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The soil environment is a major sink for a multitude of chemicals and heavy metals, 
which inevitably leads to environmental contamination problems. Indeed, a plethora 
of different types of heavy metals are used and emanated through various human 
activities including agricultural, urban or industrial. Millions of tonnes of trace 
elements are produced every year from mines in demand for newer materials. On 
being discharged into soil, the heavy metals get accumulated and may disturb the 
soil ecosystem including microbial compositions and biomass, microbial community 
structure and their biological activities. Moreover, the excessive concentration of 
metals in soil can also elicit a wide range of visible and physiological symptoms in 
plants leading to losses in crop productivity. As a result, heavy metal pollution poses 
a major threat to human health and environment. Unlike many other pollutants, 
heavy metals cannot be biologically degraded to more or less toxic products and 
hence persist in the environment. Toxic metal pollution is, therefore, an enigma for 
scientists how to tackle this issue that has threatened the environment. Management 
of metal contaminated environment, especially soils, therefore, becomes important, 
as these soils usually cover large areas that are rendered unsuitable for sustainable 
agriculture. The remediation of such soils, in turn, could lead to food security across 
the globe. To address this environmental threat, conventional remediation approaches 
have been applied, which, however, do not provide acceptable solutions due either 
to the technological constraints or to the production of large quantities of toxic 
products. Therefore, the establishment of efficient, inexpensive and safe and envi-
ronment friendly methodology and techniques for identifying and limiting or 
preventing metal pollution, causing threats to the agricultural production systems 
and human health, is earnestly required. In this regard, the management of contami-
nated soils using microbes or other biological systems to degrade/transform envi-
ronmental pollutants under controlled conditions to an innocuous state or to levels 
below concentration limits established by regulatory authorities is required. Bio-
remediation in this context, applied in the rehabilitation of heavy-metal-contaminated 
soil, has been found interesting because it provides an ecologically sound and 
economically viable method for restoration and remediation of derelict soils. In this 
regard, biological agents including both heterogeneously distributed microbial 
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communities and plants of various origins could play a pivotal role in the manage-
ment of metal polluted soils. Besides their role in protecting the plants from metal 
toxicity, the microbes are also well known for their biological activities enhancing 
the soil fertility and promoting plant growth by providing essential nutrients and 
growth regulators. Use of such microbes possessing multiple properties of metal 
resistance/reduction and ability to promote plant growth through different mecha-
nisms in metal contaminated soils make them one of the most suitable choices for 
bioremediation studies. Advances in understanding the role of microorganisms in 
such processes, together with the ability to fine-tune their activities using the tools 
of molecular biology, would, therefore, lead to the development of novel or improved 
metal bioremediation processes. Both plants and microbial strategies for managing 
contaminated soils could however be different for different agro-ecosystems. The 
role of non-living microbial communities in controlling the mobility and bioavail-
ability of metal ions is well known. The use of biomass to extract heavy metals is, 
therefore, an area of current research.

Biomanagement of Metal Contaminated Soils integrates the frontiers of know-
ledge on both fundamentals and practical aspects of remediation of metal polluted 
soils. The book written by experts in the field provide unique, updated and compre-
hensive information on strategies as to how metal contaminated soils could be reme-
diated, exploited and practiced for increasing the productivity of crops in varied 
production systems. This book covers a broad area including from sources of heavy-
metal pollution to metal toxicity to plants to remediation strategies. Therefore, 
various bioremediation approaches adopted to remediate contaminated sites and 
major concerns associated with phytoremediation as a sustainable alternative are 
reviewed and discussed. Legumes have traditionally been used in soil regeneration, 
owing to their capacity to increase soil nitrogen due to biological nitrogen fixation. 
Recently, legumes have also attracted attention for their role in remediation of metal 
contaminated soils. Given the importance of Rhizobium–legume interactions in 
maintaining soil fertility, attention is paid to explain the role of this symbiosis and 
approaches employed to genetically engineer legume–Rhizobium pairing in order to 
improve bioremediation. Information relative to the mechanism of metal tolerance 
and the importance of arbuscular mycorrhizal fungi in the detoxification of metal 
polluted soils are explored. Research advances in bioremediation of soils and 
groundwater using plant-based systems, the ecological and evolutionary implica-
tions of endophytic bacterial flora of the nickel hyperaccumulator plant Alyssum 
bertolonii, use of biosurfactants of various origins in the removal of heavy metal 
ions from soils, metal signaling in plants and new possibilities for crop management 
under cadmium contaminated soils are also broadly covered in this book. Microbial 
management of highly toxic metals like cadmium and arsenic present in soil, various 
phytotechnologies employed in remediation of heavy metal contaminated soils and 
a selective overview of past achievements and current perspective of chromium 
remediation technologies using promising microorganisms and plants are highlighted 
separately. Furthermore, the possible genotoxic effects of heavy metals on plants 
and other organisms and the development and applications of new biomonitoring 
methodologies for assessment of soil/plant genotoxicity have been sufficiently discussed 
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in this chapter. The application of biomonitoring protocols in conjunction with the 
genotoxic assessment of contaminated soil will be advantageous in effective 
management of heavy metal polluted soils. The mobility and availability of toxic 
metals after soil washing with chelating agents and decontamination of radioactive-
contaminated soils are addressed. Removal of heavy metals by microalgal biomass, 
the intrinsic and extrinsic factors affecting uptake of metals by microalgae and 
how these microalgae can be helpful in removing metals from polluted environ-
ments are reviewed and highlighted. The transgenic approaches centrally important 
in metal uptake, compartmentalization and/or translocation to organs, improved 
production of intracellular metal-detoxifying chelators and (over) production of 
novel enzymes are discussed. Efforts are also directed to obtain better molecular 
insights into the metallomics and physiology of hyperaccumulating plants, which are 
likely to provide candidate genes suitable for phytoremediation. The book further 
describes how the bioremediation potential of heavy-metal resistant novel 
 actinobacteria, like Amycola topsis tucumanensis, and maize plants could be 
exploited in detoxifying heavy metals in the polluted soil microcosm. The importance 
of free-living fungi in metal sorption and plant growth promotion in different agro-
ecosystems are dealt separately.

This book collectively involves different bioremediation strategies used in metal 
removal from contaminated environments and crop production in metal stressed 
agro-ecosystems. This book contains a wealth of information for the person who 
needs to remove pollutants from soil or water. It describes the degree of success that 
can be achieved in removing a variety of metals. The knowledge and methodologies 
described in this book offer invaluable research tools, which may serve as important 
and updated source material. This edition provides an authoritative overview for 
individuals interested in bioremediation technologies. This book will, therefore, be 
of great interest to research scientists, postgraduate students, bioscience professionals, 
decision makers and farmers who intend to use natural resources for the abatement 
of metal contamination. It would also serve as a valuable resource for agronomists, 
environmentalists, soil microbiologists, soil scientists, biologists and biotechnologists 
involved in the restoration of contaminated lands. Thus, this book will cover the 
most interesting and applied aspects of phytoremediation and the role of microbial 
communities in crop productivity in soils contaminated with heavy metals, written 
by specialists who provide the scientific community with a critical evaluation of the 
management of metal contaminated soils.

We are highly thankful to our well qualified and proficient colleagues from across 
the world for providing the state-of-the-art scientific information to make this book 
a reality. All chapters are well exemplified with appropriate tables and figures, and 
enriched with extensive and the latest literature. The help and support provided by 
research scholars in designing and preparing the illustrations presented in this book 
are greatly acknowledged. We are indeed very grateful to our family members for 
their untiring and sustained support during the processing of this book. And most of 
all, we are extremely thankful to our adorable children, Zainab and Butool, for their 
patient and helpful attitude all through the project. We appreciate the great efforts of 
book publishing team at Springer-Verlag, the Netherlands, in responding to all our 
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queries very promptly and earnestly. Finally, this book may have some basic mistakes 
or printing errors that might have occurred inadvertently during compilation, for 
which we regret in anticipation. If pointed out at any stage they will definitely be 
corrected and improved in subsequent prints/editions. Suggestions about the text 
and presentation are most welcome.

Mohammad Saghir Khan
Almas Zaidi

Reeta Goel
Javed Musarrat
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Abstract Although some heavy metals are essential trace elements, most of them 
can be toxic to all forms of life at high concentrations due to formation of complex 
compounds within the cell. Unlike organic pollutants, heavy metals once introduced 
into the environment cannot be biodegraded. They persist indefinitely and cause 
pollution of air, water, and soils. Thus, the main strategies of pollution control are to 
reduce the bioavailability, mobility, and toxicity of metals. Methods for remediation 
of heavy metal-contaminated environments include physical removal, detoxifica-
tion, bioleaching, and phytoremediation. Because heavy metals are increasingly 
found in microbial habitats due to natural and industrial processes, microorganisms 
have evolved several mechanisms to tolerate their presence by adsorption, complex-
ation, or chemical reduction of metal ions or to use them as terminal electron accep-
tors in anaerobic respiration. In heavy metals, pollution abatement, microbial 
sensors, and transformations are getting increased focus because of high efficiency 
and cost effectiveness. The sources and impacts of heavy metal pollution as well as 
various remediation techniques are described.
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1.1  Introduction

Heavy metal  is  a general  collective  term  that applies  to  the group of metals and 
metalloids with density greater than 4 ± 1 g/cm³. Although it is a loosely defined 
term, it is widely recognized and usually applied to the widespread contaminants of 
terrestrial and freshwater ecosystems (Duffus 2002). These metals occur naturally 
in the earth crust and are found in soils, rocks, sediments, waters, and microorgan-
isms with natural background concentrations. Anthropogenic releases of them can 
give rise to higher concentrations of metals into the environment. Since heavy met-
als cannot be degraded or destroyed, they persist in the environment. Most of the 
discussions on heavy metals covered here include cadmium, chromium, copper, 
mercury, lead, zinc, arsenic, boron, and the platinum group metals.

The global industrial revolution has led to an unprecedented dissemination of 
toxic substances in the environment. Exposure to these pollutants especially through 
dietary intake of plant-derived food and beverages, drinking water, or air can have 
long-term effects on human health (Chaffei et al. 2004; Godt et al. 2006; Järup and 
Akesson 2009). For example, long-term exposure to lead in humans can cause acute 
or chronic damage to the nervous system, while long-term exposure of cadmium in 
humans is associated with renal dysfunction and obstructive lung disease and has 
also been linked to lung cancer and damage to human’s respiratory systems. Due to 
industrialization, or injudicious applications of agrochemicals like phosphate fertil-
izers, which show a big load of metals like cadmium, the amounts of heavy metals 
deposited onto the surface of the Earth are however many times greater than deposi-
tions from natural background sources. In Scandinavia, for example, cadmium con-
centration in agricultural soil increases by 0.2% per year. The presence of heavy 
metals in waste as a result of their uses in modern society is a matter of ever-growing 
concern. This article covers information on sources of heavy metals, their harmful 
effects, problems posed by the disposal and recycling of heavy metal containing 
products, and to find options for abatement methodologies.

1.2  Sources of Heavy Metals

Heavy metals occur as natural constituents of the earth crust and are also released due 
to human activities. Then, they become persistent environmental contaminants since 
they cannot be degraded or destroyed. They enter the body system through food, air, 
and water and bio-accumulate over a period of time (UNEP/GPA 2004). Heavy metals 
can be emitted into the environment both by natural and anthropogenic routes.

1.2.1  Natural Sources

Some high heavy metal concentrations in soils could be natural in origin, resulting 
from  weathering  of  the  underlying  bedrock.  For  example,  in  Great  Britain,  the 
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Mendip region soils are found highly enriched in lead, zinc, and cadmium due to the 
high concentrations of these metals in the bedrock and the presence of mineralized 
veins (Fuge et al. 1991). This area has a long history of mining and smelting. Soils 
developed on serpentinite are highly enriched in nickel and chromium and sustain a 
specialized plant community composed of Ni-tolerant species (Proctor and Baker 
1994). However, these soils are restricted to small areas and are easily recognized by 
their special plant community. In rocks, heavy metals exist as ores in different chemi-
cal  forms,  from which  they  are  recovered  as minerals. Heavy metal  ores  include 
sulfides, such as iron, arsenic, lead, lead–zinc, cobalt, gold, silver, and nickel sulfides, 
and oxides, such as aluminum, manganese, gold, selenium, and antimony. Some exist 
and can be recovered as both sulfide and oxide ores, such as iron, copper, and cobalt. 
Ore minerals tend to occur in families whereby metals that exist naturally as sulfides 
would mostly occur together, likewise for oxides. Therefore, sulfides of lead, cad-
mium, arsenic, and mercury would naturally be found occurring together with sulfides 
of iron (pyrite, FeS

2
) and copper (chalcopyrite, CuFeS

2
) as minors, which are obtained 

as by-products of various hydrometallurgical processes or as part of exhaust fumes in 
pyrometallurgical and other processes that follow after mining to recover them.

Weathering of bedrock with only slightly elevated metal concentrations may 
result in an enrichment of metals by pedogenic processes (Blaser et al. 2000). 
Therefore, soils in areas that are not known to have elevated metal concentrations in 
the bedrock might also show naturally elevated metal concentrations. High HNO

3
–

extractable lead concentrations of up to 140 mg kg−1 were found in the topsoils of a 
remote site (Mount la Schera) in the Swiss National Park at an altitude of 2,400 m 
above sea level, far away from industry and major traffic routes (Bernd et al. 2001). 
However,  the  speculation  is  that  long-distance  aerosol  could  be  another  reason. 
Sulfur-bearing compounds when combined with oxygen in water vapor form sulfuric 
acid, and hence the phenomenon is known as acid drainage. Generally, strong acid 
forming processes in nature involve exposure of metal sulfides enriched with heavy 
metals or metalloids to atmospheric air, which leads to oxidation and the production 
of acid and/or heavy metal-rich water (Evangelou 1998). In addition, weathering of 
coalmine waste can produce alkaline compounds, heavy metals, and sediments. Acid 
drainage, alkaline compounds, heavy metals, and sediment leached from mine waste 
into groundwater or washed away by rainwater can pollute streams, rivers, and lakes. 
Acid drainage has various anthropogenic and natural sources, but the most extensive 
and widely known source is one related to mining coal and various metal ores. During 
mining processes, some metals are left behind as tailings scattered in open and par-
tially covered pits, while some are transported through wind and flood, creating vari-
ous environmental problems (Habashi 1992). Heavy metals are basically recovered 
from their ores by mineral processing operations (UNEP/GPA 2004).

1.2.2  Anthropogenic Sources

Generally,  metals  are  emitted  during  mining  and  processing  activities.  In  some 
cases, even long after mining activities have ceased, the emitted metals continue to 
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persist in the environment. For example, Peplow (1999) reported that hard rock 
mines operate from 5 to 15 years until the minerals are depleted, but metal contami-
nation that occurs as a consequence of hard rock mining persists for hundreds of 
years after the cessation of mining operations. Apart from mining operations, mer-
cury is introduced into the environment through cosmetic products as well as manu-
facturing processes  like making of  sodium hydroxide. Heavy metals  are  emitted 
both in elemental and compound (organic and inorganic) forms. Anthropogenic 
sources of emission are the various industrial point sources including former and 
present mining sites, foundries and smelters, combustion by-products and traffics 
(UNEP/GPA 2004). Cadmium is released as a by-product of zinc (and occasionally 
lead) refining; lead is emitted during its mining and smelting activities, from auto-
mobile exhausts (by combustion of petroleum fuels treated with tetraethyl lead anti-
knock) and from old lead paints; mercury is emitted by the degassing of the earth’s 
crust. According to Ross (1994), the anthropogenic sources of metal contamination 
can be divided to five main groups:

 1.  Metalliferous mining and smelting (As, Cd, Pb, Hg)
 2.  Industry (As, Cd, Cr, Co, Cu, Hg, Ni, Zn)
 3.  Atmospheric deposition (As, Cd, Cr, Cu, Pb, Hg, U)
 4.  Agriculture (As, Cd, Cu, Pb, Si, U, Zn)
 5.  Waste disposal (As, Cd, Cr, Cu, Pb, Hg, Zn)

From all the above-mentioned sources, heavy metals may end up in solid/liquid 
waste during all life cycle phases of the products (Fig. 1.1). The figure actually 
depicts the overall flow of heavy metal contamination in practice and each step in 
the figure consists of several minor steps not indicated in the figure.

Fig. 1.1 Schematic representation depicting flow of heavy metals into waste
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1.2.3  Activities Generating Heavy Metals

Sources of heavy metal vary from place to places. Generally, these include sewage 
and stormwater discharges; landfills and cemeteries; incinerators and crematoria 
and motor vehicles, while a range of human activities like electroplating, smelting, 
dentists, laboratories, timber preservation, drum reconditioning, waste storage and 
treatment, metal treatment, sheep and cattle dips, scrap metal yards, tanning, 
chemical manufacturers, production and use of accumulators, mercury lamps, ther-
mometers, utensils, batteries, etc., also adds substantial amounts of metals to the 
environment.

1.3  Nature of Heavy Metal Pollution

A pollutant is any substance in the environment, which causes objectionable effects, 
impairing the environment, reducing the quality of life, and eventually causing 
death. Such a substance has to be present in the environment beyond a set or toler-
ance limit, which could be either a desirable or acceptable limit. Hence, environ-
mental pollution is the presence of a pollutant in the environment such as air, water, 
and soil, which may be poisonous or toxic and cause harm to living forms in the 
polluted environment. Toxic heavy metals in air, soil, and water are global problems 
that are a growing threat to the environment.

1.3.1  Heavy Metals and Air Pollution

Both natural and manmade sources are responsible for increasing heavy metals in 
the air. Natural emissions come from wind-born soil particles, volcanoes, forest 
fires, sea-salt sprays, and biogenic sources. However, the anthropogenic sources of 
atmospheric emissions, through diverse human activities, exceed the natural fluxes 
for most metals. Even the metals emitted naturally in wind-blown dusts are often of 
industrial origin. Some of the prominent sources of atmospheric pollution are: 
 burning fossil fuel to generate energy (V, Ni, Hg, Se, Sn), automobile exhaust (Pb), 
insecticides (As), manufacturing of steel (Mn, Cr), smelting (As, Cu, Zn), etc. Lead 
is the most pervasive environmental pollutant. Despite reduction of its content in 
petrol/diesel by many countries, it still accounts for roughly two third of global lead 
emission. One third of the world’s urban population is estimated to be exposed to 
marginal or unacceptable lead concentrations (Athar and Vohora 1995). Thus, emis-
sion of metals into the air is probably the greatest source of heavy metal pollution, 
which in turn contaminates aquatic ecosystem and soils through atmospheric 
fallout.
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1.3.2  Water Pollution

Contaminants behave in different ways when added to water. Nonconservative materials 
including organics, some inorganics, and many microorganisms are degraded by 
natural self-purification processes so that their concentration is reduced with time. 
The rate of decay of these materials, however, depends on the type of pollutant, the 
receiving water quality, temperature, and other environmental factors. Many inor-
ganic substances are not affected by natural processes, and hence their concentration 
is reduced only by dilution. Conservative pollutants are often unaffected by normal 
water and wastewater treatment processes so that their presence in a particular water 
source may limit its use. Most of these materials originate from industrial discharges 
and would include heavy metals from metal finishing and plating operations, insect 
repellents from textile manufacture, herbicides and pesticides, etc.
Rapid  industrialization  and  accelerating  global  development  over  the  past  two 

centuries have greatly increased the rate at which trace metals are released into the 
environment. As a result, many of the freshwater bodies are becoming greatly altered. 
According to Balogh et al. (2009), Lake Pepin, a natural lake on the upper Mississippi 
River  (USA),  reveals  the historical  trends  in  trace metal use and discharge  in  the 
watershed. Both diffuse and point sources have contributed to trace metal loadings in 
the river and accumulation in the lake. Prior to European settlement, trace metals 
accumulating in Lake Pepin came primarily from diffuse, natural sediment sources 
throughout the watershed. Later, with increasing human development in the water-
shed, municipal and industrial wastes added trace metal to the river and lake. The 
great Ganges river of India has also been found to have high heavy metals in sedi-
ments and fish (Gupta et al. 2008). Substantial changes in waste generation and treat-
ment practices after the 1960s have, however, reduced trace metal inputs.

Arsenic is toxic (see Sect. 1.4.2) and a known carcinogen, whose safe limit in drink-
ing water in most countries is 10–50 mg/l. Despite similar mandates found in many 
countries, arsenic contamination remains a worldwide threat. Arsenic concentrations 
are higher in groundwater than in surface water where the presence of arsenic is mainly 
due to dissolved minerals from weathered rocks and soils. Additionally, in groundwa-
ter from the area surrounding and including Hanoi, Vietnam, arsenic concentrations 
have been found to range from 1 to 3,050 mg/l with an average concentration of 159 mg/l. 
In highly affected areas, arsenic concentrations averaged over 400 mg/l. Water analyzed 
after treatment had concentrations ranging from 25 to 91 mg/l but with 50% of wells 
tested still had over 50 mg/l arsenic (Berg et al. 2001). High arsenic concentrations pose 
a chronic health threat to millions drinking contaminated water.

1.3.3  Soil Pollution

Rapid industrialization and subsequent expansion of the population have consider-
ably increased industrial and municipal wastewater discharge and other pollutants 
in many countries. Soil is a major sink for heavy metals released into the environment. 
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Many soils in industrialized countries are affected by acid deposition, mine waste 
and organic refuses, such as sewage sludge that introduce pollutants to the soil. 
According to Moral et al. (2005), The level of pollution of soils by heavy metals 
depends on the retention capacity of soil, especially on physicochemical properties 
(mineralogy, grain size, organic matter) affecting soil particle surfaces and also on 
the chemical properties of the metal. These metals may be retained by soil compo-
nents in the near surface soil horizons or may precipitate or co-precipitate as sul-
fides, carbonates, oxides or hydroxides with Fe, Mn, Ca, etc. In arid zones, carbonate 
effectively immobilizes heavy metals by providing an adsorbing or nucleating sur-
face and by buffering pH at values where metals hydrolyze and precipitate. The 
mobility of trace metals reflects their capacity to pass from one soil compartment to 
another where the element is bound less energetically, the ultimate compartment 
being soil solution, which determines the bioavailability. The distribution of metals 
among various compartments or chemical forms can be measured by sequential 
extraction procedures. Knowledge of how contaminants are partitioned among vari-
ous chemical forms allows a better insight into degradation of soil and water quality 
following the input of metals around mining and metallurgical plants. Therefore, 
soils pollution by heavy metals occurring both on surface and in deeper layers of 
soil is of great concern for environmental quality control. The pattern of pollutant 
content is the synergistic result of mixed processes, including diffusion of deposited 
airborne particulate matter, fluvial deposition of contaminated sediments and irreg-
ular leaching of soil layers, assisted by rainwater, even down to groundwater 
(McLean and Bledsoe 1992). The impact of heavy metals resulting from mining and 
ore roasting on soil is attenuated by several processes such as adsorption, precipita-
tion, and complex formation with soil compounds.

Soil pollution with heavy metals is multidimensional. Upon entering the soil in 
large amounts, heavy metals primarily affect biological characteristics: the total con-
tent of microorganism changes, their species diversity reduced, and the intensity of basic 
microbiological processes and the activity of soil enzymes decreases. In addition, 
heavy metals also changes humus content, structure, and pH of soils (Levin et al. 1989). 
These processes ultimately lead to the partial or, in some cases, complete loss of soil 
fertility. Any increase in contamination emission may also affect the crop productivity 
adversely. There are a number of factors influencing the concentration of heavy metals 
in plants and soils. These factors include climate, irrigation, atmospheric deposition, 
the nature of the soils on which the plant is grown and time of harvesting. Heavy metal 
contamination derived from anthropogenic sources is one of the severest; this can 
strongly influence their speciation and hence bioavailability (Lester 1987).

1.4  Impacts of Heavy Metals

Metals play an integral role in the life processes of organisms. Some metals, such as 
cobalt, chromium, copper, iron, potassium, magnesium, manganese, sodium, nickel, 
and zinc, are essential, serving as micronutrients used for (1) redox-processes, 
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(2) to stabilize molecules through electrostatic interactions, (3) acting as components 
of various enzymes, and (4) regulation of osmotic pressure (Bruins et al. 2000). 
Other metals, like silver, cadmium, gold, lead, and mercury, have no biological 
function and are nonessential and potentially toxic to organisms. Toxicity of nones-
sential metals occurs through the displacement of essential metals from their native 
binding sites or through ligand interactions (Nies 1999; Bruins et al. 2000). For 
example, Hg2+, Cd2+, and Ag2+ can bind to SH group of proteins, and thus inhibit the 
activity of enzymes (Nies 1999). Moreover, both essential and nonessential metals 
can (1) damage cell membranes, (2) alter enzyme specificity, (3) disrupt cellular 
functions, and (4) damage the structure of DNA at high concentration (Bruins et al. 
2000). To have a physiological or toxic effect, most metal ions have to enter into 
the cell. Many divalent metal cations (e.g., Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) are 
structurally very similar. Also, the structure of oxy-anions such as chromate resem-
bles that of sulfate, and the same is true for arsenate and phosphate. Thus, to be able 
to differentiate between structurally very similar metal ions, the organism’s uptake 
systems have to be tightly regulated.

1.4.1  Impact on the Environment

Some soil types have great resistance to pollution in general and to heavy metals in 
particular. However, even those soils are not always capable of resisting the effects 
of pollutants on their properties. Hence, the assessment of heavy metal toxicity to 
biological and ecological properties and the extent of decrease in soil biological 
activity may be used as a parameter characterizing the effects of heavy metals on the 
soil. It is expedient to use indices of biological activity for monitoring and diagnosis 
of soil pollution. The results of pollution with heavy metal are not always unequivo-
cal.  In most cases, a decrease  in soil biological activity  is observed (Levin et al. 
1989). In some cases, however, researchers noted an increase in the content of 
microorganisms, soil enzymatic activity, and other parameters. Thus, it is important 
to take into account a significant spatial and temporal variation in biological charac-
teristics of the soils.

Bacteria (especially spore-forming) are relatively sensitive to pollution, which is 
followed by actinomyces and microscopic fungi. The maximum toxic effect of 
heavy metals on soil microorganisms was observed in the initial period after pollu-
tion: in most cases, the numbers of microorganisms decrease significantly. The 
structure of the soil microflora changed significantly after pollution with heavy met-
als. The proportion of microscopic fungi and, sometimes, actinomyces will increase 
at high concentrations of heavy metals in the soil (Kolesnikov et al. 2000). Heavy 
metals also impact communities and cause food chain contamination. Food chain 
contamination refers to the potential for the soil metals to cause harm to animals 
that feed on the plants and soil mesofauna (animals living among the litter and 
inside the microscopic crevices of the site soil). According to US-EPA (2007), soil 
particles on the plants or the soil mesofauna may result in high enough levels of 
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contaminants that are toxic to animals that consume them. For example, if shrews at 
a contaminated site feed on earthworms, the shrews will be exposed to high concen-
trations of contaminants in the soils. This is the case because earthworms generally 
consist of over 50% soil by weight. Consumption of soil through earthworm inges-
tion results in high body burdens for shrews. This then could lead to an increase in 
body burden for birds that prey on the shrews. Soil extractions, such as dilute Ca 
(NO

3
−1)

2
, have been shown to be related to earthworm available metals and offer one 

way to evaluate this risk. According to Kolesnikov et al. (2000), changes can also 
occur in communities of different soil microorganisms. When heavy metal content 
increased, their species diversity became significantly lower, especially in the case 
of microscopic fungi. Besides, heavy metal pollution has a strong effect on the 
qualitative composition of humus; they have also indicated that all the high values 
of microbial abundance were accounted for the development of a small group of 
microorganisms that are tolerant to heavy metals.

1.4.2  Heavy Metal Toxicity

The Dangerous Substances Directive (76/464/EEC) of the European Commission 
defines dangerous chemicals as those that are toxic, persistent, and/or bioaccumula-
tive. Unlike many organic pollutants, which eventually degrade to CO

2
 and water, 

heavy metals are nondestructible and hence accumulate in the environment, espe-
cially in lakes, estuaries or marine sediments, and soils. Metals can be transported 
from one environmental compartment to another.
Many of the heavy metals are toxic to organisms at low concentrations. However, 

some heavy metals, such as copper and zinc, are also essential elements required in 
minute quantities. Concentrations of essential elements in organisms are normally 
homeostatically controlled, with uptake from the environment regulated according 
to nutritional demands. Their effects on the organisms are manifested when the 
regulation mechanism breaks down as a result of either insufficient (deficiency) or 
excess (toxicity) metals. Whether the source of heavy metals is natural or anthropo-
genic, the concentrations in terrestrial and aquatic organisms are determined by the 
size of the source and adsorption/precipitation in soils and sediments. The extent of 
adsorption depends on nature of the metals, the absorbent, the physicochemical 
characteristics of the environment (e.g., pH, water hardness, and redox potential) 
and the concentration of other metals as well as complex chemicals present in the 
soil or water (river or lake). Thus, concentration of metal in bioavailable form is not 
necessarily proportional to the total concentration of the metal.

The accumulation of heavy metals in plant tissues eventually leads to toxicity 
and change in plant community (Gimmler et al. 2002; Kim and McBride 2009; John 
et al. 2009). The toxic metals in soils are reported to inhibit root and shoot growth, 
affect nutrient uptake and homeostasis, and are frequently accumulated by agricul-
turally important crops. Thereafter, they enter the food chain with a significant 
amount of potential to impair animal and/or human health. The reduction in 
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biomass of plants growing on metal-contaminated soil has been found to be due to 
the direct consequence on the chlorophyll synthesis and photosynthesis inhibition 
(Dong et al. 2005; Shamsi et al. 2007), carotenoids inhibition (John et al. 2009), 
inhibition of various enzyme activities, and induction of oxidative stress including 
alterations of enzymes in the antioxidant defense system (Kachout et al. 2009; Dazy 
et al. 2009). Since an increased metal concentration in soil is reported to affect soil 
microbial properties, such as respiration rate and enzyme activity, it is considered as 
a very useful indicator of soil pollutions (Brookes 1995; Szili-Kovács et al. 1999). 
However, the short-term and long-term effects of metals depend on the type of met-
als and soil characteristics (Németh and Kádár 2005). The free ions are generally 
the most bioavailable forms of metals and are often considered as the best indicator 
of toxicity. Metals exert toxic effects after they enter into biochemical reactions of 
the organism and typical responses are inhibition of growth, suppression of oxygen 
consumption, and impairment of reproduction and tissue repair (Duruibe et al. 
2007).  However,  there  are  exceptions  such  as  for mercury,  whose  organic  form 
(methylmercury) is more toxic than the inorganic ion. The biotoxic effects of heavy 
metals refer to the harmful effects of heavy metals to the body when consumed 
above the biological (recommended) limits. Although individual metals exhibit 
specific signs of toxicity, general signs associated with cadmium, lead, arsenic, mercury, 
zinc, copper, and aluminum poisoning include gastrointestinal (GI) disorders, diar-
rhea, stomatitis, tremor, hemoglobinuria causing a rust-red color to stool, ataxia, 
paralysis, vomiting and convulsion, depression, and pneumonia when volatile 
vapors and fumes are inhaled (McCluggage 1991).

The nature of effects could be toxic (acute, chronic, or sub-chronic), neurotoxic, 
carcinogenic, mutagenic, or teratogenic. Among metals, cadmium is toxic at 
extremely low levels. In humans, long-term exposure results in renal dysfunction, 
characterized by  tubular  proteinuria. High  exposure  can  lead  to  obstructive  lung 
disease, cadmium pneumonitis, resulting from inhaled dusts and fumes. It is charac-
terized by chest pain, cough with foamy and bloody sputum, and death of the lining 
of the lung tissues because of excessive accumulation of watery fluids. Cadmium is 
also associated with bone defects, namely, osteomalacia, osteoporosis and sponta-
neous fractures, increased blood pressure, and myocardic dysfunctions. Depending 
on the severity of exposure, the symptoms of effects include nausea, vomiting, 
abdominal cramps, dyspnea, and muscular weakness. Severe exposure may result in 
pulmonary edema and death. Pulmonary effects (emphysema, bronchiolitis, and 
alveolitis) and renal effects may occur following subchronic inhalation exposure to 
cadmium and its compounds (European Commission 2002a).
Lead is the other most significant toxin of the heavy metals, and the inorganic 

forms are absorbed through ingestion by food and water, and inhalation (Ferner 
2001). A notably serious effect of lead toxicity is its steratogenic effect. Lead poi-
soning also causes inhibition of the synthesis of hemoglobin; dysfunctions in the 
kidneys, joints and reproductive systems, cardiovascular system, and acute and 
chronic damage to the central nervous system (CNS) and peripheral nervous system 
(PNS). Other effects include damage to the gastrointestinal tract (GIT) and urinary 
tract resulting in bloody urine, neurological disorder, and severe and permanent 
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brain damage. While inorganic forms of lead typically affect the CNS, PNS, GIT, 
and other biosystems, organic forms predominantly affect the CNS (Lenntech Water 
Treatment and Air Purification 2004).  Lead  affects  children  leading  to  the  poor 
development of the grey matter of the brain and consequently poor intelligence 
quotient (IQ) (Udedi 2003). Its absorption in the body is enhanced by Ca and Zn 
deficiencies. Acute and chronic effects of lead result in psychosis.
Zinc has been reported to cause the same signs of illness as does lead and can 

easily be mistakenly diagnosed as lead poisoning (McCluggage 1991). Zinc is con-
sidered to be relatively nontoxic, especially if taken orally. However, excess amount 
can cause system dysfunctions that result in impairment of growth and reproduction 
(Nolan 2003). The clinical signs of zinc toxicosis have been reported as vomiting, 
diarrhea, bloody urine, icterus (yellow mucus membrane), liver failure, kidney fail-
ure, and anemia. According to Rai and Pal (2002), inhalation of dust containing Cr 
in high oxidation states (IV) and (VI) is associated with malignant growth in the 
respiratory tract and painless perforation in nasal septum. Among these, trivalent 
and hexavalent states are the most stable and common in terrestrial environments. 
Hexavalent chromium is the form considered to be the greatest threat because of its 
high solubility, its ability to penetrate cell membranes, and its strong oxidizing abil-
ity. Hence, Cr (+6) is more toxic than Cr (+3) because of its high rate of absorption 
on living surface. Cr (+6) exists only as oxy-species such as CrO

3
, CrO

4
, and Cr

2
O

7
, 

and is a strong oxidizing agent.
Cadmium (Cd) causes chronic poisoning. The incubation period for chronic cad-

mium intoxication varies considerably usually between 5 and 10 years but in some 
cases upto 30 years. During the first phase of poisoning, a yellow discoloration of 
teeth, “cadmium ring,” is formed, the sense of smell is lost, and mouth becomes dry; 
subsequently, the number of red blood cells is diminished, which results in impair-
ment of bone marrow. The most characteristic feature of diseases is lumbar pains 
and leg myalgia. These conditions continue for several years until the patient 
becomes bed ridden and clinical conditions progress rapidly. Urinary excretion of 
albuminous substances results from the severe kidney damage. Cadmium induced 
disturbances in calcium metabolism accompanied by softening of bones; fractures 
and skeletal deformations take place with a marked decrease in body height up to 
30 cm (Rai and Pal 2002).

Mercury is toxic and has no known function in human biochemistry and physiol-
ogy. Inorganic forms of mercury cause spontaneous abortion, congenital malforma-
tion, and GI disorders (like corrosive esophagitis and hematochezia). Poisoning by 
its organic forms, which include monomethyl and dimenthylmercury, presents with 
erethism (an abnormal irritation or sensitivity of an organ or body part to stimula-
tion), acrodynia (Pink disease, which is characterized by rash and desquamation of 
the hands and feet), gingivitis, stomatitis, neurological disorders, total damage to 
the brain and CNS, and is also associated with congenital malformation (Lenntech 
Water Treatment and Air Purification 2004).

As with lead and mercury, arsenic toxicity symptoms are dependent on the chemi-
cal form ingested (Ferner 2001). Arsenic acts to coagulate protein, forms complexes 
with coenzymes, and inhibits the production of adenosine triphosphate (ATP) 
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 during respiration. It is possibly carcinogenic in compounds of all its oxidation states 
and high-level exposure can cause death (USDOL 2004). Arsenic toxicity also pres-
ents a disorder, which  is  similar  to, and often confused with Guillain-Barre syn-
drome, an anti-immune disorder that occurs when the body’s immune system 
mistakenly attacks part of the PNS, resulting in nerve inflammation that causes 
muscle weakness (Kantor 2006; NINDS 2007).

1.4.3  Health Hazards

There are many chemical compounds whose presence in water and food could 
be harmful or fatal to human life and it is necessary to consider two aspects of the 
problem in assessing potential hazards. An acute effect could be produced by the 
accidental discharge of sufficient toxic matter into a water source to produce more or 
less immediate symptoms in consumers. This form of contamination is fortunately 
rare and usually the contaminant would produce obvious effects in the water source 
such as fish kills, strong tastes and odors, etc., which would provide a warning even 
if the accident had not been reported to the authorities. A more insidious type of 
chemical contamination occurs when the contaminant produces a long-term hazard 
due to exposure to minute concentrations, perhaps over many years. In this situa-
tion, the determination of allowable levels for the particular contaminants is 
extremely difficult since scientific evidence is very limited and difficult to interpret. 
Probably, one of the earliest chemical contamination problems arose from the use of 
lead piping and tanks in domestic plumbing. Soft acidic waters from upland catch-
ments tend to be plumbosolvent so that significant amounts of lead can be dissolved 
in the water, particularly when standing overnight in service connections. Lead is a 
cumulative poison and current concern about lead in the environment requires that 
allowable levels of lead are kept as low as possible.

Sewage containing mercury was released by Chisso’s chemicals works into 
Minimata Bay in Japan. The mercury accumulates in sea creatures, leading eventu-
ally to mercury poisoning in the population. In the 1950s, residents of Minamata, 
began experiencing unusual symptoms, including numbness, vision problems, and 
convulsions. Several hundred people died. The cause was discovered to be mercury 
ingestion by poisoned fish and thousands of people. Since then, Japan has had one 
of the strictest environmental laws in the industrialized world. In 1997, after a mas-
sive cleanup, Japan announced that the bay had been cleared of the contaminant 
(Microsoft Encarta 2008). In 1947, an unusual and painful disease of rheumatic 
nature was recorded in the case of 44 patients from a village on the banks of Jintsu 
River,  Toyama  prefecture,  Japan. During  subsequent  years,  it  became  known  as 
“itai-itai” disease (meaning “ouch-ouch”) in accordance with the patient shrieks 
resulting from painful skeletal deformities (Rai and Pal 2002).

In 1960, fatal incidents of lung cancer were reported from the Kiryama factory 
of Nippon-Denki concern on the Islands of Hokkaido; medical warnings were 
issued that inhalation of dust containing Cr in high oxidation states (IV) and 
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(VI) was associated with malignant growth in the respiratory tract and painless 
perforation in nasal septum among trivalent and hexavalent states being the most 
stable and common in terrestrial environments. In 1986, a massive chemical spill 
from a plant in Basel reversed 10 years of progress. Nearly 30 t of toxic waste, 
including fungicides and mercury, entered the Rhine. The spill, called the greatest 
nonnuclear disaster in Europe in a decade, killed 500,000 fish and forced the closing 
of water systems in West Germany, France, and the Netherlands (Rai and Pal 2002). 
Toxic chemicals in water from a burst dam belonging to a mine contaminate the 
Coto de Donana nature reserve in southern Spain. Spanish nature reserve was also 
contaminated after the environmental disaster. About five million m3 of mud, con-
taining  sulfur,  lead,  copper,  zinc,  and  cadmium,  had  flown  down  into  the  Rio 
Guadimar. Experts have estimated that the Europe’s largest bird sanctuary, as well 
as Spain’s agriculture and fisheries, suffered permanent damage from the pollution. 
Arsenic is a hazard over vast areas of West Bengal (India) and Bangladesh and has 
contaminated  the  groundwater  in  the Ganges, Mekong,  and Red River  (Sen  and 
Chakrabarti 2009).

1.5  Abatement of Heavy Metals Pollution

The bioavailability of contaminants poses a health risk to animals and humans who 
may be exposed to contaminated sites. Possible exposure pathways include inges-
tion of contaminated soil or water from the site, direct contact with contaminated 
soil or water, inhalation of contaminants adhered to dust in the air, and ingestion of 
food items (i.e., plants or animals) that have accumulated from exposure to contami-
nated soil or water. Managing the risks posed by contaminants at a site involves 
understanding the possible pathways and applying appropriate remedial measures 
to mitigate, treat, or remove sources.

1.5.1  Physicochemical Methods

The most common physical methods used for remediation of heavy metal pollution 
include excavation and land fill thermal treatment, acid leaching, and electro-
reclamation. Further, chemical precipitation, chemical oxidation and reduction, ion 
exchange, filtration, electrochemical treatment, reverse osmosis, freeze crystalliza-
tion, electrodialysis, cementation, starch xanthate adsorption, and solvent extraction 
can be used for removing of heavy metal ions from diluted solutions. Owing to their 
higher operational cost or difficulty to treat solid and liquid wastes, most of these 
methods are expensive and ineffective, especially when the metal ions are dissolved 
in large volume of solutions. In response to the growing problems, federal and state 
governments in different countries have instituted environmental regulations to pro-
tect the quality of surface and ground water from heavy metal pollutants, such as 
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Cd, Cu, Pb, Hg, Cr, and Fe. To meet the state guidelines for heavy metal discharge, 
companies in the western countries often use chemical precipitation or chelating 
agents. For acid mine drainage and wastewater treatment plants, the typical means 
of removing heavy metals is usually accomplished through pH neutralization and 
precipitation with lime, peroxide addition, reverse osmosis, and ion exchange. A 
major disadvantage of the liming process, however, is the need for large doses of 
alkaline materials to increase and maintain pH values of 4 to above 6.5 for optimal 
metal  removal  (McDonald  and  Grandt  1981).  Additionally,  pH  neutralization 
typically requires that the materials be appreciably fine-grained to provide the nec-
essary reactive surface area. Furthermore, liming produces secondary wastes, such 
as metal hydroxide sludges, that necessitate highly regulated and costly disposal 
(Wang et al. 1996).

As an alternative to the liming process many companies have developed chelat-
ing ligands to precipitate heavy metals from aqueous systems. Precipitation is the 
most common and widely used method in wastewater treatment. Undesired metal 
ions from effluents can be precipitated as insoluble metal hydroxides by adding 
calcium or sodium hydroxide. They can also be precipitated as more insoluble metal 
sulfides by adding sodium sulfide, sodium hydrosulfide, or ferrous sulfide. The 
insoluble precipitate formed is then allowed to settle in the sedimentation tanks by 
addition of coagulating agents. In order to be competitive economically, many of 
these chelating ligands are simple, easy to obtain, and, in general, offer minimal 
bonding for heavy metals. Ion exchange is a stoichiometric and reversible chemical 
reaction in which a metal ion (e.g., Fe2+) is exchanged for a similarly charged ion 
(e.g., H+) attached to an embolized particle. Some of the methods for removal of 
heavy metals make use of naturally existing inorganic zeolites, synthetic resin mate-
rials, clay minerals, activated carbon, and synthetic organic ion exchangers con-
tained in a series of columns in ion exchanging system. While, regeneration of 
columns can be achieved by adding acidic solution and metal ions may be recovered 
from eluent by evaporation.

Two basic approaches are commonly employed to treat contaminated soils. The 
first involves a phase transfer in which the contaminants are moved from one phase 
into another. The second approach involves destruction or transformation of the 
contaminants into harmless products (Evangelou 1998). These two approaches can 
be utilized by incorporating a number of technologies, including high–low temperature 
thermal treatments, radiofrequency heating, steam stripping and vacuum extraction, 
aeration,  soil  flashing,  and  others.  High-temperature  treatment  systems  involve 
destruction of contaminants through complex oxidation, whereas low-temperature 
systems increase the rate of phase transfer (solid to liquid and then to gaseous 
phase), and thus encourage contaminant partitioning from the soil. Large and small 
mining sites, landfills, and industrial sites such as refineries, smelters, foundries, 
milling and plating facilities, and other sites with contaminated or disturbed soils 
exhibit a variety of problems that often can be addressed effectively and directly 
through the use of soil amendments (Fig. 1.2). With the addition of appropriate soil 
amendments, metals in the amended area are chemically precipitated and/or seques-
tered by complexation and sorption mechanisms within the contaminated substrate. 
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Metal availability to plants is minimized, and metal leaching into groundwater can 
be reduced. In certain cases, metal availability below the treated area is also 
reduced.

When applied properly, soil amendments reduce exposure by limiting many of 
the exposure pathways and immobilizing contaminants to limit their bioavailability. 
The addition of amendments restores soil quality by balancing pH, adding organic 
matter, increasing water holding capacity, re-establishing microbial communities, 
and alleviating compaction. As such, the use of soil amendments enables site reme-
diation, revegetation and revitalization, and reuse. There is a definite need for new 
and more effective physicochemical methods and reagents to meet the growing 
environmental problem. Many reagents in the market today either lack the neces-
sary binding criteria or pose too many environmental risks. For this reason, ligands 
utilizing multiple binding sites for heavy metals and mimicking biological systems 
look to be a possible answer to heavy metal remediation.

1.5.2  Biochemical Methods

It has been known for a long time that various living and dead microorganisms can 
remove heavy toxic ions from solutions (Sterritt and Lester 1996). In addition, their 

Fig. 1.2 Influence of soil amendments and plants in the remediation of metal-contaminated soils
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applications are important in the general environment and in areas where potential 
exists for both clean wastewater and heavy metal recovery. The methods are now 
recognized not only as viable alternatives but a desirable alternative and/or addition 
to the traditional remediation technologies. First, the unique interaction between 
microorganisms and heavy metals and then their use in pollution abatement will be 
discussed.

1.5.2.1  Heavy Metals and Microorganisms

As mentioned earlier, the major problem of heavy metal concentration is ion 
imbalance. Microorganisms have evolved mechanisms to solve this problem by 
using two types of uptake systems for metal ions. One is fast, unspecific, and 
driven by the chemiosmotic gradient across the cytoplasmic membrane of bacte-
ria. Since this mechanism is used by a variety of substrates, it is constitutively 
expressed (Nies 1999). The second type of uptake system has high substrate spec-
ificity. It is slower, often uses ATP hydrolysis as the energy source, and is only 
produced by the cell in times of need, starvation, or a special metabolic situation 
(Nies and Silver 1995). Even though microorganisms have specific uptake sys-
tems, high concentrations of nonessential metals may be transported across the 
cell by a constitutively expressed unspecific system. This “open gate” is the one 
reason why metal ions are toxic to microorganisms. As a consequence, microor-
ganisms have been forced to develop metal-ion homeostasis factors and metal-
resistance determinants (Bruins et al. 2000). Because metal ions cannot be 
degraded or modified like toxic organic compounds, there are six possible mecha-
nisms for a metal resistance system: (1) exclusion by permeability barrier, (2) intra- 
and extra-cellular sequestration, (3) active efflux pumps, (4) enzymatic reduction, 
(5) and (6) reduction in the sensitivity of cellular targets to metal ions. One or 
more of these resistance mechanisms allow microorganisms to function better in 
metal-contaminated environments.

1.5.2.2  Biosorption and Floatation

Sorption refers to the taking in or holding of something, either by absorption or 
adsorption. The ability of microorganisms to bind metals from aqueous solution in 
some cases selectively is known as biosorption and microorganisms responsible 
for this process are called biosorbents. The biosorption of heavy metals ions by 
microorganisms is a promising property with a great potential for industrial appli-
cations. The use of biological substrates as a metal concentrator from dissolved 
metal ions, applying for example marine algae, as well as the ability of several 
microorganisms to remove metal ions from aqueous solutions is well studied 
(Zouboulis and Matis 1998).

Biosorption reactions are metabolism independent and proceed rapidly by any one 
or a combination of the metal binding mechanisms like coordination, complexation, 



171  Heavy Metal Pollution: Source, Impact, and Remedies

ion-exchange, physical adsorption (e.g., electrostatic), or inorganic microprecipitation. 
These, processes can occur, whether the organism is living or dead; and may be 
facilitated by microbial viability. Nonliving microbial biomass is usually prefer-
able in the biosorption technology as this precludes the necessity of adding nutri-
ents required for microbial development, maintaining sterility of the process and 
adjusting parameters for favorable microbial growth. Various kinds of bacteria, 
fungi, and algae have accordingly been identified with biosorption ability. 
Mechanisms of biosorption are complex. Generally,  the biomass contact with a 
solution of metals is realized by different techniques – in flasks on shakers, in 
columns, tanks, reactors, fermenters, and other vessels. The modes by which the 
microorganisms remove metal ions from solution can be extracellular accumulation/
precipitation, cell surface sorption or complexation, and intracellular accumula-
tion. Industrial applications of biosorption often make use of dead biomass, which 
does not require the supplementary addition of nutrients and it can be also 
exposed to environment of high toxicity. Experimental (mostly laboratory batch) 
results have been previously presented, applying with actinomycetes, fungi, 
yeasts, etc., as the respecting biosorbent materials for metals (Kefala et al. 1999). 
Nonliving biomass showed greater binding capacities for cadmium than living 
biomass; this observation was accounted to an ion exchange mechanism (Kefala 
et al. 1999). Metabolism-independent binding of metal ions to fungal and yeast 
cell walls is usually a rapid process and large amounts of metals may be bound 
and removed.

Centrifugation, being a conventional separation method in microbiology and 
biochemistry, is relatively expensive, considering the power demand per unit of 
microbial cells recovered; therefore, alternative biomass separation methods, such 
as flotation, are being examined. Flotation nowadays is considered as a well-
established unit operation in the field of mineral and environmental technology. 
Flotation, following metal biosorption, was proved to be a useful and effective 
separation method of metal-loaded biomass, producing efficient removals, usu-
ally over 95%. The two processes can effectively operate in combination, in what 
was termed biosorptive flotation. The main critical parameters affecting both of 
them, which need careful control, are solution pH and ionic strength (Zouboulis and 
Matis 1997). As an example, flotation, which includes different techniques, such 
as foam or bubble fractionation, foam separation, or froth flotation, was examined 
for the separation of metal-loaded baker’s yeast, Saccharomyces cerevisiae 
(Zouboulis et al. 2001). Among biosorbents, fungi were found to bio-accumulate 
metal and radionuclide species by several physicochemical and biological mecha-
nisms, including extra-cellular binding by metabolites and biopolymers, bind-
ing to specific polypeptides, as well as metabolism-dependent accumulation 
(Zouboulis and Matis 1998). However, to date, the most promising approach for 
metal removal by fungi is biosorption. The fungal cell wall is considered to con-
tain two main components: interwoven skeletal framework micro-fibrils, usually of 
chitin, embedded in an amorphous layer of proteins and various polysaccharides 
(Zouboulis et al. 1999).
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1.5.2.3  Biotransformation

Some bacteria have evolved mechanisms to detoxify heavy metals, and some even 
use them for respiration. Microbial interactions with metals may have several impli-
cations for the environment. They play a large role in the biogeochemical cycling of 
toxic heavy metals and also in cleaning up metal-contaminated environments. 
Microbial transformations of metals serve various functions. Generally, microbial 
transformations of metals can be divided into two broad categories: redox conver-
sions of inorganic forms; and conversions from inorganic to organic form and vice 
versa, typically methylation and demethylation. Through oxidation of iron, sulfur, 
manganese, and arsenic, microbes can obtain energy (Tebo et al. 1997; Santini et al. 
2000). On the other hand, reduction of metals can occur through dissimilatory 
reduction where microorganisms utilize metals as a terminal electron acceptor for 
anaerobic respiration. In addition, microorganisms may possess reduction mecha-
nisms that are not coupled to respiration, but instead are thought to impart metal 
resistance. For example, aerobic and anaerobic reduction of heavy metals is wide-
spread detoxification mechanisms among microorganisms.

Microbial methylation plays an important role in the biogeochemical cycle of 
metals, because methylated compounds are often volatile. For example, mercury 
(Hg2+/Hg  II)  can  be  biomethylated  by  a  number  of  different  bacterial  species 
(e.g., Pseudomonas sp., Escherichia sp., Bacillus sp., and Clostridium sp.) to gaseous 
methylmercury, which is the most toxic and most readily accumulated form of 
mercury. Also, biomethylation of arsenic to gaseous arsines; selenium to volatile 
dimethyl selenide; and lead to dimethyl  lead (Pongratz and Heumann 1999) has 
been observed in various soil environments. In addition to redox conversions and 
methylation reactions, acidophilic iron and sulfur-oxidizing bacteria are able to 
leach high concentrations of arsenic, cadmium, copper, cobalt, nickel, and zinc from 
contaminated soils. On the other hand, metals can be precipitated as insoluble 
sulfides indirectly by the metabolic activity of sulfate-reducing bacteria (White 
et al. 1997;  Lloyd  and  Lovley  2001). Sulfate-reducing bacteria are anaerobic 
heterotrophs utilizing a range of organic substrates with SO42− as the terminal electron 
acceptor. In general, microbiological processes can either solubilize metals (White 
et al. 1997), thereby increasing their bioavailability and potential toxicity, or 
immobilize them, and thereby reduce the bioavailability of metals.

1.5.2.4  Pollution Monitoring Biosensors

The genes responsible for microbial metal resistance mechanism are organized in 
operons and are usually found in plasmids of resistant bacteria (Ramanathan et al. 
1997). The expression of the resistance genes is tightly regulated and induced by the 
presence of specific metals in the cellular environment (Ramanathan et al. 1997). 
Because of the specificity of this regulation, the promoters and regulatory genes 
from these resistance operons can be used to construct metal-specific biosensors 
(promoter-reporter gene fusions). By using metal-specific bacterial sensors in 
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addition to chemical analyses, it is possible to distinguish the bioavailable metal 
concentration from the total metal concentration of the samples. Various metal-
specific sensor strains have been developed and applied in different laboratories 
(Table 1.1) and were collected by Turpeinen (2002). These sensor strains are all 
based on the concept of metal responsive regulation unit, which regulates expres-
sion of a sensitive reporter gene. Reporter genes include those that code for biolu-
minescent proteins, such as bacterial luciferase (luxAB) and firefly luciferase (lucFF) 
or for b-galactosidase, which can be detected electrochemically or by using chemi-
luminescent substrates (Bontidean et al. 2000). The light produced can be measured 
by a variety of instruments, including luminometers, photometers, and liquid-
scintillation counters.

1.5.2.5  Bioremediation

Many organisms have developed chromosomally or extrachromosomally controlled 
detoxification mechanisms to overcome the detrimental effects of heavy metals 
(Silver and Phung 1996). These resistance mechanisms take several forms, such as 
extracellular precipitation and exclusion, binding to the cell surface, and intracel-
lular sequestration. Binding of metal cations on the outer surface of bacterial cells 
has become one of the most attractive means for bioremediation of industrial wastes 
and other metal-polluted environments. Valuable metals can be entrapped and 
recovered  from  negatively  charged  microbial  surfaces  (McLean  and  Beveridge 
1990). The interest in bioremediation processes has greatly increased by the turn of 

Table 1.1 Metal-specific sensor strains used in different laboratories

Metal Reporter Host strain

Antimony (Sb3+) Luc Staphylococcus aureus, Bacillus subtilis, E. coli
Arsenic (As3+) Luc S. aureus, B. subtilis, E. coli
Arsenic (As3+) Lux E. coli
Arsenic (As3+) Luc E. coli, Pseudomonas fluorescens
Arsenic (As5+) Lux E. coli
Arsenic (As5+) Luc E. coli
Cadmium (Cd2+) Luc S. aureus, B. subtilis
Cobalt (Co2+) Lux Ralstonia eutropha
Copper (Cu2+) Lux P. fluorescens
Lead (Pb2+) Luc S. aureus, B. subtilis
Mercury (Hg2+) Lux E. coli
Mercury (Hg2+) Luc E. coli
Mercury (Hg2+) Lux E. coli, Pseudomonas putida
Mercury (Hg2+) Lac E. coli
Mercury (Hg2+) Gfp E. coli
Mercury (Hg2+) Luc E. coli, P. fluorescens
Nickel (Ni2+) Lux R. eutropha

Adapted from Turpeinen (2002)
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the twentieth century. Some microorganisms act in the biosphere as geochemical 
agents promoting precipitations, transformations, or dissolutions of minerals. The 
use of these microorganisms could offer new tools to degrade or to transform toxic 
contaminants.  Sulfate-reducing  bacteria  (SRB)  constitute  a  group  of  anaerobic 
prokaryotes, commonly found in contaminated environments by heavy metals, met-
alloids, or other pollutants that are lethal to other microorganisms. SRB are able to 
couple the oxidation of organic compounds or hydrogen with the reduction of sulfate. 
It has been proposed that SRB are able to detoxify contaminated environments by 
an indirect chemical reduction of heavy metal via the production of H

2
S, which is 

the end product of the dissimilatory sulfate reduction.
Arsenic biogeochemistry is a good example of microbe–metal interactions in the 

environment. Many studies have been done on microbial metabolism of arsenic in 
aquatic environments and the effects microbes have on the speciation and mobiliza-
tion of arsenic. Since aquatic sediments can be anaerobic, and because arsenic con-
centrations in sediments can range from 100 to 300 mg/l, microbe-mediated arsenic 
reduction may be common. Earlier, some scientists have found that the addition of 
arsenate to an anaerobic sediment resulted in the accumulation of arsenite, indicat-
ing the reduction of arsenate to arsenite by microbes. Ahmann et al. (1997) further 
showed that native microorganisms from the Aberjona watershed were responsible 
for the arsenic flux in the anoxic contaminated sediments. In reducing conditions, it 
was found that arsenate was the dominant form of arsenic. They also found that dis-
similatory iron-reducing bacteria (DIRB) and sulfate-reducing bacteria (SRB) are 
capable of both arsenic reduction and oxidation and thus may contribute to the 
cycling of arsenic in sediments. Microbial reduction of arsenate is important because 
arsenite (the reduced form) is more toxic and more soluble (and thus, more mobile) 
than arsenate, which forms relatively insoluble, non-bioavailable compounds with 
ferrous oxides and manganese oxides. Speciation of arsenic is affected or controlled 
by not only oxidation and reduction processes by microbes, but also by methylation 
by microbes, and adsorption to other particles. It was found that DIRB responsible 
for the dissolution of iron oxides bound to arsenic can also free soluble arsenic into 
the sediment (Cummings et al. 1999). Another study done on arsenic biogeochem-
istry in Lake Biwa Japan showed that arsenic concentration and speciation may also 
depend on eutrophication (Sohrin et al. 1997). They also found an interesting cycling 
of arsenic in the presence of nitrate, rapidly re-oxidizing any arsenate that had been 
produced. Thus, in some environments, both oxidation and reduction of arsenic may 
occur. Several other potential bacterial strains for heavy metal bioremediation have 
also been reported by our group (Table 1.2). Rani et al. (2008) reported a Proteus 
vulgaris strain KNP3 that reduced copper concentration in the soil as well as in 
the pigeon pea (Cajanus cajan var. UPS-120), and promote plant growth. The data 
also suggested that dual role of bacteria can decrease both the level of copper in 
soil and the metal load in plants. Further, Rani et al. (2009) also reported in-situ 
studies whereby upon seed bacterization, cadmium-resistant acidophilic 
Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains 
were able to enhance agronomical parameters of soybean (Glycine max var. 
PS-1347), in the presence of cadmium in acidic and alkaline soils, respectively. 
Similarly, Tripathi et al. (2005) reported that Pseudomonas putida KNP9 reduced 
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the cadmium accumulation in mung bean plants. Further, Gupta et al. 2005 reported 
mercury-resistant strains of Pseudomonas fluorescens viz. PRS

9
Hgr and GRS

1
Hgr, 

which simultaneously had plant growth-promoting characters like indoleacetic acid 
(IAA) production, P-solubilization, and siderophore production. Therefore, these 
potential isolates can be ideal candidates for bioremediation strategies. Laverman 
et al. (1995) showed that the bacterial strain SES- 3 could grow using a diversity of 
electron acceptors, including Fe (III), thiosulfate, and arsenate coupled to the oxida-
tion of lactate to acetate.

1.5.3  Phytoremediation

The term phytoremediation refers to the use of plants to extract, sequester, and/or 
detoxify pollutants and has been an effective, nonintrusive, inexpensive, aesthetically 
pleasing, socially accepted technology to remediate polluted soils (Alkorta et al. 
2004;  Garbisu  et  al.  2002). Phytoremediation is widely viewed as ecologically 
responsible alternative to the environmentally destructive physical remediation 
methods currently practiced.

The survey of hyperaccumulating plants was started by the early 1990s. They are 
often small plants, such as Alyssum murale, which grows on metamorphic rocks, 
Brassica juncea, the Indian mustard, which extracts lead, or Thlaspi, which accu-
mulates zinc and nickel. About 400 species have been identified, including 300 that 
accumulate only nickel. An endemic tree in New Caledonia, Sebertia acuminata, 
contains up to 20% of nickel in its sap and is green (nickel is generally toxic to 
plants  at  a  concentration of 0.005%).  In  the Democratic Republic of Congo,  the 
number of plants accumulating copper and cobalt is highest: 24 and 26 species, 

Table 1.2 Bacterial strains used for bioremediation as reported by our group

Accession no. Bacteria Strain Property References

AY970345 Bacillus cereus 16S r RNA AG27 Arsenic resistant Satlewal et al. (2010)
AY970346 B. cereus 16S rRNA AG24 Arsenic resistant Satlewal et al. (2010)
DQ205432 Proteus vulgaris 16S r RNA KNP3 Pb and Cd 

resistant
Rani et al. (2008)

DQ517938 B.cereus Arsenate reductase 
gene

AG27 As resistant Gupta (2006)

DQ517939 B.cereus Arsenate reductase 
like gene

AG24 As resistant Gupta (2006)

EU512943 Pseudomonas monteilli 97AN Cd resistant Rani et al. (2009)
EU512944 Pseudomonas putida 62BN Cd resistant Rani et al. (2009)
DQ205427 P. putida16S r RNA KNP9 Siderophore 

producing
Rani and Goel 

(2009a, b) and 
Tripathi et al. (2005)

EU512945 P. veronii GCP1 P- solubilizing Rani (2009)
EU512946 Enterobacter amnigenus GRS3 P- solubilizing Rani (2009)
EF207715 P. putida 710A Cd resistant Rani (2009)
EF207716 Comamonas aquatica 710B Cd resistant Rani (2009)
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respectively. The accumulation efficiency is not generally very high. For some met-
als like silver, mercury, and arsenium, there are yet no plants known to accumulate 
them.  However,  in  2000,  the  team  of  Lena  Ma  of  the  University  of  Florida, 
Gainesville, identified a fern, Pteris vittata, which tolerates and accumulates arse-
nium, while conserving a very rapid growth and a high biomass. Edenspace, a com-
pany from Virginia specialized in phytoremediation and acquired the rights to 
commercialize the fern (now called Edenfern™) by signing an exclusive license 
agreement in 2000 with the University of Florida, which patented the use of the fern 
in phytoremediation. In the USA, seven or eight similar companies were already in 
existence in 2002, where the value of the potential market for phytoremediation was 
estimated at $100 million (Tastemain 2002 cited in Sasson 2004). The US phytore-
mediation market was expected to expand more than tenfold between 1998 and 
2005, to over $214 million (Evans and Furlong 2003). Salt et al. (1995) divided 
plant-based heavy metals remedies into following areas: (1) Phytoextraction: the 
use of pollutant-accumulating plants to remove metals or organics from soil by 
concentrating  them  in  the  harvestable  parts,  (2) Rhizofiltration:  the  use  of  plant 
roots to absorb and absorb pollutants, mainly metals, from water and aqueous waste 
streams, (3) Phytostabilization: the use of plants to reduce the bioavailability of pol-
lutants in the environment, and (4) Phytovolatilization: the use of plants to volatilize 
pollutants (Sasson 2000). The idea of using plants to remediate metal-polluted soils 
has emerged from the discovery of “hyperaccumulators” defined as plants, often 
endemic to naturally mineralized soils, that accumulate high concentrations of met-
als in their foliage (Brooks 1998). According to Baker (1981), plants growing on 
metalliferous soils can be grouped into three categories: (1) Excluders, where metal 
concentrations in the shoot are maintained, up to a critical value, at a low level 
across a wide range of soil concentration. (2) Accumulators, where metals are 
concentrated in above-ground plant parts from low to high soil concentrations. 
(3) Indicators, where internal concentration reflects external levels. Some of the 
examples of metal hyperaccumulators compiled from different sources are pre-
sented in Table 1.3 (Alkorta et al. 2004; Liang et al. 2009; Kachenko et al. 2009).

Table 1.3 Some hyperaccumulator plants with respective metal species

Metal Species

Zinc Typha caerulescens
Cadmium T. caerulescens
Nickel Berkheya coddii
Selenium Astragalus racemosa
Thallium Iberis intermedia
Copper Ipomoea alpina
Cobalt Haumaniastrum
Arsenic P. vittata
Zinc, nickel, cadmium Thlaspi caerulescens
Zn/Cd T. caerulescens, Arabidopsis halleri
Ni Hybanthus floribundus subsp. adpressus, H. floribundus subsp. 

Floribundus, Pimelea leptospermoides
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1.6  Genetic Engineering: The Way Forward

The molecular basis of heavy metal accumulation is being studied with a view to 
transferring the relevant genes to plant species having a wider geographic and eco-
logical distribution. Transgenesis applied to phytoremediation is certainly incipient. 
Its application on a large scale is questioned largely due to risks associated with the 
transfer of the bacterial transgenes to plants that when consumed by herbivorous 
animals or humans may lead to metal toxicity. However, genetic transformation of 
the microorganisms involved in bioremediation could enhance the process through the 
introduction of genes controlling specific degradation pathways; it can be also aimed 
at degrading recalcitrant compounds such as pesticides and other xeno-substances.
Researchers discovered many bacteria that had developed high tolerance to heavy 

metals, related to the binding of these metals to their proteins, for example, metallo-
thionein that binds mercury. As naturally thriving mercury-tolerant bacteria are rare 
and cannot be grown easily in culture, researchers at Cornell University, Ithaca, 
New York have successfully inserted the metallo-thionein gene into E. coli. Thus, a 
sufficiently large number of genetically engineered bacteria could treat mercury-
polluted water inside a bioreactor. The efficiency of this procedure was high, as 
mercury was removed from polluted water down to a few nanograms per liter. Once 
the bacteria died, they were incinerated to recuperate the accumulated pure mercury 
(European Commission 2002b). In another study, researchers at the University of 
Georgia, Athens introduced two foreign genes from E. coli for the synthesis of two 
enzymes: one that catalyzes the transformation of arsenate into arsenite, the other that 
induces the formation of a complex with arsenite, into the genome of Arabidopsis 
thaliana (Dhankher et al. 2002). Recently, Chen et al. (2008) reported Hg2+ removal by 
E. coli cells engineered to express a Hg2+ transport system and metallothionein accu-
mulated Hg2+ effectively over a concentration range of 0.2–4 mg/l in batch systems. 
Guo et al.  (2008) also developed transgenic plants with increased tolerance for and 
accumulation of heavy metals and metalloids from soil by simultaneous overexpres-
sion of phytochelatins (PCs) and glutathione (GSH) genes in Arabidopsis thaliana.

1.7  Conclusion

Heavy metals occur as natural constituents of the earth crust and are released in the 
environment due to human activities and natural phenomena. Due to industrializa-
tion, the amounts of heavy metals deposited onto the surface of the earth are many 
times greater than arising from natural background sources. In rocks, heavy metals 
exist as ores in different chemical forms, from where they are recovered as minerals. 
Acid drainage has various anthropogenic and natural sources, but the most widely 
known source is one related to mining coal and various metal ores. Both natural and 
manmade sources contaminate the air, water, and soil ecosystems. The accelerating 
global development over the past two centuries have greatly increased the rate at 
which trace metals are released to the global environment and many of the famous 
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freshwater bodies are becoming greatly altered. Soil is a major sink for heavy metals 
released into the environment. Many soils in industrialized countries are affected by 
acid deposition, mine waste, and organic refuses, such as sewage sludge, that intro-
duce the pollutants to soils. The pattern of soil pollutant content is the synergistic 
result of mixed processes, including diffusion of deposited airborne particulate matter, 
fluvial deposition of contaminated sediments, and irregular leaching of soil layers, 
assisted by rainwater, even down to groundwater.

While some metals are essential with integral role in life processes, others are 
nonessential and potentially toxic. Both essential and nonessential metals can dam-
age cell membranes; alter enzyme specificity; disrupt cellular functions; and alter 
DNA at high concentration. Besides, unlike many organic pollutants, heavy metals 
tend to accumulate in the environment. Though there are exceptions, free ions are 
generally the most bioavailable form of a metal, and the free ion concentration is 
often the best indicator of toxicity. Biochemical methods that use various living and 
dead microorganisms have been known for a long time and can remove toxic ions 
from solutions with or without heavy metal recovery. The methods are now recog-
nized as viable and desirable alternative technologies. Some microorganisms act in 
the biosphere as geochemical agents promoting precipitations, transformations, or 
dissolutions of minerals. The use of these microorganisms for bioremediation offers 
new tools to degrade or transform toxic contaminants. Phytoremediation, the use of 
plants to extract, sequester, and/or detoxify pollutants, has been reported to be an 
effective, nonintrusive, inexpensive, aesthetically pleasing, and socially acceptable 
technology for polluted soil amendment. While different environmental protection 
agencies are appreciating the role of environmental biotechnology, particularly for 
small-scale industries in developing countries, enhanced research efforts in the area 
are a renowned global interest.
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Abstract Plants are primarily exposed to metals through the soil from where 
they may be absorbed by root tissues and transported into the shoots. The pres-
ence of metals at toxic levels can elicit a wide range of visible and physiological 
symptoms in plants. In addition to deformation and discoloration of tissues, effects 
include inhibition of seed germination, decreased root and shoot growth, decreased 
rates of photosynthesis and transpiration, damage to proteins and membranes, 
nutrient imbalances, and altered enzyme activity. Some metals cause oxidative 
stress through their participation in reactions that produce reactive oxygen species. 
Oxidative stress results in a range of general effects including damage to mem-
branes and a range of biomolecules. Other effects of metals include direct substi-
tution in biomolecules and conformational changes in proteins and enzymes. 
Plants respond to toxicity by either producing metal-binding compounds such as 
phytochelatins, sequestering metals into specific tissues, or by addressing oxida-
tive damage via the antioxidant system. Metal tolerance may be enhanced through 
systems already utilized by plants, including chelators, phytohormones, and rela-
tionships with soil microorganisms. This chapter outlines the plant uptake of 
metals and their effects, in addition to mechanisms by which plants tolerate high 
metal levels.
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2.1  Introduction

Potentially toxic metals are widely spread in urban (Wong et al. 2006; Revitt and Ellis 
1980), contaminated (Pichtel et al. 2000; Berti and Jacobs 1998; Martin et al. 1982), 
and natural environments (Yang et al. 2002a). Although metals are found naturally in 
minerals and soils, anthropogenic activities such as mining (Boularbah et al. 2006;  
Colbourn and Thornton 1978), wastewater disposal (Cajuste et al. 1991), and fertilizer 
applications (Raven and Loeppert 1997) have increased the levels of many metals in 
soils. Furthermore, certain metals are known to have adverse effects on the health of 
plants, humans, and other organisms (White and Brown 2010; Clemens 2006; Alloway 
1995; Domingo 1994; Kusaka 1993; Wagner 1993). Although many metals are required 
for plant nutrition, higher levels of these metals are potentially toxic to plants when 
adequately bioavailable (Adriano 2001). Metal phytotoxicity depends on soil composi-
tion, plant genotypes, and the type and concentration of metals (Orcutt et al. 2000). 
Symptoms of phytotoxicity often include reduced germination and growth, with visible 
discoloration and deformation of leaf and root tissues (Kabata-Pendias and Pendias 
2001). Other symptoms are less visible. Furthermore, metals may bind to proteins and 
inactivate enzymes (Van Assche and Clijsters 1990). Metal exposure can also result in 
oxidative stress, both directly and indirectly, due to the production of reactive oxygen 
species (ROS) that damage various cell components (Dietz et al. 1999). The inhibition 
of physiological processes such as photosynthesis and transpiration are other common 
consequences of excess metal levels (Walley and Huerta 2010; Benzarti et al. 2008).

To overcome metal stress, plants have evolved mechanisms to tolerate and detox-
ify high levels of metals. For example, metals may be bound extracellularly to 
organic ligands and cell walls, or be detoxified within the cell (Hall 2002). Enzymes 
produce antioxidants that reduce the damaging effects of ROS. Plant metal toler-
ance may also be assisted by externally applied compounds analogous to those pro-
duced naturally by plants. Some of the potential methods for enhancing plant metal 
tolerance include the application of metal-binding chelators and growth-promoting 
phytohormones (Lopez et al. 2005, 2009; Israr and Sahi 2008).

The expression “heavy metal” is ill-defined and may be misleading, sometimes 
even used to describe metalloids (semi-metals) and nonmetals. However, the term is 
pervasive, persistent, and ubiquitous, and can be found widely distributed in scien-
tific literature, governmental regulations, and popular culture (Duffus 2002). Despite 
attempts to displace the term with something more meaningful, the common usage 
of this expression has ensured its continued existence (Nieboer and Richardson 
1980). Although heavy metals have often been defined based on density, with a 
lower limit ranging from 3.5 to 7 g/cm3 (Duffus 2002), this property has no physi-
ological significance to plants. Terms more relevant to phytotoxicity should there-
fore be based on biological effects and chemical properties (Appenroth 2010). The 
term “toxic metal” may suffice, although some metals that are toxic at high concen-
trations are essential at low concentrations. Chemical properties, such as those based 
on the periodic table (“s-group,” “d-group,” and “p-group”), may also be used, as 
these are frequently relevant to biological effects (Duffus 2002).
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2.2  Plant Structure

Roots anchor and support the plants and also play an important role in the transfer 
of water and nutrients from soil to aerial plant parts. Key features of root structure 
are schematically illustrated in Fig. 2.1. The outer cells of the root form the epider-
mis, which depending on the plant species and growth conditions, may have waxy 
layers, forming the exodermis (Nobel 2005). Fine root hairs may project radially 
from epidermal cells, increasing the effective root surface area available for water 
and nutrient absorption. A layer of cells at the inner boundary of the cortex is 
known as the endodermis, which is typically only one cell thick in angiosperms. 
Spanning the radial walls of endodermal cells is the casparian band, which is highly 
lignified and coated with suberin, a waxy substance. The endodermis is therefore 
capable of preventing extracellular water and solute transport between the cortex 
and the stele. In some plant species, casparian bands can also be present as lamel-
lae in the cortex and exodermis (Enstone et al. 2003; Hose et al. 2001; Peterson 
1987). The endodermis binds the predominantly vascular tissue known as the stele. 
The xylem is continuous from roots to leaves and conducts water and nutrients 
required for growth. Carbon compounds (photosynthate) are transported to grow-
ing regions of the plant in the phloem, generally in the opposite direction to the 
flow of the relatively dilute xylem sap.

In the plants, the primary photosynthetic organs are leaves that serve as the prin-
ciple areas for conversion of light into chemical energy. Important structural com-
ponents of the leaf are illustrated in Fig. 2.2. A thin waxy layer known as the cuticle 
covers the outer surface of the leaf, reducing water loss from the plant. Gas exchange 
within the leaf occurs in the large air spaces present between the spongy cells, which 
are packed with chloroplasts for photosynthesis. Like the cuticle, the epidermis 
lines the lower area of the leaf. The stomata are small holes in the epidermis bounded 
by specialized concave-shaped cells known as guard cells, which regulate opening 
and closing of stomata (Cutler et al. 2008).

2.3  Metal Uptake and Transport

Water and mineral elements are absorbed from soil by plant roots. The soil solution 
contains dissolved mineral elements that are available for uptake by roots. The dis-
solved nutrients can be transported radially across the root via apoplastic and sym-
plastic pathways, or combinations of both. The apoplastic pathway involves solute 
transfer through extracellular fluid and gas spaces between and within cell walls. 
In the symplastic pathway, water and solutes are transferred intracellularly, passing 
from cell to cell through tubular channels known as plasmodesmata that connect 
the cytoplasm of adjacent cells (Steudle and Ranathunge 2007; Steudle and 
Peterson 1998). In this way, solutes absorbed at the root surface by root hairs and 
epidermal cells can be transported across the root cortex, through the endodermis 
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Fig. 2.1 Schematic cross section and longitudinal section of a young root
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and into the parenchymal cells where they may then enter the conductive vessels of 
the xylem. Solutes may also be exchanged between the apoplastic and symplastic 
pathways by crossing the plasma membrane in the transcellular pathway. This step 
allows the plant a certain degree of selectivity and control over metal uptake. 
Pathways of radial solute transport in root tissue are illustrated in Fig. 2.3. As the 
radial walls of the endodermis are blocked by hydrophobic casparian strips, water 
must enter the cytoplasm of endodermal cells to continue moving into the root. In 
the entire pathway of water movement from soil to air via the plant, the endoder-
mal cells are the only place where water is forced into the cell cytoplasm (Salisbury 
and Ross 1992).

Fig. 2.2 Schematic diagram of a leaf cross section, showing the major cell types
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2.3.1  Metal Bioavailability

Bioavailability of metals to plants refers to the amount of metal accessible for uptake 
by plants in the environment (Rand 1995). The bioavailable fraction of metal thus 
often refers to the proportion of total metal available in the free ionic form; however, 
this may not always be an accurate measure (Nolan et al. 2003). It is a function of 
the total metal concentration and physiochemical and biological factors (Berthelin 
et al. 1995). Metal bioavailability is influenced by physical and chemical factors 
such as the soil pH, redox potential and the proportions of clays, mineral compo-
nents (such carbonates and oxides), and soil organic matter (Plassard et al. 2000). It 
is also adjusted by biological processes such as biosorption, bioaccumulation, and 
solubilization (Wu et al. 2006; Ernst 1996). Plants are exposed to metals principally 
through the aqueous phase of the soil, with soil-bound metals unavailable for direct 
uptake by roots (Plette et al. 1999). Metal availability for plants is generally greater 
at lower soil pH (Alloway et al. 1988). For example, cadmium uptake from soil 
decreases as the pH increases from acidic to neutral values. However, in alkaline 
conditions, metal uptake may begin to increase (Podar and Ramsey 2005).

Plant access to metals can be facilitated by root exudates such as organic and 
amino acids, which bind to soil bound metal ions and convert them to a more soluble 
form. Under nutrient deficient conditions, plants increase the fraction of metal-binding 
ligands known as phytometallophores in root exudates (Fan et al. 1997). This enables 
plants to enhance the release of essential cations from the soil matrix. Metal binding 
siderophores are also produced by rhizosphere bacteria (Whiting et al. 2001). Plants 
also produce metal binding ligands in response to excess levels of toxic metals 
(Mohanpuria et al. 2007). In many plants, metals absorbed from soil are accumulated 
principally in root tissues (Andrade et al. 2008; Kadukova et al. 2008; Chaignon 
et al. 2002). Metal binding phytochelatins (PC) may be used for long distance trans-
port of metals from the root to the shoot tissue in some plants (Polette et al. 2000). 
Processes influencing metal uptake and transport within the soil and plants are 
schematically illustrated in Fig. 2.4.

Fig. 2.3 Apoplastic, 
symplastic, and transcellular 
routes of radial solute  
transport in the root
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Fig. 2.4 Metal uptake and translocation pathways in higher plants
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2.3.2  Root Uptake

Plants are capable of adjusting the pH of soil in the root zone to facilitate access to 
nutrients (Crowley et al. 1991). A decrease in the pH of the root zone is usually 
achieved through the release of protons at the root surface (Chaignon et al. 2002; 
Muranyi et al. 1994); however, root respiration and acid exudation may also acidify 
the rhizosphere (Hinsinger 2001). The spatial distribution of metals in soil has also 
been shown to influence plant health and metal uptake. An experiment comparing 
homogeneous and heterogeneous distributions of Cd and Zn in soils found that 
Brassica juncea tolerated heterogeneously distributed Zn with no growth reduction 
at levels equivalent to those causing severe phytotoxicity when applied homoge-
neously (705 mg/kg soil) (Podar et al. 2004). Shoot yield in heterogeneous treat-
ments was up to 24 times greater, and the masses of Cd and Zn extracted from soil 
were both sixfold higher than in homogeneous treatment.

2.3.3  Foliar Uptake

The leaves have the ability to uptake both essential and nonessential metals. 
Although the aqueous phase uptake of metals is restricted by epicuticular waxes on 
the leaf surface, hydrophilic cuticular pores provide routes for the exchange of 
water, gases, and mineral elements through the leaf surface. Metals such as Mn and 
Cu are often applied in foliar sprays, in areas where nutrient acquisition from the 
soil may be limiting (Marschner 1995; Karhadkar and Kannan 1984). Foliar uptake 
may also contribute to the uptake of metals in the solid phase. For example, in creo-
sote bush (Larrea tridentate), windblown particulates less than 10 mm in diameter 
have been shown to enter the plant through leaf stomata (Polette et al. 2000).

2.4  Metal Phytomtoxicity

Metals have been found to influence plants by three main mechanisms including 
(1) the production of reactive oxygen species (caused by redox active transition 
metals), (2) binding to functional groups in biomolecules (non-redox active metals), 
and (3) the displacement of other metals from biomolecules (Schutzendubel and 
Polle 2002). These mechanisms can act independently or simultaneously, leading to 
a range of toxic effects. Some effects may be manifest as visible symptoms, while 
others cause changes in plant cell structures and interference with normal physio-
logical processes. Roots are the primary plant organs that are in direct contact with 
metal contaminated soil, and are generally more sensitive to metal toxicity (Seregin 
and Ivanov 2001). For this reason, root elongation is often used as an indicator of 
plant sensitivity to metals (Di Salvatore et al. 2008; Karataglis 1987) although care 
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needs to be taken in the interpretation and comparability of root elongation results, 
especially between species with differing root morphology (Baker 1987).

2.4.1  Visible Symptoms

Common metal phytotoxicity symptoms include growth inhibition, chlorosis, and 
deformed roots (Kabata-Pendias and Pendias 2001). Although plant roots are valu-
able indicators of metal phytotoxicity, they are generally not readily visible, and 
shoot symptoms are often the first toxicity indications. Visible phytotoxicity symp-
toms for different metals are presented in Table 2.1.

2.4.2  Physiological Changes

High concentrations of metals can weaken the growth and development of plants by 
limiting seed germination, damaging photosynthetic apparatus and cell membranes, 
reducing transpiration, altering enzyme activity, and causing peroxidation of lipids 
(Monni et al. 2001). Major components of plant cells that may be affected by the 
presence of excess metals are illustrated in Fig. 2.5, and a range of physiological 
effects observed in plants for several relevant metals are presented in Table 2.2.

2.4.2.1  Inhibition of Germination

The effect of metals on germination of seeds has been well documented, with metals 
capable of altering the expression of key enzymes within the seed that initiate the 
germination process (Ahsan et al. 2007; Peralta-Videa et al. 2002; Wierzbicka and 
Obidzinska 1998). For example, germination success of chickpea (Cicer arietinum) 
was significantly reduced by 54% with Zn (10 mM) and by 73% with Pb (5 mM) 
(Atici et al. 2005), with similar results observed for Cd (applied at 5 mM) (Atici et al. 
2003). Germination of rice (Oryza sativa) decreased to 75% with the application of 
1.5 mM Cu, and was completely inhibited by 2 mM Cu (Ahsan et al. 2007). In another 
germination study, metal phytotoxicity followed the order: Cd > Cu > Ni > Pb for 
lettuce (Lactuca sativa), broccoli (Brassica oleracea), and tomato (Lycopersicon 
esculentum) seedlings, while for radish (Raphanus sativus), the order was Cd = Ni > 
Pb > Cu, with lettuce found to be the most metal-sensitive species (Di Salvatore 
et al. 2008). Reductions in Hypericum perforatum germination success of 21% 
and 28% were observed due to 25 and 50 mM Ni, respectively (Murch et al. 2003).

Changes in phytohormone levels due to metal exposure during germination 
have also been observed. As an example, in germinating chickpea seeds, Pb 
reduced the levels of gibberellic acid, while increasing abscisic acid and zeatin. 
High  concentrations (1–10 mM) of Zn were found to decrease zeatin, zeatin riboside, 
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and gibberellic acid and increase abscisic acid levels (Atici et al. 2005). Abscisic 
acid is produced in response to plant stress (Monni et al. 2001) while gibberellic 
acid affects processes such as germination, leaf expansion, fruiting, and flowering 
(Salisbury and Ross 1992). Zeatin and zeatin riboside are cytokinins, hormones that 
influence plant growth through their effects on cell division.

Table 2.1 Visible symptoms of metal phytotoxicity

Symptoms

Metal Shoots Roots References

Cadmium Progressive chlorosis  
(young to old leaves).  
Red/purple leaf veins  
and petioles. Browning  
of leaf margins.  
Wilting stems. Stunted 
shoot growth. Necrotic 
leaf tips. Decreased  
leaf area.

Roots stunted, brown,  
and coralloid.

McKenna et al. 
(1993), Pandey 
and Sharma 
(2002), Sayed 
(1997), and Van 
Engelen et al. 
(2007)

Copper Interveinal chlorosis 
beginning in young  
leaves. Necrosis  
of leaf tips. Brown  
spots on leaf lamina. 
Stunted shoot growth.

Brown root tips. Stunted 
root growth.

Chatterjee et al. 
(2006) and 
Gunawardana 
et al. (2010)

Cobalt Chlorosis of young leaves. 
Reddish-purple leaf 
margins. Leaves  
become brittle.

Poor root development. Keeling et al. (2003) 
and Pandey and 
Sharma (2002)

Lead Stunted leaf growth. 
Dark green leaves.

Reduced root elongation. Gunawardana et al. 
(2010) and Lopez 
et al. (2009)

Manganese Chlorosis of leaf margins. 
Puckering and crinkling  
of leaves. Necrotic  
spots and margins.  
Leaf abscission. Loss  
of apical dominance.

Root growth inhibition. 
Progressive browning  
of roots from tips.

El-Jaoual and Cox 
(1998) and Sirkar 
and Amin (1974)

Nickel Progressive chlorosis 
beginning on margins  
of young leaves.  
Necrosis of young  
leaves and shoot apex. 
Stunted growth.  
Increase in red 
pigmentation.

Root growth inhibition. Murch et al. (2003) 
and Pandey and 
Sharma (2002)

Zinc Progressive chlorosis  
starting in young  
leaves. Purple-red  
color in leaves.  
Limited shoot growth.

Limited root elongation. Ebbs and Kochian 
(1997) and Lee 
et al. (1996)

Including data from Kabata-Pendias and Pendias (2001) and Shaw et al. (2004)
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2.4.2.2  Decreased Growth

Elevated metal levels can change the normal patterns of plant growth and development, 
both directly and indirectly. Nickel for example has been found to reduce the growth 
rate of Hypericum perforatum seedlings by 30% and 38%, when applied at 25 and 
50 mM respectively (Murch et al. 2003). Stunted growth has been observed as a 
toxicity symptom for many metals. Effects of heavy metals are not limited to ter-
restrial plants. For example, in aquatic plants, accumulation of Cr in plant tissues 
was found to reduce plant biomass (Vajpayee et al. 2001; Gupta et al. 1994; Sen 
et al. 1987). Growth is driven by cell elongation. Decreased cell elongation can be 
a result of lowered turgor, reduced synthesis of cell components, or lack of hor-
monal stimulus. Cell division and root elongation are inhibited by excess levels of 
Cu and Zn (Karataglis 1980). Metals can also influence plant behavior and alter the 
timing of growth stages. High levels of Cu, Pb, and Zn in soil caused both later bud 
break in oak and maple trees and premature senescence in autumn, resulting in a 
reduced growing season (Bell et al. 1985). Metals may interfere with the utilization 
of energy in plants, through altering enzyme activity, respiration, and ATP levels 
(El-Jaoual and Cox 1998).

Indirect effects of metals include those due to metal influence on insects and 
microorganisms. Plants can benefit from mycorrhizal fungi, which retrieve nutrients 
from the soil, increasing the effective surface area of the root tissue (Allen 1991). 

Fig. 2.5 Components of plant cells
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In metal-contaminated soils, mycorrhizal fungi that are tolerant to high metal levels 
can benefit host plants by providing nutrients and reducing metal transfer to roots 
(Hildebrandt et al. 2007; Schutzendubel and Polle 2002; Dueck et al. 1986). Scots 
pine (Pinus sylvestris) exposed to high levels of soil Cd were mycorrhizally sup-
plied with higher levels of nutrients when inoculated with a Cd-tolerant isolate of 
the ectomycorrhizal fungus Suillus luteus, than with Cd-sensitive isolates (Krznaric 
et al. 2009). Reductions in tree growth have been attributed to the possible failure of 
mycorrhizal colonization and establishment due to the presence of high levels of 
metals in soil (Burton et al. 1984).

2.4.2.3  Membrane Damage

Plant membranes are one of the first structures to suffer from the effects of toxic 
metal stress (Foyer et al. 1997), with effects on both structure and function. 
Biological membranes consist of a lipid bilayer and generally contain embedded 
proteins with various functions. Metal-induced lipid peroxidation damages the 
structure of membranes, and hence their ability to maintain ion homeostasis in the 
cytoplasm. Metal binding to sulfhydryl groups and active sites of proteins and 
enzymes results in deactivation of membrane-bound proteins. High Cu levels 
were found to increase lipid peroxidation and the permeability of membranes in 
oat (Avena sativa) leaves, resulting in senescence (Luna et al. 1994). In wheat 
(Triticum aestivum) leaves, lipid peroxidation, indicated by malondialdehyde 
levels, increased proportionally with Cr and Zn exposure (Panda et al. 2003). 
Ion leakage occurs across membranes damaged by the presence of metals. In 
Amaranthus seedlings, Cd and Pb were found to cause membrane injury with cor-
responding leakage of solutes (Bhattacharjee 1997). Membrane damage due to Cu 
exposure increased the leakiness of cell membranes in Mimulus guttatus, and 
allowed higher rates of diffusive K efflux and Cu influx from the cell (Strange and 
Macnair 1991). The effect of Cu was rapidly observed, and found to be greater in 
non-tolerant genotypes, suggesting that Cu tolerance is provided by some consti-
tutive feature of the cell membrane in Cu tolerant genotypes, and not due to a 
protective metal-induced response such as phytochelatin synthesis (Strange and 
Macnair 1991). Membrane-bound enzymes are also influenced by high metal levels. 
Activities of H+-ATPase in Cucumis sativus root cell plasma membranes were 
reduced after exposure to 10 or 100 mM Cd, Cu, or Ni (Janicka-Russak et al. 
2008). Exposure to Cu and Cd has previously been found to decrease plasma 
membrane H+-ATPase in sunflower (Helianthus annuus) and wheat (Fodor et al. 
1995). In addition, metal contamination can alter plant biosynthesis of secondary 
metabolites. In a study using the medicinal plant St. John’s wort, 25 mM Ni was 
found to decrease by more than 15-fold the production of the medicinal compo-
nents hypericin and pseudohypericin, and completely prevented the production of 
hyperforin (Murch et al. 2003).
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2.5  Inhibition of Physiological Processes

2.5.1  Oxidative Damage in Plants

Oxidative damage is one of the key consequences of excess metal stress in plants 
and is due to the effects of reactive oxygen species (ROS) in plant tissues (Apel 
and Hirt 2004). These are produced in the presence of metals, but also by normal 
plant processes and as a result of biotic and abiotic stressors (Rio et al. 2009; 
Aroca et al. 2005). Reactive oxygen species can damage cells and metabolic pro-
cesses and are countered by the antioxidant system. Such ROS include hydrogen 
peroxide 2 2(H O ),  and superoxide •

2(O )− and hydroxyl •( OH) radicals. These are 
generated naturally in plants as part of redox reactions and mitochondrial and 
photosynthetic processes, but are accumulated in greater quantities due to the 
presence of metal ions. Redox-active metals such as Fe, Cr, Cu, and Mn can catalyze 
the formation of hydroxyl radicals. In the presence of Fe and the enzymatically 
generated ROS superoxide and hydrogen peroxide, the Fenton reactions (Eqs. 2.1 
and 2.2) produce the highly reactive (and consequently more toxic) hydroxyl radical 
(Kehrer 2000).

 
+ − ++ → +3 • 2

2 2Fe O Fe O  (2.1)

 
+ − ++ → + +2 • 3

2 2H O Fe OH OH Fe  (2.2)

The net reaction (Eq. 2.3) is widely known as the Häber-Weiss reaction, which 
uses hydrogen peroxide and the superoxide radical to generate hydroxyl radicals 
(Kehrer 2000).

 
− −+ → + +• •

2 2 2 2H O O OH OH O  (2.3)

However, the Häber-Weiss reaction does not occur directly in vivo and in aque-
ous systems has a near-zero rate constant (k = 0.13 ± 0.07 M−1s−1) (Weinstein and 
Bielski 1979). It has only been directly observed in vitro in the gas phase (Blanksby 
et al. 2007). Thus, the Häber-Weiss reaction can only occur when catalyzed by tran-
sition metals (such as in the Fenton reactions) and the physiological significance of 
Eq. 2.3 has been fervently debated (Koppenol 2002; Liochev and Fridovich 2002; 
Koppenol 2001). Irrespective of the equations used, generation of the hydroxyl 
radical in plants proceeds in the presence of transition metal catalysts, with Fe being 
the most important of these in biological systems (Liochev 1999). Other redox-
inactive metals (such as Cd, Ni, and Zn) do not participate in these reactions, but 
increase oxidative stress by interfering with the biological processes that produce 
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ROS (such as photosynthesis) and disrupting the mechanisms employed by organisms 
to neutralize ROS (Dietz et al. 1999).

ROS are produced during mitochondrial respiration and photosynthesis, and in 
response to pathogens, environmental stress (such as excess metals, drought, UV 
radiation, extreme temperatures, and air pollutants), and mechanical stress (Aroca 
et al. 2005; Foyer et al. 1997). ROS such as superoxide are sometimes utilized for 
their toxicity and can be produced by plants in the immune response to pathogens 
(Merzlyak et al. 1990). Although superoxide is not a particularly toxic ROS (Jabs 
et al. 1996), it has a role in immune signaling and is generated in the initial stage of 
the hypersensitive response (Delledonne et al. 2001). The hypersensitive response 
is a method of apoptosis (programmed cell death) and is a key part of the plant 
immune system, the molecular basis of which has been reviewed by Nimchuk et al. 
(2003). Superoxide is produced at the plasma membrane by the enzyme NAD(P)H 
oxidase in response to triggers by pathogens (Foyer et al. 1997) and is unable to 
traverse biological membranes. Superoxide has been found to trigger runaway cell 
death in Arabidopsis thaliana mutant lacking a necessary negative regulatory con-
trol (Jabs et al. 1996). This limits some of the damaging effects until oxidative burst 
is initiated (Delledonne et al. 2001). Hydrogen peroxide can readily cross mem-
branes, and therefore can cause more widespread damage in cells and organelles 
(Boominathan and Doran 2003). The accumulation of H

2
O

2
 is another step in the 

hypersensitive response, but is also triggered in response to excess levels of metals 
such as Cd (Boominathan and Doran 2003) and Ni (Hao et al. 2006).

ROS are reasonably nonspecific, however, and can injure structures and pro-
cesses in healthy plant tissue. Exposure to ROS causes damage to biomolecules 
such as phospholipids, DNA, proteins, and enzymes (Hao et al. 2006; Aust et al. 
1985). The oxidation of proteins and enzymes can result in their deactivation 
(Boominathan and Doran 2003). ROS-induced lipid peroxidation leads to deteriora-
tion of membrane integrity, resulting in leakage of ions. This type of acute injury 
can also result in cellular necrosis. For example, the exposure of Nicotiana tabac-
cum to 0.178 mM Cd resulted in a fivefold increase in levels of H

2
O

2
 in roots, 

increased lipid peroxidation, and caused cessation of root growth (Boominathan and 
Doran 2003). Additionally, redox-active metals such as Cu can participate directly 
in the oxidative damage of polyunsaturated lipids (De Vos et al. 1993). The accumu-
lation of malondialdehyde, a decomposition product of polyunsaturated fatty acids, 
is commonly used as an indicator of oxidative stress in plants (Tripathi et al. 2006; 
Demiral and Türkan 2005). Thus, as ROS are produced naturally by plants, and to a 
greater degree when under stress, plants have a need for effective scavenging mech-
anisms in order to prevent uncontrolled damage. The antioxidant system in plants 
provides plants with some defense against ROS and is comprised of enzymatic and 
nonenzymatic components. Important antioxidants in plants include the molecules 
glutathione and ascorbate, and enzymes such catalase, superoxide dismutase, gluta-
thione peroxidase, and ascorbate peroxidase (Boominathan and Doran 2003). The 
enzyme superoxide dismutase has an important role in all aerobic organisms but is 
found in particularly high levels in the chloroplasts of green leaves (Marschner 
1995). It is responsible for the conversion of superoxide into H

2
O

2
 as shown in 

Eq. 2.4 (Marschner 1995).
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− − ++ + → +• • superoxide dismutase

2 2 2 2 2O O 2H H O O  (2.4)

Hydrogen peroxide can then be dismutated to H
2
O and O

2
 by catalases and 

peroxidases, rendering it nontoxic. The production of antioxidants by plants can be 
triggered by the presence of ROS, metals, and certain stress-related molecules includ-
ing salicylic acid and glutathione (Boominathan and Doran 2003; Foyer et al. 1997).

2.5.2  Photosynthesis

Photosynthesis is the process by which atmospheric CO
2
 is converted to carbohydrates 

in plants. Interference of metals with photosynthetic processes has been observed for 
many metals and plant species (Kupper et al. 2009; Benzarti et al. 2008). Metal toxicity 
is often observed as leaf chlorosis, the visible symptom of reduced photosynthetic pig-
ments such as chlorophyll and carotenoids (MacFarlane and Burchett 2001). Metals 
such as Cr and Pb can impair photosynthesis (Panda et al. 2003) by reducing the levels 
of these pigments (Choudhury and Panda 2005; Rai et al. 1992). Chlorosis has been 
observed as a primary toxicity symptom for many metals (Table 2.1). This can be the 
consequence of inhibited synthesis of chlorophyll, increased chlorophyll degradation 
in the presence of metals (Patsikka et al. 2002), or a reduction in chloroplast density 
(Baryla et al. 2001). In a novel approach, the unicellular protist, Euglena gracilis, both 
with and without chloroplasts, was used as model system to test the effects of Cu and 
Cr(VI). The light-dependent reactions of photosynthesis were found to be particularly 
sensitive to these metals, with the light-independent reactions and respiration less 
sensitive. Increased production of ROS from the disturbed photosynthetic reac-
tions resulted in greater degradation of carotenoids (Rocchetta and Küpper 2009). 
Chlorophyll production is inhibited in the presence of Cr and Pb due to their influence 
on key enzymes controlling chlorophyll biosynthesis (Geebelen et al. 2002; Vajpayee 
et al. 2000). High levels of Cu damage chloroplast proteins, including RuBisCO, a key 
enzyme catalyzing photosynthesis and the most abundant leaf protein (Demirevska-
Kepova et al. 2004). Metals applied at concentrations from 1 to 10 mg/L were found 
to affect the photosynthetic activity of seagrass (Halophila ovalis). Photosynthetic 
processes were more sensitive to the presence of Cu and Zn than to Pb and Cd (Ralph 
and Burchett 1998). Metals such as Cd can also damage the structure of chloroplasts 
and thylakoids (Baszynski et al. 1980), but the effects differ between and within spe-
cies (Vassilev et al. 2004). Experiments with tomato cultivars found that the applica-
tion of Cd at levels above 1 mmol/L decreased the leaf chlorophyll content, net 
photosynthetic rate, and intracellular CO

2
 levels (Dong et al. 2005).

2.5.3  Water Relations

Metal toxicity can also alter the water balance in plants. A wide range of responses 
have been observed due to stress caused by excess levels of metals. These include 
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reductions in water loss, size of stomata, area of leaves and diameter of xylem 
vessels, along with increased stomatal resistance, leaf abscission, and suberization 
of roots (Barcelo and Poschenrieder 1990). In Roman nettle, exposures to Al and Cd 
decreased stomatal diameter, and thus the area available for gas exchange (Özyiğit 
and Akinci 2009). The application of Cd was found to decrease transpiration of saf-
flower (Carthamus tinctorius), by reducing leaf area, relative water content, and 
stomatal opening (Sayed 1997). Stomatal conductance and transpiration rate in soy-
bean (Glycine max) were found to decrease due to Cd exposure (Leita et al. 1995). 
Metal exposure has been found to inhibit stomatal responses to light (opening) and 
darkness (closing). In an experiment using leaf tissue of broad bean (Vicia faba), 
stomatal opening and closing were inhibited by the application of Hg, Pb, and Zn at 
0.8 mM, but remained unchanged at the same levels of Ca, K, and Mg (Yang et al. 
2004). The effects of Hg, Pb, and Zn were thought to be due to the ability of these 
metals to block water and ion channels in membranes of stomatal guard cells (Yang 
et al. 2004). In wheat, Hg has previously been found to block water channels (Zhang 
and Tyerman 1999).

2.5.4  Nutrient Deficiency

High levels of metals may also impede plant growth indirectly by depriving plants 
of nutrients required for growth. This may be due to the inhibition of root growth 
and transpiration, or due to competition by the metal for uptake carriers. The reduc-
tions in root growth due to toxic metal exposure can therefore limit nutrient uptake, 
due to reduced root area available for mineral absorption. For example, exposure of 
Brassica oleracea to the transition metals Cd, Co, and Ni decreased both root bio-
mass and transpiration, with reduced Fe uptake (Pandey and Sharma 2002). Another 
impact of metal toxicity on plant nutrition is the potential loss of essential cations 
due to competition or substitution by other metal ions. When grown in a mixture of 
metals (50 mg/kg-soil of each of Cd, Cu, Ni, and Zn), P and S levels increased in 
shoot tissue of Medicago sativa, but Fe and Ca levels were significantly reduced 
(Peralta-Videa et al. 2002). These effects were thought to be caused by the presence 
of Cu, which had previously been shown to reduce Ca uptake in Zea mays 
(Ouzounidou et al. 1995) and Lotus purshianus (Lin and Wu 1994). When Fe uptake 
is reduced, deficiency symptoms such as chlorosis may be visible. Excess levels of 
Cd in soil were suspected to have reduced the uptake of nutrient cations such as Zn, 
Ca, and Fe by Brassica juncea, resulting in leaf chlorosis (Van Engelen et al. 2007). 
Exposure of radish (Raphanus sativus) to high Cu levels (0.2 mM) had visible toxicity 
symptoms similar to Fe deficiency (Chatterjee et al. 2006). In other studies, elevated 
concentrations of Cr(VI) have been found to inhibit uptake of nearly all the essential 
nutrients (Shanker et al. 2005). Potential reasons for this include the binding of 
toxic metals to nonspecific carriers for ion uptake or the inhibition of ATPase proton 
pumps in the plasma membrane (Obata et al. 1996; Zaccheo et al. 1982). Additionally, 
metal interference with enzymes (such as nitrate reductase and ferric reductase) that 
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facilitate nutrient acquisition can also result in deficiency of specific nutrients 
(Shanker et al. 2005).

2.6  Metal Essentiality and Toxicity

Metals disturb plant development and metabolism at different stages of growth. An 
essential metal can affect plants when present in either deficient or excess amounts. 
With those elements, plant growth and yields are enhanced as the metal uptake is 
increased; metal uptake beyond a certain level however may either have no effect or 
induce toxic effects that lead to decreased growth and yields. In the case of nones-
sential elements, deficiency-toxicity symptoms are not observed. The initial supply 
of these metals does not affect plant growth, but above a certain concentration, the 
plant can exhibit toxic symptoms (Shaw et al. 2004).

Among metals, manganese is required at low concentrations for plant nutrition and 
tends to accumulate in plant roots (Wheeler and Power 1995). The threshold for toxic-
ity of Mn is however reasonably high (White and Brown 2010). Nickel at low concen-
tration (0.1 mg/g dry weight) is essential for plant growth, but is toxic at levels greater 
than 20–301 mg/g dry weight (White and Brown 2010). Excess Ni has been found to 
disturb water balance, plant development (including cell division and root branching), 
metal detoxification responses, and photosynthesis (Seregin and Kozhevnikova 2006). 
Copper is a key component of many metalloenzymes, including superoxide dismutase 
and ascorbate oxidase (Maksymiec 1997) and is essential for photosynthesis 
(Fernandes and Henriques 1991). Although Cu is an essential micronutrient, required 
at levels of 1–5 mg/g dry weight, high concentrations of Cu induce toxicity in plant 
tissues (White and Brown 2010). Other common soil contaminants that are nones-
sential metals for plants include Cd, Cr, and Pb, with toxicity thresholds in dry leaf 
tissue of 5–10 mg/g, 1–2 mg/g, and 10–20 mg/g, respectively (White and Brown 2010; 
Lombi et al. 2000). High concentrations of Cd can inhibit plant growth, root devel-
opment, and photosynthesis (Sanita di Toppi and Gabbrielli 1999; Barcelo and 
Poschenrieder 1990). The presence of Cr can inhibit seed germination, degrade 
pigmentation, cause nutrient deficiencies, damage antioxidant enzymes, and can 
induce oxidative stress in plants (Panda et al. 2003; Panda and Choudhury 2005). The 
mechanism of Pb toxicity on the other hand is thought to be due to its ability to bind 
to nucleic acids and alter the arrangement of chromatin, which inhibits DNA replica-
tion and transcription, leading to reduced cell division and plant growth (Johnson 
1998). Seed germination is also affected by the presence of Pb (Atici et al. 2005).

2.7  Toxicity Sequence

The toxicity of metals to plants varies between, and even within, plant species 
(Wang et al. 2004). Additionally, factors such as plant age, developmental stage, 
nutrient status, and stress levels also influence metal toxicity (Shaw and Rout 1998; 
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Maksymiec et al. 1995). It is therefore difficult to ascertain the relative toxicity of 
different metals for any given plant. A broad indication of metal essentiality and 
toxicity is illustrated in Fig. 2.6. A general sequence of toxicity for biologically 
relevant metals, which decreases approximately in the order are: Cr > V>Hg > Cd > 
Pb = Co > Cu > Ni > Li > Al > Zn > Fe > Mo > Mn > Na > Mg > K > Ca. Toxicity sequences 
for a range of organisms have also been described (Nieboer and Richardson 1980). 
For flowering plants, the sequence was: Hg > Cd > Ti > Te > Pb > Bi ~ Sb (Fergusson 
1990). The toxicity sequence obtained for the freshwater plant duckweed (Lemna 
minor) was found to be: Ag > Cd > Hg > Tl > Cu > Ni > Zn > Co > Cr(VI) (Appenroth 
2010). Toxicity sequence also varies within the plant, depending on the type of 
tissue affected. For example, in the shoot tissue of wheat, the sequence was 

Fig. 2.6 Metal levels required in plant leaf tissues for beneficial and toxic effects (Data from 
White and Brown 2010)
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Cu > La > Ga = Fe > Zn > Mn while in root tissue, the order was Cu > La = 
 Fe > Zn > Ga > Mn (Wheeler and Power 1995). The variability in toxicity sequences 
between different plants illustrates the inherent difficulties in predicting metal 
toxicities based on the properties of the metal only.

To further confound toxicity predictions, the simultaneous presence of different met-
als can alter their toxic effects. Metal co-contamination has been found to increase over-
all toxicity symptoms (Karataglis 1980). The presence of a metal can have synergistic or 
antagonistic effects on the uptake of other metals. In Brassica juncea, the application of 
Zn at low to moderate levels (113–340 mg/kg soil) was found to suppress Cd uptake by 
40%. High levels of Zn (705 mg/kg soil), however, had no such antagonistic effect, pos-
sibly due to Zn phytotoxicity (Podar et al. 2004). Similar results have previously been 
found in lettuce and spinach (Spinacia oleracea) (McKenna et al. 1993).

2.8  Metal Tolerance Mechanisms

Two main strategies for plants to circumvent metal toxicity were suggested by Baker 
(1981). These are exclusion, where the plant limits the entry and movement of met-
als into cells, and accumulation, where metals taken into plant cells are detoxified 
through mechanisms such as chelation, active efflux, sequestration to vacuoles 
(compartmentalization), and binding to the cell wall matrix (Prasad 1995; Baker 
1987). Other mechanisms, such as the increased production of antioxidants, are also 
involved (Sharma and Dietz 2006; Ruley et al. 2004). Metal availability may be 
reduced through alterations in soil pH (Hinsinger 2001). Within plants, metal ions 
can be bound to the cell walls (Poulter et al. 1985) or precipitated (“phytoexcreted”) 
from the leaves (Manousaki et al. 2008). To reduce the toxicity of metals such as Pb 
and Cd, plants may deposit them inside vacuoles (Conn and Gilliham 2010) or bind 
them to sulfur compounds (Sharma et al. 2005).

2.8.1  Metal Accumulation

Plants capable of accumulating extraordinarily high levels of metals are referred to 
as hyperaccumulators (Brooks et al. 1977). Hyperaccumulation thresholds of differ-
ent plants for different metals have been developed over the years (Reeves and Baker 
2000; Watanabe 1997; Reeves and Brooks 1983) and are presented in Table 2.3.

Among various plants, Alyssum, Brassica, and Thlaspi have been found to be the 
most effective and dominant metal-tolerant and accumulating plants (Prasad and 
Freitas 2003), although only a few species of each genus have been confirmed as 
hyperaccumulators. Hyperaccumulators tend to accumulate either Ni, Cu/Co, or 
Cd/Pb/Zn (Raskin et al. 1994). Some metals are more amenable to hyperaccumula-
tion, due to their availability in soil. For example, several hundred Ni hyperaccumu-
lators exist, while only a few plants are able to naturally hyperaccumulate Pb or Cr, 
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due to the relative insolubility of these metals in soil solution (Hossner et al. 1998). 
Hyperaccumulators may play some roles in the phytoremediation of metals  
by phytoextraction (Lasat 2002; Cunningham and Ow 1996; Chaney 1983). 
Hyperaccumulating plant species are often capable of survival in soils where other 
crops may fail, as they can tolerate abnormally high levels of metal in soils and tissue. 
Comparison of metal uptake factors (concentration in shoots/concentration in soil) 
of 100–2,200 in radish (Lorenz et al. 1997), a nonaccumulator, and 3,500–85,000 in 
the hyperaccumulator Thlaspi caerulescens grown in the same soils (Knight et al. 
1997) demonstrates the impressive accumulation capacity of hyperaccumulators. 
However, hyperaccumulating plants often have low biomass (Zhao et al. 2001), 
grow slowly, and may be relatively difficult to establish due to lengthy germination 
periods (Knight et al. 1997).

Metal hyperaccumulators have been investigated to determine the mechanisms 
responsible for their metal tolerance and accumulation abilities (Clemens et al. 2002). 
This is generally with a view to incorporating these properties into high biomass plants 
for enhancing the effectiveness of metal phytoextraction technologies (Kramer and 
Chardonnens 2001). Potential reasons for hyperaccumulating plants to cope with 
accelerated metal levels may be due to improved versions of tolerance mechanisms 
that are present in other plants. These may include systems such as cytoplasmic chela-
tion, vacuolar sequestration, cell wall binding, and antioxidative stress responses (Hall 
2002). Metal hyperaccumulators have been found to tolerate excess metal stress using 
an enhanced antioxidative response. High levels of important antioxidant enzymes 

Table 2.3 Metal thresholds levels of certain hyperaccumulating plant species

Metal
Threshold leaf concentration  
(mg/g dry weight)

Examples of hyperaccumulating plant 
species

Cd 0.1 Thlaspi caerulescens
Sedum alfredii

Co 1 Aeolanthus biformifolius
Berkheya coddii

Cr 1 Sutera fodina
Leptospermum scoparium

Cu 1 Aeolanthus biformifolius
Commelina communis
Crassula helmsii

Mn 10 Macadamia neurophylla
Ni 1 Alyssum bertolonii

Alyssum murale
Sebertia acuminata
Berkheya coddii

Pb 1 Hemidesmus indicus
Zn 10 Thlaspi caerulescens

Sedum alfredii

Compiled from Baker and Brooks (1989), Deng et al. (2008), Kupper et al. (2009), Lyon et al. 
(1968), Malaisse et al. (1979), Robinson et al. (1997), Wang et al. (2004), Whiting et al. (2001), 
and Yang et al. (2002b)
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were observed in the hyperaccumulator T. caerulescens even in the absence of metals. 
When 0.178 mM Cd was applied (a level preventing root growth in Nicotiana 
tabacum), root growth of T. caerulescens continued, the production of catalase was 
increased, and low levels of H

2
O

2
 were maintained, although lipid peroxidation 

occurred (Boominathan and Doran 2003). Metal uptake may also be facilitated by 
increased levels of metal binding root exudates. This has been considered as a possible 
mechanism used by metal hyperaccumulators (Knight et al. 1997). In a study com-
paring the metal complexing abilities of exudates from hyperaccumulating plants  
(T. caerulescens) to those from the nonaccumulators wheat and canola (Brassica 
napus), exudates from the nonaccumulators were actually found to be more effective at 
mobilizing metals from resins (Zhao et al. 2001). Only in recent times have some of the 
genetic mechanisms for metal hyperaccumulation become clearer. These are outside 
the scope of this chapter, but have been recently reviewed elsewhere (Kramer 2010).

2.8.2  Metal Detoxification

Plant sensitivity to toxic metals can be partially countered by the endogenous 
synthesis of metal-binding proteins including metallothioneins (MTs) and phyto-
chelatins (PCs) (Mejare and Bulow 2001). PCs can be synthesized in response to 
high metal levels (Rauser 1995, 1999) and are functionally similar to MTs, the 
metal binding proteins found in most living organisms (Grill et al. 1987). Glutathione, 
an important component of the plant antioxidant system, also has an essential role 
as a PC precursor. PCs are synthesized in plants by the enzyme phytochelatin syn-
thase in response to metal ions, Cd in particular, followed in enzyme activating 
ability by Ag, Bi, Pb, Zn, Cu, Hg, and Au (Grill et al. 1989). In tomato and Silene 
vulgaris, PCs were produced in response to metals, but were found to bind only to 
Cu and Cd ions, with Pb and Zn bound to lower molecular weight ligands (Leopold 
et al. 1999). However, PCs were not present in Cu-tolerant S. vulgaris, Armeria 
maritima, or Minuartia verna populations growing naturally in Cu-contaminated 
mine spoil, suggesting that PC synthesis may be a transient response to high levels 
of metals, and not the sole basis for metal tolerance in these species.

Cadmium-sensitive Arabidopsis thaliana mutants were found to lack the ability to 
synthesize glutathione and thus scavenging the toxic metal (Howden et al. 1995a, b). 
The hyperaccumulator T. caerulescens has been found to naturally produce very 
high levels of glutathione, which may confer some resilience against metal toxicity 
(Boominathan and Doran 2003). Exposure to metals increases plant production of 
phytochelatins. For example, cadmium applied to Camellia sinensis induced 
increased transcription of the genes responsible for glutathione biosynthetic enzymes 
(Mohanpuria et al. 2007). These mechanisms provide plants some protection against 
excess metal stress (Yadav 2010). Phytosiderophores, an iron chelating compounds, 
are another metabolite produced by many plants including members of gramina-
ceous monocotyledons, as part of their strategy for mobilizing Fe from soil. In addi-
tion to mobilizing iron, phytosiderophores can also bind to other metals such as Zn 
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(Hopkins et al. 1998; Zhang et al. 1991). Wheat and barley released phytosiderophores 
from root tissues, particularly when under Fe-deficient conditions. Phytosiderophores 
were able to mobilize Fe and Cd from the solid phase. Although plant uptake of 
Cu, Fe, Mn, and Zn increased under Fe stress due to phytosiderophore release, 
Cd–phytosiderophore complexes were not taken up by the plants (Shenker et al. 
2001). Plants may also change the oxidation state of redox active metals in order to 
reduce their toxicity. The creosote bush (Larrea tridentata) as an example has been 
found to internally reduce copper from Cu2+ to Cu+ as it is translocated with the help 
of a PC from roots to leaves (Polette et al. 2000).

2.8.3  Antioxidant Response

In order to reduce the damaging effects of high metal levels, plants produce antioxi-
dants. Antioxidant synthesis is an indicator of metal toxicity and the synthesis of 
antioxidant enzymes increases under metal stress (Chamseddine et al. 2009). 
Hyperaccumulating populations of Commelina communis were found to tolerate 
high levels of Cu (>1 mg/g dry weight) in leaf tissue without toxicity; however, in 
nonaccumulating populations, Cu toxicity induced the activity of the antioxidant 
enzymes superoxide dismutase, guaiacol peroxidase, and ascorbate peroxidase 
(Wang et al. 2004). In cell cultures of the Pb-tolerant shrub Sesbania drummondii, 
exposure to Cu and Pb induced the activity of superoxide dismutase and catalase, 
but decreased guaiacol peroxidase activity (Sharma et al. 2005). Plants may also be 
able to tolerate metals through the rapid repair of damaged membranes. This 
response has been thought to utilize metallothioniens and certain proteins involved 
in lipid metabolism (Salt et al. 1998).

2.9  Enhancing Metal Tolerance

Metal tolerance may be acquired in plants, when plants are repeatedly exposed to low 
level of toxic metals. For example, in bean plants, oxidative stress induced by Cu 
exposure doubled the activity of the antioxidative enzymes ascorbate peroxidase and 
catalase, but reduced glutathione reductase activity. This stress pretreatment conferred 
increased tolerance to subsequent oxidative stress induced by exposure to methyl 
viologen and SO

2
 (Shainberg et al. 2001). Some compounds that could enhance the 

metal tolerance ability of plants are briefly discussed in the following section.

2.9.1  Chelators

The application of metal chelators can help plants to tolerate high metal concentra-
tions. The chelators like nitrilotriacetic acid and ethylenediaminedisuccinic acid 
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have been found to improve the copper tolerance of perennial ryegrass, Lolium 
perenne (Johnson et al. 2009). The presence of strong aminopolycarboxylic acid 
chelating agents reduced Pb toxicity in Sesbania drummondii (Ruley et al. 2006). 
Plant growth was significantly higher in treatments with chelators and Pb, compared 
to treatments with Pb alone. Accumulation of Pb in shoot tissue increased up to 
40-folds in the presence of chelators, without adversely affecting photosynthesis 
(Ruley et al. 2006). However, strong chelating agents can be toxic and are therefore 
often not appropriate for application to soil.

2.9.2  Phytohormones

Certain plant hormones can help alleviate some of the detrimental effects of toxic 
metal exposure (Gadallah and El-Enany 1999). Nearly all plant processes are regu-
lated by very low concentrations of plant hormones. These include substances such 
as auxins, cytokinins, gibberellins, abscisic acid, ethylene, brassinosteroids, and 
jasmonic acid. These are used by the plant to regulate processes such as germina-
tion, cell expansion, cell division, root development, stem elongation, pathogen 
response, flowering, fruit ripening, and senescence (Gray 2004). Indole-3-acetic 
acid (IAA) is the primary auxin, and regulates cell division, expansion and differ-
entiation, controlling apical dominance and the development of lateral roots (Gray 
2004; Kende and Zeevaart 1997). Besides acting as a growth regulator, IAA has 
also been found to increase metal uptake, which could indeed be of benefit in 
phytoextraction applications. For example, application of 100 mM IAA increased 
Pb accumulation in shoot tissues of S. drummondii by a factor of more than 6.5, 
although growth and photosynthetic activity were not affected. After scanning electron 
microscope observations, Pb was found primarily in vascular tissues of stems and 
leaves (Israr and Sahi 2008).

The application of kinetin, a cytokinin (cell division-promoting hormone) 
reduced and reversed the toxic effects of Cd. Kinetin at 15 mg/L, applied as a foliar 
spray, significantly increased leaf area, transpiration rate, leaf turgidity and stomatal 
area in safflower (Carthamus tinctorius) plants exposed to Cd (Sayed 1997). In 
alfalfa, the combined application of 100 mM IAA and 100 mM kinetin increased Pb 
accumulation in stems and leaves (Lopez et al. 2009). There are reports that suggest 
that the combined application of chelating amendments and phytohormones may 
play an important role in enhancing the efficiency of phytoremediation technology. 
To substantiate this hypothesis, Lopez et al. (2005) in a study observed that the 
application of 0.2 mM ethylenediaminetetraacetic acid (EDTA) increased Pb accu-
mulation in alfalfa plants by three times compared to those observed for sole appli-
cation of Pb. The mixture of EDTA and 100 mM IAA, however, increased the Pb 
accumulation in plants by 28-folds (Lopez et al. 2005). This dramatic increase in 
metal accumulation in alfalfa plants was thought to be due to the ability of IAA to 
activate plasma membrane ATPases and increase carrier-mediated ion transport 
through the membrane.
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2.9.3  Importance of Microorganisms in Metal Removal

The rhizosphere bacteria able to colonize plant roots and facilitate plant growth are 
generally called as plant growth-promoting rhizobacteria (PGPR). The PGPR assist 
plant growth through their abilities to act as biofertilizers, rhizoremediators, phyto-
stimulators, and stress controllers (Lugtenberg and Kamilova 2009). These PGPR 
may help plants overcome metal toxicity (Khan et al. 2009). The potential for using 
microbially synthesized compounds for improving plant growth and metal tolerance 
has, however, recently been investigated. The production of growth-promoting 
phytohormones and metal-mobilizing chelators by bacteria may be valuable in 
phytoremediation. Other symbiotic fungal associations, for example, arbuscular 
mycorrhizal (AM) fungi in the rhizosphere, may also assist plants by supplying 
nutrients essential to plants, when toxic levels of metals reduce root growth (Krznaric 
et al. 2009). Mycorrhiza have been found to limit Cd toxicity of their host plant, 
possibly by releasing metal-binding chelators, or by supplying glutathione to plant 
roots (Schutzendubel and Polle 2002). Besides PGPR and AM-fungi, strains of 
actinomycetes such as Streptomyces have also been found capable of simultane-
ously producing auxins and siderophores and thus reducing metal toxicity to plants 
(Dimkpa et al. 2009; Dimkpa et al. 2008). The presence of metals inhibited auxin 
production by Streptomyces, particularly in the absence of siderophores. However, 
siderophore production was stimulated by the presence of metals such as Al, Cd, 
Cu, and Ni, enabling the binding of these metals and reducing their inhibitory effects 
on auxin synthesis (Dimkpa et al. 2008, 2009).

2.10  Conclusion

Metals are ubiquitous in the environment. Certain metals are necessary as nutri-
tional elements, while others are not beneficial to plants at any level. In some areas, 
human activities have increased the distribution and concentration of metals in such 
a way as to increase the risk of toxic effects in plants. Toxicity can occur either 
directly through plant contact with metals in contaminated soils, or indirectly via 
effects on rhizosphere microorganisms. Due to the enormous range of potential 
biomolecular targets in plants, there is a great deal of difficulty in predicting metal 
toxicity. Although some correlations have been developed based on chemical prop-
erties, there are still metals and plants that interact unpredictably. Hence, many 
different toxicity responses are observed in plants, with even different populations 
of the same species expressing different tolerance to metals. A reason for this is that 
plants can develop adaptations and tolerance mechanisms that are induced in the 
presence of stressors such as metals.

In many situations, plant establishment and survival will be adversely affected by 
the presence of excess metals. Many plant species are important agronomically, while 
others may be utilized for soil remediation applications such as phytostabilization and 
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phytoextraction. Metal tolerance and concentrations in plant tissues will be of great 
importance in these fields. Enhanced tolerance and controlled accumulation of met-
als may be possible through similar mechanisms to those already developed by 
plants. These include metal-binding chelators, phytohormones, and associations 
with microbes such as bacteria and fungi. The exploration and utilization of these 
natural mechanisms for metal detoxification and accumulation may provide poten-
tial opportunities for enhanced phytoremediation technologies.
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Abstract Ever increasing human activities including agricultural, urban, or industrial 
are a major source of environmental pollution. Toxic metal pollution of waters, air, 
and soils is one of the potential problems, which is an enigma for scientists how to 
tackle this problem that has threatened the environment. To solve this, conventional 
remediation approaches have been used, which, however, do not provide acceptable 
solutions. The development of an alternative remediation strategy for the abatement 
of a contaminated medium is important for environmental conservation and human 
health. Bioremediation, an attractive and novel technology, is a multidisciplinary 
approach that uses biological systems to degrade/transform and/or to rid the soil and 
water of pollutants. This technology involves the use of plants (phytoremediation), 
plant–microbe interactions (rhizoremediation), and microbial communities involv-
ing stimulation of viable native microbial population (biostimulation), artificial 
introduction of viable population (bioaugmentation), bioaccumulation (live cells), 
and use of dead microbial biomass (biosorption) to clean up the contaminated 
sites. Bioremediation is simple, can be applied over large areas, environmentally 
friendly, and inexpensive. The use of genetic engineering to further modify plants 
for uptake, transport, and sequester metal opens up new avenues for enhancing 
efficiency of phytoremediation. Various bioremediation approaches adopted to 
remediate contaminated sites and major concerns associated with phytoremediation 
as a sustainable alternative are reviewed and discussed.
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3.1  Introduction

Pollution of the surrounding environment has accelerated dramatically after the 
industrial revolution, leaving a legacy faced by modern society. The primary source 
of such pollutions is the burning of fossil fuels, mining and smelting of metallifer-
ous ores, municipal wastes, agro-chemicals, and sewage. Migration of contaminants 
from neighboring contaminated land to a non-contaminated sites as vapors and 
leachate through the soil, or as dust or, spread of sewage sludge, further contributes 
to the contamination of natural ecosystems (Lopez-Errasquin and Vazquez 2003; 
Khan 2005). A wide range of materials causing contamination includes heavy 
metals, inorganic and organic compounds, oil and tars, toxic and explosive gases, 
combustible and putrescible substances, hazardous wastes, and explosives (Cheng 
2003). Even where contamination levels are relatively low, such sites present major 
clean-up challenges as the levels may still be above regulatory limits. The excessive 
deposits of heavy metals thus pose a critical threat to human health and the environ-
ment due to their non-degrading ability, low solubility, and carcinogenic and muta-
genic activity (Diels et al. 2002).

In addition to the inorganic compounds, soils and water systems may also be 
contaminated by organic compounds including chlorinated solvents like, trichloro-
ethylene; explosives such as trinitrotoluene (TNT) and 1, 3, 5-trinitro-1, 3, 5-hexa-
hydrotriazine (RDX); petroleum hydrocarbons including benzene, toluene, and 
xylene (BTX); polyaromatic hydrocarbons (PAHs) and pesticides. While many of 
these compounds can be metabolized by soil bacteria, this process is usually slow 
and inefficient, in part due to occurrence of relatively low numbers of degradative 
microorganisms in soil (Glick 2003, 2010; Karamalidis et al. 2010). In some cases, 
soils, however, could be contaminated to such an extent that it may be classified as 
a hazardous waste (Berti and Jacob 1996). Soils polluted with single or mixture of 
heavy metals is thus receiving increasing attentions from the public as well as gov-
ernmental bodies, particularly in developing countries (Yanez et al. 2002). The 
remediation of sites contaminated with heavy metals is hence a major environmen-
tal concern because these usually cover large areas that are rendered unsuitable for 
agricultural and other human use. There is therefore, an urgent need to develop suit-
able onsite remediation technologies in order to reduce the use of offsite contami-
nants for remediation. To address these problems, numerous techniques have 
been designed and developed that could be adopted to clean up contaminated soils 
(Ellis 1992; McEldowney et al. 1993).

3.2  Remediation Technologies

Remediation of metal-contaminated soils is particularly challenging. Unlike organic 
compounds, metals cannot be degraded, and the cleanup usually requires their phys-
ical or chemical removal (Lasat 2002). Various physical, chemical and biological 
processes are already in use to remediate contaminated soils (Smith et al. 1995; 
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Mulligan et al. 2001). These processes either “decontaminate” the soil, or “stabilize” 
the pollutant within it. Decontamination reduces the amount of pollutants from soil 
by removing them; stabilization, however, does not reduce the quantity of pollutant 
at a site, but makes use of soil amendments to alter the soil chemistry and sequester 
or absorb the pollutant into the matrix so as to reduce or eliminate environmental 
risks (Burns et al. 1996). The choice of remediation strategy however depends on 
the nature of the contaminant(s). The most commonly used method for cleaning up 
metal polluted sites globally includes bulk excavation and land-filling of contami-
nated materials (Huang and Cunningham 1996; Begonia et al. 1998). This process 
is extremely expensive and very disruptive to the site/ecosystem (Gardea-Torresdey 
et al. 2004). Other commonly available remediation technologies include acid wash-
ing and solidification/stabilization (US-EPA 1997).

Soil washing, like excavation and land-filling, is an ex-situ technique. It does not 
detoxify or significantly alter the contaminant, but transfers it from soil matrix to 
washing fluid. For metals, this technique often involves solubilization and suspen-
sion of metal ions through spraying or immersion in acid (HCl and/or acetic acid) 
solution. Following the washing step, the solution is moved to a “clarifies” tank 
where metal salts are separated via precipitation or flocculating agents. This process 
like excavation and land-filling is mechanical in nature, and relatively expensive 
(Alexander et al. 1997). Large volumes of acid by-product must be dealt with as 
hazardous wastes, and, in most cases, the physical structure of the soil is damaged 
by the acids to an extent where soil’s biological activity is lost (Baker et al. 1994). 
Solidification/stabilization is classified as an immobilization technique, in which 
treatment  agents  are  mixed  or  injected  into  contaminant  materials  (Wills  1988; 
Mench et al. 1994). Stabilization involves the addition of binding or buffering agents 
such as calcium carbonate (CaCO

3
) or clay, while solidification involves encapsula-

tion of contaminated soil in a solid (often cement) matrix. The final product may 
range from a crumbly, solid-like mixture to a monolithic block (US-EPA 1997).

The costs associated with soil remediation are highly variable and depend on 
(1) the nature of contaminant, (2) soil properties like structure, pH, moisture con-
tents, temperature, and redox potential, (3) nutritional state of soils, (4) microbial 
composition, and (5) the volume of material to be remediated. Techniques that 
remediate soils in situ are generally less expensive than those that require excava-
tion. On an average, remediation costs are US$10–100/m3 of soil for volatile or 
water-soluble pollutants remediated in-situ, US$60–300/m3 by compounds handled 
by land-filling or low-temperature thermal treatment, and US$200–700/m3 for 
materials requiring special landfill arrangements or high-temperature thermal treat-
ments. The incineration of contaminated soil can cost up to US$1000/m3. Soil 
removal and replacement with clean soil is even more expensive, coasting between 
$8 and $24 million per hectare per meter of soil depth removed (Cunningham et al. 
1995; Glass 2000). Certain materials like, radionuclides require even more intensive 
management techniques that can cost well beyond US$1,000–3,000/m3 of soil 
(Cunningham and Berti 1993). These practices usually generate secondary waste, 
destroy soil fertility and adversely affect its physical structure, remove biological 
activity from the treated soil, and are very expensive (Saxena et al. 1999;  
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Pulford and Watson 2003). Physical and chemical methods of remediation of con-
taminated soils are mainly applicable to relatively small areas and are unsuitable 
for very large areas such as a typical mining site or industrially/agrochemically 
 contaminated soils.

3.2.1  Bioremediation

Bioremediation uses plants and/or microorganisms, such as bacteria, protozoa, and 
fungi; to degrade contaminants into a less toxic or non-toxic compounds (Pierzynski 
et al. 1994; US-EPA 1996). The three basic components of any bioremediation 
process include (1) microorganisms or plant, (2) a potentially biodegradable 
contaminant, and (3) a bioreactor in which the process can take place. Proper 
temperature, oxygen, and sufficient nutrient levels are required for functional biore-
actor. The microbes in the bioreactor use carbon of the organic contaminants as a 
source of energy, and in doing so, degrade the contaminant. Biochemical processes 
such as bioleaching involving bacteria like Thiobacillus spp. and Aspergillus niger 
fungus, biosorption of low concentrations of metals in water by algal or bacterial 
cells, bio-oxidation or bioreduction of metal contaminants by Bacillus subtilis and 
sulfate reducing bacteria (SRB), and biomethylation of metals such as As, Cd, Hg, 
or Pb have shown promises and could be used for soil sediment treatments (Mulligan 
et al. 2001; Yoshida et al. 2006; Abou-Shanab et al. 2007).

Bioremediation can be applied both ex-situ and in-situ. With ex-situ bioremediation, 
the contaminated soil is excavated or the groundwater is extracted prior to treatment 
while in-situ remediation does not require excavation or extraction. As a result, the 
contaminated soil or groundwater serves as the bioreactor. The microorganisms 
may occur at the site naturally or be introduced from other locations. The conditions 
required by microbes for soil remediation are outlined in Table 3.1.

3.2.1.1  Ex-Situ Bioremediation

The primary methods used in ex-situ bioremediation are slurry-phase and solid-
phase treatment. In slurry-phase treatment, contaminated soil is combined with 
H

2
O

2
 and other additives in a bioreactor. The resultant slurry is then mixed continu-

ously to keep the microorganisms in contact with the contaminants. Upon comple-
tion of the treatment, H

2
O

2
 is removed from the solids, which are either disposed of 

or treated further if still contaminated. With solid-phase treatment, soils are remedi-
ated in above ground treatment areas equipped with collection systems to prevent 
contaminants from escaping (Pierzynski et al. 1994; US-EPA 1996). Land farming, 
soil bio-piles, and composting are three types of solid-phase treatment. Land farm-
ing involves spreading the contaminated soil thinly over land or a pad with a 
leachate-collection system. In some land-farming cases, reduction of contaminant 
concentrations may actually be due more to volatilization, leaching, or dilution through 
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mixing with uncontaminated soil than from actual degradation by microorganisms. 
In a study, Genouw et al. (1994) demonstrated that land farming can be used effec-
tively to clean up oil sludge applied to soil, but only if appropriate technical mea-
sures (e.g., nutrient and organic amendment, inoculation, and tillage) are employed 
and sufficient time (at least 15 years) is allowed for bioremediation to take place as 
also reported by Loehr and Webster (1996) who found similar results for creosote-
contaminated soils. With soil bio-piles, contaminated soil is piled in heaps several 
meters high over an air distribution system (US-EPA 1996). A vacuum pump is used 
to pull air through the bio-pile. As a result, volatile contaminants are easily con-
trolled since they are usually the part of the air stream pulled through the pile. In 
composting, biodegradable contaminants are mixed with straw, hay, or corn cobs to 
make it easier to achieve optimum levels of air and water (Bollag 1992). The com-
post can be (1) formed into piles and aerated with blowers or vacuum pumps, 
(2) placed in a treatment vessel where it is mixed and aerated, or (3) placed in long 
piles known as windrows and periodically mixed using tractors or similar equip-
ment. Compost piles typically have elevated temperatures due to microbial activity, 
which sets them apart from bio-piles.

3.2.1.2  In-Situ Bioremediation

In-situ bioremediation is similar to phytoremediation as it uses microorganisms 
on-site to degrade contaminants. However, in-situ bioremediation does not involve 
the use of plants and generally employs more invasive engineering techniques than 
phytoremediation. For example, the oxygen required by aerobic microorganisms 
during in-situ bioremediation may be provided by pumping air into the soil above 
the water table, in a process known as bioventing, or by delivering the oxygen in 

Table 3.1 Environmental variables and optimum condition for microbial activity for soil 
bioremediation

Environmental factors Optimum conditions Conditions for microbial activity

Available soil moisture 25–85% water holding capacity 25–28% of water holding capacity
Oxygen >0.2 mg/L DO, >10% air-filled 

pore space for aerobic 
degradation

Aerobic, minimum air-filled pore 
space of 10%

Redox potential Eh > 50 mV –
Nutrients C:N:P = 120:10:1 M ratio N and P for microbial growth
pH 6.5–8.0 5.5–8.5
Temperature 20–30°C 15–45°C
Contaminants Hydrocarbon 5–10% of dry 

weight of soil
Not too toxic

Heavy metals 700 ppm Total content 2,000 ppm
Soil type – Low clay or silt content

Adapted from Vidali (2001)
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liquid form as H
2
O

2
 (US-EPA 1996). In-situ bioremediation has been successful in 

remediating groundwater as well as surface soils and sub soils contaminated with 
petroleum hydrocarbons (Pierzynski et al. 1994). As an alternative, scientists have 
begun to develop technological approaches involving plants to remove organic and 
inorganic contaminants from the soil (Wild et al. 2005; Glick 2010).

3.3  Phytoremediation

Recognition of the ecological and human health hazards of the pollutants has led to 
the development of several technologies for remediation. However, due to the exces-
sive cost of some of these technologies, attention has been diverted toward develop-
ing alternate/complementary technologies such as, the use of plants and 
microorganisms as bioremediators (Schneegurt et al. 2001; Sar and D’Souza 2002; 
Melo and D’Souza 2004; Abou-Shanab et al. 2003a, 2006, 2007, 2008). Compared 
to the conventional methods, the biomass-based systems are more acceptable due to 
low cost coupled with high efficiency of detoxification of even very dilute effluents 
and minimizing the disposable sludge volume. This technology also offers the flex-
ibility for developing nondestructive desorption techniques for biomass regenera-
tion and/or quantitative metal recovery. Among these techniques, phytoremediation 
involves the use of metabolically viable green plants and their associated microor-
ganisms for in-situ risk reduction and/or removal of contaminants from contami-
nated soil, water, sediments, and air. Specially selected or engineered plants are 
used in the process (Abd El-Rahman et al. 2008). Risk reduction can be through a 
process of removal, degradation of a contaminant or a combination of any of these 
factors. Phytoremediation is energy efficient and aseptically pleasing method of 
remediating sites with low to moderate levels of contamination and can be used in 
conjunction with other more traditional remedial methods as a finishing step to the 
remedial process.

3.3.1  General Advantages of Phytoremediation

To facilitate comparison with physical remediation systems, we have redefined 
plants as “solar-driven pumping and filtering systems” that have “measurable load-
ing, degrading, and fouling” capacities. Roots may similarly be described as 
“exploratory, liquid-phase extractors” that can find, alter, and/or translocate ele-
ments and compounds against large chemical gradients (Cunningham and Berti 
1993). Plants can also be a cost-effective alternative to physical remediation sys-
tems (Glass 2000). In many cases, phytoremediation has been found to be less than 
half the price of alternative methods. Phytoremediation is less disruptive to the 
environment and does not involve waiting for new plant communities to recolonize 
the site. It also has the potential to treat sites polluted with multiple pollutants. 
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Thus, the use of phytoremediation for metal removal/detoxification from 
metal-poisoned soils offers advantages, like (1) low cost, (2) plants can be easily 
grown and monitored, (3) the recovery and reuse of valuable products is easy, (4) since 
it uses naturally occurring organisms, the natural state of the environment can be 
preserved, and (5) and plants can be engineered for desired traits.

3.3.2  General Limitations of Phytoremediation

Like other remediation technologies, phytoremediation has also certain disadvan-
tages. For example, it is a process that is dependent on the depth of the roots and the 
tolerance of the plant to the contaminant. Plants are alive; their roots require O

2
, 

H
2
O

2
,  and  nutrients.  Soil  texture,  pH,  salinity,  pollutant  concentrations,  and  the 

presence of other toxins must be within the limits of plant tolerance. Contaminants 
that are highly water soluble may leach outside the root zone and require contain-
ment (Cunningham et al. 1996; McIntyre and Lewis 1997). Phytoremediation is 
also frequently slower than physicochemical processes, and requires longer peri-
ods for remediating contaminated sites. Exposure of animals to hyperaccumulator 
plants can also be a concern to environmentalists as herbivorous animals may accu-
mulate contaminants in their tissues, which in turn could affect the whole food web 
(Boyd et al. 2007). Despite these limitations, phytoremediation can be effective in 
cases where large surface areas of relatively immobile contaminants exist in the 
surface soils.

3.4  Phytoremediation Strategies

Phytoremediation includes (1) phytoextraction (phytoaccumulation), (2) rhizofiltra-
tion, (3) phytostabilization, (4) phytodegradation (phytotransformation), (5) rhizo-
degradation, and (6) phytovolatilization.

3.4.1  Phytoextraction

Phytoextraction is the process by which plant roots take up metals from the soil and 
translocate them to above soil tissues. Different plants have different abilities to 
uptake and withstand high levels of pollutants, and hence, many plants may be used. 
This is of particular interest for sites that are polluted with more than one metal. 
Interest in phytoremediation has grown significantly following the identification of 
metal hyperaccumulator plants. Hyperaccumulators are conventionally defined as 
species capable of accumulating metals at levels 100-fold greater than those typi-
cally measured in common non-accumulator plants. Thus, a hyperaccumulator will 
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concentrate more  than 10 ppm Hg; 100 ppm Cd; 1,000 ppm Co, Cr, Cu, or Pb; 
10,000 ppm Ni or Zn. Once the plants have grown and absorbed the metals, they are 
harvested and disposed of safely (Baker and Brooks 1989; Baker et al. 2000). There 
are approximately 400 known metal hyperaccumulators (Reeves and Baker 2000) 
whose number is increasing. However, the remediation potential of many of these 
plants is limited because of their slow growth and low biomass yielding ability. 
While, the ideal plant species for phytoremediation should have high biomass with 
high metal accumulation in the shoot tissues (Chaney et al. 2000; Lasat 2002; 
McGrath et al. 2002). This process is repeated several times to reduce contamina-
tion to acceptable levels. In some cases, it is possible to recycle the metals through 
a process known as phytomining, though this is usually reserved for use with pre-
cious metals. Metal compounds that have been successfully phytoextracted include 
Zn, Cu, and Ni, but there is promising research being completed on Pb and Cr 
absorbing plants (Luo et al. 2005; Hsiao et al. 2007; Braud et al. 2009).

3.4.2  Rhizofiltration

Rhizofiltration is similar in concept to phytoextraction but is concerned with the 
remediation of contaminated groundwater rather than the remediation of pol-
luted soils. The contaminants are either adsorbed onto the root surface or are 
absorbed by the plant roots. Plants used for rhizofiltration are not planted directly 
in-situ but are acclimated to the pollutant first. Plants are hydroponically grown 
in clean water rather than soil, until a large root system has developed. Once a 
large root system is in place, the water supply is substituted for a polluted water 
supply to acclimatize the plant. After the plants become acclimatized, they are 
planted in the polluted area where the roots uptake the polluted water and the 
contaminants along with it. As the roots become saturated, they are harvested 
and disposed of safely. Repeated treatments of the site can reduce pollution to 
suitable levels as was exemplified in Chernobyl where sunflower (Helianthus 
annuus) was grown in radioactively contaminated pools (Mahesh et al. 2008; 
Vera Tomé et al. 2008).

3.4.3  Phytostabilization

Phytostabilization involves the use of certain plants to immobilize soil and water 
contaminants. Contaminants are absorbed and accumulated by roots, adsorbed onto 
the roots, or precipitated in the rhizosphere. This reduces or even prevents the mobility 
of the contaminants into the groundwater or air, and also reduces the bioavailability 
of the contaminant, thus preventing the spread of metals through the food chain. 
This technique can also be used to reestablish a plant community on sites that have 
been denuded due to the high levels of metal contamination. Once a community of 
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tolerant species has been established, the potential for wind erosion (and thus spread 
of the pollutant) is reduced and leaching of the soil contaminants is also reduced 
(Claudia Santibáñez et al. 2008; Ivano et al. 2008).

3.4.4  Phytodegradation

Phytodegradation is the degradation or breakdown of organic contaminants by 
internal and external metabolic processes driven by the plant. Ex-planta metabolic 
processes hydrolyze organic compounds into smaller units that can be absorbed by 
the plant (Suresh and Ravishankar 2004). Some contaminants can be absorbed by 
the plant and are then broken down by plant enzymes. These smaller pollutant 
molecules may then be used as metabolites by the plant as it grows and thus are 
incorporated into the plant tissues (Xiaoxue et al. 2008).

3.4.5  Rhizodegradation

Rhizodegradation (also called enhanced rhizosphere biodegradation, phytostimula-
tion, and plant-assisted bioremediation) is the breakdown of organic contaminants 
in the soil by soil dwelling microbes, which is enhanced by the rhizosphere’s pres-
ence. Certain soil dwelling microbes digest organic pollutants such as fuels and 
solvents, producing harmless products through a process known as bioremediation. 
The types of plants growing in the contaminated area influence the amount, diver-
sity, and activity of microbial populations (Kirk et al. 2005). Plant root exudates 
such as sugars, alcohols, and organic acids are used as C source for the soil micro-
flora and enhance microbial growth and activity. Some of these compounds may 
also act as chemotactic signals for certain microbes. The plant roots also loosen the 
soil and transport water to the rhizosphere, thus additionally enhancing microbial 
activity (Arshad et al. 2008; Gerhardt et al. 2009).

3.4.6  Phytovolatilization

Phytovolatilization is the process where plants uptake contaminants that are water 
soluble and release them into the atmosphere as they transpire the water. The con-
taminant may become modified along the way, as the water travels along the plant’s 
vascular system from the roots to the leaves, whereby the contaminants evaporate or 
volatilize into the air surrounding the plant (Abd El-Rahman et al. 2008; Zhu and 
Rosen 2009). The major advantage of this method is that the contaminant (for exam-
ple mercuric  ion) may be  transformed  into  a  less  toxic  substance  (elemental Hg). 
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However, mercury released into the atmosphere may again be recycled by precipitation 
and are redeposited back into lakes and oceans and thereby may cause problems. 
Mercury volatization by genetically modified tobacco (N. tabacum) and Arabidopsis 
thaliana (Meagher et al. 2000) and yellow poplar (Liriodendron tulipifera) (Rugh 
et al. 1998) and selenium volatization by Indian mustard and canola (Brassica 
napus) (Bañuelos et al. 1997) is reported.

3.5  Environmental Factors Affecting Phytoremediation

3.5.1  Soil Types and Organic Matter Contents

A variety of environmental factors affect or alter the performance of phytoremedia-
tion technology. Of these, soil types and organic matter (OM) content can limit the 
bioavailability of organic and inorganic contaminants. In terms of the influence of 
soil structure, Alexander et al. (1997) identified that phenanthrene may be trapped 
within and sorbed to the surfaces of nanopores (soil pores with diameters <100 nm) 
that are inaccessible to organisms (i.e., not bioavailable). Soil texture can also affect 
phytoremediation efforts by influencing the bioavailability of the contaminant 
(Brady  and Weil  1996). Soil organic matter binds to lipophilic compounds and 
reduces their bioavailability (Cunningham et al. 1996). A high organic carbon content 
(>5%) in soil usually leads to strong adsorption and, therefore, low availability, 
while a moderate organic carbon content (1–5%) may lead to limited availability 
(Otten et al. 1997). Soil type may influence the quality or quantity of root exudates, 
which may influence phytoremediation (Bachmann and Kinzel 1992; Siciliano and 
Germida 1997).

3.5.2  Soil Water/Moisture

Water content in soil and wetlands affects plant/microbial growth and the availability 
of oxygen required for aerobic respiration (Eweis et al. 1998). Water is not only a 
major component of living organisms; it also serves as a transport medium to carry 
nutrients to biota and carry wastes away.

3.5.3  Temperature

Temperature affects the rates at which the various mechanisms of phytoremediation 
take place. In general, the rate of microbial degradation or transformation doubles 
for every 10°C increase in temperature (Eweis et al. 1998). Simonich and Hites (1994) 
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reported that concentrations of PAHs in plants were higher during spring and autumn 
when ambient temperatures were relatively low compared to summer. Conversely, 
during the summer, when ambient temperatures were higher, lower concentrations 
of PAHs were found in the plants.

3.5.4  Light

Sunlight can transform parent compounds into other compounds, which may have 
different toxicities and bioavailability than the original compounds. 
Photomodifications of PAHs by ultraviolet light can occur in contaminated water or 
on the surface of soil increasing the polarity, water solubility, and toxicity of the 
compounds prior to uptake by the plant (McConkey et al. 1997).

3.5.5  Weathering Process

Weathering processes include volatilization, evapotranspiration, photomodification, 
hydrolysis, leaching, and biotransformation of the contaminant. These processes 
selectively reduce the concentration of easily degradable contaminants, with the 
more recalcitrant compounds remaining in the soil. These various environmental 
factors cause weathering, the loss of certain fractions of the contaminant mixture, 
with the end result being that only the more resistant compounds remain in the soil 
(Cunningham et al. 1996).

3.6  Techniques Used to Enhance Phytoremediation Process

Since phytoremediation is a relatively slow process, it may require years to reduce 
metal contents in soil to a safe and acceptable level. To make phytoremediation a 
viable technology, it is required to identify plants with fast growing ability and pro-
ducing massive root system and excessively accumulating metal-tolerant capabili-
ties. Alternatively, common plants can be, engineered with as yet unidentified 
hyperaccumulation genes. However, many fast growing and high biomass-producing 
plants such as vetiver grass (Chrysopogon zizanioides) and hemp (Cannabis sativa) 
may not be defined as metal hyperaccumulators, but are metal tolerant allowing 
them to grow in soil with high metal concentrations. The possibilities of using such 
plant species, which are easily growing in different climates, and using their bio-
mass in non-food industries, can make them ideal plants for phytoremediation pur-
poses (Linger et al. 2002; Khan 2003). Despite certain limitations, phytoremediation 
is considered a safe and long-term strategy for removing/reducing the toxicity of 
metal-contaminated soils (Cunningham et al. 1995). In order to promote the efficiency 
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of this novel technique, various strategies have been tested in recent times. Some of 
the methods adopted to enhance the efficiency of this technique are discussed in the 
following section.

3.6.1  Chelator-Induced Phytoextraction

The uptake of metals by plants is frequently restricted by limitations of contaminant 
bioavailability. And hence, in order to enhance the metal uptake by plants, soil 
amendments with metal chelating agents such as EDTA, HEDTA, DTPA, EGTA, 
NTA, citrate, and hydroxylamine to make metals bioavailable and absorbable by 
plant roots have shown promises (Evangelou et al. 2007; Leštan et al. 2008). The 
type of chelate and its time of application are however important. It has also been 
suggested that by increasing plant biomass, phytoextraction can be increased (Ebbs 
and Kochian 1997). So far, researches in chelate-assisted phytoremediation have 
focused mainly on searching high efficiency chelates (Kos and Lestan 2003; Chen 
et al. 2010). Among plants, Brassica juncea initially had very little ability to absorb 
Pb from contaminated soils. However, Blaylock et al. (1997) and Huang et al. (1997) 
identified methods to aid or “induce” Pb phytoextraction from soils and reported 
that by adding EDTA, Pb could be desorbed from soil so it could move to the roots, 
and secondly, the Pb-EDTA chelate could leak through root membranes and be 
transported to shoots with transpiration. Consequently, B. juncea has become one of 
the first identified Pb accumulators (Kumar et al. 1995), as it accumulates high con-
centrations of Pb when EDTA is applied to soils—much more than average plant 
species. Part of the success was however, suggested later on due to the injury of the 
root membranes caused by EDTA and not to Pb chelation (Vassil et al. 1998). In a 
series of experiments thereafter, numerous groups attempted to find ways to make 
“chelator-induced in-situ phytoextraction” effective and safe in the environment, 
but the added chelating agents caused unavoidable leaching of chelated metals 
(e.g., Pb) down the soil profile (Romkens et al. 2001; Madrid et al. 2003; Wu et al. 
2004). And in several field tests of EDTA on firing range soils in the USA, rapid 
leaching of Pb to groundwater proved an unacceptable side effect of chelator-
induced Pb phytoextraction.

3.6.2  Plant Growth Regulators

Use of plant growth regulators (PGR) such as auxins and cytokinins has shown to 
enhance phytoremediation abilities of non-hyperaccumulating plants by increasing 
their growth and biomass (Fuentes et al. 2000; Pe et al. 2000). For example, Patten 
and Glick (1996) reported enhanced bioavailability of iron by applying plant hor-
mone indol-acetic acid (IAA) via a mechanism different from that involving sidero-
phores. IAA is also produced by many plant growth-promoting rhizobacteria 
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(PGPR) such as Pseudomonad and Acinetobacter strains (Reed and Glick 2005; 
Trotel-Aziz et al. 2008), which result in enhanced uptake of Fe, Zn, Mg, Ca, K, and P 
by crop plants (Lippmann et al. 1995). Usefulness of PGPR is, however, limited under 
nutrient-deficient conditions. Fertilizers have been used to help plants to increase their 
biomass and to extract more metals (Shetty et al. 1995). Further research needs to be 
carried out to find suitable combination of plant, PGPR, and soil types in order to 
investigate their potential(s) in increasing metal uptake by hyperaccumulator plants 
and improving the process of phytoextraction (Abou-Shanab et al. 2010).

3.6.3  Plant Growth-Promoting Rhizobacteria

Beneficial free-living soil bacteria are generally referred to as plant growth-promoting 
rhizobacteria and are found in association with the roots of many different plants 
(Glick et al. 1999). The high concentration of bacteria around the roots (rhizosphere) 
presumably occurs because of the presence of high levels of nutrients (especially 
small molecules such as amino acids, sugars, and organic acids) that are exuded 
from the roots of most plants, and can then be used to support bacterial growth and 
metabolism (Penrose and Glick 2001). The PGPR enhance plant growth by atmo-
spheric N

2
-fixation, phytohormone production, specific enzymatic activity, and plant 

protection from diseases by producing anti-biotic and other pathogen-depressing 
substances such as siderophores and chelating agents (Kamnev and van der Lelie 
2000; Recep et al. 2009; Vleesschauwer and Höfte 2009). Microbial cells can produce 
and sense signal molecules, allowing the whole population to spread as a biofilm 
over the root surface and initiating a concerted action when a particular population 
density is achieved (Daniels et al. 2004). Free-living as well as symbiotic PGPR can 
enhance plant growth directly by providing bioavailable P to plants, fixing N for 
plant use, sequestering trace elements like iron for plants by siderophores, produc-
ing plant hormones and lowering of plant ethylene levels (Ahmad et al. 2008; 
Marques et al. 2010). The use of PGPR in phytoremediation technologies is rela-
tively new, which can aid plant growth on contaminated sites (Burd et al. 2000; 
Gerhardt et al. 2009) and enhance detoxification of soil (Mayak et al. 2004; Dary 
et al. 2010). The properties of plants like high biomass production, low-level con-
taminant uptake, plant nutrition, and health, used for phytoremediation, can be 
improved by PGPR but it is important to choose PGPR that can survive and colonize, 
when used in phytoremediation practices.

3.6.3.1  Remediation of Heavy Metals by PGPR

While growing in metal contaminated soils, plants might be able to withstand some 
of the inhibitory effects of high metal concentrations; two features of most plants 
could result in a decrease in growth and viability. That is, in the presence of high 
levels of metals, most plants (1) synthesize stress ethylene and (2) become severely 
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iron deficient. However, PGPR may be used to relieve some of the toxicity of metals 
to plants (Khan et al. 2009). This could occur in two different ways. As indicated 
earlier, the use of (1-aminocyclopropane-1-carboxylic acid) ACC deaminase-
containing PGPR is reported to decrease the level of stress ethylene in plants growing 
in soil that contained high levels of metal (Belimov et al. 2005; Safronova et al. 
2006). In addition, plants are able to take up and utilize bacterial siderophores. Plant 
siderophores bind to iron with a much lower affinity than bacterial siderophores so 
that in metal-contaminated soils, a plant is unable to accumulate a sufficient amount 
of iron unless bacterial siderophores are present (Glick 2003).

Soil microorganisms are known to affect the metal mobility and availability to 
the plants, through acidification, and redox changes or by producing iron chelators 
and siderophores for ensuring the iron availability, and/or mobilizing the metal 
phosphates (Burd et al. 2000; Guan et al. 2001; Abou-Shanab et al. 2003b). A large 
proportion of metal contaminants are unavailable for the root uptake, because heavy 
metals in soils are generally bound to organic and inorganic soil constituents, or 
alternatively, present as insoluble precipitates. Hence, how to increase the availabil-
ity of metals to plants in soils is critical for the success of phytoremediation (Ernst 
1996; Kukier et al. 2004). In a study, Abou-Shanab et al. (2006) reported the effect 
of certain rhizobacteria on nickel uptake. They indicated that rhizobacteria facili-
tated the release of Ni from the non-soluble phases in the soil, thus enhancing the 
availability of Ni to Alyssum murale. There is however, a need to improve our under-
standing of the mechanisms involved in transfer and mobilization of heavy metals 
by the rhizosphere microbes. A possible explanation might be acid and siderophore 
production and P-solubilization.

3.6.3.2  Remediation of Organic Contaminants by PGPR

Although PGPR was first used for prompting the plant growth and for the bio-control 
of plant diseases, much attention has recently been paid on bioremediation with 
PGPR (Narasimhan et al. 2003; Huang et al. 2005). In contrast with inorganic com-
pounds, microorganisms can degrade and even mineralize organic compounds in 
association with plants (Saleh et al. 2004; Glick 2010). Hence discovery of effective 
pathways for degradation and mineralization of organic compounds may play an 
important role in the future. So far, bacteria capable of degrading certain kind of 
organic pollutant, such as polychlorinated biphenyls (PCBs) have been isolated 
from a range of sites and the pathways and encoding genes have also been well 
studied (Brazil et al. 1995). But most of these bacteria cannot survive in the near-
starvation conditions found in soils, including the rhizosphere (Normander et al. 
1999). Several effective methods have been developed to improve the degradation 
efficiency and the tolerance of bacteria to contaminants in soils. According to Huang 
et al. (2004a, b), the addition of PGPR increased the organic pollutant (polycyclic 
aromatic hydrocarbon and creosote) removal probably by enhancing plants germi-
nation and survival in soils that were heavily contaminated and by stimulating the 
plants to grow faster and accumulate more root biomass.
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Facing a variety of environmental contaminants such as total petroleum 
hydrocarbons  (TPHs),  remediation  technology  even with  both  PGPR  and  plants 
may still be low in efficiency. The combination of PGPR and specific contaminant-
degrading bacteria was found to be effective (Ajithkumar et al. 1998). Huang et al. 
(2005) thus developed a multi-process phytoremediation system (MPPS) where 
they used both PGPR and specific contaminant-degrading bacteria to treat TPHs. In 
this system, specific contaminant-degrading bacteria can be selected according to 
the properties of contaminants. They can rapidly metabolize some readily available 
compounds while the role of PGPR is still to facilitate plant growth and increase the 
plant tolerance to pollutants.

3.7  Breakthroughs in Phytoremediation: Novel Transgenic 
Approaches

Many genes are involved in metal uptake, translocation and sequestration and trans-
fer of any of these genes into candidate plants is a possible strategy for genetic 
engineering of plants for improved phytoremediation traits. By using the tools of 
molecular biology/genetic engineering, transgenic plants with higher metal accu-
mulating ability can be developed. In this context, transfer or over-expression of 
genes is likely to lead to enhanced metal uptake, translocation, sequestration, or 
intracellular targeting. For developing efficient transgenic plants for phytoremedia-
tion purposes, genes can be transferred from hyperaccumulators or from other 
sources. Different genes, which have been used for the development of transgenic 
plants, are listed in Table 3.2. Some of the areas that have been attempted for genetic 
manipulation include (1) metallothioneins, phytochelatins, and metal chelators, 
(2) metal transporters, (3) metabolic pathways, (4) oxidative stress mechanisms, 
(5) roots of plants, and (6) biomass.

3.7.1  Metallothioneins, Phytochelatins, and Metal Chelators

Metallothionein genes have been cloned and introduced into several plant species. 
Transfer of human MT-2 gene in tobacco (Nicotiana tabacum) or oil seed rape 
(Brassica napus) resulted in plants with enhanced Cd tolerance (Misra and Gedamu 
1989) and pea (Pisum sativum) MT gene in Arabidopsis thaliana enhanced Cu 
accumulation (Evans et al. 1992). Transgenic plants with increased phytochelatin 
(PC) levels through over-expression of cysteine synthase resulted in enhanced Cd 
tolerance (Harada et al. 2001). In other study, yeast CUP-1 gene transferred to cau-
liflower (Brassica oleracea L. botrytis) resulted in 16-fold higher Cd tolerance and 
accumulation  (Hasegawa  et  al.  1997). Various MT genes-mouse MTI, human 
MTIA, human MT II, Chinese hamster MT II, yeast CUP I, and pea ps MT A- have 
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been transferred to N. tabacum, Brassica species and A. thaliana (Misra and Gedamu 
1989; Maiti et al. 1991; Evans et al. 1992; Brandle et al. 1993; Elmayan and Tepfer 
1994; Hasegawa et al. 1997), resulting in constitutively enhanced Cd tolerance in 
these plants. In most cases, metal uptake was not markedly altered in transgenic 
plants. However, when MT was of plant origin as in the case of Ps MTA from 

Table 3.2 Selected examples of transgenic plants for metal tolerance/phytoremediation

Target plant Gene transferred Origin Transgene effects Reference

Tobacco, oil 
seed rape

MT-2 gene Human Cd tolerance Misra and Gedamu 
(1989)

Tobacco MT-1 gene Mouse Cd tolerance Pan et al. (1994)
Arabidopsis MTA gene Pea Cu accumulation Evans et al. (1992)
Tobacco CUP-1 gene Yeast Cu accumulation Thomas et al. 

(2003)
Cauliflower CUP-1 gene Yeast Cd accumulation Hasegawa et al. 

(1997)
Indian 

mustard
Glutathione  

synthetase
Rice Cd tolerance Zhu et al. (1999a)

Indian 
mustard

g-Glutamylcysteine 
synthetase

E. coli Cd tolerance Zhu et al. (1999b)

Tobacco CAX-2 (Vacuolar 
transporters)

A. thaliana Accumulation of 
Cd, Ca, and Mn

Hirschi et al. (2000)

Tobacco Nt CBP4 Tobacco Ni tolerance and Pb 
accumulation

Arazi et al. (1999)

Tobacco FRE-1 and FRE-2 Yeast More Fe content Samuelsen et al. 
(1998)

Arabidopsis Glutathione-s-
Transferase

Tobacco Al, Cu, Na tolerant Ezaki et al. (2000)

Tobacco, 
Rice

Ferretin Soybean Increased iron 
accumulation

Goto et al. (1998, 
1999)

Arabidopsis Zn transporters 
ZAT(At MTPI)

Arabidopsis Zn accumulation Van der Zaal et al. 
(1999)

Indian 
mustard

Arsenate reductase 
g-glutamylcysteine 
synthetase

Bacteria As tolerance Dhankher et al. 
(2002)

Arabidopsis Znt A-heavy metal 
transporters

E. coli Cd and Pb 
resistance

Lee et al. (2003)

A. thaliana Selenocysteine  
methyl transferase

A. bisculatus Resistance to 
selenite

Ellis et al. (2004)

Arabidopsis YCF1 Yeast Cd and Pb 
tolerance

Song et al. (2003)

Arabidopsis Se-cys lyase Mouse Se tolerance and 
accumulation

Pilon et al. (2003)

A. thaliana merP B. megaterium Hg2+ tolerance and 
accumulation

Hsieh et al. (2009)

Nicotiana 
glauca

Phytochelatin 
synthase (Ta PCS)

Wheat Pb accumulation Gisbert et al. (2003)
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P. sativum expressed in A. thaliana, more Cu accumulated in the roots of the 
transformed plants than control plants (Evans et al. 1992). Similarly, transgenic 
B. juncea over-expressing different enzymes involved in PC synthesis were 
shown to extract more Cd, Cr, Cu, Pb, and Zn than wild plants (Zhu et al. 1999a, b). 
Transgenic Indian mustard with higher levels of glutathione and PC were developed 
by over expression of two enzymes-g-glutamylcysteine synthetase (g-ECS) or glu-
tathione synthetase (GS), which showed enhanced Cd tolerance and accumulation 
(Zhu et al. 1999a, b).

3.7.2  Metal Transporters

Genetic manipulation of metal transporters is known to alter metal tolerance/accu-
mulation in plants (Pedas et al. 2009). Presently, over 100 ZIP family members have 
been identified. The ZIP family is represented in all the eukaryotic kingdoms, 
including animals, plants, protists, and fungi, but members are also found in archaea 
and bacteria. ZIP proteins from plants are capable of transporting Cd2+, Fe3+/Fe2+, 
Mn2+, Ni2+, Co2+, Cu2+, and Zn2+ (Eckhardt et al. 2001; Grotz and Guerinot 2006; 
Pedas et al. 2009). Transfer of Zn transporter-ZAT gene from Thalspi goesingense 
to A. thaliana resulted in twofold higher Zn accumulation in roots (Van der Zaal 
et al. 1999). Introduction of calcium vacuolar transporter CAX-2 from A. thaliana 
to  tobacco  resulted  in  enhanced accumulation of Ca, Cd,  and Mn  (Hirschi  et  al. 
2000). Enhanced Ni tolerance was obtained by transfer of another transporter gene-
NtCBP4, which encodes for a calmodulin binding protein (Arazi et al. 1999). 
Transfer of yeast protein (YCF 1), a member of ABC transporter family involved in 
transfer of Cd into vacuoles by conjugation with glutathione, when transferred to 
A. thaliana was shown to over-express and resulted in transgenic plants with 
enhanced lead and cadmium tolerance (Song et al. 2003). A variety of ferric reductases 
have been shown to aid the acquisition of iron, for example the FRE family of met-
alloreductases in yeast (Dancis et al. 1992) and the FRO protein in plants (Robinson 
et al. 1999). In yeast, both FRE-1 and FRE-2 have been shown to reduce copper as 
well as iron and to increase copper uptake (Georgatsou et al. 1997; Wyman et al. 
2008). Transfer of yeast FRE-1 and FRE-2 genes encoding ferric reductase when 
transferred to tobacco was shown to enhance the iron content of the plants 1.5-fold 
(Samuelsen et al. 1998).

3.7.3  Alteration of Metabolic Pathways

New metabolic pathways can be introduced into plants for hyperaccumulation or 
phytovolatilization as in the case of MerA and MerB genes that were introduced 
into plants likes A. thaliana and N. tabacum, which resulted in plants being several 
fold  tolerant  to  Hg  and  volatilized  elemental  mercury  (Bizily  et  al.  2000;  
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Abd El-Rahman et al. 2008; Ruiz and Daniell 2009). Dhankher et al. (2002) developed 
transgenic Arabidopsis plants that could transport oxyanion arsenate to aboveg-
round, reduce to arsenite, and sequester it to thiol peptide complexes by transfer of 
Escherichia coli ars C and g-ECS genes. Transgenic plants with enhanced potential 
for detoxification of xenobiotics such as trichloro ethylene, pentachlorophenol, 
trinitro toluene, glycerol trinitrate, atrazine, ethylene dibromide, metolachlor, and 
hexahydro-1,3,5-trinitro-1,3,5-triazine are a few successful examples of utilization 
of transgenic technology (Table 3.3).

3.7.4  Alteration of Oxidative Stress Mechanisms

Alteration of oxidative stress–related enzymes may also result in altered metal 
tolerance as reported in the case of enhanced Al tolerance by over-expression of 
glutathione-S-transferase and peroxidase (Ezaki et al. 2000). Over-expression of 
1-aminocyclopropane-1-carboxylic acid (ACC) deaminase led to an enhanced 
accumulation of a variety of metals (Grichko et al. 2000).

3.7.5  Alteration in Roots

It is essential to have plants with highly branched root systems with large surface 
area for efficient uptake of toxic metals. The hairy roots induced in some of the 
hyperaccumulators (B. juncea, Chenopodium amaranticolor, A. bertolonii, and 
T. caerulescens) were shown to have high efficiency for rhizofiltration of radionu-
clides (Eapen et al. 2003) and heavy metals (Nedelkoska and Doran 2000).

3.7.6  Alteration in Biomass

Biomass of known hyperaccumulators can be altered by introduction of genes, 
which affect phytohormone synthesis resulting in enhanced biomass. Recently, bio-
synthetic pathways have been elucidated for most of the plant hormone classes and 
genes encoding many of the enzymes have been cloned. These advances offer new 
opportunities to manipulate hormone content and regulate their biosynthesis 
(Hedden and Phillips 2000; Grattapaglia et al. 2009). Increased gibberellins biosyn-
thesis in engineered trees for example, Populus and Eucalyptus, promoted the 
growth and biomass production (Erikson et al. 2000). However, little work has been 
done in this area for improving biomass of plants for phytoremediation. Since each 
metal has a specific mechanism for uptake, translocation, and sequestration, it 
becomes essential to design suitable strategies for developing transgenic plants 
specific for each characteristic.
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3.8  Example of Genetically Engineered Plant

3.8.1  Mercury Detoxification Using Transgenic Plants

Mercury and mercurial compounds are hazardous to all biological organisms. 
Bacteria have evolved mechanisms for colonizing mercury-contaminated environ-
ments, and an operon of mercury resistance (mer) genes encoding for transporters 
and enzymes for biochemical detoxification (Summers 1986) has been identified. 
Mercury-resistant bacteria (B. megaterium MB1) convert organic and ionic mercury 
compounds  to  the  volatile  and  less  toxic  elemental  form Hg  (O), which  rapidly 
evaporates through cell surface (Huang et al. 1999). Genetically engineered plants 
with mer A and mer B genes were produced in three plant species A. thaliana (Bizily 
et al. 2000), N. tabacum, and Liriodendron tulipifera L. (Rugh et al. 2000; Abd 
El-Rahman et al. 2008) and have demonstrated that transgenic plants could grow in 
the presence of toxic levels of organic and inorganic mercury (Fig. 3.1).

To improve the expression of mer genes in plants, the bacterial merA DNA 
sequence was modified by reducing the GC content in a 9% block of the protein 
coding region and adding plant regulatory elements (Rugh et al. 1996). When trans-
ferred to A. thaliana and tobacco, the new gene construct (mer A) conferred resis-
tance to 50 mm Hg (II) suggesting that merA plants enzymatically reduce Hg (II) 

Fig. 3.1 Mercury resistance test of merB/merA tobacco transgenic lines. Wt = wild type,  
PMA = phenylmercuric acetate
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and  evaporate  away  Hg  (0).  Three  modified merA constructs were used for 
transformation of yellow poplar proembryogenic masses, each having different 
amounts of altered coding sequences. Each of these constructs was shown to confer 
Hg (II) resistance (Rugh et al. 2000). Transgenic Populous deltoids over-expressing 
merA9 and merA18 gene when exposed to Hg (II) evolved two- to fourfold Hg (0) 
relative to wild plant (Che et al. 2003). These transgenic trees when grown in soil 
with 40 ppm of Hg (II) developed higher biomass. Subcellular targeting of methyl-
mercury lyase was shown to enhance its specific activity for organic mercury detox-
ification in plants (Bizily et al. 2003). If phytovolatilization is unsuitable due to the 
hazards of releasing Hg (0), alternate strategies should be explored. One option is to 
develop plants that sequester high mercury loads in harvestable tissues. The strategy 
for mercury sequestration may be further enhanced by root-specific expression of 
mer A and mer B genes to detoxify charged mercurials prior to transport to shoots. 
Plant expression of modified mercury transport genes, mer P and mer T, may pro-
vide a means of improving mercury uptake and organelle and tissue-specific 
targeting.

3.9  Conclusion

The present review provides the scientific understanding required to harness natural 
processes and to develop and design methods to accelerate these processes for the 
bioremediation of contaminated soil environments. Despite certain limiting factors, 
the bioremediation technology including phytoremediation is considered a promis-
ing option for decontaminating metal polluted soils. Moreover, the rapid advances 
in science, has led us to better understand and apply these technology more effec-
tively on sites contaminated with heavy metals. The use of culture-independent 
techniques and other molecular tools has obviously assisted us to better explain the 
microbial community dynamics, structure, and composition, which in turn has pro-
vided insight into the finer details of bioremediation, a safer and reliable technology. 
The optimization of different processes of bioremediation or engineering plants/
microbes has now started showing impact on the ecosystem. However, still there are 
problems that need to be urgently addressed by the scientists before this technology 
is realized at commercial scale, for example, how abilities like fast growth, high 
biomass, extensive root systems, metal tolerance, and harvesting of plants could be 
improved. Even though, no such plant has been described so far, high biomass non-
accumulators that are fast growing can be engineered to achieve some of the prop-
erties of the hyperaccumulators. Furthermore, to allow remediation within a 
reasonable period, metal uptake and plant yields have to be enhanced dramatically. 
For this, a continuous search for metal hyperaccumulators, as well as engineering 
common plants with suitable functioning genes are required. To achieve this, a 
multidisciplinary strategy by involving plant biologists, soil chemists, microbiolo-
gists, and environmental engineers is required for greater success of bioremediation/
phytoremediation, which could serve as a viable soil cleanup technique.
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Abstract Legumes have traditionally been used in soil regeneration, owing to their 
capacity to increase soil nitrogen due to biological nitrogen fixation. Recently, 
legumes have attracted attention for their role in remediation of metal-contaminated 
soils. Legumes accumulate heavy metals mainly in roots and show a low level of 
metal translocation to the shoot. The main application of these plants is thus in 
metal phytostabilization. However, high concentrations of heavy metals in soil lead 
to a decrease in the symbiotic properties of legumes, which could be due to a 
decrease in the number of rhizobial infections. In order to identify a best legume–
Rhizobium partnership for bioremediation purposes, selection of plant varieties and 
rhizobia resistant to heavy metal is required. Different approaches directed to 
improve metal bioremediation potential of legumes have been undertaken; from 
inoculation with rhizosphere bacterial consortia resistant to heavy metals to genetic 
engineering. Inoculation of legume plants with appropriate inocula containing 
rhizobia and heavy metal-resistant plant growth-promoting rhizobacteria (PGPR) 
and/or mycorrhiza has been found as an interesting option to improve plant perfor-
mance under stressed conditions. The role of Rhizobium–legume symbiosis and 
approaches employed to genetically engineer legume–Rhizobium interactions in 
order to improve bioremediation are reviewed and discussed.
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4.1  Introduction

Global industrialization is the main source of releasing toxic compounds into the 
biosphere, which poses a greater risk for human health, wildlife, and environment 
(http://www.epa.org). Heavy metals, metalloids, and radionuclides are some of the 
most toxic and persistent pollutants. Unlike organic compounds, metals cannot be 
degraded although toxicity can be minimized by altering metal speciation or bio-
availability. Biologically based technologies, collectively known as bioremediation, 
a powerful alternative to most traditional physicochemical remediation techniques, have 
become the preferred choice that can be integrated with other technologies for effec-
tive remediation of metal polluted sites (Van Aken 2008; Wood 2008; Ghosh and 
Singh 2005; Jorgensen 2007). Within bioremediation, rhizoremediation is a combi-
nation of two methodologies, phytoremediation and bioaugmentation. The term 
rhizoremediation refers to the combined use of plants and rhizosphere microorgan-
isms in order to improve the bioremediation capacity of plants (Khan et al. 2009; 
Khan 2005; Kuiper et al. 2004; Glick 2003). The term rhizosphere was first 
introduced by Hiltner in 1904 and refers to the portion of soil under the direct influ-
ence of plant roots; it is the interface between plant root, soil, and the community of 
rhizosphere microorganisms associated with plant roots. The rhizosphere shows a 
higher microbial density (102–104 fold) compared to the microorganisms inhabiting 
bulk soil (Hinsinger et al. 2005), as plant exudates favors microbial growth. Plants 
release a variety of organic compounds in the rhizosphere that serve as carbon (C) 
sources for heterogeneously distributed microbial communities. As much as 20% of 
C fixed  by  a  plant may be  released  from  its  roots. Besides  increasing microbial 
populations, the organic compounds increase the metabolic activity of microbes. 
The colonization of the plant root allows the microorganisms to move deeper into 
soil layers, and thereafter, increases the contact of detoxifying microorganisms and 
soil contaminants (Kidd et al. 2009; Gerhardt et al. 2009). The presence and sur-
vival of rhizosphere microorganisms have important consequences for plants, such 
as providing plants the defense against pathogens (biocontrol), can be used as 
biofertilizers (for example, phosphate solubilizers, nitrogen fixers), and stimulate 
plant growth by secreting phytohormones, like auxins, by inhibiting ethylene accu-
mulation via the expression of aminocyclopropane deaminase activity, etc. The 
utilization of selected inoculants possessing multiple properties improves plant 
yields, both in contaminated and non-contaminated soils.

Rhizoremediation is an attractive process since plant roots provide a large sur-
face area for a large population of bacteria and transport the colonizing bacteria to 
deeper soil layers (Anderson et al. 1993). To achieve optimum inoculation effects, 
the microbial populations, therefore, have to be carefully selected with multiple 
growth-promoting activities, like the ability to resist/tolerate soil contaminants, 
ability to survive and colonize, and even to compete with native rhizosphere micro-
bial populations. Therefore, while choosing inoculants for rhizoremediation, one 
should focus on the selection of native soil microorganisms for remediation of 
metal-contaminated soils. In this context, rhizobacteria have been used in phytore-
mediation of polluted soils (Doty 2008; Zhuang et al. 2007).
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In the rhizosphere, metal mobilization as a consequence of plant root growth and 
to the metabolic activity of rhizosphere microorganisms increases the mobility and 
bioavailability of metals. Processes such as the secretion of protons, organic acids, 
and chelating agents increase the transport of metals to the plant root and thereafter 
increase plant phytoextraction (Ma et al. 2009; Abou-Shanab et al. 2008; Sheng and 
Xia 2006). On the contrary, the mobility and bioavailability of metals in soils can be 
reduced by microorganisms through processes like bioprecipitation or biosorption 
or by plants through phytostabilization. All these mechanisms can act together help-
ing metal immobilization (Méndez and Maier 2008). Besides the effect on metal 
mobility and bioavailability, or on the degradation of organics (Zhuang et al. 2007), 
the PGPR such as Pseudomonas, Acinetobacter, Achromobacter, Flavobacterium, 
Bacillus, Nocardia, and Rhizobium increases plant yield and biomass and improves 
soil quality, and the content of organic matter or the amount of N. Mycorrhizal fungi 
is also used to improve the phytoremediation capacity of many plants. Since this 
falls out of the scope of this chapter, only an example is given on the inoculation of 
legume plants with AM-fungi for improving phytoremediation. The inoculation of 
pea (Pissum sativum) plants with Glomus intraradices attenuated cadmium stress, 
when pea was grown in Cd-polluted soils. The AM-fungus increased plant biomass 
and photosynthetic activity, and protected the plant against metal stress. Furthermore, 
the  concentration  of  cadmium  in  tissues  of  AM-inoculated  pea  plants  tends  to 
decrease compared to non-inoculated plants (Rivera-Becerril et al. 2002). Recently, 
Stephanie et al. (2011) determined the impact of rhizobial inoculation on legume 
while growing in metal-enriched soils. In this study, the legume plant Anthyllis 
vulneraria subsp. carpatica from a mine site and of a non-metallicolous subsp. 
praeopera from nonpolluted soil were bacterized with a metallicolous or a non-
metallicolous compatible Mesorhizobium spp. and grown on low and high heavy 
metal (like, Zn, Pb, and Cd) contaminated soils. The M. metallidurans–inoculated 
A. vulneraria plants had many nodules even when grown in metal-contaminated 
soils while the non-metallicolous A. vulneraria died after a few weeks despite 
Rhizobium inoculation. In addition, in metal-polluted soils, 80% of the total N was 
derived  from  BNF  resulting  between  metallicolous  A. vulneraria and the 
Mesorhizobium. This finding thus suggests that the legumes like A. vulneraria express-
ing a high N

2
-fixing ability could be used to facilitate a low-maintenance plant cover 

and for stabilizing the vegetation in soils contaminated with heavy metals.

4.2  The Legume–Rhizobium Symbiotic Interaction

One of the major factors that limit plant growth is the deficiency of certain nutrients 
in the soil, especially nitrogen (N) and phosphorus (P). Different genera of plants 
have solved this problem via beneficial interactions with microbes inhabiting rhizo-
sphere. One of the widely studied beneficial plant–microbe interaction is that 
between Gram-negative soil bacteria, collectively known as rhizobia, and legumes. 
The use of legume plants for soil N enrichment is a very old agricultural practice 
(De Hoff and Hirsch 2003; Graham and Vance 2003) and has been employed for 
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regeneration of arid and degraded lands (Méndez and Maier 2008; Requena et al. 
2002; Piha et al. 1995). Recently, there has been an increasing interest in the use of 
legume–Rhizobium symbiosis as a tool for bioremediation of both heavy metals 
(Dary et al. 2010; Pastor et al. 2003; Sriprang et al. 2002, 2003), and some organic 
compounds (Doty et al. 2003). Legume plants can interact with different rhizo-
sphere microorganisms, including bacteria and mycorrhizal fungi. Besides its 
importance in agriculture, the legume–Rhizobium symbiotic interaction is also an 
important model for plant-bacteria signaling and for plant organogenesis, since the 
N fixing nodule is a model of a de novo formed plant organ.

Rhizobia currently includes 13 genera with 76 species of a- and b-proteobacteria 
(Velázquez et al. 2010; Weir 2009), while new rhizobia are being discovered. On the 
other hand, all members of the leguminosae family are not able to nodulate, and few 
other related higher plants are known to establish this symbiosis (Sprent 2007). The 
rhizobia–legume symbiotic interaction results in the formation of nodule, a highly 
organized structure in which atmospheric N is converted into ammonia by the bac-
teria, allowing the plant to grow without an external supply of reduced N. The for-
mation of the root nodules involves a complex molecular dialogue between both 
symbiotic partners; an exchange of signals induced by the spatially and temporally 
regulated expression of specific genes. Legumes excrete secondary metabolites, 
mainly (iso) flavonoids, that induce the expression of bacterial nodulation (nod ) 
genes: involved in the production of lipochitooligosaccharide Nod factors (Cooper 
2007; Gibson et al. 2008). The Nod factors elicit several plant responses, such as 
root hair curling and the induction of cortical cell division leading to nodule forma-
tion (Oldroyd and Downie 2008). They are also essential for the expression of 
nodule-specific plant genes, the nodulins.

4.2.1  Promotion of the Bacterial Infection

The root epidermis is the first point of contact for rhizobia and determines where, 
when, and how many nodules will be formed. Bacterial infection can occur either 
through root hairs (intracellular infection) or by crack invasion (intercellular infec-
tion), usually at points of epidermal damage, generally caused by the emergence of 
lateral roots (Den Herder et al. 2006). The specificity of the rhizobia–legume inter-
action is expressed mainly at the first steps of the symbiosis and is controlled by the 
Nod factors via interaction with specific plant receptors. Initial Nod factor percep-
tion occurs in the epidermis, but Nod factor signaling is also important during cor-
tex invasion and may be important for bacterial release into nodule cells (Oldroyd 
and Downie 2008). Kinases with N-acetylglucosamine-binding lysin motifs (LysM) 
in the extracellular domain have been described as Nod factor receptors (Radutoiu 
et al. 2003). Nod factor perception induces calcium spiking in the nucleus and 
changes in root hair growth linked to the induction of calcium gradients at the tip of 
root hair cells (Oldroyd and Downie 2006). A calcium and calmodulin-dependent 
protein kinase and at least three transcriptional regulators have been involved in 
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perception and transduction of the calcium-spiking signal, but the exact mechanism 
of such perception and how this activates transcription remains unclear. In addition 
to root hair deformation, calcium spiking, and early nodulation genes (ENOD) 
induction, Nod factors also induce pre-infection thread structures in epidermal cells 
(van Brussel et al. 1992) and cortical cell divisions leading to the formation of a 
nodule meristem (Geurts et al. 2005).

4.2.2  Bacterial Infection

The different steps of the bacterial infection are schematized in Fig. 4.1. The pro-
cess begins with the attachment of rhizobia to the root epidermis, mainly root hair 
cells. Rhizobia are able to attach the legume roots and root hairs in preference to 
other bacteria and hence, rhizobial numbers in the rhizosphere and the probability 
of specific strains being infective are enhanced (Downie 2010). Rhizobia have mul-
tiple mechanisms like they secrete polysaccharides and/or surface proteins that 
enable  them  to  attach  to  roots  (Rodríguez-Navarro  et  al.  2007). The symbiosis 
ontogeny in common legumes starts from penetration of rhizobia into the root hairs 
and the formation of a specific tubular structures called infection threads (Gage 
2004). This process is initiated by the inhibition of root hair growth and the initia-
tion of a new growth axis, such that root hairs curl around the attached bacteria (van 
Batenburg et al. 1986). Rhizobia proliferate in the root hair curl and an inversion of 

Epidermal cell  Inner cortical cell  

Root 
colonization

Outer cortical cell  

Cortical cell division and
primordium formation 

Infection thread 
growth

Rhizobial 
attachment

Root hair curling
and bacterial entry

Infection thread 
formation 

Fig. 4.1 Scheme highlighting the early events of legume–Rhizobium interaction and nodulation
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root hair tip growth takes place, leading to the infection thread formation. The lumen 
of this structure is similar to an intracellular space (Brewin 2004). The rhizobia 
divide at the growing infection thread tip and a column of bacteria is formed. 
Rhizobial surface polysaccharides play a critical role during this stage of the infec-
tion, probably acting as specific signals. Different evidence indicates that they could 
also prevent plant defense reactions. The role of these compounds has been widely 
studied in the Sinorhizobium meliloti–Medicago truncatula model interaction (Jones 
et al. 2007). The infection thread elongates and ramifies through the root cortical 
cell layers, following the direction indicated by the Nod factor–induced pre-infec-
tion thread structures. Finally, the infection thread penetrates inside the emerging 
nodule and bacteria are internalized in nodule cells.

4.2.3  Nodule Formation

Epidermal and cortical responses occur in parallel during the symbiotic interaction. 
While the epidermis regulates bacterial infection, the root cortex controls the forma-
tion of a nodule. An important step during the symbiotic interaction is the activation 
of the mitotic cell cycle in cortical cells, and regulators of this process play an 
important role during nodule primordium formation (Cebolla et al. 1999). Although 
epidermal and cortical responses can be separated, so that bacterial infection can 
occur in the absence of nodule organogenesis and vice versa (Oldroyd and Downie 
2008), to produce a bacterially infected nodule, both processes should be coordi-
nated. A nodule primordium develops close to the place of bacterial infection, such 
that the growing infection thread invades the dividing nodule cells. At this point, 
rhizobia are released into the plant cell cytoplasm (via an endocytosis-like process) 
to form the so-called symbiosomes, in which rhizobia are surrounded by a plant-
derived plasma membrane (Roth and Stacey 1989). Inside symbiosome, the rhizobia 
differentiate into nitrogen-fixing bacteroids.

4.3  The Legume–Rhizobium Symbiosis as a Tool  
for Bioremediation

4.3.1  The Microsymbiont and Heavy Metals

Some light metals, such as Ca, Na, K, Mg, and other heavy metals, like Co, Cr, Cu, 
Fe, Mn, Ni, or Zn, play fundamental roles in the living process of the microorgan-
isms. Some of these metals are essential micronutrients acting as cofactors of 
enzymes, or they act in redox process or participate in osmoregulation (Silver and 
Phung 1996, 2005). While, others, such as Cd, Hg, and Pb have, no known biological 
function and adversely affect microbial cells through process like oxidative stress, 
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binding to enzymes and other proteins, and damage membranes and DNA (Nies and 
Silver 2007). Anyway, metals with  important biological activity are also  toxic at 
elevated concentrations. In order to exhibit toxicity, metals must first enter the 
microbial cells. The problem of the uptake of metals with biological functions has 
been solved by microorganisms by duplicating different transport systems. 
Cytoplasmic membrane uptake systems can be grouped  into high rate and rather 
unspecific secondary transport systems, which supply the basic need for a range of 
metal ions; and into highly substrate-specific, inducible, primary transport systems 
at the times of need of one special ion (Nies and Silver 2007). The primary uptake 
systems are often inducible ABC-type or P-type APTases. Another transport sys-
tems operate at high metal concentrations, being constitutively expressed, with a 
lower specificity and is based on the chemiosmotic gradient across the plasma mem-
brane. Exception to this rule is the NiCoT, which are inducible, membrane poten-
tial-dependent transport systems for Ni and Co uptake (Nies and Silver 2007). Both 
types of transport systems function in the uptake of essential metals. However, the 
high chemical similarity between divalent cations provokes the uptake of toxic met-
als via the systems evolved for the uptake of the essential metals. For instance, Cd2+, 
Hg2+, or Pb2+ can enter the cell via the transport systems used for essential metals 
like Mn2+,  Fe2+,  Co2+, Ni2+,  Cu2+, and Zn2+. This also applies to oxianions; for 
instance, arsenate (AsO

4
3−), a chemical analogous of phosphate (PO

4
3−), can enter 

the cell using the phosphate transporters, whereas chromate (CrO
4

2−) enters the cell 
via the sulfate transporters (Silver and Phung 1996).

It is assumed that bacterial cells have lived in the presence of high concentrations 
of metals from the beginning of life, nearly four billion years ago. Microorganisms 
need resistance systems that allow them to maintain the homeostasis of essential 
metals and also to detoxify nonessential toxic metals. Microorganisms have evolved 
resistance mechanisms in order to cope with high concentrations of heavy metals 
and oxianions. The most common mechanism of heavy-metals resistance is the 
extrusion of heavy metals and oxianions from bacterial cell, avoiding accumulation 
to levels that possibly inhibit growth, or cause cell death (Silver 1996). This is 
achieved by the participation of different transport systems (Nies 2003). Some of 
the efflux resistance systems are ATPases and chemiosmotic ion/proton exchangers 
(Silver and Phung 2005). In addition, accumulation and complexation of the metal 
ions inside the cell, reduction of toxic metal to less toxic forms, methylations, pre-
cipitation, and chelation with S-rich ligands like metallotioneins, glutathione, etc. 
are other metal detoxification mechanisms adopted by microbes (Outten et al. 2000; 
Gusmão et al. 2006). Gram-negative bacteria can also store metals in the periplasm, 
associated to proteins or peptides, in order to keep metals out of the cytoplasm and 
membrane where the important reactions take place. For example, proteins such as 
CopC  or  SilE  store  heavy metals  in  the  periplasm  (Moore  and Helmann 2005). 
Other passive resistance mechanisms include metal biosorption to cell surface 
(Volesky 2007; Malik 2004). These resistance mechanisms are not incompatible, 
and several of them can act simultaneously. In recent years, a great diversity of 
rhizobia resistant to heavy metals has been reported (Table 4.1). Most of them 
belonging to different species, such as Mesorhizobium loti, Sinorhizobium meliloti, 
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S, fredii, Rhizobium leguminosarum, Bradyrhizobium sp. etc., have been isolated 
from polluted soils. For instance, Mesorhizobium metallidurans has recently been 
identified  as  a  novel  bacterium  able  to  grow  at  high  Zn  (16–32 mM)  and Cd 
(0.3–0.5 mM) concentrations (Vidal et al. 2009). Also, Rhizobium selenireducens 
sp. nov. isolated from laboratory reactor was found to reduce selenate to elemental 
red selenium (Hunter et al. 2007).

4.3.2  Examples of Heavy Metal Resistance in Rhizobia

4.3.2.1  Arsenic Resistance in Rhizobium Strains

The detoxifying mechanism for arsenate is widespread among microbial life 
(Oremland and Stolz 2003). Arsenate enters bacterial cells via the phosphate trans-
porters. It is usually an inducible system that reduces arsenate to arsenite, which is then 
extruded from the bacterial cell. The transport system is able to transport As (III) 
but not As (V), so bacteria have evolved an arsenate reductase, which catalyzes the 
reduction of As (V) to As (III). Arsenic detoxification systems have been found in 
S. meliloti. This species shows a low level of resistance to arsenic compared to some 
other much more resistant genera of Gram-negative bacteria, like Ochrobactrum, 
Pseudomonas, E. coli, or Gram-positive bacteria, like Staphylococcus or Bacillus 
(Table 4.2). The arsenic-resistant operon of S. meliloti is located on one of the 
symbiotic plasmids ( psmed02). The operon is composed of four genes: (1) arsC: 
codifies an arsenate reductase, which reduces arsenate to arsenite; (2) aqpS: codifies 
an aqua-glycerolporine; (3) arsR, whose gene product is a transcriptional regulator, a 
trans-acting repressor that senses As(III), and control the expression of both arsB 
and arsC; and (4) arsH, which codifies a NADPH-dependent FMN-reductase 

Table 4.1 Rhizobial strains resistant to heavy metals and metalloids isolated from contaminated 
soils

Rhizobium species Metal (loid) resistance Reference

Azorhizobium caulinodans 4–5 mM Cd Zhengwei et al. (2005)
Bradyrhizobium sp. RM8 5.1 mM Ni Wani et al. (2007a)

21.4 mM Zn
Bradyrhizobium sp. STM2464 15 mM Ni Chaintreuil et al. (2007)
Mesorhizobium metallidurans 16–32 mM Zn Vidal et al. (2009)

0.3–0.5 mM Cd
Mesorhizobium sp. RC1 and RC4 7.7 mM Cr Wani et al. (2009)
Rhizobium leguminosarum bv. viciae E20-8 2 mM Cd Figueira et al. (2005)
Rhizobium sp. RP5 6 mM Ni Wani et al. (2008a)

28.8 mM Zn
Rhizobium sp. VMA301 2.8 mM AsO

4
3− Mandal et al. (2008)

Sinorhizobium medicae MA11 10 mM AsO
2
− Pajuelo et al. (2008)
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(Yang et al. 2005). The main difference between arsenic resistance operon and that 
of other more resistant bacteria is the absence of an energy-dependent efflux pump 
(ArsB), which extrudes arsenite out of  the cell by functioning as an As(OH)

3
/H+ 

antiporter. Mutagenesis analysis has demonstrated the involvement of the aquaglic-
erolporine in the mechanism of arsenic resistance in S. meliloti (Yang et al. 2005). 
However, this porine is a transmembrane channel that probably does not extrude 
arsenite in as efficient way as the ArsB pump does. Recently, the gen arsC has been 
reported in strains of R. leguminosarum, S. loti, and M. loti, isolated from contami-
nated soils of Portugal  (Sá-Pereira et al. 2007). The gen arsC seems to be more 
widely distributed than other arsenic resistance genes. In fact, several strains had 
one or several copies of the gene arsC, but not an arsB gene. An arsR gene has also 
been amplified in S. fredii VMA301, isolated from nodules of Vigna mungo grown 
in As-contaminated field (Mandal et al. 2008).

4.3.2.2  Cadmium Resistance in Rhizobium Strains

The resistance mechanism for cadmium in bacteria is based on the expulsion of Cd 
from the bacterial cell through more or less specific cation transporters. There are 
three different efflux mechanisms: a P-type ATPase (the CadA ATPase) found both 
in Gram-positive and Gram-negative bacteria; a chemiosmotic pump consisting of 
three  polypeptides  of  the RDN  (CBA)  family  also  found  in Gram-positive  and 
Gram-negative bacteria; and a single polypeptide chemiosmotic efflux system of 
the cation diffusion facilitator (CDF) family (the Czc system involved in the efflux 
of both Cd and Zn), described for the first time in Ralstonia metallidurans (Anton 
et al. 1999).  Cadmium  resistance  determinants  have  been  also  reported  in 
Rhizobium; for instance, loci with similarity to both cadA and cadC determinants 
are found in the completely sequenced genome of R. leguminosarum vb. trifolii 
WSM2034 (Reeve et al. 2010) and Mesorhizobium  sp.  BNC1  (Copeland  et  al. 
2006). However, although the function of cadA is known for bacteria like 
Staphylococcus aureus (Nucifora et al. 1989), its role in rhizobia is unknown. 
Together with cadA-like determinant, other cadmium resistance determinant like 
the protein NccN (presumably involved in Ni, Co, and Cd resistance) is present in 
rhizobia like Mesorhizobium sp. BCN1. Furthermore, the resistance to Cd in some 
species of Rhizobium has been associated to elevated levels of glutathione (GSH) 
(Gusmão et al. 2006). The GSH seems to play an important role in the detoxifica-
tion of Cd by R. leguminosarum, suggesting the importance of glutathione in cop-
ing with metal stress. Moreover, glutathione was found as the main Cd chelator in 
Rhizobium, responsible for sequestering 75% of intracellular Cd in tolerant strain. 
In addition, metal could also bind to the cell surface, demonstrating an effective 
avoidance mechanism. However, the Cd biosorption capacity of both tolerant and 
sensitive Rhizobium strains did not differ significantly suggesting that the adsorp-
tion of Cd was not the basis of difference in metal tolerance among rhizobial strains 
(Gusmão et al. 2006).
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4.3.2.3  Nickel Resistance Determinants in Rhizobium Strains

Nickel resistance determinants have also been identified in Bradyrhizobium strains, 
isolated from nodules of the endemic New Caledonia legume Serianthes calycina, 
growing  in  Ni-rich  soils  (Chaintreuil  et  al.  2007). The isolated Bradyrhizobium 
strains grew well in the presence of 15 mM NiCl

2
. The Ni detoxification occurred 

through the extrusion mechanism. The genomes of these strains had two Ni resis-
tance determinants, the nre and cnr operons. Of these, nre confers resistance toward 
moderate Ni concentrations, whereas cnr determines the extremely high Ni resis-
tance in Bradyrhizobium strains.

4.3.2.4  Resistance Against Chromium in Rhizobium

Chromate enters the cell by the sulfate uptake system and is effluxed by the ChrAB 
proteins, which form a sulfate-chromate antiporter (Nies et al. 1998). Gene clusters 
have been recently identified in rhizobial strains that are regulated by heavy metals, 
particularly chromium. Recently, an ABC transporter involved in chromium efflux 
has been amplified in R. leguminosarum, M. loti, and S. meliloti strains (Sá-Pereira 
et al. 2009). The chromate efflux determinant can be also involved in the extrusion 
of some other metal cations, since it corresponds to a cation/multridug efflux pump, 
which  belongs  to  the  family  of ABC  transporter,  confirming  homology with  an 
ATPase from PP super-family. The function of ABC transporters  in  the rhizobial 
strains possibly involves translocation of Cr through a pore formed by two integral 
membrane protein domains. Besides the efflux pump, a chromate sensor has been 
also identified. This gene shows homologous sequences to a hybrid sensor histidine 
kinase and a two-component sensor histidine kinase. This newly identified sensor 
may be a regulator of chromium uptake/efflux pump, serving, on the one side, in Cr 
sensing and at the same time, displaying a kinase activity, which may act in the 
activation of the efflux pump once the intracellular Cr concentration reaches a deter-
mined point. The identification of a two-component hybrid sensor kinase and a 
cation/multridug efflux pump in S. meliloti and R. leguminosarum suggests that it 
was identified as a newly different structure related to Cr resistance, and possibly, to 
other heavy metals (Sá-Pereira et al. 2009).

4.3.3  Nodulation Efficiency of Metal Resistant Rhizobia

It has long been known that the high concentration of heavy metals inhibits rhizo-
bial growth (Broos et al. 2005). This is probably the main reason that explains why 
nodulation and the symbiotic nitrogen fixation (SNF) efficiency of rhizobia decrease 
in metal-contaminated soils (Broos et al. 2004; Giller et al. 1998). These and other 
reports demonstrated a diminution of two to four orders of magnitude in the most 
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probable number (MPN) of R. leguminosarum bv. trifolii in polluted soils. 
Consequently, when the rhizobial population falls below a threshold, N

2
-fixation is 

severely impaired. Furthermore, under metal stress, the genetic diversity of rhizo-
bial populations is altered. Under the selective pressure of elevated metal concen-
trations, only the most resistant strains were able to survive, which were 
symbiotically ineffective and formed white nodules on roots (Broos et al. 2005; 
Lakzian et al. 2002;  Castro  et  al. 1997;  Chaudri  et  al. 1992). All  these  studies 
involved R. leguminosarum bv. Trifolii-inoculated clover plants where clover rhizo-
bia was found more sensitive to heavy metals than host plants (Giller et al. 1998). 
Among rhizobia, R. leguminosarum bv. trifolii has been reported to be more sensi-
tive to metals compared to Sinorhizobium (Giller et al. 1993). Despite these results, 
metal-resistant rhizobia are known that are fully effective in terms of nodulation and 
N

2
-fixation. For example, symbiotically active rhizobia were isolated from several 

legume plants, such as Medicago sp., Trifolium sp., Vicia sativa, Lupinus angustifolius, 
etc., growing in polluted soils (Carrasco et al. 2005). Sinorhizobium medicae MA11 
isolated from a Medicago sp. plant tolerated arsenite and arsenate up to a level of 10 
and 300 mM, respectively, and were fully effective in nodulation and N

2
-fixation of 

alfalfa. This strain was found more competitive than S. meliloti 1021 (Rm1021) in 
competition experiments, when inoculated together in the presence of As (Pajuelo 
et al. 2008). In other study, the strain (VM301) of S. fredii tolerated 2.8 mM arsenate 
and was symbiotically effective (Mandal et al. 2008). Yet in other similar experi-
ment,  Chaintreuil  et  al.  (2007) isolated symbiotically effective Bradyrhizobium 
strains, which showed resistant to 15 mM Ni. Also, Mesorhizobium metallidurans, 
sp. nova isolated from nodules of a metallicolous ecotype of Anthyllis vulneraria 
growing on mine soils, have shown normal levels of N

2
-fixation (Vidal et al. 2009). 

Interestingly, some of these strains were able to fix N to almost normal levels on 
polluted soils (Pajuelo et al. 2008). In this case, even though the number of nodules 
was reduced in the presence of heavy metals, the nodules formed on polluted soils 
were apparently normal and fixed about 75% N compared to those observed in non-
polluted soils (Carrasco et al. 2005).

4.3.4  Non-rhizobial Bacteria Nodulates Legumes Under  
Heavy Metal Stress

Nodulation of legume plants by non-rhizobial strains has been reported both in 
polluted and nonpolluted soils (Zurdo-piñeiro et al. 2007; Sawada et al. 2003). For 
instance, several Ochrobacterium species, such as O. lupini (Trujillo et al. 2005) or 
O. cytisi (Zurdo-Piñeiro et al. 2007) capable of nodulating legumes, were isolated 
from nodules of the legume Cytisus scoparius, grown in heavy metal-polluted soils 
after a toxic mine spill. Nodules formed by O. cytisi were non-fixing white nodules. 
Nevertheless, the presence of a 1.6-Mb symbiotic plasmid in O. cytisi and amplifi-
cation of nodD and nifH genes have been confirmed (Zurdo-Piñeiro et al. 2007). 
Interestingly, some genes involved in metal resistance were detected in the symbiotic 
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plasmids. More recently, nodulation of the legume plant Lespedeza cuneata growing 
in mine  soils  of China by  the  copper-resistant Agrobacterium tumefaciens strain 
CCNWRS33-2 has been reported (Wei et al. 2009). This strain showed resistance to 
different metals like Co (2 mM), Cd (2 mM), Pb (2 mM), and Zn (3 mM). A copper 
resistance operon inducible by both copper and silver in A. tumefaciens was reported 
by Nawapan et al. (2009). This operon contained three genes, copAZR, where copA 
codes for a copper efflux pump of the ATPase transporters family, copZ encodes a 
copper chaperone, and copR codifies a regulator.

4.3.5  Legumes and Heavy Metals

Plants growing in polluted soils have developed mechanisms allowing them to toler-
ate, and even detoxify heavy metals. The plant responds to heavy metals in two 
ways: some plants accumulate heavy metals while others exclude heavy metals 
(Baker 1981). With regard to the heavy metal sensitivity, plants can be classified 
into (1) metal excluders, (2) metal indicators, and (3) metal hyperaccumulators 
(Ghosh and Singh 2005; Prasad and Freitas 2003; Bleeker et al. 2003). Of these, 
metal hyperaccumulators are characterized for tolerating extremely high concentra-
tions of a particular metal. Furthermore, these plants accumulate metals in tissues 
without any toxicity symptoms. Hyperaccumulators also have the ability to translo-
cate metals from roots to the aerial organs of the plants, so that the accumulation in 
shoots exceeds the concentration of metals in roots. Also, the accumulation in shoots 
exceeds the concentration of metal in the soil (bioconcentration factor ››1). Indeed, 
the concentration of metal in shoots must exceed 1% of the dry weight for a plant to 
be considered as Ni, Mn, or Zn hyperaccumulator; 0.1% of  the dry weight  to be 
considered as a Cu, Co, or Cr hyperaccumulator; and 0.01% of the dry weight for a 
Cd or As hyperaccumulator (Callahan et al. 2006; Reeves and Baker 2000). Nickel 
hyperaccumulator, Sebertia accuminata, has, however, reported to accumulate up to 
25% of Ni of the dry weight of the xylem sap. In general, hyperaccumulator plants 
can  accumulate  one or  as maximum as  two heavy metals.  For  example, Thlaspi 
caerulescens, has been found to hyperaccumulate Zn and Cd (Baker 1981; Pence 
et al. 2000). Besides their ability to grow in harsh environments, extreme metal 
accumulation ability of hyperaccumulators protects plants from fungal infection, 
and  also  from herbivores  or  insect  attack,  in  contaminated  soils  (Callahan  et  al. 
2006). Metal excluders on the contrary prevent the accumulation of metals in shoots 
by (1) preventing the uptake by plant roots, (2) keeping the metal in the root tissues, 
and (3) by preventing the translocation of metals to the aerial parts of the plant. As 
a result of these processes, the concentration of metals in the aerial parts remains at 
a very low level in plants grown in a wide range of metal-contaminated soil.

In phytoremediation practices, hyperaccumulator plants are preferred since the 
remediation strategy is based on phytoextraction. Prospecting and identification of 
new hyperaccumulators are emerging as a cutting-edge area of research and gaining 
commercial significance in the field of environmental biotechnology. For instance, 
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a program  for  identifying metal  hyperaccumulators has been  launched  in China, 
which led to the discovery of new hyperaccumulators, such as Pteris vittata (for As) 
(Ma et al. 2001), Malva sinensis (for Cd) (Zhang et al. 2010), etc. Ideal metal hyper-
accumulators should be fast-growing, large biomass-producing, and deep-rooted 
plants in order to remediate deeper layers of polluted soil. However, several hyper-
accumulators are slow-growing small herbs with poor root systems (Vangrosveld 
et al. 2009). Non-accumulator plants (excluders) are suitable for phytostabilization 
studies. These plants tolerate moderate concentrations of heavy metals and grow on 
polluted soils. However, no metals are accumulated in shoots. The main advantage 
of this technique is that the metals are immobilized in soil, which in turn avoids 
leaching, erosion, and metal transfer into the food chain. However, it requires con-
tinuous monitoring of the polluted areas, since metal is not completely removed but 
is immobilized (Kidd et al. 2009). In non-hyperaccumulators like most of the 
legumes, metals are taken up and stored in root cells. Metal ions are chelated with 
different molecules like glutathione, phytochelatins, metallothioneins, organic 
acids, histidine, nicotinamine, etc. (Callahan et al. 2006; Mejáre and Bülow 2001), 
and stored within the vacuoles or in the apoplast, far from the cytoplasm where most 
of the physiological reactions occur (Pilon-Smits 2005). In non-hyperaccumulators, 
therefore, only a small quantity of metal is loaded into the xylem and is translocated 
to the shoots. It seems clear that hyperaccumulators do have completely different 
mechanisms for metal accumulation. For example, in some hyperaccumulators, like 
the Zn- and Cd-hyperaccumulator T. caerulescens, metal accumulation did not cor-
relate with increased levels of phytochelatins, suggesting a different mechanism for 
hyperaccumulation (Ebbs et al. 2002). High levels of the Zn-transporter Znt1 both 
in roots and shoots are found in the hyperaccumulator T. caerulencens (Pence et al. 
2000). By contrast, high concentrations of histidine residues have been described in 
the Ni-hyperaccumulator Alyssum (Ingle et al. 2005). In the As-hyperaccumulating 
fern P. vittata, arsenate is taken up through the phosphate transporters, reduced to 
arsenite, and sequestered in the fronds primarily as As(III) (Wang et al. 2002). A 
high level of arsenate reductase has been reported (Duan et al. 2005). Also, a phy-
tochelatin synthase with differences at the 5¢ sequence has been described, contain-
ing a greater number of cysteine residues as compared to other known phytochelatin 
synthases from non-hyperaccumulators (Dong 2005).

4.3.5.1  Accumulation of Heavy Metals in Legume Plants

Some legume plants, including species of the genera Vicia, Cytisus, Astragalus, 
Lupinus, etc., are known to grow on soils polluted by relatively higher concentra-
tions of heavy metals (Prasad and Freitas 2003). Legumes along with grasses have 
been reported as one of the first colonizers of degraded and polluted soils (Wei et al. 
2009; Bleeker et al. 2003; del Rio et al. 2002). For instance, some Medicago species 
were one of the first colonizers of severely polluted soils after a mine spill (Carrasco 
et al. 2005). Also,  leguminous  trees  such as Acacia spp. and Prosopis spp. have 
been reported as successfully colonizing mine tailings in the Western United States 



1094 Legume–Rhizobium Symbioses as a Tool for Bioremediation of Heavy Metal...

(Day et al. 1980). In spite of some legumes being tolerant to heavy metals, most of 
these plants fall into the category of metal excluders and accumulate very low con-
centrations of heavy metals in shoots (Table 4.3), and almost undetectable in grains 
(Wani et al. 2008a). In most of the cases, the concentration of metals in shoots of 
legume plants grown on polluted soils remains normally below the limits estab-
lished for animal grazing (Table 4.3), suggesting that using legume plants in metal 
remediation projects does not pose any risk to the food chain. The use of local 
metallicolous legume species, which can tolerate higher concentrations of heavy 
metals, also in association with grasses, may improve metal phytostabilization in 
particular  areas  (Frérot  et  al. 2006; Sharples et al. 2000).  For  instance, Lupinus 
albus  has  been  proposed  as  a  good  candidate  for  phytostabilization  of  Cd-  and 
As-contaminated soils (Vázquez et al. 2006). Also, L. lutetus has been proposed in 
phytostabilization of multi-metal polluted soils, since it behaves as an As and metal 
excluder (Dary et al. 2010). Only in the case of acidic soils polluted with Zn can the 
accumulation of this metal in Lupinus plants reach values above the threshold (up to 
3,600 ppm) for herbivore consumption (Pastor et al. 2003).

Some legume species belonging to the genus Astragalus, like A. sinicus and A. 
bisulcatus,  are  Se-hyperaccumulators  (Prasad  and  Freitas  2003). The latter one 
accumulates more than 6,000 ppm Se in leaves and up to 10,000 ppm Se in fruits 
and seeds (Freeman et al. 2006). Besides Se-phytoextraction by leaves, other phy-
toremediation processes also occur in Astragalus plants. Selenium is a chemical 
analogous from S and enters the plant root via the S assimilation pathway. Plants 
(and microbes) can take up inorganic and organic forms of Se like selenite and sel-
enate. Once inside the plant, Se is enzymatically bound to cysteine or methionine, 
to form selenocysteine or selenomethionine, which are transported to the leaves and 
converted into the volatile forms, methylselenide (MSe) and dimethylselenide 
(DMSe). Biological volatilization has the advantage of removing Se from a con-
taminated site in a relatively nontoxic form, since DMSe is 500–700 times less toxic 
than SeO

4
−2 or SeO

3
−2 (Le Duc and Terry 2005). The phytovolatilization of volatile 

organoselenide species, such as dimethylselenide and dimethyldiselenide, has been 
demonstrated in Astragalus bisulcatus (Freeman et al. 2006; Pickering et al. 2003).

4.4  Effect of Heavy Metals on the Legume–Rhizobium 
Symbiotic Interaction

In order to use legumes for soil bioremediation, it is important to know the effect of 
soil contaminants on the symbiotic interaction. The effect of heavy metals on the 
legume–Rhizobium symbiotic interaction has extensively been studied (Table 4.4). 
Of the various symbiotic stages, nodulation in general is more sensitive to heavy 
metals than the roots or shoot growth of legumes (Gupta et al. 2007). While, root 
growth and photosynthetic pigments (chlorophyll) are parameters commonly used 
to determine the metal toxicity to legumes. As an example, S. medicae–inoculated 
Medicago sativa, when grown in the presence or absence of 25 mM sodium arsenite 
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showed a 33% and 15% reduction in root length and chlorophyll content, respectively 
compared  to plants grown without As  (Pajuelo et al. 2008). A diminution of  the 
number of nodules has been reported as a general effect of these contaminants 
although the sensitivity varies among legume species and with experimental designs. 
For  instance,  nodulation  on Vigna unguiculata was completely abolished in the 
presence of 2 mM Cu in hydroponic cultures (Kopittke et al. 2007), whereas 
M. truncatula formed effective nodules even in the presence of 200 mM Cu when 
grown on sand:vermiculite (J. Delgadillo, personal communication). Different fac-
tors causing the decrease in nodule numbers includes atrophy of root hairs, decline 
in the total number of root hairs, shortening of the root zone susceptible to nodula-
tion, and decrease in the number of infections events (Pajuelo et al. 2008). To vali-
date the hypothesis that inhibition of root hair formation leads to reduction in 
nodulation, Brady et al. (1990) conducted an experiment to assess the impact of low 
activities of Al on soybean while Kopittke et al. (2007) analyzed the effect of vary-
ing concentrations of Cu on cowpea. Both of these studies concluded that reduction 
in nodulation with increasing metal activity was associated with an inhibition of 
root hair formation rather than to a reduction in the size of the Rhizobium popula-
tion. Furthermore, in a microscopy study, Pajuelo et al. (2008) suggested that dam-
ages in root hairs, a shorter infective root zone, together with symptoms of necrosis, 
root tip swelling, and a 90% reduction in the number of rhizobial infections led to a 
decline  in  nodulation  of  alfalfa  plants,  grown  in  the  presence  of  As  (Fig.  4.2). 
However, once nodulation is established, N

2
-fixing ability of legumes grown in the 

presence of heavy metals is affected, which depends on the type of metals and the 
legume species. An increase of oxidative stress and reactive oxygen species (ROS), 

Fig. 4.2 Effect of arsenic (25 mM) on Medicago nodule development (a) root hairs of control 
plants three days post-inoculation, (b, c) root hairs of 5-days-old plants grown with arsenic where 
root hair tips are affected, (d) infection thread (blue) growing through a root hair in an As-grown 
plant, (e) mature nodule of control plant, and (f) mature N

2
-fixing nodule of arsenic-treated plant 

(Reproduced from Pajuelo et al. 2008)
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together with redox imbalance, has been reported in plants grown in the presence of 
metals like Al, Cd, or Hg (Ortega-Villasante et al. 2005). Furthermore, the levels of 
antioxidant enzymes like superoxide dismutase (SOD), catalase, and peroxidases 
have been found severely decreased in legume nodules, as in the case of soybean, 
grown in the presence of 500 mM Al, which  resulted  in greater oxidative  stress, 
leghaemoglobin breakdown, and reduction in nitrogenase activity (Gupta et al. 
2007). Nitrogen assimilatory enzymes including glutamate dehydrogenase (GDH), 
glutamine synthetase (GS), and glutamate synthase (GOGAT) of nodules are also 
reported to be adversely affected by metals, like Al (50–500 mM). On the contrary, the 
nitrogenase activity did not show an obvious decrease in moderately contaminated 
soils. Nodule development of alfalfa plants grown in the presence of low concentra-
tion (25 mM) of As was, however, normal, and mature nodules were functionally 
effective (Pajuelo et al. 2008). Nitrogen is another parameter commonly used to 
evaluate the N

2
-fixing efficiency of legumes. Nitrogen content of chickpea plants 

grown in the presence of Cd or Pb was diminished by 30% and 10%, respectively 
(Wani et al. 2007b). Pea plants grown in Cu-treated soils showed a 9% decrease 
in shoot N (Wani et al. 2008a). However, a marginal increase in N content in 
legumes, grown in metal-contaminated soils has been reported (Wani et al. 2008a; 
Lasat 2000).

Only very recently, molecular approaches have been used to assess the effect 
of heavy metals on the establishment of the legume–Rhizobium interactions. 
For example, reduced nodulation in alfalfa induced by As has been correlated with 
altered expression of early nodulins (Lafuente et al. 2010). In this regard, seven 
well-known nodulin genes, markers for the different events leading to nodule for-
mation, were analyzed by RT-PCR. A significant decrease in the expression of four 
early nodulins – the genes coding the Nod factor receptor (nork), the transcription 
factor NIN and the markers for infection progression (N6) and nodule organogenesis 
(Enod2) – especially 1–5 days after inoculation was observed. However, the expres-
sion of markers for primordium initiation (Enod40) and differentiation (ccs52) was 
not significantly altered. The expression of a marker for N

2
-fixation (Legbrc, coding 

for leghemoglobin) was also reduced (Table 4.5). Results of the expression of nork 

Table 4.5 Gene expression of nodulation marker genes in roots of alfalfa plants inoculated with 
Sinorhizobium medicae MA11 in the presence of arsenic

Gene Marker for…
Days post 
inoculation

% expression (100% 
control without As)

Nork Nod factor perception  1–5 20–40
NIN Nodule initiation  1–5 60–80
Enod2 Infection thread progression and nodule 

organogenesis
 2–10 10–25

N6 Infection thread formation and growing  2–10 20–60
Enod40 Nod factor responses and primordium initiation  1–10 96–102
ccs52 Cortical cell division  2–15 98–103
Legbrc Nitrogen fixation 10–21 30–50

Adapted from Lafuente et al. (2010)
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and Enod2 genes were confirmed by qPCR, which were influenced by As. Moreover, 
it was postulated from this study that As affects the expression of nodulation genes 
associated with processes that occur in the epidermis and the outer cortical cells, 
whereas the expression of genes associated with events that occur in the inner cortical 
cells is probably less affected.

4.5  Application of Legume–Rhizobium Symbioses  
in Metal-contaminated Soils

The simultaneous application of plants and rhizosphere microbes (rhizoremediation) 
improves the effectiveness of bioremediation. For this technique to be effective, a 
careful attention must be paid on to the selection of rhizosphere microorganisms 
displaying bioremediation potential and PGP properties, with high competitive ability. 
Accordingly,  inoculants having multifarious  activities  can be developed  for  their 
ultimate use under conventional or derelict environment. In this context, many 
experiments have been accomplished using different legume–Rhizobium symbioses 
for remediation of metal-contaminated soils. Most of these researches have how-
ever, been done in pots/greenhouse environments. In some cases, results have not 
been found consistent and reproducible when tested under field trials (Vangrosveld 
et al. 2009). Therefore, it is generally suggested that when designing an in situ 
rhizoremediation strategy, the availability of metals in the soil, the viability of the 
inoculants, and the selection of the most adequate agronomical practices must be 
considered. Despite these problems, when symbiotically effective and metal-resistant 
rhizobia were used, they increased the fitness of plants and showed dual benefits: 
on one hand, they increased grain yields, plant biomass, and N content through 
N

2
-fixation, and synthesizing growth-regulating substances (Dary et al. 2010; 

González and González-Chávez 2006). The positive effect of selected inoculants on 
plant yield and biomass improves the vegetal cover and helps the regeneration of 
polluted and degraded soils (Zhuang et al. 2007). On the other hand, inoculation 
with metal-resistant inoculants also affects metal solubility and bioavailability for 
plant uptake. In most cases, a decrease in metal accumulation in shoots of inocu-
lated plants is reported (Frérot et al. 2006), although in some cases, an increase in 
metal accumulation occurs, when selected metal mobilizing inoculants are used in 
combination with hyperaccumulator plants (Ma et al. 2009; Zaidi et al. 2006; de 
Souza et al. 1999). Several mechanisms have been proposed for the observed 
decrease in metal content in inoculated legume plants. Such mechanisms includes 
biosorption of metal to bacterial cell surface (Rodríguez-Llorente et al. 2010), or 
plant roots, metal chelation, secretion of substances by plant roots or bacteria that 
immobilize metal in the soil, etc. All these processes can act together and therefore 
may enhance metal phytostabilization. For this strategy to be useful, metal-resistant 
bacteria  (or bacterial consortia) as  inoculants could be applied. For  instance,  the 
combination of Rhizobium, Pseudomonas, Ochrobactrum, Bacillus, mycorrhizal 
fungi, and mycorrhizal helper bacteria (MHB) have been used (Khan et al. 2009; 
Khan 2005). In a study, Lupinus luteus plants inoculated with a bacterial consortium 
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resistant to heavy metals have been used in metal phytostabilization of soils affected 
by a mine spill. This consortium included Bradyrhizobium and native Ochrobactrum 
and Pseudomonas resistant to heavy metals. The mixture of bacteria increased plant 
yields, biomass and N content together with a 2–4 fold reduction in metal concen-
tration in shoots (Fig. 4.3). In other work, inoculation of greengram plants with the 
PGPR and metal-resistant Bradyrhizobium sp. RM8 protected the plants from the 
toxicity of Ni and Zn and consequently increased plant growth (Wani et al. 2007a). 
These and other associated studies thus suggest that metal-tolerant rhizobia 
could be used to offset the toxicity of heavy metal to legumes when grown in metal-
poisoned soils.

4.6  Engineering Legume–Rhizobium Symbiosis for Improving 
Bioremediation

Recently, genetic engineering has been used to improve the legume–Rhizobium 
symbiosis for bioremediation purposes. The advent of high-throughput methods 
for  DNA  sequencing  and  analysis  of  gene  expression  (genomics)  and  function 

Fig. 4.3  Field trials of Lupinus luteus plants grown in metal-polluted soil after the toxic spill of 
the Aznalcóllar mine (Aznalcóllar, SW Spain) (a) non-inoculated control plants, (b) plants inocu-
lated with Bradyrhizobium, (c) plants inoculated with a bacterial consortium resistant to heavy 
metals including Bradyhizobium and Ochrobactrum, and (d) plants inoculated with bacterial con-
sortia (including Bradyrhizobium, Ochrobactrum, and Pseudomonas) resistant to heavy metals 
(Reproduced from Dary et al. 2010)



116 E. Pajuelo et al.

(proteomics), as well as advances in modeling microbial metabolism in silico, 
provides a global, rational approach to unravel the largely unexplored potentials of 
microorganisms in facilitating sustainable development (de Lorenzo 2008; Singh 
et al. 2008; Wood 2008). Since legume plants are used most frequently in metal 
phytostabilization, strategies aimed to increase metal accumulation in root nodules 
have been reported. For example, Sriprang et al. (2002) described the construction 
of a genetically modified strain of Mesorhizobium huakii subsp. rengei B3 by the 
expression of a gene encoding metal-binding protein, synthetic tetrameric metallo-
thionein (MTL4) on the cell surface under the control of a bacteroid-specific pro-
moter, pnifH or pnolB. Inoculation of Astragalus sinicus plants with this strain led 
to a 1.7-fold increase in Cd accumulation inside the nodule. The accumulation of Cd 
increased not only in nodules, but also in the roots of A. sinicus infected by the 
recombinant rhizobia (threefold increase). In a follow-up study, Sriprang et al. 
(2003) engineered a M. huakuii strain expressing a phytochelatin synthase from A. 
thaliana (cadmium accumulation in nodules increased up to 1.5-fold as compared 
to non-modified rhizobial partner). The combination of both strategies in the same 
rhizobial strain slightly increased the accumulation of Cd in Astragalus nodules (Ike 
et al. 2007). The release of genetically modified organisms in Europe is however 
tightly regulated. So, all these approaches have only been tested under laboratory 
conditions, since regulatory restrictions have prevented in situ application. Thus, 
more field trials are necessary to test the abilities of these modified organisms under 
“real conditions” (Vangrosveld et al. 2009). However, probably the utilization of 
genetically modified microorganisms (and transgenic plants) in bioremediation is 
likely to generate less public opposition than using in food production.

4.7  Conclusion

Legumes accumulate heavy metals mainly in roots, showing very low levels of 
metal translocation to the aerial parts of the plants. Thus, the preferable use of these 
plants is in the metal phytostabilization. However, it must be taken into account that 
zinc under acid soil conditions and selenium in legume species can be accumulated 
over the threshold recommended level for animal feeding. Several strains of rhizo-
bia resistant to metalloids and heavy metals have been isolated from polluted soils. 
Some of these bacteria are fully effective in nodulation and nitrogen fixation, even 
in the presence of moderate metal concentrations in the soils. Furthermore, in some 
cases, a great diversity in rhizobial population is found in contaminated soils, 
although this fact depends on the Rhizobium species considered in the study. 
Moreover, some other genera of bacteria, distinct from rhizobia, inefficiently 
nodulate legumes under metal stress. Inoculation of legume plants (preferably 
native ecotypes from polluted soils) with bacterial consortia resistant to heavy met-
als (including Rhizobium, mycorrhiza, MHB, endophytes, and other PGPR) has 
proved to be a promising and cost-effective technology for metal phytostabilization, 
allowing the re-vegetation of metal-contaminated areas with moderate levels of 
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pollution. For this purpose, inoculants with metal resistance ability, PGP-expressing 
capacity, and having greater competitive potential must be selected. However, 
research must also focus on how to increase the metal-detoxifying ability of both 
rhizobia and legumes so that the benefits of bioremediation technologies are real-
ized under metal-stressed environments.
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Abstract Heavy metal contamination caused either by natural processes or by 
human activities is one of the most serious environmental problems. Physicochemical 
methods such as soil washing, excavation, and reburial for heavy metal removal 
from contaminated soils are expensive and disruptive. Phytoremediation in contrast 
is a low-cost environmentally friendly and potentially effective technology for the 
reclamation of polluted soils. Arbuscular mycorrhizal (AM) fungi provide an attrac-
tive system to advance plant-based environmental clean-up. They are critical in the 
establishment and fitness of plants in severely disturbed sites, including those contami-
nated by heavy metals. Mycorrhizal plants play an important role both in phytosta-
bilization and phytoextraction. Strategies used by AM-fungi in phytostabilization 
includes immobilization of metals by precipitating polyphosphate granules in the 
soil, compounds secreted by the fungus, adsorption to fungal cell walls, and chela-
tion of metals inside the fungus. By phytoextraction, AM-fungi make heavy metals 
more available for plant absorption, help plants to accumulate metals, facilitate 
plant growth and biomass production, and increase plant tolerance to metals. Since 
tolerance to heavy metals varies with the fungal genotype, efficacy of the hyperac-
cumulators in phytoremediation can be best exploited by selecting most suitable 
mycorrhizal culture. The importance of AM-fungi in enhancing phytoremediation 
of metal-contaminated soil is highlighted.
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• Phytoextraction
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5.1  Introduction

Heavy metals are a group of 53 elements with density higher than 5 g/cm3 (Holleman 
and Wiberg 1985). Although some metals are essential for plant and animals, many 
are toxic at high concentrations. Trace elements like iron (Fe), copper (Cu), nickel 
(Ni), zinc (Zn), and manganese (Mn) are essential for normal growth and develop-
ment of plants and are required in electron transfer, in numerous enzyme catalyzed 
or redox reactions, and have structural function in nucleic acids (Zenk 1996). Others 
like Cu and Zn are involved in plant growth, flowering, and seed production, espe-
cially when their availability is very low (Vamerali et al. 2010). In contrast, some 
heavy metals, such as, mercury (Hg), cadmium (Cd), arsenic (As), and lead (Pb) are 
not essential (Mertz 1981). Heavy metals occur mainly in terrestrial or aquatic 
ecosystems although they can be also emitted into the atmosphere (Gohre and 
Paszkowski 2006). The presence of heavy metals in soil may be natural or due to 
anthropogenic activities primarily associated with industrial processes such as 
mining, metallurgical and energy production, or agricultural practices (Cho et al. 
2009; Gong et al. 2010). Among various organic and inorganic pollutants, greater 
concern worldwide about soil contamination is regarding heavy metals. For example, 
in the European Union, contamination by metals accounts for >37% of the cases, 
followed by mineral oil (33.7%), polycyclic aromatic hydrocarbons (13.3%), and 
others (Vamerali et al. 2010). In uncontaminated soils, heavy metal concentrations 
vary in magnitudes, but on average, the order of metal concentrations is: Cd 0.1–
0.5 ppm, Zn 80 ppm, and Pb 15 ppm. However, in polluted soil, the concentrations 
were: Cd >14,000 ppm, Zn >20,000 ppm, and Pb >7,000 ppm (Gohre and Paszkowski 
2006). Contamination is often highly localized in industrialized countries, and 
hence, the pressure to use contaminated land and water for food production or for 
human consumption is minimal (Kramer 2005). However, such types of contamina-
tions are widespread in Eastern Europe, and are increasingly recognized as a major 
threat in many parts of the developing world, especially in China and India (Cheng 
2003; Meharg 2004).

Heavy metal pollution of the biosphere has received huge attention due to its 
toxicity, abundance, persistence, and subsequent accumulation in environment 
(Dong et al. 2010). Long-term use of industrial and municipal wastewater on agri-
cultural lands contributes significantly to the buildup of these metals in soils and 
plants (Mapanda et al. 2005; Sharma et al. 2007), which is of course a serious con-
cern. Excessive accumulation of heavy metals in agricultural soils following uptake 
by plants may result in poor food quality and safety (Muchuweti et al. 2006; Zhu 
et al. 2008; Gupta et al. 2010). According to their distinct chemical and physical 
properties, three different molecular mechanisms of heavy metal toxicity are recog-
nized: (1) production of reactive oxygen species by autoxidation and Fenton 
reaction (Fe, Cu), (2) blocking of essential functional groups in biomolecules (Cd, Hg), 
and (3) displacement of essential metal ions from biomolecules (Schutzendubel and 
Polle 2002). Phytotoxicity is mainly associated with nonessential metals like Cd, 
As, Cr, and Pb, which generally have very low toxicity thresholds (Clemens 2006) 
and lower values for hyperaccumulation (especially for Cd) than the other metals 
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(Vamerali et al. 2010). At elevated concentrations, heavy metals interfere with 
essential enzymatic activities by modifying protein structure or by replacing a vital 
element resulting in deficiency symptoms (Gohre and Paszkowski 2006). The 
plasma membrane is particularly vulnerable to heavy metal toxicity since mem-
brane permeability and thus functionality can be affected by alterations of important 
membrane intrinsic proteins such as H+-ATPases (Hall 2002).

5.2  Arbuscular Mycorrhizal Fungi: An Overview

Arbuscular mycorrhizal (AM) fungi are indigenous soil-borne microorganisms and 
are integral functioning parts of plant that live in mutualistic association with the 
roots of about 80% of all terrestrial land plants (Smith and Read 1997). AM-fungi 
are obligate biotrophs because they rely on their host plant to proliferate and sur-
vive. All AM-fungi belong to the Glomeromycota, an ancient group of fungi that 
was present about 450 million years ago, and were instrumental for plants to colo-
nize land (Redecker et al. 2000; Schüssler et al. 2001).The phylum Glomeromycota 
comprises a single class Glomeromycetes having four orders and 13 families. Based 
on morphological and molecular characteristics, 19 genera like, Acaulospora, 
Ambispora, Archaeospora, Cetraspora, Dentiscutata, Diversispora, Entrophospora, 
Fuscutata, Geosiphon, Gigaspora, Glomus, Intraspora, Kuklospora, Otospora, 
Pacispora, Paraglomus, Racocetra, Scutellospora, and Quatunica comprising more 
than 200 species are recognized (Manoharachary et al. 2010). The AM-fungi 
consists of an internal phase inside the root and an external phase, or extraradical 
mycelium phase, which can form an extensive network within the soil. A key feature 
of these fungi is the formation of specialized haustoria-like structure within the root 
cortical cells called arbuscules where metabolite exchange takes place between the 
fungus and host cytoplasm (Parniske 2000). Characteristic vesicles usually also 
form later as terminal or intercalary swellings in the cortical cells and function as 
nutrient storage organs or as propagules in root fragments.

Arbuscular mycorrhizal fungi are important in natural and managed ecosystems 
due to their nutritional and nonnutritional benefits to their symbiotic partners. These 
symbionts can act as biofertilizers, bioprotectants, or biodegraders (Xavier and 
Boyetchko 2002).The fungi assist the host plant in the uptake of nutrients especially 
P in exchange for C substrates from host plant photosynthesis (Javaid 2009; Sharda 
and Koide 2010) through extensive and highly branched extra radical hyphae. The 
mycorrhizal colonization also improves plant N nutrition, which, however, has not 
been fully appreciated until recently (Read and Perez-Moreno 2003). Uptake of 
other nutrients such as Na, K, Mg, Ca, B, Fe, Mn, Cu, and Zn is influenced by 
mycorrhizal colonization (Cardoso and Kuyper 2006; Meding and Zasoski 2008). 
Enhanced mineral nutrition helps plants in increasing chlorophyll content and 
hence, higher photosynthetic rate (Feng et al. 2002). AM- fungi also improve soil 
structure by forming soil aggregates (Rillig and Mummey 2006) and thus result in 
enhanced plant growth and productivity. Root colonization by AM-fungi also induce 
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important physiological and biochemical changes in the host plant, enabling it to 
better overcome biotic (Ozgonen and Erkilic 2007) and abiotic stresses such as 
metal toxicity (Leung et al. 2007), salinity, high soil temperature, drought (Khalvati 
et al. 2010), and allelopathy (Javaid and Bajwa 1999; Javaid 2007, 2008; Barto et al. 
2010). AM-fungi provide other benefits as well to plants including enhanced enzyme 
production (Adriano-Anaya et al. 2006), synthesizing secondary metabolites 
(Schliemann et al. 2008), enhancing symbiotic N

2
 fixation by symbiotic (Javaid 

et al. 1993, 1994; Kaschuk et al. 2010; Ray and Valsalakumar 2010) and associative 
N

2
-fixing bacteria (Saini et al. 2004), and osmotic adjustment under drought stress 

(Ruiz-Lozano 2003). The AM symbiosis has a significant impact on plant interac-
tions with other microorganisms and there are many documented reports on its role 
in controlling plant diseases, especially soil-borne plant pathogens including fungi, 
nematodes, and bacteria (Khaosaad et al. 2007; Oyekanmi et al. 2007).

5.3  AM-Fungi-Assisted Phytoremediation

Physicochemical methods for heavy metals removal from contaminated soils are 
expensive and disruptive (Gardea-Torresdey et al. 2005). The most highly deve-
loped remediation methods for metal-contaminated soils are physical or chemical, 
such as soil washing, excavation, and reburial. However, physical displacement, 
transport, and storage or alternatively soil washing are expensive procedures and 
leave a site behind, which may be devoid of any soil microflora. Recently, phytore-
mediation (the use of plants to remediate polluted soils) has emerged as a more 
reliable alternative (Cho et al. 2009; Franco-Hernandez et al. 2010). This biological 
approach is based on the capability of some plant species to take up and to concen-
trate pollutants in their roots and shoots, and is often simpler in design and is inex-
pensive (Petra et al. 2009; Rai 2010). Phytostabilization and phytoextraction are 
the most reliable categories of phytoremediation for heavy metals (Gohre and 
Paszkowski 2006). Phytostabilization is used to provide a cover of vegetation for a 
moderately to heavily contaminated site to prevent wind and water erosion. It is 
often performed using species from plant communities growing on local contami-
nated sites. These plants possess tolerance to the contaminant metals, develop an 
extensive root system, provide good soil cover, and ideally immobilize the contami-
nants in the rhizosphere (Kramer 2005; Dary et al. 2010). In phytostabilization, 
plants must be able to develop extended root systems and keep the translocation 
of metals from roots to shoots as low as possible (Mendez and Maier 2008). 
Phytoextraction involves the cultivation of tolerant plants that concentrate soil 
contaminants in their above-ground tissues. At the end of the growth period, plant 
biomass is harvested. Contaminated biomass may be used for energy production, 
whereas remaining ashes are dumped, included in construction materials, or subjected 
to metal extraction (Brooks et al. 1998). Plants most suitable for phytoextraction are 
able to hyperaccumulate contaminants, possess tolerance to these chemicals, have 
a high biomass, and have a short growing cycle (Cho et al. 2009). All these traits 
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are difficult to combine, and there are basically two available phytoextraction 
strategies, which make use of hyperaccumulators or biomass plant species 
(Vamerali et al. 2010).

The majority of hyperaccumulators present a slow growth rate leading to a low 
annual biomass yield. Moreover, the use of hyperaccumulators species in continu-
ous phytoextraction process is limited by the low bioavailability of these pollutants 
for uptake by roots (Peer et al. 2005). Many efforts have been made to improve 
phytoextraction of heavy metals. The use of both natural and synthetic chelating 
agents has been practiced in phytoextraction to increase bioavailability, uptake and 
translocation of metals (Quartacci et al. 2006). Among various synthetic chelators, 
ethylenediamine tetraacetate (EDTA) has been tested more intensively (Barrutia 
et al. 2010; Zaier et al. 2010). In this context, AM-fungi provide an attractive system 
to advance plant-based environmental clean-up. In some cases, mycorrhizal plants 
can show enhanced heavy metals uptake and root-to-shoot transport (phytoextraction) 
while in other cases AM-fungi contribute to heavy metal immobilization (phytosta-
bilization) within the soil (Gohre and Paszkowski 2006).

5.3.1  Occurrence of AM-Fungi in Heavy Metal  
Contaminated Soil

Arbuscular mycorrhizal fungi are reported to be present on the roots of plants growing 
on heavy metal-contaminated soils and play an important role in metal accumula-
tion and tolerance (Hildebrandt et al. 1999; Gaur and Adholeya 2004). For exam-
ple, AM fungal colonization was detected in most of the plants growing on mining 
sites in Chenzhou City, Hunan Province, Southern China (Leung et al. 2007). Zak 
et al. (1982) reported 390–2070 spores 100g−1 substratum in mine spoils of 
Canada. Weissenhorn et al. (1995a, b) observed high levels of mycorrhizal colo-
nization in agricultural soils contaminated with metals originating from smelter 
and sludge amendments. In ultramafic soils in South Africa, naturally occurring 
Ni-hyperaccumulating plants of the Asteraceae were heavily colonized by AM-fungi 
(Turnau and Mesjasz-Przybylowicz 2003). Heavy metals have shown positive, neg-
ative, or neutral effects on mycorrhizal colonization in soil or culture solution (Chen 
et al. 2005). For example, Diaz et al. (1996) showed that mycorrhizal infection of 
Lygeum spartum L. and Anthyllis cytisoides L. was not affected by Zn or Pb in soil. 
Similarly, Weissenhorn et al. (1995a) observed no correlation between AM abun-
dance in maize (Zea mays) and the degree of metal (Cd, Ni, Zn, Cu, Pb, and Mn) 
pollution in a field trial. On the other hand, mycorrhizal colonization and growth of 
external hyphae were inhibited by sewage sludge-contaminated soil containing Pb, 
Zn, and Cd (Del Val et al. (1999). In a similar study, Chao and Wang (1990) found 
that mycorrhizal infection rate of maize was reduced by the addition of Pb, Cr, Ni, 
Zn, Cu, and Cd. Recently, Khade and Adholeya (2009) identified a total of six 
species of AM-fungi belonging to two genera, Glomus and Scutellospora, from 
soils adjoining Kanpur Tanneries, Uttar Pradesh, India. AM- fungi was maximum 
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in the non-contaminated site (six species) compared to the metal-contaminated site 
(four species). They further reported that for a particular plant species, the root colo-
nization levels and spore density were generally higher in chromium-contaminated 
soil compared to non-contaminated soils. The authors attributed higher AM coloni-
zation rates in metal-contaminated soil to favorable time for spore germination and 
rapid colonization of emerging roots of the plants. Bedini et al. (2010) found no 
spores in the rhizosphere soil of the dominant plant species of Sacca San Biagio, a 
polluted ash dump island, characterized with high levels of Cu, Pb, and Zn. In con-
trast, Tonin et al. (2001) found that Cd- and Zn-polluted soil enhanced mycorrhizal 
diversity index of clover (Trifolium repens L.) roots. Similarly, Turnau et al. (1996) 
reported that metal-tolerant Oxalis acetosella L. plants colonizing acid forest soils 
treated with Cd, Zn, and Pb containing industrial dust showed higher AM coloniza-
tion than nontreated soils.

Spores and pre-symbiotic hyphae are generally sensitive to heavy metals in the 
absence of plants. Shalaby et al. (2003) isolated spores from heavy metal-polluted 
and unpolluted soils and assessed their germination and subsequent hyphal growth in 
the presence of Zn, Pb, and Cd. Germination and hyphal growth were inhibited by 
heavy metals in all cases. However, spores from polluted soils were more tolerant to 
elevated concentrations of the three metals than spores from uncontaminated soils. 
This naturally occurring resistance is likely due to phenotypic plasticity rather than 
genetic changes in the spores, because tolerance was lost after one generation in the 
absence of heavy metals. Studies examined spore counts and colonization efficiency 
of sewage sludge-treated sites and revealed that spores tolerant to increased heavy 
metal application readily colonized host roots despite low spore counts (Del Val et al. 
1999; Jacquot-Plumey et al. 2001). In contrast, Hua et al. (2009) demonstrated that 
AM-fungi isolated from polluted soils were not effective than those from unpolluted 
soils when grown in symbiosis with tobacco (Nicotiana tabacum).

Tolerance to heavy metals varies with the fungal genotype (Biro et al. 2009). 
Generally, species of genus Glomus are predominant in the rhizosphere of plants 
growing in heavy metal-contaminated soils (Khade and Adholeya 2009; Bedini 
et al. 2010). Study on the effect of Pb, Zn, and Cd on pre-symbiotic (spore germi-
nation and hyphal extension), and symbiotic (extraradical mycelial growth and 
sporulation) life stages of two Glomus species demonstrated Glomus intraradices 
to be more tolerant to each of the metals than Glomus etunicatum (Pawlowska and 
Charvat 2004).

5.3.2  Does Mycorrhizal Plants Exhibit Enhanced Tolerance  
to Heavy Metals?

Mycorrhizal interactions with plants are widely recognized in enhancing plant growth 
in severely disturbed sites, including those contaminated with heavy metals (Leyval 
et al. 1997; Gaur and Adholeya 2004). For example, Hildebrandt et al. (1999) 
reported that mycorrhizae improved the plants of Viola calaminaria (DC.) Lejeune 
tolerance to Zn and Pb stress in polluted soils. However, it remains unclear whether 
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the observed effect was a consequence of improved nutrition or the fungal impact 
on the plant’s physiological stress reactions (Jentschke and Godbold 2000). Chen 
et al. (2005) showed that mycorrhizae enhanced significantly shoot P concentration 
and shoot biomass under elevated Pb concentration, suggesting that higher effi-
ciency of P acquisition by mycorrhizae might be a mechanism of plant tolerance to 
Pb stress. Hildebrandt et al. (1999) reported that a Glomus isolate Br1 obtained from 
roots of V. calaminaria grown on heavy metal-contaminated soil colonized maize, 
alfalfa (Medicago sativa), barley (Hordeum vulgare), and V. calaminaria and 
allowed each plant species to complete their life cycle on highly polluted soil. An 
isolate of G. intraradices, isolated from a non-contaminated soil also increased 
growth, but to a lower extent, whereas non-colonized plants died on the same soil. 
It could be attributed to the fact that heavy metals are selectively retained in the 
inner parenchyma cells coinciding with fungal structures (Kaldort et al. 1999). 
Accumulation of heavy metals in colonized tissue may be the predominant detoxi-
fication mechanism in AM-fungi. To substantiate this, cadmium has been found 
stabilized in the root system of clover (Trifolium pratense) (Medina et al. 2005), pea 
(Pisum sativum) (Rivera-Becerril et al. 2002), and ribwort (Plantago lanceolata) 
(Hutchinson et al. 2004). Rivera-Becerril et al. (2002) suggested a “mycorrhiza-
buffering” of Cd-stress, which they attributed to detoxification mechanisms. Later 
on, Paradi et al. (2003) hypothesized that alterations in polyamine content and ratio 
in AM plants lead to Cd tolerance. In a study, Chen et al. (2007) found that G. mos-
seae may protect alfalfa shoots from As toxicity by “dilution effects” resulting from 
growth stimulation of AM plants and reduced transport of As to shoots. Liang et al. 
(2009) on the other hand reported that G. mosseae inoculation enhanced crop growth 
and protected maize from the toxicity of Pb, Zn, and Cd by decreasing the uptake of 
these heavy metals at higher soil concentrations. Similar effect of G. mosseae 
inoculation has also been reported in rice (Oryza sativa L.) against Cu toxicity 
(Zhang et al. 2009).

If plants are indeed sensitive, heavy metals will interfere with vital metabolic 
activities of plants as well as antioxidant enzyme activities (Azcón et al. 2009). 
When present in excessive amounts, heavy metals actually cause uncontrolled redox 
reaction in cells, resulting in the formation of reactive oxygen species (ROS), as 
reported by Hall (2002). Under stressed conditions, AM-colonized root cells accu-
mulate ROS (Hause and Fester 2005). Several genes in AM-fungi with putative 
roles in oxidative stress alleviation have been described (Lanfranco et al. 2001). 
Induction of oxidative stress-related genes in AM-fungi is observed in extraradical 
mycelium upon exposure to heavy metals (Ouziad et al. 2005). Thus, a major func-
tion of AM-fungi could be to protect plants against heavy metal-induced oxidative 
stress (Schutzendubel and Polle 2002).

5.3.3  Contribution of AM-Fungi in Phytostabilization

Arbuscular mycorrhizal fungi contribute to the immobilization of heavy metals in 
the soil beyond the plant rhizosphere and thereby improve phytostabilization. 
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These symbiotic fungi employ strategies similar to those adopted by their host for 
stabilizing heavy metals. The strategies adopted by AM-fungi for immobilizing 
metals include (1) precipitation in polyphosphate granules in the soil, (2) compounds 
secreted by the fungus, (3) adsorption to fungal cell walls, and (4) chelation of 
metals inside the fungus (Gaur and Adholeya 2004).

Glomalin, an insoluble glycoprotein, is produced abundantly and released by 
AM-fungi (Rillig 2004) and plays a critical role in soil stability (Rillig et al. 2002; 
Bedini et al. 2009). Though the structure of glomalin has not been completely 
defined, it appears to be a complex of repeated monomeric structures bound together 
by hydrophobic interactions (Nichols 2003) that attaches to soil to help stabilize 
aggregates. Glomalin also binds to heavy metals in the soil and can be extracted 
from soil together with a significant amount of bound heavy metals. For example, 
Gonzalez-Chavez et al. (2004) reported that up to 0.08 mg Cd, 4.3 mg Cu, and 
1.12 mg Pb per gram glomalin could be extracted from polluted soils that were 
inoculated with laboratory cultures of AM-fungi. Moreover, glomalin from hyphae 
of an isolate of Gigaspora rosea sequestered up to 28 mg Cu g−1 in vitro. Similarly, 
Bedini et al. (2010) reported that the amount of Cu, Ni, Pb, and Co bound to glomalin 
was 2.3, 0.83, 0.24, 0.24%, respectively, of the total content of heavy metals. Since 
there is a correlation between the amount of glomalin in the soil and the amount of 
heavy metals bound, fungal strains with significant secretion of glomalin should be 
more suitable in biostabilization efforts (Gohre and Paszkowski 2006).

Fungal cell wall is made up of chitin that has an important metal-binding capacity 
(Zhou 1999). And therefore, this binding ability of chitin is likely to reduce the 
concentration of heavy metals in soil. Moreover, the AM mycelium has a high metal 
sorption capacity relative to other microorganisms, and a cation exchange capacity 
comparable to other fungi. Passive adsorption to the hyphae of a metal-tolerant 
G. mosseae isolate led to the binding of up to 0.5 mg Cd per mg dry biomass (Joner 
et al. 2000). Fungal cell-wall components, which contain free amino, hydroxyl, 
carboxyl, and other groups, can be excellent binding sites for Cu2+ ions in fungi and 
plants (Kapoor and Virarghavan 1995). Many studies exhibited repeatedly that the 
retention of heavy metals by fungal hyphae may involve adsorption to cell walls, 
thereby minimizing metal translocation to the shoots (Galli et al. 1994; Liang et al. 
2009). This hypothesis was supported by Joner et al. (2000) who demonstrated that 
AM mycelia had a high metal sorption capacity. Later on, Chen et al. (2001) reported 
that Zn was accumulated to a concentration over 1,200 mg kg−1 (dry matter) in 
G. mosseae mycelium associated with maize plants. Similar to plant and fungal vacu-
oles, fungal vesicles may also be involved in storing toxic compounds and, thereby, 
could provide an additional detoxification mechanism (Gohre and Paszkowski 
2006). In several studies, significantly greater amount of heavy metals such as Pb 
and Cd was recorded in roots than shoots of mycorrhizal plants indicating that met-
als were accumulated in the mycorrhizal fungal structures such as vesicles and 
hyphae (Joner and Leyval 1997). Whitfield et al. (2004) showed that the metal-
contaminated soil with Cd, Pb, and Zn enhanced mycorrhizal vesicular numbers of 
Thymus polytrichus. Chen et al. (2005) also observed that the mycorrhizal vesicle 
was stimulated by lower Pb concentration (300 mg kg−1 sand) but was inhibited by 
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higher Pb concentration (600 mg kg−1 sand). Moreover, higher vesicular numbers 
accorded with the higher root/shoot ratio of Pb concentration in 300 mg kg−1 sand, 
indicating the storage of the metal in vesicles. Kaldort et al. (1999) found that Fe 
and Ni accumulated in mycorrhizal vesicles of maize. In the study of Weiersbye 
et al. (1999), vesicles of Cynodon dactylon (L.) Pers. were found to accumulate Mn, 
Cu, Ni, and U (uranium). In general, AM-fungi immobilize heavy metals within the 
soil or within roots and reflect their suitability for phytostabilization applications. 
However, since the mycorrhiza–plant interaction is a complex system, the impor-
tance of AM-fungi in phytostabilization cannot be generalized. Each contaminated 
site may contain a specific pollutant, for which an appropriate combination of fungal 
and plant genotypes must be identified. Besides these, other factors or interactions 
that occur in soil may also influence positively or negatively the efficiency of heavy 
metals stabilization by AM-fungi.

5.3.4  Importance of AM-Fungi in Phytoextraction

Phytoextraction relies on plants with high root-to-shoot transfer, accumulating high 
amounts of heavy metals in their aerial parts. Alternatively, plants producing high 
biomass with normal concentrations of heavy metals can also be employed. 
However, bioavailability of heavy metals in the soil is one of the major constraints 
for rapid phytoremediation. Consequently, many years are required to decrease soil 
contamination by half (McGrath and Zhao 2003). However, the addition of chelating 
agents such as EDTA accelerates the clean-up process even in non-hyperaccumulators 
resulting in induced heavy metals accumulation by plants (Barrutia et al. 2010; 
Zaier et al. 2010). Mycorrhizal fungi improve phytoextraction by making metals 
more available for uptake by plants. Improved phytoextraction following mycor-
rhization may be achieved by several mechanisms like (1) better plant growth and 
biomass production, (2) increased plant tolerance to metals, and (3) greater metal 
concentrations in plant tissues (Vamerali et al. 2010). Additional mechanisms to 
account for improved uptake by mycorrhizal roots may include small fungal hyphae 
radii, different uptake kinetics, greater total absorptive surface area, faster exten-
sion rate, increased functional longevity, chemical alteration of the rhizosphere–
hyphosphere, greater carbon-use efficiency, exploration of smaller pore spaces, 
and differences in associated rhizosphere populations (O’Keefe and Sylvia 1991).

Arbuscular mycorrhizal fungi are known to enhance phytoextraction both in 
hyperaccumulators and non-hyperaccumulators. In recent years, there has been 
increasing contamination of soil, water, and crops by As in many parts of the world 
(Tripathi et al. 2007), particularly in some countries of southern Asia (Meharg 
2004). Pteris vittata L. (Chinese brake fern) was the first reported of the eight As 
hyperaccumulator plant species identified so far (Ma et al. 2001). It has been found 
to accumulate As in its fronds with extraordinary efficiency, primarily due to high 
translocation from roots to shoots and to effective detoxification mechanisms within 
the plant (Webb et al. 2003; Singh and Ma 2006). Low to moderate (4.2–12.8%) 
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levels of AM colonization have been observed in P. vittata growing at several 
As-contaminated sites (Wu et al. 2007). Due to the fact that arsenate acts as a phos-
phate analogue, AM-fungi are likely to have a strong influence on arsenate uptake 
due to their role in enhancing phosphate acquisition for the host plants (Smith and 
Read 1997). Studies have also shown that AM-fungi significantly increased above-
ground biomass and As accumulation, translocation, and bioconcentration by 
Chinese brake fern (Wu et al. 2009). There is evidence that arsenic uptake by 
Chinese brake fern is via P transport systems (Al-Agely et al. 2005). Leung et al. 
(2006) reported that non-AM P. vittata plants accumulated 60.4 mg As per kg while 
plants colonized by AM-fungi isolated from an As mine accumulated 88.1 g As per 
kg accompanied by enhanced growth. Phosphate uptake was 36.3 mg per pot in 
non-colonized and 257 mg per pot in colonized plants. Recently, Liu et al. (2009) 
demonstrated that colonization with G. mosseae substantially increased frond and 
root dry weight, and P and As contents in P. vittata. Intra-specific differences have 
been reported in AM-fungi in their impacts on As accumulation by P. vittata (Wu 
et al. 2009). Non-hyperaccumulators such as tomato (Lycopersicon esculentum) 
when grown in soils treated with 75 mg As per kg soil, had at least 30% higher root 
and shoot biomass than non-colonized plants, which coincided with higher P uptake. 
A maximum of 39% (As in shoot/total As) was reached at 75 mg As per kg soil in 
colonized plants (Liu et al. 2005). Mycorrhizal hyphae and plants can modify plant 
uptake of As by means of changes in the biotransformation of As at the interface 
between roots and rhizosphere soil (Ultra et al. 2007), downregulation of arsenate/
phosphate transporters in the epidermis and root hairs (Gonzalez-Chavez et al. 
2002), retention of As in external mycelium and/or possibly increased efflux of As 
as arsenite from mycorrhizal roots (Wang et al. 2008), and alteration of the translo-
cation of As from roots to shoots (Dong et al. 2008). Arbuscular mycorrhizal fungi 
can also induce the accumulation of other heavy in host roots. Berkheya coddii 
Roessler, a Ni-hyperaccumulator plant of family Asteraceae, for example is used for 
phytomining, that is, for the recovery of metals from plant tissues (Salt et al. 1998). 
Mycorrhizal inoculation enhanced the biomass of this plant twice as compared to 
non-mycorrhizal control. In addition, mycorrhizal plants accumulated 30% more Ni 
than non-mycorrhizal plants (Turnau and Mesjasz-Przybylowicz 2003). In contrast, 
Amir et al. (2007) reported a negative correlation between AM colonization and leaf 
Ni content of three Ni-hyperaccumulators, namely, Sebertia acuminate Pierre ex 
Baill, Psychotria douarrei (Beauv.) Däniker, and Phyllanthus favieri M. Schmid. 
Whitfield et al. (2004) demonstrated enhanced Zn concentration in shoots of Thymus 
polytrichus A. Kerner ex Borbás due to AM inoculation. However, the resulting tis-
sue metal concentrations were not large enough to adversely affect plant growth. 
Addition of chelating agents enhanced the bioavailability of heavy metals and thus 
the efficiency of phytoextraction even in the absence of the AM colonization. 
Studies have shown that application of EDTA or EDDS (ethylene-diaminedisucci-
nate) had no negative effect on the infectivity of AM-fungi (Grcman et al. 2001, 
2003). Addition of EDTA led to phytotoxic concentrations of Zn in maize plants 
resulting in reduced plant growth. Colonization by AM-fungi reduced the phyto-
toxic effect of higher Zn levels and thereby contributed significantly to increase 
mobilization of Zn from the soil (Chen et al. 2004).
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5.4  Conclusion

Arbuscular mycorrhizal fungi confer tolerance to plants against heavy metal 
contamination. They improve stabilization of heavy metals in soil or enhance uptake 
and transfer of these metals to the host plants and increase biomass of plants in order 
to enhance phytoextraction. However, the effects of AM colonization on the heavy 
metals uptake by plants have been conflicting. The efficacy of AM inoculation in 
phytoremediation has been shown to vary among plants as well as AM species. 
Generally, indigenous fungi from contaminated soils are considered most suitable 
for phytoremediation. The genotypic variation makes it difficult to identify a suit-
able AM-fungi for the restoration of metal-contaminated soils. Therefore, it requires 
a sustained effort of the scientists around the world to screen and identify heavy 
metal-tolerant mycorrhizal strains for their ultimate application in the management 
of metal-contaminated soils. Further research work is also needed to develop methods 
to produce and deliver mycorrhizal inocula inexpensively and to fully understand 
the molecular basis of metal detoxification by AM-fungi, when applied under metal-
stressed soils.
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Abstract Soil and groundwater are important components of agricultural and 
renewable natural resource (RNR) production systems. These components and pro-
duction systems are influenced directly and/or indirectly by anthropogenic activities. 
Many of these activities have series of impacts, the negative ones being through the 
generation and deposition of xenobiotics that are dangerous to life forms, onto and/
or into the soil and groundwater. Although, it may be difficult and/or expensive to 
remove these toxic substances from the environment in most countries, most espe-
cially the developing ones and particularly those in sub-Saharan Africa (SSA) using 
the available remediation technologies, owing to different levels of economic con-
straints and/or quality of research. The documented researches have shown that 
the growth and physiological characteristics of certain species of plants can be 
applied in cheap, adoptable, and adaptable ways, for removing toxic substances 
from the environment through processes collectively known as bioremediation. 
Bioremediation has been identified as a feasible choice for removing the noxious 
substances. These production systems are central to livelihoods and survival in 
many developing countries, SSA in particular. The remediation technologies can be 
used for cleaning up the environment, soil, and groundwater, in ways that is expected 
to benefit the present and future environmental and socio-economic conditions of 
users. The present review is focused on the use of various methods of plant-assisted 
bioremediation processes for soil and groundwater remediation, in many parts of the 
world, for the benefit of and its adoption/adaptation in the developing countries.
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6.1  Introduction

Soil can be described as the loose material that covers the land surfaces of the Earth 
and supports the growth of plants. In general, soil is an unconsolidated, or loose, 
combination of inorganic and organic materials. The inorganic components of soil 
are principally the products of rocks and minerals that have been gradually broken 
down by weather, chemical action, and other natural processes. The organic materi-
als are composed of debris from plants and from the decomposition of many tiny 
life forms that inhabit the soil (King 2006). Soils vary widely from place to place 
and many factors determine the chemical composition and physical structure of the 
soil. The different kinds of rocks, minerals, and other geologic influences and mate-
rials from which the soil is originally formed play their roles. The kinds of plants or 
other vegetation that grow on the soil are also important. Topography that is, whether 
the terrain is steep, flat, or some combination, is another factor. In some cases, 
human activities such as farming or building have caused disruption. Soils also dif-
fer in color, texture, chemical makeup, and the kinds of plants they support (Microsoft 
Encarta 2006). Soil actually constitutes a living system, combining with air, water, 
and sunlight to sustain plant life. The essential process of photosynthesis, in which 
plants convert sunlight into energy, depends on exchanges that take place within the 
soil. Plants, in turn, serve as a vital part of the food chain for living organisms, 
including humans. Without soil there would be no vegetation, no crops for food, no 
forests, flowers, or grasslands. To a great extent, life on Earth depends on soil. Soil 
takes a great deal of time to develop, thousands or even millions of years. As such, 
it is effectively a non-renewable resource. Yet even now, in many areas of the world, 
soil is under siege. Deforestation, over-development, and pollution from human-made 
chemicals are just a few of the consequences of human activity and carelessness. It is 
on record that anthropogenic activities have been the major cause of environmental 
degradation particularly soil pollution (Rajakaruna et al. 2006; Erakhrumen 2007a). 
Thus, as the human population grows, its demand for food from crops increases, 
making soil conservation crucial (King 2006).
Groundwater can be defined as water found below the surface of the land. Such 

water exists in pores between sedimentary particles and in the fissures of more solid 
rocks. In arctic regions, groundwater may be frozen. In general, such water main-
tains a fairly even temperature very close to the mean annual temperature of the 
area. Very deep-lying groundwater can remain undisturbed for thousands or mil-
lions of years. Most groundwater lies at shallower depths, however, and plays a slow 
but steady part in the hydrologic cycle. Worldwide, groundwater accounts for about 
one third of 1% of the earth’s water, or about 20 times more than the total of surface 
waters on continents and islands (Microsoft Encarta 2006). Groundwater is of major 
importance to civilization, because it is the largest reserve of drinkable water in 
regions where humans can live. Groundwater may appear at the surface in the form 
of springs, or it may be tapped by wells. During dry periods, it can also sustain the 
flow of surface water, and even where the latter is readily available; groundwater is 
often preferable because it tends to be less contaminated by wastes and organisms. 
Although, groundwater is less contaminated than surface waters, pollution of this 
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major water supply has become an increasing concern in many countries particularly 
in industrialized countries. For instance, in the United States, thousands of wells 
have been closed in the late twentieth century because of contamination by various 
toxic substances (Microsoft Encarta 2006).

The present condition of soils and groundwater in many parts of the world might 
be worsened considering the increasing modern day needs, most especially in this 
part of the world, where many of the countries are formulating, adopting, and adapt-
ing growth and developmental processes aimed at catching up with the current and 
future advances in various human endeavors (Erakhrumen 2007b, 2008) with serious 
implications on the environment if these developmental processes are not properly 
conceived, executed, and managed. For instance, estimates have shown that wide-
spread contamination of agricultural lands has significantly decreased the extent of 
arable  land available for cultivation worldwide (Grêman et al. 2003). Therefore, 
there is the need for sustainable, relatively cheap, and easily adoptable means of 
utilizing and managing the environment for various purposes by the present and 
future generations in perpetuity most especially in this part of the world where 
most of the inhabitants are presently dependent on agricultural and RNR, a trend 
that is likely to continue in the foreseeable future. The present review highlights 
some salient documented information regarding the use of plants for the removal 
of pollutants from the environment, particularly the soil and groundwater, for the 
benefit of the inhabitants of this region and stakeholders in issues concerning the 
environment.

6.2  Types, Sources, and Effects of Soil and Groundwater 
Pollutants

Pollutants are either organic or inorganic. The types and sources of pollutants and 
the magnitude of environmental pollution, soil, surface water, and groundwater 
inclusive, vary from one clime to another owing to the differences in site-specific 
characteristics and/or anthropogenic activities in different places. Pollutants may be 
traced to a particular source (point source) or may result from a large area (non-
point source). Nevertheless, anthropogenic activities have been identified as the 
main cause of environmental degradation, one of which is the environmental pollu-
tion, although, some inorganic pollutants have been identified to occur as natural 
elements in the Earth’s crust. Inorganic pollutants can be plant macro-nutrients such 
as nitrates and phosphates, micro-nutrients such as Cr, Cu, Fe, Mn, Mo, Ni, and Zn, 
non-essential elements such as As, Cd, Co, F, Hg, Se, Pb, V, and W, and radionu-
clides such as 238U, 137Cs, and 90Sr (Dushenkov 2003). Issues relating to environmental 
pollution, particularly soil, surface water and groundwater pollution are important 
because natural water systems comprise chemical and physical processes that affect 
both the distribution and circulation of chemicals on the Earth’s surface. Thus, studies 
concerning aquatic systems, the atmosphere, sediments, soil, and biota are extremely 
helpful in understanding the relationships that exist in the interfacial chemistry of 
the environment (Yabe and de Oliveira 2003).
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Anthropogenic activities in this regard are numberless, but most have been in the 
area of industrialization, manufacturing, construction, mining, domestic, and com-
mercial burning of fossil fuels, control of pests and diseases in agriculture, and RNR 
production, among others (Arvin et al. 1988; Dey et al. 2004; Erakhrumen 2007a). 
For instance, rapid industrialization has led to increased disposal of heavy metals 
and other toxic substances into the environment. During industrial activities, diesel 
engines also tend to produce significant quantities of particulate matter (soot) and 
NO

(X)
 (Heck and Farrauto 1995). The soot consists of both solid and liquid com-

ponents and there is evidence that particulates from diesel engines are biologi-
cally more active than those from spark ignition engines and may be carcinogenic 
(Russell-Jones 1987).

Other toxic substances like cadmium and heavy metals are introduced into water 
from smelting, metal plating, cadmium nickel batteries, phosphate fertilizers, mining, 
crude oil exploration, exploitation, and associated activities, pigments, stabilizers, alloy 
industries, sewage sludge, among others (Banks et al. 1997; Petrisor et al. 2004; 
Rajakaruna et al. 2006). Toxic heavy metals like arsenic stem from various industrial 
wastes, including those from the manufacture of insecticides and pesticides, manu-
facture of fertilizers, mining and smelting, and tannery industries. Arsenic is another 
priority heavy metal pollutant found in soil and groundwater contaminated by arse-
nic pesticides and industrial wastes (Lin and Puls 2003). Creosote oil has also been 
used for wood preservation for over a century; spills and sludge deposits on creosote 
wood preservation sites have led to severe contamination of soil and groundwater. 
Coal tar is formed as a by-product in the production of gas from coal and creosote 
oil is formed when coal tar is distilled. It is a complex mixture of organic chemi-
cal compounds. For instance, groundwater leaching from creosote-contaminated 
sites contains hundreds of aromatic compounds, consisting of polycyclic aromatic 
 hydrocarbons, phenols, and nitrogen/sulfur/oxygen containing heterocyclic aromatic 
compounds (Arvin et al. 1988) with potential toxicity, carcinogenicity, and muta-
genicity (Richardson and Gangolli 1992).

Wastewater discharges from acid mine drainage, galvanizing plants, as a leachate 
from galvanized structures and natural ores, and from municipal wastewater treat-
ment plant may contain heavy metals such as zinc. Also, owing to the varying degree 
of chemicals used, the dye wastewater contains appreciable concentrations of 
biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended 
solids, toxic compounds, and color (Dey et al. 2004). Sulfur oxide (SO

2
) emissions 

related to industrial operations primarily occur from combustion sources and thermal 
processes, such as power plants (coal or oil fired), incinerators, steam generation 
equipment, process heaters, chemical reactors, and other similar equipment and pro-
cesses (Wu et al. 2004). It is imperative to understand that new developments in the 
variety of fields to meet the ever-increasing requirements of human being have also 
led to the accumulation of compounds in the effluents of processing plants, which are 
not readily degraded by the conventional effluent treatment methods (Bauer and 
Fallmann 1997; Mantzavinos et al. 1997; Otal et al. 1997; Feigelson et al. 2000).

Pollutants exert variable effects on different organisms. For instance, a minor pH 
variation in natural waters due to anthropogenic interference may result in the 



1476  Research Advances in Bioremediation of Soils and Groundwater Using...

liberation of metals adsorbed on colloidal particles, which after uptake may cause 
death of fish and other species of biota (Florence and Batley 1980). Many of these 
substances like the heavy metals are multivalent element, occurring in many valence 
states, are not biodegradable, and enter the food chain via bioaccumulation. Many 
of these compounds are not only toxic but can be carcinogenic and mutagenic 
(Richardson and Gangolli 1992). Some plants are also sensitive to these potentially 
toxic substances at different ages and growth stages. For example, the tolerance of 
alfalfa (Medicago sativa) plants to Cd, Cu, and Zn was positively correlated with 
the age of the plants, although, there exist a possibility of using the species, via 
transplant, to clean up soils having elevated concentration of Cd, Cu, or Zn (Peralta-
Videa et al. 2004). In another study, Krupa and Moniak (1998) demonstrated that in 
rye seedlings, correlations occurred among the efficiency of the photosynthetic 
apparatus of leaves, the stage of the leaf maturity, and the sensitivity to Cd toxicity. 
It was also shown in some other studies (Skorzynska-Polit and Baszynski 1997; 
Tukendorf et al. 1997) that relationships exist among the Cu or Cd susceptibility 
and the growth stage of runner bean (Phaseolus coccineus L.) plants. The heavy 
metals such as Cd (II) reduce shoot growth by decreasing the chlorophyll content 
and the activity of photosystem I (Waldemar and Baszynski 1996) while Jiang et al. 
(2000) reported that Cd (II) substantially declined the root growth of Allium sati-
vum. In some instances, the young plant is affected more than the older ones, as 
observed in a study by Skorzynska-Polit and Baszynski (1997) for P. coccineus 
plants. Many of these potentially toxic substances affect the macro-elemental uptake 
in several plants species and also have influence on plant metabolism in different 
manners. For example, Ouariti et al. (1997) observed that Cu affects the lipid metab-
olism in Lycopersicon esculentum more than cadmium.

6.3  Phytoremediation: A Type of Plant-Assisted 
Bioremediation

Bioremediation is simply defined as the elimination, attenuation, or transformation 
of polluting or contaminating substances by the use of biological processes. The 
plant-based biological processes collectively termed phytoremediation involve vari-
ous plant processes that promote the removal of contaminants from contaminated 
media such as soil, water, and air. The term phytoremediation is a combination of 
the Greek prefix phyto (for plant) and the Latin root remidium (to correct or remove 
an evil). Broadly, phytoremediation can be defined as the utilization of vascular 
plants, algae, and fungi to control, breakdown, or remove wastes, or to encourage 
degradation of contaminants in the rhizosphere, or root region of the plant 
(McCutcheon and Schnoor 2003). Phytoremediation has been reported to be an 
environmentally friendly, potentially very effective, and less expensive method than 
the physical and chemical remediation techniques for the clean-up of a broad spec-
trum of hazardous organic and inorganic pollutants (Chaney et al. 2000; McGrath 
et al. 2002; Kamaludeen et al. 2003; Pilon-Smits 2005). The phytoremediation of 
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soil and water can be direct or indirect. Direct processes include plant uptake into 
roots or shoots and transformation, storage, or transpiration of the contaminants 
while indirect plant processes involve the degradation of contaminants by micro-
bial, soil, and root interactions within the rhizosphere (Hutchinson et al. 2003). 
Depending on the types of plant and the contaminant, direct uptake can be considered 
either a passive and/or an active process. The principal process is passive transport, 
with the primary transport medium, external water, and soil water, carrying the con-
taminant into the plant. Active transport requires the plant to expend energy and 
generally applies to nutrients and organic and inorganic ions required and extracted 
by the plant.

There are however, different mechanisms by which phytoremediation processes 
can be achieved (Table 6.1), although, some of these mechanisms may act simulta-
neously. For instance, the ability of plants to remove pollutants particularly metals 
and other compounds and translocate them into the above-ground biomass (leaves 
and other plant tissues) can be termed phytoextraction. This process by which some 
plants accumulate remarkable levels of heavy metals, for instance, in the range of 
100–1,000-fold the levels normally found in most species is termed hyperaccumula-
tion. The plants so applied for this type of phytoremediation process may later on be 
harvested and removed from site and in the case of valuable metals, the accumulated 
element can be recycled, a process termed phytomining.

In another process known as rhizofiltration, the contaminants are also removed 
from the polluted medium, but in this case, into the root system of the plant and pol-
lutants are removed from the site when the plants are harvested. This process has 
been exploited for the remediation of polluted groundwater (either in situ or 
extracted), surface water, or wastewater for removal of metals or other inorganic 
compounds. Phytostabilization is another process that takes the advantage of the 
changes that the presence of the plant induces in soil chemistry and environment. 
The changes induced in soil chemistry by the presence of this plant may induce 
adsorption of contaminants onto such plant roots or surrounding soil or it may cause 
metals precipitation onto the plant root. Presence of this kind of plant may also lead 
to reduction in the mobility of contaminants of interest by reducing the potential for 
water and wind erosion. Another plant-assisted phytoremediation mechanism is 
known as rhizodegradation, a process that refers to the breakdown of contaminants 
within the plant root zone, or rhizosphere. This kind of phytoremediation process is 
believed to be carried out mainly by bacteria or other microorganisms (Fig. 6.1) 
whose numbers are believed to vary in the rhizosphere. The variation in microbial 
populations might be due to changes in sugars, amino acids, enzymes, and other 
compounds exuded by plants. It has also been observed that the roots provide addi-
tional surface area for microbes to grow on and a pathway for oxygen transfer from 
the environment.

The process of phytodegradation is achieved when contaminants are broken 
down after they have been taken up by the plant. Uptake of contaminants by plants 
occurs when the solubility and hydrophobicity of such contaminant fall into a cer-
tain acceptable range. Phytovolatilization, like phytoextraction and phytodegrada-
tion, also involves contaminants being taken up into the body of the plant but unlike 
the latter two processes, the contaminant, a volatile form thereof, or a volatile 
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degradation product is transpired with water vapor from leaves. Phytovolatilization 
may also entail the diffusion of contaminants from the stems or other plant parts that 
the contaminant travels through before reaching the leaves.

6.4  Necessity for Sustained Bioremediation Research  
and Development

There is the need for sustained bioremediation research and development world-
wide particularly in the developing countries where the average standard of living is 
lower compared to the developed countries. Developing country is a term generally 
used to describe a nation with a low level of material well-being. This term is not to 
be confused with third world countries, a term that arose during the Cold War era to 
define countries that remained non-aligned or not moving at all with either capital-
ism and NATO (which along with its allies represented the First World) or commu-
nism and the Soviet Union (which along with its allies represented the Second 
World). This definition of third world countries provided a way of broadly catego-
rizing the nations of the world into three groups based on social, political, and 
economic divisions. Although, the term continues to be used colloquially to describe 

Xenobiotic and organic
contaminants

RHIZOSPHERE
Microorganisms (Algae,
Bacteria, Fungi) and
plant carbon compounds
(exudates, mucilage, dead
cells)

Activation, Detoxification,
Mineralization

Fig. 6.1 Rhizodegradation of toxic contaminants by rhizospheric microorganisms (Adapted from 
Singh and Jain 2003)
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the poorest countries in the world, this usage is widely disparaged since the term no 
longer holds any verifiable meaning after the fall of the Soviet Union deprecated the 
terms First World and Second World (Wikipedia 2010a, b). No single definition of 
the term developing country is recognized internationally, the levels of development 
may vary widely within the so-called developing countries, with some developing 
countries having high average standards of living (Sullivan and Sheffrin 2003; UN 
2010a). According to UN (2010a), there is no established convention for the desig-
nation of “developed” and “developing” countries or areas, for example, in the 
United Nations system. The designations “developed” and “developing” are intended 
for statistical convenience and do not necessarily express a judgment about the stage 
reached by a particular country or area in the development process (UN 2010b). 
Countries with more advanced economies than other developing nations, but which 
have not yet fully demonstrated the signs of a developed country, are categorized 
under the term newly industrialized countries (Waugh 2000; Guillén 2003; Bożyk 
2006; Mankiw 2007).

For the purpose of simplification, the International Monetary Fund (IMF) uses a 
flexible classification system that considers (1) per capita income level, (2) export 
diversification – so oil exporters that have high per capita GDP would not make the 
advanced classification because around 70% of its exports are oil, and (3) degree of 
integration into the global financial system (IMF 2010). Furthermore, the World 
Bank classifies countries into four income groups. Low-income countries have 
Gross National Income (GNI) per capita of US $975 or less. Lower-middle-income 
countries have GNI per capita of US $976–$3,855. Upper-middle-income countries 
have GNI per capita between US $3,856 and $11,905. High-income countries have 
GNI above $11,906 (World Bank 2010a). The World Bank classifies all low- and 
middle-income countries as developing but noted that “the use of the term is convenient; 
it is not intended to imply that all economies in the group are experiencing similar 
development or that other economies have reached a preferred or final stage of 
development. Classification by income does not necessarily reflect development 
status” (World Bank 2010a). The development of a country is measured with statis-
tical indices such as income per capita (per person) (GDP), life expectancy, the rate 
of literacy, among others.

The UN has developed the Human Development Index (HDI), a compound indi-
cator of the above statistics, to gauge the level of human development for countries 
where data is available. Developing countries are, in general, countries that have not 
achieved a significant degree of industrialization relative to their populations, and 
that have, in most cases a medium to low standard of living. There is a strong cor-
relation between low income and high population growth (Wikipedia 2010a). The 
terms utilized when discussing developing countries refer to the intent and to the 
constructs of those who utilize these terms. Nevertheless, most of the countries 
termed “developing countries” are located in Africa, Asia, Latin America and the 
caribbean. These countries particularly those in SSA are still presently faced with 
socio-economic challenges. Many of their inhabitants are living below poverty line, 
although it is also necessary to note that poverty is also multi-dimensional in nature 
with different meaning to different people. For instance, poverty was defined by 
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World Bank (2001) as a pronounced deprivation of well-being that can be related to 
lack of material and income, low levels of education and health, vulnerability and 
exposure to risk, lack of opportunity to be heard, powerlessness, among others. 
Africa today is the poorest region in the world, where half of the population lives on 
less than one dollar a day (CFA 2005). Africa south of the Sahara has 21 of the 31 
poorest countries in the world (Sayer and Palmer 1994).

In addition to these challenges, reports have also shown that the problem of envi-
ronmental pollution is increasing in intensity and scale in many parts of the world 
including the developing countries, a trend that is likely to increase further in times 
to come. This problem of environmental pollution is likely to be worsened if the 
present and projected future demographic and socio-economic conditions are not 
addressed on a priority basis. According to the World Bank (2010b), the population 
of developing countries (low- and middle-income countries) will increase from 
5,770,003,000 in 2010 to 7,879,731,000 in 2050 (Table 6.2). Similarly, population 
in Africa is also expected to increase from 922 million people in 2005 to 1,149.1 
million people in 2015 (Table 6.3). The GDP in Africa as depicted in Table 6.4 is 
also low as compared to many developed countries. The issue of socio-economic 
and demographic characteristics is particularly important as experiences have shown 
that the costs associated with the clean-up of organic and inorganic pollutants can 
be staggering, even for developed countries. For instance, US $6–$8 billion is spent 
annually for environmental clean-up in the United States alone while US $25–$50 
billion is spent per year worldwide (Tsao 2003). Estimates also suggest that to 
effectively clean up 1,200 of the United States’ most contaminated and abandoned 
sites, the so-called Superfund sites, an estimated US $700 billion would be required 
(Glass 1999, 2000). The costs involved in remediation of more than 33,000 con-
taminated sites in Europe are equally overwhelming (Adriano 2001).

Consequently, proffering sustainable, cost-effective, easily adoptable, and adapt-
able solutions to this problem is imperative in many of these developing countries. 
The various remediation technologies currently commercially available and adopted 
to clean up contaminated medium and the environment ranged from in situ vitrification 
and soil incineration to excavation and land filling, soil washing, soil flushing, and 
solidification and stabilization by electrokinetic systems, chemical precipitation, 
electro-flotation, ion exchange, reverse osmosis and adsorption onto activated 
carbon, among others (Poon 1986; Glass 1999). Globally, the cost of non-biological 
technologies for cleaning up contaminated soils ranges from US $10 to $4,000 per 
cubic meter,  or  from US  $100,000  to  $3 million  per  hectare  (Weiersbye 2007). 
Estimates from the United States of America indicated that excavation of metal 
contaminated soil from a one hectare area to a depth of 45 cm would result in 
approximately 5,000 ton of soil for treatment or land filling (Ensley 2000).

Apart from the challenges highlighted above, it has also been observed that these 
non-biological treatment methods and the recommendation that residues produced 
during industrial processes should have an adequate site for their final destination 
(Holmes et al. 1993) are mostly not applied in this and many parts of the world 
owing perhaps to inefficient enforcement of standard by regulatory bodies, high 
cost of procuring and maintaining some of the mitigation equipments, ignorance, 
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lack of vision, or carelessness, among others (Erakhrumen 2007a). Furthermore, it 
has also been observed that owing to the increasing presence of molecules, refrac-
tory to the microorganisms in the wastewater streams for instance, the conventional 
biological methods cannot be used for complete treatment of the effluent (Gogate 
and Pandit 2004a) thereby leading to the introduction of newer technologies. Few 
among these new technologies are the combination of oxidation processes operating 
at ambient conditions like cavitation, photocatalytic oxidation, Fenton’s chemistry 
(belonging to the class of advanced oxidation processes) and ozonation, use of 
hydrogen peroxide (belonging to the class of chemical oxidation technologies) since 
it has been observed that none of the methods can be used individually in wastewater 
treatment applications with good economics and high degree of energy efficiency. 
Moreover, the knowledge required for the large-scale design and application is per-
haps lacking (Gogate and Pandit 2004b) although, ambiguities still exist in terms of 
the selection of operating conditions for cost-effective operation. Likewise, the 
focus on waste minimization and water conservation in recent years has also resulted 
in the production of concentrated or toxic residues. It should be noted that some of 
the newly developed technologies, for example, cavitation may be more efficient on 
the laboratory scale and the knowledge required for the scale-up of the same and 
efficient large scale operation is presently lacking (Mason 2000; Adewuyi 2001; 
Gogate 2002). Thus, there is the need for cost-effective and reliable complementary 
and or alternative methods in this regard, one of which bioremediation has been 
suggested to be, in line with the outcomes of some studies.

The use of bioremediation technologies, like the use of plants to remediate 
contaminated soils and groundwater may be an old concept but is a fairly recent 
scientific development. It is an alternative technology capable of achieving per-
manent remediation, for instance, at waste sites without much associated prob-
lems (Sims et al. 1990); also, acceptance by the general public is another major 
advantage of this technology (Skladney and Metting 1993). Therefore, researches 
concerning plant-based environmental remediation have been widely pursued by 
academic and industrial scientists as a favorable low-impact clean-up technology 
applicable in both developed and developing countries (Raskin and Ensley 2000; 

Table 6.4  GDP for Africa by subregion as at 2006

Subregion
GDP, 2006 
(US$ billion) Share (%)

GDP growth 
2006 (% per 
year)

GDP per 
capita, 2006 
(US$)

GDP per capita 
growth, 2006 
(% per year)

Northern Africa 409.1 36.9 7.21 2,098.6 5.34
Western Africa 215.4 19.4 4.99 779.8 2.17
Central Africa 64.0 5.78 3.16 547.9 0.69
Eastern Africa 76.5 6.90 5.74 350.4 2.83
Southern Africa 342.9 30.9 6.88 2,628.5 5.17
Africa 1,107.9 100 5.60 1,182.6 3.24

Source: Adapted from ITTO (2010) quoting World Bank (2007)
Note: Totals might not tally due to rounding
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Robinson et al. 2003a, b). Companies specializing in phytoremediation have 
emerged in many developed and some developing countries to service a growing 
global market; the US market alone is estimated to be about US $150 million per 
year (Glass 1999, 2000). Given the low-cost and widely effective nature of phytore-
mediation, it is likely that this green technology may be the only alternative for 
developing countries where clean-up is hindered by a lack of funding (Rajakaruna 
et al. 2006). It is estimated that phytotechnology costs range from US $0.02 to $10 
per cubic meter, or US $200 to $100,000 per hectare (Weiersbye 2007). The tech-
nology also has an advantage of being environmentally benign. For instance, the use 
of metal hyperaccumulator plants retains soil in situ, and results in a mere 25–35 ton 
of plant ash for disposal or metal recovery (Ensley 2000).

Phytoremediation can also be an income-generating technology, especially if 
metals removed from the contaminated medium can be used as bio-ore to extract 
useable metal (phytomining) (Brooks et al. 1998; Angle et al. 2001), and energy can 
be generated through biomass burning (Li et al. 2003). Phytomining is now a fast-
developing field with the potential to generate income by exploiting low-grade ore 
bodies that are not economical to mine by conventional methods. The overall out-
come of a carefully planned phytoremediation-phytomining operation would be a 
commercially viable metal product (metal-enriched bio-ore) and land better suited 
for agricultural operations or general habitation (Boominathan et al. 2004). However, 
the design of an efficient bioremediation system requires a set of careful studies of 
the local conditions (Gogoi et al. 2003). For example, the success of phytoremedia-
tion depends on the availability of plant species, ideally those native to the region of 
interest and able to tolerate and accumulate high concentrations of pollutants (Baker 
and Whiting 2002). It is believed that such species are competitive under the local 
conditions and pose a lesser threat of becoming invasive, although it is noteworthy 
that phytoremediation techniques are best applied to areas that show low to moder-
ate levels of contamination (Glass 2000).

The positive effects of these methods can be both direct and indirect (Rasmussen 
and Olsen 2004) as highlighted in Table 6.1, although presently, there appears to be 
a widening gap between the science and application of phytoremediation. The 
underlying biological mechanisms of phytoremediation and their interactions with 
associated biota also remain largely unknown. Some authors like Ernst (2000, 2005) 
even believe that phytoremediation is only “hype” and up to now phytoextraction of 
heavy metals, for instance, has been nothing more than transporting the harvest of 
metal-loaded plants from contaminated to clean sites. Furthermore, considerable 
expectations are now placed on genetic modification to generate model plants for 
commercial phytoremediation (Raskin 1996; Rugh 2004) while increasing public 
concern over the utilization of genetically modified organisms could force govern-
ments to prohibit their use. Phytoremediation is also limited by the bioavailability 
of the pollutant. If only a fraction of the pollutant is bioavailable, but the regulatory 
clean-up standards require that all of the pollutant be removed, then “green clean” 
may not be sufficient. In such cases, bioavailability may be enhanced via soil 
amendments (Salt et al. 1998) or engineering-based technologies to enhance the 
efforts of the biological method. Such an integrated remediation effort requires a 
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multidisciplinary team of scientists; a set of skills and expertise that may not always 
be locally available in some developing countries (Rajakaruna et al. 2006). Other 
gaps in research still exist particularly as it concerns the limitation to the use of this 
technology, some of which are highlighted below.

The roots of many plants are short; thus, in order for remediation to be success-• 
ful, contamination must be shallow enough and be within the rooting zone for the 
remediative plant roots to reach the contaminants or contamination must be 
brought to the plant. Trees have longer roots and can clean up slightly deeper 
contamination than smaller plants, but cannot remediate deep aquifers. Further 
design work may be necessary in order to remediate deep aquifers while ground 
surface at the site may have to be modified to prevent flooding or erosion.
The time required to completely clean up contaminated sites is often long and • 
may take many growing seasons, which may last several years, for instance, from 
the time a tree stand is established to when the process of phytoremediation is 
completed.
Most phytoremediation processes are restricted to sites with low contaminants • 
concentrations as extremely high contaminant concentrations may not allow 
plants to be used for remediation to grow or survive.
Plants that absorb toxic materials may contaminate the food chain and may • 
cause ecological exposure issues. Even if not eaten directly, contaminants may 
still enter the food chain through animals/insects that eat plant material con-
taining contaminants. Likewise, harvested plant biomass from phytoextraction 
for instance, may be classified as a hazardous waste hence disposal should be 
proper.
Climatic conditions are a limiting factor; climatic or hydrologic conditions may • 
restrict the rate of growth of plants that can be utilized.
Introduction of non-native species may affect biodiversity in the future since the • 
consequences or otherwise of introducing them to the ecosystem may be pres-
ently unknown or unexpected.
Phytovolatilization may remove contaminants from the subsurface, but might • 
then cause increased airborne exposure, that is, transforming a soil or groundwa-
ter pollution problem to an air pollution problem.
It is also believed that phytoremediation may be less efficient for hydrophobic • 
contaminants, which bind tightly to soil.

As noted by Schwitzguébel (2000), phytoremediation was described as a nascent 
technology, the present status of phytoremediation research and technology applica-
tion in many developing countries still appears to be a nascent technology. Very 
little information about awareness and practical applications of the technology is 
available in these countries and most of the studies concerning this technology and 
their practical demonstrations are currently carried out in the developed countries 
(Erakhrumen 2007a). Nevertheless, there is limited available information that an 
increased number of researchers in these countries are conducting studies/researches 
concerning bioremediation with some results already documented; although, most 
of these studies are still on laboratory scales, the outcomes of which are expected to 
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contribute to documented information concerning applicability of this technology 
in developing countries in the near future.

6.5  Conclusion

Studies have shown that different types of plant-assisted bioremediation processes 
can be exploited for the removal of pollutants from the environment. Presently, 
these methods of in situ remediation technologies and techniques that utilizes the 
inherent abilities of living plants in an ecologically friendly and solar-driven manner 
based on the concept of using nature to cleanse nature has not become commercially 
available in many parts of the world particularly in the developing countries irre-
spective of myriad of documented research outcomes concerning these processes. 
The application of these processes in this regards, owing to the inherent multiple 
advantages obtainable from them, is expected to be beneficial to countries with 
developmental challenges in line with many of the documented research outcomes. 
Nevertheless, it is noteworthy that application of these processes should be consid-
ered in tandem with not only the plant species to be employed as it concerns its 
physiological characteristics but the type(s), chemical properties, and quantity of 
the contaminant, site-specific conditions and interactions of a pollutant with soil or 
other contaminated medium, water, and plants, among other factors. Therefore, 
increased research efforts in this area are necessary, in developing countries and 
other parts of the world. This is particularly important to the developing countries 
since they are expected to surmount many of the developmental challenges they 
presently encounter toward achieving sustainable development. In order to achieve 
this, many of the developing countries are formulating, adopting, and adapting 
growth and developmental processes and strategies aimed at catching up with the 
current and future advances in various human endeavors.

As a result of this quest, substances that have been identified as being largely 
responsible for environmental pollution are likely to be produced in large quantities 
and at increased intensities, thereby requiring proper management. Therefore, 
research efforts in the area of plant-assisted bioremediation concerning the scaling-
up of already developed technologies for local adoption/adaptation including areas 
that are still considered as limitation or constraint to the application of this technology 
in cleaning up the environment are imperative.
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Abstract Recent years have witnessed a considerable growth of microbiological 
researches in serpentine soils in relation to the presence of hyperaccumulating 
plants. Nickel-hyperaccumulating plants accumulate huge amounts of heavy metals 
in shoots, and therefore, provide a specific environment for bacterial populations 
and in particular for endophytic bacteria. Bacterial endophytes have been studied in 
many different plant species and in some cases they have been found to promote 
plant growth or to confer the plant higher tolerance to biotic and abiotic stress. Here, 
we report the data on presence, composition and possible roles of bacteria associ-
ated with Alyssum bertolonii Desv. (Brassicaceae), the first nickel-hyperaccumulator 
plant discovered endemic to serpentine outcrops of Central Italy. The analysis of 
both cultivable and total fraction of the soil bacterial community showed a very 
strong effect of the plant in shaping the community composition. Moreover, the 
plant harbors a complex and highly variable endophytic bacterial flora with many 
Ni-resistant strains. Endophytic bacteria were isolated from roots, stems, and leaves 
of several A. bertolonii plants and populations allowing providing a model of cor-
relation between taxonomic compositions of bacterial communities from different 
organs, plants, populations, and surrounding soils. Some of the endophytic bacteria 
tested for plant tissue colonization ability, and for their influence on plant growth 
and nickel-hyperaccumulation, resulted in increased biomass production and metal 
accumulation. Ecological and evolutionary implications of such findings are also 
discussed.
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7.1  Botany and Life History of Alyssum bertolonii

Serpentine soils are one of the most famous examples of soils naturally enriched by 
heavy metals (Fig. 7.1). They are characterized by high levels of nickel, cobalt, and 
chromium, low levels of N, P, K, and Ca, and present a high Mg/Ca ratio, which, in 
addition, limits plant colonization of these sites (Brooks 1987). Since the sixteenth 
century (Vergnano Gambi 1992), several endemic taxa have been identified within 
the characteristic flora of serpentine soils throughout the world (Pichi Sermolli 
1948; Kruckeberg 1954; Kruckeberg and Kruckeberg 1990). One of the most inter-
esting features described in serpentine endemic taxa is metal hypertolerance or 
metal hyperaccumulation (Baker 1981), a puzzling phenotype consisting of 
extremely high foliar metal contents, probably as a defense against herbivory (Boyd 
2007). In temperate latitudes, the hyperaccumulation trait is found mainly in mem-
bers of the family Brassicaceae (especially in the genera Alyssum and Thlaspi). The 
first record of a metal hyperaccumulator was for Alyssum bertolonii in which up to 
1.2% nickel was found in the leaves (Minguzzi and Vergnano 1948). Many taxa in 
genus Alyssum have subsequently been shown to accumulate nickel in their aerial 
parts (Brooks et al. 1979). Alyssum is a genus of about 175 species, mainly of 
Mediterranean Europe and Turkey, with a few species in North Africa, the Near East 
(Iran, Iraq, and Transcaucasia), and scattered across the Ukraine and Siberia into the 
northwest of the American continent (Alaska, Yukon). In Europe, it is confined to the 
southern half of the continent and it may well be a pre-glacial relic since its distribu-
tion is to the south of areas formerly covered by the ice sheet during the Ice Ages.

1

2

3

4

5

6 7

Number Area Main Ni-hyperaccumulating species References

1 Northern California/Oregon Streptanthus polygaloides, Thlaspi montanum Brooks 1987

2 Cuba Phyllanthus discolour, Phyllomelia coronata Reeves et al. 1999

3 Southern Europe/Asia Minor Alyssum (several species), Bornmuellera (syn. Ptilotrichum) baldaccii,Thlaspi
goesingense

Brooks 1987

4 Zimbabwe/Zambia/Zaire/South Africa Berhkeya coddii, Senecio coronatus Anderson et al. 1997; Boyd et al.
2002

5 South-East Asia Myristica laurifolia, Rinorea bengalensis, Walsura monophylla Brooks 1987, Baker et al. 1992

6 Western Australia Stackhousia tryonii Batianoff et al. 1990

7 New Caledonia Sebertia acuminata, Xylosma (several species) Brooks 1987

Fig. 7.1 Distribution of serpentine outcrops where Ni-hyperaccumulators have been found (Modified 
from Brooks 1987). Areas with serpentine outcrops are encircled with a black line. The table 
reports the name of the respective geographical areas and of main Ni-hyperaccumulating plant 
species (Modified from Mengoni et al. 2010)
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One of the most investigated members of this genus is Alyssum bertolonii Desv. 
This is a diploid (2n = 16, Arrigoni et al. 1983) perennial plant, living exclusively on 
serpentine outcrops in Central Italy and particularly in Tuscany (Pignatti 1997). A. 
bertolonii is one of the 14 European species of Alyssum that hyperaccumulates nickel 
(Brooks and Radford 1978). The species has been suggested to be a useful indicator 
plant in prospecting for nickel (Brooks 1983). Moreover, cultivars of Alyssum have 
been proposed for phytoremediation (Salt et al. 1998) and patented for phytomining 
practices (Chaney et al. 1998). Phylogeny, population genetics, and physiological 
properties of this species have been deeply investigated (Mengoni et al. 2003a, b; 
Galardi et al. 2007a, b). In particular, it has been reported that, though nickel toler-
ance and hyperaccumulation are well-known constitutive species-level traits, the 
extent, or levels, of tolerance and Ni-accumulation are strongly variable among dif-
ferent populations. Variability of metal accumulation has been observed for other 
hyperaccumulating plants also (Assunção et al. 2003, 2008). The presence of popula-
tions or accessions of the same species having different tolerance and accumulation 
levels is an important feature for improvement of such traits through breeding and for 
identifying candidate genomic regions or genes responsible for the trait (Assunção 
et al. 2006). While in A. bertolonii, these studies are still in progress, for Arabidopsis 
lyrata, a species which present populations locally adapted to serpentine soils, a 
genome-wide map has recently been provided (Turner et al. 2010), which identify 
several candidate loci for serpentine adaptation. However, it is becoming more and 
more evident that, under field conditions, complex traits, which involves both spe-
cific genes and growth features as metal hyperaccumulation, strongly rely not only 
on the genetic background of the plant, but also on the interaction with soil mineral 
elemental composition and with the indigenous microbial flora. In particular, plant-
associated bacteria have been claimed as important factors for the improvement of 
metal hyperaccumulation and consequently for improving phytoremediation of con-
taminated soils (Sessitsch and Puschenreiter 2008; Rajkumar et al. 2009b).

7.2  Plant-Associated Bacteria: Which, Why, for What?

A diverse range of bacteria, including pathogens, mutualists, and commensals are 
supported by plants. They grow in and around roots, in the vasculature, and in the 
aerial tissues and are known as rhizospheric, endophytic, and phyllospheric bacteria, 
respectively. Of these, rhizospheric and endophytic bacteria have been widely studied 
(Danhorn and Fuqua 2007). Most bacteria that are associated with plants are sapro-
trophic and do not harm the plant itself, and only a small number of them is able to 
cause disease (Jackson 2009). The rhizosphere is the important terrestrial habitat that 
contains living plant roots and closely associated soil where root exudates stimulate 
microbial metabolism and productivity. The activities of the rhizosphere microbial 
community significantly influence many aspects of plant physiology and growth, and 
therefore, play an important role in terrestrial ecosystems and sustainable agriculture. 
Plants provide rhizosphere microbes with a carbon source. In turn, microbes may 
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provide nitrogen (N) and phosphorus (P) and also protect plants from parasites and 
pathogens. Root–microbe interactions thus play key roles in several other ecosystem 
functions, such as decomposition of organic matter, and the maintenance of soil struc-
ture and water relationships. The role of root-associated microbes in maintaining soil 
structure (i.e., aggregate stability) has also been documented (Singh et al. 2004). There 
is accumulating evidence that biotic interactions, occurring below ground, play an 
important role in determining plant diversity above ground by direct feedback on host 
growth and indirect effects on competing plants (Singh et al. 2004).

Endophytic bacteria can be defined as those bacteria that colonize the internal 
tissue of the plants showing no external sign of infection or negative effect on their 
host (Ryan et al. 2008). They can be classified as “obligate” or “facultative” endo-
phytes in accordance with their life strategies. Obligate endophytes are strictly 
dependent on the host plant for their growth and survival; besides, transmission to 
other plants could occur only by seeds or via vectors, while facultative endophytes 
could grow outside host plants (Rajkumar et al. 2009a). In the last few years, there 
has been a considerable interest toward exploiting the potential of endophytic bac-
teria for plant growth promotion and for the improvement of phytoremediation.

Phyllospheric (epiphytic) bacteria inhabit the aerial parts of the plant (leaves, 
stems, buds, flowers, and fruits) possibly affecting plant fitness and productivity of 
agricultural crops (Whipps et al. 2008). Studies on the composition of bacterial 
communities of leaves have been numerous but rather limited in scope. It is gener-
ally believed that populations of culturable aerobic bacteria on leaves are dominated 
by a few genera, which are involved in processes as large in scale as the carbon 
cycle (intercepting carbon compounds released directly from plants or removed by 
sucking arthropods) and the nitrogen cycles (nitrification of ammonium pollutants 
intercepted by plants; nitrogen fixation) to processes affecting the health of indi-
vidual plants (Lindow and Brandl 2003). To date, no studies have been conducted to 
specifically target the epiphytic bacterial flora of metallophytes.

Bacteria can have in fact a profound influence on plant health and productivity. 
Several studies have been conducted to explore the plant growth-promoting abilities 
of various rhizobacteria and endophytes that increase plant growth through the 
improved cycling of nutrients and minerals such as, N, P, and other nutrients (Ryan 
et al. 2008). Under N-stressed conditions, rhizobia, a paraphyletic group that falls 
into two classes of Proteobacteria (alfa- and beta-Proteobacteria), drive the forma-
tion of symbiotic nitrogen-fixing nodules on the roots or stems of leguminous hosts; 
the converted ammonia is then used by the plant as a N source (van Rhijn and 
Vanderleyden 1995). Moreover, plant growth, can be facilitated by endophytes 
altering the plant hormonal balance. Several bacteria such as strains of Pseudomonas, 
Staphylococcus, Enterobacter, Azotobacter, and Azospirillum, are able to produce 
phytohormones like auxins and cytokinins (Costacurta and Vanderleyden 1995; 
Lucy et al. 2004; Somers et al. 2004). Moreover, some bacterial strains, like, 
Methylobacterium oryzae CBMB20, Pseudomonas fluorescens, and strains of 
nitrogen-fixing symbiont Sinorhizobium meliloti and Mesorhizobium loti, can 
decrease the level of ethylene by cleaving its precursor through production of 
1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (Glick 2005; Rajkumar 
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et al. 2009a). Endophytic bacteria also influence plant health by decreasing or pre-
venting the pathogenic effects of certain parasitic microorganisms by producing 
antimicrobial compounds. For instance, in Enterobacter sp. 638, an endophyte of 
poplar, genes for the synthesis of the antimicrobial 4-hydroxybenzoate and 
2-phenylethanol have been found (Taghavi et al. 2010). Many endophytes indeed 
are members of common soil bacterial genera, such as Pseudomonas, Burkholderia, 
and Bacillus (Rajkumar et al. 2009a). The bacterial strains associated with both 
metallophytes and non-metallophyte species are listed in Table 7.1.

Endophytes can also enhance plant growth and increase plant resistance to heavy-
metal stress in several ways. Indirect mechanisms are similar to those described for 

Table 7.1 Endophytic bacterial species recovered from different plants

Endophytes Plant species

a-Proteobacteria
Azorhizobium caulinodans Rice
Azospirillum brasilense Banana
Azospirillum amazonense Banana, pineapple
Bradyrhizobium japonicum Rice
Devosia sp. Thlaspi caerulescens
Gluconacetobacter diazotrophicus Sugarcane, coffee
Methylobacterium mesophilicum Citrus plants; Thlaspi goesingense
Methylobacterium extorquens Scots pine, citrus plants; Thlaspi goesingense
Methylobacterium populi BJ001 Populus deltoides x nigra DN34
Methylobacterium oryzae sp. CBMB20 Oryza sativa
Methylobacterium sp. Thlaspi caerulescens
Phyllobacterium sp. Thlaspi caerulescens
Rhizobium leguminosarum Rice
Rhizobium (Agrobacterium) radiobacter Carrot, rice
Sinorhizobium meliloti Sweet potato
Sphingomonas paucimobilis Rice
Sphingomonas sp. Thlaspi caerulescens; Thlaspi goesingense

b-Proteobacteria
Azoarcus sp. Kallar grass, rice
Burkholderia pickettii Maize
Burkholderia cepacia Yellow lupine, citrus plants
Burkholderia sp. Banana, pineapple, rice
Burkholderia sp. Bu61 (pTOM-Bu-61) Poplar
Chromobacterium violaceum Rice
Herbaspirillum seropedicae Sugarcane, rice, maize, banana
Herbaspirillum rubrisulbalbicans Sugarcane
Herbaspirillum sp.K1 Wheat

g-Proteobacteria
Citrobacter sp. Banana
Enterobacter spp. Maize; Nicotiana tabacum
Enterobacter sakazakii Soybean
Enterobacter cloacae Citrus plants, maize

(continued)
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Table 7.1 (continued)

Endophytes Plant species

Enterobacter agglomerans Soybean
Enterobacter asburiae Sweet potato
Erwinia sp. Soybean
Escherichia coli Lettuce
Klebsiella sp. Wheat, sweet potato, rice
Klebsiella pneumoniae Soybean
Klebsiella variicola Banana, rice, maize, sugarcane
Klebsiella terrigena Carrot
Klebsiella oxytoca Soybean
Pantoea sp. Rice, soybean
Pantoea agglomerans Citrus plants, sweet potato
Pseudomonas chlororaphis Marigold (Tagetes spp.), carrot
Pseudomonas putida Carrot
Pseudomonas fluorescens Carrot, Brassica napus
Pseudomonas citronellolis Soybean
Pseudomonas synxantha Scots pine
Pseudomonas viridiflava Grass
Pseudomonas aeruginosa strain R75 Wild rye (Elymus dauricus)
Pseudomonas savastanoi strain CB35 Wild rye (Elymus dauricus)
P. putida VM1450 Poplar (Populus) and willow (Salix)
Pseudomonas fulva Nicotiana tabacum
Pseudomonas sp. Populus cv. Hazendans and cv. Hoogvorst; 

Alyssum bertolonii, Nicotiana tabacum
Salmonella enterica Alfalfa, carrot, radish, tomato
Serratia sp. Rice
Serratia marcescens Rice, Rhyncholacis penicillata
Stenotrophomonas sp. Dune grasses (Ammophila arenaria and Elymus 

mollis); Nicotiana tabacum

Firmicutes
Bacillus spp. Citrus; Alyssum bertolonii; Thlaspi 

goesingense
Bacillus megaterium Maize, carrot, citrus plants
Clostridium Grass, Miscanthus sinensis
Clostridium aminovalericum Nicotiana tabaccum
Desulfitobacterium metallireductans Thlaspi goesingense
Paenibacillus odorifer Sweet potato
Paenibacillus polymyx Wheat, Lodeg pine, green beans, Arabidopsis 

thaliana, Canola
Paenibacillus sp. Alyssum bertolonii
Staphylococcus saprophyticus Carrot
Staphylococcus sp. Alyssum bertolonii

Bacteroidetes
Flavobacterium sp. Thlaspi goesingense
Sphingobacterium sp. Rice
Sphingobacterium multivorum Thlaspi caerulescens

(continued)
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Table 7.1 (continued)

Endophytes Plant species

Actinobacteria
Arthrobacter globiformis Maize
Arthrobacter sp. Alyssum bertolonii
Blastococcus sp. Thlaspi goesingense
Curtobacterium flaccumfaciens Citrus plants
Curtobacterium sp. Alyssum bertolonii; Thlaspi goesingense
Kocuria varians Marigold
Leifsonia Alyssum bertolonii
Microbacterium esteraromaticum Marigold
Microbacterium testaceum Maize
Microbacterium sp. Brassica napus, Alyssum bertolonii
Mycobacterium sp. Wheat, Scots pine
Nocardia sp. Citrus plants
Plantibacter flavus Thlaspi goesingense
Propionibacterium acnes Thlaspi goesingense
Rhodococcus sp. Thlaspi caerulescens, Thlaspi goesingense
Streptomyces Wheat
Streptomyces griseus Kandelia candel
Streptomyces NRRL 30562 Kennedia nigriscans
Streptomyces NRRL 30566 Grevillea pteridifolia
Streptomyces sp. Monstera sp.
Sanguibacter sp. Nicotiana tabaccum

Modified from Rosenblueth and Martinez-Romero (2006), Rajkumar et al. (2009b) and Ryan et al. 
(2008)

PGPR (Rajkumar et al. 2009a) such as nitrogen fixation, improving mineral nutrition 
(for instance the solubilization of P into plant-available forms), or increasing resis-
tance or tolerance to biotic and abiotic stresses (Ryan et al. 2008). Directly, bacteria 
can increase heavy-metal mobilization or lessen heavy-metal toxicity by the produc-
tion of bacterial siderophore that enhances the supply of iron to the plant (Sessitsch 
and Puschenreiter 2008). Siderophores are organic molecules that show high affinity 
for Fe(III) ions, and can also form complexes with other bivalent heavy metal ions that 
can be assimilated by the plant (Rajkumar et al. 2009a). Cadmium-resistant endo-
phytes (e.g., Sanguibacter sp., Pseudomonas sp., and Enterobacter sp.) isolated from 
Nicotiana tabacum seeds decrease the Cd toxicity by increasing the uptake of trace 
elements (Zn and Fe) by plants (Mastretta et al. 2009). Other challenges, however 
have been faced to identify and engineer endophytic bacteria to enhance plant growth 
on polluted soil over phytotoxicity threshold. To solve this, the pTOM toluene degra-
dation plasmid was inserted into the lupine endophyte Burkholderia cepacia G4, 
which upon inoculation improved the in planta degradation of toluene and concomi-
tantly decreased its transpiration to the atmosphere (Barac et al. 2004). The use of 
these technologies is at the beginning. Therefore, the stability of the degradation capa-
bilities within the endophytic community (Newman and Reynolds 2005) and the con-
sistent production of secondary toxic metabolite involved in the degradation pathways 
are needed to be explored. However, the use of endophytic bacteria to improve phy-
toremediation shows great promises (Weyens et al. 2009) as presented in Fig. 7.2.
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7.3  Soil and Rhizosphere Bacteria Involved in Metal 
Detoxification

Serpentine soil bacteria were described by Lipman in 1926, who, in an attempt to 
identify the reasons for the low fertility of serpentine soils, wrote: “there is little 
diversity, as well as a general paucity, in the bacterial flora of the serpentine soils” 
(Lipman 1926). However, it is still not clear if certain bacterial taxonomic groups 

Fig. 7.2 Possible applications of plant-associated bacteria (Modified from Ryan et al. 2008)
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are inhibited or favored by the serpentine soil conditions (Mengoni et al. 2001; 
Lodewyckx et al. 2002; Oline 2006). Moreover, metal-hyperaccumulating plants 
have been proposed as a selective factor toward soil bacteria, increasing the level 
of metals in their close proximity. Actually, it has been found that the presence of 
some plants (i.e., the Ni-hyperaccumulating tree, Sebertia acuminata) positively 
correlated with the presence of Ni-resistant soil bacteria (Schlegel et al. 1991). A 
hypothetical “nickel cycle,” driving the evolution of the bacterial community 
toward a higher percentage of nickel-resistant strains was suggested for such spe-
cies. The “nickel cycle” leads to an increased nickel concentration in the upper 
soil layers in the proximity of the plant due to the “pumping” of nickel from deep 
soil performed by the roots, followed by the translocation of nickel to leaves and 
then, after the abscission of the leaves, the release of accumulated nickel from the 
litter. As a consequence of this cycle, top soil layers near the plant contain higher 
nickel concentrations than those far away from the plant, and consequently exert 
a stronger selective pressure for Ni-resistance toward soil bacteria. An increased 
number of Ni-resistant bacteria was also observed in the rhizosphere of the 
Ni-hyperaccumulators A. bertolonii (Mengoni et al. 2001), as outlined in Fig. 7.3. 
This finding was also confirmed in other species for example in Thlaspi goesin-
gense and A. serpyllifolium susp. lusitanicum and T. caerulescens (Lodewyckx 
et al. 2002; Idris et al. 2004; Aboudrar et al. 2007; Becerra-Castro et al. 2009). 
However, due to the small size and shallow rooting of these plants (including A. 
bertolonii), it is probably not correct to invoke a real “metal cycle,” that is, an 
increase of the top soil metal concentration due to the foliar hyperaccumulation of 
deep-soil metals and subsequent leaf fall. Recently, Mengoni et al. (2010) pro-
posed that “root-foraging” could be the main cause of the increase in heavy-metal-
tolerant bacteria. In other words, the presence of highly tolerant bacteria near the 

A B C D

16.6% 17% 23% 33.3%

Plant

Soil 5 cm

Fig. 7.3 Proportion of nickel-resistant bacteria at different distances from the Ni-hyperaccumulator 
A. bertolonii. A bulk soil, B 10 cm, C 5 cm, D rhizosphere soil. Values are percent of resistant 
bacteria over the total isolates (Adapted from Mengoni et al. 2001)
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Fig. 7.4 Consequences of “metal root foraging” on the rhizosphere bacterial flora. Patches of soil 
rich in metals are already inhabited by a large fraction of Ni-resistant bacteria. Different gray tones 
suggest possibly different bacterial species (Modified from Mengoni et al. 2010)

roots of metal hyperaccumulators could be due to the effect of a concomitant 
 specific tropism of roots of hyperaccumulating plants toward soil patches rich in 
metals (Whiting et al. 2000). Consequently, the presence of highly tolerant bacte-
ria near A. bertolonii roots may not be due to plant activity but simply to the 
chemical properties of the soil patch that already selected a highly tolerant bacte-
rial flora (Fig. 7.4). In agreement with such a model (Ni content of soil patches 
play the main role in the selection of Ni-resistant bacteria), in A. bertolonii, the 
proportion of resistant bacteria was variable in different outcrops and partially 
related to soil Ni content, that is, the higher the bioavailable Ni in soil, the higher 
the percentage of Ni-resistant bacteria in bulk soil (Mengoni et al. 2001). Despite 
the selective environment of serpentine soil and rhizosphere, a high genetic diver-
sity was in general found, in contrast with the initial finding by Lipman (1926). 
However, probably due to the rich culture medium used (LB), mainly copiotrophic 
species particularly members of genera Pseudomonas and Streptomyces were 
recovered. Interestingly, Pseudomonas isolates were strongly present in the rhizo-
sphere, while Streptomyces were predominant in the soil samples, in agreement 
with a “rhizosphere effect” which favors the presence of genera that include 
known plant growth-promoting rhizobacteria (PGPR). Rhizosphere effect was 
also shown in an analysis of total bacterial flora by cultivation-independent analy-
sis (Mengoni et al. 2004) where the presence of other bacterial groups known to 
interact with plant roots was also detected (i.e., alpha-Proteobacteria). Another 
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interesting finding of serpentine soil bacteria associated with A. bertolonii 
(Mengoni et al. 2001) was the prevalence of high phenotypic diversity for single 
or multiple metal  tolerances. Interestingly, no correlation between genetic group-
ings and heavy-metal-tolerant  phenotypes was found. Nevertheless, a higher pro-
portion of Pseudomonas strains were resistant to high concentrations of nickel 
compared to Streptomyces, probably reflecting the highest bioavailable Ni present 
in rhizosphere soil.

7.3.1  Endophytic Bacteria

The increasing interest in the use of endophytic bacteria, that is bacteria intimately 
associated with plant tissues (Weyens et al. 2009), has opened up new perspectives on 
the study of metal-hyperaccumulating plants. Endophytes may colonize plant-internal 
environments that are less toxic than soil (that is with lower available metal content), 
or environments, such as xylem vessels, where toxic metals might be available at 
higher concentration than in soil (Smart et al. 2007). The Ni-hyperaccumulator Thlaspi 
goesingense was the first species to be investigated for its endophytic bacterial com-
munity composition (Idris et al. 2004). Results showed that majority of endophytic 
bacteria belonged to Proteobacteria division and had a high number of sequences 
related to the genus Sphingomonas. Moreover, members of the genus Methylobacterium 
were recovered and a new species, namely Methylobacterium goesingense, was found 
to be associated with T. goesingense (Idris et al. 2006). Bacteria associated with tis-
sues of metal-hyperaccumulators (from genera Thlaspi (Noccaea) and Alyssum) are 
listed in Table 7.1. In A. bertolonii, most of the diversity was represented by Gram-
positive bacteria (Barzanti et al. 2007). In particular, genera as Bacillus, Paenibacillus, 
Leifsonia, Curtobacterium, Microbacterium, Micrococcus, and Staphylococcus were 
found. While only few members of Proteobacteria (mainly belonging to the genus 
Pseudomonas) were reported. Similar to previous findings on soil bacteria (Mengoni 
et al. 2001), a high phenotypic diversity with regard to heavy-metal resistance was 
found, suggesting the occurrence of a high number of different “microenvironments” 
within plant tissues. Nevertheless, contrary to soil isolates, only few isolates showed 
co-resistance to Ni and Co. Furthermore, there was no relationship between 
taxonomic groups and resistance phenotype, which suggest the presence of highly 
transmissible genetic elements carrying the determinants for heavy-metal resistance 
(e.g., plasmids) as observed in the model metal-resistant strain Cupriavidus 
metallidurans CH34 (Janssen et al. 2009).

Recently, using cultivation-independent Terminal-Restriction Fragment Length 
Polymorphism (T-RFLP) Mengoni et al. (2009), characterized the leaf-associated 
bacterial flora of A. bertolonii plants, collected from three different populations. 
Interestingly, more than half of the taxonomical diversity (as Terminal-Restriction 
Fragments, TRFs) was assigned to Alpha- and Gamma-Proteobacteria and Actino-
bacteria. Two TRFs were sequenced and matched with 16S rRNA gene sequences 
of methylobacteria. Methylobacteria were also found in the Ni-hyperaccumulator  
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T. goesingense (Idris et al. 2006) as well as in the Zn-hyperaccumulator T. caerulescens 
(Lodewyckx et al. 2002), associated with rhizosphere and plant tissues. However, it 
is not clear if they play any role in hyperaccumulation even though methylobacteria 
have been detected earlier in several other plant species (Lidstrom and Chistoserdova 
2002). It is proposed that plant-by-plant variability of bacterial community compo-
sition is far higher than variability due to the sampling sites, suggesting that a large 
fraction of bacteria could be associated to the plant simply by chance and may not 
provide any positive (or negative) relevant effect toward plant phenotypes and 
fitness.

7.4  Conclusion and Perspectives

Plant-associated bacteria are promising partners which may increase plant fitness 
and performances and consequently yields. However, few studies have been car-
ried out on the economical relevance of bacteria associated with plants living in 
metal-containing soil. Despite little studies on this aspect, some very promising 
strains have been isolated from hyperaccumulators and from bulk serpentine soil, 
as Methylobacterium goesingense, some strains from the rhizosphere of Alyssum 
murale (Abou-Shanab et al. 2003, 2007), Serratia marcescens C-1 (Marrero et al. 
2007) or Streptomyces yatensis (Saintpierre et al. 2003). In A. bertolonii, two 
strains belonging to genera Arthrobacter and Pseudomonas were isolated as the 
endophytic community which showed plant growth-promoting activities and toler-
ance to nickel, and Ni-hyperaccumulation by A. bertolonii plantlets in hydroponic 
cultures (unpublished results). Genome sequencing of these strains are likely to 
provide better understanding of genetic basis of interactions of endophytes with 
hyperaccumulating plants. Positive effects of endophytes on plants, however, 
depend on several factors like metal uptake, phytotoxicity of metals to plants, rate 
of plant growth, etc. In particular, the first two are the major limiting factors in 
the application of phytoextraction (Weyens et al. 2009).The exploitation of 
plant-associated bacteria, however, could be a promising strategy to improve the 
efficiency of phytoextraction both via enrichment of the bacterial community pres-
ent in planta, or through metabolic engineering and re-inoculation of suitable 
strains to improve metal availability, and hence, to reduce phytotoxicity. The reduc-
tion in the costs of complete genome sequencing and systems biology-based mod-
eling of biotic and metabolic interactions will, therefore, greatly help in the 
development of effective bacterial inoculants, isolated from target plants, which 
may enhance metal phytoextraction by metal-hyperaccumulating plants and in par-
ticular by A. bertolonii.
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Abstract Heavy metal contamination of soils is one of the world’s major 
environmental problems, posing significant risks to human health as well as to the 
ecosystems. Conventional treatment technologies for heavy metal polluted soils 
such as excavation and transport of contaminated soil to hazardous waste sites for 
landfilling have several disadvantages. They cannot completely remove metals, they 
can only immobilize them in the contaminated soil. Novel technologies involving 
microorganisms and their products to remove heavy metals have been successfully 
applied to waste streams such as sewage sludge, industrial effluents, and mine water. 
Biosorption of metal-contaminated soils presents a more complex separation problem. 
Use of biosurfactants to improve the removal of heavy metal contaminants from 
aqueous media and soils has received increasing attention in recent years. Surfactin 
produced by Bacillus subtilis, rhamnolipids from Pseudomonas aeruginosa, sophoro-
lipids from Torulopsis bombicola, Aescin from Aesculus hippocastanum, and 
saponin from quillaja bark have been employed to remove metals from con-
taminated soils. The possible mechanisms for the removal of heavy metals by 
biosurfactants are ion exchange, precipitation–dissolution, and counter ion binding. 
Reports on the use of biosurfactants in metal removal are however scanty. Even 
though sorption isotherms have been widely used to measure the heavy metal accu-
mulation in soils,the desorption of heavy metals and the possible hysteresis have 
been scarcely reported. This chapter highlights the use of biosurfactants of various 
origins in the removal of heavy metals from soils contaminated with metals.
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8.1  Introduction

Domestic and industrial wastes are increasingly disposed into the environment 
causing long-term effects on the ecosystem. Environmental poisoning by heavy 
metals (HMs) has increased in the last semicentennial due to extensive use of metals 
in agricultural and industrial processes, which in turn has become a serious threat to 
functional ecosystems. The main sources of HM pollution are mining, metallurgical, 
milling, electronic, electrolysis, electro-osmosis, photography, electroplating, metal 
finishing, tanneries industries, and the manufacture of paints, metal pipes, batteries, 
ammunition, porcelain enameling, energy and fuel production, fertilizer and pesticide 
industry and iron and steel industries and aerospace and atomic energy installation. 
Why is metal pollution so serious environmental pollution problem? This is due 
largely to the fact that metals cannot be degraded or destroyed. However, microor-
ganisms used in bioremediation process can change only the speciation of metals 
and transform them into nontoxic form, but the same metal still persist in the envi-
ronment. Heavy metals are dangerous because they tend to bioaccumulate. Heavy 
metal enters our bodies via food, drinking water, and air. Some heavy metals like Fe, 
Cu, Co, Ni, and Zn, are considered as “essential” elements for microbial growth 
while others like Cd, Hg, As, Ag, and Au, are “nonessential” elements. Essential 
heavy metals catalyze biochemical reactions, stabilize proteins, regulate gene 
expression, and control osmotic pressure across various microbial membranes. 
Some enzymes require metal such as Mg, Zn, Mn, or Fe as a cofactor. Essential 
transition metals like Fe, Cu, and Ni play a role in redox processes. Other essential 
metals like Mg and Zn stabilize various enzymes and DNA. However, whether they 
are essential or not, all metals at high concentration are toxic to living organisms. 
For example, metal toxicity to human can cause birth defects, obstruct lung disease, 
lung cancer, skin lesions, anemia, mental and physical retardation, learning disabilities, 
liver and kidney damage, stomach and intestinal irritation, circulatory and nerve 
tissue disease (Bruins et al. 2000).

The traditional remediation technologies for metal-contaminated soils include 
excavation, landfilling, isolation, immobilization, toxicity reduction, physical sepa-
ration, and extraction (Mulligan et al. 2001a). Of these, excavation and landfilling 
have been the most extensively used conventional methods. High cost of excavation, 
final disposal of landfills, and lack of available landfill sites are the disadvantages of 
these techniques. Moreover, there is always a risk of HM release into the environ-
ment. Another remediation method is solidification/stabilization (Shawabkeh 2005). 
Solidification is physical encapsulation of the HM pollutants in a solid matrix while 
stabilization involves chemical reactions to decrease metal mobility. The size selection 
processes remove the larger and cleaner particles from the smaller, more polluted 
ones. Mechanical separation processes include hydrocyclones, fluidized bed separa-
tion, and flotation (Peng et al. 2009). Electrokinetic process is based on passing a 
low-density electric current between a cathode and an anode imbedded in the 
HM-polluted soil. Ions and small charged particles together with water move between 
the electrodes. Soil washing, in situ soil flushing, bioleaching, phytoremediation, and 
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bioremediation are other promising metal-removing techniques. Soil washing and 
in situ flushing comprise the addition of water with or without admixture. Soil washing 
processes are classified in three main groups: (1) physical separation, which includes 
hydrodynamic classification, gravity concentration, froth flotation, magnetic and 
electrostatic separations, attrition scrubbing; (2) chemical extraction, which includes 
acid extraction, salt solutions and high-concentration chloride solutions, chelant 
extraction, surfactant-enhanced solubilization, reducing and oxidizing agents; and 
(3) combination of both (Dermont et al. 2008). To recover HMs from soils, apart 
from biosurfactants, inorganic acids such as H

2
SO

4
 and HCl with pH less than 2, 

organic acids including acetic and citric acids (pH not less than 5), chelating agents 
such as EDTA, nitrilotriacetate (NTA), NaOH, and various combinations of the 
chemical agents, are used (Chaturvedi et al. 2006). Soil washing may be an effective 
alternative to solidification/stabilization and landfilling. However, these processes 
require a detailed soil characterization, a deep understanding of metal speciation 
and fractionation and interactive relation between the soil matrix and metals. 
Moreover, additive agents such as EDTA, although effective, are not only nonbiode-
gradable but are also highly toxic (Chen et al. 2004).

Removal of HMs from soils by microorganisms or plants has not been exten-
sively studied. The techniques available so far include bioleaching, biosorption, 
and phytoremediation. A variety of microorganisms, for example, autotrophic 
Thiobacillus species, heterotrophic Aspergillus and Penicillium species, catalyze 
leaching of metals from ore deposits and mine tailings. The leaching of metals from 
soils includes (1) redox reactions, (2) the formation of organic or inorganic acids, 
and (3) the excretion of complexing agents (Krebs et al. 1997). The mediation by 
redox reactions is based either on electron transfer from minerals to microorgan-
isms or on bacterial oxidation of metals, for example, Fe2+ to Fe3+ where ferric iron 
subsequently catalyzes metal solubilization as an oxidizing agent. Thiobacillus sp. 
reduce sulfur compounds under aerobic and acidic conditions. Use of plants such as 
Thlaspi, Urtica, Chenopodium, Polygonum sachalase, and Alyssim, trees, herbs, 
grasses, and other crops to remove metals from soils and ground waters is commonly 
known as phytoremediation (Lasat 2000; Römkens et al. 2002). This method is, 
however, restricted to shallow depths of soils with low levels (2.5–100 mg/kg) of met-
als and requires longer treatment times compared to other methods. Microorganisms 
and microbial products have attracted attention as alternative technologies for metal 
removal from soils.

Biosorption is defined as the microbial uptake of organic and inorganic metal 
species by physicochemical mechanisms, such as adsorption, ion-exchange, compl-
exation, chelating, and surface precipitation (Sağ 2001). This “passive uptake” 
method is independent of the vital activity of microorganism. The HMs can also be 
transported into the cell across the cell membrane through the cell metabolic cycle. 
This type of uptake performed via growing cells is known as “active uptake.” The 
metal uptake involving both active and passive modes is defined as “bioaccumulation” 
(Malik 2004). Microorganisms produce a range of specific and non specific metal-
binding compounds. Bacteria, algae, and fungi produce extracellular polymeric 
substances (EPS), a mixture of polysaccharides, mucopolysaccharides, and proteins. 
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Metal ions and/or particulate matters such as precipitated metal sulfides and oxides 
are adsorbed or entrapped by EPS (Gadd 2004). Although the metal removal by 
microorganisms and their products has been extensively applied in the treatment of 
industrial and domestic wastewaters, the biosorption of metal ions from soils and 
sediments presents a more complex separation problem (Lebeau et al. 2002; Vig 
et al. 2003; Zoubolis et al. 2004; Lin and Lin 2005). Movement of metals in soils, 
on the other hand, is restricted by soil texture, structure, and organic matter content. 
The size of a bacterial cell is nearly as large as 0.2 mm in diameter, whereas soil 
pores change greatly in size ranging from less than 2 mm. Metal–cell complexes 
could be filtered out by the smallest pores and hinder transfer through the soil. 
Although bacterial and algal EPS bind to a variety of metals, they show strong 
affinities for oil–water interfaces, differ from biosurfactants as they are large, have 
molecular weight around 106, and have minimal surface activity. Biosurfactants 
offer a distinct advantage over EPS in the remediation of soils because of their rela-
tively small size, (generally <1,500 Da) (Tan et al. 1994; Herman et al. 1995; Miller 
1995). Microbial compounds that are produced by microorganisms and plants and 
show high surface and emulsifying activities are defined as biosurfactant. 
Biosurfactants have been used in the bioremediation of numerous types of hydro-
phobic hydrocarbon-organic contaminants. Only recently, it has been proved that 
biosurfactants can be used to enhance metal removal. This chapter discusses all 
aspects of the use of biosurfactants for the removal and recovery of heavy metals 
from soils.

8.2  Biosurfactants

Surfactants are substances that adsorb to and alter conditions prevailing at inter-
faces. They lower surface and interfacial tensions. Emulsifiers are a subclass of 
surfactants that stabilize dispersions of one liquid in another, for example, oil-in-water 
emulsions. Certain bioemulsifiers increase the growth of bacteria on hydrophobic 
water-insoluble substrates, by increasing their surface area, desorbing them from 
surfaces and enhancing their apparent solubility. Bioemulsifiers also regulate the 
attachment–detachment of microorganisms to and from surfaces (Ron and Rosenberg 
2001). A surfactant’s effectiveness is strongly related to its ability to lower surface 
tension, to increase solubility, its good detergency properties, wetting and complex 
foaming capacity. Biosurfactants are biological surfactants that are produced extra-
cellularly or as part of the cell membrane by yeast, bacteria, fungi, or marine micro-
organisms inhabiting various substrates including sugars, oils, alkanes, and wastes. 
Molecular mass of biosurfactants ranges from 500 to 1,500 Da. Biosurfactants can 
be divided into (1) low-molecular-weight (LMW) molecules that lower surface and 
interfacial tensions efficiently and (2) high-molecular-weight (HMW) polymers 
that bind tightly to surfaces. The LMW types are generally glycolipids or peptidyl 
lipids (lipopeptides). The best known glycolipid bioemulsifiers are trehalose tet-
raesters and dicarynomycolates, fructose lipids, sophorolipids, and rhamnolipids. 
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Glycolipids are produced by microorganisms such as Arthrobacter paraffineus 
(trehalose lipids), Rhodococcus erythropolis (trehalose dimycolates), Candida 
bombicola (formerly Torulopsis) (sophorolipids), Pseudomonas (rhamnolipids), 
and Alcanivorax borkumensis (glucose lipids) (Ron and Rosenberg 2001; Christofi 
and Ivshina 2002). Sophorolipids consist of two glucose units linked ß-1,2 and a 
lipid portion connected to the reducing end through a glycosidic linkage. A group 
of biosurfactants that has been studied extensively is the rhamnolipids. Two types of 
rhamnolipids contain either two rhamnoses attached to ß-hydroxydecanoic acid or 
one rhamnose connected to the identical fatty acid (Mulligan 2005). Peptidyl lipids 
include surfactin from Bacillus subtilis, streptofactin from Streptomyces tendae, 
gramicidin S from Bacillus brevis, polymyxins from Bacillus polymyxa and related 
bacilli, viscosin from Pseudomonas strains that are effective antibiotics as well as 
potent surface active materials (Ron and Rosenberg 2001). The potential advantages 
of using surfactin include its biodegradability, effectiveness as a surfactant, and 
extensive biological properties including affecting the growth of tumors, bacteria, 
fungi, viruses, and mycoplasmas (Mulligan et al. 2001b). High-molecular-weight 
biosurfactants are amphiphilic (lipo)polysaccharides, (lipo)proteins, or complex 
mixtures of these biopolymers produced by numerous bacterial species belonging to 
different genera, as exocellular polymeric surfactants. These biosurfactants produce 
stable emulsions but do not lower the surface tension. Different isolates of 
Acinetobacter were found to produce HMW emulsifiers (Christofi and Ivshina 
2002). Polysaccharide HMW emulsifiers can also bind with metals. For example, 
emulsan produced by A. calcoaceticus was demonstrated to bind uranium (Ron and 
Rosenberg 2001).

Biosurfactants have the following advantages (1) lower toxicity and higher bio-
degradability, (2) better environmental compatibility, (3) higher foaming, (4) higher 
selectivity for metal ions and organic compounds, (5) effectiveness at enhancing 
biodegradation and solubilization of low-solubility compounds, and (6) less expen-
sive. In addition, they are less sensitive to pH, salt, and temperature variations. 
However, biosurfactants have two major disadvantages. If a commercial biosurfactant 
is added to a soil, groundwater system or wastewater system externally, it may be 
difficult to distribute the biosurfactant uniformly. In this case, the desired bioreme-
diation process cannot be performed. Biosurfactants can sometimes be more 
biodegradable than the substance, which is planned to be treated. In this case, 
the biosurfactant itself may become a more favorable biodegradable material than 
the pollutant to be removed (UTTU 2005). However, to date, the persistency of 
rhamnolipid in soil has been rarely investigated. The rate of rhamnolipid degrada-
tion in soils with single and co-contaminated with Cd(II) and Zn(II) ions was inves-
tigated (Wen et al. 2009). Rhamnolipid, a metal sequestering agent produced by 
Pseudomonas sp., was found as more biodegradable than EDTA but more stable 
in the soil than citric acid. The degradation of rhamnolipid, citric acid, and EDTA 
was inhibited by Cd or/and Zn contamination in two uncontaminated soils and  
a rice (Oryza sativa) soil with previous contamination from mining. Single 
Cd-contamination had a less inhibitory effect whereas the biodegradation was 
retarded by co-contamination of Cd and Zn. Due to the co-existence of Cd and Zn 
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in soils, there may have been an increase in metal toxicity caused by Cd and Zn 
interaction effects. Although the biodegradation of rhamnolipids strongly depends 
on soil properties such as organic matter content, cation exchange capacity (CEC), 
fertility, extent of contamination, and metal toxicity, rhamnolipid may persist in soil 
and consequently increase metal bioremoval but not remain long enough to raise 
concerns regarding metal transport in the long term.

8.2.1  Critical Micelle Concentration

Surfactants reduce the surface tension of a liquid medium. Surface tension is a mea-
sure of the surface free energy per unit area required to bring a molecule from the 
bulk phase to the surface. Surface tension of distilled water is 73 dyn/cm. An effec-
tive biosurfactant can reduce this value to <30 dyn/cm. The amount of surfactant 
needed to obtain the lowest possible surface tension is defined as the critical micelle 
concentration (CMC). After CMC is reached, surface tension remains constant, and 
surfactants begin to form micelles (Zhang and Miller 1992). The CMCs of biosur-
factants typically range from 1 to 200 mg/L. Salinity, hydrocarbon chain length, and 
surfactant types affect the CMC.

8.2.2  Rhamnolipids

Of the various biosurfactants, rhamnolipids produced by Pseudomonas aeruginosa 
have been extensively studied. Six rhamnolipid homologues produced by a single 
strain of Pseudomonas sp. growing on soapstock, a waste product of vegetable oil 
manufacturing, were described (Van Hamme et al. 2006). Up to 11 rhamnolipid 
homologues in P. aeruginosa 47 T2 growing on waste frying oil was identified 
(Haba et al. 2003). Surface tensions of 29 mN/m and interfacial tensions of 
0.25 mN/m are characteristic of these compounds (Christofi and Ivshina 2002). The 
CMCs of rhamnolipids varied between 50 and 200 mg/L. Four types of rhamnolip-
ids were identified. Two major types of rhamnolipids, RLL (R1) and RRLL (R2), 
have a molecular mass of 504 g mol−1 and 650 g mol−1, respectively. RLL (C

26
H

48
O

9
) 

is l-rhamnosyl-ß-hydroxydecanoyl-ß-hydroxydecanoate. RRLL (C
32

H
58

O
13

) is  
l-rhamnosyl-ß-l-rhamnosyl-ß-hydroxydecanoyl-ß-hydroxydecanoate (Fig. 8.1). The 
other two types of rhamnolipids contain either two rhamnoses connected to 
ß-hydroxydecanoic acid or one rhamnose connected to the identical fatty acid. 
Rhamnolipids RLL, RRLL, and a mixture of the mono- and di-rhamnolipid forms 
are especially used for soil washing to remove hydrocarbons and HMs, as wastewa-
ter treatment to remove hydrocarbons and HMs, and as chelating agent and oil slick 
dispersant in environmental bioremediation. Although the RLL form was reported 
to be far superior at metal complexation (Ochoa-Loza et al. 2001), a mixture of RLL 
and RRLL (RL = RLL/RRLL = 1.1, JBR 425, lot.no = 030126), forms was generally 
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used in environmental applications. The CMC of monorhamnolipid and a mixture 
of RLL and RRLL produced by P. aeruginosa is 0.1 mM (Ochoa-Loza et al. 2007). 
This low CMC points to the strong surface activity shown at low concentrations. It 
is characterized by low surface tension for water and electrolyte solutions and very 
low interfacial tensions for water/hydrocarbon systems. The pK

a
 value of RL is 

determined as 5.6 (Ishigami et al. 1987).

8.2.3  Surfactin

Surfactin, a cyclic peptide antibiotic that contains seven amino acids bond to the 
carboxyl and hydroxyl groups of a 14-carbon acid (Fig. 8.2) is produced by Bacillus 
subtilis and B. pumilus and B. licheniformis. The primary structure of surfactin is a 
heptapeptide with a ß-hydroxy fatty acid within a lactone ring structure (Kakinuma 
et al. 1969). The three-dimensional structure of surfactin has a ß-sheet structure. It 
looks like a horse saddle at the air/water interface and in aqueous solutions (Bonmatin 
et al. 1995; Mulligan 2005). Surfactin has an amphiphilic structure and has exten-
sive antibiotic properties that may affect the growth of tumors, bacteria, fungi, 
viruses, and mycoplasmas (Christofi and Ivshina 2002). For swarming motility in B. 
subtilis, both flagella biosynthesis and surfactin production are important. B. subtilis 
mutants, unable to produce surfactin and deficient in extracellular proteolytic activ-
ity, could neither swarm nor form biofilms (Van Hamme et al. 2006). Individual 
surfactin molecules have a molecular mass of approximately 1,050 Da. As surfactin 
reduces the surface tension of water from 72 to 27 mN/m at a concentration as low 
as 0.005%, it is considered as one of the most effective biosurfactants. Interfacial 
tension and CMC of surfactin are 1 mN/m and 23 mg/L, respectively. Surfactin 
involves the glutamic and aspartic amino acids, where glutamate residues are 
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Fig. 8.1 Structure of di-rhamnolipid
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reported to bind metals such as Mg, Mn, Ca, Ba, Li, and rubidium (Thimon et al. 
1992; Singh et al. 2007). The theoretical ratio of metals to the surfactin is 1 mol 
metal: 1 mol surfactin due to the two charges on the surfactin molecule; however, 
this ratio was found to be 1.2:1 in experimental studies (Mulligan et al. 1999b). 
Heavy metals are generally found associated with carbonate, oxides, and organic 
fractions in the contaminated soil. These are removed using a combination of 0.25% 
surfactin and 1% NaOH. Proposed metal recovery mechanism is the attachment of 
surfactin at the soil interface and metal removal through lowering the interfacial 
tension and micellar complexation (Christofi and Ivshina 2002).

8.2.4  Saponin

Saponin, a nonionic biosurfactant, is a triterpene glycoside obtained from quillaja 
bark and includes ß-D-glucuronic acid with carboxyl group of sugar moiety in 
hydrophilic fraction (Fig. 8.3). The triterpene portion of saponin backbone chain, 
the sapogenin (C

30
H

46
O

5
), is 13.9% (wt) of the total hydrolyzed saponin. The chemi-

cal structure of saponin comprises one hydrophobic fused-ring of triterpenes, which 
does not resemble the hydrophobic tail of common surfactants having a long, 
straight hydrocarbon chain. Two hydrophilic sugar chains are connected to the two 
ends, C-3 and C-28, of the hydrophobic triterpene backbone, in which one end 
carries ß-D-glucuronic acid with anionic carboxyl group and the other end car-
ries nonionic glycoside groups. The CMC of saponin at pH 6.5 is 100–200 mg 
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L−1 (0.1 mass-%), surface tension is 36–39 mMm−1, and interfacial tension is 
6.0 mMm−1. Saponin is weakly acidic (pH 4.6) due to the hydrolysis of glycosides. 
Elemental analysis of saponin exhibits organic elements, 42–44% C, 6–6.2% H, 
51% O

2
, and inorganic elements, 13.9% sulfated ash (Hong et al. 2002; Urum and 

Pekdemir 2004; Chen et al. 2008).

8.2.5  Sophorolipids

Sophorolipids are obtained from the yeast Torulopsis bombicola. They are produced 
in the fermentation medium containing soybean oil and glucose (0.35 g/g substrate), 
and obtained from the medium directly as no foam is produced (Fig. 8.4). Ethyl 
acetate is used for the extraction of sophorolipids from the fermentation medium. 
Sophorolipids reduce the surface tension to 34 mN m–1. The CMC of sophorolipids 
is 0.80 g L−1. They are generally used for the release of bitumen from tar sands.

8.2.6  Aescin

Aescin (C
54

H
84

O
23

) with molecular weight 1,101 g mol−1 (Fig. 8.5) is commercially 
provided from the seeds of the horse chestnut tree: Aesculus hippocastanum  
L. (Hippocatanacea), by percolation with 60–80% ethanol. Aescin consists of agly-
cones protoaescigenin or barringtogenol C, 3-O-[ß-d-glucopyranosyl-(1,2)-ß-d-
glucopyranosyl(1,4)-ß-d glucopyranosyl]-21ß-tigloyl-22a-acetyl-protoaescigenin, 
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and 21ß-angeloyl analog (Hong et al. 1998). The CMC of aescin is 0.1 mass-%, 
surface tension is 444 mMm−1, and interfacial tension is 7.0 mMm−1 (Urum and 
Pekdemir 2004).

8.3  Heavy Metal Sorption on Soils

The retention mechanism of metal ions at soil surfaces includes adsorption, surface 
precipitation, and fixation (Bradl 2004). Adsorption can be defined as a two-
dimensional accumulation of metal at the solid/water interface. Intermolecular 
interactions consist of surface complexation reactions, electrostatic interactions, 
hydrophobic expulsion of metal complexes, and surfactant adsorption metal–
polyelectrolyte complexes due to reduced surface tension (Sposito 1984). Heavy-metal 
adsorption may be specific and nonspecific (or ion exchange). Specific adsorption is 
selective, strong, and less reversible reactions involving chemisorbed inner-sphere 
complexes (McBride 1994). Ion exchange is an electrostatic phenomenon and is 
less selective and more reversible involving outer-sphere complexation with only 
weak covalent bonding between metals and charged surfaces (Reed and Cline 1994). 
Specific adsorption is explained by a surface complexation model. This model 
describes surface complex formation as a reaction between functional surface 
groups such as silanol, inorganic hydroxyl groups, or organic functional groups and 
an ion in a solution, which form a stable unit. This type of adsorption occurs by 
adsorption reactions at OH− groups at the soil surfaces and edges, which are nega-
tively charged. The sorbed metal ions are connected by an inner sphere mechanism 
to atoms at the surface. These reactions are represented as follows for a metal ion 
Me and a surface S:

 
+ + +− + + ↔ − − +2

2 2S OH Me H O S O MeOH H  (8.1)

In surface precipitation, a new solid phase grows and repeats itself in three 
dimensions and forms a 3-D network. Metals precipitate as oxides, hydroxides, 
carbonates, sulfides, or phosphates onto soils. Surface precipitation depends on pH 
and the amounts of metals and anions present. The surface complexation model 
cannot define the adsorption curves at high cation concentrations. In the first case, a 
saturation of the adsorption capacity is reached, which is represented better by a 
Langmuir isotherm. In the second case, a continuous increase of the adsorption 
capacity without saturation at the soil surface is observed, which is modeled by a 
Freundlich isotherm. The surface precipitation model postulating a multilayer sorp-
tion process consider precipitation reactions in addition to adsorption reactions at 
the surface, and is defined by two reactions: (1) surface complex formation of metal 
ion (Me) and surface (S) as given by Eq. 8.1 (2) the precipitation of metal (Me) at 
the surface (S) (Farley et al. 1985; Robertson and Leckie 1997; Bradl 2004):

 
+ + + +− − + + ↔ − − + +2

2 2 2 2(s)S O MeOH Me H O S O MeOH Me(OH) 2H  (8.2)
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This model obeys Langmuir model at low metal concentrations and Freundlich 
model for increasing metal concentrations. If the metal concentration continues to 
increase, solid solution precipitation controls. The third mechanism of sorption is 
known as fixation or absorption. Heavy metals adsorbed onto clay minerals and 
metal oxides diffuse into the lattice structures of these minerals. The metals are then 
fixed into the pore spaces of the minerals by a process called solid-state diffusion. 
Surface functional groups of soils include a variety of hydrous oxide minerals, 
organic matter (carboxyl (–COOH), carbonyl, and phenolic groups), alumosilicates 
(clay minerals, micas, zeolites, and most Mn oxides). Alumina surfaces have 
terminal –OH groups that resist dissociation to the anionic ≡Al–H− form. For that 
reason, it will form a positively charged ≡Al–OH

2
+ site. Once deprotonated, the 

terminal –OH group binds more strongly to metals than the bridging –OH group 
(McBride 1994). Alumosilicates exhibit both aluminol (≡A–OH) and silanol  
(≡Si–OH) edge-surface groups. The deprotonated aluminol group (i.e., (≡Al–O−)) 
binds metals more strongly (Bradl 2004).

Characterization of the metal-contaminated soil matrix used in biosurfactant 
washing tests should follow the guidelines of EPA or ASTM, which include (1) soil 
pH and moisture content, (2) particle size distribution, (3) oil and grease content, (4) 
organic matter content, (5) chemical oxygen demand (COD), and (6) cation exchange 
capacity (Mulligan et al. 1999b). The bioavailability and mobility of metals in soil 
strongly depend upon sorption and desorption of the HM with different soils and/or 
soil constituents. Dispersion and partitioning of HMs between solid and aqueous 
phases are subject to soil properties such as surface area and charge, pH, ionic 
strength, and concentration of complexing ligands. To date, most studies on HM 
sorption and related binding mechanisms in soils have been focused on individual 
synthetic sorbents or combination of sorbents or soil components or real soils. Use 
of non-humus and humus soil formed as a result of leaf litter decay in a certain ratio 
of 1:3 gave effective results in situ soil bioremediation (Misra and Pandey 2004). 
Humic acids among the humic substances included in humus soil are natural organic 
macromolecules with multiple properties and high structural complexity. Phosphate, 
apatite mineral such as hydroxyapatite, and phosphatic clay, a by-product of the 
phosphate mining industry, were used as promising immobilizing agents to remedi-
ate HM-contaminated soils, sediments, and wastewaters (Arey et al. 1999; 
Hettiarchchi et al. 2000; Singh et al. 2001). The retention mechanism of Pb(II) on 
the non-humus-humus soil and hydroxyapatite was due to sorption, and immobili-
zation of Zn(II) and Cd(II) was co-precipitation and ion-exchange. Metal sorption 
rate and equilibrium capacity order depend on type of soil and/or soil component, 
as well as physico-chemical properties of metal ions such as, atomic weight, elec-
tronic configuration, electronegativities, ionic radius, reduction potential, hydrated 
ion radius, crystal radius, equilibrium constant, p

K
, and covalent binding. The 

smaller the ionic radius and the greater the valance, the more tightly and intensively 
is the ion adsorbed onto the clay. For the cationic metal ions, it was also reported to 
be a direct relationship between the valance/ionic radius ratio and the adsorption 
rate constant. Soils with CEC of 50–100 meq/kg and particle sizes of 0.25–2 mm, 
with contaminant solubility in water of greater than 1,000 mg/L and with low 
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contents of cyanide, fluoride, and sulfide, with less than 10–20% clay and organic 
content (i.e., sandy soils), can be most effectively treated by soil washing (Mulligan 
et al. 2001a).

8.3.1  Comparison of Metal Sorption on Various Soils  
and/or Components

The sorption is usually measured by the parameter q (mmol or mg of metal accumu-
lated per g or kg of soil or soil component). The two most common types of adsorp-
tion models for assessing this system are the Langmuir (L) and Freundlich (F) 
models. The Langmuir parameter, Qo, represents the highest experimentally 
observed value of the specific sorption (sorbed metal ion quantity per unit weight of 
dry soil or soil component at equilibrium). A large value of Langmuir constant, K, 
implies strong bonding. The Freundlich constants K

F
 and 1/N

sorp
 are an indicator of 

the sorption capacity of the sorbent and sorption intensity, respectively. It has been 
observed that values of Qo and K

F
 are not comparable with other values reported for 

the same metal. It may depend not only on different sorption abilities of soils and/
or soil components, but also on not exactly equal operating conditions. In fact, works 
of different authors cannot be compared directly: operating conditions are often dif-
ferent even if they are nominally equal. Comparing Langmuir parameter, Q o, obtained 
by various soils and/or soil components listed in Table 8.1, sorption preference for 
Cd(II) decreases in the following order: Soil A 1 (Smectite-moderate soil) > Soil C 2 
(Smectite-moderate-dominant soil) > Soil B 3 (Smectite-dominant soil) > Sepiolite > 
Kaolin > K-feldspar (Aşçı et al. 2007, 2008a, b). In terms of Freundlich constant K

F
, 

preference order changes slightly. Soil C (Smectite-moderate-dominant soil) > Soil B 
(Smectite-dominant soil) > Sepiolite > Soil A (Smectite-moderate soil) > Kaolin > K-f
eldspar > Quartz (Aşçı et al. 2007, 2010). The presence of smectite as the dominant 
clay in soil ensures high metal sorption capacity. The structure and chemical com-
position, exchangeable ion type, and small crystal size of smectite provide a large 
chemically active surface area, a high CEC, and inter-lamellar surface having 
unusual hydration characteristics (Miranda-Trevino and Coles 2003; Singh et al. 
2006). Smectite-moderate-dominant soil with higher clay content (70%) had the 
greatest sorption efficiency and sorption capacity as estimated by the maximum 
sorption capacity (K

F
) and intensity (N

Sorp
) of the Freundlich equation. The clay 

fraction of smectite-moderate-dominant soil was dominated by well-crystallized 
smectite and an ample proportion of feldspar and illite that provides the surface 
charge to soil. Both smectite-dominant and smectite-moderate-dominant soils had 
similar proportions of smectite and feldspar in the clay fraction and so had similar 

1 Soil A Smectite, serpentine, amphibole, feldspar-moderate.
2 Soil C Smectite-moderate-dominant, feldspar-moderate, illite-moderate.
3 Soil B Smectite-dominant, feldspar-moderate.
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sorption properties. On the other hand, smectite-moderate soil contained less smectite 
and illite, and had the lower clay content (30%) than smectite-moderate-dominant 
soil. As a result, it had the lowest sorption and ion-exchange capacity.

The most important clay mineral groups which are used for environmental pur-
poses are kaolins, smectites, illites, and chlorites. The sorption capacities of clay 
minerals decrease in the order: smectites > chlorites > illites > kaolins. The kaolin, 
low-permeability clayey soil, belongs to the two-layer minerals. Kaolinite, the most 
known kaolin mineral comprises a single-silica tetrahedral sheet and a single-
alumina octahedral sheet which form the kaolin unit layer (Serrano et al. 2005). 
Smectite is a member of the three-layer minerals and consists of two silica tetrahe-
dral sheets with a central alumina octahedral sheet. The lattice has an unbalanced 
charge due to isomorphic substitution of alumina for silica in the tetrahedral sheet 
and of Fe and Mg for alumina in the octahedral sheet. For this reason, the attractive 
force between the unit layers in the stacks is weak. The cations and polar molecules 
can enter between the layers and hence, the layers expand (Ayari et al. 2005). For 
mica-like clay, illite term is generally used. Basic structural unit of illite is similar 
to that of montmorillonite, generally known as smectite. As there is a large replace-
ment of silica for alumina in the tetrahedral sheet, illites are typically characterized 
by a charge deficiency that is balanced by K ions that bridge the unit layers. As a 
result, illites are nonexpandable clay minerals (Gu and Evans 2007). Other clay 
mineral groups like chlorites and the mixed-layer clays comprise of mixtures of the 
unit layers, for example, illite-smectite, smectite-chlorite, illite-chlorite, etc. Two-
layer minerals like kaolins have no additional ions between their silicate layers. On 
the contrary, kaolins, the silicate layers of three-layer minerals, carry an electric 
charge due to isomorphic substitution (Krawczyk-Barsch et al. 2004).

Sepiolite [Mg
4
Si

6
O

15
(OH)⋅6H

2
O], a zeolite-like clay mineral, is a hydrous mag-

nesium silicate. It has fibrous morphology and intracrystalline channels. Sepiolite 
comprises a continuous two-dimensional tetrahedral sheet of T

2
O

5
 (T = Si, Al, Be) 

and uncontinuous octahedral sheets. Molecular size of channels of sepiolite is 
3.6 × 106 Å and specific surface area is more than 200 m2 g−1 (Garcia-Sanchez et al. 
1999; Vico 2003). Because of the fibrous structure, organic and inorganic ions can 
penetrate into sepiolite, which makes it an exquisite metal accumulator. Because of 
the crystal-chemical features, HM removal by the sepiolite occurs by adsorption 
and/or cation exchange mechanisms. Adsorption occurs on the oxygen ions of the 
tetrahedral sheets, on the water molecules at the edges of the octahedral sheet and 
on Si–OH groups along the direction of fibers. Ion exchange arises by substituting 
cations inside the channels and/or inside the octahedra at the edges of the channels. 
In the ion exchange, bivalent metal cations replace Na(I) and/or Mg(II) at the edges 
of octahedral sheet (Brigatti et al. 2000).

Feldspars, usually found in rocks, sediments, and soils, are the common name of 
an important group of rock-forming minerals, which constitute perhaps as much as 
60% of the Earth’s crust. K-feldspar (KAlSi

3
O

3
; microcline or orthoclase) and 

Na-feldspar (albite; NaAlSi
3
O

8
) in a significant proportion of feldspar ores exist in 

the same matrix usually in quantities of about 3–5% Na
2
O and K

2
O. On the other 

hand, studies on HM sorption mechanisms with feldspars are scarce. Cadmium(II), 
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for example, was reported to be physically sorbed by perthitic feldspar where 
outer-sphere complexation played an important role in Cd(II) removal (Farquhar 
et al. 1997). Quartz is a ubiquitous mineral of relatively simple structure and is the 
predominant (up to 70%) constituent of the sand and silt fractions in many soils; 
however, it shows weak HM sorption characteristics. As surface charge of specific 
crystals varies with pH, the medium pH is the dominant parameter controlling the 
sorption of metal ions (Taqvi et al. 2007). The point of zero charge is basically 
important to many processes occurring at the mineral–water interface. These pro-
cesses include dissolution rates and sorption processes. Above the pH

pzc
, minerals 

exhibit negative surface charge, whereas below the pH
pzc

, a positive charge takes 
place. For example, the point of zero charge (pH

pzc
) of quartz is 3. The quartz has a 

tetrahedral structure with oxygen atoms occupying the four corners of a tetrahedron. 
The presence of negative charge in the quartz in the form of oxides provides affinity 
for the positively charged Cd(II) ions (Ledin et al. 1999; Aşçı et al. 2010).

 
+ − + −−+ → … …2 2

2Cd O O Cd O  (8.3)

The electrostatic attractive forces between Cd(II) ions and the negatively charged 
surface of the quartz are likely to control the retention of Cd(II) ions onto sorbent 
surface.

To improve adsorption and desorption capacity of soil components, rhamnolip-
ids were also used as surface modification agents. The effect of an anionic biosur-
factant rhamnolipid on the adsorption of Cu(II) ions by a Na-montmorillonite was 
investigated (Özdemir and Yapar 2009). Carboxylate groups of rhamnolipids are 
involved in an interaction electrostatically with the positively charged edges and 
layer sites of the Na-montmorillonite. Rhamnolipid moieties having a polyalcohol 
structure through –OH groups build hydrogen bridges with the faces of the 
Na-montmorillonite platelets. Clay expands through the insertion of rhamnolipid 
molecules. Clay platelets distribute water by attaching the rhamnolipid molecules 
on the edge groups. This causes a relative decrease in the mass transfer resistance in 
adsorption and desorption via the dispersion of the Na-montmorillonite platelets in 
water. In a study, Serrano et al. (2005) determined the competitive sorption of Pb 
and Cd, kinetics, and equilibrium sorption in surface soils from central Spain using 
single and binary metal solutions. Soils S2 containing less kaolinite and more smec-
tite and illite and S4 containing well crystallized smectite and a sizable proportion 
of illite, with higher pH and clay content, showed the greatest metal sorption capacity. 
The sorption capacity of the soils for Pb, as estimated by Qo parameter from 
Langmuir equation, was always greater than for Cd(II). The co-existence of both 
metals reduced greatly the sorption capacity of Cd(II) than Pb(II). The binding 
strength K from Langmuir equation was always greater for Pb(II) than for Cd(II). 
As competition for sorption sites could promote the sorption of both metals on more 
specific sorption positions, the simultaneous presence of both metals increased their 
corresponding K values. The Langmuir parameter, Qo, for the non-humus soil 
reclaimed with (1:3) humus soil and 1% hydroxyapatite decreased in the order 
Pb(II) > Zn(II) > Cd(II) (Chaturvedi et al. 2006). The maximum adsorption capacity 
of the Orera sepiolite was reported for Cd(II) (8.3 mg g−1), followed by Cu(II) 
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(6.9 mg g−1), and by Zn(II) (5.7 mg g−1) (Garcia-Sanchez et al. 1999). The sorption 
of HM ions on kaolinite followed the Langmuir adsorption model and the resulting 
adsorption affinity order was: Cu(II) > Ni(II) > Co(II) > Mn(II) (Yavuz et al. 2003). 
For HM sorption by palygorskite clay, the maximum monolayer adsorption capac-
ity (Qo) diminished in the order: Pb(II) > Cr(VI) > Ni(II) > Cu(II) (Potgieter et al. 
2006). Amounts of metal ions sorbed onto phosphatic clay in terms of Langmuir 
constants (Qo and K) followed the order: Pb(II) > Cd(II) > Zn(II) (Singh et al. 2001). 
The order of metal adsorption by kaolin was found as Cr(III) > Zn(II) > Cu(II) » Cd
(II) » Ni(II) > Pb(II) and by illite (ballclay) Cr(III) > Zn(II) > Cu(II) » Cd(II) » Pb(II) 
> Ni(II) (Chantawong et al. 2003). According to the Lewis hard–soft acid base prin-
ciple, hard Lewis acids prefer to react with hard Lewis bases, and soft acids with 
soft bases (Puls and Bohn 1988). Kaolin is a 1:1 clay type and illite 2:1 clay type. 
Main surface adsorption sites on kaolin and illite show soft and hard, respectively, 
Lewis base characteristics. Illite has excess negative charges due to the spread of 
isomorphous substitution in tetrahedra and octahedra sheets. Both physical struc-
ture and hard Lewis base property of illite tend to result in the formation of outer-
sphere complexes. It should not be forgotten that metal sorption is also affected by 
the speciation in solution and the organic matter (OM) content. Comparing the two 
clays with respect to the Qo values from Langmuir model, it is seen that illite had 
about 1 order higher sorption capacity than kaolin. Illite is a 2:1 clay type, which has 
a higher CEC than kaolin, 1:1 type, and has a higher OM content. The average equi-
librium adsorption of stronger acidic Cu(II) ions on kaolin was reported to be four-
fold higher than weaker acidic Ni(II) ions in binary metal system (Chen et al. 2008). 
This competitive behavior of Cu(II) and Ni(II) ions can be explained by the Hard 
and Soft Acid/Base (HSAB) theory. The hard Ni(II) ions having low polarizability 
cannot compete with soft Cu(II) ions having high polarizability for the soft surface 
sites of kaolin, and Cu(II) ions are selectively adsorbed from the Cu(II)–Ni(II) 
binary metal system on kaolin. The study on sorption capacity of selected HMs 
from single and multiple metal solutions on urban soil containing a mix of mineral 
soil and residue materials (e.g., brick, concrete, wood) has received little attention 
(Markiewicz-Patkowska et al. 2005). The sorption capacity from single-metal solu-
tions followed the order: Cd(II) at pH 7 > Cr(VI) at pH 2 > Cu(II) at pH 2 > Zn(II) at 
pH 7 > Pb(II) at pH 7. In multi-metal solutions, the values of Langmuir adsorption 
constants of all metals decreased, and varied in the following descending order: Cd
(II) > Cr(VI) > Zn(II) > Pb(II) > Cu(II). Even though individual sorbed metal ion quan-
tity per unit mass of soil with respect to single-metal solutions decreased, the total 
sorbed metal ion quantity per unit mass of soil from multi-metal solutions increased.

8.4  Heavy Metal Binding Mechanisms of Biosurfactants  
from Soil

The possible mechanisms for the extraction of HMs by biosurfactants are electro-
static interactions, ion exchange, precipitation–dissolution, and counter ion binding. 
For example, nonionic metals form complexes with biosurfactants, which in turn 
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decreases the solution phase activity of the metal and, therefore, promotes desorption. 
Under conditions of reduced interfacial tension, biosurfactants can bind to sorbed 
metals directly, and can accumulate metals at solid solution interface (Singh and 
Cameotra 2004). Anionic surfactants cause an increase in association of metal with 
surfaces by sorption of the metal-surfactant combination formed or precipitation of 
the complexes. On the other hand, cationic surfactants decrease the association of 
metals by competition for some but not all negatively charged surfaces (Christofi 
and Ivshina 2002). Heavy metal removal is also influenced by concentrations and 
types of biosurfactants. As an example, at concentrations above the CMC, the rham-
nolipid forms a variety of micellar (»5 nm in diameter), and vesicular structures, 
generally <50 nm in diameter, which depend on solution pH. Above pH 6.8, the 
surfactant molecules themselves spontaneously aggregate into complex structures 
such as micelles (Zhang and Miller 1992). The anionic biosurfactant such as rham-
nolipid carries a negative charge, so when the molecule encounters a cationic metal 
such as Cd(II), Zn(II) that carries a positive charge, an ionic bond is formed. This 
bond is stronger than the metal’s bond with the soil. The polar head groups of 
micelles can bind metals and make the metals more soluble in water. Surfactant 
monomers also solubilize adsorbed metals through formation of dissolved com-
plexes (Miller 1995). In addition, binding of some metal may occur onto the anionic 
exterior of rhamnolipid micelles. Metal ions are bound to opposite charged ions or 
can be replaced with same charged ions or complex with agents forming chelates on 
micelle surface. The micelles help recover the metals from soil surfaces and trans-
port them into solution, making it easier to recover metals by flushing (Frazer 2000; 
Aşçı et al. 2007). It is also postulated that the metals bound onto the soil surface can 
be detached into the soil solution by the lowering of the interfacial tension. The 
surface tension of rhamnolipid solutions for instance is also quite sensitive to pH 
(Tan et al. 1994; Herman et al. 1995).

To explain the nature of the rhamnolipid–metal complexes, stability constants 
were determined by an ion-exchange resin technique (Ochoa-Loza et al. 2001). 
Cations of highest to lowest affinity for rhamnolipid were: Al(III) > Cu(II) > Pb(II) 
> Cd(II) > Zn(II) > Fe(III) > Hg(II) > Ca(II) > Co(II) > Ni(II) > Mn(II) > Mg(II) > K(I). 
The affinities were approximately the same or higher than those that acetic, citric, 
fulvic, and oxalic acids have for metals. Molar ratios of the rhamnolipid to HMs 
were 2.31 for Cu(II), 2.37 for Pb(II), 1.91 for Cd(II), 1.58 for Zn(II), and 0.93 for 
Ni(II) while for common soil cations, the ratios were 0.84 for Mg(II) and 0.57 for 
K(I) (Ochoa-Loza et al. 2001). Rhamnolipids form complex selectively with HM 
such as Cd and Pb while they have a much lower affinity for natural soil metal cat-
ions like Ca and Mg. Rhamnolipids however, do not work well in contaminated 
soils with a high clay or iron oxide content.

Metal removal by surfactin in general includes three stages: (1) accumulation of 
surfactant as hemimicelles (interfacial surface monolayers) or admicelles (interfacial 
surface bilayers) at soil interface; (2) removal of metal by lowering of soil–water 
interfacial tension, electrostatic attraction, and fluid forces; and (3) complexation of 
the metal with the micelles. For example, the removal of Cd(II) and Pb(II) was 
reported due to the complexation of aescin, rarely used biosurfactant, with metal 
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ions adsorbed on soil surfaces (Hong et al. 1998). The anionic polar head group of 
(COO−) of aescin complex with cations adsorbed on the soil, while hydrophobic 
interactions occur between the nonpolar tails of aescin and organic matter in the 
soil. Carboxylate peaks in the infrared spectra of aescin indicate ionic and covalent 
bonding character of aescin with Cd(II) and Pb(II). Molar ratio of the aescin to 
Cd(II) was 2:1 while it was 3:1 for Pb(II) suggesting that the carboxylic and sac-
charide moieties of aescin may have higher binding capacities for Cd(II).

Although biosurfactants obtained from microorganisms have been used in the 
remediation of HMs from contaminated soils, plant-derived biosurfactants have 
been rarely used. However, complexation of HMs with saponin was demonstrated 
by Fourier Transform Infrared Spectroscopy (FTIR) analysis (Hong et al. 1998). 
The metal desorption by saponins as reported by Chen et al. (2008) involves three 
steps: (1) biosurfactant molecules at the surfactant concentrations above the CMC 
value from a dissociating micelle adsorb at a receptive interface. Because of revers-
ible dynamic equilibrium, they desorb and re-orient back into a micelle. Lewis 
acid–base interactions and electrostatic charge attractions occurring either between 
the biosurfactant hydrophilic anions and acidic cationic metal-spiked surface sites 
or between nonionic hydrophilic polar groups of saponin and the nonmetal-spiked 
surfaces cause the first step. (2) The perpetual competitive sorption between the 
adsorbing surfactant and the presorbed metal ions occurs at the soil surface and/or 
soil constituent. The adsorbing biosurfactant films in a tail-to-tail and head-to-head 
shape consistently generate ion pairs with the presorbed metal ions toward the pri-
mary surface sites. (3) Orientational rearrangement of the saponin films at solid–
liquid interface results in float-out of metal ions, self-assembly of metal–biosurfactant 
complexes by aggregation of lattice-like hemimicelle on the top of monolayer coat-
ing, and the release of the micellar metal–biosurfactant complexes. Saponin when 
used in bioremediation has the advantages like higher biodegradability and foam-
ing, low toxicity, possibility of reuse, and easy isolation from plants. In addition, 
saponin has the ability to increase the aqueous dispersion of organic contaminants 
that is often found in HM-polluted soils by solubilization and mobilization. Another 
interesting result obtained is that microorganisms can respond to metal toxicity by 
producing biosurfactant. In a study, exogenously added rhamnolipid was reported to 
reduce Cd(II) toxicity for Burkholderia sp. growing on either naphthalene or glu-
cose as sole C source. The reduction in toxicity was suggested that rhamnolipid 
after complexation with Cd(II) induced lipopolysaccharide removal from the cell 
surface, followed by its interaction with the cell surface to alter Cd(II) uptake 
(Sandrin et al. 2000).

8.4.1  Effect of pH

The type and size of aggregates formed depend on the structure of surfactant and the 
solution pH. At low pH, rhamnolipids form liposome-like vesicles, which are similar 
in structure to biological membranes. Size of vesicles ranges from 10 to more 
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than 500 nm in diameter. The addition of Cd(II) to rhamnolipid solutions at pH 6.8 
stabilized the formation of small (20–30 nm) vesicles (Tan et al. 1994) while 
between pH 6 and 6.6, rhamnolipids form either lamella-like structures or lipid 
aggregates. When the rhamnosyl moiety is negatively charged above pH 6.8, 
micelles, the most effective structure for metal immobilization, are formed. The 
surface activity of the rhamnolipid is highest between pH 7 and 7.5. As the pH 
increases above 7.5, the surface activity decreases slightly leading to an increase in 
surface tension from 30 to 32 mN/m. After increasing to 32 mN/m at pH 8, the sur-
face tension of rhamnolipid solutions remains comparatively stable, even at pH 11. 
As the pH is decreased from 7 to 5, surface activity decreases significantly, resulting 
in a considerable increase in surface tension from 30 to >40 mN/m (Zhang and 
Miller 1992). At pH 5, rhamnolipid begins to visibly precipitate out of solution. To 
separate metals from rhamnolipid, metal sorbed rhamnolipid samples are acidified 
to a pH < 2.0 using 0.1 mL of concentrated HNO

3
 and are centrifuged to pellet the 

rhamnolipid. To control that, metals are recovered from the rhamnolipid pellet by 
washing twice with 1% HNO

3
 (Aşçı et al. 2007; Aşçı et al. 2008b). The removal of 

HMs from soils also increases with decreasing saponin pH. In this context, the pH 
5–5.5 was found to be the most suitable pH for soil remediation with saponin. 
Because of the increased electrostatic attraction between saponin and soil, the 
amount of saponin sorbed onto soils increased with decreasing pH. For minimizing 
saponin sorption to soils, pH 3 was preferred as the final pH of saponin solution. 
Following NaOH precipitation method, HMs were efficiently recovered from the 
soil leachates after saponin treatment. The precipitation efficiency of HMs was 86, 
80, 90, and 91% of sorbed Cd, Cu, Pb, and Zn, respectively at pH 10.7 (Hong et al. 
2002). In other study, the CMC values of about 100–200 mg/L for the anionic 
saponin extracted from the tree Quillaja saponaria were detected at pH 6.5 (Chen 
et al. 2008). At the 100–200 mg/L CMC, saponin forms micelles, which is generally 
less than 5 nm in diameter. At pH 10, saponin however, forms micellar aggregates 
at the CMC of 2,000 mg/L, about tenfold greater than the CMC range at pH 6.5. 
Increase in micelle formation with using less quillaja saponin, as marked by its CMC 
variation, can be obtained at lower temperature, lower pH, and higher salt concentra-
tions (Mitra and Dungan 1997). The desorption efficienceis of Ni(II) and Cu(II) ions 
from binary metal-spiked kaolin using 2,000 mg/L of saponin at room temperature 
were ~85% of the sorbed Ni(II) and ~83% of the sorbed Cu(II) at pH 5–8 (pH 6.5 
optimum) (Chen et al. 2008). Decrease in metal desorption efficiency by saponin 
at pH 9–10 has been found more obvious compared to decrease at pH 5–8.

8.5  Biosurfactant Sorption onto Soils

Biosurfactants used for soil treatment should exhibit minimal sorptive interactions 
when applied to the soil system or soil-component matrix. Thus, most of the biosur-
factant should remain in the liquid phase. Biosurfactant sorption in general is likely 
the reason that high rhamnolipid concentrations are needed for effective metal 
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removal. However, there are many reasons to avoid injection of excess biosurfactant 
into soils. Firstly, use of excess biosurfactant is expensive, even if the degree of 
biodegradability and toxicity of the biosurfactant fulfills the EPA requirements; sec-
ondly, use of excess biosurfactant may lead to other environmental problems like 
higher concentrations of biosurfactants can plug the soil pores by the dispersion of 
fine materials, or by the formation of viscous emulsions (Wang and Mulligan 
2004a). The major factors influencing the movement of particles of less than 50 nm 
in diameter through soil are advection, dispersion, and adsorption by soil surfaces. 
Little is presently known about the sorption of microbial surfactant monomers such 
as rhamnolipids or aggregate structures by soil or soil constituents. However, 
analogous to bacteriophage, viral particles, or microspheres behavior, sorption of 
biosurfactant depends on its molecular characteristics, for example, charge and 
hydrophobicity, as well as soil characteristics.

The rhamnolipid sorption mechanism involves the cation bridging between the 
anionic polar head group and sorbed cations on soil component. Hydrophobic inter-
actions between the nonpolar tails and hydrophobic regions in the soil component 
also play important role in rhamnolipid sorption (Torrens et al. 1998; Ochoa-Loza 
et al. 2007). However, the mechanism of rhamnolipid sorption and the role of cation 
bridging in rhamnolipid sorption have not been investigated in detail. A characteristic 
S-shaped isotherm for the sorption of anionic surfactants is observed because of the 
combination of electrostatic and hydrophobic sorption forces (Torrens et al. 1998). 
Electrostatic attraction forces between individual anionic surfactant ions and posi-
tively charged sites on soil surfaces control the first stage of the S-shaped sorption 
isotherm. As the surfactant concentration is increased, surfactant ions show an 
increased tendency for self-aggregation, an analogous process to micelle formation. 
In the second stage of sorption, hemimicelle formation together with a rapid increase 
in surfactant sorption to soil surfaces is observed. This hemimicelle formation neu-
tralizes solid surface charge. After neutralizing effects, surfactant sorption begins to 
slow down. When surfactant concentration is increased further, actual micelle for-
mation appears, and the surface charge of soil surface changes from positive to 
negative. Repulsive forces become effective on soil surface and further sorption of 
surfactant is inhibited. A plateau is reached in the third stage of sorption and a con-
siderable amount of surfactant unadsorbed remains in the liquid phase.

The most important clay minerals used for environmental purposes are kaolin, 
smectite, sepiolite, K-feldspar, Na-feldspar, and quartz. The rhamnolipid sorption 
on soil or soil-component matrix decreases with increasing rhamnolipid concentra-
tions. The rhamnolipid sorption capacities of clay minerals and some soils in the 
absence of metal ions are reported to decrease in the order of soil A (smectite-
moderate, sorption efficiency 100%)4 > sepiolite (100–68.2%) > soil C5 (smectite-
moderate-dominant, 74.8–33.2%) > soil B6 (smectite-dominant, 100–23.2%) 

4 Soil A smectite, serpentine, amphibole, feldspar-moderate.
5 Soil C smectite-moderate-dominant, feldspar-moderate, illite-moderate.
6 Soil B smectite-dominant, feldspar-moderate.
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(Aşçı et al. 2008a, b) > kaolin (33.2–13.2%) (Aşçı et al. 2007) > K-feldspar 
(18.2–4.9%) (Aşçı et al. 2008a) > Na-feldspar (13%) (Unpublished data) > quartz 
(0%) (Aşçı et al. 2010). In the presence of 1 mM Cd(II), rhamnolipid sorption 
capacity of the soils was of the order: sepiolite (91.5–49.9%) > soil A (smectite-
moderate, 75–35%) (Aşçı et al. 2008a, b) > soil B (smectite-dominant, 43.2%) > soil 
C (smectite-moderate-dominant, 31.5%) (Aşçı et al. 2008b) > K-feldspar (14.9%) 
(Aşçı et al. 2008a) > kaolin (0%) (Aşçı et al. 2007) > Na-feldspar (0%) (Unpublished 
data) » quartz (0%) (Aşçı et al. 2010). Because of poor sorption properties of rham-
nolipids, quartz-dominated soils gave better results than the other soils during bio-
removal/recovery of metals. Sorption of rhamnolipids by soils also depends on the 
iron-oxide (Fe

2
O

3
) content, the clay content, and clay type. Soils with low content 

of aluminosilicate minerals and iron oxides reveal relatively low sorption of rham-
nolipids. The contribution of soil constituents like OM, metal oxides, and clays to 
sorption of the rhamnolipids (monorhamnolipid, R1, and a mixture of R1 and R2, 
di-rhamnolipid) was investigated (Ochoa-Loza et al. 2007). Monorhamnolipid 
sorption at low R1 concentrations decreased in the order of hematite > kaolinite > 
MnO

2
 » illite » Ca-montmorillonite > gibbsite(Al(OH)

3
) > humic acid-coated silica. 

Rhamnolipid sorption capacity of clays, metal oxides, and OM at high R1 concen-
trations followed the order: illite>>humic acid-coated silica > Ca-montmorillonite > 
hematite > MnO

2
 > gibbsite » kaolinite. Although the R1 form in certain studies 

was found as more effective than the R2 form in metal removal, the application of 
rhamnolipids to soil has been found most effective in a mixed R1/R2 system. 
Addition of R1 alone or increasing the amount of R1 in a R1/R2 mixture is likely to 
increase the aqueous phase concentration of the R1 and therefore, increases the 
efficiency of rhamnolipid in bioremediation. In other study, the sorption of certain 
surfactants to soil was compared, and was observed that the sorption of surfactant 
solutions to soil decreased in the order: aescin (80%) > rhamnolipid (75%) > saponin 
(67%) > tannin (60%) > lecithin (56%) > sodium dodecyl sulfate (SDS) (33%) (Urum 
and Pekdemir 2004).

8.6  Examples of Heavy Metal Removal from Soils  
Using Biosurfactants

The results obtained so far on HM recovery from soil and/or soil components using 
biosurfactants are presented in Table 8.2. In a study, in order to enhance HM bind-
ing capacity of rhamnolipid particularly at low concentrations, rhamnolipid matrix 
was loaded to KNO

3
 (Herman et al. 1995). For this, the metal-containing soil was 

suspended in 0.1 M KNO
3
 containing rhamnolipid at different concentrations or in 

a control solution to determine the potential for metal removal. In the presence of K+ 
in the rhamnolipid matrix, the removal of metals ranged between 16% and 48% of 
the sorbed Cd(II) and Zn(II), at 12.5 and 25 mM rhamnolipid concentration. In the 
absence of K+, less than 11% of sorbed Cd(II) and Zn(II) was desorbed. Desorption 
efficiency of metals by the control solution that included the same molar concentration 
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of K+ as the rhamnolipid solution was between 15.6% and 18.8% of sorbed Cd(II). 
At 50 and 80 mM rhamnolipid concentrations, Cd(II) desorption was about three-
fold greater than the removal by ion exchange as rhamnolipid sorption by soil 
decreased with increasing rhamnolipid concentrations. In contrast to Cd(II) and 
Zn(II), less than 2% of sorbed Pb(II) was desorbed by ion exchange. Desorption 
efficiencies of 27.5% and 41.6% of sorbed Pb(II) were obtained by 50 and 80 mM 
rhamnolipid in the absence of K+.

The biosurfactants have largely been used to remediate soils contaminated with 
single metal. The use of binary metal solutions for preparation of artificially contami-
nated soil is a newer and realistic approach. The use of binary metal solutions consti-
tutes a model of competitive sorption in soil. Few column studies have also been 
conducted for the HM removal using biosurfactant. For example, column studies 
were performed to remove Cd(II) and Pb(II) together from artificially contaminated 
soil using di-rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain 
BS2 (Juwarkar et al. 2007). The sorption capacity of the soils for Pb(II) was higher 
(91%) than that of Cd(II) (87%). The results revealed that 92% of sorbed Cd(II) was 
removed by di-rhamnolipid as compared to only 88% of sorbed Pb(II). On the other 
hand, washing of artificially contaminated soil with tap water removed only »2.7% 
of sorbed Cd(II) and 9.8% of sorbed Pb(II). Di-rhamnolipid removed only 18.8% of 
sorbed Cd(II) and 8.4% of sorbed Pb(II) from the natural soil. Treatment of the soils 
with 0.1% di-rhamnolipid, however, did not show any toxic effect against bacteria, 
fungi, actinomycetes, and nitrogen fixers before and after rhamnolipid treatment.

The binding capacities of biosurfactants to remove Zn(II) and Cu(II) from 12.6% 
oil, grease, Zn(II) (890 mg kg−1), Cu(II) (420 mg kg−1), Pb(II) (102 mg kg−1), Cd(II) 
(below the detection limit) -contaminated soil were compared by a batch wash and 
a series of five washings with surfactin, rhamnolipid, and sophorolipid (Mulligan 
et al. 1999a). The cumulative metal removal efficiencies after the five washes 
increased significantly. After a series of five batch washes, the Cu(II) removal effi-
ciencies of certain biosurfactants and chemical agents decreased by 70% with 0.1% 
surfactin/1% NaOH > 50% with 4% sophorolipid/0.7%HCl » 4% sophorolipid/2% 
Triton X-100 > 40% with 0.7% HCl > 38% with 0.1% rhamnolipid/1% NaOH > 20% 
with 1% NaOH. As the nonionic surfactant, Triton X-100 helps to solubilize the 
anionic surfactant, sophorolipid, which no longer forms a layer on top of the solu-
tion, using sophorolipid and Triton X-100 together gives better results. However, 
Cu(II) uptake by the Triton X-100 singly is not detectable. As the pH values of 0.7% 
HCl singly and the mixture of sophorolipid/HCl were approximately same (pH 5.5), 
the most considerable increase in both Cu(II) and Zn(II) removal was obtained by 
addition of HCl. On the contrary, the addition of HCl to rhamnolipid and surfactin 
caused precipitation of biosurfactants, thus making them unavailable for the metal 
removal. Zn(II) removal efficiencies followed the order: 100% with 4% sophoro-
lipid/0.7% HCl > 80% with 0.7% HCl > 50% with 4% sophorolipid/2% Triton X-100 
>25% with 0.1% surfactin/1% NaOH > 17% with 0.1% rhamnolipid/1% NaOH > 10% 
with 1% NaOH. Surfactin or rhamnolipid with 1% NaOH removes the organically 
bound copper and the sophorolipid with HCl removes the carbonate and oxide-
bound zinc (Mulligan et al. 1999a).
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The success of the metal removal process for soil depends on the capacity of 
biosurfactant and the components constituting soil. Little is currently, however, 
known about the desorption of HM ions by biosurfactants from various clay miner-
als and other soil components. In a study, desorption of Cd(II) from various soils 
and/or soil constituents using rhamnolipid biosurfactant at approximately similar 
operating conditions was compared. It was observed that Cd(II) recovery using 
rhamnolipid decreased in the order of K-feldspar > Quartz > Kaolin > Soil A7 
(Smectite-moderate soil) > Soil B8 (Smectite-dominant soil) > Soil C9 (Smectite-
moderate-dominant soil) > Sepiolite (Aşçı et al. 2007, 2008a, b, 2010). This order 
was almost the reverse of the Cd(II) sorption efficiency order on the soils and/or 
components. The more the metal sorption efficiency of soil and/or component 
increases, the more the metal desorption efficiency decreases.

Another example where biosurfactant has been used is the removal of arsenic. 
Among the various forms of arsenic, arsenite [As(III)] is more toxic and mobile 
than arsenate [As(V)]. The rhamnolipid biosurfactant with a mass ratio of 10 mg 
rhamnolipid/g mine tailings at pH 11 in batch system mobilized 119 mg As/kg from 
the mine tailings (Wang and Mulligan 2009). The rhamnolipid biosurfactant 
increases As mobilization through anion exchange. The addition of biosurfactant 
increases the negative zeta potential substantially, which produces a greater repul-
sive interaction. As mobilization is enhanced, the re-adsorption of As to the mine 
tailings is hindered. The mobilization of As by the rhamnolipid increased signifi-
cantly with pH increase from 7 to 11. Increasing pH enhances the ionization of the 
carboxyl group of the rhamnolipids and metal solubility. High pH results in a more 
repulsive hydrophilic head group and increases the effective size of the head group 
and generates high-curvature micelles. In basic condition, addition of 1% NaOH 
can result in the formation of large aggregates (>2,000 Å) plus micelles in the range 
of 15–17 Å develop. In acidic condition, by addition of 1%NaCl, large polydisperse 
vesicles with a radius about 550–600 Å occur. In both conditions, the size of the 
aggregates permits the flow of the rhamnolipid solution through the porous media 
with the pore sizes of 200 nm. The accumulative removal of As, Cu, Pb, and Zn 
simultaneously using 0.1% rhamnolipid solution at pH 11 in column experiments 
was found to be 148, 74, 2,379, and 259 mg/kg after a 70-pore-volume flushing, 
respectively (Wang and Mulligan 2009). The presence of rhamnolipids hindered the 
formation of Fe hydroxide precipitate. While co-mobilization of the metals in the 
presence of rhamnolipids promoted transfer of As into aqueous organic complexes 
or micelles through metal-bridging mechanisms. Furthermore, the effect of rhamno-
lipids on the adsorption and desorption of Cu(II) ions on Na-montmorillonite 
(Na-rich smectite) was investigated (Özdemir and Yapar 2009). For this, copper(II) 
ions were mixed with pure-and/or rhamnolipid-modified Na-montmorillonite. 
Presence of rhamnolipids in the medium distributes clay platelets in water through 

7 Soil A Smectite, serpentine, amphibole, feldspar-moderate.
8 Soil B Smectite-dominant, feldspar-moderate.
9 Soil C Smectite-moderate-dominant, feldspar-moderate, illite-moderate.
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the interactions of surfactant molecules with the positively and negatively charged 
surfaces. Distribution of the platelets in water causes to decrease in the external and 
internal mass transfer resistance in the diffusion of Cu(II) ions and increase the 
adsorption rate. The adsorption process was suggested to proceed principally via 
diffusion between the interlayers of rhamnolipid-modified clay by the ion exchange 
and specific adsorption mechanisms. Because of the reasons mentioned above, a 
considerable increase in the pseudo-second order rate constant of the clay modified 
with rhamnolipids was observed. The maximum monolayer adsorption capacity, Qo, 
was obtained for the clay modified with low concentration of rhamnolipids as 
48.3 mg g−1; this value was comparable with that of the activated carbon. Increasing 
the rhamnolipid concentration to 0.017 M proceeded their adsorption as 
Cu–rhamnolipid complexes onto clay until almost no Cu(II) ions remained in the 
solution. Then, after the addition of the excess rhamnolipid concentrations (from 
0.0017 to 0.0021 M), the Cu(II) desorption began and reached 9.5 mg in solution.

Researchers have also focused their attention on the economics of biosurfactant 
use in metal removal from contaminated soils. In this context, ultrafiltration was 
used to concentrate the biosurfactants recovery and its subsequent reuse, and conse-
quently to decrease the amount of biosurfactant needed. As an example, the removal 
of metals from water with surfactin by a 50,000 Da molecular weight cut-off ultra-
filtration membrane was searched using a technique called micellar enhanced 
ultrafiltration. Cadmium(II) and Zn(II) rejection ratios were found to be nearly 
100% at pH 8.3 and 11 while Cu(II) retention decreased with increasing pH and was 
determined as 85% at pH 6.7. More metals were associated with the surfactin 
micelles, remained in the retentate phase above the ultrafiltration membrane, and 
less metals passed through into the permeate phase.

Use of biosurfactants in the phytoremediation process is a new approach. In 
order to increase phytoremediation efficiency of high biomass plants, chelators and 
surfactants have been used to enhance the solubility of soil-bound synthetic organic 
compounds and heavy metals. For example, addition of tea (Camellia sinensis) 
saponin to the soil remarkably enhanced polychlorinated biphenyls accumulation 
(nearly 2.4 times higher than that of without adding biosurfactant) in root of corn 
(Zea mays) seedling and in shoots and roots by sugarcane (Saccharum officinarum) 
(Xia et al. 2009). Cadmium(II) concentration using 0.3% tea saponin was increased 
by 97% in roots, 157% in stems, and 30% in leaves compared with those observed 
in the absence of biosurfactant.

8.7  Biosurfactant Foam Technologies

Injection of aqueous solutions including biosurfactants and complexing or chelating 
agents into the soils or groundwaters results in some risks. The ability to control the 
migration of the fluids containing HM and toxic surfactant residuals can be improved 
by using foam technology. Foam is an emulsion-like two-phase system where the 
mass of gas or air cells is dispersed in a liquid and separated by thin liquid films. 
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To compose aqueous biosurfactant foam, non-wetting gas is dispersed within a 
continuous biosurfactant-laden liquid phase (Wang and Mulligan 2004b). The 
foaming ability of surfactant solutions depends on solution concentration (mass %), 
and time. The foaming ability of five biosurfactant solutions and a well-known 
chemical surfactant, SDS, was compared (Urum and Pekdemir 2004). The foaming 
ability of SDS increased sharply with increasing solution concentration; on the 
other hand, saponin generally exhibited a greater foaming ability initially than other 
surfactants at a wide range of solution concentration (0.004–0.5 mass-%). However, 
its foaming ability decreased rapidly after 5 min and was less than that of SDS. At 
a solution concentration of 0.1 mass-%, the initial foam heights of surfactant solu-
tions decreased in the order of Saponin > SDS > Aescin > Rhamnolipid > Lecithin. 
At the same solution concentration, the foam heights of surfactant solutions after 
5 min were of the order SDS > Aescin > Saponin. At this time, rhamnolipid and leci-
thin demonstrate no foaming. Tannin has not foaming ability. Anionic surfactants 
were generally recorded to have more stability than the nonionic surfactants.

Foams increase the flooding efficiency of surfactant flushing even in a heteroge-
neous porous medium; it results in higher metal removal efficiencies. Increasing the 
rhamnolipid concentration from 0.5% to 1.5% increases the foam stability. Foam 
quality of the rhamnolipid was indicated to vary between 90% and 99% with stabili-
ties from 17 to 41 min at pH 8.0 (Mulligan and Wang 2006). The Cd(II) and Ni(II) 
removal efficiency by rhamnolipid foam increased 11% for Cd(II) and 15% for 
Ni(II) in comparison with that by rhamnolipid solution at the same concentration.

8.8  Role of Biosurfactants in Biofilm Formation  
and Use of Biofilms in Heavy Metal Bioremediation

An interface is any boundary between air and liquid, liquid and liquid, and solid and 
liquid phases. Microbial life arising at interfaces is demonstrated by microbial films, 
surface films, and aggregates. In this regard, biosurfactants do play a role whenever 
microorganisms come into contact with an interface. For instance, biosurfactants 
play an important role in gliding and swarming motility, de-adhesion from surfaces, 
cell–cell interactions such as biofilm formation, maintenance and maturation, quo-
rum sensing, amensalism (microbial competition mediated by inhibitors), pathoge-
nicity, cellular differentiation, substrate access, and avoidance of toxic chemicals 
(Van Hamme et al. 2006). Biosurfactants may further be used as C and energy stor-
age molecules as a protective mechanism against high ionic strength. They are also 
by-products secreted in response to environmental changes. Quorum sensing, a pro-
cess induced by genetic factor, depends on a critical cell density and plays a signifi-
cant role in swarming motility and biofilm formation. Biosurfactants induced by 
quorum sensing signal molecules impact biofilm structure. As an example, rhamno-
lipids are reported to play a vital role in the maintenance of biofilm structure over-
time by generating rhlA mutants lacking the rhamnosyltransferase enzyme, 
mediating rhamnolipid production (Davey et al. 2003). Mutant biofilms without 
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rhamnolipid did not maintain open channels over time and formed thick cell mats. 
Rhamnolipid has also been found crucial for cell detachment, for example, in 
P. aeruginosa biofilm centers, returning cells to the planktonic phenotype, which 
involved sensitivity to antibiotics (Boles et al. 2005).

Vital role of biosurfactants in regulating the attachment–detachment of microor-
ganisms to and from surfaces in quorum sensing and in biofilm formation has pro-
vided an insight with respect to metal bioremediation. Considering the importance 
of biofilms in metal removal, both pure and mixed culture of sulfate-reducing 
bacteria (SRB) biofilms, grown in continuous culture were treated with 20–200 mM 
Cd. It was found that eventhough both SRB cultures accumulated Cd, the mixed 
culture accumulated more and continued to accumulate Cd over a period of 14 days, 
while accumulation by the pure cultures stopped after 4–6 days. As accumulation of 
Cd within the mixed biofilm occurred by simultaneous accumulation of both protein 
and EPS, the pure culture biofilm accumulated only 25–30% of the amount of Cd 
accumulated by the mixed culture (White and Gadd 1998). In other study, immobi-
lized biofilm of Citrobacter sp. was used in the removal of uranium and lead from 
aqueous flow and the treated metals were bioaccumulated in the form of insoluble 
metal phosphate (Macaskie and Dean 1987). Lead accumulation by Burkholderia 
cepacia biofilms was observed as nanoscale crystals of pyromorphite [Pb

5
(PO

4
)

3
(OH)] 

adjacent to the outer membrane of a fraction of the total population of B. cepacia 
cells (Templeton et al. 2003). P. aeruginosa rhamnolipid was shown to reduce Cd 
toxicity while it led to an increased naphthalena biodegradation by a Burkholderia 
species. The reduction mechanism of metal toxicity of rhamnolipid might include a 
combination of rhamnolipid complexation of Cd–rhamnolipid interaction with the 
cell surface to change Cd uptake resulting in increased rates of bioremediation 
(Todd et al. 2000). An increased accumulation of cytoplasmic crystals of Au(III) 
and cell wall associated La(III) in biofilm relative to crystal formation during plank-
tonic growth was observed. It was proposed that physiology and physicochemical 
conditions around cells in biofilms facilitate the removal of HM ions (Langley and 
Beveridge 1999). Interestingly, biofilms withstand the toxicity of HMs when com-
pared with logarithmically grown or stationary phase cells. For example, biofilm of 
P. aeruginosa was more resistant to the toxicity of Zn, Cu, and Pb compared with 
equal number of free cells (Teitzel and Parsek 2003). However, the degree of HM 
resistance varies with the type and concentration of metals. Species diversity of 
biofilms also affects the HM resistance and removal efficiency. Mixed culture bio-
films exhibit high metal uptake efficiency and are not affected by rapid increases or 
continuously high metal concentrations (Singh and Cameotra 2004).

8.9  Recent Use of Biosurfactants in Nanotechnology

The most exciting developments in the biosurfactant technology have recently been 
recorded in the area of nanotechnology. Rhamnolipids as a biosurfactant have been 
used in an eco-friendly manner for the production of nanomaterials. Nickel oxide 
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nanorods have been produced using a solution based water-in-oil microemulsion 
technique (Palanisamy 2008). In this technique, rhamnolipid biosurfactant was ren-
dered disperse in n-heptane hydrocarbon phase. Using this technique, the nanorods 
with nearly 22 nm in diameter and 150–250 nm in length at pH 9.6 were obtained. 
The morphology of the nanoparticle was adjusted by changing the pH of the solu-
tion without harmful effect on the environment. At lower pH, Ni(OH)

2
 had flaky 

morphology. Mixed flaky and spherical particles were produced by increasing the 
pH of the solution from 8 to 10. In a follow-up study, spherical nanoparticles of NiO 
at pH greater than 10 have been synthesized (Palanisamy and Raichur 2009). 
Increase in the pH of the solution from 11.6 to 12.5 decreased the size of nanopar-
ticles from 86 ± 8 nm to 47 ± 5 nm. Nanoparticles were characterized by SEM, XRD, 
TEM, and TG-DTA. In the synthesis of silver nanoparticles having unprecedented 
physical, chemical, magnetic, and structural properties, surfactin has been shown to 
act as a renewable, low-toxicity, and biodegradable stabilizing agent (Reddy et al. 
2009). Surfactin extracted from the cell-free culture of Bacillus natto TK-1 has cur-
rently been used to stabilize superparamagnetic iron oxide nanoparticles (SPION) 
as contrast agents for magnetic resonance imaging (MRI) (Liao et al. 2010). The 
organic magnetic nanoparticles with an average diameter of 8 nm were transferred 
into water by the surfactin. Particles aggregation and size change were not observed. 
Despite the fact that the biosurfactants can be used in nanotechnology, synthesis of 
biosurfactant-added nanoparticles in the bioremediation of water and soil pollution 
has not yet been performed. Rhamnolipid has just been used to improve the electro-
kinetic and rheological behavior of nanozirconia particles (Biswas and Raichur 
2008). The rhamnolipid adsorbs onto the zirconia with the increasing concentration. 
Zeta potential measurements indicated that the iso-electric point of zirconia with 
increasing rhamnolipid concentration shifted and the surface of zirconia became 
more electronegative. Maximum surface charge was reached at 230 mg L−1 rhamno-
lipid concentration. The zirconia suspension is viscous at high solids loading 
(>50 wt%). Addition of rhamnolipid decreased the viscosity markedly and increased 
the dispersion of zirconia particles at pH 7 and above. Zeta potential measurements, 
sedimentation, and viscosity tests proved that rhamnolipid acts as a good dispersant 
for flocculation and dispersion of high solid amounts of zirconia microparticles. 
Future research should focus on the use of biosurfactant-added nanoparticles in the 
treatment and remediation of environmental pollution.

8.10  Kinetic Modeling of Desorption

The time-dependent desorption data are fit to some frequently used kinetic models 
(Table 8.3). These models are used for both the adsorption and desorption kinetic 
data. A rate equation for the sorption of solutes from a liquid solution was devel-
oped by Lagergren (1898). This pseudo-first order rate equation is

 
= −1 ( )eq t

dq
k q q

dt  (8.4)
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Integrating Eq. 8.6 for the boundary conditions t = 0 to t = t and q = 0 to q = q
t
 

gives

 

eq

1
eq

)(
ln tq q

k t
q

−
= −

 
(8.5)

where q
t
 and q

eq
 are the amount of solute sorbed/desorbed per unit weight of sorbent 

at any time and at equilibrium, respectively, and k
1
 is the rate constant of first-order 

sorption/desorption.
Another model used extensively to describe the sorption/desorption kinetics is 

pseudo-second order. The rate law (Ho and McKay 1999; Azizian 2004) for this 
system is explained as:

 

2
2 eq( )t

dq
k q q

dt
= −  

(8.6)

The pseudo-second order and pseudo-first order sorption kinetics are frequently 
adopted to define HM sorption kinetics on soils and/or soil components (Table 8.4). 
The values of first-order adsorption rate constants of Cu(II), Ni(II), Co(II), and 
Mn(II) ions by raw kaolinite decreased in the order: Cu(II) > Ni(II) > Co(II) > Mn(II)  
(Yavuz et al. 2003). The magnitude of pseudo-first-order adsorption rate constants 
for palygorskite clay decreased in the order: Cr(VI) > Pb(II) > Ni(II) > Cu(II) 
(Potgieter et al. 2006). These kinetic models have never been employed on the des-
orption of HMs from soils and/or components using biosurfactants. Some models 
are, however, developed only for desorption process. The desorption rate at any 
instant is proportional to the difference between the initial (at t = 0) amount of the 
sorbed metal on sorbent and the metal concentration in the solution at any time t. 
This is given by the following equation (Purkait et al. 2005)

 
( )α= −o

dq
q kq

dt  
(8.7)

where a and k are the constants (k ¹ 1), q
o
 and q are the amount of sorbed metal per 

unit weight of sorbent at time t = 0 and at any time t = t, respectively. Integration of 
Eq. 8.9 between t = 0 and any time t gives the following relation for percentage 
desorption.

 
1

100 1 k tk
D e

k
−−   = × −    

α  (8.8)

where D is described as 1 100
o

q
D

q

 
= − ×  

.

Three different types of soils, andosol (clayloam), cambisol (loam), and regosol 
(sandy clay loam) were treated by saponin in batch system and desorption of HMs 
was shown to follow a first-order reaction kinetics within 30 min. The magnitude of 
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desorption rate constant was Pb < Cu < Cd < Zn. In case of regosol, maximum rate 
constants for these metals were obtained (Hong et al. 2002). To evaluate the biosur-
factant complexation affinity for soil and water cations and for HM ions, the condi-
tional stability constants (log K) for metals were determined using an ion-exchange 
resin technique. This technique is based on the equilibrium complexation of a metal 
with an organic ligand and of a metal with a cation-exchange resin. The equilibrium 
reactions of a metal with an organic ligand and an ion-exchange resin are given as 
follows (Schubert 1948; Schubert and Richter 1948; Cheng et al. 1975):

 

L

R

M L ML

M R MR

+ ⇔

+ ⇔
χχ

 (8.9)

For a conditional stability constant, log K, a linear relationship was obtained 
(Ochoa-Loza et al. 2001).

 

λ
χ

λ
 − = + 
 

olog 1 log logK L
 

(8.10)

A plot of log[(l
o
/l)−1] versus log L, where L is the biosurfactant concentration, 

gives the values of c and log K individually for each metal from the slope and intercept, 
respectively. This relationship is valid only if the organic ligand is not bound by the ion 
exchanger and the metal concentration is lower than that of the complexing agent.

8.10.1  Sorption–Desorption Equilibrium

Although sorption characteristics of various soils and/or components and metals have 
been often studied through sorption isotherms, those of desorption isotherms are quite 
limited. The desorption isotherm is prepared by plotting the amount of metal remained 
in the solid phase after desorption versus the corresponding equilibrium metal concen-
tration in solution (Table 8.5). The sorption and desorption reactions may not provide 
the same isotherm equation, marking that hysteresis occurred in metal sorption–
desorption processes. The desorption isotherms of Cd(II) and Zn(II) from quartz using 
rhamnolipid have been shown to well fit to Freundlich-desorption model (Aşçı et al. 
2010). A desorption hysteresis index based on Freundlich exponent and an irrevers-
ibility index based on metal distribution coefficient have been calculated to quantify 
hysteretic behavior observed in the systems. The ratios of Freundlich exponents were 
4.34 and 1.67 for Zn(II) and Cd(II) ions, respectively10.

10 Where M
L
 is the free metal concentration in solution at equilibrium in an organic ligand- 

containing system (mol l-1), M
R
 is the free metal concentration in solution at equilibrium in an 

organic ligand-free system (mol l-1), is the moles number of organic ligand that connect with one 
mole of metal ion (mol mol-1), L is the soluble organic ligand concentration (mol l-1), ML is the 
complexed metal-organic ligand concentration in solution at equilibrium (mol l-1), R is the concen-
tration of ion-exchange resin (kg l-1), and MR is the amount of metal bound to the ion-exchange 
resin at equilibrium per a unit weight (mol kg-1).
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8.11  Conclusion and Future Prospect

Biosurfactant technology as soil-washing process can be used successfully in the 
bioremediation of heavy metal-contaminated soils. However, more information is 
required to understand the structure of biosurfactants, to discover novel biosurfac-
tants, secretion of biosurfactants, metabolic route, primary cell metabolism, scale 
up, and cost for biosurfactant production. If the HM remediation is performed in 
situ, production of the biosurfactants can also be in situ. Little work has been per-
formed on the larger scale or field remediation of HM-contaminated soils due to 
high production costs of biosurfactants. Fermentation processes using cheap or 
waste substrates can be developed to obtain higher yields, rates, and recovery. 
Further fermentation process optimization at the biotechnological and engineering 
level are needed. Moreover, cost of downstream processing for the recovery of bio-
surfactant need to be minimized. To decrease the amount of biosurfactant utilized, 
for example, ultrafiltration can be used to concentrate the biosurfactants for recov-
ery and subsequent reuse. As biosurfactant foam technology decreases the treat-
ment costs due to the low usage of biosurfactants and other chemicals, it might be 
used as an additional process for the in situ pump-and-treatment methods. When 
foam technology is used, continuous kinetic studies in column systems can be per-
formed to increase heavy metal removal and recovery efficiencies. Development of 
kinetic and equilibrium models could also be helpful to predict high metal removal 
and recovery efficiencies. Removal of single metal, multiple-metal, or hydrocarbon 
contaminants singly from soils using biosurfactants have been investigated exten-
sively. Future studies might focus on more realistic systems such as mixed organic 
and HM contamination. As biosurfactants are involved in the processes of biofilm 
formation, hybrid systems including metal-remediating viable microorganisms 
forming biofilm and biosurfactants can be cultivated. Biofilms can also be processed 
to collect the sorbed metal and, in this way, downstream process cost can be reduced. 
Biosurfactants are being used in the synthesis of nanomaterials as nontoxic, renew-
able, biodegradable, “green” dispersant and stabilizer. As a matter of fact, there is 
however, no environmental application yet. And hence, innovative research tech-
niques should focus on the use of novel-designed nanoparticles stabilized by biosur-
factants in the remediation of HM-polluted soils.
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Abstract Mycorrhizal fungi, obligate biotrophs, form mutualistic associations 
with plants and provide mainly phosphorus to plants. Mycorrhizal fungi colonize 
the roots of many plants growing on metal-contaminated soils and play an important 
role in metal tolerance and accumulation. Even though mycorrhizae are known to 
inhabit metal contaminated sites; the exact mechanism of colonization is unclear. 
For example, how mycorrhizal fungi tolerate and maintain homeostasis to toxic 
metals? Could metal tolerance be transferred to host plants? If so, how do mycor-
rhizal associations enhance metal accumulation in plants? Mycorrhiza possesses the 
same constitutive mechanisms as do the higher plants to circumvent metal toxicity. 
The adaptive tolerance is acquired by expressing genes that confer enhanced metal 
tolerance under stressed conditions. Various mechanisms adopted by mycorrhizal 
symbionts to overcome metal toxicity are highlighted. The metal detoxification 
mechanisms discussed here are likely to serve as a base for developing transgenic 
plants with abilities of increased metal tolerance and uptake, for decontamination 
and restoration of the metal polluted sites.
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9.1  Introduction

The development of symbioses between mycorrhizae and most terrestrial plants has 
been found beneficial to both interacting partners and hence to the agro-ecosystem. 
Among such beneficial activities, the ability of mycorrhizal fungi to overcome the 
undesirable effects of heavy metals onto plants and microbes is of special impor-
tance. Taking these into consideration, different mycorrhizal fungi like ericoid 
(ERM) (Martino et al. 2003), ectomycorrhiza (ECM) (Ramesh et al. 2009), and 
arbuscular mycorrhizal (AM) fungi (Redon et al. 2008) have been reported to sig-
nificantly accumulate heavy metals (Joner et al. 2000) and to protect host plants 
from metal toxicity (Arriagada et al. 2007). Metal remediation by mycorrhizal fungi 
is influenced by its species, host genotypes, and metal species. Metal uptake by 
plants is, however, contradictory. For example, AMF inoculation is reported to 
enhance metal accumulation in Helianthus annuus (Awotoye et al. 2009) and 
Cannabis sativa L. (Citterio et al. 2005). Others have found that reduced metal con-
centrations in plants protect them from phytotoxic effects (Joner and Leyval 1997; 
Chen et al. 2007). Likewise, ECM fungi reduced metal uptake by the plant through 
immobilization in the fungal biomass (Li and Christie 2000; Zhu et al. 2001). Thus, 
mycorrhizal plants in some cases can exhibit enhanced metal uptake and root-to-shoot 
transport (phytoextraction), while in other cases, MF can immobilize metal within 
the soil (phytostabilization).

The ability of MF in improving plant biomass (Gamalero et al. 2004; Berta et al. 
2005) by alleviating metal toxicity to the host plants (Rivera-Becerril et al. 2002) 
plays an important role in decontamination of polluted sites. Several reports have 
suggested that the mycorrhizal fungi isolated from metal contaminated sites have 
shown metal tolerance greater than fungi recovered from non-contaminated sites 
(Gaur and Adholeya 2004; Sudova et al. 2008). This was presumably due to the 
homeostasis and constitutive mechanisms, as also adopted by plants. Like plants, 
MF also possesses a range of detoxification and/or tolerance mechanism at the cel-
lular and subcellular level. In addition, mycorrhiza also prevents the transport of 
metals to plants by binding the metals at the electronegative sites of the mycelial 
cell wall (Frey et al. 2000).

Experiments on the differential gene expression in extra-radical mycelium of an 
AMF, Glomus intraradices Sy167, spiked with cadmium, copper, or zinc under 
in vitro conditions indicated the synthesis of proteins, involved in metal tolerance, 
for example, a Zn transporter, metallothionein (MT), 90-kDa heat shock protein, 
and glutathione S-transferase (GST) (Hildebrandt et al. 2007). The gene expres-
sion, however, varies in response to different metals. For example, ECM fungi 
when grown in the presence of cadmium and copper increased the production of 
glutathione (GSH), g-glutamylcysteine, and a Cd-binding MT (Ramesh et al. 
2009). Efforts have also been directed to further untangle the regulatory genes 
coding for MTs and phytochelatins (PCs), specific metal transporter proteins, and 
synthesis of chelators in different mycorrhizal ecotypes. These proteins are known 
to increase tolerance and accumulation of metals. The mycorrhizal fungi also alleviate 
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metal-induced oxidative stress caused to plant by antioxidant enzymes. As an 
 example, Azcon et al. (2009) observed the enhanced catalase (CAT), ascorbate 
peroxidase (APX), and glutathione reductase (GR) activities in AMF-inoculated 
plants grown in metal-stressed soil. Thus, mycorrhizal fungi capable of adopting 
different strategies to overcome metal stress raise several questions regarding their 
role in metal remediation. For example, what mechanisms they follow at extra- and 
intracellular level to protect themselves from metal toxicity and the plants they 
colonize? Are these mechanisms metal, host, and/or species specific? The efforts 
have been made here to address these problems by synthesizing recent findings on 
the subject.

9.2  Metal Tolerance/Detoxification in Mycorrhizal Fungi

In any organism, the nonessential and essential metal ions are transported through 
nonspecific ion uptake systems (Nies and Silver 1995). However, when metal ions 
are in excess, AM fungi have evolved several mechanisms for maintaining homeo-
stasis to virtually all toxic metals (Rouch et al. 1995; Turnau et al. 2001). Essential 
metal tolerance mechanisms are usually chromosome mediated, whereas nonessential 
are plasmid encoded, which have been found specifically under stress conditions 
(Silver and Walderhaug 1992). These mechanisms operate both at extracellular and 
intracellular levels. Extracellular mechanism involves the avoidance of metal entry 
into the cell (Fig. 9.1) and, hence, results in the reduction of ion influx and increases 
the efflux (Hall 2002; Drager et al. 2004). The intracellular mechanism, on the other 
hand, involves metal detoxification and sequestration and is mediated by complex-
ation of metals with cytosolic peptides, like, GSHs, PCs, and MTs (Cobbett and 
Goldsbrough 2002), and polyphosphate granules or compartmentalization of metals 
into the vacuoles (Tomsett 1993). The synthesis of antioxidant enzymes namely 
superoxide dismutase (SOD) and glutathione reductase (GR), in contrast, are the 
other defense mechanisms that reduce the oxidative stress generated by metal-
induced reactive oxygen species (ROS) (Azcon et al. 2009). Nevertheless, the infor-
mation regarding whether extra- and intracellular mechanisms occur simultaneously 
or in isolation is scarce, and to resolve this further, both have been discussed in the 
following section.

9.2.1  Extracellular Mechanisms

The basic principles underlying metal tolerance include the extracellular chelation 
of HMs by root exudates and/or binding of HMs to the rhizodermal cell walls. As a 
result of complex formation, the uptake of HM is restricted. However, mycorrhizal 
fungi also adopt other physiological strategies to reduce the entry of toxic metals 
inside the cells (Meharg 2003).
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9.2.1.1  Heavy Metal Chelation by Organic and/or Inorganic Ligands

Previous studies have indicated that the fungal cell wall binds to approximately 50% 
of the metal ions (Joner et al. 2000); most of which bind to negatively charged 
components of the cell wall, such as chitin, melanin, and in case of AM fungi, espe-
cially the glomalin (Ferrol et al. 2009). An important process in the maintenance of 
metal homeostasis is chelation by extracellular and intracellular organic compounds 
(Clemens et al. 2001). Mycorrhizal fungi, like certain plant hosts, exude organic 
acids such as citric, malic, and oxalic acid and amino acids into the rhizosphere 
(Jones 1998) to resist metal toxicity (Fig. 9.1). The deprotonation of organic acids 
acidifies the rhizosphere (Landeweert et al. 2001; Fomina et al. 2005) and increases 
the mobility of metal ions in soil, or immobilizes and detoxifies them through pre-
cipitation and complexation. In a follow-up study, Gonzalez-Chavez et al. (2004) 
reported an insoluble glycoprotein (glomalin) excreted by AM fungi to sequester 
metal ions especially Cu, Pb, and Cd from highly polluted soils and the amount of 
glomalin excretion and metal sequestration was significantly correlated. The reduc-
tion in the bioavailability of the contaminants occurs through the formation of 
glomalin–metal complexes in soil, which could assist in detoxifying the metal and 
concomitantly protect the plant and colonizing fungus from adverse effects of metals. 

Fig. 9.1 Schematic representation of extra- and intra-cellular metal complexation through extruded 
organic ligands in the rhizosphere and metal-chelating agents in cytosol of MF in response to metal 
exposure. Red dots indicate metal ion, OA organic acid, AA amino acid, GP glomalin protein, MIT 
metal influx transporters, MET metal efflux transporters, GSH glutathiones, MT metallothioneins, 
PPG polyphosphate granules
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In a study, Driver et al. (2005) and Purin and Rillig (2008) observed that glomalin 
protein is found in about 80% fungal mycelium and has a primary function in the 
living hyphae of MF. Therefore, it is suggested that fungal strains with the ability to 
secrete glomalin be identified so that metal sequestration from polluted sites could 
be enhanced.

In addition to organic ligands, metals can also bind to inorganic binding sites 
present on AMF hyphae. The fungal cell wall possesses negatively charged free 
carboxyl, amino, hydroxyl, phosphate, and mercapto groups that intercept metal 
cations. Taking these facts into consideration, a range of metals has been shown to 
accumulate in the fungal mantle and rhizomorphs in Suillus luteus–Pinus sylvestris 
associations (Turnau et al. 2001), cell walls of Paxillus involutus (Blaudez et al. 
2000), and in cortical cells of both mycorrhizal and non-mycorrhizal Picea abies 
(Jentschke et al. 1991). The pattern of metal chelation is, however, variable among 
mycorrhizae.

9.2.2  Intracellular Mechanisms

Despite extracellular chelation and cell-wall binding capacities of mycorrhizal 
fungi, large amounts of metal may enter into the cells through nonspecific ion uptake 
systems. To acquire micronutrients that are toxic at higher concentrations, fungi 
have evolved mechanisms to maintain cellular homeostasis for such elements, 
mechanisms to detoxify excess metals and repair mechanisms to counteract damage 
caused by metals (Meharg and Macnair 1994; Sanita di Toppi et al. 2002). Adaptation 
to a toxicant could involve alteration of one or more of these pathways, such as 
transformation, complexation or reduced transport into the cell, or localization 
within the cell. In addition, the metal that enters into the cell may also be altered to 
another species by pH or redox potential, or through complexation with plant 
biomolecules for either transport within the plant, or storage purposes.

9.2.2.1  Metal Complexation by Polyphosphate Granules

Electron micrographic studies on HM-treated ECM fungi have shown the presence 
of metal-phosphate deposits in vacuoles. These polyphosphate granules act as 
metal-chelating agents and detoxify excess metal ions (Vare 1990; Leyval et al. 
1997). As an example, Hartley et al. (1997) reported that polyphosphates produced 
excessively by ECM fungi form an important intracellular storage material in the 
form of phosphorus in the vacuole. In this context, there are several reports which 
suggest that vacuolar polyphosphates exist in the form of insoluble granules com-
plexed with a variety of cations (Ashford et al. 1986; Martin et al. 1994). The pres-
ence of functional groups within polyphosphate granules indicates the possibility 
for binding of metals with them, and thus forms the basis of intracellular metal 
detoxification in ECM fungi.
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9.2.2.2  Vacuolar Compartmentalization by PCs and MTs

After cytosol complexation, the vacuolar compartmentalization is the major 
 mechanism adopted by MF to remove metals intracellularly through chelation of 
metal ions with thiol-containing compounds, such as, GSH, PCs, and MTs, for 
maintaining homeostasis of toxic metals within the cytoplasm (Fig. 9.1). Reduced 
GSH (g-glu-cys-gly), the most abundant non-protein thiol, acts as a metal chelator 
(Pocsi et al. 2004), scavenges free radicals, and repairs damage caused by the oxida-
tive stress (Ferrol et al. 2009). It also protects the cell and its subcellular compo-
nents from metal-induced damage by chelating and sequestering the metal ions. An 
increased production of GSH and its precursor g-glutamylcysteine in Paxillus invo-
lutus under Cd exposure has been observed by Ott et al. (2002) and Courbot et al. 
(2004). Putative gene sequences coding for enzymes involved in glutathione and 
g-glutamylcysteine synthesis has also been identified in expression sequence tag 
(EST) databases obtained from the ECM fungi Hebeloma cylindrosporum and 
Paxillus involutus.

Phytochelatins are intracellular metal-chelating agents comprised of a family of 
small cysteine-rich peptides having general structure (g-glutamyl-cysteinyl)n-glycine 
(n = 2-ll) and the variants with the repeated g-glutamylcysteinyl units are formed in 
some plants and yeast. They are capable of binding to various metals including Cd, 
Cu, Zn, or As via the sulfhydryl and carboxyl residues, but their biosyntheses are 
controlled preferentially by the metal. Phytochelatins are synthesized from reduced 
GSH by the transpeptidation of g-glutamyl-cysteinyl dipeptides mediated by a 
constitutively synthesized enzyme, phytochelatin synthase (Schmoger et al. 2000; 
Vatamaniuk et al. 2001). However, the PC production in MF in response to metal 
stress is not reported. The MTs on the contrary are low molecular weight peptides 
that chelate metal ions by thiolate coordination and play a crucial role in cellular 
HM detoxification and homeostasis (Gadd 1993; Cobbett and Goldsbrough 2002). 
They are characterized by their small size (<7 kDa), a high content of amino acid 
cysteine (Cys, up to 33%), and a high degeneracy in the remaining residues. They 
are encoded by a multigene family and contain metal binding Cys-rich domains. 
Transcription of MTs is typically induced by the same metal ion(s) that bind to the 
protein, thus providing a direct activation of their protective function (Waalkes and 
Goering 1990). Metallothioneins are classified into two classes, based on the 
arrangement of cysteine residues (Fowler et al. 1987; Kojima 1991). Class I MTs 
are widespread in vertebrates, whereas class II MTs are found in plants and fungi. 
Until now, three glomeromycotan MTs have been identified: (1) GrosMT1, found 
in Gigaspora rosea (Stommel et al. 2001), (2) GmarMT1, found in G. margarita 
(Lanfranco et al. 2002), and (3) GintMT1 in G. intraradices (González-Guerrero 
et al. 2007). To date, only two fungi have been reported to be able to synthesize 
both MTs and PCs: Candida glabrata produces MTs when exposed to toxic con-
centrations of Cu, but under Cd stress, it produces PCs only (Mehra et al. 1988, 
1989). Schizosaccharomyces pombe produces HM-chelating PC peptides through 
a plant-like PC-synthase enzyme (SpPCS), and has a putative MT (Ha et al. 1999). 
In a study, Lanfranco et al. (2002) identified a gene (designated as GmarMT1) 
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encoding a MT-like protein in G. margarita. Cloning of this gene into hypersensitive 
S. pombe strain enhanced Cd and Cu resistance compared to the nontransformed 
strain. GmarMT1 gene was differentially expressed in pre-symbiotic spores com-
pared to the symbiotic one, with down-regulation in the latter stage (Courbot et al. 
2004). This was due to the fact that the organism may be more stressed in the pre-
symbiotic stage. However, only Cu exposure has been found to up-regulate 
GmarMT1 in the symbiotic stage and not in the pre-symbiotic stage. This study 
further unravels the difficulty in understanding the mechanisms involved in metal 
resistances in plants and fungi. Previous researchers reported that complexation of 
cadmium by MTs is a key mechanism for Cd tolerance in the ECM fungus, Paxillus 
involutus (Jacob et al. 2004; Courbot et al. 2004). Recently, Ramesh et al. (2009) 
characterized two MT genes, HcMT1 and HcMT2, from the ectomycorrhizal fungus 
Hebeloma cylindrosporum and determined their expression in H. cylindrosporum 
under metal-stressed conditions by competitive RT-PCR analysis. The full length 
cDNAs were used to perform functional complementation in yeast mutant strains. 
The findings of this study assessed by heterologous complementation assays in 
yeast demonstrated that HcMT1 and HcMT2 encode a functional polypeptide capa-
ble of conferring increased tolerance against Cd and Cu, respectively. Based on 
this study, it was concluded that ECM fungi codes for different MTs; each of which 
has a particular pattern of expression, suggesting that they could play an important 
and specific role in improving the survival and growth of ectomycorrhizal trees 
growing in varied ecosystems contaminated by heavy metals. Besides facilitating 
metal binding, MTs are also known to protect cell from oxidative damage (Tamai 
et al. 1993; Achard-Joris et al. 2007) by reoxidizing the thiolate groups in the pres-
ence of metal-induced ROS and SOD (Maret 2003; González-Guerrero et al. 2007). 
In addition to protection against metal (loid)s, PCs and MTs also have other roles in 
cell function such as in sulfur storage and metabolism (Cobbett and Goldsbrough 
2002). Cytosolic mechanism for metal-induced GSH production and formation of 
low molecular weight and less toxic form PC–metal complex (proposed) is presented 
in Fig. 9.2.

9.2.2.3  Transporter Proteins Involved in Metal Tolerance

Transporter proteins involved in metal tolerance facilitate the efflux of toxic metal 
ions from the cytosol or they allow metal sequestration into intracellular compart-
ments, for example, vacuoles (Williams et al. 2000; Hall 2002). Transporter protein–
metal complex and PC–metal complex, usually present in the apoplast and tonoplast, 
have been found to maintain cytoplasmic toxic metal ion concentrations by pushing 
metal ions outside the cell and into the vacuole, respectively (Ortiz et al. 1995). For 
example, permease (glutathione S-conjugate transporter)-mediated accumulation of 
cadmium in Paxillus involutus vacuoles is reported (Blaudez et al. 2000). This spe-
cific permease has been encoded from yeast cadmium factor (Ycf1) gene for the 
vacuolar sequestration of bis(glutathionato)-Cd (GS

2
-Cd) (Li et al. 1997) as well as 

bis(glutathionato)-Hg (GS
2
-Hg) (Gueldry et al. 2003). The hypothesis supported 
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further by X-ray microanalysis has confirmed that Cd accumulated along with the 
accumulation of sulfur in electron-dense bodies in the vacuolar compartment (Ott 
et al. 2002). For other metals, the Zn-transporter gene MtZIP2 from Medicago trun-
catula was up-regulated in the presence of Zn, while it was down-regulated by 
mycorrhizal colonization, leading to a lower content of Zn within the host plant 
tissues (Burleigh et al. 2003). Zinc transporters of the ZIP family are known to 
facilitate metal uptake from extracellular media or they mobilize metals from intra-
cellular stores (Gaither and Eide 2001). In a similar study, Gonzalez-Guerrero et al. 
(2005) also observed increased transcript levels of a putative Zn transporter gene 
(GintZnT1) of the CDF family in the mycelium of Glomus intraradices when it was 
exposed to Zn, indicating a possible role of this gene product in Zn homeostasis and 
protection against Zn stress. In yet another study, Gonzalez-Guerrero et al. (2006) 
reported a Cd- and Cu-dependent up-regulation of a putative ABC transporter gene 
(GintABC1) in the extra-radical mycelium of G. intraradices. The gene encodes a 
polypeptide with homology to the N-terminal region of the Multidrug-Resistance-
Protein (MRP) subfamily of ABC transporters and suggested to be involved in Cd 
and Cu detoxification in the extra-radical mycelium of G. intraradices. However, 
enhanced Zn efflux may also act as a potential tolerance mechanism, as observed in 

Fig. 9.2 Possible cytosolic mechanism for metal-induced glutathione production and formation of 
low molecular weight and less toxic form PC–metal complex (proposed) and/or MT–metal complex 
intracellularly and their compartmentalization into vacuole as high molecular weight complex and 
their further transformation to least toxic form. g-GCS g-glutamylcysteine synthetase, GS glutathione 
synthetase, PC phytochelatin, MT metallothionein, LMW low molecular weight, HMW high 
molecular weight, CDFcation diffusion facilitator
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the ECM fungus Suillus bovinus (Adriaensen 2005). Alternatively, down-regulation 
of transporter genes involved in the uptake of metal at the plasma membrane may 
also be part of tolerance mechanisms, as observed in other fungi (Eide 2003). The 
precise roles of metal transporter genes during influx or efflux in different mycor-
rhizal fungi are, however, not clear. Moreover, whether these mechanisms are metal 
specific or concentration/toxicity dependent is not well explained.

9.2.2.4  Antioxidative Mechanisms to Combat Metal-Induced  
Oxidative Stress

Besides adopting avoidance or compartmentalization strategies, the organisms may 
also have mechanisms to combat metal-induced oxidative stress, and to repair dam-
aged proteins, which may be caused by redox active elements (Amor et al. 1998). 
Redox active elements can also cause severe damage to other cellular components. 
Smirnoff (1993) has divided these systems into two categories: one that interacts 
with active forms of O

2
 and maintains them at low levels. Some of the enzymes 

involved here are superoxide dismutases (SODs), catalases (CATs), and ascorbate 
peroxidases (APX). In other system, oxidized antioxidants like glutathiones (GSHs), 
glutathione reductases (GRs), ascorbate, and mono- and dihydroascorbate reductases 
are regenerated. The first group of enzymes is involved in the detoxification of −•

2O
radicals and H

2
O

2
 and consequently prevents the formation of −•OH  radicals. For 

instance, GR and GSH are important components of the ascorbate–glutathione 
pathway and cause the removal of H

2
O

2
 in different cellular compartments (Dalton 

1995). Superoxide dismutases on the contrary are metalloproteins which convert 
superoxide to H

2
O

2
 and molecular oxygen (O

2
) and act as a primary defense during 

oxidative stress by protecting cell membranes from ROS damage. Ott et al. (2002), 
while studying the antioxidative systems of ECM fungus P. involutus generated in 
response to Cd, observed that the induction of SOD and higher accumulation of 
GSH, GSH-dependent peroxidase, and glutathione reductases prevented the accu-
mulation of H

2
O

2
 in the fungus. Lanfranco et al. (2005) identified a gene encoding 

a functional Cu/Zn SOD (GmarCuZnSOD), which deactivated the ROS induced by 
Cu and Zn to avoid oxidative stress. Azcon et al. (2009) in a study observed the 
enhancement of CAT, APX, and GR activities in AMF-inoculated plants, which in 
turn, protected the plants from oxidative damage. González-Guerrero et al. (2007) 
reported a gene GintMT1 in G. intraradices, encoding a functional MT that responds 
to oxidative stress caused by Cu. Further, a suppression subtractive hybridization 
(SSH) library (Diatchenko et al. 1996) prepared from hyphae of G. intraradices, 
grown on varying Zn concentrations (Ouziad et al. 2005), was found to have several 
EST-sequences, which putatively coded for enzymes like GST, SOD, cytochrome 
P450, and thioredoxin, involved in the detoxification of ROS. Their differential 
expression later confirmed by reverse Northern analysis suggested that the primary 
function of the fungal cells was to cope with the heavy metal-induced oxidative 
stress. Similarly, glutathione S-transferases catalyze the conjugation of glutathione 
with a variety of reactive electrophilic compounds and may provide protection 
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against oxidative stress (Moons 2003; Smith et al. 2004). In a SSH library obtained 
from G. intraradices grown under heavy metal stress, several ESTs had significant 
sequence homologies to GST-encoding genes from other organisms (Rhody 2002). 
This finding on the transcriptional up-regulation of the GST gene (4b07) by Cd, Cu, 
or Zn could well indicate that GSTs of symbiotic mycelium participated in the 
removal of heavy metal toxicity (Hildebrandt et al. 2007). Recently, Benabdellah 
et al. (2009) also observed the production of reactive oxygen radicals by G. intrara-
dices upon high levels of Cu exposure. To date, only a few genes encoding proteins 
putatively involved in ROS homeostasis have been identified and characterized in 
AM fungi. For example, three SODs (González-Guerrero et al. 2005; Lanfranco 
et al. 2005), ten genes putatively encoding GSTs (Waschke et al. 2006), a glutare-
doxin (Benabdellah et al. 2009), and an MT (González-Guerrero et al. 2007) have 
been reported for combating oxidative stress to MF.

9.3  Prospects of Genetic Engineering  
in Metal Remediation

The indigenous mycorrhizal fungi recovered from metal contaminated sites have 
attracted attention of the people engaged in remediation of metal-polluted soils. 
This is largely due to their extraordinary physiological and variable genetic abilities 
to survive in metal-rich environments. And therefore, in recent times, focus has 
been directed toward exploiting the potential of metal-tolerant mycorrhizal species 
in heavy metal removal from contaminated sites. For this, there is urgent need to 
identify candidate genes for high metal tolerance and accumulation. In this context, 
genes encoding metallothioneins, metal transporters, and other antioxidant enzymes 
putatively involved in metal tolerance and uptake have been identified in different 
mycorrhizal fungi (Table 9.1). Mycorrhizal symbiont facilitates HM uptake by the 
plant and also improves inorganic P nutrition to the host plants. Mycorrhiza-induced 
high-affinity plant Pi transporter genes have been identified in plants (Maldonado-
Mendoza et al. 2001; Benedetto et al. 2005). The over-expression or induction of Pi 
transporters genes in mycorrhizal symbiont and their expression into corresponding 
host could be advantageous for plants. Apart from this, plants take up arsenic as 
arsenate (AsO

3
−) via Pi transporter systems (Meharg and Macnair 1994), and it is 

likely that such Pi transporters could contribute to arsenic removal from the polluted 
soil. The exploitation of transgenic approaches to improve the ability of shoots to 
take up more and more arsenate is likely to help to generate plant lines endowed 
with enhanced phytoextraction properties. This, in turn, may increase arsenic mobi-
lization, acquisition, and “deposition” in above-ground tissues. Likewise, the genes 
responsible for SO

4
−2 absorption and assimilation could be introduced in mycor-

rhizal fungi for accelerating the production of sulfur-rich compounds, like cysteine. 
Such compounds are known to influence GSHs and MTs metabolism and concomi-
tantly reduce metal toxicity (Cobbett and Goldsbrough 2002; Ferrol et al. 2009). Since 
the metal-induced PCs are reported to decrease cellular levels of GSH, there exists a 
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possibility of increasing the level of metal-binding peptides in mycorrhizal fungi. 
This can be achieved by increasing the level of GSH by up-regulating the expression 
of the enzymes responsible for GSH synthesis. Therefore, in order to enhance the 
metal remediation abilities of mycorrhizae, genetic engineering can play an impor-
tant role in (1) over-expressing extra- and intracellular enzymes and (2) cell-wall 
biosynthesis and modification, so that more metal binding groups could be intro-
duced. Furthermore, the modification in the genetic makeup of MF for enhanced 
production of metal transporter proteins, which pumps out the ions from the cyto-
plasm to the apoplastic region or to the vacuole, could be targeted for successful 
phytoremediation of metal-polluted sites.

9.4  Conclusion

Considering the immense metal tolerance and accumulation potential of MF, the 
plant-mycorrhizal symbiosis could profitably be exploited for decontaminating and 
restoring metal-polluted sites. Due to mycorrhizal efficiency in maintaining metal 
homeostasis and buffering metal stress in both partners, mycorrhizal fungi should be 
mass produced and recommended as an alternative biotechnological tool for recla-
mation of metal-contaminated soils. It is, therefore, of great practical importance to 
inoculate the plants by efficient and effective mycorrhizal fungal strains that can 
adapt better to a particular set of conditions and/or host plant to expedite the process 
of metal remediation and successful restoration of degraded ecosystems. In this con-
text, application of genetic engineering could prove an asset for enhancing the effi-
ciency and improving the adaptability of fungal symbionts to variously polluted sites 
through alterations in metal uptake pathways leading to high metal tolerance and/or 
detoxification. Also, by employing genetic engineering, the promising genes causing 
over production of metal-chelating agents for enhanced metal binding at target sites 
could be incorporated into other plants. In this endeavor, issues regarding how metal 
tolerance and accumulation at the whole plant level are affected and governed by the 
establishment of plant-mycorrhizal symbiosis need to be addressed. Additionally, the 
better understanding of mechanistic basis of metal restriction, translocation, and dis-
tribution among different plant organs mediated through mycorrhizae could fine-tune 
the process of phytoremediation for its wider and sustainable application.
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Abstract Metal stress restricts plant growth and distribution and has become a 
widespread problem. Plants can respond to toxic metals in a variety of ways, but the 
most important of them is the production of phytochelatins (PC). The know ledge of 
how plants perceive metal presence and switch on or off the PC synthesis pathway 
could help understanding the metal tolerance mechanisms in plants. This knowl-
edge can be used for enhancing crop tolerance in metal-polluted soils and for metal 
phytoremediation techniques. However, the signaling mediators that trigger metal 
tolerance mechanisms such as synthesis of phytochelatins are still largely unknown. 
Here, we discuss the importance of signal transduction in phytochelatin synthesis 
and cadmium tolerance, identifying specific signal transducers that may be involved 
in increasing PC production or reducing metal uptake in plants by analyzing the role 
of calcium signals, protein phosphatases, and reactive oxygen species induction 
during metal detection and response in plants. The understanding of signaling net-
works can open new possibilities to design crops with abilities to better adapt to 
excess metal conditions. Therefore, the process of PC synthesis and Cd absorption 
was analyzed in Arabidopsis thaliana cells, using different pharmacological modu-
lators of the cytoplasmatic calcium levels and PP1 activity, as well as the addition 
of ROS. With these procedures, we expect to show a possible pathway for Cd sig-
naling and PC induction in plants that can be used for regulating Cd uptake and 
tolerance in plants and thus could be used as a tool in the development of rational 
breeding programs and transgenic approaches.

Keywords  Phytochelatins  •  Metal  signaling  •  Protein  phosphatase  •  Cadmium 
stress
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10.1  Introduction

10.1.1  Stress Signal Transduction Mechanisms in Plants

Unlike animals, plants are sessile organisms that cannot move away from adverse 
environmental conditions and, therefore, require high sensitivity detection and 
adaptation mechanisms to withstand environmental perturbations. In nature, plants 
are exposed to various environmental stimuli that affect their physiology, morphology, 
and development. These factors are biotic such as fungal or pathogenic attack or 
abiotic such as climatic alterations or metal and pesticide contamination (Clark 
et al. 2001). A rapid and precise perception of many of these alterations by plants is 
important in order to adapt to changing environments, as it allows them to rapidly 
perceive environmental alterations and to trigger mechanisms that avoid the delete-
rious effects of any specific stress. Plants perceive the environmental alterations in 
different ways, such as by plasma membrane located receptors and intracellular and/
or cytoskeleton-associated proteins. Subsequently, the imposed signal is recognized 
and a complex cascade of events involving several interacting components that rec-
ognize such signal is triggered, leading to altered gene expression and metabolic 
activities (Kaur and Gupta 2005). This cascade of events, called signal transduction, 
normally acts through second messengers and triggers the molecular events leading 
to the physiological response. Various signal pathways can operate independently 
from each other or can modulate other pathways positively or negatively. Different 
signaling pathways may also share components and second messengers to achieve 
their objectives. As a result, many signals interact in a cooperative manner with each 
other (Knight 2000). Differences in stress tolerance between genotypes may arise 
from variations in signal perception and transduction mechanisms (Hare et al. 1997). 
Thus, while most of the biochemical factors necessary for stress tolerance are 
present in all species, subtle differences in signal transducers hold the key to improve 
plant tolerance to distinct abiotic and biotic stresses.

10.1.2  Most Stress Signaling Mechanisms Share  
the Same Components

Studies on molecular responses of plants to various types of stresses indicate that dif-
ferent types of constraints provide different information to the cells. The multiplicity 
of this information makes the response of plants and hence the stress signaling path-
way more complex (Knight 2000). It is now widely accepted that plants in general use 
similar transduction mechanisms to cope with different stresses (Mithöfer et al. 2004). 
Such examples were found during mechanical wounding and pathogen attack (Schaller 
and Weiler 2002), as well as salt, cold, and drought stress (Xiong et al. 2002).

Most signal transduction pathways share a generic signal perception, such as the 
modulation of intracellular Ca2+ levels, which initiates a protein phosphorylation 
cascade that finally targets proteins directly involved in cellular protection or 
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transcription factors controlling specific sets of stress-regulated genes (Kaur and 
Gupta 2005). Recent advances have identified some novel specific signal transduc-
ers that are exclusive to the plant kingdom. Most of them function as Ca2+ sensors, 
namely the recently discovered family of novel calcium sensors CBLs from 
Arabidopsis and their target proteins, the calcium-induced protein kinases, (CIPKs), 
involved in various abiotic stresses, such as salt, drought, cold, and heat (Kudla 
et al. 1999; Luan 2004). Nevertheless, reactive oxygen species (ROS) have also 
emerged as important signaling molecules that control various processes including 
pathogen defense, programmed cell death, and stomatal behavior (Mithöfer et al. 
2004; Maksymiec 2007). Overall, these components can act together in a multiplic-
ity of ways, according to the final metabolic adjustment. Since stress tolerance 
mechanisms can involve several physiological responses, a complex cross talk can 
occur between different pathways, which act together to attain the same tolerance.

10.1.3  Metal Stress in Plants

Toxic metals have become one of the main abiotic stresses for living organisms because 
of their increased use in industry and agro-practices. Over the last decades, there has 
been an increasing awareness of how metals act as environmental pollutants (Baker and 
Walker 1989) and their effects on plants (Rauser 2000; Cobbett and Goldsbrough 2002; 
Hall 2002; Clemens 2006). Cadmium is one of the most important environmental pol-
lutants, particularly in areas of high anthropogenic pressure. Its presence in the atmo-
sphere, soil, and water can cause serious toxicity to organisms, and its bioaccumulation 
in the food chain can be highly dangerous (Wagner 1993; Sanitá di Toppi and Gabrielli 
1999). In plants, Cd is known to inhibit seed germination and root growth, induce chro-
mosomal aberrations, and disrupt micronucleus formation (Fojtová and Kovarík 2000). 
Cadmium can also cause membrane depolarization and cytoplasmic acidification lead-
ing to the disruption of cellular homeostasis (Pinto et al. 2003).

Plants can respond to metal toxicity in different ways. Such responses include 
immobilization, exclusion, chelation and compartmentalization of the metal ions, as 
well as the expression of more general stress response mechanisms such as synthe-
sis of ethylene and stress proteins (Cobbett 2000; Clemens 2006). One recurrent 
general mechanism for toxic metal detoxification in plants and other organisms is 
the chelation of the metal ions by a specific ligand (Rauser 2000). A number of 
metal-binding ligands have now been recognized in plants, the most important of 
which is phytochelatins. Phytochelatins (PCs) are a family of Cys-rich, small non-
protein thiol peptides with the general structure (g-Glu-Cys)

n
-Gly and are synthe-

sized in a wide variety of plant species, algae, yeast, and nematodes (Rauser 2000; 
Cobbett and Goldsbrough 2002). These peptides are exclusively formed in the 
 presence of metals, by the transpeptidation of the tripeptide glutathione (GSH), 
through the action of a constitutive enzyme, known as PC synthase (PCS, EC 
2.3.2.15) (Zenk 1996; Rauser 1999). In the presence of toxic metal concentrations, 
particularly cadmium, PCs form complexes with metal ions and prevent toxic met-
als from interfering with the cellular metabolism (Vögeli-Lange and Wagner 1990; 
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Ortiz et al. 1995). These complexes are then stored in the vacuole, where they are 
rendered harmless to the cell. Therefore, the knowledge of how plants perceive the 
metal presence and switch on or off the PC synthesis pathway can be of crucial 
importance to better understand the metal tolerance mechanisms in plants, to 
improve crop tolerance in metal-polluted soils, and also to enhance metal phytore-
mediation techniques. Nonetheless, the signal transduction pathways that involve 
Cd signaling and the subsequent PC production pathway are still at the infancy.

10.1.4  Metal Signal Transduction  
in Plants – Possible Pathways

The analysis of the mechanisms behind metal tolerance has become an important 
aspect of research, especially in the case of cadmium. Several groups suggest that Cd 
tolerance can be achieved through the same signal transduction pathways that plants 
use for other abiotic stresses (Mithöfer et al. 2005). Previous studies showed that a 
pre-exposure to metals also induces enhanced tolerance to biotic factors, suggesting 
a sort of chemical memory, attained by enhanced signaling pathways that can be 
triggered by stress (Trewavas 1999). For example, Ghoshroy et al. (1998) and Mittra 
et al. (2004) showed that a mild dose of Cd pre-exposure increased plant resistance 
to viral and fungal infections. Also, other works observed that pre-exposure to a 
metal  can enhance  tolerance  to other metals. For  instance,  a pre-exposure  to Hg 
enhanced Cd accumulation in Euglena gracilis (Avilés et al. 2003). Metal stress can 
also induce alterations in ROS accumulation and glutathione pools, two important 
signaling mediators in many abiotic stresses, such as salt, osmotic, and temperature 
(Clark et al. 2001; Maksymiec 2007). Collectively, these data indicate the existence 
of a signal transduction pathway underlying metal tolerance that shares at least 
some signaling components with other biotic and abiotic stresses. But how they can 
be related to phytochelatin induction remains to be elucidated.

10.1.5  Possible Points in PC Signaling Regulation

The signaling pathways involved in phytochelatins synthesis are mediated by 
enzymes. Some reports showed that increasing the activity of the enzymes involved 
in the GSH pathway (g-glutamylcysteine synthetase and glutathione synthetase) have 
increased PC synthesis and enhanced Cd tolerance. In fact, increasing both g-glu-
tamylcysteine synthetase (g-ECS) and glutathione synthetase (GSHS) activity 
enhances Cd  tolerance  and  PC  synthesis  (Noctor  and  Foyer 1998; Schafer et al. 
1998; Xiang and Oliver 1998). On the other hand, specific signaling components 
have already been identified as regulators of Cd stress. He et al. (2005) observed that 
calcium can play an important role in Cd tolerance, reducing the toxic effects of this 
metal, by directly affecting PC synthase. Protein phosphorylation, carried out mostly 
through MAPK kinases, is also emerging as an important mediator in Cd signaling 
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(Nakagami et al. 2004; Rios-Barrera et al. 2009). There are also reports suggesting 
that ROS production is involved in GSH synthesis and calcium signaling (Xing et al. 
1997; Grant et al. 2000; Yang and Poovaiah 2002), and hence, ROS may be related 
with PC synthesis. These findings have provided new possibilities to understand the 
signaling pathway involved in PC synthesis and Cd tolerance, which, however, 
requires further studies to identify possible Cd-induced signaling pathways.

10.2  Calcium Signaling in Cadmium Stress

10.2.1  The Role of Calcium

Stress-induced changes in the cytosolic concentration of calcium (Ca) occur as a 
result of influx of Ca2+ from outside the cell, or release of Ca from intracellular stores 
(Hong-Bo et al. 2008). The calcium alterations then target specific proteins that act 
as calcium sensors and carry on the signal to other molecules, such as enzymes or 
transcription factors, which are the tolerance response per se (Luan 2004; Hedrich 
and Kudla 2006). In this way, calcium serves as an important second messenger dur-
ing abiotic stresses and is a major point of signaling and cross talk, because it can be 
elicited by numerous stress cues, being particularly important in osmotic, heat, salt, 
and water stress (Cheong et al. 2003; Rentel and Knight 2004; Hong-Bo et al. 2008). 
In the last few years, calcium signaling has been better explained by the observation 
of calcium oscillations across the cell, referred to as the calcium signatures (Luan 
et al. 2002). According to some authors, each signature represents a cellular expres-
sion that confers specificity to calcium signals. In order to fully understand the Ca 
signaling pathways, one must understand the “combination code” that consists of 
calcium oscillations, calcium sensors, and downstream target proteins (Clark et al. 
2001). Until recently, little was known about the in vivo targets and the downstream 
outputs of stress signaling pathways, but some calcium sensor proteins have now 
been identified and are well characterized in plants. Few of them are well-conserved 
proteins, known in animal tissues; others are novel calcium sensors that exist only in 
the plant kingdom (Kim et al. 2000). Calcium signaling serves as an important sec-
ond messenger during abiotic stresses and provides a major point of signaling cross 
talk. However, very few reports highlight the relation between metal stress and Ca 
signals. Although there is lack of information on Cd stress signaling and calcium, 
few reports have shown that calcium is important for Cd tolerance.

10.2.2  Calcium Influences Cadmium Uptake  
but Also PC Synthesis

In plants, two kinds of calcium stores contribute to calcium modulation: extracel-
lular (apoplastic) stores in the cell wall and intracellular stores in the vacuole and 



246 A. Lima and E. Figueira

endoplasmic reticulum (Bush 1995). In our study, Cd-induced stress was combined 
with chemical agents known to modulate cellular Ca concentration, such as caf-
feine, which causes the release and depletion of Ca from internal stores, lanthanum 
(La), a Ca channel blocker, EGTA (ethylene glycol–bis(2-qminoethylether)-
N,N,N¢,N¢–tetra acetic acid) an extracellular Ca chelator, and ruthenium red, an 
inhibitor of Ca release from internal stores (Shimazaki et al. 1999; Cessna and Low 
2001; Navazio et al. 2001; Taylor et al. 2001). The effect of calcium modulation on 
Cd tolerance was analyzed, as presented  in Fig. 10.1. In the presence of Cd, the 
addition of Ca (Fig. 10.1a) or caffeine (Fig. 10.1b) significantly increased Cd toler-
ance, when compared to Cd application alone. The calcium blockers EGTA 
(Fig. 10.1c) and La (Fig. 10.1d) induced similar responses to calcium induction and 
increased cell viability, when compared to Cd alone. This increment in Cd tolerance 
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Fig. 10.1 The effect of different pharmacological calcium modulators: calcium (a), caffeine (b), 
EGTA (c), lanthanum (d), and ruthenium red (e) on A. thaliana Cd tolerance, during a 2-h expo-
sure period. Cell viability is expressed as a percentage of controls. Values are the mean of three 
replicates ± SE. Values significantly (P < 0.05) different from controls are marked with asterisk
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was higher with increasing EGTA and La concentrations. On the contrary, the 
addition of ruthenium red under Cd exposure significantly reduced the cell viability 
when compared to Cd control. Calcium influence on Cd absorption was also inves-
tigated (Fig. 10.2). The different calcium modulators altered very significantly the 
amount of Cd absorbed by cells. After application of Ca and caffeine, Cd uptake 
was markedly reduced, particularly with caffeine. With EGTA and La, Cd absorp-
tion was also reduced relative to control, and a dose-dependent response was 
observed. Although ruthenium red at the highest concentration significantly reduced 
Cd absorption, the effect on Cd uptake was less pronounced.

These pharmacological tests suggest that Ca levels, either by intracellular 
release or by extracellular sources, induce Cd tolerance, possibly by reducing Cd 
uptake. Previous works have already demonstrated that Cd can compete with Ca 
for membrane transporters and also for Ca-binding proteins (Rivetta et al. 1997), 
suggesting that calcium can reduce Cd absorption. Perfus-Barbeoch et al. (2002), 
in patch-clamp studies with V. faba guard cell protoplasts, showed that Ca channels 
were permeable to Cd. The observed Cd uptake inhibition by Ca channel blockers 
can be associated to the alleviation of Cd toxicity, observed in radish (Rivetta et al. 
1997), rice roots (Kim et al. 2002), and Arabidopsis seedlings (Suzuki 2005). 
Nonetheless, the inhibition of Ca release from intracellular stores by ruthenium red 
application showed that Ca is indeed important for Cd tolerance. Because ruthe-
nium red blocks Ca release from intracellular stores, it did not interfere as much 
with extracellular Cd absorption as did with the other Ca blockers. The combined 
application of ruthenium red and cadmium effectively reduced the cell viability, 
compared to the sole application of Cd, corroborating that Ca is indeed important 
for Cd tolerance, but not only by reducing Cd uptake.

Fig. 10.2 The effect of Ca and Caffeine, and the Ca blockers EGTA, La, and Rut Red on  
A. thaliana Cd absorption after 1 h of 100-mM Cd exposure. The cells were incubated with each 
treatment 1 h before Cd. Values are the mean of three replicates ± SE. Values significantly (P < 0.05) 
different from controls are marked with asterisk
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Ca modulation had no effect on PC synthesis (data not shown) but had a strong 
influence on GSH production under the different Ca modulations and Cd exposures 
(Fig. 10.3). In the absence of Cd, Ca addition to the growth media increased GSH 
production by threefolds (Fig. 10.3a). In the presence of Cd, Ca addition also sig-
nificantly increased GSH levels (Fig. 10.3a). The effect of Ca release from intracel-
lular  stores  stimulated  by  caffeine  (Fig. 10.3b) induced similar effects to those 
observed with the addition of Ca. In the absence of Cd, caffeine promoted a sig-
nificant increase in GSH concentrations, nearly twofold increase over control 
levels. Under Cd exposure, caffeine also increased GSH, which was even more 

Fig. 10.3 The effect of different pharmacological calcium modulators: calcium (a), caffeine (b), 
EGTA (c), lanthanum (d), and ruthenium red (e) on A. thaliana GSH synthesis after 1 h of 100-mM 
Cd exposure. The cells were incubated with the modulators 1 h before Cd exposure. Values are the 
mean of three replicates ± SE. Values significantly (P < 0.05) different from controls are marked 
with asterisk
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prominent than with Cd alone. The calcium inhibitors in general reduced the GSH 
production. Increasing EGTA concentrations reduced the amount of GSH in the 
cells (Fig. 10.3c). This trend was consistent with a scenario where Ca is important 
for GSH synthesis. When Ca channels were blocked with lanthanum (Fig. 10.3d), 
both GSH levels and Cd absorption were also reduced. The La-induced reduction 
in Cd absorption was more increased with higher La concentrations, corroborating 
that Ca channels are important for Cd absorption in cells. Similar results were 
obtained with ruthenium red (Fig. 10.3e), with a reduction in GSH levels after Ca 
blocking, particularly when ruthenium red and cadmium were simultaneously pro-
vided. Overall, results presented here introduced novel findings on the role of Ca 
in Cd stress. Firstly, they corroborate the notion that Cd uptake in cells can occur 
through Ca channels. This knowledge can be used for modulating the levels of Cd 
uptake in plants. Increasing Ca levels in the soils can ultimately be used to allow 
plants to grow under contaminated environments with lower Cd accumulation and 
thus less physiological disturbances, metal accumulation in the edible tissues, and 
metal transfer to the food chain. Secondly, Ca can have an important modulator 
effect on GSH synthesis. Since GSH is an important metabolite, especially in the 
case of metal exposures because it is the precursor of PCs, GSH regulation through 
Ca exposures can be used to enhance plant tolerance to Cd, which can be important 
for phytoremediation studies.

10.3  Protein Phosphorylation Signaling in Metal Stress

10.3.1  The Role of Protein Phosphatases

The reversible phosphorylation of proteins regulates many aspects of viable cell and 
is also an important part of signal transduction. It is well recognized that protein 
phosphorylation/dephosphorylation is a key step in most stress signal transduction 
pathways, which is mediated both by kinases and phosphatases. Protein phos-
phatases, found in all eukaryotes, play an important role in signaling processes. 
Although little is known about protein phosphatases in higher plants, evidence on 
their functional involvement is overwhelming. Using substrates for mammalian 
phosphatases and pharmacological agents (e.g., okadaic acid), protein phosphatases 
such as PP1 and PP2A have been detected in several plant species (Mackintosh 
et al. 1991; Luan et al. 2002). In addition to substrate specificity and pharmacologi-
cal properties, the primary structure of plant phosphatases is also highly similar to 
that of the mammalian enzymes. Nevertheless, different structural domains and 
unique functions have been identified through studies on plant enzymes. In recent 
years, a great deal of research has been concentrated on identifying genes and elu-
cidating signal transduction pathways involved in the plant response to abiotic 
stresses, mostly salt, osmotic, temperature, wounding, and pathogen attack. 
Although one family of plant PPs, the PP2C, has been extensively studied in plant 
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responses to stress (Luan 2004), the roles of PP1 and PP2A in abiotic stress signaling 
have been largely neglected. These PPPs are the most ubiquitous protein phos-
phatases in eukaryotes and have been identified as important signal transducers of 
several metabolic pathways. Our knowledge of PP1 and PP2A functions in higher 
plants comes mostly from studies using specific inhibitors such as okadaic acid and 
others (Mackintosh and Cohen 1989 Mackintosh et al. 1991). Because it is difficult 
to distinguish PP1 from PP2A by using pharmacological inhibitors, most studies 
defined the inhibitor-sensitive process as involving PP1/PP2A. Generally, inhibitor 
analyses have indicated that PP1/2A is involved in ion channel regulation, gene 
expression, and developmental processes. Also, expression of cold responsive 
genes is enhanced at normal temperature by the protein phosphatase 1 and 2A 
inhibitor (Monroy et al. 1997, 1998). These inhibitors also caused an increase in 
freezing tolerance at normal growth temperature (Sangwan et al. 2001). Moreover, 
low temperature caused a rapid and dramatic decrease in protein phosphatase 2A 
(PP2A) activity, which is dependent on Ca2+ influx. Studies with an unspecific 
inhibitor of PP1 and PP2A also suggest a role for PP1 and PP2A in regulation of 
ABA signaling and expression of ABA and cold-responsive genes in Arabidopsis 
(Wu et al. 1997).

Since PP1 and PP2A have been related to abiotic stress signaling, it is likely 
that they could also be associated with metal signaling. Nonetheless, the only 
reports focusing on protein phosphorylation and Cd have focused only on protein 
kinases and not phosphatases. Few  recent  reports on  the  importance of protein 
phosphorylation in metal stress have increased the interest in this area. The work 
of Jonak et al. (2004) showed that several MAP kinases (mitogen activated 
kinases) are induced upon metal signal transduction, and that they are differently 
involved with different metals (Nakagami 2004). Rios-Barrera et al. (2009) also 
observed that in Euglena gracilis, the inhibition of MAPKs induced a reduction in 
PC synthesis after Cd exposure. However, the pathway suggested by these authors 
was activated by CuCl

2
 but not by CdCl

2
. This fact allows inferring that the diver-

sity of signal transducers might be of greater importance for signal specificity in 
exposures to different metals. Since plant PPs are much fewer in number, their 
importance shall be much easier to investigate than kinases. Therefore, if protein 
phosphorylation can regulate PC synthase, then a valid approach would be to test 
which plant PP is involved.

10.3.2  Protein Phosphatase Inhibition Increases Cadmium 
Tolerance by Enhancing PC Synthesis

The availability of permeant cell membrane inhibitors like okadaic acid (Tachibana 
et al. 1981) and cantharidin (Honkanen 1993) has facilitated the study on the func-
tional role of PP1 and PP2A. Using these inhibitors, PPs have gained interest as 
potentially important regulators of cellular function. In this work, we used can-
tharidin, a well-known PP1 and PP2A inhibitor in order to assess the importance of 
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protein phosphorylation in PC synthesis and Cd tolerance. It was observed that 
the inhibition of PP1/PP2A enhanced Cd tolerance, while inducing an increase in 
Cd uptake. The influence of cantharidin (Can) on Cd tolerance was observed, after 
1-h  exposure  (Fig.  10.4). The lower concentrations of cantharidin significantly 
increased Cd tolerance while the highest Can concentration (1 mM) reduced the 
number of viable cells, which was lower than cells obtained even with Cd alone. 
The highest reduction in the percentage of viable cells, even without the addition 
of Cd (data not shown), made clear that the highest Can concentration used is very 
toxic to cells, and for this reason it was excluded from the rest of the experiments. 
Cantharidin exposure increased Cd absorption in a dose–response manner. In the 
presence of Cd, exposure to cantharidin significantly increased PCs levels, also in 
a dose-dependent manner. This increase was accompanied by a high depletion of 
the GSH pools (data not shown). Furthermore, data show that the observed increase 
in PC production is, at least partially, responsible for the increase in Cd tolerance 
despite an increase in intracellular Cd levels. These results are significant, since 
they suggest that PC synthesis can be regulated by protein phosphorylation and 
that this regulation can be used to modulate Cd tolerance, even in the presence of 
elevated intracellular Cd concentrations. More importantly, PP1, PP2A, or both 
can block PC synthesis. It has been widely accepted that phytochelatin synthase 
(PCs) is a constitutive enzyme that may be controlled by post-translational modifi-
cations (Vatamaniuk et al. 2004). Thus, there should be an efficient mechanism that 
blocks PCS activity during normal conditions and that can be switched off in the 
presence of metals such as Cd. Results presented suggest that PP1/PP2A, or both, 
would be responsible for maintaining PCS inactivity under low intracellular con-
centration of metal(s). A model for Cd-induced signaling pathways involved in the 
regulation of PC is presented in Fig. 10.5.
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If PPs are blocking the PC synthesis, then in order to trigger their production 
under Cd stress, a specific pathway with a specific kinase is expected. So far, the 
very few reports on protein phosphorylation involvement in metal stress point 
toward  the  involvement  of MAP  kinases.  Further,  exposure  of Medicago sativa 
seedlings to excess copper or cadmium ions was shown to activate four distinct 
mitogen-activated protein kinases (MAPKs.). Rios-Barrera et al. (2009) also found 
that p38 MAPK-like activity was stimulated by acute or chronic metal exposure, 
and its inhibition by a p38 MAPK inhibitor slightly diminished the accumulation of 
PCs. However, further work is required in order to understand how protein phospho-
rylation affects Cd tolerance, since it is not clear which step of the PC synthesis 
requires phosphorylation to induce PC synthesis. Nevertheless, Wang et al. (2009) 
reported the importance of serine threonine phosphorylation in PC synthesis. These 
authors showed that PCS activity was increased after phosphorylation by casein 
kinase 2 (CK2) and decreased in the presence of alkaline phosphatase. Taken 
together, our results and those reported by others (Wang et al. 2009) contribute to 
elucidate the route leading to the activation of PC synthesis. These findings are of 
extreme importance for the understanding of the PCS activation because they 
demonstrate that PCS is not only triggered by GSH conjugates and by Cd ions, but 
its activity is also regulated by protein phosphorylation.
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inhibition

Cd Cd

Cd

Fig. 10.5 A model for Cd-induced signaling pathways. The build-up of GS–Cd conjugates acti-
vates PCS that suffers a phosphorylation during activation, after PP1/PP2A inactivation. The 
increase in PCs yields a high Cd binding and GSH depletion. During PC synthesis, PC–Cd com-
plexes are formed in the cytosol and are transported to the vacuole, where more Cd ions and sulfide 
are added, forming more stable complexes. Solid arrows represent events previously describe in 
other works, whereas dashed arrows represent proposed events in the signaling of PC formation in 
plant cells under Cd stress
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10.4  Conclusion

Metal tolerance in plants is achieved by phytochelatins. The ability to induce PCs 
and effectively chelate metal ions is a recognized key factor for plant survival in 
metal-contaminated soils and is pointed out as the basis for the inter and intraspe-
cific differences in plant tolerance to metals. Taken together, most important altera-
tions and signaling events found evoke that (1) Cd can be taken up by calcium 
channels and be regulated by calcium levels, (2) calcium can be an important posi-
tive regulator of GSH synthesis, and (3) protein phosphatases PP1 or PP2A can 
regulate PCS activity. Understanding the signaling mechanisms underlying metal 
stress, therefore, can be very important not only to explain the tolerance mecha-
nisms, but to find out new possibilities to regulate metal uptake, translocation, and 
tolerance in plants, without genetic modification of plants. The genetic engineering 
of plants for specific traits is, however, controversial due to its negative impact on 
surrounding environment and poor acceptance by the public opinion. The modula-
tion of Cd uptake can result in an efficient way to reduce Cd absorption in plants and 
may lead to higher crop productivity, which can be achieved by maintaining the soil 
Ca levels higher, for example, through Ca amendments, already widely used in 
agronomical practices. This could decrease the accumulation of metals in plants, 
and, thus, is likely to reduce the health risk to humans, consuming crops grown 
under Cd-affected soils.
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Abstract Contamination of soil with heavy metals poses a major environmental and 
human health problem. Of the various metals, cadmium and arsenic are the two well-
known heavy metals. The toxic effects of these metals are due to their abundance 
while nonbiodegradable nature leads to their concentration buildup in soil. Microbial 
methods of environment purification and cleanup are promising because of the safety, 
efficiency, and cost effectiveness. A number of microorganisms including members 
of Archea, Eukarya, and Bacteria are resistant to cadmium and arsenic and have 
evolved several defense mechanisms to overcome metal toxicities. The bioremedia-
tion of cadmium- and arsenic-contaminated soil involves active microbiological pro-
cesses, such as biosorption, bioaccumulation, sequestration, and efflux. Furthermore, 
knowledge of metal ion resistances could provide important insights into environ-
mental processes and help in understanding the basic living processes.

Keywords  Arsenic  •  Cadmium  •  Bioremediation  •  Health  hazards  •  Soil 
contamination

11.1  Introduction

The term “heavy metal” refers to any metallic element that has a relatively high 
density and is toxic or poisonous at low concentrations. Examples of heavy metals 
include mercury (Hg), cadmium (Cd), arsenic (As), chromium (Cr), thallium (Tl), 
and lead (Pb). Some of the heavy metals are essential and are required by the 

B. Saluja • A. Gupta • R. Goel (*)
Department of Microbiology, Govind Ballabh Pant University of Agriculture and Technology, 
Pantnagar 263145, Uttarakhand, India
e-mail: rg55@rediffmail.com

Chapter 11
Microbial Management of Cadmium  
and Arsenic Metal Contaminants in Soil

Bhoomika Saluja, Abhishek Gupta, and Reeta Goel 



258 B. Saluja et al.

 organisms as micro nutrients (e.g., Co, Cr. Ni, Fe, and Zn) and are known as “trace 
elements” (Bruins et al. 2000). They are  involved  in  redox processes  to stabilize 
molecules  through  electrostatic  interactions,  as  catalysts  in  enzymatic  reactions, 
and regulation of osmotic balance (Hussein et al. 2005). On the other hand, some 
other heavy metals like Cd, Hg, As, Pb, etc., have no biological function and are 
detrimental to the organisms even at very low concentration They originate from 
natural sources such as rocks and metalliferous minerals, and anthropogenic inputs 
from agriculture, metallurgy, energy production, microelectronics, mining, sewage 
sludge, and waste disposal (Landa 2005; Gilmour  and Riedel 2009; Pandey and 
Pandey 2009a). Soil contamination by heavy metals occurs when the concentration 
of these elements exceeds the background level in the substratum. A concentration 
higher than the prescribed limit may lead to the formation of nonspecific complex 
compounds in the cell, which leads to toxic effects. These atmospherically driven 
heavy metals have been shown to significantly contaminate soil and vegetables 
causing a serious risk to human health when plant-based foodstuffs are consumed 
(Voutsa et al. 1996; Pandey and Pandey 2009b, c).

Microbes have a variety of properties that can bring about changes in metal spe-
ciation, toxicity, and mobility. They are intimately associated with the biogeochemi-
cal cycling of metals, and associated elements, wherein their activities can result in 
mobilization and immobilization of metals depending on the mechanism involved 
and  the microenvironment where  the organism(s) are  located  (Gadd 2004, 2007, 
2009; Violante et al. 2008; Ehrlich and Newman 2009). The contribution of micro-
bial activities to rock weathering, mineral dissolution, and element cycling is also 
intimately related to metal movements and microbial strategies for metal transfor-
mations (Purvis and Pawlik-Skowronska 2008;  Gilmour  and  Riedel  2009;  Uroz 
et al. 2009). Many microorganisms can absorb and concentrate heavy metals, 
thereby providing resistance (Burke and Pfister 1986), and, thus, help in removing 
them from contaminated sites (Roane et al. 2001). The mechanism of heavy metal 
resistance and its genetic basis, however, varies with the microbe and the metal in 
question. Therefore, understanding the role of microorganisms in cycling of metals 
may lead to improved processes employed to detoxify contaminated sites. This 
chapter deals with the two well-known toxic heavy metals “cadmium and arsenic,” 
their effect on plants and animals, the mechanism behind microbial resistance to 
these metals, and microbial removal of these metals from contaminated soil.

11.2  Sources of Cadmium and Arsenic in Soil

11.2.1  Cadmium

Cadmium, a highly toxic metal, has been ranked seventh among the top 20 toxins, 
mainly due  to  its negative  influence on enzymatic system of cell  (Al-Kheldhairy  
et al. 2001). Cadmium can mainly be found in the earth’s crust. It always occurs in 
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combination with zinc. Cadmium also exists in industries as an inevitable by-product 
of zinc, lead, and copper extraction. This metal enters the environment mainly from 
industrial processes and fertilizers and is transferred to animals and humans through 
food chain (Wagner 1993). Anthropogenic activities such as industrial waste dis-
posals, fertilizer application, and sewage sludge disposals on land have also led to 
accumulation of cadmium in soil. The leaching of Cd under certain soil and envi-
ronmental conditions (Alloway 1990; Naidu et al. 1997) eventually increases its 
concentration in food crops. The concentration of Cd in soil solution varies signifi-
cantly with soil properties and nature of management practices. Naturally, a very 
large amount of Cd is released into the environment, about 25,000 ton a year. About 
half of this Cd is released into rivers through weathering of rocks and some of it is 
released into air through forest fires and volcanoes while the rest is released through 
human activities. Man-made Cd emissions arise from the manufacture, use, and dis-
posal of products intentionally utilizing Cd (e.g., nickel–Cd batteries, Cd alloys, etc.) 
or from the presence of Cd as a natural but nonfunctional impurity in non-Cd con-
taining products (e.g., fossil fuel, cement, phosphate fertilizers, etc).

11.2.2  Arsenic

Although As has almost exclusively been associated with criminal poisoning for 
many centuries (Rusyniak et al. 2002), the matter of concern today is its contribu-
tion to environmental pollution through man’s use of As containing insecticides, 
herbicides, fungicides, pesticides, wood preservatives, and through mining and 
burning of coal (Leonard 1991). Thus, anthropogenic use makes As a common inor-
ganic toxicant found at contaminated sites nationwide. Furthermore, mining activi-
ties and widespread use of As in the wood preserving industry and in agriculture as 
a pesticide and herbicide represent a major source of As in the environment 
(Fig. 11.1).

The common valence states of As in nature include −3, 0, +3, and +5 (Leonard 
1991; Jain and Ali 2000; Oremland et al. 2000). In soils, the most commonly found 
As forms are inorganic As(III) (arsenite) and As(V) (arsenate) (Cullen and Reimer 
1989; Masscheleyn et al. 1991; Pantsar-Kallio and Korpela 2000; Balasoiu et al. 
2001). In general, the toxicity of As is dependent on its oxidation state: trivalent As 
forms are approximately 100 times more toxic than the pentavalent derivatives 
(Cervantes et al. 1994; Mukhopadhyay et al. 2002; Muller et al. 2003). Methylated 
species, monomethyl arsenic acid (MMAA), dimethyl arsinic acid (DMAA), and 
trimethyl arsine oxide (TMAO) have predominantly been found in biomass and 
have also been detected in soil (Leonard 1991).

It is evident from literature that As(V) functions as an analogue of phosphate 
(PO

4
) and enters the cell through phosphate transport system (Pit or Pst), short 

circuiting the life’s main energy generation system by inhibiting oxidative phospho-
rylation. The stable PO

4
 anion is replaced with the less stable As(V) anion leading 

to rapid hydrolysis of high energy bonds in compounds such as ATP, a process that 
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leads to loss of high energy PO
4
 bonds and effectively “uncouples” mitochondrial 

respiration (Rosenman 2007). Therefore, the effect of PO
4
 ions in the medium on 

As-induced growth/toxicity by varying the PO
4
 concentration was documented 

(Gupta 2006).
For revealing the effect of PO

4
-As(V) interaction, the cells of two arsenic resis-

tant bacterial strains, namely, Bacillus cereus strain AG27 (AY970345) and AGM13 
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Fig. 11.2 Effects of various phosphate concentrations on the growth of (a) B. cereus strain, AG27, 
and (b) unidentified strain AGM13 in the presence of 5 mM sodium arsenate compared to growth 
occurring in the absence of sodium arsenate (Adapted from Gupta 2006)
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(unidentified) were transferred to minimal medium containing varying concentra-
tions (0.1, 0.25, 0.5, 1.0, 1.5, 2.0, and 5 mM) of PO

4
 along with 5 mM sodium arsen-

ate. The growth of the bacterial cells (strains AG27 and AGM13) after 14 h increased 
with increasing concentration of PO

4
, but this effect was noticeable only up to 

1.5 mM of PO
4
 concentration and became static thereafter. This finding suggested 

that PO
4
 in the medium could play a protective role for the bacterial cultures in the 

presence of 5 mM concentration of sodium arsenate (Fig. 11.2).

11.3  Possible Impacts of Cadmium and Arsenic  
Metal Contaminants

Cadmium and As cycle has broadened as a consequence of human interference, and 
due to this, large amounts of these metals accumulate in the environment and in living 
organisms. The mode of toxicity, however, depends upon their chemical forms. 
They are toxic to humans, animals, and plants, and are the widespread pollutants 
with a long biological life (Wagner 1993).

11.3.1  Cadmium Toxicity

The toxicity of Cd depends primarily on route of exposure and, hence, varying 
rates of its absorption have varying health effects. Due to slow elimination, the 
level of Cd in the body increases over time. In man, chronic exposure to low levels 
of Cd results in damage to kidneys and has been linked to neoplastic disease and 
aging. People living near hazardous waste sites or factories that release Cd into 
the air and people that work in the metal refinery industry breathe in Cd, which 
damage the lungs and may even cause death. Cadmium may be a catalyst to oxida-
tion reaction, which can generate tissue damage. For example, Cd is reported to 
increase oxidative stress by acting as a catalyst in the formation of reactive oxy-
gen species (ROS), increasing lipid peroxidation, and depleting glutathione and 
protein-bound sulfhydryl groups. Among plants, leafy vegetables such as spinach 
and lettuce are examples of crop species which readily accumulate Cd from 
enriched soil and would also result in a high dietary intake of this element. When 
taken up in excess by plants, Cd directly or indirectly inhibits physiological pro-
cesses such as respiration, photosynthesis, cell elongation, plant–water relation-
ships, and nitrogen metabolisms resulting in poor growth and low biomass. 
(Chaffei et al. 2004; Rani  et  al. 2008). Furthermore, after accumulation in the 
plant tissues, Cd alters the catalytic efficiency of enzymes (Piqueras et al. 1999; 
Romero-Puertas  et  al. 1999), damages cellular membranes (Tu and Brouillette 
1987), and inhibits root growth.
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11.3.2  Arsenic Toxicity

The As cycle has broadened as a consequence of human interference, and due to this, 
a large amount of As ends up in the environment and in living organisms. Arsenic 
compounds cause acute and chronic effects in individuals, populations, and communi-
ties at concentrations ranging from a few micrograms to milligrams per liter, depending 
on species, time of exposure, and endpoints measured. Arsenic is highly toxic and 
ingestion of large doses leads to gastrointestinal symptoms, disturbances of cardiovas-
cular and nervous system functions, and eventually death. It can also cause various 
health effects, such as irritation of stomach and intestine, decreased production of red 
and white blood cells, skin changes, and lung irritation. A very high exposure may lead 
to infertility and miscarriages in women. Drinking water contaminated with As leads 
to increased risks of cancer in the skin, lungs, bladder, and kidney, as well as other skin 
changes such as hyperkeratosis and pigmentation changes. Plants absorb As fairly eas-
ily, so high ranking concentration may be present in food. It has been reported that As 
toxicity affects photosynthesis which ultimately results in the reduction of rice growth 
and yield (Rahman et al. 2007). The concentrations of the dangerous inorganic arsenics 
that are currently present in surface waters enhance the chances of alteration of genetic 
material of fishes. This is mainly caused by accumulation of As in the bodies of plant-
eating freshwater organisms. These fishes containing eminent amounts of As when 
eaten by birds, lead to their death due to As poisoning. The overall of evidence indi-
cates that Cd and As can cause clastogenic damage in different cell types with different 
endpoints in exposed individuals. Moreover, some other heavy metal contaminants and 
their possible hazards are summarized in Table 11.1.

11.4  Mechanism of Bacterial Resistance to Heavy  
Metals: An Overview

Microbial resistance to toxic metals is widespread, with frequencies ranging from a 
few percent in pristine environments to nearly 100% in heavily polluted environ-
ments (Silver and Phung 2009). Metals and their compounds interact with microbes 

Table. 11.1  Sources of some heavy metals and their possible hazards
Metal Sources Disease

Lead Mining, coal, automobile, paper dyeing, 
petrochemicals

Mental retardation, emesis, 
anorexia, fatigue, anemia, 
neuritis, palsy

Chromium Leather tanning, thermal power plant,  
petroleum refining, textile photography

Bronchial asthma, Allergies

Nickel Mining, coal, power plant, phosphate  
fertilizers, automobile electroplating

Dermatitis pneumonia

Mercury Chloralkali plants, pulp and paper,  
Antiseptics, fungicides

Minamata disease
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in various ways depending on the metal species, organism, and environment. 
Structural components and metabolic activities of microbes also influence metal 
speciation and therefore solubility, mobility, bioavailability, and toxicity of metals 
(Gadd 2004, 2005, 2007) (Fig. 11.3).
Bacterial resistance mechanisms generally involve efflux or enzymatic detoxifi-

cation of metals (Rosen 2002; Nies 2003; Osman and Cavet 2008; Silver and Phung 
2009). It seems that most of the survival mechanisms depend on some changes in 
metal speciation leading to decreased or increased mobility. These include redox 
transformations, production of metal-binding peptides and proteins (e.g., metallo-
thioneins, phytochelatins), organic and inorganic precipitation, active transport, 
efflux, and intracellular compartmentalization. Such metal transformations are cen-
tral to metal biogeochemistry and emphasize the link between microbial responses 
and geochemical cycles for metals (Loveley et al. 1991; Gilmour and Riedel 2009). 
The mechanism adopted by microbes to resist Cd and As toxicity are reviewed and 
discussed in the following section.

11.4.1  Bacterial Resistance to Cadmium

Three major families of efflux transporters namely, P-type ATPase, CBA transport-
ers, and CDF family transporters are involved in Cd resistance. P-type ATPases 
span the inner membrane and use energy provided by ATP to pump metal ions 
from the cytoplasm to periplasm (Rensing et al. 1997). CBA transporters are three-
component trans-envelope pumps of Gram-negative bacteria that act as chemios-
motic antiporters (Franke et al. 2003) and cation diffusion facilitator (CDF) family 

Fig. 11.3  Mechanisms of metal–microbe interaction
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transporters act as chemiosmotic ion-proton exchangers (Anton et al. 1999; Grass 
et al. 2001). P-type ATPases and CDF transporters export metal ions from the cyto-
plasm to the periplasm; whereas CBA transporters mainly detoxify periplasmic 
metal (outer membrane efflux. P-type ATPases and CDF transporters can function-
ally replace each other but they cannot replace CBA transporter and vice versa 
(Scherer and Nies 2009).

11.4.1.1  P-type ATPase

P-type ATPases constitute a superfamily of transport proteins that transport ions 
against the concentration gradient using energy provided by ATP hydrolysis. The 
term “P-type” refers to the formation of a phosphoenzyme intermediate in the reac-
tion cycle. The energy released by the removal of the PO

4
 from ATP is used in the 

translocation of an ion across biological membranes. Divalent metal efflux ATPases 
are widespread in both Gram-positive and Gram-negative bacteria (Rensing et al. 
1999). In Gram-positive bacteria, the first example of a Cd-exporting P-type ATPase 
was the CadA pump from S. aureus (Nucifora et al. 1989). Cadmium translocating 
ATPases have been characterized in Synechocystis (Thelwell et al. 1998), P. putida 
(Lee et al. 2001; Hu and Zhao 2007) and Cupriavidus metallidurans (Legatzki et al. 
2003; Scherer and Nies 2009). Two different cadA Cd resistance determinants 
(cadA1, first identified in Tn5422, and cadA2, associated with pLM80) were detected 
among Cd-resistant Listeria monocytogenes strains from turkey processing plants 
(Mullapudi et al. 2010).

11.4.1.2  CBA Transporters

The CBA transporters are three-component protein complexes that span the whole 
cell wall of Gram-negative bacteria. The most important component of the trans-
porter is a resistance nodulation cell division (RND) protein that is located in the 
inner membrane. The RND protein family was first described as a related group of 
bacterial transport proteins involved in heavy metal resistance (C. metallidurans), 
nodulation (Mesorhizobium loti), and cell division (E. coli) (Saier et al. 1994). The 
RND protein is usually accompanied by the membrane fusion protein (MFP) and 
outer membrane factor (OMF). These three proteins form an efflux protein complex 
that may export the substrate (ions) from the cytoplasm, the cytoplasmic membrane, 
or the periplasm across the outer membrane (Nies 1999, 2003). RND-driven export 
systems are referred to as CBA efflux systems or CBA transporters. This way, they 
can be distinguished from ABC transport systems and this name also reflects the 
sequence of the genes in the operon encoding for the components of the transporter 
complex. In bacteria and archaea, CBA transporters are involved in transport of 
heavy metals, hydrophobic compounds, nodulation factors, and proteins. By dimin-
ishing not only the cytoplasmic concentration of heavy metal cations but addition-
ally the periplasmic concentration, CBA transport systems could remove cations 
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even before they have the opportunity to enter the cell. Moreover, these efflux systems 
could mediate further export of the cation that had been removed from the cyto-
plasm by other efflux systems.
The best  characterized CBA  transporter  is  the CzcCBA complex  from Gram-

negative soil bacterium Ralstonia eutropha (formerly called Alcaligenes eutrophus) 
strain CH34. The czc determinant encodes resistance to (cobalt (Co), zinc (Zn), and 
cadmium (Cd)) by metal-dependent efflux (Nies et al. 1989b) driven by the proton 
motive force (Nies 1995). CBA transporters responsible for Zn2+ and Cd2+ efflux can 
also be found in P. aeruginosa  (Hassan et al. 1999) and P. putida  (Hu and Zhao 
2007). The three metal cations (Co, Zn, and Cd), which are taken up into the cell by 
the fast and unspecific transport system for magnesium ions (Nies et al. 1989a), are 
actively extruded from the cell by the products of the czc resistant determinants 
(Nies et al. 1989b). The actual efflux protein complex is composed of three subunits: 
CzcC (outer membrane protein), CzcB (membrane fusion protein), and CzcA (Basic 
inner membrane transport protein) (Fig. 11.4).

11.4.1.3  CDF Family Transporters

The cation diffusion facilitator family (CDF) comprises of a group of transporters 
which can catalyze either influx or efflux of heavy metals. Members of the family 
have been found from both prokaryotes and eukaryotes. CDF family of chemios-
motic efflux systems was first described with the Cd and Zn ions efflux system of 
C. metallidurans (Nies 1992; Anton et al. 1999). CDF proteins are driven by a 
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potassium gradient in addition to the proton motive force. Generally, very little is 
known about the role of CDF transporters in heavy metal resistance. They provide 
very low level resistance, but it has been assumed that their main role is to function 
as a kind of heavy metal buffer for the cell at low cytoplasmic metal concentrations 
(Anton et al. 1999).

11.4.2  Bacterial Resistance to Arsenic

The best characterized, and probably the most widespread, As resistance system in 
microorganisms is the “ars gene” system. At the basic level, the ars system con-
sists of a series of three or more genes coding for a transmembrane pump system 
and an arsenate reductase. The operon includes: (1) a regulatory gene (arsR), (2) a 
gene coding for an arsenite-specific transmembrane pump (arsB), and (3) a gene 
coding for an arsenate reductase (arsC). Arsenic (III) is pumped directly out of the 
cell by the membrane protein encoded by arsB; however, As(V) must first be 
reduced to As(III) by the soluble arsenate reductase encoded by arsC gene. 
Moreover, arsR codes for a repressor protein that regulates ars gene expression 
(Ordonez et al. 2005). In some bacteria, the operon contains other genes: arsA that 
produces an oxyanion-stimulated ATPase (Kaur and Rosen 1994) that couples ATP 
hydrolysis to the extrusion of arsenicals (and antimonite) through the arsB protein; 
arsD that encodes for a regulatory protein capable of controlling the upper level of 
ars expression (Yang et al. 2010). A relatively large number of microorganisms are 
capable of resisting the toxic effects of arsenic by using methods such as arsenite 
oxidation (to produce the less toxic arsenate) and minimizing the uptake of arsenic 
from the environment. For example, P. stutzeri  strain GIST-BDan2  (EF429003) 
contain aoxB and aoxR gene, which play an important role in As(III) oxidation to 
As(V) (Chang et al. 2010). The cell membrane of bacterial cell is a primary site of 
heavy metal  toxicity.  Toxic metal  ions,  including Cu, Co, Ni, Cd, As,  and Hg, 
inhibit plasma membrane ATPase by means of various binding interaction (Ochiai 
1987). The above effect leads to an increased permeability of the cell to external 
material, i.e., adverse effect on membrane integrity and a reduced ability to main-
tain electrochemical gradient or membrane potential. Therefore, membrane poten-
tial and integrity were recorded for B. cereus strain AG27 and AGM13 (unidentified) 
(Gupta  2006) using the fluorescent dyes Bis-oxonal (Ox [DiBAC

4
] (3)) and 

Propidium Iodide (PI).
Bis-oxonol is lipophilic, anionic, and accumulates intracellularly producing 

green fluorescence only when the cytoplasmic membrane is hyperpolarized/depo-
larized and PI binds to nucleic acids and produces red fluorescence, but cannot cross 
the intact cytoplasmic membrane, hence can be used to indicate cell membrane 
integrity. These fluorescent dyes alone or in combination can be used to detect the 
effect of stress of heavy metals on the cytoplasmic membrane integrity and physiology 
of bacterial populations (Zhang and Crow 2001). Flow cytometry data for Bis-oxonol 
for both Bacillus cereus  strain AG27 and an unidentified  strain AGM13  showed 
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significant reduction in membrane potential after addition of sodium arsenate to the 
cells growing in log phase. The flow cytometric graphs showed a shift in peak 
toward a higher fluorescence with changing time periods in the presence of As, 
which revealed the loss in membrane potential (Fig. 11.5a, b).

In case of Bacillus cereus  (AG27),  the fluorescence reached to maximum after 
30 min and then decreased suggesting that cells had recovered from initial shock due 
to addition of As whereas in case of AGM13, the rate of depolarization was more, 
revealing that the toxic effect was more pronounced in AGM13 as compared to AG27 
as Bis-oxonol, which is an important marker (Epps et al. 1994) for  determining the 

Fig. 11.5 (a) Flow Cytometric measurement of changes (A) Membrane potential (B) Membrane 
integrity of Bacillus cereus strain AG27 in the presence of arsenic after different time intervals. 
Green (30 min), magenta (60 min), sky blue (90 min), navy blue (120 min), and orange (150 min), 
respectively, FL1 and FL2-Fluorescence labels (Adapted from Gupta 2006). (b) Flow Cytometric 
measurement of changes (A) Membrane potential (B) Membrane integrity of unidentified strain 
AGM13 in the presence of arsenic after different time intervals. Green (30 min), magenta (60 min), 
sky blue (90 min), navy blue (120 min), orange (150 min), respectively, FL1 and FL2-Fluorescence 
labels (Adapted from Gupta 2006)
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change in membrane potential accumulated in the cell leading to increase in 
fluorescence. Further, the flow cytometric analysis for PI did not show much change 
in fluorescence in both the strains which clearly indicated that the addition of As 
disrupted the membrane potential, and thus, the metabolic rate. However, the cells 
retained the membrane integrity and viability even after addition of As.

11.5  Influence of Microbes on Speciation  
and Mobility of Arsenic and Cadmium

Microorganisms play an important role in the environmental fate of Cd and As with 
a multiplicity of mechanisms affecting transformations between toxic and nontoxic 
forms of Cd and As. The potential of microorganisms to immobilize or volatilize 
soluble Cd has been explored. Biomass of several bacterial, fungal, and algal spe-
cies has been evaluated as biosorbents for the removal of soluble Cd from solution. 
The anionic nature of bacterial cell surface enables them to bind to metal cations 
through electrostatic interactions. Three strains of thermotolerant polymer-producing 
bacteria; Bacillus subtilis WD90, B. subtilis SH29, and Enterobacter agglomerans 
5M38 were capable of Cd removal by biosorption (Kaewchai and Praseptan 2002). 
The biosorption of Cd and As by filamentous fungus Aspergillus clavatus DESM 
has been reported (Cernasky et al. 2007). Cadmium-binding proteins have an impor-
tant role in moderating Cd toxicity in some fungi and bacteria. These have been 
reported in P. putida (Higham et al. 1984). Cadmium-binding metallothioneins have 
been identified in cyanobacteria (Turner et al. 1996). A metallothionein encoded by 
CUP1 gene binds Cd in Candida glabrata. Low-molecular-mass carboxylic acids 
play an important role in chemical attack of minerals, providing protons as well as 
metal-chelating anions (Burgstaller and Schinner 1993; Jacobs et al. 2002a, b; 
Huang et al. 2004; Lian et al. 2008a, b). Phytochelatins (PCs); the metal-binding 
cysteine-rich  peptides  are  enzymatically  synthesized  in  plants  and  certain  fungi 
from glutathione in response to heavy metal stress. In an attempt to increase the 
ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana PC 
synthase gene (AtPCS) was expressed in E. coli. When the bacterial cells expressing 
AtPCS were exposed to metals like Cd or As, cellular metal content was increased 
20- and 50-folds, respectively. Thus, the overexpression of PC synthase in bacteria 
could be a means of improving the metal content of organisms for use in bioreme-
diation (Sauge-Merle et al. 2003). Phytochelatins with good binding affinities for a 
wide range of heavy metals were also exploited to develop microbial sorbents for 
Cd removal. Phytochelatin synthase from Schizosaccharomyces pombe (SpPCS) 
was overexpressed in E. coli, resulting in PC synthesis and seven times higher Cd 
accumulation (Kang et al. 2007).

Several microorganisms have been shown to precipitate soluble Cd as insoluble 
sulfides (Holmes et al. 1997), or carbonates (Cunningham and Lundie 1993). The 
yeast  Cd  factor  (YCF1,  EC  3.6.3.46)  mediates  accumulation  of  Cd–glutathione 
complexes in Saccharomyces cerevisiae vacuoles, and metal-binding peptides 
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(“phytochelatins”) sequester Cd in subcellular organelles in S. pombe and  
C. glabrata  (Perego  and Howell 1997). Pseudomonas aeruginosa  strain KUCd1 
exhibiting high Cd accumulation under in vitro aerobic condition has also been 
reported (Sinha and Mukherjee 2009). Similarly, transmission electron microscopy 
analysis of P. aeruginosa strain 62BN demonstrated intracellular and periplasmic 
accumulation of Cd (Rani et al. 2009). Cadmium-resistant mutants of pseudomonas 
species  NBRI4014  developed  through  selective  enrichment  and  P. aeruginosa 
MCCB102 also showed bioaccumulation (Zolgharnein et al. 2010). Cytoplasmic 
(Yoshida et al. 2002) and periplasmic (Naz et al. 2005; Pazirandeh et al. 1998) 
accumulation of heavy metal ions has also been reported in E. coli.

Microbes are also able to detoxify the poisonous As species. They biomethylate 
inorganic As species to Monomethyl arsonic acid (MMAA) and Dimethyl arsinic 
acid  (DMAA)  (Cullen and Reimer 1989). Fungi dominated the microbial screen 
regarding the production of volatile, garlic-smelling trimethylarsine (Craig et al. 
2000), although bacterial and animal tissues also are known to have this potential 
(Hall et al. 1997). Nonetheless, the conversion of arsenate to MMAA or to DMAA 
is another possible mechanism for detoxification (Fig. 11.6).
Microbial activity can also result in volatilization of As to gaseous arsines (Gao 

and Burau 1997). These arsines may travel in air or may oxidize rapidly depending 
on  environmental  conditions  (Pongratz 1998). Pseudomonas stutzeri exhibited a 
maximum accumulation of 4 mg As g−1 (dry weight). Arsenic (V) can be reduced by 
dissimilatory reduction, where microorganisms utilize As(V) as a terminal electron 
acceptor for anaerobic respiration. To date, dissimilatory reduction has been 
observed in several bacteria, such as Sulfurospirillum barnesii, S. arsenophilum, 
Desulfotomaculum auripigmentum, Bacillus Asoselenatis, B. selenitireducens, 
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Crysiogenes arsenatis, Sphingomonas spp., Pseudomonas spp. and Wolinella spp., 
Bacillus sp. SF-1 (Ahmann et al. 1994; Lovely and Coates 1997; Newman et al. 
1998; Stolz and Oremland 1999; Oremland et al. 2000; Macur et al. 2001). In addi-
tion, microorganisms may possess As(V) reduction mechanisms that are not cou-
pled to respiration but instead are thought to impart As resistance. The energetics of 
the oxidation of As(III) to AS(V) suggest that enough energy for growth can be 
produced through this reaction (Oremland et al. 2002). Since these organisms are 
almost heterotrophic As(III)-oxidizing bacteria, they require the presence of organic 
matter for growth. Examples include A. faecalis, P. arsenitoxidans, NT-26, P. stutzeri 
strain GIST-BDan2  (EF429003), Pseudomonas strain RS-19  (Phillips and Taylor 
1976; Santini et al. 2000; Chang et al. 2010). An As(III) oxidase has been obtained 
and purified from A. faecalis (Anderson et al. 1992; Anderson et al 2002). Thermus 
aquaticus and T. thermophilus were also found to rapidly oxidize As(III) to As(V), 
but they were not able to grow with As(III) as the sole energy source, thus suggest-
ing that the ecological role of As(III) oxidation was detoxification of As (Gihring 
and Banfield 2001). One microbe in particular, A. ehrlichii strain MLHE-1T, can 
express two completely different physiologies. As an aerobe, it grows heterotrophi-
cally, with acetate as the electron donor and carbon source. As an anaerobe, it is a 
chemolithoautotroph, coupling the oxidation of As(III) to the reduction of nitrate 
to nitrite (Hoeft et al. 2007). Briefly, microbiological processes can either solubilize 
metals, thereby increasing their bioavailability and potential toxicity, or immobilize 
them, and thereby reduce the bioavailability of metals. These biotransformations 
are thus an important component of biogeochemical cycles of metals and may be 
exploited in bioremediation of metal-contaminated soils (Gadd 2000; Barkay and 
Schaefer 2001; Lloyd and Lovley 2001).

11.6  Conclusion

Unlike organic pollutants, that can be mineralized to harmless products, Cd and As 
cannot be biodegraded, but persist indefinitely, complicating the remediation of 
contaminated soils. They are released from the earth crust via natural processes and 
from certain human activities. Environmental levels of Cd and As vary, the concen-
trations being highest in the air close to industrial sources, in areas with natural 
geological contamination, and in soils or sediments near contamination sources.
Driven by the realization that large areas of land contaminated with these heavy 

metals cannot be economically remediated by conventional chemical approaches, 
microbial bioremediation proved to be the best alternative. Thus, the main strategy 
employed involves the reduction in bioavailability, mobility, and toxicity of these 
metals. Biological methods for remediation of Cd and As contaminated soils 
include detoxification, bioleaching, biosorption, biotransformation, etc. Biomass of 
several bacterial, fungal, and algal species biosorb Cd and As from contaminated 
sites and help in their removal. In As-contaminated soils, microbial methylation of 
inorganic arsenic to water soluble methylated arsenic forms may function as a 
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detoxification method. Furthermore, study of genes responsible for Cd and As 
resistance may aid in production of genetically modified microorganisms capable of 
remediation of contaminated soil. Since, microbial transformations of metals are a 
vital part of natural biosphere processes and can have beneficial as well as detrimen-
tal consequences for societal benefit. Therefore, our understanding of this important 
area of microbiology and its applications needs to be unfolded completely.
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Abstract Soil contamination by toxic metals is a major problem that has threatened 
the sustainability of various agro-ecosystem worldwide. Generally, heavy metals 
are not destructed and, therefore, persist in the environment. The traditional physi-
cal and chemical methods applied for metal removal from contaminated sites pro-
duce undesirable products and are expensive. The bioremediation methods including 
phytotechnologies, on the other hand, is an emerging simple and inexpensive in situ 
technology used for remediating contaminated sites. A comparative analysis of phy-
toremediation methods for heavy metal–contaminated soils with a special emphasis 
on the feasibility and applicability to established methods for soil cleaning is pre-
sented. Results of the field trials conducted to examine the applicability of technical 
soil cleaning methods are also highlighted. Phytoextraction when used to clean up 
polluted soils was found as an efficient method for slightly and medium-contami-
nated soils. Chemophytostabilization that involved the use of indigenous plant spe-
cies was identified as the most practical remediation option for pollutant stabilization 
in soil. The results of studies on the use of phytotechnologies in the utilization of 
various plant species for direct application in soils contaminated with heavy metals 
under a wide range of agro-ecological conditions with a view to restore contami-
nated soils and consequently facilitate plant yields in metal-poisoned soils around 
the world are discussed.
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12.1  Introduction

Heavy metals are released from various industrial sources (like electroplating and 
metal extractive operations), agrochemicals, and sewage sludge into soil environ-
ment (Muchuweti et al. 2006; Marshall et al. 2007; Singh et al. 2010). Heavy metals 
cannot be destructed and, therefore, persist in soil (Kucharski and Sas-Nowosielska 
2001; Tomohito et al. 2010). Once they accumulate beyond permissible limits in 
soils, heavy metals pose a serious ecological, toxicological, and human health prob-
lems, since they are carried into the food web as a result of leaching from agricul-
tural products, polluted soil, waste dumps, or contaminated drinking water 
(Intawongse and Dean 2006; Martelli et al. 2006; Palmgren et al. 2008). Among 
various metals, lead and cadmium, for example, enters the body via digestive tract 
and adversely affect the human health (Hovmond et al. 1983). The concentration of 
heavy metals, however, varies significantly among different food products like pota-
toes, cereals, vegetables, meat, dairy products, etc. Of these, vegetables, potatoes, 
and cereals accumulate substantial amounts of metals. Apart from soil contamination 
resulting from anthropopression, high natural content of metals in soils is also the 
cause of problems. It is obvious in the areas contaminated heavily with lead and zinc 
(Gzyl 1999). Soil protection and rehabilitation of contaminated sites are, therefore, 
extremely important in order to preserve the structural integrity and fertility of soil.

In addition, agricultural practices are often performed in the areas that are either 
devastated or are under active industry pressure. And hence, the cultivation of edible 
or pasture plants in these areas should either be stopped or limited (Kucharski et al. 
1994). Other aspect that requires considerable attention is the high cost of transporta-
tion of foods to longer distances and the quality of foods that may deteriorate during 
transportation. To overcome these problems, it is suggested to change the cultivation 
practice of crops, land use, etc. The change in the pattern of land use may, however, 
be expensive and might lead to serious social problems like unemployment or requal-
ification of farmers to switch to jobs other than agricultural practices. That is why in 
the future, agricultural production in polluted environment has to be considered at 
priority basis. The producers, while working in contaminated areas, however, when 
properly informed, would be able to reduce the pollutant risk by selecting a suitable 
plant species, which could also be safe for the consumers. Other procedures, though 
more expensive and organizationally complicated, are directed toward the improve-
ment of soil quality. The most frequently used methods for improving soil quality 
includes crop selection, proper agriculture practices, deep plowing, etc. (Table 12.1). 
Taking these facts into consideration, proper identification and careful assessment of 
the source, scope, and level of contamination threat are important for developing an 
efficient and sustainable preventive remedial measure and management of already 
contaminated sites. In this context, the conventional mechanical and chemical tech-
nologies or long-term biological methods for cleaning up the contaminated sites have 
been suggested and employed. So far as technical measures are concerned, the fol-
lowing methods have been used to some effect: (1) excavation of the contaminated 
soil, (2) immobilization of the contaminants, and (3) mixing the contaminated 
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material with clean soil or subsoil in order to reduce the maximum concentrations of 
contaminants to below the threshold trigger values.

While considering remediation strategies, users can thus select any one of the 
methods like immobilization, extraction, or separation. The techniques, which allow 
stabilization of contaminants in soil using chemical or biological methods, for 
example, chemophytostabilization, could be very practical, due to its technical sim-
plicity and relatively low cost. The chemicals bind the excess of metals and help to 
maintain an appropriate pH of soil and may serve as plant nutrient as well. The engi-
neering solutions, for example, soil washing (Anderson 1993; Peijnenburg et al. 
2007; Dermont et al. 2008), soil heating (Abramovitch et al. 2003; Jou 2006; 

Table 12.1 The most frequently used methods adopted to reduce metal contamination of soils

Action Description

Phytoremediation The use of plants to remove metals from soil
Crop selection An adequate choice of crop, according to individual 

species accumulation abilities and contamination of 
soil to provide the consumer with safe food or food 
products

Good agriculture practices Maintains a proper pH and a satisfactory level of organic 
matter and fertility of soil

Deep plowing Plowing at the level of 40–50 cm to cover the contami-
nated soil underneath and to expose the clean layer of 
soil

Top soil replacement Removal of ca. 20 cm of top soil and its replacement 
with clean material from some other place

Total soil replacement Complete removal of soil and replacement with 
uncontaminated material. The contaminated material 
is transported to permitted off-site treatment and 
disposal facilities

Use of binding materials in soil Introducing various binding materials to the topsoil to 
bind metals and make them less available to plants

Chemical and electrolytic method, 
soil washing

Various hard technical soil cleaning methods using 
electrolysis, chemicals, thermal applications, 
washing, etc., usually leading to destruction of basic 
soil properties including soil microflora (side effect)

Placement of clean soil on surface Uncontaminated soils are applied onto the soil surface. 
The thickness of the layer applied depends on 
intended land use

Dilution of contaminated soil by 
mixing with clean soil

Mixing the contaminated material with clean soil or 
subsoil in order to reduce the maximum concentra-
tions of contaminants to below the threshold values

Use of site for urban purposes If any other use of contaminated agricultural land is not 
feasible, an alternative use of the land should be 
considered like for urban purposes such as parking, 
roads, warehouses, etc.

Cultivation of nonedible plants In order to preserve agricultural practices on contami-
nated land, nonedible plants might be cultivated, i.e., 
those for industrial purposes, woods, or biofuels
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Kucharski et al. 2005b), and electrokinetics method (Faulkner et al. 2005; Altin and 
Degirmenci 2005) are, however, quite expensive but may be the only practical solu-
tion to highly dangerous conditions. So, the search is on to develop efficient and 
inexpensive remediation method and bioremediation can fulfill this requirement. In 
a less threatening situations, combination of engineering and/or bioremediation 
could, however, be the most effective, sustainable, and practical approach. Moreover, 
the plants, when used in bioremediation technology, also build a dense root mat, 
which may (1) prevent wind erosion of contaminated material, (2) reduce the leaking 
of polluted water, and (3) allow metals to accumulate in roots (Berti and Cunningham 
2000). The choice of methods, however, depends on the site characteristics, current 
or intended land use, extent and nature of the pollutants, and available resources.

12.2  Phytoremediation: A Natural Way  
for Restoration of Polluted Soils

The term phytoremediation (phyto = plant and remediation = correct evil) is the 
name collectively used for a set of technologies that employ plants to clean up con-
taminated sites. Broadly, this is an environmentally friendly and visually attractive 
technology that involves the use of metal-accumulating plants to remove, transfer, 
or stabilize the contaminants from polluted soils. Plant-based soil remediation sys-
tems can be viewed as solar-driven, pump-and-treat systems with an extensive, self-
extending uptake network (the root system) that enhances the belowground 
ecosystem for subsequent productive use. The performance of the phytoremediation 
technique is, however, affected largely by plant genotypes, speciation, and concen-
tration of metals present in sites to be remediated and action of soil microbes. Based 
on their ability to remove heavy metals from contaminated sites, plants have been 
categorized as indicators, accumulators, and excluders.

Application of special amendments has, however, shown the increase (Huang 
et al. 1997; Salt et al. 1998; Evangelou et al. 2007) or decrease (Vangronsveld et al. 
2009) in the availability of metals to plants. The soil amendment like any other 
emerging new technology has not been fully tested and, therefore, should be 
checked. The main risk of the method is, however, that it may lead to the contamina-
tion of groundwater, which may occur: (1) when dose of amendments applied is too 
high, (2) if weather conditions are not appropriate, (3) when soil does not react as 
expected, and (4) when acid rains overlap with soil amendment and increase the 
mobility of metals in soils and thereby leach to the groundwater. A routine risk 
assessment procedure is therefore required to determine the impact of pollutants on 
land users when exposed to pollutants (Paustenbach et al. 1992) and also to see 
whether this is socially accepted or not. In this regard, the exposure assessment 
method of Kucharski et al. (1994) might help in predicting the hot spots and to 
identify the contaminated sites, which could be subjected to cleaning in residential 
and agricultural areas. The key issue is to determine the intended land use and to 
decide “how clean is clean” for each specific case. It should further be stressed that 
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technical activities aimed at safe use of soils must follow the existing legal regulations. 
When the hazard is already well identified, an appropriate policy has to be followed, 
which, however, may vary from technical to administrative means. Possibilities of 
various approaches that can be applied to large areas, agricultural and brownfields, 
distributed around a decommissioned industrial metal production complex, are 
presented in Fig. 12.1.

12.2.1  Advantages and Limitations of Phytotechnologies

Even though phytoremediation is considered possibly the cleanest and cheapest 
technology used widely in the remediation of selected polluted sites, this technol-
ogy has both advantages and disadvantages. For example, phytoremediation has the 
advantage of the unique and selective uptake abilities of root systems, together with 
the translocation, bioaccumulation, and contaminant storage/degradative abilities of 
the whole plants (Nascimento and Xing 2006; January et al. 2008). Moreover, it 
offers large-scale and on-site treatment of contaminated areas (Vangronsveld et al. 
2009; Kucharski et al. 2005a). Thus, the major advantages of this technology include 
(1) low cost, (2) easy to implement and maintain, (3) far less disruptive to the soil 
environment, and (4) avoids excavation and is socially acceptable. The disadvan-
tages of this remediation method, on the other hand, are as follows: (1) since root 
contact with contaminants in this technology is important, the contaminants must be 
in contact with the root zone of the plants. Therefore, plants should be able to extend 

Problem identification

Remedial method selection

Regulatory/legal
cosiderations

Engineering methods

Removal of contaminants

HANDLING

IDENTIFICATION AND DESCRIPTION

Stabilization of contaminants

Biological BiologicalTechnical Technical

Administrative methods
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- changes in land use

- phytoextraction
- microbial

- electrokinetics
- soil washing
- soil heating
- soil removal
- deep plowing

- phytostabilization
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- pH control
- vitrification
- binding materials

Environmental impact assessment

Fig. 12.1 A flow chart showing management of contaminated land
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roots to the contaminant region. (2) High concentrations of pollutants may inhibit 
plant growth, which may result in yield losses and poor plant cover. (3) It is time 
consuming due to the slow growth rate of plants. (4) It can be affected by fluctuating 
environments. (5) The effect of agronomic practices on this technology is less 
understood. (6) After remediation, plant biomass needs to be removed. (7) There is 
danger of spread of pollutants (e.g., metals) into the soil environment even during 
remediation. Therefore, to overcome these problems and to make phytoremediation 
a viable and affordable technology, we need to search plants that could grow faster 
and be able to produce (1) extensive root systems, (2) high biomass, (3) should have 
lower-level contaminant uptake ability, and (4) be able to accumulate higher amounts 
of contaminants. Despite the conflicting reports on the use of phytotechnologies and 
its tremendous potential in the containment of hazardous sites, this technology in 
clean-up program is still preferred over conventional physico-chemical methods 
around the world. Some of the commonly applied phytotechnologies and their 
importance in remediation of heavy metals are described in the following section.

12.2.2  Phytoextraction

Phytoextraction, which involves the use of plants to extract toxic metals from con-
taminated soils and store them in harvestable tissues, has emerged as a cost-effective, 
environment friendly cleanup alternative. Among plants, certain plant species called 
hyperaccumulators are reported to accumulate excessively high concentrations of 
heavy metals (Szchwartz et al. 2003; McGrath and Zhao 2003; McGrath et al. 2006) 
at concentrations 10–100 times greater than could be tolerated by many normal 
plants (Kukier et al. 2004). The most commonly used plants in metals extraction are 
Brassica sp. and Helianthus sp. (Sas-Nowosielska et al. 2005; Gupta et al. 2010). 
Indeed, the use of such plants at larger scale in metal extraction is limited due to 
lack of good quality seeds, low biomass producing ability of the plants, and harvest-
ing problems. The low metal accumulation ability of plants could, however, be cir-
cumvented by the use of plant species capable of producing extensive biomass on 
contaminated soils. Plants with massive biomass production but poor accumulation 
rates remove certain amounts of metals, and hence, the process becomes very slow. 
The addition of chelators to contaminated soil however can enhance metal uptake 
by plants. This approach is often called as “induced phytoextraction” (Salt et al. 
1998). For phytoextraction, site characterization involving description of target con-
taminants, treatability study (TS), site layout and design, supply and application of 
amendments, field engineering and metal analysis, and crop disposal (Ensley 2000) 
should be considered. The other important issues associated with phytoextraction is 
the selection of plant species, identification of optimal conditions for metal uptake 
into the aboveground portion of the plants, and assessment of soil whether it sup-
ports plant growth during remediation (Sas-Nowosielska et al. 2000) or not. These 
parameters are evaluated during treatability study, which includes short-term plant 
uptake investigations, conducted under controlled conditions toward evaluating 
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growth, and metal uptake potential of selected plant species. The TS is generally 
applied to (1) demonstrate applicability, (2) speed up the process, and (3) decrease 
the cost of phytoextraction. The purpose of TS is, therefore, broadly to determine 
(1) whether the soil to be remediated will support the growth of candidate plant spe-
cies, (2) the type and quantity of amendments needed, and (3) the optimal plant 
growth period for applying the amendments. The results of growth-chamber stud-
ies, however, often fail under field environment due to variation in factors, like 
humidity, soil structure and heterogeneity, rainfall, and pests; all of which may lead 
to differing plant response. The TS in general, thus, helps to optimize plant growth 
and maximize the removal of metals from soils.

Site characterization and TS are conducted sequentially prior to the start of full-
scale planting experiments. The traditional TS are conducted under controlled envi-
ronments in greenhouse conditions. Therefore, the results observed in the laboratory 
may not be the same under field conditions. The purpose of these activities is, how-
ever, to identify the nature and extent of contamination at the target site, and to 
determine if, and under what conditions, proposed plant species will extract the 
target contaminants. Furthermore, most of the phytoextraction processes used to 
assay the inorganic contaminants involve the use of a chelating agent for increasing 
the bioavailability of the target contaminant (Table 12.2). For example, EDTA, 
organic acid, and herbicide in a study were found to stimulate the accumulation of 
lead and cadmium in plants growing in contaminated soil (Sas-Nowosielska et al. 
2001). In a follow-up study, about 100 mg of Pb and 10 mg of Cd were extracted 
from 1 m2 of medium-contaminated soil in Poland (Sas-Nowosielska 2009). Since 
EDTA has been reported to exhibit toxicity to soil microbes, its impact on microbial 
life was investigated in a 4-year field experiment (Galiulin et al. 1998; Galimska-
Stypa et al. 2000). No adverse effect of EDTA on soil biological function was, how-
ever, detected.

Another test used to determine the efficacy of phytoextraction method is the 
streamline test (ST), reported by several workers (Korcz et al. 1998; Sas-Nowosielska 
et al. 2001). This test is based on a combination of lab (TS) and field methods (ST) 
and is used to assess the applicability of phytoextraction in a given environmental 
situation. In addition, it provides an early indication of the suitability of the site for 
the application of phytoremediation technologies.

The concept of the streamline test was based on a geostatistical assumption that 
an adequately distributed number of soil and plant samples may describe the distri-
bution of metals across an investigated site (Fig. 12.2a, b). The variability of Pb and 
Cd contents in soil for example was estimated at field scale in phytoextraction 
experiments (Kucharski et al. 1998, 2002). Based on these findings, it was sug-
gested that two crossing strips covering approximately 20% of the total site surface 
would be sufficient to represent the entire area for site characterization purposes. To 
prove this hypothesis, topsoil samples were taken from outside and inside of the 
strips and were analyzed for metal contents. No significant difference was found among 
concentrations of Pb, Cd, and Zn in soil collected from inside and outside strips. It was 
concluded that the ST or TS better reflects the “real world” conditions as compared to 
the regular treatability study. The phytotoxic effect of heavy metal–contaminated soil 
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collected from inside and outside the strips was also analyzed. It was observed that 
the strips reflected the pattern of plant growth at the test site.

Based on these findings, it was suggested that ST can be applied as an alternative 
to other standard methods used for site characterization and assessment of the toxic-
ity of metals on the biomass-producing potential of plants. This is in contrast to 
traditional treatability studies where homogenized soil is used. In addition, by 
employing ST, the potential effectiveness of phytoextraction can be evaluated, and 
the method can be removed at the early stages of the process, if it is not applicable 
to test areas.

12.2.2.1  Economics of Phytoextraction

The major problem in any environmental remediation strategy is the cost associated 
with pollutants removal from derelict sites. To understand it further, 1-year data on 
the effect of various operational aspects of phytoextraction in order to identify 
means for reducing the costs was studied. It is unrealistic to expect to extrapolate 
lab or greenhouse experiments costs to full-scale operation. To know the cost of soil 
remediation under field environment, a detailed accounting should be maintained 
for all expenditures connected with cleaning-up activities and costs for all activities 
like, environmental monitoring, routine agricultural activities such as, planting, fer-
tilization, harvesting, phytoremediation process (e.g., amendment application), con-
taminated crop disposal, and scientific supervision of the process. In a demonstration 
project, Kucharski et al. (2002) considered all activities from site characterization 
through final disposition of contaminated biomass. Moreover, attention was also 
paid to calculating the costs of the technical processes in order to see how these 
could be decreased while increasing the effectiveness and safety of the operation. To 
determine the generic value of each operation, all expenditures connected with the 
project were recorded and categorized. During the early period of research, the most 
urgent needs and gaps in knowledge were identified and cost analysis was done.

700
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400pb
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Fig. 12.2 Streamline test (a) and statistical evaluation (b)
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Of the total average cost (about 15 US $/m3/year), cost of amendment was the 
important factor impacting the cost of phytoextraction (Table 12.3). Based on this 
finding, it was suggested that the use of reagents should be reduced. As the required 
amounts of chelating agent (EDTA) were computed stoichiometrically to meet the 
amounts of metals contained in the soil, investigations focused on amendment dis-
tribution in terms of (1) precise orientation to target the plant and (2) location-specific 
application based on actual metal concentration. For that purpose, a computer-driven 
device was designed and a prototype was built (Fig. 12.3).

According to such approach, it was possible to reduce the costs of EDTA appli-
cation by about 20% (Kucharski et al. 2002). In highly contaminated areas, as found 
in the vicinity of lead and zinc smelter, the performance of phytoextraction pro-
cess may, however, be highly limited due to shortage of plant species and/or the 
ability of plants to produce low level of biomass (Sas-Nowosielska et al. 2008). 
The loamy soil with neutral pH and organic matter content had high level of metals 

Fig. 12.3 Amendment application device

Table 12.3 Total cost of  
phytoextraction process

Step of the process % of total cost

Field preparation <1
Fertilizers and plant protection <1
Chemicals for plant protection <1
Plant care <1
Irrigation <1
Seeds and planting 7
Sampling and monitoring 7
Amendments 70
Contaminated crop disposal <1
Scientific supervision 15

Adapted from Kucharski et al. (2002)



28712 Phytotechnologies: Importance in Remediation...

(Houba et al. 1995; ISO 2008). Accordingly, when sunflower (Helianhus annuus) 
and Ricinus communis were grown in such soils, they accumulated higher concen-
trations of cadmium and lead in shoots (Figs. 12.4 and 12.5) despite optimum care, 
like, proper fertilizer application and regular watering. These plants also grew 
poorly in the area contaminated with metals. The content of Pb and Cd in sunflower 
cultivars was higher when plants were treated 1 week after transplantation. On the 
contrary, Ricinus communis showed higher concentrations of metals when treated 
directly after transplantation.

These results, thus, suggest that phytoextraction should be employed only for 
low- or medium-contaminated sites. However, for highly contaminated soil, stabili-
zation seems to be the most appropriate method of remediation. The integral part of 
phytoremediation strategy is the isolation or disposal of contaminated materials. 
And hence, when plants are used in various schemes of phytoremediation, the con-
taminated tissues must be handled carefully and the contaminant be properly seques-
tered (Sas-Nowosielska et al. 2004). Considering these, we tried to identify the 
locally available plants and potential procedures for processing the contaminated 
biomass. Incineration was also included as a treatment process for contaminated 
plant material since incineration has been found effective and results in dramatic 
reduction in both mass and volume. However, it must be handled under carefully 
controlled conditions to avoid redistribution of carefully recovered metals. Incineration 
was conducted by professional institutions equipped and licensed to handle hazard-
ous wastes. The other option is to incinerate the material in a lead/zinc smelter or 
cement kilns, using simple technologies such as rotary kilns (the Waelz process) in 
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which even heterogeneous material can be accommodated in the process. Modern 
flue-gas cleaning technology will assure capture of metal-containing dust.

12.2.3  Phytostabilization

Phytostabilization is yet another remediation technology that involves the 
 immobilization of soil pollutants by absorbing and accumulating them through 
roots or precipitated within the root zone of plants. The use of plants and plant 
roots in this technology also helps to prevent contaminant migration via wind and 
water erosion, leaching, and soil dispersion from contaminated sites. In this case, 
the upper layer of soils is first treated with chemicals (e.g., lime, fertilizers, stabi-
lizers) to adjust the soil pH; fertilized and metal compounds are transformed into 
non-soluble forms. The next step is to develop a robust plant cover. The tech-
niques, which allow for stabilizing pollutants in soil using chemical or biological 
methods, could be very practical, considering their technical simplicity and low 
cost. The chemicals bind the excess of metals and help to maintain pH and required 
plant nutrition. Various modifications in phytochemostabilization technique have 
shown promising results in preventing the heavy metals migration and erosion 
from polluted land (Bidar et al. 2007; Stuczynski et al. 2007; Bes and Mench 
2008). The most important features of plant species used in soil phytostabilization 
should however be that plants be able to (1) tolerate high concentrations of pollut-
ants, (2) develop a dense root mat, (3) accumulate pollutants in aboveground 
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parts, and (4) resist variation in climatic conditions (Vangronsveld et al. 2009). 
The most ideal plants for stabilization purposes are, however, those plants that 
retain pollutants in underground parts, do not permit unwanted substances to be 
grazed by animals, and penetrate the food chain. Based on our investigations, 
Agrostis capillaris, Salix viminalis, Festuca rubra, Armoracia lapathifolia, and 
Helianthus tuberosus cannot be recommended for very high polluted soils, even 
after chemostabilization processing of soils. Usage of soil amendments (stabiliz-
ers) at reasonable levels strongly reduces the availability of the pollutants for 
plant uptake (Knox et al. 2000). Therefore, in order to identify more ideal plants 
species, screening should be focused on local vegetation. Especially in extremely 
polluted sites, the use of indigenous species of plants provides an opportunity to 
develop a nice soil cover. Polluted site-related species have already proven its 
importance in surviving under pollution stress. In this context, a better growth was 
observed for indigenous plant species Deschampsia caespitosa L., Silene inflate, 
and Melandrium album while growing on the soil close to the foundry.

Locally and easily available soil additives that may act as metal stabilizers 
(e.g., sewage sludge, mixture of dolomite and zeolite (Biodecol), zeolites, lignite, 
ammonium polyphosphate, or calcium phosphate) may help stabilization process 
immensely. Of these additives, biodecol and sewage sludge may slightly change the 
pH and EC of soil while others are reported to reduce the concentration of bioavail-
able metals (Kucharski et al. 2004). In a study, we determined the bioavailable 
forms of different metal using stabilization experiment in brownfield, which is 
located in the vicinity of former nonferrous metal smelter (the Upper Silesia Region, 
southern part of Poland). The soil of this experimental site was loamy, with neutral 
pH and had higher organic matter and EC and was highly polluted with Pb (7,679 mg/
kg), Zn (9,879 mg/kg), and Cd (427 mg/kg). Of these, 73% Pb, 69% Zn, and 68% 
Cd were present in bioavailable form while 0.08, 3.52, and 14.5% of Pb, Zn, and 
Cd, respectively, were in solution form (Sas-Nowosielska 2009).

In addition, despite proper fertilization and irrigation, plants such as Agrostis 
capillaries, Salix viminalis and Festuca rubra, grown in highly contaminated soil 
treated with stabilizers, showed poor growth. Therefore, it was suggested to use the 
local vegetation that may have a chance to develop soil cover with plants. In this 
context, plant species like Silene inflata, Cardaminopsis arenosa, and Deschampsia 
cespitosa (Warynski ecotype) used separately and as mixture (20% S. inflata, 40% 
C. arenosa and 40% D. cespitosa) were investigated in stabilization studies. Metal 
stabilization was enhanced after lime addition and calcium phosphate application 
(3.8% w/w). Lime was applied to 0–20 cm of soil layer, whereas calcium phosphate 
was introduced at 10 cm of soil depth. During growing season, natural succession 
of S. inflata, C. arenosa, and Melandrium album from the local vegetation was 
observed, even though only D. caespitose was planted (Table 12.4). Metal-
accumulating abilities of D. caespitosa and C. Arenosa, however, differed consider-
ably. Well-known Zn and Cd hyperaccumulator C. arenosa was not found suitable 
for stabilization purposes. In plots treated with additives, C. arenosa did not grow 
while very poor soil coverage was observed for Deschampsia. Cardaminopsis 
arenosa, however, dominated the test site in the absence of additives.
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Amendments introduced to the contaminated soil, however, did not change the 
pH and reduced metal concentrations by several folds in roots and shoots (Table 12.5). 
Even when additives were applied at a depth of 0–10 cm, the binding effect of met-
als was found at the depth of 20–40 cm (Sas-Nowosielska 2009). The decrease of 
cadmium and zinc concentration between the start and the end of experiment was 
two and threefolds, respectively. Lead content in leachates however, did not change 
significantly (Fig. 12.6).

12.2.3.1  Advantages

 1.  In this technology, the mobility of contaminants could be reduced and, hence, the 
risk associated with them is minimized.

 2.  No contaminated secondary waste is generated during this process.
 3.  Compared to other remediation technologies, this is simple to operate and less 

expensive.
 4.  This technology may be used in combination with other technology and improves 

soil fertility.

12.2.3.2  Disadvantages

 1.  Since the contaminants are left in place, so a regular monitoring of site is needed.
 2.  At higher concentrations, pollutants impair plant growth unless uptake of pollut-

ants by plants is reduced.
 3.  If soil additives are used, they are required to be applied consistently so that the 

efficacy of the method is maintained.

Table 12.4 Characteristic of plant cover and plant communities in field experiment

Additive/plant

First year Second year

Plant communitiesa Plant cover Plant communities Plant cover

No additive/Deschampsia 
caespitosa

Deschampsia 
caespitosa     3

25 Deschampsia 
caespitosa    4

40

Cardaminopsis 
arenosa      1

Silene inflata   1

Silene inflata  <1 Cardaminopsis 
arenosa     1

Calcium phosphate/ 
Deschampsia 
caespitosa

Deschampsia 
caespitosa    5

90 Deschampsia 
caespitosa    5

100

Melandrium  
album      <1

Melandrium  
album      1

Silene inflata  <1 Silene inflata    <1
Cardaminopsis 
arenosa    <1

Cardaminopsis 
arenosa      R

Adapted from Gombert et al. (2004) and Sas-Nowosielska (2009)
aThe Braun–Blanquet scale was used to estimate the cover of each species in a following scale: 0.5 
(<1% cover); 1 (1–5% cover); 2 (6–25% cover); 3 (26–50% cover); 4 (51–75% cover); 5 (76–100% 
cover); R (only several plants were found)
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12.3  Conclusion

The advent of remediation technologies has made it possible to clean up the polluted 
soil. However, the major constraints while applying remediation approaches have 
been the side effects of the remediation methods coupled with cost of technology. In 
the case of improvement of agricultural soil contaminated heavily with metal, the 
choice of methods is essentially limited to (1) proper land use, (2) “soft” biological 
methods with all their limitations, and (3) so-called hard technical methods, which 
are rapid but expensive and accompanied by many unwanted side effects. To over-
come such constraints, chemophytostabilization offers an interesting option for res-
toration of metal-contaminated sites. In this context, the chemical stabilizers change 
the metal solubility and mobility, whereas plant exudates alter the chemistry and 
microbiology of the root zone, and may have variable impact on the physico-chemical 
properties of soils. Plant roots may also prevent contaminant migration and mobili-
zation and play a critical role in reducing the erosion of soil.

Metal stabilizers have been found to diminish bioavailable content of metals in 
soil and have reduced metal movement down the soil profile. Even though amend-
ments can be applied only onto the upper layer of soil, they may drift to the deeper 
layers and therefore reduce bioavailable metals, even at the levels of 20–40 cm. 
Apart from using chemicals in the metal stabilization process, it is also important to 
generate a plant cover from those growing locally. From such native areas, plants 
able to accumulate and stabilize heavy metals in their organs should be selected. 
Other method like phytoextraction is simple but requires an extensive understand-
ing of the technical aspects associated with plant propagation and how environmen-
tal factors impact plant development in different ecosystems. Exploitation of 
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Fig. 12.6 Zinc, cadmium, and lead concentration in leachates after addition of stabilizer (Adapted 
from Kucharski et al. 2005a)



29312 Phytotechnologies: Importance in Remediation...

biological processes requires flexibility and willingness to modify the planned 
approach based on site-specific conditions. Single soil pollutants are generally 
removed in laboratory experiments. Presence of elements as mixtures may however 
destroy the efficiency of phytoextraction. Therefore, future research on phytotech-
nologies should focus on identifying plants capable of accumulating higher concen-
tration and more than one metal at a time or on engineering the existing plant species 
in order to find an ideal plant that could survive well under metal-stressed soils 
(Jiang et al. 2010).

Acknowledgment The US Department of Energy, EM, State University through Cooperative 
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Abstract Chromium, a steel-gray, lustrous, hard, and brittle metal, occurs in nature 
in bound forms and has been widely used in various industries. Chromium exists in 
several oxidation states, of which hexavalent chromium is a priority toxic, muta-
genic, and carcinogenic chemical, whereas trivalent form is much less toxic and 
insoluble. Hexavalent chromium causes various chronic health disorders including 
organ damage, dermatitis, respiratory impairment, etc. Moreover, the discharge of 
chromium-containing wastes has also led to the destruction of many agricultural 
lands and water bodies. Therefore, the remediation of chromium contaminated 
sites is essentially required to offset the chromium toxicity. Many technologies 
like land filling, stabilization/solidification, physicochemical extraction, soil 
washing, and flushing are used to clean up chromium-contaminated soils. None of 
these techniques are completely accepted because either they do not offer a per-
manent solution, or they simply immobilize the contaminant or are costly when 
applied to a large area. Bioremediation involving microorganisms is considered the 
most promising option in cleaning up the chromium-contaminated environment. 
Phytoremediation has gained importance in chromium remediation, which can be 
achieved by phytoextraction, rhizofiltration, and phyto-detoxification. A selective 
overview of the past achievements and current perspective of chromium remediation 
technologies reported by different workers using promising microorganisms and 
plants is given.
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13.1  Introduction

Chromium (Cr) is the seventh most abundant element on earth (Nriagu and Pacyna 
1988) and a carcinogen to humans and animals. In the environment, some chromium 
salts do not readily precipitate or become bound to soil components. Therefore, it can 
move throughout aquifers to contaminate groundwater and other sources of drinking 
water, which can be hazardous to humans, livestock, and wildlife. The release of chro-
mium waste from many industrial applications such as leather tanning, textile produc-
tion, electroplating, metallurgy, and petroleum refinery has led to large-scale 
contamination of land and water (Barlett 1991; Katz and Salem 1994). Consequently, 
the presence of toxic level of chromium in soils and wastewaters has become a major 
environmental problem. In air, chromium compounds are present mostly as fine dust 
particles, which eventually settle over land and water. In aqueous solutions, chromium 
occurs mainly as trivalent chromium [Cr (III)] and hexavalent chromium [Cr (VI)]. 
Chromium (III) is an essential micronutrient (Bailar 1997) that is slightly soluble in 
aqueous solution. It is essential to glucose, lipid, and protein metabolism at concentra-
tion below 5 ppm, but can be toxic and mutagenic at large doses (Shen and Wang 
1993). By contrast, Cr (VI) is a toxic oxidizing agent with an environmental standard 
of the order of 0.05 ppm (Dönmez and Kocberber 2005). In the environment, Cr (VI) 
contamination alters the structure of soil microbial communities (Zhou et al. 2002; 
Turpeinen et al. 2004). As a result of reduced microbial growth and activities, organic 
matter accumulates Cr (VI) in soils (Mazierski 1994; Shi et al. 2002).

Several conventional methods of chromium remediation of the impacted soil rely 
on soil excavation, which is expensive and disruptive. On the other hand, remediation 
of chromium-contaminated environment through microorganisms (Hasin et al. 2010) 
and plants (Mangkoedihardjo et al. 2008; Butler et al. 2009) may be the best alterna-
tive technology to clean up the chromium-contaminated sites. Compared to conven-
tional techniques, these technologies are eco-friendly and cost effective. Present 
review reports the current information on how chromium could be removed from soil 
and wastewaters employing microbes and plants under natural environment.

13.2  General Description, Discovery,  
and Occurrence of Chromium

Chromium is a hard, steel grey and shiny transition metal that breaks easily. It has a 
melting point of 1,900°C, a boiling point of 2,642°C, and a density of 7.1 g cm−3. 
Chromium is a relatively active metal that does not react with water but does react 
with most of the metals. At room temperature, chromium combines slowly with 
oxygen to form chromium oxide (Cr

2
O

3
). The chromium oxide formed acts as a pro-

tective layer, preventing the metal from reacting further with oxygen. Chromium was 
discovered  in  1797  by  French  chemist  Louis-Nicolas Vaquelin  (1763–1829)  in  a 
mineral known as Siberian red lead. The element was named after the Greek word 
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“chroma” meaning “color” because many chromium compounds have a distinctive 
color, ranging from purple to black to green to orange to yellow (Young 2000). The 
anthropogenic inputs of chromium have increased rapidly since the industrial revolu-
tion (Ayres 1992). Chromium is extensively used in electroplating (as chrome plat-
ing), resistant alloys (e.g., stainless steel), leather tanneries, and dye productions 
(United States Environmental Protection Agency 1998; Ryan et al. 2002). It is 
reported that every 1,000 kg of “normal soil” contains 200 g Cr, 80 g Ni, 16 g Pb, 
0.5 g Hg, and 0.2 g Cd (IOCC 1996). Chromium occurs mainly in three forms. 
Metallic chromium (Cr [0]) is a steel-grey solid with a high melting point which 
is used to make steel and other alloys. Chromium metal does not occur naturally; it is 
produced from chrome ore. Trivalent chromium occurs naturally in rocks, soil, plants, 
animals, and volcanic emissions. Cr (III) is produced industrially to make metals, 
metal alloys, and chemical compounds. Hexavalent chromium is produced industrially 
by heating Cr (III) in the presence of mineral bases and atmospheric oxygen.

13.3  Chemistry of Chromium

Chromium exists in oxidation state ranging from 0 to VI. Only two of them, Cr (III) 
and Cr (VI), are stable enough to occur in the environment. Cr (II), Cr (IV), and Cr (V) 
are unstable forms and very little information is available about its hydrolysis (Kotas 
and Stasicka 2000). The Cr (III) oxidation state is most stable and considerable energy 
would be required to convert it to lower or higher states. Cr (III) can form hexacoor-
dinate octahedral complexes with a variety of ligands such as water, ammonia, urea, 
15 ethylenediamine, and other organic ligands containing O

2
, N, or S atoms. The 

complexation of Cr (III) by ligands other than OH− increases its solubility when 
the ligands are in discrete molecules or ionic forms. When donor atoms are bound in 
a macromolecular system, the Cr (III) complex becomes more or less immobile. If the 
complexation from these ligands is neglected under redox and pH conditions, which 
normally are found in natural systems, Cr is removed from the solution as Cr(OH)

3
 or 

in the presence of Fe(III), in the form of (Cr
x
, Fe

1x
) (OH)

3
 (where x is the mole fraction 

of Cr). When the redox potential of Cr (VI)/Cr (III) couple is high, only a few oxidants 
which are present in natural systems are capable of oxidizing Cr (III) to Cr (VI). 
Oxidation of Cr (III) by dissolved oxygen without any mediate species has been 
reported to be negligible, whereas mediation by manganese oxides was found to be 
the effective oxidation pathway in environmental systems (Kotas and Stasicka 2000).

13.4  Industrial Uses of Chromium

Chromium has wide application in the industries. Metallic chromium is mainly 
found in alloys such as stainless steel. It is the supreme additive, endowing alloys or 
metals with new properties, such as a resistance to corrosion, wear, temperature, and 
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decay, as well as strengths, hardness, permanence, hygiene, and color. Trivalent 
chromium is used in a number of commercial products including dyes, pigments, 
and salts for leather tanning. Hexavalent chromium is used in industrial processes 
such as chrome plating (Gomez and Callao 2006). Chromium (II) chloride is used 
as reducing agent, as a catalyst in organic reactions, and in chromium plating of metals. 
It is used to reduce alpha-haloketones to parent ketones, epoxides to olefins, and 
aromatic aldehydes to corresponding alcohols as a reducing agent (Patnaik 2003). 
Chromium (III) chloride is used for chromium plating and tanning and can serve as 
textile mordant, waterproofing agent, and catalyst for polymerization of olefins. 
Chromium (III) sulfate is used as the electrolyte for obtaining pure chromium metal. 
It is used for chromium plating of other metals for protective and decorative purposes. 
Other important applications of this compound are (a) as a mordant in the textile 
industry and leather tanning, (b) to dissolve gelatin, (c) to impart green color to paints, 
varnishes, inks, and ceramic glazes, and (d) as a catalyst. Chromium (III) oxide is used 
as pigment or coloring green on glass and fabrics. It is also used in metallurgy as a 
component of refractory bricks, abrasives, and ceramics and to prepare other chro-
mium salts. Chromium (III) fluoride is used in printing and dyeing woolens, metal 
polishing, and coloring marbles. Chromium (III) hydroxide trihydrate is used as green 
pigment, as mordant, as a tanning agent, and as a catalyst. Chromium (VI) oxide is 
used for chromium plating, copper stripping as an oxidizing agent for conversion of 
secondary alcohols into ketones as a corrosion inhibitor in purification of oil, and in 
chromic mixtures for cleaning laboratory glassware (Patnaik 2003).

13.5  Chromium Toxicity

13.5.1  Human Health Risks Associated with Chromium

Exposure to chromium may occur from natural or industrial sources. The reduction/
oxidation reactions between Cr (VI) and Cr (III) are thermodynamically possible 
under physiological conditions. Cr (III) is relatively immobile in the aquatic system 
due to its low solubility in water. The low solubility retains Cr (III) in the solid phase 
as colloids or precipitates (Lin 2002). It is known that Cr (III) is essential for the main-
tenance of effective glucose, lipid, and protein metabolism in mammals (Marques 
et al. 2000). It is an essential micronutrient in the body and combines with various 
enzymes to transform sugar, protein, and fat. Cr (III) salts such as chromium polynico-
tinate and chromium picolinate are used as micronutrients and dietary supplements 
(Bagchi et al. 2001). Besides this, Cr (III) can stabilize the tertiary structure of pro-
teins and conformation of the RNA and DNA (Zetic et al. 2001). United States 
Environmental Protection Agency (1999) has classified Cr (III) in Group D, not as 
carcinogenic to humans. Acute animal tests have shown that Cr (III) have moderate 
toxicity from oral exposure (ATSDR 1998). No information is available on the 
reproductive or developmental effects of Cr (III) in humans (United States 
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Environmental Protection Agency 1999). On the other hand, Marques et al. (2000) 
reported that Cr (VI) compounds can be toxic for biological systems. Environmental 
Protection Agency has classified Cr (VI) in Group A, a known human carcinogen 
(Environmental Protection Agency 1998; WHO 1998). The respiratory tract is the 
major target organ of Cr (VI) toxicity during acute (short-term) and chronic (long-
term) inhalation exposures in humans. Shortness of breath, coughing, and wheezing 
were reported in acute exposure cases, while perforations and ulcerations of the 
septum, bronchitis, decreased pulmonary function, pneumonia, and other respira-
tory effects have been reported for chronic exposure. Human studies have clearly 
established that chromium (VI) is a human carcinogen, resulting in an increased risk 
of lung cancer. Animal studies have shown chromium (VI) to cause lung tumors via 
inhalation exposure. Acute inhalation exposure to very high concentrations of Cr 
(VI) includes gastrointestinal and neurological effects, while dermal exposure 
causes skin burns in humans.

13.5.2  Chromium Toxicity to Microbes and Plants

Chromium is a highly toxic nonessential metal for microorganisms and plants. The 
hexavalent form of the metal, Cr (VI), is considered a more toxic species than the rela-
tively innocuous and less mobile Cr (III) form (Nies 1999). The presence of chro-
mium in the environment has selected microbial and plant variants able to tolerate 
high levels of chromium compounds. The interactions of bacteria, algae, fungi, and 
plants with Cr and its compounds have been discussed by Cervantes et al. (2001). The 
toxic effects of chromium on plant growth and development include alterations in the 
germination process as well as in the growth of roots, stems, and leaves, which may 
affect total dry matter production and yield. Sharma et al. (2003), for example, reported 
that chromium caused visible lesions of interveinal chlorosis in maize (Zea mays) 
while plant physiological processes such as photosynthesis, water relations, and min-
eral nutrition are reported to be adversely affected by Shanker et al. (2005). Metabolic 
alterations in plants following chromium exposure could either be due to a direct 
effect on various enzymes or other metabolites or because of its ability to generate 
reactive oxygen species (ROS), which may cause oxidative stress. The potential of 
plants with the capacity to accumulate or to stabilize chromium compounds for biore-
mediation of chromium contamination has gained interest in recent years.

The diverse Cr-resistance mechanisms displayed by microorganisms, and prob-
ably by plants, include biosorption, diminished accumulation, precipitation, reduc-
tion of Cr (VI) to Cr (III), and chromate efflux. Some of these systems have been 
proposed as potential biotechnological tools for the remediation of chromium pol-
lutant. Some of these systems have been proposed as potential biotechnological 
tools for the remediation of chromium pollutant. The best characterized mecha-
nisms for chromium detoxification/removal from Cr-contaminated environment 
include the efflux of chromate ions from the cell cytoplasm and reduction of Cr (VI) 
to Cr (III). Chromate efflux by the ChrA transporter has been established in 
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Pseudomonas aeruginosa and Cupriavidus metallidurans (formerly Alcaligenes 
eutrophus) and consists of an energy-dependent process driven by the membrane 
potential (Ramírez-Díaz et al. 2008). Mechanisms of hexavalent chromium detoxi-
cation by microorganisms and bioremediation application potential have been 
reviewed by Cheung and Gu (2007).

13.6  Remediation Technologies  
for Chromium-Contaminated Soil

13.6.1  Conventional Methods

Chromium (VI) contamination of soils results mainly from the discharge of 
chromium-containing waste and wastewater from ore refining, production of steel 
and alloys, metal plating, tannery, wood preservation, and pigmentation. In soil envi-
ronment, hexavalent chromium can be leached into surface water and groundwater 
because of its high solubility and mobility (Messer et al. 2006). Concentrations of Cr 
(VI) as low as 0.5 mg L−1 in solution and 5 mg kg−1 in soil can be toxic to plants 
(Turner and Rust 1971). Hence, the presence of hexavalent chromium is a significant 
risk to human health as well as plants when it is released into soil environment.

Conventional technologies for Cr (VI) remediation in soils include physico-
chemical extraction, land filling, stabilization/solidification, soil washing, flushing, 
and excavation. However, most of these methods require high energy and large 
quantities of chemical reagents (Jeyasingh and Philip 2005). Remediation methods 
that involve the excavation of chromium-contaminated soils are known to generate 
airborne dust that creates an additional exposure hazard to field workers and general 
public (Allen et al. 1995; Greenwood and Earnshaw 1997; Macintyre 1992). To 
address these environmental concerns and health risks, various groups have proposed 
to facilitate in situ reduction of chromium (Cotton et al. 1999; Greenwood and 
Earnshaw 1997). Chemical reduction of chromium by these methods is known to 
decrease the toxicity and bioavailability of this metal drastically. Remediation of 
chromium in contaminated soil using bioremediation process has been reported by 
Krishna and Philip (2005). Electrokinetic remediation method for chromium reme-
diation has been reported by Sawadaa et al. (2004). All these methods have certain 
merits and demerits and are limited to small-scale facilities requiring special moni-
toring techniques like ion chromatography, chromium speciation, atomic absorp-
tion, inductively coupled plasma (ICP), etc.

13.6.1.1  Laser-Induced Breakdown Spectroscopy (LIBS)

Conventional techniques like ICP and atomic absorption used for remediation of 
soil contaminated with chromium are time consuming and quite expensive. The cost 
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associated with such methods often limits their effectiveness for monitoring the in 
situ  remediation process. Laser-induced Breakdown Spectroscopy  (LIBS) on  the 
other hand has been recognized as an advanced technique that is amenable to field 
applications. Recent advances in hardware components, lasers, detectors, and spec-
trometers have made LIBS technique more attractive for industrial and environmen-
tal analysis (Brouard et al. 2007; Gondal et al. 2009; Haisch et al.1998; Vadillo et al. 
2005). It is an emerging technique for rapid and accurate analysis of solid waste. For 
example, Gondal et al. (2009) used this technique to monitor the remediation pro-
cess of soil contaminated with chromium. The study was conducted at laboratory 
scale and the important parameters viz. the laser pulse characteristics (pulse width, 
energy), the sample homogeneity, and the sampling geometry (distance from the 
focusing lens to the sample, focal length of the collecting lens, fiber optics, etc.) 
were optimized to achieve the best limit of detection. The minimum detection limit 
of the spectrometer for chromium in soil matrix was found to be 2 mg kg−1.

13.6.1.2  Electrokinetic Technique

Electrokinetic remediation is an in situ technique in which a low-level direct current 
is applied across the soil medium to remove the contaminants. The contaminant 
transport takes place by two mechanisms (a) electromigration and (b) electroosmo-
sis. Electromigration is the movement of positively and negatively charged ionic 
species to the corresponding electrodes of opposite sign. Thus, positive ions move 
toward the cathode and the negative ions move toward the anode. Electroosmosis is 
the movement of water from the anode to the cathode as a result of dipolar water 
molecules interacting with double diffuse layer when an electric potential is applied 
(Lei 2004). Electrolysis reactions take place at the electrodes when a direct electric 
current is applied across the soil. Prashanth et al. (2009) studied the feasibility of 
electrokinetic technique for removal of chromium from contaminated soil. The ini-
tial concentration of chromium in the soil was 3,100 mg/kg. Experimental results 
showed that the removal efficiencies of chromium were as high as 72%. Chromium 
which was in hexavalent state was transported as anion prior to its reduction. Zhang 
et al. (2010) in a recent study reported that chromium-contaminated soil can be 
remediated by electrokinetic technique. However, in practical application, Cr (VI) 
may migrate with water deep into the soil, contaminating previously unpolluted 
layers. Both horizontal and vertical electric fields were applied simultaneously to 
improve traditional electrokinetic remediation. Among the three operational modes, 
2D crossed mode significantly prevented Cr (VI) from migrating downward and the 
chromium-contaminated soil was treated effectively.

13.6.1.3  Use of Organic Ligands

Recently, the use of organic ligands has emerged as a reasonable means of enhancing 
or reducing chromium mobility and considered as a key factor for remediation of 
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chromium-contaminated sites (Deiana et al. 1991; Deng and Stone 1996; Jardine et al. 
1999; Johnson et al. 2001; Puzon et al. 2005). In situ stabilization of Cr (VI) in 
polluted soil using organic ligands has been reported by Kantar et al. (2008). The role 
of organic ligands such as galacturonic, glucuronic, and alginic acids (main constitu-
ents of bacterial exopolymeric substances [EPS]) on Cr (VI) uptake and transport in 
heterogeneous subsurface media has been investigated. They demonstrated that the 
addition of galacturonic, glucuronic, and alginic acids to soils enhanced Cr (VI) 
uptake by soil at pH <7.7 depending on the concentration of the ligand and pH used. 
Organic ligands have no or little effect on Cr (VI) uptake under highly alkaline pH 
conditions since the catalytic Cr (VI) reduction decreases with increasing pH. 
Microorganisms produce EPS for a variety of purposes in response to environmental 
stresses. Depending upon bacterial strains and metal exposure, quantity and compo-
sition of EPS have been shown to vary (Aquino and Stuckey 2004; Guibaud et al. 
2005; Priester et al. 2006). In a study with the hydrogen-producing photosynthetic 
bacteria strain Rhodopseudomonas acidophila, Sheng et al. (2005) found that toxic 
metals such as Cr (VI) and Cd (II) stimulated the production of microbial EPS.

13.6.2  Biological Methods

Biological treatments in recent times have received greater attention for Cr (VI) reme-
diation of contaminated sites because it is an economical and environmentally friendly 
as compared to conventional technologies. The bioremediation strategy is to convert 
Cr (VI) into less toxic and less mobile Cr (III). Consequently, Cr (III) is immobilized 
in the soil matrix (Chai et al. 2009). Many microbes have been reported to reduce Cr 
(VI) under aerobic and anaerobic conditions (Fulladosa et al. 2006: Guha et al. 2001, 
2003; Shen and Wang 1994; Srivastava and Thakur 2006). Bio-reduction of Cr (VI) 
can be achieved directly as a result of microbial metabolism or indirectly by bacterial 
metabolite such as H

2
S (Michel et al. 2001; Cheung and Gu 2003; Battaglia-Brunet 

et al. 2002). Desjardin et al. (2002) found that Cr (VI) in soils was reduced by 
Streptomyces thermocarboxydus isolated from the contaminated soil. Bader et al. 
(1999) studied Cr (VI) reduction in soil by microbial community under aerobic condi-
tions and reported that Cr (VI) was reduced as much as 33% within 21 days. Jeyasingh 
and Philip (2005) isolated bacterial strains from the contaminated site of Tamil Nadu 
Chromates and Chemicals Limited (TCCL) premises, Ranipet, Tamil Nadu, India and 
evaluated Cr (VI) reduction both in aerobic and anaerobic conditions. For maximum 
Cr (VI) reduction, bacterial concentration of 15 ± 1 mg/g soil (wet/wt), and 50 mg of 
molasses/g soil, as C source was required. The bioreactor operated at these conditions 
could reduce entire Cr (VI) (5.6 mg Cr (VI)/g of soil) in 20 days.

Bioremediation of Cr (VI) in contaminated soil using bioreactor-biosorption system 
was evaluated by Krishna and Philip (2005). Experiments were conducted using differ-
ent eluents. Leaching of Cr (VI) from the contaminated soil using various eluents showed 
that desorption was strongly affected by the solution pH. The leaching process was 
accelerated at alkaline conditions (pH 9). Though, desorption potential of ethylene 
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diamine tetraacetic acid (EDTA) was the maximum among various eluents tried, 
 molasses (5 g/L) could also elute 72% of Cr (VI). Reduction studies of Cr (VI) were 
carried out under aerobic and facultative anaerobic conditions using the bacterial iso-
lates from contaminated soil. Cr (VI) reduction was moderately higher in aerobic condi-
tions than in facultative anaerobic conditions. The time required for complete Cr (VI) 
reduction was increased with increase in the initial Cr (VI) concentration. However, 
specific Cr (VI) reduction was increased with increase in initial Cr (VI) concentration. 
Sulfates and nitrates did not compete with Cr (VI) for accepting the electrons. A bioreac-
tor was developed by the authors for the detoxification of Cr (VI). Cr (VI) reduction was 
achieved above 80% in the bioreactor with an initial Cr (VI) concentration of 50 mg/L 
at an HRT of 8 h. An adsorption column was developed packed with Ganoderma 
lucidum (a wood rooting macrofungus) as the adsorbent for the removal of Cr (III) and 
excess electron donor from the effluent of the bioreactor. The specific Cr (III) adsorption 
capacity of G.lucidum in the column was found to be 576 mg/g. The new biosystem was 
found to be a promising alternative for the ex situ bioremediation of Cr (VI) contami-
nated soils. Recently, Chai et al. (2009) reported the Cr (VI) remediation by indigenous 
bacteria in soils contaminated by chromium-containing slag. They isolated the bacterial 
strain, which was identified as Pannonibacter phragmitetus sp. by gene sequencing of 
16S rRNA. The indigenous strain proved to be a potential strain for chromium remedia-
tion in the soils contaminated by chromium-containing slag.

13.6.3  Chromium Remediation in Aqueous Environment

13.6.3.1  Conventional Methods

There are various technologies available to remove Cr (VI) from wastewater such as 
chemical precipitation (Uysal and Irfan 2007), ion exchange (Jianlong et al. 2000; 
Rengaraj et al. 2003), membrane separation (Kozlowski and Walkowiak 2002), elec-
tro-coagulation (Roundhill and Koch 2002), solvent extraction (Li et al. 2004), reduc-
tion (Chen and Hao 1998), reverse osmosis (Li et al. 2004), and adsorption (Baral 
et al. 2007; Mohan et al. 2005). These technologies have many disadvantages such as 
incomplete metal removal, high reagent and energy requirements, and generation of 
toxic sludge or waste products, which require proper disposal without creating any 
problem to the environment (Aliabadi et al. 2006; Mohan and Pittman 2006).

13.6.3.2  Biological Methods

The use of biological materials including living and nonliving microorganisms for 
the removal of chromium from wastewaters has gained important credibility during 
the last few years. Metal uptake by dead cells takes place only by the passive mode 
known as biosorption. Living cells employ both active and passive modes for chro-
mium uptake. The combination of active and passive mode is called bioaccumulation. 
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Microorganisms-based technologies compete with both operational and economical 
terms in existing metal removal treatment systems. Biosorption has several advan-
tages: it does not produce any chemical sludge, is easy to operate, and is very effi-
cient for the removal of pollutants from very dilute solutions. A major advantage of 
biosorption is that it can be used in situ and with proper design, it may not need any 
industrial process operations and can be integrated with many systems (Tewari et al. 
2005). Biosorption is the cost-effective and versatile method when combined with 
an appropriate step for desorbing the chromium (VI) from adsorbent and avoids the 
problem of disposal of adsorbent (Kumar et al. 2007). The advantages of biosorp-
tion process have prompted to extend the use of various biomaterials with structural, 
compositional, or chemical characteristics suitable to make this technique viable for 
removal of hexavalent chromium from the wastewater streams (Alvarez-Ayuso et al. 
2007). A number of biosorbents like algae, fungi, bacteria, various plant parts, agri-
cultural by-products, and biowaste materials have been reported (Table 13.1) for the 
effective removal of Cr (VI) and Cr (III).

 Algae as Biosorbent

Remediation by algae known as phycoremediation is considered as a viable option 
of heavy metal remediation. Algae used for chromium remediation include 

Table 13.1 Biosorbents used in chromium removal

Algae Fungi Bacteria
Biowaste materials/ 
plant parts

Spirogyra Aspergillus niger Zoogloea ramigera Rice bran
Dunaliella R. arrhizus Bacillus sp. Wheat bran
Chlorella vulgaris P. chrysogenum Aeromonas caviae Rice husk
Ecklonia sp. P. purpurogenum B. thuringiensis Rice straw
Scenedesmus  

obliquus
R. nigricans Pantoea sp.TEM18 Saw dust (Indian 

Rose wood, 
Beech, Rubber 
wood)

Neurospora crassa C. luteola TEM05
Synechocystis sp. Lentinus sajor caju
Cladophora crispata Unmethylated yeast
Sargassum wightii Methylated yeast Sugarcane bagasse
Turbinaria sp. Maize corn cob
Nitella  

pseudoflabellata
Maize bran
Jatropha oil cake

Phormedium  
bohneri

Neem sawdust
Coconut fiber pith

Oscillatoria tenuis Eucalyptus bark
Ulothrix tenuissima Pine needles
Oscillatoria nigra Cactus leaves
Chlamydomonas 

angulosa
Neem leaf powder
London leaves
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Spirogyra (Gupta et al. 2001), Dunaliella (Dönmez and Aksu 2002), Chlorella 
vulgaris (Aksu and Acikel 1999, 2000; Aksu et al. 1999; Dönmez et al. 1999), 
Ecklonia sp (Park et al. 2005b). Gupta et al. (2001) studied Cr (VI) biosorption by 
biomass of filamentous algae Spirogyra species. Maximum removal of Cr (VI) was 
1.47 g metal/kg dry weight biomass at pH of 2. Two strains of living Dunaliella 
algae were tested as a function of pH, initial metal ion, and salt (NaCl) concentra-
tion. The biosorption capacities of both Dunaliella strains were obtained at pH 2 in 
the absence or presence of salt concentration. Both Langmuir and Freundlich mod-
els were used to describe Cr (VI) biosorption (Dönmez and Aksu 2002). Dönmez 
et al. (1999) carried out a similar experiment using dried biomass of three algal 
species viz. C. vulgaris, Scenedesmus obliquus, and Synechocystis sp. Optimum Cr 
(VI) adsorption occurred at pH 2 for all the three algal species. Aksu and Acikel 
(2000) explored the competitive biosorption of Cu (II) and Cr (VI) on C. vulgaris 
from a binary mixture in a single staged bioreactor at pH 2. Nourbakhsh et al. 
(1994) investigated Cr (VI) biosorption onto dead biomass from C. vulgaris and 
Cladophora crispate, etc. The optimum pH ranged from 1 to 2 for five organisms. 
Maximum metal uptake was recorded at 25–35°C. In other study, Aravindhan et al. 
(2004a) utilized the abundant brown seaweed Sargassum wightii for chromium 
removal. The Sargassum species showed maximum uptake of 35 mg Cr/g seaweed 
and  the optimum pH was 3.5–3.8. The same group further used brown seaweed 
(Turbinaria sp.), which had been pretreated with sulfuric acid, calcium chloride, 
and magnesium chloride, to remove chromium from tannery wastewater 
(Aravindhan et al. 2004b). Protonated seaweeds showed more chromium uptake 
than seaweed treated with calcium and magnesium. Turbinaria exhibited maxi-
mum uptake of 31 mgCr/g seaweed at an initial concentration of 1,000 ppm. Park 
et al. (2005b) utilized protonated brown seaweed Eclonia sp. for remediating Cr 
(VI), which was completely reduced to Cr (III) when wastewater containing Cr 
(VI) was used with biomass. The converted Cr (III) appeared in the solution or was 
partly bound to the biomass. The Cr (VI) removal efficiency was always 100% in 
the pH range of 1–5.The sorption capacity of Eclonia sp. was 4.49 mmol Cr (VI)/g. 
Chromium biosorption by thermally treated biomass of the brown seaweed Ecklonia 
was also studied by Park et al. (2004). Protonated Eclonia sp. was also utilized for 
Cr (III) adsorption (Yun et al. 2001) and it was found to contain at least three types 
of functional groups. Fourier transform Infrared Spectroscopy (FTIR) showed that 
the carboxyl group was the chromium binding site within the pH range of 1–5. Cr 
(III) did not participate in this range. Remediation of Cr (VI)-contaminated waters 
by Nitella pseudoflabellata, a charophyte, has been reported by Gomes and Asaeda 
(2009). Dwivedi et al. (2010) studied the bioaccumulation potential of green and 
blue green microalgae growing naturally in selected Cr-contaminated sites in dis-
tricts Unnao and Kanpur (Uttar Pradesh, India). The maximum accumulation of 
chromium was shown by Phormedium bohneri (8,550 mg/g dw) followed by 
Oscillatoria tenuis (7,354 mg/g dw), Clamydomonas angulosa (5,325 mg/g dw), 
Ulothrix tenuissima (4,564 mg/g), and O. nigra (1,862 mg/g). All species demon-
strated a transfer factor of >10% for chromium.
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 Fungi as Biosorbent

Various types of fungal and yeast biomasses have been used for the removal and recovery 
of trivalent and hexavalent chromium from water environment. Both living and nonliv-
ing cells possess a remarkable capability for uptake of chromium ions from aqueous 
phase. Some of the examples are R. arrhizus (Sag and Kutsal 1996; Merrin et al. 1998; 
Prakasham et al. 1999; Priester et al. 2006), Penicillium chrysogenum (Deng and Ting 
2005), P. purpurogenum (Say et al. 2004), dead fungal biomass (Sekhar et al. 1998), 
Lentinus sajorcaju mycelia (Arýca and Bayramoğlu 2005; Bayramoglu et al. 2005),  
R. nigricans (Bai and Abraham 2001, 2002, 2003), Neurospora crassa (Tunali et al. 
2005), and unmethylated and methylated yeast (Seki et al. 2005). Cr (VI) biosorption 
by nonliving free and immobilized biomass from R. arrhizus was investigated by 
Prakasham et al. (1999). Adsorption capacities of free R. arrhizus biomass were 
11 mg/g and immobilized biomass was 8.63 mg/g respectively. Deng and Ting (2005) 
modified P. chrysogenum fungal biomass by grafting polyethylenimine (PEI) onto the 
biomass surface. The presence of PEI on the biomass surface was verified by FTIR and 
X-ray photo-electron spectroscopy (XPS) analyses. Cr (VI) biosorption onto untreated, 
heat-treated, acid- and alkali-treated mycelia of L. sajorcaju was investigated by 
Bayramoglu et al. (2005). The maximum biosorption capacities of the untreated and 
heat-, acid-, and alkali-treated fungal biomass at pH 2 were 0.36, 0.61,0.48, and 
0.51 mmol Cr (VI)/g of dry biomass. Bai and Abraham (2003) investigated Cr (VI) 
biosorption on immobilized R. nigricnas. Five different polymeric matrices, namely, 
calcium alginate, polyvinyl alcohol (PVA), polyacrylamide, polyisoprene, and polysul-
fone were employed to entrap finely powdered biomass of R. nigricnas. The chromium 
sorption capacity of all immobilized biomass samples was less than that of native, 
powdered biomass and followed the order: free biomass > polysulfone entrapped > poly-
isoprene immobilized > PVA immobilized > calcium alginate entrapped > polyacrylam-
ide  at  500  mg/L  Cr  (VI).  Cr  (VI)  removal  was  further  evaluated  by  Arýca  and 
Bayramoğlu (2005) using free and CMC immobilized L. sajorcaju mycelia. The maxi-
mum biosorption capacities of free and immobilized fungus were 18.9 and 32.2 mg/g 
dry weights, respectively. The highest biosorption was noted at pH 2.

Most of the workers have reported that Cr (VI) adsorption in aqueous phase by 
dead fungal biomass takes place by “anionic adsorption.” In case of S. cerevisiae, 
Zhao and Duncan (1998) observed “partial reduction along with anion adsorption” 
in packed bed column studies. Park et al. (2005a) suggested that these findings were 
misinterpreted due to errors in measuring total chromium in aqueous solution. They 
demonstrated that Cr (VI) was totally reduced to Cr (III) and completely removed 
from the solution. Complete removal of Cr (VI) by A. niger, R.oryzae, and P. chry-
sogenum in 48 h were reported by Park et al. (2005c).

 Bacteria as Biosorbent

Numerous studies have identified different bacterial species capable of accumu-
lating metals from aqueous environment. Among bacteria, Zoogloea ramigera 
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(Nourbakhsh et al. 1994), Bacillus sp. (Nourbakhsh et al. 2002), Aeromonas caviae 
(Loukidou  et  al. 2004a, b), Bacillus thuringiensis (Sahin and Öztürk 2005), and 
Pantoea sp. (Ozdemir et al. 2004) have been reported as potential chromium reme-
diation agents. A. caviae, a Gram-positive bacterium isolated from potable ground-
water supplies, removed Cr (VI) maximally (284.4 mg/g) at pH 2.5. Sahin and 
Öztürk (2005) investigated Cr (VI) biosorption by B. thuringiensis var. thuringien-
sis in batch mode. The optimum pH was found to be 2. The equilibrium sorption 
data were fitted to Langmuir and Freundlich isotherm both. A Gram-negative bac-
terium Pantoea sp. TEM 18 was utilized by Ozdemir et al. (2004) for Cr (VI) 
removal.  Optimum  Cr  (VI)  adsorption  occurred  at  pH  3.  Both  Langmuir  and 
Freundlich isotherm sorption models were found to be suitable for describing the 
short-term biosorption of Cr (VI) by Pantoea sp. Ozdemir and Baysal (2004) stud-
ied the Cr (VI) biosorption by Chryseomonas luteola TEM05. The optimum adsorp-
tion pH was 4. Rabbani et al. (2005) reported 17 different bacterial strains isolated 
from Ramsar warm springs in Iran for Cr (III) remediation. The maximum removal 
(100%) of Cr (III) at 10 ppm concentration occurred at pH 4.

 Biowaste Materials as Sorbent

The uses of rice bran and wheat bran as adsorbents have been found less effective 
as they could remove only 50% toxic chromium (Farajzadeh and Monji 2004; 
Oliveira et al. 2005). Rice husk in natural form as well as activated rice husk car-
bon was used for the removal of Cr (VI) and results were also compared with com-
mercial activated carbon and other adsorbents (Bishnoi et al. 2004; Mehrotra and 
Dwivedi 1988; Srinivasan et al. 1988). The efficiency of activated rice husk was 
fairly high at pH 2 whereas with activated alumina it was at pH 4. Adsorption 
increased with increasing dose and time at initial stages and then became some-
what constant due to attainment of equilibrium. Sawdust of Indian rose wood pre-
pared by treatment with formaldehyde and sulphuric acid showed effective removal 
of chromium Cr (VI) (Garg et al. 2004). Beech sawdust and rubber wood saw dust 
were also tried for chromium removal (Acar and Malkoc 2004; Karthikeyan et al. 
2005). Sugarcane bagasse was used in natural as well as modified form and effi-
ciency for both the forms was compared for the removal of chromium (Gupta and 
Ali 2004; Krishanani et al. 2004). Most of the studies showed that the chromium 
biosorption by agricultural waste materials was quite high and varied from 50% to 
100%. Mostly, biosorption occurred in acidic range particularly at pH 2 (Garg et al. 
2007). Maize bran has been successfully utilized by Hasan et al. (2008) for the 
removal of Cr (VI) from aqueous solution. The effect of different parameters such 
as contact time, sorbate concentration, pH of the medium, and temperature were 
investigated and maximum uptake of Cr (VI) was 312.52 (mg/1) at pH 2, initial Cr 
(VI) concentration of 200 mg/l, and temperature of 40°C. Effect of pH showed that 
maize bran was not only removing Cr (VI) from aqueous solution but also reducing 
toxic Cr (VI) into less toxic Cr (III). The sorption kinetics was tested with pseudo-
first order and pseudo-second order reaction and it was found that Cr (VI) uptake 
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process  followed  the  pseudo-second  order  rate  expression.  The  Langmuir  and 
Freundlich equations for describing sorption equilibrium were applied and the pro-
cess was found to be well described by Langmuir isotherm. Desorption studies was 
also carried out and complete desorption of Cr (VI) was found at pH 9.5. The 
removal of Cr (VI) from aqueous solution by rice straw, agricultural by-product 
was investigated by Gao et al. (2008). The optimal pH was 2 and Cr (VI) removal 
rate increased with decreased Cr (VI) concentration and with increased tempera-
ture. Decrease in straw particle size led to an increase in Cr (VI) removal. 
Equilibrium was achieved in about 48 h under standard conditions, and Cr (III), 
which appeared in the solution, remained stable. This indicated that both reduction 
and adsorption played a role in the Cr (VI) removal. Isotherm tests showed that 
equilibrium  sorption  data  were  better  represented  by  Langmuir  model  and  the 
sorption capacity of rice straw was found to be 3.15 mg/g.

Bansal et al. (2009) reported the feasibility of using pre-consumer processing 
agricultural waste to remove Cr (VI) from synthetic wastewater under different 
experimental conditions. For this, rice husk, was used after pretreatments (boiling 
and formaldehyde treatment). Effects of various process parameters viz. pH, adsor-
bent dose, initial chromium concentration, and contact time were studied in batch 
systems. Maximum metal removal was observed at pH 2. The efficiencies of boiled 
and formaldehyde-treated rice husk for Cr (VI) removal were 71% and 76.5%, 
respectively for dilute solutions at 20 g/l adsorbent dose. Removal of Cr (III) and Cr 
(VI) from aqueous solution by using different types of sand viz. white, yellow, and 
red sand from the UAE was reported by Khamis et al. (2009). Adsorption of Cr (VI) 
on all sands forms was very low at pH 2 (removal <10%) whereas Cr (III) was 
totally removed at pH 5. Our recent work has proved neem sawdust as the most 
potential biosorbent for the removal of Cr (VI) from tannery wastewater (Vinodhini 
and Das 2009, 2010).

13.6.4  Plant Biomass/Plant Parts Used as Biosorbent

Diverse plant parts such as coconut fiber pith, coconut shell fiber, plant bark (Acacia 
arabica, Eucalyptus), pine needles, cactus leaves, neem leaf powder, etc. have been 
tried and have shown chromium removal efficiency as high as 90–100% at optimum 
pH (Dakiky et al. 2002; Manju and Anirudhan 1997; Mohan et al. 2006; Sarin and 
Pant 2006; Venkateswarlu et al. 2007). Avena monida (whole plant biomass) showed 
90% removal efficiency of Cr (VI) at pH 6 (Gardea-Torresdey et al. 2000). Other 
plants including Fagus orientalis (Acar and Malkoc 2004), Agave lechuguilla 
(Romero-González et al. 2005), Atriplex canescens (Sawalha et al. 2005), Thuja ori-
entalis (Oguz 2005), Pinus sylvestris (Ucun et al. 2002) and Jatropha curcas (Yadav 
et al. 2009) have also been used for chromium remediation. Romero-González et al. 
(2006) reported the Cr (III) sorption onto Agave lechuguilla biomass. The average 
adsorption capacities calculated from Freundlich (4.7 mg/g) and Langmuir (14.2 mg/g) 
isotherms showed that A. lechuguilla effectively removed chromium (III) in aqueous 
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environment. Cr (III) binding was due to interactions with surface carboxyl groups of 
the adsorbent’s cell tissue. In a similar study, Romero-González et al. (2005) used 
Agave lechuguilla for Cr (VI) adsorption. Cr (VI) binding at pH 2 could be due to 
either electrostatic attraction to Cr (VI) oxyanions by positively charged ligands such 
as protonated amines or through reduction of Cr (VI) to Cr (III), subsequently result-
ing in the binding of Cr (III) to the biomass. Gardea-Torresdey et al. (2000) studied 
Cr (VI) adsorption and its possible reduction to Cr (III) by agricultural by-products of 
Avena monida. Sawalha et al. (2005) studied chromium adsorption by native, esteri-
fied, and hydrolyzed saltbush (Atriplex canescens) biomass. X-ray absorption spec-
troscopy (XAS) studies determined the chromium oxidation state when bound to the 
biomass. The amounts of chromium adsorbed by saltbush biomass were determined 
by inductively coupled plasma-optical emission spectroscopy. The percentages of Cr 
(III) bound by native stems, leaves, and flowers at pH 4 were 98, 97, and 91%, respec-
tively. On the other hand, the Cr (VI) binding by the native stems, leaves, and flowers 
of the native and hydrolyzed saltbush biomass decreased as pH increased. At pH 2, 
the stems, leaves, and flowers of native biomass were found to bind 31, 49, and 46%, 
of Cr (VI), respectively. XAS experiments showed that Cr (VI) was reduced to Cr 
(III) to some extent by saltbush biomass at both pH 2 and 5. Cr (VI) removal by 
London plane leaves in aqueous environment was studied by Aoyama (2003). It was 
found that Cr (VI) did not reduce to Cr (III) and the dominating removal mechanism 
was adsorption. The total chromium removal by London leaves was almost equal to 
the amount of Cr (VI) adsorbed.

13.7  Mechanism of Cr (VI) Biosorption

Many studies have claimed that Cr (VI) could be removed from the aqueous phase 
through an adsorption mechanism, whereby anionic Cr (VI) ion species bind to the 
positively charged groups of nonliving biomass (Acar and Malkoc 2004; Park et al. 
2004; Malkoc and Nuhoglu 2003). According to Park et al. (2005c), Cr (VI) can be 
removed from an aqueous system by both direct (Mechanism I) and indirect 
(Mechanism II) mechanisms (Fig. 13.1). In direct reduction, Cr (VI) is directly 
reduced to Cr (III) in the aqueous phase by contact with the electron-donor groups 
of the biomass, that is, groups having lower reduction potential values than that of 
Cr (VI). The indirect reduction consists of three steps: (1) the binding of anionic 
Cr (VI) ion species to the positively charged groups present on the biomass surface, 
(2) the reduction of Cr (VI) to Cr (III) by adjacent electron-donor groups, and 
(3) the release of the Cr (III) ions into the aqueous phase due to electronic repulsion 
between the positively charged groups and the Cr (III) ions, or the complexation of 
the Cr (III) with adjacent groups capable of Cr binding. Amino and carboxyl groups 
take part in direct mechanism. As the pH of the aqueous phase is lowered, the large 
number of H ions can easily coordinate with the amino and carboxyl groups present 
on the biomass surface. Thus, low pH makes the biomass surface more positive. The 
more positive the surface charge of the biomass, the faster the removal rate of Cr (VI) 
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in the aqueous phase, since the binding of anionic Cr (VI) ion species with the 
positively charged groups is enhanced (Malkoc and Nuhoglu 2003). The low pH 
also accelerates the reduction reaction in both direct and indirect mechanisms. The 
solution pH is the most important controlling parameter in the practical use of non-
living biomass in the adsorption process. Hence, it is of significance that the pH of 
wastewaters containing heavy metals is generally very acidic. Meanwhile, if there 
are a small number of electron-donor groups in the biomass or protons in the aque-
ous phase, the chromium bound to the biomass can remain in the hexavalent state.

13.8  Phytoremediation

Phytoremediation is an emerging technology that uses plants to remove contami-
nants from soil and water. The use of plants for remediation of metals offers an 
attractive alternative, because it is a solar-driven process and can be carried out 
in situ (Salt et al. 1995, 1998). Phytoremediation techniques include: (a) phy-
totransformation, (b) phytostabilization, (c) phytoextraction or phytoaccumulation,  
(d) phytodegradation, and (e) rhizofiltration. Phytotransformation involves the 
uptake of organic contaminants from soil, sediments, and water and subsequently 
contaminants are transformed to a more stable, less toxic, or less mobile form. Surface 

Fig. 13.1 Proposed mechanism of Cr (VI) biosorption by natural biomaterials (Adapted from 
Park et al. 2005c)
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water and groundwater are considered as surface medium. Metal chromium can be 
reduced from hexavalent to trivalent chromium, which is less mobile and noncarci-
nogenic. Phytostabilization is a technique in which plants reduce the mobility and 
migration of contaminated soil. Leachable constituents are adsorbed and bound into 
the plant structure so that they form a stable mass of plant from which the contami-
nants will not reenter the environment. Phytoextraction is the process used by plants 
to accumulate contaminants into the roots and aboveground shoots and leaves. This 
technique is inexpensive and may accumulate low levels of contaminants from a 
widespread area and the surface medium. Phytodegradation involves the breakdown 
of contaminants through the rhizosphere microbial activity. The proteins and 
enzymes released by plants or by soil organisms such as bacteria, yeast, and fungi 
influence phytodegradation. Plants provide nutrients necessary for the microbes to 
thrive, while microbes provide a healthier soil environment. Rhizofiltration is a 
water remediation technique that involves the uptake of contaminants by plant 
roots. It is used to reduce contamination in natural wetlands and estuary areas. 
Phytoremediation is well suited for use at very large field sites where other methods 
of remediation are expensive and not practicable (Eccles 1999). Sometimes, rainwa-
ter is evapotranspirated by plants to prevent leaching of contaminants from disposal 
sites and the phenomenon is known as vegetative cap. An overview of phytoreme-
diation applications is presented in Table 13.2.

Demir and Arisoy (2007) did cost and benefit analysis of biological and chemical 
removal of hexavalent chromium ions and cost per unit in chemical removal was 
calculated € 0.24 and the ratio of chrome removal was 99.68%, whereas those of 
biological removal were € 0.14 and 59.3%. Therefore, it was seen that cost per unit 
in chemical removal and chrome removal ratio were higher than those of biological 

Table 13.2 Overview of phytoremediation applications

Technique Surface medium Plant mechanism

Phytotransformation Surface water, ground  
water

Plant uptake and degradation  
of organic compounds

Phytostabilization Soils, ground water,  
mine tailing

Precipitation of metals on the 
root exudates causing less 
availability of metals

Phytoextraction Soils Uptake and concentration of 
metals through direct uptake 
into the plant tissue with 
subsequent removal by the 
plants

Phytodegradation Soils, ground water  
within rhizosphere

Microbial degradation is 
enhanced in the rhizosphere

Rhizofiltration Surface water Uptake of metals into the plant 
roots

Vegetative cap Soils Rainwater is evapotranspirated 
by plants to prevent 
leaching of contaminants 
from disposal sites
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removal method. Reports on the phytoextraction of chromium from contaminated 
soils and sediments are less. Attempts have been made to use promising aquatic plant 
species (Scirpus lacustris, Phragmites karka, and Bacopa monnieri) for the phytoex-
traction of chromium from contaminated tannery sludge (Yadav et al. 2005). The 
expansion of this research work has promoted phytoremediation to be eco-friendly as 
well as cost-effective technology (Rai 2009; Rai and Tripathi 2007, 2008).

The disadvantage of the phytoremediation technology is that most of the works 
have not been scaled up at industrial level. Genetic engineering of biological systems, 
however, may be considered as potential future prospect for scaling up for phytoreme-
diation (Eapen and D’Souza 2005). Vegetable crops are the extremely important life-
supporting materials for humans and other animal species in the developing country 
like India, since vegetables contain essential components of the diet by the contribu-
tion of protein, vitamin, iron, calcium, and other nutrients (Bean et al. 2009; Borah 
et al. 2009; Rai and Tripathi 2008). These local vegetable products are the basis of 
human nutrition in many places and of great relevance to human health due to the 
presence of various antioxidants (Bean et al. 2009). Priority should be given to bio-
logical and advanced treatment in order to ameliorate metals concentration especially 
chromium in treated wastewater used for irrigation during the cultivation of vegeta-
bles. There is an urgent need to make sustainable management policies to solve this 
problem, which is linked with human health in many developing countries.

13.9  Conclusion

Developing health-based cleanup standards and remediation strategies for chro-
mium-contaminated soils and wastewaters seems to be a complex and controversial 
task. On the basis of the reported works done so far on chromium remediation, it is 
found that technology based on the use of microorganisms, biowaste materials, or 
plants may be the best suited and cost-effective technology for remediation of chro-
mium from contaminated sites. In some plants, 99% chromium is adsorbed in the 
root where it is reduced to Cr (III) species within a short period of time. 
Microorganisms and plants both can, therefore, serve as highly efficient bioaccumu-
lators of chromium especially in the aqueous environment. The bioremediation 
technologies are likely to provide an alternative or adjunct to conventional tech-
niques of chromium recovery or removal from polluted sites.
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Abstract The soil environment is a major sink for multitude of chemicals and 
heavy metals, which inevitably leads to environmental contamination problems. 
Indeed, a plethora of different types of heavy metals are used and emanated through 
various industrial activities. Millions of tonnes of trace elements are produced every 
year from the mines in demands for newer materials. On being discharged into soil, 
the heavy metals get accumulated and may disturb the soil ecosystem, plant produc-
tivity, and also pose threat to human health and environment. Therefore, the 
 establishment of efficient and inexpensive methodology and techniques for identi-
fying and limiting or preventing metal pollution, causing threats to the agricultural 
production systems and human health, is earnestly required. The possible genotoxic 
effects of heavy metals on plants and other organisms have been extensively inves-
tigated worldwide and sufficiently discussed in this chapter. Also, the development 
and applications of new biomonitoring methodologies for assessment of soil geno-
toxicity have been emphasized. The molecular techniques being employed 
either alone or in combination for detecting the DNA damage induced by heavy 
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metal–contaminated soils and other potentially genotoxic compounds are adequately 
elaborated. Indeed, the combination of two techniques leads to the precise and 
efficient detection and quantification of the sublethal genotoxic effects induced in 
the plant bioindicators by contaminated soil. Thus, the application of biomonitoring 
protocols in conjunction with the genotoxic assessment of contaminated soil will be 
advantageous in effective management of heavy metal–polluted soils.

Keywords Biomonitoring • Biosensor • Genotoxicity • Genotoxic assessment

14.1  Introduction

In agricultural practices, a variety of chemical inputs in the form of fertilizers, 
pesticides (herbicides, fungicides, and insecticides), or sewage sludge are con-
stantly applied to optimize the crop production. The excessive use of these agro-
chemicals and other activities such as the burning of fossil fuels, mining, and 
smelting of metalliferous ores, municipal wastes, and industrial activities adds sub-
stantial amounts of heavy metals to soils (Bunger et al. 2007; Devi et al. 2007; Kim 
et al. 2007; Periyakaruppan et al. 2007; Roos et al. 2008), which cause contamina-
tion of the urban and agricultural soils. Metals are notable for their wide environ-
mental dispersion, their tendency to accumulate in selected tissues of the human 
body, and their overall potential to be toxic even at low level of exposure. Some 
metals, such as copper and iron, are essential to life and play irreplaceable role. 
Other metals are xenobiotics; they have no useful role in human physiology and, 
even worse, as in the case of cadmium (Cd), lead (Pb), arsenic (As), chromium 
(Cr), nickel (Ni), and mercury (Hg). Even those metals that are essential, however, 
have the potential to turn harmful at very high levels of exposure. The annual toxic-
ity of all metals mobilized exceeds the combined total toxicity of all radioactive 
and organic wastes generated every year from all other sources (Nriagu and Pacyna 
1988). The continued and excessive discharge of these metals from various sources 
and their subsequent accumulation in soils pose a significant threat to human health 
and the environment due to their non-degrading ability. Heavy metals, which often 
act as genotoxic agents (Panda and Panda 2002; Sarkar et al. 2010), enter the 
human body through inhalation of dust, ingestion of plants that uptake the metal 
compounds from soil, and leaching from soil to groundwater and surface water 
used for drinking purposes. Toxic metal ions enter cells by means of the same 
uptake processes that move essential micronutrient metal ions. Class A metals 
(e.g., K, Ca, Mg) preferentially bind with oxygen-rich ligand (e.g., carboxylic 
groups), class B metals (e.g., Hg, Pb, Pt, Au) preferentially bind with sulfur- and 
nitrogen-rich ligands (e.g., amino acids), and borderline metals (e.g., Cd, Cu, Zn) 
show intermediate preferences, with the heavier metals tending toward class  
B characteristics (Nieboer and Richardson 1980). Heavy metal pollutants have a 
high bioaccumulation rate and at supra-optimal concentrations affect the human 
health, microorganisms, soil enzyme activity, and plants (Renella et al. 2005; 
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Simmons et al. 2005; Garnier et al. 2006; Wang et al. 2007; Unhalekhaka and 
Kositanont 2009). Pereira et al. (2009) have demonstrated the phytotoxicity and 
genotoxicity of soils from an abandoned uranium mine area. In plants, some metal 
compounds have shown the genotoxic effects (Radetski et al. 2004). For instance, 
in tobacco (Nicotiana tabacum), cadmium has reportedly caused cell death through 
the accumulation of superoxide anions (O

2
.–) of mitochondrial origin and mem-

brane peroxidation (Garnier et al. 2006), while in Allium sativum and Vicia faba, 
higher concentrations of cadmium induced the lipid peroxidation, resulting in oxi-
dative stress that contributes to the genotoxicity and cytotoxicity of cadmium ions 
(Ünyayar et al. 2006). Exposure to higher cadmium concentrations has also been 
found to be carcinogenic, mutagenic, and teratogenic for a large number of animal 
species (Waalkes 2000, 2003). Cadmium metal and cadmium-containing com-
pounds are known to cause lung cancer, and possibly prostate cancer, or tumors at 
multiple tissue sites (Mitrov and Chernozemski 1985; Vodenicharska et al. 1992; 
Tzonevski et al. 1998; Bruning and Chronz 1999; Chernozemski and Shishkov 
2001). The studies also revealed induced DNA breaks in human blood lympho-
cytes with low micromolar concentrations of cadmium metal (Depault et al. 2006). 
Besides cadmium, other metals like lead, bismuth, indium, silver, and antimony 
also act as a genotoxicants (Asakura et al. 2009) and binds to the phosphate, deoxy-
ribose, and heterocyclic nitrogenous bases of DNA. Consequently, the integrity of 
cells gets adversely affected due to systematic loss of altered genetic material 
through a process often referred as genotoxicity. Therefore, the genomic protection 
of organisms from the increasing environmental pollution is important for preser-
vation of biodiversity.

The heavy metal and xenobiotics-mediated genotoxicity of soils depends on the 
bioavailability of contaminants including the physicochemical attributes of the soil 
and the magnitude of heavy metal contamination. The movement of heavy metals in 
soils is influenced by pH, particle size distribution, and carbon content of soil 
(Alloway and Ayres 1993; Wang et al. 2007). Generally, the soils having low pH are 
more genotoxic (Katnoria et al. 2008). Mostly, the environmental risk assessments 
of contaminated soils are based on chemical analysis, which reveals the presence of 
many mutagenic and carcinogenic compounds like heavy metals in soil. However, a 
major limitation of standard chemical analyses is that many soil genotoxicants are 
still unknown and most of the soil ecotoxicity data relates to relatively less known 
compounds. Therefore, there is a need to develop new methods for soil genotoxicity 
assessment. Bioassays in this regard provide a means of assessing the toxicity of a 
complex soil mixture without prior knowledge of its chemical composition. This 
has led to the discovery of different mutagenicity test for soil samples, which include 
Ames test (Ames et al. 1975; Brooks et al. 1998; Hughes et al. 1998; Monarca et al. 
2002), Tradescantia micronucleus test (Knasmüller et al. 1998; Cabrera et al. 1999), 
Tradescantia stamen hair mutation (Trad-SHM) (Cabrera et al. 1999; Gichner 
1999), and Vicia root micronucleus assay (Wang 1999; Cotelle et al. 1999). Because 
of the simplicity and sensitivity, these tests are likely to play an important role in the 
screening of genotoxic agents, especially for the detection of genotoxic substances 
from contaminated environments.
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14.2  Bioavailability of Contaminants in Soil

There are several well-documented factors, which affect bioavailability of contami-
nant in soil environment such as the soil pH (Lock and Janssen 2003), redox poten-
tial (Rensing and Maier 2003), ionic strength, organic matter (Pardue et al. 1996), 
type of soil (Lock et al. 2002), clay fraction (Babich and Statzky 1977), water 
content, oxygen content, temperature and soil organisms, plant roots, inverte-
brates, etc. Other important factors that may affect bioavailability include the 
contaminants’ physicochemical properties, such as molecular structure, aqueous 
solubility, polarity, lipophilicity, hydrophobicity, volatility (Reid et al. 2000), spe-
ciation of metals (Arnold et al. 2003), mineral form (Davies et al. 2003), mobility, 
and persistence. Residence time of contaminants referred as “aging” is another 
factor, which is basically a time-dependent interaction between the contaminant and 
the soil. Contaminants become sorbed to mineral and organic matter components of 
soil and trapped in micropores and become biologically inaccessible. The longer a 
contaminant is in contact with the soil, the more they become associated, reducing 
bioavailability and consequent potential toxicity (Alexander 2000; Hatzinger and 
Alexander 1995).

14.3  Genetic Effects of Heavy Metals

Understanding the action and reaction of chemical pollutants is important for pre-
serving the gene pool and management of a healthy ecosystem. The uptake and 
translocation of heavy metals from soils to plants depends on factors such as the (1) 
total amount of potentially available elements (intensity factor) and (2) rate of ele-
ment transfer from solid to liquid phases and to plant roots (Brummer et al. 1986). 
In the organisms exposed to the genotoxicants, the normal cellular processes are 
disrupted due to structural modifications in the DNA and influence the cell survival. 
It has been observed that due to the heavy metal accumulation in soils, the genetic 
constitution of populations especially the herbaceous or grassy plants is altered 
(Geburek 2000). Indeed, the heavy metals as genotoxicants affect the synthesis and 
duplication of DNA and chromosomes both directly or indirectly (Gichner 2003) 
and cause chromosomal aberrations in plant cells. These effects are influenced 
greatly by the types and dosage of heavy metals. For example, different barley 
(Hordeum vulgare) cultivars (Tokak and Hamidiye) when grown in nutrient solution 
under controlled environmental conditions and subjected to increasing concentra-
tions of cadmium (0, 15, 30, 60, and 120 mmol/l) for different time periods exhibited 
large genotypic variation between barley cultivars. The differential cadmium toler-
ance observed in the barley cultivars may not be related to uptake or accumulation 
of cadmium in plants, but is attributed to internal antioxidative mechanisms. In the 
Cd-sensitive barley cultivar Hamidiye, the high sensitivity is related to oxidative 
damage due to enhanced production of ROS (Tiryakioglu et al. 2006). Exposure of 
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cadmium, lead, and mercury leads to polyploidy, C-Karyokinesis, chromosome 
fragmentation, chromosome fusion, micronuclei formation, and nuclear decompo-
sition in beans, garlic (Allium sativum) and onions (Allium cepa) (Liu et al. 2004). 
The high concentration of heavy metals in medium, in which plants could not grow 
normally, affects the sister chromatid exchange (SCE) frequency in root tip cells of 
Hordeum vulgare (Liu et al. 2005). Recently, Yi et al. (2010) demonstrated the cyto-
genetic effects of aluminum (AlCl

3
) using Vicia cytogenetic tests, which are com-

monly used to monitor the genotoxicity of environmental pollutants. Significant 
increase in the frequency of micronuclei (MN) formation and anaphase chromo-
some aberrations is reported in Vicia faba root tips exposed to AlCl

3
 over a concen-

tration range of 0.01–10 mM for 12 h. The frequency of micronucleated cells is 
reported to be higher in Al-treated groups at pH 4.5 than that at pH 5.8. The AlCl

3
 

treatment also caused a decrease in the number of mitotic cells in a dose- and pH-
dependent manner. The number of cells in each mitotic phase changed in Al-treated 
samples. Mitotic indices (MI) decreased with the increase of pycnotic cells. Thus, 
AlCl

3
 has been classified as clastogenic, genotoxic, and cytotoxic agent in Vicia 

root cells.
The formation of free radicals by genotoxicants can result in the breakage of 

phosphodiester linkages within the DNA molecule. Genotoxicants can also inter-
fere with normal DNA processing activities such as replication, methylation, and 
repair, which may result in mutations. Aina et al. (2004) studied the effect of heavy 
metal stress on the DNA methylation of a metal-sensitive plant, Trifolium repens, 
(L.) and a metal-tolerant plant, Cannabis sativa, (L.), and compared the variations 
in the level of 5-methylcytosine (5mC) in the root DNA of plants grown on soils 
contaminated with different concentrations of Ni2+, Cd2+, and Cr6+ with that of 
untreated plants, through immunolabeling with a monoclonal antibody. The DNA 
of hemp control plants has been found to be methylated about three times more than 
clover DNA. Heavy metals have shown to induce a global dose-dependent decrease 
of 5mC content, both in hemp and clover that varied between 20% and 40%. 
Moreover, the changes in methylation pattern of 5¢-CCGG-3¢ containing sequences 
were investigated by methylation-sensitive amplification polymorphism (MSAP) 
technique. Control plants of the same species had a very similar pattern, suggesting 
that under normal conditions, methylation involves precise sites. Heavy metal–
induced DNA methylation changes are mainly the hypomethylation events. These 
variations are not randomly directed but involve the specific DNA sequences, since 
the detected polymorphisms have been found to be the same in all the plants ana-
lyzed for each treatment. A decline in DNA and RNA content in Phaseolus vulgaris 
under heavy metal stress (Hamid et al. 2010) and submerged aquatic plant (Jana and 
Choudhuri 1984) has also been reported. The reduced efficiency of DNA synthesis, 
weaker DNA protection from damaged chromatin proteins (histones), and increased 
deoxyribonuclease (DNase) activity have been reported in plants exposed to 
cadmium, copper, chromium, nickel, lead, mercury, and zinc (Prasad and Strzalka 
2002). Heavy metals such as copper, nickel, cadmium, and lead are reported to 
decrease the RNA synthesis and to activate ribonuclease (RNase) activity, leading 
to further decrease in RNA content (Schmidt 1996).
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The heavy metal like cadmium when applied in the form of cadmium chloride on 
tobacco roots induces significantly higher levels of DNA damage as measured by 
the cellular comet assay. DNA damage induced by Cd2+ in roots of a transgenic 
catalase-deficient tobacco line (CAT1AS) is reported to be higher than the wild-type 
tobacco (SR1) roots. While comparing the effects of ethyl methanesulfonate 
(positive control) and Cd2+, it has been shown that Cd2+ does not induce any significant 
DNA damage in leaf nuclei. Also, the somatic mutations or homologous recombina-
tion did not occur in leaves, as measured by the GUS gene reactivation assay. 
Furthermore, the roots were found accumulating almost 50-fold more cadmium 
than did the above-ground parts of the tobacco seedlings, as revealed by Inductively 
Coupled Plasma (ICP) optical emission spectrometry (Gichner et al. 2004). 
Subsequently, Gichner et al. (2006) cultivated heterozygous tobacco (var. xanthi) 
and potato (Solanum tuberosum var. Korela) plants in soil from the site Střimice, 
which is highly polluted with heavy metals and on non-polluted soil from the recre-
ational site Jezeří, both in North Bohemia, Czech Republic. The total content, the 
content of bio available, easily mobile, and potentially mobile heavy metals like Cd, 
Cu, Pb, and Zn in the tested soils, and the accumulation of these metals in the roots 
and above-ground biomass of test plants have been measured by atomic absorption 
spectrometry. The data revealed that the average leaf area (tobacco) and plant height 
(potato) were significantly reduced when these plants were grown in metal-stressed 
soil. Interestingly, a small but significant increase in DNA damage in nuclei of 
leaves of both plant species has been observed in plants growing on the polluted 
soil. The enhanced DNA damage with necrotic or apoptotic DNA fragmentation in 
heavy metal–stressed tobacco and potato plants leads to growth inhibition and dis-
torted leaves. However, no increase in the frequency of somatic mutations occurred 
in tobacco plants growing on the polluted soil. The inability of plants to cope with 
heavy metal stress and to maintain the structural integrity provides an opportunity 
to test for the genotoxicity of pollutants present in the environment. Therefore, it is 
desirable to develop and establish new toxicological approaches to evaluate the 
potential cytotoxic and genotoxic effects of heavy metals. Some of the tests used 
commonly to assess the genotoxicity of heavy metal–polluted soils are discussed in 
the following section.

14.4  Assessment of Heavy Metal Genotoxicity

Genotoxicants are usually present in the environment and even at low concentra-
tions can modify or damage the DNA (Fig. 14.1). Qualitative and quantitative 
assessment of DNA damage is, therefore, an important issue. In this context, various 
in vitro and in vivo genotoxicity tests designed to detect the substances that induce 
genetic damage directly or indirectly have been developed. The analytical tech-
niques with sufficient selectivity and sensitivity have been used to detect extremely 
low levels of DNA damage. The difficulties in the measurements of pollutants in the 
field and the interpretation of such measurements in terms of bioavailability, 



32914 Genotoxicity Assessment of Heavy Metal–Contaminated Soils

associated with analytical techniques, have, however, generated a strong interest in 
using bioindicators and biomarkers for detection of damage to DNA. Advances and 
developments in molecular biology have provided new insight into the assessment of 
genotoxicity of soils and DNA damage in plants (Conte et al. 1998; Savva 2000; 
Citterio et al. 2002). Use of bioindicators, for example, in the measurement of con-
taminants is interesting because it helps in detecting different forms of pollutants, 
which are hard to measure in the field. Among the bioindicators, plants are considered 
to be the good bioindicators due to their greater role in food chain transfer and in 
defining habitat. Moreover, higher plants provide valuable genetic assay systems for 
screening and monitoring environmental pollutants and have a high sensitivity with 
few false negatives. They are now recognized as excellent indicators of cytotoxic, 
cytogenetic, and mutagenic effects of environmental chemicals and can be used to 
detect mutagens both indoor and outdoor. The higher plant genetic assays are inex-
pensive and easy to handle, which make them most suitable for use by researchers in 
developing countries (Grant 1994). Moreover, plants are ethically more acceptable 
and aesthetically more appealing than animals as sensors of environmental pollution.

14.4.1  Toxicity Assessment Using Multicellular Organisms

Toxicity assessment assays using whole animals or plants have been used for sev-
eral decades. Several methods have been considered as International Standards 
Organization (ISO) guidance notes (ISO 1993, 1999, 2004), and as the Organisation 

Fig. 14.1 Types of genotoxicity assays commonly used for testing heavy metal contaminated 
soils
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for Economic Co-operation and Development (OECD) Chemicals Testing Guidelines 
(OECD 1984a, b, 2003). They include earthworm acute toxicity, earthworm reproduc-
tion, terrestrial plant growth (both monocotyledons and dicotyledons), inhibition of 
root growth, emergence and growth of higher plants, and effects on invertebrate repro-
duction and survival. The advantage of these tests is that they are directly relevant to 
the specific species and represent in situ conditions. These assays do not require a soil 
extract to be made and, therefore, represent actual pollutant bioavailability to a selected 
organism in soil over time. The UK Environment Agency assesses these tests on the 
five “R” criteria: reproducibility, representative, responsiveness, robustness, and rele-
vance. A good example of bioavailability assessment of both organics and metals 
using multicellular organism toxicity tests is given by Cook et al. (2002). They found 
that soils with levels of contamination above intervention values, according to chemi-
cally based soil criteria, did not generate a toxic response to earthworms’ mortality 
test or seed germination and root elongation, algal growth inhibition, and bacterial 
luminescence tests. Mammalian tests on rodents, dogs, pigs, etc., are usually used as 
a surrogate for human risk assessment (Hund-Rinke and Kordel 2003).The overall 
advantages of using multicellular organisms to test for bioavailability are that the tests 
are directly relevant to the organism used and can show systemic changes to the reac-
tions. However, the limitations include no direct representation of other organisms, 
difficulties in data normalization between different field sites, and the time it takes to 
perform the tests in days/weeks rather than hours. Since, the mammalian tests are 
further complicated by strict regulations governing animal welfare and the expenses 
involved, many plant assays are the subject of choice.

Seven higher plant species like, Allium cepa (Fiskesjo 1997), Arabidopsis thali-
ana, Glycine max, Hordeum vulgaris. Tradescantia paludosa, Vicia faba (Koppen 
and Verschaeve 1996), and Zea mays were used to detect genotoxicity of chemical 
agents under the US Environmental Protection Agency (U.S. EPA) Gene-Tox 
program in the late 1970s. Six bioassays – Allium and Vicia root tip chromosome 
breaks, Tradescantia chromosome break, Tradescantia micronucleus, Tradescantia-
stamen-hair mutation, and Arabidopsis-mutation bioassays – were established from 
four plant systems that are currently in use for detecting the genotoxicity of environ-
mental agents. Under the Gene-Tox program, the Crepis capillaris-chromosome-
aberration test was added to the existing six bioassays (Ma et al. 2005). Three of 
these plant bioassays, the Allium root chromosome aberration (AL-RAA) assay, the 
Tradescantia micronucleus (Trad-MCN) assay, and the Tradescantia stamen hair 
(Trad-SHM) mutation assay were validated in 1991 by the International Programme 
on Chemical Safety (IPCS) under the auspices of the World Health Organization, 
and the United Nations Environment Programme (UNEP) (Cabrera and Rodriguez 
1999). The Tradescantia-Micronucleus (Trad-MCN) bioassay is also recommended 
and used in the International Program on Plant bioassays (IPPB) under the auspices 
of the United Nations Environment Programme (UNEP). Using chromosomal damage 
as indicator of the carcinogenic properties of environmental agents, the Trad-MCN 
bioassay is a quick and efficient tool for screening carcinogens in gaseous, liquid, 
and solid forms. Test results can be obtained within 24–48 h after the exposure 
either on site or in the laboratory. Under the IPPB/UNEP, more than 40 institutes 
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including public health, medical, and cancer research in the major countries of the 
world are involved in the monitoring task on genotoxicity of polluted air, water, and 
soil. At the same time, the Trad-MCN can be used at a global scale to detect carcino-
gens as a preventive measure of cancer (Ma 2001; Kong and Ma 1999). Thus, these 
plant bioassays have proven to be efficient tests for chemical screening and espe-
cially for in situ monitoring for genotoxicity of environmental pollutants. The results 
from higher plant genetic assays are likely to make a significant contribution in 
public health protection from hazardous agents that can cause mutations and cancer. 
Furthermore, plant-based assays applied for toxicity evaluation in the field are likely 
to reduce animal sacrifices and testing costs.

14.4.2  Toxicity Assessment Using Whole Cell Test System

In the last few decades, an outbreak of microbial/whole cell tests has been noticed 
for estimating contaminant bioavailability in soil. Genetic engineering and modifi-
cation techniques have allowed indicator genes to be coupled to genes of specific 
interest to give a qualitative and quantitative response. The first use of a reporter 
gene to show a phenotypic response was the Ames test (Ames et al. 1973). Although 
not directly tested with contaminated soil, it is still suitable to use with soil extracts. 
The extract used (water/solvent/buffer, etc.) is as important as the biological test 
chosen when assessing the toxicity of a contaminated soil as the extract will be the 
factor that determines bioavailability Wegrzyn and Czyz (2003). These mutagenic 
biosensors tend to be sensitive, reasonably quick to perform (days or hours, not 
weeks), but are limited by the need for specialist (expensive) equipment and their 
relevance to other organisms.

The best established microbial test in environmental testing is the Microtox assay 
(http://www.azurenv.com). A bioluminescent marine bacterium, Vibrio fischeri, 
produces light as a by-product of normal cell functions. Any toxicant inhibits cell 
functions and proportionally, light emission, allowing toxicity to be quantitatively 
measured. Microtox itself is still widely used and has been shown to be highly sensi-
tive (Munkittrick et al. 1991). The major advantages include sensitivity in its general 
toxic response, simplicity and rapidity, robustness, and reproducibility. Major limita-
tions are that it relies on exposure to an extract, which may present difficulties in 
interpreting results, and is a marine organism and therefore not strictly relevant in its 
response to soil contamination. The principle behind Microtox, of light emission, has 
given rise to a huge number of genetically engineered bacteria, yeast, and mammali-
ans cells, which use light as an indication of bioavailability. Microbial biosensors are 
extensively reviewed by Hansen and Sorensen (2001), Leveau and Lindow (2002), 
and Belkin (2003). Leveau and Lindow (2002) and Belkin (2003) also discussed 
similar reporter gene-based systems that use b-galactosidase/lac Z and green fluores-
cent protein (GFP). The former was originally used in the SOS chromotest (Quillardet 
et al. 1982), an Ames-like test. The latter is now equally as popular as luminescent-
based tests, using fluorescence rather than luminescence. Knight et al. (2004) 
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presented a yeast/GFP genotoxicity assay used to test a range of pesticides, metals, 
and solvents. Biosensors that utilize both luminescence and fluorescence, for testing 
acute and genotoxic threats simultaneously are also available. The most high profile 
usage of these tools is as health monitors in the International Space Station (Rabbow 
et al. 2003). Advantages of these light/color-based toxicity indicator tests are ease 
of assay, speed of assay, versatility, and sensitivity. Microbial and whole cell biosen-
sors may be best employed as initial screening tools for environmental and soil 
contamination.

14.4.3  Toxicity Assessment Using Subcellular  
or Molecular Assays

The nucleic acid-based DNA hybridization array (Fredrickson et al. 2001) and 
reverse transcriptase PCR for monitoring gene expression (Environment Agency 
2003), enzyme-based, and antibody- and receptor-based biosensors are in common 
use for monitoring environmental and food contaminants (Baeumner 2003). The 
UK Environment Agency has recommended the use of reverse transcriptase PCR to 
measure gene expression as a tool for looking at thousands of genes at once and 
their responses to vast arrays of contaminants. Sturzenbaum et al. (1998a, b, 2001) 
examined changes in gene expression of metallothionein, carboxypeptidase, and 
other metal-sensitive genes and found transcription levels up to 100-fold greater in 
exposed organisms, showing that the technique has a high degree of sensitivity. A great 
advantage of this technique is that organisms that have been directly in contact with 
contaminated soil can be analyzed and, therefore, bioavailability is the parameter 
being assessed. A disadvantage is determining what “normal” levels of gene expres-
sion are in order to determine whether contamination has had an effect. It is also 
important to differentiate between “normal stress responses,” for example, to 
drought and those actually related to pollution. Antibody interactions are also highly 
sensitive and very specific. Immunoaffinity has been adapted from clinical research 
to quantify environmental pollutants like metals (Chavez-Crooker et al. 2003) and 
dioxins (Okuyama et al. 2004). Antibodies can be customized and raised against 
any contaminant and are supplied by various biotechnology companies. The rele-
vance of any antibody assay for bioavailability purposes will be dependent on the 
soil extraction method adopted. The potential use of this method is to analyze soil 
DNA to assess in situ bioavailability. Thus, these in vitro molecular assays are very 
useful as initial bioavailability and toxicity screening tools.

14.5  Genotoxicity Assay for Soil

Soil contaminants are common in industrialized countries, causing widespread con-
tamination directly of soil and indirectly of ground water and food. Among these 
pollutants, particular attention has been paid to soil mutagens and carcinogens due 
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to their potentially hazardous effects on animal populations and human health. In 
this context, both physicochemical methods and bioassays (bacteria or plants) have 
been employed. However, because of the complex chemical nature of soil, standard 
chemical analyses are limited in their ability to characterize the chemical composi-
tion of genotoxicants in soil to assess its potential genotoxicity. On the other hand, 
the bioassays like Salmonella mutation assay has most widely been used for assessing 
the genotoxicity of toxic substances (Brown et al. 1985; McDaniels et al. 1993; 
Ehrlichmann et al. 2000; Watanabe and Hirayama 2001). The Ames test (Salmonella 
assay) is a relatively sensitive and specific in vitro test used widely in the screening 
of mutagenic potential of chemical compounds (Mortelmans and Zeiger 2000; 
Maron and Ames 1983). The test uses amino acid-dependent strains of S. typhimurium 
and E. coli. In the absence of an external histidine source, the cells cannot grow to 
form colonies. Colony growth is resumed if a reversion of the mutation occurs, 
allowing the production of histidine to be resumed. Spontaneous reversions occur 
with each of the strains; mutagenic compounds cause an increase in the number of 
revertant colonies relative to the background level. A positive test indicates that the 
chemical might act as a carcinogen (although a number of false-positives and false-
negatives are known). It reveals the gene mutation-inducing ability (mutagenicity). 
Numerous studies all over the world have shown the presence of different 
mutagenic substances in different soils using Ames test (Smith 1982; Knize et al. 
1987; Kool et al. 1989). However, in some studies, Ames test has yielded negative 
results (Steinkellner et al. 1998). Since 1970s, higher plant bioassays have been 
recommended for genotoxic evaluation of complex environmental mixtures by 
Anonymous (1973), Committee 17 of Environmental Mutagen Society (Drake et al. 
1975), the World Health Organization (1985), and National Swedish Environmental 
Protection Board in 1989 (Cabrera et al. 1999). Considering the potential health 
hazards posed by heavy metals in soil and non-availability of data on content of 
heavy metals in agricultural soils, Katnoria et al. (2008) conducted a study to evalu-
ate the genotoxic potential of extracts of soil samples collected from different agri-
cultural fields of Amritsar, India, employing Ames and Allium root anaphase 
aberration assay (Al-RAAA). The water soil extract prepared in distilled water (soil: 
water, 1:2 w/v) was evaporated to dryness and re-dissolved in distilled water. 
Different concentrations corresponding to 0.25, 0.5, 1, 2, and 2.5 g equivalent of soil 
per plate have been tested employing Salmonella typhimurium TA98 and TA100 
strains, with and without in vitro metabolic activation (S9) to detect direct and indirect 
mutagenic effects. For Al-RAAA, different concentrations of extracts (10, 25, 50, 
75, and 100%) have been used for treatment of root tips of A. cepa. In situ condi-
tions could be simulated by allowing the onion bulbs to root directly in soil samples 
contained in small pots. The genotoxic potential of soil samples can be correlated 
with content of heavy metals like chromium, cobalt, copper, manganese, mercury, 
nickel, and zinc. The pH, alkalinity, water holding capacity, bulk density, moisture 
content, nitrates, phosphates, and potassium should also be studied for better correla-
tions with the abiotic factors. Wang et al. (2007) determined the combined effects of 
cadmium (10 mg/kg soil) and butachlor (5, 10, and 50 mg/kg soil) on enzyme activi-
ties and microbial community structure in phaeozem soil. The phosphatase activity 
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is reportedly decreased in soils with 10 mg Cd/kg soil, when used alone while urease 
activity remained unaffected. However, when the Cd and butachlor were added to 
soils at 2:1 or 1:2 ratio, the urease and phosphatase activities were decreased. The 
enzyme activities were, however, greatly improved at 1:5 suggesting that the com-
bined effects of Cd and butachlor on soil urease and phosphatase activities largely 
depend on the added concentration ratios to soils. Furthermore, the Random 
Amplification of Polymorphic DNA (RAPD) analysis showed changes in RAPD 
profiles of different treated samples including the variations in loss of normal bands 
and appearance of new bands compared with the control soil. The RAPD finger-
prints exhibit apparent changes in the number and size of amplified DNA fragments 
attributed to significant changes in the microbial diversity. Studies also suggest that 
RAPD analysis in conjunction with other biomarkers such as soil enzyme parame-
ters could prove to be a powerful ecotoxicological tool. Gao et al. (2010) have stud-
ied the response of soil enzyme activities, viz. dehydrogenase, phosphatase, and 
urease in polluted soil using ecological dose model and RAPD in order to determine 
soil health. They have determined the 50% ecological dose (ED

50
) values modified 

by toxicant coefficient from the best-fit model, and studied the determination values 
from the regression analysis for the three enzyme activities. In general, the elevated 
heavy metal concentration negatively affected the total population size of bacteria 
and actinomycetes and enzymatic activity. The dehydrogenase (ED

50
 = 777) was the 

most sensitive soil enzyme, whereas urease activity (ED
50

 = 2,857) showed the low-
est inhibition. Composite metals or elevated toxicant level resulted in significant 
disappearing of RAPD bands, and the number of denoting polymorphic bands was 
greater in combined polluted soils.

The genotoxicity of soil samples collected at six sampling sites in a Slovenian 
industrial and agricultural region, contaminated by heavy metals and sulfur dioxide 
(SO

2
), has been assessed by Ames test, Comet assay, and preliminary Tradescantia 

micronucleus assay (Lah et al. 2008). Genotoxicity of all six water soil leachates 
has been proven by the Comet assay on human cell lines; however, no positive 
results were detected by Ames test. The Tradescantia micronucleus assay showed 
an increase in micronuclei formation for three samples. Of these tests, Comet assay 
was found as the most sensitive assay, followed by the micronucleus test. The Ames 
test was not sensitive enough for water soil leachates genotoxicity evaluations where 
heavy metal contamination is anticipated. In other study, Knasmüller et al. (1998) 
employed plant bioassays for the detection of genotoxic effects of heavy metal–
contaminated soils. In this case, four metal salts, namely Cr(VI)O

3
, Cr(III)Cl

3
, Ni(II)

Cl
2
, and Sb(III)Cl

3
 were tested in MN tests with pollen tetrad cells of Tradescantia 

clone #4430 and in meristematic root tip cells of Vicia faba. With Cr6+ and Ni2+, 
obvious dose-dependent effects have been reported, whereas in Vicia, negative 
results were obtained with the four metal salts under all conditions. In order to com-
pare the mutagenic property of the metals, the regression curves (k-values) was 
calculated, which indicated that the number of MN induced per mM in 100 tetrad 
cells. The corresponding values for Cr6+ and Ni2+ were 0.87 and 1.05, respectively. 
Thus, the Tradescantia system has been found to be sensitive toward those metal 
species, which cause DNA damage in animals and man such as Cr6+, Cd2+, Ni2+, and 
Zn2+, whereas no clear positive results were obtained with less harmful metal ions 



33514 Genotoxicity Assessment of Heavy Metal–Contaminated Soils

such as Cu2+, Cr3+, or Sb3+. Also, the mutagenic effects of four metal-contaminated 
soils and two types of standardized leachates (pH 4 and pH 7) of these soils were 
tested in Tradescantia and in Vicia. Direct exposure of the Tradescantia plants in 
the soils resulted in a drastic increase of the MN frequencies over the background. 
The lowest effect has been reported with the Slovakian soil containing the Sb and 
As (4.5-fold increase over the background). However, the induced frequencies with 
the other soils were 11–15-fold over the control values. Thus, the direct exposure of 
intact plants is an appropriate method, which enables to detect genotoxic effects of 
metal-contaminated soils in situ. In a similar study, Kong and Ma (1999) conducted 
Allium root anaphase aberration (Allium-AA), Tradescantia-micronucleus (Trad-
MCN), and the Tradescantia stamen hair mutation (Trad-SHM) tests in soil solu-
tions or shallow well water samples to determine genotoxicity. The results of 
Allium-AA tests suggested a 2.78–3.01-fold increase in anaphase aberration fre-
quencies in contaminated soil solution samples and well water samples as compared 
with the negative control. The Trad-MCN tests demonstrated a 1.66–4.75-fold 
increase of MCN frequencies in contaminated soil solution samples and shallow 
well water samples as compared with the frequencies of the controls. The Trad-
SHM tests exhibited a 2.7–2.86-fold increase of pink mutation events in the con-
taminated soil solution samples over that of the controls. Control groups of the 
Allium-AA tests had an average of 0.75/1,000 anaphase figures, and control groups 
of the Trad-MCN tests had an average of 3.2 MCN/100 tetrads, while control groups 
of the Trad-SHM tests had an average of 1.4 mutation events/1,000 hairs. The soil 
solutions of DMSO extracts showed higher genotoxicity than that of distilled water 
extracts. Among the three plant bioassays tested, the Trad-MCN assay was found to 
be the most efficient for genotoxicity testing in soil solution (Kong and Ma 1999).

Combining genotoxicity/mutagenicity tests and physico-chemical methodolo-
gies can be more useful for determining the potential genotoxic contaminants in 
soils. For example, the genotoxicity of contaminated soils collected from a highly 
industrialized area in the Lombardy region, in Northern Italy, was evaluated by 
employing an integrated chemical/biological approach involving a short-term 
bacterial mutagenicity test (Ames test), a plant genotoxicity test (Tradescantia/
micronucleus test), and chemical analyses (Monarca et al. 2002). Soil samples were 
extracted with water or with organic solvents. Water extracts of soil samples were 
tested for polycyclic aromatic hydrocarbons (PAH) and heavy metals. The organic 
solvent extracts were analyzed for their mutagenicity using the Ames mutagenecity 
and Tradescantia genotoxicity tests. The soils with high concentrations of geno-
toxic PAH and heavy metals showed mutagenic activity with the Ames test and 
clastogenicity with the Tradescantia/micronucleus test.

14.6  Genotoxicity Assessment Assay for Plants

Generation of DNA damage is considered as an important initial outcome in car-
cinogenesis. Therefore, the assessment of genotoxins-induced DNA damage and 
mutations is vital in eco-genotoxicology. In order to detect the various genotoxic 
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effects of compounds, a battery of assays are available. Some of the tests may, however, 
have limited use because of complicated technical setup or because they are applica-
ble only to a few cell types. Despite limitations, bioassay, which can be applied to 
various tissues and/or special cell types, is being used due to its sensitivity for detect-
ing low levels of DNA damage, requirement for small numbers of cells per sample, 
general ease of test performance, the short time needed to complete a study, and its 
relatively low cost. In recent years, several plant species have been used as bioindica-
tors, and several molecular tests have been developed to evaluate the toxicity of envi-
ronmental contaminants on vegetal organisms. For example, the genotoxic changes in 
plants can be detected by the RAPD technique. The RAPD is a simple, reliable, sensi-
tive, and reproducible assay with wide range of DNA damage (e.g., DNA adducts, 
DNA breakage) and mutations (point mutations and large rearrangements) detecting 
potential (Savva 1998; Atienzar et al. 2000). Many factors can affect the generation of 
RAPD profiles. It is, therefore, important that these factors are identified and taken 
into account while using these assays. In addition, the relevant bands generated in 
RAPD profile allow to identify some of the molecular events implicated in the genomic 
instability and, hence, to discover genes involved in the initiation and development of 
malignancy (Atienzar and Jha 2006). Liu et al. (2007) applied RAPD and other related 
fingerprinting techniques to detect the genotoxin-induced DNA damage and muta-
tions in rice (Oryza sativa) seedlings exposed to varying concentrations (15–60 mg/L) 
of cadmium. The inhibition in root growth and increase of total soluble protein con-
tent in root tips of rice seedlings occurred in a manner similar to those observed for 
barley (Liu et al. 2005). The RAPD profiles of root tips after cadmium treatment 
showed modifications in band intensity and gain or loss of bands when compared with 
control. Thus, DNA polymorphisms detected by RAPD analysis could be used as an 
investigation tool in environmental toxicology and as a useful biomarker assay for the 
detection of genotoxic effects of other metals as well. Similarly, Cenkci et al. (2009) 
used RAPD to detect DNA damage in the roots and leaves of bean (Phaseolus vul-
garis L.) seedlings exposed to heavy metals like Hg (HgCl

2
), B (H

3
BO

3
), Cr (K

2
Cr

2
O

7
), 

and Zn (ZnSO
4
7H

2
O) at concentrations of 150 and 350 ppm for 7 days. With increas-

ing concentrations, there was a substantial decrease in growth of shoot and root 
growth, while the contents of Hg, B, Cr, and Zn increased in the roots and leaves at 
elevated concentration of each heavy metal. During the RAPD analyses, 12 RAPD 
primers of 60–70% GC content were found to produce unique polymorphic band 
profiles and were later used to produce a total of 120 bands of 263–3,125 bp in the 
roots and leaves of untreated and treated seedlings. Polymorphisms became evident as 
disappearance and/or appearance of DNA bands in 150 and 350 ppm treatments com-
pared with untreated control treatments. The DNA changes in RAPD profiles were 
more in the roots than in the leaves (Cenkci et al. 2009).

Micronucleus assay is yet another bioassay that has been used for the detection of 
genotoxic effects of heavy metal ions on plants. Steinkellner et al. (1998) investigated 
the genotoxic effects of heavy metals As3+, Pb2+, Cd2+, and Zn2+ through micronu-
cleus tests with Tradescantia pollen mother cells (Trad MCN), and meristematic 
root tip cells of Allium cepa and Vicia faba (Allium/Vicia MCN). The order of geno-
toxicity of metals for three tests was determined as: As3+ > Pb2+ > Cd2+ > Zn2+ Cu2+.
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In Tradescantia experiment, induction of MCN was observed at concentration ranging 
between 1 and 10 mM, whereas in tests with root tip cells, higher concentrations 
(10–1,000 mM) were required to show significant effects. Further increase in the 
concentration of heavy metals reduced root growth, delayed cell division, and showed 
decreased MCN frequencies. Comparisons by linear regression analyses indicated that 
the sensitivity of the three bioassays for heavy metals decreases in the order: Trad 
MCN > Vicia root MCN > Allium root MCN. Moreover, a soil sample which contained 
high concentrations of the five metals and a control soil were analyzed. Aqueous soil 
extracts induced only weak effects in Trad MCN tests and no effects in the root tip 
assays, whereas cultivation of the plants in the soils resulted in a pronounced induction 
of MCN in the Tradescantia system and moderate effects in Vicia and Allium. Thus, the 
Trad MCN assay detects the genotoxic effects of heavy metals and can be used for 
biomonitoring metal-contaminated soils. Also, Sarkar et al. (2010) determined the 
effect of nickel on shoot regeneration in tissue culture and identified polymorphisms 
induced in leaf explants exposed to nickel through RAPD. In vitro leaf explants of 
Jatropha curcas were grown in nickel amended Murashige and Skoog (MS) medium 
at four different concentrations (0, 0.01, 0.1, 1 mM) for 3 weeks. Percent regeneration, 
number of shoots produced, and genotoxic effects were evaluated by RAPD using leaf 
explants obtained from the first three treatments following 5 weeks of their subsequent 
subculture in metal-free MS medium. Percent regeneration decreased with increase in 
addition of nickel to the medium up to 14 days from 42.31% in control to zero in 
1.0 mM. The number of shoot buds scored after 5 weeks was higher in control as com-
pared to all other treatments except in one of the metal-free subculture medium wherein 
the shoot number was higher in 0.01 mM treatment (mean = 7.80) than control 
(mean = 7.60). RAPD analysis produced only 5 polymorphic bands (3.225%) out of a 
total of 155 bands from 18 selected primers. Only three primers OPK-19, OPP-2, and 
OPN-08 produced polymorphic bands.

14.7  Conclusion

The genotoxicity of contaminated soils originating from industrial sources has been 
widely studied and reported across the globe. Till date, various chemical and 
biomonitoring methods for assessment of soil genotoxicity are available. Amongst 
all, the Salmonella mutation assay has been the most commonly and frequently used 
method. The mutagenicity evaluation of soil helps in identifying the heavily con-
taminated sites with genotoxic chemicals released from various industrial opera-
tions or agricultural practices. These genotoxic substances persist in soils and not 
only adversely affect the quality of soils but also influence the overall performance 
of various crops grown in agricultural soil polluted with mutagenic compounds. It 
is interesting to develop the new bioindicators, biomarkers, and molecular tools for 
sensitive, rapid, and economical analysis of soil genotoxicity for efficient management 
and control of bioremediation of contaminated sites for safer environment and  
increased productivity involving lesser human health hazards.
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Abstract Remediation techniques for soils polluted with toxic metals can be 
divided into two main groups: immobilization and soil washing. Immobilization 
technologies leave metals in soil, but minimize their availability, while soil washing 
with chelating agents removes metals from soil. Metals in soil are not entirely acces-
sible to chelating agents and, hence, not entirely removed. Residual metals left in 
the soil after remediation remain in chemically stable species bound to non-labile 
soil fractions and are considered nonmobile and non-bioavailable and thus non-
toxic. However, with the reintroduction of remediated soil into the environment, the 
soil is exposed to various environmental factors, which could eventually promote or 
initiate the transition of the residual metals back to more labile forms to re-establish 
the disturbed equilibrium. Such a shift is likely to increase the toxicity of the resid-
ual metals and, consequently, decrease the final efficiency of soil remediation. 
Different extraction techniques are used to assess metals bioavailability and the 
efficiency of soil remediation. Reduced bioavailability of contaminants for organ-
isms is most often assessed by established chemical extraction tests. However, do 
the chemical extraction tests really provide (include) reliable information on the 
availability of metals for soil fauna? In the present chapter, the effect of biotic and 
abiotic environmental factors on the mobility and availability of residual metals in 
soil after remediation is discussed. Furthermore, the benefits of in vivo assessment 
of soil remediation efficiency by terrestrial organisms is highlighted.
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15.1  Soil Remediation

The contamination of soil with toxic metals has been an unfortunate by-product of 
industrialization and modern agronomic practices and is ubiquitous. Unlike organic 
compounds, metals are not degradable in the environment. Contamination of soils 
with metals can have long-term environmental and health implications. In fact, such 
soils often present an unacceptable risk to human and ecological health and need to 
be remediated. Various low-cost, efficient, and environmentally friendly soil treat-
ment technologies are now available for remediation of metal-contaminated sites 
(Dermont et al. 2008; Lestan et al. 2008). Polluted soil removal and its safe deposi-
tion are, however, not always an acceptable approach, because of the high costs 
involved, the lack of adequate waste disposal facilities, or other reasons. However, 
appropriate methodologies and technologies have to be carefully selected for each 
polluted site according to the characteristics of the soil and of the contaminants.

Remediation techniques for metal-contaminated soils can be divided into two 
main groups (Fig. 15.1): immobilization techniques change the speciation and the 
fractionation of metals in soil solid phases, thus considerably lowering their mobil-
ity and biological availability, without removing them (Guo et al. 2006; Udovic and 
Lestan 2008); removal technologies, on the other hand, remove metals from the soil 
and are therefore preferred (Dermont et al.2008). One of the permanent solutions is 
soil washing/leaching, which involves the separation of metals from soil solid 
phases by solubilizing them in a washing/leaching solution. The effectiveness of 
washing/leaching can be increased by adding acids, surfactants, or chelating agents 
(chelants) to the solution (Griffiths 1995; Peters 1999). Acids dissolve carbonates 
and other metal-bearing soil fractions and exchange metals from soil colloids. 
Chelants form a coordinate chemical bond with metals and facilitate their solubili-
zation from the soil solid phases, where the majority of soil metals reside, into the 
washing/leaching solution. Since acidic solutions could cause deterioration of soil 
physicochemical properties, use of chelants is considered to be environmentally less 
disturbing (Neale et al. 1997; Xu and Zhao 2005). Of the various chelants, ethylene-
diaminetetraacetic acid (EDTA) has been recognized as the most effective synthetic 
chelating agent in removing metals especially Pb, Cd, Cu, and Zn, from polluted 
soil (Finzgar and Lestan 2007; Dermont et al. 2008). EDTA has received greater 
attention in soil remediation because of its relatively low cost compared to other 
chelants (Chaney et al. 2000; Udovic and Lestan 2007a). However, metals in soil are 
usually not entirely accessible to chelants (Fig. 15.2), especially in soils rich in organic 
matter or clay. Therefore, such soils can only be partially removed (Levy et al. 1992). 
Metals occur in various soil ‘pools’ of different solubilities with varied chemical 
characteristics and consequently variable functions (Mulligan et al. 2001; Sabienë 
and Brazauskienë 2004).

Different approaches are used to describe metal chemical forms in soil. Sequential 
extraction schemes used to determine metal fractions in soil (Sun et al. 2001) are based 
on reacting the soil with a series of extracting solutions of increasing strength, causing 
the release of metals from sorption sites with decreasing availability (Abollino et al. 
2006). A six-step sequential extraction, for example, described by Tessier et al. (1979) 
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later modified by Lestan et al. (2003), divides metal forms in soil into six fractions. The 
fraction soluble in soil solution is obtained by extraction of air-dried soil with deionized 
water. The fraction exchangeable from soil colloids to the soil solution is extracted with 
1 M MgNO

3
, which displaces ions electrostatically bound in the soil matrix. The frac-

tion bound to carbonates is extracted with 1 M ammonoacetate (NH
4
OAc) at pH 5, 

where carbonates (calcite, dolomite) are solubilized and entrapped metals are released. 
The fraction bound to Fe and Mn oxides is extracted with 0.1 M NH

2
OH × HCl at pH 

2, where Fe and Mn oxides are reduced to soluble forms. The fraction bound to organic 
matter is obtained after oxidizing the organic matter and the soluble sulfides by heating 
the soil suspension in 0.02 M HNO

3
 and 30% H

2
O

2
 at 85°C, followed by extraction 

with 1 M NH
4
OAc. The last fraction for completion of the mass balance is obtained 

after the digestion of the remaining soil sample with aqua regia. The water soluble, 
exchangeable, and carbonate bound fractions represent the most available form of 
metals to organisms (Wen et al. 2004). In general, Pb and Zn form strong bonds with 
soil solid components. They are retained in the topsoil when the contamination origi-
nates from air-borne emissions. Copper is one of the less bioavailable metals in soil 
(Kabata-Pendias and Pendias 1992) and forms more stable complexes with organic 
components than other metals (Kizilkaya 2004). Lead is found mostly associated 
with organic matter and carbonate soil fractions (Li and Thornton 2001). Zinc tends 

Fig. 15.1 Remedial options for soil contaminated with toxic metals

Fig. 15.2 Toxic metals  
(bio)availability stripping 
concept. Chelating agents 
cannot extract all toxic metals 
from soil (lower curve), but 
can remove entirely their 
(bio)available and mobile 
pool (upper curve)
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to concentrate in the soil fraction residual after sequential extractions (Rivero et al. 
2000; Kabala and Singh 2001). Cadmium, on the other hand, is generally concentrated 
in exchangeable and carbonate soil fractions or forms weak complexes with soil organic 
matter. Cadmium is, however, more easily accessible and extractable from the soil than 
are Pb and Zn (Ramos et al. 1994).

15.2  Efficiency of Soil Washing with Chelating Agents

Fractionation of metals in soil, their availability, mobility, and consequently, the 
prospect of their removal with soil washing methods and the afterward fate of residual 
metals are determined by soil properties like texture, content of organic matter, 
content and type of clay minerals and Al, Fe, and Mn oxides, prevailing physico-
chemical conditions in the soil (saturation, aeration, pH, redox potential), and 
mineralogy of metal contaminants (Levy et al. 1992).

EDTA, the most widely studied chelating agent used in soil remediation is capable 
of extracting metals from all non-silicate-bound phases in the soil (Ure 1996; Tandy 
et al. 2004). In a study, Peters and Shem (1992), for example, reported that a maxi-
mum of 64 and 19% Pb (compared with initial Pb concentration) was removed with 
EDTA and nitrilotriacetic acid (NTA) as chelants, respectively, from contaminated 
soil containing high clay and silt contents. In a similar investigation, Pichtel et al. 
(2001) reported that various concentrations of EDTA and pyridine-2,6-dicarboxylic 
acid (PDA) removed up to 58 and 56% of Pb, respectively, from soil material col-
lected from a battery recycling/smelting site. In a follow-up study, Finzgar et al. 
(2005) reported that using 40 mmol kg−1 of [S,S]-ethylenediamine disuccinate 
(EDDS), 31.1% of total Pb was extracted from vegetable garden soil, rich in organic 
matter. Borona and Romero (1996) in yet another study extracted Pb-contaminated 
soil with EDTA and observed that the amount of Pb removed was correlated with the 
amount of Pb associated with the Fe and Mn oxide and organic matter soil fractions. 
The decrease of Cu concentration in different fractions in a soil leached with 0.01 M 
EDTA was in the order of Cu bound to Fe and Mn oxides > Cu bound to organic 
matter > Cu bound to carbonates > residual Cu (Sun et al. 2001). In a recent study, 
we also observed differences in the removal efficiency of EDTA when subjected to 
different soil fractions, as presented in Fig. 15.3  (Udovic  and Lestan 2010a, b). 
Metals were mostly removed from the most labile fractions, as the percentage of the 
residual metals increased along the fractions. The relatively high percentage of 
residual metals in the first fraction (data not presented) is caused by the very low 
metal concentrations, which could probably be due to analytical measurement 
errors. The residual metals left in soil after remediation remains in chemically stable, 
nonavailable forms, which are bound to non-labile soil fractions (Nowack et al. 
2006; Finzgar and Lestan 2007; Lestan et al. 2008). The final outcome of soil reme-
diation with soil washing/leaching with chelants result in reduced availability of 
metals for uptake by organisms (metal bioavailability stripping concept) as reported 
by many workers (Lestan et al. 2008; Pociecha and Lestan 2009).
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15.3  Metal Availability and Mobility Before  
and After Remediation

Since metals are present in soil in various chemical forms (bound to different soil 
fractions) of different solubilities (Gupta et al. 1996), they are rarely entirely 
available to organisms (bioavailable) (Arnold et al. 2003). The importance of 
(bio)availability and mobility of metals beside their total concentration in soil is 
now largely accepted (Kamnev and van der Lelie 2000; Mulligan et al. 2001). 
Instead of relying only on the total metal content, assessment of metal bioavail-
ability and mobility are also often used in choosing the appropriate remediation 
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Fig. 15.3 Fractionation of residual (black) and removed (gray) metals: Pb, Zn, and Cd, in polluted 
soil after remediation with EDTA leaching. The sum of the residual and the removed respective 
metal in each fraction is 100%. Only fractions containing >5% of the total metals are represented. 
I water extractable fraction; II exchangeable fraction; III fraction bound to carbonates; IV fraction 
bound to Fe and Mn oxides; V organic fraction; and VI residual fraction (Adapted from Udovic 
and Lestan 2010a)
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technology as well as to evaluate the final success of soil remediation (Loureiro 
et al. 2005; Kumpiene et al. 2007).

15.3.1  Chemical Extraction Tests

One-step extraction is used to determine specific chemical forms of metals. The 
mobility and potential leaching of metals into the groundwater system are frequently 
assessed using one-step extraction procedure schemes, such as the standardized 
Toxicity Characteristic Leaching Procedure (TCLP) (US EPA 1995) and soil extrac-
tion with 0.05 M EDTA at pH 7.5 (Kosson et al. 2002). Both methods have been 
developed to simulate the potential leachability of pollutants from soil into the sur-
rounding. The phytoavailability of metals in soil is assayed with different selective 
extraction methods. The extraction procedure with diethylenetriaminepentaacetic 
acid (DTPA) was designed by Lindsay and Norvell (1978) to identify the availability 
of micronutrients for crops growing on near-neutral and calcareous soils (Baker and 
Senft 1997; Brun et al. 2001). Extracting soil with 0.01 M CaCl

2
 allows us to deter-

mine the phytoavailable share of metals (and nutrients) in soil without disrupting 
the ionic balance (Novozamsky et al. 1993). More methods are available and choos-
ing the most appropriate one is seldom possible without firstly considering the char-
acteristics of the studied soil.

An important form of exposure to environmental pollutants is the accidental 
ingestion of soil and inhalation of dust particles by living organisms. It is assumed 
that children ingest more soil and dust particles than adults due to their mouthing 
behavior (Davis and Mirick 2006). Several in vitro digestion models based on 
selected physiological parameters in humans have been developed and used to esti-
mate the oral bioavailability of soil contaminants to humans (Ruby et al.1996; Oomen 
et al. 2002, 2003). A short overview of the most important aspects to be considered 
when selecting a suitable test for the assessment of human exposure from ingestion 
of soil and soil material can be found in the Technical Specification ISO/TS 17924 
(2007). The two-step Physiologically Based Extraction Test (PBET) was designed to 
analyze the oral bioaccessibility of metals in the human stomach, where the pH is 
low (2.5), and in the small intestine, where the pH is neutral (pH 7). It enables us to 
detect the amount of metals ready to be absorbed from the intestine into the blood 
(Wragg and Cave 2002; Dean 2007; Turner and Ip 2007). Therefore, it is preferred to 
the simplified one-step extraction schemes, where only the stomach phase is consid-
ered (ISO/TS 17924, 2007). However, such an analytical approach allows us only to 
estimate the potential bioavailability of metals in soil, since it does not fully consider 
the combined effects of different metals and the complex characteristics of the inter-
actions between organisms, soil, and metals (Alvarenga et al. 2008; Sousa et al. 
2008). For this reason, a variety of biotests are applied to evaluate the potential risk 
posed by metals in soil to organisms; when combined with analytical environmental 
chemistry, they provide more complete and relevant information on the bioavailabil-
ity of metals in contaminated and remediated soil (Udovic et al. 2009).
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15.3.2  In Vivo Tests with Bioindicators

When the bioavailability of chemicals and their potential trophic transfer are of 
interest, the bioassays involving bioindicators must be employed to determine the 
accumulated contaminants. In this context, some plants and animals, especially 
invertebrates have already been used for assessing the metal availability in soils 
(Meier et al.1997). These organisms accumulate metals in proportion to the envi-
ronmental concentrations and are therefore, used as bioindicators/biomonitors of 
environmental metal pollution (Heikens et al. 2001; Kennette et al. 2002; Gál et al. 
2008; Suthar et al. 2008; Udovic and Lestan 2010c). Among invertebrates, the most 
popular organisms for metals accumulation research are mollusks, earthworms, 
crustaceans, insects, myriapods, and arachnids (Hopkin 1989).

Earthworms are often used in soil ecotoxicological tests. While acute tests do not 
provide an insight into the effects of metals on population dynamics and chronic 
tests are often time consuming and labor intensive (Loureiro et al. 2005), the avoid-
ance behavior of earthworms is a simple and ecologically relevant measurable end-
point for assessing the effect of metals in soil on earthworm movement (Amorim 
et al. 2008) as an indicator of soil pollution, also at ecosystem level (Aldaya et al. 
2006; Sousa et al. 2008). The presence of chemoreceptors on the prostomium and 
on the anterior segments and the distribution of tubercles along the body make 
earthworms highly sensitive to chemicals in their environment, allowing them to 
avoid unfavorable environments, thanks to their locomotory abilities (Lukkari et al. 
2005; Curry and Schmidt 2007). So far, the majority of studies have employed such 
assays to artificial or natural soils freshly spiked with metals (Hund-Rinke et al. 
2005; Langdon et al. 2005; Loureiro et al. 2005; Lukkari and Haimi 2005). It is, 
however, difficult to extrapolate such results to field situations, where natural soils 
differ in terms of physical, chemical, and structural properties (Sousa et al.2008). It 
is therefore, preferable to use natural soils directly, whereby a soil with the same 
properties as the test soil, but with no contamination, should be chosen as control 
soil (Aldaya et al. 2006; Amorim et al. 2008; Sousa et al. 2008). In a study, where 
the feasibility of the standardized two-section vessels earthworm avoidance test 
(ISO 17512-1, 2008) was tested for assessing the efficiency of soil remediation of 
Pb-, Zn-, and Cd-polluted soil, groups of 10 E. fetida individuals were presented 
with a choice between the most extensively remediated soil (control soil – leached 
with four consecutive applications of 40 mmol kg−1 EDTA) and test soils (i.e., non-
remediated soil and soils remediated using lower EDTA concentrations), avoiding 
thus differences in soil characteristics, which could result in biased earthworm 
behavior. However, the earthworms generally did not avoid the tests soils in favor of 
the control soil (Fig. 15.4).

According to the criteria suggested by Hund-Rinke and Wiechering (2001), no 
test soil could be classified as toxic with its reduced habitat function, since more 
than 20% of earthworms were found in these soils. The avoidance test was not sen-
sitive enough to discriminate soil leaching with different EDTA. Some soil proper-
ties were taken into consideration for a plausible explanation of the non-avoidance 
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behavior, which were pointed out by other authors as important factors affecting 
earthworms in soil, such as soil pH (Edwards and Bohlen 1996; Edwards 2004) 
and the presence of sodium due to the usage of disodium-EDTA salt for remedia-
tion purposes (Owojori and Reinecke 2009). However, the most probable explana-
tion was found in the metal fractionation pattern in the remediated soil. Most of the 
Pb, the major metal pollutant, was found bound to organic matter, in which metals 
are  considered  to  be  inaccessible  for  EDTA  (Ure  1996; Tandy et al. 2004). 
Consequently,  while  the  total  Pb  concentration  decreased  after  leaching  with 
EDTA, as it was removed from the water soluble, the exchangeable and the carbon-
ate fraction, the share of organically bound Pb was preserved. The same applies for 
Zn and Cd. Earthworms, however, due to specific routes of exposure, are perhaps 
susceptible to metals bound to organic matter (Sousa et al. 2008), while having no 
need to avoid the moderate concentrations of metals in other soil fractions.

Earthworms live in direct contact with the solid and pore-water soil phase and 
are thus exposed in a manner representative of other soil species (e.g., bacteria, 
plants, soft-bodied invertebrates) (Spurgeon et al. 2006). However, isopods appear 
to be the most efficient of them as assimilators of metals. Isopods are omnivorous 
animals, but they have clear feeding preferences. Many species prefer feeding on 
decaying leaf litter rather than fresh with high microbial density (Zimmer 2002). 
Some other species are soil dwelling with differing food preferences. Terrestrial 
isopod Porcellio scaber inhabits a wide range of habitats. They chew dead plants 
or plant material mixed with soil into small fragments. Terrestrial isopods must 
have evolved efficient ways of assimilating essential elements from the food, 
because unlike their marine ancestors, they could no longer obtain them directly 

Fig. 15.4 Earthworm 
(Eisenia fetida) avoidance 
behavior of soils with 
increasing percentages of 
removed Pb, Zn, and Cd 
(remediated with leaching 
with increasing EDTA 
concentrations). Asterisk (*) 
denotes significant non-
avoidance behavior of test 
soil (c2-test, p < 0.05) 
(Adapted from Udovic et al. 
2009)
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from the external medium across the respiratory surfaces (Warburg 1993). They 
accumulate the highest concentrations of metals such as Zn, Cd, Pb, and Cu so far 
recorded in any soft tissue of terrestrial animals (Hopkin et al. 1993; Witzel 1998; 
Vijver et al. 2006). The main metal storage organ in isopods is the hepatopan-
creas. Metals are bound here to specific low-molecular-weight peptides, or stored 
in insoluble granules (Hopkin 1989). The metal uptake from food depends on 
many factors, of which the most important are the bioavailability of metals in the 
ingested material, gut microflora, the rate of food consumption and pH inside the 
gut, metal concentration, the duration of exposure, and the combination of factors 
to which the metals are exposed (Odendaal and Reinecke 2004). Earlier data sug-
gested that isopods accumulate metals for a lifetime, but recent researches pro-
vide evidence of metals loss also, once transferred to uncontaminated food sources 
(Witzel 1998). Nevertheless, a correlation between metal body burden and metal 
concentrations in food/substratum can be demonstrated (Hopkin 1989). Efficient 
metal assimilation, the wealth of knowledge on their metal physiology, and ease 
of handling in the laboratory are the main reasons for choosing terrestrial isopods 
as experimental animals in studies on soil metal pollution. Because terrestrial 
isopods accumulate metals from their environment in proportion to their concen-
tration in the soil (Heikens et al. 2001), they appear very suitable as indicators of 
the metal bioavailable fraction in polluted soil and leaf litter (Paoletti and Hassall 
1999; Gál et al. 2008).

So far, the suitability of metal accumulation in earthworms and isopods as a 
measure of the EDTA remediation efficiency of metal-polluted soil was tested in 
two studies (Udovic et al. 2009; Udovic and Lestan 2010c). Animals were exposed 
to non-remediated soil and to soils remediated with increasing EDTA concentra-
tions, keeping thus the soil properties unaltered. In both cases, the gradient of metal 
removal by increasingly higher EDTA concentration in the leaching solution was 
generally reflected in the amounts of metal accumulated in the whole animal bodies. 
However, when the authors used bioaccumulation factors (BAFs) to express the 
metal accumulation in animals in relation to the total metal concentration in soil as 
a measure of their bioavailable share, they found the ratio between the non-bioavail-
able and bioavailable metal share to be constant, even in the most extensively EDTA 
processed soil (Fig. 15.5). The gradient of metal removal by increasingly higher 
EDTA concentration of the leaching solution is reflected in decreasing trend of the 
amounts of metal accumulated by the animals after 14 days of exposure (Fig. 15.5a). 
However, no such trend was seen when BAFs were calculated (Fig. 15.5b); they 
indicate a constant ratio between available and nonavailable concentrations of Pb, 
and even an increasing ratio between available and nonavailable concentrations of 
Cd. In contrast to the indications given by the chemical extraction tests (sequential 
extraction, DTPA extraction, TCLP extraction, PBET),  leaching with EDTA was 
unable  to  reduce  the  share  of  Pb,  Zn,  and Cd  in  the  soil  that  is  bioavailable  to  
E. fetida or P. scaber. The results substantiate general concern about using chemical 
extraction methods solely for the assessment of metal availability in non-remediated 
and remediated soils, since metals that were otherwise unavailable for chemical 
extractions were available and accumulated by E. fetida and P. scaber.
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15.4  Aging of Remediated Soil and Toxic Metals  
Availability and Mobility

With the reintroduction of remediated soil into the environment, we expose the 
soil to various abiotic and biotic environmental factors (soil ageing factors). Is 
therefore the reduced mobility and bioavailability of soil residual metals a per-
manent or only temporal achievement of soil remediation (Fig. 15.6)? Soil is a 
dynamic natural body and, after remediation, various abiotic (i.e., climatic, 
hydrological) and biotic soil (microorganisms and fauna) factors could presum-
ably initiate the transition of residual metals from less to more mobile/accessible 
forms to re-establish the disturbed equilibrium, although the availability of met-
als in non-remediated contaminated soil is considered to decrease with time 
(Han et al. 2003). Such a shift would increase the toxicity of the residual metals 
and consequently decrease and hamper the final efficiency of soil remediation 
(Fig. 15.7).

Fig. 15.5 Lead and cadmium concentrations in Porcellio scaber (a) and respective bioaccumula-
tion factors, BAFs (ratio of metal concentration in the animals to the total soil metal concentration) 
(b) (Adapted from Udovic et al. 2009)
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15.4.1  Soil Biotic Factors

Earthworms can be considered the most important soil macroorganisms in terms of 
their impact on soil (Boyle et al. 1997). Already, Aristotle called them the “intes-
tines of the earth.” They can affect the environment by stimulating and/or altering 
the microbial, fungal, and enzymatic activities in soil, by increasing mineral avail-
ability and organic matter decomposition and through soil aggregation and cast pro-
duction along the soil horizons (Tiunov and Scheu 2000; Wen and Wong 2004; Zorn 
et al. 2005). They play an important role in the transformation of nutrient (C, N, and 
P) and metal chemical forms, increasing their bioavailability (El Gharmali et al. 
2002; Ma et al. 2002; Wen et al. 2004). The scientific literature on the effect of 
different earthworm species on metal fractionation and availability in contaminated 
(but not remediated) soil is abundant (Kizilkaya 2004; Udovic and Lestan 2007b), 
owing to their well-known prevalent importance in the soil processes. For example, 
Wen et al. (2004) reported an increase of metal concentration (Cr, Co, Ni, Zn, Cu, 

Fig. 15.6 Soil is a dynamic 
natural body – various 
environmental factors could 
initiate the transition of 
metals residual after 
remediation back to more 
available and mobile and 
therefore more toxic forms

Fig. 15.7 After soil washing, a significant amount of metals remain in the soil. Taking the labile 
(bio-available, mobile) metal species from the soil could disturb the chemical equilibrium among 
different species of metals present in soil
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Cd,  and Pb)  in  the water  soluble,  exchangeable,  and  carbonate  soil  fraction  (the 
most available form of metals to organisms) due to the presence of earthworms 
(Eisenia fetida). On the other hand, Cheng and Wong (2002) reported that the addi-
tion of earthworms, for example, Pheretima sp. in soil decreased the concentration 
of exchangeable Zn and of Zn bound to carbonates, although the significance of the 
results varied according to the soil type used in the experiment. The variation in 
results could be explained by differences in soil characteristics and variable physi-
ological and ecological traits of different earthworm species, which, however, are 
known to be selective consumers (Edwards and Bohlen 1996; Morgan and Morgan 
1999). Nevertheless, it has often been reported that the effects of earthworms on soil 
and on the behavior of different metals in soil varies among ecological categories 
(determined on similar morpho-ecological characteristics, Bouché 1977) and spe-
cies (Morgan and Morgan 1988; Udovic et al. 2007). To achieve optimum results 
that would reflect the conditions in the environment to which metals in soil are 
exposed is therefore important to use earthworm species actually present in the 
studied soil. The same concern should also be kept in mind while studying the effect 
of earthworms on remediated soil. It has been reported that earthworms can rapidly 
invade remediated soil (Spurgeon and Hopkin 1999; Langdon et al. 2001). The pos-
sibility that earthworm activity may raise metal bioavailability is of considerable 
relevance for the success of soil remediation, especially when the methods that are 
used (i.e., soil washing, phytoextraction) to remove only part of the metals (presum-
ably labile and bioavailable), or metals even remain in the soil immobilized by the 
addition  of  various  chemicals  (solidification/stabilization).  Considering  that  the 
estimated annual earthworm cast production ranges between 5 and more than 250 
tons ha−1 (Bohlen 2002), it is likely that earthworms may considerably affect the 
residual metals left in soil after remediation.

Studies on the effect of earthworms as key soil biotic environmental factors on 
other metals like Pb, Zn, and Cd left in soil after remediation with leaching with 
EDTA indicate that earthworm activity can lead to significant changes in the frac-
tionation, the mobility, and of the bioavailability of residual metals (Udovic and 
Lestan 2007b, 2010a, b) (Table 15.1). After soil leaching with 20-step leaching, 
with 2.5 mmol kg−1 EDTA used in each step, the pH in the casts of E. fetida pro-
duced in remediated soil increased compared to the soil itself. Soil pH is a key 
chemical factor regulating the availability of metals in soil and earthworms are 
known to actively affect it (Edwards and Bohlen 1996). This increase would 
enhance the affinity of soil for metals due to the pH-dependent surface-charge 
density on colloids, thus leading to lower concentrations of metals in the soil solu-
tion (Cao al. et 2001; Shan et al. 2002). This, however, was not observed by Udovic 
and Lestan (2007b) and Udovic et al. (2007), where they reported that the concen-
trations of Pb, Zn, and Cd in labile (soil solution and exchangeable) fractions in  
E. fetida casts and in the soil itself were not significantly different. The phenom-
enon suggests the involvement of some metal-chelating metallophores produced 
by earthworms, or by microorganisms inhabiting their digestive tract, or by other 
microorganisms present in soil, which otherwise are affected by earthworm activity 
(Wen et al. 2006).
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Earthworms seem to also have a pleasing impact on the mobility of metals in 
remediated soil, as assessed by Toxicity Characteristic Leaching Procedure (TCLP) 
(US EPA 1995). While the Pb concentration in the bulk soil leachate decreased due 
to the leaching process, E. fetida annulated the effect of soil remediation (Table 15.1). 
Again, two earthworm species, the endogeic species Octolasium tyrtaeum and the 
epigeic species E. fetida used in that study had variable influence on metal mobility 
in soil, highlighting the importance of using different test animal species in similar 
studies (Udovic et al. 2007). From the physiologically based extraction test (PBET) 
used to assess the biologically accessible metal fraction in soil, it is also evident that 
the effect of earthworm activity on the bioaccessibility of metals in soil is species 
specific. While E. fetida profoundly increased Pb bioaccessibility up to 5.1 times in 
remediated soil (Table 15.1), the effect of Lumbricus rubellus was not observed 
(Udovic and Lestan 2007b).

Reports on the effect of earthworm activity on the availability of metals and 
nutrients for plants (phytoavailability) are, however, conflicting. Several authors 
reported increased metal uptake in plants due to the presence of earthworms in soil. 
Ma et al. (2002), for example, reported that soil inoculation with earthworms 
(Pheretima guillelmi) substantially increased Zn and Pb uptake in Leucaena leuco-
cephala. Similarly, in a study conducted by Wen et al. (2004), the presence of 
earthworms (E. fetida) in soil increased metals like Cr, Co, Ni, Zn, Cu, Cd, and Pb 
uptake in wheat (Triticum aestivum), but to a variable extent for different soil types. 
In a similar study, Devilegher and Verstraete (1996) attributed the increased accu-
mulation of Cu and Zn in maize (Zea mays) grown in pots containing L. terrestris 
to the incorporation of surface organic matter and the subsequent nutrient (metal) 
enrichment of casts and soil (nutrient enrichment process) and to the effects of 
enzyme production and gut-associated microbial activity in the earthworms’ gut 
(gut-associated processes). The potential role of interactions between earthworms 
and their associated microbes on metal availability in soil is also stressed by Cheng 
and Wong (2002). Earthworms can affect the soil by excreting organic materials 
(e.g., amino acids, proteins, and soil-available C), which may form chelates with 
metals, thus enhancing their availability (Ruiz et al. 2009). Another possible expla-
nation for the increased metal phytoavailability in soil with earthworms present is 
the release of metals into the soil solution due to the decomposition of soil organic 
matter subsequent to the feeding behavior of earthworms (El Gharmali et al. 2002; 
Wen et al. 2004). On the other hand, Liu et al. (2005) concluded that inoculation of 
sewage sludge with E. fetida reduced the uptake of Cu and Cd in Chinese cabbage. 
Contrarily, Lumbricus terrestris promoted a 2.7-fold increase of Cu phytoavailability 
in polluted soil from a 50-year-old vineyard, regularly treated in the past with copper 
sulfate  (CuSO

4
, Bordeaux mixture)  as  fungicide  (Udovic  and Lestan 2010b). But 

still, their effect in this study on soil remediation efficiency (soil leaching with 
15 mmol kg−1 EDTA) was limited and therefore did not hamper its activity. It would, 
however, be improper to generalize the influence of earthworms, as model soil biotic 
ageing factors, on metal fractionation, mobility, and phytoavailability in soil, since 
they are affected by several factors, the most important of which are the soil proper-
ties and the earthworm species used (Udovic and Lestan 2007b; Udovic et al. 2007). 
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The increase/decrease in metal availability in soil depends therefore on the condi-
tions of the bulk soil relative to the conditions of gut of earthworm (Sizmur and 
Hodson 2009).

15.4.2  Abiotic Factors

Literature on the effect of abiotic soil ageing factors on remediated soil is scarcely 
available. In a study on remediated soil ageing, while investigating the impact of 
high temperatures on remediated soil, Lacal et al. (2003) observed that simulations 
can help to a certain extent in predicting the long- or medium-term toxicity of met-
als in pyritic sludge. While Lock and Janssen (2002) in other experiment exposed 
artificial soil (OECD) spiked with Zn to four ageing treatments: (1) storage at 20°C, 
(2) percolation followed by storing at 20°C, (3) alternately heating at 60°C and stor-
ing at 20°C, and (4) alternately freezing at −20°C and storing at 20°C. No effect of 
ageing on Zn speciation and ecotoxicity for enchytraeid worm Enchytraeus albidus 
was detected in this study. However, a simple laboratory scale simulation of a 
selected abiotic environmental ageing factor, that is, repetitive temperature changes 
at constant soil moisture regime, has been found as a valuable tool to study, to a 
certain extent, the fate of residual metals in remediated soil after its reintroduction 
into  the  environment  (Udovic  and Lestan 2009). Repetitive temperature changes 
lead to a decrease in soil pH, which increased Pb, Zn, and Cd fractionation, affect-
ing thus their availability and mobility, as expected due to the influenced of soil pH 
on the adsorption–desorption behavior of metals in soil (Basta and Tabatabai 1992; 
Rieuwerts et al. 1998; Adriano 2001; Cao et al. 2001). Temperature changes are also 
reported to affect the rates of metal desorption from Fe and Mn oxides and the 
behavior of the soil organic matter constituents (e.g., humic acids), enhancing metal 
mobility and solubility by complex formation (Weng et al. 2002). The apparently 
contradictory results indicate the importance of considering the characteristics of 
the extraction solutions used to determine metal mobility and availability, as well as 
the characteristics of each observed element when interpreting the results. In the 
ageing regime applied to the polluted and remediated soil in a study conducted by 
Udovic and Lestan (2009) the repetitive cycles of high and low temperatures (105 
and −20°C, respectively) had variable effect on mobility of Pb, Zn, and Cd. The 
mobility of Cd was decreased while the mobility of Pb increased (Table 15.2) and 
the mobility of Zn remained unaltered. Moreover, the effect of the simulated soil 
ageing on Pb, Zn, and Cd phytoavailability was contradictory to the results of Pb, 
Zn, and Cd sequential extraction (fractionation), which showed a significant increase 
in metal mobility and availability (Udovic and Lestan 2009). The apparent discrep-
ancies and contradictions in the results could possibly be due to (1) variation in the 
characteristics of the extracting solutions used for analysis, (2) changes in the soil 
characteristics, and (3) differences in the metal chemical characteristics. A holistic 
approach, therefore, should be considered while interpreting the results concerning 
a complex system such as the soil.
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15.5  Conclusion

Soil washing remediation techniques usually remove only the labile metal species 
from the soil, leaving the residual ones in less available/mobile forms. Thus, wash-
ing of soils contaminated with toxic metals is effective but rarely removes metals 
completely from soil. More labile and thus bioavailable forms of metals are expected 
to be removed first (selectively), while metals strongly bound to solid soil fractions 
and chemically less available to chelants remain in soil even after remediation 
(metal bioavailability stripping concept). Considering that different chemical forms 
of metals are present in soil, also metal (bio)availability, mobility, and fractionation, 
beside the total metal concentration, should therefore be considered when assessing 
soil pollution, when choosing the most suitable remediation technique and when 
assessing the effect of remediation. Studies have shown that the effect of remediation 

Table 15.2  Lead oral bioavailability (PBET), mobility (TCLP), and phytoavailability (DTPA) in 
aged and non-aged soil, before and after leaching with different EDTA concentrations

PBET

DTPA
Pb (mg kg−1)

TCLP
Pb (mg L−1)

Pb (mg kg−1)

Before leaching
Stomach  
phase

Small  
intestine phase

Soil a761 ± 48 ab328 ± 64 a952 ± 3 a1.1 ± 0.0
Aged soil (10% WHC) b550 ± 91 a368 ± 27 b551 ± 62 b1.7 ± 0.1

After leaching
2.5 mmol kg−1 EDTA:
Soil a914 ± 351 a170 ± 78 a987 ± 5 a1.0 ± 0.0
Aged soil (10% WHC) b459 ± 71 a232 ± 24 b546 ± 102 b1.4 ± 0.1

5.0 mmol kg−1 EDTA:
Soil a306 ± 36 a215 ± 98 a901 ± 19 a0.8 ± 0.1
Aged soil (10% WHC) a385 ± 14 b241 ± 27 b483 ± 55 b1.3 ± 0.1

10.0 mmol kg−1 EDTA:
Soil a276 ± 28 a127 ± 60 a646 ± 46 a0.7 ± 0.0
Aged soil (10% WHC) ab378 ± 17 a163 ± 43 b428 ± 17 b1.1 ± 0.1

20.0 mmol kg−1 EDTA:
Soil a292 ± 77 a133 ± 63 ab277 ± 13 a0.4 ± 0.0
Aged soil (10% WHC) a214 ± 19 a116 ± 34 a322 ± 75 b0.6 ± 0.0

40.0 mmol kg−1 EDTA:
Soil a238 ± 90 a40 ± 24 a212 ± 1 a0.4 ± 0.0
Aged soil (10% WHC) a192 ± 16 b93 ± 4 a239 ± 8 a0.4 ± 0.0

4 × 40.0 mmol kg−1 EDTA:
Soil a95 ± 4 a54 ± 27 a78 ± 5 LOQ
Aged soil (10% WHC) a108 ± 13 a50 ± 13 b158 ± 22 LOQ

Adapted from Udovic and Lestan (2009)
Values indicate mean of three replicates. Mean values ± S.D. followed by different letters in super-
script are significantly different within a column or row at p £ 0.05 according to Duncan test. LOQ 
indicates below limit of quantification
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and the bioavailability of metals could be misjudged using chemical extraction tests 
solely. Combined results of in vitro chemical extraction tests and in vivo accumula-
tion and/or avoidance tests with representative indicator animal species should be 
considered for a more holistic and relevant picture of the soil pollution and the avail-
ability stripping of metals after soil remediation. For this purpose, bioaccumulation 
tests with P. scaber and E. fetida could be used as a sensitive supplement to chemi-
cal extractions in assessing the efficiency of remediation and the metal fraction 
bioavailable to soil fauna.

The purpose of soil remediation actions is to reintroduce less-polluted soil with 
improved characteristics into the environment. Studies have shown that the soil 
remediation achievement seems not to be permanent, but it changes in time due to the 
effect of abiotic and biotic environmental soil ageing factors, diminishing the effec-
tivity of the remediation. Post-remediation fate of the residual metals left in soil 
should be therefore monitored to properly assess the effect of remediation in time.
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Abstract Heavy metal contamination of aquatic ecosystems has been increasing in 
recent times, owing to disposal of such pollutants in effluents. Their presence to 
excessive levels leads to serious health problems in living organisms, since they 
cannot be mineralized to completely innocuous forms. The physicochemical methods, 
such as chemical precipitation, chemical oxidation/reduction, or ion exchange, 
employed to recover such pollutants are either expensive or not efficient, especially 
when heavy metals are present at very low concentrations. Microorganisms in 
 general, and microalgae in particular, have been recognized as suitable vectors 
for detoxification and have emerged as a potential low-cost alternative to physico-
chemical treatments. Uptake of metals by living microalgae occurs in two steps: one 
takes place rapidly and is essentially independent of cell metabolism – “adsorption” 
onto the cell surface. The other one is lengthy and relies on cell metabolism – 
“absorption” or “intracellular uptake.” Nonviable cells have also been successfully 
used in metal removal from contaminated sites. Removal of heavy metals by 
microalgal biomass is affected by a number of environmental factors. The intrinsic 
and extrinsic factors affecting uptake of metals by microalgae and how these micro-
organisms can be helpful in removing metals from polluted environments are hereby 
reviewed and highlighted.
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16.1  Heavy Metals in the Environment

The term “heavy metal” is collectively applied to a group of metals (and metal-like 
elements) with density greater than 5 g/cm3 and atomic number above 20. Such 
metals are associated with environmental pollution and biological toxicity issues 
(Jjemba 2004). Due to their persistence in the environment and toxicity to living 
organisms, heavy metals are among the most dangerous and widely studied conta-
minants (Harte et al. 1991). Heavy metals are natural constituents of the Earth 
lithosphere and hydrosphere, so nonnegligible background concentrations thereof 
are expected in soils, sediments and waters, and even in living organisms. However, 
the wide range and intensive applications of heavy metals in industrial processes 
(Table 16.1) have caused a dramatic increase in their concentration in the environ-
ment relative to their normal background counterpart. They affect negatively both 
terrestrial and aquatic ecosystems after they are disposed off as untreated effluents 
and as solid residues, and before they can be eliminated (Alloway and Ayres 1997).

From a biological point of view, heavy metals can be sorted out according to 
their environmental impact and toxicity. Some of those elements, viz. Fe, Cu, Ni, 
Co, and Zn, are labeled as essential, because they are required by most living 
organisms, at minute concentrations, for regular growth and maintenance. They 
are indeed part of biological structures such as cell membranes and enzyme  
prosthetic groups, which play crucial roles in key metabolic processes. However, 
excessive levels of those metals are toxic to most prokaryotic and eukaryotic 
organisms. On  the other hand, metals  like As, Cd, Pb, and Hg do not play any 
known biochemical role, so they are nonessential. These metals are, however, 
known to cause severe biological damages even at very low concentrations 
(Kaplan 2004).

Table 16.1 Major industrial uses of the most common heavy metals

Metal Industrial use

As Medical uses, insecticides, pigments, paints, electronic devices
Cd Galvanization, pigments, batteries, metal plating, smelting, paints, pesticides, 

polymer and plastic stabilization, fertilizers
Cr Metallurgy, galvanization, paints, wood conservation, chemical industry
Cu Electrical industry
Hg Insecticides, metallurgical and pharmaceutical industries, plastic production 

catalysis, batteries
Ni Metallurgy, batteries, galvanization
Pb Batteries, fuels, pigments, paints
Zn Galvanization, pigments, batteries, smelting, paints, metal plating, agricultural 

products, fertilizers and pesticides, sewage sludge, fossil fuel combustion, 
metallurgy, polymer stabilizers

Adapted from Harte et al. (1991) and Alloway and Ayres (1997)
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16.2  Physicochemical and Biological Recovery  
of Heavy Metals

After the industrial revolution, human activities have significantly increased the level 
of contamination of soils and water bodies by heavy metals, used either deliberately 
for agricultural and industrial purposes, or accidentally through the mishandling of 
chemicals. Owing to their nonbiodegradability and consequent bioaccumulation 
throughout the trophic chain, heavy metals represent a serious threat to all kinds of 
inhabiting organisms. Therefore, alleviation of the heavy metal burden of industrial 
wastewaters is important before their discharge into waterways (Mehta and Gaur 
2005). Obviously, this should be accomplished right at the source of emissions, 
i.e., before they enter the ecosystem. Controlling heavy metal discharges and 
eventually preventing toxic heavy metals from entering surface waters have accord-
ingly become a challenge. To address such problems, several downstream physico-
chemical approaches exists, besides biological ones (as detailed below), which can 
be applied to recover heavy metals from aqueous solutions, or from aqueous solu-
tions that soak soils; however, all of them remediate rather than prevent.

16.2.1  Physicochemical Methods

The so-called “best treatment technologies” are a number of physicochemical methods 
including membrane filtration, adsorption, ion exchange, reverse osmosis, chemical 
precipitation, chemical oxidation/reduction, coagulation/flocculation, or solvent 
extraction, which have classically been employed for stripping toxic metals from 
wastewaters (Eccles 1999; Volesky 2001). However, these methods have disadvan-
tages, like incomplete metal removal, high reagent or energy requirements, and 
generation of toxic sludge or other heavy metal-containing waste products that may 
sometimes be more toxic than their parent ones. Hence, additional disposal methods 
are required. Furthermore, they are often expensive, especially when the heavy 
metal  concentrations  are  low  (e.g.,  10–100 mg/L)  and  inefficient,  because  a  too 
large volume reduction of effluents is intended, so a limited use in large-scale in situ 
operations will typically result (Mehta and Gaur 2005).

Extensive studies have been undertaken in recent years aimed at finding 
alternative and economically feasible technologies for detoxification of heavy 
metal-contaminated effluents. Such studies have focused mainly on screening 
living entities, and parts thereof, for their intrinsic capacity to overcome (at least) 
some of the limitations of physicochemical treatments (Ngah and Hanafiah 2008). 
Among these, microorganisms, in particular, are considered intrinsically more 
efficient in bioaccumulating heavy metals when exposed to low concentrations 
in their surrounding aqueous environment. These are briefly discussed in the 
following section.
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16.2.2  Biological Methods

The biological methods have advantages like reduced requirement for chemicals, 
low operating costs, eco-friendliness (as no toxic sludge results), and efficiency at 
low levels of contamination. They also offer possibilities for metal recovery and 
biosorbent regeneration afterward (Srivastava and Majumder 2008). Of the various 
biological methods, biosorption is indeed an effective alternative to conventional 
methods for decontaminating liquid effluents loaded with heavy metals. For a 
biosorbent to be economical and suitable for large-scale operation, it should be 
abundant in nature (or released as a by-product from bioprocessing) and should 
not require pre-processing (Arief et al. 2008). A great deal of interest has recently 
arisen toward using various kinds of readily available and inexpensive biomass of 
several microorganisms and microalgae, in particular for removal of heavy metals. 
Microalgae are used in bioremediation of metal-contaminated sites due to (1) their 
ability to tolerate those metals, (2) their high yields of recovery per unit mass, and 
(3) their high specific outer area coupled with a cell wall loaded with ionizable 
groups (Malik 2004).

16.3  Microalga-Mediated Recovery of Heavy Metals

Microalgae are eukaryotic, unicellular, photoautotrophic organisms that are abundant 
in natural aquatic (and bordering) environments. They can adapt to a wide range of 
conditions, including moist soil, fresh and marine habitats, as well as industrial and 
domestic effluent dumping sites. They are primary producers in the food chain, so they 
are the most basic trophic support level. Because of their small cell size, microalgae 
exhibit a large surface area-to-volume ratio, which is readily available for contact 
with the surrounding environment; and their functionally rich cell wall groups can 
easily interact with cations in solution. Although they may spontaneously serve as 
vehicle to introduce and transfer heavy metal cations along the food chain to higher 
trophic levels, their ability to remove metals from polluted aquatic sites may be 
advantageous in bioremediation strategies.

16.3.1  Removal Capacity of Microalgae

Biosorption of heavy metals is a complex phenomenon, and accumulation of heavy 
metals by microalgae is typically considered as a two-stage process: (1) an initial rapid 
(passive)  removal of metals by  the  cell  and  (2)  a much  slower one  that occurs 
inside the cell. During passive removal, heavy metal ions are adsorbed onto functional 
groups present on the cell surface by electrostatic interactions, which, however, differ 
in their affinity and specificity for metal binding. This is a non-metabolic, rapid, and 



36916  Microalga-Mediated Bioremediation of Heavy Metal–Contaminated Surface Waters

essentially reversible process, occurring in both living and nonliving cells. It includes 
physical adsorption, ion exchange, chemisorption, complexation, chelation, entrap-
ment in the structural polysaccharide network, and diffusion through the cell wall 
and membrane (Muñoz et al. 2006; Sud et al. 2008). The second phase is essentially 
a metabolism-dependent process, involving transport of metal ions across the cell 
membrane barrier and subsequent accumulation inside the cell, with posterior bind-
ing to intracellular compounds and/or organelle containment. This metal uptake 
process is much slower and usually irreversible, and occurs in living cells only. All 
heavy metal species are hydrophilic, so their transport through the partially lipo-
philic biological membrane surrounding the cell is mediated by specific proteins 
(Worms et al. 2006). However, transport of metal ions may also occur through facili-
tated diffusion, owing to a metal-induced increase in permeability of the cell mem-
brane (Wang and Chen 2006).

The capacity of biomaterials to adsorb heavy metals depends on the composi-
tion of their cellular surface, coupled with the chemical composition of the outer 
solution undergoing treatment. Hence, a rational choice of the most adequate 
biosorbent for metal decontamination of a specific water stream demands a priori 
knowledge of the target metals and their concentration. Microalgae are especially 
suitable as biosorbents, due to their availability (in almost unlimited amounts) 
in seas and oceans, and their high sorption uptake capacity. These capacities are, 
on average, higher than those claimed for other biological sorbents or from 
physicochemical sources (Table 16.2). Therefore, microalgal biomass appears 
to be an economically feasible and technologically efficient alternative to existing 
physicochemical methods of heavy metal removal and recovery from wastewaters 
(Romera et al. 2006).

16.3.2  Toxicity and Tolerance Mechanisms

Toxicity of heavy metals occurs when homeostasis of microalgal cells fails to 
eliminate, metabolize, or store them in innocuous forms. Such mechanisms depend 
on the organism itself, including its current biological phase and metabolic state 
(Torres 1997). Typically, microalgae are sensitive to heavy metals, so they can be 
used to advantage as biological sensors to detect potential toxic effects thereof. 
Growth has indeed been used as a key indicator of the toxicity of heavy metals to 
microalgae. The toxicity impairs the proper functioning of various physiological 
and biochemical processes in microalgae, e.g., it disrupts photosynthesis or nutrient 
uptake; these processes can be easily monitored in the laboratory (Carr et al. 1998; 
Arunakumara and Xuecheng 2008). Growth inhibition in microalgae is a direct func-
tion of the amount of heavy metal ions bound to the cell surface or taken up intracel-
lularly (Tripathi and Gaur 2006; Monteiro et al. 2011c). Morlon et al. (2005), for 
example, investigated the cellular growth and intracellular concentrations of sele-
nium in the unicellular green alga Chlamydomonas reinhardtii and concluded that 
toxicity is mainly linked to its intracellular accumulation.
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There are a number of symptoms of heavy metal toxicity to microalgal cells 
reported by various researchers (Kagalou et al. 2002; Rangsayatorn et al. 2002). 
These include (1) decrease in nutrient uptake, (2) displacement and/or substitution 
of essential metal ions in biomolecules, which may lead to modifications of, and 
constraints upon activity (e.g., urease, acid phosphatase, and ATPase), (3) blockage 
in functioning of biologically important molecules (e.g., enzymes and transport sys-
tems for essential nutrients), (4) disruption of protein structure and membrane integ-
rity, (5) reduction of growth and photosynthetic activity, and (6) stimulation of free 
radical and reactive oxygen species (ROS) generation. To overcome these negative 
effects, microalgae have developed several intra- and extracellular resistance or tol-
erance mechanisms that render heavy metals to (almost) harmless forms.
Like other microorganisms, the microalgal cells can exhibit resistance to toxicity 

by adsorbing heavy metals onto cell-associated materials and/or cell wall components 
(Costa and França 2003; la Rocca et al. 2009; Monteiro et al. 2011a), secreting 
metal-binding organic compounds (Levy et al. 2008), or reducing the rate of uptake 
(Ahuja et al. 2001). However, metal resistance may also be attained by microalgae 
by taking advantage of their ability to cope with high intracellular amounts of 
heavy metals. In addition, detoxification of heavy metals may be achieved via binding 
of metals to specific intracellular compounds and/or transport to specific cellular 
compartments (Pawlik-Skowrońska 2003), or even through efflux of the heavy metals 
back into solution (Monteiro et al. 2009a). One of the most common mechanisms 
underlying intracellular heavy metal detoxification in microalgae is the formation 
of metal-binding peptides or proteins, namely, class III metallothioneins (MT) or 
phytochelatins  (PC),  as  observed  in  the marine microalga Tetraselmis suecica 
and the freshwater green alga Scenedesmus vacuolatus (Pérez-Rama et al. 2001; 
Faucheur et al. 2005).
Phytochelatins are low-molecular-weight, intracellular, metal binding polypep-

tides produced by microalgae on exposure to increased metal concentrations in 
their environment. Phytochelatins are rich in cysteine, capable of chelating metallic 
ions through their thiol group (−SH), and have the general amino acid structure 
(g-Glu-Cys)

n
-Gly, with n usually varying from 2 to 11; the chain length is a charac-

teristic  of  each microalgal  species  coupled with  the metal  inducer  (Perales-Vela 
et al. 2006). The typical structure of a PC is depicted in Fig. 16.1. Phytochelatin 
synthesis may be induced by numerous heavy metals, like Ag, Au, Cd, Cu, Hg, Pb, 
and Zn; of these, Cd2+ appears to be the most potent activator, followed by Pb2+, 
Zn2+, and Cu2+. The synthesis of PC was first reported by Stokes et al. (1977) 
in Scenedesmus acutiformis, and several subsequent studies established its role in 
metal detoxification. For example, Pawlik-Skowrońska et al. (2004) found induction 
of synthesis and accumulation of PC when Stichococcus bacillaris was exposed to 
As3+, whereas Morelli and Scarano (2001) observed its synthesis in Phaeodactylum 
tricornutum following exposure to Cd2+, Pb2+, and Zn2+.

After the metal enters the cell cytosol, it is complexed and inactivated at once, 
thus avoiding any inhibitory effect that might result from eventual binding to active 
catalytic sites or structural proteins; note that immobilized metals are less toxic than 
free ions. The metal/PC complex ends up in the vacuoles of the microalga cells, thus 
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facilitating appropriate control of the cytoplasmic concentration of heavy metal ions, 
while neutralizing their potentially toxic effects; hence, some species and ecotypes 
can live in the presence of otherwise toxic metal concentrations, which would be 
lethal for many other species or populations. Although PC play an important role in 
heavy metal detoxification, and their existence is a unique characteristic of microal-
gae, alternative mechanisms can be followed. The most commonly accepted 
hypotheses of cell protection exhibited by microalgae are listed in Table 16.3.

16.3.3  Cell/Heavy Metal Interactions

The microalgal cell wall is the first barrier for heavy metal cation uptake; it has indeed 
the capacity to bind such ions via its negatively charged moieties (García-Ríos et al. 
2007). Attempts to localize metal cations bound onto microalga cell walls have been 
carried out by electron microscopy and X-ray energy dispersive analysis. The evidence 
available suggests that sites available for heavy metal sorption are present on 
the surface of those cells (Kaduková and Virčíková 2005; Doshi et al. 2007b). In a 
study, la Rocca et al. (2009) reported that most (i.e., above 98%) of Cd remained 
outside Koliella antarctica cells, bound to the components of their cell wall. Hence, 
adsorption via ion exchange appears to be the major mechanism for heavy metal 
uptake, and as much as 90% of the total metal has been found adsorbed on microalgal 
cells (Mehta et al. 2002; Monteiro et al. 2010). However, a few reports suggest that 
metabolic uptake of heavy metals may be more important than adsorption or, at 
least, identically important (Pérez-Rama et al. 2002; Wilde et al. 2006). For instance, 
Monteiro et al. (2009a) claimed that the microalga Desmodesmus pleiomorphus 
removed higher amounts of Zn by intracellular incorporation than adsorption onto 
the cell wall, between 3 and 7 days of exposure to a supernatant concentration of 
1 mg/l. The cell walls of microalgae consist mainly of polysaccharides, proteins, and 
lipids; these offer several functional moieties (e.g., carboxyl, hydroxyl, phosphate, 
amino, and sulphydryl). These functional groups confer a net negative charge to the 
cell surface, and concomitantly a high binding affinity for heavy metal cations 
(Deng et al. 2007b; Volesky 2007; Gupta and Rastogi 2008). Since heavy metals 
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Fig. 16.1 General structure of phytochelatin containing two g-Glu-Cys subunits
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in aqueous media are usually in a cationic form, they tend to adsorb onto the cell 
surface via counterion interactions; however, Mehta and Gaur (2005) claimed 
complexation and microprecipitation further to ion exchange, even though the latter 
dominates.

If ion exchange is present, then a somewhat competitive process for binding 
between cations with the same charge should occur. For instance, la Rocca et al. 
(2009) found that binding of Cd2+ to K. antarctica occurred together with a decrease 
in Ca2+ concentration in the culture, as an obvious outcome of competition for 
extracellular binding sites by divalent species. Furthermore, Ahuja et al. (1999) 
claimed that biosorption of Zn2+ by Oscillatoria anguistissima was accompanied 
by release of Mg2+. However, the complexity in composition of the microalgal 
cell surface makes it possible that various mechanisms operate simultaneously, yet 
to varying degrees of importance, depending on the microalga species and the 
prevailing environmental conditions. When the extracellular concentration of heavy 
metal ions is considerably higher than its intracellular counterpart (as is usually 
the case of interest for bioremediation), the binding groups on the surface may aid 
in transporting those cations across the cell membrane into the cytoplasm, where 
they can eventually become compartmentalized in distinct subcellular organelles 
(Franklin et al. 2002).

16.3.4  Factors Affecting Sorption Capacity of Microalgae

Irrespective of the nature of cell/metal interactions, sorption of heavy metals 
by microalgae is affected by several factors, which include inorganic (e.g., tempera-
ture, pH, metal concentration and speciation, and presence of other metals) and 
biological factors (e.g., biomass of either living or dead cells, or possibility of 
its reuse).

16.3.4.1  Temperature

The reports on the effect of temperature upon sorption of heavy metals by 
microalgae are conflicting. Aksu (2002), for instance, observed that the extent of 
Ni2+ adsorbed onto dry biomass of Chlorella vulgaris increased with increasing 
temperature, from a maximum of 48.1 at 15°C to 60.2 mg/g at 45°C, and spanning 
a  range of 50–250 mg/l of  initial metal  concentrations. These  results  suggest  an 
endothermic process. Conversely, Gupta and Rastogi (2008) observed that the 
metal sorption by microalgae is an exothermic process, and that the metal uptake 
capacity of algae decreases with rising temperature. For instance, adsorption of 
Cd2+ by Oedogonium  sp.  decreased  from  88.9  to  80.4  mg/g,  when  temperature 
increased from 25°C to 45°C. There are, however, other reports which suggest that 
temperature does not have any effect on metal sorption (Ahuja et al. 1999; 
Rangsayatorn et al. 2002).
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16.3.4.2  pH

pH is another important environmental variable that plays a major role in adsorption 
of heavy metals by microalgal cells. Therefore, efforts have been directed to find 
pH optima, in order to maximize the extent of heavy metal removal by algal cells 
(Rangsayatorn et al. 2002). The pH dependence of heavy metal uptake is closely 
related to the acid–base properties of various functional groups present on the 
microalga cell surface. Since the majority of binding groups are acidic in nature, their 
availability as charged moieties is affected by environmental pH (Sheng et al. 2007). 
For instance, at low pH, the functional groups are associated with H+ ions, which 
hamper binding of positively charged metal ions because of repulsion forces. On the 
other hand, at higher pH, the functional sites become deprotonated, so their net 
negative charges decrease. As a result, the functional groups of microalgal cells 
bind heavy metal cations to higher and higher extents (Al-Rub et al. 2004). Several 
reports suggest that the sorption of heavy metals by microalgal cells is increased by 
pH increases. For example, Ahuja et al. (1999) and Gupta and Rastogi (2008) 
described an increase in Zn2+ and Cd2+ removal by O. anguistissima and Oedogonium 
sp., respectively, when pH was increased up to 5. Similarly, an increase in Zn2+ and 
Cd2+ removal by S. obliquus was reported when pH increased up to 6 (Monteiro 
et al. 2011a) and 7 (Monteiro et al. 2009b), respectively. In a similar study, Han et al. 
(2006) reported an increase in Cr3+ removal by Chlorella miniata following increase 
in solution pH. The work described by Cain et al. (2008) showed as well a maximum 
uptake of Hg2+ by (the related cyanobacterium) Spirulina platensis at pH 6. However, 
under alkaline conditions, precipitation tends to occur for most heavy metals, which 
reduces their bioavailability and subsequent toxicity. Therefore, no bioremoval 
occurs at alkaline pH, probably due to dominance of plain inorganic process.

16.3.4.3  Supernatant Metal Concentration

The rate and extent of removal of heavy metals by microalgae also depend on the con-
centration and type of metals in solution: the sorption degree increases with increase 
in metal concentration, but eventually reaches saturation (Omar 2002) as predicted 
by classical adsorption isotherms. La Rocca et al. (2009) accordingly described an 
increase in the amount of Cd uptake by K. antarctica with increasing metal concen-
tration in the growth medium. Bayramoğlu and Arıca (2009) also reported that the 
adsorption of Cu2+, Zn2+, and Ni2+ by immobilized Scenedesmus quadricauda 
increased as the initial concentration of metal ions increased in the medium, with 
maximum adsorption capacities of 75.6, 55.2, and 30.4 mg/g, respectively.

16.3.4.4  Metal Speciation

Bioavailability and toxicity of metals depend on their speciation in aquatic environ-
ments. The possibility of heavy metal cations to bind onto microalgae depends also 
on their form and charge, which, in turn, is chiefly determined by pH. Heavy metals 
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in wastewaters occur often in a variety of chemical forms, e.g., free ions, complexes 
with inorganic/organic ligands, and adsorbates on particulate phases; however, the 
former are those that bind the furthest to microalgae, and thus the most toxic form. 
Rodea-Palomares et al. (2009) studied the correlation between toxicity of Cd, Zn, 
Hg, and Cu (which is connected to the amount of metal removed by the biosor-
bent) and the predicted metal free-ion concentration in solution using the freshwater 
cyanobacterium Anabaena CPB4337 as model. Although the toxicity does in gen-
eral correlate with the free metal ion concentration, it was interestingly found that 
low amounts of −3

4PO  and 2
3CO −  increased metal toxicity. Consequently, they 

concluded that this effect could not be related only to significant changes in metal 
speciation, but might be attributed to a modulating effect of these anions on uptaken 
metal toxicity.

16.3.4.5  Presence of Other Metals

The sorption of a desired heavy metal to microalgal biomass is significantly affected by 
occurrence of other metals in solution. Presence of a similar solute typically inhibits 
sorption of the desired metal, due to repulsive interactions between them and 
competition for the adsorption sites located on the cell surface (Arief et al. 2008). 
In practice, many industrial wastewaters contain high levels of more than one heavy 
metal. For example, mixtures of Cr, Ni, Cd, and Zn are found in effluents of electro-
plating operations (Volesky 2001). Unlike accumulation of single species of heavy 
metal ions by microalgal biomass, little attention has been paid to multi-metal systems. 
However, examination of the effects of heavy metal cations in various combinations is 
more representative of common environmental problems than are single metal 
studies, because a multiplicity of metals interfere with physiological and biochemi-
cal processes in a much more complex manner than their single metal counter-
parts. The underlying mechanisms of multi-metal ion uptake by microalgal biomass 
are accordingly not trivial. In general, such a mixture can exhibit three types of 
relationships:  (1)  synergism/cooperation, when  the effect of  the mixture  is greater 
than the sum of the individual effects of the constituents; (2) antagonism, when the 
effect of the mixture is smaller than the sum of the individual effects of the constitu-
ents; and (3) no interaction, when the effect of the mixture is essentially similar to 
the sum of the individual effects of the constituents (Aksu and Dönmez 2006). 
Senthilkumar et al. (2006) observed a decrease in Zn uptake by U. reticulata when 
the concentration of Ca2+ and Mg2+ increased in solution. The reduced heavy metal 
uptake in the presence of light metals with similar charge has indeed been attributed to 
competition for cellular binding sites, or else to precipitation (or complexation) by Ca 
and/or Mg carbonates, hydrogenocarbonates, or hydroxides (Mehta and Gaur 2005). 
Furthermore, Hg2+ and Pb2+ were reported to reduce the amount of Zn2+ adsorbed to 
Aphanothece halophytica (Incharoensakdi and Kitjaharn 2002), whereas Fraile et al. 
(2005) demonstrated that presence of Cd2+ decreased uptake of Zn2+ in a competitive 
manner.
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Removal studies pertaining to multi-metal systems have in fact typically 
unfolded competitive interaction amongst metals for binding onto adsorption sites. 
Mehta et al. (2000) have provided evidence for mutual interference of Cu2+ and Ni2+ 
onto C. vulgaris, whereas Aksu and Dönmez (2006) described competitive adsorp-
tion of Cd2+ and Ni2+ by the same species. Likewise, Monteiro et al. (2011b) detected 
competition for cell surface binding sites in either S. obliquus or D. pleiomorphus 
cells, when Zn2+ and Cd2+ were simultaneously present in solution, with a conse-
quent decrease in the overall metal uptake. On the other hand, Cain et al. (2008) 
found that the presence of dissolved Co2+, Ni2+, and Fe3+ played a synergistic role 
upon Hg2+ uptake by S. platensis. In order to overcome this mutual interference, 
multi-metal solutions are best bioremediated by resorting to higher biomass concen-
trations (Terry and Stone 2002).

16.3.4.6  Biomass Concentration

The amounts of heavy metals recovered from a solution are obviously affected, in a 
more or less proportional fashion, by the concentration of biomass. The increased 
level of metal removed at higher biomass concentration could thus be simply due to 
a greater availability of total binding sites, even though the amount adsorbed per unit 
mass will tend to decrease (Fraile et al. 2005). Although increasing biomass means 
more adsorption sites available, a decrease of metal removal is often observed at 
biomass levels above a given threshold; this may be explained by partial aggrega-
tion of biomass, a cooperative process that reduces the effective surface area 
available for sorption, besides the average distance between the adsorption sites 
available (Muñoz et al. 2006). Ahuja et al. (1999) showed that increasing the 
biomass concentration from 0.04 to 0.2 g/l decreased the metal binding per unit cell 
mass. Gong et al. (2005) also reported a marked reduction in Pb2+ uptake by Spirulina 
maxima from 121 to 21 mg/g, when the biomass concentration was raised from 0.1 
to 20 g/l. Excessively high levels of metal ions adsorbed also contribute to unfavor-
able electrostatic interactions between binding sites and between cells, and so lead 
to less efficient mixing at high biomass concentration that permits concentration 
gradient build-up (Fraile et al. 2005).

 Living Versus Dead Biomass

Both viable and inactivated microalgal biomass have been used as sorbent material 
in metal removal from contaminated sites (Kaduková and Virčíková 2005; Doshi 
et al. 2007a). Using nonliving biomass, Lodi et al. (2008) employed re-hydrated S. 
platensis as biosorbent material for Cr3+ removal and observed that 95% Cr3+ was 
removed using a biomass dose of 3 g/l. On the other hand, Folgar et al. (2008) 
reported that living Dunaliella salina  could  remove  only  11.3% Cd  of  the  total 
metal used (5 mg/l,  through a 96-h exposure). Heavy metal removal using living 
biomass assures a more quantitative removal, which often combines precipitation, 
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adsorption, and bioaccumulation. However, viable biomass is sensitive to the 
chemical composition of the effluent being treated, and to operating conditions such 
as temperature and pH (as discussed earlier). Therefore, it is not appropriate for 
wastewaters that have too high heavy metal concentrations, or contain other toxic 
impurities (Sánchez et al. 1999). In addition, the metal recovery may also be limited 
due to the complex-forming abilities of extracellular metabolites secreted by living 
cells. Removal of metals by inactivated biomass, in contrast, entails a passive pro-
cess only, in which cations predominantly adsorb onto the functional groups of 
the cellular surface. This process parallels synthetic sorbents, so it is poorly selec-
tive; nevertheless, dead biomass may, under some circumstances, provide a 
higher capacity for heavy metal uptake than viable biomass (Özer et al. 2000). In 
addition, it is a rapid and reversible phenomenon, which allows regeneration (and 
reuse) of the biomaterial in multiple sorption/desorption cycles. Finally, nonliving 
cells do not need nutrients and are much less affected by the physicochemical char-
acteristics of the supernatant of heavy metal solutions. Use of inactivated biomass 
can also hold a great interest owing to the large variety and low cost of that biologi-
cal material; however, it should not be used when biological change in the valence 
of the heavy metal is required for effective removal.

The method used to inactivate microalgal cells may also influence their heavy 
metal sorption capacity. Inactivation by heat, for example, may indeed cause partial 
decay of structural components of microalgae, which may decrease the number of 
binding sites suitable for interaction with metal cations relative to those in living cells 
(Costa and França 1998; Vannela and Verma 2006). Monteiro et al. (2009b, 2010) 
reported that, following heat inactivation, the microalgal biomass entertained lower 
amounts of Cd removal than its living form, for both S. obliquus and D. pleiomorphus. 
Furthermore, Katırcıoğlu et al. (2008) compared the removal capacity of Oscillatoria 
sp. H1 as living and heat-inactivated biomass immobilized on Ca-alginate; maximum 
biosorption  capacities were  32.2  and  27.5 mg/g,  so  it was  concluded  that  living 
biomass is more efficient in removing Cd from solution. However, Kaduková and 
Virčíková (2005) experienced an opposite trend: a higher capacity of dead cells 
resulted upon thermal processing. Therefore, living biomass should be preferred to 
inactivated one whenever the heavy metals are not at detrimental concentrations, 
and continuous generation of fresh adsorbent is intended.

 Biomass Regeneration and Reuse

In order to make microalga-mediated biosorption processes successful on the 
industrial scale, regeneration of the biosorbent for repeated use is important as this 
keeps processing costs down. Additionally, it is also important to obtain heavy 
metal(s) originally extracted from the liquid phase in a more concentrated (and 
convenient) form than the original one, for recovery and reuse afterwards (Chojnacka 
et al. 2005). When sorbed on microalgal biomass, heavy metals can be desorbed by 
a suitable eluant or desorbing solution, which in turn allows the ready reuse of 
biomass in multiple sorption–desorption cycles. However, selection of a desorbing 
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agent depends on the desorption efficiency and the persistence of biosorption 
capacity of adsorbing materials. Furthermore, the desorbing agent should not cause 
irreversible physical or chemical changes, or damage to the biomass for that matter. 
One of the most commonly employed methods of heavy metal desorption from 
microalgal biomass relies on a swing of pH. The lowering pH of the loaded biomass 
suspension causes displacement of heavy metal cations back to solution, by protons 
concomitantly gained by the binding sites. Several organic and inorganic acids and 
bases, as well as salts and metal chelators have accordingly been tested for their 
metal desorbing ability. Vannela and Verma (2006) claimed that the elution effi-
ciency was maximum in the case of inorganic acids, followed by inorganic salts, 
chelating  agents,  and  organic  acids  (in  this  order),  with  recoveries  above  90%, 
except for the latter that could only reach ca. 80%. Chojnacka et al. (2005) investi-
gated desorption of Cr3+, Cd2+, and Cu2+ from Spirulina  sp.  using 0.1 M EDTA, 
0.1 M HNO

3
 or deionized water, and found nitric acid as the most convenient desorb-

ing agent, with efficiencies ranging between 90% and 98%, and without hampering 
the biosorption capacity of the biomaterial. Rangsayatorn et al. (2004) tested the 
reusability of S. platensis TISTR 8217 biomass immobilized on alginate and silica 
gel, up to five cycles of adsorption and desorption of Cd2+, using 0.1 M HCl as 
desorbent. A significant loss of 26% in adsorption capacity resulted after the first 
cycle. Surprisingly, the Cd2+ adsorption capacity remained essentially constant from 
the second cycle onward.

Although HCl has a high capacity to desorb heavy metals, studies have shown 
that it decreases the metal sorption ability of biosorbents when applied in sequential 
cycles, likely due to damage to metal binding sites, including hydrolysis of surface 
polysaccharides (Chu et al. 1997). Cain et al. (2008) examined the regeneration of 
biomass over 4 sorption/desorption cycles, and unfolded a dramatic decrease in Hg 
removal by S. platensis after the second cycle when HCl was used as desorbing 
agent. This decrease could be attributed to partial biomass loss, coupled with 
acid-induced cell damage resulting during the regeneration cycles. On the other 
hand, Al-Rub et al. (2004) were able to reuse immobilized C. vulgaris biomass up 
to 3 sorption/desorption cycles using 0.1 M HCl, and noticed that the efficiency of 
Ni2+ removal was improved after the first cycle but leveled off thereafter.

16.3.5  Application of Microalgal Biomass  
in Bioremediation Processes

Recently, there has been an increasing interest in using biological processes for heavy 
metal removal/recovery from contaminated environments. This is primarily due to 
the fact that technologies encompassing naturally occurring biological entities 
possess numerous advantages, such as low cost, and can be applied even to low 
contamination levels, over other classical physicochemical approaches. Microalgae 
in this context have successfully been used owing to their remarkable ability to take 
up and accumulate heavy metals from their surrounding environment. Several cases 
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of success have indeed been reported. For example, inactivated microalgal biomass 
in the form of biotraps (algaSORB®) has been used as a commercial adsorbent 
material for removal of heavy metals from industrial effluents. One of its major 
advantages is that the heavy metals adsorbed onto the cell surface can be recovered 
afterwards, so the material can be reused. Another important feature is that high 
concentrations of common ions do not interfere with sorption of the target heavy 
metal cations. Another successful approach to remove heavy metals via living 
microalgal  biomass  entailed  a  reactor  containing  immobilized  cells,  BIOALGA 
(Travieso et al. 2002). Using this bioreactor with S. obliquus, a maximum removal 
of 94.5% of Co was achieved by 10 days of exposure to solutions originally con-
taining 3,000 mg/l. Nevertheless, other microalgal species tested have shown that 
the efficiency of removal depends not only on the species, but also on the specific 
heavy metal to be removed (Radway et al. 2001).

16.4  Conclusion

The ability of microalgae to sorb high concentrations of heavy metals makes them 
suitable condidates for efficient and commercially feasible in wastewater bioreme-
diation strategies. However, such a goal usually demands concerted and educated 
research efforts for identification of microalgal species that would perform better 
under different ecosystems. In this context, some microalgal species isolated 
from long-term, metal-contaminated sites have developed a much higher capacity 
to accumulate heavy metals than those isolated from non-contaminated locations 
(Wong et al. 2000). Therefore, understanding the resistance/tolerance and uptake 
mechanism(s) of microalgae when present naturally in the contaminated environ-
ment or exposed intentionally to heavy metals is crucial, so as to provide rationally 
improved vehicles for metal removal from the environment, as part of strategies that 
are tailor-made for each contaminated site.
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Abstract Radionuclides exist in the environment naturally and, in more recent 
times, have been added by nuclear power and weapons. The carcinogenic nature and 
long half-lives of many radionuclides make them a potential threat to human health. 
Moreover, there is an increasing trend of uranium accumulating in soils due to a 
number of deliberate or wrong practices. Also, the contamination of land by natu-
rally occurring radionuclides from “non-nuclear” industries include uranium min-
ing and milling, metal or coal mining, radium and thorium factories, and the 
processing of materials containing technologically enhanced levels of natural radio-
activity. As a consequence, there would be a risk for ecosystems, agro-systems, and 
health. It is suggested that knowledge of the mechanisms that control the behavior 
of such heavy metals must be improved and be used for risk assessment and propo-
sition of remediation treatments. Phytoremediation has been used to extract radio-
nuclides and other pollutants from contaminated sites. The accuracy and success of 
these applications depend on an understanding of the processes involved in plant 
uptake of radionuclides. The recent advances in uranium removal from contami-
nated soils, using either chemical and/or biological techniques (such as hyperaccu-
mulator plants, or high biomass crop species after soil treatment with chelating 
compounds) are reviewed and discussed.
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17.1  Introduction

At many hazardous waste sites requiring cleanup, the contaminated soil, groundwater, 
and/or wastewater contain a mixture of contaminants, often at widely varying 
concentrations. These include salts, organics, heavy metals, trace elements, and 
radioactive compounds. The simultaneous cleanup of multiple contaminants using 
conventional chemical and thermal methods is both technically difficult and expen-
sive. These methods also destroy the biotic component of soils.
Naturally occurring radionuclides are found in most ores and natural resources. 

The levels at which they are found depend upon the nature of ore or resource in 
which it is present and can vary from very low levels up to a few percent. The pro-
cessing of these naturally occurring radioactive materials (NORM) can lead to the 
enhancement of the concentrations of the radionuclides either within the products, 
or in the wastes from the processes. The radionuclides which are of most interest are 
235U, 238U, and 232Th because they can undergo a series of radioactive decays 
(Fig. 17.1) and give rise to daughters which may also be found in NORM.
Industries which utilize NORM include uranium mining and milling, metal mining 

and smelting, phosphate ore processing, coal mining and fossil fuel power production, 
oil and gas drilling, rare earth extracting and processing, titanium oxide industry, zirco-
nium and ceramic industries, building materials, and application of radium and 
thorium. These are all long-established activities. Wastes from these industries have 
built up over the years and a recent survey of Europe has found many sites which have 
long since been abandoned and where ownership is not known (Lambers et al. 1999).

The use of depleted uranium (DU, 238U) as ammunition is currently a major topic 
for discussion. Depleted uranium is the main by-product from the processing of 
nuclear fuel (235U). It is considered to be less radioactive than natural uranium, but 
despite this, there is still a serious hazard due to the alpha-radiation that is emitted 
(Lamas et al. 2002). Uranium like other heavy metals is a threat to both health and 
the environment because of its pronounced toxicity. Significant amounts of uranium 
have been released in the last decade with armor piercing ammunition that was 

238U → 234Th → 234Pa → 234U → 230Th → 226Ra → 222Rn → 218Po → 214Po →
→ 210Pb → 210Bi → 210Po → 206Pb

235U → 231Th → 231Pa → 227Ac → 227Th → 223Ra → 219Rn → 215Po → 211Pb →
211Bi 

→ 211Pb → 207Pb

232Th → 228Ra → 228Ac → 228Th → 224Ra → 220Rn → 216Po → 212Pb → 212Bi →
208Pb

214Bi 

Fig. 17.1 Decay series for 238U, 235U, and 232Th; environmentally significant radionuclides are 
shown in bold
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manufactured from DU, not only during major conflicts but also on numerous 
military shooting ranges all over the world (Bosnia, Kosovo, Afghanistan, Iraq, 
Lebanon, and several Arab countries) (Sansone et al. 2001). A field study, orga-
nized, coordinated, and conducted under the responsibility of  the United Nations 
Environment Programme (UNEP), took place in Kosovo, Serbia in November 2000 
to evaluate the level of DU released into the environment by the use of DU ammuni-
tion during the 1999 conflict (UNEP programme in Balkan, 2000 and 2001). During 
this field mission, the Italian National Environmental Protection Agency (ANPA) 
collected water, soil, lichen, and tree bark samples from different sites. The samples 
were analyzed by alpha-spectroscopy and in some cases by inductively coupled 
plasma-source mass  spectrometry  (ICP-MS). The  234U/238U and 235U/238U activity 
concentration ratios were used to distinguish natural from anthropogenic uranium. 
They indicated that all water samples had very low concentrations of uranium (much 
below the average concentration of drinking water in Europe). However, the surface 
soil samples showed a very large variability in uranium activity concentration, that 
ranged from 20 Bq kg−1 (environmental natural uranium) to 2.3 × 105 Bq kg−1 
(18,000 mg kg−1 of depleted uranium), with concentrations above environmental 
levels always due to DU. The uranium isotope measurements refer to soil samples 
collected at places where DU ammunition had been fired; this variability indicates 
that the impact of DU ammunitions is very site specific, reflecting both the physical 
conditions at the time of the impact of the DU ammunition and any physical and 
chemical alteration which occurred since then. This finding is in agreement with 
Flues et al. (2002) who investigated 52 soil samples in the vicinity of a coal-fired 
power  plant  (CFPP)  in  Figueira  (Brazil).  The  radionuclide  concentration  for  the 
uranium and thorium series in soils ranged from <9 to 282 Bq kg−1. The range of 
40 K concentration in soils varied from <59 to 412 Bq kg−1. The CFPP (10 MWe) 
has been operating for 35 years and caused a small increment in natural radionu-
clide concentration in the surroundings. This technologically enhanced natural 
radioactivity (TENR) was mainly due to the uranium series (234Th, 226Ra, and 210Pb) 
and was observable within the first kilometer from the power plant. The CFPP influ-
ence was only observed in the 0–25 cm soil horizon. The soil properties prevent the 
radionuclides of the 238U-series from reaching deeper soil profiles. The same behav-
ior was observed for 40 K as well. No influence was observed for 232Th, which was 
found in low concentrations in the coal. The results of Sansone et al. (2001) on tree 
barks and lichens indicated the presence of DU in all cases, showing their useful-
ness as sensitive qualitative bioindicators for the presence of DU dusts or aerosols 
formed at the time the DU ammunition had hit a hard target.

17.2  Phytoremediation Technology

Phytoremediation, an emerging cleanup technology for contaminated soils, ground-
water, and wastewater, is both low tech and low cost. Phytoremediation is the 
engineered use of green plants, including grasses, forbs, and woody species, to 



390 M.F. Abdel-Sabour

remove, contain, or render harmless such environmental contaminants as heavy 
metals, trace elements, organic compounds, and radioactive compounds in soil or 
water (Raskin et al. 1997; Salt et al. 1998). This definition includes all plant-
influenced biological, chemical, and physical processes that aid in the uptake, 
sequestration, degradation, and metabolism of contaminants, either by plants or by 
the free-living organisms that constitute the plant’s rhizosphere (Baker et al. 1995; 
McGrath 1998). Phytoremediation takes advantage of the unique and selective uptake 
capabilities of plant root systems, together with the translocation, bioaccumulation, 
and contaminant storage/degradation abilities of the entire plant body. Plant-based 
soil remediation systems (Fig. 17.2) can be viewed as biological, solar-driven, pump-
and-treat systems with an extensive, self-extending uptake network (the root system) 
that enhances the below-ground ecosystem for subsequent reductive use (Wenger 
et al. 2002; Liphadzi et al. 2003; Dickinson and Pulford 2005).

Examples of simpler phytoremediation systems (Fig. 17.3) that have been used 
for years are constructed engineered wetlands, often using cattails to treat acid mine 
drainage or municipal sewage (Kadlec 1995; Kadlec and Knight 1996).

Phytoremediation of a site contaminated with heavy metals and/or radionuclides 
involves “farming” the soil with selected plants to “biomine” the inorganic contami-
nants, which are concentrated in the plant biomass (Ross 1994; Salt et al. 1995). For 
soils contaminated with toxic organics, the approach is similar, but the plant may 
take up or assist in the degradation of the organic contaminant (Schnoor et al. 1995). 
Several sequential crops of hyperaccumulating plants could possibly reduce soil 
concentrations of toxic inorganics or organics to the extent that residual concentra-
tions would be environmentally acceptable and no longer considered hazardous. 
The potential also exists for degrading the hazardous organic component of mixed 
contamination, thus reducing the waste (which may be sequestered in plant biomass) 
to a more manageable radioactive one.

Fig. 17.2 Phytoremediation technologies



39117  Decontamination of Radioactive-Contaminated Soils: Current Perspective

For treating contaminated wastewater, the phytoremediation plants are grown in 
a bed of inert granular substrate, such as sand or pea gravel, using hydroponic or 
aeroponic techniques (Fig. 17.4). The wastewater, supplemented with nutrients if 
necessary, trickles through this bed, which is ramified with plant roots that function 
as a biological filter and a contaminant uptake system. An added advantage of 
phytoremediation of wastewater is the considerable volume reduction attained 
through evapotranspiration (Hinchman and Negri 1994; Fritioff and Greger 2003; 
Aksorn and Visoottiviseth 2004). Some of the aquatic plants used in bioremediation 
of trace elements are listed in Table 17.1 (Prasad 2001a, b, 2004a, b, 2006a, b, 2007; 
Prasad and Freitas 2003; Prasad et al. 2001, 2006; Williams 2002). In appropriate 
situations, phytoremediation can be an alternative to the much harsher remediation 
technologies of incineration, thermal vaporization, solvent washing, or other soil 
washing techniques, which essentially destroy the biological component of the soil 
and can drastically alter its chemical and physical characteristics as well, creating a 
relatively nonviable solid waste. Phytoremediation actually benefits the soil, leaving 
an improved, functional, soil ecosystem at costs estimated at approximately one 
tenth of those currently adopted technologies.

Top of gravel bed

Influent

Coarse media
Main bed media Impermeable liner

Water level

Water level
control

Effluent

Fig. 17.3 Engineered basin wet land (GBT)

Fig. 17.4 Surface (a) and subsurface (b) flow of effluent (Okurut et al. 1999)
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Table 17.1 Aquatic plants for and biomonitoring of toxic trace elements used in a wide range of 
toxicity bioassays

Plant species Metal

Azolla fililiculioides Cr, Ni, Zn, Fe, Cu, Pb
A. pinnata Cd, Cr, Zn
Bacopa monnieri Hg, Cr, Cu, Cd
Carex juncell Cu, Pb, Zn, Co, Ni, Cr, Mo, U
Carex rostrata Cu, Pb, Zn, Co, Ni, Cr, Mo, U
Carex sp. Cd, Fe, Pb, Mn
Ceratophyllum demersum Cd, Cu, Cr, Pb, Hg, Fe, Mn, Zn, Ni, Co, and 

radionuclides
Cyperus eragrostis Cd, Cu, Pb, Zn
Distichlis spicata Cd, Fe, Pb, Mn
Elodea densa Hg, methyl-Hg
E. nuttallia Cu
E. sptangulare Hg, Pb, Cd, Cu, and Fe
Eichhornia crassipes As, Cd, Co, Cr, Cu, Al, Ni, Pb, Zn, Hg, P, Pt, Pd, Os, 

Ru, Ir, Rh
Elodea canadensis Cu, Pb, Cd, Zn, Cr, Ni
Eriocaulon septangulare Hg, Pb, Cd, Fe
Euryale ferox Cd, Cr, Pb, Cu
Hydrilla verticillata Hg, Fe, Ni, Hg, Pb
Hygrophila onogaria Hg, methyl-Hg
Isoetes lacustris Cu, Pb
Lemna minor Mn, Pb, Ba, B, Cd, Cu, Cr, Ni, Se, Zn, Fe
L. trisulca Cu, Cd
L. gibba Cu, Cd
L. palustris Zn, Cu, Fe, Hg
L. paucicostata Cd, Zn, EDTA, Cu, Ca
L. perpusilla Cd
L. polyrrhiza Cd
L. valdivinia Cd, Cu
Littorella uniflora Cu, Pb
Ludwigia natans Hg, methyl-Hg
Lysimachia nummularia Hg, methyl-Hg
Myriophyllum spicatum Cd, Cu, Zn, Pb, Ni, Cr
M. alterniflorum Cu, Pb
M. exalbescens Zn, Pb
M. aquaticum Zn, Cu, Fe, Hg, Cd, Pb
Melilotus indica Se
Mentha aquatic Cd, Zn, Cu, Fe, Hg
Najas marina Cd, Fe, Pb, Mn
Nasturtium officinale Cd
Nuphar lutea Cu, Ni, Cr, Co, Zn, Mn, Pb, Cd, Hg, Fe
N. variegatum Cu, Zn
Nymphaea alba Ni, Cr, Co, Zn, Mn, Pb, Cd, Cu, Hg, Fe
Nymphoides germinate Cd, Cu, Pb, Zn

(continued)
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17.3  Higher Plants as Indicators of Uranium  
Occurrence in Soil

Leaves of nine different plant species (terrestrial moss, Hylocomium splendens, and 
Pleurozium schreberi; and seven species of vascular plants: blueberry, Vaccinium 
myrtillus; cowberry, Vaccinium vitis-idaea; crowberry, Empetrum nigrum; birch, 
Betula pubescens; willow, Salix spp.; pine, Pinus sylvestris, and spruce, Picea 
abies) have been collected from up to nine catchments spread over a 1,500,000 km2 
area in Northern Europe (Reimann et al. 2001a). Soil samples were taken from the 
O- and C-horizon at each sample site. All samples were analyzed for 38 elements 
(Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, 
P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Th, Tl, U, V, Y, Zn, and Zr) by ICP-MS, ICP-AES 

Table 17.1 (continued)

Plant species Metal

Potamogeton attenuatum Cd, Cu, Pb, Zn
P. communis Ni, Cr, Co, Zn, Mn, Pb, Cd, Cu, Hg, Fe
P. crispus Cu, Pb, Mn, Fe, Cd
P. filiformis Cd, Fe, Pb, Mn
P. lapathifoilum Cd, Cu, Pb, Zn
P. orientalis Cd, Cu, Pb, Zn
P. pectinatus Mn, Pb, Cd, Cu, Cr, Zn, Ni, As, Se
P. perfoliatus Cu, Pb, Cd, Zn, Ni, Cr
P. richardsonii Cd, Cr, Cu, Ni, Zn, Pb
P. subsessiles Cd, Cu, Pb, Zn
Phragmites karka Cr
Pistia stratoites Cu, Al, Cr, P, Hg
Ranunculus aquatilis Mn, Pb, Cd, Fe, Pb
R. baudotii Cd, Cu, Cr, Zn, Ni, Pb
Ruppia maritime Mn, Pb, Cd, Pb, Fe, Se
Salvinia acutes Mn, Pb
S. maritimus Cd, Fe, Pb, Mn
S. natans Pb, Cr
S. undulate Pb
S. molesta Hg
Scapania uliginosa B, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sr, V, Zn
Schoenoplectus lacustris Ni, Cr, Co, Zn, Mn, Pb, Cd, Cu, Hg, Fe
Scirpus lacustris Cr
Spirodela polyrhiza Cr
Typha domingensis Cd, Cu, Pb, Zn
T latifolia Ni, Cr, Co, Zn, Mn, Pb, Cd, Cu, Hg, Fe
Vallisneria americana Cd, Cr, Cu, Ni, Pb, Zn
V. spiralis Hg
Wolffia globosa Cd, Cr

Compiled from Prasad (2001a, b, 2004 a, b, 2007), Prasad and Freitas (2003) and Prasad et al. 
(2001, 2006)
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or CV-AAS (for Hg-analysis) techniques. The data showed that the concentrations 
of some elements like Cd, V, Co, Pb, Ba, and Y vary significantly between different 
plants. Other elements, for example, Rb, S, Cu, K, Ca, P, and Mg, showed surprisingly 
similar levels in all plants. Each group of plants including moss, shrubs, deciduous, 
and conifers shows a common behavior for some elements. Each plant accumulates 
or excludes some selected elements. Compared to the C-horizon, a number of ele-
ments (S, K, B, Ca, P, and Mn) are clearly enriched in plants. The plant:O-horizon 
and O-horizon:C-horizon ratios show that some elements are accumulated  in  the 
O-horizon (e.g., Pb, Bi, As, Ag, Sb). Airborne organic material attached to the 
leaves can thus result in high values of these elements without any pollution source. 
In other study, Reimann et al. (2001b) collected additional soil samples from the 
O-horizon and the C-horizon at each plant sample site. One of the nine catchments 
was  located  directly  adjacent  (5–10  km  S)  to  the  nickel  smelter  and  refinery  at 
Monchegorsk, Kola Peninsula, Russia. The high levels of pollution at this site are 
reflected in the chemical composition of all plant leaves. However, it appears that 
each plant enriches (or excludes) different elements. Elements emitted at trace levels, 
such as Ag, As, and Bi, are relatively much more enriched in most plants than the 
major pollutants Ni, Cu, and Co.

The potential of using higher plants as indicators of uranium distribution in soil 
was studied at a site in Germany where uranium concentrations ranged from 5 to 
1,500 mug/g soil and reached a maximum of 1,860 mg/kg in soil water (Steubing 
et al. 1993). Results indicated that Sambucus nigra was the best indicator of ura-
nium contamination whereas chemical analysis of its leaves provided more detailed 
information regarding uranium distribution than soil analyses. The plants not only 
indicate the location of mineralization but also the migration pathway of U-containing 
soil water. They indicated that adsorption of contaminated water was the main 
source of the U accumulation in the different plant organs. Elemental composition 
of soil, herbaceous and woody plant species, and the muscle and liver tissue of two 
common small mammal species were determined in a wetland ecosystem contami-
nated with Ni and U from nuclear target processing activities at the Savannah River 
Site, Aiken, SC (Punshon et al. 2003). Species studied were black willow (Salix 
nigra L.), rushes (Juncus effusus L.), marsh rice rat (Oryzomys palustris), and cotton 
rat (Sigmodon hispidus). Two mature trees were sampled around the perimeter of 
the former de facto settling basin, and transect lines sampling rushes and trapping 
small mammals were laid across the wetland area, close to a wooden spillway that 
previously enclosed the pond. Nickel and U concentrations were elevated to con-
taminant  levels;  with  a  total  concentration  of  1,065  (±54) mg  kg−1  U  and  526.7 
(±18.3) mg kg−1 Ni within the soil. Transfer of contaminants into woody and herba-
ceous plant tissues was higher for Ni than for U, which appeared to remain bound to 
the outside of root tissues, with very little (0.03 ± 0.001 mg kg−1) U detectable within 
the leaf tissues. This indicated a lower bioavailability of U than the co-contaminant 
Ni. Trees sampled from the drier margins of the pond area contained more Ni within 
their leaf tissues than the rushes sampled from the wetter floodplain area, with leaf 
tissues concentrations of 75.5 mg kg−1 Ni. Transfer factors of contaminants indicated 
that U bioavailability is negligible in this wetland ecosystem.
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17.3.1  Hyperaccumulator of Uranium

It is known that natural hyperaccumulators do not use rhizosphere acidification to 
enhance their metal uptake. Recently, it has been found that some natural hyperac-
cumulators (e.g., Thlaspi caerulescens) proliferate their roots positively in patches 
of high metal availability. In contrast, non-accumulators actively avoid these areas, 
and this is one of the mechanisms by which hyperaccumulators absorb more metals 
when grown in the same soil. However, there are few studies on the exudation and 
persistence of natural chelating compounds by these plants. It is thought that rhizo-
sphere microorganisms are not important for the hyperaccumulation of metals from 
soil. Applications of chelates have been shown to induce large accumulations of 
metals like Pb, U, and Au in the shoots of non-hyperaccumulators, by increasing 
metal solubility and root-to-shoot translocation. The efficiency of metal uptake does 
vary with soil properties, and a full understanding of the relative importance of mass 
flow and diffusion in the presence and absence of artificial chelates is not available. 
To successfully manipulate and optimize future phytoextraction technologies, it is 
argued that a fully combined understanding of soil supply and plant uptake is needed 
(McGrath et al. 2002).

Shahandeh and Hossner (2002a, b) evaluated 34 plant species for uranium 
accumulation from U-contaminated soil. There was a significant difference in U 
accumulation among plant species. They indicated that sunflower (Helianthus ann-
uus) and Indian mustard (Brassica juncea) accumulated more U than other plant 
species. Sunflower and Indian mustard were selected as potential U accumulators 
for further study in one U mine tailing soil and eight cultivated soils (pH range 4.7 
to 8.1) contaminated with different rates (100–600 mg U(VI) kg−1) of uranyl-nitrate 
(UO

2
(NO

3
)

2
.6H

2
O). Uranium fractions of contaminated soils [(exchangeable, car-

bonate, manganese (Mn), iron (Fe) oxides bond, organic bond, and residual)] were 
determined periodically over an 8-week incubation period. Uranium accumulated 
mainly in the roots (6,200 mg U kg−1). The highest concentration of U in shoots of 
plant species was 102 mg kg−1. Plant performance was affected by U contamination 
rates, especially in calcareous soils. Plants grown in soils with high carbonate–U 
fractions accumulated the most U in shoots and roots. The lowest plant U occurred 
in clayey acid soils with high Fe, Mn, and organic U-fractions. They concluded that 
the effectiveness of U remediation of soils by plants was strongly influenced by soil 
type and its properties, which determine the tolerance and accumulation of U in 
plants. Some of the metals hyperaccumulators are presented in Fig. 17.5.
In a similar investigation, Dreesen and Cokal (1984) assessed the uptake of con-

taminants occurring in chemical waste burial sites using different plant species such 
as Atriplex canescens, Kochia scoparia, barley, lucerne, and Melilotus officinalis 
growing on uranium mill tailings materials. There were significant differences 
among plant species in terms of the nutrients and contaminants in aerial organs. Of 
the tested plant species, barley contained higher levels of U and much higher levels 
of Si than the other species while lucerne had higher levels of Al, Ba, Co, and V and 
M. officinalis had higher levels of Ba and V than barley.
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Furthermore, significant differences in radionuclide concentrations among crop 
species (squash were generally higher than beans or sweetcorn) and plant parts 
(nonedible tissues were generally higher than edible tissues) were observed 
(Fresquez et al. 1998). They reported that the maximum net positive committed 
effective dose equivalent of beans, sweet corn, and squash in equal proportions was 
74 mrem/year (740 mS/year). This upper bound dose was below the International 
Commission on Radiological Protection permissible dose limit of 100 mrem/year 
(1,000 mS/year) from all pathways and corresponds to a risk of an excess cancer 
fatality of 3.7 × 10−5 (37 in a million), below the US Environmental Protection 
Agency’s guideline of 10−4 (US-EPA 2005).
Carrots, squash, and Sudan grass were irrigated with groundwater amended with 

manganese, molybdenum, selenium, and uranium stock solutions to simulate a 
range of concentrations found at ten inactive uranium ore milling sites to determine 
plant tissue levels after a 90-day growth period in sand in a greenhouse experiment 
(Baumgartner et al. 2000). It was evident from this study that except for squash 
response to uranium, all plants had increased levels of each metal, some even to 
unacceptable levels. Squash, on the hand, however, did not accumulate uranium at 
any dose tested. Similar results were reported by Lotfy (2010), which indicated that 
sunflower and cotton shoots accumulated the highest U content among the five 
tested plant species (sunflower, cotton, pankium, napier grass, and squash), irre-
spective of soil type. Shoot concentrations of U were as high as 69.9 Bq kg−1 dry 
matter of sunflower, followed by cotton and napier grass, panikum then squash with 
a range of U between 4.2 and 69.9 Bq kg−1 dry matter in case of the alluvium soil. 
However, in the loamy sandy soil, sunflower U-shoots were > cotton > penakium > 
napier grass > Squash with a lower order of magnitude, which could be explained 
by the lower U content in sandy soil compared to the alluvial soil.
Activity  concentrations  and  plant/soil  concentration  ratios  (CRs)  of  239,240Pu, 

241Am, 244Cm, 232Th, and 238U were determined for three vegetable crops grown on 
an exposed, contaminated lake bed of a former reactor cooling reservoir in South 
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Carolina, USA (Whicker et al. 1999). The crops were turnip greens and tubers 
(cv. white globe), bush beans (Phaseolus vulgaris), and husks and kernels of sweet 
corn cv. Silver Queen. Although all plots were fertilized, some received K

2
SO

4
, 

while others received no K
2
SO

4
. The K

2
SO

4
 fertilizer treatment generally lowered 

the activity concentrations for 241Am, 244Cm, 232Th, and 238U, but differences were 
statistically significant for 241Am and 244Cm only. Highly  significant  differences 
occurred in activity concentrations among actinides and among crops. In general, 
turnip greens exhibited the highest uptake for each of the actinides measured, while 
corn kernels had  the  least. For  turnip greens, geometric mean CRs ranged  from 
2.3 × 10−3 for 239,240Pu to 5.3 × 10−2 for 241Am (no K

2
SO

4
 fertilizer). For corn kernels, 

geometric mean CRs ranged from 2.1 × 10−5 for 239,240Pu and 232Th to 1.5 × 10−3 for 
244Cm (no K fertilizer). In general, CRs across all crops for the actinides were in 
the order: 244Cm > 241Am > 238U > 232Th > 239,240Pu. They calculated the lifetime health 
risks from consuming crops contaminated with anthropogenic actinides, which 
were similar to the risks from naturally occurring actinides in the same crops (total 
2 × 10−6); however, these risks were only 0.3% of that from consuming the same 
crops contaminated with 137Cs.

17.4  Metals in Soils and Food Chain

The movement of both essential and non-essential trace elements through agricul-
tural ecosystems and food chains is complex. Such elements as As, B, Cd, Cr, Cu, 
Hg, Ni, Pb, Se, U, V, and Zn are generally present in soils in low concentrations but 
concentrations may be elevated because of natural processes and human activities, 
such as fossil fuel combustion, mining, smelting, sludge amendment to soil, fertil-
izer application, and agricultural practices. Although a significant effort has been 
expended over the past 40 years to evaluate and quantify the transfer of trace ele-
ments from soils to plants, more attention needs to be given to mechanisms within 
the soil and plant systems, which influence their solubility, chemical speciation, 
mobility, and uptake by and transport in plants (Banuelos and Ajwa 1999). The 
prediction of movement of trace elements in the agricultural ecosystem must be 
partially based on understanding the soil and plant processes governing chemical 
form and the uptake and behavior of trace elements within plants.

Sparingly soluble contaminants are less likely to affect human health through 
food chain transfers, such as plant uptake or passage through animal-based foods, 
because mobility in these pathways is limited by solubility (Sheppard and Evenden 
1992). Direct ingestion or inhalation of contaminated soil becomes the dominant 
pathway. However, both of  these can be selective processes. Clay-sized particles 
carry the bulk of the sparingly soluble contaminants, and mechanisms that selec-
tively remove and accumulate clay from the bulk soil also concentrate the contami-
nants. Erosion is another process that selectively removes clays. Sheppard and 
Evenden (1992) examined the degree of clay and contaminant-concentration enrich-
ment that could occur by these processes, using U, Th, and Pb as representative 
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contaminants and using clayey and loamy soil. They indicated that soil erosion by 
water in natural rainfall events caused concentration enrichments up to sevenfold, 
and enrichments varied with characteristics of the erosion events. Adhesion to skin 
gave modest enrichments of 1.3-fold in these soils, but up to 10-fold in sandy soils. 
Adhesion to plant leaves, where there was no root contact with contaminated soil, 
gave leaf concentration comparable to situations where the roots contacted the 
contaminated soil. Clearly, adhesion to leaves is an important component of plant 
accumulation of sparingly soluble contaminants. The bioreduction and immobiliza-
tion of soluble U(VI) to insoluble U(IV) minerals are a promising strategy for the 
remediation of uranium-contaminated soil and groundwater. While a mechanistic 
description is not fully resolved, it appears humic materials could interrupt electron 
transport to U(VI). The results of Lenhart et al. (2000) suggested that humic 
materials could potentially decrease U(VI) reduction under certain conditions. 
Furthermore, humic materials could prevent U(IV) precipitation and thus facilitate 
the transport of U(IV)–humic complexes.

Soils contaminated with heavy metals or radionuclides at concentrations above 
regulatory limits pose an environmental and human health risk (Elless et al. 1997). 
Whereas regulatory limits are only concerned with the “extent” of the contamination, 
knowledge of the “nature” of the contamination (e.g., oxidation state and mineralogy 
of the contaminant, particulate vs. adsorbed form, etc.) is necessary for developing 
optimal treatment strategies. Mineralogical identification of the contaminants pro-
vides important information concerning the nature of the contamination because 
once the mineral form is known, its properties can then be determined from geo-
chemical data. A new density-fractionation technique was used to concentrate U 
particulates from U-contaminated soils. Results from neutron-activation analysis of 
each density fraction showed that the U had been concentrated (up to 11-fold) in the 
heavier fractions. Mineralogical analyses of the density fractions of these soils using 
x-ray diffraction, scanning-electron microscopy, and an electron microprobe showed 
the predominance of an autunite  [Ca(UO

2
)

2
(PO

4
)

2
.10-12 H

2
O]-like mineral with 

lesser amounts of uraninite (UO
2
) and coffinite (USiO

4
) as the U-bearing minerals in 

these soils. The presence of reduced forms of U in these soils suggests that the opti-
mal remediation strategy requires treatment with an oxidizing agent in addition to a 
carbonate-based leaching to solubilize and remove U from these soils.

The 238U and 232Th concentrations in soil and various foods obtained in high natu-
ral radiation areas in China were determined for estimating the internal radiation 
doses caused by these radionuclides (Yukawa et al. 1999). Several analytical meth-
ods were evaluated for their applicability and quality assurance. The accuracy and 
precision of ICP-MS is considerably better for determining trace elements like U 
and Th in fine powder samples. The estimated annual effective dose is 0.302 m Sv/
year for 238U and 1.86 m Sv/year for 232Th in the high natural radiation area, and 
0.0101 m Sv/year for 238U and 0.177 m Sv/year for 232Th in the control area.

Soil samples were collected around a coal-fired power plant from 81 different 
locations in Hungary (Papp et al. 2002). Brown coal, unusually rich in uranium, is 
burnt in this plant that lies inside the confines of a small industrial town and has 
been operational since 1943. Activity concentrations of the radionuclides 238U, 
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226Ra, 232Th, 137Cs, and 40K were determined in the samples. Considerably elevated 
concentrations of 238U and 226Ra were found in most samples collected within the 
inhabited  area. Concentrations of  238U and 226Ra in soil decreased regularly with 
increasing depth at many locations, which can be explained by fly ash fallout. 
Concentrations of 238U and 226Ra in the top (0–5 cm depth) layer of soil in public 
areas inside the town are 4.7 times higher, on average, than those in the uncontami-
nated deeper layers, which mean there are approximately 108 Bq kg−1 surplus activ-
ity concentrations above the geological background. A high emanation rate of 222Rn 
from the contaminated soil layers and significant disequilibrium between 238U and 
226Ra activities in some kinds of samples have been found.

Accumulation of 226Ra into different plant species from contaminated soils was 
measured further on site within the area of an uranium mill (Soudek et al. 2004). 
While the 226Ra activity concentration in soil on site ranged from 7.12 to 25.60 Bq.g–1 
(1  SD < ±10%),  in  the  plant  species  tested,  it  ranged  from  0.66  to  5.70  Bq.g–1 
(1 SD < ±10%). Their results proved that the 226Ra accumulation was rather different 
for the tested higher plant species. They suggested that some of tested plants could be 
applied for effective large-scale and long-time decrease of 226Ra activity concentration 
in highly contaminated soils. Moreover, using selected plant species could be con-
sidered for biomonitoring. This finding can be helpful in selecting plant species able 
to extract 226Ra and/or in phytomonitoring within the areas of uranium facilities.

17.5  Remediation Options

A wide variety of remediation technologies are available. Techniques most suited to 
these particular sites are those which are well established, require little mainte-
nance, and are known to be able to deal with wastes containing radionuclides which 
arise from the 235U, 238U decay chains. Remediation technologies may be divided 
into five major categories (Angle et al. 2001; Gisbert et al. 2003; Adriano et al. 
2004; Kamal et al. 2004), they are as follows: (1) Removal of source, where the 
contaminated material is collected and removed to a more secure location. (2) 
Containment, where barriers  are  installed between contaminated and uncontami-
nated media to prevent the migration of contaminants, i.e., capping and sub-surface 
barriers. Solidification/stabilization (S/S) can be done in situ or ex situ on excavated 
materials by processing at a staging area either on-site or off-site. Solidification 
refers also to techniques that encapsulate hazardous waste into a solid material of 
high structural integrity. (3) Immobilization, where materials are added to the con-
taminated medium, in order to bind the contaminants and reduce their mobility, i.e., 
cement-based solidification and chemical immobilization. Contaminated soils can 
be treated in situ or ex situ to reduce the pollutants and thereby their toxicity and 
mobility. The redox potential (Eh) depends on the availability of oxygen in soils, 
water, and sediments, and upon biochemical reactions by which microorganisms 
extract oxygen for respiration. Redox conditions influence the mobility of metals in 
two different ways. Firstly, the valence of certain metals changes. For example, 
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under reducing conditions, Fe3+ is transformed to Fe2+ and, similarly, the valence of 
manganese and arsenic is subject to direct changes. Since the reduced ions are more 
soluble, increased concentrations of these metals have been observed in reducing 
environments such as groundwaters and sediment solutions. Under reducing condi-
tions, sulfate reduction will take place: for example, in sediments, lead sulfide with 
a low solubility is formed. On the other hand, an increase in the redox potential will 
cause lead sulfide to become unstable, with a subsequent rise in dissolved lead 
concentrations  (McCutcheon  and  Schnoor  2003). (4) Separation, where the 
contaminating radionuclides are separated from the bulk of the material, i.e., soil 
washing, flotation, and chemical/solvent extraction. Separation can be carried out 
both in situ and ex situ. The fundamental strategy of soil washing is to extract 
unwanted contaminants from soil through washing or leaching the soil with liquids, 
generally aqueous solutions. The contaminant must be separated from the soil 
matrix and transferred to the washing solution and then the washing solution must 
be extracted  from  the  soil.  (5) Phytoremediation. Phytoremediation  is  the use of 
green plants to remove pollutants from the environment or render them harmless. 
“Current engineering-based technologies used to clean up soils—like the removal 
of contaminated topsoil for storage in landfills—are very costly”; “green” technol-
ogy uses plants to “vacuum” heavy metals from the soil through their roots. Certain 
plant species, known as metal hyperaccumulators, have the ability to extract ele-
ments from the soil and concentrate them in the easily harvested plant stems, shoots, 
and leaves. These plant tissues can be collected, reduced in volume, and stored for 
later use. While acting as vacuum cleaners, the unique plants must be able to toler-
ate and survive high levels of heavy metals and radionuclides in soils.

Phytoremediation can be used as part of a treatment train when time constraints 
require other methods to be employed to achieve a remediation goal in a short period 
of time. This usually occurs when high contaminant concentrations in sensitive 
areas (i.e., near drinking water sources) require quick reduction. A series of reme-
diation efforts may be undertaken to reduce the concentrations to an acceptable 
level before applying phytoremediation as the last “polishing step” to remediate and 
contain low-level concentrations. Phytoremediation can also be applied in conjunction 
with other technologies to achieve a treatment goal. The natural solar-powered pump-
ing of deep-rooted trees may need to be coupled with traditional pump-and-treat 
systems to maintain treatment rates during the less effective growing months of the 
winter season. Vegetation may also be planted around site perimeters and “hot 
spots” to maintain hydraulic control and prevent contamination migration, while 
traditional methods are applied to remediate the source.

17.5.1  Uranium Bioremediation

Depending on solution chemistry, U(VI) often exists as mobile anionic uranyl–
carbonate complexes (Langmuir 1978; Grenthe et al. 1992). Biological reduction of 
soluble U(VI) to a sparingly soluble form of U(IV) (e.g., uraninite UIVO2(s)) has 
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been proposed as a remediation strategy (Lovley 1993). A variety of dissimilatory 
metal-reducing bacteria (DMRB), like the genus Geobacter (an obligate anerobe) 
and Shewanella (a facultative anaerobe), are the most extensively studied and 
sulfate-reducing  bacteria,  like  Thermo-desulfo-bacteria,  the  Nitrospirae,  and  the 
gram-positive Peptococcaceae—for  instance, Thermodesulfovibrio and Desulfoto-
maculum. There is also a genus of Archaea known to be capable of sulfate reduction; 
Archaeoglobus can catalyze this reaction under anoxic conditions (e.g., Truex et al. 
1997; Spear et al. 1999; Liu et al. 2002; Dyer 2003).

The impact of humic materials on the bioreduction of soluble U(VI) is not well 
understood. For example, if a DMRB preferentially uses humic materials instead of 
U(VI) as its electron acceptor, then U(VI) bioreduction could be inhibited. However, 
if the humic materials act as effective electron shuttles, then no inhibition would be 
observed and, depending on the different reaction rates and the solution chemistry, 
enhancement may occur (Gu and Chen 2003; Gu et al. 2005). Another possibility is 
that humic materials may complex U(VI) (Moulin et al. 1992; Higgo et al. 1993; 
Lenhart et al. 2000), decrease bioavailability, and inhibit bioreduction. Finally, 
humic materials may also complex U(IV) (Li et al. 1980; Zeh et al. 1997), which 
could interfere with U(IV) precipitation and facilitate U(IV) transport.

17.5.2  Phytoremediation of Uranium-Contaminated Soils

Radionuclides can effectively be removed from contaminated sites using phytore-
mediation technologies. In this context, an environmentally friendly and cost-effective 
uptake of radionuclides by root systems from contaminated soils and/or surface 
waters has shown promising results. Several organic as well as inorganic agents can 
effectively and specifically increase solubility and, therefore, accumulation of heavy 
metals by several plant species (Schmidt 2003). Metal hyperaccumulators should 
exhibit the following traits: (1) possess highly efficient root uptake, (2) enhanced 
root-to-shoot transport, and (3) hypertolerance of metal(s), involving internal com-
plexation  and  compartmentation  (McGrath  and  Zhao  2003).  Crops  like  willow 
(Salix viminalis L.), Indian mustard Czern.], corn (Zea mays L.) and sunflower show 
high tolerance to heavy metals and are, therefore, to a certain extent able to use the 
surpluses that originate from soil manipulation. Both good biomass yields and, par-
ticularly, metal hyperaccumulation (naturally or enhanced) are required in order to 
make phytoextraction efficient over relatively short time periods.

Uranium concentrations can be strongly increased by applying citric acid 
(Garbisu and Alkorta 2001). The addition of chelating agents to the soil can also 
bring metals into solution through desorption of sorbed species, dissolution of Fe 
and Mn oxides, and dissolution of precipitated compounds (Norwell 1984). These 
complexes can greatly alter the reactivity of the metal ion. They can alter the oxida-
tion–reduction properties of transition-metal ions, such as iron (Fe) and manganese 
(Mn), and therefore increase or decrease the reactivity of these systems (Evangelou 
et al. 2006). Moreover, for large-scale applications, agricultural measures as placement 
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of agents, dosage splitting, the kind and amount of agents applied, and the soil 
properties are important factors governing plant growth, heavy metal concentra-
tions, and leaching rates. Effective prevention of leaching, breeding of new plant 
material, and use of the contaminated biomass (e.g., as biofuels) will be crucial for 
the acceptance and the economic breakthrough of enhanced phytoextraction. 
Therefore, it is emphasized that the ability to hyperaccumulate metals should be 
demonstrated on real field contaminated soils. Phytoremediation of uranium con-
taminated soil has been hampered by a lack of information relating U speciation to 
plant uptake. For example, Ebbs et al. (2001) investigated U uptake by plants in 
order to show how the phytoextraction of U from contaminated soil could be 
improved. Using speciation modeling and hydroponic experiments, they concluded 
that the uranyl (UO

2
2+) cation is the chemical species of U most readily accumu-

lated in plant shoots. A subsequent soil incubation experiment examined the solubi-
lization of U from contaminated soil by synthetic chelates and organic acids. The 
results of the hydroponic and soil experiments were then integrated in a study that 
grew red beets in U-contaminated soils amended with citric acid or HEDTA. Citric 
acid was again a highly effective amendment, increasing shoot U content by 14-fold 
compared to controls. In another work, Ebbs et al. (1998) studied U-uptake and 
translocation by plants using a computer speciation model to develop a nutrient 
culture system that provided U as a single predominant species in solution. A hydro-
ponic uptake study determined  that at pH 5,  the uranyl  (UO

2
2+) cation was more 

readily taken up and translocated by peas (Pisum sativum) than the hydroxyl and 
carbonate–U complexes present in the solution at pH 6 and 8, respectively. A sub-
sequent experiment tested the extent to which various monocot and dicot species 
take up and translocate the uranyl cation. Of the species screened, tepary bean 
(Phaseolus acutifolius) and red beet (Beta vulgaris) were the species showing the 
greatest accumulation of U. The initial characterization of U-uptake by peas sug-
gested that in the field, a soil pH of <5.5 would be required in order to provide U in 
the most plant-available form. A pot study using U-contaminated soil was therefore 
conducted to assess the extent to which two soil amendments, HEDTA and citric 
acid, were capable of acidifying the soil, increasing U solubility, and enhancing 
U-uptake by red beet. Of these two amendments, only citric acid proved effective, 
decreasing the soil pH to 5 and increasing U accumulation by a factor of 14. The 
results of this pot trial provide a basis for the development of an effective phytore-
mediation strategy for U-contaminated soils. However, applications of synthetic 
chelators such as EDTA can lead to a substantially increased risk of leaching of 
metals to groundwater. This environmental risk is likely to limit the usefulness of 
chelator-induced phytoextraction. One way to deal with this risk is to use hydrologi-
cal barriers. However, due to the costs of construction of hydrological barriers, it 
would probably be simpler and quicker to flush metals out of the soils using chela-
tors, without growing plants. Such operations require that the chelators to be used 
are cheap and easily degradable in soil; meeting both of these criteria is not easy.

It is worth to mention here that bioconcentration factors obtained from studies 
using hydroponic culture, sand culture, or even soils spiked with soluble metals do 
not give a realistic measure of how the plants will perform on field contaminated 
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soils, where metals are usually much less bioavailable. Hydroponic culture or metal 
spiking experiments are useful for investigating mechanisms of metal uptake and 
tolerance, but often the results cannot be extrapolated to the field. Metal tolerance is 
also important, because metal-sensitive plants are not likely to establish and pro-
duce large biomass on contaminated soils. Non-hyperaccumulators may achieve an 
apparently large bioconcentration factor under conditions of metal toxicity, when 
growth has been severely inhibited. Vandenhove et al. (2001) in a study investigated 
the potential of ryegrass (Lolium perenne cv. Melvina), Indian mustard, and redroot 
pigweed (Amarathus retroflexus) to phytoextract uranium (U) from a sandy soil 
contaminated at low levels in the greenhouse experiment. Two soils were tested: a 
control soil (317 Bq 238U kg−1) and the same soil washed with bicarbonate (69 Bq 
238U kg−1). The annual removal of the soil activity with the biomass was less than 
0.1%.  The  addition  of  citric  acid  (25  mmol  kg−1) one week before the harvest 
increased U-uptake up to 500-fold. With a ryegrass and mustard, yield of 15,000 kg 
ha−1 and 10,000 kg ha−1, respectively, up to 3.5 and 4.6% of the soil activity could 
annually be removed with the biomass. With a desired activity reduction level of 1.5 
and 5 for the bicarbonate washed and control soil, respectively, it would take 10–50 
years to attain the release limit. A linear relationship between the plant 238U concen-
tration and the 238U concentration in the soil solution of the control, bicarbonate-
washed, or citric acid-treated soil points to the importance of the soil solution 
activity concentration in determining U-uptake and hence to the importance of solu-
bilizing agents to increase plant uptake. However, they indicated that citric acid 
addition decreased dry matter accumulation in all plants and inhibited growth of 
ryegrass. On the contrary, Lotfy (2010) indicated that increasing citric acid rate of 
application up to 20 mmol/kg resulted in a relative increase in whole plant dry 
weight, which could be attributed to the release of micro and macro nutrient.

Huang et al. (1998) suggested that key to the success of U phytoextraction is to 
increase soil U availability to plants. Some organic acids can be added to soils to 
increase U desorption from soil to soil solution and to trigger a rapid U accumula-
tion in plants. Of the organic acids (acetic acid, citric acid, and malic acid) tested, 
citric acid was the most effective in enhancing U accumulation in plants. Shoot U 
concentrations of Brassica juncea and Brassica chinensis grown in a U-contaminated 
soil  (total  soil U, 750 mg/kg)  increased from <5  to >5 000 mg/kg  in citric acid-
treated soils. Using this U hyperaccumulation technique, U accumulation in shoots 
of selected plant species grown in two U-contaminated soils (total soil U, 280 and 
750 mg/kg) can be increased by more than 1,000-fold within a few days. The results 
suggest that U phytoextraction may provide an environmentally friendly alternative 
for the cleanup of U-contaminated soils. Lotfy (2010) indicated that U-uptake var-
ies with soil/plant interaction, chelate, rate, and chemical forms (citric acid and 
EDTA). Chelate addition enhanced U accumulation in sunflower shoots and roots 
significantly. For example, the addition of citric acid at 20 mmol/kg increased sun-
flower shoot U concentration from 23.6 to 42.6 mg/kg and from 18.2 to 24.3 mg/kg 
in roots. It is worth to mention that the nature of the contaminant (recalcitrance, 
persistence, bioavailability, etc.) is crucial when developing effective phytoremedi-
ation strategies for a given site. High contaminant concentrations may limit 
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phytoremediation as a treatment option due to phytotoxicity or the impracticality of 
using such a slow remediation method. Additionally, the physical location of the 
contaminant will determine the efficiency of the treatment. Due to plant root limita-
tions, phytoremediation of soils and sediments is typically employed for contami-
nants in the near surface environment within the root zone. For groundwater 
treatment, phytoremediation is limited to unconfined aquifer where the water table 
and the contaminant are both within reach of plant roots (either in direct contact or 
via transpiration). It can be deduced that no single application of phytoremediation 
is appropriate for all sites. Rather, a prescription must be made based on a thorough 
site assessment. Phytoremediation may be the sole solution to a remediation project 
in instances where time to completion is not a pressing issue. While phytoremedia-
tion may not be a stand alone solution to all hazardous waste sites, it can certainly 
be used as part of a treatment train for site remediation either during peak growing 
seasons or as a polishing step to clean up the last remaining “hard-to-get” low 
concentrations.

17.6  Conclusion

Despite problems, phytoremediation is still considered an effective technology, 
which, however, requires acceptance at commercial scale. Several reports indicated 
that this technology has received greater acceptance for chlorinated solvents and 
metals while just starting to gain acceptance within the explosives and pesticides 
domains. Continued bench-scale studies are needed to determine plant  toxicities, 
degradation pathways, and contaminant fates, and the resulting field scale applica-
tions are necessary to provide proof the technology works in order for phytoreme-
diation to be fully accepted by the industry.
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Abstract Use of plants to remediate soil contaminated with heavy metals has 
received an increasing attention during the last decade. Bioremediation using living 
plant species, referred to as phytoremediation, covers several different strategies, of 
which bioremediation employs phytoextraction, rhizofiltration, phytostabilization, 
and phytovolatilization. High efficiency, low cost, and easy operation make 
phytoremediation an important alternative to current physicochemical methods. 
Although, a number of metal-hyperaccumulating plant species have been identified, 
they have little significance in direct application because of their slow growth, low 
biomass, and intense interaction with a specific habitat. The phytoremediation 
potential of plants with well-established agricultural properties and high-biomass 
yield can be substantially improved by genetic manipulations. The transgenic 
approaches involve implementation of heterologous metal transporters, centrally 
important in metal uptake, compartmentalization and/or translocation to organs, 
improved production of intracellular metal-detoxifying chelators, and (over)pro-
duction of novel enzymes. Efforts are also being directed to obtain better molecular 
insights into metallomics and physiology of hyperaccumulating plants, which is 
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likely to provide candidate genes suitable for phytoremediation. Although substantial 
progress has been made, further efforts require interdisciplinary approach and, more 
so, field trials are needed to assess the risk of genetic pollution and underlying 
economics. Here, we discuss the evidence supporting suitability and prospects of 
transgenic approaches in phytoremediation of heavy metal-contaminated soils.

Keywords Bioremediation • Decontamination • Genetic engineering  
• Phytoextraction • Phytovolatilization

18.1  Introduction

Heavy metals, due to their elemental non-degradable nature, when released into the 
environment pose serious risks to health and ecology. Conventional physicochemi-
cal methods for remediation of metal-polluted soils involve chemical extraction, 
electrolysis, separation of high-metal soil particles by size, or immobilization of 
metallic species in the soil in situ by vitrification or chemical precipitation (Iskandar 
and Adriano 1997; Page and Page 2002). The high costs (both capital and opera-
tional), poor efficiency to remove metals at low concentrations, and significant 
alteration in physicochemical properties of the soils following application are some 
of the disadvantages of these processes. Phytoremediation, the use of plants to clean 
up sites with shallow, low to moderate levels of inorganic or organic contami-
nants, on the other hand, has however, gained increasing attention recently (Eapen 
et al. 2007; Macek et al. 2008; Doty, 2008; Vangronsveld et al. 2009; Kotrba et al. 
2009; Aken et al. 2010). Phytoremediation is both a growing science and a growing 
eco-friendly industry. This technique can be used along with or, in some cases, in 
place of physicochemical cleanup methods. Several estimates on the costs for 
remediating contaminated sites have shown that plants could, in many cases, do that 
same job as a group of engineers for one tenth of the cost. Use of plants for decon-
tamination have some beneficial features: solar-energy-driven production of high 
biomass; plants can be sown, watered, and harvested with relatively low input; the 
capacity to reduce the spread of pollutants through water and wind erosion; storage 
of the harvested plants as hazardous waste is seldom required and when needed is 
less demanding than traditional disposal techniques; it has public acceptance and is 
an aesthetically pleasant method. Several mechanisms may be involved in the direct 
and indirect action of phytoremediation at metal-contaminated sites (for detail 
see Chap. 3).

An inherent capacity to efficiently accumulate metals in harvestable aboveg-
round tissues is particularly important in phytoextraction (Chaney 1983) approach. 
Several studies indicated that heavy metals could be divided into three categories 
based on their propensity to be translocated to plant shoots: Mn, Zn, Cd, and Mo are 
readily translocated to the shoots; Ni, Co, and Cu, are intermediate; and Cr, Pb, and 
Hg are translocated to the lowest extent (Alloway 1995). The natural capacity of 
some plant species to accumulate heavy metals at large quantities (Table 18.1) has 
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sparked the interest of plant physiologists, ecologists, and evolutionary biologists 
for over 50 years. The term hyperaccumulation, referring to abnormal levels of Ni 
in the tree Sebertia acuminata, was introduced by Jaffre et al. (1976). The plants are 
considered as hyperaccumulating if they are capable to accumulate at least 100 
times higher concentrations of a particular element than other species growing over 
an underlying substrate with the same characteristics (Brooks 1998). Specifically, 
the currently accepted concentration limit in shoot tissues of hyperaccumulators on 
a dry-weight basis is 0.1 wt.% for most metals, except, for zinc (1 wt.%), cadmium 
(0.01 wt.%), or gold (0.0001 wt.%) (Baker et al. 2000). About 360 plant species 
worldwide are known to act as Ni hyperaccumulators (Reeves 2006). The plant 
families most strongly represented are the Brassicaceae, Euphorbiaceae, Asteraceae, 
Flacourtiaceae, Buxaceae, and Rubiaceae. Since the discovery of zinc accumula-
tion in certain Viola sp. (Violaceae) and Thlaspi sp. (Brasisaceae) in the nineteenth 
century, other Zn-hyperaccumulating species capable of hyperaccumulating more 
than 10,000 mgZn kg−1, were described, notably Arabidopsis halleri. This plant has 
colonized calamine soils, which are highly contaminated with Zn, Cd, and Pb as a 
consequence of industrial activities. In addition, some populations have been reported 
to contain more than 100 mg g−1 of dry biomass of Cd in their leaves. Only few addi-
tional plant species, such as Thlaspi caerulescens and members of Salix genus 
(Dickinson and Pulford 2005), have been shown to accumulate more than 100 mg of 
Cd kg−1 into their tissue. Lead shows relatively low mobility in soils and into vegeta-
tion, which typically contains less than 10 mg of Pb kg−1. Several hyperaccumulating 
species of Brassiceae, Poaceae, and Polygonaceae families have been reported to 
contain above 1,000 mg Pb kg−1 in shoots. Concentrations of Co and Cu in plants 
range between 0.03–2 and 5–25 mg kg−1, respectively. The tupelo or black gum of the 
southeastern United States (Nyssa sylvatica) is remarkable in being able to accumu-
late as much as 845 mg of Co kg−1 from pristine soils (Reeves 2006). Extensive screen-
ing of many sites of mining and smelting activity throughout Zaire after plant and soil 
sample collections and analysis, identified 30 hyperaccumulators of Co and 32 of Cu, 
with 12 species common to both (Table 18.1). The phytoremediation potential of most 
known hyperaccumulating species is, however, currently rather low because of their 
slow growth, low biomass, and often tight association with a specific habitat and lack 
of good agronomic characteristics (Cunnigham et al. 1995; Chaney et al. 2005).

18.2  Ideal Phytoremediation and Genetically Modified Plants

The ideal phytoremediation plants should possess the following characteristics: 
(1) capacity to tolerate and accumulate metals, (2) ability to produce high and fast-
growing biomass, (3) widely distributed highly branched root system, (4) repulsive 
to herbivores to avoid the escape of accumulated metals to the food chain, (5) must 
have a wide geographic distribution and be easy to cultivate, and (6) be relatively 
easy to harvest. In non-hyperaccumulating plants, factors limiting the phytoextraction 
performance include, limited root uptake and little root-to-shoot translocation of 
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accumulated heavy metals. Chemically enhanced phytoextraction has been shown 
to overcome these problems (Blaylock et al. 1997; LeCooper et al. 1999). Common 
crop plants with high biomass can be triggered to accumulate high amount of metals 
by enhancing the mobility of metal from the roots to the green parts of the plant by 
adding mobilizing agents when the crop had reached its maximum biomass. Though, 
this approach results in decontamination of soil, but involves chemical intervention 
to the soil, thereby causing secondary pollution. In addition, efforts are being made 
for the genetic manipulation of plants in order to improve their phytoremediation 
performance. Accumulated knowledge and continuing efforts toward deciphering 
physiological mechanisms and of the cognate genetic determinants underlying 
metal accumulation and tolerance provide solid basis for selection of suitable 
genes to be (over)expressed in high-biomass plants of well-established agriculture 
(see Sect. 18.3). Some of the high-biomass metallophytes with well-established 
genetic manipulation procedures eligible for future exploitation include Brassica 
juncea, sunflower (Helianthus annuus), yellow poplar (Liliodendron tulipifera), and 
shrub tobacco (Nicotiana glaucum) (Eapen and D’Sousa 2005).

Unlike transgenic crops, the issues such as food safety, allergenicity, and labeling 
(Kok et al. 2008) are not relevant when genetically modified (GM) plants are con-
sidered for use in phytoremediation. However, an improved tolerance to toxic met-
als implemented through genetic engineering would provide GM plants with a 
selective advantage at contaminated sites, for example, with acquired metallotoler-
ance. Thus, the main risk concerns the gene flow from cultivated plants to wild rela-
tives via cross-pollination. Potential changes in biological diversity due to invasion 
of privileged GM plants and the effects of GM plants on related soil microorgan-
isms, herbivores, and other organisms along the food chain must be also taken into 
account. Some risk assessment methods suggest that the danger of entry of metals 
to food chains through GM accumulator would be low in most cases, because such 
plants would be in isolated industrial regions, rather than in countryside. The threat 
of uncontrolled pollination and crossing with the relatives and spreading of seeds 
could be avoided, if GM plants are harvested before flowering (Linacre et al. 2003). 
In addition to “physical” barriers, various genetic methods are available that may 
restrict transgenic flow in a self-maintaining manner. One approach is targeting the 
heterologous gene into chloroplasts, since chloroplast DNA is maternally inherited, 
its transmission via pollen occurs rarely (Davison 2005). Use of plastid-specific 
promoters is desirable to minimize the risk of transfer of a functional heterologous 
gene to the nucleus, though such danger is only hypothetical. A suitable technique 
restricting the spread of GM plants by seeds is based on poison/antidote idea and 
employs lethal ribonuclease barnase of Bacillus amyloliquefaciens as poison and 
protein barstar as antidote (Kuvshikov et al. 2001). To implement poison/antidote 
pathway, the GM plant is also transformed with the barnase and barstar genes. The 
barnase gene is controlled by the promoter, which is only active at the time of seed-
pod development. Expression of barstar gene is regulated by heat-shock promoter. 
Correct seed development and germination are possible only when the barstar is 
produced due to the controlled heating of developing seeds to 40°C. Such conditions 
are unlikely in the field, making the germination of progeny likely to fail there.



414 P. Kotrba et al.

Use of antibiotic resistance genes as a simple method to select for a transformation 
event is often criticized, although the risk of horizontal antibiotic-resistance transfer 
from GM plant is essentially negligible (Bennett et al. 2004). The more realistic 
threat is, however, the mobilization of genes and elements proximal to the gene for 
antibiotic resistance, which is always also the heterologous gene-of-interest. As 
genetic determinants of antibiotic resistance are widely distributed in the environ-
ment, a potential mechanism of horizontal transfer involving homologous recombi-
nation exists. Construction of GM plant to be released into the environment should 
thus avoid the use of antibiotic resistance markers and employ some of novel mark-
ers and screening strategies. Best solution to this problem is the precise deletion of 
marker gene from a chromosome employing the bacteriophage cre-lox or yeast 
FLP-FRT recombination system (Zuo et al. 2002; Gilbertson 2003). This strategy 
would then render transgenes containing only those heterologous genes, which are 
to be employed for the phytoremediation job.

18.3  Improving Phytoremediation of Metals  
Through Genetic Engineering

Prerequisite to the efficient accumulation of metal is its mobilization from soil, 
efficient metal uptake mechanism, cellular capability to maintain homeostasis of 
essential metals, and competence to detoxify (over)accumulated metal species 
(Clemens et al. 2002). As many metallic species exert their toxic effect by induction 
of reactive oxygen species (ROS) and other free radicals, their elimination is another 
challenge faced by the cell (Foyer and Noctor 2005).

18.3.1  Molecular Mechanisms of Metal Uptake  
and Targets to Genetic Manipulations

Essential heavy metals are required by plants for the activity of numerous metal-
loenzymes and proteins. Some heavy metal ions, are essential for specific metabolic 
process, but may impair biological equilibrium when over accumulated. Tight con-
trol and regulation of essential metal accumulation are thus of central importance, 
both at organism and cellular level. Uptake of non-essential metals employs the 
same mechanisms as adopted by essential metals. Unless detoxified, non-essential 
metal ions may exert their toxic effect at virtually any tissue and cellular concentra-
tion. The property of metallophytes to accumulate heavy metal ions in large quanti-
ties from metalliferous soils is a consequence of their adaptation. These plants 
choose accumulation-detoxification pathway, rather than restriction of metal ion 
entry, which can be regarded to as another adaptation strategy (Callahan et al. 2006). 
Accordingly, metal (hyper) accumulation requires complex alterations in the plant 
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metal homeostasis network. Though the reason why some plants have evolved the 
hyperaccumulation phenotype is not clear, it has been suggested that accumulated 
metals execute some kind of defense function, poisoning plant tissues for herbivores 
and pathogens (Boyd 2007).

The actual bioavailability of metal ions in soil is limited, because of their pres-
ence in mineral form, formation of hydrous oxides at pH >5, and strong binding to 
soil components like humic and fulvic acids. In order to solubilize metals for uptake, 
plants need to interact with the rhizosphere soil. To this end, plant can decrease pH 
within rhizosphere by H+ excretion and produce various organic chelators (root exu-
dates), such as carboxylates or phytosiderophores from the mugineic acid family 
(Fig. 18.1). The soil microflora can increase the bioavailability of metals by several 
mechanisms, involving excretion of H+ and carboxylic (e.g., citrate) ligands and 
redox conversion to mobile forms (Gadd 2007, 2010). Metabolic activities of some 
microorganisms may, in turn, result in immobilization of metallic species in soil by 
such mechanisms as organic precipitation with oxalates, inorganic precipitation 
with carbonates, phosphates or hydroxides, redox immobilization, sorption at cell 
walls and associated polymeric substances, and bioaccumulation. Following mobi-
lization, the initial contact of the metal ion with root cell involves its adsorption at 
the cell wall via ion-exchange and chelatation at cellulose, hemicellulose, pectin, 
and some minor polymers. The transport of heavy metal ions across the plant plasma 
membrane (Fig. 18.1) is likely to take place through secondary transporters of cat-
ion diffusion facilitator (CDF) and natural resistance-associated macrophage pro-
tein (Nramp) families. There is a growing number of studies on the plant metal 
transporters of different families involved in root uptake, metal translocation to 
other organs, and/or sequestration of metals in organelles (Krämer et al. 2007; 
Krämer 2010). A common feature underlying the interactions of heavy metal with 
the components of a biological system is relatively high reactivity of metal ions, 
mostly due to their ability to form coordination and covalent complexes. In some 
cases, heavy metal ions also trigger formation of free radicals. Only minute propor-
tions of heavy metals, if any, are thus during their passage through the plant body 
present as free hydrated ions. Specialized ligands ensure functional deposition of 
the metal ion in the binding centers of metalloproteins and are intimately involved 
in management of the storage metal pool. It should be noted that metal–ligand com-
plexes are primary substrates for transporters active in metal translocation to organs 
or compartmentalization in organelles.

The cysteine-rich metallothioneins (MTs) are intracellular ligands capable of 
tight coordination of heavy metal ions via cysteine residues shared along the peptide 
sequence in Cys-X-Cys or Cys-Cys motifs (X represents any amino acid). Peptides 
of MT family have been identified in plants, animals, eukaryotic microorganisms, 
and certain prokaryotes. Most of plant MTs consist of about 63–85 amino acids 
with two terminal cysteine-rich domains separated by a central region without any 
cys residues (Freisinger 2008). The plant MTs play a role in the homeostasis of 
essential heavy metals and the transcription of their genes is controlled by signals 
instrumental during germination, organ development, and senescence (Kotrba et al. 
1999; Cobbett and Goldsbrough 2002; Clemens 2006). Mammalian and certain 
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Fig. 18.1 Molecular events proposed for the (hyper)accumulation and detoxification of metals in 
plants. Bottom panel: Mobilization of metals in the rhizosphere via acidic or chelating root exu-
dates. Middle panel: Root-to-shoot translocation of metals, either as hydrated ions or metal–ligand 
complexes occurring via the xylem. Upper panel: Translocated metals reaching the leaf apoplast 
are then captured in different cell types, moving cell-to-cell through plasmodesmata
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fungal MTs are, besides their role in homeostasis, responsible for intracellular binding 
of toxic heavy metal ions. Sequestration of metal species by MTs is the principal 
mechanisms sustaining tolerance to a particular heavy metal ion in these organisms 
(Vasák 2005). In yeast Saccharomyces cerevisiae, 12 cysteine residues of CUP1, a 
53 amino-acid MT variant, form eight binding centers for monovalent, and four 
binding centers for divalent heavy metal ions.

Intracellular detoxification of most heavy metal ions by plants and certain yeasts 
relies on phytochelatins (PCs). These peptides of general structure (g-Glu-Cys)

n
X 

(PCn; n = 2−11; X represents Gly, Ser, b-Ala, Glu, Gln, or no residue) tightly sequester 
multiple metal ions in metal–thiolate complexes, rendering them inactive in cellular 
processes. Low-molecular-weight (2–4 kDa) metal–PC complexes, formed in 
cytosol, could further be transported to vacuoles, which serve as cellular sink for 
toxic metal species (Fig. 18.1). In this compartment, an inorganic sulfide ion may be 
incorporated to convert the complex to immobile 6 to 9 kDa high-molecular-weight 
complex of metal sulfide crystallites covered with PC (Cobbett and Goldsbrough 
2002; Clemens 2006). Alternatively, the acidic vacuolar sap may promote dissocia-
tion of metal ions from PCs and metals are then complexed there by carboxylic 
acids or phytate. Phytochelatins can be synthesized upon exposure to heavy metal 
ions, as well as to some metalloids. The biosynthesis of PCs via transpeptidation 
reaction from glutathione (g-glutamylcysteinylglycine, GSH) or its homologues 
(iso-PCs) is catalyzed by the constitutive PC synthase (PCS) in a metal-dependent 
manner. Glutathione (GSH) and its homologues also act as a fundamental antioxi-
dant molecule. Glutathione directly eliminates reactive oxygen radicals induced by 
heavy metals in cells (Schutzendubel and Polle 2002) and provides reducing equiva-
lents in the ascorbate-glutathione antioxidation cycle to maintain redox homeostasis 
(Foyer and Noctor 2005). In yeast, S. cerevisiae (Li et al. 1997), and in some ecto-
mycorrhizal fungi (Bellion et al. 2006) that do not produce PCs, cellular detoxifica-
tion of Cd2+ depends upon exclusion of the metal into vacuoles. The metal transport 
is then effective on the bis(glutathionato)Cd complex. The differential Cd2+ stress-
dependent expression of homologues of the respective yeast vacuolar ATP-dependent 
ABC-type transporter YCF1 has been reported in A. thaliana (Bovet et al. 2005). In 
this plant, GSH also appears to play a role in Cd2+ sequestration in the mitochondria 
and bis(glutathionato)Cd conjugates, transported via ABC transporter AtAMT3 into 
cytoplasm, become substrates for PC synthesis (Kim et al. 2006). The glutathionato-
metal or metalloid conjugates also seem to be involved in root-to-shoot transloca-
tion of Cd2+ in Brassica napus (Mendoza-Cózatl et al. 2008) and Hg2+ in A. thaliana 
(Li et al. 2006).

Translocation of metal to aboveground organs involves its passage from root 
symplast to xylem apoplast (Fig. 18.1). Here, we refer to the symplast-apoplast con-
cept, which considers that all the cells of a higher plants are connected, forming 
symplast. Continuous semipermeable membrane then separates the symplast from 
the apoplast, the nonliving parts of the plant tissue (cell walls, xylem, and intercel-
lular space). The passage of metal ions into xylem occurs via specific membrane 
transporters and is generally tightly regulated. While chelatation of heavy metal 
ions by PCs or MTs is thought to route predominantly to root sequestration, other 
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ligands, such as citrate and nicotianamine, target metals to xylem sap via primary 
transport mediated by transporters of P-type ATPase family (Krämer et al. 2007). 
Nevertheless, the possible redistribution of metal–PC complexes within the plant 
body via a symplasmic or apoplasmic passage, initiated by their export via ATP-
binding cassette (ABC) transporters, has been reported (Bovet et al. 2005). The 
notion that PCs can be involved in long-distance metal transport via symplasmic 
passage is further supported by the high PC content, compared to xylem, four times 
higher Cd2+ levels in the phloem sap of Cd2+-exposed rapeseed B. napus (Mendoza-
Cózatl et al. 2008).

Heavy metal ions (or complexes) that reach the apoplast of leaves are unloaded 
from xylem sap by the transporters of P-type ATPase into the leaf symplast, where 
they are complexed by MTs or PCs. Intracellular ligands, metallochaperones, and 
organellar transporters ensure delivery of metals to metal-requiring proteins and 
maintenance of cytosolic metal levels within physiological ranges. Toxic non-
essential metals as well as excess essential metals are sequestered in leaf cell vacu-
oles. It should be noted that less metabolically active trichomes show pronounced 
capacity to store accumulated metals (Clemens et al. 2002), thereby indicating that 
these cell types play an important role in storage and detoxification of heavy metals. 
The above paragraphs define the targets for genetic modifications of plants directed 
toward the improved phytoextraction of metals from soils and sediments. These 
lay in such pathways as follows: (1) Mobilization and uptake of metal from the soil. 
(2) Competence of metal translocation to shoots via symplast or xylem (apoplast), 
including efficiency of xylem loading. (3) Distribution to aboveground organs and 
tissues. (4) Sequestration within tissue cells. (5) Expulsion of accumulated metal to 
less metabolically active cells. Removal of Hg2+ (Sect. 18.3.4) as well as of some 
metalloids (Sect. 18.4) from contaminated soil by phytovolatilization could be 
achieved on implementation of enzyme activities promoting plants. (6) Capacity to 
convert metals to volatile species for phytovolatilization. Although deposition of 
heavy metals in roots is not desirable in phytoextraction strategy, improved metal-
lotolerance in such organ could be of importance during phytostabilization of con-
taminated soils. Therefore, some efforts should also be directed to improve root 
sequestration by metal-complex formation and deposition in vacuoles.

18.3.2  Modifications in Metal Transport Across Plasma 
Membrane

The transport of essential metals or alkali cations across plasma membranes by 
means of primary and secondary active transporters is of central importance in the 
metal homeostasis network in all organisms. Relatively broad substrate specificity 
of transporters makes them a promising tool to improve toxic metal uptake for phy-
toremediation. The N. tabacum plasma membrane transporter NtCBP4 (calmodu-
lin-binding protein), for example, is structurally similar to vertebrate and invertebrate 
K+ and to non-selective cation channels (Arazi et al. 1999). Overproduction of 
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entire NtCBP4 or its C-terminal part (calmodulin-binding and putative cyclic 
nucleotide-binding domains) in N. tabacum resulted in 20% increased uptake and 
translocation of Pb2+ to shoots, reflected in the higher sensitivity of transgenes 
compared to wild type (WT) controls (Sunkar et al. 2000). While 50% inhibition 
in elongation of WT roots was observed in hydroponic solutions containing 900 mM 
Pb2+, growth of NtCBP4 roots was inhibited by 50% at 600 mM Pb2+. Intriguingly, 
same transgenes showed improved tolerance to elevated Ni2+ concentrations, which 
was apparently due to NtCBP4-promoted Ni2+-exclusion by yet unidentified mech-
anism. For example, as compared to WT controls, NtCBP4 plants produced roots, 
70% longer, in media with 100 mM Ni2+ and showed 60% reduction in Ni uptake 
by shoots.

The overexpression of hypothetical plant iron transporters of the Nramp family in 
model plants A. thaliana or N. tabacum has been primarily conducted to assess their 
function in Fe homeostasis (Curie et al. 2000). It was also found that although the 
overproduction of intrinsic AtNramp3 in A. thaliana markedly increased sensitivity 
of the transgene to Cd2+, this phenotype was not accompanied by increase in Cd2+ 
accumulation (Thomine et al. 2000). The feasibility of using bacterial metal trans-
porters in plants was first demonstrated in A. thaliana transformed with zntA coding 
for Zn2+, Cd2+, and Pb2+ P1-ATPase responsible for the metal-efflux-based metallore-
sistance of E. coli (Lee et al. 2003). In transformed A. thaliana, localized ZntA on 
plasma membrane reduced the Cd2+ accumulation in protoplasts by promoting release 
of preloaded Cd2+. Overall, ZntA improved the tolerance of the ZntA plants when 
exposed to 70 mM Cd2+ and 700 mM Pb2+ (1.8 and 2.6 higher biomass yields, respec-
tively, compared to WT controls) and shoots of transgenics grown at these concentra-
tions showed 70% and 54% decreased content of Cd2+ and Pb2+ respectively, a 
desirable feature for crop plants to be safer from heavy metal contamination.

The widespread bacterial Hg2+ resistance mechanism, based on the import of 
Hg2+ into cytoplasm and its subsequent reduction to metallic mercury (see also 
Sects. 18.3.3 and 18.3.4), involves MerC as one of the plasma membrane transport-
ers for the Hg2+ uptake step (Silver and Phung 2005). In a model experiment with 
merC-expressing A. thaliana, the leaves when excised and submerged into a solu-
tion containing 100 mM Hg2+ showed more than threefold increased rate of foliar 
Hg2+ accumulation as compared to WT controls (Sasaki et al. 2006). However, 
MerC Arabidopsis seedlings also acquired a Hg2+ hypersensitive phenotype.

18.3.3  Modifications for Improved Metallotolerance

18.3.3.1  Improving Phytochelatin and Glutathione Production

Phytochelatins (PCs) are synthesized by phytochelatin synthase (PCS) enzyme 
from glutathione or its homologues. The constitutive overexpression of TaPCS1, a 
PCS from wheat, in shrub tobacco N. glauca substantially increased its tolerance to 
Pb2+ and Cd2+ (Gisbert et al. 2003) and greatly improved accumulation of Cu2+, Zn2+, 
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Pb2+, and Cd2+ in shoots (Martínez et al. 2006). The overexpressed gene conferred 
up to 36 and 9 times more Pb2+ and Cd2+ accumulation respectively, in shoots of the 
transgenic line NgTP1 under hydroponic conditions, reflected in the increased accu-
mulation of these metals from mining soil (Table 18.2). The natural capability of 
fast-growing N. glauca to grow at contaminated sites and to accumulate heavy met-
als (Barazani et al. 2004), as well as its wide geographic distribution, high biomass, 
deep roots, and resistance to herbivores, makes this plant a promising candidate in 
phytoremediation efforts.

An original approach to modulate the heavy metal accumulation capability in 
leguminous plants by engineering root-associated rhizobia was employed by Ike 
et al. (2007). Rhizobia establish a symbiotic relationship with leguminous plants 
and form nitrogen fixing nodule that contains more than 108 bacterial progenies. 
When PCS gene AtPCS1 from A. thaliana along with a genetic fusion of four mam-
malian MT-coding sequences were expressed in Mesorhizobium huakuii subsp. 
rengei (strain B3), the natural capability of the bacterium to accumulate Cd2+ from 
media containing 30 mM Cd2+ increased by 25-fold. The colonization of leguminous 
milkvetch Astragalus sinicum with the B3 strain in rice-paddy soil containing 1 mg 
of Cd kg−1 promoted Cd2+ uptake in roots, but not in nodules, by three times. The 
contribution of these free-living modified rhizobia to the collection of Cd2+ in the 
soil and the subsequent chemotaxis-mediated transport of accumulated metal for 
uptake in the legume’s roots seems possible. Although the enhanced Cd2+ accumula-
tion phenotype of the roots was not accompanied by an increased metal transloca-
tion to the shoots, such a strategy is likely to be useful in the rhizofiltration or 
transient phytostabilization of heavy metals in soil.

Although the overexpression of intrinsic AtPCS1 in A. thaliana resulted in 25 
times higher levels of the transcript and up to a twofold increased production of 
PCs, AtPCS1-transformed lines paradoxically showed hypersensitivity to Cd2+ and 
Zn2+ (Table 18.2) (Lee et al. 2003). Such a phenotype could be attributed to a non-
physiological decrease in the intracellular GSH pool due to the synthesis of supraop-
timal levels of PCs. Since GSH molecule is involved in many aspects of the plant 
response to heavy metal ions, many efforts have been directed toward engineering 
its biosynthesis pathway. Attempts to increase GSH production in plants, by the 
implementation of enzyme activities involved in its synthesis and recycling, have 
aimed mainly at the promotion of increased PC levels under metal stress. GSH is 
synthesized from its constituent amino acids in two sequential, ATP-dependent 
enzymatic reactions catalyzed by g-glutamylcysteine synthetase (g-ECS) and gluta-
thione synthetase (GS), respectively. Constitutive overproduction of the E. coli gshI 
gene and targeting of encoded g-ECS in plastids in B. juncea increased GSH levels 
in hydroponically grown transformants threefolds (Zhu et al. 1999a). Consequently, 
the PC2 levels of shoots and PC2, PC3, and PC4 levels in roots of g-ECS B. juncea 
stressed at 200 mM Cd2+ increased, compared to WT plants, by 30%, which resulted in 
higher Cd2+ tolerance and accumulation in shoots (Table 18.2). The effect of cytosolic 
overexpression of gshII encoding GS on Cd2+ tolerance and accumulation from a hydro-
ponic solution was less pronounced, although transformed plants stressed at 100 mM 
Cd2+ had 2.3 and 1.7 times higher PC2 compared to WT control (Zhu et al. 1999b). 
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Benett et al. (2003) further demonstrated that overexpression of gshI and gshII can 
indeed multiply the natural potential of B. juncea for phytoextraction from polluted 
soils (Table 18.2). Similar results have also been obtained in hybrid poplar (Populus 
tremula × P. alba), in which overproduction of E. coli g-ECS enhanced foliar GSH 
content two to fourfolds (Arisi et al. 1997) and promoted accumulation of Cd2+, but 
not of Zn2+, in young leaves (Table 18.2) (Koprivova et al. 2002; Bittsánszky et al. 
2005). The significance of glutathione reductase (GR) in Cd2+ accumulation and 
tolerance was recorded in transgenic B. juncea overproducing the GR of E. coli in 
the cytosol and plastids (Pilon-Smits et al. 2000). Only plastidic GR overproduc-
tion, improving natural GR levels 20- to 50-fold, doubled GSH levels in roots. In 
contrast to the WT control, the plastidic transformants showed no chlorosis when 
treated with 100 mM Cd2+; however, the shoot Cd2+ accumulation was only a half of 
that of control WT plants. The overproduction of PCs followed by an exhaustion of 
the GSH pool in A. thaliana, however, had a negative impact on the ability of 
transgenes to tolerate and accumulate Cd2+ (Lee et al. 2003; Li et al. 2004). This 
phenotype was converted to the tolerant and accumulating on expression of yeast 
GSH1-encoded GS in A. thaliana lineages overproducing AsPCS1 of garlic Allium 
sativum (Guo et al. 2008).

The sulfur assimilatory mechanism and subsequent production of the antioxidant 
and PC precursor GSH in plants are known to be highly induced by heavy metal 
exposure. In the respective pathways, the overall rate of GSH biosynthesis and the 
capacity to maintain an elevated GSH pool is limited by the activity of cysteine 
synthase (O-acetylserine [thiol] lyase, OAS-TL), which substitutes the acetate of 
O-acetyl-l-serine (OAS) with sulfide (Barroso et al. 1995; Meyer and Fricker 2002). 
Indeed, constitutive overexpression of Atcys-3A encoding intrinsic OAS-TL in 
A. thaliana increased intracellular cysteine and GSH levels, allowing transgenes to 
survive at 400 mM Cd2+ stress (Domínguez-Solís et al. 2004). Over a 14-day period, 
OAS-TL Arabidopsis accumulated 72% more metal than WT control plants from a 
medium containing 250 mM Cd2+, the highest Cd2+ content being detected in the 
trichomes. Kawashima et al. (2004) reported a substantial improvement in Cd2+ and 
Ni2+ tolerance in N. tabacum overproducing OAS-TL from spinach (Spinacia oleracea). 
The authors also determined the Cd2+ accumulation potential of the best performing 
transgenic line and found that the Cd2+ concentration was reduced in root but slightly 
increased in shoots compared to the WT control (Table 18.2), indicating the onset 
of promoted metal translocation. Moreover, due to highly improved biomass yields 
on media with 100 mM Cd2+, shoots of a 3-week-old transgenic plant accumulated 
2.8 times higher amount of metal than shoots of a WT plant.

Improved supply of O-acetyl-l-serine (OAS) to the OAS-TL enzyme has also 
been shown as an effective method to increase the rate and yield of GSH synthesis. 
OAS synthesis from l-serine and acetyl-Co-A is catalyzed by serin-O-acetyltrans-
ferase (SAT). Overproduction of mitochondrial SAT encoded by TgSATm of Thlaspi 
goesingense promoted accumulation of GSH in leaves of A. thaliana, providing 
increased tolerance to Ni2+, Co2+, Zn2+, and Cd2+, attributed mainly to the acquired 
advantage of an improved antioxidative defense potential (Freeman and Salt 2007). 
In cysteine biosynthesis, inorganic sulfate after uptake is activated by ATP sulfurylase 
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to form adenosine phosphosulfate (APS), which is subsequently reduced to free 
sulfide by APS reductase. While measuring the effect of ATP sulfurylase overpro-
duction on the accumulation of 12 metal and metalloid cations and oxyanions, 
Wangeline et al. (2004) observed that the expression of the APS1 gene of A. thaliana 
in B. juncea seedlings markedly contributed to both tolerance and accumulation of 
certain metal and metalloid species (Table 18.2). Although they did not pinpoint the 
mechanisms behind the observed phenotypes, it seems likely that the oxyanions 
MoO

4
2−, CrO

4
2−, WO

4
2− could be, as are sulfate analogues (Leustek, 1996), accumu-

lated via sulfate permease, upregulated on virtual sulfate starvation caused by the 
removal of free sulfate by the overexpressed enzyme. The higher tolerance and 
accumulation of cations could be attributed to the ATP sulfurylase-promoted 
increase in GSH levels (Pilon-Smits et al. 1999). In this study, transgenic APS1 
B. juncea exhibited a two times increase in ATP sulfurylase activity and GSH 
 contents, both in roots and shoots.

18.3.3.2  Promoting Sequestration of Metals in Vacuoles

Subcellular sequestration of metal ions may, besides chemical complexation via 
thiol-containing biomolecules, involve ion (or complex) transport into vacuoles as 
the final metabolically inactive sink. Manipulation of vacuolar exchange activity in 
N. tabacum by the overproduction of the metal ion/H+ antiporters CAX2 and CAX4 
(calcium exchanger 2 and 4) of A. thaliana provided transgenic plants the ability to 
efficiently detoxify Cd2+, Zn2+, and Mn2+ (Hirchi et al. 2000; Korenkov et al. 
2007a,b). The CAX2 or CAX4 plants showed an improved uptake of metal ions in 
the roots but not in shoots, which accumulated 70–80% less metals than the roots. 
However, the net metal uptake was due to the acquired metal tolerance and mark-
edly improved aboveground biomass yields (Table 18.3). Similarly, overexpression 
of the intrinsic vacuolar ZAT Zn2+ transporter (homologous to bacterial metal ion/
H+ ion exchangers of the cation diffusion facilitator CDF family [Silver and Phung 
2005] increased the Zn2+ tolerance and accumulation in roots of A. thaliana (van der 
Zaal et al. 1999). In other organism like in yeast S. cerevisiae, Cd2+ is detoxified by 
transport of cytosolic (glutathione)

2
Cd complex to vacuoles by ABC-type YCF1 

transporter (Li et al. 1997). Accordingly, heterologous expression of YCF1 gene in 
A. thaliana rendered transgene with an enhanced tolerance to Cd2+ and Pb2+ (Song 
et al. 2003). Quite surprisingly, the YCF1 plant also efficiently translocated these 
metals to shoots (Table 18.3).

Although the overexpression of the mammalian hMRP1 gene, encoding a differ-
ent type of the ABC-type multidrug resistance-associated transporter, did not alter 
Cd2+ accumulation in the organs of N. tabacum, transgenes showed improved Cd2+ 
tolerance compared to WT controls, manifested by the continuous growth of trans-
gene plantlets, reduced chlorosis, and a 25% faster root elongation on media con-
taining 100–240-mM Cd2+ (Yazaki et al. 2006). Mammalian ATP-binding cassette 
(ABC) transporters involved in the multidrug resistance of cancer cells can efflux 
cytotoxic compounds that show a wide variety of chemical structures and biological 
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activities. Human multidrug resistance-associated protein (hMRP1) is one of the 
most intensively studied ABC transporters and many substrates have been identi-
fied, including both organic and inorganic compounds (Zhou et al. 2008). 
Interestingly, in mammals, members of the MRP family are found in plasma mem-
brane, while in N. tabacum, hMRP1 is localized in vacuolar tonoplasts. Besides 
detoxification of Cd2+, presumably transported to vacuoles as glutathione-Cd conju-
gate, hMRP1 also conferred vacuolar uptake and resistance to model organic xeno-
biotic daunorubicin, an anthracycline-type DNA-intercalating drug, suggesting that 
MRP transporters could be beneficial in constructing plants for the remediation of a 
complex polluted environment.

18.3.3.3  Modifications with Heterologous Metal Ligands

Overproduction of recombinant MTs to enhance metalloresistance and to support 
metal accumulation in plants has been the first strategy considered for the construction 

Table 18.3 Properties of genetically modified plants overproducing vacuolar metal transporters

Expressed 
transporter GM plant

Transformed  
gene

Phenotype as compared  
to WT controls Reference

Metal ion/H+ ion 
exchangers

N. tabacum CAX2 of A. 
thaliana

Amount of metal  
accumulated per plant 
growing on media with 
3 mM Cd2+, 500 mM 
Mn2+, and 150 mM Zn2+ 
was higher 3.4, 2.3, and 
1.9 times, respectively.

Korenkov et al. 
(2007b)

N. tabacum CAX4 of 
 A. thaliana

Amount of metal  
accumulated per plant 
growing on media with 
3 mM Cd2+, 500 mM 
Mn2+, and 150 mM Zn2+ 
was higher 2.4, 2.8, and 
2.2 times, respectively.

Korenkov et al. 
(2007b)

A. thaliana ZAT of  
A. thaliana

Six times longer roots and 
2.3 times higher Zn levels 
in roots when grown in 
hydroponic solution with 
200 mM Zn2+.

van der Zaal 
et al. (1999)

ABC transporter A. thaliana YCF1 of  
S. cerevisiae

2.2 and 1.8 times higher 
biomass when grown on 
media with 60 mM Cd2+ 
and 900 mM Pb2+, 
respectively. Shoots 
accumulated 1.5 times 
higher metal levels from 
media with 70 mM Cd2+ 
or 750 mM Pb2+.

Song et al. 
(2003)
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of plants suitable in phytoremediation process. This approach, applied in several 
laboratories, has resulted in different phenotypes (Table 18.4). Although the consti-
tutive expression of genes encoding mouse MT-1, human hMT-1A and h-MT-II, 
Chinese hamster MT-II, and yeast CUP1 in tobacco, cabbage, Brassica oleracea, 
and A. thaliana markedly enhanced Cd2+ resistance, the transgenic plants showed a 
20–70% reduction in metal accumulation in the shoots (Eapen a D’Souza 2005). On 
the other hand, production of CUP1 significantly promoted the accumulation of 
Cu2+, but not of Cd2+, in leaves of N. tabaccum (Thomas et al. 2003) (Table 18.4). 
Increased Cu2+ accumulation was also reported for roots of A. thaliana, overex-
pressing the plant MT gene PsMTA of pea Pisum sativum (Evans et al. 1992). An 
improved phytoextraction potential for Cd2+ from sandy and humus soils was 
acquired by N. tabacum on overexpression of HisCUP1 (Table 18.4), the CUP1 
additionally modified with an N-terminal hexahistidine (His) extension (Macek 
et al. 2002; Pavlikova et al. 2004). The HisCUP produced at levels reaching 10% of 
cellular cysteine-rich peptides involving glutathione and PCs (Křížková et al. 2007) 
in transgenic lines also improved Cd2+ tolerance. Periplasmic protein MerP is a 
component of bacterial Hg2+ resistance, which is responsible for funneling metal 
ions to the uptake transporters MerT, MerC, or MerF (Silver and Phung 2005). 
When overproduced in A. thaliana, MerP got localized in the cell membrane and 
vesicles of plant cells (Hsieh et al. 2009). Unlike the WT control, MerP plants ger-
minated on media with 12.5 mM Hg2+ and accumulated 5.35 mg Hg2+/g of fresh 
seedling weight.

Table 18.4 Properties of genetically modified plants overproducing metallothioneins

GM plant Transformed gene
Phenotype as compared to WT 
controls Reference

N. tabacum MT-I of Mus musculus Cd2+ tolerance enhanced from 10 
to 200 mM.

Pan et al. (1994)

MT-II of Homo sapiens Accumulation from soil containing 
0.2 mg of Cd kg−1 reduced by 
73%. Tolerated up to 100 mM 
Cd2+ at seedling stage.

de Borne et al. 
(1998), Misra and 
Gedamu (1989)

CUP1 of S. cerevisiae 2–3 times higher Cu2+ accumula-
tion from soil containing 
1645 mg of Cu kg−1.

Thomas et al. (2003)

HisCUP1 (recombinant 
hexahistidine 
vision to CUP1)

GM plant tolerated up to 16.2 mg  
of Cd kg−1 in sandy soil. By 
75–90% higher Cd2+ accumula-
tion from sandy soil with 0.2 mg 
of Cd kg−1 and from humus soil 
with 0.4 mg of Cd kg−1.

Pavlikova et al. 
(2004) and 
Macek et al. 
(2002)

B. oleracea CUP1 of S. cerevisiae Cd2+ tolerance enhanced  
from 25 mM to 400 mM  
in hydroponic medium.

Hasegawa et al. 
(1997)
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18.3.4  Modifications for Phytovolatilization of Mercury

Phytovolatilization of Hg2+ and organomercurial compounds (R-Hg+) involves the 
accumulation of metal species in GM plant cells and their subsequent conversion to 
volatile metalic Hg0, which can be liberated to atmosphere through leaf evaporation. 
To this end, genetic determinants of widespread bacterial resistance to Hg2+ and 
R-Hg+ are employed, which involve merA encoding mercuric ion reductase, which 
converts Hg2+ to non-toxic volatile metalic Hg0, and merB coding for organomercu-
rial lyase, liberating Hg2+ from R-Hg+ (Silver and Phung 2005). The main advantage 
of phytovolatilization is the removal of Hg2+ from a site without the need for plant 
harvesting and disposal. Although, there could be some skepticism regarding the 
safety of such strategy, safety assessment studies on mercury phytovolatilization 
have indicated that the advantage of wide dispersion and dilution in the atmosphere 
and eventually to other environment components outweigh the potential risks 
(Lin et al. 2000; Moreno et al. 2005). Overexpression of merA, merB, or a combina-
tion of both, in A. thaliana (Bizily et al. 1999, 2003; Yang et al. 2003), N. tabacum 
(He et al. 2001; Ruiz et al. 2003), rice (Heaton et al. 2003), saltmarsh cordgrass 
Spartia alterniflora (Czakó et al. 2006), yellow poplar L. tulipifera (Rugh et al. 
1998), and cottonwood Populus deltoides (Che et al. 2003; Lyyra et al. 2007), 
resulted in Hg2+ and R-Hg+ tolerant phenotypes (Table 18.5). To achieve efficient 
volatization of mercury, use of modified versions of merA optimized for plant codon 
preferences (merApe9 and merA18) were shown instrumental in achieving effi-
cient production of MerA and pronounced mercury volatization in A. thaliana, 
N. tabacum, and L. tulipifera. While cytoplasmatic MerB allowed A. thaliana plants 
to grow at fivefolds higher methyl mercury concentrations compared to WT controls, 
the additional expression of merApe9 further improved tolerance by a factor of 10 
and promoted efficient phenyl mercury removal and Hg0 volatization from a model 
solution (Bizily et al. 2000). More than a tenfold higher volatization rate was further 
achieved by the targeting of MerB in the endoplasmatic reticulum (ER) of merA/
merB double transformant (Bizily et al. 2003). The likely reason was that 
ER-localizing MerB exhibited more than a 20 times higher specific activity than in 
MerB plants with cytoplasmic MerB.

18.4  Plants Genetically Modified for Improved 
Phytoremediation of Metalloids

Some of genetic modifications conducted so far to enhance PCs and glutathione 
production have also resulted in improved uptake and/or detoxification of arsenic 
species. Phytochelatins seems likely to play a role in As detoxification, as arsenite 
forms tight As(III)-tris-thiolate complexes (Pickering et al. 2000). The tris(glutathionato)
As(III) conjugate is a metalloid form for long-distance symplasmic transport in 
A. thaliana (Li et al. 2006). For example, overproduction of PCs in B. juncea and 
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A. thaliana transformed by PCS gene (AtPCS1) resulted in a markedly improved 
resistance to As(V) in media (Li et al. 2004; Gasic and Korban 2007). Simultaneous 
overproduction of yeast GSH1-encoded glutathione synthase and phytochelatin 
synthase AsPCS1 of A. sativum in transgenic A. thaliana improved not only arsenite 
and arsenate tolerance, but also their accumulation (Guo et al. 2008). The toxic 
nature of arsenate is attributed to its chemical similarity with phosphate, promoting 
its uptake by the roots via the essential phosphate pathway (Ullrich-Eberius et al. 
1989). Dhankher et al. (2002) thus combined two bacterial genes – gsh1-encoding-
ECS with arsenate reductase gene arsC in A. thaliana – resulting in a transgene that 
showed substantially greater tolerance to As(V) and accumulation of As oxyanions 
in shoots (predominantly as [glutathione]

3
As[III]) than did the control WT and/or 

gshI-only-transformed plants (Table 18.6). Most plants appear to have high levels of 
endogenous root arsenate reductase and arsenate conversion to arsenite sequestered 
in the roots as As(III)-thiol may prevent the translocation of arsenic species to 
aboveground tissues (Ramirez-Solis et al. 2004). As such phenotype is not suitable 
for phytoextraction, Dhankher et al. (2006) more recently employed the RNA inter-
ference approach to reduce the arsenate reductase ARS2 activity in A. thaliana by 
98%. The ARS2-knockdown lines retained the ability to grow in a medium with 
100 mM arsenate and accumulated 10–16-fold more arsenic species in shoots and up 
to 40% less in roots than WT controls.

Natural Se hyperaccumulating plants use selenocysteine methyltransferase (SMT) 
to diminish the misincorporation of selenocysteine (SeCys) and selenomethionine 
(SeMet) into proteins by decreasing their intracellular levels via a conversion to non-
protein amino acid methylselenocysteine (MetSeCys) (Neuhierl et al. 1999). The 
overexpression of the SMT of Se hyperaccumulating milkvetch Astragalus bisulca-
tus in A. thaliana and B. juncea (LeDuc et al. 2004) substantially improved the toler-
ance of transformants to selenate and selenite (Table 18.6). Overall, Se accumulation 
in shoots was better pronounced with SMT B. juncea, which exhibited a threefold 
higher content of foliar MetSeCys than the WT control. Se accumulation in shoots of 
B. juncea was further promoted on additional implementation of ATP sulfurylase 
(LeDuc et al. 2006). As MetSeCys can be converted in planta to volatile dimeth-
ylselenide (DMSe) or dimethyldiselenide (DMDSe), the respective pathway was rec-
ognized as an attractive target for genetic modification. Suitability of Se 
phytovolatization approach is supported by the fact that DMSe has been reported to 
be 500–700 times less toxic than selenate and selenite in soil (Wilber 1980). As a 
consequence of increased MetSeCys supply to metabolom of SMT B. juncea, this 
plant had higher DMSe and DMDSe contents than control WT plants (Table 18.6) 
(LeDuc et al. 2004; Bañuelos et al. 2007). The rate-limiting step in the DMSe forma-
tion pathway, the conversion of SeCys to selenocystathionine, is catalyzed by the 
cystathione-g-synthase (CGS), which is an enzyme of the physiological methionine 
pathway with cystathione and homocysteine intermediates (Terry et al. 2000; Van 
Huysen et al. 2003). The constitutive expression of CGS1 of A. thalina in B. juncea 
resulted in increased DMSe formation and evaporation (Van Huysen et al. 2003). 
This was accompanied with decreased accumulation of Se species both in roots 
(by up to 70%) and in shoots (by up to 40%) and thus with improved selenite tolerance.
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Several lines of evidence suggest the possibility of extending the phytovolatization 
concept to remediation of arsenic pollution. Many bacteria, fungi, mammals, and 
some plants employ As(III) methylase (S-adenosylmethionine-dependent methyl-
transferase) to convert arsenite to the gaseous trimethylarsine (TMA) by the 
mechanism involving cycles of oxidative arsenite methylation and reduction of 
methyl-arsenate to methyl-arsenite intermediates (Norton et al. 2008; Zhu et al. 
2008). Qin et al. (2006, 2009) showed that recombinant production of As(III) meth-
ylase from bacterium Rhodopseudomonas palustris and the plant-related eukaryotic 
alga Cyanidioschyzon merolae in E. coli resulted in production of TMA and 
improved tolerance to arsenic. These results indicate that (over)expression of single 
As(III) methylase gene would be sufficient to engineer plants to efficiently produce 
TMA, which can be volatized from the leaf surface.

18.5  Conclusion

Currently, the approaches employed to develop genetically modified plants suitable 
for phytoremediation include (a) increasing the number of metal transporters along 
with modulation of the specificity of the metal uptake system, (b) enhancing intrac-
ellular ligand production and the efficiency of metal targeting into vacuoles to keep 
accumulated metal or metalloid in a safe form without disturbing cellular processes, 
and (c) biochemical transformation of metal or metalloid to their volatile forms. A 
substantial progress has been achieved, which has helped to improve the suitability 
of heterologous and/or promoted intrinsic gene expression for the development of 
plants useful in phytoremediation. It is generally accepted that hyperaccumulators, 
when well understood, can be good sources of genes for phytoremediation. One of 
the major limitations in current efforts addressing phytoextraction of metals and 
metalloids is, however, the lack of detailed information on the molecular factors 
governing their translocation. Recent advances in the identification and functional 
evaluation of metal transporters in model plants A. thaliana and N. tabacum, and an 
understanding of the mechanisms and regulation of transport events in (hyper)accu-
mulators Arabidopsis harlei, T. caerulescens and B. juncea, thus offer great promise 
for the manipulation of suitable plants. Long-distance metal transport would further 
promote repressed metal deposition in roots and creation of artificial metal sinks in 
shoots. To this end, specifically decreasing transport into root vacuoles and the 
expression of engineered cell-wall proteins with high-affinity binding sites for metal 
deposition in the apoplast of aboveground tissues could be instrumental.

Successful phytoremediation of metal pollution may further involve promoting 
mobilization of metals in soils and sediments. Increased attention should thus be 
devoted to modifications that enhance the capacity of plants to secrete metal-
complexing exudates such as phytosiderophores and organic acids into the rhizo-
sphere and implementation of the cognate metal-complex transport mechanism. 
Conversion of immobile metals to their bioavailable forms in soils is largely dependent 
on the activity of soil microflora, especially in the rhizosphere. An understanding of 
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the complex plant–microbe interactions in the rhizosphere would, thus, further 
allow for the constructions of GM plants and their microbial symbionts to promote 
the mobilization of metal species of interest. Genetically modified plants may 
induce remediation of metal and metalloid polluted soils with obvious benefits, yet 
some would question their techno-economic perspective and environmental safety. 
The potential of GM plants should be demonstrated in field phytoremediation trials, 
some of which have emerged in the last few years (Bañuelos et al. 2005, 2007; Van 
Huysen et al. 2004). The ecological impact and underlying economics of phytore-
mediation with transgenics should be carefully evaluated and weighted against 
known disadvantages of conventional remediation techniques or risks of having the 
recalcitrant heavy metal or metalloid species in our environment.
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Abstract Phytoextraction is an environmentally sound and cost-effective technology 
for cleaning up soils contaminated with toxic metals. The success of phytoextrac-
tion depends on the ability of plants to produce large amounts of biomass. In addi-
tion, plants must be tolerant to the target metals and be efficient to translocate metals 
from roots to the aboveground organs. The effectiveness of phytoextraction also 
depends upon site and metal species. However, the amount of metals extracted by 
plants is basically decided by (1) the metal concentration in dry plant tissues and 
(2) the total biomass of the plant. Certain varieties of high-biomass crops have been 
found to have the ability to clean up the contaminated soils. The major advantage of 
using crop plants for phytoextraction is the known growth requirements and well-
established cultural practices. One of the most promising, and perhaps widely 
studied crop plant for the extraction of heavy metals is Indian mustard. Other crops 
like sweet sorghum, oat, barley, maize, and sunflower are also reported to accumulate 
toxic metals. As established cultural practices may not elicit the same plant response 
as observed under non-contaminated conditions, attention must be paid on develop-
ing suitable agronomic practices to optimize the growth of plants even under con-
taminated conditions. Further, a coordinated effort is required to collect and preserve 
germplasm of accumulator species where molecular engineering can play a key role 
in developing engineered plants capable of cleaning up contaminated soils and 
commercializing phytoextraction strategies.
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19.1  Introduction

Since the Industrial Revolution, pollution of the biosphere with trace elements 
(heavy metals and metalloids) has accelerated dramatically. Many of these trace 
elements are toxic even at very low concentrations because of their nonbiodegrad-
able nature, long biological half-life, and potential to accumulate inside the living 
bodies (Behbahaninia et al. 2009). Excessive deposits of heavy metals in agricul-
tural soils may not only result in soil contamination but also lead to elevated heavy 
metal uptake by crop plants affecting quality and safety of foods (Muchuweti et al. 
2006). Therefore, cleaning up of polluted soils is a subject of utmost concern to 
human beings. Most of the currently practiced remediation methods are primarily 
based upon civil engineering techniques whose cost is highly variable and depends 
on the contaminants of concern, soil properties, and site conditions (Lasat 2002). 
They are not only expensive but environmentally invasive, too. The search for an 
alternative remediation technique that is economically viable, environmentally 
sound, and equally protective of human health is thus urgently required. Strategies 
of this nature are classified under the generic heading of phytoremediation (Iskandar 
2000; Iskandar and Kirtham 2001; Kabata-Pendias 2001), which is an emerging 
biotechnological application based on “green liver concept” and operates on the 
principles of biogeochemical cycling (Prasad 2004).

Phytoremediation consists of different plant-based technologies (Table 19.1), 
each having a different mechanism of action for the remediation of metal-polluted 
soils, sediment, or water. However, the terms phytoremediation and phytoextrac-
tion are often incorrectly used as synonyms, though phytoremediation is a concept, 
while phytoextraction is a specific cleanup technology (Prasad and Freitas 2003). 
Phytoextraction is in fact the most commonly recognized of all phytoremediation 
technologies and is the focus of the present review. Phytoextraction actually refers 
to a diverse collection of plant-based technologies that use either naturally occur-
ring or genetically engineered plants for cleaning contaminated environments 
(Flathman and Lanza 1998).

While many plant species avoid uptake of heavy metals from contaminated 
soils, some characteristic plant species thriving in metal-enriched environments 
can accumulate significantly high concentrations of toxic metals, to levels that by 
far exceed the soil levels. These species are generally called hyperaccumulators 
and, among them, some crop plant species are also found. When phytoextraction 
is practiced, metal-accumulating plants are seeded or transplanted into metal polluted 
soil and are cultivated according to the established agricultural practices. The 
roots of established plants absorb metal elements from the soil and translocate 
them to the aboveground shoots where they accumulate. If metal availability in 
the soil is not adequate for sufficient plant uptake, chelates or acidifying agents 
may be used to liberate them into the soil solution (Huang and Cunningham 1996; 
Huang et al. 1997; Lasat et al. 1998). After sufficient plant growth and metal 
accumulation, the aboveground parts of the crop are harvested and removed from 
the contaminated site.
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19.2  What Merits Does It Have?

The phytoextraction is an environmental friendly green technology involving  living 
plants. These plants act as solar-driven pumps, which can extract and concentrate 
particular elements from the environment (Raskin et al. 1997). Therefore, phytoex-
traction offers a cost-effective means for cleaning of metal-contaminated soils, 
because the cost of metal phytoextraction is only a fraction of that associated with 
conventional engineering technologies (Zhuang et al. 2009). This technology 
avoids dramatic landscape disruption as it remediates the soil in situ. Furthermore, 
no artificial materials are used, hence, preserving the ecosystem. In contaminated 
agricultural lands, metal removal and getting a harvest synchronously can be a key 
element of a new strategy for land management (Zhuang et al. 2009). However, 
some limitations avoid the wide application of this technology. The success of 
phytoextraction is primarily dependent upon the bioavailability of the contami-
nants of concern for plant uptake. Usually readily available metals in soil solution 
are free metal ions and soluble metal complexes and metals adsorbed to inorganic 
soil constitutes at ion exchange site. Therefore, phytoextraction is better suited for 
metals such as Zn and Cd, which occur primarily in exchangeable and readily bio-
available form, while the others need to be treated separately for making them 
bioavailable. Selection of plant species is of particular importance as most of accu-
mulator species are slowly growing and produce little biomass over period of time. 
In addition, slow transport of metals from soil particles to root surface is another 
major factor limiting metal uptake into roots (Claus et al. 2007). Even after enter-
ing to the roots, many heavy metals form sulfate, carbonate, or phosphate precipi-
tates and immobilize these  metals in apoplastic (extracellular) and symplastic 
(intracellular) compartments. Apoplastic transport of metals is further limited by 

Table 19.1 Types of phytoremediation techniques

Technique Process Medium

Phytoextraction Accumulation of contaminants in shoots  
and subsequent shoot harvest

Soil

Rhizofiltration Absorption/adsorption of contaminants  
in/on roots

Surface water

Phytostabilization Root and root exudates reduce  
bioavailability of contaminant

Soil, groundwater

Phytovolatilization Evaporation of contaminants through  
plant transpiration

Soil, groundwater

Phytodegradation Plant-assisted microbial degradation  
of contaminants in rhizosphere

Soil, groundwater

Phytotransformation Plant uptake and degradation  
of contaminants

Soil, groundwater, 
surface water

Removal of Aerial Uptake of volatile contaminants by leaves Air

(Compiled from Yang et al. 2005; Arthur et al. 2005; Solheim 2008)
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the high cation-exchange  capacity of cell walls (Raskin et al. 1997). The highly 
insoluble nature of most of the hazardous metals interrupts their free movement in 
the vascular system of the plant. Therefore, translocating them to the aboveground 
shoots where their accumulation has taken place is also restricted. Phytoextraction 
is obviously a long-term remediation effort, requiring many cropping cycles to 
decontaminate metal pollutants to acceptable levels (Zhuang et al. 2009; Shukla 
et al. 2010). The depth of soil which can be cleaned or stabilized is restricted to the 
root zone of the plants being used. Depending on the plant, this depth can range 
from a few inches to several meters (Schnoor et al. 1995; Chen et al. 2000, 2003). 
This technology is applicable only to sites that contain low to moderate levels of 
metal pollution, because plant growth is not sustained in heavily polluted soils. The 
advantages and limitations of using crop plants for cleaning up contaminated soils 
are summarized in Table 19.2.

19.3  What Factors Decide the Success of Phytoextraction?

The effectiveness of phytoextraction is dependent upon many factors of which 
some are plant-, site-, or metal-specific characteristics. However, the amount of 
metals extracted by plants is basically decided by (1) the metal concentration in dry 
plant tissues and (2) the total biomass of the plant. Therefore, the product of these 
factors estimates the total amount of metal extracted from the contaminated soil 

Table 19.2 Advantages and limitations of phytoextraction with crop plants

Advantages Limitations

Eco-friendly green technology involving  
living plants

Low cost of implementation as  
compared to conventional means

Aesthetically pleasing and avoids dramatic 
landscape disruptions

No artificial materials are generally  
used

Applicable to a range of toxic metals  
and radionuclides

Eliminate secondary air- or waterborne  
wastes.

Enhance regulatory and public acceptance
Can get a harvest synchronously  

with metal removal
Known agronomic and crop management 

practices can be used
Life cycle and biology of crop are well 

understood
Easily implemented and maintained

Better suited for metals that are readily 
bioavailable

Some metals need to be treated separately  
for making them bioavailable

Most of the identified species are slowly 
growing and produce little biomass over  
a period of time

Long-term remediation effort, requiring 
many cropping cycles to decontaminate 
metal pollutants to acceptable levels

Depth of soil that can be cleaned or 
stabilized is restricted to the root zone of 
the plants being used

Applicable only to sites that contain low to 
moderate levels of metal pollution

Potential contamination to food chain
Results are variable
Climate dependent
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(Claus et al. 2007). The time required for remediation is dependent upon the type 
and extent of metal contamination, the length of the growing season, and the efficiency 
of metal removal by plants (Blaylock and Huang 2000). In addition, as this is 
essentially an agronomic approach, some agronomic practices, such as, plant selec-
tion, possibility of cultivation, fertilization and irrigation, etc., could also play a 
crucial role in successful cleaning of a contaminated site (Claus et al. 2007).

As a plant-based technology, the success of phytoextraction inherently depends 
upon several plant characteristics. The plant should have the ability to produce large 
amounts of biomass rapidly using standard crop production and management prac-
tices (Das and Maiti 2007) together with high efficiency of metal accumulation in 
shoot biomass (Blaylock et al. 1997; McGrath 1998; Shah and Nongkynrih 2007). 
Plants considered for use must also be tolerant to the targeted metal, or metals, and 
be efficient at translocating them after uptake by roots to the harvestable aboveg-
round portions (Blaylock and Huang 2000). In addition to the high shoot biomass, 
a dense root system is important while growing under hardy conditions. Among the 
site-specific characteristics, the topography of the land should be acceptable and 
free from physical barriers, which otherwise could prevent the use of agricultural 
equipment and machineries. The distribution of metals in soil profiles and their 
movement in soils, which are primarily determined by many soil related factors, 
also contribute to the efficiency of metal removal by plants. In fact, a major factor 
limiting metal uptake into roots is the slow transport from soil particles to root 
surfaces (Claus et al. 2007). The accumulation of the metals in the surface layer of 
the soil seems to be related to the properties associated with high adsorption rate of 
the metals by soil solid phases (Behbahaninia et al. 2009). In this context, soil acidity, 
light texture, and structural features, such as soil cracks, can be considered as 
important factors (Smith 1996). Soil pH plays a key role in making the availability 
of elements in the soil for plant uptake (De Matos et al. 2001; Bambara and 
Ndakidemi 2010; Yobouet et al. 2010). According to Anton and Mathe-Gaspar 
(2005), higher temperature and lowering soil pH have resulted in increased cadmium 
and zinc contents of sorrel and maize shoots. Under acidic conditions, H+ ions dis-
place metal cations from the cation exchange complex (CEC) of soil components 
and cause metals to be released from sesquioxides and variable-charged clays to 
which they have been chemisorbed (McBride 1994).

19.4  Mechanisms of Phytoextraction

Proper understanding of the biological processes associated with metal acquisition, 
transport, and shoot accumulation is the key to formulate sound strategies for improv-
ing phytoextraction. In this context, why do plants absorb metals is the fundamental 
question to be answered. Plants need nutrients as they are among the key require-
ments for the growth and development of a plant. Some metals, such as Co, Cr, Cu, 
Fe, K, Mg, Mn, Na, Ni, and Zn, are essential, serve as micronutrients, and are 
used for redox processes, to stabilize molecules through electrostatic interactions, as 
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components of various enzymes, and for regulation of osmotic pressure (Bruins et al. 
2000; Odjegba and Fasidi 2004). Many other metals have no biological role (e.g., 
Ag, Al, Cd, Pb, and Hg), and are nonessential (Bruins et al. 2000; Kamal et al. 2004) 
and potentially toxic to microorganisms. Therefore, it is understood that plants take 
some metals as they are essential nutrients. The literature on the mechanisms of root 
and plant cell uptake of elements like N, P, S, Fe, Ca, K, and possibly Cl is reported 
(Marschner 1995). However, little is known about how plants mobilize, uptake, and 
transport of most environmentally hazardous heavy metals, such as, Pb, Cd, Cu, Zn, 
U, Sr, and Cs. Nonessential metals, however, may effectively compete for the same 
transmembrane carriers used by essential metals (Thangavel and Subbhuraam 2004). 
Nutrient uptake pathways can also take up heavy metals that are similar in chemical 
form or behavior to the nutrients (Pivetz 2001). However, even for essential ele-
ments, plants keep maintaining the accumulation below their metabolic needs 
(<10 ppm) (Oyelola et al. 2009). Hyperaccumulator plants, however, can accumulate 
exceptionally high amounts of micronutrients. They not only accumulate excessively 
high levels of essential micronutrients, but can also absorb significant quantities of 
nonessential metals. Hyperaccumulators are capable of accumulating metals 100-
fold higher (2% on the dry weight basis) than those typically measured in shoots of 
the common non-accumulator plants (Claus et al. 2007), and their metal tolerance 
has enhanced the interest of ecologists, plant physiologists, plant biologists and envi-
ronmentalists to investigate the physiological and genetical factors responsible for 
metal uptake and tolerance in plants. Accumulator species have evolved specific 
mechanisms for detoxifying high metal levels accumulated in the cells, which allow 
bioaccumulation of extremely high concentration of metals (Yang et al. 2005). In 
fact, they do have their own mechanisms to absorb, translocate, and store the metals 
they need. In this regards, the structure and properties of cell membranes play a cru-
cial role in metal absorption process. Because of their charge, metal ions cannot 
move freely across the cellular membranes and taking up metals into cells are 
mediated by membrane proteins with transport functions (Hooda 2007).

In soil, metals are found in different forms: (1) in solution as free metal ions and 
soluble metal complexes; (2) adsorbed to inorganic soil constituents on ion exchange 
sites; (3) precipitated such as oxides, hydroxides, and carbonates; (4) bound to soil 
organic matter; and (5) embedded in structures of silicate minerals. Plants do have 
several mechanisms to solubilize “soil-bound” metals and subsequent uptake (Raskin 
et al. 1997). Plant roots can solubilize soil-bound metals by acidifying their soil 
environment with protons extruded from the roots (Thangavel and Subbhuraam 
2004). In the rizhosphere, root and microbial activities can influence the chemical 
mobility of metal ions and ultimately their uptake by plants as consequence of altera-
tions of soil pH or dissolved organic carbon (Hinsinger and Courchesne 2007). 
Metal-chelating molecules can also be secreted into the rhizosphere to chelate and 
solubilize “soil-bound” metal (Yang et al. 2005; Hooda 2007). Some rhizosphere 
microorganisms also secrete plant hormones that increase root growth and thereby 
the secretion of root exudates (Hooda 2007). In this context, chelating compounds, 
termed phytosiderophores, have been studied in plants (Higuchi et al. 1999). 
Some plant roots are capable of reducing “soil-bound” metal ions by specific plasma 
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membrane-bound metal reductases, which may increase metal availability (Thangavel 
and Subbhuraam 2004). For example, in response to iron deficiency, plants develop 
several biochemical and morphological reactions to ameliorate iron solubilization 
and uptake from the soil solution (Hell and Stephan 2003). The biochemical and 
physiological mechanisms induced in dicotyledonous plants under conditions of iron 
deficiency comprise three main processes (Babalakova et al. 2005). The first one 
includes an increased release of protons through the activation of plasmalemma 
P-type ATPase proton pump to acidify the surrounding solution, thus enhancing 
Fe(III)-containing compounds solubility (Espen et al. 2000). The second process is 
an obligatory reduction of ferric-chelates by a membrane-associated Fe(III)-chelate 
reductase to the more soluble ferro-complexes (Robinson et al. 1999). The third 
effect of short-term treatment with ionic and chelated copper on membrane adaptive 
biochemical response is an induction of the synthesis of a specific transporter for 
ferro-ions in plasmalemma of root cells (Hell and Stephan 2003). In addition, mycor-
rhizal fungi or root-colonizing bacteria can also be used in increasing the bioavail-
ability of metals (Frey et al. 2000; Khan et al. 2000; Hooda 2007). Mobilized metals 
then enter the root cells by symplastic or apoplastic pathways (Solheim 2008). Most 
likely, entrance is via metal ion carriers or channels; however, specialized carriers 
could also exist for the transport of metal–chelate complexes (Solheim 2008).

The transmembrane structure facilitates the transfer of bound ions from extracel-
lular space through the hydrophobic environment of the membrane into the cell 
(Lasat 2002). However, of all the adsorbed metals physically at the extracellular 
negatively charged sites of the root cell walls, only a part enters inside the cells. For 
success of phytoextraction, absorbed metals, however, should also be transported 
from roots to shoot, which is primarily controlled by how much water is released 
from leaves during transpiration and the pressure created by the roots (Welch 1995). 
Therefore, as the rate of transpiration increases, the internal movement of metal-
containing sap from the root to the shoot also increases, allowing roots to absorb 
more moisture from the soil. Generally, a significant fraction of cell wall-bound 
metals cannot be translocated to the shoots and, thus, cannot be removed by harvest-
ing shoot biomass (Lasat 2002). Apart from binding onto the cell wall, there are 
some other means also that determine metal immobilization into roots and subse-
quent inhibition of ion translocation to the shoot. Complexation in cellular struc-
tures of roots could also prevent translocation of metals to the aboveground parts 
(Lasat et al. 1998). In addition, some plants, coined excluders, possess specialized 
mechanisms to restrict metal uptake into roots (Lasat 2002). The excluders prevent 
metal uptake into roots avoiding translocation and accumulation in shoots. Though 
excluders have a low potential for metal extraction, they can be used to stabilize the 
soil, and avoid further contamination spread due to erosion (Dahmani-Muller et al. 
2000). Most environmentally hazardous metals are too insoluble to move freely in 
the vascular system of the plant. Many forms like sulfate, carbonate, or phosphate 
precipitate by immobilizing these metals in apoplastic and symplastic compart-
ments (Raskin et al. 1997; Ghosh and Singh 2005). However, plant species have 
unique abilities to tolerate, accumulate, and detoxify metals and metalloids (Danika 
and LeDuc Norman 2005). Several hundred plant species have so far been identified 
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as hyperaccumulators of different metals (McGrath and Zhao 2003; McIntyre 2003; 
Ghosh and Singh 2005). Hyperaccumulators are found from a wide range of taxo-
nomic groups (45 different families) (Baker et al. 2000) and geographic areas and 
possess a wide variety of morphologies, physiologies, and ecological characteristics 
(Pollard et al. 2002). The majority of them accumulate only one metal (Pollard et al. 
2002) although a significant number show the ability to accumulate more than one 
(He et al. 2002; Yang et al. 2004; McIntyre 2003).

19.5  How to Enhance the Efficiency of Phytoextraction?

As many factors either directly or indirectly affect the efficacy of phytoextraction, it 
is important to employ an integrated approach in order to remove heavy metals from 
contaminated sites. Such integrated strategy may include selection of high-biomass-
producing crops, identify plants that could grow in varying environmental condi-
tions, selection of improved crop husbandry, innovative soil management practices, 
etc., to ensure high metal removal rates from contaminated soils (Nowack et al. 
2006; Evangelou et al. 2007). Therefore, selection, breeding, and genetic engineer-
ing of metal accumulators can be considered as the key areas of practical signifi-
cance. The bioavailability of metals for plant uptake can be altered in several means. 
For example, if the soil contains chelating agents, they can form soluble complexes 
with metals, thereby enhancing movement of metals in soil profile (Behbahaninia 
et al. 2009). To achieve this, use of different chelators has shown a dramatic increase 
in the metal mobility in soil substrate keeping metals as soluble chelate–metal 
complexes which become available for uptake by roots and are later on transported 
within the plants. Many chemical amendments, such as ethylene diamine tetra acetic 
acid (EDTA), diethylene triamine penta acetic acid (DTPA), nitrilotri acetic acid 
(NTA), and organic acids, have been used in pot and field experiments to enhance 
extraction rates of heavy metals and to achieve higher phytoextraction efficiency 
(Kayser et al. 2000; Thaylakumaran et al. 2003; Tandy et al. 2004; Ke et al. 2006; 
Wang et al. 2007; Wu et al. 2006; Zhuang et al. 2009). However, the effectiveness 
of different chelating agents is highly variable with the plant species and metal 
involved.

Though EDTA has been proved as one of the most efficient chelating agents in 
enhancing Pb phytoavailability in soil and subsequent uptake and translocation to 
shoots (Chen and Cutright 2001; Shen et al. 2002; Claus et al. 2007; Zhuang et al. 
2009), it has failed, however, in enhancing some other metals such as Cd, Zn, and Cu 
accumulation in plants (Lai and Chen 2004; McGrath et al. 2006; Zhuang et al. 
2009). Furthermore, there is enough evidence that suggest that some plant species 
had no remarkable response to the application of EDTA (Zhuang et al. 2005, 2007). 
When several heavy metals are present in the soil, interactions and subsequent inhibi-
tory effects can play a role in responding to the added EDTA. Another key area to be 
considered is the physical features of the soil, because if the soil allows leaching of 
metal-chelating agents, it might possibly be a threat to groundwater contamination 
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(Nowack et al. 2006). Therefore, use of EDTA to enhance phytoextraction requires a 
critical assessment. Diethylene triamine penta acetic acid is another superior reagent 
used in extraction of metals, such as Cd, Pb, Zn, and Ni from contaminated soils 
(Behbahaninia et al. 2009). The DTPA extraction has frequently been found to 
correlate with amounts of metals taken up by the plants (Nouri et al. 2001). In a 
similar study, addition of thiosulfate and thiocynate salts to mine spoil has reportedly 
induced plants to accumulate Hg (Moreno et al. 2005) while chloride anions are 
shown to increase the Cd solubility in soils by forming relatively stable chloride ion 
complexes, for example, CdCl+ and CdCl

2
 (Weggler et al. 2004). According to 

Zhuang et al. (2005), inorganic agents like elemental sulfur or ammonium sulfate 
could also enhance metal accumulation. It has repeatedly been reported that the 
application of ammonium to soil could promote the phytoavailability of heavy metals 
from the contaminated soil (Xiong and Lu 2002; Zaccheo et al. 2006).

It seems that some soil applications (such as sludge) can produce soluble organic 
complexes with the heavy metals. These complexes are more mobile and possibly 
more readily taken up by plants than free metal ions (Shuman 2005; Senesi and 
Loffrdo 2005; Nouri et al. 2006). However, due to changing of their available forms 
to some unavailable forms such as fractions associated with organic materials, car-
bonates, or metal oxides (Walker et al. 2004), bioavailability of metals sometimes 
can be decreased by the organic amendments (Wei et al. 2010). Due to continuous 
loading of pollutants, heavy metals can be released into groundwater or soil solu-
tion, which are then available for plant uptake (Mapanda et al. 2004). Lowering in 
soil pH can weaken the retention ability of toxic metals to soil organic matter result-
ing in more available metal in soil solution for root absorption. In fact, many metal 
cations (e.g., Cd, Cu, Hg, Ni, Pb, and Zn) are more soluble and available in the soil 
solution at low pH (below 5.5) (Blaylock and Huang 2000). It could, therefore, be 
suggested that the phytoextraction process is enhanced when metal availability to 
plant roots is facilitated through the addition of acidifying agents to the soil (Brown 
et al. 1994; Salt et al. 1995). Possible amendments of acidification include NH

4
-

containing fertilizers, organic and inorganic acids, and elemental S.
Fertilization, on the other hand, can enhance the growth of the plants resulting in 

high biomass, which has also been used in increasing the efficiency of phytoextrac-
tion (Wei et al. 2010). For example, Wei et al. (2010), in a study with Solanum 
nigrum, reported that the application of urea has enhanced the efficiency of phyto-
extraction. After application of natural N-P-K fertilizer, particularly at the early 
stage of growth, the biomass of common reed (Phragmites australis) was increased 
by twofold compared to control plants that subsequently improved phytoextraction 
of Ni and Zn by 2–3-folds (Claus et al. 2007). In addition, fertilizers with high con-
tent of NH

4
+ have the additional benefit of lowering the soil pH, leading to an 

increase in plant uptake of metals. According to Zaccheo et al. (2006), soils amended 
with (NH

4
)

2
SO

4
 and (NH

4
)

2
S

2
O

3
 led to an increase in metal availability due to 

decreased soil pH. The addition of NH
4
NO

3
 and (NH

4
)

2
SO

4
 to soil, however, did not 

increase Zn and Cu accumulation in three sorghum varieties (Zhuang et al. 2009). 
The contradictory reports on the effect of ammonium fertilization on phytoextraction 
are basically due to the degree of solubilization of metals under different soil pH 
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levels. Generally, Zn and Cd can easily be solubilized at pH values of conventional 
soils, whereas the solubilization of Pb and Cu occurs at lower pH (Schmidt 2003). 
Therefore, metal availability in soil can be manipulated by the proper ratio of NO

3
 

to NH
4
 used for plant fertilization.

19.6  Promising Crop Plants

Many studies have indicated that certain varieties of high-biomass crops display 
heavy metal tolerance and/or ability to cleaning up the contaminated soils. In this 
regard, Kumar et al. (1995) evaluated several fast-growing Brassicas such as Indian 
mustard (Brassica juncea L. Czern), black mustard (Brassica nigra Koch), turnip 
(Brassica campestris L.), rape (Brassica napus L.), and kale (Brassica oleracea L) 
for their ability to tolerate and accumulate metals. Indeed, Indian mustard is one of 
the most promising, and perhaps most studied, non-hyperaccumulator plant for the 
extraction of heavy metals from contaminated sites (Prasad and Freitas 2003). 
Upon further screening, it was found effective in sorbing particularly divalent cations 
of toxic metals (Salt and Kramer 2000). In a similar study, Dushenkov et al. (1995) 
observed that the roots of Indian mustard are effective in the removal of Cd, Cr, Cu, 
Ni, Pb, and Zn as also reported by others (Ebbs and Kochian 1998; Prasad and 
Freitas 2003). In a recent investigation, the leaves of sorghum plants have been 
found very effective in the removal of Pb, while the removal of Cd, Zn, and Cu was 
maximum by stems (Zhuang et al. 2009). Sweet sorghum (Sorghum bicolor L.) a 
hardy, C4 grass widely used as a forage crop (Buxton et al. 1998; Unger 2001) and 
as a great promising energy plant, has also shown to display a potential removing 
ability also due to its fast-growing and high-biomass production capacity. Zhuang 
et al. (2009) have used three varieties of sweet sorghum to evaluate the phytoex-
traction efficiency of heavy metals. Their results revealed that even when grown in 
the contaminated soil, sorghum plants can extract more than 0.05 kg/ha of Cd in a 
single crop and the removal of Pb and Zn was 0.35 and 1.44 kg/ha, respectively. 
Similar findings for sorghum plant were also reported by Marchiol et al. (2007) 
who calculated the values of 0.38 kg/ha for Pb and 1.22 kg/ha for Zn in an alkaline, 
industrial-polluted soil. These reports confirmed the findings of An (2004) who 
also reported the ability of sweet sorghum to accumulate metal elements. According 
to Madejón et al. (2003), compared to sorghum plant, sunflower (Helianthus 
 annuus L.) could extract significantly greater amount of Zn (2.14 kg/ha), when the 
roots were also considered in calculations. Studies conducted with hydroponic 
solutions revealed that sunflower can remove Pb (Dushenkov et al. 1995), U 
(Dushenkov et al. 1997a), 137Cs, and 90Sr (Dushenkov et al. 1997b). Claus et al. 
(2007) have used sunflower, maize (Zea mays L.), and rape (Brassica napus) to 
assess the removal of Cd, Cu, Ni, Zn, Cr, and Pb from a contaminated site. 
According to their findings, rape plants bioconcentrated up to 40 ppm Cr and Pb. 
Even though maize produced the largest biomass, the total amount of metals taken 
up by this plant was lower than sunflower and rape plants. Metal removal capacity 
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of different plants has also been studied in various cultural practices by Keller et al. 
(2003) and Ciura et al. (2005) using maize as the test plant, while Madejón et al. 
(2003) and Soriano and Fereres (2003) tested sunflower and barley respectively for 
assessing their metal-removing potential.

In addition to Indian mustard, Zn has also been removed successfully by oat 
(Avena sativa L.) and barley (Hordium vulgare L.) with the established cultural 
practices (Ebbs and Kochian 1998). Some more reports are also available on Indian 
mustard, oat, maize, barley, sunflower, and ryegrass (Salt et al. 1998; Shen et al. 
2002; Meers et al. 2005; Komárek et al. 2007). Moreover, fast-growing willows 
(Salix viminalis) and poplars (Populus sp.) are excellent producers of biomass and 
have characteristics that make these species promising for phytoremediation appli-
cation (Vervaeke et al. 2003). Keller et al. (2003) reported that Nicotiana tabacum 
L. has the ability to produce 12.6 t/ha of biomass, which could extract 1.83 kg/ha of 
Zn, 0.47 kg/ha of Cu and 0.042 kg/ha of Cd. Potentially promising crop plants with 
respective metals are given in Table 19.3.

Table 19.3 Potentially promising crop plants for phytoextraction

Metal Species Reference

Pb Lycopersicon  
esculentum

Cornu et al. (2007) and Oyelola et al. (2009)

Sorghum bicolor Marchiol et al. (2007) and Zhuang et al. (2009)
Helianthus annuus Madejón et al. (2003), Marchiol et al. (2007),  

and Claus et al. (2007)
Zea mays Ciura et al. (2005) and Claus et al. (2007)
Hordeum vulgare Soriano and Fereres (2003)
Brassica juncea Ebbs and Kochian (1997) and Prasad  

and Freitas (2003)
Brassica napus Claus et al. (2007)
Pisum sativum Huang et al. (1997)
Amaranthus cruentus Oyelola et al. (2009)

Cd Sorghum bicolor Zhuang et al. (2009)
Helianthus annuus Turgut et al. (2004), Claus et al. (2007),  

and Marchiol et al. (2007)
Zea mays Ciura et al. (2005) and Claus et al. (2007)
Hordeum vulgare Soriano and Fereres (2003)
Brassica juncea Zavoda et al. (2001), Keller et al. (2003),  

and Prasad and Freitas (2003)
Nicotiana tabacum Keller et al. (2003)
Brassica napus Claus et al. (2007)

Zn Sorghum bicolor Madejón et al. (2003), Marchiol et al. (2007), 
and Zhuang et al. (2009)

Helianthus annuus Madejón et al. (2003), Marchiol et al. (2007), 
and Claus et al. (2007)

Zea mays Ciura et al. (2005) and Claus et al. (2007)
Hordeum vulgare Ebbs and Kochian (1998)  

and Soriano and Fereres (2003)

(continued)
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19.7  What Aspects Need More Investigations?

Though, phytoextraction has been intensively investigated over the years, only a 
scanty of information is available on the usage of crop plants for the metal removal 
from contaminated sites. The prime advantage of using common crop species for 
phytoextraction is the known growth requirements and well-established cultural 
practices. Although some crop species were found to accumulate heavy metals 
while producing high biomass in response to established agricultural management 
(Ebbs and Kochian 1998), growth and yield performances may vary widely under 
contaminated conditions (Blaylock et al. 1997), and even established cultural 
practices sometimes may not elicit the same plant response as observed under 

Table 19.3 (continued)

Metal Species Reference

Brassica juncea Kumar et al. (1995), Keller et al. (2003),  
and Prasad and Freitas (2003)

Nicotiana tabacum Keller et al. (2003)
Brassica napus Claus et al. (2007)
Avena sativa Ebbs and Kochian (1998)

Cr Helianthus annuus Zavoda et al. (2001), Turgut et al. (2004),  
and Claus et al. (2007)

Brassica juncea Kumar et al. (1995) and Zavoda et al. (2001)
Zea mays Claus et al. (2007)
Brassica napus Claus et al. (2007)

Cu Sorghum bicolor Zhuang et al. (2009)
Helianthus annuus Madejón et al. (2003), Marchiol et al. (2007), 

and Claus et al. (2007)
Zea mays Brun et al. (2001), Ciura et al. (2005), and 

Claus et al. (2007)
Hordeum vulgare Soriano and Fereres (2003)
Brassica juncea Prasad and Freitas (2003)
Nicotiana tabacum Keller et al. (2003)
Brassica napus Claus et al. (2007)
Lycopersicon  

esculentum
Cornu et al. (2007) and Oyelola et al. (2009)

Amaranthus cruentus Oyelola et al. (2009)

Ni Helianthus annuus Zavoda et al. (2001), Turgut et al. (2004),  
and Claus et al. (2007)

Brassica juncea Kumar et al. (1995) and Zavoda et al. (2001)
Zea mays Claus et al. (2007)
Brassica napus Claus et al. (2007)

Cs Brassica oleracea Lasat et al. (1997)
Phaseolus acutifolius Lasat et al. (1997)
Brassica juncea Lasat et al. (1997)
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non-contaminated environment. The fundamental aim of the agronomic research 
is to enhance the growth and yield performance. But in general, no attention is 
paid on how to enhance metal accumulation in the tissues of crop species. However, 
with the merits of phytoextraction, it is necessary to develop suitable agronomic 
practices to optimize the growth of crop plants even under contaminated condi-
tions. In this context, research must be focused on agronomic practices such as 
crop establishment (planting season, spacing, establishment method), irrigation 
(frequency, amount, method), fertilization, weeding (method and frequency), and 
other cultural practices including mulching, pruning, pest and disease control, and 
harvesting (method and time) to increase the efficiency of phytoextraction. Among 
the different agronomic practices, the composition, frequency, and method of 
application of fertilizers need to be assessed thoroughly in order to find potential 
crop species. Furthermore, over dosage and/or frequent application of certain 
plant nutrients can limit/suppress the absorption of the target element. To make 
phytoextraction economically viable, the cost of fertilization should also be con-
sidered while formulating fertilizer mixtures.

Another factor that makes phytoextraction successful is the biomass and ability 
of plants to accumulate metals within the tissues (Blaylock et al. 1997; McGrath 
1998). Increased plant biomass can obviously take up and store more metals. Well-
developed root system can provide more surface area to take up metals and the 
aboveground components should be ready to store them. However, increase in aer-
ial and belowground biomass cannot be achieved simultaneously, because plants 
generally tend to develop more roots under stressed conditions, which negatively 
affect the aboveground biomass. Since conclusive reports on these aspects are still 
lacking, scientists need to address these issues seriously. The majority of phytoex-
traction research has focused on finding the ideal metal-accumulating plant species 
and the means by which metals can be removed from soils. Once any promising 
crop species is identified, genetic factors responsible for their hyperaccumulating 
nature should be investigated. Despite recent advances in biotechnology, little is 
known about the genetics of metal hyperaccumulators. Particularly, the heredity of 
relevant plant mechanisms, such as metal transport and storage (Lasa et al. 2000) 
and metal tolerance (Ortiz et al. 1992, Ortiz et al. 1995), must be better understood. 
Bioengineering of plants capable of cleaning up contaminated soils could be the 
next step that has been successfully performed for several species. Manipulation of 
genes involved in the biosynthesis of metal sequestering compounds and subse-
quent introduction and expression of the engineered genes into desirable plant spe-
cies might attract plant growers to adopt phytoremediation strategies (Prasad and 
Strzalka 2002). Meanwhile, Chaney et al. (1999) proposed the use of traditional 
breeding approaches for improving metal hyperaccumulator species and possibly 
incorporating significant traits, such as metal tolerance and uptake characteristics, 
into high-biomass-producing plants. Further, it is important to collect and preserve 
germplasm of accumulator species. The USDA-ARS Plant Introduction Station 
maintains a worldwide collection of B. juncea accessions that are known metal 
accumulators, and the seeds are distributed to public and private research institu-
tions at no cost (Prasad and Freitas 2003).
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19.8  Conclusion

Since it evidently does indicate several benefits, phytoextraction can be considered 
as one of the most preferred methods for restoring metal contaminated environments. 
In order to exploit the full potential of phytoextraction, a comprehensive understand-
ing is needed on as to how metal uptake, transport, and trafficking across plant mem-
branes and distribution, tolerance, sensitivity, etc., take place under different cultural 
practices. Furthermore, phytoextraction should be viewed as a long-term remedia-
tion solution because many cropping cycles may be needed over several years to 
reduce metals to acceptable regulatory levels. Taking all these into consideration, it 
could be concluded that phytoextraction with crop plants is still in the research and 
developmental phase, which requires further attention.

References

An YJ (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Poll 
127:21–26

Anton A, Mathe-Gaspar G (2005) Factors affecting heavy metal uptake; plant selection for 
phytoremediation. Z Naturforsch 60:244–246

Arthur E, Rice P, Rice P, Anderson T, Baladi S, Henderson K, Coats J (2005) Phytoremediation–an 
overview. Crit Rev Plant Sci 24:109–122

Babalakova N, Boycheva S, Rocheva S (2005) Effects of short-term treatment with ionic and 
chelated copper on membrane redox-activity induction in roots of iron – deficient cucumber 
plants. Gen Appl Plant Physiol 31:143–155

Baker A, McGrath S, Reeves R, Smith J (2000) Metal hyperaccumulator plants: a review of the 
ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. 
In: Terry N, Bañuelos G (eds.) Phytoremediation of contaminated soil and water. Lewis 
Publishers, Boca Raton

Bambara S, Ndakidemi PA (2010) Changes in selected soil chemical properties in the rhizosphere 
of Phaseolus vulgaris L. supplied with Rhizobium inoculants, molybdenum and lime. Sci Res 
Ess 5:679–684

Behbahaninia A, Mirbagheri SA, Khorasani N, Nouri J, Javid AH (2009) Heavy metal contamina-
tion of municipal effluent in soil and plants. J Food Agric Environ 7:852–856

Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Rakshin I, Ensley BD (eds.) 
Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, 
p 314

Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y (1997) Enhanced 
accumulation of Pb in Indian mustard by soil-applied chelation agents. Environ Sci Technol 
31:860–865

Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi 
caerulescens and bladder campion for zinc and cadmium contaminated soil. J Environ Qual 
23:1151–1157

Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. 
Ecotoxicol Environ Saf 45:198–207

Brun LA, Maillet J, Hinsinger P, Pépin M (2001) Evaluation of copper availability to plants in 
copper-contaminated vineyard soils. Environ Poll 111:293–302

Buxton DR, Anderson IC, Hallam A (1998) Intercropping sweet sorghum into alfalfa and reed 
canarygrass to increase biomass yield. J Pro Agric 11:481–486



45319 Use of Crop Plants for Removal of Toxic Metals

Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M 
(1999) Improving metal-hyperaccumulators wild plants to develop commercial phytoextrac-
tion systems: approaches and progress. In: Terry N, Bañuelos GS (eds.) Phytoremediation of 
contaminated soil and water. CRC Press, Boca Raton

Chen H, Cutright T (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus 
annuus. Chemosphere 45:21–28

Chen HM, Zheng CR, Tu C, Shen ZJ (2000) Chemical methods and phytoremediation of soil 
contaminated with heavy metals. Chemosphere 41:229–234

Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH (2003) The role of citric 
acid on phytoremediation of heavy metal contaminated soils. Chemosphere 50:807–811

Ciura J, Poniedzialek M, Sekara A, Je drszczyk E (2005) The possibility of using crops as metal 
phytoremediation. Pol J Environ Stu 14:17–22

Claus D, Dietze H, Gerth A, Grosser W, Hebner A (2007) Application of agronomic practice 
improves phytoextraction on a multipolluted site. J Environ Eng Lands Manage 15:208–212

Cornu JY, Staunton S, Hinsinger P (2007) Copper concentration in plants and in the rizhosphere as 
influenced by the iron status of tomato (Lycopersicon esculentum L.). Plant Soil 292:63–77

Dahmani-Muller H, van Oort F, Ge lie B, Balabane M (2000) Strategies of heavy metal uptake by 
three plant species growing near a metal smelter. Environ Poll 109:231–238

Danika L, LeDuc Norman T (2005) Phytoremediation of toxic trace elements in soil and water.  
J Ind Microbiol Biotechnol 32:514–520

Das M, Maiti SK (2007) Metal accumulation in 5 native plants growing on abandoned CU-tailings 
ponds. Appl Ecol Environ Res 5:27–35

De Matos AT, Fontes MPF, Da Costa LM, Martinez MA (2001) Mobility of heavy metals as 
related to soil chemical and mineralogical characteristics of Brazilian soils. Environ Poll 
111:429–435

Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove 
heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997a) Removal 
of uranium from water using terrestrial plants. Environ Sci Technol 31:3468–3474

Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997b) 
Phytoremediation: a novel approach to an old problem. In: Wise DL (ed.) Global environmen-
tal biotechnology. Else Sci BV, Amsterdam, pp 563–572

Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for 
phytoremediation. J Environ Qual 26:776–781

Ebbs SD, Kochian LV (1998) Phytoextraction of Zn by oat (Avena sativa), barley (Hordium vulgare) 
and Indian mustard (Brassica juncea). Sci Total Environ 32:802–806

Espen L, Dell’Orto M, De Nisi P, Zocchi G (2000) Metabolic responses in cucumber (Cucumis 
sativus L.) roots under Fe-deficiency: a 31P-nuclear magnetic resonance in-vivo study. Planta 
210:985–992

Evangelou MWH, Ebel M, Schaefer A (2007) Chelate assisted phytoextraction of heavy metals 
from soil. Effect, mechanism, toxicity and fate of chelating agents. Chemosphere 68:989–1003

Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. 
J Soil Contam 7:415–432

Frey B, Zierold K, Brunner I (2000) Extracellular complexation of Cd in the Hartig net and cytosolic 
Zn sequestration in the fungal mantle of Picea abies–Hebeloma crustuliniforme ectomycorrhizas. 
Plant Cell Environ 23:1257–1265

Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its 
byproducts. Appl Ecol Environ Res 3:1–18

He B, Yang X, Wei Y, Ye Z, Ni W (2002) A new lead resistant and accumulating ecotype – Sedum 
alfredii H. Acta Bot Sinica 44:1365–1370

Hell R, Stephan UW (2003) Iron uptake and homeostasis in plants. Planta 216:541–551
Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nico-

tianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant 
Physiol 119:471–479



454 K.K.I.U. Aruna Kumara

Hinsinger P, Courchesne F (2007) Mobility and bioavailability of heavy metals and metalloids at 
soil-root interface. In: Violante A, Huang PM, Gadd GM (eds.) Biophysico-chemical processes 
of heavy metals and metalloids in soil environments, vol 1. Wiley-IUPAC Series Biophisico-
Chemical processes in Environmental Systems, Chichester

Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 
28:367–376

Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and 
translocation. New Phytol 134:75–84

Huang JW, Chen J, Berti WB, Cunningham SD (1997) Phytoremediation of lead-contaminated 
soils: role of synthetic chelates in lead phytoextraction. Sci Total Environ 31:800–805

Iskandar IK (2000) Environmental restoration of metal contaminated soils. CRC Press, Boca 
Raton, pp 320

Iskandar IK, Kirtham MB (2001) Trace elements in soil; bioavailability, flux and transfer. CRC 
Press, Boca Raton, pp 304

Kabata-Pendias A (2001) Trace elements in soils and plants. CRC Press, Boca Raton, pp 432
Kamal M, Ghaly AE, Mahamoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic 

plants. Environ Int 29:1029–1039
Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK (2000) Enhancement of phytoex-

traction of Zn, Cd and Cu from calcareous soil: the use of NTA and sulfur amendments. Sci 
Total Environ 34:1778–1783

Ke X, Li PJ, Zhou QX, Zhang Y, Sun TH (2006) Removal of heavy metals from a contaminated 
soil using tartaric acid. J Environ Sci 18:727–733

Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development 
and heavy metal phytoextraction efficiency: comparison of different plant species in the field. 
Plant Soil 249:67–81

Khan AG, Keuk C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and 
phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

Komárek M, Tlustoš P, Szákova J, Richner W, Brodbeck M, Sennhauser M (2007) The use of 
maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural 
soils. Chemosphere 67:640–651

Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to 
remove heavy metals from soils. Environ Sci Technol 29:1232–1238

Lai HY, Chen ZS (2004) Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake 
by rainbow pink and vetiver grass. Chemosphere 55:421–430

Lasa B, Frechilla S, Lamsfus C, Aparicio-Tejo PM (2000) Effects of low and high levels of mag-
nesium on the response of sunflower plants grown with ammonium and nitrate. Plant Soil 
225:167–174

Lasat MM (2002) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal 
interaction and assessment of pertinent agronomic issues. J Hazard Subs Res 5:1–25

Lasat MM, Norvell WA, Kochian LV (1997) Potential for phytoextraction of 137Cs from a contami-
nated soil. Plant Soil 195:99–106

Lasat MM, Fuhrmann M, Ebbs SD, Cornish JE, Kochian LV (1998) Phytoremediation of a radio-
cesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three 
plant species. J Environl Qual 27:165–169

Madejón P, Murillo JM, Marañón T, Cabrera F, Soriano MA (2003) Trace element and nutrient 
accumulation in sunflower plants two years after the Aznalcóllar spill. Sci Total Environ 
307:239–257

Mapanda F, Mangwayana EN, Nyamangara J, Giller KE (2004) The effects of long-term irrigation 
using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. 
Agric Eco Environ 107:151–156

Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and 
Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol 
Biochem 45:379–387

Marschner H (1995) Mineral nutrition of higher plants. 2nd ed. Academic Press, New York



45519 Use of Crop Plants for Removal of Toxic Metals

McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York
McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed.) Plants that hyperac-

cumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral 
exploration and phytomining. CAB International, New York, pp 261–288

McGrath SP, Zhao F (2003) Phytoextraction of metals and metalloids from contaminated soils. 
Curr Opin Biotechnol 14:277–282

McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and 
Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis 
halleri. Environ Poll 141:115–125

McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Engg Biotechnol 
78:97–123

Meers E, Ruttens A, Hopgood M, Lesage E, Tack FMG (2005) Potential of Brassic rapa, Cannabis 
sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous 
dredged sediment derived soils. Chemosphere 61:561–572

Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghoshei M, Meech JA (2005) Induced 
plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic 
acid. New Phytol 166:445–454

Muchuweti M, Birkett JW, Chinyanga E, Zvauya R, Scrimshaw MD, Lester JN (2006) Heavy 
metal content of vegetables irrigated with mixture of wastewater and sewage sludge in 
Zimbabwe: implications for human health. Agric Eco Environ 112:41–48

Nouri J, Alloway BJ, Peterson PJ (2001) Forms of heavy metals in sewage sludge and soil amended 
with sludge. Pak J Biol Sci 4:1460–1465

Nouri J, Mahvi AH, Babaei AA, Ahmadpour E (2006) Regional pattern distribution of groundwater 
fluoride in the Shush aquifer of Khuzestan county. Fluoride 39:321–325

Nowack B, Schulin R, Robinson B (2006) Critical assessment of chelant enhanced metal phytoex-
traction. Sci Total Environ 40:5225–5232

Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: implications for 
phytoremediation. Ecotoxicol 13:637–646

Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DV (1992) Heavy metal tolerance 
in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. 
EMBO J 11:3491–3499

Ortiz DF, Ruscitti T, McCue KF, Ow DV (1995) Transport of metal-binding peptides by HMT1, a 
fission yeast ABC-type B vacuolar membrane protein. J Biol Chem 270:4721–4728

Oyelola OT, Babatunde AI, Odunlade AK (2009) Phytoremediation of Metals from Contaminated 
Soil using Lycopercium Esculentum (Tomato) Plant. Int J Pure Appl Sci 3:44–48

Pivetz BE (2001) Phytoremediation of contaminated soil and groundwater at hazardous waste sites. 
Ground Water Issue, United States Environmental Protection Agency, EPA/540/S-01/500

Pollard A, Powell K, Harper F, Smith J (2002) The genetic basis of metal hyperaccumulation in 
plants. Crit Rev Plant Sci 21:539–566

Prasad MNV (2003) Phytoremediation of metal polluted ecosystems – Hype for commercializa-
tion. Russ J Plant Physiol 50:686–701

Prasad MNV (2004) Heavy metals stress in plants: from biomolecules to ecosystem. Springer-
Verlag/Narosa, Heidelberg/New Delhi, p 1462

Prasad MNV, Freitas HM (2003) Metal hyperaccumulation in plants-Biodiversity prospecting for 
phytoremediation technology. Elect J Biotechnol 16:285–321

Prasad MNV, Strzalka K (2002) Physiology and biochemistry of metal toxicity and tolerance in 
plants. Kluwer Academic Publishers, Dordrecht, p 432, ISBN 1-40-200468-0

Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants 
from the environment. Curr Opin Biotechnol 8:221–226

Robinson NJ, Proctor CM, Connolly EL, Guerinot ML (1999) A ferric chelate reductase for iron 
uptake from soils. Nature 397:694–697

Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley 
BD (eds.) Phytoremediation of toxic metals using plants to clean-up the environment. Wiley, 
New York, pp 231–246



456 K.K.I.U. Aruna Kumara

Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and 
accumulation in Indian mustard. Plant Physiol 109:1427–1433

Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 
49:643–668

Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, 
plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

Schnoor JL, Light LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of 
organic and nutrient contaminants. Environ Sci Technol 29:318–323

Senesi N, Loffrdo E (2005) Metal ion complexation by soil humic substances. In: Tabatabai MA, 
Sparks DL (eds.) Chemical processes in soils. SSSA, Madison

Shah K, Nongkynrih J (2007) Metal hyperaccumulation and bioremediation. Biol Plant 
51:618–634

Shen ZG, Li XD, Wang CC, Chen HM, Chua H (2002) Lead phytoextraction from contaminated 
soil with high-biomass plant species. J Environ Qual 31:1893–1900

Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and 
perspectives. Genet Engg Biotechnol J 3:1–20

Shuman LM (2005) Chemistry of micronutrients in soils. In: Tabatabai MA, Sparks DL (eds.) 
Chemical processes in soils. SSSA, Madison

Smith SR (1996) Agricultural recycling of sewage sludge and the environment. CAB International, 
Wallingford

Solheim C (2008) Identification and characterization of copper responsive proteins in Arabidopsis. 
Ph.D. thesis, Department of Plant Sciences, University of Saskatchewan

Soriano MA, Fereres E (2003) Use of crops for in situ phytoremediation of polluted soils following 
a toxic flood from a mine spill. Plant Soil 256:253–264

Tandy S, Bossart K, Mueller R, Ritschel J, Hausar L, Schulin R, Nowack B (2004) Extraction of heavy 
metals from soils using biodegradable chelating agents. Environ Sci Technol 40:2753–2758

Thangavel P, Subbhuraam CV (2004) Phytoextraction: role of hyperaccumulators in metal con-
taminated soils. Proc Ind Natl Sci Acad 70:109–130

Thaylakumaran T, Robinson BH, Vogeler I, Scotter DR, Clothier BE, Percivel HJ (2003) Plant 
uptake and leaching of copper during EDTA-enhanced phytoremediation of repacked and 
undisturbed soil. Plant Soil 254:415–423

Turgut C, Katie Pepe M, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremedia-
tion of Cd, Cr and Ni from soil using Helianthus annuus. Environ Poll 131:147–154

Unger PW (2001) Alternative and opportunity dry land crops and related soil conditions in the 
Southern Great Plains. Agron J 93:216–226

Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FMG, Lust N (2003) Phytoremediation pros-
pects of willow stands on contaminated sediment: a field trial. Environ Poll 126:275–282

Walker DJ, Clemente R, Bernal MP (2004) Contrasting effects of manure and compost on soil pH, 
heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic 
mine waste. Chemosphere 57:215–224

Wang HQ, Lu SJ, Li H, Yao ZH (2007) EDTA-enhanced phytoremediation of lead contaminated 
soil by Bidens maximowicziana. J Environ Sci 19:1496–1499

Weggler K, Mclaqhlin MJ, Graham RD (2004) Effect of chloride in soil solution on the plant avail-
ability of biosolid-borne cadmium. J Environ Qual 33:496

Wei S, Li Y, Zhou Q, Srivastava M, Chiu S, Zhan J, Wu Z, Sun T (2010) Effect of fertilizer amend-
ments on phytoremediation of Cd contaminated soil by a newly discovered hyperaccumulator 
Solanum nigrum L. J Hazard Mat 176:269–273

Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82
Wu QT, Deng JC, Long XX, Morel JL, Schwartz C (2006) Selection of appropriate organic 

additives for enhancing Zn and Cd phytoextraction by hyperaccumulators. J Environ Sci 
18:1113–1118

Xiong ZT, Lu P (2002) Joint enhancement of lead accumulation in Brassica plants by EDTA and 
ammonium sulfate in sand culture. J Environ Sci 14:216–220



45719 Use of Crop Plants for Removal of Toxic Metals

Yang X, Long X, Ye H, He Z, Stofella P, Calvert D (2004) Cadmium tolerance and hyperaccumulation 
in a new Zn hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

Yang X, Feng Y, He Z, Stofella P (2005) Molecular mechanisms of heavy metal hyperaccumula-
tion and phytoremediation. J Trace Ele Med Biol 18:339–353

Yobouet YA, Adouby K, Trokourey A, Yao B (2010) Cadmium, Copper, Lead and Zinc speciation 
in contaminated soils. Int J Engg Sci Technol 2:802–812

Zaccheo P, Crippa L, Pasta VDM (2006) Ammonium nutrition as a strategy for cadmium mobilisa-
tion in the rhizosphere of sunflower. Plant Soil 283:43–56

Zavoda J, Cutright T, Szpak J, Fallon E (2001) Uptake, selectivity, and inhibition of hydroponic 
treatment of contaminants. J Environ Engg 127:502

Zhuang P, Ye ZH, Lan CY, Xie ZW, Shu WS (2005) Chemically assisted phytoextraction of heavy 
metals contaminated soils using three plant species. Plant Soil 276:153–162

Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant 
species in the field. Water Air Soil Poll 184:235–242

Zhuang P, Shu WS, Li Z, Liao B, Li J, Shao J (2009) Removal of metals by sorghum plants from 
contaminated land. J Environ Sci 21:1432–1437



459M.S. Khan et al. (eds.), Biomanagement of Metal-Contaminated Soils,  
Environmental Pollution 20, DOI 10.1007/978-94-007-1914-9_20,  
© Springer Science+Business Media B.V. 2011

Abstract The screening and characterization of metal resistant microorganisms 
and plants are important for developing novel bioremediation processes. Considering 
these, we assessed the potential of copper- and chromium-resistant actinomycetes 
for bioremediation activity in polluted soils. Also, we assessed the effects of copper 
concentrations on roots, shoots, and leaf growth of maize and the copper uptake and 
accumulation by the maize plants. Four chromium resistant Streptomyces strains 
reduced hexavalent chromium up to 85–95% after 21 days. The novel copper-
resistant actinobacterium Amycolatopsis tucumanensis efficiently immobilized 
copper when inoculated into copper-polluted soil microcosms: bioavailable Cu was 
31% lower in soil compared to non-bioaugmented soil. Maize plant was found 

C.S. Benimeli (*)
Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI-CONICET), 
Tucumán, Argentina

Universidad del Norte Santo Tomás de Aquino, Tucumán, Argentina
e-mail: cbenimeli@yahoo.com.ar

M.A. Polti • V.H. Albarracín • C.M. Abate
Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI-CONICET), 
Tucumán, Argentina

Universidad Nacional de Tucumán, Avenida Belgrano y Pasaje Caseros,  
4000 Tucumán, Argentina

M.J. Amoroso
Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI-CONICET), 
Tucumán, Argentina

Universidad del Norte Santo Tomás de Aquino, 
Tucumán, Argentina

Universidad Nacional de Tucumán, Avenida Belgrano y Pasaje Caseros,  
4000 Tucumán, Argentina

Chapter 20
Bioremediation Potential of Heavy  
Metal–Resistant Actinobacteria and Maize  
Plants in Polluted Soil

Claudia S. Benimeli, Marta A. Polti, Virginia H. Albarracín,  
Carlos M. Abate, and María J. Amoroso 



460 C.S. Benimeli et al.

interesting both as biomarker and bioremediation tool. The bioremediation 
activity of A. tucumanensis inoculated maize plants grown in polluted soil 
microcosms correlated well with the values obtained with chemical and physical 
methods: 20% and 17% lower tissue contents of copper were measured in roots and 
leaves, respectively. The roots, shoots, and leaves of maize plants also showed a 
great ability to accumulate copper, which however increased with metal concentra-
tion. The metal concentrations were 382 times more in roots, 157 in shoots, and 
only 16 in leaves, compared to the control (without CuSO

4
).

Keywords Bioremediation • Phytoremediation • Actinomycetes • Zea mays  
• Heavy metals

20.1  Introduction

Metals are natural components of soil and some metals are required as micronutrients 
by plants. However, pollution of biosphere by toxic metals has increased alarmingly 
since the beginning of the industrial revolution. Among heavy metals, chromium is 
one of the most widely used metals in industrial processes, like steel production, 
wood preservation, leather tanning, metal corrosion inhibition, paints, and pigments. 
It is mainly used as chromate or dichromate (Baldi et al. 1990). Industrial effluents 
containing chromium compounds are released directly or indirectly into natural 
water resources, mostly without proper effluent treatment, resulting in anthropo-
genic contamination of non industrial environments (Cefalu and Hu 2004; Cheung 
and Gu 2007). Of the different forms of chromium, hexavalent chromium Cr (VI) 
and trivalent chromium Cr (III) are ecologically important as they are most stable in 
a natural environment (Megharaj et al. 2003). Of these, Cr (III) is an essential micro-
nutrient for proper glucose metabolism, and stimulates the enzyme system and 
stabilizes nucleic acids (Viti et al. 2003). While Cr (VI) is more mobile and soluble 
in water than Cr (III), which is relatively inert, chemically more stable, and less 
bioavailable due to its negligible permeability to biomembranes. Besides, Cr (VI) is 
approximately 100 times more toxic (Beleza et al. 2001) and 1,000 times more 
mutagenic than Cr (III) (Czakó-Vér et al. 1999; Ganguli and Tripathi 2002). In view 
of its alarming effects on human health, Cr (VI) has been listed as a priority pollutant 
and classified as a class A human carcinogen by the US Environmental Protection 
Agency (USEPA) (Costa and Klein 2006).

Due to the ubiquity and toxicity of chromium, there is considerable interest in 
identifying, low-cost methods for the remediation of Cr (VI) from contaminated 
environments (Smith et al. 2002). Biological transformation of Cr (VI) to Cr (III) by 
enzymatic reduction has been recognized as a means of chromium decontamination 
from effluents (Laxman and More 2002). Reduction of Cr (VI) by species of Bacillus 
(Lloyd 2003; Camargo et al. 2004; Liu et al. 2006), Pseudomonas (Lloyd 2003; 
Park et al. 2000), Escherichia (Bae et al. 2005), Desulfovibrio (Mabbett and 
Macaskie 2001), Microbacterium (Pattanapipitpaisal et al. 2001), Shewanella 
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(Myers et al. 2000; Vaimajala et al. 2002), and Arthrobacter (Horton et al. 2006) 
have been reported. However, there are only a few studies on Cr (VI) reduction by 
actinomycetes and their possible role in bioremediation processes. The Cr (VI) 
reduction ability of Streptomyces was reported first time by Das and Chandra (1990), 
which was followed by Amoroso et al. (2001). Recently, Polti et al. (2010a) did find 
chromate reductase activity in Streptomyces sp. MC1, a strain able to remove and 
accumulate chromium from soil samples (Polti et al. 2009, 2010b). These and 
other studies have generated interest in the use of microorganisms, and biological 
methods in general, for metal decontamination as alternatives to the conventional 
methods.

Copper (Cu) is another essential and versatile heavy metal which has many 
known functions in biological systems. However, at elevated concentration, Cu 
becomes toxic. Copper cannot be destroyed and accumulates in soils, plants, and 
animals (Georgopoulus et al. 2002). In Argentina, for instance, the legal limit 
permissible for Cu in drinking water is 1 mg L−1, whereas in European Union, it is 
3 mg L−1. Plants require approximately 5–30 mg Cu kg−1 dry weight for normal 
growth (Kabata-Pendias and Pendias 1992) while Cu deficiency usually occurs 
when plant Cu concentration is less than 5 mg kg−1 dry weight (Marschner 1995). 
When it is absorbed in excess, Cu can alter mitosis, inhibit root elongation, photo-
synthesis, pigment synthesis, nitrogen and protein metabolism, membrane integrity, 
mineral uptake and consequently cause total inhibition of plant growth (Luna et al. 
1994; Ouzounidou et al. 1995; Shen et al. 1998; Nielsen et al. 2003; Demirevska-
Kepova et al. 2004). However, many uses of copper in several applications lead to 
their wide distribution in soil, silt, waste, and wastewater resulting in significant 
environmental problems; that require attention of the scientists (Lloyd and Lovley 
2001). According to Kabata-Pendias and Pendias (1984), 60–125 mg/kg Cu, based 
on total fractions in soil, would be considered toxic to plants. In particular, mining 
and industrial activities in the province of Tucumán, Argentina have led to large-
scale contamination of the environment with Cu (Albarracín et al. 2005). To reme-
diate the polluted sites, many conventional approaches like land-filling, recycling, 
pyrolysis, and incineration are used, which, however, are inefficient and costly. 
Thus, biological decontamination methods are preferable to conventional systems 
for their better efficiency and more so they do not produce toxic intermediates 
(Kothe et al. 2005).

Among microbes, copper-resistant actinobacteria isolated from various polluted 
areas have been used as potential organisms in bioremediation technologies 
(Amoroso et al. 1998; Richards et al. 2002). They are metabolically and morpho-
logically versatile, which provide them a great opportunity to accomplish bioreme-
diation processes. As actinomycetes are indigenous soil microorganisms, they have 
been applied successfully to bioremediate xenobiotics and metal-polluted soil 
microcosms (Jézéquel and Lebeau 2008; Benimeli et al. 2007, 2008; Albarracín 
et al. 2010b). Nevertheless, still more research is needed as soil bioremediation 
constitutes a special challenge because of its heterogeneity. On the other hand, phytore-
mediation, the use of plants to restore polluted sites, has recently become a tangible 
alternative to traditional methodologies (Glass 2000; Lasat 2002; Jing et al. 2007). 
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It has been established that certain wild and crop plant species have the ability to 
accumulate elevated amounts of toxic heavy metals (Reeves and Baker 2000; Ghosh 
and Spingh 2005; Brunet et al. 2008). Thus, researchers all over the world are 
searching new plant species so that they could be used at large scale in removing 
metals from contaminated sites (Rai et al. 2002; Del Rio et al. 2002; Wang et al. 
2007). Maize (Zea mays) is one of the most important cereal crops. However, few 
reports on copper accumulation by maize are available. For example, Liu et al. 
(2001) studied the uptake and accumulation of metals by roots and shoots of maize. 
They found that root growth decreased progressively with increased concentrations 
of Cu2+ in solution, but the shoot growth was similar to the control. However, the 
plants transported and concentrated only a small amount of copper in their roots. 
The importance of copper- and chromium-resistant actinomycetes strains in biore-
mediation and how copper affects the overall growth of maize plant is reviewed and 
discussed.

20.2  Importance of Chromium-Resistant Actinomycetes  
in Remediation of Metal-Polluted Soils

Streptomyces, commonly found in both conventional (Arifuzzaman et al. 2010) 
and metal-polluted ecosystems (Guo et al. 2009; Polti et al. 2007), have demon-
strated metal-reducing ability. In order to evaluate the Cr (VI)-reducing activity of 
Streptomyces strains in soil, a study was conducted using sterile and non-sterile 
soil samples, collected from agronomic sites of Aspach-le-Bas (Haut-Rhin, 
France). Glass pots filled with 200 g soil containing 50 mg Cr (VI) kg−1 soil were 
inoculated with 0.5 mg kg−1 soil dry weight by strains R22, MC1, M3, and C55 of 
Streptomyces species. Non-inoculated soil pots were used to determine Cr (VI) 
reduction by soil and/or autochthonous microflora. Soil pots were incubated at 
30°C for 21 days.

All strains were able to grow in soil whether it was contaminated or not with Cr 
(VI) (Fig. 20.1). Moreover, no significant (P £ 0.05) difference in growth pattern 
was observed when the strains were developed with or without Cr (VI). Strepto-
myces sp. MC1 and Streptomyces sp. C55 reached 2–2.5.105 CFU g−1 soil, while 
Streptomyces sp. M3 and Streptomyces sp. C55 reached 2–6.106 CFU g−1 soil after 
21 days of incubation.

The Cr (VI) concentration reduced from 50 to 2 mg kg−1 in soils inoculated with 
the actinomycetes strains, whether the soil was sterilized or not (Fig. 20.2). However, 
the Cr (VI) reduction was significantly (P < 0.05), higher in sterilized soil, where the 
Cr (VI) removal was 94.26 ± 1.80%, while in non-sterilized soil it was 86.51 ± 1.01%. 
Non-inoculated samples showed a slight decrease in Cr (VI) concentration (2%), 
indicating that soils probably does not contain significant amounts of any substance 
or microorganism able to reduce Cr (VI). The autochthonous culturable microflora 
in non-sterilized soil was 3.105 at the beginning and 2.105 CFU g−1 soil at the end of 
the assay, showing the microflora viability.
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Furthermore, the Cr-reducing Streptomyces sp. strains used showed bioremediation 
ability and reduced up to 85–95% of Cr (VI) (50 mg kg−1) after 21 days in soils, 
without any prior treatment, or addition of any substrate at a normal soil humidity 
level. Other studies have in contrast demonstrated that the addition of organic 
substrate to soil samples is needed to obtain higher Cr (VI) reduction levels 
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Fig. 20.1 Growth of Streptomyces in the absence or presence of 50 mg Cr (VI) kg−1, after 21 days 
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(Turick et al. 1998; Vainshtein et al. 2003). However, Polti et al. (2009) found a total 
Cr (VI) removal without amending any substrate with a normal humidity level for a 
soil without previous treatment, and using a higher soil quantity.

20.3  Importance of Copper-Resistant Actinomycetes  
in Bioremediation

In a previous screening program, 50 copper-resistant actinomycetes were isolated 
from copper-polluted (DP2 Channel, Ranchillos; 600 mg l−1 Cu2+) and non-copper 
polluted sediments (El Cadillal Dam; 20 mg l−1 Cu2+) at Tucumán, Argentina, sug-
gesting that copper-resistant phenotypes were widespread among indigenous actin-
omycetes (Albarracín et al. 2005). Living organisms have been exposed to heavy 
metals released into the environment by geochemical processes (Brown et al. 1998). 
Since the age of industrialization and enhanced mining activities, this exposure has 
been dramatically increased by human activities. Therefore, it is not surprising to 
find that copper resistance ability is common among actinomycetes growing both in 
contaminated and non-contaminated soils.

Using qualitative and semi-quantitative screening assays (Fig. 20.3) using mini-
mal agar medium supplemented with CuSO

4
 at different concentrations up to 

Fig. 20.3 Qualitative assay for assessing copper resistance in actinobacterial strains: Streptomyces 
spp. AB2A, AB2B, and AB2C (left to right, in the upper row) and Amycolatopsis tucumanensis, 
Streptomyces sp. C16, and C39 (left to right, in the lower row) tested at three copper concentrations 
(160, 320, and 480 mg L−1 Cu2+). Wells of 5 mm were made in the center of the plate and filled with 
the copper solutions. Microbial growth around the well was used as the qualitative parameter of 
metal resistance
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1,000 mg L−1 Cu2+, it was determined that isolates from the polluted area displayed 
copper resistance to a level of 1,000 mg L−1 Cu2+ than cultures isolated from the 
non-polluted area (only up to 200 and 400 mg L−1 Cu2+) (Albarracín et al. 2005). 
This variation in copper tolerance among actinomycetes suggests that the actinomy-
cete strains recovered from copper-polluted soils might have evolved physiological 
and genetic mechanisms that allowed them to survive in adverse environments, 
which in turn might have give them a competitive advantage when growing in 
polluted environment (Boopathy 2000).

Following the same procedure, we selected the most copper-resistant actinobac-
terial strains (N = 11) in order to characterize them morphologically, physiologi-
cally, and at molecular level (Table 20.1). Morphological studies were performed by 
growing the strains in minimal agar medium and by observing the macro- and 
microstructures of the colonies and mycelia (Fig. 20.4) after 10 days of incubation 
at 30°C by both optical and electron microscopy (Albarracín et al. 2008b; Albarracín 
et al. 2010a).

Physiological studies were performed to assess the toxic effect of Cu2+ by growing 
the strains in liquid medium amended with copper. Highly dissimilar growth 
patterns and copper removal efficiency were observed for the selected strains grown 
in copper-treated medium. Among them, ABO strain displayed the higher copper-
specific biopsorption ability (25 mg g−1) (Table 20.1). For this reason, this strain was 
applied to polluted soil microcosms to assess its bioremediation ability.

The isolated actinomycetes strains were later subjected to 16s rDNA sequencing. 
Of the total, 11 strains belonged to the genus Streptomyces and only one (ABO/
DSM 45259T) to the genus Amycolatopsis (Table 20.1). Since Amycolatopsis sp. 
ABO was found as the most resistant strain, it was further identified to species level 
employing a polyphasic taxonomical approach (Colwell 1970; Albarracín et al. 
2010a). Strain ABO (Fig. 20.5) was distinguished from its closest phylogenetic 
neighbors including Amycolatopsis eurytherma, using a combination of phenotypic 
and molecular tests. The strain ABO was identified as Amycolatopsis tucumanensis 
sp. nov by genotypic and phenotypic characteristics (Albarracín et al. 2010a).

20.3.1  Amycolatopsis tucumanensis: A Novel Copper-Resistant 
Actinobacterium Able to Colonize and Bioremediate 
Polluted Soil Microcosms

Bioremediation technologies can be broadly classified as ex situ or in situ (Iwamoto 
and Nasu 2001). Ex situ technologies are the treatments that remove contaminants 
at a separate treatment site. In situ bioremediation technologies involves the treat-
ment of the contaminants at the contaminated sites and are currently classified into 
the following three categories: (1) bioattenuation – involves monitoring of the natu-
ral progress of degradation to ensure that contaminant concentration decreases with 
time; (2) biostimulation – when natural biodegradation or biotransformation is 



466 C.S. Benimeli et al.

Ta
bl

e 
20

.1
 

M
or

ph
ol

og
ic

al
 c

ha
ra

ct
er

is
tic

s,
 c

op
pe

r 
bi

os
or

pt
io

n 
(m

g 
C

u/
m

g 
ce

lls
),

 a
nd

 t
ax

on
om

ic
 a

ffi
lia

tio
n 

of
 t

he
 c

op
pe

r-
re

si
st

an
t 

st
ra

in
s 

of
 A

m
yc

ol
at

op
si

s 
tu

cu
m

an
en

si
s 

(A
B

O
) 

an
d 

St
re

pt
om

yc
es

 s
pp

.

St
ra

in
M

or
ph

ol
og

ic
al

  
ch

ar
ac

te
ri

st
ic

s

Ta
xo

no
m

ic
 a

ffi
lia

tio
n 

ac
co

rd
in

g 
to

 th
e 

16
s 

rD
N

A
 g

en
e

G
en

eb
an

k 
ac

ce
ss

io
n 

nu
m

be
r

C
op

pe
r 

sp
ec

ifi
c 

bi
os

or
pt

io
n 

(m
g 

C
u/

m
g 

ce
lls

)a
R

ef
er

en
ce

s

A
B

O
/D

SM
 

45
25

9T

W
hi

te
 a

er
ia

l m
yc

el
iu

m
, r

ec
tu

fle
xi

bi
lis

 s
po

re
 c

ha
in

s,
 

sm
oo

th
 s

po
re

s
A

m
yc

ol
at

op
si

s 
tu

cu
m

an
en

si
s

D
Q

88
69

38
25

 ±
 1

.0
4

A
lb

ar
ra

cí
n 

et
 a

l. 
(2

00
5,

 
20

08
b,

 2
01

0a
)

A
B

2A
W

hi
te

, g
ra

y,
 a

nd
 b

la
ck

 a
er

ia
l m

yc
el

iu
m

, s
pi

ra
l s

po
re

 
ch

ai
ns

, s
m

oo
th

 s
po

re
s

St
re

pt
om

yc
es

 s
p.

A
Y

74
13

63
23

 ±
 1

.1
3

A
lb

ar
ra

cí
n 

et
 a

l. 
(2

00
5,

 
20

08
a)

A
B

2B
W

hi
te

 a
er

ia
l m

yc
el

iu
m

, r
et

in
ac

ul
um

 s
po

re
 c

ha
in

s,
 

sm
oo

th
 s

po
re

s
St

re
pt

om
yc

es
 s

p.
E

F5
27

80
9

8 
±

 0
.8

2
A

lb
ar

ra
cí

n 
et

 a
l. 

(2
00

5)

A
B

2C
W

hi
te

-b
ro

w
n 

ae
ri

al
 m

yc
el

iu
m

, r
et

in
ac

ul
um

 s
po

re
 c

ha
in

s,
 

sm
oo

th
 s

po
re

s
St

re
pt

om
yc

es
 s

p.
E

F4
93

85
0

9.
5 

±
 0

.7
1

A
lb

ar
ra

cí
n 

et
 a

l. 
(2

00
5)

A
B

3
W

hi
te

-g
ra

y 
ae

ri
al

 m
yc

el
iu

m
, s

pi
ra

l s
po

re
 c

ha
in

s,
 s

m
oo

th
 

sp
or

es
St

re
pt

om
yc

es
 s

p.
A

Y
74

13
64

5.
5 

±
 0

.7
1

A
lb

ar
ra

cí
n 

et
 a

l. 
(2

00
5,

 
20

08
a)

A
B

5A
W

hi
te

 a
er

ia
l m

yc
el

iu
m

, s
pi

ra
l s

po
re

 c
ha

in
s,

 s
m

oo
th

 
sp

or
es

St
re

pt
om

yc
es

 s
p.

E
F5

27
81

0
20

 ±
 0

.3
6

A
lb

ar
ra

cí
n 

et
 a

l. 
(2

00
5,

 
20

08
a)

A
B

5B
W

hi
te

 a
er

ia
l m

yc
el

iu
m

, r
et

in
ac

ul
um

 s
po

re
 c

ha
in

s,
 

sm
oo

th
 s

po
re

s
St

re
pt

om
yc

es
 s

p.
E

F5
27

81
1

6.
5 

±
 0

.7
0

A
lb

ar
ra

cí
n 

et
 a

l. 
(2

00
5)

A
B

5C
W

hi
te

, g
ra

y,
 a

nd
 b

la
ck

 a
er

ia
l m

yc
el

iu
m

, r
et

in
ac

ul
um

 
sp

or
e 

ch
ai

ns
, h

ai
ry

 s
po

re
s

St
re

pt
om

yc
es

 s
p.

A
Y

74
13

65
7 

±
 1

.4
1

A
lb

ar
ra

cí
n 

et
 a

l. 
(2

00
5)

A
B

5D
W

hi
te

 a
er

ia
l m

yc
el

iu
m

, r
et

in
ac

ul
um

 s
po

re
 c

ha
in

s,
 

sm
oo

th
 s

po
re

s
St

re
pt

om
yc

es
 s

p.
E

F5
27

81
2

11
.5

 ±
 3

.5
3

A
lb

ar
ra

cí
n 

et
 a

l. 
(2

00
5)

A
B

5E
W

hi
te

 a
er

ia
l m

yc
el

iu
m

, r
et

in
ac

ul
um

 s
po

re
 c

ha
in

s,
 

sm
oo

th
 s

po
re

s
St

re
pt

om
yc

es
 s

p.
E

F5
27

81
3

6 
±

 1
.4

1
A

lb
ar

ra
cí

n 
et

 a
l. 

(2
00

5)

A
B

5F
B

ro
w

n 
an

d 
w

hi
te

 a
er

ia
l m

yc
el

iu
m

, r
et

in
ac

ul
um

 s
po

re
 

ch
ai

ns
, s

m
oo

th
 s

po
re

s
St

re
pt

om
yc

es
 s

p.
E

F5
27

81
4

2.
5 

±
 0

.6
9

A
lb

ar
ra

cí
n 

et
 a

l. 
(2

00
5)

a M
ea

n 
va

lu
es

 a
nd

 s
ta

nd
ar

d 
de

vi
at

io
ns

 a
re

 in
di

ca
te

d



46720 Bioremediation Potential of Heavy Metal–Resistant Actinobacteria and Maize...

stimulated with nutrients, electron acceptors, or substrates; and (3) bioaugmentation – 
a way to enhance the biodegradability or bio-transforming capacity of contaminated 
sites by inoculation of bacteria with the desired catalytic capabilities (Iwamoto and 
Nasu 2001).

Soil bioremediation is a major challenge because of its heterogeneity and due to 
requirement of well-adapted microorganisms to remediate contaminated environ-
ment (Tabak et al. 2005). Hence, it is essential to identify microorganisms capable 
of cleaning up heavy metal–polluted soils. In this context, a novel A. tucumanensis 
was used to remediate copper-polluted soil microcosms (SM).

A. tucumanensis displayed high colonization ability when inoculated in SM with 
20, 80, or 300 mg of copper kg−1 soil. Interestingly, growth of A. tucumanensis was 
not inhibited when A. tucumanensis was grown in SM even with higher copper con-
centrations (Fig. 20.6). Instead, the maximum growth was obtained at the maximum 
copper concentration (300 mg Cu kg−1 soil) tested. This result may be surprising but 

Fig. 20.4 Macroscopic observation of copper-resistant strains: Amycolatopsis tucumanensis 
(ABO) and Streptomyces spp. AB2A, AB2B, AB2C, AB3, AB5A, AB5B, AB5C, AB5D, AB5E, 
AB5F on MM agar. Streptomyces coelicolor (Sc) was included as a reference strain

Fig. 20.5 Magnified morphology of the novel copper-resistant strain Amycolatopsis tucumanensis 
(ABO T ) developed on ISP2 agar. (a and b) Stereoscopic lamp (Nikon), 4× and 8× respectively;  
(c) optic microscope, 400x (Nikon); (d) scanning electron microscopy, 14,810× (Zeiss Supra 
55VP, Carl Zeiss NTS GmbH, Germany)
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can be explained because the original sediment environment where from the strain 
was isolated had 600 mg Cu kg−1 soil (Albarracín et al. 2005). In a follow-up study, 
A. tucumanensis trapping ability of copper from the soil solution was tested by 
chemical and physical methods (Albarracín et al. 2010b). For SM20

nb
, the bioavail-

able copper measured in the soil solution was approximately 30% with respect to 
the one recorded for SM80

nb
. After application to soil, the strain did not show any, 

significant difference between the bioavailable copper from SM20
nb

 and SM20
b
. 

On the contrary, a significant depletion in the bioavailable copper (31%) in 
SM80

b
 was observed with respect to the total bioavailable copper present in 

SM80
nb

, demonstrating A. tucumanensis copper biosorption ability in a polluted 
soil (Albarracín et al. 2010b). The biotrapping copper ability of A. tucumanensis 
could be used to enhance bioremediation process of polluted soils, as proposed for 
other microorganisms (Gadd 2004; Jézéquel et al. 2005). In other study, Roane 
et al. (2001) used Arthrobacter sp. D9 to diminish the bioavailable Cd fraction in 
soils co-contaminated with pyrene and Cd while Groudev et al. (2001) used a 
bacterial consortium including Streptomyces representatives for the successful in 
situ bioremediation of soil highly polluted with radionucleids and heavy metals. 
Jézéquel and Lebeau (2008) found between 26 and 50% reduction in the bioavail-
able Cd when Streptomyces sp. R25 was applied to polluted soil while Polti et al. 
(2009) achieved a 90% reduction of Cr (VI) for soil bioaugmented with Strepto-
myces sp. MC1.
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Fig. 20.6 Colony-forming units g−1 of A. tucumanensis developed in soil microcosms after 28 days 
of incubation. (a) SM20

b
, (b) SM80

b
, and (c) SM300

b
. The values of the group a and b are signifi-

cantly (P £ 0.05) different
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20.4  Effects of Copper on Maize: Copper Uptake  
and Accumulation by the Plants

Benimeli et al. (2010) studied the growth of Zea mays seedlings in vermiculite, an 
inert material, with the addition of Hoagland’s nutrient solution supplemented with 
different concentrations of Cu (10−2, 10−3, and 10−4 M Cu2+). Plants from all popula-
tions of Zea mays grew well in the presence of 10−4–10−2 M Cu2+ with a similar leaf 
color to those grown under the control conditions; however, the effects of Cu2+ on 
roots of Z. mays varied with concentrations (Fig. 20.7). The 10−4 M or 10−3 M Cu2+ 
did not cause any significant changes in roots length compared to the control roots. 
Seedlings exposed to 10−2 M Cu2+ solution, however, reduced the root growth by 
56% compared to untreated plants. The roots appeared thinner and the root tips 
were slightly blue.

The effect of Cu2+ on shoots and leaves length varied considerably (Fig. 20.7). 
When 10−4 M Cu2+ was applied to seedlings, it increased the shoots and leaves by 
16% and 42%, respectively, relative to the control seedlings. The seedlings treated 
with 10−3 and 10−2 M Cu2+ had, however, poor shoot and leaves growth and were 
smaller and appeared slightly yellow. Excess concentration of Cu is reported to 
produce toxic effects on plants. The toxicity of Cu inhibits plant growth, causing 
chlorosis of leaves and increasing leakage of solutes from root cell membranes 
(Shen et al. 1998; Murphy et al.  1999). For example, Ali et al. (2002) found that 
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Fig. 20.7 Effect of different concentrations of Cu2+ on roots, shoots, and leaves growth of Z. mays. 
Vertical bars denote SE (N = 15) (Adapted from Benimeli et al. 2010)



470 C.S. Benimeli et al.

root length of reed and maize seedlings was more sensitive than other measured 
growth parameters. The results observed here showed that seedlings treated with 
10−3 and 10−2 M Cu2+ resulted in inhibition of shoot and leaves growth but not roots. 
In a similar report, Meng et al. (2007) also observed reduction in garlic (Allium 
sativum) seedlings following exposure to 10−4 M and 10−3 M Cu2+. Furthermore, 
Cu2+ can, to some degree, cause partial improvement in fresh biomass of the roots, 
shoots, and leaves of Z. mays (Table 20.2). The fresh weights of roots, shoots and 
leaves were slightly increased or decreased in the presence of 10−4 and 10−3 M Cu2+; 
however, the decrease was significant at 10−2 M Cu2+.

The tolerance index (TI), based on root length, was, however, not significantly 
different for the three Cu treatments indicating that the sensitivity of the plant was 
similar in all studied cases. The total accumulation rate of Cu was very low (almost 
ten times less) at 10−4 and 10−3 M Cu2+ treatments compared to 10−2 (Table 20.3). 
The root had similar TI at the three Cu concentrations tested; the total metal accu-
mulation rate by the seedlings was, however, increased more than 30 times at 10−2 M 
Cu2+. These observations indicate that maize plants can tolerate and accumulate 
high Cu concentrations without visible morphological changes.

Accumulation of Cu in roots, shoots, and leaves of maize considerably varied, 
depending on Cu concentration used (Table 20.4). Interestingly, the Cu accumulation in 
maize plants increased with increase in Cu concentration, which was 382 times higher 
in roots, 157 in shoots, and only 16 in leaves compared to the respective controls.

Table 20.2 Effects of Cu2+ 
on fresh weight of roots, 
shoots, and leaves of Z. mays

Treatment (M)a Roots (g) Shoots (g) Leaves (g)

Control 0.50 ± 0.10 0.21 ± 0.10 0.48 ± 0.20
10−4 0.51 ± 0.10 0.25 ± 0.06 0.66 ± 0.20
10−3 0.60 ± 0.10 0.14 ± 0.03 0.25 ± 0.10
10−2 0.35 ± 0.08 0.18 ± 0.06 0.29 ± 0.10

Adapted from Benimeli et al. (2010)
Values indicate means ± SE (N = 15)
aM: mol L−1

Table 20.3 Tolerance index (TI) of roots and total metal accumulation rate

Treatment (M)a TI (%) Accumulation rate (mg g−1DW day−1)

10−4 82.6 2.71
10−3 91.3 4.00
10−2 82.6 156.41

DW dry weight 
aM: mol L−1 
Adapted from Benimeli et al. (2010)

Mean length of longest root in presence of added Cu
TI(%) 100

Mean length of longest root in unamended control
= ×

Accumulation rate (mg/g  DW/day)

([metal]root  DWroot [metal]shoot  DWshoot [metal]leave  DWleave)

6  (DWroot  DWshoot  DWleave)

×
× + × + ×

=
× + +
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When the average copper accumulation was compared to Cu added to the plant 
(Table 20.5), it was found that this metal could be accumulated by roots, shoots, and 
leaves, when the initial concentrations were 10−3 and 10−4 M. However, at 10−2 M 
Cu2+ concentration, the metal could not be accumulated by leaves and shoots, but 
the roots could increase their Cu accumulation capacity three times compared to the 
control, probably due to the interference of the high Cu concentration in the nutrient 
solution. Even, after 6 days of treatment, the seedling increased the capacity of Cu 
accumulation in roots, shoots, and leaves by 68.8%, 24.5%, and 6.7%, respectively, 
when 10−2 M Cu2+ was added with the nutrient solution. In a similar study, Liu et al. 
(2001) found that the Cu content in roots of Z. mays increased with increasing con-
centration of Cu2+; however, they could not find significant Cu accumulation in 
shoots and leaves.

Copper is required by biological systems as a structural and catalytic enzyme 
component. When present in excess in soil, Cu2+ can be a stress factor and may alter 
physiological responses that can decrease the vigor of the plants and inhibit plant 
growth (Ouzounidou et al. 1995). Copper pollution has, therefore, become a major 
environmental problem due to the long-term use of copper-containing fungicides, 
industrial and urban activities (e.g., air pollution, city waste, and sewage sludge), 
and the application of pig and poultry slurries that contain significantly higher 
amounts of copper (Marschner 1995). To offset Cu toxicity problems, phytoreme-
diation has been considered as an emerging technology that involves the use of 
selected and engineered metal-accumulating plants for environmental clean-up. In 
this context, many studies on uptake and accumulation of heavy metals by plants 

Table 20.4 Copper accumulation by roots, shoots, and leaves of Z. mays after 6-day treatment

Treatment (M)a Roots (mg/g DW) Shoots (mg/g DW) Leaves (mg/g DW)

Control    4.37 ± 1.70   3.78 ± 2.68  10.21 ± 5.76
10−4    5.92 ± 0.70   5.83 ± 1.68  13.57 ± 1.76
10−3    8.34 ± 0.10   6.52 ± 0.16  22.06 ± 3.49
10−2 1668.25 ± 23.28 594.82 ± 2.73 160.97 ± 31.71

Adapted from Benimeli et al. (2010)
Values indicate means ± SE (N = 15)
aM: mol L−1

Table 20.5 Distribution of copper in roots, shoots, and leaves of maize grown in soils treated with 
different concentrations of copper

Treatment (M)a

Total amount 
(mg/g DW) Roots (%) Shoots (%) Leaves (%)

Control 18.36 23.8 20.6 55.6
10−4 25.32 23.4 23 53.6
10−3 36.92 22.6 17.6 59.8
10−2 2424.04 68.8 24.5 6.7

Adapted from Benimeli et al. (2010)
aM: mol L−1
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have been reported recently. For example, Wei et al. (2008) found that concentrations 
of Cu accumulated in plants of Chrysanthemum coronarium L. and Sorghum sudanense 
L. increased greatly with the increasing Cu level. To validate this further, Ucun et al. 
(2009) proposed the use of Pinus sylvestris L. biomass as biosorbent for removing 
Zn(II) and Cu(II) with the maximum biosorption efficiency (67%) observed for 
Cu(II). Maize plants can also be used for phytoremediation because of its high bio-
mass yields and heavy metal tolerance. Ali et al. (2002), in their study, proposed that 
maize plant could provide a possible solution for the stabilization and restoration of 
Cu-polluted soils besides creating suitable environmental conditions for soil micro-
organisms and microfauna (Lin et al. 2008). However, few reports on copper accu-
mulation by wild Zea mays from Argentina are available. The results of this study 
indicated that Z. mays plants have the potential ability to remove and accumulate 
Cu2+ from aqueous solutions. Yet, to our knowledge, no study has demonstrated 
copper accumulation in maize grain, even in Argentina.

20.4.1  Maize Plants as a Bioremediation Marker

Traditionally, the physical and chemical techniques are quite often used to detect 
environmental pollutants (Atlas and Bartha 2002). Spectroscopy (ultraviolet radia-
tion, visible light, and infrared radiation) and chromatography (gas, liquid, and thin-
layer high resolution) have been found as powerful tools since they can detect, 
quantify, and identify xenobiotics at parts per million (ppm) or even per billion 
(ppb) level. With respect to heavy metals, such techniques are very useful and accu-
rate to detect the total content of metals in any environment. However, for practical 
purposes, the effective menace of heavy metals on organisms living in a particular 
environment is not reflected by the total concentration of metal present but depends 
on its bioavailable fraction. For this purpose, it is convenient to use physical and/or 
chemical extraction (Csillag et al. 1999; Gray et al. 1999), although the use of bio-
sensors and biomarkers is a much more attractive approach (Atlas and Bartha 2002). 
The biomarkers are biological systems that modify their response upon changes in 
the environment and, thus, are extremely useful in monitoring bioremediation 
processes.

Ogboghodo et al. (2004) monitored the effect of manure on soil contaminated 
with oil using maize as biomarker. Reduction of soil contamination after fertilizer 
application improved growth and yield of plants compared to those grown in con-
taminated soil but not fertilized. In this case, maize was used not only as a biological 
indicator of oil pollution, but also as an indicator of the ability of manure to achieve 
soil remediation. In other study, Benimeli et al. (2008) monitored the efficiency of 
degradation of lindane in soil by the strain Streptomyces sp. M7 using maize plants. 
Lindane concentrations of 100, 200, and 400 g kg−1 soil did not affect the germina-
tion and vigor index of maize plants seeded in contaminated soils without 
Streptomyces sp. M7. When this microorganism was inoculated under the identical 
conditions, a better vigor index was observed with 68% of lindane removal. 
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Similarly, Albarracín et al. (2010b) confirmed the ability of A. tucumanensis to 
effectively bioremediate copper-polluted soil microcosms by using Zea mays; the 
plants were seeded in non-bioremediated soils (SM20

nb
 and SM80

nb
) and bioreme-

diated soils (SM20
b
 and SM80

b
). The plants grown in SM80

nb
 took up eightfold 

more copper into their roots than the ones grown in SM20
nb

 without phenotypical 
modification. Neither was it observed a significant reduction in biomass and length 
of the plants seeded in SM80

nb
 with respect to the control. Similar observations 

were made by Lin et al. (2008), testing different copper concentrations (200 and 
400 mg kg−1) on soil seeded with Z. mays. The plants were able to take great quanti-
ties of copper without displaying morphological modification.

20.5  Conclusion

Since heavy metal pollution is a worldwide problem, new strategies must be devel-
oped to overcome this situation. Among the diverse methods of remediation, tech-
nologies that use living organisms and/or their biomolecules for this purpose are 
preferable to conventional systems due to their better efficiency. In particular, the 
application of microorganisms and/or plants to bioremediate heavy metal–polluted 
soil has become important. The results achieved so far from different studies indi-
cate the feasibility of using copper- and chromium-resistant actinobacteria to effi-
ciently bioremediate polluted soils. Some of the actinobacteria, like Streptomyces 
and Amycolatopsis strains, isolated from polluted environments have shown effi-
cient bioreduction or bioimmobilization abilities when inoculated onto heavy 
metal–polluted soil microcosms. On the other hand, Zea mays plants have also been 
found as interesting both as biomarker and bioremediation tool. Current research is, 
however, directed toward employing composite application of both actinobacteria 
and maize plants in order to achieve a more effective, viable, and ecologically 
balanced bioremediation strategy to clean up polluted soils at a larger scale.
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Abstract Discharge of heavy metals from various human activities including 
agricultural practices and metal processing industries is known to cause adverse 
effects on the environment. Even though conventional technologies adopted for 
removal of heavy metals from polluted environment tend to be efficient, they are 
generally expensive and produce huge quantity of toxic chemical products. The use 
of biological materials including fungal biomass offers an economical, effective, 
and safe option for removing heavy metals and, therefore, has emerged as a potential 
alternative method to conventional treatment techniques. Among the various reme
diation strategies, biosorption of heavy metals by metabolically active or inactive 
nonliving (dead) biomass of fungal origin is an innovative and alternative technology 
for removal of metals from contaminated sites. Due to unique chemical composition, 
fungal biomass sequesters metal ions by forming metal complexes with certain reactive 
groups on their cell surface and does not require growthsupporting conditions. 
Biomass of numerous fungi like Aspergillus, Penicillium, Mucor, Rhizopus, etc., has 
been found to have highest metal adsorption capacities. Biomass generated as a by
product of fermentative processes offers great potential for adopting an economical 
metalrecovery system. The purpose of this chapter is to gather state of the art 
information on the use of fungal biomass and explores the possibility of exploiting 
them for heavy metal remediation.
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21.1  Introduction

When the amount of heavy metals exceeds a certain level due to pollutants emanating 
from various anthropogenic sources, it causes soil contamination and adversely affects 
agricultural produce (Gupta et al. 2008; Bhattacharyya et al. 2008). The primary 
sources of heavy metal pollution include the burning of fossil fuels, mining and 
smelting of metalliferous ores, municipal wastes, fertilizers, pesticides, and sewage 
(Marcovecchio et al. 2007; Wei and Zhou 2008; AdepojuBello et al. 2009). In some 
areas, sewage when used for irrigation is known to contribute significantly to the 
heavy metal content of soils (Singh et al. 2004; Mapanda et al. 2005; Wu and Cao 
2010). Soil metal content in general is, however, significantly higher in industrial 
area where accumulation may be several times higher than the average content in 
noncontaminated areas. The distribution of metals is influenced by the nature of 
parent materials and climate while their relative mobility depends on soil charac
teristics (Krishna and Govil 2007). Additionally, areas distant from industrial centers 
also show increased metal concentrations due to longrange atmospheric transport 
as reported by numerous authors (Jonathan et al. 2004; Wilson et al. 2005).

To overcome heavy metal toxicity to living organisms or to make metal
contaminated soil suitable for cultivation, various approaches have been applied. 
The conventional treatment processes for example have been found neither effective 
nor economical (Amini et al. 2008). Moreover,  chemical  precipitation of  heavy 
metals produces large amounts of sludge and is ineffective when metal ion con
centrations are lower than 100 mg l−1 (Wang and Chen 2006). In addition, solvent 
extraction techniques are not suitable for effluents with low heavy metal concentra
tions (Mameri et al. 1999) while multimetal contamination is a common problem 
in the industrial effluents (Gikas 2008). In contrast, the biological approaches that 
may involve the use of stresstolerant organisms like fungi for example Fusarium, 
Gliocladium, Penicillium, and Trichoderma have been found effective and inex
pensive in metal decontamination/removal from polluted environment. Among 
microorganisms, fungi, which adopt various strategies for metal removal (Fig. 21.1), 
display a high ability to immobilize toxic metals by insoluble metal oxalate forma
tion, biosorption, or chelation onto melaninlike polymers (Baldrian 2003;  Pal 
et al. 2006). Fungal biomass have been found to accumulate heavy metals such as 
cadmium, copper, mercury, lead, and zinc very efficiently and systems using Rhizopus 
arrhizus have been developed for treating uranium and thorium (Gavrilesca 2004; 
Li and Yuan 2006; Javaid et al. 2010).  In a  recent study, Vala et al.  (2010) have 
found Aspergillus flavus as a promising candidate for environmental bioremedia
tion. And hence, the ability of different mesophilic, psychrophilic, or thermophilic 
fungi to transform a wide range of hazardous chemicals to nontoxic forms has 
generated interest in using them in bioremediation (Alexander 1994). In other study, 
Rehman et al. (2007) reported that Candida tropicalis removed 64% copper from the 
industrial wastewater after 4 days and 74% after 8 days. A study by Kahraman et al. 
(2005) demonstrated that the live biomass of two white rot fungi had a higher cop
per adsorption capacity when compared with dried biomass. Pan et al. (2009) ana
lyzed the effects of single and multiple heavy metals on the growth and uptake of 
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consortium of two types of fungal strains, Penicillium sp. A1 and Fusarium sp. A19. 
These fungal strains were tested to be tolerant to several heavy metals. Combined 
inoculation of A1 and A19 had profound effects on the growth of the two fungi in 
potato dextrose agar (PDA) and Czapex Dox agar (CDA) under the treatments with 
Cu2+ and mixed Cd2++Zn2+. The amount of metals through bioaccumulation by A1, 
A19, and A1 + A19 was significantly higher than that through biosorption by these 
fungi. Similarly, El-Morsy (2004) studied 32 fungal species isolated from polluted 
water in Egypt for their resistance to metals and found that Cunninghamela echinu-
lata  biomass could be employed as a biosorbent of metal  ions  in wastewater.  In 
other studies (Svoboda et al. 2006; Villegas et al. 2008; Antonijevic and Maric 2008), 
the concentrations of heavy metals have also been observed in the fruiting bodies 
(Courtecuisse 1999) of different mushrooms collected from sites adjacent to heavy 
metal smelters, landfills of sewage sludge, emission area. Mushrooms are generally 
capable of accumulating heavy metals, which subsequently become the source in food 
chain (Kalac 2009) as reported by Xiangliang et al. (2005). Ayodele and Odogbili 
(2010) reported heavy metals in three edible mushrooms, like Lentinus squarrosu-
lus, Pleurotus tuberregium, and Psathyrella atroumbonata, growing in Abraka, 
Delta State, Nigeria. Likewise, filamentous fungi have been revealed as promising 
candidates for Cr(VI) bioremediation (Morales-Barrera and Cristiani-Urbina 2008; 
Morales-Barrera et al. 2008).

21.2  Heavy Metal Toxicity and Tolerance in Fungi

Some of  the metals  like magnesium, potassium, calcium, and sodium must be 
present  for  normal  body  functions. Others  like  copper,  iron,  cobolt, manganese, 
molybdenum, and zinc are required at low levels as catalyst for enzyme activities 
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Fig. 21.1  Source of heavy metal pollution and strategies adopted by fungi for metal decontamination
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(AdepojuBello et al. 2009). Of these micronutrients, Zn, Cu, Mn, Ni, and Co are 
important for plant growth (Marschner 1995). Some of the other metals like Cd, 
Pb, and Hg have no known biological function. However, excess exposure to 
heavy metals can result in toxicity to both microbes like fungi and crop plants 
(Alkorta et al. 2004; Van-der-Heggen et al. 2010; Chatterjee and Luo 2010). Heavy 
metal can cause toxicity by forming complexes with protein or inactivate important 
enzyme systems. The modified biological molecules lose their ability to function 
properly and result in the malfunction or death of the cells. The toxicity can last 
longer, but some heavy metals could even be transformed from relatively low toxic 
species into more toxic forms. The bioaccumulation and bioaugmentation of heavy 
metal through food chain could damage normal physiological activity and endanger 
human life. Therefore, once the agricultural land is contaminated, it becomes 
important to solve this problem. To combat metal toxicity, fungi have evolved 
mechanisms. For example,  tolerance of a  facultative marine  fungus Aspergillus 
flavus toward As (V) was tested by Vala et al. (2010). The tolerance of fungi strains 
including Penicillium funiculosum, Aspergillus foetidus, Penicillium simplicissimum 
for different heavy metals, which could be leached, from nickel laterite ores (Ni, Co, 
Fe, Mg, and Mn) was studied. These strains were exposed to heavy metals up to 
2,000  ppm.  The  tolerant  strains  were  selected  by  repeated  subculturing  in  petri 
dishes with increasing metal concentration in the medium. The degree of tolerance 
was measured from the growth rate in the presence of the various heavy metals 
and compared to a control, which contained no heavy metals. Rehman and Anjum 
(2010) isolated multiple metaltolerant fungi (Candida tropicalis) from industrial 
effluents.  It appears  that Penicillium funiculosum and Aspergillus foetidus were 
the most tolerant to the heavy metals and exhibited strong growth even exceeding 
the control. Penicillium simplicissimum showed the least tolerance particularly for 
Ni and Co. A growth pattern, which was consistent for each strain under various 
heavy metals, was observed as a function of time. The growth pattern of the fungi 
exhibited a lag, retarded, similar, and enhanced rate of growth in the presence 
of heavy metal relative to the control. The similarity in the pattern appears 
to suggest the tolerance development or adaptation of the fungi for heavy metals 
(Valix  et  al.  2001). The role of vacuole in the detoxification of metal ions was 
investigated, and the results showed that vacuoledeficient strain displayed much 
higher sensitivity and the biosorption capacity for Zn, Mn, Co, and Ni decreased 
(Ramsay and Gadd 1997).  However,  no  significant  difference  for  Cd  and  
Cu biosorption or sensitivity to both the metal ions was observed between 
wild type and mutant of S. cerevisiae. Gharieb and Gadd (1998) found that the 
vacuolarlacking strains and the defective mutants of S. cerevisiae display higher 
sensitivity to chromate and tellurite with a decrease in the cellular content of each 
metal, whereas the tolerance to selenite increased with the cellular content of 
Se. Many genes involved in the uptake or detoxification or tolerance to metal ions 
have been identified (Rosen 2002). For example, the S. cerevisiae Arr4p plays an 
important role in the tolerance to metal ions like As3+, As5+, Co2+, Cr3+, Cu2+, VO

4
3− 

(Shen et al. 2003).
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21.3  Metal Ion Uptake by Fungi

The metal uptake by living and dead cells can occur by (1) surface binding of 
metal  ions  to  cell wall  and  extracellular material  and  (2)  intracellular  uptake  or 
bioaccumulation – uptake into the cell across the cell membrane, which is dependent 
on the cell metabolism (Volesky 1990). The first mode of metal uptake is commonly 
employed by both living and dead cells while the intracellular uptake occurs only in 
living cells. Among living cells, metal uptake is also facilitated by the production of 
metal-binding proteins. However, whatever may be the mode of metal uptake, both 
living and dead cells of fungi are capable of metal adsorption.

21.3.1  Metal Uptake by Living Cells

Fungi can adapt and grow under various extreme conditions of pH, temperature, 
and nutrient availability, as well as high metal concentrations (Anand et al. 2006). 
The cell wall material of fungi shows excellent metalbinding properties (Gupta 
et al. 2000). Generally, microbial biomasses including those of fungi have evolved 
various measures to respond to heavy metals stress. Such processes include transport 
across the cell membrane, biosorption to cell walls, entrapment in extracellular cap
sules, and precipitation and transformation of metals. The living cells of Penicillium, 
Aspergillus, Rizopus, Mucor, Saccharomyces, and Fusarium have been shown to 
biosorb metal ions (Volesky et al. 1993; Tan and Cheng 2003). The metal uptake by 
living fungal cells, however, depends on the composition of media and growth envi
ronment, contact time, age of cells, and biomass-producing ability. Volesky (1994) 
for example showed that R. nigricans when grown in potatodextrose medium sup
plemented with different sugars like glucose and sucrose showed a variable uranium 
uptake capacity. Similarly, the amount of chromium biosorbed per unit weight of 
biomass decreased with an increase in concentration of R. arrhizus, R. nigricans, 
A. oryzae, and A. Niger (Niyogi et al. 1998).

21.3.2  Cell Surface Precipitation of Metals

The cell wall is the first cellular structure to come in contact with metal ions. After 
contact, the heavy metals interact stoichiometrically with functional groups of cell 
wall including phosphate, carboxyl, amine, and phosphodiesters. To consolidate 
these  facts,  several  studies  have  been  conducted  (Simmons  and  Singleton  1996; 
Machado et al. 2009). For example, Brady and Duncan (1994a) observed that 
the uptake capacity of metals can be reduced by blocking the functional groups 
(amino,  carboxyl,  or  hydroxyl)  of  fungal/actinomycetal  cell  walls  suggesting 
that the cell wall components do play a major role in metal binding. Similarly, the 
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characterization of biosorbents surface by infrared spectroscopy has also suggested 
the  involvement  of  carboxyl  and  amino groups  in  the metals  removal  (Machado 
et al. 2009). At very low pH values, these groups are protonated and as a result, the 
surface  of  biosorbent  is  surrounded  by H+  ions  (Parvathi  and Nagendran  2007), 
which enhance the metal interaction with binding sites of the biosorbent due to 
electrostatic forces (Özer and Özer 2003).
The synthesis of exracellular polymeric  substances  (EPS),  such as polysac

charides, glucoprotein, lipopolysaccharide, and soluble peptide, also possesses 
functional groups, which can adsorb metal ions. Generally, complexation, ion 
exchange, adsorption (by electrostatic interaction or van der Waals force), inorganic 
microprecipitation, oxidation, and/or reduction have been proposed to explain metal 
uptake by fungi (Jung et al. 1998). The roles of EPS in metal removal in a biosorp
tion system are usually neglected or ignored, especially in the case of fungi and 
yeast. Among the limited studies on metal removal by EPS, most of them are related 
to  the EPS extracted  from  intact  organism cells,  but  not  the EPS  in  living  cells. 
However, Suh et al. (1999b), for example,  investigated the effect of EPS on Pb2+ 
removal by a polymorphic fungus Aureobasidium pullulans and observed that Pb2+ 
accumulated only on the surface of the intact cells of A. pullulans due to the presence 
of EPS. Lead also penetrated into the inner parts of the EPS-extracted cells of 
A. pullulans. The uptake of Pb2+ increased with storage period of cells and more 
than 90% of  the Pb2+ was removed due  to excreted EPS. However,  the ability of 
EPS-extracted cells to biosorb Pb2+ was significantly lower compared to the intact 
cells and remained constant, irrespective of the storage time. Suh et al. (1998) also 
discovered that the initial rate of Pb2+ uptake by live cells of S. cerevisiae is lower 
than that of dead cells, while in the case of A. pullulans, both the capacity and the 
initial rate of Pb2+ accumulation in the live cells are higher than those in the dead 
cells, due to the presence of EPS for live A. pullulans.

21.3.3  Intracellular Accumulation

Metal  ions  can  also  enter  the  cell  provided  the  cell wall  is  disrupted  naturally 
(e.g., autolysis) or artificially by mechanical forces or alkali treatment. The intracel
lular accumulation of metal is an energydriven process and depends on functional 
metabolism  of  organisms.  Once  inside,  metal  ions  are  transformed  into  species 
other than parent ones or could be precipitated within the cell. After entering into 
the cell, the metal ions are compartmentalized into different subcellular organelles 
(Vijver et al. 2004). Metal accumulation strategies for essential and non-essential 
metal ions may, however, be different. Limiting metal uptake or active excretion, 
storage  in an  inert  form, and/or excretion of stored metal are  the main strategies 
used  in  removal of  essential metals. For non-essential metals,  excretion  from 
the metal excess pool and internal storage are the major strategies. In general, the 
cellular sequestration mechanism involves the formation of distinct inclusion 
bodies and bind metals to heatstable proteins. The former includes three types of 
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granules: (1) type A: amorphous deposits of calcium phosphates; (2) type B: mainly 
containing acid phosphatase, accumulating Cd, Cu, Hg, and Ag; and (3)  type C: 
excess iron stored in granules as haemosiderin. The latter mechanism involves metal 
binding protein, metallothioneins (MT), which can be induced by many substances, 
including heavy metal (for details, see Chap. 9).

21.4  Metal Uptake by Dead Cells

The  application  of  dead  biomass  offers  certain  advantages  over  living  cells.  For 
example, living cells are more likely to be sensitive to metal ion concentration, 
environmental variables, and operating conditions. Furthermore, a consistent nutrient 
supply is required for systems using living cells besides the recovery of metals 
and  regeneration of biosorbent  is more complicated. On  the other hand, dead 
biomass can easily and inexpensively be procured from industrial sources as a 
waste product. The use of dead cells in the biosorbent studies is receiving 
acceptance due to the absence of toxicity and it does not require growth media and 
nutrients. Moreover, the biosorbed metals can be adsorbed and recovered easily, the 
regenerated biomass can be reused, and the metal uptake reactors can be easily 
modeled mathematically. The dead mass of various fungal cells has shown the metal 
binding ability even at level greater than live cells (Merrin et al. 1998; Kogej and 
Pavko 2001).

21.5  Biosorption of Heavy Metal with Fungi

Today, biosorption is one of the main components of the environmental and 
bioresource  technology  (Park  et  al.  2010), which is considered as an alternative 
sustainable strategy for cleaning up the contaminated sites (Ngwenya et al. 2009). 
Fruiting bodies of macrofungi are considered to be ideal materials as biosorbents. 
It  has  been  demonstrated  that  many  fungal  species  exhibit  high  biosorptive 
potentials (Collin-Hansen et al. 2007; García et al. 2009) as listed in Table 21.1.

21.5.1  Factors Affecting Metal Sorption by Fungi

21.5.1.1  Pretreatment Effect

Pretreatment methods have usually shown an increase in the metal sorption capacity 
for a variety of fungal species. For example, alkali treatment (usually with NaOH) 
of fungal biomass for 4–6 h at 95–100°C deacetylates chitin present in the cell wall 
to form chitosan–glucan complexes with higher affinity for metal ions. It is reported 
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Table 21.1 Biosorption of metal by various fungus species

Fungi Metals studied
Biosorption 
capacity References

Saccharomyces 
cerevisiae

Cr6+ 93% Peng et al. (2010)

Trichoderma harzianum Cu2+; Pb2+ Zn2+ 97% Akhtar et al. (2007)
Trametes versicolor Cd2+ 80% Arıca et al. (2001)
Botrytis cinerea Pb2+ 97% Akar et al. (2005)
Inonotus hispidus Zn2+ 30–60% Sari and Tuzen (2009)
Aspergillus niger Ni2+ 96% Amini et al. (2008, 2009)
Saccharomyces 

cerevisiae
Ni2+ 89% Machado et al. (2010)

Tremella fuciformis Pb2+ 97% Pan et al. (2010)
Auricularia polytricha Pb2+ 91% Pan et al. (2010)
Roccella phycopsis Zn2+, Cu2+ 37.8, 22.79 mg/g YalçIn et al. (2010)
Ganoderma carnosum Pb2+ 38.40 mg/g Akar et al. (2006)
Amanita rubescens Pb2+ 27.30 mg/g Sari and Tuzen (2009)
Amanita rubescens Cd2+As3+ 59.6 mg/g Sari and Tuzen (2009)
Fusarium spp. Zn2+ 42.75 mg/g Velmurugan et al. (2010)
Streptomyces 

ciscaucasicus
Cr6+ 50 mg/l Li et al. (2010)

Agaricus bisporus Pb2+, Hg2+, Cd2+ 247.2, 37.7, 
23.8 mg/g

Ertugay and Bayhan (2007)

Aspergillus terreus U(VI) 60 mg/l Sun et al. (2010)
Aspergillus fumigatus Cr(VI) 78 mg/g Wang et al. (2010)
Rhizopus arrhizus Cu2+ 79.37 mg/g Aksu and Balibek (2007)
Candida lipolytica Cu2+ 60 mg/l Ye et al. (2010)
Rhodotorula glutinis U 612 mg/g Bai et al. (2009)
Trametes versicolor Pb2+ 57.5 mg/g Bayramoglu et al. (2003)
Polyporous versicolor Pb2+ 110 mg/g Yetis et al. (1998)
Phanerochaete 

chryosporium
Cd2+ 120.6 mg/g Say et al. (2001)

Rhizopus cohnii Hg2+, Cd2+, Zn2+ 403.2, 191.6, 
4 mg/g

Jinming et al. (2010)

Funalia trogii Cu2+, Zn2+, Cr6+ Arıca et al. (2004)
Streptomyces rimosus Cr6+ Chergui et al. (2007)
Streptomyces rimosus Pb2+ Ammar (2009)
Rhizopus oligosporus Cr6+, Cu, Ni2+, 

Zn
Ozsoy et al. (2008)

Phanarochaete 
chrysosporium

Cd2+, Pb2+, Cu2+ Yetis et al. (1998)

Penicillium sp. Cr6+ Fukuda et al. (2008)
Aspergillus tubingensis U CoreñoAlonso et al. (2009)

that NaOH removes protein content of the cell wall, exposes more available metal 
binding sites, and increases the negative charge, thereby increasing the biosorption 
(Fourest and Roux 1992; Göksungur et al. 2005). On the contrary, biosorption is 
reduced in the presence of ethylenediamine tetra acetate (EDTA), sulfate, chloride, 



48721  Importance of Free-Living Fungi in Heavy Metal Remediation

phosphate, carbonate, glutamate, citrate, and pyrophosphate. The presence of EDTA 
has been found to severely affect the biosorption of Cu, La, U, Ag, Cd, and Pb. 
In other study, acetone-pretreated R. glutinis cells showed higher Ni(II) biosorption 
capacity than untreated cells at pH values ranging from 3 to 7.5, with an optimum 
pH of 7.5. The effects of other relevant environmental parameters, such as initial 
Ni(II) concentration, shaking contact time, and temperature on Ni(II) biosorption 
onto acetonepretreated R. glutinis, were also evaluated. Significant enhancement of 
Ni(II) biosorption capacity was observed by increasing initial metal concentration 
and temperature ( Suazo-Madrid et al. 2010).

21.5.1.2  pH Effect

Hydrogen  ion  concentration  is  other  factor  that  strongly  affects  the  biosorptive 
ability of fungal species. For example, the biosorption of Cr, Ni, Zn, and Pb by 
P. chrysogenum was inhibited below pH 3 while it increased at acidic to basic range 
(Tan and Cheng 2003). The biosorption of Pb, Cd, Ni, and Zn was severely inhibited 
at pH below 4 (Brady et al. 1994). Fourest et al. (1994) observed that Zn biosorption 
on M. miehei and P. chrysogenum occurred at pH  less  than 4 and  for R. arrhizus, 
which  exhibited  a  higher  Zn  uptake,  it  was  5.8.  The  metal  uptake  for  
R. arrhizus, M. miehei, and P. chrysogenum increased from 16 to 35, 3 to 32, and 
4.5 to 22 mg/g, respectively, when the pH of the reaction mixture was controlled at 
7. Similarly, cadmium biosorption by fungal strains was pH sensitive. Aspergillus 
oryzae, A. niger, F. solani, and Candida utilis were found to perform better in the 
acidic range. The variation in the sorption capacity following change in pH range 
could be due to proton-competitive adsorption reaction (Huang 1986). Under uncon
trolled conditions of pH, the drop in pH may create an undesired competition for 
metal ions from protons, thus lowering the metal uptake capacity. The protonation 
or poor ionization of acidic functional group of cell wall at low pH induces a weak 
complexation affinity between the cell wall and the metal ions. The reduction in 
metal ions uptake displayed by fungus at pH > 5.5 can be explained on the basis that 
at higher pH values,  the metal  ions may accumulate  inside the cells, and/or  the 
intrafibular capillarities of the cell walls by a combined sorption microprecipita
tion mechanism; therefore, biosorption experiments are meaningless at higher pH.

21.5.1.3  Multi-metals Effect

Yan and Viraraghavan (2001) observed that the biosorption column of Mucor rouxii 
biomass was able  to remove metal  ions  like Pb, Cd, Ni, and Zn not only from 
single component metal solutions but also from multicomponent metal solutions. 
The metal adsorption rates and amount by the different fungal fruiting bodies in the 
multimetal solutions are, however, generally lower than those in the singlemetal 
solutions under the same experimental conditions. With more metal types involved, 
the metal rates and amount adsorbed by the fungal biomass decrease. The interactions 
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among the different metals may influence the binding capacity of metals to the 
adsorption sites. Therefore, the uptake of metal ions in a competitive adsorption 
process would be lower than that for individual adsorption (Arief et al. 2008). 
In other study, Yakubu and Dudeney (1986) showed that biosorption of uranium on 
A. niger was substantially reduced in the presence of Cu, Zn, and Fe and the preferen
tial order for biosorption was: Fe > U>Cu > Zn. Zhou and Kiff (1991) indicated that 
Mn, Zn, Cd, Mg, and Ca inhibited Cu biosorption by R. arrhizus. The metal uptake 
followed  the  order:  Cu > Cr > Cd  and  Cu > Pb > Ni.  The  presence  of  anions  also 
affects the biosorption of metal ions.

21.5.1.4  Cell Age and Contact Time

The age of cell also affects the biosorption of metal ions. Increased biosorption has 
been observed during the lag period or early stages of growth while it declines as 
cultures reaches stationary phase, as observed for A. niger, P. spinulosum, and 
T. viride. Volesky and May Phillips (1995) observed that 12-hour-old cultures of 
baker’s  yeast were  able  to  biosorb  2.6  times more  uranium  than  24-hour-grown 
cultures. Biosorption of Cu, Zn, Cd, Pb, and U by non growing cells of Penicillium, 
Aspergillus, Saccharomyces, Rhizopus, and Mucor  attained  equilibrium  in 1–4 h 
(Gadd et al. 1988; Mullen et  al. 1992). Biosorption kinetics of metals is usually 
biphasic  in nature,  consisting of  an  initial  rapid phase,  contributing up  to 90% 
biosorption,  and  lasting  for  10 min.  Second  phase  is  slower  and  lasts  up  to  4  h 
(Huang et al. 1990). According  to Kinetic studies, a contact  time of 30 min 
was found enough to reach the equilibrium between cells and metals solution 
(Machado et al. 2009).

21.6  Biosorption Equilibrium Modeling

The kinetic mechanism that controls the metal biosorption process involves the 
pseudofirstorder and pseudosecond order kinetic models to interpret the experi
mental data (Ho and McKay 1998; Malkoc 2006). Generally, the pseudofirstorder 
kinetic model does not fit well to the whole range of an adsorption process and is 
usually applicable over the initial stage of the process, whereas the pseudosecond
order model fits experimental results better (Bulut et al. 2008; Gupta and Rastogi 
2008; Kílíc et al. 2009). The pseudosecondorder model has been successfully used 
to describe chemisorptions involving valency forces through sharing or exchanging 
electrons between the adsorbent and adsorbate and through exchanging electrons 
among the particles involved (Kílíc et al. 2009). Several two-parameter (Langmuir, 
Freundlich, Temkin and Dubinin-Radushkevich) (Ho and McKay 1998; Özer and 
Özer 2003;  Febrianto  et  al.  2009),  three-parameter  (Sips-Toth,  Redlich-Peterson 
and Radke-Prausnitz) (Febrianto et al. 2009; Cayllahua et al. 2009; Abdel-Salam and 
Burk 2010), and four-parameter (Fritz-Schluender) (Abdel-Salam and Burk 2010) 
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sorption isotherm models have been proposed, which are used to fit the experimental 
equilibrium data obtained at different  initial metal concentrations  (For details, 
see Chap. 8).

21.7  Conclusion

Fungi are known to tolerate and detoxify metals by several mechanisms including 
transformation, extra and intracellular precipitation, and active uptake. The ability 
of fungi to detoxify metals is the reasons that they are considered as potential alter
native to chemical means of remediation of metals. Considering this, it is expected 
that  identifying metal  tolerant/metal  removing  fungi may  help  to  clean  up  the 
contaminated environment. Biosorption as metal removal strategy can be useful in the 
decontamination of heavy metal–contaminated soils. More information is, however, 
required to understand the mechanistic basis of biosorption process. The methods 
to harvest more and more fungal biomass need to be developed. As biosorption 
technology decreases the costs of metal removal due to the usage of natural biological 
materials, it might be considered as an additional process for the decontamination 
of lands.
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