β + kw)(D + k + α)− αβ = (D + k)(β + kw) + kwα .

The factors G and T have natural biological interpretations. If we identify
indices {1, 2} = {u,w} then



6 The Biofilm Model of Freter: A Review 273

��
�

u ��
�

w�
� β

α

��
�

r

D + k

�
�

�
��

kw

�
�

�
��

Fig. 6.2. Continuous-time Markov chain with absorbing state r = removal by
washout or death

Gij = rate of production of daughter cells in compartment i by cells in
compartment j in washout environment

and

Tij = mean time spent in state j before washout or death by cell born in
state i.

The matrix T is calculated using the algorithm described in [29] (based on
suggestions by Schrieber) identifying an appropriate continuous-time Markov
chain model with rate matrix

B =
(
−D − k − α β

α −kw − β

)
(6.14)

as described in Fig. 6.2. In [29] it is also argued that the mean residence time
of a cell in the chemostat is given by

Mean Residence Time = − 1
s(B)

= ρ(T ) .

Hence

GT ∗ =

(
fu(S0)Tuu + fw(S0)(1 − G(0))Tuw fu(S0)Twu + fw(S0)(1 − G(0))Tww

fw(S0)G(0)Tuw fw(S0)G(0)Tww

)
(6.15)

gives the production of daughter cells into state i by mother cell in state j
before removal by washout or cell death. Thus we are lead to define the Basic
Reproductive Number R0 as

R0 = ρ(GT ∗) . (6.16)

If v = (τ, 1 − τ)∗, 0 < τ < 1, is the normalized positive eigenvector corre-
sponding to the simple eigenvalue R0 for GT ∗, then GT ∗v = R0v and adding
these two equations gives

R0 = fu(S0)[τTuu + (1− τ)Twu] + fw(S0)[τTuw + (1− τ)Tww] .
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The first convex combination in brackets can be interpreted as a mean time
spent by a cell (regardless of where born) in the fluid environment while the
second is a mean time spent in the biofilm. Thus, R0 can be interpreted as
the replacement ratio in the washout state.

Our main result implies the existence of a threshold for survival of the
organism in CSTR. Indeed, it is easy to see that s(A) and ρ(GT ∗) are strictly
increasing with supply substrate concentration S0 and, obviously, s(A) < 0
for very small S0. Thus, there exists a critical substrate supply 0 < S0

c ≤ ∞
such that washout is stable if S0 < S0

c and unstable if S0 > S0
c . However,

the threshold may be so low as to be unobservable as it is likely that under
most operating conditions, kw, β << fw(S0) and therefore (6.8) holds. This
explains the ubiquity of biofilms; whereas in a fluid environment organisms
must grow fast enough to overcome washout, in biofilm they simply have to
grow fast enough to exceed sloughing.

The lack of effectiveness of antimicrobial agents in controlling bacteria in
biofilms has been noted in the literature. See for example Costerton et al. [16]
and Stewart et al. [47, 48]. As noted in [16], resistance to antimicrobials is
likely to have multiple causes, one being “the failure of an agent to penetrate
the full depth of the biofilm. Polymeric substances like those that make up
the matrix of a biofilm are known to retard the diffusion of antibiotics...”. An
extensive discussion may be found in [47]. In [34] we examined the extreme
case of a biofilm layer which is impenetrable to an antibiotic A introduced into
the CSTR at concentration A0. Following Stewart et al. [47], (see (11.19)), we
assume that the antibiotic increases planktonic death rates as its concentra-
tion increases: the death rate of planktonic bacteria k = k(A) is an increasing
function of A. Adherent bacteria are assumed to be unaffected because the
antibiotic cannot penetrate the biofilm layer. Assuming that A is not signifi-
cantly depleted by its action, it satisfies

A′ = D(A0 −A)

and, obviously,
A(t) → A0, t→∞ .

Therefore the long-term effect of the antibiotic is essentially to adjust the
death rate of planktonic bacteria to k = k(A0). However, it is easy to see
from (6.6) that s(A) is relatively insensitive to parameter k. If (6.8) holds,
then s(A) > 0 and the washout steady state is unstable regardless of the
value of k. Therefore, we expect the bacterial population to survive in the
CSTR regardless of the planktonic cell death rate. The density of planktonic
bacteria may be driven quite low by the antibiotic but one expects that the
wall-attached cell density is largely unaffected. Thus we conclude that if (6.8)
holds then introduction of antibiotic into the flow reactor will not be effective
in eradicating the bacteria.
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Fig. 6.3. Top: Biofilm formation in CSTR. Bottom: Biocide raises planktonic cell
death rate

The effect of various biocides on biofilms is a topic of great interest and
has spawned a great deal of mathematical modeling. See for example Hunt
et al. [48] and the references therein and Cogan [13].

The top of Fig. 6.3, taken from [34], shows the formation of biofilm in
CSTR. Both cell death rates are zero: k = kw = 0. Dependent and indepen-
dent variables are scaled as follows: t̄ = Dt, S̄ = S/a, ū = u/(γa), w̄ =
W = w/wmax. Initial data are chosen to simulate an inoculum of planktonic
cells introduced into a sterile CSTR with substrate at equilibrium with inflow.
They are: S̄ = S0/a, ū = 10−5,W = 0.

The time series can be decomposed into three stages. During the first,
substrate remains near its initial value while an adherent population slowly
accumulates. The second stage is characterized by a linear growth of the ad-
herent population which rapidly depletes the substrate. Finally, a mature
adherent population, fully occupying the wall (w ≈ 1), casts off significant
numbers of planktonic cells. Note that one scaled time-unit equals 4hr.

The bottom of Fig. 6.3, with the same initial data, shows the effect of a
(very large) planktonic cell death rate of 25% of the dilution rate (k = .25D,
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kw = 0) resulting from the introduction of antibiotic that does not penetrate
the biofilm. The only noticeable effect is a smaller planktonic cell density; the
antibiotic cannot inhibit biofilm formation.

6.4 One-Dimensional Thin Tube Flow Reactor

The flow model treated in this section was first formulated by Ballyk and
Smith in [5] and later analyzed in more detail in [6]. It builds on earlier work
in which wall growth was not treated in Ballyk, Jones, Le and Smith [3].

Consider a thin tube with inner circumference C and cross-sectional area
A extending along the x-axis. See Fig. 6.4. The reactor occupies the portion of
the tube from x = 0 to x = L. It is fed with growth medium at a constant rate
at x = 0 by a laminar flow of fluid in the tube in the direction of increasing
x and at velocity v (a constant). The external feed contains all nutrients
in near optimal amounts except one, denoted by S, which is supplied in a
constant, growth limiting concentration S0. The flow carries medium, depleted
nutrients, cells, and their byproducts out of the reactor at x = L. Nutrient S
is assumed to diffuse with diffusivity d0 while free microbial cells are assumed
to be capable of random run and tumble motion which can be modeled by
diffusion with diffusivity (sometimes called random motility coefficient) d. See
the classic monograph of Berg [9] for more on bacterial motility and our earlier
work in [3]. Wall attached bacteria are assumed to be immobile. We assume
negligible variation of free bacteria and nutrient concentration transverse to
the axial direction of the tube.

The model accounts for the density of free bacteria (bacteria suspended in
the fluid) u(x, t), the density of wall-attached bacteria w(x, t) and the density
of nutrient S(x, t). The total free bacteria at time t is given by

A

∫ L

0

u(x, t)dx

and the total bacteria on the wall at time t is given by

C

∫ L

0

w(x, t)dx .

Biofilm Layer

Fresh Growth Medium In
Planktonic Cells

Eff luent Out 

Fig. 6.4. Flow Reactor with biofilm
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Let δ = C/A, not to be confused with δ of the chemostat model. Then S, u, w
satisfy the following system of equations.

St = d0Sxx − vSx − γ−1ufu(S)− γ−1δwfw(S)
ut = duxx − vux + u(fu(S)− k) + δwfw(S)(1−G(W )) (6.17)

−αu(1−W ) + δβw
wt = w(fw(S)G(W )− kw − β) + αδ−1u(1−W ),

with boundary conditions

vS0 = −d0Sx(0, t) + vS(0, t), Sx(L, t) = 0
0 = −dux(0, t) + vu(0, t), ux(L, t) = 0, (6.18)

and initial conditions

S(x, 0) = S0(x), u(x, 0) = u0(x), w(x, 0) = w0(x), 0 ≤ x ≤ L. (6.19)

The boundary conditions (6.18), referred to as Danckwerts’ boundary con-
ditions by Aris [1], are often misunderstood. To understand their implications,
it is useful to integrate the equations over the domain [0, L] to obtain the mass
balance

d

dt
A

∫ L

0

Sdx = A

∫ L

0

d0Sxx − vSx − γ−1[ufu(S) + δwfw(S)]dx

= −A[−d0Sx(L, t) + vS(L, t)] +A[−d0Sx(0, t) + vS(0, t)]

−A
∫ L

0

γ−1[ufu(S) + δwfw(S)]dx

= −vAS(L, t) + vAS0 −
∫ L

0

γ−1[Aufu(S) + Cwfw(S)]dx .

Thus, the change in the total amount of nutrient in the tube is due to the
flow bringing fresh nutrient in at x = 0 at rate vAS0, taking out unused
nutrient at x = L at rate vAS(L, t) and due to the consumption of nutrient
by planktonic and wall attached cells in the reactor. By contrast, a similar
calculation for the planktonic bacteria u yields no counterpart to the influx
of fresh nutrient into the reactor at x = 0 since we assume the inflow is
sterile. In summary, the Danckwerts’ boundary conditions say that advection
alone mediates the interaction of the reactor with the external environment.
See [2,37,50] for other uses of these boundary conditions and particularly the
latter for alternative conditions.

System (6.17)–(6.19) has a trivial steady state

S ≡ S0, u = w ≡ 0

which we refer to as the ‘washout steady state’ since no organisms are present.
The linearization of (6.17)–(6.19) about the washout steady state is given by:
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St = d0Sxx − vSx − γ−1ufu(S0)− δγ−1wfw(S0)
ut = duxx − vux + u(fu(S0)− k) + δwfw(S0)(1−G(0)) (6.20)

−αu+ δβw
wt = w(fw(S0)G(0)− kw − β) + δ−1αu ,

with the homogeneous boundary conditions:

0 = −d0Sx(0, t) + vS(0, t), Sx(L, t) = 0
0 = −dux(0, t) + vu(0, t), ux(L, t) = 0 .

Introducing (S, u,w) = exp(λt)(S̄(x), ū(x), w̄(x)) into (6.20), we arrive at the
eigenvalue problem relevant for the stability of the washout steady state

λS̄ = d0S̄
′′ − vS̄′ − γ−1ūfu(S0)− δγ−1w̄fw(S0)

λū = dū′′ − vū′ + ū(fu(S0)− k) + δw̄fw(S0)(1−G(0)) (6.21)
−αū+ δβw̄

λw̄ = w̄(fw(S0)G(0)− kw − β) + δ−1αū ,

with

0 = −d0S̄′(0) + vS̄(0), S̄′(L) = 0
0 = −dū′(0) + vū(0), ū′(L) = 0. (6.22)

It turns out that the eigenvalues of (6.21)–(6.22) determine the stabil-
ity of the washout steady state despite the fact that the spectrum of the
differential-algebraic operator appearing on the righthand side of (6.21), with
the boundary conditions determining its domain, may not consist solely of
eigenvalues.

The following result is proved in [6].

Theorem 2. Let

Â =
(
fu(S0)− k − α− v

Lλd̄ fw(S0)(1−G(0)) + β
α fw(S0)G(0)− kw − β

)
. (6.23)

where d̄ = d/Lv and −λd̄ < 0 is the largest eigenvalue of the scaled eigenvalue
problem

λφ = d̄φ′′ − φ′

0 = −d̄φ′(0) + φ(0), φ′(1) = 0. (6.24)

Let s(Â) be the stability modulus, i.e., the largest of the distinct real eigenval-
ues of matrix Â. If s(Â) < 0 then all eigenvalues of (6.21) are negative and
the washout steady state is asymptotically stable; the washout steady state is
unstable whenever s(Â) > 0.
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Note the similarity of the two stability determining matrices (6.5) and
(6.23). The only difference is that D in (6.5) is replaced by v

Lλd̄ in (6.23). The
term v

Lλd̄ should be viewed as an effective washout or removal rate from the
bio-reactor. For the CSTR, 1/D is the mean residence time in the chemostat
so there is a close correspondence between the two matrices.

It may seem striking that stability boils down to the sign of the leading
eigenvalue of a 2 × 2 matrix exactly as in the case of the continuous culture
model. We would argue that it is quite natural on biological grounds. There
are two habitats for the bacteria, the wall and the bulk fluid. To survive,
the organism must be able to establish itself in at least one of the habitats
sufficiently well to overcome the constant leakage to the other, possibly less
suitable, habitat.

It is evident that the basic reproductive number defined in (6.16) can be
adopted to the tubular reactor. All formulas obtained for CSTR carry over
to the tubular reactor by merely replacing the dilution rate D by its counter-
part v

Lλd̄.
The following global results are special cases of Theorems 3.2 and 4.1 in [6].

Theorem 3. If s(Â) < 0 and fw(S0)− kw > fu(S0)− k − λd then∫ 1

0

[u(x, t) + w(x, t)]dx→ 0, t→∞ .

If s(Â) > 0 and
fw(S0)G(0)− kw − β �= 0 ,

then there exists a steady state solution (S, u,w) satisfying

0 < S(x) < S0, S′(x) < 0, u(x) > 0, and
0 < w(x) < wmax, 0 ≤ x ≤ L.

Figure 6.5 from [6] depicts the steady state solution of (6.17)–(6.19) where
cell death rates are zero. Observe that wall attached cells fully occupy the front
lip near x = 0 of the tube (wmax = 1), dropping rapidly to zero when nutri-
ent is depleted downstream in the 150 cm tube. The shape of the suspended
(planktonic) cell density profile implies that these cells are being sloughed off
the wall at a rate just balancing their washout.

6.4.1 Advection Dominated Flow Reactor

If diffusion and cell motility are small compared to advection in (6.17)–(6.19)
then we obtain the hyperbolic system studied by Jones and Smith in [35].

St + vSx = −γ−1ufu(S)− γ−1δwfw(S)
ut + vux = u(fu(S)− k) + δwfw(S)(1−G(W )) (6.25)

−αu(1−W ) + δβw
wt = w(fw(S)G(W )− kw − β) + αδ−1u(1−W )
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Fig. 6.5. Steady state solution of (6.17)–(6.19) with k = kw = 0.0

Boundary conditions, representing the influx of nutrient in a sterile feed are
given by

vS0 = vS(0, t),
0 = vu(0, t), (6.26)

and initial conditions are

S(x, 0) = S0(x), u(x, 0) = u0(x), w(x, 0) = w0(x), 0 ≤ x ≤ L. (6.27)

We assume that S0, u0, w0 are nonnegative, continuous and w0 ≤ wmax.
It is shown in [35] that the system (6.25)–(6.27) has a unique global contin-

uous solution provided that S0, u0 ≥ 0 and 0 ≤ w0 ≤ wmax and the compati-
bility conditions S0(0) = S0 and u0(0) = 0 hold. A more thorough treatment
of well-posedness for a general class of hyperbolic systems including (6.25)–
(6.27) is carried out in [43].

As above, the focus is on the stability of the washout equilibrium solution

S = S0 , u = w = 0 .

Remarkably, the wall-attached population density W (t) ≡ w(0, t)/wmax

at x = 0 where nutrient concentration is highest can be computed from the
scalar ordinary differential equation (since u(0, t) = 0):

dW

dt
= W [fw(S0)G(W )− kw − β] . (6.28)

As G is strictly decreasing on [0, 1], it is easily seen that

fw(S0)G(0)− kw − β < 0 =⇒ W (t) → 0
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and if W (0) > 0 then

fw(S0)G(0)− kw − β > 0 =⇒ W (t) →W ∗

where W ∗ is the unique solution of

fw(S0)G(W )− kw − β = 0 .

This motivates the following result, proved in [35], which establishes that
the sign of fw(S0)G(0) − kw − β determines the asymptotic behavior of
(6.25)–(6.27).

Theorem 4. If
fw(S0)G(0)− kw − β < 0

holds then every solution of (6.25)–(6.27) converges to the washout steady
state, uniformly in x ∈ [0, L].

If
fw(S0)G(0)− kw − β > 0

then there is a unique steady state solution (S̄, ū, w̄) satisfying

0 < S̄(x) < S0, 0 < ū(x), 0 < w̄(x) ≤ wmax, 0 < x ≤ L,

where W ∗ = w̄(0)/wmax. Moreover, it is asymptotically stable in the linear
approximation.

Again we see that biofilm bacteria simply must grow fast enough to out
pace any losses due to cell death and sloughing in order to survive. The steady
state plots in Fig. 6.6 show the strong decline in nutrient concentration as one
moves downstream and the wall adherent cells occupying the front lip near
x = 0 of the tubular reactor. Planktonic cells are sloughed off this front lip at
a rate which balances washout. Parameter values for the simulation in Fig. 6.6
are as follows: kw = .05, α = β = .2, δ = 10.0, k = .2, f(S) = fw(S) =
S/(1 + S). Initial data are S0(x) = 1, u0(x) = x, w0(x) = 0.
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Fig. 6.6. Steady-state solution (S̄, ū, w̄) of (6.25)–(6.27)
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6.4.2 Mobile Wall-Adherent Cells

Smith and Zhao [45] consider the case that wall-adherent bacteria are also
mobile. The equations now become more mathematically tractable since the
added diffusion term has a smoothing effect. The system is given by:

St = d0Sxx − vSx − γ−1ufu(S)− γ−1δwfw(S)
ut = duxx − vux + u(f(S)− k) + δwfw(S)(1−G(W )) (6.29)

−αu(1−W ) + δβw
wt = d1wxx + w(fw(S)G(W )− kw − β) + αδ−1u(1−W ),

where d1 denotes the motility of wall-attached bacteria, with boundary con-
ditions

vS0 = −d0Sx(0, t) + vS(0, t), Sx(L, t) = 0
0 = −dux(0, t) + vu(0, t), ux(L, t) = 0 (6.30)
0 = wx(0, t) = wx(L, t)

and initial conditions

S(x, 0) = S0(x), u(x, 0) = u0(x), w(x, 0) = w0(x), 0 ≤ x ≤ L. (6.31)

This system is well-posed for continuous nonnegative initial data and in-
duces a semiflow with a compact global attractor on the nonnegative cone of
the space of triples of continuous functions on [0, L]. See Theorem 3.2 in [45].

The focus is again on the stability of the washout equilibrium

S = S0, u = w = 0 .

The associated eigenvalue problem is given by

λS̄ = d0S̄xx − vS̄x − γ−1ūfu(S0)− δγ−1w̄fw(S0)
λū = dūxx − vūx + ū(f(S0)− k) + δw̄fw(S0)(1−G(0))

−αū+ δβw̄ (6.32)
λw̄ = d1wxx + w̄(fw(S0)G(0)− kw − β) + δ−1αū ,

with

0 = −d0S̄x(0) + vS̄(0), S̄x(L) = 0
0 = −dūx(0) + vū(0), ūx(L) = 0 (6.33)
0 = w̄x(0) = w̄x(L).

The stability of washout is determined by a dominant eigenvalue but note
that this eigenvalue problem decouples in the sense that the last two equa-
tions are independent of the first and therefore, we need to consider dominant
eigenvalues both for this subsystem as well as for the full eigenvalue problem.
The following result is proved in [45].
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Lemma 1. There exists a dominant real eigenvalue Λ of (6.32) and (6.33).
That is, �λ < Λ for all other eigenvalues λ of (6.32). The washout steady
state is asymptotically stable if Λ < 0 and unstable if Λ > 0. Λ is related to
the dominant eigenvalue Γ of the last two equations of (6.32) and (6.33) as
follows. If Γ > −λd0 , which holds if fw(S0)G(0)− kw − β > −λd0 , then

fw(S0)G(0)− kw − β < Λ = Γ < s(Ã)

where

Ã =
(
fu(S0)− k − α fw(S0)(1−G(0)) + β

α fw(S0)G(0)− kw − β

)
(6.34)

and λd0 is defined in Theorem 2. If Γ ≤ −λd0 , then Λ = −λd0 .

As a special case, note that

fw(S0)G(0) > kw + β

implies Λ > 0 and hence the instability of the washout state.
As in the case when wall adherent bacteria are assumed to be immobile,

one can give conditions for the global stability of the washout equilibrium (see
Proposition 4.4 in [45]) but they are not sharp. We conjecture that Λ < 0 is
sufficient for this.

The main result of [45] follows.

Theorem 5. Assume Λ > 0. Then system (6.29)–(6.31) has at least one
positive steady state:

0 < S(x) < S0 , 0 < u(x) , 0 < w(x) ≤ wmax .

Furthermore, it is uniformly persistent in the sense that there exists η > 0 such
that for any nonnegative continuous initial data (S0, u0, w0), with at least one
of u0(·) and w0(·) not identically zero, there exists T0 = T0(S0, u0, w0) > 0
such that the solution (S, u,w) satisfies

S(x, t) ≥ η , u(x, t) ≥ η , w(x, t) ≥ η , x ∈ [0, L] , t ≥ T0 .

6.5 Three-Dimensional Flow Reactor

The three dimensional model is substantially more complicated because the
fluxes between adherent and planktonic compartments of the model appear
as part of the (nonlinear) boundary conditions. Our treatment here follows
Jones et al. [32]. Consider a cylindrical tube

Ω = {(x, y, z) ∈ IR3 : 0 < x < L , 0 ≤ r2 = y2 + z2 < R2}

under steady flow with velocity profile

v(r) = Vmax[1− (r/R)2] .
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The equations for nutrient density S = S(x, y, z, t), planktonic biomass
density u = u(x, y, z, t) and the areal density of wall-attached cells w =
w(x, y, z, t) on the radial boundary (r = R) for a single strain are given by:

St = dS
xSxx + dS

r [Syy + Szz]− v(r)Sx − γ−1ufu(S)
ut = du

xuxx + du
r [uyy + uzz]− v(r)ux + u(fu(S)− k) (6.35)

for (x, y, z) ∈ Ω. Substrate diffusivity in the axial direction is denoted by dS
x

and in the radial direction by dS
r . Planktonic bacteria are assumed to follow a

random run and tumble motion which can be modeled by diffusion (Berg [9]).
Motility coefficients du

x and du
r in the axial and radial directions are prescribed.

Wall-adherent cells are assumed to be immobile. Growth of bacteria on
the wall r = R is described by

wt = w[fw(S)G(W )− kw − β] + αu(1−W ) . (6.36)

(The units of α are now lt−1)
Danckwerts’ boundary conditions describe the interface conditions be-

tween up-stream and down-stream flow and the reactor. They are as follows:

at x = 0:
v(r)S0 = −dS

xSx + v(r)S
0 = −du

xux + v(r)u , (6.37)

at x = L:

Sx = ux = 0 . (6.38)

These conditions reflect the assumption that upstream flow brings sterile nu-
trient at concentration S0 into the reactor at x = 0 and flushes out planktonic
cells and unused nutrient at x = L. The radial boundary conditions at r = R
reflect important biological considerations:

−dS
r Sr = γ−1wfw(S)

−du
rur = αu(1−W )− w[fw(S)(1−G(W )) + β] . (6.39)

They describe the fluxes of nutrient and biomass between the fluid and wall
environment. The first describes the flux of nutrient from the fluid to the wall
environment due to consumption by wall-attached bacteria. The first term
in the second equation represents the flux of biomass from the fluid to the
wall due to passive attraction of planktonic cells to the wall; the second term
represents flux in the opposite direction caused by a fraction of the progeny
of wall-attached cells being forced into the fluid.

In addition, S, u,w satisfy (non-negative) initial conditions at t = 0:

S(x, y, z, 0) = S0(x, y, z)
u(x, y, z, 0) = u0(x, y, z) (6.40)
w(x, y, z, 0) = w0(x, y, z),
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where S0, u0, w0 are continuous. Existence of a unique weak solution of the
system (6.35)–(6.40) and its Hölder continuity is established in [32].

It will also be of interest to allow the initial“charging” of the reactor with
microbes to take place via the boundary condition at x = 0 by replacing
zero on the left side of (6.37) by v(r)u0(t), where u0(t) ≡ u0, a constant, on
0 ≤ t ≤ t0 and u0(t) = 0, t ≥ t0.

In order to clarify that the system (6.35)–(6.40) captures the intended mass
transfer, we integrate the S equation over Ω and use cylindrical coordinates
(r, θ, x), to obtain

∂

∂t

∫ ∫ ∫
Ω

SdV

=
∫ ∫ ∫

Ω

(
[dS

xSxx − v(r)Sx] + dS
r [

1
r
(rSr)r +

1
r2
Sθθ]
)
rdrdxdθ

−
∫ ∫ ∫

Ω

γ−1ufu(S)dV

=
∫ 2π

0

∫ R

0

(dS
xSx − v(r)S)|x=Lrdrdθ −

∫ 2π

0

∫ R

0

(dS
xSx − v(r)S)|x=0rdrdθ

+RdS
r

∫ 2π

0

∫ L

0

Sr|r=Rdxdθ −
∫ ∫ ∫

Ω

γ−1ufu(S)dV

= −
∫ 2π

0

∫ R

0

v(r)S|x=Ldrdθ +
∫ 2π

0

∫ R

0

v(r)S0dr

−R
∫ 2π

0

∫ L

0

γ−1wfw(S)|r=Rdxdθ −
∫ ∫ ∫

Ω

γ−1ufu(S)dV

The rate of change of substrate in Ω is the flux of substrate into Ω at x = 0
minus the flux of substrate out of Ω at x = L minus substrate consumed by
wall-adherent organisms on the inside wall of the cylinder r = R and minus
substrate consumed by planktonic organisms in Ω.

Similarly, integrating the u equation leads to

∂

∂t

∫ ∫ ∫
Ω

udV

=
∫ ∫ ∫

Ω

(
[du

xuxx − v(r)ux] + du
r [

1
r
(rur)r +

1
r2
uθθ]
)
rdrdxdθ

+
∫ ∫ ∫

Ω

u[fu(S)− k]dV

=
∫ 2π

0

∫ R

0

(du
xux − v(r)u)|x=Lrdrdθ −

∫ 2π

0

∫ R

0

(du
xux − v(r)u)|x=0rdrdθ

+Rdu
r

∫ 2π

0

∫ L

0

ur|r=Rdxdθ +
∫ ∫ ∫

Ω

u[fu(S)− k]dV
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= −
∫ 2π

0

∫ R

0

v(r)u|x=Lrdrdθ

+R
∫ 2π

0

∫ L

0

(w[fw(S)(1−G(W )) + β]− αu(1−W )) |r=Rdxdθ

+
∫ ∫ ∫

Ω

u[fu(S)− k]dV

Planktonic biomass increases due to net growth, due to the sloughing of wall-
adherent cells into the fluid, and due to the failure of a fraction of the daughter
cells of wall attached bacteria to find wall sites and it decreases due to attach-
ment of planktonic cells to the lateral surface and to washing out at x = L.

For brevity, we let LS and Lu denote the differential operators for the S
and u equations so they become:

St = LSS − γ−1ufu(S)
ut = Luu+ u(fu(S)− k) .

Our aim now is to perform a linear stability analysis of the washout equi-
librium:

S = S0 , u = w = 0 (6.41)

and to show the existence of a nontrivial steady state in which u,w > 0
under suitable conditions. The linear variational equation about the washout
equilibrium is

St = LSS − γ−1ufu(S0)
ut = Luu+ u[fu(S0)− k]
wt = w[fw(S0)G(0)− kw − β] + αu

together with homogeneous boundary conditions x = 0 (formally, set S0 = 0
in (6.37)) and x = L and radial boundary conditions on r = R:

0 = dS
r Sr + γ−1wfw(S0) (6.42)

0 = du
rur + αu− w[fw(S0)(1−G(0)) + β] .

The associated eigenvalue problem, obtained by seeking solutions Ŝ =
eλtS(x, y, z) (and similarly for other variables), is

λS = LSS − γ−1ufu(S0)
λu = Luu+ u[fu(S0)− k] (6.43)
λw = w[fw(S0)G(0)− kw − β] + αu

together with the above boundary conditions.
We have the following from [32].
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Proposition 1. The eigenvalue λ∗ of (6.43) with the largest real part is real,
simple and satisfies λ∗ > fw(S0)G(0)− kw − β. It belongs to the interval with
endpoints fw(S0)−kw and fu(S0)−k− L

Vmax
λ, where −λ < 0 is the principal

eigenvalue of the (scaled x̄ = x/L, r̄ = r/R) eigenvalue problem:

λu = θxux̄x̄ − (1− r̄2)ux̄ + θr r̄−1(r̄ur̄)r̄ ,

0 = −θxux̄ + (1− r̄2)u , x̄ = 0
0 = ux̄ , x̄ = 1
ur̄ = 0 , r̄ = 1 ,

where θx = (du
x/L

2)(L/Vmax), θr = (du
r /R

2)(L/Vmax). The washout state is
stable in the linear approximation if λ∗ < 0 and unstable if λ∗ > 0.

As a result of the inequalities above, we see that λ∗ < 0 and the washout
state is stable if

fw(S0)− kw < 0 and fu(S0)− k − L

Vmax
λ < 0 ; (6.44)

λ∗ > 0 and the washout state is unstable if either

fw(S0)G(0)− kw − β ≥ 0 (6.45)

or if
fu(S0)− k − L

Vmax
λ > 0 and fw(S0)− kw > 0 .

The reader will observe the similarity in the CSTR and PFR results. Obvi-
ously, L

Vmax
λ is an effective dilution rate for PFR.

We conjecture that the washout state is globally stable if λ∗ < 0 as in the
case of the CSTR. It can be shown (Jones et al. [32]) that if (6.44) holds then
the washout state is globally attracting in the sense that

lim
t→∞

(∫ ∫ ∫
Ω

udV +
∫ 2π

0

∫ L

0

wRdθdx

)
= 0 .

The steady state equations are

0 = LSS − γ−1ufu(S)
0 = Luu+ u[fu(S)− k] , in Ω (6.46)
0 = w[fw(S)G(W )− kw − β] + αu(1−W ) , on r = R ,

with boundary conditions (6.37)–(6.39). We summarize our main result for
PFR below. It follows from Proposition 3.4 and Theorem 3.5 in [32] and
Proposition 4.2(b) in [31].
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Theorem 6. If λ∗ < 0, then the washout state is stable in the linear ap-
proximation; it is globally attracting if (6.44) holds. If λ∗ > 0 and the non-
degeneracy condition b = fw(S0)G(0) − kw − β �= 0 holds then there exists
a radially symmetric steady state solution (S, u,w) of (6.46) satisfying (in
cylindrical coordinates)

0 < S(x, r) ≤ S0 , u(x, r) > 0 , and 0 < w(x) ≤ wmax .

A persistence result similar to that described above for CSTR is also proved
in [32] if λ∗ > 0 and certain additional assumptions hold.

The initial conditions for wall-attached bacteria and planktonic bacteria
are S0 = S0, w0 = 0, and u0 = 0, respectively. The reactor is charged with
bacteria by replacing the original boundary condition on the reactor entrance
with v(r)u0(t) = −du

xux+v(r)u, where u0(t) = 10−9U5(t) and U5(t) is the step
function of unit height turning to zero at T = 5. This mimics the introduction
of an inoculum of planktonic cells into a bacteria-free PFR. Note the physical
time scale is L/Vmax = 40 h. In order to provide a steady-state profile, the
equations were integrated to time T = 1, 500 h at which point no further
change could be detected, as can be seen in Fig. 6.5 (left).

The PFR time series displayed in Fig. 6.7 (top) is roughly similar to that in
Fig. 6.3 for CSTR but note the log–log scale used to accommodate the range of
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bacteria for (6.35)–(6.40). Bottom: Graph of steady-state, wall-attached bacteria
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the data. An initial period of unchanged total substrate where wall adherent
and planktonic cells accumulate is followed by a rapid decline in substrate
and a slowing of the rate of increase of adherent and planktonic cells. As the
substrate levels off, the wall adherent population does too while the planktonic
population level declines somewhat as steady-state is achieved (Fig. 6.8).

As noted in Sect. 2.2, wall adherent bacterial cells may have flagella and
consequently have limited motility on the cylindrical surface r = R. Fur-
thermore, including random cell motility on this surface should facilitate the
realization of the biofilm system as a well-behaved semiflow in a suitable func-
tion space possessing a compact global attractor just as it did in Sect. 2.2. For
that reason we are lead to introduce (6.35)–(6.40) where (6.36) is replaced by:

wt = dw[R−2wθθ + wxx] + w[fw(S)G(W )− kw − β] + αu(1−W )
wx(x, θ) = 0, x = 0, L (6.47)
w(x, θ) = w(x, θ + 2π)

In future work we will extend the analysis in Sect. 2.2 to this system.

6.6 Mixed Culture

A mixed culture model treating competition for substrate and wall coloniza-
tion sites in an advection-dominated flow reactor was considered by Jones
and Smith in [35]. Here, we follow [31] where both advection and diffusion
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are included in a three dimensional flow reactor. A flow reactor amounts to a
section of the cylindrical tube Ω in which a steady flow of fluid in the direction
of increasing x is imposed. The flow carries fresh nutrient at concentration S0

into the reactor across the x = 0 interface and carries unused nutrient and
bacteria out of the reactor across the x = L interface. The equations describ-
ing nutrient density S = S(x, y, z, t) and biomass density ui = ui(x, y, z, t) of
bacteria of strain i in the fluid (i.e., in Ω) are given by:

St = dS
xSxx + dS

r [Syy + Szz]− v(r)Sx −
∑

i

γ−1
i uifui(S) (6.48)

ui
t = di

xu
i
xx + di

r[u
i
yy + ui

zz]− v(r)ui
x + ui(fui(S)− ki) (6.49)

for (x, y, z) ∈ Ω. The areal density of wall-attached cells of strain i on the
radial boundary r = R of Ω, denoted by wi = wi(x, y, z, t), satisfy the equa-
tions by

wi
t = wi[fwi(S)Gi(W )− kwi − βi] + αiu

i(1−W ) . (6.50)

The specific growth rate of strain i in the fluid fui(S) and on the wall fwi(S)
are further described below. Constants ki and kwi represent cell death rates
in fluid and wall environments, respectively, βi is the rate of sloughing of wall-
attached bacteria into the fluid, and αi is the rate coefficient of adhesion to
the wall surface for strain i. Axial and radial nutrient diffusion coefficients are
given by dS

x , d
S
r , respectively; axial and radial bacterial motility coefficients

for the ith strain are di
x, d

i
r, respectively. A model assumption is that there is

a maximum attainable areal density of wall-attached bacteria wmax and

W =
∑

i

wi

wmax

represents the occupation fraction. Danckwerts’ boundary conditions describe
the interface conditions between the up-stream and down-stream flow and the
reactor. They are as follows:
at x = 0:

v(r)S0 = −dS
xSx + v(r)S (6.51)

0 = −di
xu

i
x + v(r)ui ,

at x = L:

Sx = ui
x = 0 . (6.52)

The radial boundary conditions at r = R are:

0 = dS
r Sr +

∑
i

γ−1
i wifwi(S) (6.53)

0 = di
ru

i
r + αiu

i(1−W )− wi[fwi(S)(1−Gi(W )) + βi] .
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In addition, S, u,w satisfy (non-negative) initial conditions at t = 0:

S(x, y, z, 0) = S0(x, y, z)
ui(x, y, z, 0) = ui

0(x, y, z) (6.54)
wi(x, y, z, 0) = wi

0(x, y, z) .

We assume that S0, u
i
0, w

i
0 are continuous.

It will also be of interest to allow the “charging” of the reactor with mi-
crobes to take place via the boundary condition at x = 0 by replacing zero
on the left side of (6.51) by v(r)u0i(t), where u0i(t) ≡ u0i, a constant, on
0 ≤ t ≤ t0 and u0i(t) = 0, t ≥ t0.

Keeping in mind that 0 ≤ wi ≤ w∞, the initial data and solutions S, ui, wi

must satisfying:

S, ui, wi ≥ 0 ,
∑

i

wi ≤ w∞ . (6.55)

Hereafter, we refer to these restrictions as the range conditions.
We stress here that the model equations describe competition among the

n bacterial strains for limited wall colonization sites as well as for limited
substrate. A strain may be a good competitor by being able to grow at low
substrate concentrations and/or by a relatively strong ability for surface at-
tachment.

For brevity, we let LS and Li denote the differential operators for the S
and ui equations so they become:

St = LSS −
∑

i

γ−1
i uifui(S)

ui
t = Liui + ui(fui(S)− ki)

6.6.1 Eigenvalue Problems

A family of non-standard eigenvalue problems plays a central role in our analy-
sis so we introduce them here. The adjoint operator to LS (Li) with homo-
geneous boundary conditions (6.51) with S0 = 0, (6.52), and radial boundary
condition Sr = 0 is denoted by LS (Li). LS is given by:

LSφ = dS
xφxx + dS

r [φyy + φzz] + v(r)φx

with homogeneous boundary conditions

0 = dS
xφx + v(r)φ , x = L

0 = φx , x = 0
0 = φr , r = R

and similarly for Li. It’s as if the direction of flow through the reactor changed
from left to right to right to left. Denote by −λS the principal eigenvalue of
the eigenvalue problem:

LSφ = λφ ,
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together with the above boundary conditions. Then −λS < 0 and the cor-
responding eigenfunction φ satisfies φ > 0 on Ω and can be normalized by
assuming that it attains a maximum of unity (see Appendix 6 in [32]). Let
−λi < 0 be the principal eigenvalue of Li subject to analogous homogeneous
boundary conditions. It is well-known that −λi < 0 is also the principal eigen-
value of Li corresponding to boundary conditions (6.51),(6.52), and ur = 0
on r = R.

Another important pair of eigenvalue problems is the following.

λu = Liu+ au , Ω

λw = bw + αu , r = R

0 = drur + αu− cw , r = R (6.56)
0 = −dxux + v(r)u , x = 0
0 = ux , x = L

The corresponding adjoint problem is given by:

λu = Liu+ au , Ω

λw = bw + cu , r = R

0 = drur + αu− αw , r = R (6.57)
0 = dxux + v(r)u , x = L

0 = ux , x = 0

In order to see in what sense (6.57) is adjoint to (6.56) we make the following
observation.

Proposition 2. Let u ∈ C2(Ω) ∩ C1(Ω) satisfy the Danckwerts’ boundary
conditions at x = 0, L, û ∈ C2(Ω) ∩ C1(Ω) satisfy the adjoint Danckwerts’
boundary conditions at x = 0, L, u,w satisfy the inhomogeneous radial bound-
ary condition

h = drur + αu− cw , r = R

and û, ŵ satisfy the homogeneous adjoint radial boundary condition in (6.57).
Then we have ∫

Ω

(Liu)ûdV +
∫

r=R

(bw + αu)ŵdA

=
∫

Ω

(Liû)udV +
∫

r=R

hû+ w(bŵ + cû)dA
(6.58)

If h ≡ 0, then we obtain the adjoint relation of (6.56) and (6.57).
The proof, given in [31], boils down to the use of Green’s identities.
One of our main tools is the following result, Theorem 3.3 in [32]. It can

be generalized to non-constant coefficients; see [31].
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Proposition 3. Principal Eigenvalue. Let α, c > 0. Then there exists a
real simple eigenvalue λ∗ > b of (6.56) satisfying:

b+ c < λ∗ ≤ a− λi , if b+ c < a− λi

b+ c = λ∗ , if b+ c = a− λi

a− λi < λ
∗ < b+ c , if b+ c > a− λi

Corresponding to eigenvalue λ∗ is an eigenvector (ū, w̄) satisfying ū > 0 in
Ω and w̄ > 0 in r = R. If λ is any other eigenvalue of (6.56) corresponding
to an eigenvector (u,w) ≥ 0, then λ = λ∗ and (u,w) = c(ū, w̄) for some
c > 0. ū, w̄ are axially symmetric, i.e., in cylindrical coordinates (r, θ, x),
ū = ū(r, x), w̄ = w̄(x).
λ∗ is also an eigenvalue of (6.57) corresponding to an eigenvector (u,w) =

(ψ, χ). Moreover, (ψ, χ) has the same uniqueness up to scalar multiple, posi-
tivity and symmetry properties as does (ū, w̄).

6.6.2 Estimates and Simulations

We begin by establishing that bacterial growth is limited by the supplied sub-
strate. Let (ψi, χi) be the principal eigenvector corresponding to the eigen-
value λi of (6.57) in the case that a=0, b=−βi, α=αi, c=βi, dr = di

r, dx = di
x.

Normalize (ψi, χi) by requiring ψi, χi ≤ φ ≤ 1 with equality holding at some
point for each inequality. By Proposition 3 and the fact that b + c = 0, we
have λi < 0 and, by the second of equations (6.57), ψi < χi on r = R.

Our first result represents a significant improvement over Theorem 3.1
in [32] in the case of a single species since we obtain useful bounds even when
kwi = 0.

Theorem 7. The following estimates hold for solutions of (6.48)–(6.54):

lim sup
t→∞

S(t, x, y, z) ≤ S0 ,

uniformly in (x, y, z) ∈ Ω and

lim sup
t→∞

(∫
Ω

SφdV +
∑

i

γ−1
i

[∫
Ω

uiψidV +
∫

r=R

wiχidA

])

≤
2πS0

∫ R

0
rv(r)dr

M

(6.59)

where
M = min

1≤j≤n
{λS ,−λj + kj ,−λj + kwj} .

Proof. It is easy to establish that S ≤ S̃, where S̃ satisfies St = LSS with
homogeneous radial boundary condition Sr = 0 and (6.51),(6.52), by a simple
comparison argument. Furthermore, noting that S = S0 is a steady state of
this comparison equation, the linearization of which having a dominant nega-
tive eigenvalue, we conclude that S̃ → S0 as t→∞ uniformly in (x, y, z) ∈ Ω.
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Now, corresponding to the normalized eigenfunctions φ, ψi, χi, define

X =
∫

Ω

φSdV , Y i =
∫

Ω

ψiuidV , Z =
∫

r=R

χiwidA .

We note the following, which follow by integration by parts and Green’s third
identity applied to the two dimensional Laplacian in y, z and using the bound-
ary conditions satisfied by S:∫

Ω

φLSSdV =
∫

Ω

SLSφdV −
∑

i

γ−1
i

∫
r=R

φwifwi(S)dA

+S0

∫
r≤R

v(r)φ(0, y, z)dydz

= −λSX −
∑

i

γ−1
i

∫
r=R

φwifwi(S)dA

+S0

∫
r≤R

v(r)φ(0, y, z)dydz

Differention of X,Y i, Zi and using these relations leads to the following:

Xt = −λSX −
∑

i

γ−1
i

∫
Ω

uiφfui(S)dV −
∑

i

γ−1
i

∫
r=R

φwifwi(S)dA

+S0

∫
r≤R

v(r)φ(0, y, z)dydz

Y i
t =

∫
Ω

ψiLiuidV +
∫

Ω

uiψi[fui(S)− ki]dV (6.60)

Zi
t =

∫
r=R

χi[−βiw
i + αiu

i]dA+
∫

r=R

χiwi[fwi(S)Gi(W )− kwi] (6.61)

−χiαiu
iWdA

Now, using the adjoint relation (6.58), the eigenvalue problem satisfied by
(ψi, χi), and ψi < χi on r = R, we find that

(Y i + Zi)t =
∫

Ω

ψiLiuidV +
∫

r=R

χi[−βiw
i + αiu

i]dA

+
∫

Ω

(fui(S)− ki)ψiuidV +
∫

r=R

χiwi[fwi(S)Gi(W )− kwi]

−αiχ
iuiWdA

=
∫

Ω

(Liψ
i)uidV +

∫
r=R

ψi[αiu
iW + wifwi(S)(1−Gi(W ))]



6 The Biofilm Model of Freter: A Review 295

+wi[−βiχ
i + βiψ

i]dA+
∫

Ω

fui(S)ψiuidV

+
∫

r=R

χiwifwi(S)Gi(W )dA− kiY
i − kwiZ

i

−
∫

r=R

αiχ
iuiWdA

= λi(Y i + Zi)− kiY
i − kwiZ

i +
∫

Ω

fui(S)ψiuidV

+
∫

r=R

wifwi(S)[Gi(W )χi + (1−Gi(W ))ψi]dA

+
∫

r=R

αiu
iW (ψi − χi)dA

≤ λi(Y i + Zi)− kiY
i − kwiZ

i +
∫

Ω

fui(S)ψiuidV (6.62)

+
∫

r=R

wifwi(S)χidA

Let Q = X +
∑

i γ
−1
i (Y i + Zi). Using χi, ψi ≤ φ ≤ 1, we find that

Qt ≤ −λSX +
∑

i

γ−1
i (λi − ki)Y i +

∑
i

γ−1
i (λi − kwi)Zi

+
∑

i

∫
Ω

γ−1
i uifui(S)[ψi − φ]dV +

∑
i

∫
r=R

γ−1
i wifwi(S)[χi − φ]dA

+S0

∫
r≤R

v(r)φ(0, y, z)dydz

≤ −λSX +
∑

i

γ−1
i (λi − ki)Y i +

∑
i

γ−1
i (λi − kwi)Zi

+S0

∫
r≤R

v(r)φ(0, y, z)dydz

≤ −min
j
{λS ,−λj + kj ,−λj + kwj}Q+ 2πS0

∫ R

0

rv(r)dr.

Therefore,

lim sup
t→∞

Q(t) ≤
2πS0

∫ R

0
rv(r)dr

minj{λS ,−λj + kj ,−λj + kwj}
(6.63)

This completes our proof. ��

As the numerator of the fraction on the right side of (6.59) is the net flux
of nutrient into the reactor across x = 0, (6.59) says precisely that the output
of organisms is limited by the input of substrate. Since ψi > 0 is continuous on
Ω, (6.59) implies the existence of an a priori asymptotic estimate for

∫
Ω
uidV

for each i.
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The n-strain model is obviously less mathematically tractable than the
pure culture case n = 1 and we can say very little about its asymptotic
behavior via mathematical analysis. Aside from the washout state

S = S0, ui = 0, wi = 0

there are the mono-culture equilibria Ei:

S = Si > 0, ui > 0, wi > 0, uj = 0, wj = 0, j �= i

which exist when a principal eigenvalue λ∗i > 0 and a non-degeneracy condi-
tion are satisfied (see Theorem 6). The main interest focuses on coexistence
equilibria in which one or more strains coexist. In [31] it was shown that the
linearized stability of the mono-culture equilibrium Ei to invasion by strain j
depends on the sign of a principal eigenvalue. However, because we have yet
to show that system (6.48)–(6.54) defines a well-behaved semiflow, we have
been unable to exploit the stability results so as to obtain persistence of mul-
tiple strains. We expect that the inclusion of wall-attached cell motility as in
Sect. 4.1 may yield such a system.

Parameters for the simulations have been chosen following Freter et al. [24],
modified for the different units used here (biomass density as opposed to cell
density used by Freter) following Ballyk et al. [4]. The initial conditions for
wall-attached bacteria and planktonic bacteria are S0 = S0, wi

0 = 0, and
ui

0 = 10−6 g ml−1, respectively. In order to provide a steady-state profile, the
equations were integrated to time T = 35, 000 h at which point no further
change could be detected.

The other parameters are as follows. We set dS
x = dS

r = 0.2 cm2 h−1, dui
x =

dui
r = 0.002 cm2 h−1 for i = 1, 2, 3. The concentration of the substrate feed,
S0 = 2.09×10−6 g ml−1. The fluid in the center of the tube is Vmax = 5 cmh−1.
The velocity is higher than suggested by the biology. However, coexistence
does not seem possible at lower velocities (holding all other parameters fixed
except for uptake functions, mi, ai). The larger velocity apparently provides
a more uniform nutrient field near the tube wall allowing the microbes to
persist. We use Monod uptake functions, fwi

(S) = fui
(S) = miS/(ai + S)

withm1 = 1.66 h−1, a1 = 9×10−7g ml−1,m2 = .277 h−1, a2 = 1×10−8g ml−1,
and m3 = .45 h−1, a3 = 1.05× 10−7g ml−1.

Finally, the rate of adhesion is αi = 500 cmh−1; the maximum areal bio-
mass density of adherent bacteria is w∞ = 2.78 × 10−6 g cm−2; the yield
constant γ = 0.75. The planktonic cell and adherent cell death rates are
ki = kwi

= .01 h−1.
Our simulations show that three populations can coexist in the flow re-

actor; these three populations compete for two limited resources, namely
substrate and wall-attachment space (a refuge from washout). The three
organisms differ only in their uptake functions (mi, ai); death rates, wall-
affinities, sloughing rates, and yield constants are identical for the three pop-
ulations. Figures 6.9 (top) and 6.11 (top) show transient oscillations in the
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Fig. 6.9. L1 norm versus time of the nutrients and free bacteria (top) and a surface
plot of the nutrient density S (bottom)
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Fig. 6.10. Surface plots of the planktonic biomass density ui- strain 1 (top), strain
2 (center), strain 3 (bottom)
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total planktonic and wall-attached populations, respectively, of each of the
three organisms prior to reaching steady state. Coexistence is facilitated by a
spatially inhomogeneous substrate steady state profile as depicted in Fig. 6.9
(bottom); the choice of substrate uptake functions gives each competitor an
advantage over its rivals in a region of the bio-reactor. Equilibrium distribu-
tions of the three planktonic populations are shown in Fig. 6.10; their distrib-
utions on the reactor wall are shown in Fig. 6.11 (bottom). The latter form a
pattern of segregation: roughly, one organism dominates the nutrient-rich up-
stream end, a second dominates an adjacent downstream segment and a third
appears to share with the second organism the far downstream end. A similar
segregation profile was shown in [4] for the analogous one-space dimensional
system with three populations and in [35] for an approximate hyperbolic sys-
tem with two populations. Although not shown here, populations one and
two coexist in the absence of population three using the same parameters and
initial data as above for the first two populations.
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